WorldWideScience

Sample records for jt cooler pre-cooled

  1. Design and development of a four-cell sorption compressor based J-T cooler using R134a as working fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, R. N. [Mechanical Engineering Department, Indian Institute of Technology Bombay, Mumbai - 400076, India and Government Engineering College Bharuch, Gujarat - 392002 (India); Bapat, S. L.; Atrey, M. D. [Mechanical Engineering Department, Indian Institute of Technology Bombay, Mumbai - 400076 (India)

    2014-01-29

    The need of a cooler with no electromagnetic interference and practically zero vibration has led to sorption compressor based Joule-Thomson (J-T) coolers. These are useful for sophisticated electronic, ground based and space borne systems. In a Sorption compressor, adsorbed gases are desorbed into a confined volume by raising temperature of the sorption bed resulting in an increase in pressure of the liberated gas. In order to have the system (compressor) functioning on a continuous basis, with almost a constant gas flow rate, multiple cells are used with the adaptation of Temperature Swing Adsorption (TSA) process. As the mass of the desorbed gas dictates the compressor throughput, a combination of sorbent material with high adsorption capacity for a chosen gas or gas mixture has to be selected for efficient operation of the compressor. Commercially available (coconut-shell base) activated carbon has been selected for the present application. The characterization study for variation of discharge pressure is used to design the Four-cell sorption compressor based cryocooler with a desired output. Apart from compressor, the system includes a) After cooler b) Return gas heat exchanger c) capillary tube as the J-T expansion device and d) Evaporator.

  2. Design and development of a four-cell sorption compressor based J-T cooler using R134a as working fluid

    Science.gov (United States)

    Mehta, R. N.; Bapat, S. L.; Atrey, M. D.

    2014-01-01

    The need of a cooler with no electromagnetic interference and practically zero vibration has led to sorption compressor based Joule-Thomson (J-T) coolers. These are useful for sophisticated electronic, ground based and space borne systems. In a Sorption compressor, adsorbed gases are desorbed into a confined volume by raising temperature of the sorption bed resulting in an increase in pressure of the liberated gas. In order to have the system (compressor) functioning on a continuous basis, with almost a constant gas flow rate, multiple cells are used with the adaptation of Temperature Swing Adsorption (TSA) process. As the mass of the desorbed gas dictates the compressor throughput, a combination of sorbent material with high adsorption capacity for a chosen gas or gas mixture has to be selected for efficient operation of the compressor. Commercially available (coconut-shell base) activated carbon has been selected for the present application. The characterization study for variation of discharge pressure is used to design the Four-cell sorption compressor based cryocooler with a desired output. Apart from compressor, the system includes a) After cooler b) Return gas heat exchanger c) capillary tube as the J-T expansion device and d) Evaporator.

  3. GM制冷机预冷的氦节流制冷机流程研究%Investigation on scheme of helium J-T cryocooler pre-cooled by GM cooler

    Institute of Scientific and Technical Information of China (English)

    周振君; 雷刚; 刘彦杰

    2015-01-01

    对采用GM制冷机作为预冷级的小型4He节流制冷机进行了设计及数值分析,对气体质量流量与节流孔径,节流制冷能力与高压侧压力、预冷机二级温度之间的关系进行了计算和分析.对节流压缩机的功率随排气压力,预冷机所需冷量随制冷剂质量流量变化的趋势进行了研究.通过以上分析和研究,给出了小型氦气节流制冷系统设计流程及主要部件的参数.

  4. Cryogenic characterization of the Planck sorption cooler system flight model

    CERN Document Server

    Morgante, G; Melot, F; Stassi, P; Terenzi, L; Wilson, P; Hernandez, B; Wade, L; Gregorio, A; Bersanelli, M; Butler, C; Mandolesi, N; 10.1088/1748-0221/4/12/T12016

    2009-01-01

    This paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/1748-0221 Two continuous closed-cycle hydrogen Joule-Thomson (J-T) sorption coolers have been fabricated and assembled by the Jet Propulsion Laboratory (JPL) for the European Space Agency (ESA) Planck mission. Each refrigerator has been designed to provide a total of ~ 1W of cooling power at two instrument interfaces: they directly cool the Planck Low Frequency Instrument (LFI) around 20K while providing a pre-cooling stage for a 4 K J-T mechanical refrigerator for the High Frequency Instrument (HFI). After sub-system level validation at JPL, the cryocoolers have been delivered to ESA in 2005. In this paper we present the results of the cryogenic qualification and test campaigns of the Nominal Unit on the flight model spacecraft performed at the CSL (Centre Spatial de Liege) facilities in 2008. Test results in terms of input power, cooling power, temperature, and temperature fluctuations o...

  5. Cryogenic characterization of the Planck sorption cooler system flight model

    Energy Technology Data Exchange (ETDEWEB)

    Morgante, G; Terenzi, L; Butler, C; Mandolesi, N [INAF - IASF Bologna, via P. Gobetti 101, 40129 Bologna (Italy); Pearson, D; Wilson, P; Hernandez, B; Wade, L [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena California 91109 (United States); Melot, F; Stassi, P [Laboratoire de Physique Subatomique et de Cosmologie 53 Avenue des Martyrs, 38026 Grenoble Cedex (France); Gregorio, A [Dipartimento di Fisica, Universita degli Studi di Trieste, via Valerio 2 - I-34127 Trieste (Italy); Bersanelli, M, E-mail: morgante@iasfbo.inaf.i [Dipartimento di Fisica, Universita degli Studi di Milano, via Celoria 16, - I20133 Milano (Italy)

    2009-12-15

    Two continuous closed-cycle hydrogen Joule-Thomson (J-T) sorption coolers have been fabricated and assembled by the Jet Propulsion Laboratory (JPL) for the European Space Agency (ESA) Planck mission. Each refrigerator has been designed to provide a total of {approx} 1W of cooling power at two instrument interfaces: they directly cool the Planck Low Frequency Instrument (LFI) around 20K while providing a pre-cooling stage for a 4 K J-T mechanical refrigerator for the High Frequency Instrument (HFI). After sub-system level validation at JPL, the cryocoolers have been delivered to ESA in 2005. In this paper we present the results of the cryogenic qualification and test campaigns of the Nominal Unit on the flight model spacecraft performed at the CSL (Centre Spatial de Liege) facilities in 2008. Test results in terms of input power, cooling power, temperature, and temperature fluctuations over the flight allowable ranges for these interfaces are reported and analyzed with respect to mission requirements.

  6. Condensation stage of a pulse tube pre-cooled dilution refrigerator

    Science.gov (United States)

    Uhlig, Kurt

    2008-03-01

    In our article, experiments with a pulse tube (PTR) pre-cooled dilution refrigerator (DR) are presented, where an upgraded 3He condensation stage has been tested. The DR had a 3He flow rate of up to 1.1 mmol/s. The 3He gas entering the refrigerator was first pre-cooled to a temperature of ˜50 K at the first stage of the PTR. In the next cooling step, the 3He was run through a recently installed heat exchanger, which was attached to the regenerator of the second stage of the pulse tube cryocooler; at the outlet of this heat exchanger the temperature of the 3He was as low as ˜4 K. Due to the non-ideality of the helium gas, the second regenerator of a two stage PTR has excess cooling power which can be made use of without affecting the base temperature of this stage, and it is this effect which was put to work, here. Finally, the 3He was further cooled in a heat exchanger, mounted at the second stage of the PTR, before it entered the dilution unit of the cryostat. The installation of a heat exchanger at the regenerator of the second stage of the PTR is especially important for the construction of DRs with high refrigeration capacities; in addition, it allows for a plain design of the subsequent Joule-Thomson (JT) stage, and herewith facilitates considerably the construction of "dry" DRs. The condensation rate of the 3,4He mash prior to an experiment was increased. The pressure during condensation could be kept near 1 bar, and thus a compressor was no longer necessary with the modified apparatus.

  7. Modeling Burns for Pre-Cooled Skin Flame Exposure

    Directory of Open Access Journals (Sweden)

    Torgrim Log

    2017-09-01

    Full Text Available On a television show, a pre-cooled bare-skinned person (TV host passed through engulfing kerosene flames. The assumption was that a water film should protect him during 0.74 s flame exposure in an environment of 86 kW/m2 heat flux. The TV host got light burn inflammation on the back, arms and legs. The present work studies skin temperatures and burn damage integral of such dangerous flame exposure. The skin temperature distribution during water spray pre-cooling, transport to the flames, flame exposure, transport to the water pool, and final water pool cooling is modelled numerically. Details of the temperature development of the skin layers are presented, as well as the associated damage integral. It is shown that 5 °C water spray applied for a 30 s period pre-cooled the skin sufficiently to prevent severe skin injury. Soot marks indicate that the water layer evaporated completely in some areas resulting in skin flame contact. This exposed dry skin directly to the flames contributing significantly to the damage integral. It is further analyzed how higher water temperature, shorter pre-cooling period or longer flame exposure influence the damage integral. It is evident that minor changes in conditions could lead to severe burns and that high heat flux levels at the end of the exposure period are especially dangerous. This flame stunt should never be repeated.

  8. A Novel Pre-cooling System for a Cryogenic Pulsating Heat Pipe

    Science.gov (United States)

    Xu, Dong; Liu, Huiming; Gong, Linghui; Xu, Xiangdong; Li, Laifeng

    To reduce the influence of the pipe material on the measurement of effective thermal conductivity, the pipe of a cryogenic pulsating heat pipe is generally made of stainless steel. Because of the low thermal conductivity of stainless steel, the pre-cooling of the evaporator in cryogenic pulsating heat pipe using helium as working fluid at 4.2 K is a problem. We designed a mechanical-thermal switch between the cryocooler and the evaporator, which was on during the pre-cooling process and off during the test process. By using the pre-cooling system, the cool down time of the cryogenic pulsating heat pipe was reduced significantly.

  9. Solutions for Liquid Nitrogen Pre-Cooling in Helium Refrigeration Cycles

    CERN Document Server

    Wagner, U

    2000-01-01

    Pre-cooling of helium by means of liquid nitrogen is the oldest and one of the most common process features used in helium liquefiers and refrigerators. Its two principle tasks are to allow or increase the rate of pure liquefaction, and to permit the initial cool-down of large masses to about 80 K. Several arrangements for the pre-cooling process are possible depending on the desired application. Each arrangement has its proper advantages and drawbacks. The aim of this paper is to review the possible process solutions for liquid nitrogen pre-cooling and their particularities.

  10. Performance Study on ST/JT Hybrid Cryocoolers Working at Liquid Helium Temperature

    Science.gov (United States)

    Dongli, Liu; Xuan, Tao; Xiao, Sun; Zhihua, Gan

    The ST/JT hybridcryocooler consists of a Stirling-typecryocooler and a J-T loop. The common process of steady-state operation is given. Pressure-Enthalpy map analysis and thermodynamic calculation showhow the precooling temperature, high pressure and recuperator effectiveness affect thecooling powerat liquid helium temperature. Applying the current performance level of the Stirling cooler,the overall COP of the hybrid cryocooleris roughly optimized. This performance study shows that the hybrid cryocooler can develop its performance potential with improved J-T compressors with larger pressure ratio and aprecooler working at lower temperature.

  11. Evaporative cooler including one or more rotating cooler louvers

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, David W

    2015-02-03

    An evaporative cooler may include an evaporative cooler housing with a duct extending therethrough, a plurality of cooler louvers with respective porous evaporative cooler pads, and a working fluid source conduit. The cooler louvers are arranged within the duct and rotatably connected to the cooler housing along respective louver axes. The source conduit provides an evaporative cooler working fluid to the cooler pads during at least one mode of operation.

  12. Study on a Miniature Mixed-gases Joule-Thomson Cooler Driven by an Oil-lubricated Mini-compressor for 120 K Temperature Ranges

    Science.gov (United States)

    Gong, M. Q.; Wu, J. F.; Yan, B.; Zou, X.; Zhuang, X. R.; Hu, Q. G.

    In this paper, a miniature J-T cooler using multicomponent mixtures was developed and tested, in which an oil-lubricated mini-compressor was used. Experimental tests on the performance of the miniature J-T cooler were carried out with two kinds of recuperative heat exchangers. One is a shell-and-tube heat exchanger, and the other is a plate-fin type recuperative heat exchanger with whereas a micro-channel configuration fabricated by the wire-electrode cutting method. The former one gave a no-load minimum temperature of 140 K, while the later one showsbetter performance. No-load minimum temperature of 110 K and about 4 W cooling capacity at 118 K were achieved with the plate-fin micro J-T cooler. Such miniature J-T coolers driven by oil-lubricated mini-compressors show good prospects in many applications.

  13. The Recycler Electron Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Prost, L. R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-03-19

    The Recycler Electron cooler was the first (and so far, the only) cooler working at a relativistic energy (γ = 9.5). It was successfully developed in 1995-2004 and was in operation at Fermilab in 2005-2011, providing cooling of antiprotons in the Recycler ring. This paper describes the cooler, difficulties in achieving the required electron beam parameters and the ways to overcome them, cooling measurements, and details of operation.

  14. Reducing Residential Peak Electricity Demand with Mechanical Pre-Cooling of Building Thermal Mass

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Will [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Roux, Jordan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    This study uses an advanced airflow, energy and humidity modelling tool to evaluate the potential for residential mechanical pre-cooling of building thermal mass to shift electricity loads away from the peak electricity demand period. The focus of this study is residential buildings with low thermal mass, such as timber-frame houses typical to the US. Simulations were performed for homes in 12 US DOE climate zones. The results show that the effectiveness of mechanical pre-cooling is highly dependent on climate zone and the selected pre-cooling strategy. The expected energy trade-off between cooling peak energy savings and increased off-peak energy use is also shown.

  15. Test of a Sub-4K Mechanical Cooler for IXO and Other Space Based Sensors

    Science.gov (United States)

    Petach, Michael B.; Casement, L.; Michaelian, M.; Nguyen, T.; Raab, J.; Tward, E.

    2009-01-01

    X-ray Microcalorimeter Spectrometer Sensors on missions such as the International X-ray Observatory (IXO) require cooling to temperatures around 50mK to achieve the required sensitivity in the 0.6-10 keV band. Cooling an X-ray Sensor such as a Transition Edge Sensor (TES) to 50mK without the limitations on lifetime, mass, volume and reliability penalties of stored cryogen systems can be achieved with a multiple stage mechanical cryocooler. While no single cryocooler technology is appropriate for all of the stages, a hybrid cryocooler can be used. Fortunately, three cooler technologies that are each optimized for efficiency over the appropriate parts of the temperature range are rapidly maturing. For the lowest temperature stage, an Adiabatic Demagnetization Refrigerators (ADR) efficiently cools between 50mK and 2K to 4K. Next, a helium Joule Thomson cooler can efficiently pump the heat to 14K. Finally, a multistage pulse tube cooler efficiently pumps the heat from 14K to 300K. An existing ADR cooler, such as that demonstrated by NASA Goddard to TRL 5, can be cooled by a hybrid JT and pulse tube cooler similar to the cooler that NGST is building for the JWST/MIRI instrument, if its temperature is lowered from 6K to below 4K. The MIRI cooler leverages extensive NGST cooler heritage with >60 years of on-orbit performance with 11 pulse tube coolers currently operating continuously in orbit without failure. In this poster we present test results of a laboratory demonstration JT cooler stage with the sub-4K temperatures needed by the ADR cooler. By basing the test on the 6 K cooler technologies developed for the JWST MIRI program, the current development program provides the next step to reach the goal of TRL6 in time to support the IXO mission. This successful test provides demonstration of TRL 4 for the missing components required for an IXO cooler.

  16. Pre-cooling moderately enhances visual discrimination during exercise in the heat.

    Science.gov (United States)

    Clarke, Neil D; Duncan, Michael J; Smith, Mike; Hankey, Joanne

    2017-02-01

    Pre-cooling has been reported to attenuate the increase in core temperature, although, information regarding the effects of pre-cooling on cognitive function is limited. The present study investigated the effects of pre-cooling on visual discrimination during exercise in the heat. Eight male recreational runners completed 90 min of treadmill running at 65% [Formula: see text]2max in the heat [32.4 ± 0.9°C and 46.8 ± 6.4% relative humidity (r.h.)] on two occasions in a randomised, counterbalanced crossover design. Participants underwent pre-cooling by means of water immersion (20.3 ± 0.3°C) for 60 min or remained seated for 60 min in a laboratory (20.2 ± 1.7°C and 60.2 ± 2.5% r.h.). Rectal temperature (Trec) and mean skin temperature (Tskin) were monitored throughout the protocol. At 30-min intervals participants performed a visual discrimination task. Following pre-cooling, Trec (P = 0.040; [Formula: see text] = 0.48) was moderately lower at 0 and 30 min and Tskin (P = 0.003; [Formula: see text] = 0.75) lower to a large extent at 0 min of exercise. Visual discrimination was moderately more accurate at 60 and 90 min of exercise following pre-cooling (P = 0.067; [Formula: see text] = 0.40). Pre-cooling resulted in small improvements in visual discrimination sensitivity (F1,7 = 2.188; P = 0.183; [Formula: see text] = 0.24), criterion (F1,7 = 1.298; P = 0.292; [Formula: see text] = 0.16) and bias (F1,7 = 2.202; P = 0.181; [Formula: see text] = 0.24). Pre-cooling moderately improves visual discrimination accuracy during exercise in the heat.

  17. Effect of pre-cooling and heat treatment on antioxidant enzymes ...

    African Journals Online (AJOL)

    African Journal of Food, Agriculture, Nutrition and Development ... Increased CAT and POX activities in mango and banana during heat treatment ... Pre-cooling of mango at 8 ºC showed twofold decreased CAT activity in the pulp whereas heat ...

  18. The effect of pre-cooling intensity on cooling efficiency and exercise performance

    NARCIS (Netherlands)

    Bogerd, N.; Perret, C.; Bogerd, C.P.; Rossi, R.M.; Daanen, H.A.M.

    2010-01-01

    Although pre-cooling is known to enhance exercise performance, the optimal cooling intensity is unknown. We hypothesized that mild cooling opposed to strong cooling circumvents skin vasoconstriction and thermogenesis, and thus improves cooling efficiency reflected in improved time to exhaustion. Eig

  19. A Data Driven Pre-cooling Framework for Energy Cost Optimization in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Vishwanath, Arun; Chandan, Vikas; Mendoza, Cameron; Blake, Charles

    2017-05-16

    Commercial buildings consume significant amount of energy. Facility managers are increasingly grappling with the problem of reducing their buildings’ peak power, overall energy consumption and energy bills. In this paper, we first develop an optimization framework – based on a gray box model for zone thermal dynamics – to determine a pre-cooling strategy that simultaneously shifts the peak power to low energy tariff regimes, and reduces both the peak power and overall energy consumption by exploiting the flexibility in a building’s thermal comfort range. We then evaluate the efficacy of the pre-cooling optimization framework by applying it to building management system data, spanning several days, obtained from a large commercial building located in a tropical region of the world. The results from simulations show that optimal pre-cooling reduces peak power by over 50%, energy consumption by up to 30% and energy bills by up to 37%. Next, to enable ease of use of our framework, we also propose a shortest path based heuristic algorithmfor solving the optimization problemand show that it has comparable erformance with the optimal solution. Finally, we describe an application of the proposed optimization framework for developing countries to reduce the dependency on expensive fossil fuels, which are often used as a source for energy backup.We conclude by highlighting our real world deployment of the optimal pre-cooling framework via a software service on the cloud platform of a major provider. Our pre-cooling methodology, based on the gray box optimization framework, incurs no capital expense and relies on data readily available from a building management system, thus enabling facility managers to take informed decisions for improving the energy and cost footprints of their buildings

  20. Vacuum Camera Cooler

    Science.gov (United States)

    Laugen, Geoffrey A.

    2011-01-01

    Acquiring cheap, moving video was impossible in a vacuum environment, due to camera overheating. This overheating is brought on by the lack of cooling media in vacuum. A water-jacketed camera cooler enclosure machined and assembled from copper plate and tube has been developed. The camera cooler (see figure) is cup-shaped and cooled by circulating water or nitrogen gas through copper tubing. The camera, a store-bought "spy type," is not designed to work in a vacuum. With some modifications the unit can be thermally connected when mounted in the cup portion of the camera cooler. The thermal conductivity is provided by copper tape between parts of the camera and the cooled enclosure. During initial testing of the demonstration unit, the camera cooler kept the CPU (central processing unit) of this video camera at operating temperature. This development allowed video recording of an in-progress test, within a vacuum environment.

  1. Shipboard electronics thermoacoustic cooler

    OpenAIRE

    Ballister, Stephen C.; McKelvey, Dennis J.

    1995-01-01

    A thermoacoustic refrigerator that was optimized for preservation of biological samples in space, was modified for use as a cooler for the CV-2095 shipboard radar electronics rack. The thermoacoustic cooler was tested in the laboratory and demonstrated at sea aboard USS DEYO (DD-989). In the laboratory, using a calibrated heat load, the data acquisition system was able to account for the total energy balance to within 4%. At the highest operating power aboard ship, 226.6 Watts of acoustic pow...

  2. Pre-cooling and sports performance: a meta-analytical review.

    Science.gov (United States)

    Wegmann, Melissa; Faude, Oliver; Poppendieck, Wigand; Hecksteden, Anne; Fröhlich, Michael; Meyer, Tim

    2012-07-01

    Pre-cooling is used by many athletes for the purpose of reducing body temperature prior to exercise and, consequently, decreasing heat stress and improving performance. Although there are a considerable number of studies showing beneficial effects of pre-cooling, definite conclusions on the effectiveness of pre-cooling on performance cannot yet be drawn. Moreover, detailed analyses of the specific conditions under which pre-cooling may be most promising are, so far, missing. Therefore, we conducted a literature search and located 27 peer-reviewed randomized controlled trials, which addressed the effects of pre-cooling on performance. These studies were analysed with regard to performance effects and several test circumstances (environmental temperature, test protocol, cooling method, aerobic capacity of the subjects). Eighteen studies were performed in a hot (>26°C) environment and eight in a moderate. The cooling protocols were water application (n = 12), cooling packs (n = 3), cold drinks (n = 2), cooling vest (n = 6) and a cooled room (n = 4). The following different performance tests were used: short-term, high-intensity sprints (n = 2), intermittent sprints (n = 6), time trials (n = 10), open-end tests (n = 7) and graded exercise tests (n = 2). If possible, subjects were grouped into different aerobic capacity levels according to their maximal oxygen consumption (VO(2max)): medium 55-65 mL/kg/min (n = 11) and high >65 mL/kg/min (n = 6). For all studies the relative changes of performance due to pre-cooling compared with a control condition, as well as effect sizes (Hedges' g) were calculated. Mean values were weighted according to the number of subjects in each study. Pre-cooling had a larger effect on performance in hot (+6.6%, g = 0.62) than in moderate temperatures (+1.4%, g = 0.004). The largest performance enhancements were found for endurance tests like open-end tests (+8.6%, g = 0

  3. LEIR electron cooler status

    CERN Document Server

    Tranquille, G; Parkhomchuk, V; Prieto, V; Sautier, R

    2006-01-01

    The electron cooler for LEIR is the first of a new generation of coolers being commissioned for fast phase space cooling of ion beams in storage rings. It is a stateof- the-art cooler incorporating all the recent developments in electron cooling technology (adiabatic expansion, electrostatic bend, variable density electron beam) and is designed to deliver up to 600 mA of electron current for the cooling and stacking of Pb54+ ions in the frame of the ions for LHC project. In this paper we present our experience with the commissioning of the new device as well as the first results of ion beam cooling with a high-intensity variable-density electron beam.

  4. Materials for syngas coolers

    Science.gov (United States)

    Perkins, R. A.; Morse, G.; Coons, W. C.

    1982-08-01

    A technical basis for materials selection and laboratory testing of practical boiler tube materials which will provide reliable long term service in syngas coolers for coal gasification combined cycle power plants is outlined. The resistance of low alloy steel, stainless steels, and aluminum rich coatings to attach by a high sulfur, medium Btu coal gasification atmosphere was evaluated at 300 to 500 deg C. The materials may have adequate resistance for long time service in radiant coolers operating up to 500 deg C on high sulfur medium Btu gas. Performance is analyzed for thermodynamic and kinetic properties and recommendations for long term tests and development of protective coatings are presented.

  5. Cooler-Lower Down

    Science.gov (United States)

    Deeson, Eric

    1971-01-01

    Reports a verification that hot water begins to freeze sooner than cooler water. Includes the investigations that lead to the conclusions that convection is a major influence, water content may have some effect, and the melting of the ice under the container makes no difference on the experimental results. (DS)

  6. Numerical investigation into thermal effects of pre-cooling zone in vitrification-based cryopreservation process.

    Science.gov (United States)

    Tsai, Hsun-Heng; Tsai, Chien-Hsiung; Wu, Wei-Te; Chen, Fu-Zen; Chiang, Pei-Ju

    2015-02-01

    Most studies on ultra-fast cryopreservation assume an immediate placement of the cryopreservation tube in the liquid nitrogen tank. However, in practice, before the tube is placed into the liquid nitrogen, it passes through a space containing gaseous nitrogen (pre-cooling zone) formed via the evaporation of the bulk liquid nitrogen. Comparing with ultra-fast cryopreservation, the cooling rate is insufficiently high during the falling transition to vitrify the liquid. As the tube passes through this region, its temperature may fall to the temperature required for the formation of ice crystals, and thus cell damage may occur. Consequently, in optimizing the cryopreservation process, the effects of this transition region should be properly understood. Accordingly, the present study utilizes a thermal model to investigate the temperature variation in the tube as it falls through the pre-cooling region. The simulation results show that the cooling rate within the tube increases with an increasing tube velocity. Furthermore, the results reveal that the cooling rate at the front end of the tube is higher than that at any other position of the tube. Thus, to prevent the formation of ice crystals, the material used to seal the front end of the tube should have a low thermal conductivity. In addition, a streamlined design of the front end of the tube is advised. Finally, the cooling rate within the tube depends on the tube material as well as the falling speed. The height of the pre-cooling zone needs to be carefully designed based on the tube material and falling speed, thus the ice crystal formation can be prevented.

  7. Superfluid Vortex Cooler

    Science.gov (United States)

    Tanaeva, I. A.; Lindemann, U.; Jiang, N.; de Waele, A. T. A. M.; Thummes, G.

    2004-06-01

    A superfluid vortex cooler (SVC) is a combination of a fountain pump and a vortex cooler. The working fluid in the SVC is 4He at a temperature below the lambda line. The cooler has no moving parts, is gravity independent, and hardly requires any additional infrastructure. At saturated vapour pressure the SVC is capable of reaching a temperature as low as 0.75 K. At pressures close to the melting pressure the temperature can be brought down to 0.65 K. As the SVC operates only below the lambda line, it has to be precooled e.g. by a liquid-helium bath or a cryocooler. As a first step of our research we have carried out a number of experiments, using a liquid-helium bath as a precooler for the SVC. In this arrangement we have reached temperatures below 1 K with 3.5 mW heating power supplied to the fountain part of the SVC at 1.4 K. The next step was combining the SVC with a pulse tube refrigerator (PTR), developed at the University of Giessen. It is a two-stage G-M type refrigerator with 3He as a working fluid that reached a lowest temperature of 1.27 K. In this contribution we report on the results of the SVC tests in liquid helium and the progress in the integration of the SVC with the PTR.

  8. Effects of pre-cooling procedures on intermittent-sprint exercise performance in warm conditions.

    Science.gov (United States)

    Duffield, Rob; Marino, Frank E

    2007-08-01

    The aim of this study was to determine whether pre-cooling procedures improve both maximal sprint and sub-maximal work during intermittent-sprint exercise. Nine male rugby players performed a familiarisation session and three testing sessions of a 2 x 30-min intermittent sprint protocol, which consisted of a 15-m sprint every min separated by free-paced hard-running, jogging and walking in 32 degrees C and 30% humidity. The three sessions included a control condition, Ice-vest condition and Ice-bath/Ice-vest condition, with respective cooling interventions imposed for 15-min pre-exercise and 10-min at half-time. Performance measures of sprint time and % decline and distance covered during sub-maximal exercise were recorded, while physiological measures of core temperature (T (core)), mean skin temperature (T (skin)), heart rate, heat storage, nude mass, rate of perceived exertion, rate of thermal comfort and capillary blood measures of lactate [La(-)], pH, Sodium (Na(+)) and Potassium (K(+)) were recorded. Results for exercise performance indicated no significant differences between conditions for the time or % decline in 15-m sprint efforts or the distance covered during sub-maximal work bouts; however, large effect size data indicated a greater distance covered during hard running following Ice-bath cooling. Further, lowered T (core), T (skin), heart rate, sweat loss and thermal comfort following Ice-bath cooling than Ice-vest or Control conditions were present, with no differences present in capillary blood measures of [La(-)], pH, K(+) or Na(+). As such, the ergogenic benefits of effective pre-cooling procedures in warm conditions for team-sports may be predominantly evident during sub-maximal bouts of exercise.

  9. Microsystem Cooler Development

    Science.gov (United States)

    Moran, Matthew E.; Wesolek, Danielle M.; Berhane, Bruk T.; Rebello, Keith J.

    2004-01-01

    A patented microsystem Stirling cooler is under development with potential application to electronics, sensors, optical and radio frequency (RF) systems, microarrays, and other microsystems. The microsystem Stirling cooler is most suited to volume-limited applications that require cooling below the ambient or sink temperature. Primary components of the planar device include: two diaphragm actuators that replace the pistons found in traditional-scale Stirling machines; and a micro-regenerator that stores and releases thermal energy to the working gas during the Stirling cycle. The use of diaphragms eliminates frictional losses and bypass leakage concerns associated with pistons, while permitting reversal of the hot and cold sides of the device during operation to allow precise temperature control. Three candidate microregenerators were custom fabricated for initial evaluation: two constructed of porous ceramic, and one made of multiple layers of nickel and photoresist in an offset grating pattern. An additional regenerator was prepared with a random stainless steel fiber matrix commonly used in existing Stirling machines for comparison to the custom fabricated regenerators. The candidate regenerators were tested in a piezoelectric-actuated test apparatus designed to simulate the Stirling refrigeration cycle. In parallel with the regenerator testing, electrostatically-driven comb-drive diaphragm actuators for the prototype device have been designed for deep reactive ion etching (DRIE) fabrication.

  10. Heat acclimation improves intermittent sprinting in the heat but additional pre-cooling offers no further ergogenic effect.

    Science.gov (United States)

    Castle, Paul; Mackenzie, Richard W; Maxwell, Neil; Webborn, Anthony D J; Watt, Peter W

    2011-08-01

    The aim of this study was to determine the effect of 10 days of heat acclimation with and without pre-cooling on intermittent sprint exercise performance in the heat. Eight males completed three intermittent cycling sprint protocols before and after 10 days of heat acclimation. Before acclimation, one sprint protocol was conducted in control conditions (21.8 ± 2.2°C, 42.8 ± 6.7% relative humidity) and two sprint protocols in hot, humid conditions (33.3 ± 0.6°C, 52.2 ± 6.8% relative humidity) in a randomized order. One hot, humid condition was preceded by 20 min of thigh pre-cooling with ice packs (-16.2 ± 4.5°C). After heat acclimation, the two hot, humid sprint protocols were repeated. Before heat acclimation, peak power output declined in the heat (P < 0.05) but pre-cooling prevented this. Ten days of heat acclimation reduced resting rectal temperature from 37.8 ± 0.3°C to 37.4 ± 0.3°C (P < 0.01). When acclimated, peak power output increased by ∼2% (P < 0.05, main effect) and no reductions in individual sprint peak power output were observed. Additional pre-cooling offered no further ergogenic effect. Unacclimated athletes competing in the heat should pre-cool to prevent reductions in peak power output, but heat acclimate for an increased peak power output.

  11. Loading of a surface electrode ion trap from a remote, pre-cooled source

    CERN Document Server

    Sage, Jeremy M; Chiaverini, John

    2012-01-01

    We demonstrate for the first time the loading of ions into a surface electrode trap (SET) from a remote, laser-cooled source of neutral atoms. We first cool and load $\\sim$ $10^6$ neutral $^{88}$Sr atoms into a magneto-optical trap (MOT) from an oven that has no line-of-sight with the SET. The cold atoms are then pushed with a resonant laser into the trap region where they are subsequently photoionized and trapped in an SET operated at a cryogenic temperature of 4.6 K. We present studies of the loading process and show that our technique achieves ion loading into a shallow (15 meV depth) trap at rates as high as 125 ions/s while drastically reducing the amount of deposition of metal on the trap surface as compared with direct loading from a hot vapor. Furthermore, we note that due to multiple stages of isotopic filtering in our loading process, this technique has enhanced isotopic selectivity over other loading methods. Rapid loading from a clean, isotopically pure, and pre-cooled source will potentially enab...

  12. Performance Analysis of Joule-Thomson Cooler Supplied with Gas Mixtures

    Science.gov (United States)

    Piotrowska, A.; Chorowski, M.; Dorosz, P.

    2017-02-01

    Joule-Thomson (J-T) cryo-coolers working in closed cycles and supplied with gas mixtures are the subject of intensive research in different laboratories. The replacement of pure nitrogen by nitrogen-hydrocarbon mixtures allows to improve both thermodynamic parameters and economy of the refrigerators. It is possible to avoid high pressures in the heat exchanger and to use standard refrigeration compressor instead of gas bottles or high-pressure oil free compressor. Closed cycle and mixture filled Joule-Thomson cryogenic refrigerator providing 10-20 W of cooling power at temperature range 90-100 K has been designed and manufactured. Thermodynamic analysis including the optimization of the cryo-cooler mixture has been performed with ASPEN HYSYS software. The paper describes the design of the cryo-cooler and provides thermodynamic analysis of the system. The test results are presented and discussed.

  13. Impulse sales cooler. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Per Henrik (DTI, Taastrup (Denmark))

    2010-11-15

    In the past years, the use of impulse coolers has increased considerably and it is estimated that at least 30.000 are installed in shops in Denmark. In addition, there are many small barrel-shaped can coolers. Most impulse coolers are open, which results in a large consumption of energy, and the refrigeration systems are often quite inefficient. A typical impulse cooler uses app. 5 - 8 kWh/day corresponding to a consumption of energy in the magnitude of 60 GWh/year. For several years, the Danish company Vestfrost A/S has produced an impulse sales cooler in the high-efficiency end and the energy consumption of the cooler is measured to be 4.15 kWh/day. The POS72 cooler formed the baseline of this project. At the start-up meeting in 2008, several ideas were discussed with the objective to reduce energy consumption and to use natural refrigerants. Among the ideas were better air curtains, removable lids, better condensers, use of R600a refrigeration system and better insulation. Three generations of prototypes were built and tested in a climate chamber at Danish Technological Institute and the third generation showed very good performance: the energy consumption was measured to 2.215 kWh/day, which is a 47% reduction compared to the baseline. That was achieved by: 1) Improving the cold air cycling system including the air curtain. 2) Using the natural refrigerant R600a (isobutane) and the Danfoss NLE9KTK compressor, which has better efficiency compared to the compressor in the baseline product. 3) Using a box type condenser without fins (preventing dust build-up) and with a relatively high surface area. 4) Improving the insulation value of the plastic cabinet by reducing turbulence in the air gap between the plastic walls and improving the insulation value of the EPS moulded insulation surrounding the refrigeration system at the bottom of the cooler. 5) Preventing short-circuit of warm air around the condenser. 6) The improvements are cost efficient and will not add

  14. ENERGY STAR Certified Water Coolers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Water Coolers that are effective as of February...

  15. The Planck Sorption Cooler: Using Metal Hydrides to Produce 20 K

    Science.gov (United States)

    Pearson, David P.; Bowman, R.; Prina, M.; Wilson, P.

    2006-01-01

    The Jet Propulsion Laboratory has built and delivered two continuous closed cycle hydrogen Joule-Thomson (JT) cryocoolers for the ESA Planck mission, which will measure the anisotropy in the cosmic microwave background. The metal hydride compressor consists of six sorbent beds containing LaNi4.78Sn0.22 alloy and a low pressure storage bed of the same material. Each sorbent bed contains a separate gas-gap heat switch that couples or isolates the bed with radiators during the compressor operating cycle. ZrNiHx hydride is used in this heat switch. The Planck compressor produces hydrogen gas at a pressure of 48 Bar by heating the hydride to approx.450 K. This gas passes through a cryogenic cold end consisting of a tube-in-tube heat exchanger, three pre-cooling stages to bring the gas to nominally 52 K, a JT value to expand the gas into the two-phase regime at approx.20 K, and two liquid - vapor heat exchangers that must remove 190 and 646 mW of heat respectively.

  16. Development of the Sandia Cooler.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry Alan; Koplow, Jeffrey P.; Staats, Wayne Lawrence,; Curgus, Dita Brigitte; Leick, Michael Thomas.; Matthew, Ned Daniel; Zimmerman, Mark D.; Arienti, Marco; Gharagozloo, Patricia E.; Hecht, Ethan S.; Spencer, Nathan A.; Vanness, Justin William.; Gorman, Ryan

    2013-12-01

    This report describes an FY13 effort to develop the latest version of the Sandia Cooler, a breakthrough technology for air-cooled heat exchangers that was developed at Sandia National Laboratories. The project was focused on fabrication, assembly and demonstration of ten prototype systems for the cooling of high power density electronics, specifically high performance desktop computers (CPUs). In addition, computational simulation and experimentation was carried out to fully understand the performance characteristics of each of the key design aspects. This work culminated in a parameter and scaling study that now provides a design framework, including a number of design and analysis tools, for Sandia Cooler development for applications beyond CPU cooling.

  17. Development of a Low Heat Leak CFRP Stand for Miri Cooler jt Heat Exchanger Stage

    Science.gov (United States)

    Makowski, K. P.; Larson, M. E.; Loc, A. S.; Zhang, B. X.; Leland, R. S.; Hayashi1, B.

    2010-04-01

    A low heat leak stand is being developed for the Heat exchanger Stage Assembly (HSA) of the cryocooler subsystem for the Mid Infra-Red Instrument (MIRI) of the James Webb Space Telescope (JWST). The HSA stand is a hexapod structure supporting the 18 K HSA in a nominal 40 K background environment. Carbon fiber reinforced plastic (CFRP) has been selected for this application to meet the stringent design requirements of a low parasitic heat leak (less than 3.8 mW including both conductive and radiative heat loads for the thermal environment defined above) and a resonance frequency above 120 Hz. A directional lay-up of T300/polycyanate has been chosen for the construction of the hexapod struts. End fittings made of Invar 36 are bonded to the struts to provide structural interfaces. The development effort includes fabricating and testing (including cryogenic thermal cycling) six types of coupons for material characterization, determination of structural degradation due to thermal cycling, and selection of the joint bonding epoxy. Consequently, strut samples are used for final material characterization, performance assessment, and bond joint design evaluation. This paper describes the development process and addresses the challenges in meeting the design requirements. Results of finite element analysis (FEA) for the composite structure and experimental data collected through structural and thermal testing are also presented.

  18. Carbohydrate ingestion and pre-cooling improves exercise capacity following soccer-specific intermittent exercise performed in the heat.

    Science.gov (United States)

    Clarke, N D; Maclaren, D P M; Reilly, T; Drust, B

    2011-07-01

    Ingestion of carbohydrate and reducing core body temperature pre-exercise, either separately or combined, may have ergogenic effects during prolonged intermittent exercise in hot conditions. The aim of this investigation was to examine the effect of carbohydrate ingestion and pre-cooling on the physiological responses to soccer-specific intermittent exercise and the impact on subsequent high-intensity exercise performance in the heat. Twelve male soccer players performed a soccer-specific intermittent protocol for 90 min in the heat (30.5°C and 42.2% r.h.) on four occasions. On two occasions, the participants underwent a pre-cooling manoeuvre. During these sessions either a carbohydrate-electrolyte solution (CHOc) or a placebo was consumed at (PLAc). During the remaining sessions either the carbohydrate-electrolyte solution (CHO) or placebo (PLA) was consumed. At 15-min intervals throughout the protocol participants performed a mental concentration test. Following the soccer-specific protocol participants performed a self-chosen pace test and a test of high-intensity exercise capacity. The period of pre-cooling significantly reduced core temperature, muscle temperature and thermal sensation (P < 0.05). Self-chosen pace was greater with CHOc (12.5 ± 0.5 km h(-1)) compared with CHO (11.3 ± 0.4 km h(-1)), PLA (11.3 ± 0.4 km h(-1)) and PLAc (11.6 ± 0.5 km h(-1)) (P < 0.05). High-intensity exercise capacity was improved with CHOc and CHO when compared with PLA (CHOc; 79.8 ± 7 s, CHO; 72.1 ± 5 s, PLAc; 70.1 ± 8 s, PLA; 57.1 ± 5 s; P < 0.05). Mental concentration during the protocol was also enhanced during CHOc compared with PLA (P < 0.05). These results suggest pre-cooling in conjunction with the ingestion of carbohydrate during exercise enhances exercise capacity and helps maintain mental performance during intermittent exercise in hot conditions.

  19. Effects of Nozzle Scale, Total Temperature and an Afterburner on Jet Noise from a Pre-Cooled Turbojet Engine

    Science.gov (United States)

    Araki, Mikiya; Sano, Takayuki; Fukuda, Masayuki; Kojima, Takayuki; Taguchi, Hideyuki; Nishida, Shunsuke; Imamura, Osamu; Shiga, Seiichi; Tsue, Mitsuhiro

    Effects of nozzle scale, total temperature, and an afterburner on jet noise characteristics from a pre-cooled turbojet engine are investigated experimentally. In JAXA (Japan Aerospace Exploration Agency), a pre-cooled turbojet engine for an HST (Hypersonic transport) is under development. In the present study, 1.0%- and 2.4%-scaled models of the rectangular plug nozzle (Nozzles I and II) are manufactured, and the jet noise characteristics are investigated under a wide range of total temperatures. For Nozzle I, no air-heater is utilized and the total temperature is 290K. For Nozzle II, a pebble heater and an afterburner (AB) are utilized upstream of the nozzle model, and the total temperature is varied from 520K (pebble heater) to 1540K (pebble heater + AB). The total pressure is set at 0.27 and 0.30MPa(a) for both nozzle models. Jet noise is measured using a high-frequency microphone set at 135 deg from the engine inlet, and normalized jet noise spectra are obtained based on AUjn law and Helmholtz number. For cases without afterburner, the normalized spectra agrees well regardless of the nozzle scale and total temperature where the velocity index lies from n = 7.7 to 9.2, and the correlation factor between the two facilities is shown to be about 1dB. For the case with afterburner, the normalized spectrum does not agree with other conditions where the velocity index n seems to be about 4.

  20. MEMS Stirling Cooler Development Update

    Science.gov (United States)

    Moran, Matthew E.; Wesolek, Danielle

    2003-01-01

    This presentation provides an update on the effort to build and test a prototype unit of the patented MEMS Stirling cooler concept. A micro-scale regenerator has been fabricated by Polar Thermal Technologies and is currently being integrated into a Stirling cycle simulator at Johns Hopkins University Applied Physics Laboratory. A discussion of the analysis, design, assembly, and test plans for the prototype will be presented.

  1. The JT8D and JT9D engine component improvement: Performance improvement program

    Science.gov (United States)

    Gaffin, W. O.

    1982-01-01

    The NASA sponsored Engine Component Improvement - Performance Improvement Program at Pratt & Whitney Aircraft advanced the state of the art of thermal barrier coatings and ceramic seal systems, demonstrated the practicality of an advanced turbine clearance control system and an advanced fan design in the JT9D engine, and demonstrated the advantages of modern cooling, sealing, and aerodynamic designs in the high pressure turbine and compressor of the JT8D engine. Several of these improvements are already in airline service in JT8D and JT9D engines, and others will enter service soon in advanced models of these engines. In addition, the technology advances are being transferred to completely new engine configurations, the PW2037 engine and the NASA sponsored Energy Efficient Engine.

  2. Heart rate dependency of JT interval sections.

    Science.gov (United States)

    Hnatkova, Katerina; Johannesen, Lars; Vicente, Jose; Malik, Marek

    2017-08-09

    Little experience exists with the heart rate correction of J-Tpeak and Tpeak-Tend intervals. In a population of 176 female and 176 male healthy subjects aged 32.3±9.8 and 33.1±8.4years, respectively, curve-linear and linear relationship to heart rate was investigated for different sections of the JT interval defined by the proportions of the area under the vector magnitude of the reconstructed 3D vectorcardiographic loop. The duration of the JT sub-section between approximately just before the T peak and almost the T end was found heart rate independent. Most of the JT heart rate dependency relates to the beginning of the interval. The duration of the terminal T wave tail is only weakly heart rate dependent. The Tpeak-Tend is only minimally heart rate dependent and in studies not showing substantial heart rate changes does not need to be heart rate corrected. For any correction formula that has linear additive properties, heart rate correction of JT and JTpeak intervals is practically the same as of the QT interval. However, this does not apply to the formulas in the form of Int/RR(a) since they do not have linear additive properties. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Overview of Sumitomo coolers and Dewars for space use

    Science.gov (United States)

    Kanao, Kenichi; Narasaki, Katsuhiro; Tsunematsu, Shoji; Ootsuka, Kiyomi; Okabayashi, Akinobu; Mitsuda, Kazuhisa; Murakami, Hiroshi; Nakagawa, Takao; Nishibori, Toshiyuki; Kikuchi, Ken'ichi; Sato, Ryota; Sugita, Hiroyuki; Sato, Yoichi; Murakami, Masahide

    2016-05-01

    Sumitomo Heavy Industries, ltd. (SHI) has been developing cooler and Dewar technology for space application with Japan Aerospace Exploration Agency. SHI has four types of coolers to cover temperature range from 1.7K to 80K or more. Those are Single stage Stirling coolers for 80K, two-stage Stirling coolers for 20K, 4K-class cooler and 1K-class cooler. 4K and 1K class coolers consist of a Joule-Thomson cooler and a two-stage Stirling as a pre-cooler. SHI also provided Dewars. In this paper, SHI's cooler and Dewar technology are described.

  4. Study of a thermoacoustic Stirling cooler

    Energy Technology Data Exchange (ETDEWEB)

    Spoelstra, S.; Tijani, M.E.H. [ECN Energy Efficiency in the Industry, Petten (Netherlands)

    2007-05-15

    A thermoacoustic-Stirling cooler is built and performance measurements are carried out. The cooler uses the acoustic power produced by a linear motor to pump heat through a regenerator from a cold heat exchanger to an ambient one. The cooler incorporates a compact acoustic network to create the traveling-wave phasing necessary to operate in a Stirling cycle. The network has a coaxial topology instead of the toroidal one usually applied. The design, construction and performance measurements of the cooler are presented. A measured coefficient of performance relative to Carnot of 25% and a low temperature of -54C are achieved by the cooler. This efficiency surpasses the performance of the most efficient standing wave cooler by almost a factor of two.

  5. Development trends in IR detector coolers

    Science.gov (United States)

    Mai, M.; Rühlich, I.; Wiedmann, Th.; Rosenhagen, C.

    2009-05-01

    For different IR application specific cooler requirements are needed to achieve best performance on system level. Handheld applications require coolers with highest efficiency and lowest weight. For application with continuous operation, i.e. border surveillance or homeland security, a very high MTTF is mandatory. Space applications additionally require extremely high reliability. In other application like fighter aircraft sufficient cooling capacity even at extreme high reject temperatures has to be provided. Meeting all this requirements within one cooler design is technically not feasible. Therefore, different coolers designs like integral rotary, split rotary or split linear are being employed. The use of flexure bearings supporting the driving mechanism has generated a new sub-group for the linear coolers; also, the coolers may either use a motor with moving magnet or with moving coil. AIM has mainly focussed on long life linear cooler technology and therefore developed a series of moving magnet flexure bearing compressors which meets MTTF's exceeding 20,000h (up to 50,000h with a Pulse-Tube coldfinger). These compressors have a full flexure bearing support on both sides of the driving mechanism. Cooler designs are being compared in regard to characteristic figures as described above.

  6. Study on Auto-DR and Pre-Cooling of Commercial Buildings with Thermal Mass in California

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Rongxin; Xu, Peng; Piette, Mary Ann; Kiliccote, Sila

    2010-01-09

    This paper discusses how to optimize pre-cooling strategies for buildings in a hot California climate zone with the Demand Response Quick Assessment Tool (DRQAT), a building energy simulation tool. This paper outlines the procedure used to develop and calibrate DRQAT simulation models, and applies this procedure to eleven field test buildings. The results of a comparison between the measured demand savings during the peak period and the savings predicted by the simulation model indicate that the predicted demand shed match well with measured data for the corresponding auto-demand response (Auto-DR) days. The study shows that the accuracy of the simulation models is greatly improved after calibrating the initial models with measured data. These improved models can be used to predict load reductions for automated demand response events. The simulation results were compared with field test data to confirm the actual effect of demand response strategies. Results indicate that the optimal demand response strategies worked well for most of the buildings tested in this hot climate zone.

  7. Studi Eksperimen Pengaruh Variasi Perubahan Refrigeran-22 Dengan Musicool-22 Pada Sistem Pengkondisian Udara Dengan Pre-cooling

    Directory of Open Access Journals (Sweden)

    Arnovia Christine Sabatiana

    2017-01-01

    Full Text Available Air conditioning system merupakan mesin sistem refrigerasi kompresi uap sederhana. Kemudian dimodifikasi menjadi dua indoor unit dan satu outdoor unit. Dimana outdoor unit memiliki dua jenis kondenser yaitu, water cooled condenser dan air cooled condenser. Pembuangan kalor pada bagian water cooled condenser dimanfaatkan untuk memanaskan air yang nantinya dapat digunakan untuk kebutuhan sehari-hari kedepannya. Penggunaan refrigeran CFC atau HCFC mengakibatkan beberapa dampak negatif terhadap lingkungan dan penggunaan mesin refrigerasi ini, diantaranya dapat merusak lapisan ozone, pemanasan global dan tidak hemat energi listrik. Penelitian pada ini adalah untuk menganalisis dan membandingkan performansi suatu sistem refrigerasi sederhana yang mampu menghemat konsumsi energi dan ramah lingkungan. Metoda penelitian ini dilakukan pertama menggunakan R-22 sebagai refrigeran primernya dan selanjutnya dilakukan proses retrofitting (penggantian refrigeran dengan menggunakan MC-22. Selanjutnya analisis dilakukan berdasarkan data dari setiap titik-titik pengukuran dengan begitu akan diperoleh suatu sistem refrigerasi dengan performansi yang paling baik dengan konsumsi energi listrik yang sedikit, serta sistem refrigerasi yang ramah lingkungan. Sistem tersebut aladah yang menggunakan MC-22 baik menggunakan atau tanpa pre-cooling dengan nilai COPelektrik 3,786; dan 3,933, COPthermal 4,501; dan 4,670, dan nilai penghematan energi listrik sekitar 20% lebih hemat dibanding sistem yang menggunakan R-22.

  8. Thermal damage reduction associated with in vivo skin electroporation: A numerical investigation justifying aggressive pre-cooling

    Energy Technology Data Exchange (ETDEWEB)

    Becker, S.M.; Kuznetsov, A.V. [North Carolina State University, Raleigh (United States). Mechanical and Aerospace Engineering

    2007-01-15

    Electroporation is an approach used to enhance transdermal transport of large molecules in which the skin is exposed to a series of electric pulses. Electroporation temporarily destabilizes the structure of the outer skin layer, the stratum corneum, by creating microscopic pores through which agents, which ordinarily are unable to pass into the skin, are able to pass through this outer barrier. Of possible concern when exposing biological tissue to an electric field is thermal tissue damage associated with Joule heating. In order to find the electrical and transient thermal solutions associated with this process, this study develops a three-dimensional transient finite-volume composite model of in vivo skin electroporation. The electroporation process modeled consists of five 150ms long DC square wave pulses administered at 1-s intervals with an applied voltage of 400V. This paper finds that minor thermal influence of the electrode plate and the of a small presence blood vessel have a large impact on thermal damage. An aggressive pre-cooling technique is presented which is shown to dramatically reduce the risk of thermal damage. (author)

  9. Resisting the author: JT LeRoy's fictional authorship

    NARCIS (Netherlands)

    Loontjens, J.

    2008-01-01

    In the last decade, the interest in the relation between author and text, author and autobiography, seems to have grown. In my article, I use the story of the author JT LeRoy as a framework to analyse what this growing interest means for our understanding of the word "author." JT LeRoy’s work was co

  10. Manufacturing of JT-60SA Cryostat Base

    Energy Technology Data Exchange (ETDEWEB)

    Medrano, Mercedes, E-mail: mercedes.medrano@ciemat.es [Association EURATOM – CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Alonso, Javier; Botija, José; Fernández, Pilar; Ramos, Francisco; Rincon, Esther; Soleto, Alfonso [Association EURATOM – CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Davis, Sam; Di Pietro, Enrico [Fusion for Energy, JT-60SA European Home Team, 85748 Garching bei Munchen (Germany); Masaki, Kei; Sakasai, Akira [JAEA, Japan Atomic Energy Agency, Naka Fusion Institute, Ibaraki 311-0193 (Japan)

    2013-10-15

    Highlights: ► JT-60SA Cryostat Base has been fabricated in seven structures fastened by bolts. ► The pieces are fully welded structures further machined to get required tolerances. ► The pre-assembly of the Cryostat Base will be done at the factory to check final tolerances as well as to anticipate problems which could be encountered during final assembly. -- Abstract: JT-60SA is a superconducting tokamak to be assembled and operated at the JAEA laboratories in Naka (Japan) [1]. The tokamak has been designed to prepare, support and complement the ITER experimental programme and will be manufactured and operated under the funding of the Broader Approach Agreement (between the government of Japan and the European Commission) and of the Japan Fusion National Programme. Within the European contribution to JT-60SA, Spain has to provide the cryostat. Due to functional purposes, the cryostat has been divided in two large assemblies: the Cryostat Base (CB) and the Cryostat Vessel Body the latter subdivided into Cryostat Vessel Body Cylindrical Section (CVBCS) and the Top Lid. Spain is committed to provide the design and subsequent manufacturing of the CB and CVBCS (excluding the Top Lid) through the National Laboratory of Fusion at Ciemat. The design of both components has been concluded and the CB is currently being manufactured by a Spanish company, IDESA. This paper aims to present the status of the manufacturing and pre-assembly at the factory of the CB that has to be delivered in November 2012.

  11. The stack induced draft aerial cooler (SIDAC)

    Energy Technology Data Exchange (ETDEWEB)

    Hircock, N.C. [NC Hircock Process Consulting Ltd., Calgary, AB (Canada)]|[Patching Associates Acoustical Engineering Ltd. Calgary, AB (Canada)

    2007-07-01

    The oil and gas industry uses stack induced draft aerial coolers (SIDAC) for process cooling in noise sensitive areas or in areas where no electrical power is available. The technology produces zero noise, zero operating costs and zero emissions. This paper examined the use, operation and economics of fanless, noiseless aerial coolers. Although retrofitting to convert from fin-fan to SIDAC is not viable, this paper illustrated one common application where the installation of a tapered stack over a cooler could work together with variable speed fan drives to enhance the noise suppression achieved by variable speed fan drives. A stack assisted draft air cooler (SADAC) was installed over a conventional engine cooler enclosing the engine exhaust and muffler. The exhaust stack was also acoustically lined to augment the noise suppression of the engine silencer itself. The waste heat of the engine exhaust, combined with the heat from the cooler discharge, was used to create a negative pressure behind the cooler fan. Therefore, at night the fan could back off in speed. Since fan noise is proportional to speed to the exponent 5, even a 20 per cent reduction of fan speed generates a noticeable noise reduction. The noise directive of the Alberta Energy and Utilities Board is for lower noise levels at night rather than daytime. Therefore, this innovation allows plant operators to run coolers at full capacity in the day while backing off fan speed at night. It was concluded that substantial benefits can be achieved by SIDAC and SADAC technology in the areas of noise control, process improvements and emission reductions. The capital costs of using these devices are comparable with conventional systems, and operating costs are reduced.

  12. Mitigation of Syngas Cooler Plugging and Fouling

    Energy Technology Data Exchange (ETDEWEB)

    Bockelie, Michael J. [Reaction Engineering International, Salt Lake City, UT (United States)

    2015-06-29

    This Final Report summarizes research performed to develop a technology to mitigate the plugging and fouling that occurs in the syngas cooler used in many Integrated Gasification Combined Cycle (IGCC) plants. The syngas cooler is a firetube heat exchanger located downstream of the gasifier. It offers high thermal efficiency, but its’ reliability has generally been lower than other process equipment in the gasification island. The buildup of ash deposits that form on the fireside surfaces in the syngas cooler (i.e., fouling) lead to reduced equipment life and increased maintenance costs. Our approach to address this problem is that fouling of the syngas cooler cannot be eliminated, but it can be better managed. The research program was funded by DOE using two budget periods: Budget Period 1 (BP1) and Budget Period 2 (BP2). The project used a combination of laboratory scale experiments, analysis of syngas cooler deposits, modeling and guidance from industry to develop a better understanding of fouling mechanisms and to develop and evaluate strategies to mitigate syngas cooler fouling and thereby improve syngas cooler performance. The work effort in BP 1 and BP 2 focused on developing a better understanding of the mechanisms that lead to syngas cooler plugging and fouling and investigating promising concepts to mitigate syngas cooler plugging and fouling. The work effort focused on the following: • analysis of syngas cooler deposits and fuels provided by an IGCC plant collaborating with this project; • performing Jet cleaning tests in the University of Utah Laminar Entrained Flow Reactor to determine the bond strength between an ash deposit to a metal plate, as well as implementing planned equipment modifications to the University of Utah Laminar Entrained Flow Reactor and the one ton per day, pressurized Pilot Scale Gasifier; • performing Computational Fluid Dynamic modeling of industrially relevant syngas cooler configurations to develop a better

  13. Small high cooling power space cooler

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, T. V.; Raab, J.; Durand, D.; Tward, E. [Northrop Grumman Aerospace Systems Redondo Beach, Ca, 90278 (United States)

    2014-01-29

    The small High Efficiency pulse tube Cooler (HEC) cooler, that has been produced and flown on a number of space infrared instruments, was originally designed to provide cooling of 10 W @ 95 K. It achieved its goal with >50% margin when limited by the 180 W output ac power of its flight electronics. It has also been produced in 2 stage configurations, typically for simultaneously cooling of focal planes to temperatures as low as 35 K and optics at higher temperatures. The need for even higher cooling power in such a low mass cryocooler is motivated by the advent of large focal plane arrays. With the current availability at NGAS of much larger power cryocooler flight electronics, reliable long term operation in space with much larger cooling powers is now possible with the flight proven 4 kg HEC mechanical cooler. Even though the single stage cooler design can be re-qualified for those larger input powers without design change, we redesigned both the linear and coaxial version passive pulse tube cold heads to re-optimize them for high power cooling at temperatures above 130 K while rejecting heat to 300 K. Small changes to the regenerator packing, the re-optimization of the tuned inertance and no change to the compressor resulted in the increased performance at 150 K. The cooler operating at 290 W input power achieves 35 W@ 150 K corresponding to a specific cooling power at 150 K of 8.25 W/W and a very high specific power of 72.5 W/Kg. At these powers the cooler still maintains large stroke, thermal and current margins. In this paper we will present the measured data and the changes to this flight proven cooler that were made to achieve this increased performance.

  14. Micro cryogenic coolers for IR imaging

    Science.gov (United States)

    Lewis, Ryan; Wang, Yunda; Cooper, Jill; Lin, Martin M.; Bright, Victor M.; Lee, Y. C.; Bradley, Peter E.; Radebaugh, Ray; Huber, Marcia L.

    2011-06-01

    Joule-Thomson micro cryogenic coolers (MCCs) are a preferred approach for small and low power cryocoolers. With the same heat lift, MCC's power input can be only 1/10 of a thermoelectric cooler's input, and MCC's size can be only 1/10 of a Stirling cooler's size. With futuristic planar MCC and with high frequency MEMS compressors to be developed, its size can be reduced another order of magnitude. Such "invisible" cryocoolers may revolutionize future IR imaging systems. We will review our studies on the feasibility of MCC with an emphasis on: 1) high thermal isolation levels reaching 89,000 K/W; 2) custom-designed gas mixtures with refrigeration capabilities increased by 10X and pressure ratio reduced to only 4:1; 3) compressors with low pressure ratios; and 4) excellent scalability for further size reduction.

  15. Microsystem Cooler Concept Developed and Being Fabricated

    Science.gov (United States)

    Moran, Matthew E.

    2005-01-01

    A patented microsystem cooler concept has been developed by the NASA Glenn Research Center. It incorporates diaphragm actuators to produce the Stirling refrigeration cycle within a planar configuration compatible with the thermal management of electronics, sensors, optical and radiofrequency systems, microarrays, and other microsystems. The microsystem cooler is most suited to volume-limited applications that require cooling below the ambient or sink temperature. Johns Hopkins University Applied Physics Laboratory is conducting development testing and fabrication of a prototype under a grant from Glenn.

  16. Darwin-industrien i højt gear

    DEFF Research Database (Denmark)

    2008-01-01

    Darwin-industrien i højt gear. Næste år bliver et 'Darwin-år' - både tilhængere og kritikere gør sig klar. Udgivelsesdato: 12. december......Darwin-industrien i højt gear. Næste år bliver et 'Darwin-år' - både tilhængere og kritikere gør sig klar. Udgivelsesdato: 12. december...

  17. Darwin-industrien i højt gear

    DEFF Research Database (Denmark)

    2008-01-01

    Darwin-industrien i højt gear. Næste år bliver et 'Darwin-år' - både tilhængere og kritikere gør sig klar. Udgivelsesdato: 12. december......Darwin-industrien i højt gear. Næste år bliver et 'Darwin-år' - både tilhængere og kritikere gør sig klar. Udgivelsesdato: 12. december...

  18. TNO : your partner in air cooler development

    NARCIS (Netherlands)

    Fransen, J.G.B.

    2002-01-01

    At TNO we know that manufacturing air coolers is a highty competitive business. With TNO’s trusted expertise solidly behind you, your company can focus on reaching your target market with supporting product development through TNO’s research, consultancy and independent test data in conformity with

  19. Reduction of helium loss from a superconducting accelerating cavity during initial cool-down and cryostat exchange by pre-cooling the re-condensing cryostat

    Science.gov (United States)

    O'Rourke, B. E.; Minehara, E. J.; Hayashizaki, N.; Oshima, N.; Suzuki, R.

    2015-03-01

    A Zero-Boil-Off (ZBO) cryostat is designed to realize a compact, stand-alone cryogenic system for the AIST superconducting accelerator (SCA). Under normal operation there is no evaporative helium loss from the cryomodule and therefore operating costs associated with the supply of liquid helium can be eliminated. The only significant loss of helium from the module occurs during the initial cavity cool-down procedure or when the re-condensing cryostat is replaced. It takes about 3 h to cool down the cryostat head from room temperature (300 K) to 4 K. During this time around 100 L of liquid helium is lost due to evaporation. By pre-cooling the cryostat inside a low heat load vacuum tube before transfer to the cryomodule, this evaporative loss could be essentially eliminated, significantly reducing the volume of liquid helium required for the initial cryomodule cool-down. The pre-cooling system also provides an efficient method to test the cryostat prior to use.

  20. 锥形自调式节流制冷器的应用研究%Application research of tapered self-regulated J-T cryocoolers

    Institute of Scientific and Technical Information of China (English)

    姚青华

    2012-01-01

    介绍了一种应用于红外焦平面探测器组件上的自调式节流制冷器,该制冷器为锥形结构,采用了一种新型自调方式,与传统的波纹管型自调式节流制冷器相比,具有制冷速度快、结构简单、成本低廉、装调方便等优点;文中还对该制冷器自调机构的工作原理进行了简单的介绍和分析,并对该型制冷器进行了性能测试.%This paper introduces a kind of the self-regulated J-T cryocoolers applied to infrared focal plane detector components. The cryeooler with tapered structure, adopts a kind of new self-regulated way. And the crycoolers compared with the traditional self-regulated J-T cryocoolers with bellows have some advantages,such as the cooling speed, simple structure, low cost, convenient assembly and so on. The paper also analyses the working principle of this kind of self-regulated J-T cryocooler, and we have performance test of these coolers.

  1. Integrated thermal simulation of buildings and regenerative evaporative coolers

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, P.G.; Mathews, E.H.; Grobler, L.J. (Pretoria Univ. (South Africa). Centre for Experimental and Numerical Thermoflow)

    1994-01-01

    The thermal environment inside a building, fitted with a regenerative evaporative cooler, is influenced by the performance of the cooler. However, this performance is again influenced by the indoor air conditions. It means that the thermal performance of the building and the performance of the cooler cannot be separated. This paper proposes an innovative model for simulating the integrated thermal performance of buildings and regenerative evaporative coolers. The cooler model employs a standard single equation to characterize the performance of a cooler. Only the coefficients of this equation differs for different coolers. These coefficients are found from empirical performance data available from suppliers. The model was integrated with a comprehensive building thermal analysis program and verified successfully. This model now enables the designer to simulate any regenerative evaporative cooler connected to any building in any climatic region. The control strategy best suited for different off-design conditions can now also be investigated. (Author)

  2. 46 CFR 56.50-96 - Keel cooler installations.

    Science.gov (United States)

    2010-10-01

    ... ship's hull such that the cooler tubes are welded directly to the hull of the vessel with the hull forming part of the tube and satisfies all of the following: (i) The cooler structure is fabricated...

  3. Ion beam coolers in nuclear physics

    CERN Document Server

    Äystö, J

    2003-01-01

    Cooling techniques for low-energy radioactive ion beams are reviewed together with applications on high-precision measurements of ground state properties of exotic nuclei. The emphasis in the presentation is on cooling, bunching and improving the overall characteristics of ion beams by RFQ-driven buffer gas cooling devices. Application of cooled and bunched beams in collinear laser spectroscopy to extract isotope shifts and hyperfine structure are presented with examples on radioactive Ti, Zr and Hf isotopes. The impact of the new-generation coolers on mass measurements of short-lived nuclei is discussed with examples on precision measurements of masses of super-allowed beta emitters. As a new concept, decay spectroscopy of radioactive ions trapped in a cooler Penning trap is presented.

  4. Measurements of Flat-Plate Milk Coolers

    Directory of Open Access Journals (Sweden)

    Vlastimil Nejtek

    2014-01-01

    Full Text Available Measuring in laboratory conditions was performed with the aim to collect a sufficient quantity of measured data for the qualified application of flat-plate coolers in measuring under real operating conditions. The cooling water tank was filled with tap water; the second tank was filled with water at a temperature equivalent to freshly milked milk. At the same time, pumps were activated that delivered the liquids into the flat-plate cooler where heat energy was exchanged between the two media. Two containers for receiving the run-out liquid were placed on the outputs from the cooler; here, temperature was measured with electronic thermometer and volume was measured with calibrated graduated cylinder. Flow rate was regulated both on the side of the cooling fluid and on the side of the cooled liquid by means of a throttle valve. The measurements of regulated flow-rates were repeated several times and the final values were calculated using arithmetic average. To calculate the temperature coefficient and the amount of brought-in and let-out heat, the volume measured in litres was converted to weight unit. The measured values show that the volume of exchanged heat per weight unit increases with the decreasing flow-rate. With the increasing flow-rate on the throttled side, the flow-rate increases on the side without the throttle valve. This phenomenon is caused by pressure increase during throttling and by the consequent increase of the diameter of channels in the cooler at the expense of the opposite channels of the non-throttled part of the circuit. If the pressure is reduced, there is a pressure decrease on the external walls of opposite channels and the flow-rate increases again. This feature could be utilised in practice: a pressure regulator on one side could regulate the flow-rate on the other side. The operating measurement was carried out on the basis of the results of laboratory measurements. The objective was to determine to what extent the

  5. Advanced fusion technologies developed for JT-60 superconducting tokamak

    Science.gov (United States)

    Sakasai, A.; Ishida, S.; Matsukawa, M.; Akino, N.; Ando, T.; Arai, T.; Ezato, K.; Hamada, K.; Ichige, H.; Isono, T.; Kaminaga, A.; Kato, T.; Kawano, K.; Kikuchi, M.; Kizu, K.; Koizumi, N.; Kudo, Y.; Kurita, G.; Masaki, K.; Matsui, K.; Miura, Y. M.; Miya, N.; Miyo, Y.; Morioka, A.; Nakajima, H.; Nunoya, Y.; Oikawa, A.; Okuno, K.; Sakurai, S.; Sasajima, T.; Satoh, K.; Shimizu, K.; Takeji, S.; Takenaga, K.; Tamai, H.; Taniguchi, M.; Tobita, K.; Tsuchiya, K.; Urata, K.; Yagyu, J.

    2004-02-01

    Modification of JT-60 as a full superconducting tokamak (JT-60SC) is planned. The objectives of the JT-60SC programme are to establish scientific and technological bases for steady-state operation of high performance plasmas and utilization of reduced-activation materials in an economically and environmentally attractive DEMO reactor. Advanced fusion technologies relevant to the DEMO reactor have been developed for the superconducting magnet technology and plasma facing components of the JT-60SC design. To achieve a high current density in a superconducting strand, Nb3Al strands with a high copper ratio of 4 have been newly developed for the toroidal field coils (TFCs) of JT-60SC. The R&D to demonstrate the applicability of the Nb3Al conductor to TFCs by a react-and-wind technique has been carried out using a full-size Nb3Al conductor. A full-size NbTi conductor with low ac loss using Ni-coated strands has been successfully developed. A forced cooling divertor component with high heat transfer using screw tubes has been developed for the first time. The heat removal performance of the carbon fibre composite target was successfully demonstrated on an electron beam irradiation stand.

  6. Radiant coolers - Theory, flight histories, design comparisons and future applications

    Science.gov (United States)

    Donohoe, M. J.; Sherman, A.; Hickman, D. E.

    1975-01-01

    Radiant coolers have been developed for application to the cooling of infrared detectors aboard NASA earth observation systems and as part of the Defense Meteorological Satellite Program. The prime design constraints for these coolers are the location of the cooler aboard the satellite and the satellite orbit. Flight data from several coolers indicates that, in general, design temperatures are achieved. However, potential problems relative to the contamination of cold surfaces are also revealed by the data. A comparison among the various cooler designs and flight performances indicates design improvements that can minimize the contamination problem in the future.

  7. A Software Quality Evaluation System: JT-SQE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    JT-SQE system is a software quality and measurement system. Itsdesign w a s based on the Chinese national standards of software product evaluation and qua lity characteristics. The JT-SQE system consists of two parts. One is the mode l for software quality measurement, which is of hierarchical structure. The other is the process of requirements definition, measurement and rating. The system i s a feasible model for software quality evaluation and measurement, and it has t he advantage of a friendly user interface, simple operation, ease of revision an d maintenance, and expansible measurements.

  8. Basics of Joule-Thomson Liquefaction and JT Cooling

    Science.gov (United States)

    de Waele, A. T. A. M.

    2017-03-01

    This paper describes the basic operation of Joule-Thomson liquefiers and Joule-Thomson coolers. The discussion is based on the first law of thermodynamics mainly using hT-diagrams. It is limited to single-component fluids. A nitrogen liquefier and a helium cooler are discussed as important examples.

  9. Results from the Cooler and Lead Tests

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A

    2010-06-10

    The report presents the results of testing MICE spectrometer magnet current leads on a test apparatus that combines both the copper leads and the high temperature superconducting (HTS) leads with a single Cryomech PT415 cooler and liquid helium tank. The current is carried through the copper leads from 300 K to the top of the HTS leads. The current is then carried through the HTS leads to a feed-through from the vacuum space to the inside of a liquid helium tank. The experiment allows one to measure the performance of both cooler stages along with the performance of the leads. While the leads were powered we measured the voltage drops through the copper leads, through the HTS leads, through spliced to the feed-through, through the feed-through and through the low-temperature superconducting loop that connects one lead to the other. Measurements were made using the leads that were used in spectrometer magnet 1A and spectrometer magnet 2A. These are the same leads that were used for Superbend and Venus magnets at LBNL. The IL/A for these leads was 5.2 x 10{sup 6} m{sup -1}. The leads turned out to be too long. The same measurements were made using the leads that were installed in magnet 2B. The magnet 2B leads had an IL/A of 3.3 x 10{sup 6} A m{sup -1}. This report discusses the cooler performance and the measured electrical performance of the lead circuit that contains the copper leads and the superconducting leads. All of the HTS leads that were installed in magnet 2B were current tested using this apparatus.

  10. An introduction to closed cycle cryogenic coolers

    Science.gov (United States)

    Chellis, F. F.

    1980-01-01

    Closed cycle cryogenic coolers are used extensively for cooling infrared detectors and other specialized electronic devices. Because of the special requirements of each electro-optical system it is generally necessary to custom design the cryocooler to fit the requirements. Early and close cooperation between the electro-optical systems designer and the cryocooler manufacturer is important to the successful marriage of the cryocooler with the total electro-optical system. Limitations of various cryocooling techniques are presented, and consideration for cryocooling integration are addressed.

  11. The LEBIT ion cooler and buncher

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, S. [National Superconducting Cyclotron Laboratory, MSU, East Lansing, MI (United States); Bollen, G. [Facility for Rare Isotope Beams, MSU, East Lansing, MI (United States); Department of Physics and Astronomy, MSU, East Lansing, MI (United States); Ringle, R. [National Superconducting Cyclotron Laboratory, MSU, East Lansing, MI (United States); Savory, J. [National Institute of Standards and Technology, Boulder, CO (United States); Schury, P. [University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan)

    2016-04-21

    This paper presents a detailed description of the ion cooler and buncher, installed at the Low Energy Beam and Ion Trap Facility (LEBIT) at the National Superconducting Cyclotron Laboratory (NSCL). NSCL uses gas stopping to provide rare isotopes from projectile fragmentation for its low-energy physics program and to the re-accelerator ReA. The LEBIT ion buncher converts the continuous rare-isotope beam, delivered from the gas stopping cell, into short, low-emittance ion pulses, required for high-precision mass measurements with a 9.4 T Penning trap mass spectrometer. Operation at cryogenic temperatures, a simplified electrode structure and dedicated rugged electronics contribute to the high performance and reliability of the device, which have been essential to the successful LEBIT physics program since 2005. - Highlights: • High-performance ion cooler/buncher for rare-isotope Penning trap mass spectrometry. • Cryogenic operation lowers emittance; observed effect scales with temperature. • Optimized ion extraction schemes allow for time-of-flight based mass selection. • Observation and characterization of RF-phase dependent ion-pulse profiles.

  12. Interim cryo-cooler/detector report

    Energy Technology Data Exchange (ETDEWEB)

    Neufeld, K.; Ruhter, W. [Lawrence Livermore National Lab., CA (United States); Anderson, E. [CSA Engineering, Inc., Palo Alto, CA (United States)

    1995-04-19

    This report describes development of an electronic system designed to reduce vibration generated by a cryocooler. The diminished vibration makes it practical to use the active cooler to extract heat from a portable gamma ray detector instrument. The system was developed for a Sunpower cryocooler with an integrated counterbalance mass. The overall momentum cancellation approach is also applicable to other similar cryocoolers. The cancellation system is an assembly of several components tailored to accomplish the required vibration reduction with minimum power consumption and volume. It is designed to be powered by a 18--32 Volt battery. Up to ten harmonics of the 58.65 Hz drive frequency are controlled. In addition to the vibration cancellation, the electronic system produces the drive signal for the cryocooler and regulates the cooler temperature. The system employs a sinusoidal drive to reduce the amount of higher harmonic vibration. A digital signal processor (DSP) is used to perform the high speed vibration control. The Texas Instruments TMS320C31 processor is housed on a third-party board. A second board has analog-to-digital (A/D) and digital-to-analog (D/A) converters. The DSP was programmed in C. The physical system consists of two sets of electronics. The first is housed in a case that is separate from the detector unit.

  13. Study of a coaxial thermoacoustic-Stirling cooler

    Science.gov (United States)

    Tijani, M. E. H.; Spoelstra, S.

    2008-01-01

    A coaxial thermoacoustic-Stirling cooler is built and performance measurements are performed. The cooler uses the acoustic power produced by a linear motor to pump heat through a regenerator from a cold heat exchanger to an ambient one. The cooler incorporates a compact acoustic network to create the traveling-wave phasing necessary for the operation in a Stirling cycle. The network has a coaxial geometry instead of the toroidal one usually used in such systems. The design, construction and performance measurements of the cooler are presented. A measured coefficient of performance relative to Carnot of 25% and a low temperature of -54 °C are achieved by the cooler. This efficiency surpasses the performance of the most efficient standing-wave cooler by almost a factor of two.

  14. Study of a coaxial thermoacoustic-Stirling cooler

    Energy Technology Data Exchange (ETDEWEB)

    Spoelstra, S.; Tijani, M.E.H. [ECN Energy Efficiency in the Industry, Petten (Netherlands)

    2008-05-15

    A coaxial thermoacoustic-Stirling cooler is built and performance measurements are performed. The cooler uses the acoustic power produced by a linear motor to pump heat through a regenerator from a cold heat exchanger to an ambient one. The cooler incorporates a compact acoustic network to create the traveling-wave phasing necessary for the operation in a Stirling cycle. The network has a coaxial geometry instead of the toroidal one usually used in such systems. The design, construction and performance measurements of the cooler are presented. A measured coefficient of performance relative to Carnot of 25% and a low temperature of -54 degrees C are achieved by the cooler. This efficiency surpasses the performance of the most efficient standing-wave cooler by almost a factor of two.

  15. Performance verification tests of JT-60SA CS model coil

    Energy Technology Data Exchange (ETDEWEB)

    Obana, Tetsuhiro, E-mail: obana.tetsuhiro@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Murakami, Haruyuki [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Takahata, Kazuya; Hamaguchi, Shinji; Chikaraishi, Hirotaka; Mito, Toshiyuki; Imagawa, Shinsaku [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kizu, Kaname; Natsume, Kyohei; Yoshida, Kiyoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2015-11-15

    Highlights: • The performance of the JT-60SA CS model coil was verified. • The CS model coil comprised a quad-pancake wound with a Nb{sub 3}Sn CIC conductor. • The CS model coil met the design requirements. - Abstract: As a final check of the coil manufacturing method of the JT-60 Super Advanced (JT-60SA) central solenoid (CS), we verified the performance of a CS model coil. The model coil comprised a quad-pancake wound with a Nb{sub 3}Sn cable-in-conduit conductor. Measurements of the critical current, joint resistance, pressure drop, and magnetic field were conducted in the verification tests. In the critical-current measurement, the critical current of the model coil coincided with the estimation derived from a strain of −0.62% for the Nb{sub 3}Sn strands. As a result, critical-current degradation caused by the coil manufacturing process was not observed. The results of the performance verification tests indicate that the model coil met the design requirements. Consequently, the manufacturing process of the JT-60SA CS was established.

  16. COOLING DYNAMICS STUDIES AND SCENARIOS FOR THE RHIC COOLER.

    Energy Technology Data Exchange (ETDEWEB)

    FEDOTOV,A.V.; BEN-ZVI,I.; LITVINENKO, V.

    2005-05-16

    In this paper, we discuss various electron cooling dynamics studies for RHIC. We also present simulations [1] of various possibilities of using electron cooling at RHIC, which includes cooling at the top energy, pre-cooling at low energy, aspects of transverse and longitudinal cooling and their impact on the luminosity. Electron cooling at various collision energies both for heavy ions and protons is also discussed.

  17. The use of mixed-method, part-body pre-cooling procedures for team-sport athletes training in the heat.

    Science.gov (United States)

    Duffield, Rob; Steinbacher, Geoff; Fairchild, Timothy J

    2009-12-01

    The current study investigated the effects of a pre-cooling intervention on physiological and performance responses to team-sport training in the heat. Seven male lacrosse players performed a familiarization session and 2 randomized, counterbalanced sessions consisting of a 30-minute intermittent-sprint conditioning session. Prior to the sessions, players performed a 20-minute mixed-method, part-body cooling intervention (consisting of cooling vests, cold towels to the neck, and ice packs to the quadriceps) or no cooling intervention. Performance was determined from collection of 1 Hz global positioning system (GPS) data and analyzed for distance and speed. Prior to, during, and following the sessions, core temperature, heart rate, rating of perceived exertion (RPE), and thermal sensation scale (TSS) were measured; additionally, a venous blood sample was collected before and after each session for measurement of interleukin-6 (IL-6), insulin-like growth factor (IGF-1) and insulin-like growth factor-binding protein3 (IGF-BP3). Results indicated that a greater distance was covered during the pre-cooling condition (3.35 +/- 0.20 vs. 3.11 +/- 0.13 km; p = 0.05). Further, most of this improvement was evident from a greater distance covered during moderate intensities of 7 to 14 km/h (2.28 +/- 0.18 vs. 2.00 +/- 0.24 km; p = 0.05). Peak speeds and very-high-intensity efforts (20 km/h +/-) were not different between conditions (p > 0.05). The increase in core temperature was blunted following cooling, with a lower core temperature throughout the cooling session (38.8 +/- 0.3 vs. 39.3 +/- 0.4 degrees C; p 0.05). Accordingly, the use of a mixed-method, part-body cooling intervention prior to an intermittent-sprint training session in the heat can assist in reducing thermoregulatory load and improve aspects of training performance for team sports.

  18. Effect of pre-cooling on repeat-sprint performance in seasonally acclimatised males during an outdoor simulated team-sport protocol in warm conditions.

    Science.gov (United States)

    Brade, Carly J; Dawson, Brian T; Wallman, Karen E

    2013-01-01

    Whether precooling is beneficial for exercise performance in warm climates when heat acclimatised is unclear. The purpose of this study was to determine the effect of precooling on repeat-sprint performance during a simulated team-sport circuit performed outdoors in warm, dry field conditions in seasonally acclimatised males (n = 10). They performed two trials, one with precooling (PC; ice slushy and cooling jacket) and another without (CONT). Trials began with a 30-min baseline/cooling period followed by an 80 min repeat-sprint protocol, comprising 4 x 20-min quarters, with 2 x 5-min quarter breaks and a 10-min half-time recovery/cooling period. A clear and substantial (negative; PC slower) effect was recorded for first quarter circuit time. Clear and trivial effects were recorded for overall circuit time, third and fourth quarter sprint times and fourth quarter best sprint time, otherwise unclear and trivial effects were recorded for remaining performance variables. Core temperature was moderately lower (Cohen's d=0.67; 90% CL=-1.27, 0.23) in PC at the end of the precooling period and quarter 1. No differences were found for mean skin temperature, heart rate, thermal sensation, or rating of perceived exertion, however, moderate Cohen's d effect sizes suggested a greater sweat loss in PC compared with CONT. In conclusion, repeat- sprint performance was neither clearly nor substantially improved in seasonally acclimatised players by using a combination of internal and external cooling methods prior to and during exercise performed in the field in warm, dry conditions. Of practical importance, precooling appears unnecessary for repeat-sprint performance if athletes are seasonally acclimatised or artificially acclimated to heat, as it provides no additional benefit. Key PointsPre-cooling did not improve repeated sprint performance during a prolonged team-sport circuit in field conditions.If individuals are already heat acclimatised/acclimated, pre-cooling is

  19. Assessment of Drinking Water Quality from Bottled Water Coolers.

    Directory of Open Access Journals (Sweden)

    Marzieh Farhadkhani

    2014-05-01

    Full Text Available Drinking water quality can be deteriorated by microbial and toxic chemicals during transport, storage and handling before using by the consumer. This study was conducted to evaluate the microbial and physicochemical quality of drinking water from bottled water coolers.A total of 64 water samples, over a 5-month period in 2012-2013, were collected from free standing bottled water coolers and water taps in Isfahan. Water samples were analyzed for heterotrophic plate count (HPC, temperature, pH, residual chlorine, turbidity, electrical conductivity (EC and total organic carbon (TOC. Identification of predominant bacteria was also performed by sequence analysis of 16S rDNA.The mean HPC of water coolers was determined at 38864 CFU/ml which exceeded the acceptable level for drinking water in 62% of analyzed samples. The HPC from the water coolers was also found to be significantly (P < 0.05 higher than that of the tap waters. The statistical analysis showed no significant difference between the values of pH, EC, turbidity and TOC in water coolers and tap waters. According to sequence analysis eleven species of bacteria were identified.A high HPC is indicative of microbial water quality deterioration in water coolers. The presence of some opportunistic pathogens in water coolers, furthermore, is a concern from a public health point of view. The results highlight the importance of a periodic disinfection procedure and monitoring system for water coolers in order to keep the level of microbial contamination under control.

  20. Ion beam cooler-buncher at the IGISOL facility

    Energy Technology Data Exchange (ETDEWEB)

    Nieminen, A.; Hakala, J.; Huikari, J.; Kolhinen, V.S.; Rinta-Antila, S.; Szerypo, J. [Dept. of Physics, Univ. of Jyvaeskylae (Finland); Billowes, J.; Campbell, P.; Moore, I.D.; Moore, R. [Schuster Lab., Univ. of Manchester (United Kingdom); Forest, D.H.; Thayer, H.L.; Tungate, G. [School of Physics and Astronomy, Univ. of Birmingham, Edgbaston (United Kingdom); Jokinen, A.; Aeystoe, J. [Dept. of Physics, Univ. of Jyvaeskylae (Finland)]|[CERN, Geneva (Switzerland)

    2003-07-01

    An ion beam cooler-buncher for manipulating low-energy radioactive ion beams at the IGISOL facility is described. The cooler-buncher serves as a source of cooled ion bunches for collinear laser spectroscopy and it will be used for preparation of ion bunches for injection into a Penning trap system. (orig.)

  1. Characteristics of large scale ionic source for JT-60

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Yukio; Honda, Atsushi; Inoue, Takashi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1997-02-01

    The Neutral Beam Injection (NBI) apparatus is expected for important role sharing apparatus to realize the plasma electric current drive and the plasma control in not only temperature upgrading of the plasma but also Tokamak nuclear fusion reactor for the next generation such as JT-60, ITER and so forth. Japan Atomic Energy Research Institute has developed the ionic source with high energy and large electric current for about 10 years. Some arrangement tests of the large negative ion source for JT-60 No. 1 were executed from June to October, 1995. As a series of arrangement tests, 400 KeV and 13.5 A of deuterium negative ion beam was successfully accelerated for 0.12 sec. under 0.22 Pa of low gas pressure. And, it was elucidated that electron electric current could be controlled efficiently even in deuterium negative ion beam. Here is described on the testing results in details. (G.K.)

  2. MIXING STUDY FOR JT-71/72 TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.

    2013-11-26

    All modeling calculations for the mixing operations of miscible fluids contained in HBLine tanks, JT-71/72, were performed by taking a three-dimensional Computational Fluid Dynamics (CFD) approach. The CFD modeling results were benchmarked against the literature results and the previous SRNL test results to validate the model. Final performance calculations were performed by using the validated model to quantify the mixing time for the HB-Line tanks. The mixing study results for the JT-71/72 tanks show that, for the cases modeled, the mixing time required for blending of the tank contents is no more than 35 minutes, which is well below 2.5 hours of recirculation pump operation. Therefore, the results demonstrate the adequacy of 2.5 hours’ mixing time of the tank contents by one recirculation pump to get well mixed.

  3. Review of JT-60U experimental results in 1997

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, H.; Akasaka, H.; Akino, N. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1998-08-01

    The JT-60U experiments in 1997 focused mainly on the steady-state tokamak research with the newly installed W-shaped pumped divertor and the negative ion based neutral beam (NNB) in addition to the existing profile and shape control techniques developed in JT-60U. In particular, the research on divertor physics was accelerated under the new divertor system with many of fine diagnostics: Detachment characteristics, pumping control, impurity control, recycling characteristics, etc. in the W-shaped divertor were investigated in detail. The main purpose of confinement and stability studies in 1997 was to improve steadiness of high confinement plasmas with the new divertor. Researches progressed also for the formation conditions of the internal and the surface transport barriers in the high-{beta}{sub p} mode, the reversed shear mode and the H-mode. Toward the advanced feedback controls of multiple parameters, the JT-60U started new feedback controls of central line density and divertor neutral gas pressure in addition to the existing controls of off-axis line density, radiation power and neutron production rate. The JT-60U team also carefully studied characteristics of halo current during disruptions. Optimization of NNB operation progressed steadily and injection power increased up to 4.2MW. The NNB-driven current was identified directly from the internal magnetic measurement and driven current profile was confirmed to be consistent with the ACCOME calculation. The current profile control with LHCD successfully sustained the internal transport barrier in reversed shear plasmas. Continuous TAE modes were observed with NNB for the first time as beam-driven TAE modes. (J.P.N.)

  4. Structural analysis of the JT-60SA cryostat vessel body

    Energy Technology Data Exchange (ETDEWEB)

    Botija, José, E-mail: jose.botija@ciemat.es [Association EURATOM – CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Alonso, Javier; Fernández, Pilar; Medrano, Mercedes; Ramos, Francisco; Rincon, Esther; Soleto, Alfonso [Association EURATOM – CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Davis, Sam; Di Pietro, Enrico; Tomarchio, Valerio [Fusion for Energy, JT-60SA European Home Team, 85748 Garching bei Munchen (Germany); Masaki, Kei; Sakasai, Akira; Shibama, Yusuke [JAEA – Japan Atomic Energy Agency, Naka Fusion Institute, Ibaraki 311-0193 (Japan)

    2013-10-15

    Highlights: ► Structural analysis to validate the JT-60SA cryostat vessel body design. ► Design code ASME 2007 “Boiler and Pressure Vessel Code. Section VIII”. ► First buckling mode: load multiplier of 10.644, higher than the minimum factor 4.7. ► Elastic and elastic–plastic stress analysis meets ASME against plastic collapse. ► Bolted fasteners have been analyzed showing small gaps closed by strong welding. -- Abstract: The JT-60SA cryostat is a stainless steel vacuum vessel (14 m diameter, 16 m height) which encloses the Tokamak providing the vacuum environment (10{sup −3} Pa) necessary to limit the transmission of thermal loads to the components at cryogenic temperature. It must withstand both external atmospheric pressure during normal operation and internal overpressure in case of an accident. The paper summarizes the structural analyses performed in order to validate the JT-60SA cryostat vessel body design. It comprises several analyses: a buckling analysis to demonstrate stability under the external pressure; an elastic and an elastic–plastic stress analysis according to ASME VIII rules, to evaluate resistance to plastic collapse including localized stress concentrations; and, finally, a detailed analysis with bolted fasteners in order to evaluate the behavior of the flanges, assuring the integrity of the vacuum sealing welds of the cryostat vessel body.

  5. Thermo-Electron Ballistic Coolers or Heaters

    Science.gov (United States)

    Choi, Sang H.

    2003-01-01

    Electronic heat-transfer devices of a proposed type would exploit some of the quantum-wire-like, pseudo-superconducting properties of single-wall carbon nanotubes or, optionally, room-temperature-superconducting polymers (RTSPs). The devices are denoted thermo-electron ballistic (TEB) coolers or heaters because one of the properties that they exploit is the totally or nearly ballistic (dissipation or scattering free) transport of electrons. This property is observed in RTSPs and carbon nanotubes that are free of material and geometric defects, except under conditions in which oscillatory electron motions become coupled with vibrations of the nanotubes. Another relevant property is the high number density of electrons passing through carbon nanotubes -- sufficient to sustain electron current densities as large as 100 MA/square cm. The combination of ballistic motion and large current density should make it possible for TEB devices to operate at low applied potentials while pumping heat at rates several orders of magnitude greater than those of thermoelectric devices. It may also enable them to operate with efficiency close to the Carnot limit. In addition, the proposed TEB devices are expected to operate over a wider temperature range

  6. Beam accumulation with the SIS electron cooler

    CERN Document Server

    Steck, Markus; Blasche, K; Franczak, B J; Franzke, B; Winkler, T; Parkhomchuk, V V

    2000-01-01

    An electron cooling system has started operation in the heavy ion synchrotron SIS which is used to increase the intensity for highly charged ions. Fast transverse cooling of the hot ion beam after horizontal multiturn injection allows beam accumulation at the injection energy. After optimization of the accumulation process an intensity increase in a synchrotron pulse by more than one order of magnitude has been achieved. For highly charged ions the maximum number of particles has been increased from 1x10 sup 8 to 1x10 sup 9. For lighter ions intensity limitations have been encountered which are caused by the high phase space density of the cooled ion beam. Momentum spreads in the 10 sup - sup 4 range and emittances well below 10 pi mm mrad have been demonstrated. Recombination losses both in the residual gas and with the free cooler electrons determine the maximum intensity for highly charged ions. Systematic measurements of the recombination rates have been performed providing data for an optimum choice of t...

  7. Thermoelectric cooler application in electronic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Reiyu Chein; Guanming Huang [National Chung Hsing University, Taichung City (China). Dept. of Mechanical Engineering

    2004-10-01

    This study addresses thermoelectric cooler (TEC) applications in the electronic cooling. The cold side temperature (T{sub c}) and temperature difference between TEC cold and hot sides ({delta}T=T{sub h} T{sub c}, T{sub h} temperature of hot side of TEC) were used as the parameters. The cooling capacity, junction temperature, coefficient of performance (COP) of TEC and the required heat sink thermal resistance at the TEC hot side were computed. The results indicated that the cooling capacity could be increased as T{sub c} increased and {delta}T was reduced. The maximum cooling capacity and chip junction temperature obtained were 207 W and 88{sup o}C, respectively. The required heat sink thermal resistance on TEC hot side was 0.054{sup o}C/W. Larger cooling capacity and higher COP could be obtained when the TEC was operated in the enforced regimes ({delta}T<0). However, TEC performance was restricted by the T{sub c} values and heat sink thermal resistance at the TEC hot side. A microchannel heat sink using water or air as the coolant was demonstrated to meet the low thermal heat sink resistance requirement for TEC operated at maximum cooling capacity conditions. (author)

  8. Thermoelectric cooler application in electronic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Chein Reiyu; Huang Guanming

    2004-10-01

    This study addresses thermoelectric cooler (TEC) applications in the electronic cooling. The cold side temperature (T{sub c}) and temperature difference between TEC cold and hot sides ({delta}T=T{sub h}-T{sub c}, T{sub h}=temperature of hot side of TEC) were used as the parameters. The cooling capacity, junction temperature, coefficient of performance (COP) of TEC and the required heat sink thermal resistance at the TEC hot side were computed. The results indicated that the cooling capacity could be increased as T{sub c} increased and {delta}T was reduced. The maximum cooling capacity and chip junction temperature obtained were 207 W and 88 deg. C, respectively. The required heat sink thermal resistance on TEC hot side was 0.054 deg. C/W. Larger cooling capacity and higher COP could be obtained when the TEC was operated in the enforced regimes ({delta}T<0). However, TEC performance was restricted by the T{sub c} values and heat sink thermal resistance at the TEC hot side. A microchannel heat sink using water or air as the coolant was demonstrated to meet the low thermal heat sink resistance requirement for TEC operated at maximum cooling capacity conditions.

  9. Development of a hybrid cooler; Udvikling af hybridkoeler

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, P.; Toftegaard, R.; Weinkauff Kristoffersen, J. [Teknologisk Institut, Aarhus (Denmark); Juel Skovrup, M. [IPU, Kgs. Lyngby (Denmark); Ibsen, C. [VP Industries, Lem (Denmark)

    2013-04-15

    The project aims to develop a hybrid cooler which acts as a dry cooler in the winter and as cooling tower in summer. Energy consumption for cooling systems with a dry cooler and a cooling tower, respectively, is comparable in the winter months. This phase 1 of the project shows that improvements of 50-100% on the performance of a hybrid cooler can be achieved as compared to a dry cooler. The improvement is achieved by humidifying the air with recirculated water through nozzles so that the air temperature decreases from the dry temperature to the wet temperature, and that the dry cooler surface is humidified with a film of water, which increases the heat transfer coefficient considerably compared to a dry surface. The experiments showed that a humidifier system cannot be used without further action. At face velocities less than 5 m/s the humidification does not yield any improvement, and in some cases the heat transfer in a standard dry cooler is decreased. This is due to entrainment of not fully vaporized droplets which are deposited between the dry cooler fins and form bridges that block parts of the cooler. By modifying the surface characteristics with a coating, it will be possible to drain the water away so that no bridges are formed. The company Accoat, which makes special surfaces, will therefore be associated to phase 2 of the project. Another aspect that was evident in the tests, is the formation of biofilm on the heat exchanger surface, which can reduce performance by up to 25%. Biofilm can be prevented by treating the feed water, and therefore Danish Clean Water A/S associated to phase 2 of the project, as they produce water purification systems for biofouling decomposition. (LN)

  10. A 300 Hz high frequency thermoacoustically driven pulse tube cooler

    Institute of Scientific and Technical Information of China (English)

    ZHU ShangLong; YU GuoYao; ZHANG XiaoDong; DAI Wei; LUO ErCang; ZHOU Yuan

    2008-01-01

    This article introduces the latest progress of a 300 Hz thermoacoustically driven pulse tube cooler. Based on the experience of former experiments, improvements have been made in the standing-wave engine, pulse tube cooler and their coupling mechanism. An inlet pressure ratio of 1.248 was obtained with the mean pressure and heating power of 4.13 MPa and 1760 W, respectively. A lowest no-load temperature of 69.5 K has been reached under this condition. This is the first time for thermoacousti-cally driven pulse tube coolers to reach the temperature below 76 K with such a high frequency.

  11. Development of software for the thermohydraulic analysis of air coolers

    Directory of Open Access Journals (Sweden)

    Šerbanović Slobodan P.

    2003-01-01

    Full Text Available Air coolers consume much more energy compared to other heat exchangers due to the large fan power required. This is an additional reason to establish reliable methods for the rational design and thermohydraulic analysis of these devices. The optimal values of the outlet temperature and air flow rate are of particular importance. The paper presents a methodology for the thermohydraulic calculation of air cooler performances, which is incorporated in the "Air Cooler" software module. The module covers two options: cooling and/or condensation of process fluids by ambient air. The calculated results can be given in various ways ie. in the tabular and graphical form.

  12. Instrumentation Upgrades to TITAN's Cooler Penning Trap

    Science.gov (United States)

    Lascar, Daniel; Titan Collaboration

    2016-09-01

    The use of Highly Charged Ions (HCIs) is critical to improving the precision of Penning trap mass measurements of nuclides with half-lives substantially less than 100 ms, but the process of charge breeding imparts an unacceptably high energy spread to the ion bunch sent to TITAN's precision Penning trap for mass measurement. TITAN's Cooler PEnning Trap (CPET) at TRIUMF in Vancouver, Canada was designed to cool HCIs with a plasma of simultaneously trapped electrons. CPET is currently undergoing commissioning offline at TRIUMF. In order to prepare CPET for full operation, several technical challenges associated with the use of electrons in a strong magnetic field had to be overcome. First among these was the detection of electrons outside of CPET. A novel, thin charge-collecting detector was successfully developed. Known as the mesh detector, it is charge-agnostic and can be made effectively transparent to allow for the passage of any charged particle at the user's request. The second challenge, moving CPET's electron source off the central beam axis was overcome by the creation of an electron source which would allow for electron injection into CPET and the passage of cooled ions out of CPET. CPET's 7 T solenoid generates a stray field far outside of the magnet's central bore that forced the design of a set of electron injection optics that bend, steer and focus the beam in three dimensions. Results from the successful installation of these upgrades as well as a report on future work will be discussed. This work was partially supported by NSERC, the CFI and the DFG.

  13. Micromachined Active Magnetic Regenerator for Low Temperature Magnetic Coolers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future science missions to investigate the structure and evolution of the universe require highly efficient, very low temperature coolers for low noise...

  14. Lightweight Magnetic Cooler with a Reversible Circulator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future missions to investigate the structure and evolution of the universe require highly-efficient, very low temperature coolers for low-noise detector...

  15. Lightweight Magnetic Cooler with a Reversible Circulator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future missions to investigate the structure and evolution of the universe require highly efficient, very low temperature coolers for low-noise detector...

  16. Lightweight Superconducting Magnets for Low Temperature Magnetic Coolers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future science missions to investigate the structure and evolution of the universe require efficient, very low temperature coolers for low noise detector...

  17. Miniaturized Thermal-Cooler for IC Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is submitted for research on using MEMS technology to make unique, highly reliable, miniaturized capillary pumped coolers in the application of Thermal...

  18. Performance study on primary gas coolers with horizontal tubes

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, E.L.; Lekhter, V.I.; Gostev, Yu.A. [and others

    1992-12-31

    No. 1-bis coke-oven battery system at the Mariupol C&CW was equipped with primary gas coolers of horizontal-tube type. They consisted of three sections, with working surface areas in m{sup 2} of: I (bottom) 800 (middle) 800 and III (top) 600 respectively. The nominal water flow rate through each cooler was 600-720 m. The coolers were constantly irrigated with tar/water emulsions to remove scale deposits in the inter-tube space. The circulating water from the primary gas coolers is cooled in a e-section cooling tower (type 2VG) equipped with spray nozzles designed by the Dnepropetrovsk Chemical Technology Institute (nominal water throughput 3000 m{sup 3}/h). 1 tab.

  19. Micromachined Active Magnetic Regenerator for Low Temperature Magnetic Coolers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future science missions to investigate the structure and evolution of the universe require highly efficient, very low temperature coolers for low noise...

  20. MM&T for Linear Resonant Cooler. Volume 1

    Science.gov (United States)

    1988-02-16

    COOSS 16-S SUBJECT TERMS (COntInuf O on fri WUI( Rfe*"Gnr and identify 6) bloct ri.rmbe, FIELD GROUP j SUB. GRPI Li near-Resonant; Compressor; Stirling ...Cycle I i Free-Displacer Cooler; Regenerator IS. ABSTRACT (Con notuor on Forvermi if necorstwy mnd iden afr 67 Weorknufflep This final report...producibility and performance of the prototype linear-drive Stirling cycle cooler design established in a prior contract, 2) qualify the design to the target

  1. A digital energy control system for the LEAR electron cooler

    CERN Document Server

    Caspers, Fritz; Molinari, G; Ramos, U

    1993-01-01

    A feedback control system has been developed to correct any energy errors that may occur when operating the electron cooler on LEAR. Drifts and, above all, the space charge effects are the main sources of error. Error cancellation must be compatible with the pulsed mode of operation of the electron cooler so that the beam must be stabilized at the right energy before the end of the corresponding flat top is reached.

  2. Evaluation of Stirling cooler system for cryogenic CO2 capture

    OpenAIRE

    Song, Chun Feng; Kitamura, Yutaka; Li, Shu Hong

    2012-01-01

    In previous research, a cryogenic system based on Stirling coolers has been developed. In this work, the novel system was applied on CO2 capture from post-combustion flue gas and different process parameters (i.e. flow rate of feed gas, temperature of Stirling cooler and operating condition) were investigated to obtain the optimal performance (CO2 recovery and energy consumption). From the extensive experiments, it was concluded that the cryogenic system could realize CO2 capture without solv...

  3. Large-Scale Containment Cooler Performance Experiments under Accident Conditions

    Directory of Open Access Journals (Sweden)

    Ralf Kapulla

    2012-01-01

    Full Text Available Computational Fluid Dynamics codes are increasingly used to simulate containment conditions after various transient accident scenarios. This paper presents validation experiments, conducted in the frame of the OECD/SETH-2 project. These experiments address the combined effects of mass sources and heat sinks related to gas mixing and hydrogen transport within containment compartments. A wall jet interacts with an operating containment cooler located in the middle (M-configuration and the top (T-configuration of the containment vessel. The experiments are characterized by a 3-phase injection scenario. In Phase I, pure steam is injected, while in Phase II, a helium-steam mixture is injected. Finally, in Phase III, pure steam is injected again. Results for the M-configuration show helium stratification build up during Phase II. During Phase III, a positively buoyant plume emerging from the cooler housing becomes negatively buoyant once it reaches the helium-steam layer and continuously erodes the layer. For the M-configuration, a strong degradation of the cooler performance was observed during the injection of the helium/steam mixture (Phase II. For the T-configuration, we observe a mainly downwards acting cooler resulting in a combination of forced and natural convection flow patterns. The cooler performance degradation was much weaker compared with the M-configuration and a good mixing was ensured by the operation of the cooler.

  4. Measurement and Analysis on COP of Pre-cooling Units of Ice-cooling System for Coal Mine%矿井冰制冷降温系统预冷机组能效测试与分析

    Institute of Scientific and Technical Information of China (English)

    亓玉栋; 程卫民; 潘刚; 于岩斌

    2014-01-01

    Ice-cooling system has been successfully applied in many high temperature mines in our country, its cooling system mainly includes chilled water pre-cooling system and ice-making system. The COP ( Coefficient of Performance) and outlet water temperature of the pre-cooling system have an important influence on the whole cooling system. On the basis of the test and analysis of the cooling capacity and COP of two-stage pre-cooling units of the ice-cooling system in Tangkou Mine. the mean cooling capacity, outlet water temperature and the COP of the two-stage pre-cooling units were respectively 435 kW, 13. 6 ℃,4. 34 and 605 kW,8. 9 ℃,3. 8, and the actual COP of the two-stage pre-cooling units was much lower than their design conditions. The diagnosis and analysis on the COP should be carried out so as to improve the COP of the whole cooling system.%冰制冷降温系统已在我国多个高温矿井获得成功应用,其制冷系统主要包括冷水预冷系统和制冰系统,预冷系统制冷能效的高低及出水水温对整个制冷系统能效高低具有重要影响。通过对唐口煤矿冰制冷降温系统两级预冷机组制冷量及制冷能效( COP)的测试和分析,得出两预冷机组平均制冷量、出口水温、制冷能效分别为435 kW、13.6℃、4.34和605 kW、8.9℃、3.8,指出两预冷机组实际运行能效远低于其设计工况。为提高制冷能效,建议对机组进行能效的诊断分析。

  5. Molecular analysis of the HPJ-JT syndrome and sporadic parathyroid carcinogenesis

    NARCIS (Netherlands)

    Haven, Carola José

    2008-01-01

    HPT-JT syndrome is a rare disease characterized by parathyroid tumours (with a high percentage of carcinomas), jaw and kidney tumours. In this thesis, the clinical and genetic features of the HPT-JT syndrome and the relationship between the HRPT2 gene and parathyroid tumours were investigated. We

  6. 46 CFR 119.422 - Integral and non-integral keel cooler installations.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Integral and non-integral keel cooler installations. 119... MACHINERY INSTALLATION Specific Machinery Requirements § 119.422 Integral and non-integral keel cooler... connections for a keel cooler installation. (e) Shutoff valves are not required for integral keel coolers. A...

  7. The design study of the JT-60SU device. No. 3. The superconductor-coils of JT-60SU

    Energy Technology Data Exchange (ETDEWEB)

    Ushigusa, Kenkichi; Mori, Katsuharu; Nakagawa, Syouji [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1997-03-01

    The superconducting coil systems and the cryogenic system for the JT-60 Super Upgrade (JT-60SU) has been designed. Both Nb{sub 3}Al and NbTi as a superconducting wire material are employed in the toroidal coils (D-shaped 18 coils) to realize a high field magnet with a low cost. Significant reduction of the coil weight (150 tons/coil) without losing the coil rigidity has been achieved by connecting two toroidal coils with shear panels. Validity of this design is confirmed by the detailed structural analysis and thermohydraulic analysis. The poloidal coil system consists of 4 central solenoid coils with (NbTi){sub 3}Sn and 6 outer equilibrium field coils with NbTi. This system has an enough capability to supply the flux of 170Vs to produce a 10MA discharge with 200s of flat-top and to make various plasma configurations. The construction procedure of the poloidal coil system is also established under the constraint of the JT-60 site. Two sets of race-track shaped superconducting coils mounted on the top of the machine is designed to compensate the error field inside the vessel by supplying helical (m=2/n=1) magnetic field. By using cryogenic system with a 36kW of cooling capacity, the total cold weight of around 4000tons can be cooled down to 4.5K within one month, and steady heat load of 6.5kW and transient heat load of 9.0MJ can be removed within 30 minutes of discharge repetition rate. (author)

  8. Tests of Four PT-415 Coolers Installed in the Drop-in Mode

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A.; Wang, S.T.

    2008-07-08

    The superconducting magnets and absorbers for MICE will be cooled using PT415 pulse tube coolers. The cooler 2nd stage will be connected to magnets and the absorbers through a helium or hydrogen re-condensing system. It was proposed that the coolers be connected to the magnets in such a way that the cooler can be easily installed and removed, which permits the magnets to be shipped without the coolers. The drop-in mode requires that the cooler 1st stage be well connected to the magnet shields and leads through a low temperature drop demountable connection. The results of the PT415 drop-in cooler tests are presented.

  9. Magnetic field measurements of JT-60SA CS model coil

    Energy Technology Data Exchange (ETDEWEB)

    Obana, Tetsuhiro, E-mail: obana.tetsuhiro@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Takahata, Kazuya; Hamaguchi, Shinji; Chikaraishi, Hirotaka; Mito, Toshiyuki; Imagawa, Shinsaku [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kizu, Kaname; Murakami, Haruyuki; Natsume, Kyohei; Yoshida, Kiyoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2015-01-15

    Highlights: • Magnetic fields of the JT-60SA CS model coil were measured. • While the coil current was held constant at 20 kA, magnetic fields varied slightly with several different long time constants. • We investigated coils consisting of CIC conductors and having long time constants. - Abstract: In a cold test of the JT-60SA CS model coil, which has a quad-pancake configuration consisting of a Nb{sub 3}Sn cable-in-conduit (CIC) conductor, magnetic fields were measured using Hall sensors. For a holding coil current of 20 kA, measured magnetic fields varied slightly with long time constants in the range 17–571 s, which was much longer than the time constant derived from a measurement using a short straight sample. To validate the measurements, the magnetic fields of the model coil were calculated using a computational model representing the positions of Nb{sub 3}Sn strands inside the CIC conductor. The calculated results were in good agreement with the measurements. Consequently, the validity of the magnetic field measurements was confirmed. Next, we investigated other coils consisting of CIC conductors and having long time constants. The only commonality among the coils was the use of CIC conductors. At present, there is no obvious way to prevent generation of such magnetic-field variations with long time constants.

  10. Analyses of plasma parameter profiles in JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Shirai, Hiroshi; Shimizu, Katsuhiro; Hayashi, Nobuhiko [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Itakura, Hirofumi; Takase, Keizou [CSK Co. Ltd., Tokyo (Japan)

    2001-01-01

    The methods how diagnostics data are treated as the surface quantity of magnetic surface and processed to the profile data in the JT-60U plasmas are summarized. The MHD equilibrium obtained by solving Grad-Shafranov equation on the MHD equilibrium calculation and registration software FBEQU are saved shot by shot as a database. Various experimental plasma data measured at various geometrical positions on JT-60 are mapped onto the MHD equilibrium and treated as functions of the volume averaged minor radius {rho} on the experimental data time slice monitoring software SLICE. Experimental data are integrated and edited on SLICE. The experimental data measured as the line integral values are transformed by Able inversion. The mapped data are fitted to a functional form and saved to the profile database MAP-DB. SLICE can also read data from MAP-DB and redisplay and transform them. In addition, SLICE can generate the profile data TOKRD as run data for orbit following Monte-Carlo (OFMC) code, analyzer for current drive consistent with MHD equilibrium (ACCOME) code and tokamak predictive and interpretive code system (TOPICS). (author)

  11. A mechanical cooler for dual-temperature applications

    Science.gov (United States)

    Gully, W.; Carrington, H.; Kiehl, W.; Byrne, Kevin

    1998-01-01

    Ball Aerospace has been developing Stirling cycle mechanical cryocoolers specifically for space applications. These coolers are special in that they are designed from the beginning for power efficiency, high reliability, and compatibility with sensitive instruments. We have delivered several of these coolers to NASA Goddard Space Flight Center, and are currently assembling one for the High Resolution Dynamics Limb Sounder (HIRDLS) program. In our current research effort, funded by the Ballistic Missile Defense Organization (BMDO), we are tailoring our basic design to new requirements from the Air Force Research Laboratory and its customers. We describe our success in optimizing a cooler to efficiently provide refrigeration at two different temperatures simultaneously. This two-temperature application requires 0.4 W of cooling at 35 K, and 0.6 W of cooling at 60 K. We have met these requirements with an input power of approximately 70 W from a dc source with a breadboard version of the cooler. We expect to deliver the protoflight version of this cooler to the Air Force Research Laboratory in January 1998.

  12. An algorithm for merging part nodes of JT models exported by FORAN

    Directory of Open Access Journals (Sweden)

    FANG Xiongbing

    2017-05-01

    Full Text Available Many cognominal parts exist in JT models exported by FORAN V70 R2.0 software, and this leads to an increase in time consumption and the space analysis results becoming hard to process when using clearance analysis software to perform distance computing for such JT models. Aiming at this problem, an algorithm for merging component nodes is put forward based on investigating the assembly configuration and inherent information (i.e. geometric and material information of JT models created by FORAN. The method is composed of four steps:coordinate transformation, model node renaming, node geometric data transferring and material attribute processing. Finally, the proposed method is implemented by C++ and JT Open Toolkit. The results show that the new JT models generated by the proposed method are comprised of only one assembly node, and they preserve the intrinsic information of the original JT models. Its validity is illustrated by a great deal of examples, and the content of the worked JT models are reduced by about 7% to 20%.

  13. Micro-cooler enhancements by barrier interface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stephen, A.; Dunn, G. M. [Department of Physics, University of Aberdeen, King' s College, AB24 3UE Aberdeen (United Kingdom); Glover, J.; Oxley, C. H. [Department of Engineering, De Montfort University, Gateway, LE1 9BH Leicester (United Kingdom); Bajo, M. Montes; Kuball, M. [Center for Device Thermography and Reliability, H. H. Wills Physics Laboratory, University of Bristol, BS8 1TL Bristol (United Kingdom); Cumming, D. R. S.; Khalid, A. [School of Engineering, University of Glasgow, Rankine Building, G12 8LT Glasgow (United Kingdom)

    2014-02-15

    A novel gallium arsenide (GaAs) based micro-cooler design, previously analysed both experimentally and by an analytical Heat Transfer (HT) model, has been simulated using a self-consistent Ensemble Monte Carlo (EMC) model for a more in depth analysis of the thermionic cooling in the device. The best fit to the experimental data was found and was used in conjunction with the HT model to estimate the cooler-contact resistance. The cooling results from EMC indicated that the cooling power of the device is highly dependent on the charge distribution across the leading interface. Alteration of this charge distribution via interface extensions on the nanometre scale has shown to produce significant changes in cooler performance.

  14. Micro-cooler enhancements by barrier interface analysis

    Directory of Open Access Journals (Sweden)

    A. Stephen

    2014-02-01

    Full Text Available A novel gallium arsenide (GaAs based micro-cooler design, previously analysed both experimentally and by an analytical Heat Transfer (HT model, has been simulated using a self-consistent Ensemble Monte Carlo (EMC model for a more in depth analysis of the thermionic cooling in the device. The best fit to the experimental data was found and was used in conjunction with the HT model to estimate the cooler-contact resistance. The cooling results from EMC indicated that the cooling power of the device is highly dependent on the charge distribution across the leading interface. Alteration of this charge distribution via interface extensions on the nanometre scale has shown to produce significant changes in cooler performance.

  15. Exergoeconomic, enviroeconomic and sustainability analyses of a novel air cooler

    Energy Technology Data Exchange (ETDEWEB)

    Caliskan, Hakan [Department of Mechanical Engineering, Faculty of Engineering, Ege University (Turkey)], email: hakan.caliskan@ege.edu.tr; Dincer, Ibrahim [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (Canada)], email: Ibrahim.Dincer@uoit.ca; Hepbasli, Arif [Department of Mechanical Engineering, College of Engineering, King Saud University (Saudi Arabia)], email: ahepbasli.c@ksu.edu.sa

    2011-07-01

    With the energy crisis and the rising concerns about the environment, energy-saving measures are urgently needed. In the building sector, air conditioning systems consume important amounts of energy and a new evaporative air cooler system has been developed. This system is based on the Maisotsenko cycle and aims at providing comfortable indoor conditions for low energy consumption and with high efficiency. The objective of this paper is to present the analysis of the energy, exergy, environmental, exergoeconomic, enviroeconomic and sustainability performances of this novel air cooler. The different analyses were carried out for 9 dead state temperatures from 0 to 37.77 degree celsius. Results of all the different analyses performed are provided herein. This study provided useful information on the performance of the Maisotsenko cycle-based air cooler system and showed the originality of the system.

  16. New Regenerator Materials for use in pulse tube coolers

    Energy Technology Data Exchange (ETDEWEB)

    A. Kashani; B.P.M. Helvensteijn; P. Kittel; K.A. Gschneidner,jr; V.K. Pecharsky; A.O. Pecharsky

    2004-09-30

    A two-stage pulse tube cooler driven by a linear compressor is being developed to provide cooling at 20 K. The first stage of the cooler will have the conventional stainless steel screen regenerator matrix. The matrix for the second stage regenerator (<60 K) will be made from a new class of Er based alloys which was recently developed at Ames Laboratory, in Ames, Iowa. These alloys exhibit heat capacities that exceed that of all other materials, including lead, over a Wide range in temperature (15 K < T C 85 K). The performance of one such alloy was shown to be better than lead when tested in a single-stage pulse tube cooler driven by a G-M compressor and operating at 2 Hz. An effort is underway to establish their suitability at frequencies above 40 IIZ. An approach to testing these alloys at low temperatures while using a low-power linear compressor is presented.

  17. USE OF PELTIER COOLERS AS SOIL HEAT FLUX TRANSDUCERS.

    Science.gov (United States)

    Weaver, H.L.; Campbell, G.S.

    1985-01-01

    Peltier coolers were modified and calibrated to serve as soil heat flux transducers. The modification was to fill their interiors with epoxy. The average calibration constant on 21 units was 13. 6 plus or minus 0. 8 kW m** minus **2 V** minus **1 at 20 degree C. This sensitivity is about eight times that of the two thermopile transducers with which comparisons were made. The thermal conductivity of the Peltier cooler transducers was 0. 4 W m** minus **1 degree C** minus **1, which is comparable to that of dry soil.

  18. Investigations of waste heat recovery from bulk milk cooler

    OpenAIRE

    S.N. Sapali; S.M. Pise; A.T. Pise; D.V. Ghewade

    2014-01-01

    Bulk milk coolers are used to chill the milk from its harvest temperature of 35–4 °C to arrest the bacterial growth and maintain the quality of harvested milk. Milk chilling practices are energy intensive with low coefficient of performance (COP) of about 3.0. Increased energy cost concern encouraged an investigation of heat recovery from bulk milk cooler as one conservation alternative for reducing water heating cost in dairy industry. Heat dissipated to atmosphere through condenser is recov...

  19. Electrocaloric cooler combining ceramic multi-layer capacitors and fluid

    Directory of Open Access Journals (Sweden)

    Daniele Sette

    2016-09-01

    Full Text Available In this paper, an electrocaloric (EC cooler prototype made of 150 ceramic-based Multi-Layer Capacitors (MLCs has been detailed. This cooler involves a column of dielectric fluid where heat exchange with the MLCs takes place. The maximum variation of temperature in the fluid column due to the EC effect reaches 0.13 K whereas the heat exchanged during one stroke is 0.28 J. Although this prototype requires improvements with respect to heat exchange, the basic principle of creating a temperature gradient in a column of fluid has been validated.

  20. Simulations of space charge neutralization in a magnetized electron cooler

    Energy Technology Data Exchange (ETDEWEB)

    Gerity, James [Texas A-M; McIntyre, Peter M. [Texas A-M; Bruhwiler, David Leslie [RadiaSoft, Boulder; Hall, Christopher [RadiaSoft, Boulder; Moens, Vince Jan [Ecole Polytechnique, Lausanne; Park, Chong Shik [Fermilab; Stancari, Giulio [Fermilab

    2017-02-02

    Magnetized electron cooling at relativistic energies and Ampere scale current is essential to achieve the proposed ion luminosities in a future electron-ion collider (EIC). Neutralization of the space charge in such a cooler can significantly increase the magnetized dynamic friction and, hence, the cooling rate. The Warp framework is being used to simulate magnetized electron beam dynamics during and after the build-up of neutralizing ions, via ionization of residual gas in the cooler. The design follows previous experiments at Fermilab as a verification case. We also discuss the relevance to EIC designs.

  1. Market Assessment and Commercialization Strategy for the Radial Sandia Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Shandross, Richard [Navigant Consulting, Inc., Burlington, MA (United States); Weintraub, Daniel [Navigant Consulting, Inc., Burlington, MA (United States); Young, Jim [Navigant Consulting, Inc., Burlington, MA (United States)

    2014-02-01

    This market assessment and commercialization report characterizes and assesses the market potential of the rotating heat exchanger technology developed at Sandia National Laboratories (SNL), known as the Radial Sandia Cooler. The RSC is a novel, motor-driven, rotating, finned heat exchanger technology. The RSC was evaluated for the residential, commercial, industrial, and transportation markets. Recommendations for commercialization were made based on assessments of the prototype RSC and the Sandia Cooler technology in general, as well as an in-depth analysis of the six most promising products for initial RSC commercialization.

  2. Laser pumping of ions in a cooler buncher

    Energy Technology Data Exchange (ETDEWEB)

    Cheal, B., E-mail: bradley.cheal@manchester.ac.uk [University of Manchester (United Kingdom); Baczynska, K. [University of Birmingham, School of Physics and Astronomy (United Kingdom); Billowes, J.; Campbell, P. [University of Manchester (United Kingdom); Eronen, T. [University of Jyvaeskylae, Department of Physics (Finland); Forest, D. H. [University of Birmingham, School of Physics and Astronomy (United Kingdom); Kessler, T.; Moore, I. D. [University of Jyvaeskylae, Department of Physics (Finland); Rueffer, M. [University of Birmingham, School of Physics and Astronomy (United Kingdom); Tordoff, B. [University of Manchester (United Kingdom); Tungate, G. [University of Birmingham, School of Physics and Astronomy (United Kingdom); Aystoe, J. [University of Jyvaeskylae, Department of Physics (Finland)

    2008-01-15

    Optical experiments at the IGISOL isotope separator facility, Jyvaeskylae, have for many years benefited from the introduction of an ion beam cooler. The device, a gas-filled RF quadrupole, reduces the emittance and longitudinal energy spread of the ion beam. Very recently, use has been made of the axial confinement of slowly travelling ions at the end of the cooler to redistribute the electronic populations through efficient laser excitation. Such a technique has proved beneficial to laser spectroscopic measurements and is a precursor to using the method to polarize the ion beam.

  3. CoolerMaster COSMOS S运动版

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    说起前一年的顶级机箱,CoolerMaster COSMOS绝对要算一个。在2008年德国CeBIT展会上,CoolerMaster公司又在该作的基础上推出了COSMOS S运动版,在提供极致散热性能的同时,新的动感机身,触控式按键设计,让COSMOS有一种焕然如新的感觉。

  4. Molecular absorption cryogenic cooler for liquid hydrogen propulsion systems

    Science.gov (United States)

    Klein, G. A.; Jones, J. A.

    1982-01-01

    A light weight, long life molecular absorption cryogenic cooler (MACC) system is described which can use low temperature waste heat to provide cooling for liquid hydrogen propellant tanks for interplanetary spacecraft. Detailed tradeoff studies were made to evaluate the refrigeration system component interactions in order to minimize the mass of the spacecraft cooler system. Based on this analysis a refrigerator system mass of 31 kg is required to provide the .48 watts of cooling required by a 2.3 meter diameter liquid hydrogen tank.

  5. Status of the IUCF Cooler Injector Synchrotron Construction Project

    Science.gov (United States)

    Friesel, D. L.; Lee, S. Y.

    1997-05-01

    Construction of a 2.24 T-m, rapid-cycling booster synchrotron is nearing completion at IUCF. The synchrotron is designed to accelerate protons to 220 MeV and will replace the IUCF isochronous cyclotrons as an injector of polarized light ion beams into the 3.6 T-m electron-cooled storage ring. CIS (Cooler Injector Synchrotron), with a circumference of 1/5th the Cooler ring, will fill the Cooler to about 10^11 protons via ``boxcar" stacking in a few seconds for research. The compact booster design, which can accelerate protons to energies between 60 and 220 MeV, is also well suited for use in proton therapy applications. At 28 months into the construction program, all major ring elements (dipoles, quads, injector linac, RF system) are fabricated, assembled, installed and in some cases, commissioned. Ring beam injection and ramping studies are scheduled to start in May, 1997 and Cooler injection studies are planned for late 1997. The booster design properties, component commissioning results and construction completion schedule will be summarized.

  6. Space Charge Dominated Beams in the Iucf Cooler

    Science.gov (United States)

    Nagaitsev, Sergei

    1995-01-01

    Many present and future accelerator projects require significantly increased brightness of the accelerated and stored beams to make modern nuclear and high energy experiments feasible. In the case of IUCF Cooler it has been stated that there is strong motivation for increased beam intensity to provide the designed luminosity for the future Light Ion Spin Synchrotron. To achieve the desired brightness of the beam one must consider a complex problem involving both effective injection and circumventing various intensity limits. This dissertation is essentially a collection of theoretical models and experimental observations which, taken together, make an attempt to analyze numerous intensity and space charge related effects in the IUCF Cooler. We found that the proton beams in the IUCF Cooler are nearly completely space charge dominated longitudinally. This leads to a number of beam properties, such as coherent synchrotron frequency shift and an absence of decoherence in the synchrotron phase oscillations, which have not been observed before. We observed experimentally that the intensity limit in the IUCF Cooler is a peak current limit due to space charge effects. Beam losses occur due to incoherent transverse effects, such as large space charge tune shift and the formation of tails. In addition to that, a very precise bunched beam current monitor was invented and tested. This device could be used in the future precise nuclear experiments.

  7. Optimal digital control of a Stirling cycle cooler

    Science.gov (United States)

    Feeley, J.; Feeley, P.; Langford, G.

    1990-01-01

    This short paper describes work in progress on the conceptual design of a control system for a cryogenic cooler intended for use aboard spacecraft. The cooler will produce 5 watts of cooling at 65 K and will be used to support experiments associated with the following: earth observation; atmospheric measurements; infrared, x-ray, and gamma-ray astronomy; and magnetic field characterization. The cooler has been designed and constructed for NASA/GSFC by Philips Laboratories and is described in detail. The cooler has a number of unique design features intended to enhance long life and maintenance free operation in space including use of the high efficiency Stirling thermodynamic refrigeration cycle, linear magnetic motors, clearance-seals, and magnetic bearings. The proposed control system design is based on optimal control theory and is targeted for custom integrated circuit implementation. The resulting control system will meet the following mission requirements: efficiency, reliability, optimal thermodynamic, electrical, and mechanical performance; freedom from operator intervention; light weight; and small size.

  8. Commissioning of the LEIR electron cooler with Pb$^{+54}$ ions

    CERN Document Server

    Tranquille, G; Carly, Ch; Prieto, V; Sautier, R; Bubley, A; Parkhomchuk, V; Reva, V; Brizgunov, M; Vedenev, M; Panasyuk, V

    2006-01-01

    The new LEIR cooler with a variable profile of the electron beam and electrostatic bending was commissioned in 2005-2006. In this paper we present our experience with the commissioning of the new device as well as the first results of the ion beam Pb +54 cooling with a high-intensity variable-density electron beam.

  9. Initial Evaluation of a New Electromechanical Cooler for Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, RL

    2002-10-21

    The use of liquid nitrogen (LN{sub 2}) constitutes the current state of the art in cryogenic cooling for high-purity germanium (HPGe) detectors, which are widely used for {gamma}-ray and characteristic X-ray spectroscopy because of their excellent energy discrimination. Use of LN{sub 2} requires a liquid nitrogen supply, cumbersome storage tanks and plumbing, and the frequent attention of personnel to be sure that nitrogen levels are sufficient to maintain the detectors at a sufficiently low operating temperature. Safety hazards also are associated with the use of LN{sub 2}, both because of the potential for severe frostbite on exposure to skin and because it displaces ambient oxygen when it evaporates in closed spaces. Existing electromechanical coolers have, until now, been more expensive to procure and maintain than LN{sub 2} systems. Performance and reliability have also been serious issues because of microphonic degradation of photon energy peak resolution and cooler failures due to compressor oil becoming entrained in the refrigerant. This report describes the results of tests of a new HPGe detector cooling technology, the PerkinElmer ORTEC{reg_sign} Products X-Cooler{trademark} that, according to the manufacturer, significantly reduces the lifetime cost of the cooling system without degradation of the output signal. The manufacturer claims to have overcome cost, performance and reliability problems of older-generation electromechanical coolers, but the product has no significant history of use, and this project is the first independent evaluation of its performance for Total cost savings for the DOE and other agencies that use HPGe systems extensively for safeguards monitoring is expected to be quite significant if the new electromechanical cooler technology is shown to be reliable and if performance characteristics indicate its usefulness for this application. The technology also promises to make HPGe monitoring, characterization and detection available for

  10. Analisis Laju Pendinginan pada Kulkas Thermoelektrik Super Cooler Dibandingkan Sistem Pendingin Konvensional Menggunakan Gas Freon

    OpenAIRE

    Banjarnahor, Hendri Pronoto

    2016-01-01

    It has been designed and analyzed by using a cooling device which was have a Peltier cooler hot side and a cold side using a principle works of Peltier effect . These study analyze and compare the rate-based thermoelectric cooling refrigerator cooler than conventional cooling systems using freon gas. These study also focused on utilizing conventional refrigerator (Air Freon) that have been damaged as the peltier coolers. By using the DC fan on the cooler side to accelerate c...

  11. Fluid flow and heat transfer in Joule-Thomson coolers coupled with infrared detectors

    Science.gov (United States)

    Du, Bingyan; Jia, Weimin

    2011-08-01

    Joule-Thomson coolers have been widely used in infrared detectors with respect to compact, light and low cost. For self-regulating Joule-Thomson cooler, its performance is required to be improved with the development of higher mass and larger diameter of focal plane infrared detectors. Self-regulating Joule-Thomson coolers use a limited supply of high pressure gas to support the cooling of infrared detectors. In order to develop Joule-Thomson coolers with a given volume of stored gas, it is important to study on fluid flow and heat transfer of Joule-Thomson coolers coupled with infrared detectors, especially the starting time of Joule-Thomson coolers. A serial of experiments of Joule-Thomson coolers coupled with 128×128 focal plane infrared detectors have been carried out. The exchanger of coolers are made of a d=0.5mm capillary finned with a copper wire. The coolers are self-regulated by bellows and the diameters are about 8mm. Nitrogen is used as working gas. The effect of pressure of working gas has been studied. The relation between starting time and pressure of working gas is proved to fit exponential decay. Error analysis has also been carried. It is crucial to study the performance of Joule-Thomson coolers coupled with infrared detectors. Deeper research on Joule-Thomson coolers will be carried on to improve the Joule-Thomson coolers for infrared detectors.

  12. 46 CFR 182.422 - Integral and non-integral keel cooler installations.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Integral and non-integral keel cooler installations. 182... VESSELS (UNDER 100 GROSS TONS) MACHINERY INSTALLATION Specific Machinery Requirements § 182.422 Integral and non-integral keel cooler installations. (a) A keel cooler installation used for engine cooling...

  13. 46 CFR 128.430 - Non-integral keel cooler installations.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Non-integral keel cooler installations. 128.430 Section... MARINE ENGINEERING: EQUIPMENT AND SYSTEMS Design Requirements for Specific Systems § 128.430 Non-integral keel cooler installations. (a) Each hull penetration for a non-integral keel cooler installation must...

  14. 46 CFR 169.608 - Non-integral keel cooler installations

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Non-integral keel cooler installations 169.608 Section... SCHOOL VESSELS Machinery and Electrical Internal Combustion Engine Installations § 169.608 Non-integral keel cooler installations (a) Hull penetrations for non-integral keel cooler installations must be made...

  15. Plasma-beam traps and radiofrequency quadrupole beam coolers.

    Science.gov (United States)

    Maggiore, M; Cavenago, M; Comunian, M; Chirulotto, F; Galatà, A; De Lazzari, M; Porcellato, A M; Roncolato, C; Stark, S; Caruso, A; Longhitano, A; Cavaliere, F; Maero, G; Paroli, B; Pozzoli, R; Romé, M

    2014-02-01

    Two linear trap devices for particle beam manipulation (including emittance reduction, cooling, control of instabilities, dust dynamics, and non-neutral plasmas) are here presented, namely, a radiofrequency quadrupole (RFQ) beam cooler and a compact Penning trap with a dust injector. Both beam dynamics studies by means of dedicated codes including the interaction of the ions with a buffer gas (up to 3 Pa pressure), and the electromagnetic design of the RFQ beam cooler are reported. The compact multipurpose Penning trap is aimed to the study of multispecies charged particle samples, primarily electron beams interacting with a background gas and/or a micrometric dust contaminant. Using a 0.9 T solenoid and an electrode stack where both static and RF electric fields can be applied, both beam transport and confinement operations will be available. The design of the apparatus is presented.

  16. Growth of Chrysomya megacephala (Fabricius) maggots in a morgue cooler.

    Science.gov (United States)

    Thevan, Kumara; Ahmad, Abu Hassan; Rawi, Che Salmah Md; Singh, Bhupinder

    2010-11-01

    In estimating the postmortem interval (PMI) using maggots obtained during autopsy, the forensic entomologist makes decisions regarding the effects of low-temperature storage of the body on the insects. In this case report, a corpse was found in an abandoned house in the residential area of Bukit Mertajam, Penang, Malaysia. The maggots were found to be alive inside the mouth of the deceased although the corpse had been in the morgue cooler for 12 days. The maggots were reared and identified as Chrysomya megacephala (Fabricius). The emerged adult flies were kept as a stock colony, and the duration of development under the indoor fluctuating temperature regime was studied. The total duration of developmental process of this species was 9.5 ± 0.5 days, and the PMI estimated was 3.2 ± 0.6 days. This case report demonstrates the survival of Ch. megacephala maggots for 12 days and their growth inside the morgue cooler.

  17. Vortex Pressure-Reducing Desuperheating Plants and Steam Coolers

    Directory of Open Access Journals (Sweden)

    V. Kascheev

    2012-01-01

    Full Text Available The authors have developed and tested the entire device class that appeared as a result of fundamental investigations of multiphase flows in centrifugal force fields, understanding of process mechanism occurring in them and their mathematical description for optimization. Method for reduction of pressure and steam temperature in vortex pressure-reducing desuperheating plants and steam coolers has been proposed for the first time in the paper.

  18. Rahoitusselvitys aloittelevalle pk-yritykselle : Case: Pets Cooler

    OpenAIRE

    Uotinen, Emmi

    2013-01-01

    Tarkoituksena oli selvittää erilaisia rahoitusvaihtoehtoja aloittelevalle pienelle ja keskisuurelle yritykselle. Opinnäytetyön tavoite oli helpottaa toimeksiantajayrityksen Pets Cooler rahoituslähteiden valintaa. Yritystoiminnan on tarkoitus käynnistyä mahdollisimman nopeasti, ja selvitys on tukena aloituksessa. Toimeksiantaja halusi käsiteltävän myös kansainvälisen liiketoiminnan rahoitusta. Vienti ja mahdollisesti myös ulkomailla tapahtuva tuotanto on yrityksen haaveena tulevaisuudessa. ...

  19. Addressing Water Consumption of Evaporative Coolers with Greywater

    OpenAIRE

    Sahai, Rashmi

    2013-01-01

    Evaporative coolers (ECs) provide significant gains in energy efficiency compared to vapor compression air conditioners, but simultaneously have significant onsite water demand. This can be a major barrier to deployment in areas of the world with hot and arid climates. To address this concern, this study determined where in the world evaporative cooling is suitable, the water consumption of ECs in these cities, and the potential that greywater can be used reduce the consumption of potable wat...

  20. Numerical simulation of a semi-indirect evaporative cooler

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R. Herrero [Departamento de Ingenieria Termica y de Fluidos, Universidad Politecnica de Cartagena, C/Dr. Fleming, s/n (Campus Muralla), 30202 Cartagena, Murcia (Spain)

    2009-11-15

    This paper presents the experimental study and numerical simulation of a semi-indirect evaporative cooler (SIEC), which acts as an energy recovery device in air conditioning systems. The numerical simulation was conducted by applying the CFD software FLUENT implementing a UDF to model evaporation/condensation. The numerical model was validated by comparing the simulation results with experimental data. Experimental data and numerical results agree for the lower relative humidity series but not for higher relative humidity values. (author)

  1. Cooler storage ring accomplished at heavy ion facility in Lanzhou

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFLCSR),a flagship facility of basic research in China,passed the acceptance check under auspices of the State Development and Reform Commission on 30 July in Lanzhou,capital of Gansu Province.The event was jointly presided over by the Commission's Vice Minister ZHANG Xiaoqian and CAS Executive Vice President BAI Chunli.

  2. Six Sigma methods applied to cryogenic coolers assembly line

    Science.gov (United States)

    Ventre, Jean-Marc; Germain-Lacour, Michel; Martin, Jean-Yves; Cauquil, Jean-Marc; Benschop, Tonny; Griot, René

    2009-05-01

    Six Sigma method have been applied to manufacturing process of a rotary Stirling cooler: RM2. Name of the project is NoVa as main goal of the Six Sigma approach is to reduce variability (No Variability). Project has been based on the DMAIC guideline following five stages: Define, Measure, Analyse, Improve, Control. Objective has been set on the rate of coolers succeeding performance at first attempt with a goal value of 95%. A team has been gathered involving people and skills acting on the RM2 manufacturing line. Measurement System Analysis (MSA) has been applied to test bench and results after R&R gage show that measurement is one of the root cause for variability in RM2 process. Two more root causes have been identified by the team after process mapping analysis: regenerator filling factor and cleaning procedure. Causes for measurement variability have been identified and eradicated as shown by new results from R&R gage. Experimental results show that regenerator filling factor impacts process variability and affects yield. Improved process haven been set after new calibration process for test bench, new filling procedure for regenerator and an additional cleaning stage have been implemented. The objective for 95% coolers succeeding performance test at first attempt has been reached and kept for a significant period. RM2 manufacturing process is now managed according to Statistical Process Control based on control charts. Improvement in process capability have enabled introduction of sample testing procedure before delivery.

  3. Storage-ring Electron Cooler for Relativistic Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Fanglei [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Douglas, David R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Guo, Jiquan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Johnson, Rolland P. [Muons Inc., Batavia, IL (United States); Krafft, Geoffrey A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storage-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This paper reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the electron beam. The necessary energy difference is provided by an energy recovering SRF structure. A prototype linear optics of such storage-ring cooler is presented.

  4. Digital control of magnetic bearings in a cryogenic cooler

    Science.gov (United States)

    Feeley, J.; Law, A.; Lind, F.

    1990-01-01

    This paper describes the design of a digital control system for control of magnetic bearings used in a spaceborne cryogenic cooler. The cooler was developed by Philips Laboratories for the NASA Goddard Space Flight Center. Six magnetic bearing assemblies are used to levitate the piston, displacer, and counter-balance of the cooler. The piston and displacer are driven by linear motors in accordance with Stirling cycle thermodynamic principles to produce the desired cooling effect. The counter-balance is driven by a third linear motor to cancel motion induced forces that would otherwise be transmitted to the spacecraft. An analog control system is currently used for bearing control. The purpose of this project is to investigate the possibilities for improved performance using digital control. Areas for potential improvement include transient and steady state control characteristics, robustness, reliability, adaptability, alternate control modes, size, weight, and cost. The present control system is targeted for the Intel 80196 microcontroller family. The eventual introduction of application specific integrated circuit (ASIC) technology to this problem may produce a unique and elegant solution both here and in related industrial problems.

  5. Performance evaluation of indirect evaporative cooler using clay pot

    Science.gov (United States)

    Ramkumar, R.; Ragupathy, A.

    2016-05-01

    The aim of the experimental study is to investigate the performance of indirect evaporator cooler in hot and humid regions. A novel approach is implemented in the cooler using clay pot with different position (single, double and three pots) and different orientation as aligned and staggered position for potential and feasibility study. The clay pot is the ceramic material where the water filled inside the pot and due to the property of porosity, the water comes outer surface of the pot and contact with the air passing over the pot surface and air get cooled. A test rig was designed and fabricated to collect experimental data. The clay pots were arranged in aligned and staggered position. In our study heat transfer was analysed with various air velocity of 1m/s to 5m/s. The air temperature, relative humidity, pressure drop and effectiveness were measured and the performance of the evaporative cooler was evaluated. The analysis of the data indicated that cooling effectiveness improve with decrease of air velocity at staggered position. It was shown that staggered position has the higher performance (57%) at 1 m/s air velocity comparison with aligned position values at three pots position.

  6. Antimisting kerosene JT3 engine fuel system integration study

    Science.gov (United States)

    Fiorentino, A.

    1987-01-01

    An analytical study and laboratory tests were conducted to assist NASA in determining the safety and mission suitability of the modified fuel system and flight tests for the Full-Scale Transport Controlled Impact Demonstration (CID) program. This twelve-month study reviewed and analyzed both the use of antimisting kerosene (AMK) fuel and the incorporation of a fuel degrader on the operational and performance characteristics of the engines tested. Potential deficiencies and/or failures were identified and approaches to accommodate these deficiencies were recommended to NASA Ames -Dryden Flight Research Facility. The result of flow characterization tests on degraded AMK fuel samples indicated levels of degradation satisfactory for the planned missions of the B-720 aircraft. The operability and performance with the AMK in a ground test engine and in the aircraft engines during the test flights were comparable to those with unmodified Jet A. For the final CID test, the JT-3C-7 engines performed satisfactorily while operating on AMK right up to impact.

  7. Development of the centrifugal pellet injector for JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Kizu, Kaname; Hiratsuka, Hajime; Ichige, Hisashi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    2001-03-01

    For core fueling of JT-60U plasmas, a repetitive pellet injector which centrifugally accelerates D{sub 2} cubic pellets using a straight rod has been developed. This centrifugal pellet injector can eject trains of up to 40 cubic pellets at frequencies of 1-10 Hz and velocities of 0.3-1.0 km/s. The average pellet mass is 3.6x10{sup 20} atoms/pellet below 0.7 m/s. Key techniques for the development were a mesh structured acceleration component for removing gas sublimated from the pellet and a funnel with an appropriate angle connected just behind the acceleration chamber for introducing the pellet to plasma without destruction. Using the mesh structured components, the horizontal angular distribution of pellets ejected became narrow, because irregular pellet motion caused by sublimated gas was reduced. To investigate the performance of the injector, pellet injection experiments from the low magnetic field side (LFS) were conducted using ohmic heating plasmas. Central fueling and enhanced fueling rate have been observed. D{alpha} intensity around the divertor region was reduced in a pellet injection plasma compared to gas puffing, indicating low recycling rate was maintained with the pellet injection. (author)

  8. 预冷、冷藏运输和销售方法对青花菜品质的影响%Effect of pre-cooling, low temperature transportation and retailing methods on quality of broccoli 

    Institute of Scientific and Technical Information of China (English)

    颜丽萍; 刘升; 饶先军

    2012-01-01

    The effects were studied of pressure pre-cooling and coidroom pre-caoting, 1 day transportation with expanded polystyrene case into top icing at 0℃, 2 days retails packed with and without shrink film in 4℃ and 20 ,C , humidifying at 20℃ on the quality of broccoli. The results showed that the pressure pre-cooling rate of broccoli was faster than that of room pre-cooling. After 1 day transportation with expanded polystyrene case into top icing at 0℃ t the quality of broccoli retailed in 4℃ was better than that at 20℃ . the quality of broccoli packed with shrink film was better than that with" out shrink film. The methods of cold chain logistics of broccoli applied pressure pre-cooling, transportation with expanded polystyrene case into top icing at 0℃ and 2 days retail packed with shrink film in 4℃ were the best. Its sensory evaluation, weight loss, the contents of chlorophyll, Vc, soluble protein and soluble sugar of broccoli were 4. 3, 2,23%, 42.56 mg/100 g, 167.27 mg/100 g, 535 mg/ 100g and 1.03%. respectively.%研究压差顸冷和冷库预冷,聚苯乙烯泡沫箱加冰0℃冷藏运输1d,4℃和20℃加收缩膜和不加收缩膜包装及20℃加湿销售2d青花菜品质的变化.结果表明:压差预冷青花菜的预冷速度快于冷库预冷;聚苯乙烯泡沫箱加冰冷藏运输1d后,4℃销售的青花菜品质好于在20℃下销售青花菜的品质,加收缩膜包装青花菜的品质好于无收缩膜包装青花菜的品质,其失重率和营养损失少.青花菜压差预冷、聚苯乙烯泡沫箱加冰0℃冷藏运输和4℃用收缩膜包装销售2d的冷链物流方法最好,其冷链物流后的青花菜感官评价、失重率、叶绿素含量、Vc含量、可溶性蛋白含量、可溶性糖含量分别为4.3、2.23%、42.56 mg/100 g、167.27 mg/100 g、535 mg/100 g和1.03%.

  9. Discussion of the question on the cooked food of vacuum PRE-cooling machine%熟食品真空预冷机标准问题的论述

    Institute of Scientific and Technical Information of China (English)

    范磊; 李保国; 苏树强; 雷海斌

    2012-01-01

    首先对熟食品真空预冷的理论意义、实践意义以及国内外的研究现状进行论述;其次对开发熟食品真空预冷机过程中需要解决的难题、主要技术指标进行说明;再次通过对国内的食品标准发展环境的阐述解释了制定熟食品真空预冷机标准的必要性;第四是对拟定的熟食品真空预冷机标准所包括主要内容的描述;最后对熟食品真空预冷机标准的发展前景进行展望。%This article first discussed the cooked food's vacuum rapid cooling of the theoretical and practical significance and research status at home and abroad.Second,the problems of the development process of the cooked food rapid cooling machines,the major technical indicators were explained.Once again on talking domestic food standards development environment to explain developping cold cooked food vacuum machine standards was necessary.Fourth was the pre-cooling of cooked food vacuum machine standards' main content's description.Finally,the vacuum pre-cooling machine cooked food standards and future development.

  10. 6D “Garren” snake cooler and ring cooler for µ{sup ±} cooling of a muon collider

    Energy Technology Data Exchange (ETDEWEB)

    Ding, X., E-mail: xding@bnl.gov [UCLA, Los Angeles, CA 90095 (United States); Berg, J.S. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Cline, D. [UCLA, Los Angeles, CA 90095 (United States); Garren, Al [Particle Beam Lasers, Inc., Northridge, CA 91324 (United States); Kirk, H.G. [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2014-12-21

    Six dimensional cooling of large emittance µ{sup +} and µ{sup −} beams is required in order to obtain the desired luminosity for a muon collider. In our previous study, we demonstrated that a 6D “Garren” ring cooler using both dipoles and solenoids in four 90{sup 0} achromatic arcs can give substantial cooling in all six phase space dimensions. In this paper, we describe the injection/extraction requirements of this four-sided ring. We also present the performance of an achromat-based 6D “Garren” snake cooler. The achromatic design permits the design to easily switch between a closed ring and a snaking geometry on injection or extraction from the ring.

  11. Dry coolers and air-condensing units (Review)

    Science.gov (United States)

    Milman, O. O.; Anan'ev, P. A.

    2016-03-01

    The analysis of factors affecting the growth of shortage of freshwater is performed. The state and dynamics of the global market of dry coolers used at electric power plants are investigated. Substantial increase in number and maximum capacity of air-cooled condensers, which have been put into operation in the world in recent years, are noted. The key reasons facilitating the choice of developers of the dry coolers, in particular the independence of the location of thermal power plant from water sources, are enumerated. The main steam turbine heat removal schemes using air cooling are considered, their comparison of thermal efficiency is assessed, and the change of three important parameters, such as surface area of heat transfer, condensate pump flow, and pressure losses in the steam exhaust system, are estimated. It is shown that the most effective is the scheme of direct steam condensation in the heat-exchange tubes, but other schemes also have certain advantages. The air-cooling efficiency may be enhanced much more by using an air-cooling hybrid system: a combination of dry and wet cooling. The basic applied constructive solutions are shown: the arrangement of heat-exchange modules and the types of fans. The optimal mounting design of a fully shopassembled cooling system for heat-exchange modules is represented. Different types of heat-exchange tubes ribbing that take into account the operational features of cooling systems are shown. Heat transfer coefficients of the plants from different manufacturers are compared, and the main reasons for its decline are named. When using evaporative air cooling, it is possible to improve the efficiency of air-cooling units. The factors affecting the faultless performance of dry coolers (DC) and air-condensing units (ACU) and the ways of their elimination are described. A high velocity wind forcing reduces the efficiency of cooling systems and creates preconditions for the development of wind-driven devices. It is noted that

  12. Performance analysis of a miniature Joule-Thomson cryocooler with and without the distributed J-T effect

    Science.gov (United States)

    Damle, Rashmin; Atrey, Milind

    2015-12-01

    Cryogenic temperatures are obtained with Joule-Thomson (J-T) cryocoolers in an easier way as compared to other cooling techniques. Miniature J-T cryocoolers are often employed for cooling of infrared sensors, cryoprobes, biological samples, etc. A typical miniature J-T cryocooler consists of a storage reservoir/compressor providing the high pressure gas, a finned tube recuperative heat exchanger, an expansion valve/orifice, and the cold end. The recuperative heat exchanger is indispensable for attaining cryogenic temperatures. The geometrical parameters and the operating conditions of the heat exchanger drastically affect the cryocooler performance in terms of cool down time and cooling effect. In the literature, the numerical models for the finned recuperative heat exchanger have neglected the distributed J-T effect. The distributed J-T effect accounts for the changes in enthalpy of the fluid due to changes of pressure in addition to those due to changes of temperature. The objective of this work is to explore the distributed J-T effect and study the performance of a miniature J-T cryocooler with and without the distributed J-T effect. A one dimensional transient model is employed for the numerical analysis of the cryocooler. Cases with different operating conditions are worked out with argon and nitrogen as working fluids.

  13. Atomic and molecular processes in JT-60U divertor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Takenaga, H.; Shimizu, K.; Itami, K. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1997-01-01

    Atomic and molecular data are indispensable for the understanding of the divertor characteristics, because behavior of particles in the divertor plasma is closely related to the atomic and molecular processes. In the divertor configuration, heat and particles escaping from the main plasma flow onto the divertor plate along the magnetic field lines. In the divertor region, helium ash must be effectively exhausted, and radiation must be enhanced for the reduction of the heat load onto the divertor plate. In order to exhaust helium ash effectively, the difference between behavior of neutral hydrogen (including deuterium and tritium) and helium in the divertor plasma should be understood. Radiation from the divertor plasma generally caused by the impurities which produced by the erosion of the divertor plate and/or injected by gas-puffing. Therefore, it is important to understand impurity behavior in the divertor plasma. The ions hitting the divertor plate recycle through the processes of neutralization, reflection, absorption and desorption at the divertor plates and molecular dissociation, charge-exchange reaction and ionization in the divertor plasma. Behavior of hydrogen, helium and impurities in the divertor plasmas can not be understood without the atomic and molecular data. In this report, recent results of the divertor study related to the atomic and molecular processes in JT-60U were summarized. Behavior of neural deuterium and helium was discussed in section 2. In section 3, the comparisons between the modelling of the carbon impurity transport and the measurements of C II and C IV were discussed. In section 4, characteristics of the radiative divertor using Ne puffing were reported. The new diagnostic method for the electron density and temperature in the divertor plasmas using the intensity ratios of He I lines was described in section 5. (author)

  14. Study on the electron-cyclotron-emission diagnostics on JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Cheol Kyu [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-09-01

    Diagnostic system for electron cyclotron emission(ECE) in JT-60 have been surveyed. At JT-60 there are three different ECE-systems: a Fourier transformed spectroscopy system(FTS), a grating polycromater system(GPS), and a heterodyne radiometer system(HRS). Each of the systems has been examined to understand the instrumental feature with much attention to the sensitivity and the resolution. FTS has been studied with particular interest because of its continuous and wide spectral coverage and reliable characteristics for calibration. Some topics in instrumentation for FTS are discussed to get an insight on the system specifications optimal for tokamak experiments. Finally, experimental results of FTS with black body radiation at liquid-nitrogen temperature are described in connection with the calibration of the light guiding system for ECE from JT-60 plasma. 14 refs. (Author).

  15. Electron cyclotron emission diagnostic systems for electron temperature perturbation measurement in JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Isayama, Akihiko; Isei, Nobuaki; Ishida, Shinichi; Sato, Minoru [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2000-03-01

    Three systems are now operational in JT-60U tokamak for the measurement of electron cyclotron emissions. They are the Fourier transform spectrometer, 20 channels grating polychrometer, and 24 channels heterodyne radiometer. The first system has been absolutely calibrated, and used in the relative calibration of remaining two systems. The paper describes major specifications and recent upgrading of each system. In JT-60U experiments, the heterodyne radiometer system is mainly used for electron temperature perturbations with high signal-to-noise ratio. One of the disadvantage of this system is that the measurement points uniquely determined by the toroidal field, and thus cannot be chosen freely. In the experiment the third system, grating polychrometer, which allows free choice of measurement points, is used to cover the wide cross-section of the JT-60U plasma. (author)

  16. Laser spectroscopy of gallium isotopes using the ISCOOL RFQ cooler

    CERN Multimedia

    Blaum, K; Kowalska, M; Ware, T; Procter, T J

    2007-01-01

    We propose to study the radioisotopes of gallium (Z=31) by collinear laser spectroscopy using the ISCOOL RFQ ion cooler. The proposed measurements on $^{62-83}$Ga will span both neutron-deficient and neutron-rich isotopes. Of key interest is the suggested development of a proton-skin in the neutron-deficient isotopes. The isotope shifts measured by laser spectroscopy will be uniquely sensitive to this feature. The measurements will also provide a wealth of new information on the gallium nuclear spins, static moments and nuclear charge radii.

  17. Integral finned heater and cooler for stirling engines

    Science.gov (United States)

    Corey, John A.

    1984-01-01

    A piston and cylinder for a Stirling engine and the like having top and bottom meshing or nesting finned conical surfaces to provide large surface areas in close proximity to the working gas for good thermal (addition and subtraction of heat) exchange to the working gas and elimination of the usual heater and cooler dead volume. The piston fins at the hot end of the cylinder are perforated to permit the gas to pass into the piston interior and through a regenerator contained therein.

  18. JT-60 configuration parameters for feedback control determined by regression analysis

    Science.gov (United States)

    Matsukawa, Makoto; Hosogane, Nobuyuki; Ninomiya, Hiromasa

    1991-12-01

    The stepwise regression procedure was applied to obtain measurement formulas for equilibrium parameters used in the feedback control of JT-60. This procedure automatically selects variables necessary for the measurements, and selects a set of variables which are not likely to be picked up by physical considerations. Regression equations with stable and small multicollinearity were obtained and it was experimentally confirmed that the measurement formulas obtained through this procedure were accurate enough to be applicable to the feedback control of plasma configurations in JT-60.

  19. Investigations of waste heat recovery from bulk milk cooler

    Directory of Open Access Journals (Sweden)

    S.N. Sapali

    2014-11-01

    Full Text Available Bulk milk coolers are used to chill the milk from its harvest temperature of 35–4 °C to arrest the bacterial growth and maintain the quality of harvested milk. Milk chilling practices are energy intensive with low coefficient of performance (COP of about 3.0. Increased energy cost concern encouraged an investigation of heat recovery from bulk milk cooler as one conservation alternative for reducing water heating cost in dairy industry. Heat dissipated to atmosphere through condenser is recovered to improve the energy efficiency of plant. The waste heat is utilized to heat the water which is used to clean the milk processing equipments thus saving thermal or electrical energy used to heat the water separately. Shell and coil type heat exchanger is designed and used to recover the waste heat during condensation process. Heat rejected in condensation process consists of superheat and latent heat of the refrigerant. In this work, attempt has been made to recover complete superheat along with part of latent heat which is a present research issue. The results show that complete superheat and 35% of latent heat is recovered. Heat recovery rate is measured for various mass flow rates. Water is flowing on shell side and refrigerant through tubes. The effectiveness of the heat exchanger is determined and the results achieved are presented in this paper. Significant improvements have been achieved and COP of the system is increased from 3 to 4.8.

  20. CFD modeling of thermoelectric generators in automotive EGR-coolers

    Science.gov (United States)

    Högblom, Olle; Andersson, Ronnie

    2012-06-01

    A large amount of the waste heat in the exhaust gases from diesel engines is removed in the exhaust gas recirculation (EGR) cooler. Introducing a thermoelectric generator (TEG) in an EGR cooler requires a completely new design of the heat exchanger. To accomplish that a model of the TEG-EGR system is required. In this work, a transient 3D CFD model for simulation of gas flow, heat transfer and power generation has been developed. This model allows critical design parameters in the TEG-EGR to be identified and design requirements for the systems to be specified. Besides the prediction of Seebeck, Peltier, Thomson and Joule effects, the simulations also give detailed insight to the temperature gradients in the gas-phase and inside the thermoelectric (TE) elements. The model is a very valuable tool to identify bottlenecks, improve design, select optimal TE materials and operating conditions. The results show that the greatest heat transfer resistance is located in the gas phase and it is critical to reduce this in order to achieve a large temperature difference over the thermoelectric elements without compromising on the maximum allowable pressure drop in the system. Further results from an investigation of the thermoelectric performance during a vehicle test cycle is presented.

  1. Storage-ring Electron Cooler for Relativistic Ion Beams

    CERN Document Server

    Lin, F; Douglas, D; Guo, J; Johnson, R P; Krafft, G; Morozov, V S; Zhang, Y

    2016-01-01

    Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storage-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This paper reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the...

  2. Solar-Powered Cooler and Heater for an Automobile Interior

    Science.gov (United States)

    Howard, Richard T.

    2006-01-01

    The apparatus would include a solar photovoltaic panel mounted on the roof and a panellike assembly mounted in a window opening. The window-mounted assembly would include a stack of thermoelectric devices sandwiched between two heat sinks. A fan would circulate interior air over one heat sink. Another fan would circulate exterior air over the other heat sink. The fans and the thermoelectric devices would be powered by the solar photovoltaic panel. By means of a double-pole, double-throw switch, the panel voltage fed to the thermoelectric stack would be set to the desired polarity: For cooling operation, the chosen polarity would be one in which the thermoelectric devices transport heat from the inside heat sink to the outside one; for heating operation, the opposite polarity would be chosen. Because thermoelectric devices are more efficient in heating than in cooling, this apparatus would be more effective as a heater than as a cooler. However, if the apparatus were to include means to circulate air between the outside and the inside without opening the windows, then its effectiveness as a cooler in a hot, sunny location would be increased.

  3. Tuned dynamic absorber for split Stirling cryogenic cooler

    Science.gov (United States)

    Veprik, Alexander; Tuito, Avi

    2016-05-01

    Tuned dynamic absorbers (TDA) find use, in particular, for attenuating tonal vibration export produced by the moving components of cryogenic cooler. For the best performance, the resonant frequency of TDA needs to be essentially equal the driving frequency; accurate frequency match is favorably achieved by minimizing the cooler induced vibration by adjusting the driving frequency. For the best performance, the design of TDA needs to ensure minimum damping ratio; this is achievable by using planar flexural bearings having zero friction anchoring features. Accurate evaluation of effective mass, damping ratio and frequency is needed for TDA characterization during development and manufacturing. This data may be also important for the dynamic modelling. The authors are exploring the express method requiring no physical access to the proof mass of TDA. In this approach, the TDA is mounted upon the low frequency vibration mounted rod, the dynamic properties of TDA are then evaluated using the frequency response function - local accelerance - captured on the above rod using accelerometer, instrumented modal hammer and dual-channel signal analyzer. The authors are presenting the TDA design, outcomes of full-scale experimentation on dynamic properties evaluation and attained performance.

  4. Convective heat transfer in engine coolers influenced by electromagnetic fields

    Science.gov (United States)

    Karcher, C.; Kühndel, J.

    2017-08-01

    In engine coolers of off-highway vehicles, convective heat transfer at the coolant side limits both efficiency and performance density of the apparatus. Here, due to restrictions in construction and design, backwater areas and stagnation regions cannot be avoided. Those unwanted changes in flow characteristics are mainly triggered by flow deflections and sudden cross-sectional expansions. In application, mixtures of water and glysantine are used as appropriate coolants. Such coolants typically show an electrical conductivity of a few S/m. Coolant flow and convective heat transfer can then be controlled using Lorentz forces. These body forces are generated within the conducting fluid by the interactions of an electrical current density and a localized magnetic field, both of which are externally superimposed. In future application, this could be achieved by inserting electrodes in the cooler wall and a corresponding arrangement of permanent magnets. In this paper we perform numerical simulations of such magnetohydrodynamic flow in three model geometries that frequently appear in engine cooling applications: Carnot-Borda diffusor, 90° bend, and 180° bend. The simulations are carried out using the software package ANSYS Fluent. The present study demonstrates that, depending on the electromagnetic interaction parameter and the specific geometric arrangement of electrodes and magnetic field, Lorentz forces are suitable to break up eddy waters and separation zones and thus significantly increase convective heat transfer in these areas. Furthermore, the results show that hydraulic pressure losses can be reduced due to the pumping action of the Lorentz forces.

  5. Experimental research on thermoelectric cooler for imager camera thermal control

    Science.gov (United States)

    Hu, Bing-ting; Kang, Ao-feng; Fu, Xin; Jiang, Shi-chen; Dong, Yao-hai

    2013-09-01

    Conventional passive thermal design failed to satisfy CCD's temperature requirement on a geostationary earth orbit satellite Imager camera because of the high power and low working temperature, leading to utilization of thermoelectric cooler (TEC) for heat dissipation. TEC was used in conjunction with the external radiator in the CCDs' thermal design. In order to maintain the CCDs at low working temperature, experimental research on the performance of thermoelectric cooler was necessary and the results could be the guide for the application of TEC in different conditions. The experimental system to evaluate the performance of TEC was designed and built, consisting of TEC, heat pipe, TEC mounting plate, radiator and heater. A series of TEC performance tests were conducted for domestic and oversea TECs in thermal vacuum environment. The effects of TEC's mounting, input power and heat load on the temperature difference of TEC's cold and hot face were explored. Results demonstrated that the temperature difference of TEC's cold and hot face was slightly increased when TEC's operating voltage reached 80% of rating voltage, which caused the temperature rise of TEC's hot face. It recommended TEC to operate at low voltage. Based on experiment results, thermal analysis indicated that the temperature difference of TEC's cold and hot face could satisfy the temperature requirement and still had surplus.

  6. Refurbishment of the cryogenic coolers for the Skylab earth resources experiment package

    Science.gov (United States)

    Smithson, J. C.; Luksa, N. C.

    1975-01-01

    Skylab Earth Resources Experiment Package (EREP) experiments, S191 and S192, required a cold temperature reference for operation of a spectrometer. This cold temperature reference was provided by a subminiature Stirling cycle cooler. However, the failure of the cooler to pass the qualification test made it necessary for additional cooler development, refurbishment, and qualification. A description of the failures and the cause of these failures for each of the coolers is presented. The solutions to the various failure modes are discussed along with problems which arose during the refurbishment program. The rationale and results of various tests are presented. The successful completion of the cryogenic cooler refurbishment program resulted in four of these coolers being flown on Skylab. The system operation during the flight is presented.

  7. Reducing Display Bottle Cooler Energy Consumption Using PCM As Active Thermal Storage

    OpenAIRE

    Beek, Marcel van; de Jong, Hans

    2014-01-01

    The final results of an analytical and experimental study in reducing the energy consumption of a display bottle cooler using Phase Change Material (PCM) as an active thermal storage are presented. The objective of the study was to design and built a 350 dm3 glass door bottle cooler having an appliance energy consumption reduction of over 75% compared to state of the art bottle coolers (2010 figures). Calculation results show that active thermal storage using PCM can be effectively applied to...

  8. Functioning efficiency of intermediate coolers of multistage steam-jet ejectors of steam turbines

    Science.gov (United States)

    Aronson, K. E.; Ryabchikov, A. Yu.; Brodov, Yu. M.; Zhelonkin, N. V.; Murmanskii, I. B.

    2017-03-01

    Designs of various types of intermediate coolers of multistage ejectors are analyzed and thermal effectiveness and gas-dynamic resistance of coolers are estimated. Data on quantity of steam condensed from steam-air mixture in stage I of an ejector cooler was obtained on the basis of experimental results. It is established that the amount of steam condensed in the cooler constitutes 0.6-0.7 and is almost independent of operating steam pressure (and, consequently, of steam flow) and air amount in steam-air mixture. It is suggested to estimate the amount of condensed steam in a cooler of stage I based on comparison of computed and experimental characteristics of stage II. Computation taking this hypothesis for main types of mass produced multistage ejectors into account shows that 0.60-0.85 of steam amount should be condensed in stage I of the cooler. For ejectors with "pipe-in-pipe" type coolers (EPO-3-200) and helical coolers (EO-30), amount of condensed steam may reach 0.93-0.98. Estimation of gas-dynamic resistance of coolers shows that resistance from steam side in coolers with built-in and remote pipe bundle constitutes 100-300 Pa. Gas-dynamic resistance of "pipein- pipe" and helical type coolers is significantly higher (3-6 times) compared with pipe bundle. However, performance by "dry" (atmospheric) air is higher for ejectors with relatively high gas-dynamic resistance of coolers than those with low resistance at approximately equal operating flow values of ejectors.

  9. Direct Evaporatrive Coolers of Gases and Liquids with Lowered Limit of Cooling

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2015-12-01

    Full Text Available We have developed main technical solutions solution of indirect evaporative water and air coolers with reduced cooling limit. Packed part of heat-mass transfer devices is made of the film type based monoblock compositions of polymer materials. A mathematical model describing the processes of joint heat and mass transfer in evaporative coolers is executed. A comparative analysis of the possibilities of coolers designed based on experimental data on the efficiency of processes of heat and mass transfer.

  10. Calculation Method for the Prediction of the Performance of a Traveling-Wave Thermoacoustic Cooler

    Science.gov (United States)

    Ueda, Yuki

    When a traveling acoustic wave propagates through a regenerator, the gas in the regenerator undergoes the Stirling thermodynamic cycle, and thus, the energy conversion between heat flux and acoustic power takes place. A cooler that utilizes this energy conversion is called as a traveling-wave thermoacoustic cooler. Swift et al. [The Journal of the Acoustical Society of America, 105, 711 (1998)] have proposed a new traveling wave thermoacoustic cooler that is equipped with a looped tube. This paper describes a numerical method to estimate the performance of this thermoacoustic cooler and shows a comparison between the estimated and experimentally obtained performances.

  11. A computer program for designing fin-and-tube heat exchanger for EGR cooler application

    Science.gov (United States)

    Syaiful, Marwan, M. A.; Tandian, N. P.; Bae, M.

    2016-03-01

    EGR (exhaust gas recirculation) cooler is a kind of heat exchanger that is used to cool exhaust gas recirculation prior to be mixed with fresh air in an intake manifold of vehicle in order to obtain good reduction of NOxemissions. A fin-and-tube heat exchanger is more preferred as an EGR cooler than a shell-and-tube heat exchanger in this study due to its compactness. Manually designing many configurations of fin-and-tube heat exchanger for EGR cooler application consumes a lot of time and is high cost. Therefore, a computer aided design process of EGR cooler is required to overcome this problem. The EGR cooler design process was started by arranging the sequences of calculation algorithm in a computer program. A cooling media for this EGR cooler is air. The design is based on the effectiveness-number transfer unit (NTU) method. The EGR cooler design gives the geometry, heat transfer surface area, heat transfer coefficient and pressure drop of the EGR cooler. Comparison of the EGR cooler Nusselt number obtained in this study and that reported in literature shows less than 6.2% discrepancy.

  12. High Coefficient of Performance HgCdTe And Metallic Superlattice-Based Thermoelectric Coolers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the development of nanoscale superlattices (SLs) as the active elements of high efficiency thermoelectric coolers. Recent models predict that the...

  13. JT-60 negative ion beam NBI apparatus. Present state of its construction and initial experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, Masaaki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1997-02-01

    The NBI (Neutral Beam Injection) apparatus used for negative ion at first in the world, has an aim to actually prove heating and electric current drive with high density plasma at the JT-60 and to constitute physical and technical bases for selection and design of heating apparatus of ITER (International Thermal Nuclear Fusion Experimental Reactor). Construction of 500 KeV negative ion NBI apparatus for the JT-60 started to operate on 1993 was completed at March, 1996. On the way, at a preliminary test on forming and acceleration of the negative ion beam using a portion of this apparatus, 400 KeV and 13.5 A/D of the highest deuterium negative ion beam acceleration in the world was obtained successfully, which gave a bright forecasting of the plasma heating and electric current drive experiment using the negative ion NBI apparatus. After March, 1996, some plans to begin beam incident experiment at the JT-60 using the negative ion NBI apparatus and to execute the heating and electric current drive experiment at the JT-60 under intending increase of beam output are progressed. (G.K.)

  14. Review of JT-60U experimental results from February to November, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    In 1996, the plasma performance has been significantly enhanced in the high confinement regimes of reversed shear discharges, high-{beta}{sub p} H-mode discharge and high triangularity discharges with increasing the plasma current under the maximum utilization of plasma shape and profile controls in JT-60U. (J.P.N.)

  15. Development of a linear motion antenna for the JT-60SA ECRF system

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Shinichi, E-mail: moriyama.shinichi@jaea.go.jp [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Mukoyama 801-1, Naka, Ibaraki 311-0193 (Japan); Kobayashi, Takayuki; Isayama, Akihiko; Hoshino, Katsumichi; Suzuki, Sadaaki; Hiranai, Shinichi; Yokokura, Kenji; Sawahata, Masayuki; Terakado, Masayuki; Hinata, Jun; Wada, Kenji; Sato, Yoshikatsu [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Mukoyama 801-1, Naka, Ibaraki 311-0193 (Japan)

    2013-10-15

    Highlights: ► Development of an antenna featuring linear motion (LM) concept for long pulse electron cyclotron range of frequency (ECRF) heating and current drive in JT-60SA is in progress. ► A mock-up using a metallic sliding bearing with solid lubricant was fabricated. ► A vacuum pumping test with mass analyzer showed evidence of some hydrocarbons during shaft motion. ► Injection beam profile in toroidal beam scan was checked by low power measurement with mock-up. ► Current drive characteristics with the LM antenna for typical experimental scenarios of JT-60SA have been investigated by calculation. -- Abstract: Development of an antenna that features the linear motion (LM) concept for long-pulse electron-cyclotron range of frequency heating and current drive for the JT-60SA is in progress. Combining a linearly movable first mirror and a fixed curved second mirror allows the injection-beam angle to be controlled. Cooling water is fed through the drive shaft for the first mirror and through the fixed support for the second mirror. The shaft support structure uses a metallic sliding bearing with a solid lubricant. The sliding bearing supports combined linear and rotational motion, whereas a conventional ball bearing supports either linear or rotational motion. Therefore, the sliding bearing offers the advantage of reducing the support-structure volume, which is important in the design of the relatively narrow port duct of the JT-60SA. Recently, the sliding bearing has been installed into the mockup. Results of a vacuum test with a mass analyzer indicate the presence of hydrocarbons during shaft motion. The injection-beam profile obtained from a toroidal beam scan is checked against low-power measurements taken on the mockup. Finally, for typical JT-60SA experimental scenarios, heating- and current-drive characteristics of the LM antenna are investigated theoretically.

  16. Mixed-refrigerant Joule-Thomson (MR JT) mini-cryocoolers

    Science.gov (United States)

    Tzabar, Nir

    2014-01-01

    This paper presents the progress in our ongoing research on Mixed-Refrigerant (MR) Joule-Thomson (JT) cryocoolers. The research begun by exploring different MRs and testing various compressors: oil-lubricated and oil-free, reciprocating and linear, custom-made and commercial. Closed-cycle JT cryocoolers benefit from the fact that the compressor might be located far from the cold-end and thus there are no moving parts, no vibrations, and no heat emission near the cold-end. As a consequence, the compressor may be located where there are no severe size limitations, its heat can be conveniently removed, and it can be easily maintained. However, in some applications there is still a demand for a small compressor to drive a JT cryocooler although it is located far from the cooled device. Recently, we have developed a miniature oil-free compressor for MR JT cryocoolers that weighs about 700 g and its volume equals about 300 cc. The cryocooler operates with a MR that contains Ne, N2, and Hydrocarbons. This MR has been widely investigated with different compressors and varying operating conditions and proved to be stable. The current research investigates the performances of MR JT mini-cryocooler operating with the MR mentioned above, driven with our miniature compressor, and a cold-finger prototype. A Dewar with heat load of about 230 mW is cooled to about 80 K at ambient temperatures between 0°C and 40°C. The experimental results obtained are stable and demonstrate the ability to control the cooling temperature by changing the rotation speed of the compressor.

  17. Temperature Control of Avalanche Photodiode Using Thermoelectric Cooler

    Science.gov (United States)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1999-01-01

    Avalanche photodiodes (APDS) are quantum optical detectors that are used for visible and near infrared optical detection applications. Although APDs are compact, rugged, and have an internal gain mechanism that is suitable for low light intensity; their responsivity, and therefore their output, is strongly dependent on the device temperature. Thermoelectric coolers (TEC) offers a suitable solution to this problem. A TEC is a solid state cooling device, which can be controlled by changing its current. TECs are compact and rugged, and they can precisely control the temperature to within 0.1 C with more than a 150 C temperature gradient between its surfaces. In this Memorandum, a proportional integral (PI) temperature controller for APDs using a TEC is discussed. The controller is compact and can successfully cool the APD to almost 0 C in an ambient temperature environment of up to 27 C.

  18. Performances of thermoelectric cooler integrated with microchannel heat sinks

    Energy Technology Data Exchange (ETDEWEB)

    Reiyu Chein; Yehong Chen [National Chung Hsing University, Taichung (Taiwan). Department of Mechanical Engineering

    2005-09-01

    In this study, experimental and theoretical studies on thermoelectric cooler (TEC) performance for cooling a refrigerated object (water in a tank) were performed. Microchannel heat sinks fabricated with etched silicon wafers were employed on the TEC hot side to dissipate heat. The measurements show that the temperature of the refrigerated object decreased with time. A theoretical model based on a lumped system was established to predict the transient behavior of the variation in temperature for the refrigerated object with time. The theoretical predicted temperature variation was in good agreement with the measured data. The relationship among the heat sink thermal resistances, TEC electric current input and minimum refrigerated objected temperature was examined based on the theoretical model. The calculated minimum temperatures were showed for the several cases of heat sink thermal resistance on the TEC hot side and electric current input. The minimum temperature can be obtained by increasing the electrical current input and decreasing the heat sink thermal resistance. (author)

  19. Modeling of efficient solid-state cooler on layered multiferroics.

    Science.gov (United States)

    Starkov, Ivan; Starkov, Alexander

    2014-08-01

    We have developed theoretical foundations for the design and optimization of a solid-state cooler working through caloric and multicaloric effects. This approach is based on the careful consideration of the thermodynamics of a layered multiferroic system. The main section of the paper is devoted to the derivation and solution of the heat conduction equation for multiferroic materials. On the basis of the obtained results, we have performed the evaluation of the temperature distribution in the refrigerator under periodic external fields. A few practical examples are considered to illustrate the model. It is demonstrated that a 40-mm structure made of 20 ferroic layers is able to create a temperature difference of 25K. The presented work tries to address the whole hierarchy of physical phenomena to capture all of the essential aspects of solid-state cooling.

  20. Integration of RFQ beam coolers and solenoidal magnetic fields

    Science.gov (United States)

    Cavenago, M.; Romé, M.; Maggiore, M.; Porcellato, A. M.; Maero, G.; Chiurlotto, F.; Comunian, M.; Galatà, A.; Cavaliere, F.

    2016-02-01

    Electromagnetic traps are a flexible and powerful method of controlling particle beams, possibly of exotic nuclei, with cooling (of energy spread and transverse oscillations) provided by collisions with light gases as in the Radio Frequency Quadrupole Cooler (RFQC). A RFQC prototype can be placed inside the existing Eltrap solenoid, capable of providing a magnetic flux density component Bz up to 0.2 T, where z is the solenoid axis. Confinement in the transverse plane is provided both by Bz and the rf voltage Vrf (up to 1 kV at few MHz). Transport is provided by a static electric field Ez (order of 100 V/m), while gas collisions (say He at 1 Pa, to be maintained by differential pumping) provide cooling or heating depending on Vrf. The beamline design and the major parameters Vrf, Bz (which affect the beam transmission optimization) are here reported, with a brief description of the experimental setup.

  1. Optimization of a microfluidic electrophoretic immunoassay using a Peltier cooler.

    Science.gov (United States)

    Mukhitov, Nikita; Yi, Lian; Schrell, Adrian M; Roper, Michael G

    2014-11-07

    Successful analysis of electrophoretic affinity assays depends strongly on the preservation of the affinity complex during separations. Elevated separation temperatures due to Joule heating promotes complex dissociation leading to a reduction in sensitivity. Affinity assays performed in glass microfluidic devices may be especially prone to this problem due to poor heat dissipation due to the low thermal conductivity of glass and the large amount of bulk material surrounding separation channels. To address this limitation, a method to cool a glass microfluidic chip for performing an affinity assay for insulin was achieved by a Peltier cooler localized over the separation channel. The Peltier cooler allowed for rapid stabilization of temperatures, with 21°C the lowest temperature that was possible to use without producing detrimental thermal gradients throughout the device. The introduction of cooling improved the preservation of the affinity complex, with even passive cooling of the separation channel improving the amount of complex observed by 2-fold. Additionally, the capability to thermostabilize the separation channel allowed for utilization of higher separation voltages than what was possible without temperature control. Kinetic CE analysis was utilized as a diagnostic of the affinity assay and indicated that optimal conditions were at the highest separation voltage, 6 kV, and the lowest separation temperature, 21°C, leading to 3.4% dissociation of the complex peak during the separation. These optimum conditions were used to generate a calibration curve and produced 1 nM limits of detection, representing a 10-fold improvement over non-thermostated conditions. This methodology of cooling glass microfluidic devices for performing robust and high sensitivity affinity assays on microfluidic systems should be amenable in a number of applications.

  2. Agglomeration in Stripper Ash Coolers and Its Possible Remedial Solutions: a Case Study

    Science.gov (United States)

    Singh, Ravi Inder

    2016-04-01

    The bottom ash of circulating fluidized bed (CFB) boiler contains large amounts of physical heat. When low quality coals are used in these types of boilers, the ash content is normally more than 40 % and the physical heat loss is approximately 3 % if the bottom ash is discharged without cooling. Bottom ash cooler (BAC) is often used to treat the high temperature bottom ash to reclaim heat, and to facilitate the easily handling and transportation of ash. The CFB boiler at BLA Power, Newari, MP (India) is facing problems of clinker formation in strip ash coolers of plant since the installation of unit. These clinkers are basically agglomerates, which leads to defluidization of stripper ash cooler (BAC) units. There are two strip ash coolers in unit. Each strip ash cooler is capable of working independently. The proper functioning of both strip coolers is very important as it is going to increase the combustion efficiency of boiler by stripping of fine unburnt coal particles from ash, which are injected into the furnace. In this paper causes, characterization of agglomerates, thermo gravimetric analysis of fuel used, particular size distribution of coal and sand and possible remedial solution to overcome these agglomerates in strip ash coolers has also been presented. High temperature in compact separators, non uniform supply of coal and not removing small agglomerates from stripper ash cooler are among main causes of agglomeration in stripper ash cooler. Control of compact separator temperature, replacing 10-12 % of bed material and cleaning stripper ash cooler periodically will decrease agglomeration in stripper ash cooler of unit.

  3. Flexible Digital Control & Driving Electronics For Cryo-Coolers Application To Sentinel-3 SLSTR

    Science.gov (United States)

    Chico, J. C.; Caballero, G.; Gonzalez, D.; Fernandez, A.; Romero, V.; Bataller, E.

    2011-10-01

    The digital control as well as the power electronic implemented in the "Cryo-Cooler Driver Electronics" CDE units have evolved along these last years to new concepts allowing an easier management of the Cryo- coolers in flight programs, at the same time that the performances have been improved. A good example of this evolution in the CDE equipments is the one developed by Astrium Crisa for the Stirling Cooler of Astrium UK of the Sea & Land Surface Temperature Radiometer (SLSTR) instrument, which will be boarded in Sentinel-3. A new concept of CDE has been developed not only to satisfy the specific requirements of the SLSTR Stirling Cooler, but also to get a very modular and scalable architecture that can be adapted easily to different configurations of coolers. This paper describes the SLSTR CDE architecture, showing the problems found during the development of the unit as well as the latest performances achieved during the testing of the EM.

  4. Operating Modes and Cooling Capabilities of the 3-Stage ADR Developed for the Soft-X-Ray Spectrometer Instrument on Astro-H

    Science.gov (United States)

    Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theo; DiPirro, Michael J.; Letmate, Richard V.; Sampson, Michael A.; Bialas, Tom G.; Sneiderman, Gary A.; Porter, Frederick S.; hide

    2015-01-01

    A 3-stage adiabatic demagnetization refrigerator (ADR) is used on the Soft X-ray Spectrometer instrument on Astro-H to cool a 6x6 array of x-ray microcalorimeters to 50 mK. The ADR is supported by a cryogenic system consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and cool radiation shields within the cryostat. The ADR is configured so that it can use either the liquid helium or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated into the flight dewar in early 2014, and have since been extensively characterized and calibrated. This paper summarizes the operation and performance of the ADR in all of its operating modes

  5. Review of JT-60U experimental results in 1998

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, H.; Akasaka, H.; Akino, N. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1999-09-01

    Based on the high confinement regimes such as reversed shear mode, high-{beta}{sub p} mode and H-mode, the JT-60U experiment in 1998 was devoted to expand the discharge regimes in terms of 1) achievement of high fusion gain, 2) concept optimization for long sustainment of the advanced modes for >>{tau}{sub E} and >{tau}{sub p}* with the current profile close to the steady-state solution, 3) high confinement by electron heating (T{sub e}>T{sub i}), 4) high confinement at high electron density and/or at high divertor radiation and 5) active control of multiple parameters including both core and divertor plasmas. As for the reversed shear mode, high performance discharges satisfying Q{sub DT}{sup eq} (DT equivalent fusion gain ) >1 were obtained reproducibly and the record value of Q{sub DT}{sup eq}=1.25 was achieved in a reactor-relevant thermonuclear dominant regime due to the optimized discharge scenario using feedback control of the neutron production rate where {beta}-values were kept in the MHD stable region during the I{sub p} ramping phase with a large radius of the internal transport barrier (ITB). The reduction of Z{sub eff} obtained after installation of W-shaped pumped divertor increased fusion reaction rate. Concerning long sustainment, the reversed shear ELMy H-mode with H{sup 89PL}-factor{approx}1.5-2 and {beta}{sub N}=1.0-1.4 was kept for 5.5 s with NB heating. By off axis LH current drive, the reversed shear current profile with the ITB was kept constant for 4.7 s under full non- inductive current drive condition (LHCD=77%, bootstrap=23%) at T{sub e}-1.2T{sub i}. In the high-{beta}{sub p} ELMy H-mode regime, benefits of the high triangularity shape were demonstrated. At a high triangularity {delta}{sub X}{approx}0.46, {beta}{sub N}=2.5-2.7 was sustained for 3.5 s even at the low value of q{sub 95}=2.9-3.3. The product of {beta}{sub N}xH-factor sustainable for >5{tau}{sub E} (>{tau}{sub p}*) increases with {delta}{sub x} and reaches {approx}6 at {delta

  6. Development of piezoelectric actuator gas injection valve for JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Hiratsuka, Hajime; Miyo, Yasuhiko; Koike, Tsuneyuki; Shimizu, Masatsugu; Komuro, Ken-ichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1995-01-01

    Piezoelectric actuator gas injection valve by lever for JT-60U have been developed using piezoelectric actuator (Laminated piezoelectric elements). Specifications of the valve are summarized as follows: (1) The piezoelectric actuator gas injection valve by lever (LE-PEV) is the same configuration as the low flow rate piezoelectric valve (PEV-L), (2) The laminated piezoelectric element is used as actuator, (3) The massflow rate is up to 30.7 Pam{sup 3}/s for hydrogen, 0.2 MPa back pressure, 150 V, (4) The sheet leak rate using helium as a probing gas is smaller than 1.33x10{sup -8} Pam{sup 3}/s, (5) The operating voltage is 0 - 150 V. Judging from these results performances of LE-PEV for the actual operation condition of JT-60U is good. (author).

  7. Review of JT-60U experimental results from February to October, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Renewed theme group organization started from October 1994 for the upcoming experiments in JT-60U. This regime has three theme groups each of which is composed of two sub-theme groups as; (1) Plasma Operation Theme (Leader Y. Neyatani) with Operation Sub-Theme and Disruption Sub-Theme, (2) High Performance (Leader S. Ishida) with Confinement and MHD Sub-Theme and High Energy Particle Sub-Theme and (3) Steady State Theme (Leader A. Sakasai) with Current Drive Sub-Theme and Divertor Sub-Theme. The main results from the JT-60U experiments in 1995 are summarized in the overviews of the three theme group activities. (J.P.N.).

  8. Fatigue evaluation of the JT-60 vacuum vessel under the dynamic electromagnetic forces

    Energy Technology Data Exchange (ETDEWEB)

    Takatsu, H.; Shimizu, M.; Ohta, M. (Japan Atomic Energy Research Inst., Tokai, Ibaraki); Nakamura, Y.; Sakai, K.; Uchino, K. (Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan))

    1983-03-01

    Fatigue evaluation of the JT-60 vacuum vessel was carried out under the dynamic electromagnetic forces. In the present method, fatigue strength of the vacuum vessel is evaluated not only during the transient response but during the free vibration following the transient response. Stress amplitudes during the transient response are counted using the range-pair count method faithful to the stress strain hysteresis loop. And fatigue damage during the transient response and the free vibration following the transient response is evaluated based on Miner's law. The fatigue evaluation results showed that the JT-60 vacuum vessel has the sufficient fatigue strength and the free vibration has much larger contribution to the fatigue damage than the transient response.

  9. Physics and operation oriented activities in preparation of the JT-60SA tokamak exploitation

    Science.gov (United States)

    Giruzzi, G.; Yoshida, M.; Artaud, J. F.; Asztalos, Ö.; Barbato, E.; Bettini, P.; Bierwage, A.; Boboc, A.; Bolzonella, T.; Clement-Lorenzo, S.; Coda, S.; Cruz, N.; Day, Chr.; De Tommasi, G.; Dibon, M.; Douai, D.; Dunai, D.; Enoeda, M.; Farina, D.; Figini, L.; Fukumoto, M.; Galazka, K.; Galdon, J.; Garcia, J.; Garcia-Muñoz, M.; Garzotti, L.; Gil, C.; Gleason-Gonzalez, C.; Goodman, T.; Granucci, G.; Hayashi, N.; Hoshino, K.; Ide, S.; Imazawa, R.; Innocente, P.; Isayama, A.; Itami, K.; Joffrin, E.; Kamada, Y.; Kamiya, K.; Kawano, Y.; Kawashima, H.; Kobayashi, T.; Kojima, A.; Kubo, H.; Lang, P.; Lauber, Ph.; de la Luna, E.; Maget, P.; Marchiori, G.; Mastrostefano, S.; Matsunaga, G.; Mattei, M.; McDonald, D. C.; Mele, A.; Miyata, Y.; Moriyama, S.; Moro, A.; Nakano, T.; Neu, R.; Nowak, S.; Orsitto, F. P.; Pautasso, G.; Pégourié, B.; Pigatto, L.; Pironti, A.; Platania, P.; Pokol, G. I.; Ricci, D.; Romanelli, M.; Saarelma, S.; Sakurai, S.; Sartori, F.; Sasao, H.; Scannapiego, M.; Shimizu, K.; Shinohara, K.; Shiraishi, J.; Soare, S.; Sozzi, C.; Stępniewski, W.; Suzuki, T.; Suzuki, Y.; Szepesi, T.; Takechi, M.; Tanaka, K.; Terranova, D.; Toma, M.; Urano, H.; Vega, J.; Villone, F.; Vitale, V.; Wakatsuki, T.; Wischmeier, M.; Zagórski, R.

    2017-08-01

    The JT-60SA tokamak, being built under the Broader Approach agreement jointly by Europe and Japan, is due to start operation in 2020 and is expected to give substantial contributions to both ITER and DEMO scenario optimisation. A broad set of preparation activities for an efficient start of the experiments on JT-60SA is being carried out, involving elaboration of the Research Plan, advanced modelling in various domains, feasibility and conception studies of diagnostics and other sub-systems in connection with the priorities of the scientific programme, development and validation of operation tools. The logic and coherence of this approach, as well as the most significant results of the main activities undertaken are presented and summarised.

  10. Thermal electron-tunneling devices as coolers and amplifiers

    Science.gov (United States)

    Su, Shanhe; Zhang, Yanchao; Chen, Jincan; Shih, Tien-Mo

    2016-02-01

    Nanoscale thermal systems that are associated with a pair of electron reservoirs have been previously studied. In particular, devices that adjust electron tunnels relatively to reservoirs’ chemical potentials enjoy the novelty and the potential. Since only two reservoirs and one tunnel exist, however, designers need external aids to complete a cycle, rendering their models non-spontaneous. Here we design thermal conversion devices that are operated among three electron reservoirs connected by energy-filtering tunnels and also referred to as thermal electron-tunneling devices. They are driven by one of electron reservoirs rather than the external power input, and are equivalent to those coupling systems consisting of forward and reverse Carnot cycles with energy selective electron functions. These previously-unreported electronic devices can be used as coolers and thermal amplifiers and may be called as thermal transistors. The electron and energy fluxes of devices are capable of being manipulated in the same or oppsite directions at our disposal. The proposed model can open a new field in the application of nano-devices.

  11. Study of Voltage-Controlled Characteristics for Thermoelectric Coolers

    Science.gov (United States)

    Wang, Ning; Chen, Ming-Ming; Jia, Hong-Zhi; Jin, Tao; Xie, Ji-Long

    2017-01-01

    Based on the Peltier effect, thermoelectric coolers (TECs) have been widely used in solving thermal management issues for semiconductor devices such as semiconductor laser, charge-coupled devices and nanoelectronic circuits with hot-spots. However, performance control mechanisms especially voltage-controlled parameters for TEC still face challenges. In this paper, a standard mathematical model for multi-stage TECs is proposed with thermal resistances from both sides and performance parameters dependent on voltage. The proposed models agreed with experimental results. Compared with the available model, the relative standard deviations between the obtained equivalent thermal conductivity model and experimental results at 25°C and 50°C are decreased by 88.87% and 30.14%, respectively. Also, the relative standard deviations between the proposed thermoelectric figure of merits model and calculated results based on experiments at two different temperatures are decreased by 84.45% and 62.94%, respectively. The results provide a controllable method of thermoelectric characteristics with high accuracy, which can be employed for early thermometric performance estimation for TEC design.

  12. Life and Reliability Characteristics of TurboBrayton Coolers

    Science.gov (United States)

    Breedlove, Jeff J.; Zagarola, Mark; Nellis, Greg; Dolan, Frank; Swift, Walt; Gibbon, Judith; Obenschain, Arthur F. (Technical Monitor)

    2000-01-01

    Wear and internal contaminants are two of the primary factors that influence reliable, long-life operation of turbo-Brayton cryocoolers. This paper describes tests that have been conducted and methods that have been developed for turbo-Brayton components and systems to assure reliable operation. The turbomachines used in these coolers employ self-acting gas bearings to support the miniature high-speed shafts, thus providing vibration-free operation. Because the bearings are self-acting, rubbing contact occurs during initial start-up and shutdown of the machines. Bearings and shafts are designed to endure multiple stop/start cycles without producing particles or surface features that would impair the proper operation of the machines. Test results are presented for a variety of turbomachines used in these systems. The tests document extended operating life and start/stop cycling behavior for machines over a range of time and temperature scales. Contaminants such as moisture and other residual gas impurities can be a source of degraded operation if they freeze out in sufficient quantities to block flow passages or if they mechanically affect the operation of the machines. A post-fabrication bakeout procedure has been successfully used to reduce residual internal contamination to acceptable levels in a closed cycle system. The process was developed during space qualification tests on the NICMOS cryocooler. Moisture levels were sampled over a six-month time interval confirming the effectiveness of the technique. A description of the bakeout procedure is presented.

  13. Boiling process in oil coolers on porous elements

    Directory of Open Access Journals (Sweden)

    Genbach Alexander A.

    2016-01-01

    Full Text Available Holography and high-speed filming were used to reveal movements and deformations of the capillary and porous material, allowing to calculate thermo-hydraulic characteristics of boiling liquid in the porous structures. These porous structures work at the joint action of capillary and mass forces, which are generalised in the form of dependences used in the calculation for oil coolers in thermal power plants (TPP. Furthermore, the mechanism of the boiling process in porous structures in the field of mass forces is explained. The development process of water steam formation in the mesh porous structures working at joint action of gravitational and capillary forces is investigated. Certain regularities pertained to the internal characteristics of boiling in cells of porous structure are revealed, by means of a holographic interferometry and high-speed filming. Formulas for calculation of specific thermal streams through thermo-hydraulic characteristics of water steam formation in mesh structures are obtained, in relation to heat engineering of thermal power plants. This is the first calculation of heat flow through the thermal-hydraulic characteristics of the boiling process in a reticulated porous structure obtained by a photo film and holographic observations.

  14. Cooler Storage Ring at China Institute of Modern Physics

    CERN Document Server

    Wen-Xia, Jia; Zhan, W

    2005-01-01

    CSR, a new ion cooler-storage-ring project in China IMP, is a double ring system, and consists of a main ring (CSRm) and an experimental ring (CSRe). The two existing cyclotrons SFC (K=69) and SSC (K=450) of the Heavy Ion Research Facility in Lanzhou (HIRFL) will be used as its injector system. The heavy ion beams with the energy range of 7-30 MeV/nucleus from the HIRFL will be accumulated, cooled and accelerated to the higher energy range of 100-500 MeV/ nucleus in CSRm, and then extracted fast to produce radioactive ion beams or highly charged heavy ions. Those secondary beams will be accepted and stored or decelerated by CSRe for many internal-target experiments or high precision spectroscopy with beam cooling. On the other hand, the beams with the energy range of 100-1000MeV/ nucleus will also be extracted from CSRm by using slow extraction or fast extraction for many external-target experiments. CSR project was started in the end of 1999 and will be finished in 2006. In this paper the outline and the act...

  15. Progress in Physics and Technology Developments for the Modification of JT-60

    Institute of Scientific and Technical Information of China (English)

    H. Tamai; Y. Kudo; S. Sakurai; K. Masaki; T. Suzuki; M. Takechi; Y. Kamada; A. Sakasai; S. Ishida; K. Abe; A. Ando; M. Matsukawa; T. Cho; T. Fujii; T. Fujita; S. Goto; K. Hananda; A. Hatayama; T. Hino; H. Horiike; N. Hosogane; M. Ichimura; G. Kurita; S. Tsuji-Iio; S. Itoh; M. Katsurai; M. Kikuchi; A. Kohyama; H. Kubo; M. Kuriyama; M. Matsuoka; Y. Miura; N. Miya; N. Hayashi; T. Mizuuchi; K. Nagasaki; H. Ninomiya; N. Nishino; Y. Ogawa; K. Okano; T. Ozeki; M. Saigusa; M. Sakamoto; M. Satoh; K. Urata; M. Shimada; R. Shimada; M. Shimizu; T. Takagi; Y. Takase; T. Tanabe; K. Toi; Y. Ueda; Y. Uesugi; K. Ushigusa; Y. M. Miura; Y. Yagi; T. Yamamoto; K. Yatsu; K. Yoshikawa; K. Kizu; K. Tsuchiya; A. Morioka

    2004-01-01

    Recent progress in the physics and engineering design study for the modificationprogramme of JT-60 is presented. In order to achieve a steady state high-β plasma operation,which is the dominant issue of this programme, physics design for the MHD control and thestability analysis is investigated. Engineering design and the R & D for the superconducting coils,irradiation shield are performed well towards the mission of programme.

  16. Advanced Control Scenario of High-Performance Steady-State Operation for JT-60 Superconducting Tokamak

    Institute of Scientific and Technical Information of China (English)

    H. Tamai; Y. Kamada; A. Sakasai; S. Ishida; G. Kurita; M. Matsukawa; K. Urata; S. Sakurai; K. Tsuchiya; A. Morioka; Y. M. Miura; K. Kizu

    2004-01-01

    Plasma control on high-βN steady-state operation for JT-60 superconducting modification is discussed. Accessibility to high-βN exceeding the free-boundary limit is investigated with the stabilising wall of reduced-activated ferritic steel and the active feedback control of the in-vessel non-axisymmetric field coils. Taking the merit of superconducting magnet, advanced plasma control for steady-state high performance operation could be expected.

  17. A novel coupling configuration for thermoacoustically-driven pulse tube coolers: Acoustic amplifier

    Institute of Scientific and Technical Information of China (English)

    DAI Wei; LUO Ercang; HU Jianying; CHEN Yanyan

    2005-01-01

    Thermoacoustically-driven pulse tube cooler can provide cryogenic cooling power with no moving components. Up to now, pulse tube cooler is directly coupled with the thermoacoustic engine and obtainable pressure ratio for the pulse tube cooler is limited by the capability of the thermoacoustic engine. The authors propose here the concept of acoustic amplifier, which is actually a long tube connecting the engine with the pulse tube cooler. Theoretical calculation shows that suitable length and diameter of the tube can lead to a pressure wave amplification effect which means that pressure wave amplitude coming from the thermoacoustic engine can be much amplified to drive the pulse tube cooler. Based on this, a 2.8 m long copper tube with 8 mm inner diameter is used as the acoustic amplifier in experiments. The experimental results show that due to the amplification effect, pressure wave amplitude at the inlet of the pulse tube cooler is over 2.5 times of that at the engine outlet. Typically, with 1.67 kW heating power, the pressure ratio provided by the engine is 1.11 while at the inlet of the pulse tube cooler the pressure ratio is 1.32, which leads to a lowest no-load temperature of 65.7 K.

  18. Evaluation of the Influence of Conventional Water Coolers on Drinking Water Quality

    Directory of Open Access Journals (Sweden)

    M Nikaeen

    2010-02-01

    Full Text Available "n "nBackgrounds and Objectives: Drinking water quality after treatment and before reaching  the consumer could be affected by distribution pipes, service lines and Home devices. The structure of water coolers, a home device that are widely used in warm months of the year, could potentially affect the quality of drinking water. The aim of this study was to assess the microbial and chemical quality of water from conventional water coolers."nMaterials and Methods : Water samples were collected from 29 water cooler systems at the Isfahan  university of medical sciences. 29 control samples also obtained from the nearest drinking water taps. All samples were examined for total heterotrophic bacteria and physicochemical parameters including temperature, ph, turbidity and heavy metals."nResults: All samples from the water cooler systems complied with the EPA guidelines for total heterotrophic bacteria count. There were no significant differences between the levels of heavy metals in water samples from the water cooler systems and taps. There was only a significant difference between the level of Cu in the water samples from cooler systems and taps "nConclusion: The overall results of this study indicated that the use of water cooler systems from hygienic point of view could not cause any problems for consumers

  19. 40 CFR 63.2267 - Initial compliance demonstration for a reconstituted wood product press or board cooler.

    Science.gov (United States)

    2010-07-01

    ... reconstituted wood product press or board cooler. 63.2267 Section 63.2267 Protection of Environment... for a reconstituted wood product press or board cooler. If you operate a reconstituted wood product press at a new or existing affected source or a reconstituted wood product board cooler at a...

  20. Fabrication of integrated planar gunn diode and\\ud micro-cooler on GaAs substrate

    OpenAIRE

    Khalid, Ata-ul-Habib; Glover, J.; Hopper, R; Papageorgiou, V.; M. Montes; Kuball, M.; Dunn, G.; Stephen, A.; Oxley, C.; D. R. S. Cumming

    2013-01-01

    We demonstrate fabrication of an integrated\\ud micro cooler with the planar Gunn diode and characterise\\ud its performance. First experimental results have shown a\\ud small cooling at the surface of the micro cooler. This is first\\ud demonstration of an integrated micro-cooler with a planar\\ud Gunn diode.

  1. Infrared thermography inspection for monoblock divertor target in JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Shigetoshi, E-mail: nakamura.shigetoshi@jaea.go.jp; Sakurai, Shinji; Ozaki, Hidetsugu; Seki, Yohji; Yokoyama, Kenji; Sakasai, Akira; Tsuru, Daigo

    2014-10-15

    Highlights: • Infrared thermography inspection is modified to inspect JT-60SA divertor targets. • Infrared thermography inspection is effective to detect joining defects of targets. • Numerical analysis is in good agreement with inspection results of mock-up targets. • Database for setting screening criteria has been constructed by numerical analysis. - Abstract: Carbon fiber composite (CFC) monoblock divertor target is required for power handling in JT-60SA. Quality of the targets depends on a joining technology in manufacturing process. To inspect the quality of more than 900 target pieces, efficient non-destructive inspection is needed. An infrared thermography inspection (IR inspection), has been proposed by ITER and IRFM, where the quality between CFC and a cooling tube is examined by a use of transient thermal response at a rapid switch from hot to cold water flow. In JT-60SA divertor target, a screw tube will be employed to obtain high heat transfer efficiency with simple structure. Since the time response of the screw tube is much faster than that of smooth tube, it is required to confirm the feasibility of this IR inspection. Thus, the effect of joining defects on transient thermal response of the targets has been investigated experimentally by using the mock-up targets containing defects which are artificially made. It was found that the IR inspection can detect the defects. Moreover, screening criteria of IR inspection for acceptable monoblock target is discussed.

  2. Mechanical assessment of the JT-60SA TF Coils during seismic event

    Energy Technology Data Exchange (ETDEWEB)

    Meunier, Lionel, E-mail: lionel.meunier@f4e.europa.eu [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Fusion For Energy, JT-60SA EU Home Team, 85748 Garching (Germany); Barabaschi, Pietro; Tomarchio, Valerio [Fusion For Energy, JT-60SA EU Home Team, 85748 Garching (Germany)

    2011-10-15

    JT-60SA is a fusion experiment designed to contribute to the early realization of fusion energy, by providing support to the operation of ITER, by addressing key physics issues for ITER and DEMO and by investigating how to optimize the operation of the next fusion power plants. It is a combined project of Japan and Europe Satellite Tokamak Program, as part of the Broader Approach Agreement and it is to be built in Naka, using the infrastructure of JT-60U. This article describes the finite element analysis performed to assess the mechanical behavior of the TF Coils under the seismic load of the Naka site. One particular type of boundary conditions has been evaluated: the TF Coils are not energized, and all components are at room temperature. This represents the most demanding conditions for the magnet system, as the wedge structure does not add any stiffness and strength due to the lack of centripetal forces on the individual coils; moreover the elastic limit of materials are lower than in cryogenic conditions. The results show that both stresses and displacements are acceptable for the TF Coil system, and that sufficient margin is available. In addition, loads on some of the major components can be extracted: maximum forces in the TF Coils supports, and force distribution on the cryostat base of JT-60SA.

  3. 22 A beam production of the uniform negative ions in the JT-60 negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Masafumi, E-mail: yoshida.masafumi@jaea.go.jp [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka 311-0193 (Japan); Hanada, Masaya; Kojima, Atsushi; Kashiwagi, Mieko [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka 311-0193 (Japan); Grisham, Larry R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Hatayama, Akiyoshi; Shibata, Takanori; Yamamoto, Takashi [Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8511 (Japan); Akino, Noboru; Endo, Yasuei; Komata, Masao; Mogaki, Kazuhiko; Nemoto, Shuji; Ohzeki, Masahiro; Seki, Norikazu; Sasaki, Shunichi; Shimizu, Tatsuo; Terunuma, Yuto [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka 311-0193 (Japan)

    2015-10-15

    Highlights: • In order to improve a uniformity of the negative ion beam and produce high current negative ion beam in the JT-60 negative ion source, a tent-shaped filter is applied. • Beam uniformity is improved from 68% to 83% over an area of the whole extraction area of 450 x 1100 mm{sup 2}. • The improvement of the beam uniformity leads to the production of 32 A H{sup −} ion beams with the whole extraction area. - Abstract: In order to improve the spatial uniformity of the negative ion beam and to produce high current negative ion beams in a large negative ion source, a magnetic field configuration is modified from an original transverse filter to a tent-shaped filter, in combination with reducing the magnetic field strength in the JT-60 negative ion source. As a result, the beam uniformity is improved from 68% to 83% over an area of the whole extraction area of 450 × 1100 mm{sup 2}. The improvement of the beam uniformity leads to the production of 32 A H{sup −} ion beams with the whole extraction area. The obtained beam current fulfills the requirement for JT-60SA.

  4. Design study of JT-60SA divertor for high heat and particle controllability

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, H. [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka-shi, Ibaraki-ken 311-0193 (Japan)], E-mail: kawashima.hisato@jaea.go.jp; Shimizu, K.; Takizuka, T.; Asakura, N.; Sakurai, S.; Matsukawa, M.; Fujita, T. [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka-shi, Ibaraki-ken 311-0193 (Japan)

    2008-12-15

    The modification of JT-60 to a fully superconducting coil tokamak, JT-60SA (JT-60 Super Advanced) device, has been programmed to contribute and supplement ITER toward to DEMO. Lower divertor design with the ITER-like lower single null divertor configuration is studied to obtain high heat and particle controllability using SOLDOR/NEUT2D code. With anticipated total power flux into SOL of 37 MW (90% of input power), the peak heat load on outer divertor target can be reduced to 5.8 MW/m{sup 2} at the detached condition by gas puffing in the vertical divertor target with the 'V-shaped corner'. It is {approx}2/5 of the allowable level of 15 MW/m{sup 2}. On the other hand, particle controllability such as control of detached to attached condition by divertor pumping is improved by increase the strike point distance from 20 to 120 mm with above divertor geometry, suggesting that recover from severe detachment at the small distance case can be achieving by elevation of the strike point locations. Optimization of upper divertor design is in progress for high {beta} steady-state operation using upper single null divertor configuration.

  5. Mechanical and quasi-optical design of ECH/ECCD launcher for JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Takayuki, E-mail: kobayashi.takayuki@jaea.go.jp; Moriyama, Shinichi; Isayama, Akihiko; Hiranai, Shinichi; Yokokura, Kenji; Sawahata, Masayuki; Terakado, Masayuki; Wada, Kenji; Sato, Yoshikatsu; Hinata, Jun; Hoshino, Katsumichi; Takahashi, Koji; Kajiwara, Ken; Oda, Yasuhisa; Ikeda, Ryosuke; Sakamoto, Keishi

    2015-10-15

    Highlights: • We designed high-power, long-pulse, two-frequency launcher for JT-60SA. • The mirror steering structure was improved for easy maintenance. • A full scale mockup of the steering structure moved smoothly. • It was found that the antenna is suitable for two frequency operations. • The total spillover loss of ∼1% was obtained with LP11even mode of 10%. - Abstract: Mechanical and quasi-optical design of an electron cyclotron heating/current drive launcher for JT-60SA is in progress. A full-scale mock-up of the steering structure, which enables linear and rotation motions of the first mirror of the launcher, has been fabricated for cyclic test of the bellows part. Moreover, an improved design enables easy replacement of the bellows for rotation for maintenance. Quasi-optical characteristics of the antenna mirrors have been studied to evaluate its transmission efficiency and beam focusing property. In calculation, it was found that the antenna is applicable to two frequency operation at 110 GHz and 138 GHz. It was quantitatively shown that the transmission efficiency of ∼99% (not including Ohmic loss) is obtained even with the higher order mode (LP{sub 11}{sup even}) fraction of 10% by optimizations of the shape of the first mirror. These results contribute to optimization/finalization of the launcher design toward fabrication of the launcher for JT-60SA.

  6. High-T{sub c} DC SQUID system cooled by pulse-tube cooler

    Energy Technology Data Exchange (ETDEWEB)

    He, D.F.; Nakamura, M.; Yoshizawa, M

    2003-10-15

    We developed a high-T{sub c} DC SQUID system cooled by pulse-tube cooler. To avoid the influence of the wire resistance between SQUID and preamplifier, and to reduce the influence of the temperature fluctuation of pulse-tube cooler, DC coupling between SQUID chip and preamplifier was used and the flux locked loop worked in modulation mode. We also developed a temperature controller, using the DC SQUID as temperature sensor, to control and stabilize the operating temperature of the pulse-tube cooler. With the temperature controller, the DC SQUID system could remain locked for over 8 h.

  7. Verification of Methodology for Determination of Deposit Thickness on Heat Transfer Surface of Natural Gas Coolers

    Directory of Open Access Journals (Sweden)

    Miroslav PŘÍHODA

    2010-12-01

    Full Text Available The paper describes briefly an original methodology for the determination of the deposit thickness on the inside heat transfer surface of natural gas cooler and a procedure of its verification at the cooler CH_R of the booster station KS01 in Velké Kapušany. The methodology is based on the measurement of the degree of the gas cooling. It has the universal validity and can be used to determine the thickness of the deposits of all types of coolers working on any booster station.

  8. Low-energy run of Fermilab Electron Cooler's beam generation system

    Energy Technology Data Exchange (ETDEWEB)

    Prost, Lionel; Shemyakin, Alexander; /Fermilab; Fedotov, Alexei; Kewisch, Jorg; /Brookhaven

    2010-08-01

    As a part of a feasibility study of using the Fermilab Electron Cooler for a low-energy Relativistic Heavy Ion Collider (RHIC) run at Brookhaven National Laboratory (BNL), the cooler operation at 1.6 MeV electron beam energy was tested in a short beam line configuration. The main result of the study is that the cooler beam generation system is suitable for BNL needs. In a striking difference with running 4.3 MeV beam, no unprovoked beam recirculation interruptions were observed.

  9. Addressing Water Consumption of Evaporative Coolers with Greywater

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, Rashmi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-07-01

    Evaporative coolers (ECs) provide significant gains in energy efficiency compared to vapor compression air conditioners, but simultaneously have significant onsite water demand. This can be a major barrier to deployment in areas of the world with hot and arid climates. To address this concern, this study determined where in the world evaporative cooling is suitable, the water consumption of ECs in these cities, and the potential that greywater can be used reduce the consumption of potable water in ECs. ECs covered 69percent of the cities where room air conditioners are may be deployed, based on comfort conditions alone. The average water consumption due to ECs was found to be 400 L/household/day in the United States and Australia, with the potential for greywater to provide 50percent this amount. In the rest of the world, the average water consumption was 250 L/household/day, with the potential for greywater to supply 80percent of this amount. Home size was the main factor that contributed to this difference. In the Mediterranean, the Middle East, Northern India, and the Midwestern and Southwestern United States alkalinity levels are high and water used for bleeding will likely contribute significantly to EC water consumption. Although technically feasible, upfront costs for household GW systems are currently high. In both developed and developing parts of the world, however, a direct EC and GW system is cost competitive with conventional vapor compression air conditioners. Moreover, in regions of the world that face problems of water scarcity the benefits can substantially outweigh the costs.

  10. Numerical study on interaction of local air cooler with stratified hydrogen cloud in a large vessel

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Z. [Atomic Energy of Canada Limited, Chalk River Laboratories, ON K0J 1J0 (Canada); Andreani, M. [Laboratory for Thermal-Hydraulics, Paul Scherrer Institut, 5232 Villigen (Switzerland)

    2012-07-01

    Within the framework of the ERCOSAM project, planning calculations are performed to examine sensitivity parameters that can affect the break-up (erosion) of a helium layer by mitigation devices (i.e., cooler, spray, or Passive Autocatalytic Recombiner - PAR). This paper reports the GOTHIC analysis results for the cooler tests to be performed in the PANDA facility. The cooler elevation and geometry, helium layer thickness, steam distribution in the vessel, and the vessel geometry (inter-connected multi-compartments versus a single volume) on the erosion process as well as the cooling capacity are studied. This analysis is valuable because only a limited number of conditions will be examined in the planned experiments. The study provides a useful understanding of the interaction of a cooler with a stratified atmosphere. (authors)

  11. Effects of temperature conditions in a gas collector on operation of primary and secondary gas coolers

    Energy Technology Data Exchange (ETDEWEB)

    Chuishchev, V.M.; Selivanova, Z.G.; Vasyuta, V.I.

    1988-04-01

    Discusses composition of coal gas leaving coke ovens and temperature effects on its composition in a gas collector and cooling systems. Effects of coal gas temperature ranging from 78 to 90 C on operation of cooling systems are analyzed: cooling intensity, naphthalene buildup, etc. Analyses show that coal gas temperature fluctuations from 80 to 90 C do not influence gas collector operation, whereas operation of primary gas coolers is influenced by gas collector operation. When coal gas temperature is reduced from 88 to 80 C intensity of coal tar accumulation increases 2 times and that of naphthalene increases 5 to 6 times. Temperature of coal gas leaving the primary coolers ranges from 35 to 40 C. Types of primary coal gas coolers, their operation and performance are comparatively evaluated. Effects of gas cooler design on efficiency of coal tar separation from coal gas are discussed. 5 refs.

  12. Modeling of a regenerative indirect evaporative cooler for a desiccant cooling system

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Reinholdt, Lars O.;

    This paper presents a numerical study of a regenerative indirect evaporative cooler, the so-called Dew Point Cooler (DPC), which is part of a Desiccant Cooling system that may both dehumidify and cool humid air. The DPC model is based on first principles using a 1D finite volume scheme and determ......This paper presents a numerical study of a regenerative indirect evaporative cooler, the so-called Dew Point Cooler (DPC), which is part of a Desiccant Cooling system that may both dehumidify and cool humid air. The DPC model is based on first principles using a 1D finite volume scheme...... and determines the steady state working conditions for the component. A sensitivity analysis of the DPC performance is carried out based on the air inlet conditions, air flow rate and recirculation fraction. A recirculation fraction around 0.3 maximizes the DPC net cooling capacity. The supply temperature...

  13. Integrated testing of the Thales LPT9510 pulse tube cooler and the iris LCCE electronics

    Science.gov (United States)

    Johnson, Dean L.; Rodriguez, Jose I.; Carroll, Brian A.; Bustamante, John G.; Kirkconnell, Carl S.; Luong, Thomas T.; Murphy, J. B.; Haley, Michael F.

    2014-01-01

    The Jet Propulsion Laboratory (JPL) has identified the Thales LPT9510 pulse tube cryocooler as a candidate low cost cryocooler to provide active cooling on future cost-capped scientific missions. The commercially available cooler can provide refrigeration in excess of 2 W at 100K for 60W of power. JPL purchased the LPT9510 cooler for thermal and dynamic performance characterization, and has initiated the flight qualification of the existing cooler design to satisfy near-term JPL needs for this cooler. The LPT9510 has been thermally tested over the heat reject temperature range of 0C to +40C during characterization testing. The cooler was placed on a force dynamometer to measure the selfgenerated vibration of the cooler. Iris Technology has provided JPL with a brass board version of the Low Cost Cryocooler Electronics (LCCE) to drive the Thales cooler during characterization testing. The LCCE provides precision closed-loop temperature control and embodies extensive protection circuitry for handling and operational robustness; other features such as exported vibration mitigation and low frequency input current filtering are envisioned as options that future flight versions may or may not include based upon the mission requirements. JPL has also chosen to partner with Iris Technology for the development of electronics suitable for future flight applications. Iris Technology is building a set of radiation-hard, flight-design electronics to deliver to the Air Force Research Laboratory (AFRL). Test results of the thermal, dynamic and EMC testing of the integrated Thales LPT9510 cooler and Iris LCCE electronics is presented here.

  14. Re-Design Lube Oil Cooler pada Turbin Gas dengan Analisa Termodinamika dan Perpindahan Panas

    Directory of Open Access Journals (Sweden)

    Siti Duratun Nasiqiati Rosady

    2014-09-01

    Full Text Available Pada sebuah pembangkit listrik tenaga gas, sistem pelumasan turbin sangat diperlukan. Pelumas yang telah digunakan didinginkan kembali menggunakan lube oil cooler. Lube oil cooler merupakan compact heat exchanger tipe circular tubes, continuous fins yang berfungsi sebagai pendingin oli dengan udara sebagai fluida pendingin. Pada kondisi operasional didapatkan bahwa temperatur oli keluar lube oil cooler masih cukup tinggi. Hal ini dapat menyebabkan turbin gas shut down. Berdasarkan kondisi tersebut, maka dilakukan analisa performa lube oil cooler existing dan melakukan redesign untuk meningkatkan effectiveness dari lube oil cooler. Analisa performa lube oil cooler existing meliputi perpindahan panas actual dan effectiveness. Sedangkan redesign dilakukan dengan variasi laju aliran massa fluida dingin (udara dan surface designation berdasarkan standard Compact heat exchangers untuk tipe circular tubes, continuous fins. Dengan batasan yang digunakan dalam perancangan lube oil cooler adalah volume ruang penempatan heat exchanger. Perancangan menggunakan metode LMTD dan NTU meliputi perhitungan perpindahan panas pada sisi tubes dan fins, area perpindahan panas, heat transfer actual, overall heat transfer coefficient serta effectiveness. Dari perhitungan yang telah dilakukan didapatkan effectiveness dari lube oil cooler existing adalah sebesar 13.6%. Berdasarkan analisa redesign, hasil yang memiliki performa paling baik adalah surface designation 8.0-3/8 T dengan laju aliran massa udara 7.5 kg/s dengan temperatur keluar oli sebesar 342.14 K, effectiveness 29%. Adapun detail dimensi redesign adalah jumlah tubes 245, diameter tube 0.0102 m, jumlah fins/ meter 315, transverse pitch 0.022 m dan longitudinal pitch sebesar 0.0254 m.

  15. Integrated testing of the Thales LPT9510 pulse tube cooler and the iris LCCE electronics

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Dean L.; Rodriguez, Jose I.; Carroll, Brian A. [The Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Bustamante, John G. [Georgia Institute of Technology, Atlanta, GA 30332 (United States); Kirkconnell, Carl S.; Luong, Thomas T.; Murphy, J. B.; Haley, Michael F. [Iris Technology, Irvine, CA 92616 (United States)

    2014-01-29

    The Jet Propulsion Laboratory (JPL) has identified the Thales LPT9510 pulse tube cryocooler as a candidate low cost cryocooler to provide active cooling on future cost-capped scientific missions. The commercially available cooler can provide refrigeration in excess of 2 W at 100K for 60W of power. JPL purchased the LPT9510 cooler for thermal and dynamic performance characterization, and has initiated the flight qualification of the existing cooler design to satisfy near-term JPL needs for this cooler. The LPT9510 has been thermally tested over the heat reject temperature range of 0C to +40C during characterization testing. The cooler was placed on a force dynamometer to measure the selfgenerated vibration of the cooler. Iris Technology has provided JPL with a brass board version of the Low Cost Cryocooler Electronics (LCCE) to drive the Thales cooler during characterization testing. The LCCE provides precision closed-loop temperature control and embodies extensive protection circuitry for handling and operational robustness; other features such as exported vibration mitigation and low frequency input current filtering are envisioned as options that future flight versions may or may not include based upon the mission requirements. JPL has also chosen to partner with Iris Technology for the development of electronics suitable for future flight applications. Iris Technology is building a set of radiation-hard, flight-design electronics to deliver to the Air Force Research Laboratory (AFRL). Test results of the thermal, dynamic and EMC testing of the integrated Thales LPT9510 cooler and Iris LCCE electronics is presented here.

  16. Experimental characterization of the Hitrap Cooler trap with highly charged ions.

    OpenAIRE

    Fedotova, Svetlana

    2013-01-01

    The HITRAP (Highly charged Ions TRAP)facility is being set up and commissioned at GSI, Darmstadt. It will provide heavy, highly charged ions at low velocities to high-precision atomic physics experiments. Within this work the Cooler trap- the key element of the HITRAP facility was tested. The Cooler trap was assembled, aligned, and commissioned in trapping experiments with ions from off-line sources.The work performed within the scope of this thesis provided the baseline for further operation...

  17. Frequency stability of a tunable diode laser mounted in a compact Stirling cycle cooler

    Science.gov (United States)

    Durso, Santo S.; May, R. D.; Tuchscherer, M. A.; Webster, C. R.

    1989-01-01

    A tunable diode laser (TDL) has been operated with a compact lightweight closed-cycle Stirling cooler. The laser linewidth has been measured near 80 K and found to be about half of that when using more massive closed-cycle coolers. Novel applications include balloon-borne and aircraft-adapted instruments, where size, weight, and power requirements place stringent demands on necessary TDL cooling systems.

  18. Experimental characterization of the Hitrap Cooler trap with highly charged ions.

    OpenAIRE

    Fedotova, Svetlana

    2013-01-01

    The HITRAP (Highly charged Ions TRAP)facility is being set up and commissioned at GSI, Darmstadt. It will provide heavy, highly charged ions at low velocities to high-precision atomic physics experiments. Within this work the Cooler trap- the key element of the HITRAP facility was tested. The Cooler trap was assembled, aligned, and commissioned in trapping experiments with ions from off-line sources.The work performed within the scope of this thesis provided the baseline for further operation...

  19. Development of Two-Stage Stirling Cooler for ASTRO-F

    Science.gov (United States)

    Narasaki, K.; Tsunematsu, S.; Ootsuka, K.; Kyoya, M.; Matsumoto, T.; Murakami, H.; Nakagawa, T.

    2004-06-01

    A two-stage small Stirling cooler has been developed and tested for the infrared astronomical satellite ASTRO-F that is planned to be launched by Japanese M-V rocket in 2005. ASTRO-F has a hybrid cryogenic system that is a combination of superfluid liquid helium (HeII) and two-stage Stirling coolers. The mechanical cooler has a two-stage displacer driven by a linear motor in a cold head and a new linear-ball-bearing system for the piston-supporting structure in a compressor. The linear-ball-bearing supporting system achieves the piston clearance seal, the long piston-stroke operation and the low frequency operation. The typical cooling power is 200 mW at 20 K and the total input power to the compressor and the cold head is below 90 W without driver electronics. The engineering, the prototype and the flight models of the cooler have been fabricated and evaluated to verify the capability for ASTRO-F. This paper describes the design of the cooler and the results from verification tests including cooler performance test, thermal vacuum test, vibration test and lifetime test.

  20. 150K - 200K miniature pulse tube cooler for micro satellites

    Energy Technology Data Exchange (ETDEWEB)

    Chassaing, Clément; Butterworth, James; Aigouy, Gérald [Air Liquide Advanced Technologies (AL-AT) - 38360 Sassenage (France); Daniel, Christophe [Centre National D' Etudes Spatiales (CNES) - 31401 Toulouse (France); Crespin, Maurice; Duvivier, Eric [STEEL électronique - 31220 Martres Tolosane (France)

    2014-01-29

    Air Liquide is working with the CNES and Steel électronique in 2013 to design, manufacture and test a Miniature Pulse Tube Cooler (MPTC) to cool infrared detectors for micro-satellite missions. The cooler will be particularly adapted to the needs of the CNES MICROCARB mission to study atmospheric Carbon Dioxide which presents absorption lines in the thermal near infrared, at 1.6 μm and 2.0 μm. The required cooler temperature is from 150 to 200K with cooling power between 1 and 3 watts. The overall electrical power budget including electronics is less than 20W with a 288-300K rejection temperature. Particular attention is therefore paid to optimizing overall system efficiency. The active micro vibration reduction system and thermal control systems already developed for the Air Liquide Large Pulse Tube Cooler (LPTC) are currently being implemented into a new high efficiency electronic architecture. The presented work concerns the new cold finger and electronic design. The cooler uses the compressor already developed for the 80K Miniature Pulse Tube Cryocooler. This Pulse Tube Cooler addresses the requirements of space missions where extended continuous operating life time (>5 years), low mass and low micro vibration levels are critical.

  1. CFD modeling of stripper ash cooler of circulating fluidized bed boiler

    Directory of Open Access Journals (Sweden)

    Ravi Inder Singh

    2016-09-01

    Full Text Available The stable operation of a bottom ash cooler is vital for the operation of the circulating fluidized bed boiler. To assess, the stability of the ash cooler, it is important to have a thorough understanding of the flow behaviour. Although, many experimental results been reported in literature, CFD modelling of the ash cooler has not been carried out. In this paper, the transient computational analysis of a novel stripper ash cooler has been carried out using the Eulerian–Eulerian multiphase approach. The phase coupled SIMPLE algorithm has been used to solve the multiphase equations and the Gidaspow drag model has been employed to model the interaction between the fluidized air and ash. Two cases have been analysed in this paper. In the first case, the filling of the ash in the cooler has been analysed and in the second case, the phenomenon of fluidized bed bubbling in the ash cooler has been simulated. The study the of flow characteristics of hot ash has been studied. The contours of temperature, phase volume and bubbling have been analyzed in this paper.

  2. Performance investigation of capillary tubes for machine tool coolers retrofitted with HFC-407C refrigerant

    Science.gov (United States)

    Wang, Fujen; Chang, Tongbou; Chiang, Weiming; Lee, Haochung

    2012-09-01

    The machine tool coolers are the best managers of coolant temperature in avoiding the deviation of spindle centerline for machine tools. However, the machine coolers are facing the compressed schedule to phase out the HCFC (hydro-chloro-floro-carbon) refrigerant and little attention has been paid to comparative study on sizing capillary tube for retrofitted HFC (hydro-floro-carbon) refrigerant. In this paper, the adiabatic flow in capillary tube is analyzed and modeled for retrofitting of HFC-407C refrigerant in a machine tool cooler system. A computer code including determining the length of sub-cooled flow region and the two phase region of capillary tube is developed. Comparative study of HCFC-22 and HFC-407C in a capillary tube is derived and conducted to simplify the traditional trial-and-error method of predicting the length of capillary tubes. Besides, experimental investigation is carried out by field tests to verify the simulation model and cooling performance of the machine tool cooler system. The results from the experiments reveal that the numerical model provides an effective approach to determine the performance data of capillary tube specific for retrofitting a HFC-407C machine tool cooler. The developed machine tool cooler system is not only directly compatible with new HFC-407C refrigerant, but can also perform a cost-effective temperature control specific for industrial machines.

  3. Performance improvement of double-tube gas cooler in CO2 refrigeration system using nanofluids

    Directory of Open Access Journals (Sweden)

    Sarkar Jahar

    2015-01-01

    Full Text Available The theoretical analyses of the double-tube gas cooler in transcritical carbon dioxide refrigeration cycle have been performed to study the performance improvement of gas cooler as well as CO2 cycle using Al2O3, TiO2, CuO and Cu nanofluids as coolants. Effects of various operating parameters (nanofluid inlet temperature and mass flow rate, CO2 pressure and particle volume fraction are studied as well. Use of nanofluid as coolant in double-tube gas cooler of CO2 cycle improves the gas cooler effectiveness, cooling capacity and COP without penalty of pumping power. The CO2 cycle yields best performance using Al2O3-H2O as a coolant in double-tube gas cooler followed by TiO2-H2O, CuO-H2O and Cu-H2O. The maximum cooling COP improvement of transcritical CO2 cycle for Al2O3-H2O is 25.4%, whereas that for TiO2-H2O is 23.8%, for CuO-H2O is 20.2% and for Cu-H2O is 16.2% for the given ranges of study. Study shows that the nanofluid may effectively use as coolant in double-tube gas cooler to improve the performance of transcritical CO2 refrigeration cycle.

  4. Effect of sinter layer porosity distribution on flow and temperature fields in a sinter cooler

    Institute of Scientific and Technical Information of China (English)

    Jik-chang Leong; Kai-wun Jin; Jia-shyan Shiau; Tzer-ming Jeng; Chang-hsien Tai

    2009-01-01

    When sinters are filled into the sinter cooler from the sintering machine, it is commonly seen that, due to segregation ef-fects, sinters of larger size usually accumulate closer to the inner wall of the sinter cooler, whereas those of smaller size are to the outer wall. This nonuniform distribution of sinters has led to uneven cooling effect throughout the cooler. This causes the sinters leaving the cooler at a large temperature difference. This undesired temperature difference leads to the deformation and even the de-struction of the conveyors. The computational fluid dynamics (CFD) technique was used in the present work to investigate the heat and fluid flow phenomena within the sinter cooler corresponding to the different distribution of sinter layer porosity, which was highly dependent on the arrangement and orientation of sinters within the sinter cooler. It is confirmed that a high mass flow rate within the sinter layer causes a low temperature region and vice versa. The flow fields for vertically reducing porosity distribution and random distribution are almost identical indicating the relative insignificance of convective heat transfer mechanism.

  5. 75 FR 3217 - J&T Hydro Company; H. Dean Brooks and W. Bruce Cox; Notice of Application for Transfer of License...

    Science.gov (United States)

    2010-01-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission J&T Hydro Company; H. Dean Brooks and W. Bruce Cox; Notice of Application... 30, 2009, J&T Hydro Company (transferor) and W. Dean Brooks, and H. Bruce Cox (transferees) filed...

  6. Cryogenic performance and numerical modeling of a helium refrigerator for the JT-60SA coil test facility

    Science.gov (United States)

    Serrand, Alexandre; Abdel-Maksoud, Walid; Genini, Laurent; Juster, François-Paul

    2014-01-01

    In the framework of the JT-60SA project, a cryogenic loop, dedicated to the tests of the JT-60SA Toroidal Field Coils, is planned to be installed at CEA Saclay. To analyze the dynamic thermal behavior of the cryogenic loop and to optimize the cryogenic process control of the coil test facility, dynamic simulations will be carried out with the software EcosimPro. This paper deals with the validation of the software. Experimental power measurements in pure refrigeration on a helium refrigerator have been compared to computations. Results are close and allow validating the software. The modeling of the JT-60SA CTF cryogenic test loop is also described in order to give an overview of the next computations.

  7. Research and Development of 2-frequency (110/138 GHz FADIS for JT-60SA ECHCD system

    Directory of Open Access Journals (Sweden)

    Idei H.

    2015-01-01

    Full Text Available A FAst DIrectional Switch (FADIS of 2-frequency (2-ƒ gyrotron system for the JT-60SA project is being developed under collaboration between Japan Atomic Energy Agency (JAEA and Kyushu University. At first, the frequency drift and dip in the gyrotron operation were measured to consider which kind of FADIS is preferred for application in the Electron Cyclotron Heating and Current Drive (ECHCD system for the JT- 60SA. Various types of the FADIS have been considered. A square corrugated waveguide diplexer system with double resonant rings was considered as one of the most attractive FADIS systems for stable high-power and long-pulse operations in the 2-ƒ JT-60SA ECHCD system.

  8. Radio Non-Detection of ASASSN-16jt/SN 2016cvk

    Science.gov (United States)

    Ryder, S. D.; Kool, E. C.; Stockdale, C. J.; Kotak, R.; Romero-Canizales, C.; Anderson, G.

    2016-09-01

    The apparently SN 2009ip-like transient ASASSN-16jt coincident with the Type IIn-pec SN 2016cvk (ATel #9439, #9445; http://wis-tns.weizmann.ac.il/object/2016cvk) in the galaxy ESO 344-G021 has been observed with the Australia Telescope Compact Array (ATCA) at 5.5 and 9 GHz on 2016 Sep 4.6 UT. No radio emission was detected at the reported location, to a 3-sigma upper limit of 68 microJy/beam (5.5 GHz) and 75 microJy/beam (9.0 GHz).

  9. Status of the cold test facility for the JT-60SA tokamak toroidal field coils

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Maksoud, Walid, E-mail: walid.abdelmaksoud@cea.fr; Bargueden, Patrick; Bouty, André; Dispau, Gilles; Donati, André; Eppelle, Dominique; Genini, Laurent; Guiho, Patrice; Guihard, Quentin; Joubert, Jean-Michel; Kuster, Olivier; Médioni, Damien; Molinié, Frédéric; Sinanna, Armand; Solenne, Nicolas; Somson, Sébastien; Vieillard, Laurence

    2015-10-15

    Highlights: • The 5 K cryogenic loop includes a 500 W refrigerator and a She cold pump. • The coils are energized thanks to a 25.7 kA power supply and HTS current leads. • Temperature margin tests between 5 K and 7.5 K will be made on each coil. • A magnet safety system protects each double pancake of the coil in case of quench. • Instrumentation is monitored on a 1 Hz to 10 kHz fast acquisition system. - Abstract: JT-60SA is a fusion experiment which is jointly constructed by Japan and Europe and which shall contribute to the early realization of fusion energy, by providing support to the operation of ITER, and by addressing key physics issues for ITER and DEMO. In order to achieve these goals, the existing JT-60U experiment will be upgraded to JT-60SA by using superconducting coils. The 18 TF coils of the JT-60SA device will be provided by European industry and tested in a Cold Test Facility (CTF) at CEA Saclay. The coils will be tested at the nominal current of 25.7 kA and will be cooled with supercritical helium between 5 K and 7.5 K to check the temperature margin against a quench. The main objective of these tests is to check the TF coils performance and hence mitigate the fabrication risks. The most important components of the facility are: a 11.5 m × 6.5 m large cryostat in which the TF coils will be thermally insulated by vacuum; a 500 W helium refrigerator and a valve box to cool the coils down to 5 K and circulate 24 g/s of supercritical helium through the winding pack and through the casing; a power supply and HTS current leads to energize the coil; the control and instrumentation equipment (sensors, PLC's, supervision system, fast data acquisition system, etc.) and the Magnet Safety System (MSS) that protects the coils in case of quench. The paper will give an overview of the design of this large facility and the status of its realization.

  10. Optical modeling and physical performances evaluations for the JT-60SA ECRF antenna

    Energy Technology Data Exchange (ETDEWEB)

    Platania, P., E-mail: platania@ifp.cnr.it; Figini, L.; Farina, D.; Micheletti, D.; Moro, A.; Sozzi, C. [Istituto di Fisica del Plasma “P. Caldirola”, Consiglio Nazionale delle Ricerche, Via R. Cozzi 53, 20125, Milano (Italy); Isayama, A.; Kobayashi, T.; Moriyama, S. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2015-12-10

    The purpose of this work is the optical modeling and physical performances evaluations of the JT-60SA ECRF launcher system. The beams have been simulated with the electromagnetic code GRASP® and used as input for ECCD calculations performed with the beam tracing code GRAY, capable of modeling propagation, absorption and current drive of an EC Gaussion beam with general astigmatism. Full details of the optical analysis has been taken into account to model the launched beams. Inductive and advanced reference scenarios has been analysed for physical evaluations in the full poloidal and toroidal steering ranges for two slightly different layouts of the launcher system.

  11. Improvement on control system of the JT-60 radio frequency heating system

    Energy Technology Data Exchange (ETDEWEB)

    Shinozaki, Shin-ichi; Moriyama, Shinichi; Hiranai, Shinichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Sato, Fumiaki [Nippon Advanced Technology Co., Ltd., Tokai, Ibaraki (Japan)

    2003-03-01

    On the JT-60 radio frequency (RF) heating system, the decrease in the activity ratio was a problem because of the deterioration of the control system. To improve the reliability, we replaced CAMAC system for a power injection control system, which was a main cause of the trouble, with the microprocessor system. And, a function of computer supported programming function of RF power injection form was introduced, which contributed to reduce a load of operators. Furthermore, personal computers with network communication were introduced to improve a maintenance ability of the control system. As a result, the activity ratio of the RF heating system was improved significantly. (author)

  12. Design of collection optics and polychromators for a JT-60SA Thomson scattering system.

    Science.gov (United States)

    Tojo, H; Hatae, T; Sakuma, T; Hamano, T; Itami, K; Aida, Y; Suitoh, S; Fujie, D

    2010-10-01

    This paper presents designs of collection optics for a JT-60SA Thomson scattering system. By using tangential (to the toroidal direction) YAG laser injection, three collection optics without strong chromatic aberration generated by the wide viewing angle and small design volume were found to measure almost all the radial space. For edge plasma measurements, the authors optimized the channel number and wavelength ranges of band-pass filters in a polychromator to reduce the relative error in T(e) by considering all spatial channels and a double-pass laser system with different geometric parameters.

  13. Edge safety factor at the onset of plasma disruption during VDEs in JT-60U

    Science.gov (United States)

    Sugihara, Masayoshi; Lukash, Victor; Khayrutdinov, Rustam; Neyatani, Yuzuru

    2004-10-01

    Detailed examinations of the value of the edge safety factor (qa) at the onset of thermal quench (TQ) during intentional vertical displacement event (VDE) experiments in JT-60U are carried out using two different reconstruction methods, FBI/FBEQU and DINA. The results from the two methods are very similar and show that the TQ occurs when the qa value is in the range between 1.5 and 2. This result suggests that the predictive simulations for VDEs should be performed within this range of q to examine the subsequent differences in the halo currents, plasma movement and other plasma behaviour during the current quench.

  14. An Analysis of Step, Jt, and Pdf Format Translation Between Constraint-based Cad Systems with a Benchmark Model

    OpenAIRE

    McKenzie-Veal, Dillon

    2012-01-01

    This research was conducted to provide greater depth into the ability of STEP AP 203 Edition 2, JT, and 3D PDF to translate and preserve information while using a benchmark model. The benchmark model was designed based on four industry models and created natively in the five industry leading 3D CAD programs. The native CAD program models were translated using STEP, JT, and 3D PDF. Several criteria were analyzed along the paths of translation from one disparate CAD program to another. Along wi...

  15. Detection of Thyroid Carcinoma Antigen with Quantum Dots and Monoclonal IgM Antibody (JT-95 System

    Directory of Open Access Journals (Sweden)

    Kouki Fujioka

    2010-01-01

    Full Text Available High-intensity fluorescent nanoparticles, quantum dots (QDs, have been applied to a wide range of biological studies and medical studies by taking advantage of their fluorescent properties. On the other hand, we have reported the specificity of JT-95 monoclonal IgM antibody, which recognizes the antigen of thyroid carcinomas. Here we show that the combination of QDs and JT-95 monoclonal antibody was applicable to Western blotting analysis, ELISA-like system, and fluorescent microscopic analysis of SW1736 thyroid carcinoma cell line. We have opened up the possibility that antibodies for higher specific recognition, even IgM, are applicable to the detection system with QDs.

  16. Practical issues in adopting a traveling wave thermoacoustic cooler for use in a food storage refrigerator

    Science.gov (United States)

    Spoor, Philip S.

    2005-09-01

    CFIC/QDrive has developed a food storage refrigerator for the Army based on thermoacoustic technology. This ``Phase II'' SBIR project is a continuation of a ``Phase I'' effort that explored using a standing-wave thermoacoustic cooler for the refrigerator. The standing-wave cooler was found to be too inefficient with too low a power density to be practical, so it was switched to an acoustic Stirling, or traveling-wave thermoacoustic (regenerator based) cooler for Phase II. The major challenges of this project were adapting the Stirling-style cooler to a food storage application, and not the fundamentals of the cooler itself (the one exception being the issue of acoustic streaming). The challenges include: Running at 60 Hz (without frequency-shifting electronics), heat exchange without circulating fluids, dynamic balance, guarantee of long life, efficiency, and compactness (power density). How these challenges were met and how they drove the design, in most cases away from what would be ideal for the cycle itself, will be discussed. Time permitting, how the additional pressure of low unit cost would affect this type of product development will also be discussed. [Research supported by the U. S. Army through a Small Business Innovation Research (SBIR) grant.

  17. CFD analysis of turboprop engine oil cooler duct for best rate of climb condition

    Science.gov (United States)

    Kalia, Saurabh; CA, Vinay; Hegde, Suresh M.

    2016-09-01

    Turboprop engines are widely used in commuter category airplanes. Aircraft Design bureaus routinely conduct the flight tests to confirm the performance of the system. The lubrication system of the engine is designed to provide a constant supply of clean lubrication oil to the engine bearings, the reduction gears, the torque-meter, the propeller and the accessory gearbox. The oil lubricates, cools and also conducts foreign material to the oil filter where it is removed from further circulation. Thus a means of cooling the engine oil must be provided and a suitable oil cooler (OC) and ducting system was selected and designed for this purpose. In this context, it is relevant to study and analyse behaviour of the engine oil cooler system before commencing actual flight tests. In this paper, the performance of the oil cooler duct with twin flush NACA inlet housed inside the nacelle has been studied for aircraft best rate of climb (ROC) condition using RANS based SST K-omega model by commercial software ANSYS Fluent 13.0. From the CFD analysis results, it is found that the mass flow rate captured and pressure drop across the oil cooler for the best ROC condition is meeting the oil cooler manufacturer requirements thus, the engine oil temperature is maintained within prescribed limits.

  18. Thermal design of two-stage evaporative cooler based on thermal comfort criterion

    Science.gov (United States)

    Gilani, Neda; Poshtiri, Amin Haghighi

    2017-04-01

    Performance of two-stage evaporative coolers at various outdoor air conditions was numerically studied, and its geometric and physical characteristics were obtained based on thermal comfort criteria. For this purpose, a mathematical model was developed based on conservation equations of mass, momentum and energy to determine heat and mass transfer characteristics of the system. The results showed that two-stage indirect/direct cooler can provide the thermal comfort condition when outdoor air temperature and relative humidity are located in the range of 34-54 °C and 10-60 %, respectively. Moreover, as relative humidity of the ambient air rises, two-stage evaporative cooler with the smaller direct and larger indirect cooler will be needed. In building with high cooling demand, thermal comfort may be achieved at a greater air change per hour number, and thus an expensive two-stage evaporative cooler with a higher electricity consumption would be required. Finally, a design guideline was proposed to determine the size of required plate heat exchangers at various operating conditions.

  19. Reliability improvements on Thales RM2 rotary Stirling coolers: analysis and methodology

    Science.gov (United States)

    Cauquil, J. M.; Seguineau, C.; Martin, J.-Y.; Benschop, T.

    2016-05-01

    The cooled IR detectors are used in a wide range of applications. Most of the time, the cryocoolers are one of the components dimensioning the lifetime of the system. The cooler reliability is thus one of its most important parameters. This parameter has to increase to answer market needs. To do this, the data for identifying the weakest element determining cooler reliability has to be collected. Yet, data collection based on field are hardly usable due to lack of informations. A method for identifying the improvement in reliability has then to be set up which can be used even without field return. This paper will describe the method followed by Thales Cryogénie SAS to reach such a result. First, a database was built from extensive expertizes of RM2 failures occurring in accelerate ageing. Failure modes have then been identified and corrective actions achieved. Besides this, a hierarchical organization of the functions of the cooler has been done with regard to the potential increase of its efficiency. Specific changes have been introduced on the functions most likely to impact efficiency. The link between efficiency and reliability will be described in this paper. The work on the two axes - weak spots for cooler reliability and efficiency - permitted us to increase in a drastic way the MTTF of the RM2 cooler. Huge improvements in RM2 reliability are actually proven by both field return and reliability monitoring. These figures will be discussed in the paper.

  20. Thermal design of two-stage evaporative cooler based on thermal comfort criterion

    Science.gov (United States)

    Gilani, Neda; Poshtiri, Amin Haghighi

    2016-09-01

    Performance of two-stage evaporative coolers at various outdoor air conditions was numerically studied, and its geometric and physical characteristics were obtained based on thermal comfort criteria. For this purpose, a mathematical model was developed based on conservation equations of mass, momentum and energy to determine heat and mass transfer characteristics of the system. The results showed that two-stage indirect/direct cooler can provide the thermal comfort condition when outdoor air temperature and relative humidity are located in the range of 34-54 °C and 10-60 %, respectively. Moreover, as relative humidity of the ambient air rises, two-stage evaporative cooler with the smaller direct and larger indirect cooler will be needed. In building with high cooling demand, thermal comfort may be achieved at a greater air change per hour number, and thus an expensive two-stage evaporative cooler with a higher electricity consumption would be required. Finally, a design guideline was proposed to determine the size of required plate heat exchangers at various operating conditions.

  1. Dynamic simulations for preparing the acceptance test of JT-60SA cryogenic system

    Science.gov (United States)

    Cirillo, R.; Hoa, C.; Michel, F.; Poncet, J. M.; Rousset, B.

    2016-12-01

    Power generation in the future could be provided by thermo-nuclear fusion reactors like tokamaks. There inside, the fusion reaction takes place thanks to the generation of plasmas at hundreds of millions of degrees that must be confined magnetically with superconductive coils, cooled down to around 4.5 K. Within this frame, an experimental tokamak device, JT-60SA is currently under construction in Naka (Japan). The plasma works cyclically and the coil system is subject to pulsed heat loads. In order to size the refrigerator close to the average power and hence optimizing investment and operational costs, measures have to be taken to smooth the heat load. Here we present a dynamic model of the JT-60SA's Auxiliary Cold box (ACB) for preparing the acceptance tests of the refrigeration system planned in 2016 in Naka. The aim of this study is to simulate the pulsed load scenarios using different process controls. All the simulations have been performed with EcosimPro® and the associated cryogenic library: CRYOLIB.

  2. Final design of the Switching Network Units for the JT-60SA Central Solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Lampasi, Alessandro, E-mail: alessandro.lampasi@enea.it [National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Frascati (Italy); Coletti, Alberto; Novello, Luca [Fusion for Energy (F4E) Broader Fusion Development Department, Garching (Germany); Matsukawa, Makoto [Japan Atomic Energy Agency, Naka Fusion Institute, Mukouyama, Naka-si, Ibaraki-ken (Japan); Burini, Filippo; Taddia, Giuseppe; Tenconi, Sandro [OCEM Energy Technology, San Giorgio Di Piano (Italy)

    2014-04-15

    This paper describes the approved detailed design of the four Switching Network Units (SNUs) of the superconducting Central Solenoid of JT-60SA, the satellite tokamak that will be built in Naka, Japan, in the framework of the “Broader Approach” cooperation agreement between Europe and Japan. The SNUs can interrupt a current of 20 kA DC in less than 1 ms in order to produce a voltage of 5 kV. Such performance is obtained by inserting an electronic static circuit breaker in parallel to an electromechanical contactor and by matching and coordinating their operations. Any undesired transient overvoltage is limited by an advanced snubber circuit optimized for this application. The SNU resistance values can be adapted to the specific operation scenario. In particular, after successful plasma breakdown, the SNU resistance can be reduced by a making switch. The design choices of the main SNU elements are justified by showing and discussing the performed calculations and simulations. In most cases, the developed design is expected to exceed the performances required by the JT-60SA project.

  3. Manufacturing design and development of the current feeders and coil terminal boxes for JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Kizu, Kaname, E-mail: kizu.kaname@jaea.go.jp [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Murakami, Haruyuki; Natsume, Kyohei; Tsuchiya, Katsuhiko; Koide, Yoshihiko; Yoshida, Kiyoshi [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Obana, Tetsuhiro; Hamaguchi, Shinji; Takahata, Kazuya [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2015-10-15

    Highlights: • Key components for current feeding system for JT-60SA were developed and tested. • The joint resistance of feeder joint sample was 1.7 nΩ at 2 T, 20 kA. • Trial manufacturing of crank shaped feeder showed the max. dimensional error of 3 mm. • Feeder insulation samples showed >60 MPa in shear strength at 77 K. - Abstract: Feeders and coil terminal boxes (CTBs) of the superconducting magnets for JT-60SA have been designed. A small tool which can connect soldering joint with vertical direction in the cryostat has been developed. The joint resistance of the sample showed 1.7 nΩ at 2 T, 4.2 K, 20 kA which is within the requirement of <5 nΩ. A prototype feeder in CTB with crank shape was manufactured. The maximum dimensional error was 3 mm being within the requirement of ±10 mm. Feeder insulation samples showed a shear strength >60 MPa which is much higher than the requirement of 10 MPa as derived from analysis. Since all the manufacturing processes concerned have been proof-tested, the production of feeders and CTBs has been released.

  4. Starting the production of the CEA JT-60SA TF coils at Alstom

    Energy Technology Data Exchange (ETDEWEB)

    Decool, P., E-mail: patrick.decool@cea.fr [CEA, IRFM, F-13108 St-Paul-Lez-Durance Cedex (France); Cloez, H.; Gros, G.; Jiolat, G.; Marechal, J.L.; Nicollet, S.; Torre, A.; Verger, J.M. [CEA, IRFM, F-13108 St-Paul-Lez-Durance Cedex (France); Nusbaum, M.; Billotte, G.; Crepel, B.; Bourquard, A.; Schweitzer, M. [Alstom Power Systems STTG Magnets, 90018 Belfort (France); Davis, S.; Phillips, G. [Fusion for Energy, Boltzmannstr 2, 85748 Garching (Germany)

    2015-10-15

    Highlights: • We describe the status of the JT-60SA TF coils manufacture at Alstom. • The manufacturing workflow and related tooling are described. • Completion of qualification activities has allowed to start the coils production. • Production of the first winding up to its impregnation is described. • Winding of following coils is started. - Abstract: Within the framework of the Broader Approach, the French voluntary contributor represented by CEA awarded a contract for the production of 9 toroidal field coils for the JT-60SA project to Alstom, Belfort, France in mid-2011. A first preparatory phase was led to establish the team, produce the manufacture drawings, define the manufacturing process, procure the required tooling and prepare the quality documentation. In parallel, a qualification phase on the critical major processes has proved Alstom's ability to master the processes and reach the requirements. After reviewing of the qualification results and modification of the processes and tooling to overcome the encountered difficulties, a Production Readiness Review has authorized Alstom to start the production winding. A prototype double pancake was wound as the first of series. In addition to complying with the pancake width all around the D shape, the straightness of the centreline in the critical straight leg part was correct. The production of the successive double pancakes to constitute the first winding pack was then completed and the joints and terminals were manufactured. The paper describes the completion of the last qualifications and the status of the winding production.

  5. