Status of the cold test facility for the JT-60SA tokamak toroidal field coils
Energy Technology Data Exchange (ETDEWEB)
Abdel Maksoud, Walid, E-mail: walid.abdelmaksoud@cea.fr; Bargueden, Patrick; Bouty, André; Dispau, Gilles; Donati, André; Eppelle, Dominique; Genini, Laurent; Guiho, Patrice; Guihard, Quentin; Joubert, Jean-Michel; Kuster, Olivier; Médioni, Damien; Molinié, Frédéric; Sinanna, Armand; Solenne, Nicolas; Somson, Sébastien; Vieillard, Laurence
2015-10-15
Highlights: • The 5 K cryogenic loop includes a 500 W refrigerator and a She cold pump. • The coils are energized thanks to a 25.7 kA power supply and HTS current leads. • Temperature margin tests between 5 K and 7.5 K will be made on each coil. • A magnet safety system protects each double pancake of the coil in case of quench. • Instrumentation is monitored on a 1 Hz to 10 kHz fast acquisition system. - Abstract: JT-60SA is a fusion experiment which is jointly constructed by Japan and Europe and which shall contribute to the early realization of fusion energy, by providing support to the operation of ITER, and by addressing key physics issues for ITER and DEMO. In order to achieve these goals, the existing JT-60U experiment will be upgraded to JT-60SA by using superconducting coils. The 18 TF coils of the JT-60SA device will be provided by European industry and tested in a Cold Test Facility (CTF) at CEA Saclay. The coils will be tested at the nominal current of 25.7 kA and will be cooled with supercritical helium between 5 K and 7.5 K to check the temperature margin against a quench. The main objective of these tests is to check the TF coils performance and hence mitigate the fabrication risks. The most important components of the facility are: a 11.5 m × 6.5 m large cryostat in which the TF coils will be thermally insulated by vacuum; a 500 W helium refrigerator and a valve box to cool the coils down to 5 K and circulate 24 g/s of supercritical helium through the winding pack and through the casing; a power supply and HTS current leads to energize the coil; the control and instrumentation equipment (sensors, PLC's, supervision system, fast data acquisition system, etc.) and the Magnet Safety System (MSS) that protects the coils in case of quench. The paper will give an overview of the design of this large facility and the status of its realization.
Technical aspects and manufacturing methods for JT-60SA toroidal field coil casings
Energy Technology Data Exchange (ETDEWEB)
Rossi, Paolo, E-mail: paolo.rossi@enea.it [ENEA, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Cucchiaro, A.; Brolatti, G.; Cocilovo, V.; Ginoulhiac, G.; Polli, G. [ENEA, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Gabriele, M.; Di Muzio, F. [Walter Tosto, Via Erasmo Piaggio, 66100 Chieti (Italy); Philips, G.; Tomarchio, V. [JT-60SA European Home Team, Boltzmannstrasse 2, D-85748 Garching (Germany)
2014-10-15
Highlights: • A contract between ENEA and Walter Tosto started on July 2012 for the construction of 18 TF coil casings for JT-60SA. • Design and manufacturing of mock-ups representative of straight and curved legs of the casings have been completed. • Final design of the casings has been completed and manufacturing activities have already started and are ongoing. • The completion of the first three casings will be completed within the end of 2013 and the production of all the 18 casings is foreseen by the end of 2015. - Abstract: JT-60SA is a superconducting tokamak machine to be assembled in Naka site, Japan, designed to contribute to the early realization of fusion energy by supporting the exploitation of ITER and research toward DEMO. In the frame of the Broader Approach Agreement a contract between ENEA and Walter Tosto (Chieti, Italy) started on July 2012 for the construction of 18 TF coil casings for JT-60SA. Two different sets of 9 casings each will be progressively delivered, from 2013 to the end of 2015, to ASG Superconductors (Genoa, Italy) and to Alstom (Belfort, France), where the integration of the winding pack into the casing will be carried out. Each TF coil casing (height 7.5 m and width 4.5 m) consists of four main components: one “Straight Leg Outboard” and one “Curved Leg Outboard” both with their own covers, “Straight Leg Inboard” and “Curved Leg Inboard”. The casing components are segmented in forgings and plates made of FM316LNL. The straight leg outboard is composed of two wings welded to a central core and two elbows welded at the ends with a cooling channel installed inside. Elbows of straight leg outboard are segmented in two half-elbows machined from 1 rough forging and welded to the central core made by plate. Welding of wings to the central core is performed in EBW (electron beam welding) and the straight part is welded to the elbows by NGTIG (TIG narrow gap) process. The curved leg outboard is composed of two
Magnetic field measurements of JT-60SA CS model coil
Energy Technology Data Exchange (ETDEWEB)
Obana, Tetsuhiro, E-mail: obana.tetsuhiro@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Takahata, Kazuya; Hamaguchi, Shinji; Chikaraishi, Hirotaka; Mito, Toshiyuki; Imagawa, Shinsaku [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kizu, Kaname; Murakami, Haruyuki; Natsume, Kyohei; Yoshida, Kiyoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)
2015-01-15
Highlights: • Magnetic fields of the JT-60SA CS model coil were measured. • While the coil current was held constant at 20 kA, magnetic fields varied slightly with several different long time constants. • We investigated coils consisting of CIC conductors and having long time constants. - Abstract: In a cold test of the JT-60SA CS model coil, which has a quad-pancake configuration consisting of a Nb{sub 3}Sn cable-in-conduit (CIC) conductor, magnetic fields were measured using Hall sensors. For a holding coil current of 20 kA, measured magnetic fields varied slightly with long time constants in the range 17–571 s, which was much longer than the time constant derived from a measurement using a short straight sample. To validate the measurements, the magnetic fields of the model coil were calculated using a computational model representing the positions of Nb{sub 3}Sn strands inside the CIC conductor. The calculated results were in good agreement with the measurements. Consequently, the validity of the magnetic field measurements was confirmed. Next, we investigated other coils consisting of CIC conductors and having long time constants. The only commonality among the coils was the use of CIC conductors. At present, there is no obvious way to prevent generation of such magnetic-field variations with long time constants.
Edge radial electric field formation after the L-H transition on JT-60U
Energy Technology Data Exchange (ETDEWEB)
Kamiya, K.; Matsunaga, G.; Honda, M.; Miyato, N.; Urano, H.; Kamada, Y.; Itoh, K. [Japan Atomic Energy Agency (JAEA), Naka (Japan); Ida, K. [National Institute for Fusion Science (NIFS), Toki (Japan); Collaboration: The JT-60 team
2014-06-15
Spatio-temporal measurements of the impurity ion temperature, density, and rotation profiles around the plasma edge region have been made in the JT-60U tokamak, allowing the determination of radial electric field, E{sub r}, with the key dimensionless parameter (poloidal Mach number, U{sub pm)} at the L-H transition in a number of operational regimes. We found that there is variation in the L-H transition in terms of its time-scale; not only ''hard'' type transition with a faster time-scale than that seen in the plasma transport (as represented by an energy confinement time, τ{sub E}) as seen in the many conventional tokamaks, but also ''soft'' one with a slow time-scale (∼τ{sub E}) is possible solution, including a complex multi-stage E{sub r} transition in the later H-phase. The most important point is that the critical condition for the L-H transition predicted by ion-orbit loss model could be applicable only for ''hard'' transition (occurred at U{sub pm} ≥ 1), and not necessary for ''slow'' one (occurred even at U{sub pm} < 1). Characteristics of the turbulent density fluctuation with the frequency range of 100 kHz at the plasma edge region, in addition to a uniform toroidal MHD oscillation (i.e., n = 0), during ELM-free H-phase are also reported. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Advanced fusion technologies developed for JT-60 superconducting tokamak
Sakasai, A.; Ishida, S.; Matsukawa, M.; Akino, N.; Ando, T.; Arai, T.; Ezato, K.; Hamada, K.; Ichige, H.; Isono, T.; Kaminaga, A.; Kato, T.; Kawano, K.; Kikuchi, M.; Kizu, K.; Koizumi, N.; Kudo, Y.; Kurita, G.; Masaki, K.; Matsui, K.; Miura, Y. M.; Miya, N.; Miyo, Y.; Morioka, A.; Nakajima, H.; Nunoya, Y.; Oikawa, A.; Okuno, K.; Sakurai, S.; Sasajima, T.; Satoh, K.; Shimizu, K.; Takeji, S.; Takenaga, K.; Tamai, H.; Taniguchi, M.; Tobita, K.; Tsuchiya, K.; Urata, K.; Yagyu, J.
2004-02-01
Modification of JT-60 as a full superconducting tokamak (JT-60SC) is planned. The objectives of the JT-60SC programme are to establish scientific and technological bases for steady-state operation of high performance plasmas and utilization of reduced-activation materials in an economically and environmentally attractive DEMO reactor. Advanced fusion technologies relevant to the DEMO reactor have been developed for the superconducting magnet technology and plasma facing components of the JT-60SC design. To achieve a high current density in a superconducting strand, Nb3Al strands with a high copper ratio of 4 have been newly developed for the toroidal field coils (TFCs) of JT-60SC. The R&D to demonstrate the applicability of the Nb3Al conductor to TFCs by a react-and-wind technique has been carried out using a full-size Nb3Al conductor. A full-size NbTi conductor with low ac loss using Ni-coated strands has been successfully developed. A forced cooling divertor component with high heat transfer using screw tubes has been developed for the first time. The heat removal performance of the carbon fibre composite target was successfully demonstrated on an electron beam irradiation stand.
Energy Technology Data Exchange (ETDEWEB)
Kamiya, K.; Honda, M.; Urano, H.; Yoshida, M.; Kamada, Y. [Japan Atomic Energy Agency (JAEA), Naka, Ibaraki-ken 311-0193 (Japan); Itoh, K. [National Institute for Fusion Science (NIFS), Toki, Gifu 509-5292 (Japan)
2014-12-15
Modulation charge eXchange recombination spectroscopy measurements with high spatial and temporal resolution have made the evaluation of the toroidal plasma flow of fully stripped carbon impurity ions (V{sub ϕ}{sup C6+}) in the JT-60U tokamak peripheral region (including, in particular, the separatrix) possible with a better signal-to-noise ratio. By comparing co- and counter-neutral beam injection discharges experimentally, we have identified the boundary condition of V{sub ϕ}{sup C6+} and radial electric field shear (∇E{sub r}) imposed at the separatrix in high confinement (H-mode) plasmas with edge localized modes (ELMs). The V{sub ϕ}{sup C6+} value at the separatrix is not fixed at zero but varies with the momentum input direction. On the other hand, the ∇E{sub r} value is nearly zero (or very weakly positive) at the separatrix. Furthermore, the edge localized mode perturbation does not appear to affect both V{sub ϕ}{sup C6+} and ∇E{sub r} values at the separatrix as strongly as that in the pedestal region. The above experimental findings based on the precise edge measurements have been used to validate a theoretical model and develop a new empirical model. A better understanding of the physical process in the edge transport barrier (ETB) formation due to the sheared E{sub r} formation is also discussed.
Energy Technology Data Exchange (ETDEWEB)
Isayama, Akihiko; Isei, Nobuaki; Ishida, Shinichi; Sato, Minoru [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment
2000-03-01
Three systems are now operational in JT-60U tokamak for the measurement of electron cyclotron emissions. They are the Fourier transform spectrometer, 20 channels grating polychrometer, and 24 channels heterodyne radiometer. The first system has been absolutely calibrated, and used in the relative calibration of remaining two systems. The paper describes major specifications and recent upgrading of each system. In JT-60U experiments, the heterodyne radiometer system is mainly used for electron temperature perturbations with high signal-to-noise ratio. One of the disadvantage of this system is that the measurement points uniquely determined by the toroidal field, and thus cannot be chosen freely. In the experiment the third system, grating polychrometer, which allows free choice of measurement points, is used to cover the wide cross-section of the JT-60U plasma. (author)
The design study of the JT-60SU device. No. 3. The superconductor-coils of JT-60SU
Energy Technology Data Exchange (ETDEWEB)
Ushigusa, Kenkichi; Mori, Katsuharu; Nakagawa, Syouji [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others
1997-03-01
The superconducting coil systems and the cryogenic system for the JT-60 Super Upgrade (JT-60SU) has been designed. Both Nb{sub 3}Al and NbTi as a superconducting wire material are employed in the toroidal coils (D-shaped 18 coils) to realize a high field magnet with a low cost. Significant reduction of the coil weight (150 tons/coil) without losing the coil rigidity has been achieved by connecting two toroidal coils with shear panels. Validity of this design is confirmed by the detailed structural analysis and thermohydraulic analysis. The poloidal coil system consists of 4 central solenoid coils with (NbTi){sub 3}Sn and 6 outer equilibrium field coils with NbTi. This system has an enough capability to supply the flux of 170Vs to produce a 10MA discharge with 200s of flat-top and to make various plasma configurations. The construction procedure of the poloidal coil system is also established under the constraint of the JT-60 site. Two sets of race-track shaped superconducting coils mounted on the top of the machine is designed to compensate the error field inside the vessel by supplying helical (m=2/n=1) magnetic field. By using cryogenic system with a 36kW of cooling capacity, the total cold weight of around 4000tons can be cooled down to 4.5K within one month, and steady heat load of 6.5kW and transient heat load of 9.0MJ can be removed within 30 minutes of discharge repetition rate. (author)
Serrand, Alexandre; Abdel-Maksoud, Walid; Genini, Laurent; Juster, François-Paul
2014-01-01
In the framework of the JT-60SA project, a cryogenic loop, dedicated to the tests of the JT-60SA Toroidal Field Coils, is planned to be installed at CEA Saclay. To analyze the dynamic thermal behavior of the cryogenic loop and to optimize the cryogenic process control of the coil test facility, dynamic simulations will be carried out with the software EcosimPro. This paper deals with the validation of the software. Experimental power measurements in pure refrigeration on a helium refrigerator have been compared to computations. Results are close and allow validating the software. The modeling of the JT-60SA CTF cryogenic test loop is also described in order to give an overview of the next computations.
Energy Technology Data Exchange (ETDEWEB)
Sato, Masayasu; Isei, Nobuaki; Ishida, Sinichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment
1995-11-01
Effect of relativistic frequency down-shift on the determination of the electron temperature profile from electron cyclotron emission(ECE) in JT-60U tokamak plasmas is studied. The radial shift of the electron temperature profile due to the effects is not negligible, compared with the spatial resolution of ECE measurement systems of JT-60U. Therefore it is necessary to correct the effect for precise measurement of the electron temperature profile. Dependencies of the shifted frequency on the electron density, electron temperature and toroidal magnetic field are studied for the uniform electron density and parabolic electron temperature profile in JT-60U. It is revealed to be necessary for the estimation of shift due to the relativistic down-shift frequency to take into account of the optical thickness. (author).
Performance verification tests of JT-60SA CS model coil
Energy Technology Data Exchange (ETDEWEB)
Obana, Tetsuhiro, E-mail: obana.tetsuhiro@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Murakami, Haruyuki [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Takahata, Kazuya; Hamaguchi, Shinji; Chikaraishi, Hirotaka; Mito, Toshiyuki; Imagawa, Shinsaku [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kizu, Kaname; Natsume, Kyohei; Yoshida, Kiyoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)
2015-11-15
Highlights: • The performance of the JT-60SA CS model coil was verified. • The CS model coil comprised a quad-pancake wound with a Nb{sub 3}Sn CIC conductor. • The CS model coil met the design requirements. - Abstract: As a final check of the coil manufacturing method of the JT-60 Super Advanced (JT-60SA) central solenoid (CS), we verified the performance of a CS model coil. The model coil comprised a quad-pancake wound with a Nb{sub 3}Sn cable-in-conduit conductor. Measurements of the critical current, joint resistance, pressure drop, and magnetic field were conducted in the verification tests. In the critical-current measurement, the critical current of the model coil coincided with the estimation derived from a strain of −0.62% for the Nb{sub 3}Sn strands. As a result, critical-current degradation caused by the coil manufacturing process was not observed. The results of the performance verification tests indicate that the model coil met the design requirements. Consequently, the manufacturing process of the JT-60SA CS was established.
Yoshida, Masafumi; Hanada, Masaya; Kojima, Atsushi; Kashiwagi, Mieko; Grisham, Larry R.; Akino, Noboru; Endo, Yasuei; Komata, Masao; Mogaki, Kazuhiko; Nemoto, Shuji; Ohzeki, Masahiro; Seki, Norikazu; Sasaki, Shunichi; Shimizu, Tatsuo; Terunuma, Yuto
2014-02-01
Non-uniformity of the negative ion beams in the JT-60 negative ion source with the world-largest ion extraction area was improved by modifying the magnetic filter in the source from the plasma grid (PG) filter to a tent-shaped filter. The magnetic design via electron trajectory calculation showed that the tent-shaped filter was expected to suppress the localization of the primary electrons emitted from the filaments and created uniform plasma with positive ions and atoms of the parent particles for the negative ions. By modifying the magnetic filter to the tent-shaped filter, the uniformity defined as the deviation from the averaged beam intensity was reduced from 14% of the PG filter to ˜10% without a reduction of the negative ion production.
Kamiya, Kensaku; Itoh, Kimitaka; Itoh, Sanae-I.; JT-60 Team
2016-10-01
Non-uniformity effects of the edge radial electric field (Er) on the edge transport barriers (ETBs) formation have been identified with high-spatiotemporal resolution spectroscopic measurement. We found the decisive importance of Er-curvature (2nd derivative of Er) on ETB formation during ELM-free H-mode phase, but there is only a low correlation with the Er-shear (1st derivative of Er) value at the peak of normalized ion temperature gradient in the pedestal region. Observation of a uniform toroidal MHD oscillation (i.e. Geodesic Acoustic Mode having toroidal mode number n = 0) during the ETBs formation can also support the hypothesis of turbulence suppression in association with Zonal-flow (and/or Er-curvature). Furthermore, in the ELMing phase, the effect of curvature is also quantified in terms of the relationship between pedestal width and thickness of the layer of inhomogeneous Er. This is the fundamental basis to understand the structure of transport barriers in fusion plasmas. Authors acknowledge the partial support by Grant-in-Aid for Scientific Research (15K06657, 15H02155, 16H02442) and collaboration programmes between QST and universities and of the RIAM of Kyushu University, and by Asada Science Foundation.
Starting the production of the CEA JT-60SA TF coils at Alstom
Energy Technology Data Exchange (ETDEWEB)
Decool, P., E-mail: patrick.decool@cea.fr [CEA, IRFM, F-13108 St-Paul-Lez-Durance Cedex (France); Cloez, H.; Gros, G.; Jiolat, G.; Marechal, J.L.; Nicollet, S.; Torre, A.; Verger, J.M. [CEA, IRFM, F-13108 St-Paul-Lez-Durance Cedex (France); Nusbaum, M.; Billotte, G.; Crepel, B.; Bourquard, A.; Schweitzer, M. [Alstom Power Systems STTG Magnets, 90018 Belfort (France); Davis, S.; Phillips, G. [Fusion for Energy, Boltzmannstr 2, 85748 Garching (Germany)
2015-10-15
Highlights: • We describe the status of the JT-60SA TF coils manufacture at Alstom. • The manufacturing workflow and related tooling are described. • Completion of qualification activities has allowed to start the coils production. • Production of the first winding up to its impregnation is described. • Winding of following coils is started. - Abstract: Within the framework of the Broader Approach, the French voluntary contributor represented by CEA awarded a contract for the production of 9 toroidal field coils for the JT-60SA project to Alstom, Belfort, France in mid-2011. A first preparatory phase was led to establish the team, produce the manufacture drawings, define the manufacturing process, procure the required tooling and prepare the quality documentation. In parallel, a qualification phase on the critical major processes has proved Alstom's ability to master the processes and reach the requirements. After reviewing of the qualification results and modification of the processes and tooling to overcome the encountered difficulties, a Production Readiness Review has authorized Alstom to start the production winding. A prototype double pancake was wound as the first of series. In addition to complying with the pancake width all around the D shape, the straightness of the centreline in the critical straight leg part was correct. The production of the successive double pancakes to constitute the first winding pack was then completed and the joints and terminals were manufactured. The paper describes the completion of the last qualifications and the status of the winding production.
Kamiya, K.; Itoh, K.; Itoh, S.-I.
2016-08-01
The turbulent structure formation, where strongly-inhomogeneous turbulence and global electromagnetic fields are self-organized, is a fundamental mechanism that governs the evolution of high-temperature plasmas in the universe and laboratory (e.g., the generation of edge transport barrier (ETB) of the H-mode in the toroidal plasmas). The roles of inhomogeneities of radial electric field (Er) are known inevitable. In this mechanism, whether the first derivative of Er (shear) or the second derivative of Er (curvature) works most is decisive in determining the class of nontrivial solutions (which describe the barrier structure). Here we report the experimental identification of the essential role of the Er-curvature on the ETB formation, for the first time, based on the high-spatiotemporal resolution spectroscopic measurement. We found the decisive importance of Er-curvature on ETB formation during ELM-free phase, but there is only a low correlation with the Er-shear value at the peak of normalized ion temperature gradient. Furthermore, in the ELMing phase, the effect of curvature is also quantified in terms of the relationship between pedestal width and thickness of the layer of inhomogeneous Er. This is the fundamental basis to understand the structure of transport barriers in fusion plasmas.
Manufacturing of JT-60SA Cryostat Base
Energy Technology Data Exchange (ETDEWEB)
Medrano, Mercedes, E-mail: mercedes.medrano@ciemat.es [Association EURATOM – CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Alonso, Javier; Botija, José; Fernández, Pilar; Ramos, Francisco; Rincon, Esther; Soleto, Alfonso [Association EURATOM – CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Davis, Sam; Di Pietro, Enrico [Fusion for Energy, JT-60SA European Home Team, 85748 Garching bei Munchen (Germany); Masaki, Kei; Sakasai, Akira [JAEA, Japan Atomic Energy Agency, Naka Fusion Institute, Ibaraki 311-0193 (Japan)
2013-10-15
Highlights: ► JT-60SA Cryostat Base has been fabricated in seven structures fastened by bolts. ► The pieces are fully welded structures further machined to get required tolerances. ► The pre-assembly of the Cryostat Base will be done at the factory to check final tolerances as well as to anticipate problems which could be encountered during final assembly. -- Abstract: JT-60SA is a superconducting tokamak to be assembled and operated at the JAEA laboratories in Naka (Japan) [1]. The tokamak has been designed to prepare, support and complement the ITER experimental programme and will be manufactured and operated under the funding of the Broader Approach Agreement (between the government of Japan and the European Commission) and of the Japan Fusion National Programme. Within the European contribution to JT-60SA, Spain has to provide the cryostat. Due to functional purposes, the cryostat has been divided in two large assemblies: the Cryostat Base (CB) and the Cryostat Vessel Body the latter subdivided into Cryostat Vessel Body Cylindrical Section (CVBCS) and the Top Lid. Spain is committed to provide the design and subsequent manufacturing of the CB and CVBCS (excluding the Top Lid) through the National Laboratory of Fusion at Ciemat. The design of both components has been concluded and the CB is currently being manufactured by a Spanish company, IDESA. This paper aims to present the status of the manufacturing and pre-assembly at the factory of the CB that has to be delivered in November 2012.
Development of a linear motion antenna for the JT-60SA ECRF system
Energy Technology Data Exchange (ETDEWEB)
Moriyama, Shinichi, E-mail: moriyama.shinichi@jaea.go.jp [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Mukoyama 801-1, Naka, Ibaraki 311-0193 (Japan); Kobayashi, Takayuki; Isayama, Akihiko; Hoshino, Katsumichi; Suzuki, Sadaaki; Hiranai, Shinichi; Yokokura, Kenji; Sawahata, Masayuki; Terakado, Masayuki; Hinata, Jun; Wada, Kenji; Sato, Yoshikatsu [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Mukoyama 801-1, Naka, Ibaraki 311-0193 (Japan)
2013-10-15
Highlights: ► Development of an antenna featuring linear motion (LM) concept for long pulse electron cyclotron range of frequency (ECRF) heating and current drive in JT-60SA is in progress. ► A mock-up using a metallic sliding bearing with solid lubricant was fabricated. ► A vacuum pumping test with mass analyzer showed evidence of some hydrocarbons during shaft motion. ► Injection beam profile in toroidal beam scan was checked by low power measurement with mock-up. ► Current drive characteristics with the LM antenna for typical experimental scenarios of JT-60SA have been investigated by calculation. -- Abstract: Development of an antenna that features the linear motion (LM) concept for long-pulse electron-cyclotron range of frequency heating and current drive for the JT-60SA is in progress. Combining a linearly movable first mirror and a fixed curved second mirror allows the injection-beam angle to be controlled. Cooling water is fed through the drive shaft for the first mirror and through the fixed support for the second mirror. The shaft support structure uses a metallic sliding bearing with a solid lubricant. The sliding bearing supports combined linear and rotational motion, whereas a conventional ball bearing supports either linear or rotational motion. Therefore, the sliding bearing offers the advantage of reducing the support-structure volume, which is important in the design of the relatively narrow port duct of the JT-60SA. Recently, the sliding bearing has been installed into the mockup. Results of a vacuum test with a mass analyzer indicate the presence of hydrocarbons during shaft motion. The injection-beam profile obtained from a toroidal beam scan is checked against low-power measurements taken on the mockup. Finally, for typical JT-60SA experimental scenarios, heating- and current-drive characteristics of the LM antenna are investigated theoretically.
Optical modeling and physical performances evaluations for the JT-60SA ECRF antenna
Energy Technology Data Exchange (ETDEWEB)
Platania, P., E-mail: platania@ifp.cnr.it; Figini, L.; Farina, D.; Micheletti, D.; Moro, A.; Sozzi, C. [Istituto di Fisica del Plasma “P. Caldirola”, Consiglio Nazionale delle Ricerche, Via R. Cozzi 53, 20125, Milano (Italy); Isayama, A.; Kobayashi, T.; Moriyama, S. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)
2015-12-10
The purpose of this work is the optical modeling and physical performances evaluations of the JT-60SA ECRF launcher system. The beams have been simulated with the electromagnetic code GRASP® and used as input for ECCD calculations performed with the beam tracing code GRAY, capable of modeling propagation, absorption and current drive of an EC Gaussion beam with general astigmatism. Full details of the optical analysis has been taken into account to model the launched beams. Inductive and advanced reference scenarios has been analysed for physical evaluations in the full poloidal and toroidal steering ranges for two slightly different layouts of the launcher system.
Design of collection optics and polychromators for a JT-60SA Thomson scattering system.
Tojo, H; Hatae, T; Sakuma, T; Hamano, T; Itami, K; Aida, Y; Suitoh, S; Fujie, D
2010-10-01
This paper presents designs of collection optics for a JT-60SA Thomson scattering system. By using tangential (to the toroidal direction) YAG laser injection, three collection optics without strong chromatic aberration generated by the wide viewing angle and small design volume were found to measure almost all the radial space. For edge plasma measurements, the authors optimized the channel number and wavelength ranges of band-pass filters in a polychromator to reduce the relative error in T(e) by considering all spatial channels and a double-pass laser system with different geometric parameters.
Development of the centrifugal pellet injector for JT-60U
Energy Technology Data Exchange (ETDEWEB)
Kizu, Kaname; Hiratsuka, Hajime; Ichige, Hisashi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others
2001-03-01
For core fueling of JT-60U plasmas, a repetitive pellet injector which centrifugally accelerates D{sub 2} cubic pellets using a straight rod has been developed. This centrifugal pellet injector can eject trains of up to 40 cubic pellets at frequencies of 1-10 Hz and velocities of 0.3-1.0 km/s. The average pellet mass is 3.6x10{sup 20} atoms/pellet below 0.7 m/s. Key techniques for the development were a mesh structured acceleration component for removing gas sublimated from the pellet and a funnel with an appropriate angle connected just behind the acceleration chamber for introducing the pellet to plasma without destruction. Using the mesh structured components, the horizontal angular distribution of pellets ejected became narrow, because irregular pellet motion caused by sublimated gas was reduced. To investigate the performance of the injector, pellet injection experiments from the low magnetic field side (LFS) were conducted using ohmic heating plasmas. Central fueling and enhanced fueling rate have been observed. D{alpha} intensity around the divertor region was reduced in a pellet injection plasma compared to gas puffing, indicating low recycling rate was maintained with the pellet injection. (author)
Triton burnup study using scintillating fiber detector on JT-60U
Energy Technology Data Exchange (ETDEWEB)
Harano, Hideki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment
1997-09-01
The DT fusion reactor cannot be realized without knowing how the fusion-produced 3.5 MeV {alpha} particles behave. The {alpha} particles` behavior can be simulated using the 1 MeV triton. To investigate the 1 MeV triton`s behavior, a new type of directional 14 MeV neutron detector, scintillating fiber (Sci-Fi) detector has been developed and installed on JT-60U in the cooperation with LANL as part of a US-Japan collaboration. The most remarkable feature of the Sci-Fi detector is that the plastic scintillating fibers are employed for the neutron sensor head. The Sci-Fi detector measures and extracts the DT neutrons from the fusion radiation field in high time resolution (10 ms) and wide dynamic range (3 decades). Triton burnup analysis code TBURN has been made in order to analyze the time evolution of DT neutron emission rate obtained by the Sci-Fi detector. The TBURN calculations reproduced the measurements fairly well, and the validity of the calculation model that the slowing down of the 1 MeV triton was classical was confirmed. The Sci-Fi detector`s directionality indicated the tendency that the DT neutron emission profile became more and more peaked with the time progress. In this study, in order to examine the effect of the toroidal field ripple on the triton burnup, R{sub p}-scan and n{sub e}-scan experiments have been performed. The R{sub p}-scan experiment indicates that the triton`s transport was increased as the ripple amplitude over the triton became larger. In the n{sub e}-scan experiment, the DT neutron emission showed the characteristic changes after the gas puffing injection. It was theoretically confirmed that the gas puffing was effective for the collisionality scan. (J.P.N.) 127 refs.
Beam Transport in Toroidal Magnetic Field
Joshi, N; Meusel, O; Ratzinger, U
2016-01-01
The concept of a storage ring with toroidal magnetic field was presented in the two previous EPAC conferences. Here we report the first results of experiments performed with beam transport in toroidal magnetic fields and details of the injection system. The beam transport experiments were carried out with 30 degree toroidal segments with an axial magnetic field of 0.6T. The multi turn injection system relies on a transverse injection coil together with an electric kicker system.
Institute of Scientific and Technical Information of China (English)
H. Tamai; Y. Kamada; A. Sakasai; S. Ishida; G. Kurita; M. Matsukawa; K. Urata; S. Sakurai; K. Tsuchiya; A. Morioka; Y. M. Miura; K. Kizu
2004-01-01
Plasma control on high-βN steady-state operation for JT-60 superconducting modification is discussed. Accessibility to high-βN exceeding the free-boundary limit is investigated with the stabilising wall of reduced-activated ferritic steel and the active feedback control of the in-vessel non-axisymmetric field coils. Taking the merit of superconducting magnet, advanced plasma control for steady-state high performance operation could be expected.
22 A beam production of the uniform negative ions in the JT-60 negative ion source
Energy Technology Data Exchange (ETDEWEB)
Yoshida, Masafumi, E-mail: yoshida.masafumi@jaea.go.jp [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka 311-0193 (Japan); Hanada, Masaya; Kojima, Atsushi; Kashiwagi, Mieko [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka 311-0193 (Japan); Grisham, Larry R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Hatayama, Akiyoshi; Shibata, Takanori; Yamamoto, Takashi [Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8511 (Japan); Akino, Noboru; Endo, Yasuei; Komata, Masao; Mogaki, Kazuhiko; Nemoto, Shuji; Ohzeki, Masahiro; Seki, Norikazu; Sasaki, Shunichi; Shimizu, Tatsuo; Terunuma, Yuto [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka 311-0193 (Japan)
2015-10-15
Highlights: • In order to improve a uniformity of the negative ion beam and produce high current negative ion beam in the JT-60 negative ion source, a tent-shaped filter is applied. • Beam uniformity is improved from 68% to 83% over an area of the whole extraction area of 450 x 1100 mm{sup 2}. • The improvement of the beam uniformity leads to the production of 32 A H{sup −} ion beams with the whole extraction area. - Abstract: In order to improve the spatial uniformity of the negative ion beam and to produce high current negative ion beams in a large negative ion source, a magnetic field configuration is modified from an original transverse filter to a tent-shaped filter, in combination with reducing the magnetic field strength in the JT-60 negative ion source. As a result, the beam uniformity is improved from 68% to 83% over an area of the whole extraction area of 450 × 1100 mm{sup 2}. The improvement of the beam uniformity leads to the production of 32 A H{sup −} ion beams with the whole extraction area. The obtained beam current fulfills the requirement for JT-60SA.
Atomic and molecular processes in JT-60U divertor plasmas
Energy Technology Data Exchange (ETDEWEB)
Takenaga, H.; Shimizu, K.; Itami, K. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others
1997-01-01
Atomic and molecular data are indispensable for the understanding of the divertor characteristics, because behavior of particles in the divertor plasma is closely related to the atomic and molecular processes. In the divertor configuration, heat and particles escaping from the main plasma flow onto the divertor plate along the magnetic field lines. In the divertor region, helium ash must be effectively exhausted, and radiation must be enhanced for the reduction of the heat load onto the divertor plate. In order to exhaust helium ash effectively, the difference between behavior of neutral hydrogen (including deuterium and tritium) and helium in the divertor plasma should be understood. Radiation from the divertor plasma generally caused by the impurities which produced by the erosion of the divertor plate and/or injected by gas-puffing. Therefore, it is important to understand impurity behavior in the divertor plasma. The ions hitting the divertor plate recycle through the processes of neutralization, reflection, absorption and desorption at the divertor plates and molecular dissociation, charge-exchange reaction and ionization in the divertor plasma. Behavior of hydrogen, helium and impurities in the divertor plasmas can not be understood without the atomic and molecular data. In this report, recent results of the divertor study related to the atomic and molecular processes in JT-60U were summarized. Behavior of neural deuterium and helium was discussed in section 2. In section 3, the comparisons between the modelling of the carbon impurity transport and the measurements of C II and C IV were discussed. In section 4, characteristics of the radiative divertor using Ne puffing were reported. The new diagnostic method for the electron density and temperature in the divertor plasmas using the intensity ratios of He I lines was described in section 5. (author)
Characteristics of large scale ionic source for JT-60
Energy Technology Data Exchange (ETDEWEB)
Fujiwara, Yukio; Honda, Atsushi; Inoue, Takashi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others
1997-02-01
The Neutral Beam Injection (NBI) apparatus is expected for important role sharing apparatus to realize the plasma electric current drive and the plasma control in not only temperature upgrading of the plasma but also Tokamak nuclear fusion reactor for the next generation such as JT-60, ITER and so forth. Japan Atomic Energy Research Institute has developed the ionic source with high energy and large electric current for about 10 years. Some arrangement tests of the large negative ion source for JT-60 No. 1 were executed from June to October, 1995. As a series of arrangement tests, 400 KeV and 13.5 A of deuterium negative ion beam was successfully accelerated for 0.12 sec. under 0.22 Pa of low gas pressure. And, it was elucidated that electron electric current could be controlled efficiently even in deuterium negative ion beam. Here is described on the testing results in details. (G.K.)
Review of JT-60U experimental results in 1997
Energy Technology Data Exchange (ETDEWEB)
Adachi, H.; Akasaka, H.; Akino, N. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others
1998-08-01
The JT-60U experiments in 1997 focused mainly on the steady-state tokamak research with the newly installed W-shaped pumped divertor and the negative ion based neutral beam (NNB) in addition to the existing profile and shape control techniques developed in JT-60U. In particular, the research on divertor physics was accelerated under the new divertor system with many of fine diagnostics: Detachment characteristics, pumping control, impurity control, recycling characteristics, etc. in the W-shaped divertor were investigated in detail. The main purpose of confinement and stability studies in 1997 was to improve steadiness of high confinement plasmas with the new divertor. Researches progressed also for the formation conditions of the internal and the surface transport barriers in the high-{beta}{sub p} mode, the reversed shear mode and the H-mode. Toward the advanced feedback controls of multiple parameters, the JT-60U started new feedback controls of central line density and divertor neutral gas pressure in addition to the existing controls of off-axis line density, radiation power and neutron production rate. The JT-60U team also carefully studied characteristics of halo current during disruptions. Optimization of NNB operation progressed steadily and injection power increased up to 4.2MW. The NNB-driven current was identified directly from the internal magnetic measurement and driven current profile was confirmed to be consistent with the ACCOME calculation. The current profile control with LHCD successfully sustained the internal transport barrier in reversed shear plasmas. Continuous TAE modes were observed with NNB for the first time as beam-driven TAE modes. (J.P.N.)
Structural analysis of the JT-60SA cryostat vessel body
Energy Technology Data Exchange (ETDEWEB)
Botija, José, E-mail: jose.botija@ciemat.es [Association EURATOM – CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Alonso, Javier; Fernández, Pilar; Medrano, Mercedes; Ramos, Francisco; Rincon, Esther; Soleto, Alfonso [Association EURATOM – CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Davis, Sam; Di Pietro, Enrico; Tomarchio, Valerio [Fusion for Energy, JT-60SA European Home Team, 85748 Garching bei Munchen (Germany); Masaki, Kei; Sakasai, Akira; Shibama, Yusuke [JAEA – Japan Atomic Energy Agency, Naka Fusion Institute, Ibaraki 311-0193 (Japan)
2013-10-15
Highlights: ► Structural analysis to validate the JT-60SA cryostat vessel body design. ► Design code ASME 2007 “Boiler and Pressure Vessel Code. Section VIII”. ► First buckling mode: load multiplier of 10.644, higher than the minimum factor 4.7. ► Elastic and elastic–plastic stress analysis meets ASME against plastic collapse. ► Bolted fasteners have been analyzed showing small gaps closed by strong welding. -- Abstract: The JT-60SA cryostat is a stainless steel vacuum vessel (14 m diameter, 16 m height) which encloses the Tokamak providing the vacuum environment (10{sup −3} Pa) necessary to limit the transmission of thermal loads to the components at cryogenic temperature. It must withstand both external atmospheric pressure during normal operation and internal overpressure in case of an accident. The paper summarizes the structural analyses performed in order to validate the JT-60SA cryostat vessel body design. It comprises several analyses: a buckling analysis to demonstrate stability under the external pressure; an elastic and an elastic–plastic stress analysis according to ASME VIII rules, to evaluate resistance to plastic collapse including localized stress concentrations; and, finally, a detailed analysis with bolted fasteners in order to evaluate the behavior of the flanges, assuring the integrity of the vacuum sealing welds of the cryostat vessel body.
Development of modelling tools for thermo-hydraulic analyses and design of JT-60SA TF coils
Energy Technology Data Exchange (ETDEWEB)
Lacroix, Benoit, E-mail: benoit.lacroix@cea.fr [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Portafaix, Christophe [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Barabaschi, Pietro [Fusion For Energy, D-85748 Garching (Germany); Duchateau, Jean-Luc; Hertout, Patrick; Lamaison, Valerie; Nicollet, Sylvie; Reynaud, Pascal [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Villari, Rosaria [Euratom-ENEA Association, IT-00044 Frascati (Italy); Zani, Louis [Fusion For Energy, D-85748 Garching (Germany)
2011-10-15
In the framework of the JT-60SA project, the Toroidal Field (TF) coils design has required to address reliably the choice between multiple design options and to calculate the temperature margin criterion for the superconductor. For this purpose, a tool was developed in two stages, interfacing the ANSYS code, used to model the thermal diffusion between the casing and the winding pack, with the GANDALF code which solves the 1D thermo-hydraulics inside each conductor. The first version of this Thermo-hydraulic EXtended TOol (TEXTO) was developed for producing conservative results and has allowed to simulate the fast discharge of the magnet, providing valuable results such as the mass flow expelled from each pancake. In the second stage, the ANSYS code was configured for modelling the helium transport in the casing and in the winding pack, thus computing more realistic transverse heat fluxes to be injected into the GANDALF code for an accurate calculation of the temperature margin. This second version of TEXTO, which integrates the TACOS (Thermo-hydraulic Ansys COmputation Semi 3D) module, has been used for studying the feasibility of positioning the helium inlets in the electrical connections. The temperature margin has then been found close but below the criterion of 1 K.
Analyses of plasma parameter profiles in JT-60U
Energy Technology Data Exchange (ETDEWEB)
Shirai, Hiroshi; Shimizu, Katsuhiro; Hayashi, Nobuhiko [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Itakura, Hirofumi; Takase, Keizou [CSK Co. Ltd., Tokyo (Japan)
2001-01-01
The methods how diagnostics data are treated as the surface quantity of magnetic surface and processed to the profile data in the JT-60U plasmas are summarized. The MHD equilibrium obtained by solving Grad-Shafranov equation on the MHD equilibrium calculation and registration software FBEQU are saved shot by shot as a database. Various experimental plasma data measured at various geometrical positions on JT-60 are mapped onto the MHD equilibrium and treated as functions of the volume averaged minor radius {rho} on the experimental data time slice monitoring software SLICE. Experimental data are integrated and edited on SLICE. The experimental data measured as the line integral values are transformed by Able inversion. The mapped data are fitted to a functional form and saved to the profile database MAP-DB. SLICE can also read data from MAP-DB and redisplay and transform them. In addition, SLICE can generate the profile data TOKRD as run data for orbit following Monte-Carlo (OFMC) code, analyzer for current drive consistent with MHD equilibrium (ACCOME) code and tokamak predictive and interpretive code system (TOPICS). (author)
Review of JT-60U experimental results in 1998
Energy Technology Data Exchange (ETDEWEB)
Adachi, H.; Akasaka, H.; Akino, N. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others
1999-09-01
Based on the high confinement regimes such as reversed shear mode, high-{beta}{sub p} mode and H-mode, the JT-60U experiment in 1998 was devoted to expand the discharge regimes in terms of 1) achievement of high fusion gain, 2) concept optimization for long sustainment of the advanced modes for >>{tau}{sub E} and >{tau}{sub p}* with the current profile close to the steady-state solution, 3) high confinement by electron heating (T{sub e}>T{sub i}), 4) high confinement at high electron density and/or at high divertor radiation and 5) active control of multiple parameters including both core and divertor plasmas. As for the reversed shear mode, high performance discharges satisfying Q{sub DT}{sup eq} (DT equivalent fusion gain ) >1 were obtained reproducibly and the record value of Q{sub DT}{sup eq}=1.25 was achieved in a reactor-relevant thermonuclear dominant regime due to the optimized discharge scenario using feedback control of the neutron production rate where {beta}-values were kept in the MHD stable region during the I{sub p} ramping phase with a large radius of the internal transport barrier (ITB). The reduction of Z{sub eff} obtained after installation of W-shaped pumped divertor increased fusion reaction rate. Concerning long sustainment, the reversed shear ELMy H-mode with H{sup 89PL}-factor{approx}1.5-2 and {beta}{sub N}=1.0-1.4 was kept for 5.5 s with NB heating. By off axis LH current drive, the reversed shear current profile with the ITB was kept constant for 4.7 s under full non- inductive current drive condition (LHCD=77%, bootstrap=23%) at T{sub e}-1.2T{sub i}. In the high-{beta}{sub p} ELMy H-mode regime, benefits of the high triangularity shape were demonstrated. At a high triangularity {delta}{sub X}{approx}0.46, {beta}{sub N}=2.5-2.7 was sustained for 3.5 s even at the low value of q{sub 95}=2.9-3.3. The product of {beta}{sub N}xH-factor sustainable for >5{tau}{sub E} (>{tau}{sub p}*) increases with {delta}{sub x} and reaches {approx}6 at {delta
Investigation of carbon dust accumulation in the JT-60U tokamak vacuum vessel
Energy Technology Data Exchange (ETDEWEB)
Asakura, N., E-mail: asakura.nobuyuki@jaea.go.jp [Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan); Hayashi, T. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Ashikawa, N. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Fukumoto, M. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan)
2013-07-15
Dust generated by plasma–wall interaction is a potential source of tritium retention in a fusion reactor. Evaluation of the dust accumulation in the entire vacuum vessel is required to estimate the total amount of tritium retention, but it was particularly difficult to measure for plasma-unexposed areas behind the PFC structures, i.e. “shadow areas”. Dust samples were collected at 3, 5 and 2–4 different toroidal locations on the first wall, divertor surface and the exhaust route under the divertor in JT-60U, respectively. On the tile surface, large mass area density was found at the inner divertor and baffle, in particular, upper tiles compared to the lower target tile where the thick deposition layers were produced. Mass area density was significantly increased at the shadow areas, i.e. under the divertor structure such as the divertor and baffle tiles and the divertor dome. It was found that the poloidal distribution is relatively symmetrical in the toroidal direction within a factor of three. In comparison with the previous collection just before major change of the plasma operations, dust accumulation was increased both at the exposed and shadow areas due to change in the operating conditions.
Investigation of carbon dust accumulation in the JT-60U tokamak vacuum vessel
Asakura, N.; Hayashi, T.; Ashikawa, N.; Fukumoto, M.
2013-07-01
Dust generated by plasma-wall interaction is a potential source of tritium retention in a fusion reactor. Evaluation of the dust accumulation in the entire vacuum vessel is required to estimate the total amount of tritium retention, but it was particularly difficult to measure for plasma-unexposed areas behind the PFC structures, i.e. "shadow areas". Dust samples were collected at 3, 5 and 2-4 different toroidal locations on the first wall, divertor surface and the exhaust route under the divertor in JT-60U, respectively. On the tile surface, large mass area density was found at the inner divertor and baffle, in particular, upper tiles compared to the lower target tile where the thick deposition layers were produced. Mass area density was significantly increased at the shadow areas, i.e. under the divertor structure such as the divertor and baffle tiles and the divertor dome. It was found that the poloidal distribution is relatively symmetrical in the toroidal direction within a factor of three. In comparison with the previous collection just before major change of the plasma operations, dust accumulation was increased both at the exposed and shadow areas due to change in the operating conditions.
ATLAS Barrel Toroid magnet reached nominal field
2006-01-01
Â OnÂ 9 November the barrel toroid magnet reached its nominal field of 4 teslas, with an electrical current of 21 000 amperes (21 kA) passing through the eight superconducting coils as shown on this graph
Tokamak with in situ magnetohydrodynamic generation of toroidal magnetic field
Schaffer, Michael J.
1986-01-01
A tokamak apparatus includes an electrically conductive metal pressure vessel for defining a chamber and confining liquid therein. A liner disposed within said chamber defines a toroidal space within the liner and confines gas therein. The metal vessel provides an electrically conductive path linking the toroidal space. Liquid metal is forced outwardly through the chamber outside of the toroidal space to generate electric current in the conductive path and thereby generate a toroidal magnetic field within the toroidal space. Toroidal plasma is developed within the toroidal space about the major axis thereof.
Sensitivity study for N-NB-driven modes in JT-60U: boundary, diffusion, gyroaverage, compressibility
Bierwage, A.; Todo, Y.; Aiba, N.; Shinohara, K.
2016-10-01
The sensitivity of the growth and nonlinear evolution of fast-ion-driven modes is examined with respect to the choice of particle boundary conditions, diffusion coefficients, fast ion gyroradii and bulk compressibility. The primary purpose of this work is to justify the choice of parameters to be used in the self-consistent long-time simulations of fast ion dynamics using global MHD-kinetic hybrid codes that include fast ion sources and collisions. The present study is conducted for a scenario based on the N-NB-driven JT-60U shot E039672, which is subject to abrupt large events (ALE). We use realistic geometry, a realistic fast ion distribution, and focus on experimentally observed harmonics with low toroidal mode numbers n = 1, 2, 3. The use of realistic boundary conditions and finite Larmor radii for the fast ions is shown to be essential. The usual values {μ0}η =ν =χ ∼ {{10}-6}{{v}\\text{A0}}{{R}0} used for resistivity, viscosity and thermal diffusivity, and Γ=5/3 used for the specific heat ratio (controlling the effect of compressibility) are shown to be reasonable choices. Our method for performing the parameter scans around the threshold for the onset of convective amplification is proposed as a strategy for nonlinear benchmark studies.
Design of tangential viewing phase contrast imaging for turbulence measurements in JT-60SA
Energy Technology Data Exchange (ETDEWEB)
Tanaka, K., E-mail: ktanaka@nifs.ac.jp [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Department of Advanced Energy Engineering, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Coda, S. [EPFL–SPC, Lausanne (Switzerland); Yoshida, M.; Sasao, H.; Kawano, Y.; Imazawa, R.; Kubo, H.; Kamada, Y. [National Institutes for Quantum and Radiological Science and Technology, Naka, Ibaraki 311-0193 (Japan)
2016-11-15
A tangential viewing phase contrast imaging system is being designed for the JT-60SA tokamak to investigate microturbulence. In order to obtain localized information on the turbulence, a spatial-filtering technique is applied, based on magnetic shearing. The tangential viewing geometry enhances the radial localization. The probing laser beam is injected tangentially and traverses the entire plasma region including both low and high field sides. The spatial resolution for an Internal Transport Barrier discharge is estimated at 30%–70% of the minor radius at k = 5 cm{sup −1}, which is the typical expected wave number of ion scale turbulence such as ion temperature gradient/trapped electron mode.
Fast dynamics of type I and grassy ELMs in JT-60U
Kojima, A.; Oyama, N.; Sakamoto, Y.; Kamada, Y.; Urano, H.; Kamiya, K.; Fujita, T.; Kubo, H.; Aiba, N.; JT-60 Team
2009-11-01
In order to understand the physics of the ELM trigger and determine the ELM size, the fast ELM dynamics of type I and grassy ELMs have been studied in JT-60U, using new fast diagnostics with high spatial and temporal resolutions such as a lithium beam probe (Δt ~ 0.5 ms) and a charge exchange recombination spectroscopy (Δt ~ 2.5 ms), which can measure the electron density and the ion temperature, respectively. The evolution of the ion pressure profile in the pedestal region has been evaluated for the first time by detailed edge profile measurements. Then, the dynamics of the density, the ion temperature and the ion pressure in the ELM cycle has been investigated. The co-rotating plasmas are compared with the counter (ctr)-rotating plasmas for the understanding of the toroidal rotation effects. Type I ELMs observed in co-rotating plasmas exhibit a larger and wider ELM affected area (Δnped/nped ~ 30%, radial extent >15 cm) than ctr-rotating plasmas (Δnped/nped ~ 20%, radial extent ~10 cm). Just before a type I ELM crash, the pedestal ion pressure and its maximum gradient in co-rotating plasmas are 20% and 12% higher than those in ctr-rotating plasmas, respectively. It is found that the radial extent of the ion pressure gradient at the pedestal region in co-rotating plasmas is 14% wider than that in ctr-rotating plasmas. The experimental results suggest that the ELM size is connected with the structure of the plasma pressure in the whole pedestal region. As for the dynamics of grassy ELMs, the collapse of density pedestal is smaller (narrower (~5 cm) than those of type I ELMs, as observed in the collapse of the electron temperature pedestal. Thus, it is confirmed that both conductive and convective losses due to grassy ELMs are small.
Efficient magnetic fields for supporting toroidal plasmas
Energy Technology Data Exchange (ETDEWEB)
Landreman, Matt, E-mail: mattland@umd.edu [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Boozer, Allen H. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)
2016-03-15
The magnetic field that supports tokamak and stellarator plasmas must be produced by coils well separated from the plasma. However, the larger the separation, the more difficult it is to produce a given magnetic field in the plasma region, so plasma configurations should be chosen that can be supported as efficiently as possible by distant coils. The efficiency of an externally generated magnetic field is a measure of the field's shaping component magnitude at the plasma compared to the magnitude near the coils; the efficiency of a plasma equilibrium can be measured using the efficiency of the required external shaping field. Counterintuitively, plasma shapes with low curvature and spectral width may have low efficiency, whereas plasma shapes with sharp edges may have high efficiency. Two precise measures of magnetic field efficiency, which correctly identify such differences in difficulty, will be examined. These measures, which can be expressed as matrices, relate the externally produced normal magnetic field on the plasma surface to the either the normal field or current on a distant control surface. A singular value decomposition (SVD) of either matrix yields an efficiency ordered basis for the magnetic field distributions. Calculations are carried out for both tokamak and stellarator cases. For axisymmetric surfaces with circular cross-section, the SVD is calculated analytically, and the range of poloidal and toroidal mode numbers that can be controlled to a given desired level is determined. If formulated properly, these efficiency measures are independent of the coordinates used to parameterize the surfaces.
Energy loss for grassy ELMs and effects of plasma rotation on the ELM characteristics in JT-60U
Oyama, N.; Sakamoto, Y.; Isayama, A.; Takechi, M.; Gohil, P.; Lao, L. L.; Snyder, P. B.; Fujita, T.; Ide, S.; Kamada, Y.; Miura, Y.; Oikawa, T.; Suzuki, T.; Takenaga, H.; Toi, K.; JT-60 Team
2005-08-01
The energy loss for grassy edge localized modes (ELMs) has been studied to investigate the applicability of the grassy ELM regime to ITER. The grassy ELM regime is characterized by high frequency periodic collapses of 800-1500 Hz, which is ~15 times faster than that for type I ELMs. The divertor peak heat flux due to grassy ELMs is less than 10% of that for type I ELMs. This smaller heat flux is caused by a narrower radial extent of the collapse of the temperature pedestal. The different radial extent between type I ELMs and grassy ELMs agrees qualitatively with the different radial distribution of the eigenfunctions as determined from ideal MHD stability analysis. The dominant ELM energy loss for grassy ELMs appears to be caused by temperature reduction, and its ratio to the pedestal stored energy was 0.4-1%. This ratio is lower by a factor of about 10 than that for type I ELMs, which typically have between 2-10% fractional loss of the pedestal energy. A systematic study of the effects of counter (CTR) plasma rotation on the ELM characteristics has been performed using a combination of tangential and perpendicular neutral beam injections (NBIs) in JT-60U. In the high plasma triangularity (δ) regime, ELM characteristics (e.g. amplitude, frequency and type) can be changed from type I ELMs to high frequency grassy ELMs as the CTR plasma rotation is increased. On the other hand, in the low δ regime, complete ELM suppression (QH-mode) can be sustained for long periods up to 3.4 s (~18τE or energy confinement times), when the plasma position in terms of the clearance between the first wall and the plasma separatrix is optimized during the application of CTR-NBIs. In JT-60U, a transient QH phase was also observed during the CO-NBI phase with almost no net toroidal rotation at the plasma edge.
Study on the electron-cyclotron-emission diagnostics on JT-60U
Energy Technology Data Exchange (ETDEWEB)
Hwang, Cheol Kyu [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1996-09-01
Diagnostic system for electron cyclotron emission(ECE) in JT-60 have been surveyed. At JT-60 there are three different ECE-systems: a Fourier transformed spectroscopy system(FTS), a grating polycromater system(GPS), and a heterodyne radiometer system(HRS). Each of the systems has been examined to understand the instrumental feature with much attention to the sensitivity and the resolution. FTS has been studied with particular interest because of its continuous and wide spectral coverage and reliable characteristics for calibration. Some topics in instrumentation for FTS are discussed to get an insight on the system specifications optimal for tokamak experiments. Finally, experimental results of FTS with black body radiation at liquid-nitrogen temperature are described in connection with the calibration of the light guiding system for ECE from JT-60 plasma. 14 refs. (Author).
Modification to poloidal charge exchange recombination spectroscopy measurement in JT-60U tokamak
Institute of Scientific and Technical Information of China (English)
Ding Bo-Jiang; Sakamoto Yoshiteru; Miura Yukitoshi
2007-01-01
With consideration of the effects of the atomic process and the sight line direction on the charge exchange recombination spectroscopy (CXRS), a code used to modify the poloidal CXRS measurement on Tokamak-60 Upgrade (JT-60U) in Japan Atomic Energy Research Institute is developed, offering an effective tool to modify the measurement and analyse experimental results further. The results show that the poloidal velocity of ion is overestimated but the ion temperature is underestimated by the poloidal CXRS measurement, and they also indicate that the effect of observation angle on rotation velocity is a dominant one in a core region (r/a＜ 0.65), whereas in an edge region where the sight line is nearly normal to the neutral beam, the observation angle effect is very small. The difference between the modified velocity and the neoclassical velocity is not larger than the error in measurement. The difference inside the internal transport barrier (ITB) region is 2-3 times larger than that outside the ITB region, and it increases when the effect of excited components in neutral beam is taken into account. The radial electric field profile is affected greatly by the poloidal rotation term, which possibly indicates the correlation between the poloidal rotation and the transport barrier formation.
JT-60 configuration parameters for feedback control determined by regression analysis
Matsukawa, Makoto; Hosogane, Nobuyuki; Ninomiya, Hiromasa
1991-12-01
The stepwise regression procedure was applied to obtain measurement formulas for equilibrium parameters used in the feedback control of JT-60. This procedure automatically selects variables necessary for the measurements, and selects a set of variables which are not likely to be picked up by physical considerations. Regression equations with stable and small multicollinearity were obtained and it was experimentally confirmed that the measurement formulas obtained through this procedure were accurate enough to be applicable to the feedback control of plasma configurations in JT-60.
Energy Technology Data Exchange (ETDEWEB)
Sukegawa, Atsuhiko M., E-mail: morioka.atsuhiko@jaea.go.jp; Murakami, Haruyuki; Matsunaga, Go; Sakurai, Shinji; Takechi, Manabu; Yoshida, Kiyoshi; Ikeda, Yoshitaka
2015-10-15
Highlights: • The lifetime of resin insulators at about 200 °C was estimated. • We make use of the Arrhenius plot by the Weibull analysis for the estimation. • A suitable temperatures for the in-vessel coils were discussed. - Abstract: In the present study, the thermal endurance of epoxy-based, bismaleimides, and cyanate ester resins for the current design of the in-vessel coils was measured by performing acceleration tests to assess their insulation properties using the thermal endurance defined by the International Electrotechnical Commission (IEC-60216 Part1–Part 6) for a minimum of 5,000 h in the 180–240 °C temperature range. It was found that none of the resin insulators could tolerate the baking conditions of 40,000 h at ∼200 °C in the JT-60SA vacuum vessel. Therefore, the design of the in-vessel coils, including the error field correction coils (EFCC), was changed from the type without water cooling to with water cooling on JT-60SA.
Energy Technology Data Exchange (ETDEWEB)
Kuriyama, Masaaki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment
1997-02-01
The NBI (Neutral Beam Injection) apparatus used for negative ion at first in the world, has an aim to actually prove heating and electric current drive with high density plasma at the JT-60 and to constitute physical and technical bases for selection and design of heating apparatus of ITER (International Thermal Nuclear Fusion Experimental Reactor). Construction of 500 KeV negative ion NBI apparatus for the JT-60 started to operate on 1993 was completed at March, 1996. On the way, at a preliminary test on forming and acceleration of the negative ion beam using a portion of this apparatus, 400 KeV and 13.5 A/D of the highest deuterium negative ion beam acceleration in the world was obtained successfully, which gave a bright forecasting of the plasma heating and electric current drive experiment using the negative ion NBI apparatus. After March, 1996, some plans to begin beam incident experiment at the JT-60 using the negative ion NBI apparatus and to execute the heating and electric current drive experiment at the JT-60 under intending increase of beam output are progressed. (G.K.)
Review of JT-60U experimental results from February to November, 1996
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-07-01
In 1996, the plasma performance has been significantly enhanced in the high confinement regimes of reversed shear discharges, high-{beta}{sub p} H-mode discharge and high triangularity discharges with increasing the plasma current under the maximum utilization of plasma shape and profile controls in JT-60U. (J.P.N.)
Toroidal Automorphic Forms for Function Fields
Lorscheid, O.
2008-01-01
The definition of a toroidal automorphic form is due to Don Zagier, who showed in a paper in 1979 that the vanishing of certain integrals of Eisenstein series over tori in GL(2) is related to the vanishing of the Riemann zeta function at the weight of the Eisenstein series; and thus a relation betwe
Design study of a wide-angle infrared thermography and visible observation diagnostic on JT-60SA
Energy Technology Data Exchange (ETDEWEB)
Kamiya, K., E-mail: kamiya.kensaku@jaea.go.jp [Japan Atomic Energy Agency (JAEA), Naka 311-0193, Ibaraki-ken (Japan); Itami, K.; Takeuchi, M. [Japan Atomic Energy Agency (JAEA), Naka 311-0193, Ibaraki-ken (Japan); Enokuchi, A. [Genesia Co., Mitaka, Tokyo 181-0013 (Japan)
2014-12-15
Design study of a wide-angle infrared (IR) thermography (surface temperature measurement) and visible observation diagnostics for JT-60SA are reported. The new design offers an optical solution without a “blind spot” which is one of the advantages. In order to image a large section inside the vacuum vessel (both in poloidal and toroidal directions), the optical system of endoscope is to provide a wide-angle view in the IR and visible wavelength ranges. The estimated IR optical spatial resolution is approximately 2 cm at a distance of 7.6 m from the front optics with a pupil diameter of 4 mm. For a surface temperature measurement it would be larger (∼4 cm for a surface temperature error less than 5%). The optics of this system can be divided into three parts: (1) a mirror based optical head (two set of spherical mirrors plus two flat mirrors) that produces an intermediate image, (2) a Cassegrain telescope system, and (3) a relay group of lenses, being adapted to the two kinds of detectors for IR and visible observations.
Conductor and joint test results of JT-60SA CS and EF coils using the NIFS test facility
Obana, Tetsuhiro; Takahata, Kazuya; Hamaguchi, Shinji; Kizu, Kaname; Murakami, Haruyuki; Chikaraishi, Hirotaka; Noguchi, Hiroki; Kobuchi, Takashi; Moriuchi, Sadatomo; Imagawa, Shinsaku; Mito, Toshiyuki; Tsuchiya, Katsuhiko; Natsume, Kyohei; Yoshida, Kiyoshi; Nomoto, Kazuhiro; Kim, Tae-hyun
2016-01-01
In 2007, JAEA and NIFS launched the test project to evaluate the performance of cable-in-conduit (CIC) conductors and conductor joints for the JT-60SA CS and EF coils. In this project, conductor tests for four types of coil conductor and joint tests for seven types of conductor joint have been conducted for the past eight years using the NIFS test facility. As a result, the test project indicated that the CIC conductors and conductor joints fulfill the design requirement for the CS and EF coils. In addition, the NIFS test facility is expected to be utilized as the test facility for the development of a conductor and conductor joint for the purpose of the DEMO nuclear fusion power plant, provided that the required magnetic field strength is within 9 T.
