WorldWideScience

Sample records for jt cooler pre-cooled

  1. Performance improvement of a hybrid air conditioning system using the indirect evaporative cooler with internal baffles as a pre-cooling unit

    Directory of Open Access Journals (Sweden)

    A.E. Kabeel

    2017-12-01

    Full Text Available In the present paper, the effects of the indirect evaporative cooler with internal baffle on the performance of the hybrid air conditioning system are numerically investigated. The hybrid air conditioning system contains two indirect evaporative coolers with internal baffle, one is utilized to pre-cool the air inlet to the desiccant wheel and the other is utilized to pre-cool the supply air inlet to the room. The effects of the inlet conditions of the process and reactivation air and working air ratio on the thermal performance of the hybrid air conditioning system have been analyzed. The results of this study show that in the hybrid air conditioning system for using the indirect evaporative cooler with internal baffle as a pre-cooling unit, the supply air temperature reduced by 21% and the coefficient of performance improved by 71% as compared to previous designs of the hybrid air conditioning system at the same inlet conditions. For increasing process air inlet temperature from 25 °C to 45 °C, supply air temperature increases from 12.7 °C to 14.2 °C, thermal COP increases from 1.87 to 2.84, and supply air relative humidity increases from 76.7% to 77.4%. Also, for increasing the reactivation air inlet temperature from 70 °C to 110 °C, supply air temperature dropped from 15.9 °C to 10.9 °C, supply air relative humidity dropped from 82.7% to 71.8%, and thermal COP dropped from 4.5 to 1.7. The recommended optimal air working ratio in the indirect evaporative cooler with internal baffle should be 0.15. Keywords: Desiccant material, Solar air collector, Evaporative cooler, Internal baffles, Air conditioning

  2. Energy saving potential of an indirect evaporative cooler as a pre-cooling unit for mechanical cooling systems in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Delfani, Shahram; Esmaeelian, Jafar; Karami, Maryam [Department of Installation, Building and Housing Research Center (BHRC), PO Box 13145-1696, Tehran (Iran, Islamic Republic of); Pasdarshahri, Hadi [Department of Mechanical Engineering, Tarbiat Modares University, PO Box 14115-143, Tehran (Iran, Islamic Republic of)

    2010-11-15

    The performance of indirect evaporative cooling system (IEC) to pre-cool air for a conventional mechanical cooling system has been investigated for four cities of Iran. For this purpose, a combined experimental setup consisting of an IEC unit followed by a packaged unit air conditioner (PUA) was designed, constructed and tested. Two air simulators were designed and used to simulate indoor heating load and outdoor design conditions. Using of experimental data and an appropriate analytical method, the performance and energy reduction capability of combined system has been evaluated through the cooling season. The results indicate IEC can reduce cooling load up to 75% during cooling seasons. Also, 55% reduction in electrical energy consumption of PUA can be obtained. (author)

  3. The Liquefaction of Hydrogen and Helium Using Small Coolers

    International Nuclear Information System (INIS)

    Green, Michael A.

    2006-01-01

    This report discusses the history of the liquefaction of hydrogen and helium using small coolers. This history dates form the 1960's when two stage GM coolers capable of reaching 7 K were used to liquefy helium and hydrogen by suing an added compressor and J-T circuit. Liquefaction using the added circuit failed to become mainstream because the J-T valve and heat exchanger clogged because of impurities in the gas being liquefied. Liquefaction using a GM cooler without an added J-T circuit proved to be difficult because the first stage was not used to pre-cool the gas coming to the second stage of the cooler. Once the gas being liquefied was pre-cooled using the cooler first stage, improvements in the liquefaction rates were noted. The advent of low temperature pulse tube cooler (down to 2.5 K) permitted one to achieve dramatic improvement is the liquefactions rates for helium. Similar but less dramatic improvements are expected for hydrogen as well. Using the PT-415 cooler, one can expect liquefaction rates of 15 to 20 liters per day for helium or hydrogen provided the heat leak into the cooler and the storage vessel is low. A hydrogen liquefier for MICE is presented at the end of this report

  4. Design and development of a four-cell sorption compressor based J-T cooler using R134a as working fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, R. N. [Mechanical Engineering Department, Indian Institute of Technology Bombay, Mumbai - 400076, India and Government Engineering College Bharuch, Gujarat - 392002 (India); Bapat, S. L.; Atrey, M. D. [Mechanical Engineering Department, Indian Institute of Technology Bombay, Mumbai - 400076 (India)

    2014-01-29

    The need of a cooler with no electromagnetic interference and practically zero vibration has led to sorption compressor based Joule-Thomson (J-T) coolers. These are useful for sophisticated electronic, ground based and space borne systems. In a Sorption compressor, adsorbed gases are desorbed into a confined volume by raising temperature of the sorption bed resulting in an increase in pressure of the liberated gas. In order to have the system (compressor) functioning on a continuous basis, with almost a constant gas flow rate, multiple cells are used with the adaptation of Temperature Swing Adsorption (TSA) process. As the mass of the desorbed gas dictates the compressor throughput, a combination of sorbent material with high adsorption capacity for a chosen gas or gas mixture has to be selected for efficient operation of the compressor. Commercially available (coconut-shell base) activated carbon has been selected for the present application. The characterization study for variation of discharge pressure is used to design the Four-cell sorption compressor based cryocooler with a desired output. Apart from compressor, the system includes a) After cooler b) Return gas heat exchanger c) capillary tube as the J-T expansion device and d) Evaporator.

  5. System and method for pre-cooling of buildings

    Science.gov (United States)

    Springer, David A.; Rainer, Leo I.

    2011-08-09

    A method for nighttime pre-cooling of a building comprising inputting one or more user settings, lowering the indoor temperature reading of the building during nighttime by operating an outside air ventilation system followed, if necessary, by a vapor compression cooling system. The method provides for nighttime pre-cooling of a building that maintains indoor temperatures within a comfort range based on the user input settings, calculated operational settings, and predictions of indoor and outdoor temperature trends for a future period of time such as the next day.

  6. Effect of pre-cooling and heat treatment on antioxidant enzymes ...

    African Journals Online (AJOL)

    Effect of pre-cooling and heat treatment on antioxidant enzymes profile of mango and banana. ... In banana, pre-cooling treatment (8 ºC) and heat treatment followed by cooling reduced CAT activity in peel and pulp, whereas POX activity increased. Pre-cooling and heat treatments altered normal homeostasis of these fruits, ...

  7. Solutions for Liquid Nitrogen Pre-Cooling in Helium Refrigeration Cycles

    CERN Document Server

    Wagner, U

    2000-01-01

    Pre-cooling of helium by means of liquid nitrogen is the oldest and one of the most common process features used in helium liquefiers and refrigerators. Its two principle tasks are to allow or increase the rate of pure liquefaction, and to permit the initial cool-down of large masses to about 80 K. Several arrangements for the pre-cooling process are possible depending on the desired application. Each arrangement has its proper advantages and drawbacks. The aim of this paper is to review the possible process solutions for liquid nitrogen pre-cooling and their particularities.

  8. JT Bachman Leadership Framework

    Science.gov (United States)

    2017-07-01

    DAHLGREN DIVISION NAVAL SURFACE WARFARE CENTER Dahlgren, Virginia 22448-5100 NSWCDD/MP-17/300 JT BACHMAN LEADERSHIP FRAMEWORK...REPORT TYPE Miscellaneous Publication 3. DATES COVERED (From - To) 27 Sept 2016 – 08 June 2017 4. TITLE AND SUBTITLE JT BACHMAN LEADERSHIP FRAMEWORK...distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This document describes the leadership framework of a civil servant following

  9. Dynamic design of gas sorption J-T refrigerator

    International Nuclear Information System (INIS)

    Chan, C.K.

    1986-01-01

    A long-life Joule-Thomson refrigerator which is heat powered, involves no sealing, and has few mechanical parts and is desirable for longterm sensor cooling in space. In the gas-sorption J-T refrigerator, cooling is achieved by gas sorption (either adsorption or absorption) processes. Currently, a modular, single-stage refrigerator is being designed and built to be operated at 20 K. The design was analyzed using a dynamic model, which is described here. The model includes the kinetics of the compressors and the heat switches, the heat transfer of the pre-coolers and the heat exchangers, the on/off ratio of the check valves, and the impedance of the J-T valve. The cooling power, the cycle time, and the operating conditions were obtained in terms of the power input, the heat sink temperature, and the J-T impedance

  10. Dynamic design of gas sorption J-T refrigerator

    Science.gov (United States)

    Chan, C. K.

    1986-01-01

    A long-life Joule-Thomson refrigerator which is heat powered, involves no sealing, and has few mechanical parts is desirable for long-term sensor cooling in space. In the gas-sorption J-T refrigerator, cooling is achieved by gas sorption (either adsorption or absorption) processes. Currently, a modular, single-stage refrigerator is being designed and built to be operated at 20 K. The design was analyzed using a dynamic model, which is described here. The model includes the kinetics of the compressors and the heat switches, the heat transfer of the pre-coolers and the heat exchangers, the on/off ratio of the check valves, and the impedance of the J-T valve. The cooling power, the cycle time, and the operating conditions were obtained in terms of the power input, the heat sink temperature, and the J-T impedance.

  11. The Recycler Electron Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Prost, L. R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-03-19

    The Recycler Electron cooler was the first (and so far, the only) cooler working at a relativistic energy (γ = 9.5). It was successfully developed in 1995-2004 and was in operation at Fermilab in 2005-2011, providing cooling of antiprotons in the Recycler ring. This paper describes the cooler, difficulties in achieving the required electron beam parameters and the ways to overcome them, cooling measurements, and details of operation.

  12. Miniature linear cooler development

    International Nuclear Information System (INIS)

    Pruitt, G.R.

    1993-01-01

    An overview is presented of the status of a family of miniature linear coolers currently under development by Hughes Aircraft Co. for use in hand held, volume limited or power limited infrared applications. These coolers, representing the latest additions to the Hughes family of TOP trademark [twin-opposed piston] linear coolers, have been fabricated and tested in three different configurations. Each configuration is designed to utilize a common compressor assembly resulting in reduced manufacturing costs. The baseline compressor has been integrated with two different expander configurations and has been operated with two different levels of input power. These various configuration combinations offer a wide range of performance and interface characteristics which may be tailored to applications requiring limited power and size without significantly compromising cooler capacity or cooldown characteristics. Key cooler characteristics and test data are summarized for three combinations of cooler configurations which are representative of the versatility of this linear cooler design. Configurations reviewed include the shortened coldfinger [1.50 to 1.75 inches long], limited input power [less than 17 Watts] for low power availability applications; the shortened coldfinger with higher input power for lightweight, higher performance applications; and coldfingers compatible with DoD 0.4 Watt Common Module coolers for wider range retrofit capability. Typical weight of these miniature linear coolers is less than 500 grams for the compressor, expander and interconnecting transfer line. Cooling capacity at 80K at room ambient conditions ranges from 400 mW to greater than 550 mW. Steady state power requirements for maintaining a heat load of 150 mW at 80K has been shown to be less than 8 Watts. Ongoing reliability growth testing is summarized including a review of the latest test article results

  13. Residential Pre-Cooling: Mechanical Cooling and Air-Side Economizers:

    OpenAIRE

    Turner, William J.N; Walker, Iain S.; Roux, Jordan

    2012-01-01

    This study used an advanced airflow, energy and humidity modeling tool to evaluate residential air-side economizers and mechanical pre-cooling strategies using the air conditioner, in all US DOE Climate Zones for a typical new home with ASHRAE Standard 62.2 compliant ventilation. A residential air-side economizer is a large supply fan used for night ventilation. Mechanical pre-cooling used the building air conditioner operating at lower than usual set before the peak demand period. The simula...

  14. On the conceptual design of pre-cooling stage of LNG plants using propane or an ethane/propane mixture

    International Nuclear Information System (INIS)

    Castillo, L.; Dorao, C.A.

    2013-01-01

    Highlights: ► LNG technologies are differentiated by heat exchanger type, compressor/driver, refrigerant type and others. ► The design of the pre-cooling system on the LNG technologies should start by compressor definition. ► Thermodynamically, pre-cooling based on a C3 has higher advantages than C 2 /C 3 mixed refrigerant cycle. ► The pre-cooling system needs to consider aspects: equipment number, costs, plot area, safety. ► A proper model is required for selection of the pre-cooling, including all aspects that could affect the costs. - Abstract: Today, LNG technologies are based on pure and mixed refrigerants cycles on the pre-cooling system, but the advantages and disadvantages of considering a mixed refrigerant or pure refrigerant cycle in the pre-cooling stage is not well understood. In this work an analysis of the compressors and the refrigerants in the pre-cooling system is carried out. The most relevant aspect of the evaluation is to establish some thermodynamical criteria for the selecting of the suitable refrigerant for the pre-cooling stage. For final decision-making process of the selection of the pre-cooling stage, a proper model is required which should take into account all aspects that could affect the capital and operation costs.

  15. The COOLER Code

    DEFF Research Database (Denmark)

    Siragusa, Mattia; Baiocco, Giorgio; Fredericia, Nina Pil Møntegaard

    2017-01-01

    COmputation of Local Electron Release (COOLER), a software program designed for dosimetry assessment at the cellular/subcellular scale, with a given distribution of administered low-energy electron-emitting radionuclides in cellular compartments, which remains a critical step in risk/benefit...... calculations with PARTRAC. Results from PARTRAC calculations on electron range, stopping power and residual energy versus traveled distance curves are presented and, when useful for implementation in COOLER, analytical fit functions are given. Example configurations for cells in different culture conditions (V...

  16. Cryogenic cooler thermal coupler

    International Nuclear Information System (INIS)

    Green, K.E.; Talbourdet, J.A.

    1984-01-01

    A thermal coupler assembly mounted to the coldfinger of a cryogenic cooler which provides improved thermal transfer between the coldfinger and the detector assembly mounted on the dewar endwell. The thermal coupler design comprises a stud and spring-loaded cap mounted on the coldfinger assembly. Thermal transfer is made primarily through the air space between the cap and coldwell walls along the radial surfaces. The cap is spring loaded to provide thermal contact between the cap and endwell end surfaces

  17. Microsystem Cooler Development

    Science.gov (United States)

    Moran, Matthew E.; Wesolek, Danielle M.; Berhane, Bruk T.; Rebello, Keith J.

    2004-01-01

    A patented microsystem Stirling cooler is under development with potential application to electronics, sensors, optical and radio frequency (RF) systems, microarrays, and other microsystems. The microsystem Stirling cooler is most suited to volume-limited applications that require cooling below the ambient or sink temperature. Primary components of the planar device include: two diaphragm actuators that replace the pistons found in traditional-scale Stirling machines; and a micro-regenerator that stores and releases thermal energy to the working gas during the Stirling cycle. The use of diaphragms eliminates frictional losses and bypass leakage concerns associated with pistons, while permitting reversal of the hot and cold sides of the device during operation to allow precise temperature control. Three candidate microregenerators were custom fabricated for initial evaluation: two constructed of porous ceramic, and one made of multiple layers of nickel and photoresist in an offset grating pattern. An additional regenerator was prepared with a random stainless steel fiber matrix commonly used in existing Stirling machines for comparison to the custom fabricated regenerators. The candidate regenerators were tested in a piezoelectric-actuated test apparatus designed to simulate the Stirling refrigeration cycle. In parallel with the regenerator testing, electrostatically-driven comb-drive diaphragm actuators for the prototype device have been designed for deep reactive ion etching (DRIE) fabrication.

  18. Studi Eksperimen Pengaruh Dimensi Pipa Kapiler Pada Sistem Air Conditioning Dengan Pre-Cooling

    Directory of Open Access Journals (Sweden)

    Awan Satya Darmawan

    2017-01-01

    Full Text Available Penggunaan air conditioner semakin banyak digunakan pada kehidupan sehari-hari diiringi dengan harga jual energi yang semakin mahal. Pada studi eksperimen kali ini mencoba mengoptimalisasi dan menigkatkan efisiensi energi pada sistem air conditioner dengan cara menambahkan satu buah evaporator dan satu buah pre-cooling, dimana pre-cooling dimanfaatkan untuk memanaskan air yang nantinya akan digunakan untuk keperluan rumah tangga. Pada sistem pengkondisian udara yang telah dimodifikasi tersebut maka dilakukan studi eksperimen dengan variasi panjang pipa kapiler, diameter pipa kapiler d=0,054 in, dengan panjang kapiler 1 = 35 cm, kapiler 2 = 65 cm, kapiler 3 = 95 cm. Hasil yang didapat dari studi eksperimen kali ini adalah semakin bertambahnya panjang pipa kapiler, kapasitas pendinginan evaporator, kerja kompresor dan COP dari sistem juga akan semakin kecil dan juga mengakibatkan temperatur masuk evaporator akan semakin kecil, yang akan mengakibatkan efek pendinginan akan semakin besar. Pada variasi pipa kapiler terpendek 35 cm menghasilkan data kapasitas pendinginan total sebesar 2,25 kW, kerja kompresor 0,433 kW, temperatur masuk evaporator 7,26°C, COP sebesar 5,21 dan HRR sebesar 1,16. Sedangkan pada variasi pipa kapiler terpanjang 95 cm kapasitas pendinginan total sebesar 0,72 kW, kerja kompresor 0,332 kW, temperatur masuk evaporator 1,64°C, COP sebesar 4,35 dan HRR sebesar 1,26.

  19. Whole-body pre-cooling and heat storage during self-paced cycling performance in warm humid conditions.

    Science.gov (United States)

    Kay, D; Taaffe, D R; Marino, F E

    1999-12-01

    The aim of this study was to establish the effect that pre-cooling the skin without a concomitant reduction in core temperature has on subsequent self-paced cycling performance under warm humid (31 degrees C and 60% relative humidity) conditions. Seven moderately trained males performed a 30 min self-paced cycling trial on two separate occasions. The conditions were counterbalanced as control or whole-body pre-cooling by water immersion so that resting skin temperature was reduced by approximately 5-6 degrees C. After pre-cooling, mean skin temperature was lower throughout exercise and rectal temperature was lower (P body sweat fell from 1.7+/-0.1 l x h(-1) to 1.2+/-0.1 l h(-1) (P < 0.05). The distance cycled increased from 14.9+/-0.8 to 15.8+/-0.7 km (P < 0.05) after pre-cooling. The results indicate that skin pre-cooling in the absence of a reduced rectal temperature is effective in reducing thermal strain and increasing the distance cycled in 30 min under warm humid conditions.

  20. Whole-body pre-cooling does not alter human muscle metabolism during sub-maximal exercise in the heat.

    Science.gov (United States)

    Booth, J; Wilsmore, B R; Macdonald, A D; Zeyl, A; Mcghee, S; Calvert, D; Marino, F E; Storlien, L H; Taylor, N A

    2001-06-01

    Muscle metabolism was investigated in seven men during two 35 min cycling trials at 60% peak oxygen uptake, at 35 degrees C and 50% relative humidity. On one occasion, exercise was preceded by whole-body cooling achieved by immersion in water during a reduction in temperature from 29 to 24 degrees C, and, for the other trial, by immersion in water at a thermoneutral temperature (control, 34.8 degrees C). Pre-cooling did not alter oxygen uptake during exercise (P > 0.05), whilst the change in cardiac frequency and body mass both tended to be lower following pre-cooling (0.05 whole-body pre-cooling does not alter muscle metabolism during submaximal exercise in the heat. It is more likely that thermoregulatory and cardiovascular strain are reduced, through lower muscle and core temperatures.

  1. 40 CFR 61.134 - Standard: Naphthalene processing, final coolers, and final-cooler cooling towers.

    Science.gov (United States)

    2010-07-01

    ... coolers, and final-cooler cooling towers. 61.134 Section 61.134 Protection of Environment ENVIRONMENTAL... Standard: Naphthalene processing, final coolers, and final-cooler cooling towers. (a) No (“zero”) emissions are allowed from naphthalene processing, final coolers and final-cooler cooling towers at coke by...

  2. Report on the design of JT-4

    International Nuclear Information System (INIS)

    Kitsunezaki, Akio; Seki, Shogo; Yokomizo, Hideaki; Matsuda, Toshiaki; Saito, Ryuta

    1978-08-01

    The present status of design of JT-4 tokamak is described. The objectives of JT-4 are shown graphically and the main parameters are tabulated. JT-4 is a tokamak of non-circular (ellipse or D-shape) plasma cross section with axisymmetric divertors at top and bottom of the plasma column. The principal purpose of JT-4 is to obtain high plasma beta values, desirably exceeding 5%, by strong secondary plasma heating and by impurities elimination. The experimental results obtained with JT-4 are essential in the design of future tokamaks and tokamak reactors with high efficiency and at reasonable cost. (author)

  3. Development of JT-60 diagnostics system

    International Nuclear Information System (INIS)

    Suzuki, Yasuo

    1988-01-01

    The various kinds of plasma diagnostics have been developed and utilized in the JT-60 experiments. The features of JT-60 diagnostics system and the historical proceeding of the development are described in this paper. Taking account of the design consideration, JT-60 diagnostics system is sorted out into eight groups, which include six diagnostics systems, the data processing system and diagnostics supporting system. The all devices in the JT-60 diagnostics system were instrumented on schedule in the end of the fiscal year of 1985 and have contributed to JT-60 experiments. (author)

  4. Impulse sales cooler. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Per Henrik (DTI, Taastrup (Denmark))

    2010-11-15

    In the past years, the use of impulse coolers has increased considerably and it is estimated that at least 30.000 are installed in shops in Denmark. In addition, there are many small barrel-shaped can coolers. Most impulse coolers are open, which results in a large consumption of energy, and the refrigeration systems are often quite inefficient. A typical impulse cooler uses app. 5 - 8 kWh/day corresponding to a consumption of energy in the magnitude of 60 GWh/year. For several years, the Danish company Vestfrost A/S has produced an impulse sales cooler in the high-efficiency end and the energy consumption of the cooler is measured to be 4.15 kWh/day. The POS72 cooler formed the baseline of this project. At the start-up meeting in 2008, several ideas were discussed with the objective to reduce energy consumption and to use natural refrigerants. Among the ideas were better air curtains, removable lids, better condensers, use of R600a refrigeration system and better insulation. Three generations of prototypes were built and tested in a climate chamber at Danish Technological Institute and the third generation showed very good performance: the energy consumption was measured to 2.215 kWh/day, which is a 47% reduction compared to the baseline. That was achieved by: 1) Improving the cold air cycling system including the air curtain. 2) Using the natural refrigerant R600a (isobutane) and the Danfoss NLE9KTK compressor, which has better efficiency compared to the compressor in the baseline product. 3) Using a box type condenser without fins (preventing dust build-up) and with a relatively high surface area. 4) Improving the insulation value of the plastic cabinet by reducing turbulence in the air gap between the plastic walls and improving the insulation value of the EPS moulded insulation surrounding the refrigeration system at the bottom of the cooler. 5) Preventing short-circuit of warm air around the condenser. 6) The improvements are cost efficient and will not add

  5. Performance Analysis of Joule-Thomson Cooler Supplied with Gas Mixtures

    Science.gov (United States)

    Piotrowska, A.; Chorowski, M.; Dorosz, P.

    2017-02-01

    Joule-Thomson (J-T) cryo-coolers working in closed cycles and supplied with gas mixtures are the subject of intensive research in different laboratories. The replacement of pure nitrogen by nitrogen-hydrocarbon mixtures allows to improve both thermodynamic parameters and economy of the refrigerators. It is possible to avoid high pressures in the heat exchanger and to use standard refrigeration compressor instead of gas bottles or high-pressure oil free compressor. Closed cycle and mixture filled Joule-Thomson cryogenic refrigerator providing 10-20 W of cooling power at temperature range 90-100 K has been designed and manufactured. Thermodynamic analysis including the optimization of the cryo-cooler mixture has been performed with ASPEN HYSYS software. The paper describes the design of the cryo-cooler and provides thermodynamic analysis of the system. The test results are presented and discussed.

  6. ENERGY STAR Certified Water Coolers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Water Coolers that are effective as of February...

  7. Effect of pre-cooling, with and without thigh cooling, on strain and endurance exercise performance in the heat.

    Science.gov (United States)

    Cotter, J D; Sleivert, G G; Roberts, W S; Febbraio, M A

    2001-04-01

    Body cooling before exercise (i.e. pre-cooling) reduces physiological strain in humans during endurance exercise in temperate and warm environments, usually improving performance. This study examined the effectiveness of pre-cooling humans by ice-vest and cold (3 degrees C) air, with (LC) and without (LW) leg cooling, in reducing heat strain and improving endurance performance in the heat (35 degrees C, 60% RH). Nine habitually-active males completed three trials, involving pre-cooling (LC and LW) or no pre-cooling (CON: 34 degrees C air) before 35-min cycle exercise: 20 min at approximately 65% VO2peak then a 15-min work-performance trial. At exercise onset, mean core (Tc, from oesophagus and rectum) and skin temperatures, forearm blood flow (FBF), heart rate (HR), and ratings of exertion, body temperature and thermal discomfort were lower in LW and LC than CON (Pcooling by ice-vest and cold air effectively reduced physiological and psychophysical strain and improved endurance performance in the heat, irrespective of whether thighs were warmed or cooled.

  8. Thermoelectric coolers as power generators

    International Nuclear Information System (INIS)

    Burke, E.J.; Buist, R.J.

    1984-01-01

    There are many applications where thermoelectric (TE) coolers can be used effectively as power generators. The literature available on this subject is scarce and very limited in scope. This paper describes the configuration, capability, limitations and performance of TE coolers to be used as power generators. Also presented are performance curves enabling the user to design the optimum TE module for any given power generation application

  9. Studi Eksperimen Pengaruh Variasi Kecepatan Putaran Kompresor Pada Sistem Pengkondisian Udara Dengan Pre-Cooling

    Directory of Open Access Journals (Sweden)

    Fariz Ibrohim

    2017-01-01

    Full Text Available Indonesia adalah negara beriklim tropis dimana temperatur udaranya cukup tinggi sehingga penggunaan akan sistem pendingin dan pengkondisian udara (Air Condtioning sangatlah di butuhkan. Eksperimen kali ini adalah memodifikasi sistem pengkondisian udara biasa menjadi sistem yang baru dengan 2 (dua unit evapotaror dan 1 (satu unit outdoor ditambah pre-cooling yang bertujuan untuk menaikkan performa dari sistem pengkondisian udara. Salah satu cara menaikkan perfroma sistem pengkondisian yang sudah dimodifikasi adalah dengan cara menvariasikan kecepatan putaran kompresor sehingga didapatkan performa yang maksimum. Oleh karena itu, dilakukan variasi pada sistem modifikasi yang sama dengan 5 (lima kecepatan putaran kompresor yang berbeda, yaitu: 1800 rpm, 2100 rpm, 2400 rpm, 2700 rpm dan 3000 rpm. Ekpermen dilakukan pada masin-masing kecepatan fan evaporator dengan pengambilan data 20 kali pada 13 titik pengukuran untuk sekali variasi. Hasil yang didapat dari studi eksperimen pengaruh variasi kecepatan putaran kompresor pada sistem pengkondisian udara dengan precooling memiliki performa untuk kecepatan fan low COP sebesar 5,097 dan HRR sebesar 1,175, untuk kecepatan fan medium COP sebesar 5,103 dan HRR sebesar 1,176, dan untuk kecepatan fan low COP sebesar 5,201 dan HRR sebesar 1,175. Performa maksimum baik untuk kecepatan fan low, medium, dan high dari sistem yang telah dimodifikasi tersebut dicapai pada kecepatan putaran 3000 rpm dengan performa efisiensi kompresor adalah 73%, COP thermal adalah 5,09, COP elektrik adalah 4,39, dan HRR adalah 1,17.

  10. Thermodynamic analysis and economical evaluation of two 310-80 K pre-cooling stage configurations for helium refrigeration and liquefaction cycle

    Science.gov (United States)

    Zhu, Z. G.; Zhuang, M.; Jiang, Q. F.; Y Zhang, Q.; Feng, H. S.

    2017-12-01

    In 310-80 K pre-cooling stage, the temperature of the HP helium stream reduces to about 80 K where nearly 73% of the enthalpy drop from room temperature to 4.5 K occurs. Apart from the most common liquid nitrogen pre-cooling, another 310-80 K pre-cooling configuration with turbine is employed in some helium cryoplants. In this paper, thermodynamic and economical performance of these two kinds of 310-80 K pre-cooling stage configurations has been studied at different operating conditions taking discharge pressure, isentropic efficiency of turbines and liquefaction rate as independent parameters. The exergy efficiency, total UA of heat exchangers and operating cost of two configurations are computed. This work will provide a reference for choosing 310-80 K pre-cooling stage configuration during design.

  11. A systematic approach to find the best road map for enhancement of a power plant with dew point inlet air pre-cooling of the air compressor

    International Nuclear Information System (INIS)

    Sohani, Ali; Farasati, Yashar; Sayyaadi, Hoseyn

    2017-01-01

    Highlights: • Dew-point cooler was proposed in order to enhance a power plant. • A systematic method to find the best road map was offered. • Investigation was done considering four optimization scenarios and different investment plans. • Payback period of the final plan was 2.67 years. • Annual net power and steam generation’s capability were improved 6.02% and 8.92%. - Abstract: Dimensional characteristics and operating parameters of the optimized Maisotsenko indirect evaporative cooler for pre-cooling of the compressor’s inlet air and consequently enhancement of the gas-turbine power generation system as well as the best investment strategy for it were found for an in-operation combined cycle power plant through a systematic approach. Four optimization scenarios were proposed considering different combinations of annual average of net power of the gas-turbine power generation system, payback period time and enthalpy difference of exhaust gases compared to the reference state of each gas-turbine power generation system as objective functions. In each scenario, optimization was conducted for different possible percentages of investment allocated to the research and development of the project. After that, analytical hierarchy process was used to find the best percentage of investment allocated to the research and development of the project of each scenario and the final selected one. Having introduced the approach, it was implemented for Montazer-Ghaem combined cycle power plant in Iran. The results showed for that case study, the analytical hierarchy process selected an optimization scenario in which the annual average of the net power and the enthalpy difference of the exhaust gases compared to the reference state were the objective functions and 15% of the total profit of the gas-turbine power generation system sold electricity was dedicated to the improvement project. This optimization had the payback period time of 2.67 years and it also improved

  12. Discharge optimization in JT-60

    International Nuclear Information System (INIS)

    Ninomiya, H.; Hosogane, N.; Kikuchi, M.; Yoshino, R.; Seki, S.; Kurihara, K.; Kimura, T.; Shimada, R.; Matsukawa, M.

    1986-01-01

    For the optimization of the feedback control gains of the plasma control system in JT-60, the plasma modelling by the regression analysis, the matrix transfer function analysis and the simulation study are performed. The experimental results of plasma control are well consistent with these estimations and the usefulness of a modelling by the regression analysis, the matrix transfer function analysis and the simulation study is experimentally confirmed. It is also shown that the regression analysis is useful for development of the sensor algorithm of plasma shape and location of separatrix line in a feedback control system. Some topics are also presented about plasma engineering obtained in JT-60: possibility to suppress the uncontrollability of plasma density, αI/sub p/ control for plasma position and volt-sec consumption

  13. Construction and testing of JT-60

    International Nuclear Information System (INIS)

    Kishimoto, H.; Aikawa, H.; Oikawa, A.; Miya, N.; Suzuki, K.; Ozeki, T.; Tokutake, T.; Kunieda, S.; Hiruta, K.; Hosoda, R.

    1987-01-01

    The JT-60 project is reviewed in terms of design, R and D, construction, commissioning and project management. Design features of JT-60 have been refined and renewed through periodic assessments. Engineering targets have been achieved by R and D efforts. Construction and commissioning have progressed on schedule with intensive project management and control. JT-60 obtained high performance and has entered into the experimental phase after completion of machine construction. (orig.)

  14. Experimental study of film media used for evaporative pre-cooling of air

    International Nuclear Information System (INIS)

    He, Suoying; Guan, Zhiqiang; Gurgenci, Hal; Hooman, Kamel; Lu, Yuanshen; Alkhedhair, Abdullah M.

    2014-01-01

    Highlights: • Two film media were experimentally studied in a low-speed wind tunnel. • Correlations for heat transfer coefficient and pressure drop were developed. • Cellulose media provide higher cooling efficiency and pressure drop than PVC media. • Water entrainment of PVC media happens even at relatively low air velocities. - Abstract: An open-circuit low-speed wind tunnel was used to study the performance of evaporative cooling with cellulose and Polyvinyl Chloride (PVC) corrugated media. These two film media were selected as part of a broader investigation on pre-cooling the entering air of natural draft dry cooling towers. The heat and mass transfer and pressure drop across the two media with three thicknesses (i.e., 100, 200 and 300 mm) were experimentally studied in the wind tunnel. The test data were non-dimensionalized and curve fitted to yield a set of correlations. It was found that the pressure drop range of the cellulose media is 1.5–101.7 Pa while the pressure drops of the PVC media are much lower with the range of 0.9–49.2 Pa, depending on the medium thickness, air velocity and water flow rate. The cooling efficiencies of the cellulose media vary from 43% to 90% while the cooling efficiencies of the PVC media are 8% to 65%, depending on the medium thickness and air velocity. The water entrainment off the media was detected by water sensitive papers, and found that the cellulose media have negligible water entrainment under the studied conditions while care must be taken in the use of PVC media as water entrainment happens even at relatively low air velocities

  15. Baking technique of JT-60

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Takashi; Masaki, Kei; Miyachi, Kengo [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1998-10-01

    It needs to make low ultimate pressure to decrease impurities in a plasma in a nuclear fusion device. Baking technique is very effective method to decrease outgassing rate from first walls and inner surface of the vacuum vessel. However, in such large vacuum vessel, e.g. JT-60, the non-uniform heating and the deformation due to thermal expansion might be very important problems. The baking technique of JT-60 is described. Two baking systems were applied to JT-60 to solve the problem of non-uniform heating. One is a circulation system of the hot nitrogen gas which is located between the inner and outer skins of the double-skin structured vacuum vessel. The other is an electric heater which apply the thick of the vessel. In order to prevent the deformation, the difference of temperature was as small as possible. By both the baking at 300degC and the conditioning such as discharge cleaning, the ultimate pressure was achieved 7.9x10{sup -7} Pa. (author)

  16. Baking technique of JT-60

    International Nuclear Information System (INIS)

    Arai, Takashi; Masaki, Kei; Miyachi, Kengo

    1998-01-01

    It needs to make low ultimate pressure to decrease impurities in a plasma in a nuclear fusion device. Baking technique is very effective method to decrease outgassing rate from first walls and inner surface of the vacuum vessel. However, in such large vacuum vessel, e.g. JT-60, the non-uniform heating and the deformation due to thermal expansion might be very important problems. The baking technique of JT-60 is described. Two baking systems were applied to JT-60 to solve the problem of non-uniform heating. One is a circulation system of the hot nitrogen gas which is located between the inner and outer skins of the double-skin structured vacuum vessel. The other is an electric heater which apply the thick of the vessel. In order to prevent the deformation, the difference of temperature was as small as possible. By both the baking at 300degC and the conditioning such as discharge cleaning, the ultimate pressure was achieved 7.9x10 -7 Pa. (author)

  17. Heating experiments of JT-60

    International Nuclear Information System (INIS)

    1987-01-01

    In JT-60, after the finish of the first stage Joule experiment, the heating facilities were installed, and the heating experiment was started in August, 1986. As to neutral beam injection, the beam injection experiment at the maximum rating 20 MW carried out, and also as to RF, the injection experiment up to 1.4 MW was carried out in both ion cyclotron and low band hybrid waves. The results worthy of special mention in the heating experiment were the success in the current drive up to 1.7 MA at maximum using low band hybrid waves and the improvement of plasma confinement characteristics obtained by the compound heating of NBI and RF. In this paper, the main results of these heating experiments and their significance are explained. The JT-60 is the testing facilities for attaining the critical plasma condition by additionally heating the plasma which is generated by Joule electric discharge with NBI and RF heatings. The experimental operation cycle of the JT-60 consists of the unit cycle of two weeks, and the number of days in operation is nine days. The temperature of heated plasma rose to 70 million deg C in the 20 MW NBI heating. Hereafter, the improvement of confinement time by increasing the stored energy of plasma is attempted. (Kako, I.)

  18. Development of the Sandia Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry Alan [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Koplow, Jeffrey P. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Staats, Wayne Lawrence [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Curgus, Dita Brigitte [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Leick, Michael Thomas. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Matthew, Ned Daniel [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Zimmerman, Mark D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Arienti, Marco [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gharagozloo, Patricia E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hecht, Ethan S. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Spencer, Nathan A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Vanness, Justin William. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gorman, Ryan [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-12-01

    This report describes an FY13 effort to develop the latest version of the Sandia Cooler, a breakthrough technology for air-cooled heat exchangers that was developed at Sandia National Laboratories. The project was focused on fabrication, assembly and demonstration of ten prototype systems for the cooling of high power density electronics, specifically high performance desktop computers (CPUs). In addition, computational simulation and experimentation was carried out to fully understand the performance characteristics of each of the key design aspects. This work culminated in a parameter and scaling study that now provides a design framework, including a number of design and analysis tools, for Sandia Cooler development for applications beyond CPU cooling.

  19. Density limit in JT-60

    International Nuclear Information System (INIS)

    Kamada, Yutaka; Hosogane, Nobuyuki; Hirayama, Toshio; Tsunematsu, Toshihide

    1990-05-01

    This report studies mainly the density limit for a series of gas- and pellet-fuelled limiter discharges in JT-60. With the pellet injection into high-current/low-q (q(a)=2.3∼2.5) discharges, the Murakami factor reaches up to 10∼13 x 10 19 m -2 T -1 . The values are about factors of 1.5∼2.0 higher than those for usual gas-fuelled discharges. The pellet injected discharges have high central density, whereas the electron density in the outer region (a/2 abs and n e 2 (r=50 cm) x Z eff (r=50 cm). (author)

  20. JT-60 database system, 1

    International Nuclear Information System (INIS)

    Kurihara, Kenichi; Kimura, Toyoaki; Itoh, Yasuhiro.

    1987-07-01

    Naturally, sufficient software circumstance makes it possible to analyse the discharge result data effectively. JT-60 discharge result data, collected by the supervisor, are transferred to the general purpose computer through the new linkage channel, and are converted to ''database''. Datafile in the database was designed to be surrounded by various interfaces. This structure is able to preserve the datafile reliability and does not expect the user's information about the datafile structure. In addition, the support system for graphic processing was developed so that the user may easily obtain the figures with some calculations. This paper reports on the basic concept and system design. (author)

  1. MEMS Stirling Cooler Development Update

    Science.gov (United States)

    Moran, Matthew E.; Wesolek, Danielle

    2003-01-01

    This presentation provides an update on the effort to build and test a prototype unit of the patented MEMS Stirling cooler concept. A micro-scale regenerator has been fabricated by Polar Thermal Technologies and is currently being integrated into a Stirling cycle simulator at Johns Hopkins University Applied Physics Laboratory. A discussion of the analysis, design, assembly, and test plans for the prototype will be presented.

  2. JT-60 database system, 2

    International Nuclear Information System (INIS)

    Itoh, Yasuhiro; Kurihara, Kenichi; Kimura, Toyoaki.

    1987-07-01

    The JT-60 central control system, ''ZENKEI'' collects the control and instrumentation data relevant to discharge and device status data for plant monitoring. The former of the engineering data amounts to about 3 Mbytes per shot of discharge. The ''ZENKEI'' control system which consists of seven minicomputers for on-line real-time control has little performance of handling such a large amount of data for physical and engineering analysis. In order to solve this problem, it was planned to establish the experimental database on the Front-end Processor (FEP) of general purpose large computer in JAERI Computer Center. The database management system (DBMS), therefore, has been developed for creating the database during the shot interval. The engineering data are shipped up from ''ZENKEI'' to FEP through the dedicated communication line after the shot. The hierarchical data model has been adopted in this database, which consists of the data files with tree structure of three keys of system, discharge type and shot number. The JT-60 DBMS provides the data handling packages of subroutines for interfacing the database with user's application programs. The subroutine packages for supporting graphic processing and the function of access control for security of the database are also prepared in this DBMS. (author)

  3. Control of divertor configuration in JT-60

    International Nuclear Information System (INIS)

    Yoshino, R.; Kukuchi, M.; Ninomiya, H.; Yoshida, H.; Tsuji, S.; Hosogane, N.; Seki, S.

    1985-01-01

    The control algorithm of JT-60 divertor configuration is presented. JT-60 has five types of poloidal magnetic field coil with each power supply in order to regulate the control objectives mentioned above. However, if one controls each objective by each coil current independently, there must inevitably occur large interaction between control objectives. Because the relation between control objectives and coil currents is complicated. This situation may be the same with a fusion reactor device. For making it possible to control each objective independently without causing large interaction, the authors adopt the noninteracting control algorithm. Hence, this report demonstrates the availability of this method to the control of JT-60 divertor configuration

  4. DEVELOPMENT OF A LOW HEAT LEAK CFRP STAND FOR MIRI COOLER JT HEAT EXCHANGER STAGE

    International Nuclear Information System (INIS)

    Makowski, K. P.; Hayashil, B.; Larson, M. E.; Loc, A. S.; Zhang, B. X.; Leland, R. S.

    2010-01-01

    A low heat leak stand is being developed for the Heat exchanger Stage Assembly (HSA) of the cryocooler subsystem for the Mid Infra-Red Instrument (MIRI) of the James Webb Space Telescope (JWST). The HSA stand is a hexapod structure supporting the 18 K HSA in a nominal 40 K background environment. Carbon fiber reinforced plastic (CFRP) has been selected for this application to meet the stringent design requirements of a low parasitic heat leak (less than 3.8 mW including both conductive and radiative heat loads for the thermal environment defined above) and a resonance frequency above 120 Hz. A directional lay-up of T300/polycyanate has been chosen for the construction of the hexapod struts. End fittings made of Invar 36 are bonded to the struts to provide structural interfaces. The development effort includes fabricating and testing (including cryogenic thermal cycling) six types of coupons for material characterization, determination of structural degradation due to thermal cycling, and selection of the joint bonding epoxy. Consequently, strut samples are used for final material characterization, performance assessment, and bond joint design evaluation. This paper describes the development process and addresses the challenges in meeting the design requirements. Results of finite element analysis (FEA) for the composite structure and experimental data collected through structural and thermal testing are also presented.

  5. JT-60 plasma control system

    International Nuclear Information System (INIS)

    Kurihara, K.

    1988-01-01

    JT-60 plasma control can be performed by the supervisory controller, the measurement system and actuators such as the poloidal field coil power supplies, gas injectors, neutral beam injection (NBI) heating system and radio frequency (RF) heating system. One of the most important characteristics of this system is a perfect digital control one composed of mini-computers, fast array processors and CAMAC modules, and it has large flexibility and few troubles to adjust the system. This system started to be operated in April 1985, after the six-year-long design, construction and testing, and have been operated and improved many times for two years. In this paper, the final system specification and its performance are presented aiming at the technological aspect of hardware and software. In addition, and experienced troubles are also presented. (author)

  6. JT-60SA power supply system

    International Nuclear Information System (INIS)

    Coletti, A.; Baulaigue, O.; Cara, P.; Coletti, R.; Ferro, A.; Gaio, E.; Matsukawa, M.; Novello, L.; Santinelli, M.; Shimada, K.; Starace, F.; Terakado, T.; Yamauchi, K.

    2011-01-01

    The paper describes the main features of the Superconducting Magnets Power Supply to generate the toroidal and poloidal magnetic fields in JT-60SA tokamak, with special regard to coil current regulation mode and magnets protection.

  7. The effect of short-term coenzyme Q10 supplementation and pre-cooling strategy on cardiac damage markers in elite swimmers.

    Science.gov (United States)

    Emami, Ali; Tofighi, Asghar; Asri-Rezaei, Siamak; Bazargani-Gilani, Behnaz

    2018-02-01

    Strenuous physical exercise and hyperthermia may paradoxically induce oxidative stress and adverse effects on myocardial function. The purpose of this study was to investigate the effect of 14-d coenzyme Q10 (CoQ10) supplementation and pre-cooling on serum creatine kinase-MB (CK-MB), cardiac Troponin I (cTnI), myoglobin (Mb), lactate dehydrogenase (LD), total antioxidant capacity (TAC), lipid peroxidation (LPO) and CoQ10 concentration in elite swimmers. In total, thirty-six healthy males (mean age 17 (sd 1) years) were randomly selected and divided into four groups of supplementation, supplementation with pre-cooling, pre-cooling and control. During an eighteen-session protocol in the morning and evening, subjects attended speed and endurance swimming training sessions for 5 km in each session. Blood sampling was done before (two stages) and after (two stages) administration of CoQ10 and pre-cooling. ANCOVA and repeated measurement tests with Bonferroni post hoc test were used for the statistical analysis of the data. There was no significant statistical difference among groups for the levels of CK-MB, cTnI, Mb, LD, TAC, LPO and CoQ10 at the presampling (stages 1 and 2) (P>0·05). However, pre-cooling and control groups show a significant increase in the levels of CK-MB, cTnI, Mb, LD and LPO compared with the supplementation and supplementation with pre-cooling groups in the post-sampling (stages 1 and 2) (Pcompetition phase. Meanwhile, the pre-cooling strategy individually has no desired effect on the levels of CK-MB, cTnI, Mb, LD, LPO, TAC and CoQ10.

  8. Surface tension confined liquid cryogen cooler

    Science.gov (United States)

    Castles, Stephen H. (Inventor); Schein, Michael E. (Inventor)

    1989-01-01

    A cryogenic cooler is provided for use in craft such as launch, orbital, and space vehicles subject to substantial vibration, changes in orientation, and weightlessness. The cooler contains a small pore, large free volume, low density material to restrain a cryogen through surface tension effects during launch and zero-g operations and maintains instrumentation within the temperature range of 10 to 140 K. The cooler operation is completely passive, with no inherent vibration or power requirements.

  9. Performance evaluation of an indirect pre-cooling evaporative heat exchanger operating in hot and humid climate

    International Nuclear Information System (INIS)

    Cui, X.; Chua, K.J.; Islam, M.R.; Ng, K.C.

    2015-01-01

    Highlights: • An IEHX is introduced as a pre-cooling unit for humid tropical climate. • A computational model is developed to investigate the performance of IEHX. • The air treatment process with condensation from the product air is studied. • The hybrid system shows an appreciable energy saving potential. - Abstract: A hybrid system, that combines an indirect evaporative heat exchanger (IEHX) and a vapor compression system, is introduced for humid tropical climate application. The chief purpose of the IEHX is to pre-cool the incoming air for vapor compression system. In the IEHX unit, the outdoor humid air in the product channel may potentially condense when heat is exchanged with the room exhaust air. A computational model has been developed to theoretically investigate the performance of an IEHX with condensation from the product air by employing the room exhaust air as the working air. We validated the model by comparing its temperature distribution and predicted heat flux against experimental data acquired from literature sources. The numerical model showed good agreement with the experimental findings with maximum average discrepancy of 9.7%. The validated model was employed to investigate the performance of two types of IEHX in terms of the air treatment process, temperature and humidity distribution, cooling effectiveness, cooling capacity, and energy consumption. Simulation results have indicated that the IEHX unit is able to fulfill 47% of the cooling load for the outdoor humid air while incurring a small amount of fan power. Consequently, the hybrid system is able to realize significant energy savings

  10. Progress in JT-60 innovative technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-09-01

    This review report provides the synthetic archives of innovative technologies in 20-year facility developments for the large tokamak experimental device JT-60, first founded as the major magnetic fusion device in the Second Basic Program for Fusion Research and Development of Japan. Manufacture of JT-60 was started in 1978, and the first plasma was achieved on April 8, 1985. In 1989-1991, the vacuum vessel and poloidal field coils were entirely reconfigured to improve the plasma performance. The major original mission of the JT-60 project, a breakeven condition for a D-T equivalent plasma, was finally attained in 1996. After this, JT-60, as a leading device for magnetic fusion research in the world, continues to challenge many experimental issues, which has been achieved by collaboration of innovative facility developments and experimental improvements. In addition, at this time to start the ITER construction phase in 2005, this review is expected to contribute the construction and operation activities for the next generation tokamak by providing the basic ideas in facility developments. We classified a tremendous number of development items into the selected sections for this review. Since the authors have been in charge of each development activity of their own, the contents are full of essential stories, points, and keywords in spite of its compact handbook size. We believe this review could provide highly sophisticated, informative ideas matured in JT-60 technological developments. (author)

  11. Research and development of JT-60 tokamak

    International Nuclear Information System (INIS)

    Saito, Ryusei; Sato, Hiroshi; Murata, Toshifumi; Ito, Yoshiyasu.

    1978-01-01

    The development of nuclear fusion apparatuses for the purpose of utilizing energy due to nuclear fusion reaction has been forwarded in various countries, and in Japan, the critical plasma testing apparatus JT-60 is about to be constructed, centering around Japan Atomic Energy Research Institute. This is one of four large apparatuses to be constructed in the world, and it is expected to be completed in 1982. JT-60 is a nuclear fusion apparatus of tokamak type aiming at generating critical plasma. The features of JT-60 are the formation of the plasma with small aspect ratio, the equipment of a magnetic limiter, the arrangement of the first wall of molybdenum and high temperature baking as the measures to impurities. The large toroidal magnetic field coil of JT-60 is composed of 18 unit coils. The analyses of magnetic field, thermal behavior and structural strength, the selection of materials, and the development of manufacturing techniques regarding the toroidal coil are described. The vacuum container of JT-60 is composed of the main body of torus type comprising thickwalled rings and bellows, the first wall comprising liners, fixed limiter and magnetic limiter, and observation ports. It is large torus-form container with non-circular cross section, and baking at 500 deg. C is required as the measure to ultrahigh vacuum. Complex forces including electromagnetic force act on it. (Kako, I.)

  12. Assembly study for JT-60SA tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Shibanuma, K., E-mail: shibanuma.kiyoshi@jaea.go.jp [Japan Atomic Energy Agency, Naka, Ibaraki-ken 311-0193 (Japan); Arai, T.; Hasegawa, K.; Hoshi, R.; Kamiya, K.; Kawashima, H.; Kubo, H.; Masaki, K.; Saeki, H.; Sakurai, S.; Sakata, S.; Sakasai, A.; Sawai, H.; Shibama, Y.K.; Tsuchiya, K.; Tsukao, N.; Yagyu, J.; Yoshida, K.; Kamada, Y. [Japan Atomic Energy Agency, Naka, Ibaraki-ken 311-0193 (Japan); Mizumaki, S. [Toshiba Corporation, Minato-ku, Tokyo 105-8001 (Japan); and others

    2013-10-15

    The assembly scenarios and assembly tools of the major tokamak components for JT-60SA are studied in the following. (1) The assembly frame (with a dedicated 30-tonne crane), which is located around the JT-60SA tokamak, is adopted for effective assembly works in the torus hall and the temporary support of the components during assembly. (2) Metrology for precise positioning of the components is also studied by defining the metrology points on the components. (3) The sector segmentation for weld joints and positioning of the vacuum vessel (VV), the assembly scenario and tools for VV thermal shield (TS), the connection of the outer intercoil structure (OIS) and the installation of the final toroidal field coil (TFC) are studied, as typical examples of the assembly scenarios and tools for JT-60SA.

  13. Data management facility for JT-60

    International Nuclear Information System (INIS)

    Ohasa, K.; Kurimoto, K.; Mochizuki, O.

    1983-01-01

    This study considers the Data Management Facility which is provided for unified management of various diagnostics data with JT-60 experiments. This facility is designed for the purpose of data access. There are about 30 kinds of diagnostic devices that are classified by diagnostic objects equipped for JT-60 facility. It gathers the diagnostic date about 10 Mega Byte per each discharge. Those diagnostic data are varied qualitatively and quantitatively by experimental purpose. Other fundamental information like discharge condition, adjustive value for diagnostic devices is required to process those gathered data

  14. Pulse tube coolers for Meteosat third generation

    International Nuclear Information System (INIS)

    Butterworth, James; Aigouy, Gérald; Chassaing, Clement; Debray, Benoît; Huguet, Alexandre

    2014-01-01

    Air Liquide's Large Pulse Tube Coolers (LPTC) will be used to cool the focal planes of the Infrared Sounder (IRS) and Flexible Combined Imager (FCI) instruments aboard the ESA/Eumetsat satellites Meteosat Third Generation (MTG). This cooler consists of an opposed piston linear compressor driving a pulse tube cold head and the associated drive electronics including temperature regulation and vibration cancellation algorithms. Preparations for flight qualification of the cooler are now underway. In this paper we present results of the optimization and qualification activities as well as an update on endurance testing

  15. Disassembly of JT-60 tokamak device and ancillary facilities for JT-60 tokamak

    International Nuclear Information System (INIS)

    Okano, Fuminori; Ichige, Hisashi; Miyo, Yasuhiko; Kaminaga, Atsushi; Sasajima, Tadayuki; Nishiyama, Tomokazu; Yagyu, Jun-ichi; Ishige, Youichi; Suzuki, Hiroaki; Komuro, Kenichi; Sakasai, Akira; Ikeda, Yoshitaka

    2014-03-01

    The disassembly of JT-60 tokamak device and its peripheral equipments, where the total weight was about 5400 tons, started in 2009 and accomplished in October 2012. This disassembly was required process for JT-60SA project, which is the Satellite Tokamak project under Japan-EU international corroboration to modify the JT-60 to the superconducting tokamak. This work was the first experience of disassembling a large radioactive fusion device based on Radiation Hazard Prevention Act in Japan. The cutting was one of the main problems in this disassembly, such as to cut the welded parts together with toroidal field coils, and to cut the vacuum vessel into two. After solving these problems, the disassembly completed without disaster and accident. This report presents the outline of the JT-60 disassembly, especially tokamak device and ancillary facilities for tokamak device. (author)

  16. Development of a microminiature sorption cooler

    NARCIS (Netherlands)

    Burger, Johannes; Holland, Harry; ter Brake, Marcel; Rogalla, Horst; Wade, Larry

    1997-01-01

    The development of a microcooler for operations below 80 K, for low temperature electronic devices requiring small cooling powers of the order of 10 mW is described. A sorption compressor combined with Joule-Thomson (JT) expansion was selected for miniaturization. The advantage of the system is

  17. The influence of whole-body vs. torso pre-cooling on physiological strain and performance of high-intensity exercise in the heat.

    Science.gov (United States)

    Sleivert, G G; Cotter, J D; Roberts, W S; Febbraio, M A

    2001-04-01

    Little research has been reported examining the effects of pre-cooling on high-intensity exercise performance, particularly when combined with strategies to keep the working muscle warm. This study used nine active males to determine the effects of pre-cooling the torso and thighs (LC), pre-cooling the torso (ice-vest in 3 degrees C air) while keeping the thighs warm (LW), or no cooling (CON: 31 degrees C air), on physiological strain and high-intensity (45-s) exercise performance (33 degrees C, 60% rh). Furthermore, we sought to determine whether performance after pre-cooling was influenced by a short exercise warm-up. The 45-s test was performed at different (PForearm blood flow prior to exercise was also lower in LC (3.1+/-2.0 ml 100 ml tissue(-1) x min(-1)) than CON (8.2+/-2.5, P=0.01) but not LW (4.3+/-2.6, P=0.46). After an exercise warm-up, muscle temperature (Tm) was not significantly different between conditions (CON: 37.3+/-1.5, LW: 37.3+/-1.2, LC: 36.6+/-0.7 degrees C, P=0.16) but when warm-up was excluded, T(m) was lower in LC (34.5+/-1.9 degrees C, P=0.02) than in CON (37.3+/-1.0) and LW (37.1+/-0.9). Even when a warm-up was performed, torso+thigh pre-cooling decreased both peak (-3.4+/-3.8%, P=0.04) and mean power output (-4.1+/-3.8%, P=0.01) relative to the control, but this effect was markedly larger when warm-up was excluded (peak power -7.7+/-2.5%, P=0.01; mean power -7.6+/-1.2%, P=0.01). Torso-only pre-cooling did not reduce peak or mean power, either with or without warm-up. These data indicate that pre-cooling does not improve 45-s high-intensity exercise performance, and can impair performance if the working muscles are cooled. A short exercise warm-up largely removes any detrimental effects of a cold muscle on performance by increasing Tm.

  18. Physical design of JT-60 Super Upgrade

    International Nuclear Information System (INIS)

    Nagashima, K.; Kikuchi, M.; Kurita, G.; Ozeki, T.; Aoyagi, T.; Ushigusa, K.; Neyatani, Y.; Kubo, T.; Mori, K.; Nakagawa, S.; Kuriyama, M.; Nagami, M.

    1997-01-01

    The JT-60 Super Upgrade (JT-60SU) is an upgraded tokamak device of JT-60U for developing the steady-state reactor and advanced tokamak operation in the International Thermonuclear Experimental Reactor. The device is planned to utilize the JT-60 facilities fully and to minimize the needed modification. The major radius is 4.8 m and the maximum plasma current is 10 MA. Neutral beam injection with 750 keV beam energy is the primary heating method. The machine is capable of steady-state operation with high density up to 8.8 x 10 19 m -3 at 5 MA plasma current. The high operating density, over the Greenwald et al. limit, is critically important in order to achieve high bootstrap current fraction. Ballooning mode and low n ideal magnetohydrodynamic (MHD) mode including the bootstrap current were analyzed for steady-state operation. The current profile must be optimized to obtain a normalized beta up to 3. The plasma configuration with high triangularity was adopted in order to get good MHD stability and high energy confinement. A compact divertor was designed in order to get the large plasma space. (orig.)

  19. Pneumatic pellet injector for JT-60

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Hiratsuka, Hajime; Kawasaki, Kouzo.

    1990-01-01

    The pneumatic 4-shot pellet injector has been installed and operated for JT-60 (JAERI Tokamak-60). The performance tests have proven that the device provides high speed pellets as planned. The maximum pellet velocity obtained in the hydrogen pellet tests is greater than 2.3km/s at 100 bar propellant gas. (author)

  20. Pneumatic pellet injector for JT-60

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori (Mitsubishi Heavy Industries Ltd., Tokyo (Japan)); Hiratsuka, Hajime; Kawasaki, Kouzo

    1990-11-01

    The pneumatic 4-shot pellet injector has been installed and operated for JT-60 (JAERI Tokamak-60). The performance tests have proven that the device provides high speed pellets as planned. The maximum pellet velocity obtained in the hydrogen pellet tests is greater than 2.3km/s at 100 bar propellant gas. (author).

  1. Review of JT-60 experiment (March 1986)

    International Nuclear Information System (INIS)

    1986-11-01

    Results of JT-60 experiment with ohmic heating in March 1986 are summarized. A maximum plasma current of 2 MA, an average plasma density of 5.7 x 10 19 m -3 and energy confinement time of 0.4 - 0.5 sec were obtained. Detailed characteristics of ohmic plasmas are discussed. (author)

  2. Studi Eksperimen Pengaruh Variasi Perubahan Refrigeran-22 Dengan Musicool-22 Pada Sistem Pengkondisian Udara Dengan Pre-cooling

    Directory of Open Access Journals (Sweden)

    Arnovia Christine Sabatiana

    2017-01-01

    Full Text Available Air conditioning system merupakan mesin sistem refrigerasi kompresi uap sederhana. Kemudian dimodifikasi menjadi dua indoor unit dan satu outdoor unit. Dimana outdoor unit memiliki dua jenis kondenser yaitu, water cooled condenser dan air cooled condenser. Pembuangan kalor pada bagian water cooled condenser dimanfaatkan untuk memanaskan air yang nantinya dapat digunakan untuk kebutuhan sehari-hari kedepannya. Penggunaan refrigeran CFC atau HCFC mengakibatkan beberapa dampak negatif terhadap lingkungan dan penggunaan mesin refrigerasi ini, diantaranya dapat merusak lapisan ozone, pemanasan global dan tidak hemat energi listrik. Penelitian pada ini adalah untuk menganalisis dan membandingkan performansi suatu sistem refrigerasi sederhana yang mampu menghemat konsumsi energi dan ramah lingkungan. Metoda penelitian ini dilakukan pertama menggunakan R-22 sebagai refrigeran primernya dan selanjutnya dilakukan proses retrofitting (penggantian refrigeran dengan menggunakan MC-22. Selanjutnya analisis dilakukan berdasarkan data dari setiap titik-titik pengukuran dengan begitu akan diperoleh suatu sistem refrigerasi dengan performansi yang paling baik dengan konsumsi energi listrik yang sedikit, serta sistem refrigerasi yang ramah lingkungan. Sistem tersebut aladah yang menggunakan MC-22 baik menggunakan atau tanpa pre-cooling dengan nilai COPelektrik 3,786; dan 3,933, COPthermal 4,501; dan 4,670, dan nilai penghematan energi listrik sekitar 20% lebih hemat dibanding sistem yang menggunakan R-22.

  3. Mitigation of Syngas Cooler Plugging and Fouling

    Energy Technology Data Exchange (ETDEWEB)

    Bockelie, Michael J. [Reaction Engineering International, Salt Lake City, UT (United States)

    2015-06-29

    This Final Report summarizes research performed to develop a technology to mitigate the plugging and fouling that occurs in the syngas cooler used in many Integrated Gasification Combined Cycle (IGCC) plants. The syngas cooler is a firetube heat exchanger located downstream of the gasifier. It offers high thermal efficiency, but its’ reliability has generally been lower than other process equipment in the gasification island. The buildup of ash deposits that form on the fireside surfaces in the syngas cooler (i.e., fouling) lead to reduced equipment life and increased maintenance costs. Our approach to address this problem is that fouling of the syngas cooler cannot be eliminated, but it can be better managed. The research program was funded by DOE using two budget periods: Budget Period 1 (BP1) and Budget Period 2 (BP2). The project used a combination of laboratory scale experiments, analysis of syngas cooler deposits, modeling and guidance from industry to develop a better understanding of fouling mechanisms and to develop and evaluate strategies to mitigate syngas cooler fouling and thereby improve syngas cooler performance. The work effort in BP 1 and BP 2 focused on developing a better understanding of the mechanisms that lead to syngas cooler plugging and fouling and investigating promising concepts to mitigate syngas cooler plugging and fouling. The work effort focused on the following: • analysis of syngas cooler deposits and fuels provided by an IGCC plant collaborating with this project; • performing Jet cleaning tests in the University of Utah Laminar Entrained Flow Reactor to determine the bond strength between an ash deposit to a metal plate, as well as implementing planned equipment modifications to the University of Utah Laminar Entrained Flow Reactor and the one ton per day, pressurized Pilot Scale Gasifier; • performing Computational Fluid Dynamic modeling of industrially relevant syngas cooler configurations to develop a better

  4. Small high cooling power space cooler

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, T. V.; Raab, J.; Durand, D.; Tward, E. [Northrop Grumman Aerospace Systems Redondo Beach, Ca, 90278 (United States)

    2014-01-29

    The small High Efficiency pulse tube Cooler (HEC) cooler, that has been produced and flown on a number of space infrared instruments, was originally designed to provide cooling of 10 W @ 95 K. It achieved its goal with >50% margin when limited by the 180 W output ac power of its flight electronics. It has also been produced in 2 stage configurations, typically for simultaneously cooling of focal planes to temperatures as low as 35 K and optics at higher temperatures. The need for even higher cooling power in such a low mass cryocooler is motivated by the advent of large focal plane arrays. With the current availability at NGAS of much larger power cryocooler flight electronics, reliable long term operation in space with much larger cooling powers is now possible with the flight proven 4 kg HEC mechanical cooler. Even though the single stage cooler design can be re-qualified for those larger input powers without design change, we redesigned both the linear and coaxial version passive pulse tube cold heads to re-optimize them for high power cooling at temperatures above 130 K while rejecting heat to 300 K. Small changes to the regenerator packing, the re-optimization of the tuned inertance and no change to the compressor resulted in the increased performance at 150 K. The cooler operating at 290 W input power achieves 35 W@ 150 K corresponding to a specific cooling power at 150 K of 8.25 W/W and a very high specific power of 72.5 W/Kg. At these powers the cooler still maintains large stroke, thermal and current margins. In this paper we will present the measured data and the changes to this flight proven cooler that were made to achieve this increased performance.

  5. Nonlinear Modeling and Application of PI Control on Pre-cooling Session of a Carbon Dioxide Storage Tank at Normal Temperature and Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yu Kyung; Lee, Seok Goo; Dan, Seungkyu; Lee, Jong Min [Seoul National University, Seoul (Korea, Republic of); Ko, Min Su [Samsung Heavy Industries, Geoje (Korea, Republic of)

    2014-10-15

    Storage tanks of Carbon dioxide (CO{sub 2}) carriers utilized for the purpose of carbon capture and storage (CCS) into subsea strata have to undergo a pre-cooling session before beginning to load cryogenic liquid cargos in order to prevent physical and thermal deterioration of tanks which may result from cryogenic CO{sub 2} contacting tank walls directly. In this study we propose dynamic model to calculate the tank inflow of CO{sub 2} gas injected for precooling process and its dynamic simulation results under proportional-integral control algorithm. We selected two cases in which each of them had one controlled variable (CV) as either the tank pressure or the tank temperature and discussed the results of that decision-making on the pre-cooling process. As a result we demonstrated that the controlling instability arising from nonlinearity and singularity of the mathematical model could be avoided by choosing tank pressure as CV instead of tank temperature.

  6. Progress in JT-60 joint research

    International Nuclear Information System (INIS)

    Kimura, Haruyuki; Kikuchi, Mitsuru; Inutake, Masaaki

    2007-01-01

    It consists of five chapters; 1) introduction, 2) management system of joint plan and researches, 3) progress of joint researches, 4) results of researches and 5) summary. The second chapter stated the structure of management system of JT-60 joint researches, progress of management of the JT-60 experimental theme system, invitation the public to joint researches and selection of the subjects. The progress of joint researches contained the number of subjects, research members and organizations, change of joint research fields, remote control system of experiments, analysis code group, and number of reports. The main results of researches such as development of operation without center solenoid, Magneto-Hydro-Dynamics (MHD) control by electron cyclotron wave, plasma-wall interaction, application of laser technologies to plasma measurement, and comparison between tokamak and helical are reported. (S.Y.)

  7. Conceptual design of JT-60SA cryostat

    International Nuclear Information System (INIS)

    Shibama, Y.K.; Sakurai, S.; Masaki, K.; Sukekawa, A.M.; Kaminaga, A.; Sakasai, A.; Matsukawa, M.

    2008-01-01

    This paper describes the conceptual design of cryostat for the JT-60SA, which is a research device for the commercial production of electricity from the controlled fusion reaction in the future. JT-60SA is designed to be a fully superconducting device and cryostat is one of the main components to allow the normal operation. Cryostat covers up the tokamak device, which is 15 m of total height and 7 m of radius, and supports the total weight of 25 MN. Cryostat components consist of vessel body, gravity support and auxiliary systems, such as 80 K thermal shield and vacuum exhaust. The functions required of cryostat are these three, thermal insulation for superconducting magnets, gravity support for the tokamak device, and bio-shielding. The design conditions for each cryostat component are outlined and the features of auxiliary systems such as capacity of vacuum exhaust related to 80 K thermal shield design are summarized

  8. Ion beam dump for JT-60 NBI

    International Nuclear Information System (INIS)

    Kuriyama, Masaaki; Horiike, Hiroshi; Matsuda, Shinzaburo; Morita, Hiroaki; Shibanuma, Kiyoshi

    1981-10-01

    The design of the active cooling type ion beam dump for JT-60 NBI which receives the total beam power of 5.6 MW for 10 sec continuously is described. It is composed of array of many finned tubes which is made of oxygen free copper with 0.2% silver content. The safety margin against thermal and mechanical troubles is estimated by the heat transfer and the thermal stress calculation. (author)

  9. Vacuum leak test technique of JT-60

    International Nuclear Information System (INIS)

    Kaminaga, Atsushi; Arai, Takashi; Kodama, Kozo; Sasaki, Noboru; Saidoh, Masahiro

    1998-01-01

    Since a vacuum vessel of JT-60 is very large (167 m 3 ) and is combined with many components, such as magnetic coils, neutral beam injection systems and RF heating systems, etc., the position of leak testing exceeds 700. The two kind of techniques for vacuum leak test used in JT-60 has been described. Firstly the probe helium gas can be fed remotely in the three-dimensionally sectioned 54 regions of the JT-60 torus. The leak test was very rapidly performed by using this method. Secondly the helium detector system has been modified by the additional installation of the cryopump, which reduced the background level of the deuterium gas. The sensitivity of vacuum leak test with the cryopump was two orders of magnitude larger than that of without it. The examples of the performed vacuum leak test are stated. The vacuum leaks during experiments were 9 times. They were caused by thermal strain and plasma discharge. The vacuum leaks just after maintenance are 36 times which mainly caused by mis-installation. (author)

  10. FIR-laser scattering for JT-60

    International Nuclear Information System (INIS)

    Itagaki, Tokiyoshi; Matoba, Tohru; Funahashi, Akimasa; Suzuki, Yasuo

    1977-09-01

    An ion Thomson scattering method with far infrared (FIR) laser has been studied for measuring the ion temperature in large tokamak JT-60 to be completed in 1981. Ion Thomson scattering has the advantage of measuring spatial variation of the ion temperature. The ion Thomson scattering in medium tokamak (PLT) and future large tokamak (JET) requires a FIR laser of several megawatts. Research and development of FIR high power pulse lasers with power up to 0.6 MW have proceeded in ion Thomson scattering for future high-temperature tokamaks. The FIR laser power will reach to the desired several megawatts in a few years, so JAERI plans to measure the ion temperature in JT-60 by ion Thomson scattering. A noise source of the ion Thomson scattering with 496 μm-CH 3 F laser is synchrotron radiation of which the power is similar to NEP of the Schottky-barrier diode. However, the synchrotron radiation power is one order smaller than that when a FIR laser is 385 μm-D 2 O laser. The FIR laser power corresponding to a signal to noise ratio of 1 is about 4 MW for CH 3 F laser, and 0.4 MW for D 2 O laser if NEP of the heterodyne mixer is one order less. A FIR laser scattering system for JT-60 should be realized with improvement of FIR laser power, NEP of heterodyne mixer and reduction of synchrotron radiation. (auth.)

  11. Assembly work and transport of JT-60SA cryostat base

    International Nuclear Information System (INIS)

    Okano, Fuminori; Masaki, Kei; Yagyu, Jun-ichi; Shibama, Yusuke; Sakasai, Akira; Miyo, Yasuhiko; Kaminaga, Atsushi; Nishiyama, Tomokazu; Suzuki, Sadaaki; Nakamura, Shigetoshi; Shibanuma, Kiyoshi

    2013-11-01

    Japan Atomic Energy Agency started to construct a fully superconducting tokamak experiment device, JT-60SA, to support the ITER since January, 2013 at the Fusion Research and Development Directorate in Naka, Japan. The JT-60SA will be constructed with enhancing the previous JT-60 infrastructures, in the JT-60 torus hall, where the ex-JT-60 machine was disassembled. The JT-60SA Cryostat Base, for base of the entire tokamak structure, were assembly as the first step of this construction. The Cryostat Base (CB, 250tons) is consists of 7 main components made of stainless steel, in 12 m diameter and 3 m height. The CB was built in the Spain and transported to the Naka site, via Hitachi port. After pre-assembly work including preliminary measurements and sole plate adjustments of its height/flatness, the JT-60SA CB was carefully set on the sole plate. JT-60SA CB was assembled with high accuracy by using a laser tracker. The CB was adjusted in the height and flatness against the assembly reference position and determined by the absolute coordinates. This report introduces the concrete result of assembly work and transport of JT-60SA CB. (author)

  12. Fabrication of the vacuum vessel for JT-60 machine upgrade

    International Nuclear Information System (INIS)

    Uchikawa, T.; Takanabe, K.; Tsujimura, S.; Ue, K.; Oka, K.; Kuri, S.; Ioki, K.; Namiki, K.; Suzuki, Y.; Horliike, H.; Ninomiya, H.; Yamamoto, M.; Neyatani, Y.; Ando, T.; Matsukawa, M.

    1992-01-01

    The JT-60 tokamak was upgraded to double the plasma current to 6 MA. In the JT-60 machine upgrade (JT-60U), the vacuum vessel and poloidal field (PF) coils were renewed. The new vacuum vessel features a three-dimensionally curved, thin double-skin torus with multi-arc D-shaped cross section. The double-skin structure is strengthened with square pipes placed in between the outer and inner skins. Fabrication and site installation of the vessel was smoothly completed in February, 1991. This paper describes an overview of the JT-60U vacuum vessel construction

  13. Low Energy Electron Cooler for NICA Booster

    CERN Document Server

    Denisov, A P

    2017-01-01

    BINP has developed an electron cooler to increase the ion accumulation efficiency in the NICA (Nuclotron-based Ion Collider fAcility) heavy ion booster (JINR, Dubna). Adjustment of the cooler magnetic system provides highly homogeneous magnetic field in the cooling section B trans/B long ≤ 4∙10-5 which is vital for efficient electron cooling. First experiments with an electron beam performed at BINP demonstrated the target DC current of 500 mA and electron energy 6 keV.

  14. Microsystem Cooler Concept Developed and Being Fabricated

    Science.gov (United States)

    Moran, Matthew E.

    2005-01-01

    A patented microsystem cooler concept has been developed by the NASA Glenn Research Center. It incorporates diaphragm actuators to produce the Stirling refrigeration cycle within a planar configuration compatible with the thermal management of electronics, sensors, optical and radiofrequency systems, microarrays, and other microsystems. The microsystem cooler is most suited to volume-limited applications that require cooling below the ambient or sink temperature. Johns Hopkins University Applied Physics Laboratory is conducting development testing and fabrication of a prototype under a grant from Glenn.

  15. JT8D and JT9D jet engine performance improvement program. Task 1: Feasibility analysis

    Science.gov (United States)

    Gaffin, W. O.; Webb, D. E.

    1979-01-01

    JT8D and JT9D component performance improvement concepts which have a high probability of incorporation into production engines were identified and ranked. An evaluation method based on airline payback period was developed for the purpose of identifying the most promising concepts. The method used available test data and analytical models along with conceptual/preliminary designs to predict the performance improvements, weight, installation characteristics, cost for new production and retrofit, maintenance cost, and qualitative characteristics of candidate concepts. These results were used to arrive at the concept payback period, which is the time required for an airline to recover the investment cost of concept implementation.

  16. Improvement In The COP Of Thermoelectric Cooler

    Directory of Open Access Journals (Sweden)

    Jatin Patel

    2015-08-01

    Full Text Available This paper described the study for heat transfer through thermoelectric cooler TEC by use of multistage thermoelectric module. To satisfy the heat dissipation of modern electronic element thermal designers have to increase fin area and fan speed to improve its cooling capacity. However the increase of fin area is restricted by the space. Besides the increase of fan speed would induce noise which damages human health. So air cooling by fan is hardly to meet the requirement of modern electronic component. Recently thermoelectric cooler TEC is applied to electronic cooling with the advantages of small size quietness and reliability. A typical thermoelectric cooler consists of p-type and n-type semiconductor pellets connected electrically in series and sandwiched between two ceramic substrates. Whenever direct current passes through the circuit it causes temperature differential between TEC sides. As a result one face of TEC which is called cold side will be cooled while its opposite face which is called hot side is simultaneously heated. The main problem over the use of TEC is the limited COP and its thermal performance. But these can be eliminated by use of multistage thermoelectric cooler.

  17. Resisting the author: JT LeRoy's fictional authorship

    NARCIS (Netherlands)

    Loontjens, J.

    2008-01-01

    In the last decade, the interest in the relation between author and text, author and autobiography, seems to have grown. In my article, I use the story of the author JT LeRoy as a framework to analyse what this growing interest means for our understanding of the word "author." JT LeRoy’s work was

  18. Data Processing and Analysis Systems for JT-60U

    International Nuclear Information System (INIS)

    Matsuda, T.; Totsuka, T.; Tsugita, T.; Oshima, T.; Sakata, S.; Sato, M.; Iwasaki, K.

    2002-01-01

    The JT-60U data processing system is a large computer complex gradually modernized by utilizing progressive computer and network technology. A main computer using state-of-the-art CMOS technology can handle ∼550 MB of data per discharge. A gigabit ethernet switch with FDDI ports has been introduced to cope with the increase of handling data. Workstation systems with VMEbus serial highway drivers for CAMAC have been developed and used to replace many minicomputer systems. VMEbus-based fast data acquisition systems have also been developed to enlarge and replace a minicomputer system for mass data.The JT-60U data analysis system is composed of a JT-60U database server and a JT-60U analysis server, which are distributed UNIX servers. The experimental database is stored in the 1TB RAID disk of the JT-60U database server and is composed of ZENKEI and diagnostic databases. Various data analysis tools are available on the JT-60U analysis server. For the remote collaboration, technical features of the data analysis system have been applied to the computer system to access JT-60U data via the Internet. Remote participation in JT-60U experiments has been successfully conducted since 1996

  19. Development of magnetic sensors for JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Takechi, M., E-mail: takechi.manabu@jaea.go.jp [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Matsunaga, G.; Sakurai, S.; Sasajima, T.; Yagyu, J.; Hoshi, R.; Kawamata, Y.; Kurihara, K. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Nishikawa, T.; Ryo, T.; Kagamihara, S. [Okazaki Manufacturing Company, Kobe, Hyogo 651-0087 (Japan); Nakamura, K. [RIAM, Kyushu Univ., Kasuga, Fukuoka 816-8580,Japan (Japan)

    2015-10-15

    JT-60SA has been designed and is being constructed to demonstrate and develop steady-state high-beta operation. Resistive wall mode (RWM) control, error field correction, and edge-localized mode (ELM) control will be performed using in-vessel coils. For these controls, we have developed a biaxial magnetic sensor to determine 3D magnetic configuration of the plasma. Moreover, for obtaining basic information about JT-60SA plasma, magnetic sensors, in particular, one-turn loops, Rogowski coils, diamagnetic loops, and saddle coils have been developed. Because the length of the vacuum vessel in the poloidal direction of JT-60SA is 16 m and almost twice as long as that of JT-60U, the length of the Rogowski coil and the diamagnetic loop of JT-60SA are also twice as long as those on JT-60U. We have devised new types of sensors and a connector for the mineral-insulated cable because construction and installation of these sensors are much more difficult in JT-60SA. We will report the design and specification of the magnetic sensors for JT-60SA from the physics and engineering aspects.

  20. Low energy, high power injection in JT-60 NBI

    International Nuclear Information System (INIS)

    Mizuno, Makoto; Dairaku, Masayuki; Horiike, Hiroshi

    1988-05-01

    JT-60 neutral beam injector (JT-60 NBI) is designed to inject 20 MW neutral hydrogen beam at energies of 70 ∼ 100 keV and the injection power decreases significantly at low energies (∼40 keV). For the extention of operation region aiming at the low density plasma heating and achieving H-mode by plasma periphery heating, increment of the injection power at low beam energies was required. The single-stage acceleration system was investigated in advance at the Prototype Injector Unit. From this result, the total injection power of 17 MW at 40 keV, 48 A per source was expected at the JT-60 NBI. This system was adopted in the JT-60 NBI from June, 1987 to July, 1987 and 17.6 MW neutral beam injection power was achieved. In the NB heating experiment, the H-mode transition phenomena was observed in JT-60 plasma. (author)

  1. User's manual of JT-60 experimental data analysis system

    International Nuclear Information System (INIS)

    Hirayama, Takashi; Morishima, Soichi; Yoshioka, Yuji

    2010-02-01

    In the Japan Atomic Energy Agency Naka Fusion Institute, a lot of experiments have been conducted by using the large tokamak device JT-60 aiming to realize fusion power plant. In order to optimize the JT-60 experiment and to investigate complex characteristics of plasma, JT-60 experimental data analysis system was developed and used for collecting, referring and analyzing the JT-60 experimental data. Main components of the system are a data analysis server and a database server for the analyses and accumulation of the experimental data respectively. Other peripheral devices of the system are magnetic disk units, NAS (Network Attached Storage) device, and a backup tape drive. This is a user's manual of the JT-60 experimental data analysis system. (author)

  2. Disruption Studies in JT-60U

    International Nuclear Information System (INIS)

    Kawano, Y.; Yoshino, R.; Neyatani, Y.; Nakamura, Y.; Tokuda, S.; Tamai, H.

    2002-01-01

    Intensive studies on the physics of disruptions and developments of avoidance/mitigation methods of disruption-related phenomena have being carried out in JT-60U. The characteristics of the disruption sequence were well understood from the observation of the relationship between the heat pulse onto divertor plates during thermal quench and the impurity influx into the plasma, which determined the speed of the following current quench. A fast shutdown was first demonstrated by injecting impurity ice pellets to the plasma and intensively reducing the heat flux on first wall. The halo current and its toroidal asymmetry were precisely measured, and the halo current database was made for ITER in a wide parameter range. It was found that TPF x I h /I p0 was 0.52 at the maximum in a large tokamak like the JT-60U, whereas the higher factor of 0.75 had been observed in medium-sized tokamaks such as Alcator C-Mod and ASDEX-Upgrade. The vertical displacement event (VDE) at the start of the current quench was carefully investigated, and the neutral point where the VDE hardly occurs was discovered. MHD simulations clarified the onset mechanisms of the VDE, in which the eddy current effect of the up-down asymmetric resistive shell was essential. The real-time Z j measurement was improved for avoiding VDEs during slow current quench, and plasma-wall interaction was avoided by a well-optimized plasma equilibrium control. Magnetic fluctuations that were spontaneously generated at the disruption and/or enhanced by the externally applied helical field have been shown to avoid the generation of runaway electrons. Numerical analysis clarified an adequate rate of collisionless loss of runaway electrons in turbulent magnetic fields, which was consistent with the avoidance of runaway electron generation by magnetic fluctuations observed in JT-60U. Once generated, runaway electrons were suppressed when the safety factor at the plasma surface was reduced to 3 or 2

  3. Diagnostic planning in JT-60 project

    International Nuclear Information System (INIS)

    Matoba, Tohru; Suzuki, Yasuo; Funahashi, Akimasa; Itagaki, Tokiyoshi

    1977-08-01

    The diagnostic plans of JT-60 were made along with design of the main machine. Basic requirements of the diagnostic program are (1) multiple measurement of respective plasma parameters, (2) efficient usage of the discharge, (3) capable data acquisition system, (4) high reliability of the diagnostic equipments, and (5) systematic development of new diagnostic techniques. Dimensions of the diagnostic ports were determined in detailed design of the vacuum vessel, anticipating the possible diagnostic methods. The proposed diagnostic systems and the plans are shown in table and figures respectively. Problems in the diagnostics are also described. (auth.)

  4. Conceptual design of JT-60SA cryostat

    International Nuclear Information System (INIS)

    Shibama, Y.K.; Sakurai, S.; Masaki, K.; Sukekawa, A.M.; Kaminaga, A.; Yoshida, K.; Matsukawa, M.

    2007-01-01

    JT-60U modification program to fully superconducting device has been proceeded, namely ''JT-60SA'', toward early realization of fusion energy based on tokamak concept. The design of JT-60SA cryostat is expected to achieve a vacuum thermal insulation for super conducting coils, a bio-shielding boundary and structural gravity support. The cryostat is required to cover JT-60SA tokamak device, which is 15 m of total height and 7 m of radius, but there is geometrical limit due to surrounding devices reutilized. Although the cryostat consists of vessel body and gravity support, and the structural material is low cobalt 304 stainless steel (Co: 2 , and the design of the leaf spring is considered to reduce thermal stress, and to withstand the mechanical loads of plasma disruption and seismic loads. The coolant is 80 K gas helium and both sides of panel are covered with multi-layers super insulation (SI) to reduce heat load (radiation) up to 1/100. Fraction of non-covered region is assumed to be 2% due to many port-joints and supports for the vacuum vessel. Total heat load for inner surface of cryostat (600 m 2 ) is 9kW and the heat load for the port-joints (-300 m 2 ) is assumed up to 9 kW. The operational pressure of the cryostat is required to keep less than 10 -2 Pa and about 100,000 m 2 of structural surfaces is considered for exhaust system specification. Another role of the cryostat is the radiation protection. Biological shielding up to 10 micro-Sv/h (for maintenance acceptance) is required of the cryostat surface after the 10 years operation. Thus the cryostat consists of boron (2 wt%) doped concrete of 220 mm thickness and structural SS304 of total 40 mm thickness. The concrete reduces the air activation (41Ar) in the torus hall by 90% rather than the normal one by the thermal neutron absorption of boron. (orig.)

  5. Initial operation of cooler ring, TARN II

    International Nuclear Information System (INIS)

    Katayama, T.; Chida, K.; Honma, T.

    1989-01-01

    TARN II is a heavy ion cooler synchrotron for the studies of accelerator, atomic and nuclear physics, presently being constructed at the Institute for Nuclear Study, University of Tokyo. Its maximum energy is 370 MeV/u for the ions of a charge to mass ratio of q/A = 0.5, corresponding to a magnetic rigidity of 6.1 T·m. The circumference is 77.76 m, just 17 times the extraction orbit of injector cyclotron. Six long straight sections, 4.20 m in length each, are used for the beam injection, extraction, electron cooler and RF accelerating cavity, respectively. At the beginning of 1989, the first experiment of beam injection has been performed successfully with use of 28 MeV α particles. In this paper, the status and initial results of operation of TARN II are presented. (author)

  6. Analysis of JT-60SA operational scenarios

    Science.gov (United States)

    Garzotti, L.; Barbato, E.; Garcia, J.; Hayashi, N.; Voitsekhovitch, I.; Giruzzi, G.; Maget, P.; Romanelli, M.; Saarelma, S.; Stankiewitz, R.; Yoshida, M.; Zagórski, R.

    2018-02-01

    Reference scenarios for the JT-60SA tokamak have been simulated with one-dimensional transport codes to assess the stationary state of the flat-top phase and provide a profile database for further physics studies (e.g. MHD stability, gyrokinetic analysis) and diagnostics design. The types of scenario considered vary from pulsed standard H-mode to advanced non-inductive steady-state plasmas. In this paper we present the results obtained with the ASTRA, CRONOS, JINTRAC and TOPICS codes equipped with the Bohm/gyro-Bohm, CDBM and GLF23 transport models. The scenarios analysed here are: a standard ELMy H-mode, a hybrid scenario and a non-inductive steady state plasma, with operational parameters from the JT-60SA research plan. Several simulations of the scenarios under consideration have been performed with the above mentioned codes and transport models. The results from the different codes are in broad agreement and the main plasma parameters generally agree well with the zero dimensional estimates reported previously. The sensitivity of the results to different transport models and, in some cases, to the ELM/pedestal model has been investigated.

  7. Heat structural problems in JT-60

    International Nuclear Information System (INIS)

    Takatsu, Hideyuki; Shimizu, Masaomi; Yamamoto, Masahiro; Nakamura, Hiroo; Miyauchi, Yasuyuki.

    1980-01-01

    The construction of JT-60 is in progress to study the behavior of hydrogen plasma. The D-T reaction does not occur in this device, therefore the considerations for neutron damage, tritium leakage and so on are not necessary. The long-pulse operation will be done, and the suppression of the production and mixing of impurity is considered in the design of the JT-60. The high temperature baking is possible, and the magnetic limiter is set. The vacuum container has the complex structure consists of 8 sector type thick rings and 8 U-shaped bellows, and has egg-shaped cross section. The main radius of the torus is about 3 m. The material of the vacuum container is INCONEL 625. The analyses of various stresses due to such as atmospheric pressure, eddy current and thermal expansion were made. It is also necessary to consider the thermal stress due to the leakage of neutral beam. The thermal input of about 20 MW per one discharge to the first wall is taken into consideration. The material of the first wall is molybdenum. (Kato, T.)

  8. Fuel cell cooler-humidifier plate

    Science.gov (United States)

    Vitale, Nicholas G.; Jones, Daniel O.

    2000-01-01

    A cooler-humidifier plate for use in a proton exchange membrane (PEM) fuel cell stack assembly is provided. The cooler-humidifier plate combines functions of cooling and humidification within the fuel cell stack assembly, thereby providing a more compact structure, simpler manifolding, and reduced reject heat from the fuel cell. Coolant on the cooler side of the plate removes heat generated within the fuel cell assembly. Heat is also removed by the humidifier side of the plate for use in evaporating the humidification water. On the humidifier side of the plate, evaporating water humidifies reactant gas flowing over a moistened wick. After exiting the humidifier side of the plate, humidified reactant gas provides needed moisture to the proton exchange membranes used in the fuel cell stack assembly. The invention also provides a fuel cell plate that maximizes structural support within the fuel cell by ensuring that the ribs that form the boundaries of channels on one side of the plate have ends at locations that substantially correspond to the locations of ribs on the opposite side of the plate.

  9. The Cooling of a Liquid Absorber using a Small Cooler

    International Nuclear Information System (INIS)

    Baynham, D.E.; Bradshaw, T.W.; Green, M.A.; Ishimoto, S.; Liggins, N.

    2005-01-01

    This report discusses the use of small cryogenic coolers for cooling the Muon Ionization Cooling Experiment (MICE) liquid cryogen absorbers. Since the absorber must be able contain liquid helium as well liquid hydrogen, the characteristics of the available 4.2 K coolers are used here. The issues associated with connecting two-stage coolers to liquid absorbers are discussed. The projected heat flows into an absorber and the cool-down of the absorbers using the cooler are presented. The warm-up of the absorber is discussed. Special hydrogen safety issues that may result from the use of a cooler on the absorbers are also discussed

  10. Radiant coolers - Theory, flight histories, design comparisons and future applications

    Science.gov (United States)

    Donohoe, M. J.; Sherman, A.; Hickman, D. E.

    1975-01-01

    Radiant coolers have been developed for application to the cooling of infrared detectors aboard NASA earth observation systems and as part of the Defense Meteorological Satellite Program. The prime design constraints for these coolers are the location of the cooler aboard the satellite and the satellite orbit. Flight data from several coolers indicates that, in general, design temperatures are achieved. However, potential problems relative to the contamination of cold surfaces are also revealed by the data. A comparison among the various cooler designs and flight performances indicates design improvements that can minimize the contamination problem in the future.

  11. Communication systems in JT-60 control

    International Nuclear Information System (INIS)

    Kimura, T.; Hosogane, N.; Kondo, I.; Kumahara, T.; Kurihara, K.; Yonekawa, I.; Yoshino, R.

    1983-01-01

    A new concept in communication is applied to the JT-60 control system which handles a large amount of data for the plant support and monitoring and for the discharge control including plasma feedback control. The communication systems are characterized by 1) adoption of an efficient protocol in the central highways which are composed of dual serial CAMAC ones, 2) standardization of the protocol and data format between the central controller and each subsystem one, 3) adoption of a polling method for plant monitoring and of block transfer for discharge conditions and results, and 4) use of novel modules for the fast data transfer in the real-time systems. A compact tool has also been developed for testing the data communication

  12. Tritium processing in JT-60U

    International Nuclear Information System (INIS)

    Miya, Naoyuki; Masaki, Kei

    1997-01-01

    Tritium retention analysis and tritium concentration measurement have been made during the large Tokamak JT-60U deuterium operations. This work has been carried out to evaluate the tritium retention for graphite tiles inside the vacuum vessel and tritium release characteristics in the tritium cleanup operations. JT-60U has carried out D-D experiments since July 1991. In the deuterium operations during the first two years, about 1.7 x 10 19 D-D fusion neutrons were produced by D (d, p) T reactions in plasma, which are expected to produce ∼31 GBq of tritium. The tritium produced is evacuated by a pumping system. A part of tritium is, however, trapped in the graphite tiles. Several sample tiles were removed from the vessel and the retained tritium Distribution in the tiles was measured using a liquid scintillator. The results of poloidal distribution showed that the tritium concentration in the divertor tiles was higher than that in the first wall tiles and it peaked in the tiles between two strike points of divertor magnetic lines. Tritium concentration in the exhaust gas from the vessel have also been measured with an ion chamber during the tritium cleanup operations with hydrogen divertor discharges and He-GDC. Total of recovered tritium during the cleanup operations was ∼ 7% of that generated. The results of these measurements showed that the tritium of 16-23 GBq still remained in the graphite tiles, which corresponded to about 50-70% of the tritium generated in plasma. The vessel is ventilated during the in-vessel maintenance works, then the atmosphere is always kept lower than the legal concentration guide level of 0.7 Bq/cm 3 for radiation work permit requirements. (author)

  13. Results from the Cooler and Lead Tests

    International Nuclear Information System (INIS)

    Green, Michael A.

    2010-01-01

    The report presents the results of testing MICE spectrometer magnet current leads on a test apparatus that combines both the copper leads and the high temperature superconducting (HTS) leads with a single Cryomech PT415 cooler and liquid helium tank. The current is carried through the copper leads from 300 K to the top of the HTS leads. The current is then carried through the HTS leads to a feed-through from the vacuum space to the inside of a liquid helium tank. The experiment allows one to measure the performance of both cooler stages along with the performance of the leads. While the leads were powered we measured the voltage drops through the copper leads, through the HTS leads, through spliced to the feed-through, through the feed-through and through the low-temperature superconducting loop that connects one lead to the other. Measurements were made using the leads that were used in spectrometer magnet 1A and spectrometer magnet 2A. These are the same leads that were used for Superbend and Venus magnets at LBNL. The IL/A for these leads was 5.2 x 10 6 m -1 . The leads turned out to be too long. The same measurements were made using the leads that were installed in magnet 2B. The magnet 2B leads had an IL/A of 3.3 x 10 6 A m -1 . This report discusses the cooler performance and the measured electrical performance of the lead circuit that contains the copper leads and the superconducting leads. All of the HTS leads that were installed in magnet 2B were current tested using this apparatus.

  14. Prazdnik podportshen / Oksana Smirnova, Vladimir Skripov, Vjatsheslav Ivanov...[jt.

    Index Scriptorium Estoniae

    2005-01-01

    Ülevaade diskussioonist Eestis, Lätis ja Leedus presidentide osalemise üle 9. mai pidustustel Moskvas. Juhan Partsi, Villu Reiljani, Toomas Hendrik Ilvese, Marko Mihkelsoni jt. arvamusi. Toimetuse seisukoht

  15. Heat driven thermoacoustic cooler based on traveling-standing wave

    International Nuclear Information System (INIS)

    Kang Huifang; Zhou Gang; Li Qing

    2010-01-01

    This paper presents a heat driven thermoacoustic cooler system without any moving part. It consists of a thermoacoustic engine and a thermoacoustic cooler, and the former is the driving source of the latter. Both the engine and the cooler are located in one loop tube coupled with a resonator tube, and the acoustic power produced by the engine is used to drive the cooler directly. Both regenerators of the engine and the cooler are located in the near region of the pressure antinode, and operate in traveling-standing wave phase region. In the engine's regenerator, both components of the standing wave and the traveling wave realize the conversion from heat to acoustic energy. This improves the efficiency of the engine. In the cooler's regenerator, both components of the traveling wave and the standing wave pump heat from the cold end. This improves the efficiency of the cooler. At the operating point with a mean pressure of 22 bar, helium as working gas, a frequency of 234 Hz, and a heating power of 300 W, the experimental cooler provides a no-load temperature of -30 deg. C and a cooling power of 40 W at the cooling temperature of 0 deg. C. The total length of this cooler system is less than 1 m, which shows a good prospect for the domestic cooler system in room-temperature cooling such as food refrigeration and air-conditioning.

  16. Prototype ion source for JT-60 neutral beam injectors

    International Nuclear Information System (INIS)

    Akiba, M.

    1981-01-01

    A prototype ion source for JT-60 neutral beam injectors has been fabricated and tested. Here, we review the construction of the prototype ion source and report the experimental results about the source characteristics that has been obtained at this time. The prototype ion source is now installed at the prototype unit of JT-60 neutral beam injection units and the demonstration of the performances of the ion source and the prototype unit has just started

  17. Darwin-industrien i højt gear

    DEFF Research Database (Denmark)

    Kjærgaard, Peter C.

    2008-01-01

    Darwin-industrien i højt gear. Næste år bliver et 'Darwin-år' - både tilhængere og kritikere gør sig klar. Udgivelsesdato: 12. december......Darwin-industrien i højt gear. Næste år bliver et 'Darwin-år' - både tilhængere og kritikere gør sig klar. Udgivelsesdato: 12. december...

  18. Operation and Development on the Positive-Ion Based Neutral Beam Injection System for JT-60 and JT-60U

    International Nuclear Information System (INIS)

    Kuriyama, M.; Akino, N.; Ebisawa, N.; Honda, A.; Itoh, T.; Kawai, M.; Mogaki, K.; Ohga, T.; Oohara, H.; Umeda, N.; Usui, K.; Yamamoto, M.; Yamamoto, T.; Matsuoka, M.

    2002-01-01

    The positive-ion based neutral beam injection (NBI) system for JT-60, which consists of 14 beamline units and has a beam energy of 70 to 100 keV, started operation in 1986 with hydrogen beams and injected a neutral beam power of 27 MW at 75 keV into the JT-60 plasma. In 1991, the NBI system was modified to be able to handle deuterium beams as part of the JT-60 upgrade modification. After executing some research and developments, deuterium beams of 40 MW at 95 keV were injected in 1996. As a result, NBI has contributed to the achievement of the highest performance plasmas, a DT-equivalent fusion power gain of 1.25 and a fusion triple product of 1.55 x 10 21 keVs/m 3 , in the world on JT-60U

  19. Thermoelectric Coolers with Sintered Silver Interconnects

    Science.gov (United States)

    Kähler, Julian; Stranz, Andrej; Waag, Andreas; Peiner, Erwin

    2014-06-01

    The fabrication and performance of a sintered Peltier cooler (SPC) based on bismuth telluride with sintered silver interconnects are described. Miniature SPC modules with a footprint of 20 mm2 were assembled using pick-and-place pressure-assisted silver sintering at low pressure (5.5 N/mm2) and moderate temperature (250°C to 270°C). A modified flip-chip bonder combined with screen/stencil printing for paste transfer was used for the pick-and-place process, enabling high positioning accuracy, easy handling of the tiny bismuth telluride pellets, and immediate visual process control. A specific contact resistance of (1.4 ± 0.1) × 10-5 Ω cm2 was found, which is in the range of values reported for high-temperature solder interconnects of bismuth telluride pellets. The realized SPCs were evaluated from room temperature to 300°C, considerably outperforming the operating temperature range of standard commercial Peltier coolers. Temperature cycling capability was investigated from 100°C to 235°C over more than 200 h, i.e., 850 cycles, during which no degradation of module resistance or cooling performance occurred.

  20. Solution for Direct Solar Impingement Problem on Landsat-7 ETM+ Cooler Door During Cooler Outgas in Flight

    Science.gov (United States)

    Choi, Michael K.

    1999-01-01

    There was a thermal anomaly of the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) radiative cooler cold stage during the cooler outgas phase in flight. With the cooler door in the outgas position and the outgas heaters enabled, the cold stage temperature increased to a maximum of 323 K when the spacecraft was in the sunlight, which was warmer than the 316.3 K upper set point of the outgas heater controller on the cold stage. Also, the outgas heater cycled off when the cold stage was warming up to 323 K. A corrective action was taken before the attitude of the spacecraft was changed during the first week in flight. One orbit before the attitude was changed, the outgas heaters were disabled to cool off the cold stage. The cold stage temperature increase was strongly dependent on the spacecraft roll and yaw. It provided evidence that direct solar radiation entered the gap between the cooler door and cooler shroud. There was a concern that the direct solar radiation could cause polymerization of hydrocarbons, which could contaminate the cooler and lead to a thermal short. After outgas with the cooler door in the outgas position for seven days, the cooler door was changed to the fully open position. With the cooler door fully open, the maximum cold stage temperature was 316.3 K when the spacecraft was in the sunlight, and the duty cycle of the outgas heater in the eclipse was the same as that in the sunlight. It provided more evidence that direct solar radiation had entered the gap between the cooler door and cooler shroud. Cooler outgas continued for seven more days, with the cooler door fully open. The corrective actions had prevented overheating of the cold stage and cold focal plane array (CFPA), which could damage these two components. They also minimized the risk of contamination on the cold stage, which could lead to a thermal short.

  1. Performance characterization of the TRW 35K pulse tube cooler

    International Nuclear Information System (INIS)

    Collins, S.A.; Johnson, D.L.; Smedley, G.T.; Ross, R.G. Jr.

    1996-01-01

    The TRW 35K pulse tube cooler is configured as an integral cooler, with the pulse tube attached perpendicular to a pair of compressors operating into a common compression chamber. The cooler was optimized for 35K operation and has a nominal cooling capacity of 850 mW at 35 K with a cooler input power of 200 W. It also provides 2 W of cooling at 60 K for 90 W of input power. The cooler was extensively characterized by JPL, measuring the thermal performance and the cooler-generated vibration and EMI as a function of piston stroke and offset position. The thermal performance was found to be quite sensitive to the piston offset position. The pulse tube parasitic conduction levels were also measured and shown to have a strong angular dependence relative to gravity. Magnetic shielding studies were performed to examine radiated magnetic emission levels from compressors with and without shielding

  2. Criticality safety study of shutdown diffusion cascade coolers

    International Nuclear Information System (INIS)

    Paschal, L.S.; Basoglu, B.; Bentley, C.L.; Dunn, M.E.

    1996-01-01

    Gaseous diffusion plants use cascade coolers in the production of highly enriched uranium (HEU) to remove heat from the enriched stream of UF 6 . The cascade coolers operate like shell and tube heat exchangers with the UF 6 on the shell side and Freon on the tube side. Recirculating cooling water (RCW) in condensers is used to cool the Freon. A criticality safety analysis was previously performed for cascade coolers during normal operation. The purpose of this paper is to evaluate several different hypothetical accidents regarding RCW ingress into the cooler to determine whether criticality safety concerns exist

  3. Indirect evaporative coolers with enhanced heat transfer

    Science.gov (United States)

    Kozubal, Eric; Woods, Jason; Judkoff, Ron

    2015-09-22

    A separator plate assembly for use in an indirect evaporative cooler (IEC) with an air-to-air heat exchanger. The assembly includes a separator plate with a first surface defining a dry channel and a second surface defining a wet channel. The assembly includes heat transfer enhancements provided on the first surface for increasing heat transfer rates. The heat transfer enhancements may include slit fins with bodies extending outward from the first surface of separator plate or may take other forms including vortex generators, offset strip fins, and wavy fins. In slit fin implementations, the separator plate has holes proximate to each of the slit fins, and the separator plate assembly may include a sealing layer applied to the second surface of the separator plate to block air flow through the holes. The sealing layer can be a thickness of adhesive, and a layer of wicking material is applied to the adhesive.

  4. Surface tension confined liquid cryogen cooler

    International Nuclear Information System (INIS)

    Castles, S.H.; Schein, M.E.

    1989-01-01

    A cryogenic cooler is described for use in craft such as launch, orbital and space vehicles subject to changes in orientation and conditions of vibration and weightlessness comprising: an insulated tank; a porous open celled sponge-like material disposed substantially throughout the contained volume of the insulated tank; a cryogenic fluid disposed within the sponge-like material; a cooling finger immersed in the cryogenic fluid, the finger extending from inside the insulated tank externally to an outside source such as an instrument detector for the purpose of transmitting heat from the outside source into the cryogenic fluid; means for filling the insulated tank with cryogenic fluid; and means for venting vaporized cryogenic fluid from the insulated tank

  5. Status of JT-60 data processing system

    International Nuclear Information System (INIS)

    Matsuda, T.; Tsugita, T.; Oshima, T.; Sakata, S.; Sato, M.; Koiwa, M.; Aoyagi, T.

    2000-01-01

    The JT-60 data processing system is a large computer complex and gradually modernized by utilizing progressing computer and network technology. There are two major changes in our system. A main computer of FACOM M-780 has been replaced with compatible GS8300 using state-of-art CMOS technology, which results in lower power and space usage with nearly the same performance. Now it can handle ∼500 MB of data per discharge. A gigabit ethernet switch with FDDI ports has been introduced to cope with the increase of handling data. The switch will connect a tera-byte (TB) data server at the bandwidth of a gigabit per second with the main computer and many data acquisition workstations. Other developments in our system are the realization of three workstation-based plans, the TB data server, the VME-based fast data acquisition system and a CICU. The TB data server is basically a UNIX workstation with ∼100 GB RAID disks and ∼900 GB MO auto-exchangers. The VME-based fast data acquisition system has been developed to enlarge the present TMDS. The CICU, which has a function of interfacing the main computer with the CAMAC system, has been replaced with the workstation-based system after the fine tuning

  6. Analysis of ELM stability with extended MHD models in JET, JT-60U and future JT-60SA tokamak plasmas

    Science.gov (United States)

    Aiba, N.; Pamela, S.; Honda, M.; Urano, H.; Giroud, C.; Delabie, E.; Frassinetti, L.; Lupelli, I.; Hayashi, N.; Huijsmans, G.; JET Contributors, the; Research Unit, JT-60SA

    2018-01-01

    The stability with respect to a peeling-ballooning mode (PBM) was investigated numerically with extended MHD simulation codes in JET, JT-60U and future JT-60SA plasmas. The MINERVA-DI code was used to analyze the linear stability, including the effects of rotation and ion diamagnetic drift ({ω }* {{i}}), in JET-ILW and JT-60SA plasmas, and the JOREK code was used to simulate nonlinear dynamics with rotation, viscosity and resistivity in JT-60U plasmas. It was validated quantitatively that the ELM trigger condition in JET-ILW plasmas can be reasonably explained by taking into account both the rotation and {ω }* {{i}} effects in the numerical analysis. When deuterium poloidal rotation is evaluated based on neoclassical theory, an increase in the effective charge of plasma destabilizes the PBM because of an acceleration of rotation and a decrease in {ω }* {{i}}. The difference in the amount of ELM energy loss in JT-60U plasmas rotating in opposite directions was reproduced qualitatively with JOREK. By comparing the ELM affected areas with linear eigenfunctions, it was confirmed that the difference in the linear stability property, due not to the rotation direction but to the plasma density profile, is thought to be responsible for changing the ELM energy loss just after the ELM crash. A predictive study to determine the pedestal profiles in JT-60SA was performed by updating the EPED1 model to include the rotation and {ω }* {{i}} effects in the PBM stability analysis. It was shown that the plasma rotation predicted with the neoclassical toroidal viscosity degrades the pedestal performance by about 10% by destabilizing the PBM, but the pressure pedestal height will be high enough to achieve the target parameters required for the ITER-like shape inductive scenario in JT-60SA.

  7. Advanced fusion technologies developed for JT-60 superconducting tokamak

    International Nuclear Information System (INIS)

    Sakasai, Akira; Ishida, S.; Matsukawa, M.

    2003-01-01

    The modification of JT-60U is planned as a full superconducting tokamak (JT-60SC). The objectives of the JT-60SC program are to establish scientific and technological bases for the steady-state operation of high performance plasmas and utilization of reduced-activation materials in economically and environmentally attractive DEMO reactor. Advanced fusion technologies relevant to DEMO reactor have been developed in the superconducting magnet technology and plasma facing components for the design of JT-60SC. To achieve a high current density in a superconducting strand, Nb 3 Al strands with a high copper ratio of 4 have been newly developed for the toroidal field coils (TFC) of JT-60SC. The R and D to demonstrate applicability of Nb 3 Al conductor to the TFC by a react-and-wind technique have been carried out using a full-size Nb 3 Al conductor. A full-size NbTi conductor with low AC loss using Ni-coated strands has been successfully developed. A forced cooling divertor component with high heat transfer using screw tubes has been developed for the first time. The heat removal performance of the CFC target was successfully demonstrated on the electron beam irradiation stand. (author)

  8. Present construction status and future plan of JT-60

    Energy Technology Data Exchange (ETDEWEB)

    Iso, Yasuhiko; Yoshikawa, Masaji [Japan Atomic Energy Research Inst., Tokai, Ibaraki. Tokai Research Establishment

    1982-04-01

    As for the critical plasma test facility JT-60, its detailed design was initiated in 1975, and the manufacture of the main body components was started in April, 1978, through the trial manufacture and development of important components. The manufacture of all the system equipment in factories is in progress. Especially, the essential components of main body have been almost completed, and ready to be installed in the building. The building is under construction, and a part of the equipment was brought in and installed since the beginning of 1982 fiscal year. JT-60 is composed of heating system, toroidal magnetic field coil power supply, poloidal magnetic field coil power supply, total control system, associated system for main body and various measuring equipment as well as the main body which consists of vacuum vessel, toroidal and poloidal magnetic field coils, base, primary cooling system, movable limiter and evacuating system. In this report, first the significance of JT-60 development and the outline of JT-60 are described, and the present construction status is reported. The specifications of the essential equipment of the main body and heating system and the measuring system configuration are listed in tables. The aims in JT-60 design are to make plasma generating pulse width longer, to obtain higher beta value in circular cross-section plasma, to install the magnetic limiter, and to realize compound second stage heating.

  9. Development of a 15 K hydrogen-based sorption cooler

    NARCIS (Netherlands)

    Burger, Johannes Faas; Holland, Herman J.; Meijer, R.J.; Linder, M.; ter Brake, Hermanus J.M.

    2010-01-01

    At the University of Twente, a 15 K hydrogen-based sorption cooler is under development, which has no moving parts and, therefore, is essentially vibration-free. Moreover, it has the potential of a very long life. Although the cooler may operate standalone, it is designed to precool a helium-based

  10. Experimental investigation of a super performance dew point air cooler

    International Nuclear Information System (INIS)

    Xu, Peng; Ma, Xiaoli; Zhao, Xudong; Fancey, Kevin

    2017-01-01

    Highlights: •The cooler had a complex heat & mass exchanger with an advanced wet material layer. •Intermittent water supply scheme was implemented. •The cooler achieved 100–160% higher COP compared to the existing dew point coolers. •Electricity use of the cooler was reduced by 50–70% compared to existing dew coolers. •This optimal working air ratio was 0.364 that enabled maximised cooling effectiveness. -- Abstract: This paper presents an experimental investigation of a super performance dew point air cooler which, by employing a super performance wet material layer, innovative heat and mass exchanger and intermittent water supply scheme, has achieved a significantly higher energy efficiency (i.e. Coefficient of Performance, COP) and a much lower electrical energy use compared to the existing air coolers of the same type. This involves the dedicated system design & construction, fully planned experimental testing under various simulated climatic conditions representing the climate of hot & dry, warm & dry, moderate, warm & humid and standard lab testing condition, testing results analysis and discussion, as well as the parallel comparison against the commercial dew point air cooler. Under the standard test condition, i.e. dry bulb temperature of 37.8 °C and coincident wet bulb temperature of 21.1 °C, the prototype cooler achieved the wet-bulb cooling effectiveness of 114% and dew-point cooling effectiveness of 75%, yielding a significantly high COP value of 52.5 at the optimal working air ratio of 0.364. The testing also indicated that the lower inlet air relative humidity led to a higher cooling efficiency, while the lower cooling output helped increase COP and cooling effectiveness (including the wet-bulb effectiveness and dew-point effectiveness) of the cooler.

  11. The archives of operational achievements in JT-60

    International Nuclear Information System (INIS)

    Seimiya, Munetaka

    2007-08-01

    Since the first plasma in JT-60 was achieved in April 1985, various experimental challenges have been successfully conducted, and currently producing many new findings. These achievements have been realized by large modifications for lower X-point divertor in 1987, for large plasma current upgrade in 1989-1991, for W-shaped divertor in 1997, and for long pulse discharge in 2002. Such developments contribute to have established JT-60 as the leading tokamak in the world. As a consequence of the 22-year operation, we have accumulated many operational and experimental data. This reports the operational records including troubles and availability, the outline of planning management, the safety control and the promotion procedure of operation in JT-60. (author)

  12. Development of the pellet injector for JT-60

    International Nuclear Information System (INIS)

    Kawasaki, Kouzo; Hiratsuka, Hajimo; Takatsu, Hideyuki; Shimizu, Masatsugu; Onozuka, Masanori; Uchikawa, Takashi; Iwamoto, Syuichi; Hashiri, Nobuo

    1989-01-01

    The pneumatic 4-shot pellet injector has been installed and operated for JT-60 (JAERI Tokamak-60). The performance tests have proved that the device provides high speed hydrogen pellets just as planned. The maximum pellet velocity obtained in the hydrogen pellet tests is greater than 1.6 km/sec at 50 bar propellant gas. The device is now in use for JT-60 contributing to plasma study. In this paper the outline of features and performance of the device is presented. (author). 4 refs.; 8 figs

  13. Thermoelectric cooler application in electronic cooling

    International Nuclear Information System (INIS)

    Chein Reiyu; Huang Guanming

    2004-01-01

    This study addresses thermoelectric cooler (TEC) applications in the electronic cooling. The cold side temperature (T c ) and temperature difference between TEC cold and hot sides (ΔT=T h -T c , T h =temperature of hot side of TEC) were used as the parameters. The cooling capacity, junction temperature, coefficient of performance (COP) of TEC and the required heat sink thermal resistance at the TEC hot side were computed. The results indicated that the cooling capacity could be increased as T c increased and ΔT was reduced. The maximum cooling capacity and chip junction temperature obtained were 207 W and 88 deg. C, respectively. The required heat sink thermal resistance on TEC hot side was 0.054 deg. C/W. Larger cooling capacity and higher COP could be obtained when the TEC was operated in the enforced regimes (ΔT c values and heat sink thermal resistance at the TEC hot side. A microchannel heat sink using water or air as the coolant was demonstrated to meet the low thermal heat sink resistance requirement for TEC operated at maximum cooling capacity conditions

  14. Efficiency of the Fermilab Electron Cooler's Collector

    CERN Document Server

    Prost, L R

    2005-01-01

    The newly installed high-energy Recycler Electron Cooling system (REC) at Fermilab will work at an electron energy of 4.34 MeV and a DC beam current of 0.5 A in an energy recovery scheme. For reliable operation of the system, the relative beam current loss must be maintained to levels < 3.e-5. Experiments have shown that the loss is determined by the performance of the electron beam collector, which must retain secondary electrons generated by the primary beam hitting its walls. As a part of the Electron cooling project, the efficiency of the collector for the REC was optimized, both with dedicated test bench experiments and on two versions of the cooler prototype. We find that to achieve the required relative current loss, an axially-symmetric collector must be immersed in a transverse magnetic field with certain strength and gradient prescriptions. Collector efficiencies in various magnetic field configurations, including without a transverse field on the collector, are presented and discussed

  15. Beam accumulation with the SIS electron cooler

    International Nuclear Information System (INIS)

    Steck, M.; Groening, L.; Blasche, K.; Franczak, B.; Franzke, B.; Winkler, T.; Parkhomchuk, V.V.

    2000-01-01

    An electron cooling system has started operation in the heavy ion synchrotron SIS which is used to increase the intensity for highly charged ions. Fast transverse cooling of the hot ion beam after horizontal multiturn injection allows beam accumulation at the injection energy. After optimization of the accumulation process an intensity increase in a synchrotron pulse by more than one order of magnitude has been achieved. For highly charged ions the maximum number of particles has been increased from 1x10 8 to 1x10 9 . For lighter ions intensity limitations have been encountered which are caused by the high phase space density of the cooled ion beam. Momentum spreads in the 10 -4 range and emittances well below 10 π mm mrad have been demonstrated. Recombination losses both in the residual gas and with the free cooler electrons determine the maximum intensity for highly charged ions. Systematic measurements of the recombination rates have been performed providing data for an optimum choice of the charge state. Strong enhancement of the recombination rate with free electrons compared to theoretical calculations of radiative electron capture have been observed

  16. Development of a hybrid cooler; Udvikling af hybridkoeler

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, P.; Toftegaard, R.; Weinkauff Kristoffersen, J. [Teknologisk Institut, Aarhus (Denmark); Juel Skovrup, M. [IPU, Kgs. Lyngby (Denmark); Ibsen, C. [VP Industries, Lem (Denmark)

    2013-04-15

    The project aims to develop a hybrid cooler which acts as a dry cooler in the winter and as cooling tower in summer. Energy consumption for cooling systems with a dry cooler and a cooling tower, respectively, is comparable in the winter months. This phase 1 of the project shows that improvements of 50-100% on the performance of a hybrid cooler can be achieved as compared to a dry cooler. The improvement is achieved by humidifying the air with recirculated water through nozzles so that the air temperature decreases from the dry temperature to the wet temperature, and that the dry cooler surface is humidified with a film of water, which increases the heat transfer coefficient considerably compared to a dry surface. The experiments showed that a humidifier system cannot be used without further action. At face velocities less than 5 m/s the humidification does not yield any improvement, and in some cases the heat transfer in a standard dry cooler is decreased. This is due to entrainment of not fully vaporized droplets which are deposited between the dry cooler fins and form bridges that block parts of the cooler. By modifying the surface characteristics with a coating, it will be possible to drain the water away so that no bridges are formed. The company Accoat, which makes special surfaces, will therefore be associated to phase 2 of the project. Another aspect that was evident in the tests, is the formation of biofilm on the heat exchanger surface, which can reduce performance by up to 25%. Biofilm can be prevented by treating the feed water, and therefore Danish Clean Water A/S associated to phase 2 of the project, as they produce water purification systems for biofouling decomposition. (LN)

  17. Coupled cooling method and application of latent heat thermal energy storage combined with pre-cooling of envelope: Method and model development

    International Nuclear Information System (INIS)

    Yuan, Yanping; Gao, Xiangkui; Wu, Hongwei; Zhang, Zujin; Cao, Xiaoling; Sun, Liangliang; Yu, Nanyang

    2017-01-01

    The traditional cooling methods cannot meet the requirements of safety, stability, reliability and no-power at the same time under some special circumstances. In this study, a new coupled cooling method of Latent Heat Thermal Energy Storage (LHTES) combined with Pre-cooling of Envelope (PE) is proposed and the numerical model of the coupled cooling method is developed. In the current study, a refuge chamber is selected as a case study. A semi-analytical method is used to analyze the cold storage performance of the Surrounding Rock (SR). Afterwards, a numerical model of the coupled cooling system, which takes the heat source, SR, Phase Change Material (PCM) and air heat transfer into consideration, is further established. The study identified that the simplified semi-analytical calculation formula with the diagram of the cold storage quantity of SR are very helpful for engineering calculation. The influence of the Fourier and Biot number on the cold storage capacity of SR can be easily analyzed. In addition, the whole-field model of the coupled cooling system is completely developed based on the PCM unit. - Highlights: • A new coupled cooling method that combines LHTES with PE is proposed. • This method can be applicable to a high-temperature and no-power circumstance. • The simplified calculation formula of the cold storage quantity of SR is given. • An efficient simulation model of the coupled cooling system is established.

  18. Design and analysis of a small-scale natural gas liquefaction process adopting single nitrogen expansion with carbon dioxide pre-cooling

    International Nuclear Information System (INIS)

    Yuan, Zongming; Cui, Mengmeng; Xie, Ying; Li, Chunlin

    2014-01-01

    With the growth of energy consumption and environmental protection concerns, it is of enormous economic and environmental values for the development of stranded gas. As a means for exploitation and transportation of stranded gas to market, a novel small-scale liquefaction process adopting single nitrogen expansion with carbon dioxide pre-cooling is put up with in this paper. Taking unit energy consumption as the target function, Aspen HYSYS is employed to simulate and optimize the process to achieve the liquefaction rate of 0.77 with unit energy consumption of 9.90 kW/kmol/h. Furthermore, the adaptability of this process under different pressure, temperature and compositions of feed gas is studied. Based on the optimization results, the exergy losses of main equipment in the process are evaluated and analyzed in details. With compact device, safety operation, simple capability, this liquefaction process proves to be suitable for the development of small gas reserves, satellite distribution fields of gas or coalbed methane fields. - Highlights: •A novel small-scale liquefaction process used in stranded gas is designed. •The adaptability of this process under different pressure, temperature and compositions of feed gas is studied. •The exergy analysis of main equipment in the process is analyzed

  19. Design and analysis of a small-scale natural gas liquefaction process adopting single nitrogen expansion with carbon dioxide pre-cooling

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Zongming; Cui, Mengmeng; Xie, Ying; Li, Chunlin

    2014-03-01

    With the growth of energy consumption and environmental protection concerns, it is of enormous economic and environmental values for the development of stranded gas. As a means for exploitation and transportation of stranded gas to market, a novel small-scale liquefaction process adopting single nitrogen expansion with carbon dioxide pre-cooling is put up with in this paper. Taking unit energy consumption as the target function, Aspen HYSYS is employed to simulate and optimize the process to achieve the liquefaction rate of 0.77 with unit energy consumption of 9.90 kW/kmol/h. Furthermore, the adaptability of this process under different pressure, temperature and compositions of feed gas is studied. Based on the optimization results, the exergy losses of main equipment in the process are evaluated and analyzed in details. With compact device, safety operation, simple capability, this liquefaction process proves to be suitable for the development of small gas reserves, satellite distribution fields of gas or coalbed methane fields. - Highlights: •A novel small-scale liquefaction process used in stranded gas is designed. •The adaptability of this process under different pressure, temperature and compositions of feed gas is studied. •The exergy analysis of main equipment in the process is analyzed.

  20. Cooling performance of helium-gas/water coolers in HENDEL

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Takada, Shoji; Hayashi, Haruyoshi; Kobayashi, Toshiaki; Ohta, Yukimaru; Shimomura, Hiroaki; Miyamoto, Yoshiaki

    1994-01-01

    The helium engineering demonstration loop (HENDEL) has four helium-gas/water coolers where the cooling water flows in the tubes and helium gas on the shell side. Their cooling performance was studied using the operational data from 1982 to 1991. The heat transfer of helium gas on the shell was obtained for segmental and step-up baffle type coolers. Also, the change with operation time was investigated. The cooling performance was lowered by the graphite powder released from the graphite components for several thousand hours and thereafter recovered because the graphite powder from the components was reduced and the powder in the cooler shell was blown off during the operation. (orig.)

  1. JT-60U high performance regimes

    International Nuclear Information System (INIS)

    Ishida, S.

    1999-01-01

    High performance regimes of JT-60U plasmas are presented with an emphasis upon the results from the use of a semi-closed pumped divertor with W-shaped geometry. Plasma performance in transient and quasi steady states has been significantly improved in reversed shear and high- βp regimes. The reversed shear regime elevated an equivalent Q DT eq transiently up to 1.25 (n D (0)τ E T i (0)=8.6x10 20 m-3·s·keV) in a reactor-relevant thermonuclear dominant regime. Long sustainment of enhanced confinement with internal transport barriers (ITBs) with a fully non-inductive current drive in a reversed shear discharge was successfully demonstrated with LH wave injection. Performance sustainment has been extended in the high- bp regime with a high triangularity achieving a long sustainment of plasma conditions equivalent to Q DT eq ∼0.16 (n D (0)τ E T i (0)∼1.4x10 20 m -3 ·s·keV) for ∼4.5 s with a large non-inductive current drive fraction of 60-70% of the plasma current. Thermal and particle transport analyses show significant reduction of thermal and particle diffusivities around ITB resulting in a strong Er shear in the ITB region. The W-shaped divertor is effective for He ash exhaust demonstrating steady exhaust capability of τ He */τ E ∼3-10 in support of ITER. Suppression of neutral back flow and chemical sputtering effect have been observed while MARFE onset density is rather decreased. Negative-ion based neutral beam injection (N-NBI) experiments have created a clear H-mode transition. Enhanced ionization cross- section due to multi-step ionization processes was confirmed as theoretically predicted. A current density profile driven by N-NBI is measured in a good agreement with theoretical prediction. N-NBI induced TAE modes characterized as persistent and bursting oscillations have been observed from a low hot beta of h >∼0.1-0.2% without a significant loss of fast ions. (author)

  2. Performance verification tests of JT-60SA CS model coil

    Energy Technology Data Exchange (ETDEWEB)

    Obana, Tetsuhiro, E-mail: obana.tetsuhiro@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Murakami, Haruyuki [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Takahata, Kazuya; Hamaguchi, Shinji; Chikaraishi, Hirotaka; Mito, Toshiyuki; Imagawa, Shinsaku [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kizu, Kaname; Natsume, Kyohei; Yoshida, Kiyoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2015-11-15

    Highlights: • The performance of the JT-60SA CS model coil was verified. • The CS model coil comprised a quad-pancake wound with a Nb{sub 3}Sn CIC conductor. • The CS model coil met the design requirements. - Abstract: As a final check of the coil manufacturing method of the JT-60 Super Advanced (JT-60SA) central solenoid (CS), we verified the performance of a CS model coil. The model coil comprised a quad-pancake wound with a Nb{sub 3}Sn cable-in-conduit conductor. Measurements of the critical current, joint resistance, pressure drop, and magnetic field were conducted in the verification tests. In the critical-current measurement, the critical current of the model coil coincided with the estimation derived from a strain of −0.62% for the Nb{sub 3}Sn strands. As a result, critical-current degradation caused by the coil manufacturing process was not observed. The results of the performance verification tests indicate that the model coil met the design requirements. Consequently, the manufacturing process of the JT-60SA CS was established.

  3. Structure design of the central solenoid in JT-60SA

    International Nuclear Information System (INIS)

    Asakawa, Shuji; Tsuchiya, Katsuhiko; Kuramochi, Masaya; Yoshida, Kiyoshi

    2009-09-01

    The upgrade of JT-60U magnet system to superconducting coils (JT-60SA: JT-60 Super Advanced) has been decided by parties of Japanese government (JA) and European commission (EU) in the framework of the Broader Approach (BA) agreement. The magnet system for JT-60SA consists of a central solenoid (CS), equilibrium field(EF) coils, toroidal field(TF) coils. The central solenoid consists the four winding pack modules. In order to counteract the thermal contraction as well as the electric magnetic repulsion and attraction together with other forces generated in each module, it is necessary to apply pre-loading to the support structure of the solenoid and to pursue a structure which is capable of sustaining such loading. In the present report, the structural design of the supporting structure of the solenoid and the jackets of the modules is verified analytically, and the results indicate that the structural design satisfies the 'Codes for Fusion Facilities - Rules on Superconducting Magnet Structure -'. (author)

  4. Airline fuel saving through JT9D engine refurbishment

    Energy Technology Data Exchange (ETDEWEB)

    Allison, J.W.; Weisel, D.R.

    1981-01-01

    Areas are identified in the JT9D engine where the potential exists for either further performance recovery following repair, or for improved performance retention. A number of new procedures and tools which will improve performance recovery are described. Improvements in inspection techniques are discussed. Operational techniques which will improve performance retention and impact degree of refurbishment required are also presented.

  5. Study of grounding system of large tokamak device JT-60

    International Nuclear Information System (INIS)

    Arakawa, Kiyotsugu; Shimada, Ryuichi; Kishimoto, Hiroshi; Yabuno, Kohei; Ishigaki, Yukio.

    1982-01-01

    In the critical plasma testing facility JT-60 constructed by the Japan Atomic Energy Research Institute, high voltage, large current is required in an instant. Accordingly, for the protection of human bodies and the equipment, and for realizing the stable operation of the complex, precise control and measurement system, a large scale facility of grounding system is required. In case of the JT-60 experimental facility, the equipments with different functions in separate buildings are connected, therefore, it is an important point to avoid high potential difference between buildings. In the grounding system for the JT-60, a reticulate grounding electrode is laid for each building, and these electrodes are connected with a low impedance metallic duct called grounding trunk line. The power supply cables for various magnetic field coils, control lines and measurement lines are laid in the duct. It is a large problem to grasp quantitatively the effect of a grounding trunk line by analysis. The authors analyzed the phenomenon that large current flows into a grounding system by lightning strike or grounding. The fundamental construction of the grounding system for the JT-60, the condition for the analysis and the result of simulation are reported. (Kako, I.)

  6. Mid Infrared Instrument cooler subsystem test facility overview

    Science.gov (United States)

    Moore, B.; Zan, J.; Hannah, B.; Chui, T.; Penanen, K.; Weilert, M.

    2017-12-01

    The Cryocooler for the Mid Infrared Instrument (MIRI) on the James Webb Space Telescope (JWST) provides cooling at 6.2K on the instrument interface. The cooler system design has been incrementally documented in previous publications [1][2][3][4][5]. It has components that traverse three primary thermal regions on JWST: Region 1, approximated by 40K; Region 2, approximated by 100K; and Region 3, which is at the allowable flight temperatures for the spacecraft bus. However, there are several sub-regions that exist in the transition between primary regions and at the heat reject interfaces of the Cooler Compressor Assembly (CCA) and Cooler Control Electronics Assembly (CCEA). The design and performance of the test facility to provide a flight representative thermal environment for acceptance testing and characterization of the complete MIRI cooler subsystem are presented.

  7. Cool down time optimization of the Stirling cooler

    Science.gov (United States)

    Xia, M.; Chen, X. P.; Y Li, H.; Gan, Z. H.

    2017-12-01

    The cooling power is one of the most important performances of a Stirling cooler. However, in some special fields, the cool down time is more important. It is a great challenge to improve the cool down time of the Stirling cooler. A new split Stirling linear cryogenic cooler SCI09H was designed in this study. A new structure of linear motor is used in the compressor, and the machine spring is used in the expander. In order to reduce the cool down time, the stainless-steel mesh of regenerator is optimized. The weight of the cooler is 1.1 kg, the cool down time to 80K is 2 minutes at 296K with a 250J thermal mass, the cooling power is 1.1W at 80K, and the input power is 50W.

  8. Variable-speed air-forced cooler technology

    OpenAIRE

    Siffring, Wolfgang

    2016-01-01

    Advanced air coolers are able to cool transformer oil more efficiently than older systems. Replacement or expansion of cooling plants by a new solution can lead to reduction of oil temperatures by several degrees and have a positive influence on the service lifetimes of oil and therefore transformers. Or, conversely, better coolers can – at the same oil temperatures – enhance the maximum performance of a transformer or allow it to operate at a higher average load. The upgrade or expansion of ...

  9. Recent results of JT-60U ICRF antenna operation

    International Nuclear Information System (INIS)

    Fujii, T.; Saigusa, M.; Kimura, H.

    1994-01-01

    Ion cyclotron range of frequencies (ICRF) heating is one of attractive plasma heating methods for reactor grade tokamaks, because it is quite effective in the wide ranges of plasma density and temperature. An antenna which should inject high power into plasma has been developed intensively because the heating efficiency and the coupling properties depend on its design. The antenna was operated at a small antenna-plasma gap in the JT-60 in out of phase mode, which showed the high heating efficiency to obtain high loading resistance, and similarly to other tokamaks. However, in order to reduce heat load to the antenna from plasma, a wide gap is required in reactor grade tokamaks such as ITER, in which the gap is designed to be 0.15 m in CDA. Two new antennas were fabricated for the JT-60U, which were designed to obtain high loading resistance at a wide gap for (π,0) phasing. The JT-60U ICRF heating system is explained. Also the JT-60U antenna is described. Antenna conditioning has been conducted well in the initial operation period. The phasing mode was set at (π,0) phasing, in which high heating efficiency is expected. The procedure is explained. The coupling and radiation loss properties during ICRF heating are reported. The JT-60U ICRF antennas were conditioned quickly with about 70 shots. The maximum coupled power was 6.4 MW for (π,0) phasing, and the power density was 6.1 MW/m 2 . (K.I.)

  10. Experimental study of the application of two trickle media for inlet air pre-cooling of natural draft dry cooling towers

    International Nuclear Information System (INIS)

    He, Suoying; Guan, Zhiqiang; Gurgenci, Hal; Hooman, Kamel; Lu, Yuanshen; Alkhedhair, Abdullah M.

    2015-01-01

    Highlights: • Two trickle media were experimentally studied in a low-speed wind tunnel. • Correlations for cooling efficiency and pressure drop were developed. • Both trickle media were proven to have relatively low pressure drops. • Both trickle media had severe water entrainment at large air velocities. - Abstract: This paper is part two of a broader investigation into pre-cooling the air that enters natural draft dry cooling towers. Evaporative cooling of air is to some extent different from evaporative cooling of water. Two trickle media (Trickle125 and Trickle100) originally designed for evaporative cooling of water were studied in an open-circuit wind tunnel for evaporative cooling of air. Three medium thicknesses (200, 300 and 450 mm) and two water flow rates (10 and 5 l/min per m 2 horizontally exposed surface area) were used in the tests. The air velocities ranged from 0.5 to 3.0 m/s. The cooling efficiency and the pressure drop of the two media were curve fitted to yield a set of correlations. The pressure drop ranges for Trickle125 and Trickle100 were 0.7–50 Pa and 0.6–41.6 Pa, respectively. The cooling efficiencies of Trickle125 and Trickle100 fell within 15.7–55.1% and 11–44.4%, respectively. Generally, media with large effective surfaces provide high cooling efficiencies and high pressure drops; there is a trade-off between cooling efficiency and pressure drop when selecting a particular medium for a specific application. The water entrainment off the media was detected with water-sensitive papers, and both media had severe water entrainment at large air velocities

  11. Development of integrated SOL/Divertor code and simulation study of the JT-60U/JT-60SA tokamaks

    International Nuclear Information System (INIS)

    Kawashima, H.; Shimizu, K.; Takizuka, T.

    2007-01-01

    To predict the particle and heat controllability in the divertor of tokamak reactors such as ITER and to optimize the divertor design, comprehensive simulations by integrated modelling with taking in various physical processes are indispensable. For the design study of ITER divertor, the modelling codes such as B2, UEDGE and EDGE2D have been developed, and their results have contributed to the evolution of the divertor concept. In Japan Atomic Energy Agency (JAEA), SOL/divertor codes have also been developed for the interpretation and the prediction on behaviours of plasmas, neutrals and impurities in the SOL/divertor regions. The code development is originally carried out since physics models can be verified quickly and flexibly under the circumstance of close collaboration with JT-60 team. Figure 1 shows our code system, which consists of the 2 dimensional fluid code SOLDOR, the neutral Monte Carlo (MC) code NEUT2D, and the impurity MC code IMPMC. The particle simulation code PARASOL has also been developed in order to establish the physics modelling used in fluid simulations. Integration of SOLDOR, NEUT2D and IMPMC, called the '' SONIC '' code, is being carried out to simulate self-consistently the SOL/divertor plasmas in present tokamaks and in future devices. Combination of the SOLDOR and NEUT2D was completed, which has the features such as 1) high-resolution oscillation-free scheme in solving fluid equations, 2) neutral transport calculation under the fine meshes, 3) success in reduction of MC noise, 4) optimization on the massive parallel computer, etc. The simulation reproduces the X-point MARFE in the JT-60U experiment. It is found that the chemically sputtered carbon at the dome causes the radiation peaking near the X-point. The performance of divertor pumping in JT-60U is evaluated from the particle balances. We also present the divertor designing of JT-60SA, which is the modification program of JT-60U to establish high beta steady-state operation. To

  12. Design of the movable limiters for JT-60

    International Nuclear Information System (INIS)

    Takashima, Tetsuo; Yamamoto, Masahiro; Nakamura, Hiroo; Ohkubo, Minoru; Ohta, Mitsuru

    1976-07-01

    Two fast-acting movable rail limiters will be used in JT-60 to suppress skin effect of the plasma current with a large radius. They travel safely through a stroke of about 1 m for 0.1 sec in the build-up phase of plasma current. The movable limiter system consists of a driving mechanism, a vacuum seal, a bearing used at high temperatures in a vacuum, a molybdenum rail limiter weighing 200 kg and its auxiliary members. Many problems are involved in construction of the system because the design specifications exceed the present technology. Described are design of the movable limiter system for JT-60 and problems in the mechanical, electrical and vacuum aspects. (auth.)

  13. Development of upgraded pellet injector for JT-60

    International Nuclear Information System (INIS)

    Onozuka, M.; Shimomura, T.; Tanaka, N.; Iwamoto, S.; Hashiri, N.; Oda, Y.; Minami, M.; Hiratsuka, H.; Kawasaki, K.; Takatsu, H.; Shimizu, M.

    1989-01-01

    The pneumatic 4-shot pellet injector had been in use for JT-60 (JAERI Tokamak-60) contributing to plasma studies in 1988. It could propel the pellets up to 1.6 km/sec at 50 bar propellant gas. In 1989, the new gun assembly has been reinstalled in the upgraded system to provide higher performance and reliability. The supply pressure of the propellant gas is to be raised to 100 bar to obtain higher pellet velocity up to 2.3 km/sec. The device is now in use for JT-60, and is expected to contribute to further plasma studies. In this paper the outline of features and performance of the device is presented. 5 refs., 9 figs

  14. High performance experiments in JT-60U reversed shear discharges

    International Nuclear Information System (INIS)

    Fujita, T.; Kamada, Y.; Ishida, S.

    2001-01-01

    The operation of JT-60U reversed shear discharges has been extended to a high plasma current, low-q regime keeping a large radius of the internal transport barrier (ITB) and the record value of equivalent fusion multiplication factor in JT-60U, Q DT eq =1.25, has been achieved at 2.6 MA. Operational schemes to reach the low-q regime with good reproducibility have been developed. The reduction of Z eff was obtained in the newly installed W-shaped pumped divertor. The beta limit in the low-q min regime, which limited the performance of L-mode edge discharges, has been improved in H-mode edge discharges with a broader pressure profile, which was obtained by power flow control with ITB degradation. Sustainment of ITB and improved confinement for 5.5 seconds has been demonstrated in an ELMy H reversed shear discharge. (author)

  15. Present status of the JT-60 control system

    International Nuclear Information System (INIS)

    Kimura, T.

    1992-01-01

    The present status of the control system for a large fusion device of the JT-60 upgrade tokamak is reported including its original design concept, the progress of the system in the past five-year operation and modification for the upgrade. The control system has the features of hierarchical structure, computer control, adoption of CAMAC interfaces and protective interlock by both software and hard-wired systems. Plant monitoring and control are performed by an efficient data communication via CAMAC highways. Sequential discharge control of is executed by a combination of computers and a timing system. A plasma feedback control system with fast 32-bit microprocessors and a man/machine interface with modern workstations have been newly developed for the operation of the JT-60 upgrade. (author)

  16. Divertor pumping system with NBI cryopump for JT-60

    International Nuclear Information System (INIS)

    Akino, Noboru; Kuriyama, Masaaki; Ohga, Tokumichi; Seki, Hiroshi; Tanai, Yutaka

    1998-08-01

    The pumping system for JT-60 W-shape divertor with the NBI cryopump have been developed. The pumping speed achieved in the divertor region was 13-15 m 3 /s for deuterium gas with three units of the NBI cryopumps. In a simulation experiment of helium ash exhaust through the divertor, pumping of a mixed gas of helium and deuterium has been demonstrated using the NBI cryosorption pumps covered with an argon condensed layer. Control of neutral particle pressure in the divertor region became possible by having remodeled an aperture of the existing fast shutter, which is installed between the JT-60 vacuum vessel and NBI beam-line, to be regulated. (author)

  17. Characteristics of large scale ionic source for JT-60

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Yukio; Honda, Atsushi; Inoue, Takashi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1997-02-01

    The Neutral Beam Injection (NBI) apparatus is expected for important role sharing apparatus to realize the plasma electric current drive and the plasma control in not only temperature upgrading of the plasma but also Tokamak nuclear fusion reactor for the next generation such as JT-60, ITER and so forth. Japan Atomic Energy Research Institute has developed the ionic source with high energy and large electric current for about 10 years. Some arrangement tests of the large negative ion source for JT-60 No. 1 were executed from June to October, 1995. As a series of arrangement tests, 400 KeV and 13.5 A of deuterium negative ion beam was successfully accelerated for 0.12 sec. under 0.22 Pa of low gas pressure. And, it was elucidated that electron electric current could be controlled efficiently even in deuterium negative ion beam. Here is described on the testing results in details. (G.K.)

  18. Experimental study of radiation losses on the JT-60 tokamak

    International Nuclear Information System (INIS)

    Nishitani, Takeo

    1990-06-01

    Bolometric measurement system and associated diagnostics, soft x-ray pulse-height-analyzer, soft x-ray intensity and Balmer α line measurement systems, were developed to investigate the radiation losses of the JT-60 plasmas. The bolometric measurement is the most important diagnostics in the radiation loss study. The soft x-ray pulse-height-analyzer is useful to estimate the metallic impurity concentration, and the soft x-ray intensity and Balmer α line measurements are monitors of radiation in x-ray region and particle recycling in the plasma edge, respectively. In JT-60, the marfe has been observed frequently in high-Ip and high density limited discharges with NB heating after the replacement of the first wall from TiC coated molybdenum tiles to graphite ones. The threshold electron density of the marfe onset increased with the NB power. The empirical scaling of the marfe onset taking account of the NB power was obtained. This scaling was useful to predict the marfe onset condition in NB heated discharges on JT-60. The marfe was modelled based on the radiative thermal instability. The simple model can explain the marfe onset condition. The radiated power from the plasma with marfe was about 90 % of the absorbed power. Both stored energy and central electron temperatures did not change by the marfe onset in spite of the such intense radiation loss. Finally, this study revealed that the most clean plasma was obtained in the metallic first wall with the divertor on JT-60. This fact is suggesting the capability of the metallic material for the first wall of next devices. Enhance radiation localized in the peripheral plasma such as marfe and IDC does not degrade the core plasma confinement or somewhat improves it, so that marfe and IDC are suitable operational regime in the high density region for future devices because they have strong remote-radiative-cooling-effect. (J.P.N.)

  19. Review of JT-60U experimental results in 1997

    International Nuclear Information System (INIS)

    Adachi, H.; Akasaka, H.; Akino, N.

    1998-08-01

    The JT-60U experiments in 1997 focused mainly on the steady-state tokamak research with the newly installed W-shaped pumped divertor and the negative ion based neutral beam (NNB) in addition to the existing profile and shape control techniques developed in JT-60U. In particular, the research on divertor physics was accelerated under the new divertor system with many of fine diagnostics: Detachment characteristics, pumping control, impurity control, recycling characteristics, etc. in the W-shaped divertor were investigated in detail. The main purpose of confinement and stability studies in 1997 was to improve steadiness of high confinement plasmas with the new divertor. Researches progressed also for the formation conditions of the internal and the surface transport barriers in the high-β p mode, the reversed shear mode and the H-mode. Toward the advanced feedback controls of multiple parameters, the JT-60U started new feedback controls of central line density and divertor neutral gas pressure in addition to the existing controls of off-axis line density, radiation power and neutron production rate. The JT-60U team also carefully studied characteristics of halo current during disruptions. Optimization of NNB operation progressed steadily and injection power increased up to 4.2MW. The NNB-driven current was identified directly from the internal magnetic measurement and driven current profile was confirmed to be consistent with the ACCOME calculation. The current profile control with LHCD successfully sustained the internal transport barrier in reversed shear plasmas. Continuous TAE modes were observed with NNB for the first time as beam-driven TAE modes. (J.P.N.)

  20. Requirements for tokamak remote operation: Application to JT-60SA

    International Nuclear Information System (INIS)

    Innocente, Paolo; Barbato, Paolo; Farthing, Jonathan; Giruzzi, Gerardo; Ide, Shunsuke; Imbeaux, Frédéric; Joffrin, Emmanuel; Kamada, Yutaka; Kühner, Georg; Naito, Osamu; Urano, Hajime; Yoshida, Maiko

    2015-01-01

    Highlights: • We analyzed the data management system (DMS) appropriate for international collaboration. • We define the principal requirements for all components of the DMS. • We evaluated application of DMS requirements to the JT-60SA experiment. • We evaluated the role network bandwidth and time delay between EU and Japan. - Abstract: Remote operation and data analysis are becoming key requirements of any fusion devices. In this framework a well-conceived data management system integrated with a suite of analysis and support tools are essential components for an efficient remote exploitation of any fusion device. The following components must be considered: data archiving data model architecture; remote data and computers access; pulse schedule, data analysis software and support tools; remote control room specifications and security issues. The definition of a device-generic data model plays also important role in improving the ability to share solution and reducing learning time. As for the remote control room, the implementation of an Operation Request Gateway has been identified as an answer to security issues meanwhile remotely proving all the required features to effectively operate a device. Previous requirements have been analyzed for the new JT-60SA tokamak device. Remote exploitation is paramount in the JT-60SA case which is expected to be jointly operated between Japan and Europe. Due to the geographical distance of the two parties an optimal remote operation and remote data-analysis is considered as a key requirement in the development of JT-60SA. It this case the effects of network speed and delay have been also evaluated and tests have confirmed that the performance can vary significantly depending on the technology used.

  1. Review of JT-60U experimental results in 1997

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, H.; Akasaka, H.; Akino, N. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1998-08-01

    The JT-60U experiments in 1997 focused mainly on the steady-state tokamak research with the newly installed W-shaped pumped divertor and the negative ion based neutral beam (NNB) in addition to the existing profile and shape control techniques developed in JT-60U. In particular, the research on divertor physics was accelerated under the new divertor system with many of fine diagnostics: Detachment characteristics, pumping control, impurity control, recycling characteristics, etc. in the W-shaped divertor were investigated in detail. The main purpose of confinement and stability studies in 1997 was to improve steadiness of high confinement plasmas with the new divertor. Researches progressed also for the formation conditions of the internal and the surface transport barriers in the high-{beta}{sub p} mode, the reversed shear mode and the H-mode. Toward the advanced feedback controls of multiple parameters, the JT-60U started new feedback controls of central line density and divertor neutral gas pressure in addition to the existing controls of off-axis line density, radiation power and neutron production rate. The JT-60U team also carefully studied characteristics of halo current during disruptions. Optimization of NNB operation progressed steadily and injection power increased up to 4.2MW. The NNB-driven current was identified directly from the internal magnetic measurement and driven current profile was confirmed to be consistent with the ACCOME calculation. The current profile control with LHCD successfully sustained the internal transport barrier in reversed shear plasmas. Continuous TAE modes were observed with NNB for the first time as beam-driven TAE modes. (J.P.N.)

  2. Requirements for tokamak remote operation: Application to JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Innocente, Paolo, E-mail: paolo.innocente@igi.cnr.it [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); Barbato, Paolo [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); Farthing, Jonathan [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Giruzzi, Gerardo [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Ide, Shunsuke [Japan Atomic Energy Agency, Naka, Ibaraki-ken 311-0193 (Japan); Imbeaux, Frédéric; Joffrin, Emmanuel [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Kamada, Yutaka [Japan Atomic Energy Agency, Naka, Ibaraki-ken 311-0193 (Japan); Kühner, Georg [Max-Planck-Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); Naito, Osamu; Urano, Hajime; Yoshida, Maiko [Japan Atomic Energy Agency, Naka, Ibaraki-ken 311-0193 (Japan)

    2015-10-15

    Highlights: • We analyzed the data management system (DMS) appropriate for international collaboration. • We define the principal requirements for all components of the DMS. • We evaluated application of DMS requirements to the JT-60SA experiment. • We evaluated the role network bandwidth and time delay between EU and Japan. - Abstract: Remote operation and data analysis are becoming key requirements of any fusion devices. In this framework a well-conceived data management system integrated with a suite of analysis and support tools are essential components for an efficient remote exploitation of any fusion device. The following components must be considered: data archiving data model architecture; remote data and computers access; pulse schedule, data analysis software and support tools; remote control room specifications and security issues. The definition of a device-generic data model plays also important role in improving the ability to share solution and reducing learning time. As for the remote control room, the implementation of an Operation Request Gateway has been identified as an answer to security issues meanwhile remotely proving all the required features to effectively operate a device. Previous requirements have been analyzed for the new JT-60SA tokamak device. Remote exploitation is paramount in the JT-60SA case which is expected to be jointly operated between Japan and Europe. Due to the geographical distance of the two parties an optimal remote operation and remote data-analysis is considered as a key requirement in the development of JT-60SA. It this case the effects of network speed and delay have been also evaluated and tests have confirmed that the performance can vary significantly depending on the technology used.

  3. Structural analysis of the JT-60SA cryostat vessel body

    Energy Technology Data Exchange (ETDEWEB)

    Botija, José, E-mail: jose.botija@ciemat.es [Association EURATOM – CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Alonso, Javier; Fernández, Pilar; Medrano, Mercedes; Ramos, Francisco; Rincon, Esther; Soleto, Alfonso [Association EURATOM – CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Davis, Sam; Di Pietro, Enrico; Tomarchio, Valerio [Fusion for Energy, JT-60SA European Home Team, 85748 Garching bei Munchen (Germany); Masaki, Kei; Sakasai, Akira; Shibama, Yusuke [JAEA – Japan Atomic Energy Agency, Naka Fusion Institute, Ibaraki 311-0193 (Japan)

    2013-10-15

    Highlights: ► Structural analysis to validate the JT-60SA cryostat vessel body design. ► Design code ASME 2007 “Boiler and Pressure Vessel Code. Section VIII”. ► First buckling mode: load multiplier of 10.644, higher than the minimum factor 4.7. ► Elastic and elastic–plastic stress analysis meets ASME against plastic collapse. ► Bolted fasteners have been analyzed showing small gaps closed by strong welding. -- Abstract: The JT-60SA cryostat is a stainless steel vacuum vessel (14 m diameter, 16 m height) which encloses the Tokamak providing the vacuum environment (10{sup −3} Pa) necessary to limit the transmission of thermal loads to the components at cryogenic temperature. It must withstand both external atmospheric pressure during normal operation and internal overpressure in case of an accident. The paper summarizes the structural analyses performed in order to validate the JT-60SA cryostat vessel body design. It comprises several analyses: a buckling analysis to demonstrate stability under the external pressure; an elastic and an elastic–plastic stress analysis according to ASME VIII rules, to evaluate resistance to plastic collapse including localized stress concentrations; and, finally, a detailed analysis with bolted fasteners in order to evaluate the behavior of the flanges, assuring the integrity of the vacuum sealing welds of the cryostat vessel body.

  4. Recent developments in the JT-60 data processing system

    International Nuclear Information System (INIS)

    Matsuda, T.; Saitoh, N.; Tsugita, T.; Oshima, T.; Sakata, S.; Sato, M.; Koiwa, M.; Watanabe, K.

    1999-01-01

    The JT-60 data processing system was originally a large computer complex system including a lot of micro-computers, several mini-computers, and a mainframe computer. Recently, several improvements have been made to the original system to modernize the system. Many sub-systems composed of aged mini-computers have been replaced with workstations by utilizing recent progress in computer and network technologies. The system can handle ∝300 MB of raw data per discharge, which is three times larger than the amount in the original system. These improvements have been applied to develop element technologies necessary to the remote participation in JT-60 experiments. A remote diagnostics control and monitoring system and a computer system for access to JT-60 data from the Internet are used together with video conferencing systems for a real-time communication. In 1996, the remote participation based on them was successfully demonstrated in collaboration with Japan Atomic Energy Research Institute, Los Alamos National Laboratory, and Princeton Plasma Physics Laboratory. (orig.)

  5. Plasma equilibrium response modelling and validation on JT-60U

    International Nuclear Information System (INIS)

    Lister, J.B.; Sharma, A.; Limebeer, D.J.N.; Wainwright, J.P.; Nakamura, Y.; Yoshino, R.

    2002-01-01

    A systematic procedure to identify the plasma equilibrium response to the poloidal field coil voltages has been applied to the JT-60U tokamak. The required response was predicted with a high accuracy by a state-space model derived from first principles. The ab initio derivation of linearized plasma equilibrium response models is re-examined using an approach standard in analytical mechanics. A symmetric formulation is naturally obtained, removing a previous weakness in such models. RZIP, a rigid current distribution model, is re-derived using this approach and is compared with the new experimental plasma equilibrium response data obtained from Ohmic and neutral beam injection discharges in the JT-60U tokamak. In order to remove any bias from the comparison between modelled and measured plasma responses, the electromagnetic response model without plasma was first carefully tuned against experimental data, using a parametric approach, for which different cost functions for quantifying model agreement were explored. This approach additionally provides new indications of the accuracy to which various plasma parameters are known, and to the ordering of physical effects. Having taken these precautions when tuning the plasmaless model, an empirical estimate of the plasma self-inductance, the plasma resistance and its radial derivative could be established and compared with initial assumptions. Off-line tuning of the JT-60U controller is presented as an example of the improvements which might be obtained by using such a model of the plasma equilibrium response. (author)

  6. Development of multilayer piezoelectric actuator valve for JT-60

    International Nuclear Information System (INIS)

    Miyo, Yasuhiko; Hiratsuka, Hajime; Masui, Hiroshi; Hosogane, Nobuyuki; Miya, Naoyuki

    2001-11-01

    In order to improve the gas injection valve used for the operation of JT-60, a new type of valve (multilayer piezoelectric actuator valve) was developed. The conventional valve (bimorph piezoelectric valve) has been used for 15 years since the beginning of experimental operation in April, 1985. However, it came to be hard to keep the performance of the valve because of the deterioration of the driving source, i.e. piezoelectric element. Developments of the new valve were carried out based on experiences through experimental operations in JT-60. Requirements for the design are: (1) to be hard structure for making a sheet leak, (2) to allow a repair work at atmosphere side without an air vent of the vacuum vessel, (3) to be more smaller and lighter compared with the conventional one, and (4) to have a high maintenance efficiency by utilizing of the commercial piezoelectric elements and power supplies. The newly developed valve was examined with various tests such as gas flow characteristic test, high magnetic field proof test, high temperature proof test and gas flow rate test for aged deterioration. Results, confirm that the performance of the valve is applicable for JT-60 operations. (author)

  7. Waveguide circuit for LHRF heating in 'JT-60'

    International Nuclear Information System (INIS)

    Uehara, Kazuya; Saegusa, Mikio; Mizuno, Takenori; Sano, Keigo; Hara, Mitsuru; Oishi, Isamu; Kanai, Takao.

    1985-01-01

    As the heating method for attaining the critical condition in the critical plasma experiment apparatus 'JT-60' in the Japan Atomic Energy Research Institute, in addition to Joule heating, as the second heating method, neutral beam injection heating and high frequency heating have been adopted. For this high frequency heating, several tens to 200 MHz band of ICRF heating, several hundreds MHz to several GHz band of LHRF heating and several tens to 200 GHz band of ECR heating were considered, and in the JT-60, 100 MHz band (ICRF) and 2 GHz band (LHRF) have been adopted. Furukawa Electric Co., Ltd. has engaged in the development and manufacture of the waveguides of transmission system used for this high frequency heating through NEC Corp. This high frequency heating is to heat plasma by injecting high frequency radio waves into plasma proper, and reaches 10 MW for the whole high frequency heating. The system efficiently transmitting the radio waves of large power from a Klystron as a high frequency source to the JT-60 is the transmission system. The outline of the waveguides of the 2 GHz band transmission system and the individual performance of respective waveguides are reported. (Kako, I.)

  8. Micro-cooler enhancements by barrier interface analysis

    International Nuclear Information System (INIS)

    Stephen, A.; Dunn, G. M.; Glover, J.; Oxley, C. H.; Bajo, M. Montes; Kuball, M.; Cumming, D. R. S.; Khalid, A.

    2014-01-01

    A novel gallium arsenide (GaAs) based micro-cooler design, previously analysed both experimentally and by an analytical Heat Transfer (HT) model, has been simulated using a self-consistent Ensemble Monte Carlo (EMC) model for a more in depth analysis of the thermionic cooling in the device. The best fit to the experimental data was found and was used in conjunction with the HT model to estimate the cooler-contact resistance. The cooling results from EMC indicated that the cooling power of the device is highly dependent on the charge distribution across the leading interface. Alteration of this charge distribution via interface extensions on the nanometre scale has shown to produce significant changes in cooler performance

  9. USE OF PELTIER COOLERS AS SOIL HEAT FLUX TRANSDUCERS.

    Science.gov (United States)

    Weaver, H.L.; Campbell, G.S.

    1985-01-01

    Peltier coolers were modified and calibrated to serve as soil heat flux transducers. The modification was to fill their interiors with epoxy. The average calibration constant on 21 units was 13. 6 plus or minus 0. 8 kW m** minus **2 V** minus **1 at 20 degree C. This sensitivity is about eight times that of the two thermopile transducers with which comparisons were made. The thermal conductivity of the Peltier cooler transducers was 0. 4 W m** minus **1 degree C** minus **1, which is comparable to that of dry soil.

  10. Market Assessment and Commercialization Strategy for the Radial Sandia Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Shandross, Richard [Navigant Consulting, Inc., Burlington, MA (United States); Weintraub, Daniel [Navigant Consulting, Inc., Burlington, MA (United States); Young, Jim [Navigant Consulting, Inc., Burlington, MA (United States)

    2014-02-01

    This market assessment and commercialization report characterizes and assesses the market potential of the rotating heat exchanger technology developed at Sandia National Laboratories (SNL), known as the Radial Sandia Cooler. The RSC is a novel, motor-driven, rotating, finned heat exchanger technology. The RSC was evaluated for the residential, commercial, industrial, and transportation markets. Recommendations for commercialization were made based on assessments of the prototype RSC and the Sandia Cooler technology in general, as well as an in-depth analysis of the six most promising products for initial RSC commercialization.

  11. Transient Air Infiltration/Exfiltration in Walk-In Coolers

    Energy Technology Data Exchange (ETDEWEB)

    Faramarzi, Ramin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Navaz, H. K. [Kettering University; Kamensky, K. [Michigan State University

    2018-03-01

    Walk-in coolers are room-sized, insulated, and refrigerated compartments for food product storage. Walk-ins have areas equal or below 280 m2 (3,000 ft2), and are classified either as coolers operating above 0 degrees C (32 degrees F) (medium-temperature) to store fresh fruit, vegetables, and dairy products, or freezers that operate below 0 degrees C (32 degrees F) (low-temperature) to meet health and safety standards of frozen food products. Walk-ins are typically found in restaurants as well as small- and medium-to-large grocery stores or supermarkets.

  12. Laser pumping of ions in a cooler buncher

    Energy Technology Data Exchange (ETDEWEB)

    Cheal, B., E-mail: bradley.cheal@manchester.ac.uk [University of Manchester (United Kingdom); Baczynska, K. [University of Birmingham, School of Physics and Astronomy (United Kingdom); Billowes, J.; Campbell, P. [University of Manchester (United Kingdom); Eronen, T. [University of Jyvaeskylae, Department of Physics (Finland); Forest, D. H. [University of Birmingham, School of Physics and Astronomy (United Kingdom); Kessler, T.; Moore, I. D. [University of Jyvaeskylae, Department of Physics (Finland); Rueffer, M. [University of Birmingham, School of Physics and Astronomy (United Kingdom); Tordoff, B. [University of Manchester (United Kingdom); Tungate, G. [University of Birmingham, School of Physics and Astronomy (United Kingdom); Aystoe, J. [University of Jyvaeskylae, Department of Physics (Finland)

    2008-01-15

    Optical experiments at the IGISOL isotope separator facility, Jyvaeskylae, have for many years benefited from the introduction of an ion beam cooler. The device, a gas-filled RF quadrupole, reduces the emittance and longitudinal energy spread of the ion beam. Very recently, use has been made of the axial confinement of slowly travelling ions at the end of the cooler to redistribute the electronic populations through efficient laser excitation. Such a technique has proved beneficial to laser spectroscopic measurements and is a precursor to using the method to polarize the ion beam.

  13. Simulations of space charge neutralization in a magnetized electron cooler

    Energy Technology Data Exchange (ETDEWEB)

    Gerity, James [Texas A-M; McIntyre, Peter M. [Texas A-M; Bruhwiler, David Leslie [RadiaSoft, Boulder; Hall, Christopher [RadiaSoft, Boulder; Moens, Vince Jan [Ecole Polytechnique, Lausanne; Park, Chong Shik [Fermilab; Stancari, Giulio [Fermilab

    2017-02-02

    Magnetized electron cooling at relativistic energies and Ampere scale current is essential to achieve the proposed ion luminosities in a future electron-ion collider (EIC). Neutralization of the space charge in such a cooler can significantly increase the magnetized dynamic friction and, hence, the cooling rate. The Warp framework is being used to simulate magnetized electron beam dynamics during and after the build-up of neutralizing ions, via ionization of residual gas in the cooler. The design follows previous experiments at Fermilab as a verification case. We also discuss the relevance to EIC designs.

  14. First turn simulations in the cooler synchrotron COSY

    International Nuclear Information System (INIS)

    Dinev, D.

    1991-07-01

    This paper is devoted to the first turn correction and related problems in particle accelerators of synchrotron type. The paper consists of two parts. The first part is a survey of the existing methods for first turn steering. The second part is entirely devoted to the first turn in the cooler synchrotron COSY which is under assembling in KFA-Julich, Germany. (orig.)

  15. Status of the cooler synchrotron COSY Juelich. Papers

    International Nuclear Information System (INIS)

    1994-09-01

    The eight papers present the status of COSY, operational characteristics of the COSY electron cooler, a broad-band multiple-harmonic acceleration structure, diagnostic tools, a stochastic cooling system, a narrow-band digital RF-noise generator, an RF-synthesizer, and a longitudinal phase space tracking of particles in a multiple harmonic RF-system. (DG)

  16. Sodium flow distribution test of the air cooler tubes

    International Nuclear Information System (INIS)

    Uchida, Hiroyuki; Ohta, Hidehisa; Shimazu, Hisashi

    1980-01-01

    In the heat transfer tubes of the air cooler which is installed in the auxiliary core cooling system of the fast breeder prototype plant reactor ''Monju'', sodium freezing may be caused by undercooling the sodium induced by an extremely unbalanced sodium flow in the tubes. Thus, the sodium flow distribution test of the air cooler tubes was performed to examine the flow distribution of the tubes and to estimate the possibility of sodium freezing in the tubes. This test was performed by using a one fourth air cooler model installed in the water flow test facility. As the test results show, the flow distribution from the inlet header to each tube is almost equal at any operating condition, that is, the velocity deviation from normalized mean velocity is less than 6% and sodium freezing does not occur up to 250% air velocity deviation at stand-by condition. It was clear that the proposed air cooler design for the ''Monju'' will have a good sodium flow distribution at any operating condition. (author)

  17. Commissioning of the LEIR electron cooler with Pb$^{+54}$ ions

    CERN Document Server

    Tranquille, G; Carly, Ch; Prieto, V; Sautier, R; Bubley, A; Parkhomchuk, V; Reva, V; Brizgunov, M; Vedenev, M; Panasyuk, V

    2006-01-01

    The new LEIR cooler with a variable profile of the electron beam and electrostatic bending was commissioned in 2005-2006. In this paper we present our experience with the commissioning of the new device as well as the first results of the ion beam Pb +54 cooling with a high-intensity variable-density electron beam.

  18. Groundwater heat pump performance improvement with pre-coolers and pump modification: Final report for the 1985-86 SOMED (School of Mines and Energy Development) project year

    Energy Technology Data Exchange (ETDEWEB)

    Kavanaugh, S.

    1986-09-30

    Improved performance of groundwater heat pumps can be realized with a more effective and efficient utilization of the thermal properties of shallow groundwater. These systems circulate water from aquifers through water source heat pumps to achieved high efficiencies and capacities. This project concludes that a 10 to 15 percent cooling performance improvement can be realized by pre-cooling the room air with the 55/sup 0/ to 67/sup 0/F groundwater available in large portions of the Southeast. Proper design of these pre-coolers eliminates unnecessary auxiliary energy requirements. The efficiency of the overall system can be further improved with modifications to current methods of water circulation system design. Pressure requirements are minimized by maintaining a low unit inlet pressure (8 psig maximum), removing unnecessary loop restrictions and injection below the water table. Standard submersible water pumps exceed the resulting required size for residential groundwater heat pumps. Simple modifications can be made by the manufacturer to correct this problem. The result is an overall 15 to 40 percent performance improvement over high efficiency air source heat pumps with a simple payback of between 0 to 10 years in most cases.

  19. Calculations of air cooler for new subsonic wind tunnel

    Science.gov (United States)

    Rtishcheva, A. S.

    2017-10-01

    As part of the component development of TsAGI’s new subsonic wind tunnel where the air flow velocity in the closed test section is up to 160 m/sec hydraulic and thermal characteristics of air cooler are calculated. The air cooler is one of the most important components due to its highest hydraulic resistance in the whole wind tunnel design. It is important to minimize its hydraulic resistance to ensure the energy efficiency of wind tunnel fans and the cost-cutting of tests. On the other hand the air cooler is to assure the efficient cooling of air flow in such a manner as to maintain the temperature below 40 °C for seamless operation of measuring equipment. Therefore the relevance of this project is driven by the need to develop the air cooler that would demonstrate low hydraulic resistance of air and high thermal effectiveness of heat exchanging surfaces; insofar as the cooling section must be given up per unit time with the amount of heat Q=30 MW according to preliminary evaluations. On basis of calculation research some variants of air cooler designs are proposed including elliptical tubes, round tubes, and lateral plate-like fins. These designs differ by the number of tubes and plates, geometrical characteristics and the material of finned surfaces (aluminium or cooper). Due to the choice of component configurations a high thermal effectiveness is achieved for finned surfaces. The obtained results form the basis of R&D support in designing the new subsonic wind tunnel.

  20. J.T. van der Kemp and Eighteenth century coded subjectivity | Smit ...

    African Journals Online (AJOL)

    It then proceeds to an analysis of the impact of J.T. van der Kemp, 1799-1804. Theoretically I draw on the distinction between morality and ethics by Michel Foucault as well as his theorising of eighteenth century representational thought. Keywords: J.T. van der Kemp, morality, ethics, models for missionary engagement, ...

  1. Design of distributed JT (Joule-Thomson) effect heat exchanger for superfluid 2 K cooling device

    Science.gov (United States)

    Jeong, S.; Park, C.; Kim, K.

    2018-03-01

    Superfluid at 2 K or below is readily obtained from liquid helium at 4.2 K by reducing its vapour pressure. For better cooling performance, however, the cold energy of vaporized helium at 2 K chamber can be effectively utilized in a recuperator which is specially designed in this paper for accomplishing so-called the distributed Joule-Thomson (JT) expansion effect. This paper describes the design methodology of distributed JT effect heat exchanger for 2 K JT cooling device. The newly developed heat exchanger allows continuous significant pressure drop at high-pressure part of the recuperative heat exchanger by using a capillary tube. Being different from conventional recuperative heat exchangers, the efficient JT effect HX must consider the pressure drop effect as well as the heat transfer characteristic. The heat exchanger for the distributed JT effect actively utilizes continuous pressure loss at the hot stream of the heat exchanger by using an OD of 0.64 mm and an ID of 0.4 mm capillary tube. The analysis is performed by dividing the heat exchanger into the multiple sub-units of the heat exchange part and JT valve. For more accurate estimation of the pressure drop of spirally wound capillary tube, preliminary experiments are carried out to investigate the friction factor at high Reynolds number. By using the developed pressure drop correlation and the heat transfer correlation, the specification of the heat exchanger with distributed JT effect for 2 K JT refrigerator is determined.

  2. Operation and management manual of JT-60 experimental data analysis system

    International Nuclear Information System (INIS)

    Hirayama, Takashi; Morishima, Soichi

    2014-03-01

    In the Japan Atomic Energy Agency Naka Fusion Institute, a lot of experiments have been conducted by using the large tokamak device JT-60 aiming to realize fusion power plant. In order to optimize the JT-60 experiment and to investigate complex characteristics of plasma, JT-60 experimental data analysis system was developed and used for collecting, referring and analyzing the JT-60 experimental data. Main components of the system are a data analysis server and a database server for the analyses and accumulation of the experimental data respectively. Other peripheral devices of the system are magnetic disk units, NAS (Network Attached Storage) device, and a backup tape drive. This is an operation and management manual the JT-60 experimental data analysis system. (author)

  3. A four-pellet pneumatic injection system in the JT-60

    International Nuclear Information System (INIS)

    Hiratsuka, Hajime; Kawasaki, Kouzo; Miyo, Yasuhiko; Yoshioka, Yuji; Ohta, Kazuya; Shimizu, Masatsugu; Kondo, Ikuo; Onozuka, Masanori; Shimomura, Tomoyoshi; Iwamoto, Syuichi; Hashiri, Noboru

    1991-01-01

    A four-pellet pneumatic injection system has been developed for plasma fueling of the JT-60. The JT-60 pellet injector is capable of accelerating separately four cylindrical pellets 3.0 mm in diameter x 3.0 mm long for two pellets and 4.0 mm in diameter x 4.0 mm long for the remaining two. The JT-60 pellet injector was installed on the JT-60 tokamak machine at the end of 1988. Obtained pellet velocity was higher than 2300 m/s by propellant gases of up to 100 bar and the pellet fueling efficiency achieved was around 70% for both dimensions of pellets. This paper describes the design, injection operation and performance test results of the JT-60 pellet injector. (orig.)

  4. A four-pellet pneumatic injection system in the JT-60

    Energy Technology Data Exchange (ETDEWEB)

    Hiratsuka, Hajime; Kawasaki, Kouzo; Miyo, Yasuhiko; Yoshioka, Yuji; Ohta, Kazuya; Shimizu, Masatsugu; Kondo, Ikuo (Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan)); Onozuka, Masanori; Shimomura, Tomoyoshi; Iwamoto, Syuichi; Hashiri, Noboru (Mitsubishi Heavy Industries Ltd., Kobe (Japan))

    1991-05-01

    A four-pellet pneumatic injection system has been developed for plasma fueling of the JT-60. The JT-60 pellet injector is capable of accelerating separately four cylindrical pellets 3.0 mm in diameter x 3.0 mm long for two pellets and 4.0 mm in diameter x 4.0 mm long for the remaining two. The JT-60 pellet injector was installed on the JT-60 tokamak machine at the end of 1988. Obtained pellet velocity was higher than 2300 m/s by propellant gases of up to 100 bar and the pellet fueling efficiency achieved was around 70% for both dimensions of pellets. This paper describes the design, injection operation and performance test results of the JT-60 pellet injector. (orig.).

  5. Conceptual design of a new supervisory control system for JT-60SA

    International Nuclear Information System (INIS)

    Totsuka, Toshiyuki; Sakata, Shinya

    2009-05-01

    The functions of JT-60 discharge control computer system and the data processing computer system will be integrated into a new JT-60SA supervisory control system to improve the operational efficiency of the JT-60 control computer system. In this report, we first show the necessary requirements for the new JT-60SA supervisory control system that should have high cost performance and maintainability. Next, overall system image of the new JT-60SA supervisory control system is presented and the necessary functions and the issues to be solved in the development are shown. Finally, the necessary manpower for this development and performance of the computer hardware, and the expected reduction of maintenance cost of the computer system are described. (author)

  6. Neural-net disruption predictor in JT-60U

    International Nuclear Information System (INIS)

    Yoshino, R.

    2003-01-01

    The prediction of major disruptions caused by the density limit, the plasma current ramp-down with high internal inductance l i , the low density locked mode and the β-limit has been investigated in JT-60U. The concept of 'stability level', newly proposed in this paper to predict the occurrence of a major disruption, is calculated from nine input parameters every 2 ms by the neural network and the start of a major disruption is predicted when the stability level decreases to a certain level, the 'alarm level'. The neural network is trained in two steps. It is first trained with 12 disruptive and six non-disruptive shots (total of 8011 data points). Second, the target output data for 12 disruptive shots are modified and the network is trained again with additional data points generated by the operator. The 'neural-net disruption predictor' obtained has been tested for 300 disruptive shots (128 945 data points) and 1008 non-disruptive shots (982 800 data points) selected from nine years of operation (1991-1999) of JT-60U. Major disruptions except for those caused by the -limit have been predicted with a prediction success rate of 97-98% at 10 ms prior to the disruption and higher than 90% at 30 ms prior to the disruption while the false alarm rate is 2.1% for non-disruptive shots. This prediction performance has been confirmed for 120 disruptive shots (56 163 data points), caused by the density limit, as well as 1032 non-disruptive shots (1004 611 data points) in the last four years of operation (1999-2002) of JT-60U. A careful selection of the input parameters supplied to the network and the newly developed two-step training of the network have reduced the false alarm rate resulting in a considerable improvement of the prediction success rate. (author)

  7. Review of JT-60 experiment (April-June, 1985)

    International Nuclear Information System (INIS)

    1986-11-01

    Initial ohmic heating experiments in JT-60 were performed for a three month period of April-June 1985. A maximum plasma current of 1.6 MA was obtained for both divertor and limiter discharges. Low-q discharges of q eff = 2.5 and high density discharges of 4.8 x 10 19 m -3 were obtained in the divertor configuration. Typical divertor actions, i.e. particle exhaust, heat exhaust, impurity reduction and remote radiative cooling were demonstrated. (author)

  8. Energy confinement in JT-60 lower hybrid current driven plasmas

    International Nuclear Information System (INIS)

    Ushigusa, K.; Imai, T.; Naito, O.; Ikeda, Y.; Tsuji, S.; Uehara, K.

    1990-01-01

    The energy confinement in high power lower hybrid current driven (LHCD) plasmas has been studied in the JT-60 tokamak. At a plasma current of 1 MA, the diamagnetically estimated energy confinement time in LHCD plasmas has almost the same value as the confinement time in ohmically heated plasmas at n-bar e ∼ 1.0x10 19 m -3 . The confinement time of high power LHCD plasmas (P LH E varies as to P LH α n e β I p 0 with α + β ∼ -0.3. (author). Letter-to-the-editor. 12 refs, 5 figs

  9. Development of the piezoelectric gas injection valve for JT-60

    International Nuclear Information System (INIS)

    Kawasaki, Kazuo; Hiratuka, Hajime

    1986-01-01

    Piezoelectric gas injection valve (PEV) for JT-60 have been developed which was a piezo-electric element. The raliability of the PEV under the actual condition of high magnetic fields and high temperatures are veryfied, and it became clear that the PEV had enough throughput range and sufficient repetability for long life throughput characteristics. Remarkables of the developed PEV are summarized as follows, (1) The maximum throughput rate, responce time and helium leakage rate satisfy the desiged specifications. (2) Throughput equation for PEV is clarified by comparison with experiment. (3) Reliabilities of PEV under the actual condition during coil power test become clear. (author)

  10. The design study of the JT-60SU device. No. 3. The superconductor-coils of JT-60SU

    International Nuclear Information System (INIS)

    Ushigusa, Kenkichi; Mori, Katsuharu; Nakagawa, Syouji

    1997-03-01

    The superconducting coil systems and the cryogenic system for the JT-60 Super Upgrade (JT-60SU) has been designed. Both Nb 3 Al and NbTi as a superconducting wire material are employed in the toroidal coils (D-shaped 18 coils) to realize a high field magnet with a low cost. Significant reduction of the coil weight (150 tons/coil) without losing the coil rigidity has been achieved by connecting two toroidal coils with shear panels. Validity of this design is confirmed by the detailed structural analysis and thermohydraulic analysis. The poloidal coil system consists of 4 central solenoid coils with (NbTi) 3 Sn and 6 outer equilibrium field coils with NbTi. This system has an enough capability to supply the flux of 170Vs to produce a 10MA discharge with 200s of flat-top and to make various plasma configurations. The construction procedure of the poloidal coil system is also established under the constraint of the JT-60 site. Two sets of race-track shaped superconducting coils mounted on the top of the machine is designed to compensate the error field inside the vessel by supplying helical (m=2/n=1) magnetic field. By using cryogenic system with a 36kW of cooling capacity, the total cold weight of around 4000tons can be cooled down to 4.5K within one month, and steady heat load of 6.5kW and transient heat load of 9.0MJ can be removed within 30 minutes of discharge repetition rate. (author)

  11. An implantable nerve cooler for the exercising dog.

    Science.gov (United States)

    Borgdorff, P; Versteeg, P G

    1984-01-01

    An implantable nerve cooler has been constructed to block cervical vago-sympathetic activity in the exercising dog reversibly. An insulated gilt brass container implanted around the nerve is perfused with cooled alcohol via silicone tubes. The flow of alcohol is controlled by an electromagnetic valve to keep nerve temperature at the required value. Nerve temperature is measured by a thermistor attached to the housing and in contact with the nerve. It is shown that, during cooling, temperature at this location differs less than 2 degrees C from nerve core temperature. Measurement of changes in heart rate revealed that complete vagal block in the conscious animal is obtained at a nerve temperature of 2 degrees C and can be achieved within 50 s. During steady-state cooling in the exercising animal nerve temperature varied less than 0.5 degree C. When the coolers after 2 weeks of implantation were removed they showed no oxydation and could be used again.

  12. Thermoelectric cooler concepts and the limit for maximum cooling

    International Nuclear Information System (INIS)

    Seifert, W; Hinsche, N F; Pluschke, V

    2014-01-01

    The conventional analysis of a Peltier cooler approximates the material properties as independent of temperature using a constant properties model (CPM). Alternative concepts have been published by Bian and Shakouri (2006 Appl. Phys. Lett. 89 212101), Bian (et al 2007 Phys. Rev. B 75 245208) and Snyder et al (2012 Phys. Rev. B 86 045202). While Snyder's Thomson cooler concept results from a consideration of compatibility, the method of Bian et al focuses on the redistribution of heat. Thus, both approaches are based on different principles. In this paper we compare the new concepts to CPM and we reconsider the limit for maximum cooling. The results provide a new perspective on maximum cooling. (paper)

  13. Magnetic field measurements of JT-60SA CS model coil

    Energy Technology Data Exchange (ETDEWEB)

    Obana, Tetsuhiro, E-mail: obana.tetsuhiro@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Takahata, Kazuya; Hamaguchi, Shinji; Chikaraishi, Hirotaka; Mito, Toshiyuki; Imagawa, Shinsaku [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kizu, Kaname; Murakami, Haruyuki; Natsume, Kyohei; Yoshida, Kiyoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2015-01-15

    Highlights: • Magnetic fields of the JT-60SA CS model coil were measured. • While the coil current was held constant at 20 kA, magnetic fields varied slightly with several different long time constants. • We investigated coils consisting of CIC conductors and having long time constants. - Abstract: In a cold test of the JT-60SA CS model coil, which has a quad-pancake configuration consisting of a Nb{sub 3}Sn cable-in-conduit (CIC) conductor, magnetic fields were measured using Hall sensors. For a holding coil current of 20 kA, measured magnetic fields varied slightly with long time constants in the range 17–571 s, which was much longer than the time constant derived from a measurement using a short straight sample. To validate the measurements, the magnetic fields of the model coil were calculated using a computational model representing the positions of Nb{sub 3}Sn strands inside the CIC conductor. The calculated results were in good agreement with the measurements. Consequently, the validity of the magnetic field measurements was confirmed. Next, we investigated other coils consisting of CIC conductors and having long time constants. The only commonality among the coils was the use of CIC conductors. At present, there is no obvious way to prevent generation of such magnetic-field variations with long time constants.

  14. Analyses of plasma parameter profiles in JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Shirai, Hiroshi; Shimizu, Katsuhiro; Hayashi, Nobuhiko [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Itakura, Hirofumi; Takase, Keizou [CSK Co. Ltd., Tokyo (Japan)

    2001-01-01

    The methods how diagnostics data are treated as the surface quantity of magnetic surface and processed to the profile data in the JT-60U plasmas are summarized. The MHD equilibrium obtained by solving Grad-Shafranov equation on the MHD equilibrium calculation and registration software FBEQU are saved shot by shot as a database. Various experimental plasma data measured at various geometrical positions on JT-60 are mapped onto the MHD equilibrium and treated as functions of the volume averaged minor radius {rho} on the experimental data time slice monitoring software SLICE. Experimental data are integrated and edited on SLICE. The experimental data measured as the line integral values are transformed by Able inversion. The mapped data are fitted to a functional form and saved to the profile database MAP-DB. SLICE can also read data from MAP-DB and redisplay and transform them. In addition, SLICE can generate the profile data TOKRD as run data for orbit following Monte-Carlo (OFMC) code, analyzer for current drive consistent with MHD equilibrium (ACCOME) code and tokamak predictive and interpretive code system (TOPICS). (author)

  15. Analyses of plasma parameter profiles in JT-60U

    International Nuclear Information System (INIS)

    Shirai, Hiroshi; Shimizu, Katsuhiro; Hayashi, Nobuhiko

    2001-01-01

    The methods how diagnostics data are treated as the surface quantity of magnetic surface and processed to the profile data in the JT-60U plasmas are summarized. The MHD equilibrium obtained by solving Grad-Shafranov equation on the MHD equilibrium calculation and registration software FBEQU are saved shot by shot as a database. Various experimental plasma data measured at various geometrical positions on JT-60 are mapped onto the MHD equilibrium and treated as functions of the volume averaged minor radius ρ on the experimental data time slice monitoring software SLICE. Experimental data are integrated and edited on SLICE. The experimental data measured as the line integral values are transformed by Able inversion. The mapped data are fitted to a functional form and saved to the profile database MAP-DB. SLICE can also read data from MAP-DB and redisplay and transform them. In addition, SLICE can generate the profile data TOKRD as run data for orbit following Monte-Carlo (OFMC) code, analyzer for current drive consistent with MHD equilibrium (ACCOME) code and tokamak predictive and interpretive code system (TOPICS). (author)

  16. Improvement of JT-60U Negative Ion Source Performance

    International Nuclear Information System (INIS)

    Grisham, L.R.; Kuriyama, M.; Kawai, M.; Itoh, T.; Umeda, N.

    2000-01-01

    The negative ion neutral beam system now operating on JT-60U was the first application of negative ion technology to the production of beams of high current and power for conversion to neutral beams, and has successfully demonstrated the feasibility of negative ion beam heating systems for ITER and future tokamak reactors [1, 2]. It also demonstrated significant electron heating[3] and high current drive efficiency in JT-60U[4]. Because this was such a large advance in the state of the art with respect to all system parameters, many new physical processes appeared during the earlier phases of the beam injection experiments. We have explored the physical mechanisms responsible for these processes, and implemented solutions for some of them, in particular excessive beam stripping, the secular dependence of the arc and beam parameters, and nonuniformity of the plasma illuminating the beam extraction grid. This has reduced the percentage of beam heat loading on the downstream grids by roug hly a third, and permitted longer beam pulses at higher powers. Progress is being made in improving the negative ion current density, and in coping with the sensitivity of the cesium in the ion sources to oxidation by tiny air or water leaks, and the cathode operation is being altered

  17. Design of JT-60SA magnets and associated experimental validations

    International Nuclear Information System (INIS)

    Zani, L.; Barabaschi, P.; Peyrot, M.; Meunier, L.; Tomarchio, V.; Duglue, D.; Decool, P.; Torre, A.; Marechal, J.L.; Della Corte, A.; Di Zenobio, A.; Muzzi, L.; Cucchiaro, A.; Turtu, S.; Ishida, S.; Yoshida, K.; Tsuchiya, K.; Kizu, K.; Murakami, H.

    2011-01-01

    In the framework of the JT-60SA project, aiming at upgrading the present JT-60U tokamak toward a fully superconducting configuration, the detailed design phase led to adopt for the three main magnet systems a brand new design. Europe (EU) is expected to provide to Japan (JA) the totality of the toroidal field (TF) magnet system, while JA will provide both Equilibrium field (EF) and Central Solenoid (CS) systems. All magnet designs were optimized trough the past years and entered in parallel into extensive experimentally-based phases of concept validation, which came to maturation in the years 2009 and 2010. For this, all magnet systems were investigated by mean of dedicated samples, e.g. conductor and joint samples designed, manufactured and tested at full scale in ad hoc facilities either in EU or in JA. The present paper, after an overall description of magnet systems layouts, presents in a general approach the different experimental campaigns dedicated to qualification design and manufacture processes of either coils, conductors and electrical joints. The main results with the associated analyses are shown and the main conclusions presented, especially regarding their contribution to consolidate the triggering of magnet mass production. The status of respective manufacturing stages in EU and in JA are also evoked. (authors)

  18. Retention characteristics of hydrogen isotopes in JT-60U

    International Nuclear Information System (INIS)

    Masaki, K.; Sugiyama, K.; Hayashi, T.; Ochiai, K.; Gotoh, Y.; Shibahara, T.; Hirohata, Y.; Oya, Y.; Miya, N.; Tanabe, T.

    2005-01-01

    Erosion/deposition distribution and hydrogen isotope behavior in the JT-60U plasma-facing wall were investigated. Distribution of the tritium, which was produced by D-D nuclear reaction, was not correlated with erosion/deposition distribution. The tritium distribution can be explained by the distribution of high-energy tritium ion-implantation due to ripple loss. Deuterium distribution in the divertor region was different from the tritium distribution and not well correlated with the deposition. The highest D/C was ∼0.05 at the bottom of the outer dome wing, which is much less than that observed in other tokamaks. For the deuterium retention, at least two retention processes (ion-implantation and co-deposition) were found on the dome region. The systematic dust collection gave the small amount of dust (∼7 g: 0.2 mg/s production) in the whole vessel of JT-60U. Deposition was observed at the remote area of the outer divertor region

  19. Advances in a high efficiency commercial pulse tube cooler

    Science.gov (United States)

    Zhang, Yibing; Li, Haibing; Wang, Xiaotao; Dai, Wei; Yang, Zhaohui; Luo, Ercang

    2017-12-01

    The pulse tube cryocooler has the advantage of no moving part at the cold end and offers a high reliability. To further extend its use in commercial applications, efforts are still needed to improve efficiency, reliability and cost effectiveness. This paper generalizes several key innovations in our newest cooler. The cooler consists of a moving magnet compressor with dual-opposed pistons, and a co-axial cold finger. Ambient displacers are employed to recover the expansion work to increase cooling efficiency. Inside the cold finger, the conventional flow straightener screens are replaced by a tapered throat between the cold heat exchanger and the pulse tube to strengthen its immunity to the working gas contamination as well as to simplify the manufacturing processes. The cold heat exchanger is made by copper forging process which further reduces the cost. Inside the compressor, a new gas bearing design has brought in assembling simplicity and running reliability. Besides the cooler itself, electronic controller is also important for actual application. A dual channel and dual driving mode control mechanism has been selected, which reduces the vibration to a minimum, meanwhile the cool-down speed becomes faster and run-time efficiency is higher. With these innovations, the cooler TC4189 reached a no-load temperature of 44 K and provided 15 W cooling power at 80K, with an input electric power of 244 W and a cooling water temperature of 23 ℃. The efficiency reached 16.9% of Carnot at 80 K. The whole system has a total mass of 4.3 kg.

  20. Numerical simulation of a semi-indirect evaporative cooler

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R. Herrero [Departamento de Ingenieria Termica y de Fluidos, Universidad Politecnica de Cartagena, C/Dr. Fleming, s/n (Campus Muralla), 30202 Cartagena, Murcia (Spain)

    2009-11-15

    This paper presents the experimental study and numerical simulation of a semi-indirect evaporative cooler (SIEC), which acts as an energy recovery device in air conditioning systems. The numerical simulation was conducted by applying the CFD software FLUENT implementing a UDF to model evaporation/condensation. The numerical model was validated by comparing the simulation results with experimental data. Experimental data and numerical results agree for the lower relative humidity series but not for higher relative humidity values. (author)

  1. Linear motor driven Stirling coolers for military and commercial applications

    International Nuclear Information System (INIS)

    Berry, R.

    1992-01-01

    This paper discusses the design and performance of a miniature, closed cycle, split stirling, cryogenic cooler that provides 1 watt of cooling at 80 K. The compressor uses two opposed linear motors to drive opposed pistons and the expander uses a pneumatically driven displacer. A single electronics module and compressor has been developed to drive three different expanders that have nominal cold cylinder diameters of 5, 8 and 13 mm

  2. Experimental testing of the thermal performance of finned air coolers

    International Nuclear Information System (INIS)

    Imhof, A.; Keller, J.; Koelliker, A.

    1988-05-01

    Finned heat exchangers are often used as regenerators in heat recovery systems or as a heat source for heat pump installations. These exchangers are usually operating as air coolers. Heat is extracted from the air flowing through the heat exchanger. If the fin temperature lies below the dew point at the air inlet, water vapour may be condensed, increasing the thermal performance of the cooler. If the air/water heat exchanger is installed outdoors, the blower is usually mounted directly at the exchaner's case. In general this leads to non-ideal air flow conditions. For the sizing of such components the manufacturers dispose of design rules which are based either on theoretical models or on experiments using a uniform air stream. These rules which are mostly internal codes of the individual companies presumably do not take into account some non-ideal conditions such as an inhomogeneous air flow, a poorly sized blower or an increased pressure drop between the fins due to condensed water vapour. Moreover, these codes are possibly not sophisticated enough to enable a correct sizing of the products for any given condition of operation, especially in heat pumps operating under condensation conditions. Therfore, the Swiss Federal Institute for Reactor Research (EIR) carried out a research program dealing with the thermal performance of commercially available finned air coolers. The results give a strong evidence that the sizing of finned air coolers involving a phase change in one of the heat transfer fluids is not yet a procedure belonging to the common knowledge of most of the manufacturers. Moreover, the correct sizing of the blower is at least as important as the sizing of the finned exchanger itself. However, it is evident that there are companies on the Swiss market which use already reliable design tools. 25 refs., 81 figs., 12 tabs

  3. Comparative analysis of linear motor geometries for Stirling coolers

    Science.gov (United States)

    R, Rajesh V.; Kuzhiveli, Biju T.

    2017-12-01

    Compared to rotary motor driven Stirling coolers, linear motor coolers are characterized by small volume and long life, making them more suitable for space and military applications. The motor design and operational characteristics have a direct effect on the operation of the cooler. In this perspective, ample scope exists in understanding the behavioural description of linear motor systems. In the present work, the authors compare and analyze different moving magnet linear motor geometries to finalize the most favourable one for Stirling coolers. The required axial force in the linear motors is generated by the interaction of magnetic fields of a current carrying coil and that of a permanent magnet. The compact size, commercial availability of permanent magnets and low weight requirement of the system are quite a few constraints for the design. The finite element analysis performed using Maxwell software serves as the basic tool to analyze the magnet movement, flux distribution in the air gap and the magnetic saturation levels on the core. A number of material combinations are investigated for core before finalizing the design. The effect of varying the core geometry on the flux produced in the air gap is also analyzed. The electromagnetic analysis of the motor indicates that the permanent magnet height ought to be taken in such a way that it is under the influence of electromagnetic field of current carrying coil as well as the outer core in the balanced position. This is necessary so that sufficient amount of thrust force is developed by efficient utilisation of the air gap flux density. Also, the outer core ends need to be designed to facilitate enough room for the magnet movement under the operating conditions.

  4. Beam-plasma interaction in a synchrotron-cooler ring

    International Nuclear Information System (INIS)

    Itahashi, T.

    1989-01-01

    We propose a plasma target installed in the synchrotron-cooler ring in order to study the beam-plasma interaction. Various types of beam diagnostic devices and precise techniques developed for stochastic cooling and rf-stacking in the storage ring would be a powerful tool to approach the problems concerning the plasma behavior induced by the beam, such as plasma lens effect, anomalous stopping power and plasma instability. (author)

  5. Fan Cooler Operation in Kori 1 for Mitigating Severe Accident

    International Nuclear Information System (INIS)

    Suh, Nam Duk; Park, Jae Hong

    2005-01-01

    The Korea Ministry of Science and Technology (MOST) issued the 'Policy on Severe Accident of Nuclear Power Plants' in August 2001. According to the policy it was required for the licensee to develop a plant specific severe accident management guideline (SAMG) and to implement it. Thus the utility has made an implementation plan to develop SAMGs for operating plants. The SAMG for Kori unit 1 was submitted to the government on January 2004. Since then, the government trusted KINS to review the submitted SAMG in view of its feasibility and effectiveness. The first principle of the developed SAMG is to use only the available facilities as it is without introducing any system change. Because Kori-1 has no mitigative facility against combustible gases during severe accident, it relies heavily both on spray and on fan cooler systems to control the containment condition. Thus one of the issues raised during the review is to know whether the fan coolers which are designed for DBA LOCA can be effective in mitigating the severe accident conditions. This paper presents an analysis result of fan cooler operation in controlling the containment condition during severe accident of Kori 1

  6. CFD study of a simple orifice pulse tube cooler

    Science.gov (United States)

    Zhang, X. B.; Qiu, L. M.; Gan, Z. H.; He, Y. L.

    2007-05-01

    Pulse tube cooler (PTC) has the advantages of long-life and low vibration over the conventional cryocoolers, such as G-M and Stirling coolers because of the absence of moving parts in low temperature. This paper performs a two-dimensional axis-symmetric computational fluid dynamic (CFD) simulation of a GM-type simple orifice PTC (OPTC). The detailed modeling process and the general results such as the phase difference between velocity and pressure at cold end, the temperature profiles along the wall as well as the temperature oscillations at cold end with different heat loads are presented. Emphases are put on analyzing the complicated phenomena of multi-dimensional flow and heat transfer in the pulse tube under conditions of oscillating pressure. Swirling flow pattern in the pulse tube is observed and the mechanism of formation is analyzed in details, which is further validated by modeling a basic PTC. The swirl causes undesirable mixing in the thermally stratified fluid and is partially responsible for the poor overall performance of the cooler, such as unsteady cold-end temperature.

  7. Thermodynamic comparison of Peltier, Stirling, and vapor compression portable coolers

    International Nuclear Information System (INIS)

    Hermes, Christian J.L.; Barbosa, Jader R.

    2012-01-01

    Highlights: ► A Peltier, a Stirling, and two vapor compression refrigerators were compared. ► Tests were carried out to obtain key performance parameters of the systems. ► The overall 2nd-law efficiency was splited to take into account the internal and external irreversibilities. ► The Stirling and vapor compression refrigeration systems presented higher efficiencies. ► The thermoelectric device was not at the same efficiency level as the other coolers. -- Abstract: The present study compares the thermodynamic performance of four small-capacity portable coolers that employ different cooling technologies: thermoelectric, Stirling, and vapor compression using two different compressors (reciprocating and linear). The refrigeration systems were experimentally evaluated in a climatized chamber with controlled temperature and humidity. Tests were carried out at two different ambient temperatures (21 and 32 °C) in order to obtain key performance parameters of the systems (e.g., power consumption, cooling capacity, internal air temperature, and the hot end and cold end temperatures). These performance parameters were compared using a thermodynamic approach that splits the overall 2nd law efficiency into two terms, namely, the internal and external efficiencies. In doing so, the internal irreversibilities (e.g., friction in the working fluid in the Stirling and vapor compression machines, Joule heating and heat conduction in the thermoelectric devices of the Peltier cooler) were separated from the heat exchanger losses (external irreversibilities), allowing the comparison between different refrigeration technologies with respect to the same thermodynamic baseline.

  8. Six Sigma methods applied to cryogenic coolers assembly line

    Science.gov (United States)

    Ventre, Jean-Marc; Germain-Lacour, Michel; Martin, Jean-Yves; Cauquil, Jean-Marc; Benschop, Tonny; Griot, René

    2009-05-01

    Six Sigma method have been applied to manufacturing process of a rotary Stirling cooler: RM2. Name of the project is NoVa as main goal of the Six Sigma approach is to reduce variability (No Variability). Project has been based on the DMAIC guideline following five stages: Define, Measure, Analyse, Improve, Control. Objective has been set on the rate of coolers succeeding performance at first attempt with a goal value of 95%. A team has been gathered involving people and skills acting on the RM2 manufacturing line. Measurement System Analysis (MSA) has been applied to test bench and results after R&R gage show that measurement is one of the root cause for variability in RM2 process. Two more root causes have been identified by the team after process mapping analysis: regenerator filling factor and cleaning procedure. Causes for measurement variability have been identified and eradicated as shown by new results from R&R gage. Experimental results show that regenerator filling factor impacts process variability and affects yield. Improved process haven been set after new calibration process for test bench, new filling procedure for regenerator and an additional cleaning stage have been implemented. The objective for 95% coolers succeeding performance test at first attempt has been reached and kept for a significant period. RM2 manufacturing process is now managed according to Statistical Process Control based on control charts. Improvement in process capability have enabled introduction of sample testing procedure before delivery.

  9. Efeito do pré-resfriamento de frutos de cupuaçu na aceitação sensorial do néctar = Effect of cupuassu fruits pre-cooling on the sensory acceptance of the nectar

    Directory of Open Access Journals (Sweden)

    Cristhyan Alexandre Carcia de Carvalho

    2015-03-01

    . Therefore, the objective of this work was to evaluate the effect of the fruits pre-cooling on the sensory acceptance of cupuassu nectar. Two distinct experiments were carried out. In the first, the fruits were maintained at room temperature for 6 days, while in the second they were maintained under cold storage at 10°C for 15 days. In both experiments, there were evaluated fruits not submitted to a pre-cooling and fruits submitted to a pre-cooling by immersion in chilled water at 10°C for 133 minutes. The fruits were pulped every 3 days during storage, analysed for soluble solids, titratable acidity and sugars, and used for the production of nectar, which was analysed for sensory acceptance. For fruits maintained at room temperature, pre-cooling improved sensory acceptance at the end of storage time. In fruits stored under refrigeration, pre-cooling had no effect on the sensory acceptance of cupuassu nectar.

  10. An algorithm for merging part nodes of JT models exported by FORAN

    Directory of Open Access Journals (Sweden)

    FANG Xiongbing

    2017-05-01

    Full Text Available Many cognominal parts exist in JT models exported by FORAN V70 R2.0 software, and this leads to an increase in time consumption and the space analysis results becoming hard to process when using clearance analysis software to perform distance computing for such JT models. Aiming at this problem, an algorithm for merging component nodes is put forward based on investigating the assembly configuration and inherent information (i.e. geometric and material information of JT models created by FORAN. The method is composed of four steps:coordinate transformation, model node renaming, node geometric data transferring and material attribute processing. Finally, the proposed method is implemented by C++ and JT Open Toolkit. The results show that the new JT models generated by the proposed method are comprised of only one assembly node, and they preserve the intrinsic information of the original JT models. Its validity is illustrated by a great deal of examples, and the content of the worked JT models are reduced by about 7% to 20%.

  11. Conversion of St. Marys conventional grate cooler at the Bowmanville plant

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, B.P. (Fuller Co., Bethlehem, PA (United States))

    1993-11-01

    Fuller Company has recently retrofitted the largest operating clinker cooler in North America with its CFG (Controlled Flow Grate) system. The cooler conversion was made to the St. Mary's Cement's 5000 mtpd Folax grate cooler at the Bowmanville plant. The project included conversion of the entire first drive section to Fuller's new cooler design featuring its increased flow resistance grate plates, a maintenance-friendly air distribution system, and a new hydraulic drive unit. As a result of the cooler conversion, significant power and fuel savings were made possible for an already efficient and modern cement producing facility. (author)

  12. Consideration of heat transfer performance of helium-gas/water coolers in HENDEL

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Miyamoto, Yoshiaki

    1986-10-01

    The helium engineering loop (HENDEL) has four helium-gas/water coolers, where the cooling water flows in the tubes and the helium gas flows on the shell side. Their cooling performance depends on mainly the heat transfer of helium gas on the shell side. This report describes the operational data of the coolers and the consideration of the heat transfer performance which is important for the design of coolers. It becomes clear that Donohue's equation is close to the operational data and conservative for the segmental baffle type cooler and preduction by Fishenden-Saunders or Zukauskas' equation is conservation for the step-up baffle type cooler. (author)

  13. 6D “Garren” snake cooler and ring cooler for µ{sup ±} cooling of a muon collider

    Energy Technology Data Exchange (ETDEWEB)

    Ding, X., E-mail: xding@bnl.gov [UCLA, Los Angeles, CA 90095 (United States); Berg, J.S. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Cline, D. [UCLA, Los Angeles, CA 90095 (United States); Garren, Al [Particle Beam Lasers, Inc., Northridge, CA 91324 (United States); Kirk, H.G. [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2014-12-21

    Six dimensional cooling of large emittance µ{sup +} and µ{sup −} beams is required in order to obtain the desired luminosity for a muon collider. In our previous study, we demonstrated that a 6D “Garren” ring cooler using both dipoles and solenoids in four 90{sup 0} achromatic arcs can give substantial cooling in all six phase space dimensions. In this paper, we describe the injection/extraction requirements of this four-sided ring. We also present the performance of an achromat-based 6D “Garren” snake cooler. The achromatic design permits the design to easily switch between a closed ring and a snaking geometry on injection or extraction from the ring.

  14. Dry coolers and air-condensing units (Review)

    Science.gov (United States)

    Milman, O. O.; Anan'ev, P. A.

    2016-03-01

    The analysis of factors affecting the growth of shortage of freshwater is performed. The state and dynamics of the global market of dry coolers used at electric power plants are investigated. Substantial increase in number and maximum capacity of air-cooled condensers, which have been put into operation in the world in recent years, are noted. The key reasons facilitating the choice of developers of the dry coolers, in particular the independence of the location of thermal power plant from water sources, are enumerated. The main steam turbine heat removal schemes using air cooling are considered, their comparison of thermal efficiency is assessed, and the change of three important parameters, such as surface area of heat transfer, condensate pump flow, and pressure losses in the steam exhaust system, are estimated. It is shown that the most effective is the scheme of direct steam condensation in the heat-exchange tubes, but other schemes also have certain advantages. The air-cooling efficiency may be enhanced much more by using an air-cooling hybrid system: a combination of dry and wet cooling. The basic applied constructive solutions are shown: the arrangement of heat-exchange modules and the types of fans. The optimal mounting design of a fully shopassembled cooling system for heat-exchange modules is represented. Different types of heat-exchange tubes ribbing that take into account the operational features of cooling systems are shown. Heat transfer coefficients of the plants from different manufacturers are compared, and the main reasons for its decline are named. When using evaporative air cooling, it is possible to improve the efficiency of air-cooling units. The factors affecting the faultless performance of dry coolers (DC) and air-condensing units (ACU) and the ways of their elimination are described. A high velocity wind forcing reduces the efficiency of cooling systems and creates preconditions for the development of wind-driven devices. It is noted that

  15. Maximum β limited by ideal MHD ballooning instabilites in JT-60

    International Nuclear Information System (INIS)

    Seki, Shogo; Azumi, Masashi

    1986-03-01

    Maximum β limited by ideal MHD ballooning instabilities is investigated on divertor configurations in JT-60. Maximum β against ballooning modes in JT-60 has strong dependecy on the distribution of the safety factor over the magnetic surfaces. Maximum β is ∼ 2 % for q 0 = 1.0, while more than 3 % for q 0 = 1.5. These results suggest that the profile control of the safety factor, especially on the magnetic axis, is attractive to the higher β operation in JT-60. (author)

  16. The Optimum Selection and Drawing Output Program Development of Shell and Tube Type Oil Cooler

    International Nuclear Information System (INIS)

    Lee, Y. B.; Kim, T. S.; Ko, J. M

    2007-01-01

    Shell and Tube type Oil Cooler is widely used for hydraulic presses, die casting machines, generation equipments, machine tools and construction heavy machinery. Temperature of oil in the hydraulic system changes viscosity and thickness of oil film. They have a bad effect to performance and lubrication of hydraulic machinery, so it is important to know exactly the heat exchanging efficiency of oil cooler for controlling oil temperature. But most Korean manufacturers do not have test equipment for oil cooler, so they cannot carry out the efficiency test of oil cooler and it is impossible to verify its performance. This paper includes information of construction of necessary utilities for oil cooler test and design and manufacture of test equipment. One can select the optimum product by obtaining performance data through tests of various kinds of oil coolers. And also the paper developed a program which can be easily used for design of 2D and 3D drawings of oil cooler

  17. High coupling performance of JT-60U ICRF antennas

    International Nuclear Information System (INIS)

    Saigusa, M.; Moriyama, S.; Fujii, T.; Kimura, H.; Sato, M.; Hosogane, N.; Nemoto, M.; Yamamoto, T.

    1994-01-01

    Sufficient coupling of an ICRF antenna for high power experiments was obtained even for a wide gap between the separatrix and the antenna in JT-60U. The loading resistances for an out-of-phase mode are over 4 Ω for a gap of 13 cm between the separatrix and the Faraday shield over the wide range of electron density from 1 x 10 19 to 5.5 x 10 19 m -3 . In particular, the loading resistances for an in-phase mode are about 5 Ω for a gap of 33 cm between the separatrix and the Faraday shield for the same plasma parameters. However, the heating response for the out-of phase mode is much stronger than that for the in-phase mode. (author). Letter-to-the-editor. 11 refs, 6 figs

  18. The plasma movie database system for JT-60

    International Nuclear Information System (INIS)

    Sueoka, Michiharu; Kawamata, Yoichi; Kurihara, Kenichi; Seki, Akiyuki

    2007-01-01

    The real-time plasma movie with the computer graphics (CG) of plasma shape is one of the most effective methods to know what discharge have been made in the experiment. For an easy use of the movie in the data analysis, we have developed the plasma movie database system (PMDS), which automatically records plasma movie according to the JT-60 discharge sequence, and transfers the movie files on request from the web site. The file is compressed to about 8 MB/shot small enough to be transferred within a few seconds through local area network (LAN). In this report, we describe the developed system from the technical point of view, and discuss a future plan on the basis of advancing video technology

  19. Mechanical properties of JT-60 tokamak machine in power tests

    International Nuclear Information System (INIS)

    Takatsu, Hideyuki; Ohkubo, Minoru; Yamamoto, Masahiro; Ohta, Mitsuru

    1986-01-01

    JT-60 power tests were carried out from Dec. 10, 1984 to Feb. 20, 1985 to demonstrate, in advance of actual plasma operation, satisfactory performance of tokamak machine, power suppliers and control system in combination. The tests began with low power test of individual coil systems and progressed to full power tests. The coil current was raised step by step, monitoring the mechanical, thermal, electrical and vacuum data. Power tests were concluded with successful results. All of the coil systems were raised up to full power operation in combination and system performance was verified including the structural integrity of tokamak machine. Measured strain and deflection showed good agreements with those predicted in the design, which was an evidence that electromagnetic forces were supported as expected in the design. A few limitations to machine operation was made clear quantitatively. And it was found that existing detectors were insufficient to monitor machine integrity and two kinds of detector were proposed to be installed. (author)

  20. JT-60SA vacuum vessel manufacturing and assembly

    Energy Technology Data Exchange (ETDEWEB)

    Masaki, Kei, E-mail: masaki.kei@jaea.go.jp [Japan Atomic Energy Agency, Naka, Ibaraki-ken 311-0193 (Japan); Shibama, Yusuke K.; Sakurai, Shinji; Shibanuma, Kiyoshi; Sakasai, Akira [Japan Atomic Energy Agency, Naka, Ibaraki-ken 311-0193 (Japan)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer The design of the JT-60SA vacuum vessel body was completed with the demonstration of manufacturing procedure by the mock-up fabrication of the 20 Degree-Sign upper half of VV. Black-Right-Pointing-Pointer The actual VV manufacturing has started since November 2009. Black-Right-Pointing-Pointer The first product of the VV 40 Degree-Sign sector was completed in May 2011. Black-Right-Pointing-Pointer A basic VV assembly scenario and procedure were studied to complete the 360 Degree-Sign VV including positioning method and joint welding. - Abstract: The JT-60SA vacuum vessel (VV) has a D-shaped poloidal cross section and a toroidal configuration with 10 Degree-Sign segmented facets. A double wall structure is adopted to ensure high rigidity at operational load and high toroidal one-turn resistance. The material is 316L stainless steel with low cobalt content (<0.05%). The design temperatures of the VV at plasma operation and baking are 50 Degree-Sign C and 200 Degree-Sign C, respectively. In the double wall, boric-acid water is circulated at plasma operation to reduce the nuclear heating of the superconducting magnets. For baking, nitrogen gas is circulated in the double wall after draining of the boric-acid water. The manufacturing of the VV started in November 2009 after a fundamental welding R and D and a trial manufacturing of 20 Degree-Sign upper half mock-up. The manufacturing of the first VV 40 Degree-Sign sector was completed in May 2011. A basic concept and required jigs of the VV assembly were studied. This paper describes the design and manufacturing of the vacuum vessel. A plan of VV assembly in torus hall is also presented.

  1. Heat analysis of the magnetic limiter plate for JT-60

    International Nuclear Information System (INIS)

    Nakamura, Hiroo; Ninomiya, Hiromasa; Shimizu, Masatsugu; Ohta, Mitsuru

    1977-03-01

    Heat analysis has been made of the magnetic limiter plate for JT-60. Test materials of the magnetic limiter plate are molybdenum, graphite, pyrolytic graphite and silicon carbide. It is assumed in calculation of the heat analysis that 10MW is deposited on the 2 cm wide surface of the magnetic limiter plate in about 10 sec. The magnetic limiter plate of pyrolytic graphite is a stack of pyrolytic graphite sheets, heat input is in the deposition plane to take advantage of the large heat conductivity along this plane. Pyrolytic graphite is the best in terms of temperature rise. The temperature of molybdenum and graphite rise up to 1800 0 C and 620 0 C, respectively, in an deposition of 10 MWx10sec. Silicon carbide is not suitable for the magnetic limiter plate. Because the plasma of the JT-60 discharges every 10 min, the average heat flux decreases to 17 w/cm 2 during the each interval. When the magnetic limiter plate has the above heat inflow, a maximum of above 1000 0 C occurs at the edge far from the joint to the thick ring of the vacuum vessel. To reduce heat load of the magnetic limiter plate, an alternating current (2 -- 5Hz) is superposed on the magnetic limiter coil current. The intersection of separatrix line and magnetic limiter plate then moves cyclically more than 10 cm. Concerning temperature distribution of the multi-groove magnetic limiter plate, its dimensions are determined by the limitation in vapor pressure to prevent the impurity inflow. (auth.)

  2. Advanced tokamak research with integrated modeling in JT-60 Upgrade

    International Nuclear Information System (INIS)

    Hayashi, N.

    2010-01-01

    Researches on advanced tokamak (AT) have progressed with integrated modeling in JT-60 Upgrade [N. Oyama et al., Nucl. Fusion 49, 104007 (2009)]. Based on JT-60U experimental analyses and first principle simulations, new models were developed and integrated into core, rotation, edge/pedestal, and scrape-off-layer (SOL)/divertor codes. The integrated models clarified complex and autonomous features in AT. An integrated core model was implemented to take account of an anomalous radial transport of alpha particles caused by Alfven eigenmodes. It showed the reduction in the fusion gain by the anomalous radial transport and further escape of alpha particles. Integrated rotation model showed mechanisms of rotation driven by the magnetic-field-ripple loss of fast ions and the charge separation due to fast-ion drift. An inward pinch model of high-Z impurity due to the atomic process was developed and indicated that the pinch velocity increases with the toroidal rotation. Integrated edge/pedestal model clarified causes of collisionality dependence of energy loss due to the edge localized mode and the enhancement of energy loss by steepening a core pressure gradient just inside the pedestal top. An ideal magnetohydrodynamics stability code was developed to take account of toroidal rotation and clarified a destabilizing effect of rotation on the pedestal. Integrated SOL/divertor model clarified a mechanism of X-point multifaceted asymmetric radiation from edge. A model of the SOL flow driven by core particle orbits which partially enter the SOL was developed by introducing the ion-orbit-induced flow to fluid equations.

  3. Long Pulse Operation on NBI Systems for JT-60U

    International Nuclear Information System (INIS)

    Akino, N.; Ebisawa, N.; Honda, A.; Ikeda, Y.; Kawai, M.; Kazawa, M.; Mogaki, K.; Ohga, T.; Umeda, N.; Usui, K.; Yamamoto, T.; Grisham, L.

    2005-01-01

    In the neutral beam injection (NBI) system, an extension of the pulse duration up to 30 sec has been intended to study quasi-steady state plasma on JT-60U. The four positive-ion based (P-NBI) units, which tangentially inject neutral beam to plasma, were mainly modified on the electric power supplies and the beam limiters to extend the pulse duration up to 30 sec with 2 MW at 80 keV per each. The seven P-NBI units, each of which perpendicularly injects for 10 sec, were conducted to operate in series for the total pulse duration of 30 sec. The ion source of the negative-ion based (N-NBI) unit, whose target beam energy is 500 keV for 10 sec, was also modified to reduce the heat load of the grid for long pulse operation. The reduction of the re-ionization of the neutral beam in the beam drift duct was a key to achieve a long pulse injection. It was found that the pressure rise in the beam drift duct, which gives the re-ionization rate, depended on the temperature of the re-ionization plates during NBI injection. Up to now, it was attained successfully that the pulse duration of the tangential P-NBI unit was extended up to 30 sec. 310 MJ of the total integrated injection energy into JT-60U plasma was achieved, including the negative-ion based NBI operation for 17 sec at 366 keV

  4. Developmental prototype for replacement of JT-60 timing system

    International Nuclear Information System (INIS)

    Akasaka, H.; Kawamata, Y.; Yonekawa, I.

    2004-01-01

    The present CAMAC based timing system has been used for synchronizing sequential events of the discharge and the data collection of the interesting JT-60U experiment plasma phenomena. However, a more flexible and sophisticated state-of-the-art timing system now is required to realize advanced plasma control with minimal maintenance costs. In this context, the versa module Europe (VME-bus) system with a high-speed data communication network using reflective memory (RM) modules and user-friendly application software based on MATLAB TM tools has been selected to develop the new prototype timing system. In the ZENKEI, the supervisory control system of the JT-60, the supervisory timing system provides the 50-μs master clock pulses, the various timing signal preparation logic, which is built into the digital signal processing (DSP) module in conjunction with the discharge sequence event signals, and the 6.2 MB/s high-speed communication data link provided by the RM module. Except the clock pulse generator (CPG) module, no other special timing module is necessary for this new timing system. The timing signal is prepared by software logic in conjunction with sequential events and the preset timer, is transferred to the subsystems through the RM module, where it is synchronized to the 50-μs clock pulses. The timing system of the subsystems also consists of hardware similar in structure to the ZENKEI timing system. The fundamental timing system configuration, the necessary functions, and the preliminary test results of the prototype system are reported in this presentation

  5. Weight Estimate and Centers of Gravity for JT-11 Nuclear Conversion Study

    International Nuclear Information System (INIS)

    Manning, R. W.

    1958-01-01

    Weight estimates and centers of gravity for the JT-11 nuclear conversion study are tabulated. Included in the radiator section are: diffuser, shrouds, supports, radiator, liquid metal, shafting and casing.

  6. Combined Brayton-JT cycles with refrigerants for natural gas liquefaction

    Science.gov (United States)

    Chang, Ho-Myung; Park, Jae Hoon; Lee, Sanggyu; Choe, Kun Hyung

    2012-06-01

    Thermodynamic cycles for natural gas liquefaction with single-component refrigerants are investigated under a governmental project in Korea, aiming at new processes to meet the requirements on high efficiency, large capacity, and simple equipment. Based upon the optimization theory recently published by the present authors, it is proposed to replace the methane-JT cycle in conventional cascade process with a nitrogen-Brayton cycle. A variety of systems to combine nitrogen-Brayton, ethane-JT and propane-JT cycles are simulated with Aspen HYSYS and quantitatively compared in terms of thermodynamic efficiency, flow rate of refrigerants, and estimated size of heat exchangers. A specific Brayton-JT cycle is suggested with detailed thermodynamic data for further process development. The suggested cycle is expected to be more efficient and simpler than the existing cascade process, while still taking advantage of easy and robust operation with single-component refrigerants.

  7. Development of fast opening magnetic valve for JT-60 pellet injector

    International Nuclear Information System (INIS)

    Hiratsuka, Hajime; Kawasaki, Kouzo; Takatsu, Hideyuki; Miyo, Yasuhiko; Yoshioka, Yuji; Ohta, Kazuya; Shimizu, Masatsugu; Onozuka, Masanori; Uchikawa, Takashi; Iwamoto, Syuichi; Hashiri, Noboru

    1989-01-01

    A pneumatic four-pellet injector (JT-60 pellet injector) has been constructed for JT-60 in May, 1988. A fast opening magnetically driven propellant gas injection valve has been developed for JT-60 pellet injector. This valve can accelerate four cylindrical pellets, two 3.8 mm diameter by 3.8 mm and two 2.7 mm diameter by 2.7 mm, to greater than 1.6 km/s with propellent gas of up to 50 bar. It is now successfully in use in JT-60, contributing to plasma studies. In this paper the outline of a newly developed fast opening magnetic valve and the results of performance tests are presented. (author). 6 figs.; 1 tab

  8. Comparison of transient electron heat transport in LHD helical and JT-60U tokamak plasmas

    International Nuclear Information System (INIS)

    Inagaki, S.; Ida, K.; Tamura, N.; Shimozuma, T.; Kubo, S.; Nagayama, Y.; Kawahata, K.; Sudo, S.; Ohkubo, K.; Takenaga, H.; Isayama, A.; Takizuka, T.; Kamada, Y.; Miura, Y.

    2005-01-01

    Transient transport experiments are performed in plasmas with and without Internal Transport Barrier (ITB) on LHD and JT-60U. The dependence of χ e on electron temperature, T e , and electron temperature gradient, ∇T e , is analyzed by an empirical non-linear heat transport model. In plasmas without ITB, two different types of non-linearity of the electron heat transport are observed from cold/heat pulse propagation. The χ e depends on T e and ∇T e in JT-60U, while the ∇T e dependence is weak in LHD. Inside the ITB region, there is no or weak ∇T e dependence both in LHD and JT-60U. A cold pulse growing driven by the negative T e dependence of χ e is observed inside the ITB region (LHD) and near the boundary of the ITB region (JT-60U). (author)

  9. Experimental study of a high intensity radio-frequency cooler

    Directory of Open Access Journals (Sweden)

    Ramzi Boussaid

    2015-07-01

    Full Text Available Within the framework of the DESIR/SPIRAL-2 project, a radio-frequency quadrupole cooler named SHIRaC has been studied. SHIRaC is a key device of SPIRAL-2, designed to enhance the beam quality required by DESIR. The preliminary study and development of this device has been carried out at Laboratoire de Physique Corpusculaire de CAEN (LPC Caen, France. The goal of this paper is to present the experimental studies conducted on a SHIRaC prototype. The main peculiarity of this cooler is its efficient handling and cooling of ion beams with currents going up as high as 1  μA which has never before been achieved in any of the previous coolers. Much effort has been made lately into these studies for development of appropriate optics, vacuum and rf systems which allow cooling of beams of large emittance (∼80π  mm mrad and high current. The dependencies of SHIRaC’s transmission and the cooled beam parameters in terms of geometrical transverse emittance and the longitudinal energy spread have also been discussed. Investigation of beam purity at optimum cooling condition has also been done. Results from the experiments indicate that an emittance reduction of less than 2.5π  mm mrad and a longitudinal energy spread reduction of less than 4 eV are obtained with more than 70% of ion transmission. The emittance is at expected values whereas the energy spread is not.

  10. Data exchange system in cooler-storage-ring virtual accelerator

    International Nuclear Information System (INIS)

    Liu Wufeng; Qiao Weimin; Jing Lan; Guo Yuhui

    2009-01-01

    The data exchange system of the cooler-storage-ring (CSR) control system for heavy ion radiotherapy has been introduced for the heavy ion CSR at Lanzhou (HIRFL-CSR). Using techniques of Java, component object model (COM), Oracle, DSP and FPGA, this system can achieve real-time control of magnet power supplies sanctimoniously, and control beams and their switching in 256 energy levels. It has been used in the commissioning of slow extraction for the main CSR (CSRm), showing stable and reliable performance. (authors)

  11. Gasket structure improvement for the spent fuel pool cooler

    International Nuclear Information System (INIS)

    Li Yun; He Shaohua; Qi Hongchang; Wang Cong; Wang Chenglin; Zhong Boling

    2014-01-01

    The two spent fuel pool coolers for the 320 MW unit in CNNC Nuclear Power Operation Management Co., Ltd. have operated for more than 20 years. In accordance with the preventive maintenance programs, they must be overhauled. It is decided to improve the original gasket structure of the component and adopt the method of a short-length U-tubes pulling after analysis and study. There are no leakages and other abnormal situations after the equipment being put into operation. The unit is kept safe and stable. At the same time, thought and method for the maintenance of other similar equipment are provided. (authors)

  12. Laser spectroscopy of gallium isotopes using the ISCOOL RFQ cooler

    CERN Multimedia

    Blaum, K; Kowalska, M; Ware, T; Procter, T J

    2007-01-01

    We propose to study the radioisotopes of gallium (Z=31) by collinear laser spectroscopy using the ISCOOL RFQ ion cooler. The proposed measurements on $^{62-83}$Ga will span both neutron-deficient and neutron-rich isotopes. Of key interest is the suggested development of a proton-skin in the neutron-deficient isotopes. The isotope shifts measured by laser spectroscopy will be uniquely sensitive to this feature. The measurements will also provide a wealth of new information on the gallium nuclear spins, static moments and nuclear charge radii.

  13. Integral finned heater and cooler for stirling engines

    Science.gov (United States)

    Corey, John A.

    1984-01-01

    A piston and cylinder for a Stirling engine and the like having top and bottom meshing or nesting finned conical surfaces to provide large surface areas in close proximity to the working gas for good thermal (addition and subtraction of heat) exchange to the working gas and elimination of the usual heater and cooler dead volume. The piston fins at the hot end of the cylinder are perforated to permit the gas to pass into the piston interior and through a regenerator contained therein.

  14. Study of beam dynamics at cooler synchrotron TARN-II

    International Nuclear Information System (INIS)

    Watanabe, S.; Katayama, T.; Watanabe, T.; Yoshizawa, M.; Tomizawa, M.; Chida, K.; Arakaki, Y.; Noda, K.; Kanazawa, M.

    1992-08-01

    Several kinds of beam diagnostic instruments, have been developed at cooler-synchrotron TARN-II. These are intended to study beam dynamics at low beam current of several microamperes and then have high sensitivity of good S/N ratio. In addition, the acceleration system, especially low level RF system, has been improved to attain the maximum beam energy. With the successful performance of these instrumentations, the study of beam dynamics are presently being carried out. For example, the synchrotron acceleration of the light ions was achieved up to 220 MeV/u without any beam loss. (author)

  15. Note: Wide-operating-range control for thermoelectric coolers

    Science.gov (United States)

    Peronio, P.; Labanca, I.; Ghioni, M.; Rech, I.

    2017-11-01

    A new algorithm for controlling the temperature of a thermoelectric cooler is proposed. Unlike a classic proportional-integral-derivative (PID) control, which computes the bias voltage from the temperature error, the proposed algorithm exploits the linear relation that exists between the cold side's temperature and the amount of heat that is removed per unit time. Since this control is based on an existing linear relation, it is insensitive to changes in the operating point that are instead crucial in classic PID control of a non-linear system.

  16. Electron gun design for HIRFL-CSR electron cooler

    International Nuclear Information System (INIS)

    Rao Yinong; Xia Jiawen; Yuan Youjin; Wei Baowen

    1996-01-01

    Adiabatic acceleration is employed to design the electron gun of HIRFL-CSR e-cooler by using the modified EGUN code. The electron beam transverse temperature variations with anode region and acceleration tube design parameters as well as the uniform solenoidal magnetic field are presented. Transversal temperature of less than 0.1 eV at a maximum current density of 0.244 A/cm 2 are obtained over the full energy range of 2.75∼165 keV

  17. 2. Interferometry and polarimetry. 2.3. Polarimetry on JT-60U

    International Nuclear Information System (INIS)

    Kawano, Yasunori

    2000-01-01

    In order to establish an electron density measurement method with high reliability and stability for magnetic-confinement fusion devices, studies on infrared polarimetry have been carried out in JT-60U. Electron density measurement based on tangential Faraday rotation has been verified using a CO 2 laser polarimeter developed for JT-60U. In this article, basic ideas of studies, results from polarimetry experiments, and suggestions for future devices are presented. (author)

  18. Design and Structural Analysis for the Vacuum Vessel of Superconducting Tokamak JT-60SC

    International Nuclear Information System (INIS)

    Kudo, Y.; Sakurai, S.; Masaki, K.; Urata, K.; Sasajima, T.; Matsukawa, M.; Sakasai, A.; Ishida, S.

    2003-01-01

    A modification of the JT-60 is planned to be a superconducting tokamak (JT-60SC) in order to establish steady-state operation of high beta plasma for 100 s, and to ensure the applicability of ferritic steel as a reduced activation material for reactor relevant break-even class plasmas. This paper describes the detailed design of the vacuum vessel, which has a unique structure for cost effective manufacturing, as well as structural analysis results for a feasibility study

  19. QT and JT dispersion and cardiac performance in children with neonatal Bartter syndrome: a pilot study.

    Science.gov (United States)

    Hacihamdioglu, Duygu Ovunc; Fidanci, Kursat; Kilic, Ayhan; Gok, Faysal; Topaloglu, Rezan

    2013-10-01

    QT dispersion and JT dispersion are simple noninvasive arrhythmogenic markers that can be used to assess the homogeneity of cardiac repolarization. The aim of this study was to assess QT and JT dispersion and their relation with left ventricular systolic and diastolic functions in children with Bartter syndrome (BS). Nine neonatal patients with BS (median age 9.7 years) and 20 controls (median age 8 years) were investigated at rest. Both study and control subjects underwent electrocardiography (ECG) in which the interval between two R waves and QT intervals, corrected QT, QT dispersion, corrected QT dispersion, JT, corrected JT, JT dispersion and corrected JT dispersion were measured with 12-lead ECG. Two-dimensional, Doppler echocardiographic examinations were performed. Patients and controls did not differ for gender and for serum levels of potassium, magnesium, and calcium (p > 0.05). Both study and control subjects had normal echocardiographic examination and baseline myocardial performance indexes. The QT dispersion and JT dispersion were significantly prolonged in patients with BS compared to those of the controls {37.5 ms [interquartile range (IQR) 32.5-40] vs. 25.5 ms (IQR 20-30), respectively, p = 0.014 and 37.5 ms (IQR 27.5-40) vs. 22.5 ms (IQR 20-30), respectively, p = 0.003}. Elevated QT and JT dispersion during asymptomatic and normokalemic periods may be risk factors for the development of cardiac complications and arrhythmias in children with BS. In these patients the need for systematic cardiac screening and management protocol is extremely important for effective prevention.

  20. The design study of the JT-60SU device. No. 4. The vacuum vessel and cryostat of JT-60SU

    International Nuclear Information System (INIS)

    Neyatani, Yuzuru; Ushigusa, Kenkichi; Tobita, Kenji

    1997-03-01

    The vacuum vessel and the cryostat for the JT-60 Super Upgrade (JT-60SU) have been designed. Two types of the complex materials for the vacuum vessel were chosen on the basis of the avoidance of tritium occlusion and the low irradiation, i.e. (1) SUS316 covered by tungsten plate (30mm thickness) as a γ-ray shielding, (2) Ti-6Al-4V alloy covered by SUS430 plate (1mm thickness) as a tritium protector. Selecting the double skin type of vacuum vessel with toroidally continued structure gave the basic design of the vacuum vessel satisfying the design criteria of the vessel strength for the electromagnetic force, heat load and the property of radiation shielding. The characteristics of the SUS316 covered by tungsten plate type is that as the tungsten can shield the γ-ray, the dose rate inside the vacuum vessel during the maintenance can reduce effectively. The advantage of the Ti-6Al-4V alloy covered by SUS430 plate type vacuum vessel is the quick reduction of the radioactive isotope because of no production of the isotopes with long half-life periods. Channel type and vertical type of the divertor were designed. The sector type of toroidally separated structure was selected for the remote handling. The material of the armor plate was not determined because no material endure the high heat load on the divertor. The cryostat composing the dome and the tank was designed. The electromagnetic force by the eddy current, generated at the plasma start up phase and at the quench of CS super-conducting coil, were small compared to the force produced by the stress limit. (author)

  1. Solar-Powered Cooler and Heater for an Automobile Interior

    Science.gov (United States)

    Howard, Richard T.

    2006-01-01

    The apparatus would include a solar photovoltaic panel mounted on the roof and a panellike assembly mounted in a window opening. The window-mounted assembly would include a stack of thermoelectric devices sandwiched between two heat sinks. A fan would circulate interior air over one heat sink. Another fan would circulate exterior air over the other heat sink. The fans and the thermoelectric devices would be powered by the solar photovoltaic panel. By means of a double-pole, double-throw switch, the panel voltage fed to the thermoelectric stack would be set to the desired polarity: For cooling operation, the chosen polarity would be one in which the thermoelectric devices transport heat from the inside heat sink to the outside one; for heating operation, the opposite polarity would be chosen. Because thermoelectric devices are more efficient in heating than in cooling, this apparatus would be more effective as a heater than as a cooler. However, if the apparatus were to include means to circulate air between the outside and the inside without opening the windows, then its effectiveness as a cooler in a hot, sunny location would be increased.

  2. Design and performance of an RFQ cooler and buncher

    Energy Technology Data Exchange (ETDEWEB)

    Szerypo, J.; Ban, G.; Le Brun, C.; Delahaye, P.; Lienard, E.; Mauger, F.; Naviliat, O.; Tamain, B. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Hennecart, D. [Centre Interdisciplinaire de Recherche Ions Lasers, 14 - Caen (France)

    1999-10-01

    Several new experiments, planned or in preparation at low energy radioactive beam facilities, require the cooling and bunching of radioactive beams. This may be performed with a radiofrequency quadruple (RFQ) cooler and buncher, where the ions are cooled in a buffer gas while being guided by an oscillating RFQ field. This work describes the performance of such a device, which has been designed and studied in order to be extended for the cooling of light ions. The analysis requires extensive computer simulations, which are done with two approaches: the macroscopic and the microscopic. The latter approach is able to account for the RF-heating effect and the calculations were performed by the monte Carlo method. The cooling formalism was extendedto include a charge-exchange effect. The charge-exchange cross sections were calculated theoretically in a quantum-mechanical formalism for different ion-atom combinations. The simulations have shown in particular that for the cooling of {sup 6}He{sup +} ions, {sup 4}He is excluded as buffer gas because of the resonant charge exchange processes which drastically decreases the transmission. On the other hand, the cooling of {sup 6}He{sup +} ions with H{sub 2} as buffer gas appears as a promising solution. The most relevant cooler design parameters are proposed. A project of a complete system, including the deceleration, extraction and transfer sections, is presented. (authors)

  3. RFQ Cooler and Buncher (and beam line section associated)

    CERN Document Server

    Podadera-Aliseda, I

    2003-01-01

    Developing a new RFQ cooler and buncher for ISOLDE. Such a device combines an energy loss in buffer gas atom-ion collisions with confinement provided by RF-field in transverse plane. Optional confinement in longitudinal direction is provided by static potential dwell. Then, an improvement of the beam line is achieved for all the experiments at ISOLDE. The RFQ operates inside a high voltage cage of 60 kV, and with a system of turbomulecular pumps both to keep the high vacuum before/after the RFQ and to keep a low pressure (around 0,1 mbar) inside the RFQ. The project is to be thought not only as a mechanical design and construction project, unless as a project of research and development, since it is about improving (operationally and technically) the existing RFQ cooler and buncher placed around the world. Due to ion optical reasons whole beam line section has to be redesigned and constructed as a part of this project.

  4. Study of containment air cooler capacity in steam air environment during accident conditions

    International Nuclear Information System (INIS)

    Kansal, M.; Mohan, N.; Bhawal, R.N.; Bajaj, S.S.

    2002-01-01

    Full text: The air coolers are provided for controlling the temperature in the reactor building during normal operation. These air coolers also serve as the main heat sink for the removal of energy from high enthalpy air-steam mixture expected in reactor building under accident conditions. A subroutine COOLER has been developed to estimate the heat removal rate of the air coolers at high temperature and steam conditions. The subroutine COOLER has been attached with the code PACSR (post accident containment system response) used for containment pressure temperature calculation. The subroutine was validated using design parameters at normal operating condition. A study was done to estimate the heat removal rate for some postulated accident conditions. The study reveals that, under accident conditions, the heat removal rate of air coolers increases several times compared with normal operating conditions

  5. Design and measured performance of a porous evaporative cooler for preservation of fruits and vegetables

    International Nuclear Information System (INIS)

    Anyanwu, E.E.

    2004-01-01

    The design, construction and measured performance of a porous evaporative cooler for preservation of fruits and vegetables are reported. The experimental cooler, with a total storage space of 0.014 m 3 , consists of a cuboid shaped porous clay container located inside another clay container. The gap between them is filled with coconut fibre. A water reservoir linked to the cooler at the top through a flexible pipe supplied water to fill the gap, thus keeping the coconut fibre continuously wet. Results of the transient performance tests revealed that the cooler storage chamber temperature depression from ambient air temperature varied over 0.1-12 deg. C. Ambient air temperatures during the test periods ranged over 22-38 deg. C. The results also illustrate superior performance of the cooler over open air preservation of vegetables soon after harvest during the diurnal operations. Thus, the evaporative cooler has prospects for use for short term preservation of vegetables and fruits soon after harvest

  6. Investigation of the vibration and EMC characteristics of miniature Stirling electric coolers for space applications

    Science.gov (United States)

    Kondratjev, V.; Gostilo, V.; Owens, anb A.

    2017-08-01

    We present the results of an investigation into the detrimental effects that electromechanical coolers can have on the spectral performance of compact, large volume HPGe spectrometers for space applications. Both mechanical vibration and electromagnetic pickup effects were considered, as well as a comparative assessment between three miniature Stirling cycle coolers—two Ricor model K508 coolers and one Thales model RM3 cooler. In spite of the limited number of coolers tested, the following conclusions can be made. There are significant differences in the vibration characteristics not only between the various types of cooler but also between coolers of the same type. It was also found that compared to the noise induced by mechanical vibrations, electromagnetic interference emanating from the embedded controllers does not significantly impact the energy resolution of detectors.

  7. Direct Evaporatrive Coolers of Gases and Liquids with Lowered Limit of Cooling

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2015-12-01

    Full Text Available We have developed main technical solutions solution of indirect evaporative water and air coolers with reduced cooling limit. Packed part of heat-mass transfer devices is made of the film type based monoblock compositions of polymer materials. A mathematical model describing the processes of joint heat and mass transfer in evaporative coolers is executed. A comparative analysis of the possibilities of coolers designed based on experimental data on the efficiency of processes of heat and mass transfer.

  8. The making of automation air fiddling unit (AHU) for G 71 cooler system

    International Nuclear Information System (INIS)

    Suripto

    2003-01-01

    A design of the making automation of air handling unit (AHU) for G. 71 cooler system at the design it has been conducted AHU operational time programming for G. 71 cooler system, when applied if will operate as programmed. flopefully, it mill save electric power and the dependency to the operator can be reduced significantly therefore it will increase efficiency and optimization in the usage of the cooler system. At the and if will reduce and save operational cost mainly in maintenance cost

  9. Evaporative Air Coolers Optimization for Energy Consumption Reduction and Energy Efficiency Ratio Increment

    OpenAIRE

    Leila Torkaman; Nasser Ghassembaglou

    2015-01-01

    Significant quota of Municipal Electrical Energy consumption is related to Decentralized Air Conditioning which is mostly provided by evaporative coolers. So the aim is to optimize design of air conditioners to increase their efficiencies. To achieve this goal, results of practical standardized tests for 40 evaporative coolers in different types collected and simultaneously results for same coolers based on one of EER (Energy Efficiency Ratio) modeling styles are figured ...

  10. Performance of an irreversible quantum Ericsson cooler at low temperature limit

    International Nuclear Information System (INIS)

    Wu Feng; Chen Lingen; Wu Shuang; Sun Fengrui

    2006-01-01

    The purpose of this paper is to investigate the effect of quantum properties of the working medium on the performance of an irreversible quantum Ericsson cooler with spin-1/2. The cooler is studied with the losses of heat resistance, heat leakage and internal irreversibility. The optimal relationship between the dimensionless cooling load R * versus the coefficient of performance ε for the irreversible quantum Ericsson cooler is derived. In particular, the performance characteristics of the cooler at the low temperature limit are discussed

  11. Technical assistance for the evaluation of fluid loop components (Peltier cooler)

    Science.gov (United States)

    Best, R.; Biemann, W.; Bosch, R.; Hingst, U.; Kreeb, H.; Mueller, W.

    1980-07-01

    The application of Peltier elements for refrigeration with source temperature control and heat rejection to a fluid loop was investigated using commercially available Peltier cooling elements. Peltier element performance with Peltier elements integrated into a cooler unit, investigation of possible temperature stabilization of the source side of the Peltier cooler arrangement, investigation of the necessary power supply and the power consumption for certain requirements for temperature range and heat load at the source, and investigation of mounting and integration aspects are discussed. Analytical calculations for the performance of Peltier elements in a cooler unit are relevant for a power supply, a temperature regulation system, and the design of bread board cooler unit.

  12. Overview of engineering design, manufacturing and assembly of JT-60SA machine

    Energy Technology Data Exchange (ETDEWEB)

    Di Pietro, Enrico, E-mail: enrico.dipietro@jt60sa.org [JT-60SA EU Home Team, Fusion for Energy, Boltzmannstrasse 2, Garching 85748 (Germany); Barabaschi, Pietro [JT-60SA EU Home Team, Fusion for Energy, Boltzmannstrasse 2, Garching 85748 (Germany); Kamada, Yutaka [JT-60SA JA Home Team, Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Ishida, Shinichi [JT-60SA JA Project Team, Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2014-10-15

    The JT-60SA experiment is one of the three projects to be undertaken in Japan as part of the Broader Approach Agreement, conducted jointly by Europe and Japan, and complementing the construction of ITER in Europe. The JT-60SA device is a fully superconducting tokamak capable of confining break-even equivalent deuterium plasmas with equilibria covering high plasma shaping with a low aspect ratio at a maximum plasma current of I{sub p} = 5.5 MA. This makes JT-60SA capable to support and complement ITER in all the major areas of fusion plasma development necessary to decide DEMO reactor construction. After a complex start-up phase due to the necessity to carry out a re-baselining effort with the purpose to fit in the original budget while aiming to retain the machine mission, performance, and experimental flexibility, in 2009 detailed design could start. With the majority of time-critical industrial contracts in place, in 2012, it was possible to establish a credible time plan, and now, the project is progressing on schedule towards the first plasma in March 2019. After careful and focused R and D and qualification tests, the procurement of the major components and plant is now well advanced in manufacturing design and/or fabrication. In the meantime the disassembly of the JT-60U machine has been completed and the engineering of the JT-60SA assembly process has been developed. The actual assembly of JT-60SA started in January 2013 with the installation of the cryostat base. The paper gives an overview of the present status of the engineering design, manufacturing and assembly of the JT-60SA machine.

  13. Accomplishment of JT-60U disassembly work dealing with radioactive components

    International Nuclear Information System (INIS)

    Ikeda, Yoshitaka

    2015-01-01

    The upgrade of the JT-60U to the superconducting tokamak 'JT-60SA' has been carried out to contribute the early realization of fusion energy by addressing key physics issues relevant for ITER and DEMO. Disassembly of the JT-60U tokamak was required so as to newly install the JT-60SA torus at the same position in the torus hall. The JT-60U tokamak was featured by the complicated and welded structure against the strong electromagnetic force, and by the radioactivation due to deuterium-deuterium (D-D) reactions of 1.5x10"2"0 (n) in total. Since this work was the first experience of disassembling a large radioactivated fusion device in Japan, careful preparations of disassembly activities, including treatment of the radioactivated materials and safety work, have been made. About 13,000 components with a total weight of more than 5,400 tonnes were removed from the torus hall and stored safely in storage facilities. All disassembly components were stored with recording the data such as dose rate, weight and kind of material, so as to apply the clearance level regulation in future. It was confirmed that the main radioactive material of the disassembly components was the stainless steel and that its dose rate was almost background level (∼0.1 μSv/h) at ∼10 m far from the vacuum vessel. It seems that the disassembly components with background dose level are in the clearance level. The assembly of JT-60SA tokamak has started in January 2013 after this disassembly of the JT-60U tokamak. (author)

  14. Accelerator studies at cooler rings TARN and TARN II

    International Nuclear Information System (INIS)

    Katayama, Takeshi.

    1992-07-01

    Two ion cooler rings, TARN and TARN II were constructed and operated from 1975 to 1992 at the Institute for Nuclear Study, Univ. of Tokyo, for mainly accelerator studies concerning the beam accumulation, acceleration and cooling. The main subjects performed in these facilities were; 1) beam stacking in transverse and longitudinal phase spaces, 2) stochastic momentum cooling, 3) electron cooling, 4) synchrotron acceleration and 5) slow beam extraction. In the present paper, typical experimental results on these subjects, arc described as well as the basic physical idea underlying these experimental results. The technical details are out of scope of the present paper. They can be found in the other papers refered in the concerned section in the text. (author)

  15. SAFARI engineering model 50 mK cooler

    Science.gov (United States)

    Duband, L.; Duval, J. M.; Luchier, N.

    2014-11-01

    SAFARI is an infrared instrument developed by a European based consortium to be flown in SPICA, a Japanese led mission. The SAFARI detectors are transition edge sensors (TES) and require temperatures down to 50 mK for their operation. For that purpose we have developed a hybrid architecture based on the combination of a 300 mK sorption stage and a small adiabatic demagnetization stage. An engineering model has been designed to provide net heat lifts of 0.4 and 14 μW respectively at 50 and 300 mK, with an overall cycle duration of 48 h and a duty cycle objective of over 75%. The cooler is self-contained, fits in a volume of 156 × 312 × 182 mm and is expected to weigh 5.1 kg. It has been designed to withstand static loads of 120 g and a random vibration level of 21 g RMS.

  16. Geometric Optimization of Thermo-electric Coolers Using Simulated Annealing

    International Nuclear Information System (INIS)

    Khanh, D V K; Vasant, P M; Elamvazuthi, I; Dieu, V N

    2015-01-01

    The field of thermo-electric coolers (TECs) has grown drastically in recent years. In an extreme environment as thermal energy and gas drilling operations, TEC is an effective cooling mechanism for instrument. However, limitations such as the relatively low energy conversion efficiency and ability to dissipate only a limited amount of heat flux may seriously damage the lifetime and performance of the instrument. Until now, many researches were conducted to expand the efficiency of TECs. The material parameters are the most significant, but they are restricted by currently available materials and module fabricating technologies. Therefore, the main objective of finding the optimal TECs design is to define a set of design parameters. In this paper, a new method of optimizing the dimension of TECs using simulated annealing (SA), to maximize the rate of refrigeration (ROR) was proposed. Equality constraint and inequality constraint were taken into consideration. This work reveals that SA shows better performance than Cheng's work. (paper)

  17. Fabrication of a Micro Cooler using Thermoelectric Thin Film

    International Nuclear Information System (INIS)

    Han, S. W.; Choi, H. J.; Kim, D. H.; Kim, W. J.; Kim, B. I.; Kim, K. M.

    2007-01-01

    In general a ThermoElectric Cooler (TEC) consists of a series of P type and N type thermoelectric materials sandwiched between two wafers. When a DC current passes through these materials, three different effects take place; Peltier effect, Joule heating effect and heat transfer by conduction due to temperature difference between hot and cold plates. In this study we have developed a micro TEC using Bi2Te3 (N type) and Bi0.5Sb1.5Te3 (P type) thin films. In order to improve that performance of a micro TEC, we made 10 um height TE legs using special PR only for lift-off. We measured COP (coefficient of performance) and temperature difference between hot and cold connectors with current

  18. Robust Temperature Control of a Thermoelectric Cooler via μ -Synthesis

    Science.gov (United States)

    Kürkçü, Burak; Kasnakoğlu, Coşku

    2018-02-01

    In this work robust temperature control of a thermoelectric cooler (TEC) via μ -synthesis is studied. An uncertain dynamical model for the TEC that is suitable for robust control methods is derived. The model captures variations in operating point due to current, load and temperature changes. A temperature controller is designed utilizing μ -synthesis, a powerful method guaranteeing robust stability and performance. For comparison two well-known control methods, namely proportional-integral-derivative (PID) and internal model control (IMC), are also realized to benchmark the proposed approach. It is observed that the stability and performance on the nominal model are satisfactory for all cases. On the other hand, under perturbations the responses of PID and IMC deteriorate and even become unstable. In contrast, the μ -synthesis controller succeeds in keeping system stability and achieving good performance under all perturbations within the operating range, while at the same time providing good disturbance rejection.

  19. Commissioning of HIRFL-CSR and its Electron Coolers

    International Nuclear Information System (INIS)

    Yang Xiaodong; Zhan Wenlong; Xia Jiawen; Zhao Hongwei; Yuan Youjin; Song Mingtao; Li Jie; Mao Lijun; Lu Wang; Wang Zhixue; Parkhomchuk, Vasily

    2006-01-01

    The brief achievements of HIRFL-CSR commissioning and the achieved parameters of its coolers were presented. With the help of electron cooling code, the cooling time of ion beam were extensive simulated in various parameters of the ion beam in the HIRFL-CSR electron cooling storage rings respectively, such as ion beam energy, initial transverse emittance, and momentum spread. The influence of the machine lattice parameters-betatron function, and dispersion function on the cooling time was investigated. The parameters of electron beam and cooling devices were taken into account, such as effective cooling length, magnetic field strength and its parallelism in cooling section, electron beam size and density. As a result, the lattice parameters of HIRFL-CSR were optimal for electron cooling, and the parameters of electron beam can be optimized according to the parameters of heavy ion beam

  20. Optimization of a microfluidic electrophoretic immunoassay using a Peltier cooler.

    Science.gov (United States)

    Mukhitov, Nikita; Yi, Lian; Schrell, Adrian M; Roper, Michael G

    2014-11-07

    Successful analysis of electrophoretic affinity assays depends strongly on the preservation of the affinity complex during separations. Elevated separation temperatures due to Joule heating promotes complex dissociation leading to a reduction in sensitivity. Affinity assays performed in glass microfluidic devices may be especially prone to this problem due to poor heat dissipation due to the low thermal conductivity of glass and the large amount of bulk material surrounding separation channels. To address this limitation, a method to cool a glass microfluidic chip for performing an affinity assay for insulin was achieved by a Peltier cooler localized over the separation channel. The Peltier cooler allowed for rapid stabilization of temperatures, with 21°C the lowest temperature that was possible to use without producing detrimental thermal gradients throughout the device. The introduction of cooling improved the preservation of the affinity complex, with even passive cooling of the separation channel improving the amount of complex observed by 2-fold. Additionally, the capability to thermostabilize the separation channel allowed for utilization of higher separation voltages than what was possible without temperature control. Kinetic CE analysis was utilized as a diagnostic of the affinity assay and indicated that optimal conditions were at the highest separation voltage, 6 kV, and the lowest separation temperature, 21°C, leading to 3.4% dissociation of the complex peak during the separation. These optimum conditions were used to generate a calibration curve and produced 1 nM limits of detection, representing a 10-fold improvement over non-thermostated conditions. This methodology of cooling glass microfluidic devices for performing robust and high sensitivity affinity assays on microfluidic systems should be amenable in a number of applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Fabrication and tests of EF conductors for JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Kizu, Kaname, E-mail: kizu.kaname@jaea.go.jp [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Kashiwa, Yoshitoshi; Murakami, Haruyuki [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Obana, Tetsuhiro; Takahata, Kazuya [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Tsuchiya, Katsuhiko; Yoshida, Kiyoshi [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Hamaguchi, Shinji [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Matsui, Kunihiro [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Nakamura, Kazuya; Takao, Tomoaki [Sophia University, Tokyo 102-8554 (Japan); Yanagi, Nagato; Imagawa, Shinsaku; Mito, Toshiyuki [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2011-10-15

    The conductors for plasma equilibrium field (EF) coils of JT-60SA are NbTi cable-in-conduit (CIC) conductor with stainless steel 316L jacket. The production of superconductors for actual EF coils started from February 2010. Nine superconductors with 444 m in length were produced up to July 2010. More than 300 welding of jackets were performed. Six nonconformities were found by inspections as go gauge, visual inspection and X-ray test. In order to shorten the manufacturing time schedule, helium leak test was conducted at once after connecting the long length jacket not just after the welding. The maximum force to pull the cable into jacket was about 7.6 kN on average. The mass flow rates of 9 conductors showed almost same values indicating that there are no blockages in the conductors. The measured current sharing temperature agreed with the expectation values from strand performance indicating that no degradation was caused by production process. The coupling time constants of conductors ranged from 80 to 90 ms which are much smaller than the design value of 200 ms.

  2. JT-60SA TF magnet industrial manufacturing preparation and qualifications

    International Nuclear Information System (INIS)

    Decool, P.; Cloez, H.; Gros, G.; Marechal, J.L.; Torre, A.; Verger, J.M.; Nusbaum, M.; Billotte, G.; Crepel, B.; Bourquard, A.; Davis, S.; Phillips, G.

    2014-01-01

    The general design of the JT-60SA toroidal field system was defined in agreement with all the participants in the project (CEA, ENEA, F4E), the detailed design was issued by the Voluntary Contributors. For the French part including the procurement of 9 of the 18 TF winding packs and their integration in the casings, an industrial contract was signed mid-2011 with Alstom (France). After agreement on manufacturing drawings and QA documentation, the manufacturing process was defined giving the guidelines for the workshop organization and the definition of the required tooling. The critical manufacturing points were identified in the process and, regarding technical requirements, have led to the definition of a set of qualification mockups. They are related to helium inlets, conductor winding and insulation, local conductor bending, electrical joint and terminal areas for the winding pack (WP), as well as winding embedding, case welding, and impregnations for WP integration in the casing. The fabrication processes have been improved and shall be qualified thanks to the manufacture and testing of 12 corresponding mockups. The successful achievement of several key mock-ups gives confidence in the feasibility of the manufacture, and their completion will give the green light to the industrial coils manufacture. (authors)

  3. Radiation losses and global power balance of JT-60 plasmas

    International Nuclear Information System (INIS)

    Nishitani, T.; Itami, K.; Nagashima, K.; Tsuji, S.; Hosogane, N.; Yoshida, H.; Ando, T.; Kubo, H.; Takeuchi, H.

    1990-01-01

    The radiation losses and the global power balance for Ohmic and neutral beam heated plasmas have been investigated in different JT-60 configurations. Discharges with a TiC coated molybdenum wall and with a graphite wall, with limiter, outer and lower X-point configurations have been studied by bolometric measurements, thermocouples and an infrared TV camera. In neutral beam heated outer X-point discharges with a TiC coated molybdenum first wall, the radiation loss of the main plasma was very low (10% of the absorbed power). The radiation loss due to oxygen was dominant in this case. On the contrary, in discharges with TiC coated molybdenum limiters the radiation loss was very high (>60% of the absorbed power). In the discharges with a graphite wall the radiated power from the main plasma was 20-25% for both limiter and lower X-point configurations. In lower X-point discharges the main contributor to the radiation loss was oxygen, whereas in limiter discharges the loss due to carbon was equal to the loss due to oxygen. The radiation loss from the lower X-point divertor increased with increasing electron density of the main plasma. (author). 33 refs, 14 figs, 1 tab

  4. Activation analysis for JT-60U experiments with deuterium gases

    International Nuclear Information System (INIS)

    Miya, Naoyuki

    1993-11-01

    Identification of radionuclides and evaluation of dose rate level have been made on the structural materials of the JT-60U tokamak device. A one-dimensional neutron and gamma-ray transport code ANISN and an induced activation calculation code CINAC are used in this work. Radionuclides of 56 Mn (High-Mn steel toroidal field coil case), 58 Co (Inconel-625 vessel) and 60 Co (SS-316 first wall supporting material) appeared on the structures, which contribute to the dose rate around a vacuum vessel. Cobalt-58 and 60 Co with long half-life time intensely make residual activation in the time of 3 days to 3 months corresponding to the maintenance time after shutdown. The calculated dose rate on the vessel agreed well with the measured data in the first 2 years D-D operations. The one-dimensional code provided a sufficient prediction for the dose rate, although an error due to the toroidal field coil modeling in the calculation is estimated within ∼30%. (author)

  5. Deuterated-decaborane using boronization on JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Yagyu, Jun-ichi; Arai, Takashi; Kaminaga, Atsushi; Miyata, Katsuyuki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Arai, Masaru [Kaihatsu Denki Co., Ltd., Tokyo (Japan)

    2001-03-01

    In JT-60U, boronization using hydride-decaborane (B{sub 10}H{sub 14}) vaporization has been conducted for the first wall conditioning. Compared to other discharge cleaning (DC), boronization is claimed to be efficient in reduction of oxygen impurities and hydrogen recycling in plasma. However, there are some problems in reduction of hydrogen included in boron film and stabilization of DC glow discharge during the boronization. To solve these problems, a new boronization method using deuterated-decaborane (B{sub 10}D{sub 14}) was adopted instead of the conventional hydride-decaborane. As a result, hydrogen content in the boron film decreased clearly and discharge conditioning shots, for decreasing hydrogen content in plasmas, after the boronization were reduced to 1/10 in comparison to the conventional process. Furthermore, DC glow discharge became stable, with only helium carrier gas, and it was possible to save 30 hours in maximum of the time necessary to boronization. It is shown that the boronization using deuterated-decaborane is very efficient and effective method for the first wall conditioning. (author)

  6. Characteristics of halo current in JT-60U

    International Nuclear Information System (INIS)

    Neyatani, Y.; Nakamura, Y.; Yoshino, R.; Hatae, T.

    1999-01-01

    Halo currents and their toroidal peaking factor (TPF) have been measured in JT-60U by Rogowski coil type halo current sensors. The electron temperature in the halo region was around 10 eV at 1 ms before the timing of the maximum halo current. The maximum TPF*I h /I p0 was 0.52 in the operational range of I p = 0.7 ∼ 1.8 MA, B T = 2.2 ∼ 3.5 T, including ITER design parameters of κ > 1.6 and q 95 = 3, which was lower than that of the maximum value of ITER data base (0.75). The magnitude of halo currents tended to decrease with the increase in stored energy just before the energy quench and with the line integrated electron density at the time of the maximum halo current. A termination technique in which the current channel remains stationary was useful to avoid halo current generation. Intense neon gas puffing during the VDE was effective for reducing the halo currents. (author)

  7. Characteristics of halo current in JT-60U

    International Nuclear Information System (INIS)

    Neyatani, Y.; Nakamura, Y.; Yoshino, R.; Hatae, T.

    2001-01-01

    Halo currents and their toroidal peaking factor (TPF) have been measured in JT-60U by Rogowski coil type halo current sensors. The electron temperature in the halo region was around 10 eV at 1 ms before the timing of the maximum halo current. The maximum TPF *I h /I p0 was 0.52 in the operational range of I p =0.7∼1.8MA, B T =2.2∼3.5T, including ITER design parameters of κ>1.6 and q 95 =3, which was lower than that of the maximum value of ITER data base (0.75). The magnitude of halo currents tended to decrease with the increase in stored energy just before the energy quench and with the line integrated electron density at the time of the maximum halo current. A termination technique in which the current channel remains stationary was useful to avoid halo current generation. Intense neon gas puffing during the VDE was effective for reducing the halo currents. (author)

  8. Development of the centrifugal pellet injector for JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Kizu, Kaname; Hiratsuka, Hajime; Ichige, Hisashi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    2001-03-01

    For core fueling of JT-60U plasmas, a repetitive pellet injector which centrifugally accelerates D{sub 2} cubic pellets using a straight rod has been developed. This centrifugal pellet injector can eject trains of up to 40 cubic pellets at frequencies of 1-10 Hz and velocities of 0.3-1.0 km/s. The average pellet mass is 3.6x10{sup 20} atoms/pellet below 0.7 m/s. Key techniques for the development were a mesh structured acceleration component for removing gas sublimated from the pellet and a funnel with an appropriate angle connected just behind the acceleration chamber for introducing the pellet to plasma without destruction. Using the mesh structured components, the horizontal angular distribution of pellets ejected became narrow, because irregular pellet motion caused by sublimated gas was reduced. To investigate the performance of the injector, pellet injection experiments from the low magnetic field side (LFS) were conducted using ohmic heating plasmas. Central fueling and enhanced fueling rate have been observed. D{alpha} intensity around the divertor region was reduced in a pellet injection plasma compared to gas puffing, indicating low recycling rate was maintained with the pellet injection. (author)

  9. Development of the centrifugal pellet injector for JT-60U

    International Nuclear Information System (INIS)

    Kizu, Kaname; Hiratsuka, Hajime; Ichige, Hisashi

    2001-03-01

    For core fueling of JT-60U plasmas, a repetitive pellet injector which centrifugally accelerates D 2 cubic pellets using a straight rod has been developed. This centrifugal pellet injector can eject trains of up to 40 cubic pellets at frequencies of 1-10 Hz and velocities of 0.3-1.0 km/s. The average pellet mass is 3.6x10 20 atoms/pellet below 0.7 m/s. Key techniques for the development were a mesh structured acceleration component for removing gas sublimated from the pellet and a funnel with an appropriate angle connected just behind the acceleration chamber for introducing the pellet to plasma without destruction. Using the mesh structured components, the horizontal angular distribution of pellets ejected became narrow, because irregular pellet motion caused by sublimated gas was reduced. To investigate the performance of the injector, pellet injection experiments from the low magnetic field side (LFS) were conducted using ohmic heating plasmas. Central fueling and enhanced fueling rate have been observed. Dα intensity around the divertor region was reduced in a pellet injection plasma compared to gas puffing, indicating low recycling rate was maintained with the pellet injection. (author)

  10. Properties of internal transport barrier formation in JT-60U

    International Nuclear Information System (INIS)

    Sakamoto, Yoshiteru; Suzuki, T.; Ide, S.

    2003-01-01

    The dependence of the ion thermal diffusivity (χ i ) on the radial electric field (E r ) shear has been investigated in JT-60U plasmas. In positive magnetic shear (PS) plasmas, χ i in the core region generally increases with the heating power, similar to the L mode at low heating power. However, as a result of the intensive central heating, which is relevant to the enhancement of the E γ shear, a weak internal transport barrier (ITB) is formed, and χ i in the core region starts to decrease. Corresponding to a further increase of the heating power, a strong ITB is formed and χ i is reduced substantially. In the case of reversed magnetic shear (RS) plasmas, on the other hand, no power degradation of χ i is observed in any of heating regimes. The electron thermal diffusivity (χ e ) is strongly correlated with χ i in PS and RS plasmas. There exists a threshold in the effective E γ shear to change the state from a weak to a strong ITB. It is found that the threshold of the effective E γ shear in the case of a PS plasma depends on the poloidal magnetic field at the ITB. There are multiple levels of reduced transport in the strong ITB for RS plasmas. (author)

  11. Properties of internal transport barrier formation in JT-60U

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Suzuki, T.; Ide, S.

    2003-01-01

    The dependence of the ion thermal diffusivity (χ i ) on the radial electric field (E r ) shear has been investigated in JT-60U plasmas. In positive magnetic shear (PS) plasmas, χ i in the core region generally increases with the heating power, similar to the L mode at low heating power. However, as a result of the intensive central heating, which is relevant to the enhancement of the E r shear, a weak internal transport barrier (ITB) is formed, and χ i in the core region starts to decrease. Corresponding to a further increase of the heating power, a strong ITB is formed and χ i is reduced substantially. In the case of reversed magnetic shear (RS) plasmas, on the other hand, no power degradation of χ i is observed in any of the heating regimes. The electron thermal diffusivity (χ e ) is strongly correlated with χ i in PS and RS plasmas. There exists a threshold in the effective E r shear to change the state from a weak to a strong ITB. It is found that the threshold of the effective E r shear in the case of a PS plasma depends on the poloidal magnetic field at the ITB. There are multiple levels of reduced transport in the strong ITB for RS plasmas. (author)

  12. Experimental transport analysis code system in JT-60

    International Nuclear Information System (INIS)

    Hirayama, Toshio; Shimizu, Katsuhiro; Tani, Keiji; Shirai, Hiroshi; Kikuchi, Mitsuru

    1988-03-01

    Transport analysis codes have been developed in order to study confinement properties related to particle and energy balance in ohmically and neutral beam heated plasmas of JT-60. The analysis procedure is divided into three steps as follows: 1) LOOK ; The shape of the plasma boundary is identified with a fast boundary identification code of FBI by using magnetic data, and flux surfaces are calculated with a MHD equilibrium code of SELENE. The diagnostic data are mapped to flux surfaces for neutral beam heating calculation and/or for radial transport analysis. 2) OFMC ; On the basis of transformed data, an orbit following Monte Carlo code of OFMC calculates both profiles of power deposition and particle source of neutral beam injected into a plasma. 3) SCOOP ; In the last stage, a one dimensional transport code of SCOOP solves particle and energy balance for electron and ion, in order to evaluate transport coefficients as well as global parameters such as energy confinement time and the stored energy. The analysis results are provided to a data bank of DARTS that is used to find an overview of important consideration on confinement with a regression analysis code of RAC. (author)

  13. Feedback control of plasma configuration in JT-60

    International Nuclear Information System (INIS)

    Ninomiya, Hiromasa; Kikuchi, Mitsuru; Yoshino, Ryuji; Hosogane, Nobuyuki; Kimura, Toyoaki; Kurihara, Kenichi; Takahashi, Minoru; Hayashi, Kazuo.

    1986-08-01

    Plasma current, plasma position (center of the outermost magnetic surface), decay index n index and width of the divertor throat are feedback controlled by using 5 kinds of poloidal field coils in JT-60. 5 control commands are calculated in a feedback control computer in each 1 msec. These feedback control functions are checked in ohmically heated plasma. The control characteristics of the plasma are well understood by the simplified control analysis and are consistent with the precise matrix transfer function analysis in the frequency domain and the simulation analysis which include the effects of eddy currents, delay time elements and mutual interactions between controllers. The usefulness of these analyses is experimentally confirmed. Each controlled variable is well feedback controlled to the command and the experimentally realized equilibrium configuration is checked by the well calibrated magnetic probes. Fast boundary identification code is used for the identification of the equilibrium and results are consistent with the precalculated plasma equilibria. By using this feedback control system of the plasma configuration and the equilibrium identification method, we have obtained the stable limiter and divertor configuration. The maximum parameters obtained during OH(I) experimental period are plasma current I p = 1.8 MA, the effective safety factor q eff e = 5.7 x 10 19 m -3 (Murakami parameter of 4.5) and the pulse length of 5 ∼ 10 sec. (author)

  14. Development of the plasma movie database system in JT-60

    International Nuclear Information System (INIS)

    Sueoka, Michiharu; Kawamata, Yoichi; Kurihara, Kenichi; Seki, Akiyuki

    2008-03-01

    A plasma movie is generally expected as one of the most efficient methods to know what plasma discharge has been conducted in the experiment. The JT-60 plasma movie is composed of video camera picture looking at a plasma, computer graphics (CG) picture, and magnetic probe signal as a sound channel. In order to use this movie efficiently, we have developed a new system having the following functions: (a) To store a plasma movie in the movie database system automatically combined with the plasma shape CG and the sound according to a discharge sequence. (b) To make a plasma movie is available (downloadable) for experiment data analyses at the Web-site. Especially, this system aimed at minimizing the development cost, and it tried to develop the real-time plasma shape visualization system (RVS) without any operating system (OS) customized for real-time use. As a result, this system succeeded in working under Windows XP. This report deals with the technical details of the plasma movie database system and the real-time plasma shape visualization system. (author)

  15. 75 FR 27972 - Airworthiness Directives; Pratt & Whitney JT8D-9, -9A, -11, -15, -17, and -17R Turbofan Engines

    Science.gov (United States)

    2010-05-19

    ..., MAN- JT8D-2-06 and the Engine Manual Chapter/Section 72-33-21, Inspection 00. Definitions (i) For the... the technical contents of PW JT8D Maintenance Advisory Notice MAN-JT8D-2-06, dated November 20, 2006... Advisory Notice, MAN-JT8D-2-06 and the Engine Manual Chapter/Section 72-33-21, Inspection 00. (g) For...

  16. Modeling of a regenerative indirect evaporative cooler for a desiccant cooling system

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Reinholdt, Lars O.

    This paper presents a numerical study of a regenerative indirect evaporative cooler, the so-called Dew Point Cooler (DPC), which is part of a Desiccant Cooling system that may both dehumidify and cool humid air. The DPC model is based on first principles using a 1D finite volume scheme...

  17. 20 K continuous cycle sorption coolers for the Planck flight mission

    Science.gov (United States)

    Bhandari, P.; Prina, M.; Bowman, R. C., Jr.; Paine, C.; Pearson, D.; Nash, A.

    2003-01-01

    In this paper we present the level of maturity of the hydrogen sorption cooler technology at JPL by describing the design and how it has been validated at the subsystem and system levels. In addition, we will describe how such systems could be advantageously used for other space missions with similar needs and cooler attributes.

  18. Re-Condensation and Liquefaction of Helium and Hydrogen Using Coolers

    International Nuclear Information System (INIS)

    Green, Michael A.

    2009-01-01

    Coolers are used to cool cryogen free devices at temperatures from 5 to 30 K. Cryogen free cooling involves a temperature drop within the device being cooled and between the device and the cooler cold heads. Liquid cooling with a liquid cryogen distributed over the surface of a device combined with re-condensation can result in a much lower temperature drop between the cooler and the device being cooled. The next logical step beyond simple re-condensation is using a cooler to liquefy the liquid cryogen in the device. A number of tests of helium liquefaction and re-condensation of helium have been run using a pulse tube cooler in the drop-in mode. This report discusses the parameter space over which re-condensation and liquefaction for helium and hydrogen can occur.

  19. Thermal analysis for steering cooler and hose to reduce product design cost

    International Nuclear Information System (INIS)

    Wang, L.

    2002-01-01

    This paper describes the procedures to conduct a thermal analysis to determine the right sizing of a typical steering cooler and hose system. A commercial CFD (Computational Fluid Dynamics) package, Star-CD, was used to solve the heat transfer problem. Instead of modelling the actual finned cooler, a porous media box cooler was simulated in the analysis and the effective conductivity for the box cooler was obtained through the simulation of a submodel, which was consisted of one layer of the aluminium fin and two layers of air around it. A user-defined subroutine was used in the simulation to correctly represent the contact area in the box cooler. In addition, a comparison between the numerical results and the experimental testing was provided. The good agreement between them validates the methodology used in this analysis. (author)

  20. Injection control development of the JT-60U electron cyclotron heating system

    Energy Technology Data Exchange (ETDEWEB)

    Hiranai, Shinichi; Shinozaki, Shin-ichi; Yokokura, Kenji; Moriyama, Shinichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Sato, Fumiaki [Nippon Advanced Technology Co., Ltd., Tokai, Ibaraki (Japan); Suzuki, Yasuo [Atomic Energy General Service Co., Ltd., Tokai, Ibaraki (Japan); Ikeda, Yoshitaka [Japan Atomic Energy Research Inst., Kashiwa, Chiba (Japan)

    2003-03-01

    The JT-60U electron cyclotron heating (ECH) System injects a millimeteric wave at 110 GHz into the JT-60 Plasma, and heats the plasma or drives a current locally to enhance the confinement performance of the JT-60 plasma. The system consists of four sets of high power gyrotrons, high voltage power supplies and transmission lines, and two antennas that launch electron cyclotron (EC) beams toward the plasma. The key features of the injection control system are streering of the direction of the EC beam by driving the movable mirror in the antenna, and capability to set any combination of polarization angle and ellipticity by rotating the two grooved mirrors in the polarizers. This report represents the design, fabrication and improvements of the injection control system. (author)

  1. Review of JT-60U experimental results from March to October, 1991

    International Nuclear Information System (INIS)

    1992-06-01

    Experimental results achieved in the initial operation of JT-60U are described in this paper. Experiments of JT-60U were initiated in March 1991, and deuterium experiments started in the middle of July. Multivariable non-interacting control, H-mode experiments, the high-q and high-β p regime with hot ion enhanced confinement, the divertor heat flux, etc. are reported. Achieved values of the first experiment of the JT-60U LHCD in 1991 were P LH = 1.5 MW, driven current I RF = 2MA, current drive efficiency η CD (=n-bar e R p I RF /P LH ) = 0.25 x 10 20 m -2 A/W and current driven product CDP(=n-bar e R p I RF ) = 3 x 10 20 m -2 MA. (J.P.N.)

  2. Pollution reduction technology program for class T4(JT8D) engines

    Science.gov (United States)

    Roberts, R.; Fiorentino, A. J.; Diehl, L. A.

    1977-01-01

    The technology required to develop commercial gas turbine engines with reduced exhaust emissions was demonstrated. Can-annular combustor systems for the JT8D engine family (EPA class T4) were investigated. The JT8D turbofan engine is an axial-flow, dual-spool, moderate-bypass-ratio design. It has a two-stage fan, a four-stage low-pressure compressor driven by a three-stage low-pressure turbine, and a seven-stage high-pressure compressor driven by a single-stage high-pressure turbine. A cross section of the JT8D-17 showing the mechanical configuration is given. Key specifications for this engine are listed.

  3. Development of a VME and CAMAC based data acquisition and transfer system for JT-60 control

    International Nuclear Information System (INIS)

    Totsuka, Toshiyuki

    1993-08-01

    Development of a VME and CAMAC based data acquisition and transfer system for JT-60 Control is reported. The present data acquisition and transfer system in JT-60 control is basically composed of CAMAC devices. Since the system equipped with 16-bit microcomputers was manufactured more than ten years ago, the performance and program development environment of the system are apparently worse than those of modern 32-bit microcomputers. To improve these disadvantages, a new data acquisition and transfer system using VME-based 32-bit microcomputers and CAMAC drivers is under design. Corresponding to this design, a CAMAC handler, which runs on the microcomputer, for the VME based CAMAC driver was newly developed. Moreover, the functions of the driver and data transfer performance of the VME and CAMAC complex system were tested. The test results shown that the VME based microcomputer and CAMAC serial driver can be applied for the fast and reliable acquisition and transfer system for JT-60 control. (author)

  4. Long-pulse hybrid scenario development in JT-60U

    International Nuclear Information System (INIS)

    Oyama, N.; Isayama, A.; Matsunaga, G.; Suzuki, T.; Takenaga, H.; Sakamoto, Y.; Nakano, T.; Kamada, Y.; Ide, S.

    2009-01-01

    The performance and sustained duration of long-pulse discharges for the 'ITER hybrid scenario' have been improved in JT-60U. The modification of power supply systems for three perpendicular neutral beam (NB) injections provides a long period of central NB heating up to 30 s, which is important for keeping the internal transport barrier (ITB). The peaked density profile in the core plasma can be maintained even when the density at the pedestal increased in the latter phase of the discharge due to the increase in the divertor recycling. Then, the peaked pressure profile attributed to the ITB can be kept constant through the discharge with the peaked power deposition profile. In these long-pulse discharges, MHD activity with toroidal mode number n = 1 is observed even when neoclassical tearing modes (NTMs) are suppressed. When the amplitude of the mode in the peripheral region becomes large, the pedestal pressure is degraded. The mode amplitude is sensitive to the toroidal magnetic field (or edge safety factor) and heating power. After the adjustment of the toroidal magnetic field so as to reduce the mode amplitude, a high normalized beta (β N ) of 2.6 and a high thermal confinement enhancement factor (H H98(y,2) > 1) are sustained for 25 s (∼14τ R , where τ R is the current diffusion time) under the ITER relevant small toroidal rotation condition. The peaked pressure profile in low safety factor plasma (safety factor at 95% flux surface q 95 ∼ 3.2) is stable against NTMs up to β N ∼ 3. A high β N H H98(y,2) of 2.6 gives a high G-factor ( β N H H98(y,2) /q 95 2 ) of 0.25 and a peaked pressure profile gives a large bootstrap current fraction (f BS > 0.43).

  5. Atomic and molecular processes in JT-60U divertor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Takenaga, H.; Shimizu, K.; Itami, K. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1997-01-01

    Atomic and molecular data are indispensable for the understanding of the divertor characteristics, because behavior of particles in the divertor plasma is closely related to the atomic and molecular processes. In the divertor configuration, heat and particles escaping from the main plasma flow onto the divertor plate along the magnetic field lines. In the divertor region, helium ash must be effectively exhausted, and radiation must be enhanced for the reduction of the heat load onto the divertor plate. In order to exhaust helium ash effectively, the difference between behavior of neutral hydrogen (including deuterium and tritium) and helium in the divertor plasma should be understood. Radiation from the divertor plasma generally caused by the impurities which produced by the erosion of the divertor plate and/or injected by gas-puffing. Therefore, it is important to understand impurity behavior in the divertor plasma. The ions hitting the divertor plate recycle through the processes of neutralization, reflection, absorption and desorption at the divertor plates and molecular dissociation, charge-exchange reaction and ionization in the divertor plasma. Behavior of hydrogen, helium and impurities in the divertor plasmas can not be understood without the atomic and molecular data. In this report, recent results of the divertor study related to the atomic and molecular processes in JT-60U were summarized. Behavior of neural deuterium and helium was discussed in section 2. In section 3, the comparisons between the modelling of the carbon impurity transport and the measurements of C II and C IV were discussed. In section 4, characteristics of the radiative divertor using Ne puffing were reported. The new diagnostic method for the electron density and temperature in the divertor plasmas using the intensity ratios of He I lines was described in section 5. (author)

  6. Mock-up test results of monoblock-type CFC divertor armor for JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Higashijima, S. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)], E-mail: higashijima.satoru@jaea.go.jp; Sakurai, S.; Suzuki, S.; Yokoyama, K.; Kashiwa, Y.; Masaki, K.; Shibama, Y.K.; Takechi, M.; Shibanuma, K.; Sakasai, A.; Matsukawa, M.; Kikuchi, M. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2009-06-15

    The JT-60 Super Advanced (JT-60SA) tokamak project starts under both the Japanese domestic program and the international program 'Broader Approach'. The maximum heat flux to JT-60SA divertor is estimated to {approx}15 MW/m{sup 2} for 100 s. Japan Atomic Energy Agency (JAEA) has developed a divertor armor facing high heat flux in the engineering R and D for ITER, and it is concluded that monoblock-type CFC divertor armor is promising for JT-60SA. The JT-60SA armor consists of CFC monoblocks, a cooling CuCrZr screw-tube, and a thin oxygen-free high conductivity copper (OFHC-Cu) buffer layer between the CFC monoblock and the screw-tube. CFC/OFHC-Cu and OFHC-Cu/CuCrZr joints are essential for the armor, and these interfaces are brazed. Needed improvements from ITER engineering R and D are good CFC/OFHC-Cu and OFHC-Cu/CuCrZr interfaces and suppression of CFC cracking. For these purposes, metalization inside CFC monoblock is applied, and we confirmed again that the mock-up has heat removal capability in excess of ITER requirement. For optimization of the fabrication method and understanding of the production yield, the mock-ups corresponding to quantity produced in one furnace at the same time is also produced, and the half of the mock-ups could remove 15 MW/m{sup 2} as required. This paper summarizes the recent progress of design and mock-up test results for JT-60SA divertor armor.

  7. Studies on first wall and plasma wall interaction in JT-60

    International Nuclear Information System (INIS)

    Nakamura, Hiroo

    1988-12-01

    This paper describes studies on first wall and plasma wall interaction in JT-60. Main results are as follows; (1) To select JT-60 first wall material, various RandD were done in FY1975 ∼ 1976. Mo was selected as first wall materials of limiters and divertor plates because of its reliability under a high heat flux condition. (2) Development of low-Z material has been done to reduce impurity problem of Mo first wall. As a result, titanium carbide (TiC) was selected as a coating material on the Mo. High heat load testing has been done for TiC coated Mo limiter same as JT-60. This material can survive under the condition of 1 kW/cm 2 x 10 s, expected in JT-60 limiter design. (3) To reduce high heat load on the divertor plate, separatrix swing is proposed. Optimum frequency of the sweeping is evaluated to be 2 Hz in JT-60. For a discharge with heating power of 30 MW and duration time of 10 s, in addition to the separatrix swing, remote radiative cooling in the divertor region is necessary. Moreover, calculations of erosion thickness have been done for stainless steel, Mo, graphite, TiC and silicon caibide under high heat flux during plasma disruption. (4) In divertor experiments in JT-60, divertor functions on particle, heat load and impurity controls have been demonstrated. In elctron density of 6 x 10 19 m -3 , particle fueling rate of 20 MW NB heating (3 Pa m 3 /s) can be exhausted by divertor pumping system. Effectiveness of remote radiative cooling is demonstrated under the condition of 20 MW NB heating power. Also, separatrix swing is demonstrated to reduce heat load on the divertor plate. Total radiation in main plasma is 5 ∼ 10% of total absorbed power. (author) 120 refs

  8. JT-60 configuration parameters for feedback control determined by regression analysis

    Energy Technology Data Exchange (ETDEWEB)

    Matsukawa, Makoto; Hosogane, Nobuyuki; Ninomiya, Hiromasa (Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment)

    1991-12-01

    The stepwise regression procedure was applied to obtain measurement formulas for equilibrium parameters used in the feedback control of JT-60. This procedure automatically selects variables necessary for the measurements, and selects a set of variables which are not likely to be picked up by physical considerations. Regression equations with stable and small multicollinearity were obtained and it was experimentally confirmed that the measurement formulas obtained through this procedure were accurate enough to be applicable to the feedback control of plasma configurations in JT-60. (author).

  9. JT-60 configuration parameters for feedback control determined by regression analysis

    International Nuclear Information System (INIS)

    Matsukawa, Makoto; Hosogane, Nobuyuki; Ninomiya, Hiromasa

    1991-12-01

    The stepwise regression procedure was applied to obtain measurement formulas for equilibrium parameters used in the feedback control of JT-60. This procedure automatically selects variables necessary for the measurements, and selects a set of variables which are not likely to be picked up by physical considerations. Regression equations with stable and small multicollinearity were obtained and it was experimentally confirmed that the measurement formulas obtained through this procedure were accurate enough to be applicable to the feedback control of plasma configurations in JT-60. (author)

  10. Performance of RF power and phase control on JT-60 LHRF heating system

    International Nuclear Information System (INIS)

    Fujii, T.; Ikeda, Y.; Imai, T.; Honda, M.; Kiyono, K.; Maebara, S.; Saigusa, M.; Sakamoto, K.; Sawahata, M.; Seki, M.

    1987-01-01

    The performance of RF power and phase control on the JT-60 LHRFD heating system are presented. The JT-60 LHRF heating system has three units of huge RF source with a total output of 24 MW, each unit consisting of eight amplifier chains. A high power klystron generating 1 MW for 10 s at 2 GHz is used in each chain. Automatic gain control is employed to regulate the output power not only against gain fluctuations in the chain but also against the unstable plasma load without any output circulator for the klystron

  11. Quality control of the software in the JT-60 computer control system

    International Nuclear Information System (INIS)

    Isaji, Nobuaki; Kurihara, Kenichi; Kimura, Toyoaki

    1990-07-01

    The JT-60 Control System should be improved corresponding to the experimental requirements. In order to keep the integrity of the system even in the modification the concept of quality control (QC) was introduced in the software development. What we have done for QC activity are (1) to establish standard procedures of the software development, (2) to develop support tools for grasping the present status of the program structure, and (3) to develop a document system, and a source program management system. This paper reports these QC activities and their problems for the JT-60 control system. (author)

  12. Diagnostic system for passive charge-exchange particle measurements on JT-60

    International Nuclear Information System (INIS)

    Nemoto, Masahiro; Tobita, Kenji; Kusama, Yoshinori; Takeuchi, Hiroshi

    1988-01-01

    In order to measure energy distributions of the charge-exchange neutral particles in the JT-60 experiments, a compact size electrostatic energy analyzer which the measurable energy range is from 1 keV to 100 keV is developed successfully. Compactness of an analyzer is accomplished by setting an accelerator between a gas stripping cell and a deflector of 45deg injection type. The calibration of the analyzer was carried out owing to confirm the capability of energy analysis and stripping efficiency. This analyzer was applied to measure the energy distribution in additionally heated plasmas in JT-60. The usefullness of the analyzer was confirmed. (author)

  13. Estimation of Freezing Point of Hydrocarbon and Hydrofluorocarbon Mixtures for Mixed Refrigerant jt Cryocooler

    Science.gov (United States)

    Hwang, G.; Lee, J.; Jeong, S.

    2010-04-01

    Estimating the freezing point of refrigerant is an essential part in designing an MR JT (Mixed refrigerant Joule-Thomson) cryocooler to prevent itself from clogging and to operate with stability. There were researches on estimating freezing point, but some of them resulted in the wrong prediction of clogging. In this paper, the freezing point of the MR is precisely estimated with caution of clogging. The solubility of HC (hydrocarbon) and HFC (hydrofluorocarbon) mixture components are obtained with their activity coefficients, which represent the molecular interaction among the components. The freezing points of the MR JT cryocooler are systematically investigated in the operating temperature range from 70 K to 90 K.

  14. Study of carbon impurity generation by chemical sputtering in JT-60U

    International Nuclear Information System (INIS)

    Higashijima, S.; Kubo, H.; Sugie, T.; Shimizu, K.; Asakura, N.; Itami, K.; Hosogane, N.; Sakasai, A.; Konoshima, S.; Sakurai, S.; Takenaga, H.

    1997-01-01

    CD/CH-band intensities emitted from hydrocarbon molecules have been measured in the divertor region of JT-60U and the chemical sputtering yield of methane was estimated as a function of the surface temperature and the deuterium ion flux. The chemical sputtering yield increases with the surface temperature and decreases with increasing ion flux density in the L-mode plasmas. The B 4 C converted CFC tiles are installed in JT-60U and it is found that the chemical sputtering of B 4 C converted CFC tiles is suppressed in comparison to normal CFC tiles. (orig.)

  15. Simulations of injection optics for an RFQ cooler and buncher

    CERN Document Server

    Eronen, Tommi

    2002-01-01

    This report is about injection of ions to a new RFQ (which stands for a Radio Frequency Quadrupole) cooler & trap which will be built at ISOLDE, CERN. This device brings very good advantages to existing beamline - for instance, lower emittance in transversal plane and lower energy spread in longitudinal direction. It will be possible to bunch the beam. Lower emittance means that ions can be focused to smaller spot thus improving precision of measurements. For laser experiments bunched beam is much more useful compared to continuous beam. Bunch can be adjusted such that lasers are synchronized with the ion bunch thus increasing signal-to-background ratio. Using buffer gas cooling is also very cost effective and easy to operate - there is only a few tunable parameters in the RFQ. Buffer gas cooling is effective only if ions are much heavier than the buffer gas. Usually this is the case at ISOLDE. One of the most crucial part in the whole RFQ project is the injection. Because of the presence of buffer gas, R...

  16. Method for thermoelectric cooler utilization using manufacturer's technical information

    Science.gov (United States)

    Ajiwiguna, Tri Ayodha; Nugroho, Rio; Ismardi, Abrar

    2018-03-01

    Thermoelectric cooler (TEC) module has been widely used for many applications. In this study, a procedure to use TEC module for specific requirement is developed based on manufacturer's technical data. For study case, the cooling system using TEC module is designed and tested to maintain 6.6 liter of water at 24 °C while surrounding temperature is 26 °C. First, cooling load estimation is performed empirically by observing the temperature change when cold water is inside the container. Second, the working temperature on hot side and cold side of TEC are determined. Third, the parameters of Seebeck coefficient, thermal resistance and electrical resistance are predicted by using information from the manufacturer. Fourth, the operating current is determined by the assumption the voltage across the TEC is 12V. Fifth, cooling capacity of TEC module is calculated by using energy balance equation of TEC. Sixth, the cooling load and cooling capacity are compared to determine the number of TEC module needed. The result of these calculations showed that one TEC module is enough for cooling system since the cooling load is 17.5 W while the cooling capacity is 18.87 W. From the experimental result, the set point temperature was achieved using one TEC module as predicted in calculations steps.

  17. Development of a small Stirling cycle cooler for spaceflight applications

    International Nuclear Information System (INIS)

    Werrett, S.T.; Bradshaw, T.W.; Davey, G.; Delderfield, T.W.; Peskett, G.D.

    1986-01-01

    This paper describes the development, from a previously proven design approach, of a robust and simple Stirling cycle cooler with long life potential. The need for a closed cycle refrigerator for use in a spacecraft borne infra-red radiometer is explained. The refrigerator is to supply 1 watt of cooling at 80 K for less than 80 watts of input power, be able to survive the launch environment and subsequently run for 26000 hours. Clearance seals achieved with a spring suspension developed from earlier space proven mechanisms have led to the production of a linear split Stirling cycle machine with no apparent life limiting features. A servo control system, in conjunction with moving coil motors and LVDT position sensors, permits running of balanced pairs of mechanisms. The working fluid, helium at a pressure of 1.2 MPa, is contained within titanium bodies having gold O-ring seals. A vacuum bakeout procedure, based upon experience and outgassing trials, reduces residual contaminant release to acceptable levels. A prototype refrigerator has been subjected to a vibration test and has subsequently run for 6000 hours with no detectable change in performance

  18. Consideration of Relativistic Dynamics in High-Energy Electron Coolers

    CERN Document Server

    Bruhwiler, David L

    2005-01-01

    A proposed electron cooler for RHIC would use ~55 MeV electrons to cool fully-ionized 100 GeV/nucleon gold ions.* At two locations in the collider ring, the electrons and ions will co-propagate for ~13 m, with velocities close to c and gamma>100. To lowest-order, one can Lorentz transform all physical quantities into the beam frame and calculate the dynamical friction forces assuming a nonrelativisitc, electrostatic plasma. However, we show that nonlinear space charge forces of the bunched electron beam on the ions must be calculated relativistically, because an electrostatic beam-frame calculation is not valid for such short interaction times. The validity of nonrelativistic friction force calculations must also be considered. Further, the transverse thermal velocities of the high-charge (~20 nC) electron bunch are large enough that some electrons have marginally relativistic velocities, even in the beam frame. Hence, we consider relativistic binary collisions – treating the model problem of ...

  19. Cooler Storage Ring at China Institute of Modern Physics

    CERN Document Server

    Wen-Xia, Jia; Zhan, W

    2005-01-01

    CSR, a new ion cooler-storage-ring project in China IMP, is a double ring system, and consists of a main ring (CSRm) and an experimental ring (CSRe). The two existing cyclotrons SFC (K=69) and SSC (K=450) of the Heavy Ion Research Facility in Lanzhou (HIRFL) will be used as its injector system. The heavy ion beams with the energy range of 7-30 MeV/nucleus from the HIRFL will be accumulated, cooled and accelerated to the higher energy range of 100-500 MeV/ nucleus in CSRm, and then extracted fast to produce radioactive ion beams or highly charged heavy ions. Those secondary beams will be accepted and stored or decelerated by CSRe for many internal-target experiments or high precision spectroscopy with beam cooling. On the other hand, the beams with the energy range of 100-1000MeV/ nucleus will also be extracted from CSRm by using slow extraction or fast extraction for many external-target experiments. CSR project was started in the end of 1999 and will be finished in 2006. In this paper the outline and the act...

  20. COSY, proposal for a cooler synchrotron at the KFA Julich

    International Nuclear Information System (INIS)

    Berg, G.P.A.; Gaul, G.; Hacker, H.

    1986-01-01

    The Cooler Synchrotron COSY is being planned in cooperation between scientists of the Kernforschungsanlage Julich, nuclear physicists of the neighbouring universities and other interested scientists. COSY is designed to provide beams of very light ions with energies ranging from 40 MeV to a maximum of 2.5 GeV for protons. This energy range allows a variety of studies in the so called energy window between 150 and 500 MeV, and it permits different kinds of investigations in the medium-energy region including the KΛ-threshold. Both electron cooling and stochastic cooling are foreseen in order to obtain very high phase-space density. The existing isochronous cyclotron JULIC will serve as injector. COSY will contain two bending sections, each consisting of three unit cells, and two long straight sections between the bends. Large flexibility is guaranteed by the ion-optical design. Experiments are being planned that make use either of the high quality external beam prepared by slow extraction or of the very high luminosity that is effective in the recirculator mode of operation

  1. Optimal operation of thermoelectric cooler driven by solar thermoelectric generator

    International Nuclear Information System (INIS)

    Khattab, N.M.; El Shenawy, E.T.

    2006-01-01

    The possibility of using a solar thermoelectric generator (TEG) to drive a small thermoelectric cooler (TEC) is studied in the present work. The study includes the theory of both the TEG and the TEC, giving special consideration to determination of the number of TEG modules required to power the TEC to achieve the best performance of the TEG-TEC system all year round. Commercially available thermoelectric modules (TE) are used in the system. The TEG contains 49 thermocouples and the TEC contains 127 thermocouples. A simple arrangement of plane reflectors that are designed to receive maximum solar energy during noon time is used to heat the TEG. Performance tests are conducted to determine both the physical properties and the performance curves of the available TE modules. Also, empirical relations describing the performance of the TEG and TEC modules have been established. These relations are used to develop a mathematical model simulating the TEG-TEC system to predict its performance all year round under the actual climatic conditions of Cairo, Egypt (30 deg. N latitude). The model results are used to determine the number of TEG modules required to drive a single TEC module at maximum cooling capacity. The results show that five thermocouples of the TEG can drive one thermocouple of the TEC, which coincides with the previous theory of the TEG-TEC. This means that 10 of the used TEG modules are required to power the used TEC at optimum performance most times of the year

  2. Boiling process in oil coolers on porous elements

    Directory of Open Access Journals (Sweden)

    Genbach Alexander A.

    2016-01-01

    Full Text Available Holography and high-speed filming were used to reveal movements and deformations of the capillary and porous material, allowing to calculate thermo-hydraulic characteristics of boiling liquid in the porous structures. These porous structures work at the joint action of capillary and mass forces, which are generalised in the form of dependences used in the calculation for oil coolers in thermal power plants (TPP. Furthermore, the mechanism of the boiling process in porous structures in the field of mass forces is explained. The development process of water steam formation in the mesh porous structures working at joint action of gravitational and capillary forces is investigated. Certain regularities pertained to the internal characteristics of boiling in cells of porous structure are revealed, by means of a holographic interferometry and high-speed filming. Formulas for calculation of specific thermal streams through thermo-hydraulic characteristics of water steam formation in mesh structures are obtained, in relation to heat engineering of thermal power plants. This is the first calculation of heat flow through the thermal-hydraulic characteristics of the boiling process in a reticulated porous structure obtained by a photo film and holographic observations.

  3. The performance evaluation of a micro/nano-scaled cooler working with an ideal Bose gas

    International Nuclear Information System (INIS)

    Guo, Juncheng; Su, Guozhen; Chen, Jincan

    2012-01-01

    Based on the size effect of a confined ideal Bose gas, the design concept of a quantum cooler is originally put forward. The cooler consists of two long tubes with the same length but different sizes of cross section, which are filled up with the ideal Bose gas, and is operated between two heat reservoirs. Expressions for the refrigeration rate and coefficient of performance (COP) of the cooler are derived. The effects of the size effect on the refrigeration rate and COP are discussed. The general performance characteristics of the cooler are revealed. -- Highlights: ► The design concept of a quantum cooler is originally put forward. ► Expressions for the refrigeration rate and coefficient of performance (COP) of the cooler are derived. ► The effects of the size effect on the refrigeration rate and COP are discussed. ► The general performance characteristics of the cooler are revealed. ► The results obtained are more general and significant than those in the current literature.

  4. Inter-cooler in solar-assisted refrigeration system: Theory and experimental verification

    Directory of Open Access Journals (Sweden)

    Zheng Hui-Fan

    2015-01-01

    Full Text Available An inter-cooler in the solar-assisted refrigeration system was investigated experimentally and theoretically, and the theoretical prediction was fairly in good agreement with the experimental data. The influence of pipe diameter, tooth depth, and spiral angle of inter-cooler on the performance of the refrigerant system was analyzed. It was concluded that heat transfer is influenced deeply by the structure parameters of inter-cooler, and the heat transfer capacity increases with tooth depth and spiral angle increasing, and decreases with tooth apex angle increasing.

  5. A micromachined Joule–Thomson cryogenic cooler with parallel two-stage expansion

    NARCIS (Netherlands)

    Cao, Haishan; Vanapalli, Srinivas; Holland, Herman J.; Vermeer, Cristian Hendrik; ter Brake, Hermanus J.M.

    2016-01-01

    There is an increasing need for localized cooling in integrated circuit/microfluidic chips, where cooling is currently achieved by relatively large and bulky cooling systems. Joule–Thomson (JT) cryocoolers are suitable to address these size limitations because they have no cold moving parts and,

  6. Development of the Plasma Movie Database System for JT-60

    International Nuclear Information System (INIS)

    Sueoka, M.; Kawamata, Y.; Kurihara, K.

    2006-01-01

    A plasma movie is generally expected as one of the most efficient methods to know what plasma discharge has been conducted in the experiment. On this motivation we have developed and operated a real-time plasma shape visualization system over ten years. The current plasma movie is composed of (1) video camera picture looking at a plasma, (2) computer graphic (CG) picture, and (3) magnetic probe signal as a sound channel. (1) The plasma video movie is provided by a standard video camera, equipped at the viewing port of the vacuum vessel looking at a plasma poloidal cross section. (2) A plasma shape CG movie is provided by the plasma shape visualization system, which calculates the plasma shape in real-time using the CCS method [Kurihara, K., Fusion Engineering and Design, 51-52, 1049 (2000)]. Thirty snap-shot pictures per second are drawn by the graphic processor. (3) A sound in the movie is a raw signal of magnetic pick up coil. This sound reflects plasma rotation frequency which shows smooth high tone sound seems to mean a good plasma. In order to use this movie efficiently, we have developed a new system having the following functions: (a) To store a plasma movie in the movie database system automatically combined with the plasma shape CG and the sound according to a discharge sequence. (b) To make a plasma movie be available (downloadable) for experiment data analyses at the Web-site. The plasma movie capture system receives the timing signal according to the JT-60 discharge sequence, and starts to record a plasma movie automatically. The movie is stored in a format of MPEG2 in the RAID-disk. In addition, the plasma movie capture system transfers a movie file in a MPEG4 format to the plasma movie web-server at the same time. In response to the user's request the plasma movie web-server transfers a stored movie data immediately. The movie data amount for the MPEG2 format is about 50 Mbyte/shot (65 s discharge), and that for the MPEG4 format is about 7 Mbyte

  7. Operating Modes and Cooling Capabilities of the 3-Stage ADR Developed for the Soft-X-Ray Spectrometer Instrument on Astro-H

    Science.gov (United States)

    Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theo; DiPirro, Michael J.; Letmate, Richard V.; Sampson, Michael A.; Bialas, Tom G.; Sneiderman, Gary A.; Porter, Frederick S.; hide

    2015-01-01

    A 3-stage adiabatic demagnetization refrigerator (ADR) is used on the Soft X-ray Spectrometer instrument on Astro-H to cool a 6x6 array of x-ray microcalorimeters to 50 mK. The ADR is supported by a cryogenic system consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and cool radiation shields within the cryostat. The ADR is configured so that it can use either the liquid helium or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated into the flight dewar in early 2014, and have since been extensively characterized and calibrated. This paper summarizes the operation and performance of the ADR in all of its operating modes

  8. J.T. van der Kemp and his Critique of the Settler Farmers on the ...

    African Journals Online (AJOL)

    Theoretically, I draw on some insights from works of Michel Foucault, especially with regard to eighteenth and early nineteenth century 'representational thought', where 'idea' and 'object' are directly related. Keywords: J.T. van der Kemp, settler farmers, frontier, patriot, rebellion, slavery, baptism, cruelty, Black Circuit Court ...

  9. Development and Operational Experiences of the JT-60U Tokamak and Power Supplies

    International Nuclear Information System (INIS)

    Hosogane, N.; Ninomiya, H.; Matsukawa, M.; Ando, T.; Neyatani, Y.; Horiike, H.; Sakurai, S.; Masaki, K.; Yamamoto, M.; Kodama, K.; Sasajima, T.; Terakado, T.; Ohmori, S.; Ohmori, Y.; Okano, J.

    2002-01-01

    The design of the JT-60U tokamak, the configuration of the coil power supplies, and the operational experiences gained to date are reviewed. JT-60U is a large tokamak upgraded from the original JT-60 in order to obtain high plasma current, large plasma volume, and highly elongated divertor configurations. All components inside the toroidal magnetic field coils, such as vacuum vessel, poloidal magnetic field coils, divertor, etc., were modified. Various technologies and ideas were introduced to develop these components; for example, a multi-arc double skin wall structure for the vacuum vessel and a functional poloidal magnetic field coil system with taps for obtaining various plasma configurations. Furthermore, boron-carbide coated carbon fiber composite (CFC) tiles were used as divertor tiles to reduce erosion of carbon-base tiles. Later, a semiclosed divertor with pumps, for which cryo-panels originally used for NBI units were converted, was installed in the replacement of the open divertor. These development and operational results provide data for future tokamaks. Major failures experienced in the long operational period of JT-60U, such as water leakage from the toroidal magnetic field coil, fracture of carbon tiles, and breakdown of a filter capacitor, are described. As a maintenance issue for tokamaks using deuterium fueling gas, a method for reducing radiation exposure of in-vessel workers is described

  10. The design study of the JT-60SU device. No.8. Nuclear shielding and safety design

    Energy Technology Data Exchange (ETDEWEB)

    Miya, Naoyuki; Kikuchi, Mitsuru; Ushigusa, Kenkichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1998-03-01

    Results of nuclear shielding design study and safety analysis for the steady-state tokamak device JT-60SU are described. D-T operation (option) for two years is adopted in addition to ten years operation using deuterium. Design work has been done in accordance with general laws for radioisotopes handling in Japan as a guideline of safety evaluation, which is applied to the operation of present JT-60U device. Optimization of the shielding design for the device structure including vacuum vessel has been presented to meet with allowable limits of biological shielding determined in advance. It is shown that JT-60SU can be operated safely in the present JT-60 experimental building. It is planed to use 100g/year of tritium in D-T operation phase. A concept of multiple -barrier system is applied to the facility design to prevent propagation of tritium, in which the torus hall and the tritium removal room provide the tertiary confinement. From the design of atmosphere detritiation system for accidental tritium release, it is shown that tritium concentration level can be reduced to the allowable level after two weeks with reasonable compact size components. Safety assessment related to activation of coolant/air, and atmospheric tritium effluents are discussed. (author)

  11. Design and characteristics of the drive mechanism for movable limiters of JT-60, (1)

    International Nuclear Information System (INIS)

    Takashima, Tetsuo; Morishita, Osamu; Yamamoto, Masahiro; Shimizu, Masatsugu; Ohta, Mitsuru

    1976-10-01

    Two fast-acting movable rail limiters will be installed in a large Tokamak JT-60 being designed in JAERI. The movable limiter consists of a drive mechanism, a vacuum seal, a bearing, and a molybdenum rail limiter. Design of the drive mechanism for the movable limiter and experimental results on the driving characteristics in full scale are described. (auth.)

  12. Core transport properties in JT-60U and JET identity plasmas

    NARCIS (Netherlands)

    Litaudon, X.; Sakamoto, Y.; de Vries, P. C.; Salmi, A.; Tala, T.; Angioni, C.; Benkadda, S.; Beurskens, M. N. A.; Bourdelle, C.; Brix, M.; Crombe, K.; Fujita, T.; Futatani, S.; Garbet, X.; Giroud, C.; Hawkes, N. C.; Hayashi, N.; Hoang, G. T.; Hogeweij, G. M. D.; Matsunaga, G.; Nakano, T.; Oyama, N.; Parail, V.; Shinohara, K.; Suzuki, T.; Takechi, M.; Takenaga, H.; Takizuka, T.; Urano, H.; Voitsekhovitch, I.; Yoshida, M.

    2011-01-01

    The paper compares the transport properties of a set of dimensionless identity experiments performed between JET and JT-60U in the advanced tokamak regime with internal transport barrier, ITB. These International Tokamak Physics Activity, ITPA, joint experiments were carried out with the same plasma

  13. Edge pedestal characteristics in JET and JT-60U tokamaks under variable toroidal field ripple

    NARCIS (Netherlands)

    Urano, H.; Saibene, G.; Oyama, N.; Parail, V.; P. de Vries,; Sartori, R.; Kamada, Y.; Kamiya, K.; Loarte, A.; Lonnroth, J.; Sakamoto, Y.; Salmi, A.; Shinohara, K.; Takenaga, H.; Yoshida, M.

    2011-01-01

    The effects of toroidal field (TF) ripple on the edge pedestal characteristics were examined in the TF ripple scan experiments at the plasma current I(p) of 1.1 MA in JET and JT-60U. The TF ripple amplitude delta(R) was defined as a value averaged over the existing ripple wells at the separatrix on

  14. Machine performance and its effects on experiments in JT-60U

    International Nuclear Information System (INIS)

    Kondo, I.

    1995-01-01

    The operational results of JT-60U were reviewed in light of the strategy made at the design stage. The operational plan for better confinement shifted from that of low q to high poloidal beta plasma configuration with higher q value according to the revealed machine properties. Some technical and operational skills helped bring about the recent results out of the machine. (orig.)

  15. VME multiprocessor system for plasma control at the JT-60 Upgrade

    International Nuclear Information System (INIS)

    Kimura, T.; Kurihara, K.; Takahashi, M.; Kawamata, Y.; Akasaka, H.; Matsukawa, M.

    1989-01-01

    In this paper design and preliminary tests are reported of a VME multiprocessor system for the JT-60 Upgrade plasma control utilizing three MC88100 based RISC computers and VME buses. The design of the VME system was stimulated by faster and more accurate computation requirements for the plasma position and shape control

  16. JT-60 negative ion beam NBI apparatus. Present state of its construction and initial experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, Masaaki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1997-02-01

    The NBI (Neutral Beam Injection) apparatus used for negative ion at first in the world, has an aim to actually prove heating and electric current drive with high density plasma at the JT-60 and to constitute physical and technical bases for selection and design of heating apparatus of ITER (International Thermal Nuclear Fusion Experimental Reactor). Construction of 500 KeV negative ion NBI apparatus for the JT-60 started to operate on 1993 was completed at March, 1996. On the way, at a preliminary test on forming and acceleration of the negative ion beam using a portion of this apparatus, 400 KeV and 13.5 A/D of the highest deuterium negative ion beam acceleration in the world was obtained successfully, which gave a bright forecasting of the plasma heating and electric current drive experiment using the negative ion NBI apparatus. After March, 1996, some plans to begin beam incident experiment at the JT-60 using the negative ion NBI apparatus and to execute the heating and electric current drive experiment at the JT-60 under intending increase of beam output are progressed. (G.K.)

  17. Addressing Water Consumption of Evaporative Coolers with Greywater

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, Rashmi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-07-01

    Evaporative coolers (ECs) provide significant gains in energy efficiency compared to vapor compression air conditioners, but simultaneously have significant onsite water demand. This can be a major barrier to deployment in areas of the world with hot and arid climates. To address this concern, this study determined where in the world evaporative cooling is suitable, the water consumption of ECs in these cities, and the potential that greywater can be used reduce the consumption of potable water in ECs. ECs covered 69percent of the cities where room air conditioners are may be deployed, based on comfort conditions alone. The average water consumption due to ECs was found to be 400 L/household/day in the United States and Australia, with the potential for greywater to provide 50percent this amount. In the rest of the world, the average water consumption was 250 L/household/day, with the potential for greywater to supply 80percent of this amount. Home size was the main factor that contributed to this difference. In the Mediterranean, the Middle East, Northern India, and the Midwestern and Southwestern United States alkalinity levels are high and water used for bleeding will likely contribute significantly to EC water consumption. Although technically feasible, upfront costs for household GW systems are currently high. In both developed and developing parts of the world, however, a direct EC and GW system is cost competitive with conventional vapor compression air conditioners. Moreover, in regions of the world that face problems of water scarcity the benefits can substantially outweigh the costs.

  18. Numerical study on interaction of local air cooler with stratified hydrogen cloud in a large vessel

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Z. [Atomic Energy of Canada Limited, Chalk River Laboratories, ON K0J 1J0 (Canada); Andreani, M. [Laboratory for Thermal-Hydraulics, Paul Scherrer Institut, 5232 Villigen (Switzerland)

    2012-07-01

    Within the framework of the ERCOSAM project, planning calculations are performed to examine sensitivity parameters that can affect the break-up (erosion) of a helium layer by mitigation devices (i.e., cooler, spray, or Passive Autocatalytic Recombiner - PAR). This paper reports the GOTHIC analysis results for the cooler tests to be performed in the PANDA facility. The cooler elevation and geometry, helium layer thickness, steam distribution in the vessel, and the vessel geometry (inter-connected multi-compartments versus a single volume) on the erosion process as well as the cooling capacity are studied. This analysis is valuable because only a limited number of conditions will be examined in the planned experiments. The study provides a useful understanding of the interaction of a cooler with a stratified atmosphere. (authors)

  19. Review of ICRF antenna development and heating experiments up to advanced experiment I, 1989 on the JT-60 tokamak

    International Nuclear Information System (INIS)

    Fujii, Tsuneyuki

    1992-03-01

    Two main subjects of ion cyclotron range of frequencies (ICRF) heating on JT-60 are described in this paper from development phase of the JT-60 ICRF heating system up to advanced experiment I, 1989. One is antenna design and development for the high power JT-60 ICRF heating system (6 MW for 10 s at a frequency range of 108 - 132 MHz). The other is the experimental investigation of characteristics of second harmonic ICRF heating in a large tokamak. (J.P.N.)

  20. Development of a linear motion antenna for the JT-60SA ECRF system

    International Nuclear Information System (INIS)

    Moriyama, Shinichi; Kobayashi, Takayuki; Isayama, Akihiko; Hoshino, Katsumichi; Suzuki, Sadaaki; Hiranai, Shinichi; Yokokura, Kenji; Sawahata, Masayuki; Terakado, Masayuki; Hinata, Jun; Wada, Kenji; Sato, Yoshikatsu

    2013-01-01

    Highlights: ► Development of an antenna featuring linear motion (LM) concept for long pulse electron cyclotron range of frequency (ECRF) heating and current drive in JT-60SA is in progress. ► A mock-up using a metallic sliding bearing with solid lubricant was fabricated. ► A vacuum pumping test with mass analyzer showed evidence of some hydrocarbons during shaft motion. ► Injection beam profile in toroidal beam scan was checked by low power measurement with mock-up. ► Current drive characteristics with the LM antenna for typical experimental scenarios of JT-60SA have been investigated by calculation. -- Abstract: Development of an antenna that features the linear motion (LM) concept for long-pulse electron-cyclotron range of frequency heating and current drive for the JT-60SA is in progress. Combining a linearly movable first mirror and a fixed curved second mirror allows the injection-beam angle to be controlled. Cooling water is fed through the drive shaft for the first mirror and through the fixed support for the second mirror. The shaft support structure uses a metallic sliding bearing with a solid lubricant. The sliding bearing supports combined linear and rotational motion, whereas a conventional ball bearing supports either linear or rotational motion. Therefore, the sliding bearing offers the advantage of reducing the support-structure volume, which is important in the design of the relatively narrow port duct of the JT-60SA. Recently, the sliding bearing has been installed into the mockup. Results of a vacuum test with a mass analyzer indicate the presence of hydrocarbons during shaft motion. The injection-beam profile obtained from a toroidal beam scan is checked against low-power measurements taken on the mockup. Finally, for typical JT-60SA experimental scenarios, heating- and current-drive characteristics of the LM antenna are investigated theoretically

  1. Experimental characterization of the Hitrap Cooler trap with highly charged ions.

    OpenAIRE

    Fedotova, Svetlana

    2013-01-01

    The HITRAP (Highly charged Ions TRAP)facility is being set up and commissioned at GSI, Darmstadt. It will provide heavy, highly charged ions at low velocities to high-precision atomic physics experiments. Within this work the Cooler trap- the key element of the HITRAP facility was tested. The Cooler trap was assembled, aligned, and commissioned in trapping experiments with ions from off-line sources.The work performed within the scope of this thesis provided the baseline for further operation...

  2. MEMS based shock pulse detection sensor for improved rotary Stirling cooler end of life prediction

    Science.gov (United States)

    Hübner, M.; Münzberg, M.

    2018-05-01

    The widespread use of rotary Stirling coolers in high performance thermal imagers used for critical 24/7 surveillance tasks justifies any effort to significantly enhance the reliability and predictable uptime of those coolers. Typically the lifetime of the whole imaging device is limited due to continuous wear and finally failure of the rotary compressor of the Stirling cooler, especially due to failure of the comprised bearings. MTTF based lifetime predictions, even based on refined MTTF models taking operational scenario dependent scaling factors into account, still lack in precision to forecast accurately the end of life (EOL) of individual coolers. Consequently preventive maintenance of individual coolers to avoid failures of the main sensor in critical operational scenarios are very costly or even useless. We have developed an integrated test method based on `Micro Electromechanical Systems', so called MEMS sensors, which significantly improves the cooler EOL prediction. The recently commercially available MEMS acceleration sensors have mechanical resonance frequencies up to 50 kHz. They are able to detect solid borne shock pulses in the cooler structure, originating from e.g. metal on metal impacts driven by periodical forces acting on moving inner parts of the rotary compressor within wear dependent slack and play. The impact driven transient shock pulse analyses uses only the high frequency signal <10kHz and differs therefore from the commonly used broadband low frequencies vibrational analysis of reciprocating machines. It offers a direct indicator of the individual state of wear. The predictive cooler lifetime model based on the shock pulse analysis is presented and results are discussed.

  3. Calculation of forces on reactor containment fan cooler piping

    International Nuclear Information System (INIS)

    Miller, J.S.; Ramsden, K.

    2004-01-01

    The purpose of this paper is to present the results of the Reactor Containment Fan Cooler (RCFC) system piping load calculations. These calculations are based on piping loads calculated using the EPRI methodology and RELAP5 to simulate the hydraulic behavior of the system. The RELAP5 generated loads were compared to loads calculated using the EPRI GL-96-06 methodology. This evaluation was based on a pressurized water reactor's RCFC coils thermal hydraulic behavior during a Loss of Offsite Power (LOOP) and a loss of coolant accident (LOCA). The RCFC consist of two banks of service water and chill water coils. There are 5 SX and 5 chill water coils per bank. Therefore, there are 4 RCFC units in the containment with 2 banks of coils per RCFC. Two Service water pumps provide coolant for the 4 RCFC units (8 banks total, 2 banks per RCFC unit and 2 RCFC units per pump). Following a LOOP/LOCA condition, the RCFC fans would coast down and upon being re-energized, would shift to low-speed operation. The fan coast down is anticipated to occur very rapidly due to the closure of the exhaust damper as a result of LOCA pressurization effects. The service water flow would also coast down and be restarted in approximately 43 seconds after the initiation of the event. The service water would drain from the RCFC coils during the pump shutdown and once the pumps restart, water is quickly forced into the RCFC coils causing hydraulic loading on the piping. Because of this scenario and the potential for over stressing the piping, an evaluation was performed by the utility using RELAP5 to assess the piping loads. Subsequent to the hydraulic loads being analyzed using RELAP5, EPRI through GL-96-06 provided another methodology to assess loads on the RCFC piping system. This paper presents the results of using the EPRI methodology and RELAP5 to perform thermal hydraulic load calculations. It is shown that both EPRI methodology and RELAP5 calculations can be used to generate hydraulic loads

  4. Studies on capillary tube expansion device used in J-T refrigerators operating with nitrogen-hydrocarbon mixtures

    Science.gov (United States)

    Harish Kruthiventi, S. S.; Venkatarathnam, G.

    2017-10-01

    Capillary tube expansion devices are used extensively in small closed cycle J-T refrigerators operating with refrigerant mixtures due to its low cost and the absence of any moving parts. It is possible for J-T refrigerators operating with mixtures that the velocity of refrigerant mixture at capillary tube outlet reaches a value where it equals the speed of sound at certain conditions. The variation of the speed of sound of nitrogen-hydrocarbon mixtures used in J-T refrigerators has been studied in two phase (vapour-liquid) and three-phase (Vapour-liquid-liquid) region as a function of temperature and pressure in this work. Also the conditions under which choking occurs in practical J-T refrigerators is investigated.

  5. Review of JT-60U experimental results in 1998

    International Nuclear Information System (INIS)

    Adachi, H.; Akasaka, H.; Akino, N.

    1999-09-01

    Based on the high confinement regimes such as reversed shear mode, high-β p mode and H-mode, the JT-60U experiment in 1998 was devoted to expand the discharge regimes in terms of 1) achievement of high fusion gain, 2) concept optimization for long sustainment of the advanced modes for >>τ E and >τ p * with the current profile close to the steady-state solution, 3) high confinement by electron heating (T e >T i ), 4) high confinement at high electron density and/or at high divertor radiation and 5) active control of multiple parameters including both core and divertor plasmas. As for the reversed shear mode, high performance discharges satisfying Q DT eq (DT equivalent fusion gain ) >1 were obtained reproducibly and the record value of Q DT eq =1.25 was achieved in a reactor-relevant thermonuclear dominant regime due to the optimized discharge scenario using feedback control of the neutron production rate where β-values were kept in the MHD stable region during the I p ramping phase with a large radius of the internal transport barrier (ITB). The reduction of Z eff obtained after installation of W-shaped pumped divertor increased fusion reaction rate. Concerning long sustainment, the reversed shear ELMy H-mode with H 89PL -factor∼1.5-2 and β N =1.0-1.4 was kept for 5.5 s with NB heating. By off axis LH current drive, the reversed shear current profile with the ITB was kept constant for 4.7 s under full non- inductive current drive condition (LHCD=77%, bootstrap=23%) at T e -1.2T i . In the high-β p ELMy H-mode regime, benefits of the high triangularity shape were demonstrated. At a high triangularity δ X ∼0.46, β N =2.5-2.7 was sustained for 3.5 s even at the low value of q 95 =2.9-3.3. The product of β N xH-factor sustainable for >5τ E (>τ p *) increases with δ x and reaches ∼6 at δ X ∼0.46. In addition to extension of the discharge regimes, the key phenomena determining transport and stability around ITBs were studied intensively. For the

  6. Review of JT-60U experimental results in 2000

    International Nuclear Information System (INIS)

    2002-11-01

    The results of JT-60U experiments in 2000, from February to December, are reviewed. The performance under the full non-inductive current drive has been greatly advanced both in high β p H-mode plasmas and in reversed shear (RS) plasmas. In the high β p H-mode, with injection of the negative ion based neutral beam (NNB) of 360 keV and 4 MW into a high electron temperature plasma (T e (0) ∼ 13 keV), a high fusion triple product n D (0)T i (0)τ E = 2.0 x 10 20 keVm -3 s has been obtained at the plasma current of 1.5 MA, and the highest value of current drive efficiency of NNB (1.55 x 10 19 A/W/m 2 ) has been achieved. In RS, LHCD and NNB-CD were employed for current drive and high confinement (HH y2 ∼ 1.4) at high density (f GW ∼ 0.80) has been achieved. In the 110 GHz ECRF system, two more gyrotrons have been installed in addition to the one installed in 1999 and 1.5 MW was injected into the torus for 3 s. Complete stabilization of neoclassical tearing mode (NTM), realization of high confinement plasmas with T e ∼ T i , a high value (1 MA) of NNB-driven current in the high T e regime, and measurement of localized EC driven current were achieved with the upgraded EC system. The multiple pellet injection system has been newly installed. In high power NB heated plasmas, high-field-side pellet injection was more effective than low-field-side injection, and it extended the regime of high confinement high β p H-mode to a higher density. A new method, called CCS (Cauchy-condition surface method), for the control of the plasma position and shape in real-time became available and was found very useful especially for the control of plasma-wall clearance in LH and IC experiments. The active control of ITB strength by the switch of the injection direction of toroidal angular momentum was successfully demonstrated. In high triangularity H-mode plasmas, higher pressure and temperature at the edge pedestal were observed, which resulted in higher temperature and

  7. Review of JT-60U experimental results in 1998

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, H.; Akasaka, H.; Akino, N. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1999-09-01

    Based on the high confinement regimes such as reversed shear mode, high-{beta}{sub p} mode and H-mode, the JT-60U experiment in 1998 was devoted to expand the discharge regimes in terms of 1) achievement of high fusion gain, 2) concept optimization for long sustainment of the advanced modes for >>{tau}{sub E} and >{tau}{sub p}* with the current profile close to the steady-state solution, 3) high confinement by electron heating (T{sub e}>T{sub i}), 4) high confinement at high electron density and/or at high divertor radiation and 5) active control of multiple parameters including both core and divertor plasmas. As for the reversed shear mode, high performance discharges satisfying Q{sub DT}{sup eq} (DT equivalent fusion gain ) >1 were obtained reproducibly and the record value of Q{sub DT}{sup eq}=1.25 was achieved in a reactor-relevant thermonuclear dominant regime due to the optimized discharge scenario using feedback control of the neutron production rate where {beta}-values were kept in the MHD stable region during the I{sub p} ramping phase with a large radius of the internal transport barrier (ITB). The reduction of Z{sub eff} obtained after installation of W-shaped pumped divertor increased fusion reaction rate. Concerning long sustainment, the reversed shear ELMy H-mode with H{sup 89PL}-factor{approx}1.5-2 and {beta}{sub N}=1.0-1.4 was kept for 5.5 s with NB heating. By off axis LH current drive, the reversed shear current profile with the ITB was kept constant for 4.7 s under full non- inductive current drive condition (LHCD=77%, bootstrap=23%) at T{sub e}-1.2T{sub i}. In the high-{beta}{sub p} ELMy H-mode regime, benefits of the high triangularity shape were demonstrated. At a high triangularity {delta}{sub X}{approx}0.46, {beta}{sub N}=2.5-2.7 was sustained for 3.5 s even at the low value of q{sub 95}=2.9-3.3. The product of {beta}{sub N}xH-factor sustainable for >5{tau}{sub E} (>{tau}{sub p}*) increases with {delta}{sub x} and reaches {approx}6 at {delta

  8. Joint resistance measurements of pancake and terminal joints for JT-60SA EF coils

    Energy Technology Data Exchange (ETDEWEB)

    Obana, Tetsuhiro, E-mail: obana.tetsuhiro@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Takahata, Kazuya; Hamaguchi, Shinji; Mito, Toshiyuki; Imagawa, Shinsaku [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kizu, Kaname; Murakami, Haruyuki; Yoshida, Kiyoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2013-11-15

    Highlights: • To evaluate the joint fabrication technology for the JT-60SA EF coils, joint resistance measurements were conducted with a joint sample. • The joint sample was composed of pancake and terminal joints. • The measurements demonstrated that both joints fulfilled the design requirement. • Considering the measurements, the characteristics of both joints were investigated using an analytical model that represents the joints. -- Abstract: To evaluate the joint fabrication technology for the JT-60SA EF coils, joint resistance measurements were conducted using a sample consisting of pancake and terminal joints. Both joints are shake-hands lap joints composed of cable-in-conduit conductors and a pure copper saddle-shaped spacer. The measurements demonstrated that both joints fulfilled the design requirement. Considering these measurements, the characteristics of both joints were investigated using analytical models that represent the joints. The analyses indicated that the characteristics of the conductors used in the joints affect the characteristics of the joints.

  9. A new workstation based man/machine interface system for the JT-60 Upgrade

    International Nuclear Information System (INIS)

    Yonekawa, I.; Shimono, M.; Totsuka, T.; Yamagishi, K.

    1992-01-01

    Development of a new man/machine interface system was stimulated by the requirements of making the JT-60 operator interface more 'friendly' on the basis of the past five-year operational experience. Eleven Sun/3 workstations and their supervisory mini-computer HIDIC V90/45 are connected through the standard network; Ethernet. The network is also connected to the existing 'ZENKEI' mini-computer system through the shared memory on the HIDIC V90/45 mini-computer. Improved software, such as automatic setting of the discharge conditions, consistency check among the related parameters and easy operation for discharge result data display, offered the 'user-friendly' environments. This new man/machine interface system leads to the efficient operation of the JT-60. (author)

  10. Design, fabrication and test of double-wall vacuum vessel for JT-60U

    International Nuclear Information System (INIS)

    Uchikawa, Takashi; Ioki, Kimihiro; Ninomiya, Hiromasa.

    1994-01-01

    A double-wall vacuum vessel was designed and fabricated for JT-60U (an upgraded machine of JT-60), which has a plasma current up to 6 MA and a large plasma volume (100 m 3 ). A new concept of Inconel 625 all-welded structure was adopted to the vessel, that comprises an inner plate, square tubes and an outer plate. The vacuum vessel with a multi-arc D-shaped cross section was fabricated by using hot-sizing press. The electromagnetic and structural analysis has been performed for plasma disruption loads. Dynamic responses of the vessel were measured during plasma disruptions, and the observed displacement had a good agreement with the result of FEM analysis. (author)

  11. Physics and operation oriented activities in preparation of the JT-60SA tokamak exploitation

    Science.gov (United States)

    Giruzzi, G.; Yoshida, M.; Artaud, J. F.; Asztalos, Ö.; Barbato, E.; Bettini, P.; Bierwage, A.; Boboc, A.; Bolzonella, T.; Clement-Lorenzo, S.; Coda, S.; Cruz, N.; Day, Chr.; De Tommasi, G.; Dibon, M.; Douai, D.; Dunai, D.; Enoeda, M.; Farina, D.; Figini, L.; Fukumoto, M.; Galazka, K.; Galdon, J.; Garcia, J.; Garcia-Muñoz, M.; Garzotti, L.; Gil, C.; Gleason-Gonzalez, C.; Goodman, T.; Granucci, G.; Hayashi, N.; Hoshino, K.; Ide, S.; Imazawa, R.; Innocente, P.; Isayama, A.; Itami, K.; Joffrin, E.; Kamada, Y.; Kamiya, K.; Kawano, Y.; Kawashima, H.; Kobayashi, T.; Kojima, A.; Kubo, H.; Lang, P.; Lauber, Ph.; de la Luna, E.; Maget, P.; Marchiori, G.; Mastrostefano, S.; Matsunaga, G.; Mattei, M.; McDonald, D. C.; Mele, A.; Miyata, Y.; Moriyama, S.; Moro, A.; Nakano, T.; Neu, R.; Nowak, S.; Orsitto, F. P.; Pautasso, G.; Pégourié, B.; Pigatto, L.; Pironti, A.; Platania, P.; Pokol, G. I.; Ricci, D.; Romanelli, M.; Saarelma, S.; Sakurai, S.; Sartori, F.; Sasao, H.; Scannapiego, M.; Shimizu, K.; Shinohara, K.; Shiraishi, J.; Soare, S.; Sozzi, C.; Stępniewski, W.; Suzuki, T.; Suzuki, Y.; Szepesi, T.; Takechi, M.; Tanaka, K.; Terranova, D.; Toma, M.; Urano, H.; Vega, J.; Villone, F.; Vitale, V.; Wakatsuki, T.; Wischmeier, M.; Zagórski, R.

    2017-08-01

    The JT-60SA tokamak, being built under the Broader Approach agreement jointly by Europe and Japan, is due to start operation in 2020 and is expected to give substantial contributions to both ITER and DEMO scenario optimisation. A broad set of preparation activities for an efficient start of the experiments on JT-60SA is being carried out, involving elaboration of the Research Plan, advanced modelling in various domains, feasibility and conception studies of diagnostics and other sub-systems in connection with the priorities of the scientific programme, development and validation of operation tools. The logic and coherence of this approach, as well as the most significant results of the main activities undertaken are presented and summarised.

  12. A coil test facility for the cryogenic tests of the JT-60SA TF coils

    International Nuclear Information System (INIS)

    Chantant, M.; Genini, L.; Bayetti, P.; Millet, F.; Wanner, M.; Massaut, V.; Corte, A. Della; Ardelier-Desage, F.; Catherine-Dumont, V.; Dael, A.; Decool, P.; Donati, A.; Duchateau, J.L.; Garibaldi, P.; Girard, S.; Hatchressian, J.C.; Fejoz, P.; Jamotton, P.; Jourdheuil, L.; Juster, F.P.

    2011-01-01

    In the framework of the Broader Approach Activities, the EU will deliver to Japan the 18 superconducting coils, which constitute the JT-60SA Toroidal field magnet. These 18 coils, manufactured by France and Italy, will be cold tested before shipping to Japan. For this purpose, the European Joint Undertaking for ITER, the Development of Fusion Energy ('Fusion for Energy', F4E) and the European Voluntary Contributors are collaborating to design and set-up a coil test facility (CTF) and to perform the acceptance test of the 18 JT-60SA Toroidal Field (TF) coils. The test facility is designed to test one coil at a time at nominal current and cryogenic temperature. The test of the first coil of each manufacturer includes a quench triggered by increasing the temperature. The project is presently in the detailed design phase.

  13. Review of JT-60U experimental results from February to October, 1995

    International Nuclear Information System (INIS)

    1996-03-01

    Renewed theme group organization started from October 1994 for the upcoming experiments in JT-60U. This regime has three theme groups each of which is composed of two sub-theme groups as; (1) Plasma Operation Theme (Leader Y. Neyatani) with Operation Sub-Theme and Disruption Sub-Theme, (2) High Performance (Leader S. Ishida) with Confinement and MHD Sub-Theme and High Energy Particle Sub-Theme and (3) Steady State Theme (Leader A. Sakasai) with Current Drive Sub-Theme and Divertor Sub-Theme. The main results from the JT-60U experiments in 1995 are summarized in the overviews of the three theme group activities. (J.P.N.)

  14. Development of virtual private network for JT-60SA CAD integration

    International Nuclear Information System (INIS)

    Oshima, Takayuki; Fujita, Takaaki; Seki, Masami; Kawashima, Hisato; Hoshino, Katsumichi; Shibanuma, Kiyoshi; Verrecchia, M.; Teuchner, B.

    2010-01-01

    The CAD models will be exchanged and integrated at Naka for JT-60SA, a common computer network efficiently connected between Naka site and the Garching site is needed to be established. Virtual Private Network (VPN) was introduced with LAN on computer network physically-separated from JAEA intranet area and firewall. In July 2009, a new VPN connection between the Naka and Garching sites has been successfully demonstrated using IPSec-VPN technology with a commercial and cost-effective firewall/router for security. It was found that the introduction of the Wide Area File Service (WAFS) could solve the issue of the data transmission time and enhance the usability of the VPN for design integration in JT-60SA. (author)

  15. The healthiness of JT-60 ICRF antenna and development of its temperature measurement device

    International Nuclear Information System (INIS)

    Hiranai, Shinichi; Yokokura, Kenji; Moriyama, Shinichi; Sato, Tomio; Ishii, Kazuhiro; Fujii, Tsuneyuki

    1998-03-01

    Ion Cyclotron Range of Frequency (ICRF) heating system in JT-60 employs two antennas to couple RF power in the range of 100 MHz to the plasma. The antennas are installed in the vacuum vessel of JT-60, facing to the high temperature plasma. Due to the severe heat load from the plasma, parts of the antenna surface are suffering from melt. It is important to investigate the mechanism of the heat load and the melting. 'Temperature measurement for ICRF antenna surface' employing an infrared thermographic camera has been developed, in order to investigate the heat load to the antenna and to maintain the antenna available. We have succeeded in minimizing the melting damage of the antenna surface using the temperature measurement device. (author)

  16. Construction of negative-ion based NBI for JT-60U

    International Nuclear Information System (INIS)

    Kawai, Mikito; Akino, Noboru; Ebisawa, Noboru

    2001-11-01

    The world's first negative-ion based neutral beam injector (N-NBI) system has been developed for studies of non-inductive current drive and plasma core heating with high energy neutral beam injection in higher density plasma. Construction of the N-NBI system for JT-60U was completed in March 1996. The system is composed of a beamline with two ion sources, a set of ion source power supplies, control system and auxiliary sub-system such as cooling water, refrigeration and vacuum system. In July 2001, deuterium neutral beam injection of 400keV and 5.8MW into JT-60U plasma was achieved. In order to increase both beam power and energy we have to go on more improvement of the N-NBI. (author)

  17. Global energy confinement in JT-60 neutral beam heated L-mode discharges

    International Nuclear Information System (INIS)

    Naito, O.; Hosogane, N.; Tsuji, S.; Ushigusa, K.; Yoshida, H.

    1990-01-01

    The global energy confinement characteristics of neutral beam heated JT-60 discharges are presented. There is a difference in the dependence of the energy confinement time on the plasma current between limiter and divertor discharges. For limiter discharges, the energy confinement increases with plasma current up to 3.2 MA, whereas for divertor discharges this improvement saturates when the safety factor drops below 3, independent of the location of the X-point. The JT-60 L-mode results indicate that the deterioration in energy confinement for q < 3, which is also found in H-mode regimes of other devices, may be a universal characteristic of divertor discharges. Regarding the scaling with plasma size, it is shown that the global/incremental confinement time increases with plasma minor radius. For sufficiently large plasmas, however, the global/incremental confinement time is no longer a function of minor radius. (author). 13 refs, 14 figs

  18. Results of the H-mode experiments with JT-60 outer and lower divertors

    International Nuclear Information System (INIS)

    Nakamura, Hiroo; Tsuji, Shunji; Nagami, Masayuki

    1989-08-01

    In JT-60, hydrogen H-mode experiments with outer and lower divertors were performed. In the outer divertor, H-mode were obtained, similar to the ones observed in the other lower/upper divertors. Its threshold absorbed power and electron density were 16 MW and 1.8 x 10 19 m -3 . In the two combined heatings with NB+ICRF and NB+LHRF, H-mode discharges are also obtained. Moreover, in new configuration of lower divertor, H-mode phases without and with ELM are obtained. Typical results of the lower divertor are shown to compare the H-mode characteristics between the two configurations. Improvement of the energy confinement time in the two divertors was limited to 10 %. Analyses on ballooning/interchange instabilities were carried out with precise equlibria of JT-60. These results showed that the both modes were enough stable. (author)

  19. Plasma regimes and research goals of JT-60SA towards ITER and DEMO

    International Nuclear Information System (INIS)

    Kamada, Y.; Ide, S.; Fujita, T.; Suzuki, T.; Matsunaga, G.; Yoshida, M.; Shinohara, K.; Urano, H.; Nakano, T.; Sakurai, S.; Kawashima, H.; Barabaschi, P.; Lackner, K.; Ishida, S.; Bolzonella, T.

    2011-01-01

    The JT-60SA device has been designed as a highly shaped large superconducting tokamak with a variety of plasma actuators (heating, current drive, momentum input, stability control coils, resonant magnetic perturbation coils, W-shaped divertor, fuelling, pumping, etc) in order to satisfy the central research needs for ITER and DEMO. In the ITER- and DEMO-relevant plasma parameter regimes and with DEMO-equivalent plasma shapes, JT-60SA quantifies the operation limits, plasma responses and operational margins in terms of MHD stability, plasma transport and confinement, high-energy particle behaviour, pedestal structures, scrape-off layer and divertor characteristics. By integrating advanced studies in these research fields, the project proceeds 'simultaneous and steady-state sustainment of the key performances required for DEMO' with integrated control scenario development applicable to the highly self-regulating burning high-β high bootstrap current fraction plasmas.

  20. Absolute calibration of the neutron yield measurement on JT-60 Upgrade

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Takeuchi, Hiroshi; Barnes, C.W.

    1991-10-01

    Absolutely calibrated measurements of the neutron yield are important for the evaluation of the plasma performance such as the fusion gain Q in DD operating tokamaks. Total neutron yield is measured with 235 U and 238 U fission chambers and 3 He proportional counters in JT-60 Upgrade. The in situ calibration was performed by moving the 252 Cf neutron source toroidally through the JT-60 vacuum vessel. Detection efficiencies of three 235 U and two 3 He detectors were measured for 92 locations of the neutron point source in toroidal scans at two different major radii. The total detection efficiency for the torus neutron source was obtained by averaging the point efficiencies over the whole toroidal angle. The uncertainty of the resulting absolute plasma neutron source calibration is estimated to be ± 10%. (author)

  1. JT-60 power tests from mechanical and thermal viewpoints of tokamak machine

    International Nuclear Information System (INIS)

    Takatsu, H.; Yamamoto, M.; Ohkubo, M.

    1986-01-01

    JT-60 power tests were carried out, to demonstrate, in advance of actual plasma operation, satisfactory performance of the tokamak machine, power suppliers and control system in combination. The tests began with low power ones of individual coil systems, progressed to full power ones and concluded successfully. The present paper describes the principal results of JT-60 power tests from mechanical and thermal viewpoints of tokamak machine. All of the coil systems were raised up to full power operation in combination and system performance was verified including thermal and mechanical integrity of tokamak machine. Measured strain and displacement showed good agreements with those predicted in the design, which was an evidence that electromagnetic loads were supported adequately as expected in the design. Vibration of the vacuum vessel was found to be large up to 48 m/s/sup 2/ and caused excessive vibration of the lateral port gate-valves. A few limitations to machine operation were also made clear quantatively

  2. Ion transport analysis of a high beta-poloidal JT-60U discharge

    International Nuclear Information System (INIS)

    Horton, W.; Tajima, T.; Dong, J.-Q.; Kim, J.-Y.; Kishimoto, Y.

    1997-01-01

    The high beta-poloidal discharge number 17110 in JT-60U (JT-60 Team, IAEA, Vienna, 1993) that developes an internal transport barrier is analysed for the transport of ion energy and momentum. First, the classical ion temperature gradient stability properties are calculated in the absence of sheared plasma flows to establish the L-mode transport level prior to the emergence of the transport barrier. Then the evolving toroidal and poloidal velocity profiles reported by Koide et al (1994 Phys. Rev. Lett. 72 3662) are used to show how the sheared mass flows control the stability and transport. Coupled energy-momentum transport equations predict the creation of a transport barrier. The balance of the steep ion temperature gradient against the magnetic shear and sheared mass flow is calculated for the profiles in the 17110 discharge. (Author)

  3. Review of JT-60U experimental results from February to October, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Renewed theme group organization started from October 1994 for the upcoming experiments in JT-60U. This regime has three theme groups each of which is composed of two sub-theme groups as; (1) Plasma Operation Theme (Leader Y. Neyatani) with Operation Sub-Theme and Disruption Sub-Theme, (2) High Performance (Leader S. Ishida) with Confinement and MHD Sub-Theme and High Energy Particle Sub-Theme and (3) Steady State Theme (Leader A. Sakasai) with Current Drive Sub-Theme and Divertor Sub-Theme. The main results from the JT-60U experiments in 1995 are summarized in the overviews of the three theme group activities. (J.P.N.).

  4. Fabrication and performance tests of a prototype in-situ coating machine for JT-60

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Abe, Tetsuya; Murakami, Yoshio

    1987-09-01

    Prior to the design and construction of the JT-60's in-situ coating device, a prototype machine was fabricated and tested to confirm the applicability of proposed driving methods and mechanical elements to the device which would be operated in very severe conditions including high ambient temperature and high vacuum. The machine basically consists of an in-vessel manipulator, a fiberscope and an ohmically heated titanium evaporator. From the test results, we recommended to use the combination of Inconel 625 and a self-lubricating alloy for the solid-lubricated bearings and MoS 2 -coated Inconel 625 for the solid-lubricated gears. It was also found that TiC coating showed a effect for the prevention of welding between bolts and nuts. In order to optimize the operating parameters of the machine, many wall inspection tests and titanium evaporation tests were carried out in a large vacuum vessel by simulating the JT-60 conditions. (author)

  5. Development of Gyrotron and JT-60U EC heating system for fusion reactor

    International Nuclear Information System (INIS)

    Sakamoto, K.; Kasugai, A.; Ikeda, Yo.

    2003-01-01

    The progress of ECH technology, for ITER and JT-60U tokamak, are presented. In the development of gyrotron, 0.9MW/9.2sec, 0.5MW/30sec, 0.3MW/60sec, etc. have been demonstrated at 170GHz. At 110GHz, 1.3MW/1.2sec, 1.2MW/4.1sec, 1MW/5sec were obtained. It is found that the reduction of the stray radiation and the enhancement of cooling capability are keys for CW operation. Four 110GHz gyrotrons are under operation in the ECH system of JT-60U. The power up to approximately 3MW/2.7sec was injected into the plasma through the poloidally movable mirrors, and contributed to the electron heating up to 26keV(n e ∼0.5x10 13 cm -3 ), and the suppression of the neo-classical tearing mode. (author)

  6. Development of gyrotron and JT-60U EC heating system for fusion reactor

    International Nuclear Information System (INIS)

    Sakamoto, K.; Kasugai, A.; Ikeda, Yo.

    2003-01-01

    The progress of ECH technology, for ITER and JT-60U tokamak, are presented. In the development of gyrotron, 0.9MW/9.2sec, 0.5MW/30sec, 0.3MW/60sec, etc. have been demonstrated at 170GHz. At 110GHz, 1.3MW/1.2sec, 1.2MW/4. 1sec. 1MW/5sec were obtained. It is found that the reduction of the stray radiation and the enhancement of cooling capability are keys for CW operation. Four 110GHz gyrotrons are under operation in the ECH system of JT-60U. The power up to approximately 3MW/2.7sec was injected into the plasma through the poloidally movable mirrors, and contributed to the electron heating up to 26keV(n e ∼0.5x10 13 cm -3 ), and the suppression of the neo-classical tearing mode. (author)

  7. Reliability improvements on Thales RM2 rotary Stirling coolers: analysis and methodology

    Science.gov (United States)

    Cauquil, J. M.; Seguineau, C.; Martin, J.-Y.; Benschop, T.

    2016-05-01

    The cooled IR detectors are used in a wide range of applications. Most of the time, the cryocoolers are one of the components dimensioning the lifetime of the system. The cooler reliability is thus one of its most important parameters. This parameter has to increase to answer market needs. To do this, the data for identifying the weakest element determining cooler reliability has to be collected. Yet, data collection based on field are hardly usable due to lack of informations. A method for identifying the improvement in reliability has then to be set up which can be used even without field return. This paper will describe the method followed by Thales Cryogénie SAS to reach such a result. First, a database was built from extensive expertizes of RM2 failures occurring in accelerate ageing. Failure modes have then been identified and corrective actions achieved. Besides this, a hierarchical organization of the functions of the cooler has been done with regard to the potential increase of its efficiency. Specific changes have been introduced on the functions most likely to impact efficiency. The link between efficiency and reliability will be described in this paper. The work on the two axes - weak spots for cooler reliability and efficiency - permitted us to increase in a drastic way the MTTF of the RM2 cooler. Huge improvements in RM2 reliability are actually proven by both field return and reliability monitoring. These figures will be discussed in the paper.

  8. Advanced control scenario of high-performance steady-state operation for JT-60 superconducting tokamak

    International Nuclear Information System (INIS)

    Tamai, H.; Kurita, G.; Matsukawa, M.; Urata, K.; Sakurai, S.; Tsuchiya, K.; Morioka, A.; Miura, Y.M.; Kizu, K.; Kamada, Y.; Sakasai, A.; Ishida, S.

    2004-01-01

    Plasma control on high-β N steady-state operation for JT-60 superconducting modification is discussed. Accessibility to high-β N exceeding the free-boundary limit is investigated with the stabilising wall of reduced-activated ferritic steel and the active feedback control of the in-vessel non-axisymmetric field coils. Taking the merit of superconducting magnet, advanced plasma control for steady-state high performance operation could be expected. (authors)

  9. Power and particle control in JT-60SA to support and supplement ITER and DEMO

    International Nuclear Information System (INIS)

    Sakurai, Shinji

    2007-01-01

    JT-60 is planned to be modified as a fully superconducting coil tokamak (JT-60 Super Advanced, JT-60SA). Divertor targets are water-cooled to handle heat flux up to 15 MW/m 2 . JT-60SA allows exploitation of high beta regime with stabilizing shell covered with ferritic plates and internal resistive wall mode (RWM) stabilizing coils. A remote handling system is equipped to maintain in-vessel components even for high dose rate due to a substantial annual neutron production. Divertor cassettes are introduced to be maintained by a remote handling. In the present design, a monoblock type carbon fibre composite (CFC) divertor target will be used to withstand a heat load of ∼15 MW/m 2 . CFC divertor targets and other bolted armor tiles will be mounted on the divertor cassette. All of the plasma facing components including the first wall armor are water-cooled to handle heat load during 100s or more. Divertor heat load and pumping efficiency for an ITER-like configuration has been evaluated, using 2D plasma fluid (SOLDOR) and neutral Monte-Carlo (NEUT2D) code. The pumping speed of 50 m 3 /s is specified at an albedo for neutrals in front of the in-vessel cryopanel. In the simulation for the divertor with a V -shaped corner' like as that in ITER, the plasma detachment occurs near the outer-strike point within the 'V-shaped corner', as well as near the inner-strike point, which results in low peak heat flux density 5.8 MW/m 2 for the case with additional gas puff of 5x10 21 /s compared to 11.4 MW/m 2 for the case without 'V-shaped corner'. (author)

  10. Quench propagation and quench detection in the TF system of JT-60SA

    International Nuclear Information System (INIS)

    Lacroix, Benoit; Duchateau, Jean-Luc; Meuris, Chantal; Ciazynski, Daniel; Nicollet, Sylvie; Zani, Louis; Polli, Gian-Mario

    2013-01-01

    Highlights: • The JT-60SA primary quench detection system will be based on voltage measurements. • The early quench propagation was studied in the JT-60SA TF conductor. • The impact of the conductor jacket on the hot spot criterion was quantified. • The detection parameters were investigated for different quench initiations. -- Abstract: In the framework of the JT-60SA project, France and Italy will provide to JAEA 18 Toroidal Field (TF) coils including NbTi cable-in-conduit conductors. During the tokamak operation, these coils could experience a quench, an incidental event corresponding to the irreversible transition from superconducting state to normal resistive state. Starting from a localized disturbance, the normal zone propagates along the conductor and dissipates a large energy due to Joule heating, which can cause irreversible damages. The detection has to be fast enough (a few seconds) to trigger the current discharge, so as to dump the stored magnetic energy into an external resistor. The JT-60SA primary quench detection system will be based on voltage measurements, which are the most rapid technology. The features of the detection system must be adjusted so as to detect the most probable quenches, while avoiding inopportune fast safety discharges. This requires a reliable simulation of the early quench propagation, performed in this study with the Gandalf code. The conductor temperature reached during the current discharge must be kept under a maximal value, according to the hot spot criterion. In the present study, a hot spot criterion temperature of 150 K was taken into account and the role of each conductor component (strands, helium and conduit) was analyzed. The detection parameters were then investigated for different hypotheses regarding the quench initiation

  11. Magnetic Fluctuations during plasma current rise of divertor discharge in JT-60

    International Nuclear Information System (INIS)

    Ushigusa, Kenkichi; Kikuchi, Mitsuru; Hosogane, Nobuyuki; Tsuji, Syunji; Hayashi, Kazuo.

    1986-03-01

    During a current rise phase in the JT-60 divertor discharge, a series of magnetic fluctuations which do not rotate poloidally (phase-locking) is observed. They cause a cooling of plasma periphery and an enhancement of H α emission in the divertor chamber. A significant increase in β P + 1 i /2 with minor disruptions during the phase-locked magnetic fluctuation suggests a relaxation of the current profile in the current rise phase of the divertor discharge. (author)

  12. Manufacturing of central control system of 'JT-60' a plasma feasibility experiment device

    International Nuclear Information System (INIS)

    Kondo, Ikuo; Kimura, Toyoaki; Murai, Katsuji; Iba, Daizo; Takemaru, Koichi.

    1984-01-01

    For constructing a critical-plasma-experiment apparatus JT-60, it was necessary to develop a new control system which enables to operate safely and smoothly a large scale nuclear fusion apparatus and to carry out efficient experiment. For the purpose, the total system control facility composed of such controllers as CAMAC system, timing system and protective interlock panel with multi-computer system as the core was developed. This system generalizes, keeps watch on and controls the total facilities as the key point of the control system of JT-60, and allows flexible operation control corresponding to the diversified experimental projects. At the same time, it carries out the fast real-time control of high temperature, high density plasma. In this paper, the system constitution, function and the main contents of development of the total system control facility are reported. JT-60 is constructed to attain the critical plasma condition as the premise of nuclear fusion reactors and to scientifically verify controlled nuclear fusion. Plasma expe riment will be started in April, 1985. The real-time control of plasma for carrying out high beta operation is planned, intending to develop future economical practical reactors. (Kako, I.)

  13. Study of neutral particle behavior and particle confinement in JT-60U

    International Nuclear Information System (INIS)

    Takenaga, Hidenobu; Shimizu, Katsuhiro; Asakura, Nobuyuki; Shimada, Michiya; Kikuchi, Mitsuru; Tsuji-Iio, Shunji; Uchino, Kiichiro; Muraoka, Katsunori.

    1995-07-01

    In order to understand the particle confinement properties in JT-60U, the particle confinement time was estimated through analyses of the neutral particle behavior. First, the neutral particle transport simulation code DEGAS using a Monte-Carlo technique was combined with the simple divertor code for calculating the edge plasma parameters, and was developed to calculate under the experimental conditions in JT-60U. Then, the charged particle source in the main plasma due to the ionization of the neutral particles was evaluated from the analyses of the neutral particle penetration to the main plasma based on results of the simulation code and measurements of D α emission intensities. Finally, the particle confinement time was estimated from the analysis of particle balance. The analyses were performed systematically for the L-mode plasma and H-mode plasma of JT-60U, and a data base of the particle confinement time was obtained. The dependence of the particle confinement time on the plasma parameters and the relationship between the properties of the particle confinement and the energy confinement were examined. (author)

  14. Impurity and particle recycling reduction by boronization in JT-60U

    International Nuclear Information System (INIS)

    Higashijima, S.; Sugie, T.; Kubo, H.; Tsuji, S.; Shimada, M.; Asakura, N.; Hosogane, N.; Kawano, Y.; Nakamura, H.; Itami, K.; Sakasai, A.; Shimizu, K.; Ando, T.; Saidoh, M.

    1995-01-01

    In JT-60U boronization using decaborane was carried out. Boronization reduced the oxygen impurity in OH discharges and shortened the wall conditioning after the vacuum vessel vent and consequently enabled JT-60U to produce clean plasmas easily except for NB heated plasmas. After boronization, particle recycling was reduced drastically in OH and NB discharges. High confinement plasmas were obtained including high β p mode and H-mode discharges. In the latest boronization part of divertor plates were replaced with B 4 C coated tiles with a B 4 C thickness similar 300 μm. After introducing B 4 C divertor tiles, an explosive generation of boron particles from the tiles was observed. By the combined effects of boronization with decaborane and boron generation from B 4 C tiles, oxygen impurity was so low that oxygen line signals were reduced to noise levels after the latest boronization. On the other hand, boron burst from the B 4 C tiles restricted the operation of JT-60U. ((orig.))

  15. Energetic particle physics in JT-60U and JFT-2M

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, K [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Takechi, M [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Ishikawa, M [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Kusama, Y [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Tsuzuki, K [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Urata, K [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Kawashima, H [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Tobita, K [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Fukuyama, A [Department of Nuclear Engineering, Kyoto University, 606-8501, (Japan); Cheng, C Z [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Darrow, D S [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Kramer, G J [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Gorelenkov, N N [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Nazikian, R [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Todo, Y [National Institute for Fusion Science, Oroshi-cho, Toki, Gifu, 509-5292, (Japan); Miura, Y [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan); Ozeki, T [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki, 311-0193 (Japan)

    2004-07-01

    Recent energetic particle physics research in JT-60U and JFT-2M is reported. Alfven eigenmodes (AEs) are investigated in reversed-shear (RS) plasmas in JT-60U where frequency sweeping (FS) modes are observed to follow the q-profile evolution. The RS-induced AE model can explain the FS of the modes within the context of an evolving q-profile. Enhanced energetic ion transport is also investigated with the appearance of modes in the toroidicity-induced AE range of frequency in JT-60U using a multi-channel neutron profile monitor and in JFT-2M using a lost ion probe. Additionally, the ripple loss in the complex toroidal field ripple due to ferritic steel inserts in JFT-2M is shown and compared with model analysis. The simulation code developed to predict ripple loss in JFT-2M will be of use in estimating the heat flux in the complex ripple field of a future device such as ITER.

  16. Optical design for divertor Thomson scattering system for JT-60SA

    International Nuclear Information System (INIS)

    Kajita, Shin; Enokuchi, Akito; Hatae, Takaki; Itami, Kiyoshi; Hamano, Takashi; Kado, Shinichiro; Ohno, Noriyasu; Takeyama, Norihide

    2014-01-01

    Highlights: •A detailed designing for collection optical system of divertor Thomson scattering system in JT-60SA is conducted. •The assessment of the density and temperature errors of the measurement system is conducted. •It is shown that the measurement could be done with the temperature error of 50% when the density was 10 20 m −3 . •The availability of the laser transmission mirrors for the measurement system is discussed. •Several guidelines to improve the measurement system are discussed. -- Abstract: Optical design for divertor Thomson scattering system in JT-60SA has been conducted. The measurement system will use a Nd:YAG laser at 1064 nm, and scattered photons are collected by a collection optical system. The collection optics consists of primary mirror, secondary mirror, relay optics, and fiber collection optics. The laser transmission mirror and collection optics were designed to be installed in a slender lower port of JT-60SA. The assessment of the measurement errors in temperature was conducted for the designed collection optical system. Because of spatial limitation, the solid angle from the measurement points would be small especially for the measurement points in high field side, and consequently, the temperature errors in the high field side would be considerably large. The effects of several improvements on the error are discussed. Moreover, an assessment for the in-vessel laser transmission metallic mirrors is conducted for the present design

  17. Parametric thermo-hydraulic analysis of the TF system of JT-60SA during fast discharge

    International Nuclear Information System (INIS)

    Polli, Gian Mario; Lacroix, Benoit; Zani, Louis; Besi Vetrella, Ugo; Cucchiaro, Antonio

    2013-01-01

    Highlights: • We modeled the central clock-wise pancake of JT-60SA TF magnet at the EOB. • We simulated a quench followed by a fast discharge. • We evaluated the temperature and pressure rises in the nominal configuration. • We evaluated the effect of several parameter changes on the thermal-hydraulic response of the system. -- Abstract: The evolution of the conductor temperature and of the helium pressure of the central pancake of the TF superconducting magnet of the JT-60SA tokamak in a quench scenario are here discussed. The quench is triggered by a heat disturbance applied at the end of burning and followed by a fast safety discharge. A parametric study aimed at assessing the robustness of the calculation is also addressed with special regard to the voltage threshold, used to define the occurrence of the quench, and to the time delay, that cover all the possible delays in the fast discharge after quench detection. Finally, due to sensitivity analyses the influences of different parameters were assessed: the material properties of the strands (RRR, copper fraction), the magnitude and the spatial length of the triggering disturbance and the magnetic field distribution. The numerical evaluations were performed in the framework of the Broader Approach Agreement in collaboration with CEA, ENEA and the JT-60SA European Home Team using the 1D code Gandalf [1

  18. Design study of an AC power supply system in JT-60SA

    International Nuclear Information System (INIS)

    Shimada, Katsuhiro; Baulaigue, Olivier; Cara, Philippe; Coletti, Alberto; Coletti, Roberto; Matsukawa, Makoto; Terakado, Tsunehisa; Yamauchi, Kunihito

    2011-01-01

    In the initial research phase of JT-60SA, which is the International Thermonuclear Experimental Reactor (ITER) satellite Tokamak with superconducting toroidal and poloidal magnetic field coils, the plasma heating operation of 30 MW-60 s or 20 MW-100 s is planned for 5.5 MA single null divertor plasmas. To achieve this operation, AC power source of the medium voltage of 18 kV and ∼7 GJ has to be provided in total to the poloidal field coil power supplies and additional heating devices such as neutral beam injection (NBI) and electron cyclotron radio frequency (ECRF). In this paper, the proposed AC power supply system in JT-60SA was estimated from the view point of available power, and harmonic currents based on the standard plasma operation scenario during the initial research phase. This AC power supply system consists of the reused JT-60 power supply facilities including motor generators with flywheel, AC breakers, harmonic filters, etc., to make it cost effective. In addition, the conceptual design of the upgraded AC power supply system for the ultimate heating power of 41 MW-100 s in the extended research phase is also described.

  19. Conceptual design of divertor cassette handling by remote handling system for JT-60SA

    International Nuclear Information System (INIS)

    Hayashi, Takao; Sakurai, Shinji; Masaki, Kei; Tamai, Hiroshi; Yoshida, Kiyoshi; Matsukawa, Makoto

    2007-01-01

    The JT-60SA aims to contribute and supplement ITER toward DEMO reactor based on tokamak concept. One of the features of JT-60SA is its high power long pulse heating, causing the large annual neutron fluence. Because the expected dose rate at the vacuum vessel (VV) may exceed 1 mSv/hr after 10 years operation and three month cooling, the human access inside the VV is prohibited. Therefore a remote handling (RH) system is necessary for the maintenance and repair of in-vessel components. This paper described the RH system of JT-60SA, especially the expansion of the RH rail and exchange of the divertor modules. The RH rail is divided into nine and three-point mounting. The nine sections can cover 225 degrees in toroidal direction. A divertor module, which is 10 degrees wide in toroidal direction and weighs 500kg itself due to the limitations of port width and handling weight, can be exchanged by heavy weight manipulator (HWM). The HWM brings the divertor module to the front of the other RH port, which is used for supporting the rail and/or carrying in and out equipments. Then another RH device receives and brings out the module by a pallet installed from outside the VV. (author)

  20. Conceptual design of divertor cassette handling by remote handling system of JT-60SA

    International Nuclear Information System (INIS)

    Hayashi, Takao; Sakurai, Shinji; Masaki, Kei; Tamai, Hiroshi; Yoshida, Kiyoshi; Matsukawa, Makoto

    2008-01-01

    The JT-60SA aims to contribute and supplement ITER toward demonstration fusion reactor based on tokamak concept. One of the features of JT-60SA is its high power long pulse heating, causing the large annual neutron fluence. Because the expected dose rate at the vacuum vessel (VV) may exceed 1 mSv/hr after 10 years operation and three month cooling, the human access inside the VV is restricted. Therefore a remote handling (RH) system is necessary for the maintenance and repair of in-vessel components. This paper described the RH system of JT-60SA, especially the expansion of the RH rail and exchange of the divertor cassettes. The RH rail is divided into nine and three-point mounting. The nine sections can cover 225 degrees in toroidal direction. A divertor cassette, which is 10 degrees wide in toroidal direction and weighs 500 kg itself due to the limitations of port width and handling weight, can be exchanged by heavy weight manipulator (HWM). The HWM brings the divertor cassette to the front of the other RH port, which is used for supporting the rail and/or carrying in and out equipments. Then another RH device receives and brings out the cassette by a pallet installed from outside the VV. (author)

  1. Mechanism of vertical displacement events in JT-60U disruptive discharges

    International Nuclear Information System (INIS)

    Nakamura, Y.; Yoshino, R.; Neyatani, Y.; Tsunematsu, T.; Azumi, M.; Pomphrey, N.; Jardin, S.C.

    1996-01-01

    Enhanced vertical displacement events (VDEs), which are frequently observed in JT-60U disruptive discharges, are investigated using the Tokamak Simulation Code (TSC). The rapid plasma current quench can accelerate the vertical displacement, owing to both the up/down asymmetry of the eddy current distribution arising from the asymmetric geometry of the JT-60U vacuum vessel and the degradation of magnetic field decay index n, leading to high growth rates of positional instability. For a slightly elongated configuration (n = -0.9), the asymmetry of attractive forces on the toroidal plasma plays a dominant role in the VDE mechanism. For a more elongated configuration (n = -1.7), the degradation of field decay index n plays an important role on VDEs, in addition to the effect of asymmetric attractive forces. It is shown that the VDE characteristics of a highly elongated configuration with a rapid plasma current quench can be dominated by the field decay index degradation. It is also pointed out that both the softening of current quenches as was experimentally developed in the JT-60U tokamak, and the optimization of the allowable elongation of the plasma cross-section are critical issues in the development of a general control strategy of discharge termination. (author). 21 refs, 10 figs

  2. ASDEX Upgrade-JT-60U comparison and ECRH power requirements for NTM stabilization in ITER

    International Nuclear Information System (INIS)

    Urso, L.; Zohm, H.; Maraschek, M.; Poli, E.; Isayama, A.

    2010-01-01

    Neoclassical tearing modes (NTMs) are experimentally controlled with local electron cyclotron current drive (ECCD) and the island width decay during NTM stabilization is modelled using the so-called modified Rutherford equation (MRE). In this paper, a modelling of the MRE is carried out and simulations of the island width decay are compared with the experimentally observed ones in order to fit the two free machine-independent parameters present in the equation. A systematic study on a database of NTM stabilization discharges from ASDEX Upgrade and JT-60U is done for extrapolating the ECCD power requirements for ITER. The extrapolation to ITER of the NTM stabilization results from ASDEX Upgrade and JT-60U shows that 10 MW of ECCD power are enough to stabilize large NTMs. The 10 MW power estimate for ITER is based on the assumption that the free parameters in the MRE are machine independent. Indeed, this assumption is verified in this paper for ASDEX Upgrade and JT-60U. An interesting consequence of the relatively modest power requirement for ITER is that the installed 20 MW will suffice for simultaneous 2/1 and 3/2 NTM stabilization.

  3. Progress of data processing system in JT-60 utilizing the UNIX-based workstations

    International Nuclear Information System (INIS)

    Sakata, Shinya; Kiyono, Kimihiro; Oshima, Takayuki; Sato, Minoru; Ozeki, Takahisa

    2007-07-01

    JT-60 data processing system (DPS) possesses three-level hierarchy. At the top level of hierarchy is JT-60 inter-shot processor (MSP-ISP), which is a mainframe computer, provides communication with the JT-60 supervisory control system and supervises the internal communication inside the DPS. The middle level of hierarchy has minicomputers and the bottom level of hierarchy has individual diagnostic subsystems, which consist of the CAMAC and VME modules. To meet the demand for advanced diagnostics, the DPS has been progressed in stages from a three-level hierarchy system, which was dependent on the processing power of the MSP-ISP, to a two-level hierarchy system, which is decentralized data processing system (New-DPS) by utilizing the UNIX-based workstations and network technology. This replacement had been accomplished, and the New-DPS has been started to operate in October 2005. In this report, we describe the development and improvement of the New-DPS, whose functions were decentralized from the MSP-ISP to the UNIX-based workstations. (author)

  4. Vacuum pumping system for the JT-60 radio-frequency heating system

    International Nuclear Information System (INIS)

    Yokokura, Kenji; Ikeda, Yoshitaka; Imai, Tuyoshi; Suganuma, Kazuaki; Nagashima, Takashi

    1988-01-01

    The basic design requirements set up for the JT-60 radio-frequency heating system included: (1) rapid pumping of gas released upon application of a radio-frequency power to maintain the pressure in the launchers at 10 -2 - 10 -3 Pa or less, (2) incorporation of a gas analysis system that can operate under a strong field and high pressure (>10 -2 Pa) to permit remote controlled data collection and processing, and (3) low cost, multiple functions and high reliability. The vacuum pumping system, consisting of three units for low hybrid radio-frequency (LHRF) and one unit for ion cyclotron radio-frequency (ICRF), is connected to each launcher provided at the four ports of JT-60. The LHRF unit is composed of a main pump, an alumina joint for electrical insulation from the launcher, a metallic gate valve for isolation from the JT-60 vacuum region, and various vacuum gauges. Only a turbo-molecular pump is used for the ICRF system because a large-scale differential pumping is not required. A gas measuring system is incorporated which consists of a mass filter, personal computer, turbo-molecular pump, and variable flow valve equipped with an APG control. This system is designed to identify and make use of gas impurities released during the launcher aging process. The control system employed consists of a personal computer, interlock control board, data logger and other devices such as vacuum gages. (Nogami, K.)

  5. Very fast feedback control of coil-current in JT-60 tokamak

    International Nuclear Information System (INIS)

    Aoyagi, T.; Terakado, T.; Takahashi, M.; Nobusaka, H.; Yagyu, J.; Matsuzaki, Y.

    1992-01-01

    A direct digital control (DDC) system is adopted for controlling thyristor converters of power supplies in the JT-60 tokamak built in 1984. Microcomputers of the DDC were 5 MHz i8086 microprocessor and programs were written by assembler language and the processing time was under 1ms. They were, however, too old in hardware and too complicated in software. New DDC system has been made in the JT-60 Upgrade (JT-60U) to control the power supplies more quickly under 0.25 and 0.5 ms of the processing time and also to write the programs used by high-level language. The new system consists of a host computer and five microcomputers with microprocessor on VME bus system. The host computer AS3260 performs on-line processing such as setting the DDC under the discharge conditions and so on. Functions of the microcomputers with a 32-bit, 20 MHz microprocessor MC68030, whose OS are VxWorks and programs are written by C language, are real-time processing such as taking in instructions from a ZENKEI computer and in feedback control of currents and voltages of coils every 0.25 and 0.5 ms. The system is now operating very smoothly. (author)

  6. Effects of pressure profile and plasma shaping on the n=1 internal kink mode in JT-60/JT-60U pellet fuelled plasmas

    International Nuclear Information System (INIS)

    Ozeki, Takahisa; Azumi, Masafumi

    1990-10-01

    The stability of the n=1 internal kink mode in a tokamak is numerically analyzed for plasmas with a centrally peaked pressure profile. These studies are carried out with the strongly peaked pressure inside the q=1 surface, which is based on the experimentally observed plasmas by means of injections of hydrogen-ice pellets in JT-60 tokamak. The effects of peaked pressure and shaping, i.e., elongation and triangularity, are also studied for JT-60U tokamak. The plasma with the strongly peaked pressure profile has higher critical value of poloidal beta defined within the q=1 surface than that with a parabolic pressure profile. Though the beta limit reduces with the increase of the elongation, the plasma with the peaked pressure profile has larger improvement due to the triangularity than that with the parabolic pressure profile. To access the second stability of the n=1 internal kink mode, the plasma with a flat pressure profile and the large minor radius of the q=1 surface is effective. (author)

  7. Oxide-cathode activation and surface temperature calculation of electron cooler

    International Nuclear Information System (INIS)

    Li Jie; Yang Xiaodong; Mao Lijun; Li Guohong; Yuan Youjin; Liu Zhanwen; Zhang Junhui; Yang Xiaotian; Ma Xiaoming; Yan Tailai

    2011-01-01

    The pollution on electron gun ceramic insulation of electron cooler restricted the operation of electron cooler at HIRFL-CSR main ring. To cool and accumulate ion beam well, the pollution was cleared and a new oxide-coated cathode was assembled. The processes of cathode replacement,vacuum chamber baking-out, and thermal decomposition of coating binders and alkaline earth metal carbonates, and cathode activation are presented. The electron gun perveance of 10.6 μA/V 1.5 was attained under the heating power of 60 W. The typical surface temperature of oxide-coated cathode that is calculated through grey-body radiation is 1 108 K which shows a comparable result to the experimental measurement 1 078 K. The perveance growth of electron gun during the electron cooler operation is also explained by partial activation of the cathode. (authors)

  8. NASA Lewis Stirling SPRE testing and analysis with reduced number of cooler tubes

    International Nuclear Information System (INIS)

    Wong, W.A.; Cairelli, J.E.; Swec, D.M.; Doeberling, T.J.; Lakatos, T.F.; Madi, F.J.

    1994-01-01

    Free-piston Stirling power converters are a candidate for high capacity space power applications. The Space Power Research Engine (SPRE), a free-piston Stirling engine coupled with a linear alternator, is being tested at the NASA Lewis Research Center in support of the Civil Space Technology Initiative. The SPRE is used as a test bed for evaluating converter modifications which have the potential to improve converter performance and for validating computer code predictions. Reducing the number of cooler tubes on the SPRE has been identified as a modification with the potential to significantly improve power and efficiency. This paper describes experimental tests designed to investigate the effects of reducing the number of cooler tubes on converter power, efficiency and dynamics. Presented are test results from the converter operating with a reduced number of cooler tubes and comparisons between this data and both baseline test data and computer code predictions

  9. Micro-coolers fabricated as a component in an integrated circuit

    International Nuclear Information System (INIS)

    Glover, James; Oxley, Chris H; Khalid, Ata; Cumming, David; Stephen, Alex; Dunn, Geoff

    2015-01-01

    The packing density and power capacity of integrated electronics is increasing resulting in higher thermal flux densities. Improved thermal management techniques are required and one approach is to include thermoelectric coolers as part of the integrated circuit. An analysis will be described showing that the supporting substrate will have a large influence on the cooling capacity of the thermoelectric cooler. In particular, for materials with a low ZT figure of merit (for example gallium arsenide (GaAs) based compounds) the substrate will have to be substantially thinned to obtain cooling, which may preclude the use of thermoelectric coolers, for example, as part of a GaAs based integrated circuit. Further, using experimental techniques to measure only the small positive cooling temperature difference (ΔT) between the anode (T h ) and the cathode (T c ) contacts can be misinterpreted as cooling when in fact it is heating. (paper)

  10. Influence of the outlet air temperature on the thermohydraulic behaviour of air coolers

    Directory of Open Access Journals (Sweden)

    Đorđević Emila M.

    2003-01-01

    Full Text Available The determination of the optimal process conditions for the operation of air coolers demands a detailed analysis of their thermohydraulic behaviour on the one hand, and the estimation of the operating costs, on the other. One of the main parameters of the thermohydraulic behaviour of this type of equipment, is the outlet air temperature. The influence of the outlet air temperature on the performance of air coolers (heat transfer coefficient overall heat transfer coefficient, required surface area for heat transfer air-side pressure drop, fan power consumption and sound pressure level was investigated in this study. All the computations, using AirCooler software [1], were applied to cooling of the process fluid and the condensation of a multicomponent vapour mixture on two industrial devices of known geometries.

  11. Modeling of Hydrate Formation Mode in Raw Natural Gas Air Coolers

    Science.gov (United States)

    Scherbinin, S. V.; Prakhova, M. Yu; Krasnov, A. N.; Khoroshavina, E. A.

    2018-05-01

    Air cooling units (ACU) are used at all the gas fields for cooling natural gas after compressing. When using ACUs on raw (wet) gas in a low temperature condition, there is a danger of hydrate plug formation in the heat exchanging tubes of the ACU. To predict possible hydrate formation, a mathematical model of the air cooler thermal behavior used in the control system shall adequately calculate not only gas temperature at the cooler's outlet, but also a dew point value, a temperature at which condensation, as well as the gas hydrate formation point, onsets. This paper proposes a mathematical model allowing one to determine the pressure in the air cooler which makes hydrate formation for a given gas composition possible.

  12. Simulation of collisional effects on divertor pumping in JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Gleason-González, C., E-mail: cristian.gleason@kit.edu [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Baden-Württemberg 76344 (Germany); Varoutis, S.; Luo, X. [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Baden-Württemberg 76344 (Germany); Shimizu, K.; Nakano, T.; Hoshino, K.; Kawashima, H.; Asakura, N. [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka, Ibaraki 311-0193 (Japan); Day, Chr. [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Baden-Württemberg 76344 (Germany); Sakurai, S. [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2016-11-01

    Highlights: • The exhausted (sub-divertor) gas flows calculations in tokamaks by means of three approaches: ProVac3D, DIVGAS and NEUT2D. • Exhausted neutral gas flow is modeled for two scenarios of a simplified JT-60SA sub-divertor geometry. • A modelled scenario with a simplified setup is done by using two intrinsic collisionless approaches: ProVac3D and NEUT2D and a third approach: DIVGAS, which has been used without its collision module for a direct comparison with the other two. The solvers are cross-checked in terms of the reproduction of the transmission probability. • A second case study is based on the Scenario # 2 of JT-60SA, where the assessment of collisionality in the sub-divertor was done. The gas flow is simulated by using DIVGAS with and without consideration of collisions. • The results include the transmission probability in JT-60SA sub-divertor, the Knudsen number, which characterizes the collisionality of the flow, velocity profiles, pressure and temperature distributions. - Abstract: In this work, the exhausted neutral gas flow is modeled for two cases of a simplified JT-60SA sub-divertor geometry and compared via three different approaches, namely (i) a collisionless approach based on the ProVac3D code, (ii) the DSMC approach based on the DIVGAS code that can be run with and without consideration of particle collisions, and (iii) the NEUT2D approach which has been extensively used in the past for the JT-60 design. In a first case study, the transmission probability was calculated by the 3 approaches and very good agreement is found between NEUT2D-ProVac3D whereas discrepancies between DIVGAS and NEUT2D are found and further analyzed. In the second case, the assessment of collisions is done by means of DIVGAS. Simulations showed that the flow is found in the transitional regime with Kn numbers between 0.1 and 0.4. The DIVGAS collisionless case yielded lower values of temperature than the collisional one by factors of 0.5–0.8 in

  13. Development and Evaluation of a Sandia Cooler-based Refrigerator Condenser

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kariya, Harumichi Arthur [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Leick, Michael T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zimmerman, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Li, Manjie [Univ. of Maryland, College Park, MD (United States); Du, Yilin [Univ. of Maryland, College Park, MD (United States); Lee, Hoseong [Univ. of Maryland, College Park, MD (United States); Hwang, Yunho [Univ. of Maryland, College Park, MD (United States); Radermacher, Reinhard [Univ. of Maryland, College Park, MD (United States)

    2015-07-01

    This report describes the first design of a refrigerator condenser using the Sandia Cooler, i.e. air - bearing supported rotating heat - sink impeller. The project included ba seline performance testing of a residential refrigerator, analysis and design development of a Sandia Cooler condenser assembly including a spiral channel baseplate, and performance measurement and validation of this condenser system as incorporated into the residential refrigerator. Comparable performance was achieved in a 60% smaller volume package. The improved modeling parameters can now be used to guide more optimized designs and more accurately predict performance.

  14. On the design criteria for the evaporated water flow rate in a wet air cooler

    International Nuclear Information System (INIS)

    Bourillot, C.

    1982-01-01

    The author discusses Poppe's formulation used for the modelling of heat exchangers between air and water, in Electricite de France's TEFERI numerical wet atmospheric cooler model: heat transfer laws in unsaturated and saturated air, Bosnjakivic's formula, evaporation coefficient. The theorical results show good agreement with the measurements taken on Neurath's cooler C in West Germany, whatever the ambient temperature (evaporated water flow rate, condensate content of warm air). The author then demonstrates the inadequacy of Merkel's method for calculating evaporated water flow rates, and estimates the influence of the assumptions made on the total error [fr

  15. Performance of the natural cooler to keep the freshness of vegetables and fruits in Medan City

    Science.gov (United States)

    Sitorus, T. B.; Ambarita, H.; Ariani, F.; Sitepu, T.

    2018-02-01

    One application in a direct evaporative cooling system was a natural cooler. The advantages of this system were not using the electrical energy and so far also environmentally. This research aims to obtain a performance analysis of the natural cooler as a store for vegetables and fruits in Medan city. The materials for natural cooler consists of teak wood and gunny. This study makes experiments during seven days in the open air. The parameter measurement on the weather was using HOBO devices and to record the temperature changes for vegetables or even fruits is using its acquisition data. The results showed that the maximum efficiency of the natural cooler could be obtained for 43.79% in the average air temperature of 30.51°C, the air humidity average is 85.12% with average solar radiation of 183.98 W/m2. Experimental data were showing that the condition of freshness on vegetables or even on fruits was heavily influenced by weather conditions.

  16. Material Selection for Competition–A Case Study for Air Coolers

    Directory of Open Access Journals (Sweden)

    Luma A. H. Al Kindi

    2018-02-01

    Full Text Available Competition is one of the most important challenges that is facing the marketing of industrial products in today's markets. In this research study of the impact of material selection factor for air coolers of different materials is applied. Investigation on the air cooler windows which are part of the body of air coolers is conducted. Corrosion resistance, thermal conductivity, strength of material, weight, shape, cost and manufacturing process are the factors that are applied and calculated on three types of materials Aluminum, Galvanized steel and polypropylene. The physical properties of the three mentioned materials are used to calculate Merit Index .The corrosion average, according to Tafel Method depending the corrosion current and adopting contactors for the anodic and cathodic metals behaviors is performed. ANSYS is adopted using the three samples for the selected materials Aluminum, Galvanized steel and polypropylene to measure maximum stress and deflection are measured. Accordingly, the results are compared to choose the best alternative. It is observed that the polypropylene is the best choice depending three factors while the aluminum material is better depending two factors and the galvanized steel is regarded as the best in only one factor, the rest factors are identical when choosing  an alternative material for manufacturing the air cooler windows.

  17. On Problem of Mathematical Modelling of Thermo-Physical Processes in Regenerative Water-Evaporating Coolers

    Science.gov (United States)

    Gulevsky, V. A.; Shatsky, V. P.; Osipov, E. I.; Menzhulova, A. S.

    2018-03-01

    For cooling the air environment of industrial premises water-evaporating air, conditioners are being increasingly applied. The simplicity of their construction, ecological safety and low power consumption distinguish them from the coolers of other types. Cooling the processed air is due to the loss of energy for the evaporation of moisture from the surface of the water-wetted plates that form air channels. As a result of this process, cooled air is often saturated with moisture, which limits the possibilities for the operation of the coolers of this type. In these cases, more complex coolers of indirect principle without such drawback should be applied. The most effective modification of indirect cooling is the installation of recuperative principle units. The paper presents a mathematical model of heat-mass transfer in such water-evaporating coolers. The scheme of realization of this model based on an iterative algorithm of solution of the system of finite–difference linear equations that takes into account longitudinal and transverse thermal conductivity of the heat transfer plates is suggested. The possibility of obtaining the optimal values of the redistribution of the main and auxiliary air flows through the substantiation of the aerodynamic resistance of the output grid is proved. This allows refusing the inclusion in the additional system cooling fan unit for discharging an auxiliary stream of air.

  18. Reemergence of Mycobacterium chimaera in Heater–Cooler Units despite Intensified Cleaning and Disinfection Protocol

    Science.gov (United States)

    Schreiber, Peter W.; Kuster, Stefan P.; Hasse, Barbara; Bayard, Cornelia; Rüegg, Christian; Kohler, Philipp; Keller, Peter M.; Bloemberg, Guido V.; Maisano, Francesco; Bettex, Dominique; Halbe, Maximilian; Sommerstein, Rami

    2016-01-01

    Invasive Mycobacterium chimaera infections after open-heart surgery have been reported internationally. These devastating infections result from aerosols generated by contaminated heater–cooler units used with extracorporeal circulation during surgery. Despite intensified cleaning and disinfection, surveillance samples from factory-new units acquired during 2014 grew nontuberculous mycobacteria after a median of 174 days. PMID:27649345

  19. Sensitivity of Micromachined Joule-Thomson Cooler to Clogging Due to Moisture

    NARCIS (Netherlands)

    Cao, Haishan; Vanapalli, Srinivas; Holland, Herman J.; Vermeer, Cristian Hendrik; ter Brake, Hermanus J.M.

    2015-01-01

    A major issue in long-term operation of micromachined Joule-Thomson coolers is the clogging of the microchannels and/or the restriction due to the deposition of water molecules present in the working fluid. In this study, we present the performance of a microcooler operated with nitrogen gas with

  20. Experimental investigation of a portable desalination unit configured by a thermoelectric cooler

    International Nuclear Information System (INIS)

    Yıldırım, Cihan; Soylu, Sezgi Koçak; Atmaca, İbrahim; Solmuş, İsmail

    2014-01-01

    Highlights: • Portable humidification–dehumidification desalination system configured by a thermoelectric cooler is experimentally studied. • Effect of feed water mass flow rate and air flow velocity on COP value of TEC and system productivity are investigated. • Maximum daily yield of system and COP value of TEC unit were recorded as 143.6 g and 0.78, respectively. - Abstract: Possible use of a novel portable desalination system was investigated experimentally. The system is based on humidification–dehumidification principle and thermoelectric cooling technique. A thermoelectric cooler was integrated into the system to enhance the process of both humidification and dehumidification. A prototype was fabricated and its performance was tested for various working conditions of the prototype to observe complex relation between psychrometric and thermoelectric phenomena. The effect of feed water mass flow rate and air flow velocity on the COP value of the thermoelectric cooler and clean water production of the system were examined. The maximum daily yield of the system and the COP value of the thermoelectric cooler unit were recorded as 143.6 g and 0.78, respectively

  1. The impact of fouling on performance evaluation of evaporative coolers and condensers

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, B.A.; Zubair, S.M. [King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia). Mechanical Engineering Dept.

    2005-11-15

    Fouling of evaporative cooler and condenser tubes is one of the most important factors affecting their thermal performance, which reduces effectiveness and heat transfer capability with time. In this paper, the experimental data on fouling reported in the literature are used to develop a fouling model for this class of heat exchangers. The model predicts the decrease in heat transfer rate with the growth of fouling. A detailed model of evaporative coolers and condensers, in conjunction with the fouling model, is used to study the effect of fouling on the thermal performance of these heat exchangers at different air inlet wet bulb temperatures. The results demonstrate that fouling of tubes reduces gains in performance resulting from decreasing values of air inlet wet bulb temperature. It is found that the maximum decrease in effectiveness due to fouling is about 55 and 78% for the evaporative coolers and condensers, respectively, investigated in this study. For the evaporative cooler, the value of process fluid outlet temperature T{sub p,out} varies by 0.66% only at the clean condition for the ambient wet bulb temperatures considered. (author)

  2. Improvement of the cooldown time of LSF 9599 flexure bearing SADA cooler

    NARCIS (Netherlands)

    Mullié, J.; Groep, van der W.; Bruins, P.; Benschop, T.; Koning, de A.; Dam, J.A.M.; Andresen, B.F.; Fulop, G.F.; Norton, P.R.

    2006-01-01

    Thales Cryogenics has presented the LSF 9599 SADA II flexure cooler in 2005. Based on Thales' well-known moving magnet flexure technology, the LSF 9599 complies with the SADA II specification with respect to performance, envelope and mass. Being the first manufacturer offering a full flexure-bearing

  3. Development and Testing of an Integrated Sandia Cooler Thermoelectric Device (SCTD).

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A.; Staats, Wayne Lawrence,; Leick, Michael Thomas; Zimmerman, Mark D.; Radermacher, Reinhard; Martin, Cara; Nasuta, Dennis; Kalinowski, Paul; Hoffman, William

    2014-12-01

    This report describes a FY14 effort to develop an integrated Sandia Cooler T hermoelectric D evice (SCTD) . The project included a review of feasible thermoelectric (TE) cooling applications, baseline performance testing of an existing TE device, analysis and design development of an integrated SCTD assembly, and performance measurement and validation of the integrated SCTD prototype.

  4. Reemergence of Mycobacterium chimaera in Heater-Cooler Units despite Intensified Cleaning and Disinfection Protocol.

    Science.gov (United States)

    Schreiber, Peter W; Kuster, Stefan P; Hasse, Barbara; Bayard, Cornelia; Rüegg, Christian; Kohler, Philipp; Keller, Peter M; Bloemberg, Guido V; Maisano, Francesco; Bettex, Dominique; Halbe, Maximilian; Sommerstein, Rami; Sax, Hugo

    2016-10-01

    Invasive Mycobacterium chimaera infections after open-heart surgery have been reported internationally. These devastating infections result from aerosols generated by contaminated heater-cooler units used with extracorporeal circulation during surgery. Despite intensified cleaning and disinfection, surveillance samples from factory-new units acquired during 2014 grew nontuberculous mycobacteria after a median of 174 days.

  5. Numerical study on transverse asymmetry in the temperature profile of a regenerator in a pulse tube cooler

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Dietrich, M.; Carlsen, Henrik

    2007-01-01

    Transverse asymmetry in the temperature profile of the regenerator in a Stirling-type pulse tube cooler as observed in experiments was analysed in a numerical study. The asymmetry was reproduced using a one-dimensional model of the cooler where the regenerator was modelled using two identical...

  6. How the Performance of a Superconducting Magnet is affected by the Connection between a small cooler and the Magnet

    International Nuclear Information System (INIS)

    Green, Michael A.

    2005-01-01

    As low temperature cryocoolers become more frequently used to cool superconducting magnets, it becomes increasingly apparent that the connection between the cooler and the magnet has an effect on the design and performance of the magnet. In general, the use of small coolers can be considered in two different temperature ranges; (1) from 3.8 to 4.8 K for magnet fabricated with LTS conductor and (2) from 18 to 35 K for magnets fabricated using HTS conductor. In general, both temperature ranges call for the use of a two-stage cooler. The best method for connecting a cooler to the magnet depends on a number of factors. The factors include: (1) whether the cooler must be used to cool down the magnet from room temperature, (2) whether the magnet must have one or more reservoirs of liquid cryogen to keep the magnet cold during a loss of cooling, and (3) constraints on the distance from the cooler cold heads and the magnet and its shield. Two methods for connecting low temperature coolers to superconducting magnets have been studied. The first method uses a cold strap to connect the cold heads directly to the loads. This method is commonly used for cryogen-free magnets. The second method uses a thermal siphon and liquid cryogens to make the connection between the load being cooled and the cold head. The two methods of transferring heat from the magnet to the cooler low temperature cold head are compared for the two temperature ranges given above

  7. 75 FR 3217 - J&T Hydro Company; H. Dean Brooks and W. Bruce Cox; Notice of Application for Transfer of License...

    Science.gov (United States)

    2010-01-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 11392-009] J&T Hydro Company; H. Dean Brooks and W. Bruce Cox; Notice of Application for Transfer of License and Soliciting Comments and Motions To Intervene January 12, 2010. On October 30, 2009, J&T Hydro Company (transferor) and...

  8. Improvement of cooldown time of LSF9599 flexure-bearing SADA cooler

    Science.gov (United States)

    Mullié, Jeroen; vd Groep, Willem; Bruins, Peter; Benschop, Tonny; de Koning, Arjan; Dam, Jacques

    2006-05-01

    Thales Cryogenics has presented the LSF 9599 SADA II flexure cooler in 2005. Based on Thales' well-known moving magnet flexure technology, the LSF 9599 complies with the SADA II specification with respect to performance, envelope and mass. Being the first manufacturer offering a full flexure-bearing supported cooler that fits within the SADA II envelope, Thales Cryogenics has been selected in several new (military) programs with their LSF coolers. For many of these new programs, the cooldown time requirements are more stringent than in the past, whereas at the same time size, complexity and thus thermal mass of the infrared sensor tends to increase. In order to respond to the need created by the combination of these trends, Thales Cryogenics started a development program to optimize cryogenic performance of the LSF 9599 cooler. The main goal for the development program is to reduce the cooldown time, while maintaining the SADA II compatible interface, and maintaining the robustness and proven reliability of the cooler. Within these constraints, the regenerator was further optimized using among others the experience with mixed-gauze regenerators obtained from our pulse tube research. Using the mixed gauze approach, the heat storage capacity of the regenerator is adapted as a function of the temperature profile over the regenerator, thus giving the optimum balance between heat storage capacity and pressure drop. A novel way of constructing the regenerator further decreases shuttle heat losses and other thermal losses in the regenerator. This paper describes the first results of the trade-offs and gives an overview of impact on cooldown times and efficiency figures achieved after the regenerator and displacer optimization.

  9. Web-based Java application to advanced JT-60 Man-Machine Interfacing System for remote experiments

    International Nuclear Information System (INIS)

    Totsuka, Toshiyuki; Suzuki, Yoshio; Sakata, Shinya; Oshima, Takayuki; Iba, Katsuyuki

    2008-01-01

    Since remote participation in ITER experiments is planned, it is expected to demonstrate that the JT-60SA experiment is controlled from a Japanese remote experiment center located in Rokkasho-mura, Aomori-ken, Japan as a part of the ITER-BA project. Functions required for this experiment are monitoring of the discharge sequence status, handling of the discharge parameter, checking of experiment data, and monitoring of plant data, all of which are included in the existing JT-60 Man-Machine Interfacing System (MMIF). The MMIF is now only available to on-site users at the Naka site due to network safety. The motivation for remote MMIF is prompted by the issue of developing and achieving compatibility with network safety. The Java language has been chosen to implement this task. This paper deals with details of the JT-60 MMIF for the remote experiment that has evolved using the Java language

  10. Detailed Analysis of the Transient Voltage in a JT-60SA PF Coil Circuit

    International Nuclear Information System (INIS)

    Yamauchi, K.; Shimada, K.; Terakado, T.; Matsukawa, M.; Coletti, R.; Lampasi, A.; Gaio, E.; Coletti, A.; Novello, L.

    2013-01-01

    A superconducting coil system is actually complicated by the distributed parameters, e.g. the distributed mutual inductance among turns and the distributed capacitance between adjacent conductors. In this paper, such a complicated system was modeled with a reasonably simplified circuit network with lumped parameters. Then, a detailed circuit analysis was conducted to evaluate the possible voltage transient in the coil circuit. As a result, an appropriate (minimum) snubber capacitance for the Switching Network Unit, which is a fast high voltage generation circuit in JT-60SA, was obtained. (fusion engineering)

  11. Tritium distribution on plasma facing graphite tiles of JT-60U

    International Nuclear Information System (INIS)

    Tanabe, T.; Sugiyama, K.; Masaki, K.; Gotoh, Y.; Tobita, K.; Miya, N.

    2003-01-01

    Tritium distributions on the graphite divertor tiles, the dome units and the baffle plates of JT-60U were successfully measured. Poloidally, the highest tritium level was found at the dome top tiles and the outer baffle plates, where the plasma did not hit directly. On the other hand, although the toroidal tritium profiles on each tiles appeared uniform, detailed profiles in full toroidal direction clearly showed a periodic variation corresponding to the position of the magnetic field coils, indicating the ripple loss of high energy tritons as suggested by the OFMC code. Finally, the temperature increase owing to the plasma heat load was found to release the once retained tritium. (author)

  12. Examples of data processing systems. Data processing system for JT-60

    International Nuclear Information System (INIS)

    Aoyagi, Tetsuo

    1996-01-01

    JT-60 data processing system is a large computer complex system including a lot of micro-computers, several mini-computers, and a main-frame computer. As general introduction of the original system configuration has been published previously, some improvements are described here. Transient mass data storage system, network database server, a data acquisition system using engineering workstations, and a graphic terminal emulator for X-Window are presented. These new features are realized by utilizing recent progress in computer and network technology and carefully designed user interface specification of the original system. (author)

  13. Radiation loss and global energy balance of ohmically heated divertor discharge in JT-60 tokamak

    International Nuclear Information System (INIS)

    Koide, Yoshihiko; Yamada, Kimio; Yoshida, Hidetoshi; Nakamura, Hiroo; Niikura, Setsuo; Tsuji, Shunji

    1986-03-01

    Divertor experiment in JT-60 with a small divertor chamber has been successfully performed up to 1.6 MA discharge. Several divertor effects were experimentally confirmed as follows. Radiation loss in main plasma saturates with the increase of plasma current and its ratio to the input power is about 20 % at 1.5 MA. The rest of input power is exhausted into the divertor chamber and a half of it is dissipated as the radiation loss. Impurity accumulation is not observed during a few sec without internal MHD activity and gross impurity confinement time is several hundred msec. (author)

  14. Edge safety factor at the onset of plasma disruption during VDEs in JT-60U

    International Nuclear Information System (INIS)

    Sugihara, Masayoshi; Lukash, Victor; Khayrutdinov, Rustam; Neyatani, Yuzuru

    2004-01-01

    Detailed examinations of the value of the edge safety factor (q a ) at the onset of thermal quench (TQ) during intentional vertical displacement event (VDE) experiments in JT-60U are carried out using two different reconstruction methods, FBI/FBEQU and DINA. The results from the two methods are very similar and show that the TQ occurs when the q a value is in the range between 1.5 and 2. This result suggests that the predictive simulations for VDEs should be performed within this range of q to examine the subsequent differences in the halo currents, plasma movement and other plasma behaviour during the current quench

  15. Particle transport analysis in lower hybrid current drive discharges of JT-60U

    International Nuclear Information System (INIS)

    Nagashima, K.; Ide, S.; Naito, O.

    1996-01-01

    Particle transport is modified in lower hybrid current drive discharges of JT-60U. The density profile becomes broad during the lower hybrid wave injection and the profile change depends on the injected wave spectrum. Particle transport coefficients (diffusion coefficient and profile peaking factor) were evaluated using gas-puff modulation experiments. The diffusion coefficient in the current drive discharges is about three times larger than in the ohmic discharges. The profile peaking factor decreases in the current drive discharges and the evaluated values are consistent with the measured density profiles. (author)

  16. Monte Carlo approach to define the refrigerator capacities for JT-60SA

    International Nuclear Information System (INIS)

    Wanner, Manfred; Barabaschi, Pietro; Lamaison, Valerie; Michel, Frederic; Reynaud, Pascal; Roussel, Pascal

    2011-01-01

    The JT-60SA cryogenic system shall provide refrigeration to keep the superconducting magnets and their structures at 4.4 K, cryo-pumps at 3.7 K, thermal shields at 80-100 K, and deliver a flow of 50 K helium to the current leads. A Monte Carlo method is proposed to determine the capacity contingencies for the refrigeration system. Attributing individual contingencies and distribution probability functions to the design variables allows the different load contributions to be statistically averaged. The total refrigeration contingency is derived for each temperature level from the 95% confidence level of the integrated distribution function.

  17. High Beta Steady State Research and Future Directions on JT-60U and JFT-2M

    Science.gov (United States)

    Ishida, Shinichi

    2003-10-01

    JT-60U and JFT-2M research is focused on high beta steady state operation towards economically and environmentally attractive reactors. In JT-60U, a high-βp H-mode plasma was sustained with βN 2.7 for 7.4 s in which neoclassical tearing modes (NTMs) limited the attainable β_N. Real-time tracking NTM stabilization system using ECCD demonstrated complete suppression of NTM leading to recovery of βN before onset of NTM. Performance in a fully non-inductive H-mode plasma was improved up to n_i(0) τE T_i(0) = 3.1 x 10^20 keV s m-3 using N-NBCD with βN 2.4, HH_y,2=1.2 and bootstrap fraction f_BS 0.5. ECH experiments extended the confinement enhancement for dominantly electron heated reversed shear plasmas up to HH_y,2 2 at T_e/Ti 1.25. A world record ECCD efficiency, 4.2 x 10^18 A/W/m^2, was achieved at Te 23 keV with a highly localized central current density. Innovative initiation and current build-up without center solenoid currents were established by LHCD/ECH and bootstrap current up to f_BS 0.9. In JFT-2M, the inside of the vacuum vessel wall was fully covered with low-activation ferritic steel plates to investigate their use in plasmas near fusion conditions. High βN plasmas were produced up to βN = 3.3 with an internal transport barrier (ITB) and a steady H-mode edge. A new H-mode regime with steady high recycling (HRS) and an ITB was exploited leading to βN H_89P 6.2 at n_e/nG 0.7. In 2003, JT-60U will be able to operate for the duration up to 65 s at 1 MA/2.7 T and the heating/current-drive duration up to 30 s at 17 MW to prolong high-βN and/or high-f_BS discharges with feedback controls. JFT-2M is planning to implement wall stabilization experiments in 2004 to pursue plasmas above the ideal no-wall limit using a ferritic wall. The modification of JT-60 to a fully superconducting tokamak is under discussion to explore high-β steady state operation in collision-less plasmas well above no-wall limit with ferritic wall in a steady state.

  18. Development and upgrade of new real time processor in JT-60 data processing system

    International Nuclear Information System (INIS)

    Sakata, Shinya; Koiwa, Motonao; Matsuda, Toshiaki; Aoyagi, Tetsuo

    2000-07-01

    At the beginning of JT-60 experiments, the real time processor (RTP) in the data processing system was mainly constructed by PANAFACOM U-1500. As the computer became superannuated, however, it gradually became difficult to maintain both hardware and software. A performance of a recent UNIX workstation has been remarkably progressed. The UNIX workstation has a large flexibility for user application programs, an easiness for maintenance of the hardware and an ability of expansion to peripheral devices. Therefore, the RTP system is newly reconstructed by using the UNIX workstation. This report describes the overview, the basic design and the recent upgrade on the RTP in the data processing system. (author)

  19. Divertor characteristics and control on the W-shaped divertor with pump of JT-60U

    International Nuclear Information System (INIS)

    Hosogane, N.; Kubo, H.; Higashijima, S.

    1999-01-01

    Roles of the inner leg pumping and the private dome, which are special features of the W-shaped divertor of JT-60U, have been investigated. The following observations were made: The inner leg pumping functions well in attached states or partially detached states with weak X-point MARFE where the inner particle recycling is enhanced. A combination of main gas puff and inner leg pump is effective in reduction of intrinsic carbon impurity. Geometrical effects of the private dome on transport of hydrocarbons in the private flux region was confirmed by spectroscopic measurements of CD-band intensity profile and impurity transport simulation code using experimental data. (author)

  20. Numerical analysis of gas puff modulation experiment on JT-60U

    International Nuclear Information System (INIS)

    Nagashima, Keisuke; Sakasai, Akira

    1992-03-01

    In tokamak transport physics, source modulation experiments are one of the most effective methods. For an analysis of these modulation experiments, a simple numerical method was developed to solve the general transport equations. This method was applied to gas puff modulation experiments on JT-60U. From the comparison between the measured and calculated density perturbations, it was found that the particle diffusion coefficient is about 0.8 m 2 /sec in the edge region and 0.1-0.2 m 2 /sec in the central region. (author)

  1. Status of the cold test facility for the JT-60SA tokamak toroidal field coils

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Maksoud, Walid, E-mail: walid.abdelmaksoud@cea.fr; Bargueden, Patrick; Bouty, André; Dispau, Gilles; Donati, André; Eppelle, Dominique; Genini, Laurent; Guiho, Patrice; Guihard, Quentin; Joubert, Jean-Michel; Kuster, Olivier; Médioni, Damien; Molinié, Frédéric; Sinanna, Armand; Solenne, Nicolas; Somson, Sébastien; Vieillard, Laurence

    2015-10-15

    Highlights: • The 5 K cryogenic loop includes a 500 W refrigerator and a She cold pump. • The coils are energized thanks to a 25.7 kA power supply and HTS current leads. • Temperature margin tests between 5 K and 7.5 K will be made on each coil. • A magnet safety system protects each double pancake of the coil in case of quench. • Instrumentation is monitored on a 1 Hz to 10 kHz fast acquisition system. - Abstract: JT-60SA is a fusion experiment which is jointly constructed by Japan and Europe and which shall contribute to the early realization of fusion energy, by providing support to the operation of ITER, and by addressing key physics issues for ITER and DEMO. In order to achieve these goals, the existing JT-60U experiment will be upgraded to JT-60SA by using superconducting coils. The 18 TF coils of the JT-60SA device will be provided by European industry and tested in a Cold Test Facility (CTF) at CEA Saclay. The coils will be tested at the nominal current of 25.7 kA and will be cooled with supercritical helium between 5 K and 7.5 K to check the temperature margin against a quench. The main objective of these tests is to check the TF coils performance and hence mitigate the fabrication risks. The most important components of the facility are: a 11.5 m × 6.5 m large cryostat in which the TF coils will be thermally insulated by vacuum; a 500 W helium refrigerator and a valve box to cool the coils down to 5 K and circulate 24 g/s of supercritical helium through the winding pack and through the casing; a power supply and HTS current leads to energize the coil; the control and instrumentation equipment (sensors, PLC's, supervision system, fast data acquisition system, etc.) and the Magnet Safety System (MSS) that protects the coils in case of quench. The paper will give an overview of the design of this large facility and the status of its realization.

  2. Improvement on control system of the JT-60 radio frequency heating system

    Energy Technology Data Exchange (ETDEWEB)

    Shinozaki, Shin-ichi; Moriyama, Shinichi; Hiranai, Shinichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Sato, Fumiaki [Nippon Advanced Technology Co., Ltd., Tokai, Ibaraki (Japan)

    2003-03-01

    On the JT-60 radio frequency (RF) heating system, the decrease in the activity ratio was a problem because of the deterioration of the control system. To improve the reliability, we replaced CAMAC system for a power injection control system, which was a main cause of the trouble, with the microprocessor system. And, a function of computer supported programming function of RF power injection form was introduced, which contributed to reduce a load of operators. Furthermore, personal computers with network communication were introduced to improve a maintenance ability of the control system. As a result, the activity ratio of the RF heating system was improved significantly. (author)

  3. Design study of a time-of-flight neutron spectrometer for JT-60U

    International Nuclear Information System (INIS)

    Elevant, T.; Hoek, M.; Nishitani, Takeo.

    1993-06-01

    A time-of-flight neutron spectrometer is proposed for measurements of neutron energy spectra from deuterium-deuterium reactions in JT-60U tokamak plasmas. The sensitivity of the instrument is 2 · 10 -2 cm 2 , energy resolution is 4.5 % (FWHM) and maximum useful count-rate is 6 kHz. Analysis of neutron energy spectra will provide information on central ion temperatures larger than ∼ 4 keV with an accuracy of ± 10 %, and neutron source fraction from reactions between thermal ions with an accuracy of ± 15 %. The minimum time required for data acquisition is 0.1 s. (author)

  4. Progress of JT-60SA Project: EU-JA joint efforts for assembly and fabrication of superconducting tokamak facilities and its research planning

    Energy Technology Data Exchange (ETDEWEB)

    Shirai, Hiroshi, E-mail: shirai.hiroshi@jaea.go.jp [JT-60SA Project Team, Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Barabaschi, Pietro [JT-60SA EU-Home Team, Fusion for Energy, Boltsmannstr 2, Garching 85748 (Germany); Kamada, Yutaka [JT-60SA JA-Home Team, Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2016-11-01

    Highlights: • JT-60SA Project is promoted under the BA Agreement and JA national programme. • JT-60SA is designed to operate in break-even equivalent condition for a long period. • JT-60SA Project supports and complements the ITER project, and promotes DEMO design. • Fabrication of JT-60SA components and assembly in Naka are steadily going on. • JT-60SA Research Plan has been developed jointly by EU and JA fusion communities. - Abstract: Aiming at supporting the early realization of fusion energy, the JT-60SA Project has shown steady progress for several years toward the first plasma in 2019 under the dual frameworks: the Satellite Tokamak Programme of the Broader Approach Agreement between EU and Japan, and the Japanese national programme. JT-60SA is a superconducting tokamak designed to operate in break-even equivalent conditions for a long pulse duration (typically 100 s) with a maximum plasma current of 5.5 MA. A variety of plasma control capabilities enable JT-60SA to contribute directly to the ITER project and also to DEMO by addressing key engineering and physics issues for advanced plasma operation. Design and fabrication of JT-60SA components, shared by the EU and Japan, started in 2007. Assembly in the torus hall started in January 2013, and welding work of the vacuum vessel sectors (seven 40° sectors and two 30° sectors) is currently ongoing on the cryostat base. Other components such as TF coils, PF coils, power supplies, cryogenic system, cryostat vessel, thermal shields and so on were or are being delivered to the Naka site for installation, assembly and commissioning. This paper gives technical progress on fabrication, installation and assembly of tokamak components and ancillary systems, as well as progress of the JT-60SA Research Plan being developed jointly by European and Japanese fusion communities.

  5. Improved cooler design of electric arc furnace refractory in mining industry using thermal analysis modeling and simulation

    International Nuclear Information System (INIS)

    Istadi, I.; Bindar, Y.

    2014-01-01

    Production of steel and nickel using the electric arc furnace should be focused on the intensification of energy. Improvement of energy efficiency of the most consuming facilities was achieved by improving the use of alternative energy minimization such as reducing the heat lost of hot gases, minimizing the heat radiated through refractory linings of metallurgical furnaces, and cooling the highly thermally stressed components. The refractory of electric arc furnace should be modified to achieve the best cooling system of the furnace. In this physical modeling and simulation works, four modification scenarios of wall refractory designs were simulated, i.e. refractory with basic design, refractory with deep plate coolers, refractory with extra plate coolers, and refractory with wall falling film coolers. Finally, the use of deep plate cooler and the existing waffle cooler system was considered to be the best design of efficient electric arc furnace operationally. - Highlights: • Electric arc furnace design should be focused on the intensification of energy. • Refractory of electric arc furnace were modified to achieve the best cooling system. • Four modification scenarios of the wall refractory designs were simulated. • Use of deep plate cooler and existing waffle cooler system is the best cooling

  6. Report on the status of linear drive coolers for the Department of Defense Standard Advanced Dewar Assembly (SADA)

    Science.gov (United States)

    Salazar, William

    2003-01-01

    The Standard Advanced Dewar Assembly (SADA) is the critical module in the Department of Defense (DoD) standardization effort of scanning second-generation thermal imaging systems. DoD has established a family of SADA's to address requirements for high performance (SADA I), mid-to-high performance (SADA II), and compact class (SADA III) systems. SADA's consist of the Infrared Focal Plane Array (IRFPA), Dewar, Command and Control Electronics (C&CE), and the cryogenic cooler. SADA's are used in weapons systems such as Comanche and Apache helicopters, the M1 Abrams Tank, the M2 Bradley Fighting Vehicle, the Line of Sight Antitank (LOSAT) system, the Improved Target Acquisition System (ITAS), and Javelin's Command Launch Unit (CLU). DOD has defined a family of tactical linear drive coolers in support of the family of SADA's. The Stirling linear drive cryo-coolers are utilized to cool the SADA's Infrared Focal Plane Arrays (IRFPAs) to their operating cryogenic temperatures. These linear drive coolers are required to meet strict cool-down time requirements along with lower vibration output, lower audible noise, and higher reliability than currently fielded rotary coolers. This paper will (1) outline the characteristics of each cooler, (2) present the status and results of qualification tests, and (3) present the status and test results of efforts to increase linear drive cooler reliability.

  7. Improvement of the real-time processor in JT-60 data processing system

    International Nuclear Information System (INIS)

    Sakata, S.; Kiyono, K.; Sato, M.; Kominato, T.; Sueoka, M.; Hosoyama, H.; Kawamata, Y.

    2009-01-01

    Real-time processor, RTP is a basic subsystem in the JT-60 data processing system and plays an important role in JT-60 feedback control for plasma experiment. During the experiment, RTP acquires various diagnostic signals, processes them into a form of physical values, and transfers them as sensor signals to the particle supply and heating control supervisor for feedback control via reflective memory synchronization with 1 ms clock signals. After the start of RTP operation in 1997, to meet the demand for advanced plasma experiment, RTP had been improved continuously such as by addition of diagnostic signals with faster digitizers, reducing time for data transfer utilizing reflective memory instead of CAMAC. However, it is becoming increasingly difficult to maintain, manage, and improve the outdated RTP with limited system CPU capability. Currently, a prototype RTP system is being developed for the next real-time processing system, which is composed of clustered system utilizing VxWorks computer. The processes on the existing RTP system will be decentralized to the VxWorks computer to solve the issues of the existing RTP system. The prototype RTP system will start to operate in August 2008.

  8. Evaluation of mechanical strength of the joints in JT-60 toroidal field coil conductors

    International Nuclear Information System (INIS)

    Nishio, Satoshi; Ohkubo, Monoru; Sasajima, Hiroshi

    1980-04-01

    Toroidal field (TF) coils of JT-60 produce a toroidal field of 45 kG at a plasma axis, they have an inner bore of 3.90 m and a weight of about 80 metric tons per coil. Eighteen TF coils are located around a torus axis at regular intervals. TF coil conductors are mostly jointed by high frequency induction brazing, the rest jointed by welding. In deciding the details of the jointing procedures, the conductor size and the requested mechanical strength are mainly taken into consideration. Described are non-destructive inspection methods for the brazed joints, strength evaluation, and the inspection criteria. Ultrasonic testing method is found to be the most effective in evaluation of mechanical properties of the brazed joints especially in terms of fatigue strength. In section 1, specifications of the TF coils are given. In section 2, the ultrasonic inspection method and the detectability of this apparatus are described in detail, the defects of known size are compared with the indication values and display figures. The apparatus developed for JT-60 is operated automatically also recording the inspectionresults. In section 3, mechanical strength of the brazed joints with initial defects is discussed on the basis of Fracture Mechanics theory and results of the fatigue crack growth test. The inspection criteria in accordance with the descriptions of section 2 and 3 are given in section 4. (author)

  9. Computer system for the beam line data processing at JT-60 prototype neutral beam injector

    International Nuclear Information System (INIS)

    Horiike, Hiroshi; Kawai, Mikito; Ohara, Yoshihiro

    1987-08-01

    The present report describes the hard and soft wares of the data acquisition computer system for the prototype neutral injector unit for JT-60. In order to operate the unit, more than hundreds of signals of the beam line components have to be measured. These are mainly differential thermometers for the coolant waters and thermocouples for the beam dump components but not include those for the cryo system. Since the unit operates in a series of pulses, the measurement should be conducted very quickly in order to ensure the simultaneity of large number of the measured data. The present system actualize fast data acquisition using a small computer of 128 kB and measuring instruments connected through the bus. The system is connected to the JAERI computer center since the data capacity is fairly large to completely process them by the small computer. Therefore the measured data can be transferred to the computer center to calculate there, and the results can be received. After the system was completed the computer quickly print out the power flow data, which needed much work to calculate with hands. This system was very useful. It enhanced the experiments at the unit and reduced the labor. It enables us to early demonstrate the rated operation of the unit and to accurately estimate such operation data of the JT-60 NBI as the injection power. (author)

  10. Operation experiences of the JT-60 first walls during high-power additional heating experiments

    International Nuclear Information System (INIS)

    Takatsu, H.; Ando, T.; Yamamoto, M.; Arai, T.; Kodama, K.; Suzuki, M.; Shimizu, M.

    1989-01-01

    JT-60 started its operation in May 1985 with TiC-coated molybdenum or Inconel 625 first walls. They provided very clean surfaces as well as superior plasma characteristics during Joule heating discharges. Though 20 μm-thick TiC coatings showed good adhesion characteristics, melting of the TiC coating and also the molybdenum or Inconel 625 substrate was observed at some specific spots, and an influx of heavy metals to the main plasma was inevitable during discharges. Initial results of the additional heating experiments showed degrading effects of locally melted TiC-coated molybdenum or Inconel 625 on plasma operation. Therefore, about a half of the TiC-coated first walls were removed and new graphite first walls were installed during the venting period from April to May 1987. The start-up of the discharge conditioning after installation of a significant number of graphite tiles was very rapid. Flexibility in plasma operation was increased, and JT-60 extended the operation region beyond its original specifications. The graphite first walls of the main chamber performed admirably and maintained their integrity under the conditions of plasma current and additional heating power up to 3.2 MA and 30 MW, respectively. On the other hand, the number of damaged divertor plates was much larger than that expected. The reason of unexpected failure is now under examination. (orig.)

  11. Structural design of vacuum bulkheads in piping penetration for the cryostat base of JT-60SA

    International Nuclear Information System (INIS)

    Nakamura, Shigetoshi; Shibama, Yusuke K.; Masaki, Kei

    2016-11-01

    This study examined the structure of the boundary box that is capable of installing the cryostat base of JT-60SA in a narrow space. Since other devices stand close in the neighborhood, it was designed to fit within a limited space to avoid interference. Spatial limitation and generated stress caused by each load were used as design conditions. From the calculation results of the generated stress with respect to each load, the maximum stress is generated by the displacement of the pipeline associated with the displacement of the vacuum container at the time of earthquake and 200degC baking, so bellows were designed to absorb the displacement of the piping. It was confirmed through 3-D finite element analysis that this generated stress is less than the allowable stress and there is no problem in structural integrity. This paper explained the composition of major equipment of JT-60SA and the structure of cryostat base. In the structural analysis of the boundary box, consideration was given to the pressure difference during vacuum closure or abnormal events, temperature distribution, pipe displacement associated with the deformation of vacuum vessel, and seismic load. As a result of finite element analysis, it was confirmed that the displacement amount and temperature distribution during plasma operation and baking were within the allowable range. In addition, the maximum stress during cryostat helium leak was also within the allowable range. (A.O.)

  12. Design and performance tests of gas circulation heating of JT-60U vacuum vessel

    International Nuclear Information System (INIS)

    Yotsuga, M.; Masuzaki, T.; Sago, H.; Nishikane, M.; Uchikawa, T.; Iritani, Y.; Murakami, T.; Horiike, H.; Neyatani, Y.; Ninomiya, H.; Matsukawa, M.; Ando, T.; Miyachi, I.

    1992-01-01

    This paper reports that in the final stage of construction of the upgraded JT-60 device (JT-60U), baking tests of the vacuum vessel was performed. The vessel torus was heated-up to 300 degrees C by means of the nitrogen gas circulation system and electric heaters mounted on the outboard solid wall of the vessel. The design of the gas flow channels inside the double-wall structure of the vessel was done based on flow model tests, fluid analysis, and flow network analysis. The results of the baking tests were satisfactory. In maintaining 300 degrees C bake-out temperature, required heating power of the gas circulation system and outboard heaters was 520kW and 50kW, respectively. The temperature distribution over the vessel wall was within 300 ± 30 degrees C. It was also shown or suggested that heat-up and cool-down time is about 30 hours. The baking tests data have been reflected on operations for plasma experiments

  13. Characteristics of divertor plasma and scrape-off layer in JT-60U

    International Nuclear Information System (INIS)

    Itami, K.; Shimada, M.; Hosogane, N.

    1992-01-01

    Heat flux to the divertor is measured by thermography and the heat transport in the scrape-off layer is studied in beam heated discharges of JT-60U. The heat flux onto the divertor is ∝50% of total beam power at maximum. The in-out asymmetry of the heat flux P HEAT in /P HEAT out is as large as 20-40% when the ion grad-B drift is toward the divertor. Differences in P HEAT in /P HEA T out due to the direction of ion grad-B drift are as large as large as ∝40%. A scaling of the peaking factor Y of heat flux, defined by Y=2πRfq max /P HEAT , is obtained for beam heated discharges in JT-60U with a wide range of plasma parameters. The Y corresponds to the inverse of the thickness of the scrape-off layer. From a statistical analysis, it is found that the peaking factor Y of heat flux scales as P HEAT 0.49±0.18 anti n e -0.45±0.22 q eff -0.67±0.18 . (orig.)

  14. Development of TiC coated wall materials for JT-60

    International Nuclear Information System (INIS)

    Abe, T.; Murakami, Y.; Obara, K.; Hiroki, S.; Nakamura, K.; Inagawa, K.

    1985-01-01

    Development of titanium carbide (TiC, 20 μm thick) coated wall materials has been carried out for JT-60. Application of TiC coatings onto molybdenum and Inconel 625 substrates requires a deposition temperature below 950 0 C and 600 0 C respectively, because recrystallization of molybdenum and age hardening of Inconel 625 occur above these temperatures. Through this process of coating we develop a new type plasma CVD(TP-CVD method) for molybdenum and a new type PVD(HCD-ARE method) for Inconel 625 which could successfully reduce the deposition temperature to 900 0 C and 500 0 C, respectively. The TiC coated wall samples were characterized by AES, ESCA, X-ray diffractometer, EPMA, SEM, metalography, tensile tests, thermal shock tests, and other techniques. As a result of the above measurements, it was demonstrated that the characteristics of those TiC coated walls satisfy the requirements arising from JT-60 operation conditions. (orig.)

  15. Avoidance of VDEs during plasma current quench in JT-60U

    International Nuclear Information System (INIS)

    Yoshino, R.; Nakamura, Y.; Neyatani, Y.

    1996-01-01

    Vertical displacement events (VDEs) during plasma current quench (I p quench) are one of the serious problems encountered in designing tokamak fusion reactors, owing to the generation of enormously high electromagnetic forces on the vacuum vessel and in-vessel components, but they have been passively and actively avoided in JT-60U. In JT-60U 'slow I p quench' is ended with very fast plasma current termination (final I p termination), and the halo current is frequently measured at this final I p termination. VDEs make the final I p termination severe by increasing the halo current and the electromagnetic force. A strong dependence of VDE growth rate on the initial vertical position of the plasma current centre (Z J ) has been clarified experimentally, and a neutral point of Z J for VDE has been found at ∼ 15 cm above the midplane of the vacuum vessel. According to these measurements, VDE has been avoided by the selection of Z J at the start of I p quench (passive control) and by the control of Z J during I p quench (active control) eventually obtained owing to the small deviation of Z J in real time calculations from its actual value. Furthermore, passive avoidance of VDEs by the injection of a neon ice pellet has been demonstrated. (author). 29 refs, 14 figs

  16. Effect of halo current and its toroidal asymmetry during disruptions in JT-60U

    International Nuclear Information System (INIS)

    Neyatani, Y.; Yoshino, R.; Ando, T.

    1995-01-01

    A poloidal halo current due to a vertical displacement event (VDE) is observed in experimentally simulated VDE discharges and density limit disruptions in the JT-60U tokamak. In the case of a clockwise I p and B T discharge, the halo current flows into the vacuum vessel from the inside separatrix and goes back to the plasma from the outside separatrix. A maximum halo current is produced by a change in the poloidal flux generated by plasma current decay. A toroidal asymmetry factor of 2.5 is estimated from the requirements of the fracture of the carbon-fiber composite tiles. The toroidal asymmetry is caused by the poloidal field (PF) that is produced by the toroidal field (TF) ripple, the deformation of the vacuum vessel, the setting error between the vacuum vessel and the TF and PF coils, the low-n mode during current quench, etc. To consider this asymmetry, in JT-60U, one must estimate the total halo current as nearly 26% of the plasma current just before a current quench. 25 refs., 10 figs

  17. Physics of strong internal transport barriers in JT-60U reversed-magnetic-shear plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, N; Takizuka, T; Sakamoto, Y; Fujita, T; Kamada, Y; Ide, S; Koide, Y [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka, Ibaraki 311-0193 (Japan)

    2006-05-15

    The physics of strong internal transport barriers (ITBs) in JT-60U reversed-magnetic-shear (RS) plasmas has been studied through the modelling on the 1.5 dimensional transport simulation. The key physics to produce two scalings on the basis of the JT-60U box-type ITB database are identified. As for the scaling for the narrow ITB width proportional to the ion poloidal gyroradius, the following three physics are important: (1) the sharp reduction of the anomalous transport below the neoclassical level in the RS region, (2) the autonomous formation of pressure and current profiles through the neoclassical transport and the bootstrap current and (3) the large difference between the neoclassical transport and the anomalous transport in the normal-shear region. As for the scaling for the energy confinement inside ITB ({epsilon}{sub f}{beta}{sub p,core} {approx} 0.25, where {epsilon}{sub f} is the inverse aspect ratio at the ITB foot and {beta}{sub p,core} is the core poloidal beta value), the value of 0.25 is found to be a saturation value due to the MHD equilibrium. The value of {epsilon}{sub f}{beta}{sub p,core} reaches the saturation value, when the box-type ITB is formed in the strong RS plasma with a large asymmetry of the poloidal magnetic field, regardless of the details of the transport and the non-inductively driven current.

  18. High Mach flow associated with plasma detachment in JT-60U

    International Nuclear Information System (INIS)

    Hatayama, A.; Hoshino, K.; Miyamoto, K.

    2003-01-01

    Recent new results of the high Mach flows associated with plasma detachment are presented on the basis of numerical simulations by a 2-D edge simulation code (the B2-Eirene code) and their comparisons with experiments in JT-60U W-shaped divertor plasma. High Mach flows appear near the ionization front away from the target plate. The plasma static pressure rapidly drops, while the total pressure is kept almost constant near the ionization front, because the ionization front near the X-point is clearly separated from the momentum loss region near the target plate. Redistribution from static to dynamic pressure without a large momentum loss is confirmed to be a possible mechanism of the high Mach flows. It has been also shown that the radial structure of the high Mach flow near the X point away from the target plate has a strong correlation with the DOD (Degree of Detachment) at the target plate. Also, we have made systematic analyses on the high Mach flows for both the 'Open' geometry and the 'W-shaped' geometry of JT-60U in order to clarify the geometric effects on the flows. (author)

  19. Development of computer-aided software engineering tool for sequential control of JT-60U

    International Nuclear Information System (INIS)

    Shimono, M.; Akasaka, H.; Kurihara, K.; Kimura, T.

    1995-01-01

    Discharge sequential control (DSC) is an essential control function for the intermittent and pulse discharge operation of a tokamak device, so that many subsystems may work with each other in correct order and/or synchronously. In the development of the DSC program, block diagrams of logical operation for sequential control are illustrated in its design at first. Then, the logical operators and I/O's which are involved in the block diagrams are compiled and converted to a certain particular form. Since the block diagrams of the sequential control amounts to about 50 sheets in the case of the JT-60 upgrade tokamak (JT-60U) high power discharge and the above steps of the development have been performed manually so far, a great effort has been required for the program development. In order to remove inefficiency in such development processes, a computer-aided software engineering (CASE) tool has been developed on a UNIX workstation. This paper reports how the authors design it for the development of the sequential control programs. The tool is composed of the following three tools: (1) Automatic drawing tool, (2) Editing tool, and (3) Trace tool. This CASE tool, an object-oriented programming tool having graphical formalism, can powerfully accelerate the cycle for the development of the sequential control function commonly associated with pulse discharge in a tokamak fusion device

  20. Development of a pellet cutting and loading device for the JT-60 repetitive pellet injector

    International Nuclear Information System (INIS)

    Hiratsuka, Hajime; Ichige, Hisashi; Kizu, Kaname; Iwahashi, Takaaki; Honda, Masao

    2001-03-01

    In JT-60, a pellet injector that repetitively injects deuterium pellets is under development to supply fuel to high temperature plasmas and sustain high-density plasmas. The pellet injector generates cubic pellets and accelerates them with a straight-arm rotor by centrifugal force. In this acceleration method, it is important to supply pellets reliably and stably, to prevent pellet orbits from disordering and to stabilize the launching direction. To achieve higher performance of the injector, a pellet cutting and loading device that cuts a deuterium ice rod into cubic pellets and loads them to the pellet injector successively and stably has been developed. The pellet cutting and loading device can cut a deuterium ice rod produced at low temperature of -8 Pam 3 /s, cutting time of <3 ms, cutting frequency of 1-20 Hz and cutter stroke of 2.5 mm were confirmed in the device test. In the operation test after assembling this device to the centrifugal pellet injector, the operational performance of pellet injection frequency of ∼10 Hz, pellet speed of ∼690 m/s and pellet injection duration time of ∼3.5 s was achieved. Thus, the development of the pellet cutting and loading device contributed to the upgrade of the JT-60 pellet injector. (author)

  1. ERATO-code analysis of vacuum magnetic field oscillations in JT-60 divertor configuration

    International Nuclear Information System (INIS)

    Ozeki, Takahisa; Tokuda, Shinji; Tsunematsu, Toshihide; Ishida, Shinichi; Neyatani, Yuzuru; Itami, Kiyoshi; Azumi, Masafumi

    1989-07-01

    Magnetic field oscillations caused by external kink instabilities are numerically studied by using the ideal MHD stability code ERATO-J. Dependence of a spatial distribution of their amplitude and phase on aspect-ratio, beta-poloidal, shaping of conducting shell and divertor/limiter configurations is examined in detail. In the low aspect ratio plasma, the amplitude of magnetic oscillations in the inner side of the torus is larger than that in the outer. On the contrary, as the poloidal beta increases, the amplitude in the outer side of the torus becomes larger than that in the inner. In the divertor configuration, the amplitude of oscillations reduces near the X-point and the phase is locally modulated. The coherent magnetic oscillations observed in JT-60 agree well with the theoretical results, where the vacuum vessel is assumed to be an ideal conducting shell. The non-uniformity of the poloidal distribution observed in JT-60 can be explained by the combined effects of the finite beta, the X-point and the shape of shell. (author)

  2. Numerical simulation on current spike behaviour of JT-60U disruptive plasmas

    International Nuclear Information System (INIS)

    Takei, N; Nakamura, Y; Tsutsui, H; Yoshino, R; Kawano, Y; Ozeki, T; Tobita, K; Tsuji-Iio, S; Shimada, R; Jardin, S C

    2004-01-01

    Characteristics and underlying mechanisms for plasma current spikes, which have been frequently observed during the thermal quench of JT-60U disruptions, were investigated through tokamak simulation code simulations including the passive shell effects of the vacuum vessel. Positive shear and reversed shear (PS and RS) plasmas were shown to have various current spike features in the experiments, e.g. an impulsive increase in the plasma current (positive spike) in the majority of thermal quenches, and a sudden decrease (negative spike), that has been excluded from past consideration, as an exception. It was first clarified that the shell effects, which become significant especially at a strong pressure drop due to the thermal quench of high β p plasmas, play an important role in the current spike in accordance with the initial relation of the radial location between the plasma equilibria and the vacuum vessel. As a consequence, a negative current spike may appear at thermal quench when the plasma is positioned further out from the geometric centre of the vacuum vessel. It was also pointed out that a further lowering in the internal inductance, in contradiction to previous interpretation in the past, is a plausible candidate for the mechanism for positive current spikes observed even in RS plasmas. The new interpretation enables us to reason out the whole character of current spikes of JT-60U disruptions

  3. Mutacin H-29B is identical to mutacin II (J-T8

    Directory of Open Access Journals (Sweden)

    Lavoie Marc C

    2006-04-01

    Full Text Available Abstract Background Streptococcus mutans produces bacteriocins named mutacins. Studies of mutacins have always been hampered by the difficulties in obtaining active liquid preparations of these substances. Some of them were found to be lantibiotics, defined as bacterial ribosomally synthesised lanthionine-containing peptides with antimicrobial activity. The goal of this study was to produce and characterize a new mutacin from S. mutans strain 29B, as it shows a promising activity spectrum against current human pathogens. Results Mutacin H-29B, produced by S. mutans strain 29B, was purified by successive hydrophobic chromatography from a liquid preparation consisting of cheese whey permeate (6% w/v supplemented with yeast extract (2% and CaCO3 (1%. Edman degradation revealed 24 amino acids identical to those of mutacin II (also known as J-T8. The molecular mass of the purified peptide was evaluated at 3246.08 ± 0.1 Da by MALDI-TOF MS. Conclusion A simple procedure for production and purification of mutacins along with its characterization is presented. Our results show that the amino acid sequence of mutacin H-29B is identical to the already known mutacin II (J-T8 over the first 24 residues. S. mutans strains of widely different origins may thus produce very similar bacteriocins.

  4. Overview of JT-60U results toward high integrated performance in reactor-relevant regime

    International Nuclear Information System (INIS)

    Fujita, T.

    2002-01-01

    Toward steady sustainment of high integrated performance, we have developed weak magnetic shear (high β p mode) and reversed magnetic shear plasmas. As a large-sized tokamak equipped with a variety of devices for heating, current drive and profile/shape control, JT-60U has high ability to approach the conditions required in reactors: low values of normalized Larmor radius and collisionality, high temperatures with T e > or approx. T i , etc. This paper reviews recent JT-60U results with the emphasis on the projection to the reactor-relevant regime. Full non-inductive current drive has been achieved in a 1.8 MA high β p H-mode plasma with β N 2:4, HH y2 =1.2 and high fusion triple product (3 x 10 20 m -3 keVs) owing to increased N-NB power. In a reversed shear plasma, HH y2 =1.4 at n e /n GW 0.8 under the full non-inductive current drive has been achieved with injection of LHRF and N-NB. In box-type ITBs with reversed shear, barriers for ions and electrons were sustained in a regime with T e > or approx. T i . The pedestal pressure was doubled with increased total poloidal beta in pellet-injected high triangularity plasmas with type I and II ELMs. Stable existence of current hole was demonstrated. (author)

  5. Resistive instabilities in reversed shear discharges and wall stabilization on JT-60U

    International Nuclear Information System (INIS)

    Takeji, S.; Tokuda, S.; Fujita, T.; Suzuki, T.; Isayama, A.; Ide, S.; Ishii, Y.; Kamada, Y.; Koide, Y.; Matsumoto, T.; Oikawa, T.; Ozeki, T.; Sakamoto, Y.

    2001-01-01

    Resistive instabilities and wall stabilization of ideal low toroidal mode number, n, kink modes are investigated in JT-60U reversed shear discharges. Resistive interchange modes with n=1 are found to appear in reversed shear discharges with large pressure gradient at the normalized beta, β N , of about unity or even lower. The resistive interchange modes appear as intermittent burst-like magnetohydrodynamic (MHD) activities and higher n≤3 modes are observed occasionally in higher β N regime. No clear degradation of the plasma stored energy is observed by the resistive interchange modes themselves. It is also found that resistive interchange modes can lead to major collapse owing to a coupling with tearing modes at the outer mode rational surface over the minimum safety factor. Stability analysis revealed that stability parameter of tearing modes, Δ' , at the outer mode rational surface is affected by the free-boundary condition. The result is consistent with the experimental evidence that major collapse tends to occur when plasma edge safety factor, q*, is near integer values. Stabilization of ideal low n kink modes by the JT-60U wall is demonstrated. Magnetohydrodynamic perturbations that are attributed to resistive wall modes are observed followed by major collapse in wall-stabilized discharges. (author)

  6. Development of fast charge exchange recombination spectroscopy by using interference filter method in JT-60U

    International Nuclear Information System (INIS)

    Kobayashi, Shinji; Sakasai, Akira; Koide, Yoshihiko; Sakamoto, Yoshiteru; Kamada, Yutaka; Hatae, Takaki; Oyama, Naoyuki; Miura, Yukitoshi

    2003-01-01

    Recent developments and results of fast charge exchange recombination spectroscopy (CXRS) using interference filter method are reported. In order to measure the rapid change of the ion temperature and rotation velocity under collapse or transition phenomena with high-time resolution, two types of interference filter systems were applied to the CXRS diagnostics on the JT-60U Tokamak. One can determine the Doppler broadening and Doppler shift of the CXR emission using three interference filters having slightly different center wavelengths. A rapid estimation method of the temperature ad rotation velocity without non-linear least square fitting is presented. The modification of the three-filters system enables us to improve the minimum time resolution up to 0.8 ms, which is better than that of 16.7 ms for the conventional CXRS system using the CCD detector in JT-60U. The other system having seven wavelength channels is newly fabricated to crosscheck the results obtained by the three-filters assembly, that is, to verify that the CXR emission forms a Gaussian profile under collapse phenomena. In a H-mode discharge having giant edge localized modes, the results obtained by the two systems are compared. The applicability of the three-filters system to the measurement of rapid changes in temperature and rotation velocity is demonstrated. (author)

  7. Mechanical strength evaluation of the welded bellows for the ports of the JT-60 vacuum vessel

    International Nuclear Information System (INIS)

    Takatso, H.; Shimizu, M.; Yamamoto, M.

    1983-01-01

    Mechanical strength of the welded bellows for the ports of the JT-60 vacuum vessel was evaluated, laying the emphasis on the fatigue strength under the torsional electromagnetic force. The welded bellows were designed to be loaded with the forced deflection due to the relative displacement between the vacuum vessel and the external fixed point, the atmospheric pressure and the forced torsional angle due to the electromagnetic force. Stresses caused by the former two were estimated following the formulae proposed by the Kellogg Company. On the other hand, two formulae were established to estimate the stress caused by the last, after examining experimentally the behavior of the welded bellows under the torsional load; one is the shearing stress evaluation formula and the other is the axial bending stress evaluation formula. It was found that the welded bellows can easily buckle under the torsional load and the former formula corresponds to the case of non-buckling and the latter to the case of buckling. The present mechanical strength evaluation method was applied to the three kinds of the welded bellows to be used in the ports of the JT-60 vacuum vessel (neutral beam injection ports, vacuum pumping ports and the adjustable limiter ports) and it was confirmed that they have sufficient strength in the range of the design load conditions

  8. Dynamic simulations for preparing the acceptance test of JT-60SA cryogenic system

    Science.gov (United States)

    Cirillo, R.; Hoa, C.; Michel, F.; Poncet, J. M.; Rousset, B.

    2016-12-01

    Power generation in the future could be provided by thermo-nuclear fusion reactors like tokamaks. There inside, the fusion reaction takes place thanks to the generation of plasmas at hundreds of millions of degrees that must be confined magnetically with superconductive coils, cooled down to around 4.5 K. Within this frame, an experimental tokamak device, JT-60SA is currently under construction in Naka (Japan). The plasma works cyclically and the coil system is subject to pulsed heat loads. In order to size the refrigerator close to the average power and hence optimizing investment and operational costs, measures have to be taken to smooth the heat load. Here we present a dynamic model of the JT-60SA's Auxiliary Cold box (ACB) for preparing the acceptance tests of the refrigeration system planned in 2016 in Naka. The aim of this study is to simulate the pulsed load scenarios using different process controls. All the simulations have been performed with EcosimPro® and the associated cryogenic library: CRYOLIB.

  9. Development of a VME multi-processor system for plasma control at the JT-60 Upgrade

    International Nuclear Information System (INIS)

    Takahashi, M.; Kurihara, K.; Kawamata, Y.; Akasaka, H.; Kimura, T.

    1992-01-01

    Design and initial operation results are reported of a VME multi-processor system [1] for plasma control at a large fusion device named 'the JT-60 Upgrade' utilizing three 32-bit MC88100 based RISC computers and VME components. Development of the system was stimulated by faster and more accurate computation requirements for the plasma position and current control. The RISC computers operate at 25 MHz along with two cashe memories named MC88200. We newly developed VME bus modules of up/down counter, analog-to-digital converter and clock pulse generator for measuring magnetic field and coil current and for synchronizing the processing in the three RISCs and direct digital controllers (DDCs) of magnet power supplies. We also evaluated that the speed of the data transfer between the VME bus system and the DDCs through CAMAC highways satisfies the above requirements. In the initial operation of the JT-60 upgrade, it has been proved that the VME multi-processor system well controls the plasma position and current with a sampling period of 250 μsec and a delay of 500 μsec. (author)

  10. Comparison of Test Stand and Helicopter Oil Cooler Bearing Condition Indicators

    Science.gov (United States)

    Dempsey, Paula J.; Branning, Jeremy; Wade, Damiel R.; Bolander, Nathan

    2010-01-01

    The focus of this paper was to compare the performance of HUMS condition indicators (CI) when detecting a bearing fault in a test stand or on a helicopter. This study compared data from two sources: first, CI data collected from accelerometers installed on two UH-60 Black Hawk helicopters when oil cooler bearing faults occurred, along with data from helicopters with no bearing faults; and second, CI data that was collected from ten cooler bearings, healthy and faulted, that were removed from fielded helicopters and installed in a test stand. A method using Receiver Operating Characteristic (ROC) curves to compare CI performance was demonstrated. Results indicated the bearing energy CI responded differently for the helicopter and the test stand. Future research is required if test stand data is to be used validate condition indicator performance on a helicopter.

  11. Numerical Studies of the Friction Force for the RHIC Electron Cooler

    CERN Document Server

    Fedotov, Alexei V; Ben-Zvi, Ilan; Bruhwiler, David L; Busby, Richard; Litvinenko, Vladimir N; Schoessow, Paul

    2005-01-01

    Accurate calculation of electron cooling times requires an accurate description of the dynamical friction force. The proposed RHIC cooler will require ~55 MeV electrons, which must be obtained from an RF linac, leading to very high transverse electron temperatures. A strong solenoid will be used to magnetize the electrons and suppress the transverse temperature, but the achievable magnetized cooling logarithm will not be large. Available formulas for magnetized dynamical friction are derived in the logarithmic approximation, which is questionable in this regime. In this paper, we explore the magnetized friction force for parameters of the RHIC cooler, using the VORPAL code.* VORPAL can simulate dynamical friction and diffusion coefficients directly from first principles.** Various aspects of the friction force, such as dependence on magnetic field, scaling with ion charge number and others, are addressed for the problem of high-energy electron cooling in the RHIC regime.

  12. Heat Exchange and Fouling Analysis on a Set of Hydrogen Sulphide Gas Coolers

    Directory of Open Access Journals (Sweden)

    Andrés Adrian Sánchez-Escalona

    2017-07-01

    Full Text Available The sulphide acid coolers are tube and shell jacketed heat exchangers designed to cool down the produced gas from 416,15 K to 310,15 K in addition to separate the sulphur carried over by the outlet gas from the reactor tower. The investigation was carried out by applying the passive experimentation process in an online cooler set in order to determine the heat transfer rates and fouling based on heat resistance. It was corroborated that the operation of this equipment outside design parameters increases outlet gas temperature and liquid sulphur carryovers. Efficiency loss is caused by fouling elements in the fluid, which results in changes in the overall heat transfer rate. The linear tendency of the fouling heat resistance based on time for three gas flowrates.

  13. Optimization of multiple-module thermoelectric coolers using artificial-intelligence techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K. [University of Utah (United States). Dept. of Mechanical Engineering; Lin, G.T. [National Taiwan University of Science and Technology, Taipei (China). Dept. of Mechanical Engineering

    2002-07-01

    Genetic algorithm (GA) and simulated annealing (SA) methods were employed to optimize the current distribution of a cooler made up of a large number of thermoelectric (TE) modules. The TE modules were grouped into several clusters in the flow direction, and the electric currents supplied to different clusters were adjusted separately to achieve maximum energy efficiency or minimum refrigeration temperature for different,operating conditions and cooling requirements. Optimization results based on the design parameters of a large TE cooler showed considerable improvements in energy efficiency and refrigeration temperature when compared to the results of uniform current for the parallel-flow arrangement. On the other hand, results of the counter-flow arrangement showed only slight differences between uniform- and non-uniform-current optimizations. The optimization results of GA and SA were very close to each other. SA converged faster and was more computationally economical than GA for TE system optimization. (author)

  14. RFQ beam cooler and buncher for collinear laser spectroscopy of rare isotopes

    Science.gov (United States)

    Barquest, B. R.; Bollen, G.; Mantica, P. F.; Minamisono, K.; Ringle, R.; Schwarz, S.; Sumithrarachchi, C. S.

    2017-09-01

    A radiofrequency quadrupole (RFQ) ion beam cooler and buncher has been developed to deliver bunched beams with low transverse emittance, energy spread, and time spread to the BECOLA collinear laser spectroscopy system at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The beam cooler and buncher contains new features which enhance performance, especially for high count rate beams, as well as simplifying construction, maintenance, and operation. The transverse emittance, energy spread, and time spread of the bunched beam, as well as buncher efficiency are reported, showcasing the capabilities of the BECOLA facility to perform collinear laser spectroscopy measurements with bunched rare isotope beams at NSCL and at the future Facility for Rare Isotope Beams (FRIB).

  15. Heat transfer and evaporative cooling in the function of pot-in-pot coolers

    Science.gov (United States)

    Chemin, Arsène; Levy Dit Vehel, Victor; Caussarieu, Aude; Plihon, Nicolas; Taberlet, Nicolas

    2018-03-01

    A pot-in-pot cooler is an affordable electricity-free refrigerator which uses the latent heat of vaporization of water to maintain a low temperature inside an inner compartment. In this article, we experimentally investigate the influence of the main physical parameters in model pot-in-pot coolers. The effect of the wind on the evaporation rate of the cooling fluid is studied in model experiments while the influence of the fluid properties (thermal conductivity, specific heat, and latent heat) is elucidated using a variety of cooling fluids (water, ethanol, and ether). A model based on a simplified heat conduction equation is proposed and is shown to be in good quantitative agreement with the experimental measurements.

  16. Evaluation of heat exchange performance for primary pressurized water cooler in HTTR

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Nakagawa, Shigeaki

    2006-01-01

    In High Temperature Engineering Test Reactor (HTTR), the rated thermal power of 30 MW, the generated heat at reactor core is finally dissipated at the air-cooler by way of the heat exchangers of the primary cooling system, such as the primary pressurized water cooler (PPWC) and the intermediate heat exchanger (IHX). The heat exchangers in the primary cooling system are required the heat exchange performance to remove reactor generated heat 30 MW under the condition of reactor coolant outlet temperature 850degC/950degC. Therefore, the heat exchanges are required to satisfy the design criteria of heat exchange performance. In this report, heat exchange performance data of the rise-to-power-up test and the in-service operation for the PPWC in the main cooling system was evaluated. Moreover, the evaluated values were compared with the design values, and it is confirmed that PPWC has the required heat exchange performance in the design. (author)

  17. Evaluation of heat exchange performance for secondary pressurized water cooler in HTTR

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Watanabe, Syuji; Saikusa, Akio; Oyama, Sunao; Nemoto, Takahiro; Hamamoto, Shinpei; Shinohara, Masanori; Isozaki, Minoru; Nakagawa, Shigeaki

    2006-02-01

    In High Temperature Engineering Test Reactor (HTTR), the rated thermal power of 30MW, the generated heat at reactor core is finally dissipated at the air-cooler by way of the heat exchangers of the primary cooling system, such as the intermediate heat exchanger (IHX) and the secondary pressurized water cooler (SPWC). The heat exchangers in the main cooling system are required the heat exchange performance to remove the reactor-generated-heat of 30MW under the condition of reactor coolant outlet temperature of 850degC/950degC. Therefore, the heat exchanges are required to satisfy the design criteria of heat exchange performance. In this report, heat exchange performance of the SPWC in the main cooling system was evaluated with the rise-to-power-up test and the in-service operation data. Moreover, evaluated value is compared with designed one, it is confirmed that the SPWC has required heat exchange performance. (author)

  18. Forecast of winter performances of dry coolers with fin tubes; Voorspelling winterprestaties droge koelers met ribbenbuizen

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Bing [Shanghai DFYH Tech Services Co. Ltd, Shanghai (China); Wang, Xichun [Arup, Shanghai (China); Luscuere, P.G. [Faculteit Bouwkunde, Technische Universiteit Delft, Delft (Netherlands)

    2011-01-15

    A mathematical model is presented to predict the behaviors of dry coolers by considering the condensing and frosting. It employs one-dimensional transient finite differential formulation with variation of the frost density and thickness. The model is validated by experiments and predicts the heat transfer performance with an accuracy within 2.19%. It is helpful for the operation of dry coolers in winter. [Dutch] In dit artikel wordt een wiskundig model gepresenteerd, waarmee voortschrijdende condens- en ijsvorming op warmteoverdrachtsoppervlakken kunnen worden voorspeld aan de hand van de gevormde condens- en ijslagen. Het model maakt gebruik van eendimensionale transiente formuleringen op basis van een techniek voor lokale uitmiddeling. Hierbij wordt rekening gehouden met de varierende dichtheid en dikte van de ijslaag. Validatie van het model heeft plaatsgevonden door de resultaten te vergelijken met proefgegevens van de fabrikant van de droge koeler.

  19. NUMERICAL STUDIES OF THE FRICTION FORCE FOR THE RHIC ELECTRON COOLER

    International Nuclear Information System (INIS)

    FEDOTOV, A.V.; BEN-ZVI, I.; LITVINENKO, V.

    2005-01-01

    Accurate calculation of electron cooling times requires an accurate description of the dynamical friction force. The proposed RHIC cooler will require ∼55 MeV electrons, which must be obtained from an RF linac, leading to very high transverse electron temperatures. A strong solenoid will be used to magnetize the electrons and suppress the transverse temperature, but the achievable magnetized cooling logarithm will not be large. In this paper, we explore the magnetized friction force for parameters of the RHIC cooler, using the VORPAL code [l]. VORPAL can simulate dynamical friction and diffusion coefficients directly from first principles [2]. Various aspects of the fiction force are addressed for the problem of high-energy electron cooling in the RHIC regime

  20. Quench detection of fast plasma events for the JT-60SA central solenoid

    International Nuclear Information System (INIS)

    Murakami, Haruyuki; Kizu, Kaname; Tsuchiya, Katsuhiko; Kamiya, Koji; Takahashi, Yoshikazu; Yoshida, Kiyoshi

    2012-01-01

    Highlights: ► Pick-up coil method is used for the quench detection of JT-60SA magnet system. ► Disk-shaped pick-up coils are inserted in CS module to compensate inductive voltage. ► Applicability of pick-up coil is evaluated by two dimensional analysis. ► Pick-up coil is applicable whenever disruption, mini collapse and other plasma event. - Abstract: The JT-60 is planned to be modified to a full-superconducting tokamak referred to as the JT-60 Super Advanced (JT-60SA). The maximum temperature of the magnet during its quench might reach the temperature of higher than several hundreds Kelvin that will damage the superconducting magnet itself. The high precision quench detection system, therefore, is one of the key technologies in the superconducting magnet protection system. The pick-up coil method, which is using voltage taps to detect the normal voltage, is used for the quench detection of the JT-60SA superconducting magnet system. The disk-shaped pick-up coils are inserted in the central solenoid (CS) module to compensate the inductive voltage. In the previous study, the quench detection system requires a large number of pick-up coils. The reliability of quench detection system would be higher by simplifying the detection system such as reducing the number of pick-up coils. Simplifying the quench detection system is also important to reduce the total cost of the protection system. Hence the design method is improved by increasing optimizing parameters. The improved design method can reduce the number of pick-up coils without reducing the sensitivity of detection; consequently the protection system can be designed with higher reliability and lower cost. The applicability of the disk-shaped pick-up coil for quench detection system is evaluated by the two dimensional analysis. In the previous study, however, the analysis model only took into account the CS, EF (equilibrium field) coils and plasma. Therefore, applicability of the disk-shaped pick-up coil for

  1. Topology optimisation of passive coolers for light-emitting diode lamps

    DEFF Research Database (Denmark)

    Alexandersen, Joe

    2015-01-01

    This work applies topology optimisation to the design of passive coolers for light-emitting diode (LED) lamps. The heat sinks are cooled by the natural convection currents arising from the temperature difference between the LED lamp and the surrounding air. A large scale parallel computational....... The optimisation results show interesting features that are currently being incorporated into industrial designs for enhanced passive cooling abilities....

  2. Cooler reflective pavements give benefits beyond energy savings: durability and illumination

    International Nuclear Information System (INIS)

    Pomerantz, Melvin; Akbari, Hashem; Harvey, John T.

    2000-01-01

    City streets are usually paved with asphalt concrete because this material gives good service and is relatively inexpensive to construct and maintain. We show that making asphalt pavements cooler, by increasing their reflection of sunlight, may lead to longer lifetime of the pavement, lower initial costs of the asphalt binder, and savings on street lighting and signs. Excessive glare due to the whiter surface is not likely to be a problem

  3. 3-D thermal hydraulic analysis of transient heat removal from fast reactor core using immersion coolers

    International Nuclear Information System (INIS)

    Chvetsov, I.; Volkov, A.

    2000-01-01

    For advanced fast reactors (EFR, BN-600M, BN-1600, CEFR) the special complementary loop is envisaged in order to ensure the decay heat removal from the core in the case of LOF accidents. This complementary loop includes immersion coolers that are located in the hot reactor plenum. To analyze the transient process in the reactor when immersion coolers come into operation one needs to involve 3-D thermal hydraulics code. Furthermore sometimes the problem becomes more complicated due to necessity of simulation of the thermal hydraulics processes into the core interwrapper space. For example on BN-600M and CEFR reactors it is supposed to ensure the effective removal of decay heat from core subassemblies by specially arranged internal circulation circuit: 'inter-wrapper space'. For thermal hydraulics analysis of the transients in the core and in the whole reactor including hot plenum with immersion coolers and considering heat and mass exchange between the main sodium flow and sodium that moves in the inter-wrapper space the code GRIFIC (the version of GRIF code family) was developed in IPPE. GRIFIC code was tested on experimental data obtained on RAMONA rig under conditions simulating decay heat removal of a reactor with the use of immersion coolers. Comparison has been made of calculated and experimental result, such as integral characteristics (flow rate through the core and water temperature at the core inlet and outlet) and the local temperatures (at thermocouple location) as well. In order to show the capabilities of the code some results of the transient analysis of heat removal from the core of BN-600M - type reactor under loss-of-flow accident are presented. (author)

  4. Mathematical modeling of processes of heat and mass transfer in channels of water evaporating coolers

    Science.gov (United States)

    Gulevsky, V. A.; Ryazantsev, A. A.; Nikulichev, A. A.; Menzhulova, A. S.

    2018-05-01

    The variety of cooling systems is dictated by a wide range of demands placed on them. This is the price, operating costs, quality of work, ecological safety, etc. These requirements in a positive sense are put into correspondence by water evaporating plate coolers. Currently, their widespread use is limited by a lack of theoretical base. To solve this problem, the best method is mathematical modeling.

  5. Design of passive coolers for light-emitting diode lamps using topology optimisation

    DEFF Research Database (Denmark)

    Alexandersen, Joe; Sigmund, Ole; Meyer, Knud Erik

    2018-01-01

    Topology optimised designs for passive cooling of light-emitting diode (LED) lamps are investigated through extensive numerical parameter studies. The designs are optimised for either horizontal or vertical orientations and are compared to a lattice-fin design as well as a simple parameter......, while maintaining low sensitivity to orientation. Furthermore, they exhibit several defining features and provide insight and general guidelines for the design of passive coolers for LED lamps....

  6. Characterization of a thermoelectric cooler based thermal management system under different operating conditions

    International Nuclear Information System (INIS)

    Russel, M.K.; Ewing, D.; Ching, C.Y.

    2013-01-01

    The performance of a thermoelectric cooler (TEC) based thermal management system for an electronic packaging design that operates under a range of ambient conditions and system loads is examined using a standard model for the TEC and a thermal resistance network for the other components. Experiments were performed and it was found that the model predictions were in good agreement with the experimental results. An operating envelope is developed to characterize the TEC based thermal management system for peak and off peak operating conditions. Parametric studies were performed to analyze the effect of the number of TEC module(s) in the system, geometric factor of the thermo-elements and the cold to hot side thermal resistances on the system performance. The results showed that there is a tradeoff between the extent of off peak heat fluxes and ambient temperatures when the system can be operated at a low power penalty region and the maximum capacity of the system. - Highlights: ► A model was developed for thermal management systems using thermoelectric coolers. ► Model predictions were in good agreement with experimental results. ► An operating envelope was developed for peak and off peak conditions. ► The effect of the number of thermoelectric coolers on the system was determined.

  7. Metal foams as gas coolers for exhaust gas recirculation systems subjected to particulate fouling

    International Nuclear Information System (INIS)

    Hooman, K.; Malayeri, M.R.

    2016-01-01

    Highlights: • Fouling of metal foam heat exchangers as EGR gas coolers is tested. • An optimal design was inferred based on the generated data. • A simple cleaning technique was suggested and evaluated. - Abstract: This paper presents experimental results indicating the benefits and challenges associated with the use of metal foams as Exhaust Gas Recirculation (EGR) coolers. Fouling of such heat exchangers is a critical issue and, as such, special attention has been paid to address this very issue in the present study where a soot generator has been employed to simulate the engine running condition. Effects of aluminium foam PPI and height as well as gas velocity are investigated. It has been noted that proper design of the foam can lead to significantly higher heat transfer rate and reasonable pressure drop compared to no-foam cases. More interestingly, it is demonstrated that the foams can be cleaned easily without relying on expensive cleaning techniques. Using simple brush-cleaning, the foams can be reused as EGR gas coolers with a performance penalty of only 17% (compared to a new or clean foam).

  8. Numerical modeling of the thermoelectric cooler with a complementary equation for heat circulation in air gaps

    Science.gov (United States)

    Fang, En; Wu, Xiaojie; Yu, Yuesen; Xiu, Junrui

    2017-03-01

    In this paper, a numerical model is developed by combining thermodynamics with heat transfer theory. Taking inner and external multi-irreversibility into account, it is with a complementary equation for heat circulation in air gaps of a steady cooling system with commercial thermoelectric modules operating in refrigeration mode. With two modes concerned, the equation presents the heat flowing through air gaps which forms heat circulations between both sides of thermoelectric coolers (TECs). In numerical modelling, a TEC is separated as two temperature controlled constant heat flux reservoirs in a thermal resistance network. In order to obtain the parameter values, an experimental apparatus with a commercial thermoelectric cooler was built to characterize the performance of a TEC with heat source and sink assembly. At constant power dissipation, steady temperatures of heat source and both sides of the thermoelectric cooler were compared with those in a standard numerical model. The method displayed that the relationship between Φf and the ratio Φ_{c}'/Φ_{c} was linear as expected. Then, for verifying the accuracy of proposed numerical model, the data in another system were recorded. It is evident that the experimental results are in good agreement with simulation(proposed model) data at different heat transfer rates. The error is small and mainly results from the instabilities of thermal resistances with temperature change and heat flux, heat loss of the device vertical surfaces and measurements.

  9. Comparison of desiccant air conditioning systems with different indirect evaporative air coolers

    International Nuclear Information System (INIS)

    Pandelidis, Demis; Anisimov, Sergey; Worek, William M.; Drąg, Paweł

    2016-01-01

    Highlights: • A numerical study of desiccant air conditioning systems is presented. • The ε-NTU model is used for the analysis. • Different arrangements of the desiccant systems were compared. • The systems were compared under different operating conditions. - Abstract: This paper presents a numerical analysis of three desiccant air-conditioning systems equipped with different indirect evaporative air coolers: (1) the cross-flow Maisotsenko cycle heat and mass exchanger (HMX), (2) the regenerative counter-flow Maisotsenko cycle heat and mass exchanger and (3) the standard cross-flow evaporative air cooler. To analyze the desiccant wheel and the indirect evaporative air coolers, the modified ε-NTU-model was used. The simulations were performed under assumption that the desiccant wheel is regenerated with air heated to relatively low temperature values (50–60 °C), which can be produced with solar panels in typical moderate climatic conditions. It was established that the main advantage of the presented solutions is that they can provide comfort conditions even with less effective dehumidification. The different systems were compared under variable selected operational factors (i.e. inlet air temperature, humidity and regeneration air temperature). The analysis allowed establishing the advantages and disadvantages of presented solutions and allowed estimating their application potential.

  10. Development of a new discharge control system utilizing UNIX workstations and VME-bus systems for JT-60

    Energy Technology Data Exchange (ETDEWEB)

    Akasaka, Hiromi; Sueoka, Michiharu; Takano, Shoji; Totsuka, Toshiyuki; Yonekawa, Izuru; Kurihara, Kenichi; Kimura, Toyoaki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2002-01-01

    The JT-60 discharge control system, which had used HIDIC-80E 16 bit mini-computers and CAMAC systems since the start of JT-60 experiment in 1985, was renewed in March, 2001. The new system consists of a UNIX workstation and a VME-bus system, and features a distributed control system. The workstation performs message communication with a VME-bus system and controllers of JT-60 sub-systems and processing for discharge control because of its flexibility to construction of a new network and modifications of software. The VME-bus system performs discharge sequence control because it is suitable for fast real time control and flexible to the hardware extension. The replacement has improved the control function and reliability of the discharge control system and also has provided sufficient performance necessary for future modifications of JT-60. The new system has been running successfully since April 2001. The data acquisition speed was confirmed to be twice faster than the previous one. This report describes major functions of the discharge control system, technical ideas for developing the system and results of the initial operation in detail. (author)

  11. Technical aspects and manufacturing methods for JT-60SA toroidal field coil casings

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo, E-mail: paolo.rossi@enea.it [ENEA, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Cucchiaro, A.; Brolatti, G.; Cocilovo, V.; Ginoulhiac, G.; Polli, G. [ENEA, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Gabriele, M.; Di Muzio, F. [Walter Tosto, Via Erasmo Piaggio, 66100 Chieti (Italy); Philips, G.; Tomarchio, V. [JT-60SA European Home Team, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2014-10-15

    Highlights: • A contract between ENEA and Walter Tosto started on July 2012 for the construction of 18 TF coil casings for JT-60SA. • Design and manufacturing of mock-ups representative of straight and curved legs of the casings have been completed. • Final design of the casings has been completed and manufacturing activities have already started and are ongoing. • The completion of the first three casings will be completed within the end of 2013 and the production of all the 18 casings is foreseen by the end of 2015. - Abstract: JT-60SA is a superconducting tokamak machine to be assembled in Naka site, Japan, designed to contribute to the early realization of fusion energy by supporting the exploitation of ITER and research toward DEMO. In the frame of the Broader Approach Agreement a contract between ENEA and Walter Tosto (Chieti, Italy) started on July 2012 for the construction of 18 TF coil casings for JT-60SA. Two different sets of 9 casings each will be progressively delivered, from 2013 to the end of 2015, to ASG Superconductors (Genoa, Italy) and to Alstom (Belfort, France), where the integration of the winding pack into the casing will be carried out. Each TF coil casing (height 7.5 m and width 4.5 m) consists of four main components: one “Straight Leg Outboard” and one “Curved Leg Outboard” both with their own covers, “Straight Leg Inboard” and “Curved Leg Inboard”. The casing components are segmented in forgings and plates made of FM316LNL. The straight leg outboard is composed of two wings welded to a central core and two elbows welded at the ends with a cooling channel installed inside. Elbows of straight leg outboard are segmented in two half-elbows machined from 1 rough forging and welded to the central core made by plate. Welding of wings to the central core is performed in EBW (electron beam welding) and the straight part is welded to the elbows by NGTIG (TIG narrow gap) process. The curved leg outboard is composed of two

  12. Technical aspects and manufacturing methods for JT-60SA toroidal field coil casings

    International Nuclear Information System (INIS)

    Rossi, Paolo; Cucchiaro, A.; Brolatti, G.; Cocilovo, V.; Ginoulhiac, G.; Polli, G.; Gabriele, M.; Di Muzio, F.; Philips, G.; Tomarchio, V.

    2014-01-01

    Highlights: • A contract between ENEA and Walter Tosto started on July 2012 for the construction of 18 TF coil casings for JT-60SA. • Design and manufacturing of mock-ups representative of straight and curved legs of the casings have been completed. • Final design of the casings has been completed and manufacturing activities have already started and are ongoing. • The completion of the first three casings will be completed within the end of 2013 and the production of all the 18 casings is foreseen by the end of 2015. - Abstract: JT-60SA is a superconducting tokamak machine to be assembled in Naka site, Japan, designed to contribute to the early realization of fusion energy by supporting the exploitation of ITER and research toward DEMO. In the frame of the Broader Approach Agreement a contract between ENEA and Walter Tosto (Chieti, Italy) started on July 2012 for the construction of 18 TF coil casings for JT-60SA. Two different sets of 9 casings each will be progressively delivered, from 2013 to the end of 2015, to ASG Superconductors (Genoa, Italy) and to Alstom (Belfort, France), where the integration of the winding pack into the casing will be carried out. Each TF coil casing (height 7.5 m and width 4.5 m) consists of four main components: one “Straight Leg Outboard” and one “Curved Leg Outboard” both with their own covers, “Straight Leg Inboard” and “Curved Leg Inboard”. The casing components are segmented in forgings and plates made of FM316LNL. The straight leg outboard is composed of two wings welded to a central core and two elbows welded at the ends with a cooling channel installed inside. Elbows of straight leg outboard are segmented in two half-elbows machined from 1 rough forging and welded to the central core made by plate. Welding of wings to the central core is performed in EBW (electron beam welding) and the straight part is welded to the elbows by NGTIG (TIG narrow gap) process. The curved leg outboard is composed of two

  13. A Conceptual Design Study for the Error Field Correction Coil Power Supply in JT-60SA

    International Nuclear Information System (INIS)

    Matsukawa, M.; Shimada, K.; Yamauchi, K.; Gaio, E.; Ferro, A.; Novello, L.

    2013-01-01

    This paper describes a conceptual design study for the circuit configuration of the Error Field Correction Coil (EFCC) power supply (PS) to maximize the expected performance with reasonable cost in JT-60SA. The EFCC consists of eighteen sector coils installed inside the vacuum vessel, six in the toroidal direction and three in the poloidal direction, each one rated for 30 kA-turn. As a result, star point connection is proposed for each group of six EFCC coils installed cyclically in the toroidal direction for decoupling with poloidal field coils. In addition, a six phase inverter which is capable of controlling each phase current was chosen as PS topology to ensure higher flexibility of operation with reasonable cost.

  14. Four giga joule flywheel motor-generator for JT-60 toroidal field coil power supply system

    International Nuclear Information System (INIS)

    Matsukawa, T.; Kanke, M.; Shimada, R.; Yoshida, Y.; Yamashita, K.; Nakayama, T.

    1986-01-01

    A fusion test reactor often needs motor-generators as a power source in order to reduce disturbances to utility lines. The toroidal field coil power supply system of JT-60 also adopted a motor-generator for this purpose. The motor-generator started operation in April, 1985 at Japan Atomic Energy Research Institute together with the whole system. The motor-generator has several special features both electrically and mechanically. One electrical feature is that it is used as a pulse source of large current and power for periodic short-time duty. A mechanical feature is that a large flywheel is directly coupled to the motor-generator shaft and operated intermittently and at high speed. Therefore detailed investigations were carried out concerning constitution, characteristics as well as the coordination with the system performance. This paper describes the outlines of the flywheel motor-generator and discusses several topics

  15. Fast neutron-gamma discrimination on neutron emission profile measurement on JT-60U

    International Nuclear Information System (INIS)

    Ishii, K.; Okamoto, A.; Kitajima, S.; Sasao, M.; Shinohara, K.; Ishikawa, M.; Baba, M.; Isobe, M.

    2010-01-01

    A digital signal processing (DSP) system is applied to stilbene scintillation detectors of the multichannel neutron emission profile monitor in JT-60U. Automatic analysis of the neutron-γ pulse shape discrimination is a key issue to diminish the processing time in the DSP system, and it has been applied using the two-dimensional (2D) map. Linear discriminant function is used to determine the dividing line between neutron events and γ-ray events on a 2D map. In order to verify the validity of the dividing line determination, the pulse shape discrimination quality is evaluated. As a result, the γ-ray contamination in most of the beam heating phase was negligible compared with the statistical error with 10 ms time resolution.

  16. Design and analysis of plasma position and shape control in superconducting tokamak JT-60SC

    Energy Technology Data Exchange (ETDEWEB)

    Matsukawa, M. E-mail: matsukaw@naka.jaeri.go.jp; Ishida, S.; Sakasai, A.; Urata, K.; Senda, I.; Kurita, G.; Tamai, H.; Sakurai, S.; Miura, Y.M.; Masaki, K.; Shimada, K.; Terakado, T

    2003-09-01

    The analyses of the plasma position and shape control in the superconducting tokamak JT-60SC in JAERI are presented. The vacuum vessel and stabilizing plates located closely to the plasma are modeled in 3 dimension, and we can take into account the large ports in the vacuum vessel. The linear numerical model used in the design for the plasma feedback control system is based on Grad-Shafranov equation, which allows the plasma surface deformation. For a slower control of the plasma shape, the superconducting equilibrium field (EF) coils outside toroidal field coils are used, while for a fast control of the plasma position, in-vessel normal conducting coils (IV coil) are used. It is shown that the available loop voltages of the EF and IV coils are very limited, but there are sufficient accuracy and acceptable response time of plasma position and shape control.

  17. Design and analysis of plasma position and shape control in superconducting tokamak JT-60SC

    International Nuclear Information System (INIS)

    Matsukawa, M.; Ishida, S.; Sakasai, A.; Urata, K.; Senda, I.; Kurita, G.; Tamai, H.; Sakurai, S.; Miura, Y.M.; Masaki, K.; Shimada, K.; Terakado, T.

    2003-01-01

    The analyses of the plasma position and shape control in the superconducting tokamak JT-60SC in JAERI are presented. The vacuum vessel and stabilizing plates located closely to the plasma are modeled in 3 dimension, and we can take into account the large ports in the vacuum vessel. The linear numerical model used in the design for the plasma feedback control system is based on Grad-Shafranov equation, which allows the plasma surface deformation. For a slower control of the plasma shape, the superconducting equilibrium field (EF) coils outside toroidal field coils are used, while for a fast control of the plasma position, in-vessel normal conducting coils (IV coil) are used. It is shown that the available loop voltages of the EF and IV coils are very limited, but there are sufficient accuracy and acceptable response time of plasma position and shape control

  18. Dynamic transport study of the plasmas with transport improvement in LHD and JT-60U

    International Nuclear Information System (INIS)

    Ida, K.; Inagaki, S.; Sakamoto, R.; Tanaka, K.; Funaba, H.; Kubo, S.; Yoshinuma, M.; Shimozuma, T.; Takeiri, Y.; Ikeda, K.; Michael, C.; Tokuzawa, T.; Sakamoto, Yoshiteru; Takenaga, Hidenobu; Isayama, Akihiko; Ide, Shunsuke; Fujita, Takaaki

    2006-10-01

    A transport analysis during the transient phase of heating (a dynamic transport study) applied to the plasma with internal transport barriers (ITBs) in the Large Helical Device (LHD) heliotron and JT-60U tokamak is described. In the dynamic transport study 1) a slow transition between two transport branches is observed, 2) the time of the transition from the L-mode plasma to the ITB plasma is clearly determined by the onset of the flattening of the temperature profile in the core region and 3) a spontaneous phase transition from a weak, wide ITB to a strong, narrow ITB and its back-transition are observed. The flattening of the core region of the ITB transition and the back-transition between a wide ITB and a narrow ITB suggest the strong interaction of turbulent transport in space, where turbulence suppression at certain locations in the plasma causes the enhancement of turbulence and thermal diffusivity nearby. (author)

  19. Characteristics of internal transport barrier in JT-60U reversed shear plasmas

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Kamada, Y.; Ide, S.; Fujita, T.; Shirai, H.; Takizuka, T.; Koide, Y.; Fukuda, T.; Oikawa, T.; Suzuki, T.; Shinohara, K.; Yoshino, R.

    2001-01-01

    Characteristics of internal transport barrier (ITB) structure are studied and the active ITB control has been developed in JT-60U reversed shear plasmas. The following results are found. Outward propagation of the ITB with steep T i gradient is limited to the minimum safety factor location (ρ qmin ). However the ITB with reduced T i gradient can move to the outside of ρ qmin . Lower boundary of ITB width is proportional to the ion poloidal gyroradius at the ITB center. Furthermore the demonstration of the active control of the ITB strength based on the modification of the radial electric field shear profile is successfully performed by the toroidal momentum injection in different directions or the increase of heating power by neutral beams. (author)

  20. Simple multijunction launcher with oversized waveguides for lower hybrid current drive on JT-60U

    International Nuclear Information System (INIS)

    Ikeda, Y.; Naito, O.; Seki, M.; Kondoh, T.; Ide, S.; Anno, K.; Fukuda, H.; Ikeda, Y.; Kitai, T.; Kiyono, K.; Sawahata, M.; Shinozaki, S.; Suganuma, K.; Suzuki, N.; Ushigusa, K.

    1994-01-01

    A multijunction technique with oversized waveguides has been developed for the lower hybrid current drive launcher on JT-60U. The launcher consists of 4 (toroidal)x4 (poloidal) multijunction modules. RF power in the module is divided toroidally into 12 sub-waveguides at a junction point through an oversized waveguide. This method simplifies the structure of the multijunction launcher with a large number of subwaveguides. A maximum power density up to 25 MW m -2 has been achieved with a low reflection coefficient of less than 2%. The coupling and current drive efficiency are well explained by the designed wave spectra without taking account of higher modes in the oversize waveguides. Thus, the simple multijunction launcher has been demonstrated to excite expected wave spectra with high power handling capability. ((orig.))

  1. Localized MHD activity near transport barriers in JT-60U and TFTR

    International Nuclear Information System (INIS)

    Manickam, J.

    2001-01-01

    Localized MHD activity observed in JT-60U and TFTR near transport barriers with their associated large pressure gradients is investigated. Stability analysis of equilibria modeling the experiments supports an identification of this MHD as being due to an ideal MHD n=1 instability. The appearance of the instability depends on the local pressure gradient, local shear in the q profile and the proximity of rational surfaces where q∼m/n and m and n are the poloidal and toroidal mode numbers respectively. The mode width is shown to depend on the local value of q, and is larger when q is smaller. In addition the role of the edge current density in coupling the internal mode to the plasma edge and of the energetic particles which can drive fishbone like modes is investigated. (author)

  2. Stable existence of central current hole in the JT-60U tokamak

    International Nuclear Information System (INIS)

    Miura, Y.; Fujita, T.; Oikawa, T.

    2003-01-01

    In an extreme state of a reversed magnetic shear configuration, it was found in JT-60U that there is almost no plasma current in the central region (called Current Hole). The Current Hole region extends to 40% of the plasma minor radius and it exists stably for several seconds. The Current Hole is formed by the growth of the bootstrap current and it is impossible to drive current in either positive or negative direction by ECH or N-NB inside the Current Hole. In that region, there is almost no gradient of density, temperature and toroidal rotation velocity. It means that there is almost no confinement in the Current Hole and the large energy in that region is sustained only by an internal transport barrier (ITB). The effects of the Current Hole on particle orbits and the effects on an error field on the Current Hole are also discussed. (author)

  3. Identity physics experiment on internal transport barriers in JT-60U and JET

    Energy Technology Data Exchange (ETDEWEB)

    De Vries, P C; Beurskens, M N A; Brix, M; Giroud, C; Hawkes, N C; Parail, V [EURATOM/UKAEA Association, Culham Science Centre, OX14 3DB, Abingdon (United Kingdom); Sakamoto, Y; Fujita, T; Hayashi, N; Matsunaga, G; Oyama, N; Shinohara, K; Suzuki, T; Takechi, M [Japan Atomic Energy Agency, Naka, Ibaraki-ken 311-0193 (Japan); Litaudon, X; Joffrin, E [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France); Crombe, K [Department of Applied Physics, Ghent University, Rozier 44, 9000 Gent (Belgium); Mantica, P [Istituto di Fisica del Plasma, EURATOM/ENEA-CNR Association, Milano (Italy); Salmi, A [Association Euratom-Tekes, Helsinki University of Technology, PO Box 4100 (Finland); Strintzi, D, E-mail: Peter.de.Vries@jet.u [National Technical University of Athens, EURATOM Association, GR-15773, Athens (Greece)

    2009-12-15

    A series of experiments have been carried out in 2008 at JT-60U and JET to find common characteristics and explain differences between internal transport barriers (ITBs). The identity experiments succeeded in matching the profiles of most dimensionless parameters at the time ITBs were triggered. Thereafter the q-profile development deviated due to differences in non-inductive current density profile, affecting the ITB. Furthermore, the ITBs in JET were more strongly influenced by the H-mode pedestal or edge localized modes. It was found to be difficult to match the plasma rotation characteristics in both devices. However, the wide range of Mach numbers obtained in these experiments shows that the rotation has little effect on the triggering of ITBs in plasmas with reversed magnetic shear. On the other hand the toroidal rotation and more specifically the rotational shear had an impact on the subsequent growth and allowed the formation of strong ITBs.

  4. Formation conditions for electron internal transport barriers in JT-60U plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, T [Japan Atomic Energy Research Institute, Naka Fusion Research Establishment, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Fukuda, T [Osaka University, Suita, Osaka 565-0871 (Japan); Sakamoto, Y [Japan Atomic Energy Research Institute, Naka Fusion Research Establishment, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Ide, S [Japan Atomic Energy Research Institute, Naka Fusion Research Establishment, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Suzuki, T [Japan Atomic Energy Research Institute, Naka Fusion Research Establishment, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Takenaga, H [Japan Atomic Energy Research Institute, Naka Fusion Research Establishment, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Ida, K [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Idei, H [Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Shimozuma, T [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Fujisawa, A [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Ohdachi, S [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Toi, K [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2004-05-01

    The formation of electron internal transport barriers (ITBs) was studied using electron cyclotron (EC) heating in JT-60U positive shear (PS) and reversed shear (RS) plasmas with scan of neutral beam (NB) power. With no or low values of NB power and with a small radial electric field (E{sub r}) gradient, a strong, box-type electron ITB was formed in RS plasmas while a peaked profile with no strong electron ITBs was observed in PS plasmas within the available EC power. When the NB power and the E{sub r} gradient were increased, the electron transport in strong electron ITBs with EC heating in RS plasmas was not affected, while electron thermal diffusivity was reduced in conjunction with the reduction of ion thermal diffusivity, and strong electron and ion ITBs were formed in PS plasmas.

  5. Dynamic transport study of the plasmas with transport improvement in LHD and JT-60U

    International Nuclear Information System (INIS)

    Ida, K.; Inagaki, S.; Sakamoto, R.; Tanaka, K.; Fujita, T.; Funaba, H.; Kubo, S.; Yoshinuma, M.; Shimozuma, T.; Takeiri, Y.; Ikeda, K.; Michael, C.; Tokuzawa, T.; Sakamoto, Y.; Takenaga, H.; Isayama, A.; Matsunaga, G.; Ide, S.

    2009-01-01

    Transport analysis during the transient phase of heating (a dynamic transport study) applied to the plasma with internal transport barriers (ITBs) in the Large Helical Device (LHD) heliotron and the JT-60U tokamak is described. In the dynamic transport study the time of transition from the L-mode plasma to the ITB plasma is clearly determined by the onset of flattening of the temperature profile in the core region and a spontaneous phase transition from a zero curvature ITB (hyperbolic tangent shaped ITB) or a positive curvature ITB (concaved shaped ITB) to a negative curvature ITB (convex shaped ITB) and its back-transition are observed. The flattening of the core region of the ITB transition and the back-transition between a zero curvature ITB and a convex ITB suggest the strong interaction of turbulent transport in space.

  6. Core density fluctuations in reverse magnetic shear plasmas with internal transport barrier on JT-60U

    International Nuclear Information System (INIS)

    Nazikian, R.; Shinohara, K.; Yoshino, R.; Fujita, T.; Shirai, H.; Kramer, G.T.

    1999-01-01

    First measurements of the radial correlation length of density fluctuations in JT-60U plasmas with internal transport barrier (ITB) is reported. The measurements are obtained using a newly installed correlation reflectometer operating in the upper X-mode. Before transport barrier formation in the low beam power current ramp-up phase of the discharge, reflectometer measurements indicate density fluctuation levels n-tilde/n∼0.1-0.2% and radial correlation lengths 2-3 cm (k r p i ≤0.5) in the central plasma region (r/a r p i ∼3. However, fluctuation levels are considerably higher than measured near the magnetic axis. Reflectometer measurements obtained at the foot of the ITB also indicate high fluctuation levels compared to measurements in the central region of the discharge. (author)

  7. Investigation and measures to noise on spectroscopic measurement system in JT-60U

    International Nuclear Information System (INIS)

    Nagaya, Susumu; Kubo, Hirotaka; Sugie, Tatsuo; Onizawa, Masami; Kawai, Isao; Nakata, Hisao.

    1997-11-01

    Breakdown of a negative-ion-based neutral beam injection (N-NBI) has caused noise trouble to several systems. The control circuit of a spectroscopic measurement system had not well worked because of the noise. The noise has been measured by an optical-fiber isolation system during operation of JT-60U. The amplitude and the frequency were 15-18 V and 15 MHz respectively. The transmission noise has been reduced by putting ferrite cores to all cables connecting with the control circuits. As a result, the trouble with the spectroscopic measurement system has completely been solved. Adding condensers and resistors to the circuit was not effective to reduce the noise. (author)

  8. Development of hard-seal gate valve and fast shutter for JT-60 neutral beam injectors

    International Nuclear Information System (INIS)

    Kuribayashi, S.; Minami, M.; Matsuoka, T.; Takeshita, K.; Morita, H.; Kuriyama, M.; Matsuda, S.; Shirakata, H.

    1983-01-01

    A 600 mm hard-seal valve and a fast shutter for the JT-60 Neutral Beam Injector were developed. The 600 mm hard-seal gate valve was fabricated and tested for 500 cycles at various temperatures of up to 250 0 C. In consequence, requirements of the endurance and vacuum tightness were satisfied. Major components of the fast shutter, i.e., swing action bellows and a high-speed pneumatic cylinder, were tested for 30,000 cycles, and their reliability was confirmed. Then the fast shutter was fabricated and tested. The test result indicated that the fast shutter fully satisfied the requirements of the molecular gas flow conductance and opening/closing speed. (author)

  9. Hydrogen isotope distributions and retentions in the inner divertor tile of JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Y. [Radioisotope Center, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)]. E-mail: yoya@ric.u-tokyo.ac.jp; Hirohata, Y. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Tanabe, T. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Shibahara, T. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Kimura, H. [Faculty of Science, Shizuoka University, Shizuoka 422-8529 (Japan); Oyaidzu, M. [Faculty of Science, Shizuoka University, Shizuoka 422-8529 (Japan); Arai, T. [Naka Fusion Establishment, Japan Atomic Energy Research Institute, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Masaki, K. [Naka Fusion Establishment, Japan Atomic Energy Research Institute, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Gotoh, Y. [Naka Fusion Establishment, Japan Atomic Energy Research Institute, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Okuno, K. [Faculty of Science, Shizuoka University, Shizuoka 422-8529 (Japan); Miya, N. [Naka Fusion Establishment, Japan Atomic Energy Research Institute, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Hino, T. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Tanaka, S. [Graduate School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan)

    2005-11-15

    Retention profiles of hydrogen and deuterium in graphite tiles placed in the inner divertor region of JT-60U were analyzed by secondary ion mass spectroscopy (SIMS) and thermal desorption spectroscopy (TDS). The difference in hydrogen and deuterium retention behaviour is discussed considering the frequency of the strike-point hit and history of NBI heating power. It was found that most of hydrogen/deuterium was retained in the deposited layers, HH deposition layers/DD deposition layers or co-deposited with carbon. Owing to the higher heating power of DD discharges, the deuterium concentration in the DD deposition layers was much lower than that of hydrogen in the HH deposition layers. On the area showing no deposition, very shallow profile of deuterium dominated hydrogen profile. These results indicate that the tritium retention is strongly influenced by the history of discharge and temperatures. Tritium retention on graphite tiles and deposition layers could be significantly reduced with increasing the operation temperature.

  10. Hydrogen isotope distributions and retentions in the inner divertor tile of JT-60U

    International Nuclear Information System (INIS)

    Oya, Y.; Hirohata, Y.; Tanabe, T.; Shibahara, T.; Kimura, H.; Oyaidzu, M.; Arai, T.; Masaki, K.; Gotoh, Y.; Okuno, K.; Miya, N.; Hino, T.; Tanaka, S.

    2005-01-01

    Retention profiles of hydrogen and deuterium in graphite tiles placed in the inner divertor region of JT-60U were analyzed by secondary ion mass spectroscopy (SIMS) and thermal desorption spectroscopy (TDS). The difference in hydrogen and deuterium retention behaviour is discussed considering the frequency of the strike-point hit and history of NBI heating power. It was found that most of hydrogen/deuterium was retained in the deposited layers, HH deposition layers/DD deposition layers or co-deposited with carbon. Owing to the higher heating power of DD discharges, the deuterium concentration in the DD deposition layers was much lower than that of hydrogen in the HH deposition layers. On the area showing no deposition, very shallow profile of deuterium dominated hydrogen profile. These results indicate that the tritium retention is strongly influenced by the history of discharge and temperatures. Tritium retention on graphite tiles and deposition layers could be significantly reduced with increasing the operation temperature

  11. LHCD current profile control experiments towards steady state improved confinement on JT-60U

    International Nuclear Information System (INIS)

    Ide, S.; Naito, O.; Oikawa, T.; Fujita, T.; Kondoh, T.; Seki, M.; Ushigusa, K.

    2001-01-01

    In JT-60U lower hybrid current drive (LHCD) experiments, a reversed magnetic shear configuration that was accompanied by the internal transport barriers was successfully maintained by means of LHCD almost in the full current drive quasi-steady state for 4.7 s. The normalized beta was kept near 1 and the neutron emission rate was almost steady as well indicating no accumulation of impurities into the plasma. Diagnostics data showed that all the profiles of the electron and ion temperatures, the electron density and the current profile were almost unchanged during the LHCD phase. Moreover, capability of LHCD in H-mode plasmas has been also investigated. It was found that the lower hybrid waves can be coupled to an H-mode edge plasma even with the plasma wall distance of about 14 cm. The maximum coupling distance was found to depend on the edge recycling. (author)

  12. Design study of a negative-ion based NBI system for JT-60U

    International Nuclear Information System (INIS)

    Akino, Noboru; Araki, Masanori; Ebisawa, Noboru

    1994-03-01

    A high energy negative-ion based NBI system for JT-60U has been designed. The objective of the NBI system is to demonstrate mega-ampere level NB current drive and plasma core heating in a reactor-grade high density plasma. This is the first negative-ion based NBI system in the world. The required specifications of the NBI system are; a beam energy of 500 keV, an injection power of 10 MW, a beam pulse duration of 10 sec with a duty cycle of 1/60 and a beam species of deuterium or hydrogen. The neutral beam power of 10 MW is injected tangentially using one beam-line with two large negative-ion sources. The construction of the NBI system has been started, and will be operational in 1996. (author)

  13. Design of tangential viewing phase contrast imaging for turbulence measurements in JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K., E-mail: ktanaka@nifs.ac.jp [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Department of Advanced Energy Engineering, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Coda, S. [EPFL–SPC, Lausanne (Switzerland); Yoshida, M.; Sasao, H.; Kawano, Y.; Imazawa, R.; Kubo, H.; Kamada, Y. [National Institutes for Quantum and Radiological Science and Technology, Naka, Ibaraki 311-0193 (Japan)

    2016-11-15

    A tangential viewing phase contrast imaging system is being designed for the JT-60SA tokamak to investigate microturbulence. In order to obtain localized information on the turbulence, a spatial-filtering technique is applied, based on magnetic shearing. The tangential viewing geometry enhances the radial localization. The probing laser beam is injected tangentially and traverses the entire plasma region including both low and high field sides. The spatial resolution for an Internal Transport Barrier discharge is estimated at 30%–70% of the minor radius at k = 5 cm{sup −1}, which is the typical expected wave number of ion scale turbulence such as ion temperature gradient/trapped electron mode.

  14. Surface studies of tungsten erosion and deposition in JT-60U

    International Nuclear Information System (INIS)

    Ueda, Y.; Fukumoto, M.; Nishikawa, M.; Tanabe, T.; Miya, N.; Arai, T.; Masaki, K.; Ishimoto, Y.; Tsuzuki, K.; Asakura, N.

    2007-01-01

    In order to study tungsten erosion and migration in JT-60U, 13 W tiles have been installed in the outer divertor region and tungsten deposition on graphite tiles was measured. Dense local tungsten deposition was observed on a CFC tile toroidally adjacent to the W tiles, which resulted from prompt ionization and short range migration of tungsten along field lines. Tungsten deposition with relatively high surface density was found on an inner divertor tile around standard inner strike positions and on an outer wing tile of a dome. On the outer wing tile, tungsten deposition was relatively high compared with carbon deposition. In addition, roughly uniform tungsten depth distribution near the upper edge of the inner divertor tile was observed. This could be due to lift-up of strike point positions in selected 25 shots and tungsten flow in the SOL plasma

  15. Joule loss on a Faraday shield of JT-60 ICRF test antenna

    International Nuclear Information System (INIS)

    Fujii, Tsuneyuki; Saigusa, Mikio; Ikeda, Yoshitaka; Kimura, Haruyuki; Hirashima, Teruhisa; Uehara, Munenori.

    1988-01-01

    Joule loss on a Faraday shield of JT-60 ICRF test antenna with a conductive casing is investigated at the frequency range of 120 MHz. The magnetic field radiated from the antenna is measured by three-dimensionally scanning an rf probe both inside and outside the antenna casing. The magnetic field perpendicular to the Faraday shield, B x , is found to be the largest component near the Faraday shield. It consequently gives the major part of the joule loss on the Faraday shield. The temperature distribution of the Faraday shield due to joule loss is measured directly with a thermocamera. It is confirmed that the area of the high temperature rise is consistent with the peak positions of the B x field. Faraday shield resistance which is estimated from power measurements agrees with the theoretical value. (author)

  16. Improvement of the protection devices for JT-60U LHRF antenna system

    International Nuclear Information System (INIS)

    Suzuki, Sadaaki; Seki, Masami; Shinozaki, Shinichi; Sato, Fumiaki; Hiranai, Shinichi; Hasegawa, Koichi; Moriyama, Shinichi; Ishii, Kazuhiro

    2007-09-01

    In the experiments featuring lower hybrid range of frequency (LHRF) system in JT-60U, carbon grills were attached to the plasma-facing part of the antenna in order to avoid the damage by the excessive heat load from the plasma. However some electric discharge traces were found there in the observation after the experiments. To avoid such discharges, improvements of the arc detector and the protection interlock by visible picture detection were tackled. In the arc detector, the amplification circuit was improved in order to obtain shorter response time and higher resolution of optical detection. Moreover, in visible picture detection, a new function of RF-on/off control utilizing PC image processing was added to distinguish the light of the arc from one of the plasma. This report summarizes improvement of the protection interlock device in a LHRF heating system. (author)

  17. Design optimization of JT-60SU for steady-state advanced operation

    International Nuclear Information System (INIS)

    Ushigusa, K.; Kurita, G.; Toyoshima, N.

    2001-01-01

    Design optimization of JT-60SU has been done for a steady-state advanced operation. A transport code simulation indicates that a fully non-inductive reversed shear plasmas with fractions of 70% of the bootstrap current and 30% of beam driven current can be sustained for more than 1,000s without any additional control. Investigations have been progressed on MHD stability, vertical positional stability and dynamics of the vertical displacement events. Significant progress has been achieved in the R and D of Nb 3 Al superconducting wires, low induced activation material (Fe-Cr-Mn steel). A design improvement has been made in TF coils to reduce a local stress on radial disk. Dynamic behaviors of the tokamak machine have been analyzed at emergency events such as an earthquake. (author)

  18. Recent results on steady state and confinement improvement research on JT-60U

    International Nuclear Information System (INIS)

    Ide, Shunsuke

    2000-01-01

    On the JT-60U tokamak, fusion plasma research for realization of a steady state tokamak reactor has been pursued. Towards that goal, confinement improved plasmas such as H-mode, high β p , reversed magnetic shear (RS) and latter two combined with H-mode edge pedestal have been developed and investigated intensively. A key issue to achieve non-inductive current drive relevant to a steady state fusion reactor is to increase the fraction of the bootstrap current and match the spatial profile to the optimum. In 1999, as the result of the optimization, the equivalent deuterium-tritium (D-T) fusion gain (Q DT eq ) of 0.5 was sustained for 0.8 s, which is roughly equal to the energy confinement time, in a RS plasma. In order to achieve a RS plasma in steady state two approach have been explored. One is to use external current driver such as lower hybrid current drive (LHCD), and by optimizing LHCD a quasi-steady RS discharge was obtained. The other approach is to utilize bootstrap current as much as possible, and with highly increased fraction of the bootstrap current, a confinement enhancement factor of 3.6 was maintained for 2.7 s in a RS plasma with H-mode edge. A heating and current drive system in the electron cyclotron range of frequency for localized heating and current drive has been installed on JT-60U, and in initial experiments a clear increase of the central electron temperature in a RS high density central region was confirmed only with injected power of 0.75 MW. (author)

  19. Review of JT-60 experimental results from June to October, 1987

    International Nuclear Information System (INIS)

    1988-03-01

    This is a prompt report on JT-60 experimental results from June to October, 1987. Experiments in hydrogen plasmas have been undertaken with up to 3.2 MA of plasma current in limiter discharges, 2.7 MA in divertor discharges, and 30 MW of total NB (H 0 → H + ) and RF injection power. In limiter discharges with ∼3 MA plasma current, the maximum central electron density of 1.3 x 10 20 m -3 and the energy confinement time of 0.15 - 0.18 sec were obtained with heating powers of 13 - 20 MW. The total plasma stored energy of 3.1 MJ, and n e (0)τ E of 1.4 - 1.8 x 10 19 m -3 sec were achieved. The best set of parameters achieved is n e (0)τ E = 1.8 x 10 19 m -3 sec and T i (0) = 3.7 KeV at plasma current of 3.2 MA. By applying deutrium discharge condition, n e (0)τ E and T i (0) enter the JT-60 target area determined by Atomic Energy Commission. Many short periods (50 - 100 ms) of H-mode phase are found in outside X-point divertor discharges with NB or NB + RF (LH or IC) heating power of more than 16 MW, although at present the energy confinement improvement is limited to within 10 %. In combined LH and NB heating of low-n-bar e discharge, the plasma stored energy increases with the same rate as NB heating only, with preferential absorption of LH wave to the high energy beam ions. In combined NB and on-axis ICRF heating of low-n-bar e discharge, a high incremental energy confinement time is obtained, with strong high energy beam ion acceleration and electron heating in the central region of the plasma. (author)

  20. Thermal energy analysis of a lime production process: Rotary kiln, preheater and cooler

    International Nuclear Information System (INIS)

    Shahin, Hamed; Hassanpour, Saeid; Saboonchi, Ahmad

    2016-01-01

    Highlights: • The integrated model for lime production unit which includes cooler, preheater and rotary kiln is developed. • The effect of residence time in each section on efficiency is investigated. • Influence of material feed rate and excess air on specific fuel consumption is analyzed. • The significant effect of particle size on efficiency and specific fuel consumption is shown. - Abstract: In this paper, thermal energy analysis of three zones of a lime production process, which are preheater, rotary kiln and cooler, is performed. In order to perform a proper quantitative estimation, the system was modeled using energy balance equations including coupled heat transfer and chemical reaction mechanisms. A mathematical model was developed, and consequently, the thermal and chemical behavior of limestone was investigated. The model was verified using empirical data. After model confirmation, the variation of Specific Fuel Consumption (SFC) versus production rate was predicted and the optimum condition was determined. Subsequently, fuel consumption was calculated regarding to altered residence time inside each zone of lime production process, for a constant output. Results indicate that increasing the residence time inside each zone of lime production process, will enhance thermal efficiency and saves fuel consumption. Relative enhancement will be the same for different sizes of limestone. It was found that a 10-min increase in material residence time inside the preheater or rotary kiln can reduce fuel consumption by around two percent. Whereas, a 5-min increase in material residence time inside the cooler would be enough to obtain a similar result. Finally, the ratio of air-to-fuel and production rate are changed in such a way that the same product is achieved. The model predicts that lowering excess air from 15% to 10% leads to a 2.5% reduction of Specific Fuel Consumption (SFC).

  1. Operation of a pond-cooler: the case of Berezovskaya GRES-1

    Science.gov (United States)

    Morozova, O. G.; Kamoza, T. L.; Koyupchenko, I. N.; Savelyev, A. S.; Pen, R. Z.; Veselkova, N. S.; Kudryavtsev, M. D.

    2017-08-01

    Pond-coolers at heat and nuclear power stations are natural-technological systems, so the program of their monitoring should include the effect made by the SRPS (state regional power station) on the pond ecosystem, including thermal discharge of cooling water. The objectives of this study were development and implementation of a monitoring program for the cooling pond of Berezovskaya SRPS-1 on the chemical and biological water quality indicators and identification of patterns of the thermal and hydrochemical regime when operating the progressive power plant (from 1996 to 2015). The quality of the cooling water of the pond-cooler BGRES-1 was studied under full-scale conditions by selecting and analyzing the water samples of the pond in accordance with the principles of complexity, systematic observation, and consistency of timing their conduct with the characteristic hydrological phases. Processing of the obtained array of monitoring data by methods of mathematical statistics makes it possible to identify the main factors affecting the water quality of the pond. The data on water quality obtained during their monitoring and mathematical processing over a long time interval are the scientific basis for forecasting the ecological state of the pond, which is necessary to economically ensure the efficient energy production and safety of water use. Recommendations proposed by these authors, including those partially already implemented, have been to prevent the development of eutrophication processes in the pond-cooler: the construction of a dam that cuts off the main peat massif and cleaning the river banks forming the cooling pond.

  2. Spin flipping a stored polarized proton beam at the IUCF cooler ring

    International Nuclear Information System (INIS)

    Phelps, R.A.

    1995-01-01

    We recently studied the spin flip of a vertically polarized 139 MeV proton beam stored in the IUCF Cooler Ring. We used an rf solenoid to induce a depolarizing resonance in the ring; we flipped the spin by varying the solenoid field's frequency through this resonance. We found a polarization loss after multiple spin flips less than 0.1% per flip; we also found that this loss increased for very slow frequency changes. This spin flip could reduce systematic errors in stored polarization beam experiments by allowing frequent beam polarization reversals during the experiment. copyright 1995 American Institute of Physics

  3. The Next Generation Sky Survey and the Quest for Cooler Brown Dwarfs

    OpenAIRE

    Kirkpatrick, J. Davy

    2002-01-01

    The Next Generation Sky Survey (NGSS) is a proposed NASA MIDEX mission to map the entire sky in four infrared bandpasses - 3.5, 4.7, 12, and 23 um. The seven-month mission will use a 50-cm telescope and four-channel imager to survey the sky from a circular orbit above the Earth. Expected sensitivities will be half a million times that of COBE/DIRBE at 3.5 and 4.7 um and a thousand times that of IRAS at 12 and 23 um. NGSS will be particularly sensitive to brown dwarfs cooler than those present...

  4. A radio frequency ring electrode cooler for low-energy ion beams

    International Nuclear Information System (INIS)

    Heinz, S.; Aeystoe, J.; Habs, D.; Hegewisch, S.; Huikari, J.; Nieminen, A.; Rinta-Antila, S.; Schumann, M.; Szerypo, J.

    2004-01-01

    We are investigating a new concept for ion confinement while buffer-gas-cooling low-energy ion beams. Instead of applying the well-established technique of Radio Frequency Quadrupoles (RFQs) where the ions are transversely confined by a quadratic-pseudo potential we are using a stack of thin ring electrodes supplied by an RF field (RF funnel) which creates a box-shaped potential well. In Monte Carlo simulations we have investigated the transmission behavior and cooling performance of the RF funnel. First experimental investigations with ion currents up to 20 nA revealed a promising transmission characteristic which qualifies the RF funnel as high-current cooler

  5. A beam position monitor system for electron cooler in HIRFL-CSR

    International Nuclear Information System (INIS)

    Li Guohong; Li Jie; Yang Xiaodong; Yan Tailai; Ma Xiaoming

    2010-01-01

    The efficient electron cooling requires that the ion beam and electron beam are parallel and overlapped. In order to measure the positions of ion beam and electron beam simultaneously, a beam position monitor system is developed for the HIRFL-CSR electron cooler device, which probe consists of four capacitive cylinder linear-cut poles. One can get the both beam positions from the picking up signals of four poles by using Fourier transform (FFT) method. The measurement results show that the beam position monitor system is accurate. This system is suitable for investigating the relation between electron cooling processing and the angle of ion beam and electron beam. (authors)

  6. Measurement of RF characteristics of magnetic alloys for an RF cavity of the accumulator cooler ring

    International Nuclear Information System (INIS)

    Watanabe, M.; Chiba, Y.; Katayama, T.; Koseki, T.; Ohtomo, K.; Tsutsui, H.

    2004-01-01

    The magnetic alloy (MA)-loaded RF cavity has been studied for an RF stacking system of the accumulator cooler ring (ACR). RF characteristics of several high-permeability MA cores were measured in the frequency range between 1 and 50 MHz. The effects of the cut-core configuration, cutting the core and leaving air gaps between two circular halves, were also investigated. The results show that the shunt impedance remains high and the appropriate inductance and Q-value can be obtained by increasing the gap width of the cut core in the frequency region of the ACR cavity

  7. Studying the operational regimes of air-radiator coolers at the Bilibin NPP

    International Nuclear Information System (INIS)

    Gutsev, D.F.; Dembovskij, A.V.; Kuznetsov, R.K.; Lukashenko, Eh.M.; Morozov, S.K.; Soldatov, G.E.

    1985-01-01

    Results of experimental and calculational-theoretical studies of operational regimes of airradiator coolers at the Bilibin NPP are set out. For the first time dry fan towers are used there under the Far North conditions. Operational experience of the Forgo cooling towers under the above conditions is given. The mathematical model of monstationary heat transfer in a pipe heat exchanger ribbed with perforated plates is worked out for numerical analysis of the tower operational regimes. The results of studies point out the ways for improvement of the cooling towers and their operational conditions

  8. A numerical study on the usage of phase change material (PCM) to prolong compressor off period in a beverage cooler

    International Nuclear Information System (INIS)

    Ezan, Mehmet Akif; Ozcan Doganay, Esra; Yavuz, Fazil Erinc; Tavman, Ismail Hakkı

    2017-01-01

    Highlights: • A 3D transient model is developed in a commercial CFD solver for vertical beverage cooler with PCM. • PCM slab is directly contacted with the airflow. • Regarding the run-time ratio best performance is achieved with 6 mm PCM slab. • Due to thermal inertia within the PCM domain, the VBC preserves its temperature for a long time. - Abstract: This study numerically investigates the influence of integration of a phase change material (PCM) slab inside a vertical beverage cooler (VBC) on the energy consumption, the thermal stability and flow characteristics of air inside the cooler. The PCM, water, slab is placed on the rear side of the flat plate roll bond evaporator with five different thicknesses, such as 2, 4, 6, 8, and 10 mm. In the current work, transient numerical analyses are performed with ANSYS-FLUENT software for an empty cooler. To simulate the on/off controller of the cooling system a dedicated user-defined-function (UDF) is implemented in the software. Unlike the counterparts in the recent literature, instead of reducing the problem into a 1D or 2D lumped models a three-dimensional cooler domain is simulated in a commercial CFD solver. The predictions are compared with the experimental measurement for the cooler without PCM regarding the transient variations of the mean temperatures of evaporator surface and the indoor air. Consequently, the parametric set of analyses deduced that the PCM integration into the cooler enhances the cooling performance of the VBC by prolonging compressor off duration. Moreover, during the compressor off time, PCM preserves the air temperature inside the refrigerated space in the desired range by limiting the sudden temperature increments.

  9. Purification, crystallization and preliminary crystallographic characterization of the α2,6-sialyltransferase from Photobacterium sp. JT-ISH-224

    International Nuclear Information System (INIS)

    Okino, Nozomu; Kakuta, Yoshimitsu; Kajiwara, Hitomi; Ichikawa, Masako; Takakura, Yoshimitsu; Ito, Makoto; Yamamoto, Takeshi

    2007-01-01

    Crystallization of the α2,6-sialyltransferase from Photobacterium. Sialyltransferases transfer sialic acid from cytidine-5-monophospho-N-acetylneuraminic acid (CMP-NeuAc) to the nonreducing termini of the oligosaccharyl structures of various glycoproteins and glycolipids. The newly cloned α2,6-sialyltransferase from Photobacterium sp. JT-ISH-224 (from the Vibrionaceae family) is composed of two domains: an unknown N-terminal domain and a catalytic C-terminal domain which shares significant homology with the Pasteurella multocida multifunctional sialyltransferase. The putative mature form of JT-ISH-224 α2,6-sialyltransferase was overproduced in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method at 293 K. The crystal belonged to space group P3 1 21 or P3 2 21, with unit-cell parameters a = b = 90.29, c = 204.33 Å. X-ray diffraction data were collected to 2.5 Å resolution

  10. Qualification and preparatory activities for the manufacturing of 9 TF coils of the JT-60SA magnet

    International Nuclear Information System (INIS)

    Cucchiaro, Antonio; Polli, Gian Mario; Cocilovo, Valter; Drago, Giovanni; Cuneo, Stefano; Terzi, Franco; Peyrot, Marc; Phillips, Guy; Tomarchio, Valerio

    2013-01-01

    In the framework of the Broader Approach Agreement for the construction of the JT-60SA tokamak, ENEA is in charge to provide 9 of the 18 Toroidal Field (TF) coils. The 9 coils are being manufactured by ASG superconductors in Genoa under the supervision of ENEA in collaboration with the JT-60SA European home team. Prior the manufacturing, a preparatory activity has been carried out aimed at designing, constructing and setting-up the relevant components to be realized. In order to get confidence of some special manufacturing process, several qualification activities have been performed. In this paper an overview of the principal milestones reached during the preparatory phase and a description of the qualification activities with relevant test results are presented

  11. Improvement of voltage holding capability in the 500 keV negative ion source for JT-60SA.

    Science.gov (United States)

    Tanaka, Y; Hanada, M; Kojima, A; Akino, N; Shimizu, T; Ohshima, K; Inoue, T; Watanabe, K; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Grisham, L R

    2010-02-01

    Voltage holding capability of JT-60 negative ion source that has a large electrostatic negative ion accelerator with 45 cm x 1.1 m acceleration grids was experimentally examined and improved to realize 500 keV, 22 A, and 100 s D- ion beams for JT-60 Super Advanced. The gap lengths in the acceleration stages were extended to reduce electric fields in a gap between the large grids and at the corner of the support flanges from the original 4-5 to 3-4 kV/mm. As a result, the voltage holding capability without beam acceleration has been successfully improved from 400 to 500 kV. The pulse duration to hold 500 kV reached 40 s of the power supply limitation.

  12. The H-mode pedestal, ELMs and TF ripple effects in JT-60U/JET dimensionless identity experiments

    International Nuclear Information System (INIS)

    Saibene, G.; Oyama, N.; Loennroth, J.; Andrew, Y.; Luna, E. de la; Giroud, C.; Huysmans, G.T.A.; Kamada, Y.; Kempenaars, M.A.H.; Loarte, A.; Donald, D. Mc; Nave, M.M.F.; Meiggs, A.; Parail, V.; Sartori, R.; Sharapov, S.; Stober, J.; Suzuki, T.; Takechi, M.; Toi, K.; Urano, H.

    2007-01-01

    This paper summarizes results of dimensionless identity experiments in JT-60U and JET, aimed at the comparison of the H-mode pedestal and ELM behaviour in the two devices. Given their similar size, dimensionless matched plasmas are also similar in their dimensional parameters (in particular, the plasma minor radius a is the same in JET and JT-60U). Power and density scans were carried out at two values of I p , providing a q scan (q 95 = 3.1 and 5.1) with fixed (and matched) toroidal field. Contrary to initial expectations, a dimensionless match between the two devices was quite difficult to achieve. In general, p ped in JT-60U is lower than in JET and, at low q, the pedestal pressure of JT-60U with a Type I ELMy edge is matched in JET only in the Type III ELM regime. At q 95 = 5.1, a dimensionless match in ρ*, ν* and β p,ped is obtained with Type I ELMs, but only with low power JET H-modes. These results motivated a closer investigation of experimental conditions in the two devices, to identify possible 'hidden' physics that prevents obtaining a good match of pedestal values over a large range of plasmas parameters. Ripple-induced ion losses of the medium bore plasma used in JT-60U for the similarity experiments are identified as the main difference with JET. The magnitude of the JT-60U ripple losses is sufficient to induce counter-toroidal rotation in co-injected plasma. The influence of ripple losses was demonstrated at q 95 = 5.1: reducing ripple losses by ∼2 (from 4.3 to 1.9 MW) by replacing positive with negative neutral beam injection at approximately constant P in resulted in an increased p ped in JT-60U, providing a good match to full power JET H-modes. At the same time, the counter-toroidal rotation decreased. Physics mechanisms relating ripple losses to pedestal performance are not yet identified, and the possible role of velocity shear in the pedestal stability, as well as the possible influence of ripple on thermal ion transport are briefly

  13. Development of a new RFQ beam cooler and buncher for the CANREB project at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Barquest, B.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); Bale, J.C.; Dilling, J. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); UBC Department of Physics and Astronomy, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Gwinner, G. [University of Manitoba, Department of Physics and Astronomy, Allen Building, Winnipeg, MB R3T 2N2 (Canada); Kanungo, R. [Saint Mary’s University, Astronomy and Physics Department, 923 Robie Street, Halifax, NS B3H 3C3 (Canada); Krücken, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); UBC Department of Physics and Astronomy, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Pearson, M.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada)

    2016-06-01

    A new radiofrequency quadrupole (RFQ) based ion beam cooler and buncher is under development for the CANadian Rare-isotope facility with Electron Beam ion source (CANREB) project at TRIUMF. The CANREB project requires an RFQ buncher that will efficiently accept continuous beams of rare isotopes from either the Advanced Rare IsotopE Laboratory (ARIEL) or Isotope Separator and ACcelerator (ISAC) target by way of a high resolution magnetic spectrometer, with energies up to 60 keV and deliver bunched beams to an electron beam ion source (EBIS) for charge breeding. The energy of the bunched beam delivered to the EBIS will be adjustable to match the requirements of the existing post acceleration infrastructure. The CANREB RFQ incorporates design considerations to facilitate ease of use over a wide range of ion masses, and is intended to accommodate incident beam rates as high as 10{sup 8} pps, delivering beam bunches at 100 Hz. An overview of the CANREB RFQ design concept will be presented, informed by results from both ion optical simulations as well as commissioning efforts with other beam cooler and buncher devices. Simulation results indicate that the design is well suited to deliver high quality bunched beams with high efficiency with as many as 10{sup 6} ions per bunch.

  14. Synthetical optimization of hydraulic radius and acoustic field for thermoacoustic cooler

    International Nuclear Information System (INIS)

    Kang Huifang; Li Qing; Zhou Gang

    2009-01-01

    It is well known that the acoustic field and the hydraulic radius of the regenerator play key roles in thermoacoustic processes. The optimization of hydraulic radius strongly depends on the acoustic field in the regenerator. This paper investigates the synthetical optimization of hydraulic radius and acoustic field which is characterized by the ratio of the traveling wave component to the standing wave component. In this paper, we discussed the heat flux, cooling power, temperature gradient and coefficient of performance of thermoacoustic cooler with different combinations of hydraulic radiuses and acoustic fields. The calculation results show that, in the cooler's regenerator, due to the acoustic wave, the heat is transferred towards the pressure antinodes in the pure standing wave, while the heat is transferred in the opposite direction of the wave propagation in the pure traveling wave. The better working condition for the regenerator appears in the traveling wave phase region of the like-standing wave, where the directions of the heat transfer by traveling wave component and standing wave component are the same. Otherwise, the small hydraulic radius is not a good choice for acoustic field with excessively high ratio of traveling wave, and the small hydraulic radius is only needed by the traveling wave phase region of like-standing wave.

  15. General Approach for Composite Thermoelectric Systems with Thermal Coupling: The Case of a Dual Thermoelectric Cooler

    Directory of Open Access Journals (Sweden)

    Cuautli Yanehowi Flores-Niño

    2015-06-01

    Full Text Available In this work, we show a general approach for inhomogeneous composite thermoelectric systems, and as an illustrative case, we consider a dual thermoelectric cooler. This composite cooler consists of two thermoelectric modules (TEMs connected thermally in parallel and electrically in series. Each TEM has different thermoelectric (TE properties, namely thermal conductance, electrical resistance and the Seebeck coefficient. The system is coupled by thermal conductances to heat reservoirs. The proposed approach consists of derivation of the dimensionless thermoelectric properties for the whole system. Thus, we obtain an equivalent figure of merit whose impact and meaning is discussed. We make use of dimensionless equations to study the impact of the thermal conductance matching on the cooling capacity and the coefficient of the performance of the system. The equivalent thermoelectric properties derived with our formalism include the external conductances and all intrinsic thermoelectric properties of each component of the system. Our proposed approach permits us changing the thermoelectric parameters of the TEMs and the working conditions of the composite system. Furthermore, our analysis shows the effect of the number of thermocouples on the system. These considerations are very useful for the design of thermoelectric composite systems. We reproduce the qualitative behavior of a commercial composite TEM connected electrically in series.

  16. Design, construction, and measurement of a large solar powered thermoacoustic cooler

    Science.gov (United States)

    Chen, Reh-Lin

    2001-07-01

    A device based on harnessing concentrated solar power in combination with using thermoacoustic principles has been built, instrumented, and tested. Its acoustic power is generated by solar radiation and is subsequently used to pump heat from external loads. The direct conversion between thermal and mechanical energy without going through any electronic stage makes the mechanism simple. Construction of the solar collector is also rather unsophisticated. It was converted from a 10-ft satellite dish with aluminized Mylar glued on the surface. The thermoacoustic device was mounted on the dish with its engine's hot side positioned near the focus of the parabolic dish, about 1 meter above the center of the dish. A 2-dimensional solar tracking system was built, using two servo motors to position the dish at pre-calculated coordinates. The solar powered thermoacoustic cooler is intended to be used where solar power is abundant and electricity may not be available or reliable. The cooler provides cooling during solar availability. Cooling can be maintained by the latent heat of ice when solar power is unattainable. The device has achieved cooling although compromised by gas leakage and thermal losses and was not able to provide temperatures low enough to freeze water. Improvements of the device are expected through modifications suggested herein.

  17. Optimising the operation of hybrid coolers by means of efficient control equipment; Optimierung der Betriebsweise von Hybridkuehlern durch effiziente Steuerungstechnik

    Energy Technology Data Exchange (ETDEWEB)

    Odrich, T.; Koenig, H. [Jaeggi/Guentner (Schweiz) AG, Trimbach (Switzerland)

    2007-07-01

    Due to its functional principle and design, the hybrid dry cooler holds a high potential for saving water and energy. Purely convective heat discharge during dry operation in the case of a high annual rate of utilisation, evaporative cooling during the wetting cycle at peak load times or high ambient temperatures and infinitely adjustable fan speed in both operating modes permit a very substantial recooling performance at low operating costs and with little space requirement. However, the efficiency of hybrid dry coolers depends to a large degree on how intelligently the cooling functions are controlled and on the control strategy. The present article demonstrates that the control strategy contributes decisively to minimising water and energy consumption and costs. Besides describing the actual functions of a hybrid cooler control system it presents a control strategy for automatic lowering of the setpoint and hence optimisation of the refrigeration process. It discusses the option of operating multiple hybrid coolers by means of a hydraulic network and presents an optimised control concept for this purpose which is based on a master control unit. In conclusion the study shows that hybrid coolers need their own optimised control unit if maximum savings in energy and water are to be achieved.

  18. ANALISIS PERFORMA SISTEM PENDINGIN RAMAH LINGKUNGAN UNTUK KABIN MOBIL CITY CAR MENGGUNAKAN MODUL TERMO ELECTRIC COOLER TERHADAP KONSUMSI BAHAN BAKAR

    Directory of Open Access Journals (Sweden)

    Mirza Yusuf

    2017-12-01

    Full Text Available Ramah lingkungan menjadi isu yang gencar dalam penelitian. Cloro Fluoro Carbon (CFC yang digunakan dalam AC konvensional akan menguap ke udara bebas  berdampak kerusakan lapisan ozon. Ditinjau secara micro dalam penggunaan sitem pendingin dapat diterapkan pada pendingin kabin mobil. System pendingin mobil konfensional menimbulkan 2 kerugian yaitu lebih boros bahan bakar karena couple pulley compressor AC membebani putaran mesin dan penggunaan CFC yang tidak ramah lingkungan.   System pendingin ramah lingkunagan dan mampu menghemat bahan bakar mesin tersebut dapat kita temukan pada modul thermoelectric.  terobosan baru sistem pendingin tersebut menggunakan modul pendingin Thermo Electric Cooler (TEC yang memanfaatkan sisi dingin pada Thermo Electric Cooler (TEC dengan memanfaatkan seaback effect .  Thermo Electric Cooler (TEC ketika dialiri tegangan DC (arus searah pada kedua jalur kabel penghubungnya maka salah satu sisi akan menjadi panas, sementara sisi satunya akan menjadi dingin. Salahsatu cara yang dapat ditempuh untuk memaksimalkan proses pendinginan, maka sisi panas Thermo Electric Cooler (TEC harus diturunkan temperaturenya serendah mungkin mungkin dengan menggunakan alat penukar kalor heat sink serta dibantu kipas(fan. semakin lama proses pendinginan, maka semakin optimal suhu ruangan yang didinginkan. Dari data Hasil pengujian dapat diketahui perangkat pendingin tersebut mampu bekerja dengan rate penurunan temperature memadai. Selanjutnya dapat dapat diaplikasikan sebagai alat pendingin ruangan yang efektif, efisien dan ramah lingkungan.    Kata kunci:  Kabin mobil, Air Conditioner (AC konvensional, Cloro Fluoro Carbon (CFC, Thermo Electric Cooler (TEC, komponen sistem pendingin.

  19. Optimization of the pumping ring in a mechanical seal with an integrated cooler for feed-water pumps

    International Nuclear Information System (INIS)

    Buchdahl, D.; Martin, R.; Gueret, G.; Blanc, M.

    1994-07-01

    To simplify maintenance, E.D.F. along with its collaborators undertook the study of mechanical seal with integrated cooler used in feed-water pumps in the nuclear power plants. The cooler, integrated to the pump acts as a thermal barrier as well as a cooler of the mechanical seal. The water circulation in the cooler is assumed by an integrated pumping ring in the rotary part of the mechanical seal, with a matching screw thread in the pumping case. This assembly of mechanical seal/integrated cooler is tested in a test loop at the EDF/DER Laboratory. All working conditions are similar to that at site. Tests with different configurations of the rotor/stator profiles are performed, i.e.; different lengths and types of threading. Hydraulic performances and the global thermal balance of this assembly are studied. Our basic aim during these tests is to optimize the hydraulic performance of the pumping ring so as to best cool the mechanical seal faces. The different results obtained and the conclusions drawn during these tests are presented. (authors). 7 figs., 3 refs

  20. Improving the Efficiency of the Heat Pump Control System of Carbon Dioxide Heat Pump with Several Evaporators and Gas Coolers

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2016-12-01

    Full Text Available The problem of coordination of the values of the refrigerant flow through the evaporators and gas coolers of the heat pump for the simultaneous production of heat and cold is studied. The compensation of the variations of the total flow through the evaporators is implemented using the variation of the capacity of the compressor and a corresponding change in flow through the auxiliary gas cooler of the heat pump. Control system of this gas cooler is constructed using the invariance principle of the output value (outlet temperature of the heated agent with respect to perturbations on the control channel (the refrigerant flow through the gas cooler. Principle of dual-channel compensation of the disturbance and advancing signal on input of control valve of the refrigerant through the gas cooler is ensured. Due to proposed solution, the intensity of the disturbances on the flow of refrigerant is reduced. Due to proposed technical solution power consumed by the heat pump compressor drive under transients is decreased.

  1. Study of particle pumping characteristics for different pumping geometries in JT-60U and DIII-D divertors

    International Nuclear Information System (INIS)

    Takenaga, H.; Sakasai, A.; Kubo, H.

    2001-01-01

    Particle pumping characteristics were compared between pumping from the inner side private flux region (IPP) and pumping from both sides of the private flux region (BPP) in the JT-60U W shaped divertor, and between JT-60U IPP and pumping in the DIII-D lower baffled divertor. The pumping flux for BPP is smaller than that for IPP by about a factor of 2 with weak in-out asymmetry of recycling neutral flux and by a factor of 3.5-6.5 with strong in-out asymmetry. The reduction of the pumping flux for BPP is consistent with Monte Carlo simulations, where backflow at the outer pumping slot is observed due to in-out recycling asymmetry. The pumping flux in DIII-D at I p =0.8 MA and B T =1.6 T is comparable to or smaller than that for JT-60U IPP at I p =1.0 MA, B T =3.8 T and I p =1.5 MA, B T =3.5 T in the same density regime. In the DIII-D divertor with pumping from the private flux region, the pumping flux decreases with increasing in-out asymmetry. The pumping flux normalized by the integrated D α emission over the whole plasma exhibits a similar dependence on the distance between the pumping slot and the strike point in JT-60U IPP and the DIII-D lower divertor with pumping through the outer divertor plasma region. (author)

  2. Development of residual thermal stress-relieving structure of CFC monoblock target for JT-60SA divertor

    Energy Technology Data Exchange (ETDEWEB)

    Tsuru, Daigo, E-mail: tsuru.daigo@jaea.go.jp; Sakurai, Shinji; Nakamura, Shigetoshi; Ozaki, Hidetsugu; Seki, Yohji; Yokoyama, Kenji; Suzuki, Satoshi

    2015-10-15

    Highlights: • We carried out numerical simulations on residual thermal stress of targets for the JT-60SA divertor. • We developed three measures to reduce residual thermal stress. • We proposed two structures of CFC monoblock target for the JT-60SA divertor. • We confirmed the effectiveness of the structure by infrared thermography inspection and high heat flux test. - Abstract: Carbon fibre-reinforced carbon composite (CFC) monoblock target for JT-60SA divertor is under development towards the mass-production. CFC monoblocks, WCu interlayers and a CuCrZr cooling tube at the centre of the monoblocks were bonded by vacuum brazing in a high temperature, to a target. If residual thermal stress due to difference of thermal expansions between CFC and CuCrZr exceeds the maximum allowable stress of the CFC after the bonding, cracks are generated in the CFC monoblock and heat removal capacity of the target degrades. In this paper, new structures of the targets were proposed, to reduce residual thermal stress and to mitigate the degradation of heat removal capacity of the targets. Some measures, including slitting of the CFC monoblock aside of the cooling tube, replacement of the interlayer material and shifting the position of the cooling tube, were implemented. The effectiveness of the measures was evaluated by numerical simulations. Target mock-ups with the proposed structures were manufactured. Infrared thermography inspection and high heat flux test were carried out on the mock-ups in order to evaluate the heat removal capacity.

  3. Carbon transport and fuel retention in JT-60U with high temperature operation based on postmortem analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, M., E-mail: yoshida.masafumi@jaea.go.jp [Japan Atomic Energy Agency, Mukoyama 801-1, Naka-shi, Ibaraki-ken 311-0193 (Japan); Tanabe, T.; Adachi, A. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Hayashi, T.; Nakano, T.; Fukumoto, M.; Yagyu, J.; Miyo, Y.; Masaki, K.; Itami, K. [Japan Atomic Energy Agency, Mukoyama 801-1, Naka-shi, Ibaraki-ken 311-0193 (Japan)

    2013-07-15

    Fuel retention rates and carbon re-deposition rates in the plasma shadowed areas, or tile gaps and remote areas, in JT-60U were measured. The total fuel retention rate in the plasma shadowed areas was more than two times higher than that in the carbon re-deposited layers on the plasma facing surfaces, or the divertor tiles. This is because of lower temperature in the plasma shadowed areas than in the plasma facing surfaces, which leads to high hydrogen saturation concentration, although the amount of the carbon re-deposited on the plasma shadowed areas was only 60% of that on the plasma facing surfaces. The total fuel retention rate in JT-60U, including previously determined for all the plasma facing areas, was evaluated to be 1.3 × 10{sup 20} H + D s{sup −1}, and this retention rate was lower than that in the other devices, due probably to high baking temperature operation in JT-60U. Distributions of the fuel retention and the carbon re-deposition in the whole in-vessel of a large tokamak were determined for the first time in the world.

  4. Role of low order rational q values on the ITB-events in JT-60U plasmas

    International Nuclear Information System (INIS)

    Neudatchin, S.V.; Takizuka, T.; Hayashi, N.; Shirai, H.; Fujita, T.; Isayama, A.; Kamada, Y.; Koide, Y.; Suzuki, T.

    2003-01-01

    The formation of internal transport barriers (ITBs) near q=2,3 surfaces in normal (NrS) or optimized shear discharges of JT-60U and JET is well known. In reverse shear (RS) JT-60U plasmas, the role of q minimum (q min ) equal to 3, 5, 3, 2, 5, 2 is not obvious for ITB formation. ITB-events (non-local confinement bifurcations inside and around ITB in a ms timescale) are found in various JT-60U NrS and RS plasmas. Under sufficient power, ITB-events are seen at rational and not rational values of q min . The space-time evolution of T e and T i is similar even being strongly varied in space and time, suggesting same mechanism(s) of T e and T i transport. The temporal formation of strong ITB in H-mode under passing of q min =3 (after periodical improvements and degradations via ITB-events with 8ms period) in RS mode with P nbi =8MW is presented. Under smaller power, ITB-events are observed only at rational values of q min . In a weak RS shot with P nbi =4MW, abrupt rise of T e is seen at q min =3.5, while more cases of T i rise are observed. The difference of the T e and T i evolution seen regularly under the low power, suggests decoupling of T e and T i transport. (author)

  5. Role of low order rational q values in the ITB-events in JT-60U plasmas

    International Nuclear Information System (INIS)

    Neudatchin, S.V.

    2002-01-01

    The formation of internal transport barriers (ITBs) near q=2,3 surfaces in normal (NrS) or optimized shear discharges of JT-60U and JET is well known. In reverse shear (RS) JT-60U plasmas, the role of q minimum (q min ) equal to 3.5, 3, 2.5, 2 is not obvious for ITB evolution. ITB-events (non-local confinement bifurcations inside and around ITB in a ms timescale) are found in various JT-60U NrS and RS plasmas. (a) Under sufficient power, ITB-events are seen at rational and not rational values of q min . The space-time evolution of Te and Ti is similar. The temporal creation of stronger ITB in H-mode (after periodical improvements and degradations via ITB-events with 8 ms period) under passing of q min = 3 is presented (P nbi = 8 MW, 1.5 MA / 3.7 T). (b) Under smaller power, the influence of some rational q min is seen clearly for ITB-events on T e . In 1.3MA/3.7T shot with very weak RS (Pnbi = 4 MW), abrupt rise of T e is seen at q min 3:5, while more cases of T i rise are observed. (c) The possible role of MHD-activity as ITB-events trigger (ms time scale correlation in some NrS and RS cases) is under investigation. (author)

  6. Design study of a new P-NBI control system for 100-s injection in JT-60SA

    International Nuclear Information System (INIS)

    Honda, Atsushi; Okano, Fuminori; Shinozaki, Shinichi; Ooshima, Katsumi; Ikeda, Yoshitaka; Numazawa, Susumu

    2007-03-01

    The modification of the JT-60U to a fully superconducting coil tokamak, JT-60SA (Super Advanced), has been programmed as the satellite devise for the ITER (International Thermonuclear Experimental Reactor) and as the national centralized tokamak. The present positive-ion-based NBI system (P-NBI), which has been operated for 20 years and will be the main heating system on JT-60SA, is required to manage the long pulse injection extended from 30 s to 100 s at the power of 24 MW with 12 units. To realize such a requirement, the original control system handling more than 4000 digital data is to be fully remodeled. Design study of the new control system has been conducted from viewpoint of market availability, system extensibility, cost-effectiveness and independent development in programming. It has been concluded that a distributed control system using PLC (Programmable Logic Controller) could be applied to the large-scale control system for 100-s operations with satisfaction of the evaluation viewpoints. (author)

  7. Carbon transport and fuel retention in JT-60U with high temperature operation based on postmortem analysis

    International Nuclear Information System (INIS)

    Yoshida, M.; Tanabe, T.; Adachi, A.; Hayashi, T.; Nakano, T.; Fukumoto, M.; Yagyu, J.; Miyo, Y.; Masaki, K.; Itami, K.

    2013-01-01

    Fuel retention rates and carbon re-deposition rates in the plasma shadowed areas, or tile gaps and remote areas, in JT-60U were measured. The total fuel retention rate in the plasma shadowed areas was more than two times higher than that in the carbon re-deposited layers on the plasma facing surfaces, or the divertor tiles. This is because of lower temperature in the plasma shadowed areas than in the plasma facing surfaces, which leads to high hydrogen saturation concentration, although the amount of the carbon re-deposited on the plasma shadowed areas was only 60% of that on the plasma facing surfaces. The total fuel retention rate in JT-60U, including previously determined for all the plasma facing areas, was evaluated to be 1.3 × 10 20 H + D s −1 , and this retention rate was lower than that in the other devices, due probably to high baking temperature operation in JT-60U. Distributions of the fuel retention and the carbon re-deposition in the whole in-vessel of a large tokamak were determined for the first time in the world

  8. Validation of special processes for the integration activities of the JT-60SA TF coils manufactured in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Polli, Gian Mario, E-mail: gianmario.polli@enea.it [ENEA, UT-FUS, Via E. Fermi 45, Frascati (Italy); Cucchiaro, Antonio; Cocilovo, Valter [ENEA, UT-FUS, Via E. Fermi 45, Frascati (Italy); Drago, Giovanni; Pesenti, Paolo; Cuneo, Stefano; Terzi, Franco [ASG Superconductors, Corso Perrone 73 r, Genova (Italy); Phillips, Guy; Tomarchio, Valerio [JT-60SA European Home Team, 85748 Garching bei Munchen (Germany)

    2015-10-15

    Highlights: • Insertion. • Casing welding. • Casing embedding. - Abstract: In the framework of the Broader Approach Agreement for the construction of the JT-60SA tokamak, ENEA provides 9 of the 18 toroidal field (TF) coils of the JT-60SA magnet system. The 9 coils are being manufactured by ASG superconductors in Genoa under the supervision of ENEA in collaboration with the JT-60SA European home team. The manufacturing is composed of two main steps: one concerning winding pack assembly and impregnation, and the other devoted to the integration into the casing structure and associated final coil preparation. This paper describes the results of the validation activities set-up for the integration phase. Specifically, welding of casing components has been retained particularly critical for at least three reasons: (i) during welding the WP may be damaged by the intense heating; (ii) distortion caused by heating may determine incorrect coil geometry and then field errors; and (iii) flaws may reduce structural strength and then the overall lifetime of the machine. Similarly, final embedding has been demonstrated on a 1 m long mock-up of the coil. Main results and lessons learned are here described.

  9. Improving the Efficiency of the Heat Pump Control System of Carbon Di-oxide Heat Pump with Several Evaporators and Gas Coolers

    OpenAIRE

    Sit, M.L.; Juravliov, A.A.; Sit, B.M.; Timchenko, D.

    2016-01-01

    The problem of coordination of the values of the refrigerant flow through the evaporators and gas coolers of the heat pump for the simultaneous production of heat and cold is studied. The compensation of the variations of the total flow through the evaporators is implemented using the variation of the capacity of the compressor and a corresponding change in flow through the auxiliary gas cooler of the heat pump. Control system of this gas cooler is constructed using the invariance principle o...

  10. Design of Plasma Facing Components for Superconducting Modification of JT-60

    International Nuclear Information System (INIS)

    Shinji Sakurai; Kei Masaki; Yusuke-Kudo Shibama; Hiroshi Tamai; Makoto Matsukawa; Cordier, J.J.

    2006-01-01

    JT-60 is planning to modify the machine as a fully superconducting coil tokamak (JT-60 Super Advanced, the former JT-60SC and NCT) to establish scientific and technological bases for an economically and environmentally attractive DEMO reactor. It will be also a satellite tokamak in a part of broader approach for ITER. It is designed for high beta (betaN = 3.5-5.5) and steady-state research in a break-even class DD plasma for 100 s or longer. Nominal plasma parameters are I p =5.5 MA, B t =2.7 T, R=3.01 m, a=1.14 m with double-null configuration. An ITER-like single-null configuration with I p =3.5 MA, B t =2.6 T can be also operated. In order to study the ITER-relevant high confinement plasma with high density, designed plasma heating power was enhanced from 25 MW to 41 MW for 100 s through the design review with EU and Japan. The heat flux onto outer divertor target exceeds 10 MW/m 2 with moderate radiative fraction of 50-60% in single-null configuration. Therefore, the ITER-like mono-block CFC target will be adopted to aim at power handling of 15 MW/m 2 . A cooling water system should be reinforced 3 times from original design for double null divertor with high coolant flow velocity of ∼10 m/s. The peak heat flux onto the neutral beam armor for perpendicular injected positive NB is evaluated to be 2 MW/m 2 , which needs to be actively water-cooled. A bolt-fixed CFC tile was tested at the heat flux of 1-3 MW/m 2 and will be applied to the NB armor. In order to improve plasma beta value by enhancing wall stabilization effect, passive-stabilizing plates, which are electrically and mechanically connected in poloidal and toroidal direction, will be installed near the plasma surface (r wall /a=1.1-1.3) at the outboard side. Stabilizing plate has double-wall ribbed structure and can be operated at 573 K with heating nitrogen gas instead of cooling water between double walls. It has crank-type support legs to allow thermal expansion at high temperature operation. The

  11. Overview of JT-60U progress towards steady-state advanced tokamak

    International Nuclear Information System (INIS)

    Ide, S.

    2005-01-01

    Recent experimental results on steady state advanced tokamak (AT) research on JT-60U are presented with emphasis on longer time scale in comparison with characteristics time scales in plasmas. Towards this, modification on control in operation, heating and diagnostics systems have been done. As the results, ∼ 60 s I p flat top and an ∼ 30 s H-mode are obtained. The long pulse modification has opened a door into a new domain for JT-60U. The high normalized beta (β N ) of 2.3 is maintained for 22.3 s and 2.5 for 16.5 s in a high β p H-mode plasma. A standard ELMy H-mode plasma is also extended and change in wall recycling in such a longer time scale has been unveiled. Development and investigation of plasmas relevant to AT operation has been continued in former 15 s discharges as well in which higherNB power (≤ 10 s) is available. Higher β N ∼ 3 is maintained for 6.2 s in high β p H-mode plasmas. High bootstrap current fraction (f BS ) of ∼ 75% is sustained for 7.4 s in an RS plasma. On NTM suppression by localized ECCD, ECRF injection preceding the mode saturation is found to be more effective to suppress the mode with less power compared to the injection after the mode saturated. The domain of the NTM suppression experiments is extended to the high β N regime, and effectiveness of m/n=3/2 mode suppression by ECCD is demonstrated at β N ∼ 2.5-3. Genuine center-solenoid less tokamak plasma start up is demonstrated. In a current hole region, it is shown that no scheme drives a current in any direction. Detailed measurement in both spatial and energy spaces of energetic ions showed dynamic change in the energetic ion profile at collective instabilities. Impact of toroidal plasma rotation on ELM behaviors is clarified in grassy ELM and QH domains. (author)

  12. Review of JT-60U experimental results in 2007 and 2008

    International Nuclear Information System (INIS)

    Isayama, Akihiko; Oyama, Naoyuki; Suzuki, Takahiro; Shinohara, Kouji; Sakamoto, Yoshiteru; Matsunaga, Go; Yoshida, Maiko; Asakura, Nobuyuki; Nakano, Tomohide; Kamiya, Kensaku; Itami, Kiyoshi

    2010-02-01

    Results in JT-60U experiments in 2007 and 2008 are reviewed. In this campaign, which is the final experimental period in JT-60U, development of advanced tokamak plasma was extensively performed toward establishment of physics basis of ITER and DEMO. High integrated performance plasma with high normalized beta (β N -2.6) and high confinement enhancement factor (H H98(y,2) -1.0-1.1), which are comparable to those in the ITER Hybrid Scenario, and at the same time with high bootstrap current fraction (f BS -40%) was sustained for 25 s. High density and high radiation loss fraction plasma was sustained for 12 s by adding argon and neon to a deuterium plasma. The duration of the high-performance plasmas is more than 10 times longer than the current diffusion time, τ R . In a high beta regime exceeding the ideal MHD limit without conducting wall (no-wall limit), a new instability was observed. By suppressing the instability a high beta plasma was sustained for 5 s, which corresponds to several times longer than τ R . Performance of reversed shear plasmas was significantly improved by utilizing the stabilizing effect of the conducting wall, and β N -2.7 and f BS -90% were obtained. These results significantly exceed those in the previous experimental campaign. In addition, real-time control system was improved, and ion temperature and current profile were independently or simultaneously controlled in real time. Development of new diagnostics was also continuously performed. For example, profiles of electron density and current were measured using the lithium beam probe diagnostic with high resolution. A number of important results from physics experiments were obtained in the area of transport, confinement, instability, plasma-wall interaction etc. Performance of heating and current drive systems was also extended significantly. In the electron cyclotron wave system, 2.9 MW for 5 s injection and 0.4 MW for 30 s injection to plasma were successfully demonstrated. Power

  13. Development of remote pipe welding tool for divertor cassettes in JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Takao, E-mail: hayashi.takao@jaea.go.jp [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Naka (Japan); Sakurai, Shinji; Sakasai, Akira; Shibanuma, Kiyoshi [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Naka (Japan); Kono, Wataru; Ohnawa, Toshio; Matsukage, Takeshi [Toshiba Corporation, Yokohama, Kanagawa (Japan)

    2015-12-15

    Highlights: • Remote pipe welding tool accessing from inside of the pipe has been newly developed. • Cooling pipe with a jut on the edge expands the acceptable welding gap up to 0.5 mm. • Positioning accuracy of the laser beam is realized to be less than ±0.1 mm. • We have achieved robust welding for an angular misalignment of 0.5°. - Abstract: Remote pipe welding tool accessing from inside of the pipe has been newly developed for JT-60SA. Remote handling (RH) system is necessary for the maintenance and repair of the divertor cassette in JT-60SA. Because the space around the cooling pipe connected with the divertor cassette is very limited, the cooling pipe is to be remotely cut and welded from inside for the maintenance. A laser welding method was employed to perform circumferential welding by rotating the focusing mirror inside the pipe. However, the grooves of connection pipes are not precisely aligned for welding. The most critical issue is therefore to develop a reliable welding tool for pipe connection without a defect such as undercut weld due to a gap caused by angular and axial misalignments of grooves. In addition, an angular misalignment between two pipes due to inclination of pipe has to be taken into account for the positioning of the laser beam during welding. In this paper, the followings are proposed to solve the above issues: (1) Cooling pipe connected with the divertor is machined to have a jut on the edge so as to expand the acceptable welding gap up to 0.5 mm by filling the gap with welded jut. (2) Positioning accuracy of the laser beam for reliable welding is realized to be less than ±0.1 mm along the circumferential target for welding by a position control mechanism provided in the tool even in the case of up to angular misalignment of 0.5° between connection pipes. Based on the above proposals, we have achieved robust welding for a large gap up to 0.5 mm as well as the maximum angular misalignment of 0.5° between connection pipes

  14. Prospective performances in JT-60SA towards the ITER and DEMO relevant plasmas

    International Nuclear Information System (INIS)

    Tamai, H.; Fujita, T.; Kikuchi, M.

    2006-01-01

    JT-60SA, the former JT-60SC and NCT, a superconducting tokamak positioned as the satellite machine of ITER, collaborating with Japan and EU fusion community, aims at contribution to ITER and DEMO through the demonstration of advanced plasma operation scenario and the plasma applicability test with advanced materials. After the discussions in JA-EU Satellite Tokamak Working Group in 2005, the increased heating power, higher heat removal capacity for the plasma facing components, improvement of the radiation shielding, the remote handling system for the maintenance of in-vessel components, and related equipment are planed to be additionally installed. With such full equipment towards the increased heating power of 41 MW (34 MW-NBI and 7 MW-ECH) with 100 s, the prospective plasma performances, analysed by the equilibrium and transport analysis codes, are rather improved in the view point of the contribution to ITER and DEMO relevant research. Accessibility for higher heating power in a higher density region enables the lower normalized Larmor radius and normalized collision frequency close to the reactor relevant plasma with the ITER-similar configuration of single null divertor plasma with the aspect ratio of A = 3.1, elongation of k95 = 1.7, triangularity of d95 (q95) in the plasma current of I p = 3.5 MA, toroidal magnetic field of B T = 2.59 T and the major radius of Rp=3.16 m. The increases in the electron temperature, beam driven and bootstrap current fraction by the increase of the power of Negative ion based NBI (10 MW) reduce the loop voltage and contribute to increase the maximum plasma current of ITER similar shape. Full non-inductive current drive controllability is also extended into the high density and high plasma current operation towards high beta plasma. Flexibility in aspect ratio and shape parameter is kept the same as NCT, i.e. a double null divertor plasma with A = 2.6, k95 = 1.83, d95 = 0.57, I p = 5.5 MA, B T = 2.72 T, and R p = 3.01 m which

  15. Micromachined Joule-Thomson coolers for cooling low-temperature detectors and electronics

    Science.gov (United States)

    ter Brake, Marcel; Lerou, P. P. P. M.; Burger, J. F.; Holland, H. J.; Derking, J. H.; Rogalla, H.

    2017-11-01

    The performance of electronic devices can often be improved by lowering the operating temperature resulting in lower noise and larger speed. Also, new phenomena can be applied at low temperatures, as for instance superconductivity. In order to fully exploit lowtemperature electronic devices, the cryogenic system (cooler plus interface) should be `invisible' to the user. It should be small, low-cost, low-interference, and above all very reliable (long-life). The realization of cryogenic systems fulfilling these requirements is the topic of research of the Cooling and Instrumentation group at the University of Twente. A MEMS-based cold stage was designed and prototypes were realized and tested. The cooler operates on basis of the Joule-Thomson effect. Here, a high-pressure gas expands adiabatically over a flow restriction and thus cools and liquefies. Heat from the environment (e.g., an optical detector) can be absorbed in the evaporation of the liquid. The evaporated working fluid returns to the low-pressure side of the system via a counter-flow heat exchanger. In passing this heat exchanger, it takes up heat from the incoming high-pressure gas that thus is precooled on its way to the restriction. The cold stage consists of a stack of three glass wafers. In the top wafer, a high-pressure channel is etched that ends in a flow restriction with a height of typically 300 nm. An evaporator volume crosses the center wafer into the bottom wafer. This bottom wafer contains the lowpressure channel thus forming a counter-flow heat exchanger. A design aiming at a net cooling power of 10 mW at 96 K and operating with nitrogen as the working fluid was optimized based on the minimization of entropy production. The optimum cold finger measures 28 mm x 2.2 mm x 0.8 mm operating with a nitrogen flow of 1 mg/s at a high pressure of 80 bar and a low pressure of 6 bar. The design and fabrication of the coolers will be discussed along with experimental results.

  16. Novel concept for driving the linear compressor of a micro-miniature split Stirling cryogenic cooler

    Science.gov (United States)

    Maron, V.; Veprik, A.; Finkelstein, L.; Vilenchik, H.; Ziv, I.; Pundak, N.

    2009-05-01

    New methods of carrying out homeland security and antiterrorist operations call for the development of a new generation of mechanically cooled, portable, battery powered infrared imagers, relying on micro-miniature Stirling cryogenic coolers of rotary or linear types. Since split Stirling linearly driven micro-miniature cryogenic coolers have inherently longer life spans, low vibration export and better aural stealth as compared to their rotary driven rivals, they are more suitable for the above applications. The performance of such cryogenic coolers depends strongly on the efficacy of their electronic drivers. In a traditional approach, the PWM power electronics produce the fixed frequency tonal driving voltage/current, the magnitude of which is modulated via a PID control law so as to maintain the desired focal plane array temperature. The disadvantage of such drivers is that they draw high ripple current from the system's power bus. This results in the need for an oversized DC power supply (battery packs) and power electronic components, low efficiency due to excessive conductive losses and high residual electromagnetic interference which in turn degrades the performance of other systems connected to the same power bus. Without either an active line filter or large and heavy passive filtering, other electronics can not be powered from the same power bus, unless they incorporate heavy filtering at their inputs. The authors present the results of a feasibility study towards developing a novel "pumping" driver consuming essentially constant instant battery power/current without making use of an active or passive filter. In the tested setup, the driver relies on a bidirectional controllable bridge, invertible with the driving frequency, and a fast regulated DC/DC converter which maintains a constant level of current consumed from the DC power supply and thus operates in input current control mode. From the experimental results, the steady-state power consumed by the

  17. Development of In-Service Inspection system for heat transfer tubes in the primary pressurized water cooler in the HTTR

    Energy Technology Data Exchange (ETDEWEB)

    Shinozaki, Masayuki; Furusawa, Takayuki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Wada, Shigeyuki

    1999-08-01

    The ISI (In-Service Inspection) system has been developed so as to maintain the structural integrity of heat transfer tubes in the primary pressurized water cooler in the HTTR (High Temperature Engineering Test Reactor). This system consists of eddy current probes, ultra-sonic probes, insertion and extraction units, positioning unit and so on. Verification and performance tests of the developed ISI system were carried out using mock-up heat transfer tubes in the primary pressurized water cooler. The constitution of the system, R and D results of the inspection probes, and verification and performance test results of the ISI system for heat transfer tubes are described in this paper. (author)

  18. Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lv, Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-07-28

    Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO2) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO2 Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO2 Brayton cycle is that it enables dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately

  19. Studies and conception of a radiofrequency cooler for high intensity beams

    International Nuclear Information System (INIS)

    Duval, Florian

    2009-01-01

    The topic of this thesis is the study and the conception of a RFQ Cooler with buffer gas for high intensity radioactive beams. This project is in the frame of the next extension of GANIL, Spiral2, and the future low-energy facility DESIR ('Decay, Excitation and Storage of Radioactive ions'). The goal is to reduce the beams emittance of Spiral2 beams to allow their purification (ideally at isobaric level) with a high resolution separator. This cooler consists on a quadrupolar structure on which ions are confined by RF potential in opposite phase at an energy of 100 eV. A light buffer-gas, typically helium, is injected in the quadrupole and, after each collision, the ion lose a part of its energy and is finally cooled. The main problem on our project concerns the space charge. The existing devices are able to cool currents of few 10 nA whereas we have to treat beam intensities around 1 μA which induce an increase of the Coulomb repulsion between ions. That needs to produce strong RF fields which induce high RF potentials (≅ 10 kV_p_p) and a low inner radius (r_0 ≅ 3 a 5 mm). We have worked on a first prototype, SHIRaC-Phase1 ('Spiral2 High Intensity Radiofrequency Cooler'), with a 3 mm-inner radius, built at CSNSM-Orsay and moved at LPC-Caen at the end of 2007. The main R and D effort concerns the electronic part. A first RF system, based on a LC resonant circuit, has been developed and has provided up to 2500 V_p_p between 4.5 and 6.3 MHz. In these conditions, we have checked that we didn't have strong limitations from electrical breakdown between our electrodes. With this device, we have reduced the beam emittance to a value around 2 π.mm.mrad at 60 keV and the longitudinal energy spread to 146 meV. The maximum transmission of Sodium "2"3Na"+ and Rubidium "8"7Rb"+ is 25% with an ionization source for which the beam quality is better than Spiral2. For this reason, we have conceived a new cooler with an acceptance of 80 π.mm.mrad at 60 keV. This second

  20. Laser spectroscopy with a cooler ring at the ESR (GSI) and the TSR (MPI Heidelberg)

    International Nuclear Information System (INIS)

    Kuehl, T.; Borneis, S.; Greten, G.; Marx, D.; Neumann, R.; Schroeder, S.; Grieser, R.; Hoog, I.; Huber, G.; Klaft, I.; Klein, R.; Merz, P.; Balykin, V.; Bock, M.; Ellert, C.; Forck, P.; Grieser, M.; Grimm, R.; Habs, D.; Miesner, H.J.; Petrich, W.; Wanner, B.; Becker, C.; Schwalm, D.; Wolf, A.

    1992-01-01

    At the TSR cooler ring at Heidelberg, laser studies were carried out using singly charged lithium and beryllium ions. Laser spectroscopy of relativistic lithium ions (υ = 0.04c) yielded signals with a narrow linewidth, suitable for an experimental test of special relativity. A dramatic reduction of the beam temperature, as defined by the longitudinal velocity spread, was achieved via laser cooling in both cases. At the ion energies available at ESR it will become possible to prepare and store bare ions up to U 92+ . Electron cooling was successfully demonstrated for hydrogen-like Bi 82+ ions, where a laser experiment is scheduled to study the ground-state hyperfine splitting. (orig.)