Stellar dynamo models with prominent surface toroidal fields
Bonanno, Alfio
2016-01-01
Recent spectro-polarimetric observations of solar-type stars have shown the presence of photospheric magnetic fields with a predominant toroidal component. If the external field is assumed to be current-free it is impossible to explain these observations within the framework of standard mean-field dynamo theory. In this work it will be shown that if the coronal field of these stars is assumed to be harmonic, the underlying stellar dynamo mechanism can support photospheric magnetic fields with a prominent toroidal component even in the presence of axisymmetric magnetic topologies. In particular it is argued that the observed increase in the toroidal energy in low mass fast rotating stars can be naturally explained with an underlying $\\alpha\\Omega$ mechanism.
Stellar Dynamo Models with Prominent Surface Toroidal Fields
Bonanno, Alfio
2016-12-01
Recent spectro-polarimetric observations of solar-type stars have shown the presence of photospheric magnetic fields with a predominant toroidal component. If the external field is assumed to be current-free it is impossible to explain these observations within the framework of standard mean-field dynamo theory. In this work, it will be shown that if the coronal field of these stars is assumed to be harmonic, the underlying stellar dynamo mechanism can support photospheric magnetic fields with a prominent toroidal component even in the presence of axisymmetric magnetic topologies. In particular, it is argued that the observed increase in the toroidal energy in low-mass fast-rotating stars can be naturally explained with an underlying αΩ mechanism.
Development of piezoelectric actuator gas injection valve for JT-60U
Energy Technology Data Exchange (ETDEWEB)
Hiratsuka, Hajime; Miyo, Yasuhiko; Koike, Tsuneyuki; Shimizu, Masatsugu; Komuro, Ken-ichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment
1995-01-01
Piezoelectric actuator gas injection valve by lever for JT-60U have been developed using piezoelectric actuator (Laminated piezoelectric elements). Specifications of the valve are summarized as follows: (1) The piezoelectric actuator gas injection valve by lever (LE-PEV) is the same configuration as the low flow rate piezoelectric valve (PEV-L), (2) The laminated piezoelectric element is used as actuator, (3) The massflow rate is up to 30.7 Pam{sup 3}/s for hydrogen, 0.2 MPa back pressure, 150 V, (4) The sheet leak rate using helium as a probing gas is smaller than 1.33x10{sup -8} Pam{sup 3}/s, (5) The operating voltage is 0 - 150 V. Judging from these results performances of LE-PEV for the actual operation condition of JT-60U is good. (author).
Review of JT-60U experimental results from February to October, 1995
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-03-01
Renewed theme group organization started from October 1994 for the upcoming experiments in JT-60U. This regime has three theme groups each of which is composed of two sub-theme groups as; (1) Plasma Operation Theme (Leader Y. Neyatani) with Operation Sub-Theme and Disruption Sub-Theme, (2) High Performance (Leader S. Ishida) with Confinement and MHD Sub-Theme and High Energy Particle Sub-Theme and (3) Steady State Theme (Leader A. Sakasai) with Current Drive Sub-Theme and Divertor Sub-Theme. The main results from the JT-60U experiments in 1995 are summarized in the overviews of the three theme group activities. (J.P.N.).
Fatigue evaluation of the JT-60 vacuum vessel under the dynamic electromagnetic forces
Energy Technology Data Exchange (ETDEWEB)
Takatsu, H.; Shimizu, M.; Ohta, M. (Japan Atomic Energy Research Inst., Tokai, Ibaraki); Nakamura, Y.; Sakai, K.; Uchino, K. (Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan))
1983-03-01
Fatigue evaluation of the JT-60 vacuum vessel was carried out under the dynamic electromagnetic forces. In the present method, fatigue strength of the vacuum vessel is evaluated not only during the transient response but during the free vibration following the transient response. Stress amplitudes during the transient response are counted using the range-pair count method faithful to the stress strain hysteresis loop. And fatigue damage during the transient response and the free vibration following the transient response is evaluated based on Miner's law. The fatigue evaluation results showed that the JT-60 vacuum vessel has the sufficient fatigue strength and the free vibration has much larger contribution to the fatigue damage than the transient response.
Physics and operation oriented activities in preparation of the JT-60SA tokamak exploitation
Giruzzi, G.; Yoshida, M.; Artaud, J. F.; Asztalos, Ö.; Barbato, E.; Bettini, P.; Bierwage, A.; Boboc, A.; Bolzonella, T.; Clement-Lorenzo, S.; Coda, S.; Cruz, N.; Day, Chr.; De Tommasi, G.; Dibon, M.; Douai, D.; Dunai, D.; Enoeda, M.; Farina, D.; Figini, L.; Fukumoto, M.; Galazka, K.; Galdon, J.; Garcia, J.; Garcia-Muñoz, M.; Garzotti, L.; Gil, C.; Gleason-Gonzalez, C.; Goodman, T.; Granucci, G.; Hayashi, N.; Hoshino, K.; Ide, S.; Imazawa, R.; Innocente, P.; Isayama, A.; Itami, K.; Joffrin, E.; Kamada, Y.; Kamiya, K.; Kawano, Y.; Kawashima, H.; Kobayashi, T.; Kojima, A.; Kubo, H.; Lang, P.; Lauber, Ph.; de la Luna, E.; Maget, P.; Marchiori, G.; Mastrostefano, S.; Matsunaga, G.; Mattei, M.; McDonald, D. C.; Mele, A.; Miyata, Y.; Moriyama, S.; Moro, A.; Nakano, T.; Neu, R.; Nowak, S.; Orsitto, F. P.; Pautasso, G.; Pégourié, B.; Pigatto, L.; Pironti, A.; Platania, P.; Pokol, G. I.; Ricci, D.; Romanelli, M.; Saarelma, S.; Sakurai, S.; Sartori, F.; Sasao, H.; Scannapiego, M.; Shimizu, K.; Shinohara, K.; Shiraishi, J.; Soare, S.; Sozzi, C.; Stępniewski, W.; Suzuki, T.; Suzuki, Y.; Szepesi, T.; Takechi, M.; Tanaka, K.; Terranova, D.; Toma, M.; Urano, H.; Vega, J.; Villone, F.; Vitale, V.; Wakatsuki, T.; Wischmeier, M.; Zagórski, R.
2017-08-01
The JT-60SA tokamak, being built under the Broader Approach agreement jointly by Europe and Japan, is due to start operation in 2020 and is expected to give substantial contributions to both ITER and DEMO scenario optimisation. A broad set of preparation activities for an efficient start of the experiments on JT-60SA is being carried out, involving elaboration of the Research Plan, advanced modelling in various domains, feasibility and conception studies of diagnostics and other sub-systems in connection with the priorities of the scientific programme, development and validation of operation tools. The logic and coherence of this approach, as well as the most significant results of the main activities undertaken are presented and summarised.
Progress in Physics and Technology Developments for the Modification of JT-60
Institute of Scientific and Technical Information of China (English)
H. Tamai; Y. Kudo; S. Sakurai; K. Masaki; T. Suzuki; M. Takechi; Y. Kamada; A. Sakasai; S. Ishida; K. Abe; A. Ando; M. Matsukawa; T. Cho; T. Fujii; T. Fujita; S. Goto; K. Hananda; A. Hatayama; T. Hino; H. Horiike; N. Hosogane; M. Ichimura; G. Kurita; S. Tsuji-Iio; S. Itoh; M. Katsurai; M. Kikuchi; A. Kohyama; H. Kubo; M. Kuriyama; M. Matsuoka; Y. Miura; N. Miya; N. Hayashi; T. Mizuuchi; K. Nagasaki; H. Ninomiya; N. Nishino; Y. Ogawa; K. Okano; T. Ozeki; M. Saigusa; M. Sakamoto; M. Satoh; K. Urata; M. Shimada; R. Shimada; M. Shimizu; T. Takagi; Y. Takase; T. Tanabe; K. Toi; Y. Ueda; Y. Uesugi; K. Ushigusa; Y. M. Miura; Y. Yagi; T. Yamamoto; K. Yatsu; K. Yoshikawa; K. Kizu; K. Tsuchiya; A. Morioka
2004-01-01
Recent progress in the physics and engineering design study for the modificationprogramme of JT-60 is presented. In order to achieve a steady state high-β plasma operation,which is the dominant issue of this programme, physics design for the MHD control and thestability analysis is investigated. Engineering design and the R & D for the superconducting coils,irradiation shield are performed well towards the mission of programme.
Infrared thermography inspection for monoblock divertor target in JT-60SA
Energy Technology Data Exchange (ETDEWEB)
Nakamura, Shigetoshi, E-mail: nakamura.shigetoshi@jaea.go.jp; Sakurai, Shinji; Ozaki, Hidetsugu; Seki, Yohji; Yokoyama, Kenji; Sakasai, Akira; Tsuru, Daigo
2014-10-15
Highlights: • Infrared thermography inspection is modified to inspect JT-60SA divertor targets. • Infrared thermography inspection is effective to detect joining defects of targets. • Numerical analysis is in good agreement with inspection results of mock-up targets. • Database for setting screening criteria has been constructed by numerical analysis. - Abstract: Carbon fiber composite (CFC) monoblock divertor target is required for power handling in JT-60SA. Quality of the targets depends on a joining technology in manufacturing process. To inspect the quality of more than 900 target pieces, efficient non-destructive inspection is needed. An infrared thermography inspection (IR inspection), has been proposed by ITER and IRFM, where the quality between CFC and a cooling tube is examined by a use of transient thermal response at a rapid switch from hot to cold water flow. In JT-60SA divertor target, a screw tube will be employed to obtain high heat transfer efficiency with simple structure. Since the time response of the screw tube is much faster than that of smooth tube, it is required to confirm the feasibility of this IR inspection. Thus, the effect of joining defects on transient thermal response of the targets has been investigated experimentally by using the mock-up targets containing defects which are artificially made. It was found that the IR inspection can detect the defects. Moreover, screening criteria of IR inspection for acceptable monoblock target is discussed.
Mechanical assessment of the JT-60SA TF Coils during seismic event
Energy Technology Data Exchange (ETDEWEB)
Meunier, Lionel, E-mail: lionel.meunier@f4e.europa.eu [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Fusion For Energy, JT-60SA EU Home Team, 85748 Garching (Germany); Barabaschi, Pietro; Tomarchio, Valerio [Fusion For Energy, JT-60SA EU Home Team, 85748 Garching (Germany)
2011-10-15
JT-60SA is a fusion experiment designed to contribute to the early realization of fusion energy, by providing support to the operation of ITER, by addressing key physics issues for ITER and DEMO and by investigating how to optimize the operation of the next fusion power plants. It is a combined project of Japan and Europe Satellite Tokamak Program, as part of the Broader Approach Agreement and it is to be built in Naka, using the infrastructure of JT-60U. This article describes the finite element analysis performed to assess the mechanical behavior of the TF Coils under the seismic load of the Naka site. One particular type of boundary conditions has been evaluated: the TF Coils are not energized, and all components are at room temperature. This represents the most demanding conditions for the magnet system, as the wedge structure does not add any stiffness and strength due to the lack of centripetal forces on the individual coils; moreover the elastic limit of materials are lower than in cryogenic conditions. The results show that both stresses and displacements are acceptable for the TF Coil system, and that sufficient margin is available. In addition, loads on some of the major components can be extracted: maximum forces in the TF Coils supports, and force distribution on the cryostat base of JT-60SA.
Design study of JT-60SA divertor for high heat and particle controllability
Energy Technology Data Exchange (ETDEWEB)
Kawashima, H. [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka-shi, Ibaraki-ken 311-0193 (Japan)], E-mail: kawashima.hisato@jaea.go.jp; Shimizu, K.; Takizuka, T.; Asakura, N.; Sakurai, S.; Matsukawa, M.; Fujita, T. [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka-shi, Ibaraki-ken 311-0193 (Japan)
2008-12-15
The modification of JT-60 to a fully superconducting coil tokamak, JT-60SA (JT-60 Super Advanced) device, has been programmed to contribute and supplement ITER toward to DEMO. Lower divertor design with the ITER-like lower single null divertor configuration is studied to obtain high heat and particle controllability using SOLDOR/NEUT2D code. With anticipated total power flux into SOL of 37 MW (90% of input power), the peak heat load on outer divertor target can be reduced to 5.8 MW/m{sup 2} at the detached condition by gas puffing in the vertical divertor target with the 'V-shaped corner'. It is {approx}2/5 of the allowable level of 15 MW/m{sup 2}. On the other hand, particle controllability such as control of detached to attached condition by divertor pumping is improved by increase the strike point distance from 20 to 120 mm with above divertor geometry, suggesting that recover from severe detachment at the small distance case can be achieving by elevation of the strike point locations. Optimization of upper divertor design is in progress for high {beta} steady-state operation using upper single null divertor configuration.
Mechanical and quasi-optical design of ECH/ECCD launcher for JT-60SA
Energy Technology Data Exchange (ETDEWEB)
Kobayashi, Takayuki, E-mail: kobayashi.takayuki@jaea.go.jp; Moriyama, Shinichi; Isayama, Akihiko; Hiranai, Shinichi; Yokokura, Kenji; Sawahata, Masayuki; Terakado, Masayuki; Wada, Kenji; Sato, Yoshikatsu; Hinata, Jun; Hoshino, Katsumichi; Takahashi, Koji; Kajiwara, Ken; Oda, Yasuhisa; Ikeda, Ryosuke; Sakamoto, Keishi
2015-10-15
Highlights: • We designed high-power, long-pulse, two-frequency launcher for JT-60SA. • The mirror steering structure was improved for easy maintenance. • A full scale mockup of the steering structure moved smoothly. • It was found that the antenna is suitable for two frequency operations. • The total spillover loss of ∼1% was obtained with LP11even mode of 10%. - Abstract: Mechanical and quasi-optical design of an electron cyclotron heating/current drive launcher for JT-60SA is in progress. A full-scale mock-up of the steering structure, which enables linear and rotation motions of the first mirror of the launcher, has been fabricated for cyclic test of the bellows part. Moreover, an improved design enables easy replacement of the bellows for rotation for maintenance. Quasi-optical characteristics of the antenna mirrors have been studied to evaluate its transmission efficiency and beam focusing property. In calculation, it was found that the antenna is applicable to two frequency operation at 110 GHz and 138 GHz. It was quantitatively shown that the transmission efficiency of ∼99% (not including Ohmic loss) is obtained even with the higher order mode (LP{sub 11}{sup even}) fraction of 10% by optimizations of the shape of the first mirror. These results contribute to optimization/finalization of the launcher design toward fabrication of the launcher for JT-60SA.
Comparative study between toroidal coordinates and the magnetic dipole field
Chávez-Alarcón, Esteban
2012-01-01
There is a similar behaviour between the toroidal coordinates and the dipole magnetic field produced by a circular loop. In this work we evaluate up to what extent the former can be used as a representation of the latter. While the tori in the toroidal coordinates have circular cross sections, those of the circular loop magnetic field are nearly elliptical ovoids, but they are very similar for large aspect ratios.The centres of the latter displace from the axis faster than the former. By making a comparison between tori of similar aspect ratios, we find quantitative criteria to evaluate the accuracy of the approximation.
Stability of toroidal magnetic fields in stellar interiors
Ibañez-Mejia, Juan C
2015-01-01
We present 3D MHD simulations of purely toroidal and mixed poloidal-toroidal magnetic field configurations to study the behavior of the Tayler instability. For the first time the simultaneous action of rotation and magnetic diffusion are taken into account and the effects of a poloidal field on the dynamic evolution of unstable toroidal magnetic fields is included. In the absence of diffusion, fast rotation (rotation rate compared to Alfv\\'en frequency) is able to suppress the instability when the rotation and magnetic axes are aligned and when the radial field strength gradient p 1.5, rapid rotation does not suppress the instability but instead introduces a damping factor to the growth rate in agreement with the analytic predictions. For the mixed poloidal-toroidal fields we find an unstable axisymmetric mode, not predicted analytically, right at the stability threshold for the non-axisymmetric modes; it has been argued that an axisymmetric mode is necessary for the closure of the Tayler-Spruit dynamo loop.
Poloidal and toroidal plasmons and fields of multilayer nanorings
Garapati, K. V.; Salhi, M.; Kouchekian, S.; Siopsis, G.; Passian, A.
2017-04-01
Composite and janus type metallodielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieving invisibility cloaks, and obtaining quantum correlations between qubits. We investigate the surface modes of a toroidal nanostructure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle plasmon eigenmodes in other geometries, the amplitudes of the eigenmodes of tori exhibit a distinct forward and backward coupling. We present the plasmon dispersion relations for several relevant toroidal configurations in the quasistatic limit and obtain the dominant retarded dispersion relations of a single ring for comparison, discuss mode complementarity and hybridization, and introduce two new types of toroidal particles in the form of janus nanorings. The resonance frequencies for the first few dominant modes of a ring composed of plasmon supporting materials such as gold, silver, and aluminum are provided and compared to those for a silicon ring. A generalized Green's function is obtained for multilayer tori allowing for calculation of the scattering response to interacting fields. Employing the Green's function, the scalar electric potential distribution corresponding to individual poloidal and toroidal modes in response to an arbitrarily polarized external field and the field of electrons is obtained. The results are applied to obtain the local density of states and decay rate of a dipole near the center of the torus.
Toroidal equilibrium in an iron-core reversed field pinch
Energy Technology Data Exchange (ETDEWEB)
Miller, G.
1984-04-01
An analytical theory of toroidal equilibrium in the ZT-40M reversed field pinch is obtained, including effects of iron cores and resistive shell. The iron cores alter the form of the equilibrium condition and cause the equilibrium to be unstable on the shell resistive time scale.
Toroidal modeling of plasma response to RMP fields in ITER
Li, L.; Liu, Y. Q.; Wang, N.; Kirk, A.; Koslowski, H. R.; Liang, Y.; Loarte, A.; Ryan, D.; Zhong, F. C.
2017-04-01
A systematic numerical study is carried out, computing the resistive plasma response to the resonant magnetic perturbation (RMP) fields for ITER plasmas, utilizing the toroidal code MARS-F (Liu et al 2000 Phys. Plasmas 7 3681). A number of factors are taken into account, including the variation of the plasma scenarios (from 15 MA Q = 10 inductive scenario to the 9 MA Q = 5 steady state scenario), the variation of the toroidal spectrum of the applied fields (n = 1, 2, 3, 4, with n being the toroidal mode number), the amplitude and phase variation of the currents in three rows of the RMP coils as designed for ITER, and finally a special case of mixed toroidal spectrum between the n = 3 and n = 4 RMP fields. Two-dimensional parameter scans, for the edge safety factor and the coil phasing between the upper and lower rows of coils, yield ‘optimal’ curves that maximize a set of figures of merit, that are defined in this work to measure the plasma response. Other two-dimensional scans of the relative coil current phasing among three rows of coils, at fixed coil currents amplitude, reveal a single optimum for each coil configuration with a given n number, for the 15 MA ITER inductive plasma. On the other hand, scanning of the coil current amplitude, at fixed coil phasing, shows either synergy or cancellation effect, for the field contributions between the off-middle rows and the middle row of the RMP coils. Finally, the mixed toroidal spectrum, by combining the n = 3 and the n = 4 RMP field, results in a substantial local reduction of the amplitude of the plasma surface displacement.
Improvement on control system of the JT-60 radio frequency heating system
Energy Technology Data Exchange (ETDEWEB)
Shinozaki, Shin-ichi; Moriyama, Shinichi; Hiranai, Shinichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Sato, Fumiaki [Nippon Advanced Technology Co., Ltd., Tokai, Ibaraki (Japan)
2003-03-01
On the JT-60 radio frequency (RF) heating system, the decrease in the activity ratio was a problem because of the deterioration of the control system. To improve the reliability, we replaced CAMAC system for a power injection control system, which was a main cause of the trouble, with the microprocessor system. And, a function of computer supported programming function of RF power injection form was introduced, which contributed to reduce a load of operators. Furthermore, personal computers with network communication were introduced to improve a maintenance ability of the control system. As a result, the activity ratio of the RF heating system was improved significantly. (author)
Edge safety factor at the onset of plasma disruption during VDEs in JT-60U
Sugihara, Masayoshi; Lukash, Victor; Khayrutdinov, Rustam; Neyatani, Yuzuru
2004-10-01
Detailed examinations of the value of the edge safety factor (qa) at the onset of thermal quench (TQ) during intentional vertical displacement event (VDE) experiments in JT-60U are carried out using two different reconstruction methods, FBI/FBEQU and DINA. The results from the two methods are very similar and show that the TQ occurs when the qa value is in the range between 1.5 and 2. This result suggests that the predictive simulations for VDEs should be performed within this range of q to examine the subsequent differences in the halo currents, plasma movement and other plasma behaviour during the current quench.
Efficient magnetic fields for supporting toroidal plasmas
Landreman, Matt
2016-01-01
The magnetic field that supports tokamak and stellarator plasmas must be produced by coils well separated from the plasma. However the larger the separation, the more difficult it is to produce a given magnetic field in the plasma region, so plasma configurations should be chosen that can be supported as efficiently as possible by distant coils. The properties of curl-free magnetic fields allow magnetic field distributions to be ranked in order of their difficulty of production from a distance. Plasma shapes with low curvature and spectral width may be difficult to support, whereas plasma shapes with sharp edges may be efficiently supported by distant coils. Two measures of difficulty, which correctly identify such differences in difficulty, will be examined. These measures, which can be expressed as matrices, relate the externally-produced normal magnetic field on the plasma surface to the either the normal field or current on a distant control surface. A singular value decomposition (SVD) of either matrix y...
Dynamic simulations for preparing the acceptance test of JT-60SA cryogenic system
Cirillo, R.; Hoa, C.; Michel, F.; Poncet, J. M.; Rousset, B.
2016-12-01
Power generation in the future could be provided by thermo-nuclear fusion reactors like tokamaks. There inside, the fusion reaction takes place thanks to the generation of plasmas at hundreds of millions of degrees that must be confined magnetically with superconductive coils, cooled down to around 4.5 K. Within this frame, an experimental tokamak device, JT-60SA is currently under construction in Naka (Japan). The plasma works cyclically and the coil system is subject to pulsed heat loads. In order to size the refrigerator close to the average power and hence optimizing investment and operational costs, measures have to be taken to smooth the heat load. Here we present a dynamic model of the JT-60SA's Auxiliary Cold box (ACB) for preparing the acceptance tests of the refrigeration system planned in 2016 in Naka. The aim of this study is to simulate the pulsed load scenarios using different process controls. All the simulations have been performed with EcosimPro® and the associated cryogenic library: CRYOLIB.
Final design of the Switching Network Units for the JT-60SA Central Solenoid
Energy Technology Data Exchange (ETDEWEB)
Lampasi, Alessandro, E-mail: alessandro.lampasi@enea.it [National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Frascati (Italy); Coletti, Alberto; Novello, Luca [Fusion for Energy (F4E) Broader Fusion Development Department, Garching (Germany); Matsukawa, Makoto [Japan Atomic Energy Agency, Naka Fusion Institute, Mukouyama, Naka-si, Ibaraki-ken (Japan); Burini, Filippo; Taddia, Giuseppe; Tenconi, Sandro [OCEM Energy Technology, San Giorgio Di Piano (Italy)
2014-04-15
This paper describes the approved detailed design of the four Switching Network Units (SNUs) of the superconducting Central Solenoid of JT-60SA, the satellite tokamak that will be built in Naka, Japan, in the framework of the “Broader Approach” cooperation agreement between Europe and Japan. The SNUs can interrupt a current of 20 kA DC in less than 1 ms in order to produce a voltage of 5 kV. Such performance is obtained by inserting an electronic static circuit breaker in parallel to an electromechanical contactor and by matching and coordinating their operations. Any undesired transient overvoltage is limited by an advanced snubber circuit optimized for this application. The SNU resistance values can be adapted to the specific operation scenario. In particular, after successful plasma breakdown, the SNU resistance can be reduced by a making switch. The design choices of the main SNU elements are justified by showing and discussing the performed calculations and simulations. In most cases, the developed design is expected to exceed the performances required by the JT-60SA project.
Manufacturing design and development of the current feeders and coil terminal boxes for JT-60SA
Energy Technology Data Exchange (ETDEWEB)
Kizu, Kaname, E-mail: kizu.kaname@jaea.go.jp [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Murakami, Haruyuki; Natsume, Kyohei; Tsuchiya, Katsuhiko; Koide, Yoshihiko; Yoshida, Kiyoshi [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Obana, Tetsuhiro; Hamaguchi, Shinji; Takahata, Kazuya [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)
2015-10-15
Highlights: • Key components for current feeding system for JT-60SA were developed and tested. • The joint resistance of feeder joint sample was 1.7 nΩ at 2 T, 20 kA. • Trial manufacturing of crank shaped feeder showed the max. dimensional error of 3 mm. • Feeder insulation samples showed >60 MPa in shear strength at 77 K. - Abstract: Feeders and coil terminal boxes (CTBs) of the superconducting magnets for JT-60SA have been designed. A small tool which can connect soldering joint with vertical direction in the cryostat has been developed. The joint resistance of the sample showed 1.7 nΩ at 2 T, 4.2 K, 20 kA which is within the requirement of <5 nΩ. A prototype feeder in CTB with crank shape was manufactured. The maximum dimensional error was 3 mm being within the requirement of ±10 mm. Feeder insulation samples showed a shear strength >60 MPa which is much higher than the requirement of 10 MPa as derived from analysis. Since all the manufacturing processes concerned have been proof-tested, the production of feeders and CTBs has been released.
Development of computer-aided software engineering tool for sequential control of JT-60U
Energy Technology Data Exchange (ETDEWEB)
Shimono, M.; Akasaka, H.; Kurihara, K.; Kimura, T. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment
1995-12-31
Discharge sequential control (DSC) is an essential control function for the intermittent and pulse discharge operation of a tokamak device, so that many subsystems may work with each other in correct order and/or synchronously. In the development of the DSC program, block diagrams of logical operation for sequential control are illustrated in its design at first. Then, the logical operators and I/O`s which are involved in the block diagrams are compiled and converted to a certain particular form. Since the block diagrams of the sequential control amounts to about 50 sheets in the case of the JT-60 upgrade tokamak (JT-60U) high power discharge and the above steps of the development have been performed manually so far, a great effort has been required for the program development. In order to remove inefficiency in such development processes, a computer-aided software engineering (CASE) tool has been developed on a UNIX workstation. This paper reports how the authors design it for the development of the sequential control programs. The tool is composed of the following three tools: (1) Automatic drawing tool, (2) Editing tool, and (3) Trace tool. This CASE tool, an object-oriented programming tool having graphical formalism, can powerfully accelerate the cycle for the development of the sequential control function commonly associated with pulse discharge in a tokamak fusion device.
Observing and modelling the poloidal and toroidal magnetic fields of the global dynamo
Cameron, Robert; Duvall, Thomas; Schüssler, Manfred; Schunker, Hannah
2017-08-01
The large scale solar dynamo is a cycle where poloidal flux is generated from toroidal flux, and toroidal flux is generated from poloidal flux. The toroidal and poloidal fields can be inferred from observations, and the Babcock-Leighton model shows how differential rotation and flux emergence explain the observed evolution of the fields.
Research and Development of 2-frequency (110/138 GHz FADIS for JT-60SA ECHCD system
Directory of Open Access Journals (Sweden)
Idei H.
2015-01-01
Full Text Available A FAst DIrectional Switch (FADIS of 2-frequency (2-ƒ gyrotron system for the JT-60SA project is being developed under collaboration between Japan Atomic Energy Agency (JAEA and Kyushu University. At first, the frequency drift and dip in the gyrotron operation were measured to consider which kind of FADIS is preferred for application in the Electron Cyclotron Heating and Current Drive (ECHCD system for the JT- 60SA. Various types of the FADIS have been considered. A square corrugated waveguide diplexer system with double resonant rings was considered as one of the most attractive FADIS systems for stable high-power and long-pulse operations in the 2-ƒ JT-60SA ECHCD system.
Design study of JT-60SA divertor for high heat and particle controllability
Energy Technology Data Exchange (ETDEWEB)
Kawashima, H.; Shimizu, K.; Takizuka, T.; Asakura, N.; Sakurai, S.; Matsukawa, M.; Fujita, T. [Japan Atomic Energy Agency (Japan)
2007-07-01
In steady-state high performance plasma over 41 MW/100 s in the JT-60SA tokamak, the heat and particle flux density on the divertor targets are considerably higher than those of existing devices such as JT-60U. A divertor modeling code, SOLDOR/NEUT2D, has been applied in order to optimiz the JT-60SA divertor design in such conditions. The heat load q{sub heat} on divertor target is estimated for a conceptual divertor design as the first step. Simulation of SOL/divertor plasmas is carried out at lower single null divertor (LSN) configuration with I{sub p}/B{sub t}=3.5 MA/2.5 T. For the present calculation, anticipated SOL power flux of Q{sub total}=35 MW and particle fuelling flux of G{sub ion}=5.10{sup 21}/s (n{sub e-dege}=3.10{sup 19}/m) are applied. The pumping speed (S{sub pump}=50 m{sup 3}/s) is specified by an albedo for neutrals in front of the cryopump set bottom of exhaust chamber. The recycling of deuterium is assumed to be 100% at the first wall. For the first simulation, the carbon contamination in SOL/divertor regions is set to 2% of electron density uniformly. Gas puff flux G{sub puff}=0.5.10{sup 21}/s is introduced from outside midplane. We assume particle diffusion coefficient D=0.3 m{sup 2}/s and thermal diffusivity of electron and ion X{sub e}=X{sub i}=1 m{sup 2}/s. As a result, attached and detached plasma conditions are simulated on outer and inner divertor regions, respectively. The heat load around the outer strike point reaches 31 MW/m{sup 2}, which largely exceeds the allowable range of 15 MW/m{sup 2} for CFC materials. Reduction of heat load must be achieved somehow. An effect of the radiation cooling is simulated to reduce such a large heat load as the second step. To enlarge the radiative cooling, we increased the gas puff flux by a factor of ten and the carbon contamination partly in the outer divertor region from 2% to 4%. It gives a favorable result that the peak heat load is reduced to 12 MW/m{sup 2} with radiation enhancement by a
Tojo, H; Hatae, T; Hamano, T; Sakuma, T; Itami, K
2013-09-01
Collection optics for core measurements in a JT-60SA Thomson scattering system were designed. The collection optics will be installed in a limited space and have a wide field of view and wide wavelength range. Two types of the optics are therefore suggested: refraction and reflection types. The reflection system, with a large primary mirror, avoids large chromatic aberrations. Because the size limit of the primary mirror and vignetting due to the secondary mirror affect the total collection throughput, conditions that provide the high throughput are found through an optimization. A refraction system with four lenses forming an Ernostar system is also employed. The use of high-refractive-index glass materials enhances the freedom of the lens curvatures, resulting in suppression of the spherical and coma aberration. Moreover, sufficient throughput can be achieved, even with smaller lenses than that of a previous design given in [H. Tojo, T. Hatae, T. Sakuma, T. Hamano, K. Itami, Y. Aida, S. Suitoh, and D. Fujie, Rev. Sci. Instrum. 81, 10D539 (2010)]. The optical resolutions of the reflection and refraction systems are both sufficient for understanding the spatial structures in plasma. In particular, the spot sizes at the image of the optics are evaluated as ~0.3 mm and ~0.4 mm, respectively. The throughput for the two systems, including the pupil size and transmissivity, are also compared. The results show that good measurement accuracy (refraction system.
Operation experiences of the super conducting magnet for a gyrotron of the JT-60U ECH system
Energy Technology Data Exchange (ETDEWEB)
Igarashi, Koichi; Seki, Masami; Shimono, Mitsugu; Terakado, Masayuki; Ishii, Kazuhiro; Takahashi, Masami [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment
2003-03-01
The JT-60U electron cyclotron heating (ECH) system can heat plasmas locally and drive a plasma current with four 1 MW-5 sec gyrotrons. The super conducting magnets (SCM) are required for oscillation of the gyrotron at a working frequency of 110 GHz. The SCM provides a high magnetic field of 4.5T at the cavity inside the gyrotron. This SCM system is characterized by 1) operation without liquid Helium owing to a 4K-refrigerator applied to the magnetic coils, 2) easy maintenance. Operational experiences about the SCM system through a long term experiment for a high power gyrotron are very valuable. According to those operational experiences, it is clarified the 4K-refrigerator should be renewed in order to keep low temperature of the SCM. It is also found that 200 hours or less are required for the super conducting condition (<5K) after long stopping time of the refrigerator up to 150 hours. This is useful information for making a plan about ECH experiments. (author)
Instability of toroidal magnetic field in jets and plerions
Begelman, M C
1997-01-01
Jets and pulsar-fed supernova remnants (plerions) tend to develop highly organized toroidal magnetic field. Such a field structure could explain the polarization properties of some jets, and contribute to their lateral confinement. A toroidal field geometry is also central to models for the Crab Nebula - the archetypal plerion - and leads to the deduction that the Crab pulsar's wind must have a weak magnetic field. Yet this `Z-pinch' field configuration is well known to be locally unstable, even when the magnetic field is weak and/or boundary conditions slow or suppress global modes. Thus, the magnetic field structures imputed to the interiors of jets and plerions are unlikely to persist. To demonstrate this, I present a local analysis of Z-pinch instabilities for relativistic fluids in the ideal MHD limit. Kink instabilities dominate, destroying the concentric field structure and probably driving the system toward a more chaotic state in which the mean field strength is independent of radius (and in which re...
Simulation Study on the ITB Formation during LHCD in JT-60U
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
A transport simulation has been done by using a 1.5D time dependent transport code to reproduce a formation of the ITB on electron temperature profile during the long pulse LHCD in JT-60U tokamak. The transport coefficients were assumed to reduce with a reversed magnetic shear and the LH driven current profile was evaluated by fitting dynamic change in the measured current profile. The gradual increase in the central electron temperature could be explained by the change in the current profile during LHCD in the present simulation model. The estimated LH-driven current profile by the transport code analysis shows a finite current density at the plasma center. Analysis of transport simulation suggests some mechanisms for broadening the LH-driven current profile at the central region of the plasma.
Magnetic field perturbartions in closed-field-line systems with zero toroidal magnetic field
Energy Technology Data Exchange (ETDEWEB)
Mauel, M; Ryutov, D; Kesner, J
2003-12-02
In some plasma confinement systems (e.g., field-reversed configurations and levitated dipoles) the confinement is provided by a closed-field-line poloidal magnetic field. We consider the influence of the magnetic field perturbations on the structure of the magnetic field in such systems and find that the effect of perturbations is quite different from that in the systems with a substantial toroidal field. In particular, even infinitesimal perturbations can, in principle, lead to large radial excursions of the field lines in FRCs and levitated dipoles. Under such circumstances, particle drifts and particle collisions may give rise to significant neoclassical transport. Introduction of a weak regular toroidal magnetic field reduces radial excursions of the field lines and neoclassical transport.
Differentially rotating magnetised neutron stars: production of toroidal magnetic fields
Thampan, A V
2004-01-01
We initiate numerical studies of differentially rotating magnetised (proto) neutron stars by studying - through construction from first principles - the coupling between an assumed differential rotation and an impressed magnetic field. For a perfect incompressible, homogeneous, non-dissipative fluid sphere immersed in an ambient plasma, we solve the (coupled) azimuthal components of the Navier-Stokes equation and the Maxwell induction equation. The assumed time--independent poloidal field lines get dragged by the rotating fluid and produce toroidal magnetic fields. Surface magnetic fields take away energy redistributing the angular momentum to produce rigid rotation along poloidal field lines. Due to absence of viscous dissipation, sustained torsional oscillations are set up within the star. However, the perpetual oscillations of neighbouring `closed' field lines get increasingly out of phase with time, leading to structure build up as in Liu & Shapiro (2004) implying the importance of taking into account...
A polarimeter for JT-60SA: chords layout study with V3FIT for q profile reconstruction
Terranova, David; Boboc, Alexandru; Gil, Christophe; Soare, Sorin; Orsitto, Francesco; Imazawa, Ryota
2016-10-01
JT-60SA is the new tokamak device that is being built in Japan under the Broader Approach Satellite Tokamak Programme and the Japanese National Programme [JT-60SA Research Plan, Version 3.3, March 2016, www.jt60sa.org/pdfs/JT-60SA_Res_Plan.pdf] and will operate as a satellite machine for ITER. To provide valuable information for the steady state scenario for ITER and the design of DEMO, a high βN scenario is included in the program, where the real-time control of the q-profile is needed. In this work we present a study of the geometry of the polarimetry chords, derived from a true realistic CAD-driven feasibility study, aiming at an optimization in terms of q-profile reconstruction, using the V3FIT code. Some magnetic and kinetic measurements are considered along with the FIR poloidal polarimeter in order to assess the possibility of estimating q in the core with the required accuracy (around 10%) providing a diagnostic for a continuous measurement useful in high density pulses where MSE measurements would not have adequate time resolution.
Energy Technology Data Exchange (ETDEWEB)
Saigusa, Mikio, E-mail: saigusa@mx.ibaraki.ac.jp [Ibaraki University, Hitachi, Ibaraki 316-8511 (Japan); Oyama, Gaku; Matsubara, Fumiaki; Takii, Keita; Sai, Takuma [Ibaraki University, Hitachi, Ibaraki 316-8511 (Japan); Kobayashi, Takayuki; Moriyama, Shinichi [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan)
2015-10-15
Highlights: • We developed a new wideband polarizer for JT-60SA ECCD system. • The wideband polarizer is optimized for dual frequency gyrotrons (110 and 138 GHz) in JT-60SA. • The wideband polarization properties were verified at cold tests. • The preliminary high power tests have been carried out at 0.25 MW, 3 s at 110 GHz. - Abstract: A wideband polarizer consisting of a polarization twister and a circular polarizer has been developed for an electron cyclotron current driving system in JT-60SA, where the output frequencies of a dual frequency gyrotron for JT-60SA are 110 and 138 GHz. The groove depths are optimized for the dual frequencies by numerical simulations using a FDTD method and cold test results. The polarization properties of a mock-up polarizer are measured at the dual frequencies in cold tests. The cold test results suggest that all practical polarizations for ECCD experiments can be achieved at the dual frequencies. The prototype polarization twister has been tested up to 0.25 MW during 3 s at the frequency of 110 GHz.
Analysis of recurrent patterns in toroidal magnetic fields.
Sanderson, Allen R; Chen, Guoning; Tricoche, Xavier; Pugmire, David; Kruger, Scott; Breslau, Joshua
2010-01-01
In the development of magnetic confinement fusion which will potentially be a future source for low cost power, physicists must be able to analyze the magnetic field that confines the burning plasma. While the magnetic field can be described as a vector field, traditional techniques for analyzing the field's topology cannot be used because of its Hamiltonian nature. In this paper we describe a technique developed as a collaboration between physicists and computer scientists that determines the topology of a toroidal magnetic field using fieldlines with near minimal lengths. More specifically, we analyze the Poincaré map of the sampled fieldlines in a Poincaré section including identifying critical points and other topological features of interest to physicists. The technique has been deployed into an interactive parallel visualization tool which physicists are using to gain new insight into simulations of magnetically confined burning plasmas.
Resistive demountable toroidal-field coils for tokamak reactors
Energy Technology Data Exchange (ETDEWEB)
Jassby, D.L.; Jacobsen, R.A.; Kalnavarns, J.; Masson, L.S.; Sekot, J.P.
1981-07-01
Readily demountable TF (toroidal-field) coils allow complete access to the internal components of a tokamak reactor for maintenance of replacement. The requirement of readily demountable joints dictates the use of water-cooled resistive coils, which have a host of decisive advantages over superconducting coils. Previous papers have shown that resistive TF coils for tokamak reactors can operate in the steady state with acceptable power dissipation (typically, 175 to 300 MW). This paper summarizes results of parametric studies of size optimization of rectangular TF coils and of a finite-element stress analysis, and examines several candidate methods of implementing demountable joints for rectangular coils constructed of plate segments.
The angular momentum transport by unstable toroidal magnetic fields
Ruediger, G; Spada, F; Tereshin, I
2014-01-01
We demonstrate with a nonlinear MHD code that angular momentum can be transported due to the magnetic instability of toroidal fields under the influence of differential rotation, and that the resulting effective viscosity may be high enough to explain the almost rigid-body rotation observed in radiative stellar cores. The fields are assumed strong enough and the density stratification weak enough that the influence of the 'negative' buoyancy in the radiative zones can be neglected. Only permanent current-free fields and only those combinations of rotation rates and magnetic field amplitudes which provide maximal numerical values of the viscosity are considered. We find that the dimensionless ratio of the turbulent over molecular viscosity, \
Toroidal and poloidal magnetic fields at Venus. Venus Express observations
Dubinin, E.; Fraenz, M.; Woch, J.; Zhang, T. L.; Wei, Y.; Fedorov, A.; Barabash, S.; Lundin, R.
2013-10-01
Magnetic field and plasma measurements carried out onboard Venus Express during solar minimum conditions suggest the existence of two kinds of magnetic field configuration in the Venusian ionosphere. We interpret these as the manifestation of two different types of generation mechanisms for the induced magnetosphere. A different magnetic field topology (toroidal and poloidal) arises if the induced currents are driven either by the solar wind motional electric field or by the Faraday electric field—a conducting ionosphere sees the magnetic field carried by solar wind as a time-varying field. At the dayside, both driving agents produce a similar draping pattern of the magnetic field. However, different magnetic field signatures inherent to both induction mechanisms appear at lower altitudes in the terminator region. The conditions at low solar EUV flux when the ionosphere of Venus becomes magnetized seem to be favorable to distinguish between two different types of the induced fields. We present cases of both types of the magnetic field topology. The cases when the effects of the Faraday induction become well noticeable are especially interesting since they provide us with an example of solar wind interaction with a tiny induced dipole field immersed into the ionosphere. Another interesting case when poloidal magnetic fields are evidently displayed is observed when the IMF vector is almost aligned with the solar wind velocity. In general case, both mechanisms of induction probably complement each other.
Energy Technology Data Exchange (ETDEWEB)
Tojo, H.; Hatae, T.; Hamano, T.; Sakuma, T.; Itami, K. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka 311-0193 (Japan)
2013-09-15
Collection optics for core measurements in a JT-60SA Thomson scattering system were designed. The collection optics will be installed in a limited space and have a wide field of view and wide wavelength range. Two types of the optics are therefore suggested: refraction and reflection types. The reflection system, with a large primary mirror, avoids large chromatic aberrations. Because the size limit of the primary mirror and vignetting due to the secondary mirror affect the total collection throughput, conditions that provide the high throughput are found through an optimization. A refraction system with four lenses forming an Ernostar system is also employed. The use of high-refractive-index glass materials enhances the freedom of the lens curvatures, resulting in suppression of the spherical and coma aberration. Moreover, sufficient throughput can be achieved, even with smaller lenses than that of a previous design given in [H. Tojo, T. Hatae, T. Sakuma, T. Hamano, K. Itami, Y. Aida, S. Suitoh, and D. Fujie, Rev. Sci. Instrum. 81, 10D539 (2010)]. The optical resolutions of the reflection and refraction systems are both sufficient for understanding the spatial structures in plasma. In particular, the spot sizes at the image of the optics are evaluated as ∼0.3 mm and ∼0.4 mm, respectively. The throughput for the two systems, including the pupil size and transmissivity, are also compared. The results show that good measurement accuracy (<10%) even at high electron temperatures (<30 keV) can be expected in the refraction system.
Takenaga, H.; Asakura, N.; Kubo, H.; Higashijima, S.; Konoshima, S.; Nakano, T.; Oyama, N.; Porter, G. D.; Rognlien, T. D.; Rensink, M. E.; Ide, S.; Fujita, T.; Takizuka, T.; Kamada, Y.; Miura, Y.; JT-60 Team
2005-12-01
Compatibility of advanced tokamak plasmas with high density and high radiation loss has been investigated in both reversed shear (RS) plasmas and high βp H-mode plasmas with a weak positive shear on JT-60U. In the RS plasmas, the operating regime is extended to high density above the Greenwald density (nGW) with high confinement (HHy2 > 1) and high radiation loss fraction (frad > 0.9) by tailoring the internal transport barriers (ITBs). With a small plasma-wall gap, the radiation loss in the main plasma (inside the magnetic separatrix) reaches 80% of the heating power due to metal impurity accumulation. However, high confinement of HHy2 = 1.2 is sustained even with such a large radiation loss in the main plasma. By neon seeding, the divertor radiation loss is enhanced from 20% to 40% of the total radiation loss. In the high βp H-mode plasmas, high confinement (HHy2 = 0.96) is maintained at high density ( \\bar{n}_{\\rme}/n_GW=0.92 ) with high radiation loss fraction (frad ~ 1) by utilizing high-field-side pellets and argon (Ar) injection. The high \\bar{n}_{\\rme}/n_GW is attributed to the formation of strong density ITB. Strong core-edge parameter linkage for confinement improvement is observed, where the pedestal pressure and the core plasma confinement increase together. The measured radiation profile including contributions from all impurities in the main plasma is peaked, and the central radiation is ascribed to the contribution from Ar accumulated inside the ITB. Impurity transport analyses indicate that the Ar density profile, twice as peaked as the electron density profile, which is the same level as that observed in the high βp H-mode plasma, can yield an acceptable radiation profile even with a peaked density profile in a fusion reactor.
Installation and pre-commissioning of the cryogenic system of JT-60SA tokamak
Hoa, C.; Michel, F.; Roussel, P.; Fejoz, P.; Girard, S.; Goncalves, R.; Lamaison, V.; Natsume, K.; Kizu, K.; Koide, Y.; Yoshida, K.; Cardella, A.; Portone, A.; Verrecchia, M.; Wanner, M.; Beauvisage, J.; Bertholat, F.; Gaillard, G.; Heloin, V.; Langevin, B.; Legrand, J.; Maire, S.; Perrier, J. M.; Pudys, V.
2017-02-01
The cryogenic system for the superconducting tokamak JT-60SA is currently being commissioned in Naka, Japan and shall be ready for operation in summer 2016. This contribution is part of the Broader Approach agreement between Japan and Europe. With an equivalent refrigeration capacity of about 9.5 kW at 4.5 K the cryogenic system will supply cryo-pump panels at 3.7 K, superconducting magnets and their structures at 4.4 K, high temperature superconducting current leads at 50 K and thermal shields between 80 K and 100 K. The system has been specifically designed to handle large pulse loads at 4.4 K during plasma operation. The mechanical and electrical assembly of the cryogenic system has been achieved within six months by October 2015. The main contractor Air Liquide Advanced Technology (AL-aT) have supplied eight parallel working screw compressors with a common oil removal and dryer system, a Refrigeration Cold Box and an Auxiliary Cold box with cold rotating machines. F4E has provided six GHe storage vessels and QST has provided the complete infrastructure and the facilities for the utilities. The paper gives an overview of the main design features, the infrastructure and the status of installation and pre-commissioning.
Design and realization of JT-60SA Fast Plasma Position Control Coils power supplies
Energy Technology Data Exchange (ETDEWEB)
Zito, P., E-mail: pietro.zito@enea.it [National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via E. Fermi, N. 45, 00044 Frascati (Italy); Lampasi, A. [National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via E. Fermi, N. 45, 00044 Frascati (Italy); Coletti, A.; Novello, L. [Fusion for Energy (F4E) Broader Fusion Development Department, Garching (Germany); Matsukawa, M.; Shimada, K. [Japan Atomic Energy Agency (JAEA), Naka Fusion Institute, Mukouyama, Naka-si, Ibaraki-ken (Japan); Cinarelli, D.; Portesine, M. [POSEICO, via Pillea 42-44, 16152 Genova (Italy); Dorronsoro, A.; Vian, D. [JEMA, Paseo del Circuito 10, 20160 Lasarte-Oria Gipuzkoa (Spain)
2015-10-15
Highlights: • Fast Plasma Position Control Coils PSs control the vertical position of the plasma during a plasma shot. • The design phase was developed considering of providing full voltage at any current level. • The testing phase was successfully completed, according to the IEC60146 standards. • The measured rise time of the voltage response is 2.88 ms for a reference voltage step of 1 kV. - Abstract: Fast Plasma Position Control Coils (FPPCC) PSs control the vertical position of the plasma during a plasma shot, to prevent Vertical Displacement Event (VDE), using FPPC coils installed in vacuum vessel for JT-60SA. For this task, the FPPCC PSs have to be very fast for reacting to plasma movements. Further, an open loop feed forward voltage control is adopted in order to achieve a fast control of FPPCC PSs. The main characteristics are: 4-quadrant AC/DC converter 12-pulse with circulating current, DC load voltage ±1000 V and DC load current ±5 kA. The overvoltage induced by FPPC coil during a plasma disruption can reach 10 kV and it is protected by a nonlinear resistor in parallel to the crowbar up to its intervention. All these technical characteristics have strongly influenced the design of the FPPCC converter and transformers which have been validated by simulation model of FPPCC PS. The outcomes of the simulation allowed to finalize the performances and dynamic behavior of voltage response.
Evaluation of heat and particle controllability on the JT-60SA divertor
Energy Technology Data Exchange (ETDEWEB)
Kawashima, H., E-mail: kawashima.hisato@jaea.go.jp [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka, Ibaraki 311-0193 (Japan); Hoshino, K.; Shimizu, K.; Takizuka, T.; Ide, S.; Sakurai, S.; Asakura, N. [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka, Ibaraki 311-0193 (Japan)
2011-08-01
The JT-60SA divertor design has been established on the basis of engineering requirements and physics analysis. Heat and particle fluxes under the full input power of 41 MW can give severe heat loads on the divertor targets, while the allowable heat load is limited below 15 MW/m{sup 2}. Dependence of the heat flux mitigation on a D{sub 2} gas-puff is evaluated by SONIC simulations for high density (n{sub e{_}ave} {approx} 1 x 10{sup 20} m{sup -3}) high current plasmas. It is found that the peak heat load 10 MW/m{sup 2} with dense (n{sub ed} > 4 x 10{sup 20} m{sup -3}) and cold (T{sub ed}, T{sub id} {<=} 1 eV) divertor plasmas are obtained at a moderate gas-puff of {Gamma}{sub puff} = 15 x 10{sup 21} s{sup -1}. Divertor plasmas are controlled from attached to detached condition using the divertor pump with pumping-speed below 100 m{sup 3}/s. In full non-inductive current drive plasmas with low density (n{sub e{_}ave} {approx} 5 x 10{sup 19} m{sup -3}), the reduction of divertor heat load is achieved with the Ar injection.
Development of a Lithium Beam Probe and Measurement of Density Pedestal in JT-60U
Kojima, Atsushi; Kamiya, Kensaku; Fujita, Takaaki; Kubo, Hirotaka; Iguchi, Harukazu; Oyama, Naoyuki; Suzuki, Takahiro; Kamada, Yutaka; JT-60 Team
A lithium beam probe (LiBP) has been developed for the measurement of electron density profiles with highly spatial and temporal resolutions in JT-60U. Using an electron beam heating ion source with a capability of 10 mA extraction, a 5.5 mA beam has been injected to the plasmas. It corresponds to the equivalent neutral beam current of 2 mA. A spectrum width of the beam emission has been small enough to separate Zeeman splitting. By use of the LiBP, time evolutions of pedestal density profiles during type I and grassy edge localized modes (ELMs) have been obtained for the first time. After a type I ELM crash, the drop of the line-integrated density measured by an interferometer delays by 2 ms later than that of the pedestal density. Comparing the line-integrated density to the line integration of the edge density profile measured by the LiBP, it is found that the recovery from the type I ELM crash is correlated with the reduction of core plasma density. As for grassy ELMs, grassy ELMs have smaller density crashes than that of type I ELMs, which is mainly derived from the narrower ELM affected area.
Numerical analyses of JT-60SA tokamak with tungsten divertor by COREDIV code
Gałązka, K.; Ivanova-Stanik, I.; Stępniewski, W.; Zagórski, R.; Neu, R.; Romanelli, M.; Nakano, T.
2017-04-01
An analysis of radiative power exhaust for the JT-60SA tokamak with a tungsten divertor is performed with the help of the self-consistent, core-edge integrated COREDIV code. Two scenarios of operation (low and high density) were investigated in the scope of different parameters (electron density at the separatrix and the perpendicular transport in the scrape-off layer) with impurity seeding (Ne and Kr). The calculations show that in the case of the tungsten divertor the power load to the divertor plate is mitigated and the central plasma dilution is smaller compared to the carbon divertor. In the most cases the energy flux through the separatrix is above the L–H transition threshold. For the high density case with neon seeding operation in full detachment mode is observed. Changing the diffusion coefficient in the SOL has a strong influence on the result of the calculations as increased radial transport causes stronger screening effect. Also by changing the electron density on the separatrix the influx of heavy impurities (W, Kr) into the core region can be reduced. The results demonstrate that it is easier to achieve sustainable conditions in the divertor region for the high density scenario, whereas for the low density one reducing the auxiliary heating power seems unavoidable to prevent damaging of the target plate, even for strong seeding gas influx.
Stability of the toroidal magnetic field in stellar radiation zones
Bonanno, Alfio
2011-01-01
Understanding the stability of the magnetic field in radiation zones is of crucial importance for various processes in stellar interior like mixing, circulation and angular momentum transport. The stability properties of a star containing a prominent toroidal field in a radiation zone is investigated by means of a linear stability analysis in the Boussinesq approximation taking into account the effect of thermal conductivity. The growth rate of the instability is explicitly calculated and the effects of stable stratification and heat transport are discussed in detail. It is argued that the stabilizing influence of gravity can never entirely suppress the instability caused by electric currents in radiation zones although the stable stratification can significantly decrease the growth rate of instability
Bierwage, A.; Shinohara, K.; Todo, Y.; Aiba, N.; Ishikawa, M.; Matsunaga, G.; Takechi, M.; Yagi, M.
2016-10-01
Recurring bursts of chirping Alfvén modes as well as so-called Abrupt Large Events (ALE) that were observed in JT-60U tokamak plasmas driven by negative-ion-based neutral beams (N-NB) are reproduced in first-principle simulations performed with an extended version of the hybrid code MEGA. This code simulates the interactions between gyrokinetic fast ions and magnetohydrodynamic (MHD) modes in the presence of a realistic fast ion source and collisions, so that it self-consistently captures dynamics across a wide range of time scales (0.01-100 ms). Detailed comparisons with experimental measurements are performed. On the long time scale (10-100 ms) the simulation reproduces ALEs with the associated avalanche-like transport of fast ions. ALEs are shown to occur when multiple modes with toroidal mode numbers n = 1 , 2 , 3 are excited to large amplitudes. On the meso time scale (1-10 ms), bursts of chirping modes are reproduced, which are shown to be n = 1 energetic particle modes (EPM). On the short time scale (0.01-0.1 ms), pulsations and phase jumps are reproduced, which we interpret as the result of beating between multiple resonant wave packets. JSPS Grant-in-Aid for Scientific Research (No. 25820443, 16K18341). NIFS Collaborative Research Program (NIFS12KNTT016).
Development of the negative ion beams relevant to ITER and JT-60SA at Japan Atomic Energy Agency
Energy Technology Data Exchange (ETDEWEB)
Hanada, M., E-mail: hanada.masaya@jaea.go.jp; Kojima, A.; Tobari, H.; Nishikiori, R.; Hiratsuka, J.; Kashiwagi, M.; Umeda, N.; Yoshida, M.; Ichikawa, M.; Watanabe, K. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka-shi, Ibaraki-ken 319-0913 (Japan); Yamano, Y. [Saitama University, Saitama, Saitama-ken 338-8570 (Japan); Grisham, L. R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)
2016-02-15
In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification. As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications.
Development of the negative ion beams relevant to ITER and JT-60SA at Japan Atomic Energy Agency.
Hanada, M; Kojima, A; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R
2016-02-01
In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification. As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications.
Development of remote pipe cutting tool for divertor cassettes in JT-60SA
Energy Technology Data Exchange (ETDEWEB)
Hayashi, Takao, E-mail: hayashi.takao@jaea.go.jp; Sakurai, Shinji; Shibanuma, Kiyoshi; Sakasai, Akira
2014-10-15
Remote pipe cutting tool accessing from inside pipe has been newly developed for JT-60SA. The tool head equips a disk-shaped cutter blade and four rollers which are subjected to the reaction force. The tool pushes out the cutter blade by decreasing the distance between two cams. The tool cuts a cooling pipe by both pushing out the cutter blade and rotating the tool head itself. The roller holder is not pushed out anymore after touching the inner wall of the pipe. In other words, only cutter blade is pushed out after bringing the tool axis into the pipe axis. Outer diameter of the cutting tool head is 44 mm. The cutting tool is able to push out the cutter blade up to 32.5 mm in radius, i.e. 65 mm in diameter, which is enough to cut the pipe having an outer diameter of 59.8 mm. The thickness and material of the cooling pipe are 2.8 mm and SUS316L, respectively. The length of the cutting tool head is about 1 m. The tool is able to cut a pipe locates about 480 mm in depth from the mounting surface on the divertor cassette. The pipe cutting system equips two cutting heads and they are able to cut two pipes at the same time in order to remove the inner target plate. Reproducibility of the cross-sectional shape of the cut pipe is required for re-welding. The degree of reproducibility is inside 0.1 mm except for burr at outside of the pipe, which is enough to re-weld the cut pipe. Some swarf is generated during cutting the double-layered pipe assuming a plug located on the top of the pipe. The swarf is deposited on the bottom of the plug and collected by pulling out the plug in the actual equipment.
Energy Technology Data Exchange (ETDEWEB)
Tsuru, Daigo, E-mail: tsuru.daigo@jaea.go.jp; Sakurai, Shinji; Nakamura, Shigetoshi; Ozaki, Hidetsugu; Seki, Yohji; Yokoyama, Kenji; Suzuki, Satoshi
2015-10-15
Highlights: • We carried out numerical simulations on residual thermal stress of targets for the JT-60SA divertor. • We developed three measures to reduce residual thermal stress. • We proposed two structures of CFC monoblock target for the JT-60SA divertor. • We confirmed the effectiveness of the structure by infrared thermography inspection and high heat flux test. - Abstract: Carbon fibre-reinforced carbon composite (CFC) monoblock target for JT-60SA divertor is under development towards the mass-production. CFC monoblocks, WCu interlayers and a CuCrZr cooling tube at the centre of the monoblocks were bonded by vacuum brazing in a high temperature, to a target. If residual thermal stress due to difference of thermal expansions between CFC and CuCrZr exceeds the maximum allowable stress of the CFC after the bonding, cracks are generated in the CFC monoblock and heat removal capacity of the target degrades. In this paper, new structures of the targets were proposed, to reduce residual thermal stress and to mitigate the degradation of heat removal capacity of the targets. Some measures, including slitting of the CFC monoblock aside of the cooling tube, replacement of the interlayer material and shifting the position of the cooling tube, were implemented. The effectiveness of the measures was evaluated by numerical simulations. Target mock-ups with the proposed structures were manufactured. Infrared thermography inspection and high heat flux test were carried out on the mock-ups in order to evaluate the heat removal capacity.
Bonne, F.; Bonnay, P.; Hoa, C.; Mahoudeau, G.; Rousset, B.
2017-02-01
This papers deals with the Japan Torus-60 Super Advanced fusion experiment JT-60SA cryogenic system. A presentation of the JT-60SA cryogenic system model, from 300K to 4.4K -using the Matlab/Simulink/Simscape Simcryogenics library- will be given. As a first validation of our modelling strategy, the obtained operating point will be compared with the one obtained from HYSYS simulations. In the JT60-SA tokamak, pulsed heat loads are expected to be coming from the plasma and must be handled properly, using both appropriate refrigerator architecture and appropriate control model, to smooth the heat load. This paper presents model-based designed PID control schemes to control the helium mass inside the phase separator. The helium mass inside the phase separator as been chosen to be the variable of interest in the phase separator since it is independent of the pressure which can vary from 1 bar to 1.8 bar during load smoothing. Dynamics simulations will be shown to assess the legitimacy of the proposed strategy. This work is partially supported through the French National Research Agency (ANR), task agreement ANR-13-SEED-0005.
Behavior of Compact Toroid in the External Magnetic Fields
Fukumoto, N.; Ioroi, A.; Nagata, M.; Uyama, T.
1999-11-01
We have investigated the possibility of refueling and density control of tokamak plasmas by the spheromak-type Compact Toroid (CT) injection in the JFT-2M tokamak in collaboration with JAERI. We demonstrated the CT injection into OH plasmas and observed the core penetration at B_T=0.8 T. The tokamak electron density increased ~0.2× 10^19m-3 at a rate of 2× 10^21m-3/s. We also observed the decrease of the CT velocity by the external magnetic field of the tokamak, which is applied across the CT acceleration region. We have examined the behavior of the CT translated in the external fields B_ext using the magnetic probes and the fast framing camera at Himeji Inst. of tech.. CT plasma in the acceleration region is deformed by the Lorentz force of Jg × B_ext, where Jg is the gun current for CT acceleration. The magnetic field structures of a long CT in the drift region has been revealed to be the mixed relaxed state of m=0 and m=1. Results from CT acceleration and injection in a transverse field will be presented.
Steady state toroidal magnetic field at earth's core-mantle boundary
Levy, Eugene H.; Pearce, Steven J.
1991-01-01
Measurements of the dc electrical potential near the top of earth's mantle have been extrapolated into the deep mantle in order to estimate the strength of the toroidal magnetic field component at the core-mantle interface. Recent measurements have been interpreted as indicating that at the core-mantle interface, the magnetic toroidal and poloidal field components are approximately equal in magnitude. A motivation for such measurements is to obtain an estimate of the strength of the toroidal magnetic field in the core, a quantity important to our understanding of the geomagnetic field's dynamo generation. Through the use of several simple and idealized calculation, this paper discusses the theoretical relationship between the amplitude of the toroidal magnetic field at the core-mantle boundary and the actual amplitude within the core. Even with a very low inferred value of the toroidal field amplitude at the core-mantle boundary, (a few gauss), the toroidal field amplitude within the core could be consistent with a magnetohydrodynamic dynamo dominated by nonuniform rotation and having a strong toroidal magnetic field.
Steady state toroidal magnetic field at earth's core-mantle boundary
Levy, Eugene H.; Pearce, Steven J.
1991-01-01
Measurements of the dc electrical potential near the top of earth's mantle have been extrapolated into the deep mantle in order to estimate the strength of the toroidal magnetic field component at the core-mantle interface. Recent measurements have been interpreted as indicating that at the core-mantle interface, the magnetic toroidal and poloidal field components are approximately equal in magnitude. A motivation for such measurements is to obtain an estimate of the strength of the toroidal magnetic field in the core, a quantity important to our understanding of the geomagnetic field's dynamo generation. Through the use of several simple and idealized calculation, this paper discusses the theoretical relationship between the amplitude of the toroidal magnetic field at the core-mantle boundary and the actual amplitude within the core. Even with a very low inferred value of the toroidal field amplitude at the core-mantle boundary, (a few gauss), the toroidal field amplitude within the core could be consistent with a magnetohydrodynamic dynamo dominated by nonuniform rotation and having a strong toroidal magnetic field.
Superconducting toroidal field coil current densities for the TFCX
Energy Technology Data Exchange (ETDEWEB)
Kalsi, S.S.; Hooper, R.J.
1985-04-01
A major goal of the Tokamak Fusion Core Experiment (TFCX) study was to minimize the size of the device and achieve lowest cost. Two key factors influencing the size of the device employing superconducting magnets are toroidal field (TF) winding current density and its nuclear heat load withstand capability. Lower winding current density requires larger radial build of the winding pack. Likewise, lower allowable nuclear heating in the winding requires larger shield thickness between the plasma and coil. In order to achieve a low-cost device, it is essential to maximize the winding's current density and nuclear heating withhstand capability. To meet the above objective, the TFCX design specification adopted as goals a nominal winding current density of 3500 A/cm/sup 2/ with 10-T peak field at the winding and peak nuclear heat load limits of 1 MW/cm/sup 3/ for the nominal design and 50 MW/cm/sup 3/ for an advanced design. This study developed justification for these current density and nuclear heat load limits.
Study on impurity radiation and transport of JT-60U plasmas
Energy Technology Data Exchange (ETDEWEB)
Ishijima, Tatsuo [Tsukuba Univ., Ibaraki (Japan)
2000-03-01
This thesis describes an investigation on impurity transport in the JT-60U tokamak plasma both in the core and the divertor plasmas to provide a better understanding of plasma physics. This work has been performed under the collaborative graduate school between University of Tsukuba and Naka Fusion Research Establishment of Japan Atomic Energy Research Institute. A radiative divertor experiment with neon gas puff was carried out with an aim of investigating impurity behaviors in the divertor, after the open divertor was modified to the pumped W-shaped divertor. To evaluate neon radiation, analysis was made for lines from neon ions measured with a VUV spectrometer in the divertor plasma. As a result, lines from Ne IV-Ne VIII were identified. By combining the measurement with an absolutely calibrated multi-channel interference filter spectrometer and that with the VUV spectrometer, the radiation loss through neon line emission was estimated in the divertor plasma. In the case of pumping off, the detached plasma evolved into a MARFE. It was observed that the line intensities of highly ionized neon (Ne VII, Ne VIII) increased simultaneously with the formation of the MARFE and furthermore increased after the MARFE formation. It is considered that after the divertor plasma was detached, the plasma flow velocity and the friction force were weaker in the case of pumping off than in the case of pumping on and more impurities moved toward the X-point region. This observation implies reduction of impurity back flow from the divertor to the upstream by the friction force. This thesis indicates that the plasma flow in the SOL (Scrape-Off Layer) is important to confine the impurity in the divertor region and prevent the MARFE for the first time. In reversed shear discharges with ITB (internal transport barrier), electron density, temperature and radiation power strongly increased inside the ITB. The core radiation was analyzed by bolometry, VUV spectrometer and CXRS (charge
Transport studies in boundary and divertor plasmas of JT-60U
Energy Technology Data Exchange (ETDEWEB)
Kumagai, Akira [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment
1999-03-01
This thesis describes an investigation on transport of plasma, neutral particle and impurity in the boundary and divertor of the JT-60U tokamak to provide a better understanding of plasma-surface interactions and divertor physics. The asymmetry between the inboard and outboard divertor on plasma parameters (in-out asymmetry) are usually observed in tokamaks with the divertor. In this study, the in-out asymmetry was investigated under various plasma conditions and discharge parameters. The observed results were discussed with several mechanisms that can produce the in-out asymmetry. It was confirmed experimentally that the importance of each mechanism depends on the plasma parameters and discharge conditions. The current flowing in the scrape-off layer (SOL) due to the in-out asymmetry was observed. The SOL currents in the high density plasma with the occurrence of the plasma detachment were investigated for the first time in this study. The ion temperature in the divertor region is one of the most important factors for both generation and transport of impurity. However, the background ion temperature in the divertor region has not been measured in any tokamak so far. The ion temperature in the divertor region has been measured for the first time with the Doppler broading of the C{sup 3+} ion emission line. The measured temperature was analyzed by an impurity particle transport code. The code calculation showed that the measured temperature reflects the low temperature at the outside of the separatrix in the inboard region. The spectral profile of Balmer-{alpha} (D{sub {alpha}}) line emitted from the deuterium atoms reflects the velocity distribution of neutral particles by the Doppler effect and is effective for investigating the detailed neutral behavior and recycling process. The spatial variation of the D{sub {alpha}} line spectral profile in the divertor region has been measured for the first time in this study. The observed results were compared with the
Validation of Helium Inlet Design for ITER Toroidal Field Coil
Boyer, C; Hamada, K; Foussat, A; Le Rest, M; Mitchell, N; Decool, P; Savary, F; Sgobba, S; Weiss, K-P
2014-01-01
The ITER organization has performed design and its validation tests on a helium inlet structure for the ITER Toroidal Field (TF) coil under collaboration with CERN, KIT, and CEA-Cadarache. Detailed structural analysis was performed in order to optimize the weld shape. A fatigue resistant design on the fillet weld between the shell covers and the jacket is an important point on the helium inlet structure. A weld filler material was selected based on tensile test at liquid helium temperature after Nb3Sn reaction heat treatment. To validate the design of the weld joint, fatigue tests at 7 K were performed using heat-treated butt weld samples. A pressure drop measurement of a helium inlet mock-up was performed by using nitrogen gas at room temperature in order to confirm uniform flow distribution and pressure drop characteristic. These tests have validated the helium inlet design. Based on the validation, Japanese and European Union domestic agencies, which have responsibilities of the TF coil procurement, are pr...
First qualification of ITER Toroidal Field Coil conductor jacketing
Energy Technology Data Exchange (ETDEWEB)
Hamada, Kazuya, E-mail: hamada.kazuya@jaea.go.jp [Japan Atomic Energy Agency (Japan); Takahashi, Yoshikazu; Isono, Takaaki; Nunoya, Yoshihiko; Matsui, Kunihiro; Kawano, Katsumi; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Koizumi, Norikiyo; Nakajima, Hideo; Okuno, Kiyoshi [Japan Atomic Energy Agency (Japan); Matsuda, Hidemitsu; Yano, Yoshitaka [Nippon Steel Engineering Co. Ltd (Japan); Devred, Arnauld; Bessette, Denis [ITER Organization (France)
2011-10-15
The Japan Atomic Energy Agency (JAEA) has the responsibility to procure 25% of the ITER Toroidal Field Coil conductors as the Japanese Domestic Agency (JADA) in the ITER project. The TF conductor is a circular shaped, cable-in-conduit conductor, composed of a cable and a stainless steel conduit (jacket). The outer diameter and maximum length of the TF conductor are 43.7 mm and 760 m, respectively. JAEA started to produce strand, cables and jacket sections and to construct a conductor manufacturing (jacketing) facility in 2008. Following preparation in December 2009 of the jacketing facility, the dummy cable, the jacket sections and fabrication procedures, such as welding, cable insertion, compaction and spooling, JAEA manufactured a 760 m long Cu dummy conductor for process qualification. Into the 760 m long Cu dummy conductor jacketing, JAEA successfully inserted the cable with a maximum force of 32 kN. The outer diameter of the cross section of the spooled conductor was 43.7 {+-} 0.15 mm, which complies with the ITER target requirement of 43.7 {+-} 0.3 mm. Following qualification of all manufacturing processes, JAEA has started to fabricate superconducting conductors for the TF coils.
Three Cycles of the Solar Toroidal Magnetic Field and This Peculiar Minimum
Lo, Leyan; Scherrer, Phil
2010-01-01
Thirty-four years of WSO (Wilcox Solar Observatory) and thirteen years of SOHO/MDI (Michelson Doppler Imager on the Solar and Heliospheric Observatory) magnetograms have been studied to measure the east-west inclination angle, indicating the toroidal component of the photospheric magnetic field. This analysis reveals that the large-scale toroidal component of the global magnetic field is antisymmetric around the equator and reverses direction in regions associated with flux from one solar cycle compared to the next. The toroidal field revealed the first early signs of cycle 24 at high latitudes, especially in the northern hemisphere, appearing as far back as 2003 in the WSO data and 2004 in MDI. As in previous cycles, the feature moves gradually equatorward. Cycles overlap and the pattern associated with each cycle lasts about 17 years. Even though the polar field at the current solar minimum is significantly lower than the three previous minima, the toroidal field pattern is similar.
Reference design of the power supply system for the resistive-wall-mode control in JT-60SA
Energy Technology Data Exchange (ETDEWEB)
Ferro, Alberto, E-mail: alberto.ferro@igi.cnr.it [Consorzio RFX, C.so Stati Uniti 4, 35127 Padova (Italy); Gaio, Elena [Consorzio RFX, C.so Stati Uniti 4, 35127 Padova (Italy); Novello, Luca [Fusion for Energy, Broader Development of Fusion Department, Boltzmannstr 2, 85748 Garching (Germany); Matsukawa, Makoto; Shimada, Katsuhiro; Kawamata, Yoichi; Takechi, Manabu [Japan Atomic Energy Agency, Naka Fusion Institute, 801-1 Mukoyama, Naka, Ibaraki 311-019 (Japan)
2015-10-15
Highlights: • In JT-60SA, a power supply system (RWM-PS) will feed 18 coils to control the RWMs. • One power amplifier per coil will follow an arbitrary real-time reference. • Very fast dynamics is required (current bandwidth: 3 kHz; latency: 50 μs). • The requirements of the RWM-PS are updated and design solutions discussed. • The reference design of the RWM-PS is based on H-bridges operated at 20 – 30 kHz. - Abstract: The mission of JT-60SA, the satellite Tokamak under construction in Naka (Japan), includes the attainment of steady-state high-beta plasmas. For this purpose, an active control system based on 18 in-vessel sector coils (SC) is foreseen to suppress the resistive wall modes (RWM). Each coil will be independently fed by a dedicated converter, rated for 300 A and 240 V, which has to produce the required current/voltage following in real time the reference provided by the JT-60SA MHD Controller. To minimize the current rating, these converters shall be sufficiently fast to avoid an excessive growth of the RWM. This requires a very high dynamic performance, largely beyond that of standard industrial applications. This paper firstly reports the latest results of the studies on the requirements of the RWM active control system. Then, the reference design of the power supply system is presented, including the ac/dc conversion stage, the fast converters and the control section. The advantages of the proposed scheme are discussed and the main electrical parameters are presented.
Hall Equilibria: Solutions with toroidal and poloidal magnetic fields in Neutron Star Crusts
Gourgouliatos, K N; Lyutikov, M; Reisenegger, A
2013-01-01
We present Hall equilibrium solutions for neutron stars crusts containing toroidal and poloidal magnetic field. Some simple cases are solved analytically while more complicated configurations are found numerically through a Gauss-Seidel elliptic partial differential equation solver.
Energy Technology Data Exchange (ETDEWEB)
Kovrizhnykh, L. M., E-mail: lmkov@fpl.gpi.ru [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)
2015-12-15
Various methods of determining the ambipolar electric field in toroidal magnetic systems (predominantly, in stellarators) and the evolution of views on this problem are discussed. Paradoxes encountered in solving this problem are analyzed, and ways of resolving them are proposed.
Quantum field theory on toroidal topology: Algebraic structure and applications
Khanna, F. C.; Malbouisson, A. P. C.; Malbouisson, J. M. C.; Santana, A. E.
2014-05-01
The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus ΓDd=(S1)d×RD-d is developed from a Lie-group representation and c*c*-algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ41. The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space-time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy-momentum tensor. Self interacting four-fermion systems, described by the Gross-Neveu and Nambu-Jona-Lasinio models, are considered. Then finite size effects on
Barrel Toroid fully charged to nominal field, and it works!
Herman ten Kate
After a few weeks of testing up to intermediate currents, finally, on Thursday evening November 9, the current in the Barrel Toroid was pushed up to its nominal value of 20500 A and even 500 A beyond this value to prove that we have some margin. It went surprisingly well. Of course, the 8 coils forming the toroid were already tested individually at the surface but still, some surprise may have come from those parts added to the toroid in the cavern for the first time like the 8 cryoring sections linking the coils as well as the valve box at the bottom in sector 13 regulating the helium flow or the current lead cryostat on the top in sector 5. No training quenches, nothing to worry about, and the test was concluded with a fast dump triggered at 00:40 in the very early morning of November 10. (left) The toroid current during the evening and night of November 9. (right) The test crew oscillated between fear and hope while looking at the control panels as the current approached 21kA. Big relief was in the...
Energy Technology Data Exchange (ETDEWEB)
Yoshida, Hidetoshi; Naito, Osamu; Yamashita, Osamu; Kitamura, Shigeru; Hatae, Takaki; Nagashima, Akira [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment
1996-11-01
This article describes the design and operation of a 60 spatial channel Thomson scattering system as of 1996 with multiple ruby lasers to measure the electron temperature T{sub e} and density n{sub e} profiles of the JT-60U plasmas. The wide spectral range (403-683 nm) of the spectrometer and newly developed two-dimensional detector (high repetition photodiode array) has enabled this system to measure the high electron temperature plasma (5 keV or more) formed at the plasma core during negative magnetic shear discharge with high precision and reliability. The high spatial resolution (8 mm) have provided the precise measurement of steep electron temperature and density gradients formed at the plasma edge and in the scrape-off layer during H-mode discharge. The multilaser operation with the minimum time interval of 2 ms has provided an essential tool for the transient phenomenon measurement like the formation process of edge transport barrier during L- to H-mode transition and internal transport barrier during discharge with negative magnetic shear, the relaxation process of pellet injected plasma and so on. Measurement examples of recent JT-60U T{sub e} and n{sub e} profiles are also presented. (author)
Energy Technology Data Exchange (ETDEWEB)
Melendez L, L.; Chavez A, E.; Colunga S, S.; Valencia A, R.; Lopez C, R.; Gaytan G, E
1992-03-15
In a cylindrical magnetic topology. the confined plasma experiences 'classic' collisional transport phenomena. When bending the cylinder with the purpose of forming a toro, the magnetic field that before was uniform now it has a radial gradient which produces an unbalance in the magnetic pressure that is exercised on the plasma in the transverse section of the toro. This gives place to transport phenomena call 'neo-classicist'. In this work the structure of the toroidal magnetic field produced by toroidal coils of triangular form, to which are added even of coils of compensation with form of half moon is analyzed. With this type of coils it is looked for to minimize the radial gradient of the toroidal magnetic field. The values and characteristics of B (magnetic field) in perpendicular planes to the toro in different angular positions in the toroidal direction, looking for to cover all the cases of importance are exhibited. (Author)
Equilibrium poloidal field distributions in reversed-field-pinch toroidal discharges
Energy Technology Data Exchange (ETDEWEB)
Baker, D.A.; Mann, L.W.; Schoenberg, K.F.
1982-04-01
A comparison between the analytic formulae of Shafranov for equilibrium in axisymmetric toroidal reversed field pinch (RFP) systems and fully toroidal numerical solutions of the Grad-Shafranov equation is presented as a function of poloidal beta, internal plasma inductance, and aspect ratio. The Shafranov formula for the equilibrium poloidal field distribution is accurate to within 5% for aspect ratios greater than 2, poloidal betas less than 50%, and for plasma current channels that exceed one-third of the minor toroidal radius. The analytic description for the center shift of the innermost flux surface that encloses the plasma current (the Shafranov shift) is accurate to within 15% for aspect ratios greater than 2 and poloidal betas below 50%, provided the shift does not exceed one-tenth of the minor conducting boundary radius. The behavior of the magnetic axis shift as a function of plasma parameters is included. The Shafranov formulae provide a convenient method for describing the equilibrium behavior of an RFP discharge. Examples illustrating the application of the analytic formulae to the Los Alamos ZT-40M RFP experiment are given.
Dual behavior of the toroidal magnetic field versus the Rossby wave instability
Gholipour, Mahmoud
2016-12-01
The Rossby wave instability (RWI) theory has been considered as one of the top topics in astrophysics due to the fact that it deals with some ambiguous questions, such as the angular momentum transport in the poorly ionized regions of the protoplanetary discs. Based on the theoretical and simulation works, two important factors in the study of the RWI are the viscosity and magnetic field, which are directly connected to each other because the large-scale toroidal magnetic fields are produced by the magnetohydrodynamic (MHD) turbulence. Therefore, it is essential to consider more details about the toroidal magnetic field both in the steady state and perturbation state. In this paper, the role of the strength and gradient of the toroidal magnetic field is investigated on the RWI at the dead zone in the regions of bump. The obtained results show that the gradient of the toroidal magnetic field or its strength have a major role in the RWI occurrence, which have received relatively less attention in previous works. Also, the role of the gradient of the toroidal magnetic field in the RWI is important even in the weak magnetic fields. Hence, the obtained results are very different from what we previously expected, and it seems crucial to research and develop this issue in the theoretical and simulation works. This paper can be helpful on the study of the angular momentum transport in the cold accretion discs, such as accretion discs in quiescent dwarf novae or around the white-dwarf primary.
The effect of toroidal field on the rotating magnetic field current drive in rotamak plasmas
Institute of Scientific and Technical Information of China (English)
Zhong Fang-Chuan; Huang Tian-Sen; Petrov Yuri
2007-01-01
A rotamak is one kind of compact spherically shaped magnetic-confinement device. In a rotamak the plasma current is driven by means of rotating magnetic field (RMF). The driven current can reverse the original equilibrium field and generate a field-reversed-configuration. In a conventional rotamak, a toroidal field (TF) is not necessary for the RMF to drive plasma current, but it was found that the present of an additional TF can influence the RMF current drive. In this paper the effect of TF on the RMF current drive in a rotamak are investigated in some detail.The experimental results show that addition of TF increases the RMF driven current greatly and enhances the RMF penetration dramatically. Without TF, the RMF can only penetrate into plasma in the edge region. When a TF is added, the RMF can reach almost the whole plasma region. This is an optimal strength of toroidal magnetic field for getting maximum plasma current when Bv and radio frequency generator power are fixed. Besides driving current,the RMF generates high harmonic fields in rotamak plasma. The effect of TF on the harmonic field spectra are also reported.
Instability of Non-uniform Toroidal Magnetic Fields in Accretion Disks
Hirabayashi, Kota
2016-01-01
A new type of instability that is expected to drive magnetohydrodynamic (MHD) turbulence from a purely toroidal magnetic field in an accretion disk is presented. It is already known that in a differentially rotating system, the uniform toroidal magnetic field is unstable due to a magnetorotational instability (MRI) under a non-axisymmetric and vertical perturbation, while it is stable under a purely vertical perturbation. Contrary to the previous study, this paper proposes an unstable mode completely confined to the equatorial plane, driven by the expansive nature of the magnetic pressure gradient force under a non-uniform toroidal field. The basic nature of this growing eigenmode, to which we give a name "magneto-gradient driven instability", is studied using linear analysis, and the corresponding nonlinear evolution is then investigated using two-dimensional ideal MHD simulations. Although a single localized magnetic field channel alone cannot provide sufficient Maxwell stress to contribute significantly to...
Energy Technology Data Exchange (ETDEWEB)
Chavez A, E.; Melendez L, L.; Colunga S, S.; Valencia A, R.; Lopez C, R.; Gaytan G, E
1991-07-15
The charged particles that constitute the plasma in the tokamaks are located in magnetic fields that determine its behavior. The poloidal magnetic field of the plasma current and the toroidal magnetic field of the tokamak possess relatively big gradients, which produce drifts on these particles. These drifts are largely the cause of the continuous lost of particles and of energy of the confinement region. In this work the results of numerical calculations of a modification to the 'traditional' toroidal magnetic field that one waits it diminishes the drifts by gradient and improve the confinement properties of the tokamaks. (Author)
Performance assessment and optimization of the ITER toroidal field coil joints
Rolando, G.; Foussat, A.; Knaster, J.; Illiin, Y.; Nijhuis, A.
2013-01-01
The ITER toroidal field (TF) system features eighteen coils that will provide the magnetic field necessary to confine the plasma. Each winding pack is composed of seven double pancakes (DP) connected through praying hands joints. Shaking hands joints are used to interface the terminals of the conduc
Toroidal rotation braking with n = 1 magnetic perturbation field on JET
DEFF Research Database (Denmark)
Sun, Y; Liang, Y; Koslowski, H R;
2010-01-01
A strong toroidal rotation braking has been observed in plasmas with application of an n = 1 magnetic perturbation field on the JET tokamak. Calculation results from the momentum transport analysis show that the torque induced by the n = 1 perturbation field has a global profile. The maximal valu...
Entropy of quantum field in toroidal black hole without brick wall
Institute of Scientific and Technical Information of China (English)
Wang Bo-Bo
2008-01-01
In this paper the entropy of a toroidal black hole due to a scalar field is investigated by using the DLM scheme.The entropy is renormalized to the standard Bekenstein-Hawking formula with a one-loop correction arising from the higher curvature terms of the gravitational action. For the scalar field,the renormalized Newton constant and two renormalized coupling constants in the toroidal black hole are the same as those in the Reissner-Nordstrom black hole except for other one.
A toroidal vortex field as an origin of the narrow mass spectrum of neutron stars
Kontorovich, V. M.
2016-03-01
The evolution and collapse of a gaseous, self-gravitating sphere in the presence of an internal massive toroidal vortex analogous to the vortex created by the toroidal magnetic field of the Sun is considered. When thermal pressure is taken into account, for sufficiently high masses, the instability is preserved even for a polytropic index γ neutrons differs appreciably. In the ultrarelativistic limit, an interval of stablemasses arises in a neutron gas, between a minimum mass that depends on the circulation velocity in the vortex and the critical mass for the formation of a black hole. This suggests toroidal vortex fields as a possible physical origin for the observed narrow spectrum of neutron-star masses.
Observations of toroidicity-induced Alfvén eigenmodes in a reversed field pinch plasma
Regnoli, G.; Bergsâker, H.; Tennfors, E.; Zonca, F.; Martines, E.; Serianni, G.; Spolaore, M.; Vianello, N.; Cecconello, M.; Antoni, V.; Cavazzana, R.; Malmberg, J.-A.
2005-04-01
High frequency peaks in the spectra of magnetic field signals have been detected at the edge of Extrap-T2R [P. R. Brunsell, H. Bergsåker, M. Cecconello, J. R. Drake, R. M. Gravestijn, A. Hedqvist, and J.-A. Malmberg, Plasma Phys. Controlled Fusion, 43, 1457 (2001)]. The measured fluctuation is found to be mainly polarized along the toroidal direction, with high toroidal periodicity n and Alfvénic scaling (f∝B/√mini ). Calculations for a reversed field pinch plasma predict the existence of an edge resonant, high frequency, high-n number toroidicity-induced Alfvén eigenmode with the observed frequency scaling. In addition, gas puffing experiments show that edge density fluctuations are responsible for the rapid changes of mode frequency. Finally a coupling with the electron drift turbulence is proposed as drive mechanism for the eigenmode.
Energy Technology Data Exchange (ETDEWEB)
Kojima, A., E-mail: kojima.atsushi@jaea.go.jp [Japan Atomic Energy Agency, Naka (Japan); Hanada, M. [Japan Atomic Energy Agency, Naka (Japan); Jeong, S.H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Bae, Y.S. [National Fusion Research Institute, Daejeon (Korea, Republic of); Chang, D.H.; Kim, T.S.; Lee, K.W.; Park, M.; Jung, B.K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Mogaki, K.; Komata, M.; Dairaku, M.; Kashiwagi, M.; Tobari, H.; Watanabe, K. [Japan Atomic Energy Agency, Naka (Japan)
2016-01-15
The long-pulse acceleration of the high-power positive ion beam has been demonstrated with the JT-60 positive ion source in the joint experiment among Japan Atomic Energy Agency (JAEA), Korea Atomic Energy Research Institute (KAERI) and National Fusion Research Institute (NFRI) under the collaboration program for the development of plasma heating and current drive systems. In this joint experiment, the increase of the heat load and the breakdowns induced by the degradation of the beam optics due to the gas accumulation was one of the critical issues for the long-pulse acceleration. As a result of development of the long-pulse operation techniques of the ion source and facilities of the neutral beam test stand in KAERI, 2 MW 100 s beam has been achieved for the first time. The achieved beam performance satisfies the JT-60SA requirement which is designed to be a 1.94 MW ion beam power from an ion source corresponding to total neutral beam power of 20 MW with 24 ion sources. Therefore, it was found that the JT-60 positive ion sources were applicable in the JT-60SA neutral beam injectors. Moreover, because this ion source is planned to be a backup ion source for KSTAR, the operational region and characteristic has been clarified to apply to the KSTAR neutral beam injector.
Internal Field of Homogeneously Magnetized Toroid Sensor for Proton Free Precession Magnetometer
DEFF Research Database (Denmark)
Primdahl, Fritz; Merayo, José M.G.; Brauer, Peter
2005-01-01
The shift of the NMR spectral line frequency in a proton free precession absolute scalar magnetometer using the omni-directional toroid container for a proton-rich liquid depends on the magnetic susceptibility of the liquid and on the direction of the external field relative to the axis of the to......The shift of the NMR spectral line frequency in a proton free precession absolute scalar magnetometer using the omni-directional toroid container for a proton-rich liquid depends on the magnetic susceptibility of the liquid and on the direction of the external field relative to the axis...... of the toroid. The theoretical shift is estimated for water by computing the additional magnetic field from the magnetization of the liquid and comparing it to the theoretical field in a spherical container. Along the axis the estimated average shift is -0.08 nT and perpendicular to the axis the shift is +0.......08 nT relative to that of a spherical sensor. The field inhomogeneity introduced by the toroid shape amounts to 0.32 nT over the volume of the sensor and is not expected to significantly affect the signal decay time, when considering the typical water line width of about 2.5 InT....
Detailed in situ laser calibration of the infrared imaging video bolometer for the JT-60U tokamak
Parchamy, H.; Peterson, B. J.; Konoshima, S.; Hayashi, H.; Seo, D. C.; Ashikawa, N.; JT-60U Team
2006-10-01
The infrared imaging video bolometer (IRVB) in JT-60U includes a single graphite-coated gold foil with an effective area of 9 × 7 cm 2 and a thickness of 2.5 μ m . The thermal images of the foil resulting from the plasma radiation are provided by an IR camera. The calibration technique of the IRVB gives confidence in the absolute levels of the measured values of the plasma radiation. The in situ calibration is carried out in order to obtain local foil properties such as the thermal diffusivity κ and the product of the thermal conductivity k and the thickness t f of the foil. These quantities are necessary for solving the two-dimensional heat diffusion equation of the foil which is used in the experiments. These parameters are determined by comparing the measured temperature profiles (for k t f ) and their decays (for κ ) with the corresponding results of a finite element model using the measured HeNe laser power profile as a known radiation power source. The infrared camera (Indigo/Omega) is calibrated by fitting the temperature rise of a heated plate to the resulting camera data using the Stefan-Boltzmann law.
Araghy, Homaira P.; Peterson, Byron J.; Hayashi, Hiromi; Konoshima, Shigeru; Ashikawa, Naoko; Seo, Dongcheol; JT-60U Team
We obtained the local foil properties of the JT-60U imaging bolometer foil (a single graphite-coated gold foil with an effective area of 9 × 7 cm2 and a nominal thickness of 2.5 μm) such as the thermal diffusivity, κ, and the product of the thermal conductivity, k, and the thickness, tf , by calibrating some parts of the foil. Calibration of the foil was made in situ using a He-Ne laser (˜27 mW) as a known radiation source to heat the foil. The thermal images of the foil are provided by an infrared (IR) camera (microbolometer type). The parameters are determined by finite element modeling (FEM) of the foil temperature and comparing the solution to the experimental results. In this work we apply this calibration technique to investigate the spatial variation of the foil parameters. Significant variation in the local temperature rise of the foil due to local heating by the laser beam indicates a spatial variation of the foil parameters κ, k and tf. This variation is possibly due to nonuniformity in carbon coating and/or the thickness of the foil.
Energy Technology Data Exchange (ETDEWEB)
Ida, Katsumi; Miura, Yukitoshi; Itoh, Sanae [and others
1994-10-01
Radial structures of plasma rotation and radial electric field are experimentally studied in tokamak, heliotron/torsatron and stellarator devices. The perpendicular and parallel viscosities are measured. The parallel viscosity, which is dominant in determining the toroidal velocity in heliotron/torsatron and stellarator devices, is found to be neoclassical. On the other hand, the perpendicular viscosity, which is dominant in dictating the toroidal rotation in tokamaks, is anomalous. Even without external momentum input, both a plasma rotation and a radial electric field exist in tokamaks and heliotrons/torsatrons. The observed profiles of the radial electric field do not agree with the theoretical prediction based on neoclassical transport. This is mainly due to the existence of anomalous perpendicular viscosity. The shear of the radial electric field improves particle and heat transport both in bulk and edge plasma regimes of tokamaks. (author) 95 refs.
Active toroidal field ripple compensation and MHD feedback control coils in FAST
Energy Technology Data Exchange (ETDEWEB)
Ramogida, G., E-mail: giuseppe.ramogida@enea.it [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Calabrò, G.; Cocilovo, V.; Crescenzi, F.; Crisanti, F.; Cucchiaro, A. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Di Gironimo, G. [Associazione Euratom-ENEA, CREATE – Università di Napoli Federico II, Via Claudio 21, I-80125 Napoli (Italy); Fresa, R. [Università della Basilicata, Via Nazario Sauro 85, I-85100 Potenza (Italy); Fusco, V. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Martin, P. [Associazione Euratom-ENEA, Consorzio RFX, Corso Stati Uniti 4, I-35127, Padova (Italy); Mastrostefano, S. [Associazione Euratom-ENEA, CREATE – DIEI Università di Cassino, Via Di Biasio 43, I-03043 Cassino, FR (Italy); Mozzillo, R. [Associazione Euratom-ENEA, CREATE – Università di Napoli Federico II, Via Claudio 21, I-80125 Napoli (Italy); Nuzzolese, F. [Università della Basilicata, Via Nazario Sauro 85, I-85100 Potenza (Italy); Renno, F. [Associazione Euratom-ENEA, CREATE – Università di Napoli Federico II, Via Claudio 21, I-80125 Napoli (Italy); Rita, C. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Villone, F. [Associazione Euratom-ENEA, CREATE – DIEI Università di Cassino, Via Di Biasio 43, I-03043 Cassino, FR (Italy); Vlad, G. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy)
2013-10-15
Highlights: ► Active Ripple Compensating System (ARCS) consists of 18 off-centre poloidal coils between plasma and Toroidal Field Coils. ► The current in ARCS, adjustable and opposite to that in TFC, reduces the toroidal ripple below 0.2% at any toroidal fields. ► Feedback Active Control System (FACS) consists of two arrays of 9 in-vessel saddle coils fed by an MHD feedback controller. ► FACS allows robust feedback stabilization of low toroidal number MHD modes enabling plasma operations at low safety factor. ► ARCS and FACS are included in the whole FAST model and first engineering assessments show their feasibility and capability. -- Abstract: The Fusion Advanced Study Torus (FAST) has been proposed as a high magnetic field, compact size tokamak providing a flexible integrated environment to study physics and technology issues in ITER and DEMO relevant conditions. FAST has a quite large natural toroidal field ripple (around 1.5%) due to its compactness and to the number of access ports: this ripple must be lowered to an acceptable level to allow safe operations and a good confinement quality. An Active Ripple Compensating System (ARCS) has been designed, based on a set of poloidal coils placed between the plasma chamber and the Toroidal Field Coils (TFCs). These ARCS coils will be fed with adjustable currents, opposite in direction respect to the TFC currents, and will allow lowering the ripple up to zero and beyond. The CAD model of FAST including the ARCS coils has been completed and preliminary electromagnetic and thermal analyses have been carried out. Moreover, a Feedback Active Control System (FACS) composed of two arrays of in-vessel saddle coils has been designed to allow safe high plasma current, low safety factor operation and to mitigate possibly large ELMs effects in FAST. These FACS coils will be fed by a feedback system to control MHD modes: a first engineering assessment of the current requirements has been carried out.
Strain Measurement on the Toroidal Field (TF) Coil Cases
Institute of Scientific and Technical Information of China (English)
Chen Zhuomin; Long Feng; Wu Hao
2005-01-01
The stress-strain state of the structure is a matter of interest to designer. The strain measurement of superconducting magnets at cryogenic temperature is a specific technique. Based on strain measurement of TF coil case for EAST, this paper presents a measuring technique at cryogenic temperature and on intense magnetic field. The compensation methods for both temperature and magnetic field effects of the gauges, together with the measured results are involved, and the discussions of the measured results are given in the paper.
A Novel superconducting toroidal field magnet concept using advanced materials
Schwartz, J.
1992-03-01
The plasma physics database indicates that two distinct approaches to tokamak design may lead to commercial fusion reactors: low Aspect ratio, high plasma current, relatively low magnetic field devices, and high Aspect ratio, high field devices. The former requires significant enhancements in plasma performance, while the latter depends primarily upon technology development. The key technology for the commercialization of the high-field approach is large, high magnetic field superconducting magnets. In this paper, the physics motivation for the high field approach and key superconducting magnet (SCM) development issues are reviewed. Improved SCM performance may be obtained from improved materials and/or improved engineering. Superconducting materials ranging from NbTi to high- T c oxides are reviewed, demonstrating the broad range of potential superconducting materials. Structural material options are discussed, including cryogenic steel alloys and fiber-reinforced composite materials. Again, the breadth of options is highlighted. The potential for improved magnet engineering is quantified in terms of the Virial Theorem Limit, and two examples of approaches to highly optimized magnet configurations are discussed. The force-reduced concept, which is a finite application of the force-free solutions to Ampere's Law, appear promising for large SCMs but may be limited by the electromagnetics of a fusion plasma. The Solid Superconducting Cylinder (SSC) concept is proposed. This concept combines the unique properties of high- T c superconductors within a low- T c SCM to obtain (1) significant reductions in the structural material volume, (2) a decoupling of the tri-axial (compressive and tensile) stress state, and (3) a demountable TF magnet system. The advantages of this approach are quantified in terms of a 24 T commercial reactor TF magnet system. Significant reductions in the mechanical stress and the TF radial build are demonstrated.
Energy Technology Data Exchange (ETDEWEB)
Lim, S C [Faculty of Engineering, Multimedia University, Jalan Multimedia, Cyberjaya, 63100, Selangor Darul Ehsan (Malaysia); Teo, L P [Faculty of Information Technology, Multimedia University, Jalan Multimedia, Cyberjaya, 63100, Selangor Darul Ehsan (Malaysia)], E-mail: sclim@mmu.edu.my, E-mail: lpteo@mmu.edu.my
2008-04-11
Quartic self-interacting fractional Klein-Gordon scalar massive and massless field theories on toroidal spacetime are studied. The effective potential and topologically generated mass are determined using zeta-function regularization technique. Renormalization of these quantities are derived. Conditions for symmetry breaking are obtained analytically. Simulations are carried out to illustrate regions or values of compactified dimensions where symmetry-breaking mechanisms appear.
Quantum field theory on toroidal topology: algebraic structure and applications
Khanna, F C; Malbouisson, J M C; Santana, A E
2014-01-01
The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordstr\\"om, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particles physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matted physics.
Nonaxisymmetric Rossby vortex instability with toroidal magnetic fields in structured disks
Energy Technology Data Exchange (ETDEWEB)
Yu, Cong [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory
2009-01-01
We investigate the global nonaxisymmetric Rossby vortex instability (RVI) in a differentially rotating, compressible magnetized accretion disk with radial density structures. Equilibrium magnetic fields are assumed to have only the toroidal component. Using linear theory analysis, we show that the density structure can be unstable to nonaxisymmetric modes. We find that, for the magnetic field profiles we have studied, magnetic fields always provide a stabilizing effect to the unstable RVI modes. We discuss the physical mechanism of this stabilizing effect. The threshold and properties of the unstable modes are also discussed in detail. In addition, we present linear stability results for the global magnetorotational instability when the disk is compressible.
Demountable Toroidal Field Magnets for Use in a Compact Modular Fusion Reactor
Mangiarotti, F. J.; Goh, J.; Takayasu, M.; Bromberg, L.; Minervini, J. V.; Whyte, D.
2014-05-01
A concept of demountable toroidal field magnets for a compact fusion reactor is discussed. The magnets generate a magnetic field of 9.2 T on axis, in a 3.3 m major radius tokamak. Subcooled YBCO conductors have a critical current density adequate to provide this large magnetic field, while operating at 20 K reduces thermodynamic cooling cost of the resistive electrical joints. Demountable magnets allow for vertical replacement and maintenance of internal components, potentially reducing cost and time of maintenance when compared to traditional sector maintenance. Preliminary measurements of contact resistance of a demountable YBCO electrical joint between are presented.
Simulation of radiative divertor plasmas by Ar seeding with the full W-wall in JT-60SA
Energy Technology Data Exchange (ETDEWEB)
Kawashima, H.; Shimizu, K.; Nakano, T.; Asakura, N. [Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Hoshino, K. [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan)
2016-08-15
Radiative divertor plasmas for JT-60SA with a full tungsten (W) wall, which is one of options in future, have been simulated with a SOL/divertor integrated code, SONIC. A conventional modified-coronal radiation (MCR) model with a finite confinement time is used for both Ar and W for the purpose of wide-range parameter surveys for the divertor plasma to obtain the required conditions (q{sub t} ≤ 10 MW/m{sup 2}, n{sup Sep}{sub e-mid} = 3∝8 x 10{sup 19} m{sup -3}, P{sub rad} < ∝30 MW), saving the calculation time. At low W density ratio (n{sub W}/n{sub i} = 1 x 10{sup -5}), due to low radiative power from W ions, Ar density ratio (n{sub Ar}/n{sub i} ≥ 1.0 x 10{sup -3}) and a strong gas puff (Γ{sub p} ≥ 3.0 x 10{sup 22} s{sup -1}) are inevitable to suppress the divertor heat flux down to 10 MW/m{sup 2}. Increasing n{sub W}/n{sub i} to 1 x 10{sup -3} in the divertor region, the divertor heat load becomes low and the operative regions are expanded. While, the W production shall be suppressed since the W radiation is increased with replacement of Ar radiation and the particle recycling decreased. A Monte-Carlo module (IMPMC) implemented in SONIC for Ar seeding reveals that the spatial distribution of Ar ions is predominantly determined by shell structures of the Ar ions. The consistency between IMPMC and MCR calculations is demonstrated for the averaged n{sub Ar}/n{sub i} ratio, the electron density and temperature profiles on the divertor target and typical parameter such as the divertor heat load. It shows that the detailed analysis with IMPMC model can be speedily obtained, using a steady state solution obtained by MCR model as an initial state. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Energy Technology Data Exchange (ETDEWEB)
Buncher, B.R.; Chi, J.W.H.; Fernandez, R.
1976-10-26
This report documents the principal results of a Conceptual Design Study for the Superconducting Toroidal Field System for a Tokamak Experimental Power Reactor. Two concepts are described for peak operating fields at the windings of 8 tesla, and 12 tesla, respectively. The design and manufacturing considerations are treated in sufficient detail that cost and schedule estimates could be developed. Major uncertainties in the design are identified and their potential impact discussed, along with recommendations for the necessary research and development programs to minimize these uncertainties. The minimum dimensions of a sub-size test coil for experimental qualification of the full size design are developed and a test program is recommended.
Topology of toroidal helical fields in non-circular cross-sectional tokamaks
Institute of Scientific and Technical Information of China (English)
Zha Xue-Jun; Zhu Si-Zheng; Yu Qing-Quan; Wang Yan
2005-01-01
The ordinary differential magnetic field line equations are solved numerically; the tokamak magnetic structure is studied on Hefei Tokamak-7 Upgrade (HT-7U) when the equilibrium field with a monotonic q-profile is perturbed by a helical magnetic field. We find that a single mode (m, n) helical perturbation can cause the formation of islands on rational surfaces with q = m/n and q = (m ± 1,±2, ±3,...)/n due to the toroidicity and plasma shape (i.e.elongation and triangularity), while there are many undestroyed magnetic surfaces called Kolmogorov-Arnold-Moser (KAM) barriers on irrational surfaces. The islands on the same rational surface do not have the same size. When the ratio between the perturbing magnetic field (B)r(r) and the toroidal magnetic field amplitude Bφ0 is large enough, the magnetic island chains on different rational surfaces will overlap and chaotic orbits appear in the overlapping area, and the magnetic field becomes stochastic. It is remarkable that the stochastic layer appears first in the plasma edge region.
Energy Technology Data Exchange (ETDEWEB)
Kojima, A.; Hanada, M.; Yoshida, M.; Umeda, N.; Hiratsuka, J.; Kashiwagi, M.; Tobari, H.; Watanabe, K. [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka 311-0193 (Japan); Grisham, L. R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)
2015-04-08
The temperature control system of the large-size plasma grid has been developed to realize the long pulse production of high-current negative ions for JT-60SA. By using this prototype system for the JT-60SA ion source, 15 A negative ions has been sustained for 100 s for the first time, which is three times longer than that obtained in JT-60U. In this system, a high-temperature fluorinated fluid with a high boiling point of 270 degree Celsius is circulated in the cooling channels of the plasma grids (PG) where a cesium (Cs) coverage is formed to enhance the negative ion production. Because the PG temperature control had been applied to only 10% of the extraction area previously, the prototype PG with the full extraction area (110 cm × 45 cm) was developed to increase the negative ion current in this time. In the preliminary results of long pulse productions of high-current negative ions at a Cs conditioning phase, the negative ion production was gradually degraded in the last half of 100 s pulse where the temperature of an arc chamber wall was not saturated. From the spectroscopic measurements, it was found that the Cs flux released from the wall might affect to the negative ion production, which implied the wall temperature should be kept low to control the Cs flux to the PG for the long-pulse high-current production. The obtained results of long-pulse production and the PG temperature control method contributes the design of the ITER ion source.
Characterization of compact-toroid injection during formation, translation, and field penetration
Matsumoto, T.; Roche, T.; Allfrey, I.; Sekiguchi, J.; Asai, T.; Gota, H.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; Binderbauer, M.; Tajima, T.
2016-11-01
We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ˜1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation, ejection/translation from the MCPG, and penetration into transverse magnetic fields.
Characterization of compact-toroid injection during formation, translation, and field penetration
Energy Technology Data Exchange (ETDEWEB)
Matsumoto, T., E-mail: cstd14003@g.nihon-u.ac.jp; Sekiguchi, J.; Asai, T. [Nihon University, Chiyoda-ku, Tokyo 101-8308 (Japan); Roche, T.; Allfrey, I.; Gota, H.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; Binderbauer, M. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States); Tajima, T. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States); Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States)
2016-11-15
We have developed a compact toroid (CT) injector system for particle refueling of the advanced beam-driven C-2U field-reversed configuration (FRC) plasma. The CT injector is a magnetized coaxial plasma gun (MCPG), and the produced CT must cross the perpendicular magnetic field surrounding the FRC for the refueling of C-2U. To simulate this environment, an experimental test stand has been constructed. A transverse magnetic field of ∼1 kG is established, which is comparable to the C-2U axial magnetic field in the confinement section, and CTs are fired across it. On the test stand we have been characterizing and studying CT formation, ejection/translation from the MCPG, and penetration into transverse magnetic fields.
Liu, Yueqiang
2016-10-01
The type-I edge localized mode (ELM), bursting at low frequency and with large amplitude, can channel a substantial amount of the plasma thermal energy into the surrounding plasma-facing components in tokamak devices operating at the high-confinement mode, potentially causing severe material damages. Learning effective ways of controlling this instability is thus an urgent issue in fusion research, in particular in view of the next generation large devices such as ITER and DEMO. Among other means, externally applied, three-dimensional resonant magnetic perturbation (RMP) fields have been experimentally demonstrated to be successful in mitigating or suppressing the type-I ELM, in multiple existing devices. In this work, we shall report results of a comparative study of ELM control using RMPs. Comparison is made between the modelled plasma response to the 3D external fields and the observed change of the ELM behaviour on multiple devices, including MAST, ASDEX Upgrade, EAST, DIII-D, JET, and KSTAR. We show that toroidal modelling of the plasma response, based on linear and quasi-linear magnetohydrodynamic (MHD) models, provides essential insights that are useful in interpreting and guiding the ELM control experiments. In particular, linear toroidal modelling results, using the MARS-F code, reveal the crucial role of the edge localized peeling-tearing mode response during ELM mitigation/suppression on all these devices. Such response often leads to strong peaking of the plasma surface displacement near the region of weak equilibrium poloidal field (e.g. the X-point), and this provides an alternative practical criterion for ELM control, as opposed to the vacuum field based Chirikov criteria. Quasi-linear modelling using MARS-Q provides quantitative interpretation of the side effects due to the ELM control coils, on the plasma toroidal momentum and particle confinements. The particular role of the momentum and particle fluxes, associated with the neoclassical toroidal
Luyten, P. J.
1988-02-01
The oscillations and stability of a homogeneous self-gravitating rotating cylinder in a toroidal magnetic field are investigated. It is assumed that the field is proportional to the distance to the axis of the cylinder. We show the existence of four infinite discreta spectra of magnetic (or rotational) modes. Rotation stabilizes the magnetic m = 1 instability. The magnetic field decreases the growth rate of rotational instability and reduces the interval of unstable wavenumbers. If m = 1, instability always occurs with the exception of the equipartition state. If m> 1, the instability can be suppressed by a sufficiently large magnetic field. Resistivity decreases the growth rate of magnetic instability, but increases the growth rate of rotational instability. For zero wavenumber perturbations secular instability occurs due to the action of resistivity before a neutral point is attained where a second secular instabiliity initiates due to the action of resistivity
Non-radial oscillations of the magnetized rotating stars with purely toroidal magnetic fields
Asai, Hidetaka; Yoshida, Shijun
2015-01-01
We calculate non-axisymmetric oscillations of uniformly rotating polytropes magnetized with a purely toroidal magnetic field, taking account of the effects of the deformation due to the magnetic field. As for rotation, we consider only the effects of Coriolis force on the oscillation modes, ignoring those of the centrifugal force, that is, of the rotational deformation of the star. Since separation of variables is not possible for the oscillation of rotating magnetized stars, we employ finite series expansions for the perturbations using spherical harmonic functions. We calculate magnetically modified normal modes such as $g$-, $f$-, $p$-, $r$-, and inertial modes. In the lowest order, the frequency shifts produced by the magnetic field scale with the square of the characteristic Alfv\\'en frequency. As a measure of the effects of the magnetic field, we calculate the proportionality constant for the frequency shifts for various oscillation modes. We find that the effects of the deformation are significant for ...
Experiments with low energy ion beam transport into toroidal magnetic fields
Joshi, N; Meusel, O; Ratzinger, U
2016-01-01
The stellarator-type storage ring for accumulation of multi- Ampere proton and ion beams with energies in the range of $100~AkeV$ to $1~AMeV$ is designed at Frankfurt university. The main idea for beam confinement with high transversal momentum acceptance was presented in EPAC2006. This ring is typically suited for experiments in plasma physics and nuclear astrophysics. The accumulator ring with a closed longitudinal magnetic field is foreseen with a strength up to $6-8~T$. The experiments with two room temperature 30 degree toroids are needed. The beam transport experiments in toroidal magnetic fields were first described in EPAC2008 within the framework of a proposed low energy ion storage ring. The test setup aims on developing a ring injection system with two beam lines representing the main beam line and the injection line. The primary beam line for the experiments was installed and successfully commissioned in 2009. A special diagnostics probe for \\textit{"in situ"} ion beam detection was installed.This...
Energy Technology Data Exchange (ETDEWEB)
Park, H.K.; Bell, M.G.; Yamada, M.
1995-03-01
The high performance regimes achieved in JT-60U and TFTR have produced peak DD fusion neutron rates up to 5.6 {times} 10{sup 16}/s for similar heating beam powers, in spite of considerable differences in machine operation and plasma configuration. A common scaling for the DD fusion neutron rate (S{sub DD} {proportional_to} P{sub abs}{sup 2.0} H{sub ne} V{sub p}{sup {minus}0.9}) is obtained, where P{sub abs} and H{sub ne} are the absorbed beam power and beam fueling peaking factor, respectively, and V{sub p} is the plasma volume. The maximum stored energy obtained in each machine has been up to 5.4 MJ in TFTR and 8.7 MJ in JT-60U. Further improvements in the fusion neutron rate and the stored energy are limited by the {beta}-limit in Troyon range, {beta}{sub N} {approximately} 2.0--2.5. A common scaling for the stored energy (W{sub tot} {proportional_to} P{sub abs}V{sub p}H{sub ne}{sup 0.2}) is also proposed.
Progress in Compact Toroid Experiments
Energy Technology Data Exchange (ETDEWEB)
Dolan, Thomas James
2002-09-01
The term "compact toroids" as used here means spherical tokamaks, spheromaks, and field reversed configurations, but not reversed field pinches. There are about 17 compact toroid experiments under construction or operating, with approximate parameters listed in Table 1.
Toroidal field instability and eddy viscosity in Taylor-Couette flows
Gellert, M
2008-01-01
Toroidal magnetic fields subject to the Tayler instability can transport angular momentum. We show that the Maxwell and Reynolds stress of the nonaxisymmetric field pattern depend linearly on the shear in the cylindrical gap geometry. Resulting angular momentum transport also scales linear with shear. It is directed outwards for astrophysical relevant flows and directed inwards for superrotating flows with dOmega/dR>0. We define an eddy viscosity based on the linear relation between shear and angular momentum transport and show that its maximum for given Prandtl and Hartmann number depends linear on the magnetic Reynolds number Rm. For Rm=1000 the eddy viscosity is of the size of 30 in units of the microscopic value.
Energy Technology Data Exchange (ETDEWEB)
Flanagan, C.A. (ed.)
1984-10-01
This document is a design overview that describes the scoping studies and preconceptual design effort performed in FY 1983 on the Tokamak Fusion Core Experiment (TFCX) class of device. These studies focussed on devices with all-superconducting toroidal field (TF) coils and on devices with superconducting TF coils supplemented with copper TF coil inserts located in the bore of the TF coils in the shield region. Each class of device is designed to satisfy the mission of ignition and long pulse equilibrium burn. Typical design parameters are: major radius = 3.75 m, minor radius = 1.0 m, field on axis = 4.5 T, plasma current = 7.0 MA. These designs relay on lower hybrid (LHRH) current rampup and heating to ignition using ion cyclotron range of frequency (ICRF). A pumped limiter has been assumed for impurity control. The present document is a design overview; a more detailed design description is contained in a companion document.
Modelling of 3D fields due to ferritic inserts and test blanket modules in toroidal geometry at ITER
Liu, Yueqiang; Äkäslompolo, Simppa; Cavinato, Mario; Koechl, Florian; Kurki-Suonio, Taina; Li, Li; Parail, Vassili; Saibene, Gabriella; Särkimäki, Konsta; Sipilä, Seppo; Varje, Jari
2016-06-01
Computations in toroidal geometry are systematically performed for the plasma response to 3D magnetic perturbations produced by ferritic inserts (FIs) and test blanket modules (TBMs) for four ITER plasma scenarios: the 15 MA baseline, the 12.5 MA hybrid, the 9 MA steady state, and the 7.5 MA half-field helium plasma. Due to the broad toroidal spectrum of the FI and TBM fields, the plasma response for all the n = 1-6 field components are computed and compared. The plasma response is found to be weak for the high-n (n > 4) components. The response is not globally sensitive to the toroidal plasma flow speed, as long as the latter is not reduced by an order of magnitude. This is essentially due to the strong screening effect occurring at a finite flow, as predicted for ITER plasmas. The ITER error field correction coils (EFCC) are used to compensate the n = 1 field errors produced by FIs and TBMs for the baseline scenario for the purpose of avoiding mode locking. It is found that the middle row of the EFCC, with a suitable toroidal phase for the coil current, can provide the best correction of these field errors, according to various optimisation criteria. On the other hand, even without correction, it is predicted that these n = 1 field errors will not cause substantial flow damping for the 15 MA baseline scenario.
Feasibility Study on Welding Structure of the HT-7U Toroidal Field Coil Case
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The Toroidal Field (TF) coil case of the HT-7U superconducting tokamak device is made of austenitic stainless steel 316LN and is designed to operate at cryogenic temperature (4 K). 316LN can retain high strength and fracture toughness at 4 K. Feasibility study on technical process of welding has been experimentally considered as a hopeful joint method for suppression of post-welding deformation and reduction of over-heating. Meanwhile the final range of stress in- tensity and the stress intensity factor (K) for pre-cracks of welding structure have been determined by using J-integral. These related results are optimistic and have shown that there's no problem in strength and fracture toughness at the vicinity of the pre-crack tip. This paper introduces the welding structure of TF coil case in detail.
Rodrigues, Paulo; Bizarro, João P. S.
2013-04-01
The axisymmetry condition and two of Maxwell's equations are used to show that, in general, there are no nested magnetic surfaces around a poloidal-magnetic-field null for a sufficiently small value of the toroidal current density flowing there. Hence, the toroidal current density at the axis of a magnetic configuration with extreme shear reversal cannot continuously approach zero unless nested surfaces are first broken or particular values are assigned to boundary conditions and other plasma parameters. The threshold of the toroidal current-density at which the topology changes is shown to be set by such parameters, and some examples of the predicted topology transition are presented using analytical solutions of the Grad-Shafranov equation.
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, Paulo; Bizarro, Joao P. S. [Associacao Euratom-IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, 1049-001 Lisboa (Portugal)
2013-04-15
The axisymmetry condition and two of Maxwell's equations are used to show that, in general, there are no nested magnetic surfaces around a poloidal-magnetic-field null for a sufficiently small value of the toroidal current density flowing there. Hence, the toroidal current density at the axis of a magnetic configuration with extreme shear reversal cannot continuously approach zero unless nested surfaces are first broken or particular values are assigned to boundary conditions and other plasma parameters. The threshold of the toroidal current-density at which the topology changes is shown to be set by such parameters, and some examples of the predicted topology transition are presented using analytical solutions of the Grad-Shafranov equation.
Matsunaga, G.; Okabayashi, M.; Aiba, N.; Boedo, J. A.; Ferron, J. R.; Hanson, J. M.; Hao, G. Z.; Heidbrink, W. W.; Holcomb, C. T.; In, Y.; Jackson, G. L.; Liu, Y. Q.; Luce, T. C.; McKee, G. R.; Osborne, T. H.; Pace, D. C.; Shinohara, K.; Snyder, P. B.; Solomon, W. M.; Strait, E. J.; Turnbull, A. D.; Van Zeeland, M. A.; Watkins, J. G.; Zeng, L.; the DIII-D Team; the JT-60 Team
2013-12-01
In the wall-stabilized high-β plasmas in JT-60U and DIII-D, interactions between energetic particle (EP) driven modes (EPdMs) and edge localized modes (ELMs) have been observed. The interaction between the EPdM and ELM are reproducibly observed. Many EP diagnostics indicate a strong correlation between the distorted waveform of the EPdM and the EP transport to the edge. The waveform distortion is composed of higher harmonics (n ⩾ 2) and looks like a density snake near the plasma edge. According to statistical analyses, ELM triggering by the EPdMs requires a finite level of waveform distortion and pedestal recovery. ELM pacing by the EPdMs occurs when the repetition frequency of the EPdMs is higher than the natural ELM frequency. EPs transported by EPdMs are thought to contribute to change the edge stability.
Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields
Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y. C.; Hong, H. Y.
1979-01-01
Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements.
A model for particle confinement in a toroidal plasma subject to strong radial electric fields
Roth, J. R.
1977-01-01
The approach adopted in the NASA Lewis Bumpy Torus experiment is to confine and heat a toroidal plasma by the simultaneous application of strong dc magnetic fields and electric fields. Strong radial electric fields (about 1 kV/cm) are imposed by biasing the plasma with up to 12 negative electrode rings which surround its minor circumference. The plasma containment is consistent with a balance of two processes: a radial infusion of ions in those sectors not containing electrode rings, resulting from the radially inward electric fields; and ion losses to the electrode rings, each of which acts as a sink and draws ions out the plasma in the manner of a Langmuir probe in the ion saturation regime. The highest density on axis which has been observed so far in this steady-state plasma is 6.2 trillion particles per cu cm, for which the particle containment time is 2.5 msec. The deuterium ion kinetic temperature for these conditions was in the range of 360 to 520 eV.
A titanium dioxide filled toroidal coil for magnetic resonance imaging at high field
Butterworth, Edward J.
1999-09-01
This study demonstrates the advantages of filling the resonating cavity of a radio frequency NMR coil with a substance that more closely matches the dielectric properties of human tissue. The chosen design is a toroidal RF coil of reduced aspect ratio, and the dielectric material of choice is powdered titanium dioxide. RF coil performance is limited significantly by the dielectric discontinuity and consequent wavelength discontinuity between the air-filled cavity and human tissue. Filling the coil with titanium dioxide (with a published relative dielectric constant of 114 for randomly oriented rutile crystals and a measured dielectric constant under operating conditions of 70) alters its electromagnetic properties in a way which approximates human tissue (most of which has a dielectric constant between 50 and 70), without introducing spurious magnetic effects. In particular, brain NMR can benefit from these advantages. Analytic expressions for the electric and magnetic fields within the coil are derived here. The physical and electromagnetic parameters of the coil are developed with reference to these computations. The redesigned and filled resonator focuses the magnetic field lines, producing a more uniform B1 field as compared with the unfilled coil, with reduced power requirements. The filled coil has a well-defined imaging zone, in which the magnetic field is relatively uniform and homogeneous. The Q of the coil is significantly higher than that of conventional designs and is not significantly reduced by loading. Test results and images are presented showing these effects.
Energy Technology Data Exchange (ETDEWEB)
1976-11-01
This report presents the results of ''Conceptual Studies of Toroidal Field Magnets for the Tokamak Experimental Power Reactor'' performed for the Energy Research and Development Administration, Oak Ridge Operations. Two conceptual coil designs are developed. One design approach to produce a specified 8 Tesla maximum field uses a novel NbTi superconductor design cooled by pool-boiling liquid helium. For a highest practicable field design, a unique NbSn/sub 3/ conductor is used with forced-flow, single-phase liquid helium cooling to achieve a 12 Tesla peak field. Fabrication requirements are also developed for these approximately 7 meter horizontal bore by 11 meter vertical bore coils. Cryostat design approaches are analyzed and a hybrid cryostat approach selected. Structural analyses are performed for approaches to support in-plane and out-of-plane loads and a structural approach selected. In addition to the conceptual design studies, cost estimates and schedules are prepared for each of the design approaches, major uncertainties and recommendations for research and development identified, and test coil size for demonstration recommended.
Design and analysis of the INTOR toroidal field-coil structural system
Energy Technology Data Exchange (ETDEWEB)
O' Toole, J.A.; Brown, T.G.; Shannon, T.E.
1981-01-01
The International Tokamak Reactor (INTOR) is a unique collaborative effort among the USA, USSR, EURATOM, and Japan to define the characteristics and objectives of, assess the technical feasibility of, and develop a design for the next major experiment in the world-wide tokamak program. The conceptual design consists of twelve toroidal field (TF) coils, each having a bore of 7.75 X 10.7 meters and a maximum field of 10.8 Tesla. The all-external poloidal field (PF) coil system imposes a very large pulsed field on the TF coil system. The superconducting TF and PF coils are enclosed by a common vacuum cryostat which includes individual enclosures for each TF coil's outer leg. This configuration provides a large window through which a complete torus sector can be withdrawn. The purpose of this study was to develop a feasible TF coil structural system design. The various design criteria and their effects on the design are discussed. The rationale supporting the allowable cyclic stress of 200 MPa (29 ksi) is discussed.
Energy Technology Data Exchange (ETDEWEB)
Kasilov, Sergei V. [Fusion@ÖAW, Institut für Theoretische Physik—Computational Physics, Technische Universität Graz Petersgasse 16, A–8010 Graz (Austria); Institute of Plasma Physics National Science Center “Kharkov Institute of Physics and Technology” ul. Akademicheskaya 1, 61108 Kharkov (Ukraine); Kernbichler, Winfried; Martitsch, Andreas F.; Heyn, Martin F. [Fusion@ÖAW, Institut für Theoretische Physik—Computational Physics, Technische Universität Graz Petersgasse 16, A–8010 Graz (Austria); Maassberg, Henning [Max-Planck Institut für Plasmaphysik, D-17491 Greifswald (Germany)
2014-09-15
The toroidal torque driven by external non-resonant magnetic perturbations (neoclassical toroidal viscosity) is an important momentum source affecting the toroidal plasma rotation in tokamaks. The well-known force-flux relation directly links this torque to the non-ambipolar neoclassical particle fluxes arising due to the violation of the toroidal symmetry of the magnetic field. Here, a quasilinear approach for the numerical computation of these fluxes is described, which reduces the dimension of a standard neoclassical transport problem by one without model simplifications of the linearized drift kinetic equation. The only limiting condition is that the non-axisymmetric perturbation field is small enough such that the effect of the perturbation field on particle motion within the flux surface is negligible. Therefore, in addition to most of the transport regimes described by the banana (bounce averaged) kinetic equation also such regimes as, e.g., ripple-plateau and resonant diffusion regimes are naturally included in this approach. Based on this approach, a quasilinear version of the code NEO-2 [W. Kernbichler et al., Plasma Fusion Res. 3, S1061 (2008).] has been developed and benchmarked against a few analytical and numerical models. Results from NEO-2 stay in good agreement with results from these models in their pertinent range of validity.
The Tayler instability of toroidal magnetic fields in a columnar gallium experiment
Ruediger, G; Gellert, M
2010-01-01
The nonaxisymmetric Tayler instability of toroidal magnetic fields due to axial electric currents is studied for conducting incompressible fluids between two coaxial cylinders without endplates. The inner cylinder is considered as so thin that even the limit of R_in \\to 0 can be computed. The magnetic Prandtl number is varied over many orders of magnitudes but the azimuthal mode number of the perturbations is fixed to m=1. In the linear approximation the critical magnetic field amplitudes and the growth rates of the instability are determined for both resting and rotating cylinders. Without rotation the critical Hartmann numbers do {\\em not} depend on the magnetic Prandtl number but this is not true for the growth rates. For given product of viscosity and magnetic diffusivity the growth rates for small and large magnetic Prandtl number are much smaller than those for Pm=1. For gallium under the influence of a magnetic field at the outer cylinder of 1 kG the resulting growth time is 5 s. The minimum electric c...
McGann, M; Dewar, R L; von Nessi, G
2010-01-01
The vanishing of the divergence of the total stress tensor (magnetic plus kinetic) in a neighborhood of an equilibrium plasma containing a toroidal surface of discontinuity gives boundary and jump conditions that strongly constrain allowable continuations of the magnetic field across the surface. The boundary conditions allow the magnetic fields on either side of the discontinuity surface to be described by surface magnetic potentials, reducing the continuation problem to that of solving a Hamilton--Jacobi equation. The characteristics of this equation obey Hamiltonian equations of motion, and a necessary condition for the existence of a continued field across a general toroidal surface is that there exist invariant tori in the phase space of this Hamiltonian system. It is argued from the Birkhoff theorem that existence of such an invariant torus is also, in general, sufficient for continuation to be possible. An important corollary is that the rotational transform of the continued field on a surface of disco...
Thermal-Hydraulic Issues in the ITER Toroidal Field Model Coil (TFMC) Test and Analysis
Zanino, R.; Bagnasco, M.; Fillunger, H.; Heller, R.; Savoldi Richard, L.; Suesser, M.; Zahn, G.
2004-06-01
The International Thermonuclear Experimental Reactor (ITER) Toroidal Field Model Coil (TFMC) was tested in the Toska facility of Forschungszentrum Karlsruhe during 2001 (standalone) and 2002 (in the background magnetic field of the LCT coil). The TFMC is a racetrack coil wound in five double pancakes on stainless steel radial plates using Nb3Sn dual-channel cable-in-conduit conductor (CICC) with a thin circular SS jacket. The coil was cooled by supercritical helium in forced convection at nominal 4.5 K and 0.5 MPa. Instrumentation, all outside the coil, included voltage taps, pressure and temperature sensors, as well as flow meters. Additionally, differential pressure drop measurement was available on the two pancakes DP1.1 and DP1.2, equipped with heaters. Two major thermal-hydraulic issues in the TFMC tests will be addressed here: 1) the pressure drop along heated pancakes and the comparison with friction factor correlations; 2) the quench initiation and propagation. Other thermal-hydraulic issues like heat generation and exchange in joints, radial plates, coil case, or the effects of the resistive heaters on the helium dynamics, have been already addressed elsewhere.
Optimization of confinement in a toroidal plasma subject to strong radial electric fields
Roth, J. R.
1977-01-01
The toroidal ring of plasma contained in the NASA Lewis Bumpy Torus facility may be biased to positive or negative potentials approaching 50 kV by applying dc voltages of the respective polarity to 12 or fewer midplane electrode rings. The radial electric fields, which are responsible for raising the ions to high energies by E x B/B-squared drift, then point out of or into the plasma. A preliminary report is given on the identification and optimization of independent variables which affect the ion density and confinement time in the Bumpy Torus plasma. The independent variables include the polarity, position, and number of the midplane electrode rings, the method of gas injection, and the polarity and strength of a weak vertical magnetic field. Some characteristic data taken under conditions where most of the independent variables were optimized are presented. The highest value of the electron number density on the plasma axis is 3.2 trillion per cu cm, the highest ion heating efficiency is 47%, and the longest particle containment time is 2.0 msec.
Phase coexistence and electric-field control of toroidal order in oxide superlattices
Damodaran, A. R.; Clarkson, J. D.; Hong, Z.; Liu, H.; Yadav, A. K.; Nelson, C. T.; Hsu, S.-L.; McCarter, M. R.; Park, K.-D.; Kravtsov, V.; Farhan, A.; Dong, Y.; Cai, Z.; Zhou, H.; Aguado-Puente, P.; García-Fernández, P.; Íñiguez, J.; Junquera, J.; Scholl, A.; Raschke, M. B.; Chen, L.-Q.; Fong, D. D.; Ramesh, R.; Martin, L. W.
2017-10-01
Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO3/SrTiO3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a1/a2 phase. At room temperature, the coexisting vortex and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Our findings suggest new cross-coupled functionalities.
Energy Technology Data Exchange (ETDEWEB)
Bayer, Christoph M.
2017-05-01
Nuclear fusion is a key technology to satisfy the basic demand for electric energy sustainably. The official EUROfusion schedule foresees a first industrial DEMOnstration Fusion Power Plant for 2050. In this work several high temperature superconductor sub-size cables are investigated for their applicability in large scale DEMO toroidal field coils. Main focus lies on the electromechanical stability under the influence of high Lorentz forces at peak magnetic fields of up to 12 T.
Rüdiger, G.; Gellert, M.; Schultz, M.; Hollerbach, R.; Stefani, F.
2014-02-01
The interaction of differential rotation and toroidal fields that are current-free in the gap between two corotating axially unbounded cylinders is considered. It is shown that non-axisymmetric perturbations are unstable if the rotation rate and Alfvén frequency of the field are of the same order, almost independent of the magnetic Prandtl number Pm. For the very steep rotation law Ω ∝ R-2 (the Rayleigh limit) and for small Pm, the threshold values of rotation and field for this azimuthal magnetorotational instability (AMRI) scale with the ordinary Reynolds number and the Hartmann number, respectively. A laboratory experiment with liquid metals like sodium or gallium in a Taylor-Couette container has been designed on the basis of this finding. For fluids with more flat rotation laws, the Reynolds number and the Hartmann number are no longer typical quantities for the instability. For the weakly non-linear system, the numerical values of the kinetic energy and the magnetic energy are derived for magnetic Prandtl numbers ≤ 1. We find that the magnetic energy grows monotonically with the magnetic Reynolds number Rm, while the kinetic energy grows with Rm/√Pm. The resulting turbulent Schmidt number, as the ratio of the `eddy' viscosity and the diffusion coefficient of a passive scalar (such as lithium), is of the order of 20 for Pm = 1, but for small Pm it drops to the order of unity. Hence, in a stellar core with fossil fields and steep rotation law, the transport of angular momentum by AMRI is always accompanied by an intense mixing of the plasma, until the rotation becomes rigid.
Energy Technology Data Exchange (ETDEWEB)
Hartmann, B. [Giessen Univ. (Germany). 2. Physikalisches Inst.; Wollnik, H. [Giessen Univ. (Germany). 2. Physikalisches Inst.
1995-09-01
The ion trajectories through the extended fringing field of a toroidal condenser are calculated including the effects of curved field boundaries. The optical fringing-field effects are expressed by analytical formulas including fringing-field integrals using the transfer matrix method. These formulas describe in an effective third-order approximation all effects in the plane of deflection as well as in the perpendicular surface to this plane. The obtained expressions are compared to precise numerical ray-tracing calculations through typical field distributions. (orig.).
Momentum transport studies in JET H-mode discharges with an enhanced toroidal field ripple
Energy Technology Data Exchange (ETDEWEB)
De Vries, P C; Howell, D H; Giroud, C; Parail, V [EURATOM/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Versloot, T W [FOM institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, PO Box 1207, Nieuwegein (Netherlands); Salmi, A [Association Euratom-Tekes, Helsinki University of Technology, PO Box 4100, 02015 TKK (Finland); Hua, M-D [Imperial College, SW7 2BY, London (United Kingdom); Saibene, G [Fusion for Energy Joint Undertaking, 0819 Barcelona (Spain); Tala, T, E-mail: Peter.de.Vries@jet.efda.or [Association Euratom-Tekes, VTT, PO Box 1000, 02044 VTT (Finland)
2010-06-15
In this study, enhancement of the toroidal field (TF) ripple has been used as a tool in order to reveal the impact of the momentum pinch on the rotation profiles in H-mode JET discharges. The analysis showed that flatter rotation profiles were obtained in discharges with a high TF ripple, attributed to a smaller inward momentum convection. An average inward momentum pinch of approximately V{sub p} {approx} 3.4 m s{sup -1} and a normalized pinch value of RV{sub p}/{chi} {approx} 6.6 could explain the observation. The data show that the momentum at the edge affects the peaking of the rotation and momentum density profiles. Under the assumption that the heat and momentum diffusivities are equal, an estimate of the levels of the momentum pinch in all discharges in the JET rotation database was made. For H-mode discharge these ranged from 0.3 m s{sup -1} < V{sub p} < 17 m s{sup -1}, with 2 < RV{sub p}/{chi} < 10. A larger momentum pinch was found in discharges with a smaller density profile gradient length, i.e. a more peaked density profile.
Energy Technology Data Exchange (ETDEWEB)
Caldino H, U.; Francois L, J. L., E-mail: ucaldino@outlook.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)
2014-10-15
The TPM1 is a small Tokamak that belongs to the Centro de Investigacion en Ciencias Aplicadas y Tecnologia Avanzada of Instituto Politecnico Nacional (CICATA-IPN); the project is under construction. Currently it has the vacuum chamber, and is intended that the machine can operate with electric pulses of 10 ms to study the behavior of plasmas in order to provide knowledge in the field of nuclear fusion by magnetic confinement. To achieve this goal is necessary to design the toroidal field coils which operate the Tokamak. This paper presents an analysis which was performed to obtain the correct configuration of coils depending on design parameters for operation of the machine. Once determined this configuration, an analysis of electromagnetic forces present in normal machine operation on one coil was conducted, this to know the stresses in the encapsulation of the same. Considering the pulsed operation, a thickness of 5 mm is determined in the encapsulated, considering fatigue failure based on studies of fatigue failures in epoxy resins. (Author)
Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks
Lanctot, M. J.; Park, J.-K.; Piovesan, P.; Sun, Y.; Buttery, R. J.; Frassinetti, L.; Grierson, B. A.; Hanson, J. M.; Haskey, S. R.; In, Y.; Jeon, Y. M.; La Haye, R. J.; Logan, N. C.; Marrelli, L.; Orlov, D. M.; Paz-Soldan, C.; Wang, H. H.; Strait, E. J.
2017-05-01
In several tokamaks, non-axisymmetric magnetic field studies show that applied magnetic fields with a toroidal harmonic n = 2 can lead to disruptive n = 1 locked modes. In Ohmic plasmas, n = 2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q ˜ 3, low density, and low rotation. Similar to previous studies with n = 1 fields, the thresholds are correlated with the "overlap" field computed with the IPEC code. The overlap field quantifies the plasma-mediated coupling of the external field to the resonant field. Remarkably, the "critical overlap fields" at which magnetic islands form are similar for applied n = 1 and 2 fields. The critical overlap field increases with plasma density and edge safety factor but is independent of the toroidal field. Poloidal harmonics m > nq dominate the drive for resonant fields while m 1 field control including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression).
Bulusu, Jayashree; Sinha, A. K.; Vichare, Geeta
2016-06-01
An analytic solution has been formulated to study the role of ionospheric conductivity on toroidal field line oscillations in the Earth's magnetosphere. The effect of ionospheric conductivity is addressed in two limits, viz, (a) when conductance of Alfvén wave is much different from ionospheric Pedersen conductance and (b) when conductance of Alfvén wave is close to the ionospheric Pedersen conductance. In the former case, the damping is not significant and standing wave structures are formed. However, in the latter case, the damping is significant leading to mode translation. Conventionally, "rigid-end" and "free-end" cases refer to eigenstructures for infinitely large and vanishingly small limit of ionospheric conductivity, respectively. The present work shows that when the Pedersen conductance overshoots (undershoots) the Alfvén wave conductance, a free-end (rigid-end) mode gets transformed to rigid-end (free-end) mode with an increase (decrease) in harmonic number. This transformation takes place within a small interval of ionospheric Pedersen conductance around Alfvén wave conductance, beyond which the effect of conductivity on eigenstructures of field line oscillations is small. This regime of conductivity limit (the difference between upper and lower limits of the interval) decreases with increase in harmonic number. Present paper evaluates the damping effect for density index other than the standard density index m = 6, using perturbation technique. It is found that for a small departure from m = 6, both mode frequency and damping rate become a function of Pedersen conductivity.
Carli, S.; Bonifetto, R.; Hoa, C.; Savoldi, L.; Zanino, R.
2015-12-01
The HELIOS facility at CEA Grenoble is a supercritical helium (SHe) loop which is being used to investigate the effects on the cryogenic cooling system of the pulsed heat loads which are typical of superconducting tokamak operation. In the standard configuration, the magnet heat load is simulated by electrical heaters wrapped around a section of cryoline. In the present work, the resistively heated section is substituted in the HELIOS model of the 4C code, already validated for the standard configuration of HELIOS, by a sub-size winding structure made of JT-60SA Cable-In-Conduit Conductors (CICCs). The new model is then used to highlight the differences in the circuit behaviour when the heated pipe is substituted by an actual magnet wound with CICCs, checking the representativeness of the control strategies developed for the present HELIOS configuration. The use of CICCs will be shown to produce an intrinsic smoothing of the temperature profiles which is not affecting the capability of the control strategies to smooth the heat loads to the cryoplant.
Rista, P. E. C.; Shull, J.; Sargent, S.
2015-12-01
The ITER cryodistribution system provides the supercritical Helium (SHe) forced flow cooling to the magnet system using cold circulators. The cold circulators are located in each of five separate auxiliary cold boxes planned for use in the facility. Barber-Nichols Inc. has been awarded a contract from ITER-India for engineering, manufacture and testing of the Toroidal Field (TF) Magnet Helium Cold Circulator. The cold circulator will be extensively tested at Barber-Nichols’ facility prior to delivery for qualification testing at the Japan Atomic Energy Agency's (JAEA) test facility at Naka, Japan. The TF Cold Circulator integrates features and technical requirements which Barber-Nichols has utilized when supplying helium cold circulators worldwide over a period of 35 years. Features include a vacuum-jacketed hermetically sealed design with a very low helium leak rate, a heat shield for use with both nitrogen & helium cold sources, a broad operating range with a guaranteed isentropic efficiency over 70%, and impeller design features for high efficiency. The cold circulator will be designed to meet MTBM of 17,500 hours and MTBF of 36,000 hours. Vibration and speed monitoring are integrated into a compact package on the rotating assembly with operation and health monitoring in a multi-drop PROFIBUS communication environment using an electrical cabinet with critical features and full local and network PLC interface and control. For the testing in Japan and eventual installation in Europe, the cold circulator must be certified to the Japanese High Pressure Gas Safety Act (JHPGSA) and CE marked in compliance with the European Pressure Equipment Directive (PED) including Essential Safety Requirements (ESR). The test methodology utilized at Barber-Nichols’ facility and the resulting test data, validating the high efficiency of the TF Cold Circulator across a broad operating range, are important features of this paper.
Fabrication of the helical field coil components for the advanced toroidal facility
Energy Technology Data Exchange (ETDEWEB)
Cole, M.J.; Whitson, J.C.; Banks, B.J.
1987-01-01
The fabrication techniques used to manufacture the major components of the helical field (HF) coil segments for the Advanced Toroidal Facility (ATF) are described. The major components of an HF coil segment are 14 water-cooled, copper conductors and a T-shaped stainless steel support member (or ''tee''). Twenty-four of these segments were used in the fabrication of two coils for the ATF experiment. The helical shape, accurate position requirements, large size, and potential for high cost required unique approaches to the fabrication of these components. One method of fabrication was to use 44-mm-thick (standard size) plate to form the base and leg of the tee and to join the sections by welding. Because of the tolerance requirements, a thicker plate (70 mm) was used and then contour machined to the final shape. The second approach, conducted in parallel with the first, was to cast the tee as a single piece. The first attempts were to make the casting larger than required, then machine it to final size and shape. The cost of machining either the welded tee or the cast tee was extremely high, so several prototypes were fabricated until a cast tee that required no contour machining was produced. The shape and positional requirements were also the major problems in fabricating the copper conductors, or turns. The approach taken was to make an accurate fixture and position the turns in the fixture, then anneal to remove residual stresses and form the copper turns to the shape of the fixture. The lessons learned in pursuing these fabrication methods are presented. 5 refs., 3 figs.
Thermal and electrical joint test for the helical field coils in the Advanced Toroidal Facility
Energy Technology Data Exchange (ETDEWEB)
Brown, R.L.; Johnson, R.L.
1985-01-01
Initial feasibility studies of a number of configurations for the Advanced Toroidal Facility (ATF) resulted in the selection of a resistive copper continuous-coil torsatron as the optimum device considering the physics program, cost, and schedule. Further conceptual design work was directed toward optimization of this configuration and, if possible, a shorter schedule. It soon became obvious that in order to shorten the schedule, a number of design and fabrication activities should proceed in parallel. This was most critical for the vacuum vessel and the helical field (HF) coils. If the HF coils were wound in place on a completed vacuum vessel, the overall schedule would be significantly (greater than or equal to12 months) longer. The approach of parallel scheduel paths requires that the HF coils be segmented into parts of less than or equal to180 of poloidal angle and that joints be made on a turn-by-turn basis when the segments are installed. It was obvious from the outset that the compact and complex geometry of the joint design presented a special challenge in the areas of reliability, assembly, maintenance, disassembly, and cost. Also, electrical, thermal, and force excursions are significant for these joints. A number of soldered, welded, brazed, electroplated, and bolted joints were evaluated. The evaluations examined fabrication feasibility and complexity, thermal-electrical performance at approximately two-thirds of the steady-state design conditions, and installation and assembly processes. Results of the thermal-electrical tests were analyzed and extrapolated to predict performance at peak design parameters. The final selection was a lap-type joint clamped with insulated bolts that pass through the winding packing. 3 refs., 4 figs.
Energy Technology Data Exchange (ETDEWEB)
Mordik, S.N. E-mail: iapuas@gluk.apc.org; Ponomarev, A.G
2002-03-21
The third-order transfer matrices are calculated for an electrostatic toroidal sector condenser using a rigorously conserved matrix method that implies the conservation of the beam phase volume at each step in the calculations. The transfer matrices (matrizants) obtained, include the fringing-field effect due to the stray fields. In the case of a rectangular distribution of the field components along the optical axis, the analytical expressions for all aberration coefficients, including the dispersion ones, are derived accurate to the third-order terms. In simulations of real fields with the stray field width other than zero, a smooth distribution of the field components is used for which similar aberration coefficients were calculated by means of the conserved numerical method . It has been found that for a smooth model, as the stray field width tends to zero, the aberration coefficients approach the corresponding aberration values in the rectangular model.
Mordik, S N
2002-01-01
The third-order transfer matrices are calculated for an electrostatic toroidal sector condenser using a rigorously conserved matrix method that implies the conservation of the beam phase volume at each step in the calculations. The transfer matrices (matrizants) obtained, include the fringing-field effect due to the stray fields. In the case of a rectangular distribution of the field components along the optical axis, the analytical expressions for all aberration coefficients, including the dispersion ones, are derived accurate to the third-order terms. In simulations of real fields with the stray field width other than zero, a smooth distribution of the field components is used for which similar aberration coefficients were calculated by means of the conserved numerical method . It has been found that for a smooth model, as the stray field width tends to zero, the aberration coefficients approach the corresponding aberration values in the rectangular model.
Statistical analysis of the Nb3Sn strand production for the ITER toroidal field coils
Vostner, A.; Jewell, M.; Pong, I.; Sullivan, N.; Devred, A.; Bessette, D.; Bevillard, G.; Mitchell, N.; Romano, G.; Zhou, C.
2017-04-01
The ITER toroidal field (TF) strand procurement initiated the largest Nb3Sn superconducting strand production hitherto. The industrial-scale production started in Japan in 2008 and finished in summer 2015. Six ITER partners (so-called Domestic Agencies, or DAs) are in charge of the procurement and involved eight different strand suppliers all over the world, of which four are using the bronze route (BR) process and four the internal-tin (IT) process. In total more than 500 tons have been produced including excess material covering losses during the conductor manufacturing process, in particular the cabling. The procurement is based on a functional specification where the main strand requirements like critical current, hysteresis losses, Cu ratio and residual resistance ratio are specified but not the strand production process or layout. This paper presents the analysis on the data acquired during the quality control (QC) process that was carried out to ensure the same conductor performance requirements are met by the different strand suppliers regardless of strand design. The strand QC is based on 100% billet testing and on applying statistical process control (SPC) limits. Throughout the production, samples adjacent to the strand pieces tested by the suppliers are cross-checked (‘verified’) by their respective DAs reference labs. The level of verification was lowered from 100% at the beginning of the procurement progressively to approximately 25% during the final phase of production. Based on the complete dataset of the TF strand production, an analysis of the SPC limits of the critical strand parameters is made and the related process capability indices are calculated. In view of the large-scale production and costs, key manufacturing parameters such as billet yield, number of breakages and piece-length distribution are also discussed. The results are compared among all the strand suppliers, focusing on the difference between BR and IT processes. Following
On the dynamic toroidal multipoles
Fernandez-Corbaton, Ivan; Rockstuhl, Carsten
2015-01-01
Toroidal multipoles are attracting research attention, particularly in the field of metamaterials. They are often understood as a multipolar family in its own right. The dynamic toroidal multipoles emerge from the separation of one of the two transverse multipoles into two parts, referred to as electric and toroidal. Here, we establish that the dynamic toroidal multipolar components of an electric current distribution cannot be determined by measuring the radiation from the source or its coupling to external electromagnetic waves. We analytically show how the split into electric and toroidal parts causes the appearance of non-radiative components in each of the two parts, which cancel when summed back together. The toroidal multipoles do not have an independent meaning with respect to their interaction with the radiation field. Their formal meaning is clear, however. They are the higher order terms of an expansion of the multipolar coefficients of electric parity with respect to the electromagnetic size of th...
Effect of a TBM on the Toroidal Magnetic Field Ripple in the ITER and Measures to Reduce the Ripple
Energy Technology Data Exchange (ETDEWEB)
Bae, Young Dug; Lee, Dong Won; Kim, Suk Kwon; Hong, Bong Guen
2008-11-15
The ITER (International Thermonuclear Experimental Reactor) tokamak has 18 toroidal magnetic field (TF) coils, and the discreteness of these TF coils causes toroidally non-axisymmetric perturbations of the magnetic field. It is called a TF ripple and could lead to losses of high-energy particles, and an unfavorable heat load on the plasma facing components. In the ITER design, a ferromagnetic insert (FI) is employed to reduce the TF ripple, and an optimization of the FI design is ongoing. Also, since test blanket modules (TBMs) will be installed in the ITER, which are made of a ferromagnetic material, they also affect the TF ripple. We assessed the effects of the thickness of the FIs on the TF ripple in order to optimize the FI. And we analyzed how the TBMs distort the TF, and calculated the TF ripple for various amounts of a ferromagnetic material and the positions of the TBMs. A simple correction coil was adopted in order to reduce the TBM induced TF ripple to the required value of 0.3 %. We proposed technically available measures to reduce the TF ripple to the required value.
Takahashi, K.; Waters, C. L.; Kletzing, C.; Kurth, W. S.; Smith, C. W.; Glassmeier, K. H.
2015-12-01
The power spectrum of the compressional component of magnetic field observed by the Van Allen Probes spacecraft near the magnetospheric equator in the dayside plasmasphere sometimes exhibits regularly spaced multiple peaks at frequencies below 50 mHz. We show by detailed analysis of events observed on two separate days in early 2014 that the frequencies change smoothly with the radial distance of the spacecraft and appear at or very near the frequencies of the odd harmonics of mutiharmonic toroidal standing Alfvén waves seen in the azimuthal component of the magnetic field. Even though the compressional component had low amplitude on one of the selected days, its spectral properties are highlighted by computing the ratio of the spectral powers of time series data obtained from spatially separated two Van Allen Probes spacecraft. The spectral similarity of the compressional and azimuthal components suggests that the compressional component contain field line resonance characteristics.
Takahashi, Kazue; Waters, Colin; Glassmeier, Karl-Heinz; Kletzing, Craig A.; Kurth, William S.; Smith, Charles W.
2015-12-01
The power spectrum of the compressional component of magnetic fields observed by the Van Allen Probes spacecraft near the magnetospheric equator in the dayside plasmasphere sometimes exhibits regularly spaced multiple peaks at frequencies below 50 mHz. We show by detailed analysis of events observed on two separate days in early 2014 that the frequencies change smoothly with the radial distance of the spacecraft and appear at or very near the frequencies of the odd harmonics of mutiharmonic toroidal mode standing Alfvén waves seen in the azimuthal component of the magnetic field. Even though the compressional component had a low amplitude on one of the selected days, its spectral properties are highlighted by computing the ratio of the spectral powers of time series data obtained from two spatially separated Van Allen Probes spacecraft. The spectral similarity of the compressional and azimuthal components suggests that the compressional component contains field line resonance characteristics.
Institute of Scientific and Technical Information of China (English)
Song Yuntao; Satoshi NISHIO
2005-01-01
The center post is the most critical component as an inboard part of the toroidal field coil for the low aspect ratio tokamak. During the discharge it endures not only a tremendous ohmic heating owing to its carrying a rather high current but also a large nuclear heating and irradiation owing to the plasma operation. All the severe operating conditions, including the structure stress intensity and the stability of the structure, largely limit the maximum allowable current density. But in order to contain a very high dense plasma, it is hoped that the fusion power plant system can operate with a much high maximum magnetic field BT ≥12 T～15 T in the center post. A new method is presented in this paper to improve the maximum magnetic field up to 17 T and to investigate the possibility of the normal conducting center post to be used in the future fusion tokamak power plant.
18–22 cm VLBA Observational Evidence for Toroidal B-Field Components in Six AGN Jets
Directory of Open Access Journals (Sweden)
Juliana Cristina Motter
2016-08-01
Full Text Available The formation of relativistic jets in Active Galactic Nuclei (AGN is related to accretion onto their central supermassive black holes, and magnetic (B fields are believed to play a central role in launching, collimating, and accelerating the jet streams from very compact regions out to kiloparsec scales. We present results of Faraday rotation studies based on Very Long Baseline Array (VLBA data obtained at 18–22 cm for six well known AGN (OJ 287, 3C 279, PKS 1510-089, 3C 345, BL Lac, and 3C 454.3, which probe projected distances out to tens of parsecs from the observed cores. We have identified statistically significant, monotonic, transverse Faraday rotation gradients across the jets of all but one of these sources, indicating the presence of toroidal B fields, which may be one component of helical B fields associated with these AGN jets.
McCubbin, A. J.; Smith, S. P.; Ferraro, N. M.; Callen, J. D.; Meneghini, O.
2012-10-01
Understanding the torque applied by resonant and non-resonant magnetic perturbations and its effect on rotation is essential to predict confinement and stability in burning plasmas. Non-axisymmetric 3D fields produced in the DIII-D tokamak apply a torque to the plasma, which can be evaluated through its effect on the plasma rotation. One explanation for this torque is Neoclassical Toroidal Viscosity (NTV) acting through non-resonant field components [1]. We have developed a software framework in which magnetic perturbations calculated by the state of the art two fluid MHD code M3D-C1 can be used in NTV calculations. For discharges with applied external magnetic fields in DIII-D, the experimentally determined torques will be analyzed and compared with NTV models.[4pt] [1] J.D. Callen, Nucl. Fusion 51, 094026 (2011).
Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks
Lanctot, Matthew J.
2016-10-01
In several tokamaks, non-axisymmetric magnetic field studies show applied n=2 fields can lead to disruptive n=1 locked modes, suggesting nonlinear mode coupling. A multimode plasma response to n=2 fields can be observed in H-mode plasmas, in contrast to the single-mode response found in Ohmic plasmas. These effects highlight a role for n >1 error field correction in disruption avoidance, and identify additional degrees of freedom for 3D field optimization at high plasma pressure. In COMPASS, EAST, and DIII-D Ohmic plasmas, n=2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q 3 and low density. Similar to previous studies, the thresholds are correlated with the ``overlap'' field for the dominant linear ideal MHD plasma mode calculated with the IPEC code. The overlap field measures the plasma-mediated coupling of the external field to the resonant field. Remarkably, the critical overlap fields are similar for n=1 and 2 fields with m >nq fields dominating the drive for resonant fields. Complementary experiments in RFX-Mod show fields with m elicit transport responses with differing poloidal spectrum dependences, including a reduction in toroidal angular momentum that is not fully recoverable using fields that imperfectly match the applied field. These results have motivated an international effort to document n=2 error field thresholds in order to establish control requirements for ITER. This work highlights unique requirements for n >1 control, including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression). Optimal multi-harmonic (n=1 and n=2) error field control may be achieved using control algorithms that continuously respond to time-varying 3D field sources and plasma parameters. Supported by the US DOE under DE-FC02-04ER54698.
Deniau, L; Buzio, M; Knaster, J; Savary, F
2012-01-01
Geometrical deformations and assembly errors in the ITER Toroidal Field (TF) coils will lead to magnetic field perturbations, which could degrade plasma confinement and eventually lead to disruption. Extensive computational studies of the influence of coil deformations and assembly errors on plasma behavior have given the basis for definition of the geometric tolerance of the Current Centre Line (CCL) of the winding pack of the TF coil. This paper describes an analysis method to establish the feasibility to measure the magnetic CCL locus of the final winding pack (WP) with accuracy better than 1 mm. The proposed method is based on arrays of gradient coils accurately mounted with respect to the WP fiducial marks and datum surfaces. The magnetic measurements will be performed at defined locations around the WP perimeter to characterize accurately the CCL locus. The analysis emphases the robustness and sensitivity of the method versus the measurement location and the TF coil 3D geometrical deformation. The analy...
Intrinsic rotation of toroidally confined magnetohydrodynamics.
Morales, Jorge A; Bos, Wouter J T; Schneider, Kai; Montgomery, David C
2012-10-26
The spatiotemporal self-organization of viscoresistive magnetohydrodynamics in a toroidal geometry is studied. Curl-free toroidal magnetic and electric fields are imposed. It is observed in our simulations that a flow is generated, which evolves from dominantly poloidal to toroidal when the Lundquist numbers are increased. It is shown that this toroidal organization of the flow is consistent with the tendency of the velocity field to align with the magnetic field. Up-down asymmetry of the geometry causes the generation of a nonzero toroidal angular momentum.
Extremely high Q-factor toroidal metamaterials
Basharin, Alexey A; Volsky, Nikita; Kafesaki, Maria; Economou, Eleftherios N; Ustinov, Alexey V
2016-01-01
We demonstrate that, owing to the unique topology of the toroidal dipolar mode, its electric/magnetic field can be spatially confined within subwavelength, externally accessible regions of the metamolecules, which makes the toroidal planar metamaterials a viable platform for high Q-factor resonators due to interfering toroidal and other dipolar modes in metamolecules.
Evidence for a Toroidal Magnetic-Field Component in 5C4.114 on Kiloparsec Scales
Gabuzda, Denise C; Bonafede, Annalisa
2015-01-01
A monotonic, statistically significant gradient in the observed Faraday Rotation Measure (RM) across the jet of an Active Galactic Nucleus (AGN) reflects a corresponding gradient in the electron density and/or line-of-sight magnetic (B) field. Such gradients may indicate the presence of a toroidal B field component, possibly associated with a helical jet B field. Although transverse RM gradients have been reported across a number of parsec-scale AGN jets, the same is not true on kiloparsec scales, suggesting that other (e.g. random) B-field components usually dominate on these larger scales. We have identified an extended, monotonic transverse RM gradient across the Northern lobe of a previously published Very Large Array (kiloparsec-scale) RM image of 5C4.114. We reanalyzed these VLA data in order to determine the significance of this RM gradient. The RM gradient across the Northern kiloparsec-scale lobe structure of 5C4.114 has a statistical significance of about 4sigma. There is also a somewhat less promin...
Matsumoto, T; Sekiguchi, J; Asai, T; Gota, H; Garate, E; Allfrey, I; Valentine, T; Morehouse, M; Roche, T; Kinley, J; Aefsky, S; Cordero, M; Waggoner, W; Binderbauer, M; Tajima, T
2016-05-01
A compact toroid (CT) injector was developed for the C-2 device, primarily for refueling of field-reversed configurations. The CTs are formed by a magnetized coaxial plasma gun (MCPG), which consists of coaxial cylindrical electrodes and a bias coil for creating a magnetic field. First, a plasma ring is generated by a discharge between the electrodes and is accelerated by Lorenz self-force. Then, the plasma ring is captured by an interlinkage flux (poloidal flux). Finally, the fully formed CT is ejected from the MCPG. The MCPG described herein has two gas injection ports that are arranged tangentially on the outer electrode. A tungsten-coated inner electrode has a head which can be replaced with a longer one to extend the length of the acceleration region for the CT. The developed MCPG has achieved supersonic CT velocities of ∼100 km/s. Plasma parameters for electron density, electron temperature, and the number of particles are ∼5 × 10(21) m(-3), ∼40 eV, and 0.5-1.0 × 10(19), respectively.
Direct Imaging of a Toroidal Magnetic Field in the Inner Jet of NRAO 150
Directory of Open Access Journals (Sweden)
Sol N. Molina
2016-11-01
Full Text Available Most formation models and numerical simulations cause a helical magnetic field to form, accelerate and collimate jets in active galactic nuclei (AGN. For this reason, observational direct evidence for the existence of these helical magnetic fields is of special relevance. In this work, we present ultra- high-resolution observations of the innermost regions of the jet in the quasar NRAO150. We study the polarization structure and report evidence of a helical magnetic field.
Lee, S H; Choe, W; Lee, T S
2002-01-01
Magnetic flux measurements of a toroidal magnet revealed a concave-shaped field distribution with a single minimum and a null field along the axis of the torus at the point where the field reversed. The non-linear magnetic field of the toroidal magnet perpendicular to the Ag sub 2 O-doped superconducting disc sample with trapped magnetic flux distorted the field line distribution. As a result, the interaction force between the magnet and the sample exhibited regions of repulsive, null, attractive, null and finally repulsive force. The asymmetrical concave-shaped force pattern along the axis with two null force points indicates that the force exerted on the sample changes direction, the transition from repulsive to attractive at the null force point, and the force becomes repulsive again beyond the second null force point as the distance along the axis increases. The magnetic field simulation using the Poisson numerical code for the toroidal magnet of 46 mm OD, 12 mm ID and 10 mm thickness was in close agreeme...
Energy Technology Data Exchange (ETDEWEB)
Ferron, J.R. [General Atomics, San Diego; Holcomb, C T [Lawrence Livermore National Laboratory (LLNL); Luce, T.C. [General Atomics, San Diego; Politzer, P. A. [General Atomics, San Diego; Turco, F. [Oak Ridge Associated Universities (ORAU); DeBoo, J. C. [General Atomics; Doyle, E. J. [University of California, Los Angeles; In, Y. [FAR Tech Inc. San Diego, CA; La Haye, R. [General Atomics, San Diego; Murakami, Masanori [ORNL; Okabayashi, M. [Princeton Plasma Physics Laboratory (PPPL); Park, J. M. [Oak Ridge National Laboratory (ORNL); Petrie, T W [General Atomics, San Diego; Petty, C C. [General Atomics, San Diego; Reimerdes, H. [Columbia University
2011-01-01
In order to maintain stationary values of the stored energy and the plasma current in a tokamak discharge with all of the current driven noninductively, the sum of the alpha-heating power and the power required to provide externally driven current must be equal to the power required to maintain the pressure against transport losses. In a study of high noninductive current fraction discharges in the DIII-D tokamak, it is shown that in the case of present-day tokamaks with no alpha-heating, adjustment of the toroidal field strength (B(T)) is a tool to obtain this balance between the required current drive and heating powers with other easily modifiable discharge parameters (beta(N), q(95), discharge shape, n(e)) fixed at values chosen to satisfy specific constraints. With all of the external power sources providing both heating and current drive, and beta(N) and q(95) fixed, the fraction of externally driven current scales with B(T) with little change in the bootstrap current fraction, thus allowing the noninductive current fraction to be adjusted.
Xiong, Yuan
2017-05-02
This study presents an experimental work investigating the controlling parameters on the formation of an electrically-induced inner toroidal vortex (ITV) near a nozzle rim in small, laminar nonpremixed coflow flames, when an alternating current is applied to the nozzle. A systematic parametric study was conducted by varying the flow parameters of the fuel and coflowing-air velocities, and the nozzle diameter. The fuels tested were methane, ethylene, ethane, propane, n-butane, and i-butane, each representing different ion-generation characteristics and sooting tendencies. The results showed that the fluid dynamic effects on ITV formation were weak, causing only mild variation when altering flow velocities. However, increased fuel velocity resulted in increased polycyclic aromatic hydrocarbon (PAH) formation, which promoted ITV formation. When judging the ITV-formation tendency based on critical applied voltage and frequency, it was qualitatively well correlated with the PAH concentration and the relative location of PAHs to the nozzle rim. The sooting tendency of the fuels did not affect the results much. A change in the nozzle diameter highlighted the importance of the relative distance between the PAH zone and the nozzle rim, indicating the role of local electric-field intensity on ITV formation. Detailed onset conditions, characteristics of near-nozzle flow patterns, and PAH distributions are also discussed.
Froio, A.; Bonifetto, R.; Carli, S.; Quartararo, A.; Savoldi, L.; Zanino, R.
2015-12-01
In superconducting tokamaks, cryoplants provide the helium needed to cool the superconducting magnet systems. The evaluation of the heat load from the magnets to the cryoplant is fundamental for the design of the latter and the assessment of suitable strategies to smooth the heat load pulses induced by the pulsed plasma scenarios is crucial for the operation. Here, a simplified thermal-hydraulic model of an ITER Toroidal Field (TF) magnet, based on Artificial Neural Networks (ANNs), is developed and inserted into a detailed model of the ITER TF winding and casing cooling circuits based on the state-of-the-art 4C code, which also includes active controls. The low computational effort requested by such a model allows performing a fast parametric study, to identify the best smoothing strategy during standard plasma operation. The ANNs are trained using 4C simulations, and the predictive capabilities of the simplified model are assessed against 4C simulations, both with and without active smoothing, in terms of accuracy and computational time.
Low-n shear Alfven spectra in axisymmetric toroidal plasmas
Energy Technology Data Exchange (ETDEWEB)
Cheng, C.Z.; Chance, M.S.
1985-11-01
In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs.
Toroidal vs. poloidal magnetic fields in Sun-like stars: a rotation threshold
Petit, P; Solanki, SK; Donati, J-F; Aurière, M; Lignières, F; Morin, J; Paletou, F; Ramírez, J; Catala, C; Fares, R
2008-01-01
From a set of stellar spectropolarimetric observations, we report the detection of surface magnetic fields in a sample of four solar-type stars, namely HD 73350, HD 76151, HD 146233 and HD 190771. Assuming that the observed variability of polarimetric signal is controlled by stellar rotation, we establish the rotation periods of our targets, with values ranging from 8.8 d (for HD 190771) to 22.7 d (for HD 146233). Apart from rotation, fundamental parameters of the selected objects are very close to the Sun's, making this sample a practical basis to investigate the specific impact of rotation on magnetic properties of Sun-like stars. We reconstruct the large-scale magnetic geometry of the targets as a low-order (l<10) spherical harmonics expansion of the surface magnetic field. From the set of magnetic maps, we draw two main conclusions. (a) The magnetic energy of the large-scale field increases with rotation rate. The increase of chromospheric emission with the mean magnetic field is flatter than observed ...
Effects of Toroidal Magnetic Fields on the Thermal Instability of Thin Accretion Disks
Indian Academy of Sciences (India)
Sheng-Ming Zheng; Feng Yuan; Wei-Min Gu; Ju-Fu Lu
2011-03-01
The standard thin disk model predicts that when the accretion rate is moderately high, the disk is radiation–pressure-dominated and thermally unstable. However, observations indicate the opposite, namely the disk is quite stable. We present an explanation in this work by taking into account the role of the magnetic field which was ignored in the previous analysis.
Wang, Shaojie
2016-07-01
Anomalous current pinch, in addition to the anomalous diffusion due to stochastic magnetic perturbations, is theoretically found, which may qualitatively explain the recent DIII-D experiment on resonant magnetic field perturbation. The anomalous current pinch, which may resolve the long-standing issue of seed current in a fully bootstrapped tokamak, is also discussed for the electrostatic turbulence.
Magnetic Properties of 3D Printed Toroids
Bollig, Lindsey; Otto, Austin; Hilpisch, Peter; Mowry, Greg; Nelson-Cheeseman, Brittany; Renewable Energy; Alternatives Lab (REAL) Team
Transformers are ubiquitous in electronics today. Although toroidal geometries perform most efficiently, transformers are traditionally made with rectangular cross-sections due to the lower manufacturing costs. Additive manufacturing techniques (3D printing) can easily achieve toroidal geometries by building up a part through a series of 2D layers. To get strong magnetic properties in a 3D printed transformer, a composite filament is used containing Fe dispersed in a polymer matrix. How the resulting 3D printed toroid responds to a magnetic field depends on two structural factors of the printed 2D layers: fill factor (planar density) and fill pattern. In this work, we investigate how the fill factor and fill pattern affect the magnetic properties of 3D printed toroids. The magnetic properties of the printed toroids are measured by a custom circuit that produces a hysteresis loop for each toroid. Toroids with various fill factors and fill patterns are compared to determine how these two factors can affect the magnetic field the toroid can produce. These 3D printed toroids can be used for numerous applications in order to increase the efficiency of transformers by making it possible for manufacturers to make a toroidal geometry.
Toroidal mode driven by ion temperature gradients and magnetic-field curvature
Energy Technology Data Exchange (ETDEWEB)
Olla, P.
1986-11-01
The effect of magnetic-field curvature on the ion-mixing mode is studied in a collisionless-plasma regime. A simple plane model with an external gravity-simulating magnetic curvature is adopted. A dispersion relation which connects the ion-mixing mode to the ubiquitous mode is obtained. It is found that, within the limitations of the present local model, an inhomogeneous plasma can support fluctuations with frequencies larger than those expected in an analysis which disregards the effect of magnetic curvature. The instability threshold of this mode, which depends on the ion temperature gradient, is lowered. The effect of gravity on the ion response influences the quasi-linear ion heat transport.
Energy Technology Data Exchange (ETDEWEB)
Iguchi, M., E-mail: iguchi.masahide@jaea.go.jp [Japan Atomic Energy Agency, ITER Superconducting Magnet Technology Group, 801-1 Mukoyama, Naka, Ibaraki 311-0193 Japan (Japan); Saito, T.; Kawano, K.; Chida, Y.; Nakajima, H. [Japan Atomic Energy Agency, ITER Superconducting Magnet Technology Group, 801-1 Mukoyama, Naka, Ibaraki 311-0193 Japan (Japan); Ogawa, T.; Katayama, Y.; Ogata, H.; Minemura, T. [Toshiba Cooperation, Power Systems Company, 2-4, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 2300-0045 (Japan); Tokai, D.; Niimi, K. [Kawasaki Heavy Industries, LTD., Plant and Infrastructure Company, Production Center, 8, Niijima, Harima-cho, Kako-gun, Hyogo 675-0180 (Japan)
2013-10-15
Highlights: • No significant distribution of tensile strengths at 4 K, 77 K and room temperature along welding thickness of 200 mm manufactured by one side narrow gap TIG welding with FMYJJ1. • Tensile strengths at cryogenic temperature of welded joint are increased with increasing of C + N contents of base material. • In the case that welded joint is manufactured by combination of different base materials, strength at 4 K of welded joints are below strength of base material having higher C + N contents. -- Abstract: ITER toroidal field coil (TFC) structures are large welding structures composed of coil case and support structures made of heavy thick high strength and high toughness stainless steels. Japan Atomic Energy Agency plans to apply narrow gap Tungsten Inert Gas (TIG) welding with FMYJJ1 (0.03C–10Mn–12Cr–14Ni–5Mo–0.13N) which is full austenitic stainless filler material. In order to evaluate effect of base material thickness and combinations of base material on tensile properties, tensile tests were performed at room temperature, 77 K and 4 K by using tensile specimens taken from 200 mm thickness welded joints of two combinations of base materials and 40 mm thickness welded joints of four combinations of base materials. As the results, it was confirmed that there were no large distribution of yield and tensile strength along the thickness of welded joints of 200 mm thickness and yield and tensile strengths of welded joints were decreased with decreasing of C + N contents of base material.
Energy Technology Data Exchange (ETDEWEB)
Kallinikos, N.; Isliker, H.; Vlahos, L.; Meletlidou, E. [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece)
2014-06-15
An analytical description of magnetic islands is presented for the typical case of a single perturbation mode introduced to tokamak plasma equilibrium in the large aspect ratio approximation. Following the Hamiltonian structure directly in terms of toroidal coordinates, the well known integrability of this system is exploited, laying out a precise and practical way for determining the island topology features, as required in various applications, through an analytical and exact flux surface label.
Auluck, S K H
2014-01-01
Direct measurement of axial magnetic field in the PF-1000 dense plasma focus (DPF), and its reported correlation with neutron emission, call for a fresh look at previous reports of existence of axial magnetic field component in the DPF from other laboratories, and associated data suggesting toroidal directionality of fast ions participating in fusion reactions, with a view to understand the underlying physics. In this context, recent work dealing with application of the hyperbolic conservation law formalism to the DPF is extended in this paper to a curvilinear coordinate system, which reflects the shape of the DPF current sheath. Locally-unidirectional shock propagation in this coordinate system enables construction of a system of 7 one-dimensional hyperbolic conservation law equations with geometric source terms, taking into account all the components of magnetic field and flow velocity. Rankine-Hugoniot jump conditions for this system lead to expressions for the axial magnetic field and three components of ...
Sensing with toroidal metamaterial
Gupta, Manoj; Srivastava, Yogesh Kumar; Manjappa, Manukumara; Singh, Ranjan
2017-03-01
Localized electromagnetic excitation in the form of toroidal dipoles has recently been observed in metamaterial systems. The origin of the toroidal dipole lies in the currents flowing on the surface of a torus. Thus, the exotic toroidal excitations play an important role in determining the optical properties of a system. Toroidal dipoles also contribute towards enabling high quality factor subwavelength resonances in metamaterial systems which could be an excellent platform for probing the light matter interaction. Here, we demonstrate sensing with toroidal resonance in a two-dimensional terahertz metamaterial in which a pair of mirrored asymmetric Fano resonators possesses anti-aligned magnetic moments at an electromagnetic resonance that gives rise to a toroidal dipole. Our proof of concept demonstration opens up an avenue to explore the interaction of matter with toroidal multipoles that could have strong applications in the sensing of dielectrics and biomolecules.
Yadikin, D.; Brunsell, P. R.; Drake, J. R.
2006-01-01
An active feedback system is required for long pulse operation of the reversed field pinch (RFP) device to suppress resistive wall modes (RWMs). A general feature of a feedback system using a discrete active coil array is a coupling effect which arises when a set of side band modes determined by the number of active coils is produced. Recent results obtained on the EXTRAP T2R RFP demonstrated the suppression of independent m = 1 RWMs using an active feedback system with a two-dimensional array of discrete active coils in the poloidal and toroidal directions. One of the feedback algorithms used is the intelligent shell feedback scheme. Active feedback systems having different number of active coils in the poloidal (Mc) and toroidal (Nc) directions (Mc × Nc = 2 × 32 and Mc × Nc = 4 × 16) are studied. Different side band effects are seen for these configurations. A significant prolongation of the plasma discharge is achieved for the intelligent shell feedback scheme using the 2 × 32 active coil configuration. This is attributed to the side band sets including only one of the dominant unstable RWMs and avoiding coupling to resonant modes. Analog proportional-integral-derivative controllers are used in the feedback system. Regimes with different values of the proportional gain are studied. The requirement of the proportional-integral control for low proportional gain and proportional-derivative control for high proportional gain is seen in the experiments.
Optical force on toroidal nanostructures: toroidal dipole versus renormalized electric dipole
Zhang, Xu-Lin; Lin, Zhifang; Sun, Hong-Bo; Chan, C T
2015-01-01
We study the optical forces acting on toroidal nanostructures. A great enhancement of optical force is unambiguously identified as originating from the toroidal dipole resonance based on the source-representation, where the distribution of the induced charges and currents is characterized by the three families of electric, magnetic, and toroidal multipoles. On the other hand, the resonant optical force can also be completely attributed to an electric dipole resonance in the alternative field-representation, where the electromagnetic fields in the source-free region are expressed by two sets of electric and magnetic multipole fields based on symmetry. The confusion is resolved by conceptually introducing the irreducible electric dipole, toroidal dipole, and renormalized electric dipole. We demonstrate that the optical force is a powerful tool to identify toroidal response even when its scattering intensity is dwarfed by the conventional electric and magnetic multipoles.
Qiu, Keping; Menten, Karl M; Liu, Hauyu B; Tang, Ya-Wen
2013-01-01
We report on detection of an ordered magnetic field (B field) threading a massive star-forming clump in the molecular cloud G35.2-0.74, using Submillimeter Array observations of polarized dust emission. Thanks to the sensitive and high-angular-resolution observations, we are able to resolve the morphology of the B field in the plane of sky and detect a great turn of 90 degree in the B field direction: Over the northern part of the clump, where a velocity gradient is evident, the B field is largely aligned with the long axis of the clump, whereas in the southern part, where the velocity field appears relatively uniform, the B field is slightly pinched with its mean direction perpendicular to the clump elongation. We suggest that the clump forms as its parent cloud collapses more along the large scale B field. In this process, the northern part carries over most of the angular momentum, forming a fast rotating system, and pulls the B field into a toroidal configuration. In contrast, the southern part is not sig...
2002-01-01
Because of its exceptional size, it was not feasible to assemble and test the Barrel Toroid - made of eight coils - as an integrated toroid on the surface, prior to its final installation underground in LHC interaction point 1. It was therefore decided to test these eight coils individually in a dedicated test facility.
Hedberg V
On the 15th of June 2001 the EB approved a new conceptual design for the toroid shield. In the old design, shown in the left part of the figure above, the moderator part of the shielding (JTV) was situated both in the warm and cold areas of the forward toroid. It consisted both of rings of polyethylene and hundreds of blocks of polyethylene (or an epoxy resin) inside the toroid vacuum vessel. In the new design, shown to the right in the figure above, only the rings remain inside the toroid. To compensate for the loss of moderator in the toroid, the copper plug (JTT) has been reduced in radius so that a layer of borated polyethylene can be placed around it (see figure below). The new design gives significant cost-savings and is easier to produce in the tight time schedule of the forward toroid. Since the amount of copper is reduced the weight that has to be carried by the toroid is also reduced. Outgassing into the toroid vacuum was a potential problem in the old design and this is now avoided. The main ...
Samus Toroid Installation Fixture
Energy Technology Data Exchange (ETDEWEB)
Stredde, H.; /Fermilab
1990-06-27
The SAMUS (Small Angle Muon System) toroids have been designed and fabricated in the USSR and delivered to D0 ready for installation into the D0 detector. These toroids will be installed into the aperture of the EF's (End Toroids). The aperture in the EF's is 72-inch vertically and 66-inch horizontally. The Samus toroid is 70-inch vertically by 64-inch horizontally by 66-inch long and weighs approximately 38 tons. The Samus toroid has a 20-inch by 20-inch aperture in the center and it is through this aperture that the lift fixture must fit. The toroid must be 'threaded' through the EF aperture. Further, the Samus toroid coils are wound about the vertical portion of the aperture and thus limit the area where a lift fixture can make contact and not damage the coils. The fixture is designed to lift along a surface adjacent to the coils, but with clearance to the coil and with contact to the upper steel block of the toroid. The lift and installation will be done with the 50 ton crane at DO. The fixture was tested by lifting the Samus Toroid 2-inch off the floor and holding the weight for 10 minutes. Deflection was as predicted by the design calculations. Enclosed are sketches of the fixture and it relation to both Toroids (Samus and EF), along with hand calculations and an Finite Element Analysis. The PEA work was done by Kay Weber of the Accelerator Engineering Department.
Raybould, T A; Papasimakis, N; Kuprov, I; Youngs, I; Chen, W T; Tsai, D P; Zheludev, N I
2015-01-01
Optical activity is ubiquitous across natural and artificial media and is conventionally understood in terms of scattering from electric and magnetic moments. Here we demonstrate experimentally and confirm numerically a type of optical activity that cannot be attributed to electric and magnetic multipoles. We show that our observations can only be accounted for by the inclusion of the toroidal dipole moment, the first term of the recently established peculiar family of toroidal multipoles.
Macroscopic electromagnetic response of metamaterials with toroidal resonances
Savinov, V; Zheludev, N I
2013-01-01
Toroidal dipole, first described by Ia. B. Zeldovich [Sov. Phys. JETP 33, 1184 (1957)], is a distinct electromagnetic excitation that differs both from the electric and the magnetic dipoles. It has a number of intriguing properties: static toroidal nuclear dipole is responsible for parity violation in atomic spectra; interactions between static toroidal dipole and oscillating magnetic dipole are claimed to violate Newton's Third Law while non-stationary charge-current configurations involving toroidal multipoles have been predicted to produce vector potential in the absence of electromagnetic fields. Existence of the toroidal response in metamaterials was recently demonstrated and is now a growing field of research. However, no direct analytical link has yet been established between the transmission and reflection of macroscopic electromagnetic media and toroidal dipole excitations. To address this essential gap in electromagnetic theory we have developed an analytical approach linking microscopic and macrosc...
Next generation toroidal devices
Energy Technology Data Exchange (ETDEWEB)
Yoshikawa, Shoichi [Princeton Plasma Physics Lab., Princeton Univ., NJ (United States)
1998-10-01
A general survey of the possible approach for the next generation toroidal devices was made. Either surprisingly or obviously (depending on one`s view), the technical constraints along with the scientific considerations lead to a fairly limited set of systems for the most favorable approach for the next generation devices. Specifically if the magnetic field strength of 5 T or above is to be created by superconducting coils, it imposes minimum in the aspect ratio for the tokamak which is slightly higher than contemplated now for ITER design. The similar technical constraints make the minimum linear size of a stellarator large. Scientifically, it is indicated that a tokamak of 1.5 times in the linear dimension should be able to produce economically, especially if a hybrid reactor is allowed. For the next stellarator, it is strongly suggested that some kind of helical axis is necessary both for the (almost) absolute confinement of high energy particles and high stability and equilibrium beta limits. The author still favors a heliac most. Although it may not have been clearly stated in the main text, the stability afforded by the shearless layer may be exploited fully in a stellarator. (author)
Energy Technology Data Exchange (ETDEWEB)
Duchateau, J.L.; Ciazynski, D.; Guerber, O.; Park, S.H.; Zani, L. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Fietz, W.H.; Ulbricht, A.; Zahn, G. [Association Euratom-FZK Forschungszentrum, Karlsruhe (Germany)
2003-07-01
In Phase II experiment of the International Thermonuclear Experimental Reactor (ITER) Toroidal Field Model Coil (TFMC) the operation limits of its 80 kA Nb{sub 3}Sn conductor were explored. To increase the magnetic field on the conductor, the TFMC was tested in presence of another large coil: the EURATOM-LCT coil. Under these conditions the maximum field reached on the conductor, was around 10 tesla. This exploration has been performed at constant current, by progressively increasing the coil temperature and monitoring the coil voltage drop in the current sharing regime. Such an operation was made possible thanks to the very high stability of the conductor. The aim of these tests was to compare the critical properties of the conductor with expectations and assess the ITER TF conductor design. These expectations are based on the documented critical field and temperature dependent properties of the 720 superconducting strands which compose the conductor. In addition the conductor properties are highly dependent on the strain, due to the compression appearing on Nb{sub 3}Sn during the heat treatment of the pancakes and related to the differential thermal compression between Nb{sub 3}Sn and the stainless steel jacket. No precise model exists to predict this strain, which is therefore the main information, which is expected from these tests. The method to deduce this strain from the different tests is presented, including a thermalhydraulic analysis to identify the temperature of the critical point and a careful estimation of the field map across the conductor. The measured strain has been estimated in the range -0.75% to -0.79 %. This information will be taken into account for ITER design and some adjustment of the ITER conductor design is under examination. (authors)
Formation of a compact toroid for enhanced efficiency
Energy Technology Data Exchange (ETDEWEB)
Mozgovoy, A. G. [P.N. Lebedev Physical Institute, Moscow 119991 (Russian Federation); Romadanov, I. V.; Ryzhkov, S. V., E-mail: ryzhkov@power.bmstu.ru [Bauman Moscow State Technical University, Moscow 105005 (Russian Federation)
2014-02-15
We report here our results on the formation of a plasma configuration with the generic name of compact toroid (CT). A method of compact toroid formation to confine, heat and compress a plasma is investigated. Formation of a compact torus using an additional toroidal magnetic field helps to increase the plasma current to a maintainable level of the original magnetic field. We design the Compact Toroid Challenge (CTC) experiment in order to improve the magnetic flux trapping during field reversal in the formation of a compact toroid. The level of the magnetic field immersed in the plasma about 70% of the primary field is achieved. The CTC device and scheme of high level capturing of magnetic flux are presented.
Aringazin, A. K.
2002-01-01
In this paper we overview some results on the hydrogen atom in external static uniform magnetic fields. We focus on the case of very strong magnetic field, B>>B_0=2.3x10^9 Gauss, use various approximate models and, particularly, in the adiabatic approximation have calculated exactly the integral defining the effective potential. This potential appears to be finite at z=0. Our consideration of the problem of highly magnetized atoms and molecules is motivated by the recently developed MagneGas ...
Saharian, Aram; Kotanjyan, Anna; Sargsyan, Hayk; Simonyan, David
2016-07-01
The models with compact spatial dimensions appear in a number of fundamental physical theories. In particular, the idea of compactified dimensions has been extensively used in supergravity and superstring theories. In quantum field theory, the modification of the vacuum fluctuations spectrum by the periodicity conditions imposed on the field operator along compact dimensions leads to a number of interesting physical effects. A well known example of this kind, demonstrating the close relation between quantum phenomena and global geometry, is the topological Casimir effect. In models with extra compact dimensions, the Casimir energy creates a nontrivial potential for the compactification radius. This can serve as a stabilization mechanism for moduli fields and for the effective gauge couplings. The Casimir effect has also been considered as a possible origin for the dark energy in Kaluza-Klein-type and braneworld models. In the resent presentation we investigate the effects of the gravity and topology on the local properties of the quantum vacuum for a charged scalar field in the presence of a classical gauge field. Vacuum expectation value of the energy-momentum tensor and current density are investigated for a charged scalar field in dS spacetime with toroidally compact spatial dimensions in the presence of a classical constant gauge field. Due to the nontrivial topology, the latter gives rise to Aharonov-Bohm-like effect on the vacuum characteristics. The vacuum current density, energy density and stresses are even periodic functions of the magnetic flux enclosed by compact dimensions. For small values of the comoving lengths of compact dimensions, compared with the dS curvature radius, the effects of gravity on the topological contributions are small and the expectation values are expressed in terms of the corresponding quantities in the Minkowski bulk by the standard conformal relation. For large values of the comoving lengths, depending on the field mass, two
Energy Technology Data Exchange (ETDEWEB)
Xu, Minfeng [Babcock and Wilcox Co., Lynchburg, VA (United States)
1995-08-18
The electromagnetic analysis is mainly based on model built with 3-D electromagnetic software OPERA/TOSCA. In the process of evaluating the software package, some models are also built with 3-D boundary element electromagnetic software AMPERES. Fortran programs are also developed at B&W to perform Monte-Carlo simulations of the field error analysis to assist tolerance determinations.
Hall MHD Equilibrium of Accelerated Compact Toroids
Howard, S. J.; Hwang, D. Q.; Horton, R. D.; Evans, R. W.; Brockington, S. J.
2007-11-01
We examine the structure and dynamics of the compact toroid's magnetic field. The compact toroid is dramatically accelerated by a large rail-gun Lorentz force density equal to j xB. We use magnetic data from the Compact Toroid Injection Experiment to answer the question of exactly where in the system j xB has nonzero values, and to what extent we can apply the standard model of force-free equilibrium. In particular we present a method of analysis of the magnetic field probe signals that allows direct comparison to the predictions of the Woltjer-Taylor force-free model and Turner's generalization of magnetic relaxation in the presence of a non-zero Hall term and fluid vorticity.
Energy Technology Data Exchange (ETDEWEB)
Barnes, D.C.; Fernandez, J.C.; Rej, D.J. (comps.)
1990-05-01
The US-Japan Workshop on Field-Reversed Configurations with Steady-State High-Temperature Fusion Plasma and the 11th US-Japan Workshop on Compact Toroids were held at Los Alamos National Laboratory, Los Alamos, New Mexico on November 7--9, 1989. These proceedings contain the papers presented at the workshops as submitted by the authors. These papers have been indexed separately.
Barnes, D. C.; Fernandez, J. C.; Rej, D. J.
1990-05-01
The U.S.-Japan Workshop on Field-Reversed Configurations with Steady-State High-Temperature Fusion Plasma and the 11th U.S.-Japan Workshop on Compact Toroids were held at Los Alamos National Laboratory, Los Alamos, New Mexico on November 7 to 9, 1989. These proceedings contain the papers presented at the workshops as submitted by the authors. These papers have been indexed separately.
Energy Technology Data Exchange (ETDEWEB)
Barbosa, Luis Filipe F.P.W.; Bosco, Edson del
1994-12-31
This report presents the project and analysis of the circuit for production of the toroidal magnetic field in the Tokamak ETE (Spherical Tokamak Experiment). The ETE is a Tokamak with a small-aspect-ratio parameter to be used for studying the plasma physics for the research on thermonuclear fusion. This machine is being constructed at the Laboratorio Associado de Plasma (LAP) of the Instituto Nacional de Pesquisas Espaciais (INPE) in Sao Jose dos Campos, SP, Brazil. (author). 20 refs., 39 figs., 4 tabs.
Quench modeling of the ATLAS superconducting toroids
Gavrilin, A V; ten Kate, H H J
2001-01-01
Details of the normal zone propagation and the temperature distribution in the coils of ATLAS toroids under quench are presented. A tailor-made mathematical model and corresponding computer code enable obtainment of computational results for the propagation process over the coils in transverse (turn-to-turn) and longitudinal directions. The slow electromagnetic diffusion into the pure aluminum stabilizer of the toroid's conductor, as well as the essentially transient heat transfer through inter-turn insulation, is appropriately included in the model. The effect of nonuniform distribution of the magnetic field and the thermal links to the coil casing on the temperature gradients within the coils is analyzed in full. (5 refs).
Ferroic nature of magnetic toroidal order.
Zimmermann, Anne S; Meier, Dennis; Fiebig, Manfred
2014-09-05
Electric dipoles and ferroelectricity violate spatial inversion symmetry, and magnetic dipoles and ferromagnetism break time-inversion symmetry. Breaking both symmetries favours magnetoelectric charge-spin coupling effects of enormous interest, such as multiferroics, skyrmions, polar superconductors, topological insulators or dynamic phenomena such as electromagnons. Extending the rationale, a novel type of ferroic order violating space- and time-inversion symmetry with a single order parameter should exist. This existence is fundamental and the inherent magnetoelectric coupling is technologically interesting. A uniform alignment of magnetic vortices, called ferrotoroidicity, was proposed to represent this state. Here we demonstrate that the magnetic vortex pattern identified in LiCoPO4 exhibits the indispensable hallmark of such a ferroic state, namely hysteretic poling of ferrotoroidic domains in the conjugate toroidal field, along with a distinction of toroidal from non-toroidal poling effects. This consolidates ferrotoroidicity as fourth form of ferroic order.
Toroidal and magnetic Fano resonances in planar THz metamaterials
Han, Song; Gupta, Manoj; Cong, Longqing; Srivastava, Yogesh Kumar; Singh, Ranjan
2017-09-01
The toroidal dipole moment, a localized electromagnetic excitation of torus magnetic fields, has been observed experimentally in metamaterials. However, the metamaterial based toroidal moment was restricted at higher frequencies by the complex three-dimensional structure. Recently, it has been shown that toroidal moment could also be excited in a planar metamaterial structure. Here, we use asymmetric Fano resonators to illustrate theoretically and experimentally the underlying physics of the toroidal coupling in an array of planar metamaterials. It is observed that the anti-parallel magnetic moment configuration shows toroidal excitation with higher quality (Q) factor Fano resonance, while the parallel magnetic moment shows relatively lower Q factor resonance. Moreover, the electric and toroidal dipole interferes destructively to give rise to an anapole excitation. The magnetic dipole-dipole interaction is employed to understand the differences between the toroidal and magnetic Fano resonances. We further study the impact of intra unit-cell coupling between the Fano resonator pairs in the mirrored and non-mirrored arrangements. The numerical and theoretical approach for modelling the near-field effects and experimental demonstration of toroidal and magnetic Fano resonances in planar systems are particularly promising for tailoring the loss in metamaterials across a broad range of the electromagnetic spectrum.
2006-01-01
A 3-D event display of a cosmic muon event, showing the path of a muon travelling through three layers of the barrel muon spectrometer. Three of the eight coils of the barrel toroid magnet can be seen in the top half of the drawing.
Energy Technology Data Exchange (ETDEWEB)
Siemon, R.E. (comp.)
1981-03-01
This document contains papers contributed by the participants of the Third Symposium on Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program. Subjects include reactor aspects of compact toroids, energetic particle rings, spheromak configurations (a mixture of toroidal and poloidal fields), and field-reversed configurations (FRC's that contain purely poloidal field).
ATLAS: Full power for the toroid magnet
2006-01-01
The 9th of November was a memorable day for ATLAS. Just before midnight, the gigantic Barrel toroid magnet reached its nominal field of 4 teslas in the coil windings, with an electrical current of 21000 amperes (21 kA) passing through the eight superconducting coils (as seen on the graph). This achievement was obtained after several weeks of commissioning. The ATLAS Barrel Toroid was first cooled down for about six weeks in July-August to -269Â°C (4.8 K) and then powered up step-by-step in successive test sessions to 21 kA. This is 0.5 kA above the current required to produce the nominal magnetic field. Afterwards, the current was safely switched off and the stored magnetic energy of 1.1 gigajoules was dissipated in the cold mass, raising its temperature to a safe -218Â°C (55 K). 'We can now say that the ATLAS Barrel Toroid is ready for physics,' said Herman ten Kate, project leader for the ATLAS magnet system. The ATLAS barrel toroid magnet is the result of a close collaboration between the magnet la...
Metamaterials with toroidal fano-response (Conference Presentation)
Kozhokar, Maria V.; Basharin, Alexey A.
2017-05-01
The static toroidal dipole was predicted by Zeldovich, which appears due to the static currents in atomic nuclei and explain disturbance of parity in the weak interaction. Physically, toroidal dipole is separated element of multipole expansion that corresponds to electrical currents circulating on a surface of gedanken torus along its meridians. Recently, the demonstration of dynamic toroidal dipolar response became possible in metamaterials composed of metamolecules of toroidal topology. Metamaterials with toroidal dipolar response allow to demonstrate a number of special properties such as novel type of EIT, optical activity, extremely strongly localized fields and anapole. We are interested in another property of toroidal metamaterials - magnetic Fano-type response caused by toroidal and magnetic moments in a particular metamolecule. In this paper we demonstrate theoretically and experimentally in microwave at the first time Fano-excitation in toroidal metamaterials. We suggested metamaterials based on a special structure of two types of planar metamolecules separated by dielectric layer. One of them "Electric" type metamolecule is a planar conductive structure consisting of two symmetric split loops. The incident plane wave excites circular currents along the loops leading to a circulating magnetic moment and, as a result, to a toroidal moment. Moreover, due to the central gap electric moment can be excited in metamolecule. At the same time, destructive/constructive interference between toroidal and electric dipolar moments gives us unique effect as very strong E- field localization inside the central gap and anapole mode. "Magnetic" type metamolecule is the inverted and rotated variant of the first structure. In contrast to the first case, here we expect very strong localization of magnetic field instead electric field. The magnetic field lines are whirling around the central junction of the metamolecule due to interference between toroidal and magnetic
Celebration for the ATLAS Barrel Toroid magnet
2007-01-01
Representatives from Funding Agencies and Barrel Toroid Magnet Laboratories during the ceremony. From left to right: Jean Zinn-Justin (Head of DAPNIA/CEA/Saclay), CERN Director-General Robert Aymar, and Roberto Petronzio (President INFN).Allan Clark (DPNC University Geneva) and Enrique Fernandez (IFAE Barcelona) were among the guests visiting the ATLAS cavern. The barrel toroid is visible in the background. A celebration took place at Point 1 on 13 December to toast the recent powering-up of the ATLAS barrel toroid magnet to full field (Bulletin No. 47-48/06). About 70 guests were invited to attend, mainly composed of representatives from funding partners and key members of the laboratory management teams of the barrel toroid magnet, representing CEA France, INFN Italy, BMBF Germany, Spain, Sweden, Switzerland, Russia, JINR Dubna and CERN. An introductory speech by ATLAS spokesperson Peter Jenni the scene for evening. This was followed by the ATLAS magnet system project leader Herman Ten Kate's account of the...
Plasmastatic model of toroidal trap “Galatea-belt”
Brushlinskii, K. V.; Goldich, A. S.
2017-01-01
Magnetic galatea-traps for thermonuclear plasma confinement with current carrying conductors immersed into the plasma volume, are represented by an example of the toroidal trap “The Belt” with two circular conductors. Numerical models of equilibrium plasma and field configurations are investigated in straightened into cylinder analogues of some toroidal galateas in a series of works by the authors. This paper presents a plasmastatic model of configurations in the toroidal variant of “The Belt” in terms of a boundary problem with the Grad-Shafranov equation. Distinctions of their geometry and quantitative characteristics from the cylindrical analogues and their dependence of parameters are determined in computation.
Development of Toroidal Core Transformers
Energy Technology Data Exchange (ETDEWEB)
de Leon, Francisco [New York Univ. (NYU), Brooklyn, NY (United States). Dept. of Electrical and Computer Engineering
2014-08-01
The original objective of this project was to design, build and test a few prototypes of single-phase dry-type distribution transformers of 25 kVA, 2.4 kV primary to 120 V transformers using cores made of a continuous steel strip shaped like a doughnut (toroid). At different points during the development of the project, the scope was enhanced to include the more practical case of a 25 kVA transformer for a 13.8 kV primary system voltage. Later, the scope was further expanded to design and build a 50 kVA unit to transformer voltage from 7.62 kV to 2x120 V. This is a common transformer used by Con Edison of New York and they are willing to test it in the field. The project officially started in September 2009 and ended in May 2014. The progress was reported periodically to DOE in eighteen quarterly reports. A Continuation Application was submitted to DOE in June 2010. In May 2011 we have requested a non-cost extension of the project. In December 2011, the Statement of Project Objectives (SOPO) was updated to reflect the real conditions and situation of the project as of 2011. A second Continuation Application was made and funding was approved in 2013 by DOE and the end date was extended to May 2014. The technical challenges that were overcome in this project include: the development of the technology to pass the impulse tests, derive a model for the thermal performance, produce a sound mechanical design, and estimate the inrush current. However, the greatest challenge that we faced during the development of the project was the complications of procuring the necessary parts and materials to build the transformers. The actual manufacturing process is relatively fast, but getting all parts together is a very lengthy process. The main products of this project are two prototypes of toroidal distribution transformers of 7.62 kV (to be used in a 13.8 kV system) to 2x120 V secondary (standard utilization voltage); one is rated at 25 kVA and the other at 50 kVA. The 25 k
Development of Toroidal Core Transformers
Energy Technology Data Exchange (ETDEWEB)
Leon, Francisco
2014-05-31
The original objective of this project was to design, build and test a few prototypes of singlephase dry-type distribution transformers of 25 kVA, 2.4 kV primary to 120 V transformers using cores made of a continuous steel strip shaped like a doughnut (toroid). At different points during the development of the project, the scope was enhanced to include the more practical case of a 25 kVA transformer for a 13.8 kV primary system voltage. Later, the scope was further expanded to design and build a 50 kVA unit to transformer voltage from 7.62 kV to 2x120 V. This is a common transformer used by Con Edison of New York and they are willing to test it in the field. The project officially started in September 2009 and ended in May 2014. The progress was reported periodically to DOE in eighteen quarterly reports. A Continuation Application was submitted to DOE in June 2010. In May 2011 we have requested a non-cost extension of the project. In December 2011, the Statement of Project Objectives (SOPO) was updated to reflect the real conditions and situation of the project as of 2011. A second Continuation Application was made and funding was approved in 2013 by DOE and the end date was extended to May 2014.The technical challenges that were overcome in this project include: the development of the technology to pass the impulse tests, derive a model for the thermal performance, produce a sound mechanical design, and estimate the inrush current. However, the greatest challenge that we faced during the development of the project was the complications of procuring the necessary parts and materials to build the transformers. The actual manufacturing process is relatively fast, but getting all parts together is a very lengthy process. The main products of this project are two prototypes of toroidal distribution transformers of 7.62 kV (to be used in a 13.8 kV system) to 2x120 V secondary (standard utilization voltage); one is rated at 25 kVA and the other at 50 kVA. The 25 k
On the Toroidal Leibniz Algebras
Institute of Scientific and Technical Information of China (English)
Dong LIU; Lei LIN
2008-01-01
Toroidal Leibniz algebras are the universal central extensions of the iterated loop algebras gOC[t±11 ,...,t±v1] in the category of Leibniz algebras. In this paper, some properties and representations of toroidal Leibniz algebras are studied. Some general theories of central extensions of Leibniz algebras are also obtained.
Efficiency of Wave-Driven Rigid Body Rotation Toroidal Confinement
Rax, J -M; Fisch, N J
2016-01-01
The compensation of vertical drifts in toroidal magnetic fields through a wave-driven poloidal rotation is compared to compensation through the wave driven toroidal current generation to support the classical magnetic rotational transform. The advantages and drawbacks associated with the sustainment of a radial electric field are compared with those associated with the sustainment of a poloidal magnetic field both in terms of energy content and power dissipation. The energy content of a radial electric field is found to be smaller than the energy content of a poloidal magnetic field for a similar set of orbits. The wave driven radial electric field generation efficiency is similarly shown, at least in the limit of large aspect ratio, to be larger than the efficiency of wave-driven toroidal current generation.
Tailoring the multipoles in THz toroidal metamaterials
Cong, Longqing; Srivastava, Yogesh Kumar; Singh, Ranjan
2017-08-01
The multipoles play a significant role in determining the resonant behavior of subwavelength resonators that form the basis of metamaterial and plasmonic systems. Here, we study the impact of multipoles including toroidal dipole on the resonance intensity and linewidth of the fundamental inductive-capacitance (LC) resonance of a metamaterial array. The dominant multipoles that strongly contribute to the resonances are tailored by spatial rearrangement of the neighboring resonators such that the mutual interactions between the magnetic, electric, and toroidal configurations lead to enormous change in the linewidth as well as the resonance intensity of the LC mode. Manipulation of the multipoles in a metamaterial array provides a general strategy for the optimization of the quality factor of metamaterial resonances, which is fundamental to its applications in broad areas of sensing, lasing and nonlinear optics where stronger field confinement plays a significant role.
Solar concentrator with a toroidal relay module.
Lin, Jhe-Syuan; Liang, Chao-Wen
2015-10-01
III-V multijunction solar cells require solar concentrators with a high concentration ratio to reduce per watt cost and to increase solar energy transforming efficiency. This paper discusses a novel solar concentrator design that features a high concentration ratio, high transfer efficiency, thin profile design, and a high solar acceptance angle. The optical design of the concentrator utilizes a toroidal relay module, which includes both the off-axis relay lens and field lens design in a single concentric toroidal lens shape. The optical design concept of the concentrator is discussed and the simulation results are shown. The given exemplary design has an aspect ratio of 0.24, a high averaged optical concentration ratio 1230×, a maximum efficiency of 76.8%, and the solar acceptance angle of ±0.9°.
Compact Toroid Propagation in a Magnetized Drift Tube
Horton, Robert D.; Baker, Kevin L.; Hwang, David Q.; Evans, Russell W.
2000-10-01
Injection of a spheromak-like compact toroid (SCT) plasma into a toroidal plasma confinement device may require the SCT to propagate through a drift tube region occupied by a pre-existing magnetic field. This field is expected to extert a retarding force on the SCT, but may also result in a beneficial compression. The effects of transverse and longitudinal magnetic fields will be measured using the CTIX compact-toroid injector, together with a fast framing camera with an axial view of the formation, coaxial, and drift-tube regions. In the case of longitudinal magnetic field, comparisons will be made with the predictions of two-dimensional numerical simulation. The use of localized magnetic field to reduce plasma bridging of the insulating gap will also be investigated.
Aspects of Tokamak toroidal magnet protection
Energy Technology Data Exchange (ETDEWEB)
Green, R.W.; Kazimi, M.S.
1979-07-01
Simple but conservative geometric models are used to estimate the potential for damage to a Tokamak reactor inner wall and blanket due to a toroidal magnet field collapse. The only potential hazard found to exist is due to the MHD pressure rise in a lithium blanket. A survey is made of proposed protection methods for superconducting toroidal magnets. It is found that the two general classifications of protection methods are thermal and electrical. Computer programs were developed which allow the toroidal magnet set to be modeled as a set of circular filaments. A simple thermal model of the conductor was used which allows heat transfer to the magnet structure and which includes the effect of temperature dependent properties. To be effective in large magnets an electrical protection system should remove at least 50% of the stored energy in the protection circuit assuming that all of the superconductor in the circuit quenches when the circuit is activated. A protection system design procedure based on this criterion was developed.
Axion Haloscopes with Toroidal Geometry at CAPP/IBS
Ko, B R
2016-01-01
The present state of the art axion haloscope employs a cylindrical resonant cavity in a solenoidal field. We, the Center for Axion and Precision Physics Research (CAPP) of the Institute for Basic Science (IBS) in Korea, are also pursuing halo axion discovery using this cylindrical geometry. However, the presence of end caps of cavities increases challenges as we explore higher frequency regions for the axion at above 2 GHz. To overcome these challenges we exploit a toroidal design of cavity and magnetic field. A toroidal geometry offers several advantages, two of which are a larger volume for a given space and greatly reduced fringe fields which interfere with our preamps, in particular the planned quantum-based devices. We introduce the concept of toroidal axion haloscopes and present ongoing research activities and plans at CAPP/IBS.
RF breakdown by toroidal helicons
Indian Academy of Sciences (India)
S K P Tripathi; D Bora; M Mishra
2001-04-01
Bounded whistlers are well-known for their efﬁcient plasma production capabilities in thin cylindrical tubes. In this paper we shall present their radio frequency (RF) breakdown and discharge sustaining capabilities in toroidal systems. Pulsed RF power in the electronmagnetohydrodynamic (EMHD) frequency regime is fed to the neutral background medium. After the breakdown stage, discharge is sustained by toroidal bounded whistlers. In these pulsed experiments the behaviour of the time evolution of the discharge could be studied in four distinct phases of RF breakdown, steady state attainment, decay and afterglow. In the steady state average electron density of ≈ 1012 per cc and average electron temperature of ≈ 20 eV are obtained at 10-3 mbar of argon ﬁlling pressure. Experimental results on toroidal mode structure, background effects and time evolution of the electron distribution function will be presented and their implications in understanding the breakdown mechanism are discussed.
Absence of toroidal moments in 'aromagnetic' anthracene
Alborghetti, S.; Puppin, E.; Brenna, M.; Pinotti, E.; Zanni, P.; Coey, J. M. D.
2008-06-01
Colloidal suspensions of anthracene and other aromatic compounds have been shown to respond to a magnetic field as if they possessed a permanent magnetic moment. This phenomenon was named 'aromagnetism' by Spartakov and Tolstoi, and it was subsequently attributed to the interaction of an electric toroidal moment with a time-varying magnetic field. However, there has been no independent confirmation of the original work. Here, we have selected purified anthracene crystallites which respond to a low magnetic field and investigate how this response depends on the gradient and the time derivative of the field. We conclude that the anomaly cannot be attributed to a toroidal interaction but is due to a constant magnetic moment of the particles. Close examinations using magnetometry and scanning electron microscopy reveal metallic clusters of Fe and Ni up to a few hundred nanometres in size embedded in the anomalous crystallites. These inclusions represent 1.8 ppm by weight of the sample. The observed presence of ferromagnetic inclusions in the ppm range is sufficient to explain the anomalous magnetic properties of micron-sized anthracene crystals, including the reported optical properties of the colloidal suspensions.
Prandtl number of toroidal plasmas
Energy Technology Data Exchange (ETDEWEB)
Itoh, Kimitaka (National Inst. for Fusion Science, Nagoya (Japan)); Itoh, Sanae; Fukuyama, Atsushi; Yagi, Masatoshi; Azumi, Masafumi
1993-12-01
Theory of the L-mode confinement in toroidal plasmas is developed. The Prandtl number, the ratio between the ion viscosity and the thermal conductivity is obtained for the anomalous transport process which is caused by the self-sustained turbulence in the toroidal plasma. It is found that the Prandtl number is of order unity both for the ballooning mode turbulence in tokamaks and for the interchange mode turbulence in helical system. The influence on the anomalous transport and fluctuation level is evaluated. Hartmann number and magnetic Prandtl number are also discussed. (author).
Hybrid winding concept for toroids
DEFF Research Database (Denmark)
Schneider, Henrik; Andersen, Thomas; Knott, Arnold;
2013-01-01
This paper proposes a hybrid winding concept for toroids using the traces in a printed circuit board to make connection to bended copper foil cutouts. In a final product a number of strips with a certain thickness would be held by a former and the whole assembly could be placed by pick...... and placement machinery. This opens up the possibility for both an automated manufacturing process and an automated production process of toroidal magnetics such as power inductors, filtering inductors, air core inductors, transformers etc. Both the proposed hybrid and the common wire wound winding...
The complex and unique ATLAS Toroid family
2002-01-01
Big parts for the toroid magnets that will be used in the ATLAS experiment have been continuously arriving at CERN since March. These structures will create the largest superconducting toroid magnet ever.
The theory of toroidally confined plasmas
White, Roscoe B
2014-01-01
This graduate level textbook develops the theory of magnetically confined plasma, with the aim of bringing the reader to the level of current research in the field of thermonuclear fusion. It begins with the basic concepts of magnetic field description, plasma equilibria and stability, and goes on to derive the equations for guiding center particle motion in an equilibrium field. Topics include linear and nonlinear ideal and resistive modes and particle transport. It is of use to workers in the field of fusion both for its wide-ranging account of tokamak physics and as a kind of handbook or formulary. This edition has been extended in a number of ways. The material on mode-particle interactions has been reformulated and much new information added, including methodology for Monte Carlo implementation of mode destabilization. These results give explicit means of carrying out mode destabilization analysis, in particular for the dangerous fishbone mode. A new chapter on cyclotron motion in toroidal geometry has ...
ATLAS End Cap toroid in upstanding position
2005-01-01
End Cap toroid The ATLAS End Cap toroid weights 240-ton and is 12-m diameter high. The parts of this vacuum vessel had to be integrated and tested so that End Cap Toroid has no leaks. After that it could be cooled down to 80 K.
Lowering the first ATLAS toroid
Maximilien Brice
2004-01-01
The ATLAS detector on the LHC at CERN will consist of eight toroid magnets, the first of which was lowered into the cavern in these images on 26 October 2004. The coils are supported on platforms where they will be attached to form a giant torus. The platforms will hold about 300 tonnes of ATLAS' muon chambers and will envelop the inner detectors.
Onsager relaxation of toroidal plasmas
Energy Technology Data Exchange (ETDEWEB)
Samain, A.; Nguyen, F.
1997-01-01
The slow relaxation of isolated toroidal plasmas towards their thermodynamical equilibrium is studied in an Onsager framework based on the entropy metric. The basic tool is a variational principle, equivalent to the kinetic equation, involving the profiles of density, temperature, electric potential, electric current. New minimization procedures are proposed to obtain entropy and entropy production rate functionals. (author). 36 refs.
Hybrid winding concept for toroids
DEFF Research Database (Denmark)
Schneider, Henrik; Andersen, Thomas; Knott, Arnold;
2013-01-01
This paper proposes a hybrid winding concept for toroids using the traces in a printed circuit board to make connection to bended copper foil cutouts. In a final product a number of strips with a certain thickness would be held by a former and the whole assembly could be placed by pick and placem...
EMC3-EIRENE modeling of toroidally-localized divertor gas injection experiments on Alcator C-Mod
Energy Technology Data Exchange (ETDEWEB)
Lore, J.D., E-mail: lorejd@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Reinke, M.L. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); LaBombard, B. [Plasma Science and Fusion Center, MIT, Cambridge, MA 02139 (United States); Lipschultz, B. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Churchill, R.M. [Plasma Science and Fusion Center, MIT, Cambridge, MA 02139 (United States); Pitts, R.A. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Feng, Y. [Max Planck Institute for Plasma Physics, Greifswald (Germany)
2015-08-15
Experiments on Alcator C-Mod with toroidally and poloidally localized divertor nitrogen injection have been modeled using the three-dimensional edge transport code EMC3-EIRENE to elucidate the mechanisms driving measured toroidal asymmetries. In these experiments five toroidally distributed gas injectors in the private flux region were sequentially activated in separate discharges resulting in clear evidence of toroidal asymmetries in radiated power and nitrogen line emission as well as a ∼50% toroidal modulation in electron pressure at the divertor target. The pressure modulation is qualitatively reproduced by the modeling, with the simulation yielding a toroidal asymmetry in the heat flow to the outer strike point. Toroidal variation in impurity line emission is qualitatively matched in the scrape-off layer above the strike point, however kinetic corrections and cross-field drifts are likely required to quantitatively reproduce impurity behavior in the private flux region and electron temperatures and densities directly in front of the target.
Toroidal and poloidal momentum transport studies in JET
DEFF Research Database (Denmark)
Tala, T.; Andrew, Y.; Crombe, K.
2007-01-01
of toroidal velocity using the Weiland model and GLF23 also confirm that the ratio chi(phi)/chi(i) approximate to 0.4 reproduces the core toroidal velocity profiles well and similar accuracy with the ion temperature profiles. Concerning poloidal velocities on JET, the experimental measurements show...... that the carbon poloidal velocity can be an order of magnitude above the neo-classical estimate within the ITB. This significantly affects the calculated radial electric field and therefore, the E x B flow shear used for example in transport simulations. Both the Weiland model and GLF23 reproduce the onset...
Institute of Scientific and Technical Information of China (English)
刘欣; 许立忠; 聂岭
2016-01-01
Dual-stator toroidal motor is a novel machine with spacial structure ,and power and decelerator are integrated with good application perspective in robot and aerospace fields.Based on the analysis of its structural characteristics and operating mechanism, the three-dimensional magnetic circuit was resolved into circumferential and toroidal components, and the simplified equivalent magnetic circuit model was built.The magnetic reluctances of the model were deduced according to the structure of the motor,and the analytical solution of the air-gap magnetic flux density was obtained.In order to verify the accuracy of the magnetic circuit model,the three-dimensional magnetic field was simulated with the finite element meth-od,and the measurement of back electromotive force for prototype was carried out.The comparison with the simulation and experimental results of the prototype machine shows that the equivalent magnetic cir-cuit model and the calculation method of parameters are feasible, and provide theoretical foundation for further analysis of the electromagnetic properties for the motor.%双定子超环面电机是一种新型结构的空间电机，将动力和减速机构有机结合，在机器人和航空航天领域具有很好的应用前景。在对该电机的结构特点及运行原理进行分析的基础上，将其三维磁路分解为周向和环向磁路，并建立了简化的等效磁路模型。根据该电机的结构特点对磁路模型中各磁阻进行推导，并对其静态磁场的气隙磁密进行了解析求解。为了验证该磁路模型的准确性，运用有限元方法对其三维磁场进行仿真分析，并对研制实验样机的反电动势进行了测试实验。通过与仿真结果和实验结果进行对比分析表明，该等效磁路模型和参数计算方法是可行的，为进一步定量分析该电机的电磁性能提供了理论依据。
Transport of parallel momentum induced by current-symmetry breaking in toroidal plasmas.
Camenen, Y; Peeters, A G; Angioni, C; Casson, F J; Hornsby, W A; Snodin, A P; Strintzi, D
2009-03-27
The symmetry of a physical system strongly impacts on its properties. In toroidal plasmas, the symmetry along a magnetic field line usually constrains the radial flux of parallel momentum to zero in the absence of background flows. By breaking the up-down symmetry of the toroidal currents, this constraint can be relaxed. The parallel asymmetry in the magnetic configuration then leads to an incomplete cancellation of the turbulent momentum flux across a flux surface. The magnitude of the subsequent toroidal rotation increases with the up-down asymmetry and its sign depends on the direction of the toroidal magnetic field and plasma current. Such a mechanism offers new insights in the interpretation and control of the intrinsic toroidal rotation in present day experiments.
Analytical solutions for Tokamak equilibria with reversed toroidal current
Energy Technology Data Exchange (ETDEWEB)
Martins, Caroline G. L.; Roberto, M.; Braga, F. L. [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, Sao Paulo 12228-900 (Brazil); Caldas, I. L. [Instituto de Fisica, Universidade de Sao Paulo, 05315-970 Sao Paulo, SP (Brazil)
2011-08-15
In tokamaks, an advanced plasma confinement regime has been investigated with a central hollow electric current with negative density which gives rise to non-nested magnetic surfaces. We present analytical solutions for the magnetohydrodynamic equilibria of this regime in terms of non-orthogonal toroidal polar coordinates. These solutions are obtained for large aspect ratio tokamaks and they are valid for any kind of reversed hollow current density profiles. The zero order solution of the poloidal magnetic flux function describes nested toroidal magnetic surfaces with a magnetic axis displaced due to the toroidal geometry. The first order correction introduces a poloidal field asymmetry and, consequently, magnetic islands arise around the zero order surface with null poloidal magnetic flux gradient. An analytic expression for the magnetic island width is deduced in terms of the equilibrium parameters. We give examples of the equilibrium plasma profiles and islands obtained for a class of current density profile.
Dynamics of the Disruption Halo Current Toroidal Asymmetry in NSTX
Energy Technology Data Exchange (ETDEWEB)
S.P. Gerhardt
2012-09-27
This paper describes the dynamics of disruption halo current non-axisymmetries in the lower divertor of the National Spherical Torus Experiment [M. Ono, et al. Nuclear Fusion 40, 557 (2000)]. While. The halo currents typically have a strongly asymmetric structure where they enter the divertor floor, and this asymmetry has been observed to complete up to 7 toroidal revolutions over the duration of the halo current pulse. However, the rotation speed and toroidal extend of the asymmetry can vary significantly during the pulse. The rotation speed, halo current pulse duration, and total number of revolutions tend to be smaller in cases with large halo currents. The halo current pattern is observed to become toroidally symmetric at the end of the halo current pulse. It is proposed that this symmeterization is due to the loss of most or all of the closed field line geometry in the final phase of the vertical displacement event.
Theoretical studies of non inductive current drive in compact toroids
Farengo, R; Lifschitz, AF; Caputi, KI; Arista, NR; Clemente, RA
2002-01-01
Three non inductive current drive methods that can be applied to compact toroids axe studied. The use of neutral beams to drive current in field reversed configurations and spheromaks is studied using a Monte Carlo code that includes a complete ionization package and follows the exact particle orbit
Design and Simulation of Toroidal Twister Model
Institute of Scientific and Technical Information of China (English)
TIAN Huifang; LIN Xizhen; ZENG Qinqin
2006-01-01
Toroidal composite vessel winded with fiber is a new kind of structural pressure vessels, which not only has high structure efficiency of compound materials pressure vessel, good security and so on, but also has special shape and the property of utilizing toroidal space, and the prospect of the application of toroidal composite vessel winded with fiber is extremely broad. By introducing parameters establishment of toroidal vessel and elaborating the principle of filament winding for toroidal vessel, the design model of filament winding machine for toroidal vessel has been introduced, and the design model has been dynamically simulated by the software of ADAMS, which will give more referrence for the design of real toroidal vessel twister.
Classification of symmetric toroidal orbifolds
Energy Technology Data Exchange (ETDEWEB)
Fischer, Maximilian; Ratz, Michael; Torrado, Jesus [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-09-15
We provide a complete classification of six-dimensional symmetric toroidal orbifolds which yield N{>=}1 supersymmetry in 4D for the heterotic string. Our strategy is based on a classification of crystallographic space groups in six dimensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with Abelian point groups such as Z{sub 3}, Z{sub 4}, Z{sub 6}-I etc. and 358 with non-Abelian point groups such as S{sub 3}, D{sub 4}, A{sub 4} etc. We also briefly explore the properties of some orbifolds with Abelian point groups and N=1, i.e. specify the Hodge numbers and comment on the possible mechanisms (local or non-local) of gauge symmetry breaking.
Classification of symmetric toroidal orbifolds
Energy Technology Data Exchange (ETDEWEB)
Fischer, Maximilian; Ratz, Michael; Torrado, Jesus [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-09-15
We provide a complete classification of six-dimensional symmetric toroidal orbifolds which yield N{>=}1 supersymmetry in 4D for the heterotic string. Our strategy is based on a classification of crystallographic space groups in six dimensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with Abelian point groups such as Z{sub 3}, Z{sub 4}, Z{sub 6}-I etc. and 358 with non-Abelian point groups such as S{sub 3}, D{sub 4}, A{sub 4} etc. We also briefly explore the properties of some orbifolds with Abelian point groups and N=1, i.e. specify the Hodge numbers and comment on the possible mechanisms (local or non-local) of gauge symmetry breaking.
The Superconducting Toroid for the New International AXion Observatory (IAXO)
Shilon, I; Silva, H; Wagner, U; Kate, H H J ten
2013-01-01
IAXO, the new International AXion Observatory, will feature the most ambitious detector for solar axions to date. Axions are hypothetical particles which were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. This detector aims at achieving a sensitivity to the coupling between axions and photons of one order of magnitude beyond the limits of the current detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions to detectable X-ray photons. Inspired by the ATLAS barrel and end-cap toroids, a large superconducting toroid is being designed. The toroid comprises eight, one meter wide and twenty one meters long racetrack coils. The assembled toroid is sized 5.2 m in diameter and 25 m in length and its mass is about 250 tons. The useful field in the bores is 2.5 T while the peak magnetic field in the windings is 5....
Transporting the first ATLAS toroid
Maximilien Brice
2004-01-01
The first coil for the ATLAS toroid magnet is transported from its assembly hall at the CERN Meyrin site to the storage hall above the ATLAS cavern. This involves driving the massive transportation vehicle first through the Meyrin site and then across a main road only metres from the France-Swiss border. Eight magnets in total will be transported in this way before being lowered into the experimental cavern where they will be mounted in a huge ring surrounding the detector.
Binderbauer, M W; Guo, H Y; Tuszewski, M; Putvinski, S; Sevier, L; Barnes, D; Rostoker, N; Anderson, M G; Andow, R; Bonelli, L; Brandi, F; Brown, R; Bui, D Q; Bystritskii, V; Ceccherini, F; Clary, R; Cheung, A H; Conroy, K D; Deng, B H; Dettrick, S A; Douglass, J D; Feng, P; Galeotti, L; Garate, E; Giammanco, F; Glass, F J; Gornostaeva, O; Gota, H; Gupta, D; Gupta, S; Kinley, J S; Knapp, K; Korepanov, S; Hollins, M; Isakov, I; Jose, V A; Li, X L; Luo, Y; Marsili, P; Mendoza, R; Meekins, M; Mok, Y; Necas, A; Paganini, E; Pegoraro, F; Pousa-Hijos, R; Primavera, S; Ruskov, E; Qerushi, A; Schmitz, L; Schroeder, J H; Sibley, A; Smirnov, A; Song, Y; Sun, X; Thompson, M C; Van Drie, A D; Walters, J K; Wyman, M D
2010-07-23
A hot stable field-reversed configuration (FRC) has been produced in the C-2 experiment by colliding and merging two high-β plasmoids preformed by the dynamic version of field-reversed θ-pinch technology. The merging process exhibits the highest poloidal flux amplification obtained in a magnetic confinement system (over tenfold increase). Most of the kinetic energy is converted into thermal energy with total temperature (T{i}+T{e}) exceeding 0.5 keV. The final FRC state exhibits a record FRC lifetime with flux confinement approaching classical values. These findings should have significant implications for fusion research and the physics of magnetic reconnection.
The Experiment of Modulated Toroidal Current on HT-7 and HT-6M Tokamak
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
The Experiments of Modulated Toroidal Current were done on the HT-6M tokamakand HT-7 superconducting tokamak. The toroidal current was modulated by programming theOhmic heating field. Modulation of the plasma current has been used successfully to suppressMHD activity in discharges near the density limit where large MHD m = 2 tearing modes weresuppressed by sufficiently large plasma current oscillations. The improved Ohmic confinementphase was observed during modulating toroidal current (MTC) on the Hefei Tokamak-6M (HT-6M) and Hefei superconducting Tokamak-7 (HT-7). A toroidal frequency-modulated current,induced by a modulated loop voltage, was added on the plasma equilibrium current. The ratio ofA.C. amplitude of plasma current to the main plasma current △Ip/Ip is about 12% ～ 30%. Thedifferent formats of the frequency-modulated toroidal current were compared.
Investigation of toroidal acceleration and potential acceleration forces in EAST and J-TEXT plasmas
Wang, Fudi; Pan, Xiayun; Cheng, Zhifeng; Chen, Jun; Cao, Guangming; Wang, Yuming; Han, Xiang; Li, Hao; Wu, Bin; Chen, Zhongyong; Bitter, Manfred; Hill, Kenneth; Rice, John; Morita, Shigeru; Li, Yadong; Zhuang, Ge; Ye, Minyou; Wan, Baonian; Shi, Yuejiang
2014-01-01
In order to produce intrinsic rotation, bulk plasmas must be collectively accelerated by the net force exerted on them, which results from both driving and damping forces. So, to study the possible mechanisms of intrinsic rotation generation, it is only needed to understand characteristics of driving and damping terms because the toroidal driving and damping forces induce net acceleration which generates intrinsic rotation. Experiments were performed on EAST and J-TEXT for ohmic plasmas with net counter- and co-current toroidal acceleration generated by density ramping up and ramping down. Additionally on EAST, net co-current toroidal acceleration was also formed by LHCD or ICRF. For the current experimental results, toroidal acceleration was between - 50 km/s^2 in counter-current direction and 70 km/s^2 in co-current direction. According to toroidal momentum equation, toroidal electric field (E\\-(\\g(f))), electron-ion toroidal friction, and toroidal viscous force etc. may play roles in the evolution of toroi...
Energy Technology Data Exchange (ETDEWEB)
Roberto, M. [UNESP, Guaratingueta, SP (Brazil). Faculdade de Engenharia. Dept. de Fisica; Silva, C.A.B. [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados; Goes, L.C.S.; Sudano, J.P. [Centro Tecnico Aeroespacial, Sao Jose dos Campos, SP (Brazil). Inst. Tecnologico de Aeronautica
1990-12-31
By using a zero-dimensional model the ionizing initial phase of a toroidal plasma produced in hydrogen was investigated. The model consists on describing the plasma time evolution through the density and particle temperature space averaged on the plasma volume. The involved equations are energy and particles balance equations (electrons and ions). The electron loss is due to ambipolar diffusion in the presence of magnetic field. The electron energy loss is due to ionizing, processes of Coulomb interaction and diffusion. The ohmic heating transformer gives a initial voltage necessary to the breaking 11 refs., 2 figs.
Hybrid winding concept for toroids
DEFF Research Database (Denmark)
Schneider, Henrik; Andersen, Thomas; Knott, Arnold
2013-01-01
and placement machinery. This opens up the possibility for both an automated manufacturing process and an automated production process of toroidal magnetics such as power inductors, filtering inductors, air core inductors, transformers etc. Both the proposed hybrid and the common wire wound winding...... implementation is simulated using finite element modeling and the DC and AC resistance of the inductors are verified with experimental measurements on prototypes. It is found that commercial available layer thickness of printed circuit boards is a bottleneck for high power applications. Furthermore, the winding...
Energy Technology Data Exchange (ETDEWEB)
Nie, Yung-mau, E-mail: ymnie@ncnu.edu.tw [Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University (NCNU), Nantou County 54561, Taiwan (China)
2016-01-14
A first-principles approach incorporating the concept of toroidal moments as a measure of the spin vortex is proposed and applied to simulate the toroidization of magnetoelectric multiferroic GaFeO{sub 3}. The nature of space-inversion and time-reversal violations of ferrotoroidics is reproduced in the simulated magnetic structure of GaFeO{sub 3}. For undoped GaFeO{sub 3}, a toroidal moment of −22.38 μ{sub B} Å per unit cell was obtained, which is the best theoretical estimate till date. Guided by the spin vortex free-energy minimization perturbed by an externally applied field, it was discovered that the minority spin markedly biases the whole toroidization. In summary, this approach not only calculates the toroidal moment but provides a way to understand the toroidal nature of magnetoelectric multiferroics.
Precession of Toroidally Passing Particles in Tokamaks and Spherical Tori
Energy Technology Data Exchange (ETDEWEB)
Ya.I. Kolesnichenko; R.B.White; Yu.V. Yakovenko
2003-01-30
The toroidal precession of the well-circulating particles and particles that are passing toroidally but trapped poloidally is studied. Expressions for the precession frequency, which are convenient for practical use, are obtained and analyzed. It is found that the key parameters that determine the magnitude and the direction of the precession velocity are the plasma elongation, the magnitudes and profiles of the safety factor and beta defined as the ratio of the local plasma pressure to the magnetic field pressure at the magnetic axis. An important role of the ''paramagnetic'' precession in highly elongated plasmas is revealed. The analysis carried out is based on the obtained expressions for the equilibrium magnetic field strength and the field line curvature.
Radial transport of toroidal angular momentum in tokamaks
Calvo, Ivan
2014-01-01
The radial flux of toroidal angular momentum is needed to determine tokamak intrinsic rotation profiles. Its computation requires knowledge of the gyrokinetic distribution functions and turbulent electrostatic potential to second-order in $\\epsilon = \\rho/L$, where $\\rho$ is the ion Larmor radius and $L$ is the variation length of the magnetic field. In this article, a complete set of equations to calculate the radial transport of toroidal angular momentum in any tokamak is presented. In particular, the $O(\\epsilon^2)$ equations for the turbulent components of the distribution functions and electrostatic potential are given for the first time without assuming that the poloidal magnetic field over the magnetic field strength is small.
3D toroidal physics: Testing the boundaries of symmetry breakinga)
Spong, Donald A.
2015-05-01
Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to provide the plasma control needed for a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D edge localized mode suppression fields to stellarators with more dominant 3D field structures. This motivates the development of physics models that are applicable across the full range of 3D devices. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with the requirements of future fusion reactors.
3D toroidal physics: Testing the boundaries of symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Spong, Donald A., E-mail: spongda@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6169 (United States)
2015-05-15
Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to provide the plasma control needed for a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D edge localized mode suppression fields to stellarators with more dominant 3D field structures. This motivates the development of physics models that are applicable across the full range of 3D devices. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with the requirements of future fusion reactors.
Compact toroid injection into C-2U
Roche, Thomas; Gota, H.; Garate, E.; Asai, T.; Matsumoto, T.; Sekiguchi, J.; Putvinski, S.; Allfrey, I.; Beall, M.; Cordero, M.; Granstedt, E.; Kinley, J.; Morehouse, M.; Sheftman, D.; Valentine, T.; Waggoner, W.; the TAE Team
2015-11-01
Sustainment of an advanced neutral beam-driven FRC for a period in excess of 5 ms is the primary goal of the C-2U machine at Tri Alpha Energy. In addition, a criteria for long-term global sustainment of any magnetically confined fusion reactor is particle refueling. To this end, a magnetized coaxial plasma-gun has been developed. Compact toroids (CT) are to be injected perpendicular to the axial magnetic field of C-2U. To simulate this environment, an experimental test-stand has been constructed. A transverse magnetic field of B ~ 1 kG is established (comparable to the C-2U axial field) and CTs are fired across it. As a minimal requirement, the CT must have energy density greater than that of the magnetic field it is to penetrate, i.e., 1/2 ρv2 >=B2 / 2μ0 . This criteria is easily met and indeed the CTs traverse the test-stand field. A preliminary experiment on C-2U shows the CT also capable of penetrating into FRC plasmas and refueling is observed resulting in a 20 - 30% increase in total particle number per single-pulsed CT injection. Results from test-stand and C-2U experiments will be presented.
Sugama, H.; Nunami, M.; Nakata, M.; Watanabe, T.-H.
2017-02-01
A novel gyrokinetic formulation is presented by including collisional effects into the Lagrangian variational principle to yield the governing equations for background and turbulent electromagnetic fields and gyrocenter distribution functions, which can simultaneously describe classical, neoclassical, and turbulent transport processes in toroidal plasmas with large toroidal flows on the order of the ion thermal velocity. Noether's theorem modified for collisional systems and the collision operator given in terms of Poisson brackets are applied to derivation of the particle, energy, and toroidal momentum balance equations in the conservative forms, which are desirable properties for long-time global transport simulation.
Low Collisionality Neoclassical Toroidal Viscosity in Tokamaks and Quasi-symmetric Stellarators
Cole, A. J.; Hegna, C. C.; Callen, J. D.
2008-11-01
Non-resonant magnetic perturbations can affect plasma rotation in toroidally confined plasmas through their modification to |B|. Variations along a field line induce nonambipolar radial transport and produce a global neoclassical toroidal viscous force [NTV]. In this work, previously calculated radial particle fluxes for the low-collisionality ``ν'' and ``1/ν'' regimes [1] are unified into a single particle flux (or toroidal viscous force). Provided pitch-angle scattering dominates over collisional energy exchange, the energy component of phase space can be decoupled into independent regions (E >Ec. for ν regime, E Callen, Phys. Fluids 19, 667 (1976).
Fast Dump of the ATLAS Toroids
Dudarev, A; Volpini, Giovanni; Dudarev, Alexey; Kate, Herman Ten
2010-01-01
The toroidal magnet system of the ATLAS Detector at CERN consists of a Barrel Toroid (BT) and two End Cap Toroids (ECT-A and ECT-C). Each toroid is built up from eight racetrack coils wound with an aluminum stabilized NbTi conductor and indirectly cooled by forced flow liquid helium. The three toroids operate in series at 20.5 kA with a total stored energy of 1.5 GJ. In order to verify the reliability and effectiveness of the quench protection system, series of fast dump tests have been performed first of the single toroids and finally of the entire toroidal magnet system. In this paper a model to simulate the fast dump of the ATLAS toroids in single mode operation and in full system configuration is presented. The model is validated through comparison with measured data extracted from the ramp-and-quench runs. The calculated energy dissipation in the various coils is in very good agreement (within 1-2\\%) with the enthalpy changes estimated from the temperature measurements of the different parts of the cold ...
Electrostatics of a Family of Conducting Toroids
Lekner, John
2009-01-01
An exact solution is found for the electrostatic potential of a family of conducting charged toroids. The toroids are characterized by two lengths "a" and "b", with "a" greater than or equal to "2b". They are closed, with no hole in the "doughnut". The results are obtained by considering the potential of two equal charges, displaced from the…
Cameron, R. H.; Schüssler, M.
2016-06-01
Context. In order to match observed properties of the solar cycle, flux-transport dynamo models require the toroidal magnetic flux to be stored in a region of low magnetic diffusivity, typically located at or below the bottom of the convection zone. Aims: We infer the turbulent magnetic diffusivity affecting the toroidal field on the basis of empirical data. Methods: We considered the time evolution of mean latitude and width of the activity belts of solar cycles 12-23 and their dependence on cycle strength. We interpreted the decline phase of the cycles as a diffusion process. Results: The activity level of a given cycle begins to decline when the centers of its equatorward propagating activity belts come within their (full) width (at half maximum) from the equator. This happens earlier for stronger cycles because their activity belts are wider. From that moment on, the activity and the belt width decrease in the same manner for all cycles, independent of their maximum activity level. In terms of diffusive cancellation of opposite-polarity toroidal flux across the equator, we infer the turbulent diffusivity experienced by the toroidal field, wherever it is located, to be in the range 150-450 km2 s-1. Strong diffusive latitudinal spreading of the toroidal flux underneath the activity belts can be inhibited by an inflow toward the toroidal field bands in the convection zone with a magnitude of several meters per second. Conclusions: The inferred value of the turbulent magnetic diffusivity affecting the toroidal field agrees, to order of magnitude, with estimates based on mixing-length models for the solar convection zone. This is at variance with the requirement of flux-transport dynamo models. The inflows required to keep the toroidal field bands together before they approach the equator are similar to the inflows toward the activity belts observed with local helioseismology.
Toroidal effects on drift wave turbulence
Energy Technology Data Exchange (ETDEWEB)
LeBrun, M.J.; Tajima, T.; Gray, M.G.; Furnish, G.; Horton, W.
1992-09-23
The universal drift instability and other drift instabilities driven by density and temperature gradients in a toroidal system are investigated in both linear and nonlinear regimes via particle simulation. Runs in toroidal and cylindrical geometry show dramatic differences in plasma behavior, primarily due to the toroidicity-induced coupling of rational surfaces through the poloidal mode number m. In the toroidal system studied, the eigenmodes are seen to possess (i) an elongated, nearly global radial extent (ii) a higher growth rate than in the corresponding cylindrical system, (iii) an eigenfrequency nearly constant with radius, (iv) a global temperature relaxation and enhancement of thermal heat conduction. Most importantly, the measured Xi shows an increase with radius and an absolute value on the order of that observed in experiment. On the basis of our observations, we argue that the increase in Xi with radius observed in experiment is caused by the global nature of heat convection in the presence of toroidicity-induced mode coupling.
Energy Technology Data Exchange (ETDEWEB)
Condit, W.C.
1980-06-26
A review of the idea of using plasma-loaded electron rings as buildup targets for future compact-toroid machines is presented. Present experiments at Cornell University and Nagoya University are analyzed, and the need for auxiliary heating to reach interesting temperatures is described. Consideration of the effect of two-stream instability, toroidal field, and plasma containment are discussed.
Toroidal symmetry of the geodesic acoustic mode zonal flow in a tokamak plasma.
Zhao, K J; Lan, T; Dong, J Q; Yan, L W; Hong, W Y; Yu, C X; Liu, A D; Qian, J; Cheng, J; Yu, D L; Yang, Q W; Ding, X T; Liu, Y; Pan, C H
2006-06-30
The toroidal symmetry of the geodesic acoustic mode (GAM) zonal flows is identified with toroidally distributed three step Langmuir probes at the edge of the HuanLiuqi-2A (commonly referred to as HL-2A) tokamak plasmas for the first time. High coherence of both the GAM and the ambient turbulence for the toroidally displaced measurements along a magnetic field line is observed, in contrast with the high coherence of the GAM but low coherence of the ambient turbulence when the toroidally displaced measurements are not along the same field line. The radial and poloidal features of the flows are also simultaneously determined. The nonlinear three wave coupling between the high frequency turbulent fluctuations and the flows is demonstrated to be a plausible formation mechanism of the flows.
Quasars a supermassive rotating toroidal black hole interpretation
Spivey, R J
2000-01-01
A supermassive rotating toroidal black hole (TBH) is proposed as the fundamental structure of quasars and other jet-producing active galactic nuclei. Rotating protogalaxies gather matter from the central gaseous region leading to the birth of massive toroidal stars whose internal nuclear reactions proceed very rapidly. Once the nuclear fuel is spent, gravitational collapse produces a slender ring-shaped TBH remnant. These events are typically the first supernovae of the host galaxies. Given time the TBH mass increases through continued accretion by several orders of magnitude, the event horizon swells whilst the central aperture shrinks. The difference in angular velocities between the accreting matter and the TBH induces a magnetic field that is strongest in the region of the central aperture and innermost ergoregion. Due to the presence of negative energy states when such a gravitational vortex is immersed in an electromagnetic field, circumstances are near ideal for energy extraction via non-thermal radiat...
Toroidal magnetized iron neutrino detector for a neutrino factory
Energy Technology Data Exchange (ETDEWEB)
Bross, A.; Wands, R.; Bayes, R.; Laing, A.; Soler, F. J. P.; Cervera Villanueva, A.; Ghosh, T.; Gómez Cadenas, J. J.; Hernández, P.; Martín-Albo, J.; Burguet-Castell, J.
2013-08-01
A neutrino factory has unparalleled physics reach for the discovery and measurement of CP violation in the neutrino sector. A far detector for a neutrino factory must have good charge identification with excellent background rejection and a large mass. An elegant solution is to construct a magnetized iron neutrino detector (MIND) along the lines of MINOS, where iron plates provide a toroidal magnetic field and scintillator planes provide 3D space points. In this report, the current status of a simulation of a toroidal MIND for a neutrino factory is discussed in light of the recent measurements of large $\\theta_{13}$. The response and performance using the 10 GeV neutrino factory configuration are presented. It is shown that this setup has equivalent $\\delta_{CP}$ reach to a MIND with a dipole field and is sensitive to the discovery of CP violation over 85% of the values of $\\delta_{CP}$.
Injection of electron beam into a toroidal trap using chaotic orbits near magnetic null.
Nakashima, C; Yoshida, Z; Himura, H; Fukao, M; Morikawa, J; Saitoh, H
2002-03-01
Injection of charged particle beam into a toroidal magnetic trap enables a variety of interesting experiments on non-neutral plasmas. Stationary radial electric field has been produced in a toroidal geometry by injecting electrons continuously. When an electron gun is placed near an X point of magnetic separatrix, the electron beam spreads efficiently through chaotic orbits, and electrons distribute densely in the torus. The current returning back to the gun can be minimized less than 1% of the total emission.
Tang, Chaojun; Yan, Bo; Wang, Qiugu; Chen, Jing; Yan, Zhendong; Liu, Fanxin; Chen, Naibo; Sui, Chenghua
2017-04-03
We have investigated numerically toroidal dipolar excitation at optical frequency in metamaterials whose unit cell consists of three identical Ag nanodisks and a SiO2 spacer on Ag substrate. The near-field plasmon hybridization between individual Ag nanodisks and substrate forms three magnetic dipolar resonances, at normal incidence of plane electromagnetic waves. The strong coupling among three magnetic dipolar resonances leads to the toroidal dipolar excitation, when space-inversion symmetry is broke along the polarization direction of incident light. The influences of some geometrical parameters on the resonance frequency and the excitation strength of toroidal dipolar mode are studied in detail. The radiated power from toroidal dipole is also compared with that from conventional electric and magnetic multipoles.
Low-frequency fluctuations in a pure toroidal magnetized plasma
Indian Academy of Sciences (India)
P K Sharma; R Singh; D Bora
2009-12-01
A magnetized, low- plasma in pure toroidal configuration is formed and extensively studied with ion mass as control parameter. Xenon, krypton and argon plasmas are formed at a fixed toroidal magnetic field of 0.024 T, with a peak density of ∼ 1011 cm-3, ∼ 4 × 1010 cm-3 and ∼ 2 × 1010 cm−3 respectively. The experimental investigation of time-averaged plasma parameter reveals that their profiles remain insensitive to ion mass and suggests that saturated slab equilibrium is obtained. Low-frequency (LF) coherent fluctuations ( < ci) are observed and identified as flute modes. Here ci represents ion cyclotron frequency. Our results indicate that these modes get reduced with ion mass. The frequency of the fluctuating mode decreases with increase in the ion mass. Further, an attempt has been made to discuss the theory of flute modes to understand the relevance of some of our experimental observations.
Modelling of density limit phenomena in toroidal helical plasmas
Energy Technology Data Exchange (ETDEWEB)
Itoh, K. [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, S.-I. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Giannone, L. [Max Planck Institut fuer Plasmaphysik, EURATOM-IPP Association, Garching (Germany)
2000-03-01
The physics of density limit phenomena in toroidal helical plasmas based on an analytic point model of toroidal plasmas is discussed. The combined mechanism of the transport and radiation loss of energy is analyzed, and the achievable density is derived. A scaling law of the density limit is discussed. The dependence of the critical density on the heating power, magnetic field, plasma size and safety factor in the case of L-mode energy confinement is explained. The dynamic evolution of the plasma energy and radiation loss is discussed. Assuming a simple model of density evolution, of a sudden loss of density if the temperature becomes lower than critical value, then a limit cycle oscillation is shown to occur. A condition that divides the limit cycle oscillation and the complete radiation collapse is discussed. This model seems to explain the density limit oscillation that has been observed on the W7-AS stellarator. (author)
Modelling of density limit phenomena in toroidal helical plasmas
Energy Technology Data Exchange (ETDEWEB)
Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae-I. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Giannone, Louis [EURATOM-IPP Association, Max Planck Institut fuer Plasmaphysik, Garching (Germany)
2001-11-01
The physics of density limit phenomena in toroidal helical plasmas based on an analytic point model of toroidal plasmas is discussed. The combined mechanism of the transport and radiation loss of energy is analyzed, and the achievable density is derived. A scaling law of the density limit is discussed. The dependence of the critical density on the heating power, magnetic field, plasma size and safety factor in the case of L-mode energy confinement is explained. The dynamic evolution of the plasma energy and radiation loss is discussed. Assuming a simple model of density evolution, of a sudden loss of density if the temperature becomes lower than critical value, then a limit cycle oscillation is shown to occur. A condition that divides the limit cycle oscillation and the complete radiation collapse is discussed. This model seems to explain the density limit oscillation that has been observed on the Wendelstein 7-AS (W7-AS) stellarator. (author)
Experimental investigation of transitional flow in a toroidal pipe
Kühnen, J; Hof, B; Kuhlmann, H
2015-01-01
The flow instability and further transition to turbulence in a toroidal pipe (torus) with curvature (tube-to-coiling diameter) 0.049 is investigated experimentally. The flow inside the toroidal pipe is driven by a steel sphere fitted to the inner pipe diameter. The sphere is moved with constant azimuthal velocity from outside the torus by a moving magnet. The experiment is designed to investigate curved pipe flow by optical measurement techniques. Using stereoscopic particle image velocimetry, laser Doppler velocimetry and pressure drop measurements, the flow is measured for Reynolds numbers ranging from 1000 to 15000. Time- and space-resolved velocity fields are obtained and analysed. The steady axisymmetric basic flow is strongly influenced by centrifugal effects. On an increase of the Reynolds number we find a sequence of bifurcations. For Re=4075 a supercritical bifurcation to an oscillatory flow is found in which waves travel in the streamwise direction with a phase velocity slightly faster than the mean...
3D blob dynamics in toroidal geometry
DEFF Research Database (Denmark)
Nielsen, Anders Henry; Reiser, Dirk
In this paper we study the simple case of the dynamics of a density perturbation localized in the edge region of a medium sized tokamak in a full 3D geometry. The 2D evolution of such a perturbation has been studied in details on the low-field side, where the gradient of the magnetic field always...... dynamics in a full 3D tokamak geometry including the edge and SOL region as well. Previous studies with the ATTEMPT code proved that density blobs appear for typical parameters in the TEXTOR tokamak. The code has been prepared for flux driven simulations with detailed control of the blob initial state....... The DIESEL code is an extension of the ESEL code [1]. It solves a simple interchange model in full 3D tokamak geometry, where the toroidal direction is divided into a number of drift planes. On each drift plane the equations are solved in a domain corresponding to the full 2D cross section of the tokamak...
3D blob dynamics in toroidal geometry
DEFF Research Database (Denmark)
Nielsen, Anders Henry; Reiser, Dirk
. The DIESEL code is an extension of the ESEL code [1]. It solves a simple interchange model in full 3D tokamak geometry, where the toroidal direction is divided into a number of drift planes. On each drift plane the equations are solved in a domain corresponding to the full 2D cross section of the tokamak......In this paper we study the simple case of the dynamics of a density perturbation localized in the edge region of a medium sized tokamak in a full 3D geometry. The 2D evolution of such a perturbation has been studied in details on the low-field side, where the gradient of the magnetic field always...... point radial inward, see e.g. [1-2]. Here, the initial condition is implemented in two very different 3D numerical codes, ATTEMPT [3], and a new developed code, DIESEL (Disk version of ESEL), and the results are compared and discussed in detail. The ATTEMPT code has been employed to study the blob...
Toroidal horizons in binary black hole mergers
Bohn, Andy; Kidder, Lawrence E.; Teukolsky, Saul A.
2016-09-01
We find the first binary black hole event horizon with a toroidal topology. It has been predicted that generically the event horizons of merging black holes should briefly have a toroidal topology. However, such a phase has never been seen in numerical simulations. Instead, in all previous simulations, the topology of the event horizon transitions directly from two spheres during the inspiral to a single sphere as the black holes merge. We find a coordinate transformation to a foliation of spacelike hypersurfaces that "cut a hole" through the event horizon surface, resulting in a toroidal event horizon, thus reconciling the numerical work with theoretical expectations. The demonstration requires extremely high numerical precision, which is made possible by a new event horizon code described in a companion paper. A torus could potentially provide a mechanism for violating topological censorship. However, these toroidal event horizons satisfy topological censorship by construction, because we can always trivially apply the inverse coordinate transformation to remove the topological feature.
Toroidal Horizons in Binary Black Hole Mergers
Bohn, Andy; Teukolsky, Saul A
2016-01-01
We find the first binary black hole event horizon with a toroidal topology. It had been predicted that generically the event horizons of merging black holes should briefly have a toroidal topology, but such a phase has never been seen prior to this work. In all previous binary black hole simulations, in the coordinate slicing used to evolve the black holes, the topology of the event horizon transitions directly from two spheres during the inspiral to a single sphere as the black holes merge. We present a coordinate transformation to a foliation of spacelike hypersurfaces that "cut a hole" through the event horizon surface, resulting in a toroidal event horizon. A torus could potentially provide a mechanism for violating topological censorship. However, these toroidal event horizons satisfy topological censorship by construction, because we can always trivially apply the inverse coordinate transformation to remove the topological feature.
Celebrating the Barrel Toroid commissioning
Peter Jenni
ATLAS invited Funding Agency representatives and Laboratory Heads directly related to the funding and construction of the Barrel Toroid for a small ceremony on 13th December 2006 at Point 1, in order to mark the successful first full excitation of the BT (see last eNews). On that date, which was during the December CERN Council week, several of the Funding Agency Heads or their representatives could be present, representing CEA France, INFN Italy, BMBF Germany, Spain, Sweden, Switzerland, Russia, JINR Dubna and CERN. Speeches were delivered by the ATLAS spokesperson Peter Jenni thanking the Funding Partners in the name of the Collaboration, by Magnet Project Leader Herman ten Kate tracing the BT construction history, and by the CERN Director-General Robert Aymar congratulating all those who have contributed to the successful project. Herman ten Kate addressing the delegates. The text of the introductory address by Peter Jenni is reproduced here. "It is a great pleasure for me to welcome you all here...
Toroidal eigenmodes in all-dielectric metamolecules
Tasolamprou, Anna C.; Tsilipakos, Odysseas; Kafesaki, Maria; Soukoulis, Costas M.; Economou, Eleftherios N.
2016-11-01
We present a thorough investigation of the electromagnetic resonant modes supported by systems of polaritonic rods placed at the vertices of canonical polygons. The study is conducted with rigorous finite-element eigenvalue simulations. To provide physical insight, the simulations are complemented with coupled mode theory (the analog of LCAO in molecular and solid state physics) and a lumped wire model capturing the coupling-caused reorganizations of the currents in each rod. The systems of rods, which form all-dielectric cyclic metamolecules, are found to support the unconventional toroidal dipole mode, consisting of the magnetic dipole mode in each rod. Besides the toroidal modes, the spectrally adjacent collective modes are identified. The evolution of all resonant frequencies with rod separation is examined. They are found to oscillate about the single-rod magnetic dipole resonance, a feature attributed to the leaky nature of the constituent modes. Importantly, we observe that ensembles of an odd number of rods produce larger frequency separation between the toroidal mode and its neighbor than the ones with an even number of rods. This increased spectral isolation, along with the low quality factor exhibited by the toroidal mode, favors the coupling of the commonly silent toroidal dipole to the outside world, rendering the proposed structure a prime candidate for controlling the observation of toroidal excitations and their interaction with the usually present electric dipole.
Toroidal Continuously Variable Transmission Systems: Terminology and Present Studies
Directory of Open Access Journals (Sweden)
Ahmet YILDIZ
2014-04-01
Full Text Available The use of continuously variable transmission systems in many different areas such as aerospace, robotics, machinery and automotive industries as an alternative to conventional speed changers with constant ratio becomes widely.Especially in the automotive industry, these systems have been used increasingly, since they enable that internal combustion engines in vehicles run at optimal speeds, and consequently provide considerable fuel savings and therefore lower emission values and also they provide powerful acceleration and quiet working. CVT systems have several constructive variants such as belted, chained, balled, toroidal etc. In this paper, toroidal CVT systems based on elastohydrodynamic principles are concerned with, and fundamental works of last two decades in this field are reviewed. However, the relevant terminology and dynamics along with the control of these systems are briefly treated for better understanding of the literature mentioned. Attention is drawn to the lack of some significant issues in present research works, and potential future works are pointed out. This paper, to the authors’ knowledge, will be the first review on toroidal CVT systems in Turkish literature
Ballooning mode spectrum in general toroidal systems
Energy Technology Data Exchange (ETDEWEB)
Dewar, R.L.; Glasser, A.H.
1982-04-01
A WKB formalism for constructing normal modes of short-wavelength ideal hydromagnetic, pressure-driven instabilities (ballooning modes) in general toroidal magnetic containment devices with sheared magnetic fields is developed. No incompressibility approximation is made. A dispersion relation is obtained from the eigenvalues of a fourth order system of ordinary differential equations to be solved by integrating along a line of force. Higher order calculations are performed to find the amplitude equation and the phase change at a caustic. These conform to typical WKB results. In axisymmetric systems, the ray equations are integrable, and semiclassical quantization leads to a growth rate spectrum consisting of an infinity of discrete eigenvalues, bounded above by an accumulation point. However, each eigenvalue is infinitely degenerate. In the nonaxisymmetric case, the rays are unbounded in a four dimensional phase space, and semiclassical quantization breaks down, leading to broadening of the discrete eigenvalues and accumulation point of the axisymmetric case into continuum bands. Analysis of a model problem indicates that the broadening of the discrete eigenvalues is numerically very small, the dominant effect being broadening of the accumulation point.
Turbulent Equipartition Theory of Toroidal Momentum Pinch
Energy Technology Data Exchange (ETDEWEB)
T.S. Hahm, P.H. Diamond, O.D. Gurcan, and G. Rewaldt
2008-01-31
The mode-independet part of magnetic curvature driven turbulent convective (TuroCo) pinch of the angular momentum density [Hahm et al., Phys. Plasmas 14,072302 (2007)] which was originally derived from the gyrokinetic equation, can be interpreted in terms of the turbulent equipartition (TEP) theory. It is shown that the previous results can be obtained from the local conservation of "magnetically weighted angular momentum density," nmi U|| R/B2, and its homogenization due to turbulent flows. It is also demonstrated that the magnetic curvature modification of the parallel acceleration in the nonlinear gyrokinetic equation in the laboratory frame, which was shown to be responsible for the TEP part of the TurCo pinch of angular momentum density in the previous work, is closely related to the Coriolis drift coupling to the perturbed electric field. In addition, the origin of the diffusive flux in the rotating frame is highlighted. Finally, it is illustratd that there should be a difference in scalings between the momentum pinch originated from inherently toroidal effects and that coming from other mechanisms which exist in a simpler geometry.
Turbulent equipartition theory of toroidal momentum pincha)
Hahm, T. S.; Diamond, P. H.; Gurcan, O. D.; Rewoldt, G.
2008-05-01
The mode-independent part of the magnetic curvature driven turbulent convective (TurCo) pinch of the angular momentum density [Hahm et al., Phys. Plasmas 14, 072302 (2007)], which was originally derived from the gyrokinetic equation, can be interpreted in terms of the turbulent equipartition (TEP) theory. It is shown that the previous results can be obtained from the local conservation of "magnetically weighted angular momentum density," nmiU∥R/B2, and its homogenization due to turbulent flows. It is also demonstrated that the magnetic curvature modification of the parallel acceleration in the nonlinear gyrokinetic equation in the laboratory frame, which was shown to be responsible for the TEP part of the TurCo pinch of angular momentum density in the previous work, is closely related to the Coriolis drift coupling to the perturbed electric field. In addition, the origin of the diffusive flux in the rotating frame is highlighted. Finally, it is illustrated that there should be a difference in scalings between the momentum pinch originated from inherently toroidal effects and that coming from other mechanisms that exist in a simpler geometry.
High-Quality-Factor Mid-Infrared Toroidal Excitation in Folded 3D Metamaterials.
Liu, Zhe; Du, Shuo; Cui, Ajuan; Li, Zhancheng; Fan, Yuancheng; Chen, Shuqi; Li, Wuxia; Li, Junjie; Gu, Changzhi
2017-05-01
With unusual electromagnetic radiation properties and great application potentials, optical toroidal moments have received increasing interest in recent years. 3D metamaterials composed of split ring resonators with specific orientations in micro-/nanoscale are a perfect choice for toroidal moment realization in optical frequency considering the excellent magnetic confinement and quality factor, which, unfortunately, are currently beyond the reach of existing micro-/nanofabrication techniques. Here, a 3D toroidal metamaterial operating in mid-infrared region constructed by metal patterns and dielectric frameworks is designed, by which high-quality-factor toroidal resonance is observed experimentally. The toroidal dipole excitation is confirmed numerically and further demonstrated by phase analysis. Furthermore, the far-field radiation intensity of the excited toroidal dipoles can be adjusted to be predominant among other multipoles by just tuning the incident angle. The related processing method expands the capability of focused ion beam folding technologies greatly, especially in 3D metamaterial fabrication, showing great flexibility and nanoscale controllability on structure size, position, and orientation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bifurcation to 3D helical magnetic equilibrium in an axisymmetric toroidal device.
Bergerson, W F; Auriemma, F; Chapman, B E; Ding, W X; Zanca, P; Brower, D L; Innocente, P; Lin, L; Lorenzini, R; Martines, E; Momo, B; Sarff, J S; Terranova, D
2011-12-16
We report the first direct measurement of the internal magnetic field structure associated with a 3D helical equilibrium generated spontaneously in the core of an axisymmetric toroidal plasma containment device. Magnetohydrodynamic equilibrium bifurcation occurs in a reversed-field pinch when the innermost resonant magnetic perturbation grows to a large amplitude, reaching up to 8% of the mean field strength. Magnetic topology evolution is determined by measuring the Faraday effect, revealing that, as the perturbation grows, toroidal symmetry is broken and a helical equilibrium is established. © 2011 American Physical Society
Bifurcation to 3D Helical Magnetic Equilibrium in an Axisymmetric Toroidal Device
Bergerson, W. F.; Auriemma, F.; Chapman, B. E.; Ding, W. X.; Zanca, P.; Brower, D. L.; Innocente, P.; Lin, L.; Lorenzini, R.; Martines, E.; Momo, B.; Sarff, J. S.; Terranova, D.
2011-12-01
We report the first direct measurement of the internal magnetic field structure associated with a 3D helical equilibrium generated spontaneously in the core of an axisymmetric toroidal plasma containment device. Magnetohydrodynamic equilibrium bifurcation occurs in a reversed-field pinch when the innermost resonant magnetic perturbation grows to a large amplitude, reaching up to 8% of the mean field strength. Magnetic topology evolution is determined by measuring the Faraday effect, revealing that, as the perturbation grows, toroidal symmetry is broken and a helical equilibrium is established.
Liu, Yueqiang; Ryan, D.; Kirk, A.; Li, Li; Suttrop, W.; Dunne, M.; Fischer, R.; Fuchs, J. C.; Kurzan, B.; Piovesan, P.; Willensdorfer, M.; the ASDEX Upgrade Team; the EUROfusion MST1 Team
2016-05-01
The plasma response to the vacuum resonant magnetic perturbation (RMP) fields, produced by the ELM control coils in ASDEX Upgrade experiments, is computationally modelled using the MARS-F/K codes (Liu et al 2000 Phys. Plasmas 7 3681, Liu et al 2008 Phys. Plasmas 15 112503). A systematic investigation is carried out, considering various plasma and coil configurations as in the ELM control experiments. The low q plasmas, with {{q}95}˜ 3.8 (q 95 is the safety factor q value at 95% of the equilibrium poloidal flux), responding to low n (n is the toroidal mode number) field perturbations from each single row of the ELM coils, generates a core kink amplification effect. Combining two rows, with different toroidal phasing, thus leads to either cancellation or reinforcement of the core kink response, which in turn determines the poloidal location of the peak plasma surface displacement. The core kink response is typically weak for the n = 4 coil configuration at low q, and for the n = 2 configuration but only at high q ({{q}95}˜ 5.5 ). A phase shift of around 60 degrees for low q plasmas, and around 90 degrees for high q plasmas, is found in the coil phasing, between the plasma response field and the vacuum RMP field, that maximizes the edge resonant field component. This leads to an optimal coil phasing of about 100 (-100) degrees for low (high) q plasmas, that maximizes both the edge resonant field component and the plasma surface displacement near the X-point of the separatrix. This optimal phasing closely corresponds to the best ELM mitigation observed in experiments. A strong parallel sound wave damping moderately reduces the core kink response but has minor effect on the edge peeling response. For low q plasmas, modelling shows that both the resonant electromagnetic torque and the neoclassical toroidal viscous (NTV) torque (due to the presence of 3D magnetic field perturbations) contribute to the toroidal flow damping, in particular near the
Packing of charged chains on toroidal geometries
Yao, Zhenwei; de la Cruz, Monica Olvera
2013-01-01
We study a strongly adsorbed flexible polyelectrolyte chain on tori. In this generalized Thomson problem, the patterns of the adsorbed chain are analyzed in the space of the toroidal coordinates and in terms of the orientation of each chain segment. Various patterns are found, including double spirals, disclination-like structures, Janus tori, and uniform wrappings, arising from the long-range electrostatic interaction and the toroidal geometry. Their broken mirror symmetry is quantitatively characterized by introducing an order parameter, an integral of the torsion. The uniform packing, which breaks the mirror symmetry the least, has the lowest value of the order parameter. In addition, it is found that the electrostatic energy of confined chains on tori conforms to a power law regardless of the screening effect in some typical cases studied. Furthermore, we study random walks on tori that generate chain configurations in the large screening limit or at large thermal fluctuation; some features associated with the toroidal geometry are discussed.
Absence of toroidal moments in 'aromagnetic' anthracene
Energy Technology Data Exchange (ETDEWEB)
Alborghetti, S; Coey, J M D [School of Physics, Trinity College, Dublin 2 (Ireland); Puppin, E; Brenna, M; Pinotti, E; Zanni, P [Dipartimento di Fisica, Politecnico di Milano, Milano (Italy)], E-mail: alborgs@tcd.ie
2008-06-15
Colloidal suspensions of anthracene and other aromatic compounds have been shown to respond to a magnetic field as if they possessed a permanent magnetic moment. This phenomenon was named 'aromagnetism' by Spartakov and Tolstoi, and it was subsequently attributed to the interaction of an electric toroidal moment with a time-varying magnetic field. However, there has been no independent confirmation of the original work. Here, we have selected purified anthracene crystallites which respond to a low magnetic field and investigate how this response depends on the gradient and the time derivative of the field. We conclude that the anomaly cannot be attributed to a toroidal interaction but is due to a constant magnetic moment of the particles. Close examinations using magnetometry and scanning electron microscopy reveal metallic clusters of Fe and Ni up to a few hundred nanometres in size embedded in the anomalous crystallites. These inclusions represent 1.8 ppm by weight of the sample. The observed presence of ferromagnetic inclusions in the ppm range is sufficient to explain the anomalous magnetic properties of micron-sized anthracene crystals, including the reported optical properties of the colloidal suspensions.
Krasnitsky, Y. A.; Popov, A. E.; Kalnacs, A.
2015-08-01
Distortions of the structure of a uniform electric field when a dielectric body with a toroidal shape is placed in it are considered in the quasi-static approximation. The rate of distortion is proposed to estimate through the effective permittivity of toroid determined by solving the corresponding boundary value problem. Some numerical estimates obtained using specially developed software in the language of Matlab are given. Darbā apskatīts kvazi-statisks tuvinājums viendabīga elektriskā lauka izkropļojumiem gadījumos, kad tajā tiek ievietots dielektrisks toroīda formas ķermenis. Izkropļojumu apmēru tiek piedāvāts novērtēt ar toroīda efektīvo caurlaidību, kas tiek noteikta, atrisinot atbilstošo robežvērtību uzdevumu. Tiek doti skaitliski novērtējumi, kas iegūti, lietojot speciāli valodā Matlab izstrādātu programmatūru.
Energy Technology Data Exchange (ETDEWEB)
Ardela, A.; Cooper, W.A. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)
1996-09-01
In this paper we resume a numerical study of the global stability of plasma with helical boundary deformation and non null net toroidal current. The aim was to see whether external modes with n=1,2 (n toroidal mode number) can be stabilized at values of {beta} inaccessible to the tokamak. L=2,3 configurations with several aspect ratios and different numbers of equilibrium field periods are considered. A large variety of toroidal current densities and different pressure profiles are taken into account. Mercier stability is also investigated. (author) 4 figs., 6 refs.
Some properties of toroidal isodynamic magnetostatic equilibria
Energy Technology Data Exchange (ETDEWEB)
Aly, J.-J. [AIM, Unite Mixte de Recherche CEA, CNRS, Universite Paris VII, UMR no 7158, Centre d' Etudes de Saclay, F-91191 Gif sur Yvette Cedex (France)
2011-09-15
We establish some general properties of a 3D isodynamic magnetostatic equilibrium admitting a family of nested toroidal flux surfaces. In particular, we use the virial theorem to prove a simple relation between the total pressure (magnetic + thermal) and the magnetic pressure on each flux surface, and we derive some useful consequences of the latter. We also show the constancy on each rational surface of two integrals along magnetic lines. As a simple application of our results, we show the nonexistence of an equilibrium with vanishing toroidal current, and of an equilibrium with closed lines.
Toroidal Precession as a Geometric Phase
Energy Technology Data Exchange (ETDEWEB)
J.W. Burby and H. Qin
2012-09-26
Toroidal precession is commonly understood as the orbit-averaged toroidal drift of guiding centers in axisymmetric and quasisymmetric configurations. We give a new, more natural description of precession as a geometric phase effect. In particular, we show that the precession angle arises as the holonomy of a guiding center's poloidal trajectory relative to a principal connection. The fact that this description is physically appropriate is borne out with new, manifestly coordinate-independent expressions for the precession angle that apply to all types of orbits in tokamaks and quasisymmetric stellarators alike. We then describe how these expressions may be fruitfully employed in numerical calculations of precession.
Observation of Central Toroidal Rotation Induced by ICRF on EAST
Pan, Xiayun; Wang, Fudi; Zhang, Xinjun; Lyu, Bo; Chen, Jun; Li, Yingying; Fu, Jia; Shi, Yuejiang; Yu, Yi; Ye, Minyou; Wan, Baonian
2016-02-01
Core plasma rotation of both L-mode and H-mode discharges with ion cyclotron range of frequency (ICRF) minority heating (MH) scheme was measured with a tangential X-ray imaging crystal spectrometer on EAST (Experimental Advanced Superconducting Tokamak). Co-current central impurity toroidal rotation change was observed in ICRF-heated L- and H-mode plasmas. Rotation increment as high as 30 km/s was generated at ∼1.7 MW ICRF power. Scaling results showed similar trend as the Rice scaling but with significant scattering, especially in L-mode plasmas. We varied the plasma current, toroidal field and magnetic configuration individually to study their effect on L-mode plasma rotation, while keeping the other major plasma parameters and heating unchanged during the scanning. It was found that larger plasma current could induce plasma rotation more efficiently. A scan of the toroidal magnetic field indicated that the largest rotation was obtained for on-axis ICRF heating. A comparison between lower-single-null (LSN) and double-null (DN) configurations showed that LSN discharges rendered a larger rotation change for the same power input and plasma parameters. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB112004 and 2015GB103002), National Natural Science Foundation of China (Nos. 11175208, 11305212, 11375235, 11405212 and 11261140328), the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology (2014FXCX003) and Brain Korea 21 Program for Leading Universities & Students (BK21 PLUS)
Toroidally Resolved Structure of Divertor Heat Flux in RMP H-mode Discharges on DIII-D
Energy Technology Data Exchange (ETDEWEB)
Jakubowski, M. W. [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Evans, T.E. [General Atomics, San Diego; Fenstermacher, M. E. [Lawrence Livermore National Laboratory (LLNL); Lasnier, C. J. [Lawrence Livermore National Laboratory (LLNL); Wolf, R. C. [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Baylor, Larry R [ORNL; Boedo, J.A. [University of California, San Diego; Burrell, K. H. [General Atomics; DeGrassie, J. S. [General Atomics, San Diego; Gohil, P. [General Atomics; Mordijck, S. [University of California, San Diego; Laengner, R. [Forschungszentrum Julich, Julich, Germany; Leonard, A. W. [General Atomics; Moyer, R.A. [University of California, San Diego; Petrie, T. W. [General Atomics, San Diego; Petty, C C. [General Atomics, San Diego; Pinsker, R. I. [General Atomics, San Diego; Rhodes, T. L. [University of California, Los Angeles; Schaffer, M. J. [General Atomics, San Diego; Schmitz, O. [Forschungszentrum Julich, Julich, Germany; Snyder, P. B. [General Atomics; Stoschus, H. [EURATOM / FZ-Juelich, Germany; Osborne, T. H. [General Atomics; Orlov, D. M. [University of California, San Diego & La Jolla; Unterberg, Ezekial A [ORNL; Watkins, J. G. [Sandia National Laboratories (SNL)
2011-01-01
As shown on DIII-D edge localized modes (ELMs) can be either completely eliminated or mitigated with resonant magnetic perturbation (RMP) fields. Two infrared cameras, separated 105 degrees toroidally, were used to make simultaneous measurements of ELM heat loads with high frame rates. Without the RMP fields ELMs display a variety of different heat load dynamics and a range of toroidal variability that is characteristic of their 3D structure. Comparing radial averages there is no asymmetry between two toroidal locations. With RMP-mitigated ELMs, the variability in the radially averaged power loads is significantly reduced and toroidal asymmetries in power loads are introduced. In addition to RMP ELM suppression scenarios an RMP scenario with only very small ELMs and very good confinement has been achieved.
Quantum toroidal algebras and their vertex representations
Saitô, Y
1996-01-01
We construct the vertex representations of the quantum toroidal algebras $U_q({\\frak {sl}}_{n+1,tor})$. In the classical case the vertex representations are not irreducible. However in the quantum case they are irreducible. For n=1, we construct a set of finitely many generators of $U_q({\\frak {sl}}_{2,tor})$.
Tearing Mode Stability with Sheared Toroidal Flows
White, Ryan; Coppi, Bruno
2016-10-01
Toroidal plasma flow induced by neutral beam heating has been found to increase the stability of tearing modes in tokamak plasmas. The need to extrapolate current (experimentally-based) knowledge of tearing mode onset to future machines, requiresa better understanding of the essential physics. We consider the physics of flow near the rational surfaces. For realistic flow profiles, the velocity shear near the rational surface can be treated as a perturbation, and is found to amplify the dominant stabilizing effect of magnetic curvature. This effect can be seen using a cylindrical model if large-aspect-ratio corrections to the magnetic curvature are incorporated. On the other hand, the physical effects of toroidal rotation are completely absent in a cylinder, and require a fully-toroidal calculation to study. The toroidal rotation near the rational surface is found to couple to a geometrical parameter which vanishes for up-down symmetric profiles. Physically, the dominant effects of rotation arise from a Coriolis force, leading to flow directional dependence. This work is supported by the US DOE.
Toroidal surfaces compared with spherocylindrical surfaces
Malacara-Doblado, Daniel; Malacara-Hernandez, Daniel; Garcia-Marquez, Jorge L.
1995-08-01
Toroidal and sphero-cylindrical optical surfaces are two different kinds of surfaces (Menchaca and Malacara, 1986), but they are almost identical in the vicinity of the optical axis. The separation between these two surfaces increases when the distance to the optical axis increases. In this work the separation between these two surfaces outside of the central region is analytically studied.
Reduced Magnetohydrodynamic Equations in Toroidal Geometry
Institute of Scientific and Technical Information of China (English)
REN Shen-Ming; YU Guo-Yang
2001-01-01
By applying a new assumption of density, I.e. R2 p = const, the continuity equation is satisfied to the order ofe2`+with e being the inverse aspect ratio. In the case of large aspect ratio, a set of reduced magnetohydrodynamicequations in toroidal geometry are obtained. The new assumption about the density is supported by experimentalobservation to some extent.
Trapped ion mode in toroidally rotating plasmas
Energy Technology Data Exchange (ETDEWEB)
Artun, M.; Tang, W.M.; Rewoldt, G.
1995-04-01
The influence of radially sheared toroidal flows on the Trapped Ion Mode (TIM) is investigated using a two-dimensional eigenmode code. These radially extended toroidal microinstabilities could significantly influence the interpretation of confinement scaling trends and associated fluctuation properties observed in recent tokamak experiments. In the present analysis, the electrostatic drift kinetic equation is obtained from the general nonlinear gyrokinetic equation in rotating plasmas. In the long perpendicular wavelength limit k{sub {tau}}{rho}{sub bi} {much_lt} 1, where {rho}{sub bi} is the average trapped-ion banana width, the resulting eigenmode equation becomes a coupled system of second order differential equations nmo for the poloidal harmonics. These equations are solved using finite element methods. Numerical results from the analysis of low and medium toroidal mode number instabilities are presented using representative TFTR L-mode input parameters. To illustrate the effects of mode coupling, a case is presented where the poloidal mode coupling is suppressed. The influence of toroidal rotation on a TFTR L-mode shot is also analyzed by including a beam species with considerable larger temperature. A discussion of the numerical results is presented.
Dynamical model for the toroidal sporadic meteors
Energy Technology Data Exchange (ETDEWEB)
Pokorný, Petr; Vokrouhlický, David [Institute of Astronomy, Charles University, V Holešovičkách 2, CZ-18000 Prague 8 (Czech Republic); Nesvorný, David [Department of Space Studies, Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Campbell-Brown, Margaret; Brown, Peter, E-mail: petr.pokorny@volny.cz, E-mail: vokrouhl@cesnet.cz, E-mail: davidn@boulder.swri.edu, E-mail: margaret.campbell@uwo.ca, E-mail: pbrown@uwo.ca [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada)
2014-07-01
More than a decade of radar operations by the Canadian Meteor Orbit Radar have allowed both young and moderately old streams to be distinguished from the dispersed sporadic background component. The latter has been categorized according to broad radiant regions visible to Earth-based observers into three broad classes: the helion and anti-helion source, the north and south apex sources, and the north and south toroidal sources (and a related arc structure). The first two are populated mainly by dust released from Jupiter-family comets and new comets. Proper modeling of the toroidal sources has not to date been accomplished. Here, we develop a steady-state model for the toroidal source of the sporadic meteoroid complex, compare our model with the available radar measurements, and investigate a contribution of dust particles from our model to the whole population of sporadic meteoroids. We find that the long-term stable part of the toroidal particles is mainly fed by dust released by Halley type (long period) comets (HTCs). Our synthetic model reproduces most of the observed features of the toroidal particles, including the most troublesome low-eccentricity component, which is due to a combination of two effects: particles' ability to decouple from Jupiter and circularize by the Poynting-Robertson effect, and large collision probability for orbits similar to that of the Earth. Our calibrated model also allows us to estimate the total mass of the HTC-released dust in space and check the flux necessary to maintain the cloud in a steady state.
Directory of Open Access Journals (Sweden)
Benedito Antonio Luciano
2012-10-01
Full Text Available In this paper are presented theoretical analysis and experimental results concerning the performance of toroidal cores used in current transformers. For most problems concerning transformers design, analytical methods are useful, but numerical methods provide a better understanding of the transformers electromagnetic behaviour. Numerical field solutions may be used to determine the electrical equivalent circuit parameters of toroidal core current transformers. Since the exciting current of current transformers alters the ratio and phase angle of primary and secondary currents, it is made as small as possible though the use of high permeability and low loss magnetic material in the construction of the core. According to experimental results presented in this work, in comparison with others soft magnetic materials, nanocrystalline alloys appear as the best material to be used in toroidal core for current transformers.
Stability of the toroidicity-induced Alfven eigenmode in axisymmetric toroidal equilibria
Energy Technology Data Exchange (ETDEWEB)
Fu, G.Y.; Cheng, C.Z.; Wong, K.L.
1993-09-01
The stability of toroidicity-induced Alfven eigenmodes (TAE) is investigated in general tokamak equilibria with finite aspect ratio and finite plasma beta. The finite orbit width of the hot particles and the collisional damping of the trapped electrons are included. For the trapped hot particles, the finite orbit width is found to be stabilizing. For the circulating hot particles, the finite orbit width effect is stabilizing for larger values of v{sub h}/v{sub A} (> 1) and destabilizing for smaller values of v{sub h}/v{sub A} (< 1), where v{sub h} is the hot particle speed and v{sub A} is the Alfven speed. The collisional damping of the trapped electrons is found to have a much weaker dependence on the collision frequency than the previous analytic results. The contribution of the curvature term to the trapped electron collisional damping is negligible compared to that of the parallel electric field term for typical parameters. The calculated critical hot particle beta values for the TAE instability are consistent with the experimental measurements.
3D toroidal physics: testing the boundaries of symmetry breaking
Spong, Don
2014-10-01
Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to lead to a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D ELM-suppression fields to stellarators with more dominant 3D field structures. There is considerable interest in the development of unified physics models for the full range of 3D effects. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. Fortunately, significant progress is underway in theory, computation and plasma diagnostics on many issues such as magnetic surface quality, plasma screening vs. amplification of 3D perturbations, 3D transport, influence on edge pedestal structures, MHD stability effects, modification of fast ion-driven instabilities, prediction of energetic particle heat loads on plasma-facing materials, effects of 3D fields on turbulence, and magnetic coil design. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with future fusion reactors. The development of models to address 3D physics and progress in these areas will be described. This work is supported both by the US Department of Energy under Contract DE
Toroidal dipole excitations in metamolecules formed by interacting plasmonic nanorods
Watson, Derek W; Ruostekoski, Janne; Fedotov, Vassili A; Zheludev, Nikolay I
2015-01-01
We show how the elusive toroidal dipole moment appears as a radiative excitation eigenmode in a metamolecule resonator that is formed by pairs of plasmonic nanorods. We analyze one such nanorod configuration - a toroidal metamolecule. We find that the radiative interactions in the toroidal metamolecule can be qualitatively represented by a theoretical model based on an electric point dipole arrangement. Both a finite-size rod model and the point dipole approximation demonstrate how the toroidal dipole moment is subradiant and difficult to excite by incident light. By means of breaking the geometric symmetry of the metamolecule, the toroidal mode can be excited by linearly polarized light and we provide simple optimization protocols for maximizing the toroidal dipole mode excitation. This opens up possibilities for simplified control and driving of metamaterial arrays consisting of toroidal dipole unit-cell resonators.
Reynolds stress of localized toroidal modes
Energy Technology Data Exchange (ETDEWEB)
Zhang, Y.Z. [International Center for Theoretical Studies, Trieste (Italy); Mahajan, S.M. [Univ. of Texas, Austin, TX (United States). Institute for Fusion Studies
1995-02-01
An investigation of the 2D toroidal eigenmode problem reveals the possibility of a new consistent 2D structure, the dissipative BM-II mode. In contrast to the conventional ballooning mode, the new mode is poloidally localized at {pi}/2 (or -{pi}/2), and possesses significant radial asymmetry. The radial asymmetry, in turn, allows the dissipative BM-II to generate considerably larger Reynolds stress as compared to the standard slab drift type modes. It is also shown that a wide class of localized dissipative toroidal modes are likely to be of the dissipative BM-II nature, suggesting that at the tokamak edge, the fluctuation generated Reynolds stress (a possible source of poloidal flow) can be significant.
Alpha heating in toroidal devices
Energy Technology Data Exchange (ETDEWEB)
Miley, G.H.
1978-01-01
Ignition (or near-ignition) by alpha heating is a key objective for the achievement of economic fusion reactors. While good confinement of high-energy alphas appears possible in larger reactors, near-term tokamak-type ignition experiments as well as some concepts for small reactors (e.g., the Field-Reversed Mirror or FRM) potentially face marginal situations. Consequently, there is a strong motivation to develop methods to evaluate alpha losses and heating profiles in some detail. Such studies for a TFTR-size tokamak and for a small FRM are described here.
Baryonic torii: Toroidal baryons in a generalized Skyrme model
Gudnason, Sven Bjarke; Nitta, Muneto
2015-02-01
We study a Skyrme-type model with a potential term motivated by Bose-Einstein condensates (BECs), which we call the BEC Skyrme model. We consider two flavors of the model: the first is the Skyrme model, and the second has a sixth-order derivative term instead of the Skyrme term, both with the added BEC-motivated potential. The model contains toroidally shaped Skyrmions, and they are characterized by two integers P and Q , representing the winding numbers of two complex scalar fields along the toroidal and poloidal cycles of the torus, respectively. The baryon number is B =P Q . We find stable Skyrmion solutions for P =1 ,2 ,3 ,4 ,5 with Q =1 , while for P =6 and Q =1 , it is only metastable. We further find that configurations with higher Q >1 are all unstable and split into Q configurations with Q =1 . Finally we discover a phase transition, possibly of first order, in the mass parameter of the potential under study.
Shilon, I; Silva, H; Kate, H H J ten
2013-01-01
The International AXion Observatory (IAXO) will incorporate a new generation detector for axions, a hypothetical particle, which was postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP problem. The new IAXO experiment is aiming at achieving a sensitivity to the coupling between axions and photons of one order of magnitude beyond the limits of the current state-of-the-art detector, represented by the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions into x-ray photons. Utilizing the designs of the ATLAS barrel and end-cap toroids, a large superconducting toroidal magnet is currently being designed at CERN to provide the required magnetic field. The new toroid will be built up from eight, one meter wide and 20 m long, racetrack coils. The toroid is sized about 4 m in diameter and 22 m in length. It is designed to realize a peak magnetic field of 5.4 T with a ...
Shaing, K. C.; Sabbagh, S. A.
2016-07-01
Theory for neoclassical toroidal plasma viscosity has been developed to model transport phenomena, especially, toroidal plasma rotation for tokamaks with broken symmetry. Theoretical predictions are in agreement with the results of the numerical codes in the large aspect ratio limit. The theory has since been extended to include effects of finite aspect ratio and finite plasma β. Here, β is the ratio of the plasma thermal pressure to the magnetic field pressure. However, there are cases where the radial wavelength of the self-consistent perturbed magnetic field strength B on the perturbed magnetic surface is comparable to the width of the trapped particles, i.e., bananas. To accommodate those cases, the theory for neoclassical toroidal plasma viscosity is further extended here to include the effects of the finite banana width. The extended theory is developed using the orbit averaged drift kinetic equation in the low collisionality regimes. The results of the theory can now be used to model plasma transport, including toroidal plasma rotation, in real finite aspect ratio, and finite plasma β tokamaks with the radial wavelength of the perturbed symmetry breaking magnetic field strength comparable to or longer than the banana width.
A toroidal trap for the cold $^{87}Rb$ atoms using a rf-dressed quadrupole trap
Chakraborty, A; Ram, S P; Tiwari, S K; Rawat, H S
2015-01-01
We demonstrate the trapping of cold $^{87}Rb$ atoms in a toroidal geometry using a rf-dressed quadrupole magnetic trap formed by superposing a strong radio frequency (rf) field on a quadrupole trap. This rf-dressed quadrupole trap has minimum of the potential away from the quadrupole trap centre on a circular path which facilitates the trapping in the toroidal geometry. In the experiments, the laser cooled atoms were first trapped in the quadrupole trap, then cooled evaporatively using a weak rf-field, and finally trapped in the rf-dressed quadrupole trap. The radius of the toroid could be varied by varying the frequency of the dressing rf-field. It has also been demonstrated that a single rf source and an antenna can be used for the rf-evaporative cooling as well as for rf-dressing of atoms. The atoms trapped in the toroidal trap may have applications in realization of an atom gyroscope as well as in studying the quantum gases in low dimensions.
METHODS TO DEVELOP A TOROIDAL SURFACE
Directory of Open Access Journals (Sweden)
DANAILA Ligia
2017-05-01
Full Text Available The paper work presents two practical methods to draw the development of a surface unable to be developed applying classical methods of Descriptive Geometry, the toroidal surface, frequently met in technical practice. The described methods are approximate ones; the development is obtained with the help of points. The accuracy of the methods is given by the number of points used when drawing. As for any other approximate method, when practically manufactured the development may need to be adjusted on site.
Physics of collapses in toroidal helical plasmas
Energy Technology Data Exchange (ETDEWEB)
Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae; Fukuyama, Atsushi; Yagi, Masatoshi
1998-12-31
Theoretical model for the collapse events in toroidal helical plasmas with magnetic hill is presented. There exists a turbulent-turbulent transition at a critical pressure gradient, leading to a sudden increase of the anomalous transport. When the magnetic shear is low, the nonlinear excitation of the global mode is possible. This model explains an abrupt growth of the perturbations, i.e., the trigger phenomena. Achievable limit of the plasma beta value is discussed. (author)
Geppert, U; Page, D; Page, Dany
2005-01-01
We continue the study of the effects of a strong magnetic field on the temperature distribution in the crust of a magnetized neutron star (NS) and its impact on the observable surface temperature. Extending the approach initiated in Geppert et al.(2004), we consider more complex and, hence, more realistic, magnetic field structures but still restrict ourselves to axisymmetric configurations. We put special emphasis on the heat blanketing effect of a toroidal field component. We show that asymmetric temperature distributions can occur and a crustal field consisting of dipolar poloidal and toroidal components will cause one polar spot to be larger than the opposing one. These two warm regions can be separated by an extended cold equatorial belt. We present an internal magnetic field structure which can explain both the X-ray and optical spectra of the isolated NS RXJ 1856-3754. We investigate the effects of the resulting surface temperature profiles on the observable lightcurve which an isolated thermally emitt...
Transport and Dynamics in Toroidal Fusion Systems
Energy Technology Data Exchange (ETDEWEB)
Sovinec, Carl [Univ. of Wisconsin, Madison, WI (United States)
2016-09-07
The study entitled, "Transport and Dynamics in Toroidal Fusion Systems," (TDTFS) applied analytical theory and numerical computation to investigate topics of importance to confining plasma, the fourth state of matter, with magnetic fields. A central focus of the work is how non-thermal components of the ion particle distribution affect the "sawtooth" collective oscillation in the core of the tokamak magnetic configuration. Previous experimental and analytical research had shown and described how the oscillation frequency decreases and amplitude increases, leading to "monster" or "giant" sawteeth, when the non-thermal component is increased by injecting particle beams or by exciting ions with imposed electromagnetic waves. The TDTFS study applied numerical computation to self-consistently simulate the interaction between macroscopic collective plasma dynamics and the non-thermal particles. The modeling used the NIMROD code [Sovinec, Glasser, Gianakon, et al., J. Comput. Phys. 195, 355 (2004)] with the energetic component represented by simulation particles [Kim, Parker, Sovinec, and the NIMROD Team, Comput. Phys. Commun. 164, 448 (2004)]. The computations found decreasing growth rates for the instability that drives the oscillations, but they were ultimately limited from achieving experimentally relevant parameters due to computational practicalities. Nonetheless, this effort provided valuable lessons for integrated simulation of macroscopic plasma dynamics. It also motivated an investigation of the applicability of fluid-based modeling to the ion temperature gradient instability, leading to the journal publication [Schnack, Cheng, Barnes, and Parker, Phys. Plasmas 20, 062106 (2013)]. Apart from the tokamak-specific topics, the TDTFS study also addressed topics in the basic physics of magnetized plasma and in the dynamics of the reversed-field pinch (RFP) configuration. The basic physics work contributed to a study of two-fluid effects on interchange dynamics, where
Toroid cavity/coil NMR multi-detector
Gerald, II, Rex E.; Meadows, Alexander D.; Gregar, Joseph S.; Rathke, Jerome W.
2007-09-18
An analytical device for rapid, non-invasive nuclear magnetic resonance (NMR) spectroscopy of multiple samples using a single spectrometer is provided. A modified toroid cavity/coil detector (TCD), and methods for conducting the simultaneous acquisition of NMR data for multiple samples including a protocol for testing NMR multi-detectors are provided. One embodiment includes a plurality of LC resonant circuits including spatially separated toroid coil inductors, each toroid coil inductor enveloping its corresponding sample volume, and tuned to resonate at a predefined frequency using a variable capacitor. The toroid coil is formed into a loop, where both ends of the toroid coil are brought into coincidence. Another embodiment includes multiple micro Helmholtz coils arranged on a circular perimeter concentric with a central conductor of the toroid cavity.
An overview on research developments of toroidal continuously variable transmissions
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
As environmental protection agencies enact new regulations for automotive fuel economy and emission, the toroidal continuously variable transmissions (CVTs) keep on contribute to the advent of system technologies for better fuel consumption of automobiles with internal combustion engines (ICE). Toroidal CVTs use infinitely adjustable drive ratios instead of stepped gears to achieve optimal performance. Toroidal CVTs are one of the earliest patents to the automotive world but their torque capacities and reliability have limitations in the past. New developments and implementations in the control strategies, and several key technologies have led to development of more robust toroidal CVTs, which enables more extensive automotive application of toroidal CTVs. This paper concerns with the current development, upcoming and progress set in the context of the past development and the traditional problems associated with toroidal CVTs.
Landau damping of geodesic acoustic mode in toroidally rotating tokamaks
Energy Technology Data Exchange (ETDEWEB)
Ren, Haijun, E-mail: hjren@ustc.edu.cn [CAS Key Laboratory of Geospace Environment, The Collaborative Innovation Center for Advanced Fusion Energy and Plasma Science, and Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Cao, Jintao [Bejing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2015-06-15
Geodesic acoustic mode (GAM) is analyzed by using modified gyro-kinetic (MGK) equation applicable to low-frequency microinstabilities in a rotating axisymmetric plasma. Dispersion relation of GAM in the presence of arbitrary toroidal Mach number is analytically derived. The effects of toroidal rotation on the GAM frequency and damping rate do not depend on the orientation of equilibrium flow. It is shown that the toroidal Mach number M increases the GAM frequency and dramatically decreases the Landau damping rate.
Transport Bifurcation Induced by Sheared Toroidal Flow in Tokamak Plasmas
Highcock, E G; Parra, F I; Schekochihin, A A; Roach, C M; Cowley, S C
2011-01-01
First-principles numerical simulations are used to describe a transport bifurcation in a differentially rotating tokamak plasma. Such a bifurcation is more probable in a region of zero magnetic shear, where the component of the sheared toroidal flow that is perpendicular to the magnetic field has the strongest suppressing effect on the turbulence, than one of finite magnetic shear. Where the magnetic shear is zero, there are no growing linear eigenmodes at any finite value of flow shear. However, subcritical turbulence can be sustained, owing to the transient growth of modes driven by the ion temperature gradient (ITG) and the parallel velocity gradient (PVG). Nonetheless, in a parameter space containing a wide range of temperature gradients and velocity shears, there is a sizeable window where all turbulence is suppressed. Combined with the relatively low transport of momentum by collisional (neoclassical) mechanisms, this produces the conditions for a bifurcation from low to high temperature and velocity gr...
On the interaction of turbulence and flows in toroidal plasmas
Energy Technology Data Exchange (ETDEWEB)
Stroth, U; Manz, P; Ramisch, M [Institut fuer Plasmaforschung, Universitaet Stuttgart, 70569 Stuttgart (Germany)
2011-02-15
In toroidally confined plasmas, background E x B flows, microturbulence and zonal flows constitute a tightly coupled dynamic system and the description of confinement transitions needs a self-consistent treatment of these players. The background radial electric field, linked to neoclassical ambipolar transport, has an impact on the interaction between zonal flows and turbulence by tilting and anisotropization of turbulent eddies. Zonal-flow drive is shown to be non-local in wavenumber space and is described as a straining-out process instead as a local inverse cascade. The straining-out process is also discussed as an option to explain turbulence suppression in sheared flows and could be the cause of predator-prey oscillations in the turbulence zonal-flow system.
Reference Magnetic Coordinates (RMC) for toroidal confinement systems
Zakharov, Leonid; Kolemen, Egemen; Lazerson, Samuel
2012-03-01
Because of intrinsic anisotropy of high temperature plasma with respect to magnetic field, use of proper coordinates is of high priority for both theory and numerical methods. While in axisymmetric case, the poloidal flux function Y(r,z)=const determines proper flux coordinates, in 3-D, such a function does not exist. The destruction of nested magnetic surfaces even by small 3-D perturbations leads to a sudden change of topology of magnetic field. As a result, the coordinate systems can no longer be based on tracing the magnetic field lines resulting in difficulties for theory and 3-D numerical simulations. The RMC coordinates a,θ,ζ presented here (introduced in 1998 but not really used) are nested toroidal coordinates, which are best aligned with an ergodic confinement fields. In particular, in RMC the vector potential of the magnetic field has an irreducible form A = φ00(a)∇θ +[Y00(a) +ψ^*(a,θ,ζ)]∇ζ , where 3-D function ψ^* contains only resonant Fourier harmonics of angle coordinates. RMC can be generated and advanced using a fast (Newton) algorithm not involving the field line tracing.
Permanent magnetic toroidal drive with half stator
Directory of Open Access Journals (Sweden)
Lizhong Xu
2017-01-01
Full Text Available A permanent magnetic toroidal drive with a half stator is proposed that avoids noise and mechanical vibrations. The effects of the system parameters on the output torque of the drive were investigated. A model machine was designed and produced. The output torque and speed fluctuation of the drive system were measured, and the calculated and measured output torque were compared. The tests demonstrated that the drive system could operate continuously without noise, and the system achieved a given speed ratio. The drive system had high load-carrying ability and a maximum output torque of 0.15 N m when certain parameter values were used.
Toroidal membrane vesicles in spherical confinement
Bouzar, Lila; Müller, Martin Michael
2015-01-01
We investigate the morphology of a toroidal fluid membrane vesicle confined inside a spherical container. The equilibrium shapes are assembled in a geometrical phase diagram as a function of scaled area and reduced volume of the membrane. For small area the vesicle can adopt its free form. When increasing the area, the membrane cannot avoid contact and touches the confining sphere along a circular contact line, which extends to a zone of contact for higher area. The elastic energies of the equilibrium shapes are compared to those of their confined counterparts of spherical topology to predict under which conditions a topology change is favored energetically.
Toroidal membrane vesicles in spherical confinement
Bouzar, Lila; Menas, Ferhat; Müller, Martin Michael
2015-09-01
We investigate the morphology of a toroidal fluid membrane vesicle confined inside a spherical container. The equilibrium shapes are assembled in a geometrical phase diagram as a function of scaled area and reduced volume of the membrane. For small area the vesicle can adopt its free form. When increasing the area, the membrane cannot avoid contact and touches the confining sphere along a circular contact line, which extends to a zone of contact for higher area. The elastic energies of the equilibrium shapes are compared to those of their confined counterparts of spherical topology to predict under which conditions a topology change is favored energetically.
Polar interface phonons in ionic toroidal systems.
Nguyen, N D; Evrard, R; Stroscio, Michael A
2016-09-01
We use the dielectric continuum model to obtain the polar (Fuchs-Kliewer like) interface vibration modes of toroids made of ionic materials either embedded in a different material or in vacuum, with applications to nanotoroids specially in mind. We report the frequencies of these modes and describe the electric potential they produce. We establish the quantum-mechanical Hamiltonian appropriate for their interaction with electric charges. This Hamiltonian can be used to describe the effect of this interaction on different types of charged particles either inside or outside the torus.
3D Printing the ATLAS' barrel toroid
Goncalves, Tiago Barreiro
2016-01-01
The present report summarizes my work as part of the Summer Student Programme 2016 in the CERN IR-ECO-TSP department (International Relations – Education, Communication & Outreach – Teacher and Student Programmes). Particularly, I worked closely with the S’Cool LAB team on a science education project. This project included the 3D designing, 3D printing, and assembling of a model of the ATLAS’ barrel toroid. A detailed description of the project' development is presented and a short manual on how to use 3D printing software and hardware is attached.
Generation of rotational flows in toroidally confined visco-resistive magnetohydrodynamics
Morales, Jorge; Bos, Wouter; Schneider, Kai; Montgomery, David
2015-11-01
We investigate by numerical simulation the generation of rotational flows in a toroid confining a conducting magnetofluid. A current is driven by the application of externally supported electric and magnetic fields. We show how the properties and intensity of the rotations are regulated by dimensionless numbers (Lundquist and viscous Lundquist) that contain the resistivity and viscosity of the magnetofluid. At the magnetohydrodynamic level (uniform mass density and incompressible magnetofluids), rotational flows appear in toroidal, driven MHD. The evolution of these flows with the transport coefficients, geometry, and safety factor are described. Two different toroidal geometries are considered, one with an up-down symmetric and the other with an asymmetric cross section. We show that there exists a fundamental difference between both studied cases: the volume-averaged angular momentum is zero for the symmetric case, while for the asymmetric cross section a finite volume-averaged angular momentum appears. We observe a breaking in the up-down symmetry of the flow and a toroidal preferred direction emerges.
An integral equation-based numerical solver for Taylor states in toroidal geometries
O'Neil, Michael
2016-01-01
We develop an algorithm for the numerical calculation of Taylor states (also known as Beltrami, or force-free fields) in toroidal and toroidal-shell geometries using an analytical framework developed for the solution to the time-harmonic Maxwell equations. The scheme relies on the generalized Debye source representation of Maxwell fields and an integral representation of Beltrami fields which immediately yields a well-conditioned second-kind integral equation. This integral equation has a unique solution whenever the Beltrami parameter $\\lambda$ is not a member of a discrete, countable set of resonances which physically correspond to spontaneous symmetry breaking in the plasma. Several numerical examples relevant to magnetohydrodynamic equilibria calculations are provided. Lastly, our approach easily generalizes to arbitrary geometries, both bounded and unbounded, and of varying genus.
Performance of a Folded-Strip Toroidally Wound Induction Machine
DEFF Research Database (Denmark)
Jensen, Bogi Bech; Jack, Alan G.; Atkinson, Glynn J.
2011-01-01
This paper presents the measured experimental results from a four-pole toroidally wound induction machine, where the stator is constructed as a pre-wound foldable strip. It shows that if the machine is axially restricted in length, the toroidally wound induction machine can have substantially...
Parametric design studies of toroidal magnetic energy storage units
Herring, J. Stephen
Superconducting magnetic energy storage (SMES) units have a number of advantages as storage devices. Electrical current is the input, output and stored medium, allowing for completely solid-state energy conversion. The magnets themselves have no moving parts. The round trip efficiency is higher than those for batteries, compressed air or pumped hydro. Output power can be very high, allowing complete discharge of the unit within a few seconds. Finally, the unit can be designed for a very large number of cycles, limited basically by fatigue in the structural components. A small systems code was written to produce and evaluate self-consistent designs for toroidal superconducting energy storage units. The units can use either low temperature or high temperature superconductors. The coils have D shape where the conductor and its stabilizer/structure is loaded only in tension and the centering forces are borne by a bucking cylinder. The coils are convectively cooled from a cryogenic reservoir in the bore of the coils. The coils are suspended in a cylindrical metal shell which protects the magnet during rail, automotive or shipboard use. It is important to note that the storage unit does not rely on its surroundings for structural support, other than normal gravity and inertial loads. Designs are presented for toroidal energy storage units produced by the systems code. A wide range of several parameters have been considered, resulting in units storing from 1 MJ to 72 GJ. Maximum fields range from 5 T to 20 T. The masses and volumes of the coils, bucking cylinder, coolant, insulation and outer shell are calculated. For unattended use, the allowable operating time using only the boiloff of the cryogenic fluid for refrigeration is calculated. For larger units, the coils were divided into modules suitable for normal truck or rail transport.
Design of plasmonic toroidal metamaterials at optical frequencies.
Huang, Yao-Wei; Chen, Wei Ting; Wu, Pin Chieh; Fedotov, Vassili; Savinov, Vassili; Ho, You Zhe; Chau, Yuan-Fong; Zheludev, Nikolay I; Tsai, Din Ping
2012-01-16
Toroidal multipoles are the subject of growing interest because of their unusual electromagnetic properties different from the electric and magnetic multipoles. In this paper, we present two new related classes of plasmonic metamaterial composed of purposely arranged of four U-shaped split ring resonators (SRRs) that show profound resonant toroidal responses at optical frequencies. The toroidal and magnetic responses were investigated by the finite-element simulations. A phenomenon of reversed toroidal responses at higher and lower resonant frequencies has also been reported between this two related metamaterials which results from the electric and magnetic dipoles interaction. Finally, we propose a physical model based on coupled LC circuits to quantitatively analyze the coupled system of the plasmonic toroidal metamaterials.
Quench propagation and protection analysis of the ATLAS Toroids
Dudarev, A; ten Kate, H H J; Baynham, D Elwyn; Courthold, M J D; Lesmond, C
2000-01-01
The ATLAS superconducting magnet system consists of the Barrel Toroid, two End Cap Toroids and the Central Solenoid. However, the Toroids of eight coils each are magnetically separate systems to the Central Solenoid. The Toroids are electrically connected in series and energized by a single power supply. The quench protection system is based on the use of relatively small external dump resistances in combination with quench-heaters activated after a quench event detection to initiate the internal dump of stored energy in all the coils. A rather strong quench-back effect due to eddy-currents in the coil casings at the transport current decay is beneficial for the quench protection efficiency in the event of heater failures. The quench behaviour of the ATLAS Toroids was computer simulated for normal operation of the quench protection system and its complete non-operation (failure) mode. (3 refs).
A Toroidal Magnetised Iron Neutrino Detector (MIND) for a Neutrino Factory
Bross, A; Bayes, R; Laing, A; Soler, F J P; Villanueva, A Cervera; Ghosh, T; Cadenas, J J Gómez; Hernández, P; Martín-Albo, J; Burguet-Castell, J
2013-01-01
A neutrino factory has unparalleled physics reach for the discovery and measurement of CP violation in the neutrino sector. A far detector for a neutrino factory must have good charge identification with excellent background rejection and a large mass. An elegant solution is to construct a magnetized iron neutrino detector (MIND) along the lines of MINOS, where iron plates provide a toroidal magnetic field and scintillator planes provide 3D space points. In this report, the current status of a simulation of a toroidal MIND for a neutrino factory is discussed in light of the recent measurements of large $\\theta_{13}$. The response and performance using the 10 GeV neutrino factory configuration are presented. It is shown that this setup has equivalent $\\delta_{CP}$ reach to a MIND with a dipole field and is sensitive to the discovery of CP violation over 85% of the values of $\\delta_{CP}$.
Shear-dependant toroidal vortex flow
Energy Technology Data Exchange (ETDEWEB)
Khorasani, Nariman Ashrafi; Haghighi, Habib Karimi [Payame Noor University, Tehran (Iran, Islamic Republic of)
2013-01-15
Pseudoplastic circular Couette flow in annulus is investigated. The flow viscosity is dependent on the shear rate, which directly affects the conservation equations that are solved in the present study by the spectral method in the present study. The pseudoplastic model adopted here is shown to be a suitable representative of nonlinear fluids. Unlike the previous studies, where only the square of shear rate term in the viscosity expression was considered to ease the numerical manipulations, in the present study takes the term containing the quadratic power into account. The curved streamlines of the circular Couette flow can cause a centrifugal instability leading to toroidal vortices, known as Taylor vortices. It is further found that the critical Taylor number becomes lower as the pseudoplastic effect increases. Comparison with existing measurements on pseudoplastic circular Couette flow results in good agreement.
Helicity of the toroidal vortex with swirl
Bannikova, Elena Yu; Poslavsky, Sergey A
2016-01-01
On the basis of solutions of the Bragg-Hawthorne equations we discuss the helicity of thin toroidal vortices with the swirl - the orbital motion along the torus diretrix. It is shown that relationship of the helicity with circulations along the small and large linked circles - directrix and generatrix of the torus - depends on distribution of the azimuthal velocity in the core of the swirling vortex ring. In the case of non-homogeneous swirl this relationship differs from the well-known Moffat relationship - the doubled product of such circulations multiplied by the number of links. The results can be applied to vortices in planetary atmospheres and to vortex movements in the vicinity of active galactic nuclei.
Concept design of the cassette toroidal mover
Energy Technology Data Exchange (ETDEWEB)
Maekinen, H., E-mail: harri.makinen@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Jaervenpaeae, J. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Valkama, P.; Vaeyrynen, J.; Amjad, F. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Siuko, M. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Mattila, J. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Semeraro, L.; Esque, S. [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain)
2011-10-15
A full scale physical development and test facility, Divertor Test Platform 2 (DTP2), has been established in Finland for the purpose of demonstrating and developing the remote handling (RH) equipment designs for ITER using prototypes and virtual models. The major objective of the DTP2 environment is to verify and develop ITER divertor RH devices and operations. In practice this means various test trials and measurements of performance characteristics. This paper describes the design process of the Cassette Toroidal Mover (CTM). The main purpose of this design task was the development of the CTM concept. The goal of the design process was to achieve compatibility between CTM and the latest ITER divertor design. The design process was based on using a variety of tools, i.e. Catia V5, Delmia, Ansys, Mathcad and project management tools. Applicable European Standards were applied to the concept design. CTM is the cassette transporter, which carries divertor cassettes on the toroidal rails inside the ITER Vacuum Vessel (VV) during the divertor maintenance. The operation environment differs from a common industrial environment. Radiation level is 100 Gy/h. The temperature during RH operations can be 50 {sup o}C. Clearances are less than 20 mm and the loads carried weigh 9000 kg. These conditions require special solutions during the product development process. The design process consisted of defining and developing of the CTM operational sequence. This sequence includes the procedure of how the CTM - with it is onboard manipulator - prepares for and handles the divertor cassettes during RH operations. RH operations are essential part when defining CTM functions. High reliability is required in order to carry out RH tasks successfully. The recoverability of CTM is also an important design criteria. This paper describes the design process and the structure of the CTM concept.
Damping of toroidal ion temperature gradient modes
Energy Technology Data Exchange (ETDEWEB)
Sugama, H. [National Inst. for Fusion Science, Toki, Gifu (Japan)
1999-04-01
The temporal evolution of linear toroidal ion temperature gradient (ITG) modes is studied based on a kinetic integral equation including an initial condition. It is shown how to evaluate the analytic continuation of the integral kernel as a function of a complex-valued frequency, which is useful for analytical and numerical calculations of the asymptotic damping behavior of the ITG mode. In the presence of the toroidal {nabla}B-curvature drift, the temporal dependence of the density and potential perturbations consists of normal modes and a continuum mode, which correspond to contributions from poles and from an integral along a branch cut, respectively, of the Laplace-transformed potential function of the complex-valued frequency. The normal modes have exponential time dependence with frequencies and growth rates determined by the dispersion relation while the continuum mode, which has a ballooning structure, shows a power law decay {proportional_to} t{sup -2} in the asymptotic limit, where t is the time variable. Therefore, the continuum mode dominantly describes the long-time asymptotic behavior of the density and potential perturbations for the stable system where all normal modes have negative growth rates. By performing proper analytic continuation for the homogeneous version of the kinetic integral equation, dependences of the normal modes` growth rate, real frequency, and eigenfunction on {eta}{sub i} (the ratio of the ion temperature gradient to the density gradient), k{sub {theta}} (the poloidal wavenumber), s (the magnetic shear parameter), and {theta}{sub k} (the ballooning angle corresponding to the minimum radial wavenumber) are numerically obtained for both stable and unstable cases. (author)
Petascale Parallelization of the Gyrokinetic Toroidal Code
Energy Technology Data Exchange (ETDEWEB)
Ethier, Stephane; Adams, Mark; Carter, Jonathan; Oliker, Leonid
2010-05-01
The Gyrokinetic Toroidal Code (GTC) is a global, three-dimensional particle-in-cell application developed to study microturbulence in tokamak fusion devices. The global capability of GTC is unique, allowing researchers to systematically analyze important dynamics such as turbulence spreading. In this work we examine a new radial domain decomposition approach to allow scalability onto the latest generation of petascale systems. Extensive performance evaluation is conducted on three high performance computing systems: the IBM BG/P, the Cray XT4, and an Intel Xeon Cluster. Overall results show that the radial decomposition approach dramatically increases scalability, while reducing the memory footprint - allowing for fusion device simulations at an unprecedented scale. After a decade where high-end computing (HEC) was dominated by the rapid pace of improvements to processor frequencies, the performance of next-generation supercomputers is increasingly differentiated by varying interconnect designs and levels of integration. Understanding the tradeoffs of these system designs is a key step towards making effective petascale computing a reality. In this work, we examine a new parallelization scheme for the Gyrokinetic Toroidal Code (GTC) [?] micro-turbulence fusion application. Extensive scalability results and analysis are presented on three HEC systems: the IBM BlueGene/P (BG/P) at Argonne National Laboratory, the Cray XT4 at Lawrence Berkeley National Laboratory, and an Intel Xeon cluster at Lawrence Livermore National Laboratory. Overall results indicate that the new radial decomposition approach successfully attains unprecedented scalability to 131,072 BG/P cores by overcoming the memory limitations of the previous approach. The new version is well suited to utilize emerging petascale resources to access new regimes of physical phenomena.
New Superconducting Toroidal Magnet System for IAXO, the International AXion Observatory
Shilon, I; Silva, H; Wagner, U; Kate, H H J ten
2013-01-01
Axions are hypothetical particles that were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. The new International AXion Observatory (IAXO) will incorporate the most promising solar axions detector to date, which is designed to enhance the sensitivity to the axion-photon coupling by one order of magnitude beyond the limits of the current state-of-the-art detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions into X-ray photons. Inspired by the successful realization of the ATLAS barrel and end-cap toroids, a very large superconducting toroid is currently designed at CERN to provide the required magnetic field. This toroid will comprise eight, one meter wide and twenty one meter long, racetrack coils. The system is sized 5.2 m in diameter and 25 m in length. Its peak magnetic field is 5.4 T with a stored e...
Reese, D; Rieutord, M
2004-01-01
We carry out numerical and mathematical investigations of shear Alfven waves inside of a spherical shell filled with an incompressible conducting fluid, and bathed in a strong dipolar magnetic field. We focus on axisymmetric toroidal and non-axisymmetric modes, in continuation of a previous work by Rincon & Rieutord (2003). Analytical expressions are obtained for toroidal eigenmodes and their corresponding frequencies at low diffusivities. These oscillations behave like magnetic shear layers, in which the magnetic poles play a key role, and hence become singular when diffusivities vanish. It is also demonstrated that non-axisymmetric modes are split into two categories, namely poloidal or toroidal types, following similar asymptotic behaviours as their axisymmetric counterparts when the diffusivities become arbitrarily small.
Energy Technology Data Exchange (ETDEWEB)
Goumiri, I. R. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Rowley, C. W. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Sabbagh, S. A. [Columbia Univ., New York, NY (United States). Dept. of Applied Physics and Applied Mathematics; Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gerhardt, S. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Boyer, M. D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Andre, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kolemen, E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Taira, K. [Florida State Univ, Dept Mech Engn, Tallahassee, FL USA.
2016-02-19
A model-based feedback system is presented to control plasma rotation in a magnetically confined toroidal fusion device, to maintain plasma stability for long-pulse operation. This research uses experimental measurements from the National Spherical Torus Experiment (NSTX) and is aimed at controlling plasma rotation using two different types of actuation: momentum from injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields. Based on the data-driven model obtained, a feedback controller is designed, and predictive simulations using the TRANSP plasma transport code show that the controller is able to attain desired plasma rotation profiles given practical constraints on the actuators and the available measurements of rotation.
Energy Technology Data Exchange (ETDEWEB)
Galkowski, A. [Institute of Atomic Energy, Otwock-Swierk (Poland)
1994-12-31
Non-linear ideal MHD equilibria in axisymmetric system with flows are examined, both in 1st and 2nd ellipticity regions. Evidence of the bifurcation of solutions is provided and numerical solutions of several problems in a tokamak geometry are given, exhibiting bifurcation phenomena. Relaxation of plasma in the presence of zero-order flows is studied in a realistic toroidal geometry. The field aligned flow allows equilibria with finite pressure gradient but with homogeneous temperature distribution. Numerical calculations have been performed for the 1st and 2nd ellipticity regimes of the extended Grad-Shafranov-Schlueter equation. Numerical technique, alternative to the well-known Grad`s ADM methods has been proposed to deal with slow adiabatic evolution of toroidal plasma with flows. The equilibrium problem with prescribed adiabatic constraints may be solved by simultaneous calculations of flux surface geometry and original profile functions. (author). 178 refs, 37 figs, 5 tabs.
Institute of Scientific and Technical Information of China (English)
毛剑珊; 罗家融; P.Phillips; 赵君煜; 揭银先; 吴振伟; 胡立群; 李建刚
2002-01-01
The phenomena of improved ohmic confinement have been observed during the modulation of the toroidal curranton the Hefei superconducting Tokamak-7 (HT-7). In the experiment, the programming ohmic heating field wasmodulated. A toroidal frequency-modulated current induced by modulated loop voltage was added on the plasmaequilibrium current. The ratio of ac amplitude of the plasma current to the main plasma current is about 12-30%.These improved plasma confinement phenomena include the facts that the average electron density and the centralelectron temperature both increase, the Dα radiation from the edge is reduced, the magnetohydrodynamics isobviously suppressed by oscillating plasma current, eand the global energy confinement time increases by 27-45%o.It is found that the faster the modulation is, the more effective the improved ohmic confinement phase.
Zonal flow driven by energetic particle during magneto-hydro-dynamic burst in a toroidal plasma
Ohshima, S.; Fujisawa, A.; Shimizu, A.; Nakano, H.; Iguchi, H.; Yoshimura, Y.; Nagaoka, K.; Minami, T.; Isobe, M.; Nishimura, S.; Suzuki, C.; Akiyama, T.; Takahashi, C.; Takeuchi, M.; Ito, T.; Watari, T.; Kumazawa, R.; Itoh, S.-I.; Itoh, K.; Matsuoka, K.; Okamura, S.
2007-11-01
The internal structural measurements of electric field and density using twin heavy ion beam probes have been performed to elucidate the nonlinear evolution of the magneto-hydro-dynamic (MHD) bursty phenomenon driven by the interaction with high-energy particles in a toroidal plasma. The results have given the finest observation of the internal structure of plasma quantities, such as electric field, density and magnetic field distortion, which nonlinearly develop during the MHD phenomenon. In particular, the finding of a new kind of oscillating zonal flow driven by interaction between energetic particles and MHD modes should be emphasized for burning state plasmas.
Twisted toroidal vortex-solitons in inhomogeneous media with repulsive nonlinearity
Kartashov, Y V; Shnir, Y; Torner, L
2014-01-01
Toroidal modes in the form of so-called Hopfions, with two independent winding numbers, a hidden one (twist, s), which characterizes a circular vortex thread embedded into a three-dimensional soliton, and the vorticity around the vertical axis m, appear in many fields, including the field theory, ferromagnetics, and semi- and superconductors. Such topological states are normally generated in multi-component systems, or as trapped quasi-linear modes in toroidal potentials. We uncover that stable solitons with this structure can be created, without any linear potential, in the single-component setting with the strength of repulsive nonlinearity growing fast enough from the center to the periphery, for both steep and smooth modulation profiles. Toroidal modes with s=1 and vorticity m=0,1,2 are produced. They are stable for m1. An approximate analytical solution is obtained for the twisted ring with s=1, m=0. Under the application of an external torque, it rotates like a solid ring. The setting can be implemented...
Ida, K.; Kobayashi, T.; Yoshinuma, M.; Suzuki, Y.; Narushima, Y.; Evans, T. E.; Ohdachi, S.; Tsuchiya, H.; Inagaki, S.; Itoh, K.
2016-09-01
Bifurcation physics of a magnetic island was investigated using the heat pulse propagation technique produced by the modulation of electron cyclotron heating. There are two types of bifurcation phenomena observed in a large helical device (LHD) and DIII-D. One is a bifurcation of the magnetic topology between nested and stochastic fields. The nested state is characterized by the bi-directional (inward and outward) propagation of the heat pulse with slow propagation speed. The stochastic state is characterized by the fast propagation of the heat pulse with electron temperature flattening. The other bifurcation is between the magnetic island with larger thermal diffusivity and that with smaller thermal diffusivity. The damping of toroidal flow is observed at the O-point of the magnetic island both in helical plasmas and in tokamak plasmas during a mode locking phase with strong flow shears at the boundary of the magnetic island. Associated with the stochastization of the magnetic field, the abrupt damping of toroidal flow is observed in LHD. The toroidal flow shear shows a linear decay, while the ion temperature gradient shows an exponential decay. This observation suggests that this flow damping is due to the change in the non-diffusive term of momentum transport.
Deconfinement in Yang-Mills Theory through Toroidal Compactification
Energy Technology Data Exchange (ETDEWEB)
Simic, Dusan; Unsal, Mithat; /Stanford U., Phys. Dept. /SLAC
2011-08-12
We introduce field theory techniques through which the deconfinement transition of four-dimensional Yang-Mills theory can be moved to a semi-classical domain where it becomes calculable using two-dimensional field theory. We achieve this through a double-trace deformation of toroidally compactified Yang-Mills theory on R{sup 2} x S{sub L}{sup 1} x S{sub {beta}}{sup 1}. At large N, fixed-L, and arbitrary {beta}, the thermodynamics of the deformed theory is equivalent to that of ordinary Yang-Mills theory at leading order in the large N expansion. At fixed-N, small L and a range of {beta}, the deformed theory maps to a two-dimensional theory with electric and magnetic (order and disorder) perturbations, analogs of which appear in planar spin-systems and statistical physics. We show that in this regime the deconfinement transition is driven by the competition between electric and magnetic perturbations in this two-dimensional theory. This appears to support the scenario proposed by Liao and Shuryak regarding the magnetic component of the quark-gluon plasma at RHIC.
Control of Compact-Toroid Characteristics by External Copper Shell
Matsumoto, T.; Sekiguchi, J.; Asai, T.; Gota, H.; Roche, T.; Allfrey, I.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; the TAE Team
2015-11-01
A collaborative research project by Tri Alpha Energy and Nihon University has been conducted for several years, which led to the development of a new compact toroid (CT) injector for efficient FRC particle refueling in the C-2U experiment. The CT is formed by a magnetized coaxial plasma gun (MCPG), consisting of coaxial cylindrical electrodes. In CT formation via MCPG, the magnetic helicity content of the generated CT is one of the critical parameters. A bias coil is inserted into the inner electrode to generate a poloidal flux. The resultant bias magnetic field is spread out of MCPG with time due to its low-frequency bias current. To obtain a more effectively distributed bias magnetic field as well as to improve the voltage breakdown between electrodes, the MCPG incorporates a novel ~ 1 mm thick copper shell mounted outside of the outer electrode. This allows for reliable and controlled operation and more robust CT generation. A detailed discussion of the copper shell and experimental test results will be presented.
Mcdonough, T. R.
1974-01-01
The trapping of Titan's escaping atmosphere in the Saturnian system by a toroidal ring is discussed. The radius of the toroid is comparable to Titan's orbit, or about ten times larger than the visible rings. Theoretical atmospheric models are formulated that consider Saturn's gravitational attraction and magnetospheric properties in forming this toroid and in protecting toroid particles from direct ionization by solar wind particles.
Acerbi, E; Broggi, F; Sorbi, M; Volpini, G
2001-01-01
An analysis of the discharge of the barrel toroid and end cap toroids with different protection circuits has been carried out in order to verify the possibility of a new simplified and cheaper configuration of the components of the circuit. In the study also the presence of short circuits has been considered. The comparison of the results and the analysis of the advantages and risks of the different configurations should allow the choice of the best solution for the economy and safety of the toroids. (4 refs).
Influence of toroidal rotation on resistive tearing modes in tokamaks
Wang, S.; Ma, Z. W.
2015-12-01
Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τR/τV ≫ 1, where τR and τV represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τR/τV ≪ 1), the rotation shear shows a destabilizing effect when the rotation is large.
Influence of toroidal rotation on resistive tearing modes in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Wang, S.; Ma, Z. W., E-mail: zwma@zju.edu.cn [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China)
2015-12-15
Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τ{sub R}/τ{sub V} ≫ 1, where τ{sub R} and τ{sub V} represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τ{sub R}/τ{sub V} ≪ 1), the rotation shear shows a destabilizing effect when the rotation is large.
Toroidicity Dependence of Tokamak Edge Safety Factor and Shear
Institute of Scientific and Technical Information of China (English)
SHIBingren
2002-01-01
In large tokamak device and reactor designs, the relationship between the toroidal current and the edge safety factor is very important because this will determine the eventual device or reactor size according to MHD stability requirements. In many preliminary
Arc Power Limit and Distribution on the Large Negative Ion Source Based on JT-60 NNBI
Institute of Scientific and Technical Information of China (English)
LEIGuangjiu; N.Umeda; M.Kawai; T.Yamamoto; M.Kuriyama; T.Ohga; N.Ebisawa; T.Yamazaki; M.Kusaka; K.Kikuchi; S.Hikida; K.Usui; M.Kazawa; S.Numazawa; K.Mogaki; A.Honda; F.Satoh; S.Norio; K.Ooshima
2001-01-01
The target of the large negative ion source based on neutral beam injection (N-NBI) is to produce neutral beam current of 22 A and beam power of 10 MW at 500 keV with duration time of 10 s. Since it was successfully operated in 1996, the 5.3 MW neutral beam power at 380 keV with duration time of 3 s has been achieved. In recent years improving and enhancing the beam power are going on. Several reasons such as plasma non-uniformity, higher beam density at the upper region in the beam profile,
Review of JT-60U experimental results from February to October, 1999
Energy Technology Data Exchange (ETDEWEB)
NONE
2001-02-01
In 1999, the plasma parameters of reversed shear (RS) plasmas had been extended in (1) DT-equivalent fusion power gain Q{sub DT}{sup eq} - 0.5 (n{sub D}(0){tau}{sub E}T{sub i}(0) - 4x10{sup 20} m{sup -3}{center_dot}keV{center_dot}s) for 0.8 s and (2) full non-inductive current drive with 80% of the bootstrap current fraction. Physics of the internal transport barriers (ITBs) in RS plasmas, including the energy transport and the formation of ITB, were extensively studied. A nearly full current drive (92% non-inductively) was obtained with negative ion based neutral beam (NNB) injection (360 keV, 3.4 MW) in a high {beta}{sub p} H-mode plasma (I{sub p}=1.5 MA, B{sub T}=3.7 T, q{sub 95}=4.2) with high plasma performance ({beta}{sub N}=2.4 and H{sub 89}=2.56). Rise in the central electron temperature (T{sub e} - 9 keV) resulted in the current drive efficiency {eta}{sub CD} of NNB reached 1.3x10{sup 19} A/W/m{sup 2}, the highest for the neutral beam current drive. As for the H-mode plasmas, decrease in the pedestal ion temperature due to strong gas was found cause degradation in core plasma confinement. The operation of an ECRF system of 110 GHz, 0.75 MW (torus injection power) had been started in 1999. Changes in plasma current profiles and suppressions of tearing modes and sawtooth oscillations were observed with ECRF heating. The highest {beta}{sub N} in RS experiments ({beta}{sub N} - 2.8) was obtained in the plasma configuration with a large wall stabilizing effect and resistive wall modes were observed before the disruptions. New real-time feedback control schemes including plasma stored energy, plasma radiation power and so on were used in routine plasma operations. Runaway electron current was terminated when the plasma surface safety factor was forced to drop below 2 or 3. In order to increase pumping efficiency of deuterium and impurity neutrals, the outer pumping slot was opened and the both sides pumping was enabled in the W-shaped divertor in 1999. In the divertor configuration with the maximum pumping efficiency, Zeff was reduced to from 2.6-3.0 to 2.3-2.6 in beam heated discharges even with X-point MARFE and {tau}{sup *}{sub He}/{tau}{sub E} was reduced by 45% in He exhaust experiments. Feedback control of seed impurity for radiation enhancement, such as Ar, enabled production of ELMy H-mode plasmas with high density (70% of the Greenwald density) and better energy confinement (H{sub 89}=1.4-1.5). It was found that the chemical sputtering generated the same amount of CD{sub 4} and C{sub 2}D{sub x} molecules in the divertor since a visible divertor spectrometer with 16 ch spatial resolution was newly installed. (author)
Numerical Simulation of Non-Inductive Startup of the Pegasus Toroidal Experiment
O'Bryan, John B.
The dynamics and relaxation of magnetic flux ropes produced during non-inductive startup of the Pegasus Toroidal Experiment are simulated with nonlinear magnetohydrodynamic and two-fluid plasma models. A current filament is produced by a single injector and directed along multiple passes by toroidal and vertical vacuum magnetic field components. Adjacent passes of the current filament merge and reconnect, releasing an axisymmetric current ring from the driven channel. Squashing degree analysis indicates the presence of a quasi-separatrix layer (QSL) during ring formation, but the QSL does not solely correspond to magnetic reconnection. Chaotic scattering is also apparent from the distribution of magnetic field-line lengths. The merging of adjacent passes constitutes coherent dynamo action that affects the toroidally-averaged magnetic-field distribution. The MHD dynamo--primarily from the vertical displacement of the current channel--concentrates symmetric poloidal flux and transfers significant energy to the forming flux-rope ring. Accumulation of poloidal flux over many reconnection events contributes to the development of a poloidal magnetic field null near the central column that redirects the driven current filament, such that its path traces a toroidal surface. After cessation of the simulated current drive, temperature and current profiles broaden and closed flux surfaces form rapidly and encompass a large plasma volume. High toroidal-mode number harmonics of the magnetic energy decay preferentially, leaving a tokamak-like plasma suitable for transition to other forms of current drive. Computations with the two-fluid terms in Ohm's Law produce qualitatively similar plasma evolution to the MHD computations. However, for the computations with the two-fluid plasma model, the ion fluid significantly decouples from the electron fluid, weakening the dynamics during magnetic reconnection. This effect is quantified by comparing global and local plasma parameters in
Sawtooth Instability in the Compact Toroidal Hybrid
Herfindal, J. L.; Maurer, D. A.; Hartwell, G. J.; Ennis, D. A.; Knowlton, S. F.
2015-11-01
Sawtooth instabilities have been observed in the Compact Toroidal Hybrid (CTH), a current-carrying stellarator/tokamak hybrid device. The sawtooth instability is driven by ohmic heating of the core plasma until the safety factor drops below unity resulting in the growth of an m = 1 kink-tearing mode. Experiments varying the vacuum rotational transform from 0.02 to 0.13 are being conducted to study sawtooth property dependance on vacuum flux surface structure. The frequency of the sawtooth oscillations increase from 2 kHz to 2.8 kHz solely due the decrease in rise time of the oscillation, the crash time is unchanged. CTH has three two-color SXR cameras, a three-channel 1mm interferometer, and a new bolometer system capable of detecting the signatures of sawtooth instabilities. The new bolometer system consists of two cameras, each containing a pair of diode arrays viewing the plasma directly or through a beryllium filter. Electron temperature measurements are found with the two-color SXR cameras through a ratio of the SXR intensities. Impurity radiation can drastically affect the electron temperature measurement, therefore new filters consisting of aluminum and carbon were selected to avoid problematic line radiation while maximizing the signal for a 100 eV plasma. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.
An important step for the ATLAS toroid magnet
2000-01-01
The ATLAS experiment's prototype toroid coil arrives at CERN from the CEA laboratory in Saclay on 6 October. The world's largest superconducting toroid magnet is under construction for the ATLAS experiment. A nine-metre long fully functional prototype coil was delivered to CERN at the beginning of October and has since been undergoing tests in the West Area. Built mainly by companies in France and Italy under the supervision of engineers from the CEA-Saclay laboratory near Paris and Italy's INFN-LASA, the magnet is a crucial step forward in the construction of the ATLAS superconducting magnet system. Unlike any particle detector that has gone before, the ATLAS detector's magnet system consists of a large toroidal system enclosing a small central solenoid. The barrel part of the toroidal system will use eight toroid coils, each a massive 25 metres in length. These will dwarf the largest toroids in the world when ATLAS was designed, which measure about six metres. So the ATLAS collaboration decided to build a...
Peeters, A G; Angioni, C; Strintzi, D
2007-06-29
In this Letter, the influence of the "Coriolis drift" on small scale instabilities in toroidal plasmas is shown to generate a toroidal momentum pinch velocity. Such a pinch results because the Coriolis drift generates a coupling between the density and temperature perturbations on the one hand and the perturbed parallel flow velocity on the other. A simple fluid model is used to highlight the physics mechanism and gyro-kinetic calculations are performed to accurately assess the magnitude of the pinch. The derived pinch velocity leads to a radial gradient of the toroidal velocity profile even in the absence of a torque on the plasma and is predicted to generate a peaking of the toroidal velocity profile similar to the peaking of the density profile. Finally, the pinch also affects the interpretation of current experiments.
Cameron, R H
2016-01-01
In order to match observed properties of the solar cycle, flux-transport dynamo models require the toroidal magnetic flux to be stored in a region of low magnetic diffusivity, typically located at or below the bottom of the convection zone. We infer the turbulent magnetic diffusivity affecting the toroidal field on the basis of empirical data. We consider the time evolution of mean latitude and width of the activity belts of solar cycles 12--23 and their dependence on cycle strength. We interpret the decline phase of the cycles as a diffusion process. The activity level of a given cycle begins to decline when the centers of its equatorward propagating activity belts come within their width (at half maximum) from the equator. This happens earlier for stronger cycles because their activity belts are wider. From that moment on, the activity and the belt width decrease in the same manner for all cycles, independent of their maximum activity level. In terms of diffusive cancellation of opposite-polarity toroidal f...
Thomson scattering diagnostic on the Compact Toroidal Hybrid Experiment
Traverso, Peter; Maurer, D. A.; Ennis, D. A.; Hartwell, G. J.
2016-10-01
A Thomson scattering system is being commissioned for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH), a five-field period current-carrying torsatron. The system takes a single point measurement at the magnetic axis to both calibrate the two- color soft x-ray Te system and serve as an additional diagnostic for the V3FIT 3D equilibrium reconstruction code. A single point measurement will reduce the uncertainty in the reconstructed peak pressure by an order of magnitude for both current-carrying plasmas and future gyrotron-heated stellarator plasmas. The beam, generated by a frequency doubled Continuum 2 J, Nd:YaG laser, is passed vertically through an entrance Brewster window and a two-aperture optical baffle system to minimize stray light. The beam line propagates 8 m to the CTH device mid-plane with the beam diameter < 3 mm inside the plasma volume. Thomson scattered light is collected by two adjacent f/2 plano-convex condenser lenses and focused onto a custom fiber bundle. The fiber is then re-bundled and routed to a Holospec f/1.8 spectrograph to collect the red-shifted scattered light from 535-565 nm. The system has been designed to measure plasmas with core Te of 100 to 200 eV and densities of 5 ×1018 to 5 ×1019 m-3. Work supported by USDOE Grant DE-FG02-00ER54610.
Pareto optimal design of sectored toroidal superconducting magnet for SMES
Bhunia, Uttam; Saha, Subimal; Chakrabarti, Alok
2014-10-01
A novel multi-objective optimization design approach for sectored toroidal superconducting magnetic energy storage coil has been developed considering the practical engineering constraints. The objectives include the minimization of necessary superconductor length and torus overall size or volume, which determines a significant part of cost towards realization of SMES. The best trade-off between the necessary conductor length for winding and magnet overall size is achieved in the Pareto-optimal solutions, the compact magnet size leads to increase in required superconducting cable length or vice versa The final choice among Pareto optimal configurations can be done in relation to other issues such as AC loss during transient operation, stray magnetic field at outside the coil assembly, and available discharge period, which is not considered in the optimization process. The proposed design approach is adapted for a 4.5 MJ/1 MW SMES system using low temperature niobium-titanium based Rutherford type cable. Furthermore, the validity of the representative Pareto solutions is confirmed by finite-element analysis (FEA) with a reasonably acceptable accuracy.
Multiple-applications of Accelerated Compact Toroid Injection for MFE
Hwang, David; Horton, Robert; Evans, Russell; Liu, Fei; Zhu, Ben; Hong, Sean; Buchenauer, Dean
2010-11-01
The CTIX experiment has explored the potential applications of launching a fast moving magnetized compact toroid for Magnetic Fusion experiments. These applications include central fueling of a MFE device such as tokamaks, stellarators, etc. At present, the UC Davis CTIX accelerator has achieved densities at mid to upper 10^15 per cc, at speeds reaching over 200 km/sec. In order to meet the parameters of even larger fusion devices, the technology of the accelerator needs to incorporate the latest plasma wall interaction findings. As a result of the next step in CT development, UC Davis will be collaborating with the Fusion Technology group at Sandia National Laboratory in Livermore California. We will be designing new plasmas facing electrodes that can reduce electrode impurities and increase electrode lifetime. In addition to producing high density CTs, we will include the updated conical compression results from our previous installed drift section compressor. In addition of the MFE applications, the ability to enhance the CT density, fields as well as speed can be useful to other fusion areas such as MIF, etc.
Tokamak equilibria with strong toroidal current density reversal
Ludwig, G. O.; Rodrigues, Paulo; Bizarro, João P. S.
2013-05-01
The equilibrium of large magnetic islands in the core of a tokamak under conditions of strong toroidal current density reversal is investigated by a new method. The method uses distinct spectral representations to describe each simply connected region as well as the containing shell geometry. This ideal conducting shell may substitute for the plasma edge region or take a virtual character representing the external equilibrium field effect. The internal equilibrium of the islands is solved within the framework of the variational moment method. Equivalent surface current densities are defined on the boundaries of the islands and on the thin containing shell, giving a straightforward formulation to the interaction between regions. The equilibrium of the island-shell system is determined by matching moments of the Dirichlet boundary conditions. Finally, the macroscopic stability against a class of tilting displacements is examined by means of an energy principle. It is found out that the up-down symmetric islands are stable to this particular perturbation and geometry but the asymmetric system presents a bifurcation in the equilibrium.
Development of Compact Toroid Injector for C-2 FRCs
Matsumoto, Tadafumi; Sekiguchi, Junichi; Asai, Tomohiko; Gota, Hiroshi; Garate, Eusebio; Allfrey, Ian; Valentine, Travis; Smith, Brett; Morehouse, Mark; TAE Team
2014-10-01
Collaborative research project with Tri Alpha Energy has been started and we have developed a new compact toroid (CT) injector for the C-2 device, mainly for fueling field-reversed configurations (FRCs). The CT is formed by a magnetized coaxial plasma-gun (MCPG), which consists of coaxial cylinder electrodes; a spheromak-like plasma is generated by discharge and pushed out from the gun by Lorentz force. The inner diameter of outer electrode is 83.1 mm and the outer diameter of inner electrode is 54.0 mm. The surface of the inner electrode is coated with tungsten in order to reduce impurities coming out from the electrode. The bias coil is mounted inside of the inner electrode. We have recently conducted test experiments and achieved a supersonic CT translation speed of up to ~100 km/s. Other typical plasma parameters are as follows: electron density ~ 5 × 1021 m-3, electron temperature ~ 40 eV, and the number of particles ~0.5-1.0 × 1019. The CT injector is now planned to be installed on C-2 and the first CT injection experiment will be conducted in the near future. The detailed MCPG design as well as the test experimental results will be presented.
First full-size ATLAS barrel toroid coil successfully tested up to 22 kA at 4 T
Dudarev, A; Benoit, P; Berriaud, C P; Broggi, F; Deront, L; Foussat, A; Junker, S; ten Kate, H H J; Kopeykin, N; Olesen, G; Olyunin, A; Pengo, R; Rabbers, J J; Ravat, S; Rey, J M; Sbrissa, E; Shugaev, I; Stepanov, V; Védrine, P; Volpini, Giovanni
2005-01-01
The Superconducting Barrel Toroid is providing (together with the two End-Cap Toroids not presented here) the magnetic field for the muon detectors in the ATLAS Experiment at the LHC at CERN. The toroid with outer dimensions of 25 m length and 20 m diameter, is built up from 8 identical racetrack coils. The coils with 120 turns each are wound with an aluminum stabilized NbTi conductor and operate at 20.5 kA at 3.9 T local field in the windings and is conduction cooled at 4.8 K by circulating forced flow helium in cooling tubes attached to the cold mass. The 8 coils of 25 m * 5 m are presently under construction and the first coils have already been fully integrated and tested. Meanwhile the assembly of the toroid 100 m underground in the ATLAS cavern at CERN has started. The 8 coils are individually tested on surface before installation. In this paper the test of the first coil, unique in size and manufacturing technology, is described in detail and the results are compared to the previous experience with the...
Integrated Design System of Toroidal Field Coil for CFETR
Luo, Zhiren; Liu, Xufeng; Du, Shuangsong; Wang, Zhongwei; Song, Yuntao
2016-09-01
Integrating engineering software is meaningful but challenging for a system code of a fusion device. This issue is seldom considered by system codes currently. Therefore, to discuss the issue, the Integrated Design System of TF Coil (IDS-TFC) has been worked out, which consists of physical calculation, CAD, and Finite Element Analysis (FEA). Furthermore, an Integrated and Automatically Optimized Method (IAOM) has been created to address the integration and interfaces. The method utilizes a geometry parameter to connect each design submodule and achieve automatic optimization. Double-objectives optimization has been realized, confirming it is feasible to integrate and optimize engineering design and physical calculation. Moreover, IDS-TFC can also serve as a useful reference of integrated design processing for subsequent fusion design. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2014GB110000, 2014GB110002)
Summary of US-Japan Exchange 2004 New Directions and Physics for Compact Toroids
Energy Technology Data Exchange (ETDEWEB)
Intrator, T; Nagata, M; Hoffman, A; Guo, H; Steinhauer, L; Ryutov, D; Miller, R; Okada, S
2005-08-15
This exchange workshop was an open meeting coordinated by the P-24 Plasma Physics Group at Los Alamos National Laboratory. We brought together scientists from institutions in the US and Japan who are researching the various and complementary types of Compact Toroids (CT). Many concepts, including both experimental and theoretical investigations, are represented. The range spans Field Reversed Configuration (FRC), spheromak, Reversed Field Pinch (RFP), spherical tokamaks, linear devices dedicated to fundamental physics studies, and hybrid transitions that bridge multiple configurations. The participants represent facilities on which significant experiments are now underway: FRC Injection experiment (FIX), Translation Confinement experiment (TCS), Nihon-University Compact Torus Experiment (NUCTE), HITSI (Helicity Injection experiment, Steady Inductive Helicity Injection (HIT-SIHI)), Field Reversed Configuration experiment-Liner (FRX-L), TS-3/4, Sustained Spheromak Experiment (SSPX), Relaxation Scaling Experiment (RSX), HIST, Caltech Spheromak, or in the design process such as MRX-FRC (PPPL), Pulsed High Density experiment (PHD at UW). Several new directions and results in compact toroid (CT) research have recently emerged, including neutral-beam injection, rotating magnetic fields, flux build up from Ohmic boost coils, electrostatic helicity injection techniques, CT injection into other large devices, and high density configurations for applications to magnetized target fusion and translational compression of CT's. CT experimental programs in both the US and Japan have also shown substantial progress in the control and sustainment of CT's. Both in theory and experiment, there is increased emphasis on 3D dynamics, which is also related to astrophysical and space physics issues. 3D data visualization is now frequently used for experimental data display. There was much discussion of the effects of weak toroidal fields in FRC's and possible implications
Energy Technology Data Exchange (ETDEWEB)
Kuramoto, H.; Hiraki, N. [Kyushu Inst. of Tech., Kitakyushu, Fukuoka (Japan); Toi, K. [and others
1997-01-01
The toroidal current penetration is studied in current ramp experiments of the JIPP T-IIU tokamak. The poloidal magnetic field profile in the peripheral region of a plasma (0.5 {<=} {rho} {<=} 1.0) has been measured directly with a newly developed fast response Zeeman polarimeter. The experimental results indicate that an obvious skin effect of toroidal current density is clearly observed during both the current ramp-up and ramp-down experiments. The experimentally obtained toroidal current density profiles are well described by the profiles calculated on the assumption of the neoclassical electrical conductivity. Quasi-linear {Delta}`-analysis of tearing modes for the measured current density profile is consistent with time behaviour of coherent MHD modes such as m=4/n=1 or m=3/n=1 (m: poloidal mode number, n: toroidal mode number) often observed during the current ramp-up phase. The effect of these MHD modes on current penetration during the current ramp-up discharges is studied. (author)
Vlasov tokamak equilibria with shearad toroidal flow and anisotropic pressure
Kuiroukidis, Ap; Tasso, H
2015-01-01
By choosing appropriate deformed Maxwellian ion and electron distribution functions depending on the two particle constants of motion, i.e. the energy and toroidal angular momentum, we reduce the Vlasov axisymmetric equilibrium problem for quasineutral plasmas to a transcendental Grad-Shafranov-like equation. This equation is then solved numerically under the Dirichlet boundary condition for an analytically prescribed boundary possessing a lower X-point to construct tokamak equilibria with toroidal sheared ion flow and anisotropic pressure. Depending on the deformation of the distribution functions these steady states can have toroidal current densities either peaked on the magnetic axis or hollow. These two kinds of equilibria may be regarded as a bifurcation in connection with symmetry properties of the distribution functions on the magnetic axis.
Ultra-high-Q toroidal microresonators for cavity quantum electrodynamics
Spillane, S M; Vahala, K J; Goh, K W; Wilcut, E; Kimble, H J
2004-01-01
We investigate the suitability of toroidal microcavities for strong-coupling cavity quantum electrodynamics (QED). Numerical modeling of the optical modes demonstrate a significant reduction of modal volume with respect to the whispering gallery modes of dielectric spheres, while retaining the high quality factors representative of spherical cavities. The extra degree of freedom of toroid microcavities can be used to achieve improved cavity QED characteristics. Numerical results for atom-cavity coupling strength, critical atom number N_0 and critical photon number n_0 for cesium are calculated and shown to exceed values currently possible using Fabry-Perot cavities. Modeling predicts coupling rates g/(2*pi) exceeding 700 MHz and critical atom numbers approaching 10^{-7} in optimized structures. Furthermore, preliminary experimental measurements of toroidal cavities at a wavelength of 852 nm indicate that quality factors in excess of 100 million can be obtained in a 50 micron principal diameter cavity, which w...
Profiling compact toroid plasma density on CTIX with laser deflection
Brockington, Samuel Joseph Erwin
A laser deflectometer measures line-integrated plasma density gradient using laser diodes and amplified point detectors. A laser passing through an optically thin plasma is refracted by an amount proportional to the line-integrated electron density gradient. I have designed, installed, and operated a deflection diagnostic for the Compact Toroid Injection Experiment (CTIX), a plasma rail gun which can create compact toroid (CT) plasmas of controllable density and velocity. The diagnostic design and motivation are discussed, as well as three experiments performed with deflectometry. Thus, my thesis consists of the design of the deflectometer diagnostic, a comparison of its accuracy to interferometer density measurements, and finally a survey of compact toroid density profiles in two dimensions conducted with an array of detectors.
Toroidal Nuclear Matter Distributions of Superheavy Nuclei from Constrained Skyrme-HFB Calculations
Energy Technology Data Exchange (ETDEWEB)
Kosior, Amelia [Maria Curie-Sklodowska University, Poland; Staszczak, A. [Maria Curie-Sklodowska University, Poland; Wong, Cheuk-Yin [ORNL
2017-01-01
Using the Hartree Fock Bogoliubov (HFB) self-consistent mean-field theory with the SkM* Skyrme energy-density functional, we study nuclear structure properties of even even superheavy nuclei (SHN) of Z = 120 isotopes and N = 184 isotones. The shape of the nucleus along the lowest energy curve as a function of the quadrupole moment Q20 makes a sud- den transition from the oblate spheroids (biconcave discs) to the toroidal shapes, in the region of large oblate quadrupole moments.
Carmon, Tal; Schwefel, Harald G L; Yang, Lan; Oxborrow, Mark; Stone, A Douglas; Vahala, Kerry J
2008-03-14
We study level crossing in the optical whispering-gallery (WG) modes by using toroidal microcavities. Experimentally, we image the stationary envelope patterns of the composite optical modes that arise when WG modes of different wavelengths coincide in frequency. Numerically, we calculate crossings of levels that correspond with the observed degenerate modes, where our method takes into account the not perfectly transverse nature of their field polarizations. In addition, we analyze anticrossing with a large avoidance gap between modes of the same azimuthal number.
Toroidal vortices as a solution to the dust migration problem
Loren-Aguilar, Pablo
2015-01-01
In an earlier letter, we reported that dust settling in protoplanetary discs may lead to a dynamical dust-gas instability that produces global toroidal vortices. In this letter, we investigate the evolution of a dusty protoplanetary disc with two different dust species (1 mm and 50 cm dust grains), under the presence of the instability. We show how toroidal vortices, triggered by the interaction of mm grains with the gas, stop the radial migration of metre-sized dust, potentially offering a natural and efficient solution to the dust migration problem.
Reevaluation of the Braginskii viscous force for toroidal plasma
Johnson, Robert W
2009-01-01
The model by Braginskii for the viscous stress tensor is used to determine the shear and gyroviscous forces acting within a toroidally confined plasma. Comparison is made to previous evaluations which contain an inconsistent treatment of the radial derivative and neglect the effect of the pitch angle. A radial gyroviscous force is found to survive the limit of constant density and rigid toroidal rotation of the flux surface, and a radial shear viscous force may develop for sufficient vertical asymmetry to the ion velocity profile.
Development and verification of printed circuit board toroidal transformer model
DEFF Research Database (Denmark)
Pejtersen, Jens; Mønster, Jakob Døllner; Knott, Arnold
2013-01-01
by comparing calculated parameters with 3D finite element simulations and experimental measurement results. The developed transformer model shows good agreement with the simulated and measured results. The model can be used to predict the parameters of printed circuit board toroidal transformer configurations......An analytical model of an air core printed circuit board embedded toroidal transformer configuration is presented. The transformer has been developed for galvanic isolation of very high frequency switch-mode dc-dc power converter applications. The theoretical model is developed and verified...
Induction Motor with Switchable Number of Poles and Toroidal Winding
Directory of Open Access Journals (Sweden)
MUNTEANU, A.
2011-05-01
Full Text Available This paper presents a study of an induction motor provided with toroidal stator winding. The ring-type coils offer a higher versatility in obtaining a different number of pole pairs by means of delta/star and series/parallel connections respectively. As consequence, the developed torque can vary within large limits and the motor can be utilized for applications that require, for example, high load torque values for a short time. The study involves experimental tests and FEM simulation for an induction machine with three configurations of pole pairs. The conclusions attest the superiority of the toroidal winding for certain applications such as electric vehicles or lifting machines.
Ion temperature gradient modes in toroidal helical systems
Energy Technology Data Exchange (ETDEWEB)
Kuroda, T. [Graduate University for Advanced Studies, Toki, Gifu (Japan); Sugama, H.; Kanno, R.; Okamoto, M.
2000-04-01
Linear properties of ion temperature gradient (ITG) modes in helical systems are studied. The real frequency, growth rate, and eigenfunction are obtained for both stable and unstable cases by solving a kinetic integral equation with proper analytic continuation performed in the complex frequency plane. Based on the model magnetic configuration for toroidal helical systems like the Large Helical Device (LHD), dependences of the ITG mode properties on various plasma equilibrium parameters are investigated. Particularly, relative effects of {nabla}B-curvature drifts driven by the toroidicity and by the helical ripples are examined in order to compare the ITG modes in helical systems with those in tokamaks. (author)
Transport bifurcation induced by sheared toroidal flow in tokamak plasmasa)
Highcock, E. G.; Barnes, M.; Parra, F. I.; Schekochihin, A. A.; Roach, C. M.; Cowley, S. C.
2011-10-01
First-principles numerical simulations are used to describe a transport bifurcation in a differentially rotating tokamak plasma. Such a bifurcation is more probable in a region of zero magnetic shear than one of finite magnetic shear, because in the former case the component of the sheared toroidal flow that is perpendicular to the magnetic field has the strongest suppressing effect on the turbulence. In the zero-magnetic-shear regime, there are no growing linear eigenmodes at any finite value of flow shear. However, subcritical turbulence can be sustained, owing to the existence of modes, driven by the ion temperature gradient and the parallel velocity gradient, which grow transiently. Nonetheless, in a parameter space containing a wide range of temperature gradients and velocity shears, there is a sizeable window where all turbulence is suppressed. Combined with the relatively low transport of momentum by collisional (neoclassical) mechanisms, this produces the conditions for a bifurcation from low to high temperature and velocity gradients. A parametric model is constructed which accurately describes the combined effect of the temperature gradient and the flow gradient over a wide range of their values. Using this parametric model, it is shown that in the reduced-transport state, heat is transported almost neoclassically, while momentum transport is dominated by subcritical parallel-velocity-gradient-driven turbulence. It is further shown that for any given input of torque, there is an optimum input of heat which maximises the temperature gradient. The parametric model describes both the behaviour of the subcritical turbulence (which cannot be modelled by the quasi-linear methods used in current transport codes) and the complicated effect of the flow shear on the transport stiffness. It may prove useful for transport modelling of tokamaks with sheared flows.
Energy Technology Data Exchange (ETDEWEB)
Podesta, M; Fredrickson, E D; Gorelenkov, N N; LeBlanc, B P; Heidbrink, W W; Crocker, N A; Kubota, S
2010-08-19
The effects of a sheared toroidal rotation on the dynamics of bursting Toroidicity-induced Alfven eigenmodes are investigated in neutral beam heated plasmas on the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40 557 (2000)]. The modes have a global character, extending over most of the minor radius. A toroidal rotation shear layer is measured at the location of maximum drive for the modes. Contrary to results from other devices, no clear evidence of increased damping is found. Instead, experiments with simultaneous neutral beam and radio-frequency auxiliary heating show a strong correlation between the dynamics of the modes and the instability drive. It is argued that kinetic effects involving changes in the mode drive and damping mechanisms other than rotation shear, such as continuum damping, are mostly responsible for the bursting dynamics of the modes.
Controlling the toroidal excitations in metamaterials for high-Q response
Fan, Yuancheng; Fu, Quanhong; Wei, Zeyong; Li, Hongqiang
2016-01-01
The excitation of toroidal multipoles in metamaterials was investigated for high-Q response at a subwavelength scale. In this study, we explored the optimization of toroidal excitations in a planar metamaterial comprised of asymmetric split ring resonators (ASRRs). It was found that the scattering power of toroidal dipole can be remarkably strengthened by adjusting the characteristic parameter of ASRRs: asymmetric factor. Interestingly, the improvement in toroidal excitation accompanies increasing of the Q-factor of the toroidal metamaterial, it is shown that both the scattering power of toroidal dipole and the Q-factor were increased near one order by changing the asymmetric factor of ASRRs. The optimization in excitation of toroidal multipoles provide opportunity to further increase the Q-factor of toroidal metamaterial and boost light-matter interactions at the subwavelength scale for potential applications in low-power nonlinear processing and sensitive photonic applications.
Toroidal Variable-Line-Space Gratings: The Good, the Bad and The Ugly
West, Edward A.; Kobayashi, Ken; Cirtain, Jonathan; Gary, Allen; Davis, John; Reader, Joseph
2009-01-01
Toroidal variable-line-space (VLS) gratings are an important factor in the design of an efficient VUV solar telescope that will measure the CIV (155nm) and MgII (280nm) emissions lines in the Sun's transition region. In 1983 Kita and Harada described spherical VLS gratings but the technology to commercially fabricate these devices is a recent development, especially for toroidal surfaces. This paper will describe why this technology is important in the development of the Solar Ultraviolet Magnetograph Investigation (SUMI) sounding rocket program (the good), the delays due to the conversion between the TVLS grating design and the optical fabrication (the bad), and finally the optical testing, alignment and tolerancing of the gratings (the ugly). The Solar Ultraviolet Magnetograph Investigation, SUMI, has been reported in several papers since this program began in 2000. The emphasis of this paper is to describe SUMI's Toroidal Variable-Line-Space (TVLS) gratings. These gratings help SUMI meet its scientific goals which require both high spectral resolution and high optical efficiency for magnetic field measurements in the vacuum ultraviolet wavelength band of the solar spectrum (the good). Unfortunately, the technology readiness level of these gratings has made their implementation difficult, especially for a sounding rocket payload (the bad). Therefore, this paper emphasizes the problems and solutions that were developed to use these gratings in SUMI (the ugly). Section 2 contains a short review of the scientific goals of SUMI and why this mission is important in the understanding of the 3D structure of the magnetic field on the Sun. The flight hardware that makes up the SUMI payload is described in Section 3 with emphasis on those components that affect the TVLS gratings. Section 4 emphasizes the alignment, testing and optical modeling that were developed to optimize the performance of these gratings.
Energy Technology Data Exchange (ETDEWEB)
Futatani, Shimpei; Bos, Wouter J. T. [LMFA-CNRS UMR 5509, Ecole Centrale de Lyon, Université de Lyon, 69134 Ecully (France); Morales, Jorge A. [CEA Cadarache, St. Paul Lez Durance (France)
2015-05-15
It can be shown that in the presence of a toroidal magnetic field induced by poloidal coils, combined with the electromagnetic field induced by a central solenoid, no static equilibrium is possible within the MHD description, as soon as non-zero resistivity is assumed. The resulting dynamic equilibrium was previously discussed for the case of spatially homogeneous resisitivity. In the present work, it is shown how a spatial inhomogeneity of the viscosity and resisitivity coefficients influences this equilibrium. Parameters in both the stable, tokamak-like regime and unstable, reversed field pinch-like regime are considered. It is shown that, whereas the magnitudes of the velocity and magnetic field fluctuations are strongly modified by the spatial variation of the transport coefficients, the qualitative flow behaviour remains largely unaffected.
Homogeneous Construction of the Toroidal Lie Algebra of Type A1
Institute of Scientific and Technical Information of China (English)
Haifeng Lian; Cui Chen; Qinzhu Wen
2007-01-01
In this paper,we consider an analogue of the level two homogeneous construc-tion of the affine Kac-Moody algebra A1(1) by vertex operators.We construct modules for the toroidal Lie algebra and the extended toroidal Lie algebra of type A1.We also prove that the module is completely reducible for the extended toroidal Lie algebra.
Flat-band assembly for toroidal transformer cores
Mclyman, W. T.
1973-01-01
Toroidal transformer cores are often banded together by means of strap. Spot welds secure strap. Proper tension is obtained by use of special fixture in conjunction with winding of wire which is placed temporarily on core; winding is excited by dc current to hold core halves together magnetically during alignment.
ATLAS-Lowering the first Barrel Toroid coil
CERN Audiovisual Unit
2004-01-01
Cranes lowered the first of ATLAS's eight Barrel Toroid coils into the cavern. The part is 25 meters long and the cranes had to hold the 100 tonne coil at a sharp angle while it passed through the 18-meter diameter vertical shaft into the cavern. Then they laid the magnet to a horizontal robust platform. Images from Camera 2
Theory of the M = 1 Kink Mode in Toroidal Plasma
de Blank, H. J.; Schep, T. J.
1991-01-01
The energy principle of ideal magnetohydrodynamics (MHD) is used to study the ideal MHD stability of the m = 1 internal kink mode in a toroidal plasma. The equilibrium configurations that are considered allow for a broad region where the safety factor q is close to unity. This region may extend to t
Plasma Processes : Minimum dissipative relaxed states in toroidal plasmas
Indian Academy of Sciences (India)
R Bhattacharyya; M S Janaki; B Dasgupta
2000-11-01
Relaxation of toroidal discharges is described by the principle of minimum energy dissipation together with the constraint of conserved global helicity. The resulting Euler-Lagrange equation is solved in toroidal coordinates for an axisymmetric torus by expressing the solutions in terms of Chandrasekhar-Kendall (C-K) eigenfunctions analytically continued in the complex domain. The C-K eigenfunctions are obtained as hypergeometric functions that are solutions of scalar Helmholtz equation in toroidal coordinates in the large aspect-ratio approximation. Equilibria are constructed by assuming the current to vanish at the edge of plasma. For the = 0; = 0 ( and are the poloidal and toroidal mode numbers respectively) relaxed states, the magnetic ﬁeld, current, (safety factor) and pressure proﬁles are calculated for a given value of aspect-ratio of the torus and for different values of the eigenvalue 0. The new feature of the present model is that solutions allow for both tokamak as well as RFP-like behaviour with increase in the values of 0, which is related directly to volt-sec in the experiment.
First ATLAS Barrel Toroid coil casing arrives at CERN
2002-01-01
The first of eight 25-metre long coil casings for the ATLAS experiment's barrel toroid magnet system arrived at CERN on Saturday 2 March by road from Heidelberg. This structure will be part of the largest superconducting toroid magnet ever made. The first coil casing for the toroidal magnets of Atlas arrives at Building 180. This is the start of an enormous three-dimensional jigsaw puzzle. Each of the eight sets of double pancake coils will be housed inside aluminium coil casings, which in turn will be held inside a stainless steel vacuum vessel. A huge construction, the casing that arrived at CERN measures 25 metres in length and 5 metres in width. It weighs 20 tones. And this is just the beginning of the toroid jigsaw: by early April a batch of four double pancake coils, which altogether weighs 65 tones, will arrive from Ansaldo in Italy. The first vacuum vessel will also be arriving from Felguera in Spain this month. It will take about two years for all these 25 m long structures of casings, coils a...
Approximations for the natural logarithm from solenoid-toroid correspondence
Semiz, Ibrahim
2015-01-01
It seems reasonable that a toroid can be thought of approximately as a solenoid bent into a circle. The correspondence of the inductances of these two objects gives an approximation for the natural logarithm in terms of the average of two numbers. Different ways of averaging give different approximants. They are expressions simpler than Taylor polynomials, and are meaningful over a wider domain.
Evidence of Inward Toroidal Momentum Convection in the JET Tokamak
DEFF Research Database (Denmark)
Tala, T.; Zastrow, K.-D.; Ferreira, J.
2009-01-01
Experiments have been carried out on the Joint European Torus tokamak to determine the diffusive and convective momentum transport. Torque, injected by neutral beams, was modulated to create a periodic perturbation in the toroidal rotation velocity. Novel transport analysis shows the magnitude an...
ATLAS-Lowering the first Barrel Toroid coil
2004-01-01
Cranes lowered the first of ATLAS's eight Barrel Toroid coils into the cavern. The part is 25 metres long and the cranes had to hold the 100 tonne coil at a sharp angle while it passed through the 18-metre diameter vertical shaft into the cavern. Then they laid the magnet to a horisontal robust platform. Images from Camera 1
Neoclassical toroidal torque generation by auxiliary heating in non-axisymmetric tori
Lazzaro, E.; Nowak, S.; Sauter, O.
2016-12-01
In conditions of ideal axisymmetry, for a magnetized plasma in a generic bounded domain, necessarily toroidal, the uniform absorption of external energy (e.g. rf or isotropic alpha heating) clearly cannot give rise to net forces or torques. A rather common experimental observation on contemporary tokamaks is that the near central absorption of auxiliary heating power (often ICH, ECH, and LHCD) and current drive in presence of non axisymmetric magnetic perturbations, including tearing modes, drives a bulk plasma rotation in the co - I p direction. Also growing tearing modes provide a nonlinear magnetic braking that tends to flatten the rotation profile and clamp it at the q-rational surfaces. The physical origin of the torque associated with P aux absorption could be due the effects of asymmetry in deposition or in the equilibrium configuration, but here we consider also the effect of the response of the so called neoclassical offset velocity to the power dependent heat flow increment. The neoclassical toroidal viscosity (NTV), due to error fields, internal magnetic kink or tearing modes tends to relax the plasma rotation to this asymptotic speed, which in absence of auxiliary heating is of the order of the ion diamagnetic velocity. It can be shown by a kinetic calculation, this offset velocity is a function of the absorbed heat and therefore of the injected auxiliary power, thereby forcing the plasma rotation in a direction opposite to the initial, to large values. The problem is discussed in the frame of the theoretical models of neoclassical toroidal viscosity.
Goumiri, I. R.; Rowley, C. W.; Sabbagh, S. A.; Gates, D. A.; Boyer, M. D.; Gerhardt, S. P.; Kolemen, E.; Menard, J. E.
2017-05-01
A model-based feedback system is presented enabling the simultaneous control of the stored energy through βn and the toroidal rotation profile of the plasma in National Spherical Torus eXperiment Upgrade device. Actuation is obtained using the momentum from six injected neutral beams and the neoclassical toroidal viscosity generated by applying three-dimensional magnetic fields. Based on a model of the momentum diffusion and torque balance, a feedback controller is designed and tested in closed-loop simulations using TRANSP, a time dependent transport analysis code, in predictive mode. Promising results for the ongoing experimental implementation of controllers are obtained.
Beidler, M. T.; Cassak, P. A.; Jardin, S. C.; Ferraro, N. M.
2017-02-01
We diagnose local properties of magnetic reconnection during a sawtooth crash employing the three-dimensional toroidal, extended-magnetohydrodynamic (MHD) code M3D-C1. To do so, we sample simulation data in the plane in which reconnection occurs, the plane perpendicular to the helical (m,n)=(1,1) mode at the q = 1 surface, where m and n are the poloidal and toroidal mode numbers and q is the safety factor. We study the nonlinear evolution of a particular test equilibrium in a non-reduced field representation using both resistive-MHD and extended-MHD models. We find growth rates for the extended-MHD reconnection process exhibit a nonlinear acceleration and greatly exceed that of the resistive-MHD model, as is expected from previous experimental, theoretical, and computational work. We compare the properties of reconnection in the two simulations, revealing the reconnecting current sheets are locally different in the two models and we present the first observation of the quadrupole out-of-plane Hall magnetic field that appears during extended-MHD reconnection in a 3D toroidal simulation (but not in resistive-MHD). We also explore the dependence on toroidal angle of the properties of reconnection as viewed in the plane perpendicular to the helical magnetic field, finding qualitative and quantitative effects due to changes in the symmetry of the reconnection process. This study is potentially important for a wide range of magnetically confined fusion applications, from confirming simulations with extended-MHD effects are sufficiently resolved to describe reconnection, to quantifying local reconnection rates for purposes of understanding and predicting transport, not only at the q = 1 rational surface for sawteeth, but also at higher order rational surfaces that play a role in disruptions and edge-confinement degradation.
Nonuniversal gaugino masses in a magnetized toroidal compactification of SYM theories
Sumita, Keigo
2015-01-01
This paper proposes a concrete model of nonuniversal gaugino masses on the basis of higher-dimensional supersymmetric Yang-Mills theories compactified on a magnetized factorizable torus, and we estimate the gauge coupling constants and gaugino masses in the model. In the magnetized toroidal compactifications, the four-dimensional effective action can be obtained analytically identifying its dependence on moduli fields, where the magnetic fluxes are able to yield the flavor structure of the minimal supersymmetric standard model (MSSM). The obtained gauge kinetic functions contains multi moduli fields and their dependence is nonuniversal for the three gauge fields. The nonuniversal gauge kinetic functions can lead to nonuniversal gaugino masses at a certain high energy scale (e.g. compactification scale). Our numerical analysis of them shows that, particular ratios of gaugino masses, which were found to enhance the Higgs boson mass and lead to "natural supersymmetry" in the MSSM, can be realized in our model, w...
Lorentzian Lie (3-)algebra and toroidal compactification of M/string theory
Ho, Pei-Ming; Shiba, Shotaro
2009-01-01
We construct a class of Lie 3-algebras with an arbitrary number of pairs of generators with Lorentzian signature metric. Some examples are given and corresponding BLG models are studied. We show that such a system in general describes a supersymmetric massive vector multiplets after the ghost fields are Higgsed. Simple systems with nontrivial interaction are realized by infinite dimensional Lie 3-algebras associated with the loop algebras. The massive fields are then naturally identified with the Kaluza-Klein modes by the toroidal compactification triggered by the ghost fields. For example, Dp-brane with an (infinite dimensional) affine Lie algebra symmetry $\\hat g$ can be identified with D(p+1)-brane with gauge symmetry $g$.
Forbush decrease in the intensity of cosmic rays in a toroidal model of a magnetic cloud
Petukhova, A. S.; Petukhov, I. S.; Petukhov, S. I.
2015-12-01
The time dynamics of the particle distribution function in a magnetic cloud with the shape of a toroidal segment with the characteristic (forceless) structure of a magnetic field has been calculated. The shape of the cloud at the subsequent propagation in the interplanetary space has been determined by the kinematic model. The magnetic field of the cloud is calculated using the freezing-in condition. A significant effect of regions connecting the magnetic cloud with the Sun on the propagation of particles in the region of perturbation has been revealed. The calculation of the particle density and anisotropy of the intensity demonstrates reasonable agreement with the measurements. The results indicate the decisive role of the characteristic structure of the magnetic field in the time dynamics of the Forbush decrease in the intensity of cosmic rays.
Spectrum of multi-region-relaxed magnetohydrodynamic modes in topologically toroidal geometry
Dewar, Robert L; Tuen,; Hole, Matthew J
2016-01-01
A general formulation of the problem of calculating the spectrum of stable and unstable eigenmodes of linearized perturbations about a magnetically confined toroidal plasma is presented. The analysis is based on a new hydromagnetic dynamical model, Multi-region Relaxed Magnetohydrodynamics (MRxMHD), which models the plasma-magnetic field system as consisting of multiple regions, containing compressible Euler fluid and Taylor-relaxed magnetic field, separated by flexible ideal-MHD current sheets. This is illustrated using a first-principles analysis of a two-region slab geometry, with periodic boundary conditions to model the outer regions of typical tokamak or reversed-field pinch plasmas. The lowest and second-lowest eigenvalues in plasmas unstable to tearing and kink-tearing modes are calculated. Very near marginal stability the lowest mode obtained using the incompressible approximation to the kinetic energy normalization of the present study is shown to correspond to the eigenvalues found in previous stud...
Efficient excitation and tuning of toroidal dipoles within individual homogenous nanoparticles
Liu, Wei; Lei, Bing; Hu, Haojun; Miroshnichenko, Andrey E
2015-01-01
We revisit the fundamental topic of light scattering by single homogenous nanoparticles from the new perspective of excitation and manipulation of toroidal dipoles. It is revealed that besides within all-dielectric particles, toroidal dipoles can also be efficiently excited within homogenous metallic nanoparticles. Moreover, we show that those toroidal dipoles excited can be spectrally tuned through adjusting the radial anisotropy parameters of the materials, which paves the way for further more flexible manipulations of the toroidal responses within photonic systems. The study into toroidal multipole excitation and tuning within nanoparticles deepens our understanding of the seminal problem of light scattering, and may incubate many scattering related fundamental researches and applications.
电子束在弯曲螺线管中的运动%The motion of electron beam in toroid
Institute of Scientific and Technical Information of China (English)
杨晓东; 宋明涛; 夏佳文; 魏宝文; 王宜国
2001-01-01
为研究HIRFL-CSR电子冷却装置中电子束穿过电子冷却装置中弯曲螺线管后电子横向能量的变化，用Poisson程序计算出弯曲螺线管的磁场分布，考虑了空间电荷效应，用数值方法模拟计算了电子在弯曲螺线管中的运动情况，得到了电子束横向能量变化最小时磁场各分量与电子束能量和弯曲螺线管几何尺寸之间的关系，并获得了电子束横向能量在束流截面的空间分布。%he electron beam is deflected into and out interaction region by toroid in the electron cooling device for HIRFL-CSR. The magnetic field distribution in toroid and interface among toroid and solenoids is very complicated. The properties of the magnetic field in toroid give rise to a change in the transverse energy of the electron. A program is developed to study the spatial transverse energy distribution of electron in the beam as it moves through the toroid. The space charge effect is taken into account in the calculation. The simulation results show that the increase of the transverse energy can be minimized when the ratio of the central length of toroid and the cyclotron wavelength of electron is integer．
Energy Technology Data Exchange (ETDEWEB)
Han, Song; Yang, Helin [College of Physical Science and Technology, Central China Normal University, Wuhan (China); Cong, Lonqing; Singh, Ranjan [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore)
2016-05-15
Toroidal multipoles have recently been explored in various scientific communities, ranging from atomic and molecular physics, electrodynamics, and solid-state physics to biology. Here we experimentally and numerically demonstrate a three-dimensional toroidal metamaterial where two different toroidal dipoles along orthogonal directions have been observed. The chosen toroidal metamaterial also simultaneously supports Fano resonance and the classical analog of electromagnetically induced transparency (EIT) phenomena in the transmission spectra that originate from the electric-toroidal dipole and electric-magnetic dipole destructive interference. The intriguing properties of the toroidal resonances may open up avenues for applications in toroidal moments generator, sensing and slow-light devices. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
External kinks in plasmas with helical boundary deformation and net toroidal current
Energy Technology Data Exchange (ETDEWEB)
Ardelea, A. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)
1997-11-01
The investigation of the global ideal magnetohydrodynamic (MHD) stability of plasmas with helical boundary shape and nonvanishing toroidal plasma current constitutes the principal aim of this work. Global external modes with small values of m,n (typically n = 1,2,3 and m = n+1) are studied, where m and n are the poloidal and toroidal mode numbers, respectively. The first and main part of the work concentrates on fixed boundary equilibria generated by systematically varying parameters such as the type and the magnitude of the boundary deformation, the number of equilibrium field periods N{sub per}, the aspect ratio, the toroidal current density profile, {beta} and the pressure profile. Due to the periodicity of the equilibrium, couplings between Fourier perturbation components with different toroidal mode numbers n occur and lead to the apparition of families of modes. The study of a particular (m,n) mode has to take into account all (m{sub l}, n{sub l}) perturbation components with n{sub 1} belonging to the same family as n. The stability analysis is carried out in the parameter region where the inverse rotational transform (the safety factor in the traditional tokamak notation) q{<=}2.0 and {beta}{<=}2%. A particular property of the configurations investigated is that equilibrium Fourier components (m{sub e}, N{sub per}n{sub e}) which are involved in the couplings between the (m,n) mode studied and the (m{sub k},n{sub k}) perturbation components with m{sub k}>n{sub k}>n that exhibit resonances in the q>1 region are very small. As a consequence, the contributions of the (m,n)x(m{sub k},n{sub k}) couplings to the potential energy are very weak. It is shown that a helical boundary deformation can stabilize the n=1,2,3 external modes; if {delta} is a measure of the plasma boundary deformation, then windows of stability [{delta}{sub min}, {delta}{sub max}] may exist for a large variety of equilibrium parameters. (author) figs., tabs., 44 refs.
Initial value problem of the toroidal ion temperature gradient mode
Energy Technology Data Exchange (ETDEWEB)
Kuroda, T.; Sugama, H.; Kanno, R.; Okamoto, M. [National Inst. for Fusion Science, Toki, Gifu (Japan); Horton, W.
1998-06-01
The initial value problem of the toroidal ion temperature gradient mode is studied based on the Laplace transform of the ion gyrokinetic equation and the electron Boltzmann relation with the charge neutrality condition. Due to the toroidal magnetic drift, the Laplace-transformed density and potential perturbations have a branch cut as well as poles on the complex-frequency plane. The inverse Laplace transform shows that the temporal evolution of the density and potential perturbations consists of the normal modes and the continuum mode, which correspond to contributions from the poles and the branch cut, respectively. The normal modes have exponential time dependence with the eigenfrequencies determined by the dispersion relation while the continuum mode shows power-law decay oscillation. For the stable case, the long-time asymptotic behavior of the potential and density perturbations is dominated by the continuum mode which decays slower than the normal modes. (author)
Turbulent acceleration and heating in toroidal magnetized plasmas
Energy Technology Data Exchange (ETDEWEB)
Garbet, X.; Esteve, D.; Sarazin, Y.; Abiteboul, J.; Bourdelle, C.; Dif-Pradalier, G.; Ghendrih, P.; Grandgirard, V.; Latu, G. [CEA, IRFM, F-13108 St. Paul-lez-Durance cedex (France); Smolyakov, A. [Department of Physics and Engineering Physics, University of Saskatchewan, 116 Science Place, Saskatoon, Saskatchewan S7N 5E2 (Canada)
2013-07-15
It is shown that turbulence is responsible for a source of momentum, which cannot be recast as a divergence of a momentum flux. This process is similar to turbulent heating, with similar properties. The sum over all species vanishes up to polarization contributions. Hence, toroidal momentum is transferred from species to species, mediated by turbulence. As for momentum flux, symmetry breaking is needed. Flow shear is investigated as a source of symmetry breaking, leading to a source of momentum proportional to the shear rate. Turbulent acceleration is significant for ion species. It is found that it is proportional to the charge number Z, while turbulent heating scales as Z{sup 2}/A, where A is the mass number. It is maximum in the edge, where the E × B flow shear rate and turbulence intensity are maximum. When both are large enough, the turbulent torque may overcome the collisional friction between impurities and main ions, thus leading to different toroidal velocities.
Turbulent acceleration and heating in toroidal magnetized plasmas
Garbet, X.; Esteve, D.; Sarazin, Y.; Abiteboul, J.; Bourdelle, C.; Dif-Pradalier, G.; Ghendrih, P.; Grandgirard, V.; Latu, G.; Smolyakov, A.
2013-07-01
It is shown that turbulence is responsible for a source of momentum, which cannot be recast as a divergence of a momentum flux. This process is similar to turbulent heating, with similar properties. The sum over all species vanishes up to polarization contributions. Hence, toroidal momentum is transferred from species to species, mediated by turbulence. As for momentum flux, symmetry breaking is needed. Flow shear is investigated as a source of symmetry breaking, leading to a source of momentum proportional to the shear rate. Turbulent acceleration is significant for ion species. It is found that it is proportional to the charge number Z, while turbulent heating scales as Z2/A, where A is the mass number. It is maximum in the edge, where the E × B flow shear rate and turbulence intensity are maximum. When both are large enough, the turbulent torque may overcome the collisional friction between impurities and main ions, thus leading to different toroidal velocities.
ATLAS barrel toroid integration and test area in building 180
Maximilien Brice
2003-01-01
The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two 'double-pancake' windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. The barrel toroid is being assembled in building 180 on the Meyrin site. In the first phase of assembly, the coils are packed into their aluminium-alloy casing. These photos show the double-pancake coils from ANSALDO and the coil casings from ALSTOM. In the foreground is the tooling from COSMI used to turn over the coil casings during this first phase. In the right background is the yellow lifting gantry manufactured at JINR-Dubna, Russia which will transport the coil casings to a heating table for prestressing. Two test benches with magnetic mirror are also visible.
Reevaluation of the Braginskii viscous force for toroidal plasma
Johnson, Robert W.
2011-12-01
The model by Braginskii [1] (Braginskii, S. I. 1965 Transport processes in plasma. In: Review of Plasma Physics, Vol. 1 (ed. M.A. Leontovich). New York, NY: Consultants Bureau, pp. 205-311) for the viscous stress tensor is used to determine the shear and gyroviscous forces acting within a toroidally confined plasma. Comparison is made to a previous evaluation, which contains an inconsistent treatment of the radial derivative and neglects the effect of the pitch angle. Parallel viscosity contributes a radial shear viscous force, which may develop for sufficient vertical asymmetry to the ion velocity profile. An evaluation is performed of this radial viscous force for a tokamak near equilibrium, which indicates qualitative agreement between theory and measurement for impure plasma discharges with strong toroidal flow.
Magnetic Flux in Toroidal Type I Compactification
Blumenhagen, R; Körs, B; Lüst, Dieter; Blumenhagen, Ralph; Goerlich, Lars; Kors, Boris; Lust, Dieter
2001-01-01
We discuss the compactification of type I strings on a torus with additional background gauge flux on the D9-branes. The solutions to the cancellation of the RR tadpoles display various phenomenologically attractive features: supersymmetry breaking, chiral fermions and the opportunity to reduce the rank of the gauge group as desired. We also point out the equivalence of the concept of various different background fields and noncommutative deformations of the geometry on the individual D9-branes by constructing the relevant boundary states to describe such objects.
Hu, Qiang
2017-09-01
We develop an approach of the Grad-Shafranov (GS) reconstruction for toroidal structures in space plasmas, based on in situ spacecraft measurements. The underlying theory is the GS equation that describes two-dimensional magnetohydrostatic equilibrium, as widely applied in fusion plasmas. The geometry is such that the arbitrary cross-section of the torus has rotational symmetry about the rotation axis, Z, with a major radius, r0. The magnetic field configuration is thus determined by a scalar flux function, Ψ, and a functional F that is a single-variable function of Ψ. The algorithm is implemented through a two-step approach: i) a trial-and-error process by minimizing the residue of the functional F(Ψ) to determine an optimal Z-axis orientation, and ii) for the chosen Z, a χ2 minimization process resulting in a range of r0. Benchmark studies of known analytic solutions to the toroidal GS equation with noise additions are presented to illustrate the two-step procedure and to demonstrate the performance of the numerical GS solver, separately. For the cases presented, the errors in Z and r0 are 9° and 22%, respectively, and the relative percent error in the numerical GS solutions is smaller than 10%. We also make public the computer codes for these implementations and benchmark studies.
Study of plasma equilibrium in toroidal fusion devices using mesh-free numerical calculation method
Rasouli, C.; Abbasi Davani, F.; Rokrok, B.
2016-08-01
Plasma confinement using external magnetic field is one of the successful ways leading to the controlled nuclear fusion. Development and validation of the solution process for plasma equilibrium in the experimental toroidal fusion devices is the main subject of this work. Solution of the nonlinear 2D stationary problem as posed by the Grad-Shafranov equation gives quantitative information about plasma equilibrium inside the vacuum chamber of hot fusion devices. This study suggests solving plasma equilibrium equation which is essential in toroidal nuclear fusion devices, using a mesh-free method in a condition that the plasma boundary is unknown. The Grad-Shafranov equation has been solved numerically by the point interpolation collocation mesh-free method. Important features of this approach include truly mesh free, simple mathematical relationships between points and acceptable precision in comparison with the parametric results. The calculation process has been done by using the regular and irregular nodal distribution and support domains with different points. The relative error between numerical and analytical solution is discussed for several test examples such as small size Damavand tokamak, ITER-like equilibrium, NSTX-like equilibrium, and typical Spheromak.
Advances in the simulation of toroidal gyro Landau fluid model turbulence
Energy Technology Data Exchange (ETDEWEB)
Waltz, R.E. [General Atomics, San Diego, CA (United States); Kerbel, G.D.; Milovich, J. [Lawrence Livermore National Lab., CA (United States); Hammett, G.W. [Princeton Univ., NJ (United States). Plasma Physics Lab.
1994-12-01
The gyro-Landau fluid (GLF) model equations for toroidal geometry have been recently applied to the study ion temperature gradient (ITG) mode turbulence using the 3D nonlinear ballooning mode representation (BMR). The present paper extends this work by treating some unresolved issues conceming ITG turbulence with adiabatic electrons. Although eddies are highly elongated in the radial direction long time radial correlation lengths are short and comparable to poloidal lengths. Although transport at vanishing shear is not particularly large, transport at reverse global shear, is significantly less. Electrostatic transport at moderate shear is not much effected by inclusion of local shear and average favorable curvature. Transport is suppressed when critical E{times}B rotational shear is comparable to the maximum linear growth rate with only a weak dependence on magnetic shear. Self consistent turbulent transport of toroidal momentum can result in a transport bifurcation at suffciently large r/(Rq). However the main thrust of the new formulation in the paper deals with advances in the development of finite beta GLF models with trapped electron and BMR numerical methods for treating the fast parallel field motion of the untrapped electrons.
Miniature anastigmatic spectrometer design with a concave toroidal mirror.
Dong, Jianing; Chen, He; Zhang, Yinchao; Chen, Siying; Guo, Pan
2016-03-01
An advanced optical design for a low-cost and astigmatism-corrected spectrometer with a high resolution is presented. The theory and method of astigmatism correction are determined with the use of a concave toroidal mirror. The performances of a modified spectrometer and a traditional spectrometer are compared, and the analysis is verified. Experimentally, the limiting resolution of our spectrometer is 0.1 nm full width at half-maximum, as measured for 579.1 nm.
Radial Eigenmodes for a Toroidal Waveguide with Rectangular Cross Section
Energy Technology Data Exchange (ETDEWEB)
Rui Li
2012-07-01
In applying mode expansion to solve the CSR impedance for a section of toroidal vacuum chamber with rectangular cross section, we identify the eigenvalue problem for the radial eigenmodes which is different from that for cylindrical structures. In this paper, we present the general expressions of the radial eigenmodes, and discuss the properties of the eigenvalues on the basis of the Sturm-Liouville theory.
Collapse of Magnetized Singular Isothermal Toroids: II. Rotation and Magnetic Braking
Allen, A; Shu, F H
2003-01-01
We study numerically the collapse of rotating, magnetized molecular cloud cores, focusing on rotation and magnetic braking during the main accretion phase of isolated star formation. Motivated by previous numerical work and analytic considerations, we idealize the pre-collapse core as a magnetized singular isothermal toroid, with a constant rotational speed everywhere. The collapse starts from the center, and propagates outwards in an inside-out fashion, satisfying exact self-similarity in space and time. For rotation rates and field strengths typical of dense low-mass cores, the main feature remains the flattening of the mass distribution along field lines -- the formation of a pseudodisk, as in the nonrotating cases. The density distribution of the pseudodisk is little affected by rotation. On the other hand, the rotation rate is strongly modified by pseudodisk formation. Most of the centrally accreted material reaches the vicinity of the protostar through the pseudodisk. The specific angular momentum can b...
MHD stability of configurations with distorted toroidal coils
Energy Technology Data Exchange (ETDEWEB)
Cooper, W.A.; Ardela, A. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)
1997-06-01
We have investigated the local ideal MHD stability properties of a compact tokamak/torsatron configuration that models the proposed EPEIUS device. The {beta} limits imposed by the Mercier criterion and ballooning modes approach 1% in 50 kA peaked toroidal current and in current-free cases. A sequence at {beta}=6.75% is demonstrated to become marginally stable to local modes when the 180 kA toroidal current prescribed becomes sufficiently hollow that the maximum value of the inverse rotational transform q{sub max} exceeds 5 and the minimum value q{sub min} near the plasma edge approaches 2. The stabilisation mechanism is associated with the shape of the flux surface average of the parallel current density {sigma}>. A {sigma}> profile that increases in magnitude radially exercises a strong stabilizing influence on the energy principle. In the outer half of the plasma volume, the Mercier criterion (and to a lesser extent the ballooning eigenvalue) displays very local unstable spikes that align with rational values of 1/(qL). We interpret this as a potential for pressure-driven island formation rather than a strict stability limit. This phenomenon requires more detailed investigation using equilibrium codes that can study magnetic island structures. Global internal and external mode stability properties must also be examined, particularly for hollow current profile cases where the large toroidal plasma current concentrated near the plasma edge could destabilize external modes. (author) 1 fig., 5 refs.
The Geometry on Smooth Toroidal Compactifications of Siegel varieties
Yau, Shing-Tung
2012-01-01
This is a part of our joint program. The purpose of this paper is to study smooth toroidal compactifications of Siegel varieties and their applications, we also try to understand the K\\"ahler-Einstein metrics on Siegel varieties through the compactifications. Let $A_{g,\\Gamma}:=H_g/\\Gamma$ be a Siegel variety, where $H_g$ is the genus-$g$ Siegel space and $\\Gamma$ is an arithmetic subgroup in $\\Aut(H_g)$. There are four aspects of this paper : 1.There is a correspondence between the category of degenerations of Abelian varieties and the category of limits of weight one Hodge structures. We show that any cusp of Siegel space $\\frak{H}_g$ can be identified with the set of certain weight one polarized mixed Hodge structures. 2.In general, the boundary of a smooth toroidal compactification $\\bar{A}_{g,\\Gamma}$ of $A_{g,\\Gamma}$ has self-intersections.For most geometric applications, we would like to have a nice toroidal compactification such that the added infinity boundary $D_\\infty =\\bar{A}_{g,\\Gamma}-A_{g,\\Gam...
Electrically insulated MLI and thermal anchor
Kamiya, Koji; Furukawa, Masato; Hatakenaka, Ryuta; Miyakita, Takeshi; Murakami, Haruyuki; Kizu, Kaname; Tsuchiya, Katsuhiko; Koidea, Yoshihiko; Yoshida, Kiyoshi
2014-01-01
The thermal shield of JT-60SA is kept at 80 K and will use the multilayer insulation (MLI) to reduce radiation heat load to the superconducting coils at 4.4 K from the cryostat at 300 K. Due to plasma pulse operation, the MLI is affected by eddy current in toroidal direction. The MLI is designed to suppress the current by electrically insulating every 20 degree in the toroidal direction by covering the MLI with polyimide films. In this paper, two kinds of designs for the MLI system are proposed, focusing on a way to overlap the layers. A boil-off calorimeter method and temperature measurement has been performed to determine the thermal performance of the MLI system. The design of the electrical insulated thermal anchor between the toroidal field (TF) coil and the thermal shield is also explained.
Toroidal cell and battery. [storage battery for high amp-hour load applications
Nagle, W. J. (Inventor)
1981-01-01
A toroidal storage battery designed to handle relatively high amp-hour loads is described. The cell includes a wound core disposed within a pair of toroidal channel shaped electrodes spaced apart by nylon insulator. The shape of the case electrodes of this toroidal cell allows a first planar doughnut shaped surface and the inner cylindrical case wall to be used as a first electrode and a second planar doughnut shaped surface and the outer cylindrical case wall to be used as a second electrode. Connectors may be used to stack two or more toroidal cells together by connecting substantially the entire surface area of the first electrode of a first cell to substantially the entire surface area of the second electrode of a second cell. The central cavity of each toroidal cell may be used as a conduit for pumping a fluid through the toroidal cell to thereby cool the cell.
PARTICLE-HOLE NATURE OF THE LIGHT HIGH-SPIN TOROIDAL ISOMERS
Energy Technology Data Exchange (ETDEWEB)
Staszczak, A. [Maria Curie-Sklodowska University, Poland; Wong, Cheuk-Yin [ORNL
2015-01-01
Nuclei under non-collective rotation with a large angular momentum above some threshold can assume a toroidal shape. In our previous work, we showed by using cranked Skyrme Hartree Fock approach that even even, N = Z, high-K, toroidal isomeric states may have general occurrences for light nuclei with 28 < A < 52. We present here some additional results and systematics on the particle-hole nature of these high-spin toroidal isomers.
Are there any stable magnetic fields in barotropic stars?
Lander, S K
2012-01-01
We construct barotropic stellar equilibria, containing magnetic fields with both poloidal and toroidal field components. We extend earlier results by exploring the effect of different magnetic field and current distributions. Our results suggest that the boundary treatment plays a major role in whether the poloidal or toroidal field component is globally dominant. Using time evolutions we provide the first stability test for mixed poloidal-toroidal fields in barotropic stars, finding that all these fields suffer instabilities due to one of the field components: these are localised around the pole for toroidal-dominated equilibria and in the closed-field line region for poloidal-dominated equilibria. Rotation provides only partial stabilisation. There appears to be very limited scope for the existence of stable magnetic fields in barotropic stars. We discuss what additional physics from real stars may allow for stable fields.
The comparative analysis of the different mechanisms of toroidal rotation in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Sabot, R. [Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Parail, V. [Kurchatov Institute, Moscow (Russian Federation)
1994-07-01
The toroidal plasma rotation appears as one the possible mechanism for suppression of plasma turbulence. Several mechanisms are believed to contribute to the toroidal plasma rotation. The results of numerical simulation of the toroidal rotation on JET are presented, where are taken into consideration the following effects: the neoclassical viscosity due to banana and ripple trapped particles, the anomalous viscosity due to plasma turbulence, the momentum input by NBI (neutron beam injection) and ion momentum loss near the separatrix due to prompt ion losses. The NBI appeared to be the principal source of toroidal plasma rotation. 6 refs., 2 figs.
Energy Technology Data Exchange (ETDEWEB)
Liu, Wei [Los Alamos National Laboratory; Hsu, Scott [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory
2009-01-01
We present results from three-dimensional ideal magnetohydrodynamic simulations of low {beta} compact toroid (CT) injection into a hot strongly magnetized plasma, with the aim of providing insight into CT fueling of a tokamak with parameters relevant for ITER (International Thermonuclear Experimental Reactor). A regime is identified in terms of CT injection speed and CT-to-background magnetic field ratio that appears promising for precise core fueling. Shock-dominated regimes, which are probably unfavorable for tokamak fueling, are also identified. The CT penetration depth is proportional to the CT injection speed and density. The entire CT evolution can be divided into three stages: (1) initial penetration, (2) compression in the direction of propagation and reconnection, and (3) coming to rest and spreading in the direction perpendicular to injection. Tilting of the CT is not observed due to the fast transit time of the CT across the background plasma.
Design and application of robust rf pulses for toroid cavity NMR spectroscopy
Skinner, Thomas E; Woelk, Klaus; Gershenzon, Naum I; Glaser, Steffen J
2010-01-01
We present robust radio frequency (rf) pulses that tolerate a factor of six inhomogeneity in the B1 field, significantly enhancing the potential of toroid cavity resonators for NMR spectroscopic applications. Both point-to-point (PP) and unitary rotation (UR) pulses were optimized for excitation, inversion, and refocusing using the gradient ascent pulse engineering (GRAPE) algorithm based on optimal control theory. In addition, the optimized parameterization (OP) algorithm applied to the adiabatic BIR-4 UR pulse scheme enabled ultra-short (50 microsec) pulses with acceptable performance compared to standard implementations. OP also discovered a new class of non-adiabatic pulse shapes with improved performance within the BIR-4 framework. However, none of the OP-BIR4 pulses are competitive with the more generally optimized UR pulses. The advantages of the new pulses are demonstrated in simulations and experiments. In particular, the DQF COSY result presented here represents the first implementation of 2D NMR sp...
Prospects for searching axion-like particle dark matter with dipole, toroidal and wiggler magnets
Energy Technology Data Exchange (ETDEWEB)
Baker, Oliver K. [Yale Univ., New Haven, CT (United States). Dept. of Physics; Betz, Michael; Caspers, Fritz [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Jaeckel, Joerg [Institute for Particle Physics Phenomenology, Durham (United Kingdom); Lindner, Axel; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Semertzidis, Yannis [Brookhaven National Lab., Upton, NY (United States); Sikivie, Pierre [Florida Univ., Gainesville, FL (United States). Dept. of Physics; Zioutas, Konstantin [Patras Univ. (Greece)
2011-10-15
In this work we consider searches for dark matter made of axions or axion-like particles (ALPs) using resonant radio frequency cavities inserted into dipole magnets from particle accelerators, wiggler magnets developed for accelerator based advanced light sources, and toroidal magnets similar to those used in particle physics detectors. We investigate the expected sensitivity of such ALP dark matter detectors and discuss the engineering aspects of building and tuning them. Brief mention is also made of even stronger field magnets that are becoming available due to improvements in magnetic technology. It is concluded that new experiments utilizing already existing magnets could greatly enlarge the mass region in searches for axion-like dark matter particles. (orig.)
Symmetry breaking in MAST plasma turbulence due to toroidal flow shear
Fox, M. F. J.; van Wyk, F.; Field, A. R.; Ghim, Y.-c.; Parra, F. I.; Schekochihin, A. A.; the MAST Team
2017-03-01
The flow shear associated with the differential toroidal rotation of tokamak plasmas breaks an underlying symmetry of the turbulent fluctuations imposed by the up–down symmetry of the magnetic equilibrium. Using experimental beam-emission-spectroscopy measurements and gyrokinetic simulations, this symmetry breaking in ion-scale turbulence in MAST is shown to manifest itself as a tilt of the spatial correlation function and a finite skew in the distribution of the fluctuating density field. The tilt is a statistical expression of the ‘shearing’ of the turbulent structures by the mean flow. The skewness of the distribution is related to the emergence of long-lived density structures in sheared, near-marginal plasma turbulence. The extent to which these effects are pronounced is argued (with the aid of the simulations) to depend on the distance from the nonlinear stability threshold. Away from the threshold, the symmetry is effectively restored.
Symmetry breaking in MAST plasma turbulence due to toroidal flow shear
Fox, M F J; Field, A R; Ghim, Y -c; Parra, F I; Schekochihin, A A
2016-01-01
The flow shear associated with the differential toroidal rotation of tokamak plasmas breaks an underlying symmetry of the turbulent fluctuations imposed by the up-down symmetry of the magnetic equilibrium. Using experimental Beam-Emission-Spectroscopy (BES) measurements and gyrokinetic simulations, this symmetry breaking in ion-scale turbulence in MAST is shown to manifest itself as a tilt of the spatial correlation function and a finite skew in the distribution of the fluctuating density field. The tilt is a statistical expression of the "shearing" of the turbulent structures by the mean flow. The skewness of the distribution is related to the emergence of long-lived density structures in sheared, near-marginal plasma turbulence. The extent to which these effects are pronounced is argued (with the aid of the simulations) to depend on the distance from the nonlinear stability threshold. Away from the threshold, the symmetry is effectively restored.
Position indicating split toroid for the RACE experiment
Energy Technology Data Exchange (ETDEWEB)
Hurst, B. [Nuclear Engineering Teaching Laboratory, University of Texas, 10100 Burnet Road, Austin, TX 78758 (United States)]. E-mail: bhurst@mail.utexas.edu; Folkman, K. [Idaho Accelerator Center, Idaho State University, Pocatello, ID 83201 (United States)
2007-08-15
Aspects of the recent reactor accelerator coupled experiments (RACE) carried out at University of Texas Nuclear Engineering Teaching Laboratory will be discussed. In particular, a compact instrument that allowed a continuous non-invasive means of determining the relative electron beam position was developed. The operation of the instrument is similar to an inductive current pick up toroid except that the core is sectioned radially, which allows spatial information to be derived from the induced voltages. Results of initial tests, both in beam and with a pulser, will be presented along with plans to optimize future designs.
Fabrication of toroidal composite pressure vessels. Final report
Energy Technology Data Exchange (ETDEWEB)
Dodge, W.G.; Escalona, A.
1996-11-24
A method for fabricating composite pressure vessels having toroidal geometry was evaluated. Eight units were fabricated using fibrous graphite material wrapped over a thin-walled aluminum liner. The material was wrapped using a machine designed for wrapping, the graphite material was impregnated with an epoxy resin that was subsequently thermally cured. The units were fabricated using various winding patterns. They were hydrostatically tested to determine their performance. The method of fabrication was demonstrated. However, the improvement in performance to weight ratio over that obtainable by an all metal vessel probably does not justify the extra cost of fabrication.
Stationary motion of a self gravitating toroidal incompressible liquid layer
Fusco, Giorgio; Oliva, Waldyr M
2012-01-01
We consider an incompressible fluid contained in a toroidal stratum which is only subjected to Newtonian self-attraction. Under the assumption of infinitesimal tickness of the stratum we show the existence of stationary motions during which the stratum is approximatly a round torus (with radii r, R and R>>r) that rotates around its axis and at the same time rolls on itself. Therefore each particle of the stratum describes an helix-like trajectory around the circumference of radius R that connects the centers of the cross sections of the torus.
Total and paired domination numbers of toroidal meshes
Hu, Fu-Tao
2011-01-01
Let $G$ be a graph without isolated vertices. The total domination number of $G$ is the minimum number of vertices that can dominate all vertices in $G$, and the paired domination number of $G$ is the minimum number of vertices in a dominating set whose induced subgraph contains a perfect matching. This paper determines the total domination number and the paired domination number of the toroidal meshes, i.e., the Cartesian product of two cycles $C_n$ and $C_m$ for any $n\\ge 3$ and $m\\in\\{3,4\\}$, and gives some upper bounds for $n, m\\ge 5$.
Experimental observation of crystalline particle flows in toroidal dust clouds
Energy Technology Data Exchange (ETDEWEB)
Wilms, Jochen, E-mail: wilms@physik.uni-kiel.de; Piel, Alexander [IEAP, Christian-Albrechts-Universität, D-24098 Kiel (Germany); Reichstein, Torben [IEAP, Christian-Albrechts-Universität, D-24098 Kiel (Germany); DME, Kiel University of Applied Sciences, Grenzstr. 3, D-24147 Kiel (Germany)
2015-06-15
The dust flow in a toroidal dust trap is studied experimentally. The flow is driven by the Hall component of the ion drag force in a magnetized plasma. Dust density waves are found in a torus with a large minor radius a, which allows for several wavelength, 2a>5λ, in the (mostly) radial direction of the ion flow. Beyond an intermediate state with radial sloshing oscillations, a crystalline dust flow with suppressed wave activity could be realized for 2a<2λ. The particles arrange themselves in distinct layers with hexagonal-like local order. Smooth transitions between states with different numbers of layers are found in the inhomogeneous flow.
Simulation of dust streaming in toroidal traps: Stationary flows
Energy Technology Data Exchange (ETDEWEB)
Reichstein, Torben; Piel, Alexander [IEAP, Christian-Albrechts-Universitaet, D-24098 Kiel (Germany)
2011-08-15
Molecular-dynamic simulations were performed to study dust motion in a toroidal trap under the influence of the ion drag force driven by a Hall motion of the ions in E x B direction, gravity, inter-particle forces, and friction with the neutral gas. This article is focused on the inhomogeneous stationary streaming motion. Depending on the strength of friction, the spontaneous formation of a stationary shock or a spatial bifurcation into a fast flow and a slow vortex flow is observed. In the quiescent streaming region, the particle flow features a shell structure which undergoes a structural phase transition along the flow direction.
Toroidal equilibrium with low frequency wave driven currents
Energy Technology Data Exchange (ETDEWEB)
Ehst, D.A.
1984-12-01
In the absence of an emf the parallel current, j/sub parallel/, in a steady state tokamak will consist of a neoclassical portion plus a wave-driven contribution. Using the drift kinetic equation, the quasilinear (wave-driven) current is computed for high phase speed waves in a torus, and this is combined with the neoclassical term to obtain the general expression for the flux surface average
D{sup -} energy spectrum in toroidal quantum ring
Energy Technology Data Exchange (ETDEWEB)
Gomez, C A; Gutierrez, W; Garcia, L F [Universidad Industrial de Santander, Bucaramanga (Colombia); Marin, J H, E-mail: jhmarin@unal.edu.c [Universidad Nacional-Colombia, Medellin-Colombia, AA3840 (Colombia)
2009-05-01
The structure of energy spectrum of the negative donor centre in a toroidal-shaped quantum ring with two different morphologies of the cross-section is analyzed. By using the adiabatic procedure we have deduced a one-dimensional wave equation with periodic conditions which describes the low-lying energy levels related to the electrons rotation around the symmetry axis. Our results are in good agreement with those previously obtained as the size of the ring cross-section tends to zero.
Behavior of Compact Toroid Injected into C-2U Confinement Vessel
Matsumoto, Tadafumi; Roche, T.; Allrey, I.; Sekiguchi, J.; Asai, T.; Conroy, M.; Gota, H.; Granstedt, E.; Hooper, C.; Kinley, J.; Valentine, T.; Waggoner, W.; Binderbauer, M.; Tajima, T.; the TAE Team
2016-10-01
The compact toroid (CT) injector system has been developed for particle refueling on the C-2U device. A CT is formed by a magnetized coaxial plasma gun (MCPG) and the typical ejected CT/plasmoid parameters are as follows: average velocity 100 km/s, average electron density 1.9 ×1015 cm-3, electron temperature 30-40 eV, mass 12 μg . To refuel particles into FC plasma the CT must penetrate the transverse magnetic field that surrounds the FRC. The kinetic energy density of the CT should be higher than magnetic energy density of the axial magnetic field, i.e., ρv2 / 2 >=B2 / 2μ0 , where ρ, v, and B are mass density, velocity, and surrounded magnetic field, respectively. Also, the penetrated CT's trajectory is deflected by the transverse magnetic field (Bz 1 kG). Thus, we have to estimate CT's energy and track the CT trajectory inside the magnetic field, for which we adopted a fast-framing camera on C-2U: framing rate is up to 1.25 MHz for 120 frames. By employing the camera we clearly captured the CT/plasmoid trajectory. Comparisons between the fast-framing camera and some other diagnostics as well as CT injection results on C-2U will be presented.
Predictive Simulations of ITER Including Neutral Beam Driven Toroidal Rotation
Energy Technology Data Exchange (ETDEWEB)
Halpern, Federico D.; Kritz, Arnold H.; Bateman, Glenn; Pankin, Alexei Y.; Budny, Robert V.; McCune, Douglas C.
2008-06-16
Predictive simulations of ITER [R. Aymar et al., Plasma Phys. Control. Fusion 44, 519 2002] discharges are carried out for the 15 MA high confinement mode (H-mode) scenario using PTRANSP, the predictive version of the TRANSP code. The thermal and toroidal momentum transport equations are evolved using turbulent and neoclassical transport models. A predictive model is used to compute the temperature and width of the H-mode pedestal. The ITER simulations are carried out for neutral beam injection (NBI) heated plasmas, for ion cyclotron resonant frequency (ICRF) heated plasmas, and for plasmas heated with a mix of NBI and ICRF. It is shown that neutral beam injection drives toroidal rotation that improves the confinement and fusion power production in ITER. The scaling of fusion power with respect to the input power and to the pedestal temperature is studied. It is observed that, in simulations carried out using the momentum transport diffusivity computed using the GLF23 model [R.Waltz et al., Phys. Plasmas 4, 2482 (1997)], the fusion power increases with increasing injected beam power and central rotation frequency. It is found that the ITER target fusion power of 500 MW is produced with 20 MW of NBI power when the pedesta temperature is 3.5 keV. 2008 American Institute of Physics. [DOI: 10.1063/1.2931037
Last End Cap Toroid installation : The Pharaonic enterprise
Arnaud Foussat
After the successful and impressive transport feat from Building 191 to Point 1 was carried out by the Friderici crew on 28th June, the second and last Toroid End Cap, ECT-C, was transferred into the surface building, SX1, on 2nd July. The ECT-C was installed in the ATLAS cavern on the C-side on 12th July. As the person responsible for the project, in my opinion, one of the crucial points of this project was to design all the tooling and installation sequences taking into account the building infrastructure dimensional constraints. View of the ECT installation tooling and preparation for the ECT-C descent into the ATLAS 80m-shaft by the ATLAS magnet group and DBS teams. The movement of the 240-ton magnet and 12-m diameter toroid end-cap was achieved in collaboration with SCALES, a subcontractor company, using a hydraulic gantry able to lower the ECT inside the shaft by 5m below the floor level . This allowed the DBS team to attach the end-cap with the 2 x 140 tons overhead crane and lower it onto the c...
Inversion of the Abel equation for toroidal density distributions
Ciotti, L
1999-01-01
In this paper I present three new results of astronomical interest concerning the theory of Abel inversion. 1) I show that in the case of a spatial emissivity that is constant on toroidal surfaces and projected along the symmetry axis perpendicular to the torus' equatorial plane, it is possible to invert the projection integral. From the surface (i.e. projected) brightness profile one then formally recovers the original spatial distribution as a function of the toroidal radius. 2) By applying the above-described inversion formula, I show that if the projected profile is described by a truncated off-center gaussian, the functional form of the related spatial emissivity is very simple and - most important - nowhere negative for any value of the gaussian parameters, a property which is not guaranteed - in general - by Abel inversion. 3) Finally, I show how a generic multimodal centrally symmetric brightness distribution can be deprojected using a sum of truncated off-center gaussians, recovering the spatial emis...
Cryogenic Characteristics of the ATLAS Barrel Toroid Superconducting Magnet
Pengo, R; Delruelle, N; Pezzetti, M; Pirotte, O; Passardi, Giorgio; Dudarev, A; ten Kate, H
2008-01-01
ATLAS, one of the experiments of the LHC accelerator under commissioning at CERN, is equipped with a large superconducting magnet the Barrel Toroid (BT) that has been tested at nominal current (20500 A). The BT is composed of eight race-track superconducting coils (each one weights about 45 tons) forming the biggest air core toroidal magnet ever built. By means of a large throughput centrifugal pump, a forced flow (about 10 liter/second at 4.5 K) provides the indirect cooling of the coils in parallel. The paper describes the results of the measurements carried out on the complete cryogenic system assembled in the ATLAS cavern situated 100 m below the ground level. The measurements include, among other ones, the static heat loads, i.e., with no or constant current in the magnet, and the dynamic ones, since additional heat losses are produced, during the current ramp-up or slow dump, by eddy currents induced on the coil casing.
Rotation shear induced fluctuation decorrelation in a toroidal plasma
Energy Technology Data Exchange (ETDEWEB)
Hahm, T.S.
1994-06-01
The enhanced decorrelation of fluctuations by the combined effects of the E {times} B flow (V{sub E}) shear, the parallel flow (V{sub {parallel}}) shear, and the magnetic shear is studied in toroidal geometry. A two-point nonlinear analysis previously utilized in a cylindrical model shows that the reduction of the radial correlation length below its ambient turbulence value ({Delta}r{sub 0}) is characterized by the ratio between the shearing rate {omega}{sub s} and the ambient turbulence scattering rate {Delta}{omega}{sub T}. The derived shearing rate is given by {omega}{sub s}{sup 2} = ({Delta}r{sub 0}){sup 2}[1/{Delta}{phi}{sup 2}{l_brace}{partial_derivative}/{partial_derivative}r(qV{sub E}/r){r_brace}{sup 2} + 1/{Delta}{eta}{sup 2}{l_brace}{partial_derivative}/{partial_derivative}r(V{parallel}/qR){r_brace}{sup 2}], where {Delta}{phi} and {Delta}{eta} are the correlation angles of the ambient turbulence along the toroidal and parallel directions. This result deviates significantly from the cylindrical result for high magnetic shear or for ballooning-like fluctuations. For suppression of flute-like fluctuations, only the radial shear of qV{sub E}/r contributes, and the radial shear of V{parallel}/qR is irrelevant regardless of the plasma rotation direction.
Volpini, G
2000-01-01
Several resistive joints are foreseen inside the coils of the ATLAS Barrel Toroid. Here we investigate the problems linked to nonstationary effects: during the magnet charge and dump discharge the magnetic field induces eddy-currents inside the joints, increasing the Joule dissipation and possibly exceeding the conductor's critical current. We have developed an electrical model of the joint to predict the current distribution under nonstationary conditions and consequent heat dissipation; this model allowed us to compute the optimum length of these joints in order to minimise the heat dissipation and the eddy-currents. (5 refs).
Energy Technology Data Exchange (ETDEWEB)
Sherwood, A.R. (comp.)
1986-09-01
The Seventh Symposium on Compact Toroid (CT) Research was held in Santa Fe, New Mexico, on May 21-23, 1985. As has been the case for the last few CT symposia, CT research progress was reported in a combination of invited talks and poster sessions. The following record of these presentations in the form of four page papers is in keeping with the format followed in previous years. We have continued the practice of dividing the papers into three subject categories - spheromak, FRC (Field Reversed Configuration), and other (mostly particle rings).
Geodesic Acoustic Mode in Toroidally Axisymmetric Plasmas with Non-Circular Cross Sections
Institute of Scientific and Technical Information of China (English)
SHI Bing-Ren; LI Ji-Quan; DONG Jia-Qi
2005-01-01
@@ The geodesic acoustic mode in general toroidally axisymmetric plasmas such as Tokamak and spherical torus is studied in detail. The mode structure is found and the dispersion equation is derived and solved for arbitrary toroidally axi-symmetric plasmas. Besides the finite aspect ratio, effects of elongation and triangularity on this mode are clarified.
H-mode plasmas at very low aspect ratio on the Pegasus Toroidal Experiment
Thome, K. E.; Bongard, M. W.; Barr, J. L.; Bodner, G. M.; Burke, M. G.; Fonck, R. J.; Kriete, D. M.; Perry, J. M.; Reusch, J. A.; Schlossberg, D. J.
2017-02-01
H-mode is obtained at A˜ 1.2 in the Pegasus Toroidal Experiment via Ohmic heating, high-field-side fueling, and low edge recycling in both limited and diverted magnetic topologies. These H-mode plasmas show the formation of edge current and pressure pedestals and a doubling of the energy confinement time to {{H}98y,2}˜ 1 . The L-H power threshold {{P}\\text{LH}} increases with density, and there is no {{P}\\text{LH}} minimum observed in the attainable density space. The power threshold is equivalent in limited and diverted plasmas, consistent with the FM3 model. However, the measured {{P}\\text{LH}} is ˜ 15 × higher than that predicted by conventional International Tokamak Physics Activity (ITPA) scalings, and {{P}\\text{LH}}/{{P}\\text{ITPA08}} increases as A\\to 1 . Small ELMs are present at low input power {{P}\\text{IN}}˜ {{P}\\text{LH}} , with toroidal mode number n≤slant 4 . At {{P}\\text{IN}}\\gg {{P}\\text{LH}} , they transition to large ELMs with intermediate 5. The dominant-n component of a large ELM grows exponentially, while other components evolve nonlinearly and can damp prior to the crash. Direct measurements of the current profile in the pedestal region show that both ELM types exhibit a generation of a current-hole, followed by a pedestal recovery. Large ELMs are shown to further expel a current-carrying filament. Small ELM suppression via injection of low levels of helical current into the edge plasma region is also indicated.
Enhanced toroidal flow stabilization of edge localized modes with increased plasma density
Cheng, Shikui; Zhu, Ping; Banerjee, Debabrata
2017-09-01
Toroidal flow alone is generally thought to have an important influence on tokamak edge pedestal stability, even though theoretical analysis often predicts merely a weak stabilizing effect of toroidal flow on the edge localized modes (ELMs) in experimental parameter regimes. For the first time, we find from two-fluid MHD calculations that such a stabilization, however, can be significantly enhanced by increasing the edge plasma density. Our finding resolves a long-standing mystery whether or how toroidal rotation can indeed have an effective influence on ELMs, and explains why the ELM mitigation and suppression by toroidal rotation are more favorably achieved in higher collisionality regime in recent experiments. The finding suggests a new control scheme on modulating toroidal flow stabilization of ELMs with plasma density, along with a new additional constraint on the optimal level of plasma density for the desired edge plasma conditions.
Energy Technology Data Exchange (ETDEWEB)
Groth, M; Brooks, N H; Fenstermacher, M E; Lasnier, C J; McLean, A G; Watkins, J G
2006-05-16
Measurements in DIII-D show that the carbon chemical sputtering sources along the inner divertor and center post are toroidally periodic and highest at the upstream tile edge. Imaging with a tangentially viewing camera and visible spectroscopy were used to monitor the emission from molecular hydrocarbons (CH/CD) at 430.8 nm and deuterium neutrals in attached and partially detached divertors of low-confinement mode plasmas. In contrast to the toroidally periodic CD distribution, emission from deuterium neutrals was observed to be toroidally symmetric along the inner strike zone. The toroidal distribution of the measured tile surface temperature in the inner divertor correlates with that of the CD emission, suggesting larger parallel particle and heat fluxes to the upstream tile edge, either due to toroidal tile gaps or height steps between adjacent tiles.
Toroidal high-spin isomers in light nuclei with N not equal to Z
Staszczak, Andrzej
2014-01-01
The combined considerations of both the bulk liquid-drop-type behavior and the quantized aligned rotation with cranked Skyrme-Hartree-Fock approach revealed previously that even-even, N=Z, toroidal high-spin isomeric states have general occurrences for light nuclei with A between 28 and 52. We find that in this mass region there are in addition N not equal to Z toroidal high-spin isomers when the single-particle shells for neutrons and protons occur at the same cranked frequency $\\hbar \\omega$. Examples of N not equal to Z toroidal high-spin isomers, $^{36}_{16}$S$_{20}$($I$=74$\\hbar$) and $^{40}_{18}$Ar$_{22}$($I$=80,102$\\hbar$), are located and examined. The systematic properties of these N not equal to Z toroidal high-spin isomers fall into the same regular (muti-particle)-(muti-hole) patterns as other N=Z toroidal high-spin isomers.
Modulating toroidal flow stabilization of edge localized modes with plasma density
Cheng, Shikui; Banerjee, Debabrata
2016-01-01
Recent EAST experiments have demonstrated mitigation and suppression of edge localized modes (ELMs) with toroidal rotation flow in higher collisionality regime, suggesting potential roles of plasma density. In this work, the effects of plasma density on the toroidal flow stabilization of the high-$n$ edge localized modes have been extensively studied in linear calculations for a circular-shaped limiter H-mode tokamak, using the extended MHD code NIMROD. In the single MHD model, toroidal flow has a weak stabilizing effects on the high-$n$ modes. Such a stabilization, however, can be significantly enhanced with the increase in plasma density. Furthermore, our calculations show that the enhanced stabilization of high-$n$ modes from toroidal flow with higher edge plasma density persists in the 2-fluid MHD model. These findings may explain the ELM mitigation and suppression by toroidal rotation in higher collisionality regime due to the enhancement of plasma density obtained in recent EAST experiments.
Three-dimensional simulation study of compact toroid plasmoid injection into magnetized plasmas
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Y.; Watanabe, T.-H.; Sato, T.; Hayashi, T. [National Inst. for Fusion Science, Toki, Gifu (Japan)
1999-04-01
Three-dimensional dynamics of a compact toroid (CT) plasmoid, which is injected into a magnetized target plasma region is investigated by using magnetohydrodynamic (MHD) numerical simulations. It is found that the process of the CT penetration into this region is much more complicated than what has been analyzed so far by using a conducting sphere (CS) model. The injected CT suffers from a tilting instability, which grows with the similar time scale as the CT penetration. The instability is accompanied by magnetic reconnection between the CT magnetic field and the target magnetic field, which disrupts the magnetic configuration of the CT. Magnetic reconnection plays a role to supply the high density plasma initially confined in the CT magnetic field into the target region. Also, the penetration depth of the CT high density plasma is examined. It is shown to be shorter than that estimated from the CS model. The CT high density plasma is decelerated mainly by the Lorentz force of the target magnetic field, which includes not only the magnetic pressure force but also the magnetic tension force. Furthermore, by comparing the CT plasmoid injection with the bare plasmoid injection, magnetic reconnection is considered to relax the magnetic tension force, that is the deceleration of the CT plasmoid. (author)
Ghosh, Sabuj; Shaw, Pankaj Kumar; Saha, Debajyoti; Janaki, M. S.; Sekar Iyengar, A. N.
2016-09-01
Floating potential fluctuations associated with an anode fireball in a glow discharge plasma in the toroidal vacuum vessel of the SINP tokamak are found to exhibit different kinds of oscillations under the action of vertical magnetic field of different strengths. While increasing the vertical magnetic field, the fluctuations have shown transitions as: chaotic oscillation → inverse homoclinic transition → intermittency → chaotic oscillation. However, on decreasing the magnetic field, the fluctuations are seen to follow: chaotic oscillations → homoclinic transition → chaotic oscillation; that is the intermittent feature is not observed. Fireball dynamics is found to be closely related to the magnetic field applied; results of visual inspection with a high speed camera are in close agreement with the fluctuations, and the fireball dynamics is found to be closely related to the transitions. The statistical properties like skewness, kurtosis, and entropy of the fluctuations are also found to exhibit this hysteresis behaviour.
Energy Technology Data Exchange (ETDEWEB)
Pando, F.; Felipe, A.; Madorran, A.; Pallisa, J.; Dormicch, O.; Valle, N.; D' Urzo, C.; Marin, M.; Pesenti, P.; Lucas, J.; Moreno, N.; Bonito-Oliva, A.; Harrison, R.; Bellesia, B.; Cornelis, M.; Cornella, J.
2015-07-01
The toroidal field coils are the ITER magnets responsible for confining the plasma inside the vacuum vessel. The consortium formed by IBERDROLA Ingenieria y Construccion, ASG Superconductors y ELYTT Energy is the responsible for the supply of 10 coils that the european agency F4E has to supply for the ITER project. At present, the coils are been manufactured in La Spezia (Italy), after the qualification of all the manufacturing process and the sucessfull manufacturing of a full scale prototype. (Author)
Magnetic Field Topology in Jets
Gardiner, T. A.; Frank, A.
2000-01-01
We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.
Toroidal bubbles with circulation in ideal hydrodynamics: A variational approach
DEFF Research Database (Denmark)
Ruban, V.P.; Juul Rasmussen, J.
2003-01-01
Incompressible, inviscid, irrotational, unsteady flows with circulation Gamma around a distorted toroidal bubble are considered. A general variational principle that determines the evolution of the bubble shape is formulated. For a two-dimensional (2D) cavity with a constant area A, exact...... pseudodifferential equations of motion are derived, based on variables that determine a conformal mapping of the unit circle exterior into the region occupied by the fluid. A closed expression for the Hamiltonian of the 2D system in terms of canonical variables is obtained. Stability of a stationary drifting 2D...... hollow vortex is demonstrated, when the gravity is small, gA(3/2)/Gamma(2)flows a simplified Lagrangian is suggested, inasmuch as the bubble shape is well described by the center line R(xi,t) and by an approximately circular cross section...
Effects of magnetic islands on bootstrap current in toroidal plasmas
Dong, G.; Lin, Z.
2017-03-01
The effects of magnetic islands on electron bootstrap current in toroidal plasmas are studied using gyrokinetic simulations. The magnetic islands cause little changes of the bootstrap current level in the banana regime because of trapped electron effects. In the plateau regime, the bootstrap current is completely suppressed at the island centers due to the destruction of trapped electron orbits by collisions and the flattening of pressure profiles by the islands. In the collisional regime, small but finite bootstrap current can exist inside the islands because of the pressure gradients created by large collisional transport across the islands. Finally, simulation results show that the bootstrap current level increases near the island separatrix due to steeper local density gradients.
Density Measurement of Compact Toroid with Mach-Zehnder Interferometer
Laufman-Wollitzer, Lauren; Endrizzi, Doug; Brookhart, Matt; Flanagan, Ken; Forest, Cary
2016-10-01
Utilizing a magnetized coaxial plasma gun (MCPG) built by Tri Alpha Energy, a dense compact toroid (CT) is created and injected at high speed into the Wisconsin Plasma Astrophysics Laboratory (WiPAL) vessel. A modified Mach-Zehnder interferometer from the Line-Tied Reconnection Experiment (LTRX) provides an absolute measurement of electron density. The interferometer is located such that the beam intersects the plasma across the diameter of the MCPG drift region before the CT enters the vessel. This placement ensures that the measurement is taken before the CT expand. Results presented will be used to further analyze characteristics of the CT. Funding provided by DoE, NSF, and WISE Summer Research.
Ion temperature and toroidal rotation in JET's low torque plasmas
Bernardo, J.; Nave, M. F. F.; Giroud, C.; Reyes Cortes, S.; Bizarro, João P. S.
2016-11-01
This paper reports on the procedure developed as the best method to provide an accurate and reliable estimation of the ion temperature Ti and the toroidal velocity vϕ from Charge-eXchange Recombination Spectroscopy (CXRS) data from intrinsic rotation experiments at the Joint European Torus with the carbon wall. The low impurity content observed in such plasmas, resulting in low active CXRS signal, alongside low Doppler shifts makes the determination of Ti and vϕ particularly difficult. The beam modulation method will be discussed along with the measures taken to increase photon statistics and minimise errors from the absolute calibration and magneto-hydro-dynamics effects that may impact the CXRS passive emission.
Global Theory to Understand Toroidal Drift Waves in Steep Gradient
Xie, Hua-Sheng
2016-01-01
Toroidal drift waves with unconventional mode structures and non-ground eigenstates, which differ from typical ballooning structure mode, are found to be important recently by large scale global gyrokinetic simulations and especially become dominant at strong gradient edge plasmas [cf., Xie and Xiao, Phys. Plasmas, 22, 090703 (2015)]. The global stability and mode structures of drift wave in this steep edge density and temperature gradients are examined by both direct numerical solutions of a model two-dimensional eigen equation and analytical theory employing WKB-ballooning approach. Theory agrees with numerical solutions quite well. Our results indicate that (i) non-ground eigenstates and unconventional mode structures generally exist and can be roughly described by two parameters `quantum number' $l$ and ballooning angle $\\vartheta_k$, (ii) local model can overestimate the growth rate largely, say, $>50\\%$, and (iii) the narrow steep equilibrium profile leads to twisting (triangle-like) radial mode structu...
Toroid Joining Gun. [thermoplastic welding system using induction heating
Buckley, J. D.; Fox, R. L.; Swaim, R J.
1985-01-01
The Toroid Joining Gun is a low cost, self-contained, portable low powered (100-400 watts) thermoplastic welding system developed at Langley Research Center for joining plastic and composite parts using an induction heating technique. The device developed for use in the fabrication of large space sructures (LSST Program) can be used in any atmosphere or in a vacuum. Components can be joined in situ, whether on earth or on a space platform. The expanded application of this welding gun is in the joining of thermoplastic composites, thermosetting composites, metals, and combinations of these materials. Its low-power requirements, light weight, rapid response, low cost, portability, and effective joining make it a candidate for solving many varied and unique bonding tasks.
First assembly phase for the ATLAS toroid coils
Maximilien Brice
2003-01-01
The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two double-pancake windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. In the first phase of assembly, the two 'pancakes' are packed into their vacuum vessel. This is done using bladders filled with resin and glass microbeads under pressure. The resin is heated and, once cooled, holds the pancakes in place. The operation has to be performed on both sides of the coil, which necessitated a special technique to turn the coils over and then transport them to the heating table. Photos 01, 02, 03: Transporting the coil to the heating table using a special lifting gantry manufactured at JINR-Dubna, Russia in preparation for the 'bladderisation' operation.
Cleaning procedure for improved photothermal background of toroidal optical microresonators
Horak, Erik H.; Knapper, Kassandra A.; Heylman, Kevin D.; Goldsmith, Randall H.
2016-09-01
High Q-factors and small mode volumes have made toroidal optical microresonators exquisite sensors to small shifts in the effective refractive index of the WGM modes. Eliminating contaminants and improving quality factors is key for many different sensing techniques, and is particularly important for photothermal imaging as contaminants add photothermal background obscuring objects of interest. Several different cleaning procedures including wet- and dry-chemical procedures are tested for their effect on Q-factors and photothermal background. RCA cleaning was shown to be successful in contrast to previously described acid cleaning procedures, most likely due to the different surface reactivity of the acid reagents used. UV-ozone cleaning was shown to be vastly superior to O2 plasma cleaning procedures, significantly reducing the photothermal background of the resonator.
Modeling the rapid de-swelling of toroidal hydrogels
Nikolov, Svetoslav; Chang, Ya-Wen; Alexeev, Alexander; Fernandez de Las Nieves, Alberto
2015-03-01
The utilization of synthetic hydrogel networks as 3-D cell culture platforms has allowed researchers to more effectively study how epigenetic factors affect cell growth and physiology. As a whole, this has emphasized the biomechanical role of scaffold structures and led to a number of advances in tissue engineering. Our current research focuses on modeling temperature activated shape transformations of toroidal poly(N-isopropylacrylamide) pNIPAM gels. We use dissipative particle dynamics (DPD) to simulate the steady (slow heating rates) and unsteady (fast heating rates) de-swelling behavior of these thermo-sensitive gels. Our simulations show that for slow heating rates the aspect ratio of the tori remains constant during de-swelling. For rapid heating rates we observe buckling instabilities. Our simulations agree with the experimental observations. Financial support by NSF CAREER Award DMR-1255288 is gratefully acknowledged.
The Kirchhoff Index of Toroidal Meshes and Variant Networks
Directory of Open Access Journals (Sweden)
Jia-Bao Liu
2014-01-01
Full Text Available The resistance distance is a novel distance function on electrical network theory proposed by Klein and Randić. The Kirchhoff index Kf(G is the sum of resistance distances between all pairs of vertices in G. In this paper, we established the relationships between the toroidal meshes network Tm×n and its variant networks in terms of the Kirchhoff index via spectral graph theory. Moreover, the explicit formulae for the Kirchhoff indexes of L(Tm×n, S(Tm×n, T(Tm×n, and C(Tm×n were proposed, respectively. Finally, the asymptotic behavior of Kirchhoff indexes in those networks is obtained by utilizing the applications of analysis approach.
Gasdynamic characteristics of toroidal shock and detonation wave converging
Institute of Scientific and Technical Information of China (English)
TENG; Honghui; JIANG; Zonglin
2005-01-01
The modified CCW relation is applied to analyzing the shock, detonation wave converging and the role of chemical reactions in the process. Results indicate that the shock wave is strengthened faster than the detonation wave in the converging at the same initial Mach number. Euler equations implemented with a detailed chemical reaction model are solved to simulate toroidal shock and detonation wave converging. Gasdynamic characteristics of the converging are investigated, including wave interaction patterns, observable discrepancies and physical phenomena behind them. By comparing wave diffractions, converging processes and pressure evolutions in the focusing area, the different effects of chemical reactions on diffracting and converging processes are discussed and the analytic conclusion is demonstrated through the observation of numerical simulations.
Heterotic free fermionic and symmetric toroidal orbifold models
Athanasopoulos, P; Nibbelink, S Groot; Mehta, V M
2016-01-01
Free fermionic models and symmetric heterotic toroidal orbifolds both constitute exact backgrounds that can be used effectively for phenomenological explorations within string theory. Even though it is widely believed that for Z2xZ2 orbifolds the two descriptions should be equivalent, a detailed dictionary between both formulations is still lacking. This paper aims to fill this gap: We give a detailed account of how the input data of both descriptions can be related to each other. In particular, we show that the generalized GSO phases of the free fermionic model correspond to generalized torsion phases used in orbifold model building. We illustrate our translation methods by providing free fermionic realizations for all Z2xZ2 orbifold geometries in six dimensions.
Manufacturing aspects of the ATLAS barrel toroid double pancakes
Drago, G; Gagliardi, P; Laurenti, A; Marabotto, R; Penco, R
2002-01-01
In 1999 INFN (Istituto Nazionale di Fisica Nucleare) ordered to ANSALDO the manufacturing of 16 double pancakes for the ATLAS BARREL TOROID. In July 2001 four Double Pancakes have already been completed and shipped to the integration site. In this paper the main aspects of the manufacturing of the largest superconducting coils ever built (5*25 m) are described. The main phases of the manufacturing procedure are reviewed starting from the conductor preparation to the VPI impregnation, including references to the materials used as well as to the relevant customer's requirements. In particular the special winding form and the winding technique are treated. For each phase the most critical aspects and the relevant solutions are pointed out. Particular details about the technical solutions adopted for the impregnation and curing of the Double Pancake, which could not be performed inside an autoclave due to the huge dimension of the coil itself, are reported. Finally the methods used for the dimensional and electri...
Nonuniversal gaugino masses in a magnetized toroidal compactification of SYM theories
Sumita, Keigo
2015-10-01
This paper proposes a concrete model of nonuniversal gaugino masses on the basis of higher-dimensional supersymmetric Yang-Mills theories compactified on a magnetized factorizable torus, and we estimate the gauge coupling constants and gaugino masses in the model. In the magnetized toroidal compactifications, the four-dimensional effective action can be obtained analytically identifying its dependence on moduli fields, where the magnetic fluxes are able to yield the flavor structure of the minimal supersymmetric standard model (MSSM). The obtained gauge kinetic functions contains multi moduli fields and their dependence is nonuniversal for the three gauge fields. The nonuniversal gauge kinetic functions can lead to nonuniversal gaugino masses at a certain high energy scale (e.g. compactification scale). Our numerical analysis of them shows that, particular ratios of gaugino masses, which were found to enhance the Higgs boson mass and lead to "natural supersymmetry" in the MSSM, can be realized in our model, while the gauge couplings are unified as is achieved in the MSSM.
Magnetic topology and current channels in plasmas with toroidal current density inversions
Ciro, D.; Caldas, I. L.
2013-10-01
The equilibrium magnetic field inside axisymmetric plasmas with inversions on the toroidal current density is considered. Previous works have shown that internal regions with negative current density lead to non-nested magnetic surfaces inside the plasma. Following these results, we derive a general expression relating the positive and negative currents inside the non-nested surfaces. This is done in terms of an anisotropy parameter that is model-independent and is based in very general properties of the magnetic field. We demonstrate that the positive currents in axisymmetric islands screen the negative one in the plasma center by reaching about twice its magnitude. Further, we illustrate these results by developing a family of analytical local solutions for the poloidal magnetic field in a region of interest that contains the inverted current. These local solutions exhibit non-nested magnetic surfaces with a combined current of at least twice the magnitude of the negative one, as prescribed from the topological arguments, and allow to study topological transitions driven by geometrical changes in the current profile. To conclude, we discuss the signatures of internal current density inversions in a confinement device and show that magnetic pitch measurements may be inappropriate to differentiate current reversals and small current holes in plasmas.
Caliri, Claudia; Volpe, Francesco; Gammino, Santo; Mascali, David
2013-10-01
Electron Cyclotron Resonance Ion Sources (ECRIS) are magnetic mirror plasmas of microwave-heated electrons and cold multi-charged ions. The ions are extracted from one end of the mirror and injected in accelerators for nuclear and particle physics studies, hadrontherapy, or neutral beam injection in fusion plasmas. ECRIS devices progressed to higher and higher ion currents and charge states by adopting stronger magnetic fields (beneficial for confinement) and proportionally higher ECR frequencies. Further improvements would require the attainment of ``triple products'' comparable with major fusion experiments. For this, we propose a new, toroidal rather than linear, ECRIS geometry, which would at the same time improve confinement and make better use of the magnetic field. Ion extraction is more complicated than from a linear device, but feasible, as our modeling indicates. Possible techniques involve charge-dependent drifts, divertors, specially designed magnetic fields and associated loss-cones, electrostatic and/or magnetic deflectors, or techniques used in accelerators to transfer particles from one storage ring or accelerator to the next. Here we present single-particle tracings assessing and comparing these extraction techniques.
Heavy ion beam probing—diagnostics to study potential and turbulence in toroidal plasmas
Melnikov, A. V.; Krupnik, L. I.; Eliseev, L. G.; Barcala, J. M.; Bravo, A.; Chmyga, A. A.; Deshko, G. N.; Drabinskij, M. A.; Hidalgo, C.; Khabanov, P. O.; Khrebtov, S. M.; Kharchev, N. K.; Komarov, A. D.; Kozachek, A. S.; Lopez, J.; Lysenko, S. E.; Martin, G.; Molinero, A.; de Pablos, J. L.; Soleto, A.; Ufimtsev, M. V.; Zenin, V. N.; Zhezhera, A. I.; T-10 Team; TJ-II Team
2017-07-01
Heavy ion beam probing (HIBP) is a unique diagnostics to study the core plasma potential and turbulence. Advanced HIBPs operate in the T-10 tokamak and TJ-II flexible heliac with fine focused (magnetic configurations with ECR and neutral beam injection (NBI) heating at TJ-II. Time evolution of the radial profiles and/or local values of plasma parameters from high field side (HFS) to low field side (LFS), -1 magnetic field B pol (by the beam toroidal shift), poloidal electric filed E pol that allows one to derive the electrostatic turbulent particle flux ΓE×B. The cross-phase of density oscillations produces the phase velocity of their poloidal propagation or rotation; also it gives the poloidal mode number. Dual HIBP, consisting of two identical HIBPs located ¼ torus apart provide the long-range correlations of core plasma parameters. Low-noise high-gain electronics allows us to study broadband turbulence and quasi-coherent modes like geodesic acoustic modes and Alfvén eigenmodes.
Calculation of coherent synchrotron radiation in toroidal waveguides by paraxial wave equation
Directory of Open Access Journals (Sweden)
D. R. Gillingham
2007-05-01
Full Text Available A new technique for the simulation of coherent synchrotron radiation (CSR and space-charge fields from a single electron bunch in straight or toroidal rectangular waveguide sections has been developed. It is based on the integration of the paraxial approximation to the wave equations, using the perturbation technique where the bending radius is large compared to the dimension of the waveguide. We have implemented an unconditionally stable integration method in the time domain with transparent boundary conditions that allows the use of a minimally sized computational domain about the bunch. This technique explicitly enforces the causality condition so that no portion of the fields can propagate faster than the speed of light, can be used with arbitrary three-dimensional charge distributions, and contains corrections for finite energy. We have also developed a method for the calculation of the transverse forces within the bunch including space-charge. This method has been developed for incorporation with a particle-in-cell code so that we may self-consistently model CSR and space-charge in combinations of bending sections with a fully dynamic electron bunch in an efficient manner. In this paper we describe the model and methods for calculation of the fields in detail and compare results to theory wherever possible.
Full-orbit effects in the dynamics of runaway electrons in toroidal geometry
Del-Castillo-Negrete, D.; Carbajal-Gomez, L.; Spong, D. A.; Baylor, L.; Seal, S. K.
2016-10-01
The dynamics of RE (runaway electrons) in fusion plasmas spans a wide range of temporal scales from the fast gyro-motion 10-11 sec to the observational time scales 10-2 -> 1 sec. To cope with this scale separation RE are usually studied within the bounce-average or the guiding center approximations. Although these approximations have yielded valuable insights, a study with predictive capabilities of RE in fusion plasmas calls for the incorporation of full-orbits effects in configuration space in the presence of 3-D integrable and stochastic magnetic fields. Here we present numerical results on this problem using the Kinetic Orbit Runaway electrons Code (KORC) that follows relativistic electrons in general electric and magnetic fields under the full Lorentz force and collisions. At relativistic energies, the main energy loss is due to synchrotron radiation, which we incorporate using the Landau-Lifshitz formulation of the Abraham-Lorentz-Dirac force. Following a study of potential limitations of the bounce-average and the guiding center approximations, we discuss the role of full-orbit effects on the evolution of the pitch-angle, the RE energy limit, the critical electric field, and the emission patterns of synchrotron radiation in toroidal geometry. Research sponsored by the LDRD Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. DOE.
Energy Technology Data Exchange (ETDEWEB)
Ogawa, K. [Nagoya University, Japan; Isobe, M. [National Institute for Fusion Science, Toki, Japan; Watanabe, F. [Kyoto University, Japan; Spong, Donald A [ORNL; Shimizu, A. [National Institute for Fusion Science, Toki, Japan; Osakabe, M. [National Institute for Fusion Science, Toki, Japan; Ohdachi, S. [National Institute for Fusion Science, Toki, Japan; Sakakibara, S. [National Institute for Fusion Science, Toki, Japan
2012-01-01
Beam-ion losses induced by fast-ion-driven toroidal Alfven eigenmodes (TAE) were measured with a scintillator-based lost fast-ion probe (SLIP) in the large helical device (LHD). The SLIP gave simultaneously the energy E and the pitch angle chi = arccos(v(parallel to)/v) distribution of the lost fast ions. The loss fluxes were investigated for three typical magnetic configurations of R{sub ax{_}vac} = 3.60 m, 3.75 m, and 3.90 m, where R{sub ax{_}vac} is the magnetic axis position of the vacuum field. Dominant losses induced by TAEs in these three configurations were observed in the E/chi regions of 50 similar to 190 keV/40 degrees, 40 similar to 170 keV/25 degrees, and 30 similar to 190 keV/30 degrees, respectively. Lost-ion fluxes induced by TAEs depend clearly on the amplitude of TAE magnetic fluctuations, R{sub ax{_}vac} and the toroidal field strength B{sub t}. The increment of the loss fluxes has the dependence of (b{sub TAE}/B{sub t}){sup s}. The power s increases from s = 1 to 3 with the increase of the magnetic axis position in finite beta plasmas.
Theoretical studies of possible toroidal high-spin isomers in the light-mass region
Staszczak, Andrzej
2015-01-01
We review our theoretical knowledge of possible toroidal high-spin isomers in the light mass region in 28$\\le$$A$$\\le$52 obtained previously in cranked Skyrme-Hartree-Fock calculations. We report additional toroidal high-spin isomers in $^{56}$Ni with $I$=114$\\hbar$ and 140$\\hbar$, which follow the same (multi-particle)--(multi-hole) systematics as other toroidal high-spin isomers. We examine the production of these exotic nuclei by fusion of various projectiles on $^{20}$Ne or $^{28}$Si as an active target in time-projection-chamber (TCP) experiments.
Energy Technology Data Exchange (ETDEWEB)
Balbaky, Abed; Sokolov, Vladimir; Sen, Amiya K. [Plasma Research Laboratory, Columbia University, New York, New York 10027 (United States)
2015-05-15
Electron temperature gradient (ETG) modes are suspected sources of anomalous electron thermal transport in magnetically confined plasmas as in tokamaks. Prior work in the Columbia Linear Machine (CLM) has been able to produce and identify slab ETG modes in a slab geometry [Wei et al., Phys. Plasmas 17, 042108 (2010)]. Now by modifying CLM to introduce curvature to the confining axial magnetic field, we have excited mixed slab-toroidal modes. Linear theory predicts a transition between slab and toroidal ETG modes when (k{sub ∥}R{sub c})/(k{sub y}ρ) ∼1 [J. Kim and W. Horton, Phys. Fluids B 3, 1167 (1991)]. We observe changes in the mode amplitude for levels of curvature R{sub c}{sup −1}≪(k{sub ∥,slab})/(k{sub ⊥}ρ) , which may be explained by reductions in k{sub ∥} in the transition from slab to mixed slab-toroidal modes, as also predicted by theory. We present mode amplitude scaling as a function of magnetic field curvature. Over the range of curvature available in CLM experimentally we find a modest increase in saturated ETG potential fluctuations (∼1.5×), and a substantial increase in the power density of individual mode peaks (∼4–5×)
Cordova, Clay; Yin, Xi
2015-01-01
We systematically analyze the effective action on the moduli space of (2,0) superconformal field theories in six dimensions, as well as their toroidal compactification to maximally supersymmetric Yang-Mills theories in five and four dimensions. We present a streamlined approach to non-renormalization theorems that constrain this effective action. The first several orders in its derivative expansion are determined by a one-loop calculation in five-dimensional Yang-Mills theory. This fixes the leading higher-derivative operators that describe the renormalization group flow into theories residing at singular points on the moduli space of the compactified (2,0) theories. This understanding allows us to compute the a-type Weyl anomaly for all (2,0) superconformal theories. We show that it decreases along every renormalization group flow that preserves (2,0) supersymmetry, thereby establishing the a-theorem for this class of theories. Along the way, we encounter various field-theoretic arguments for the ADE classif...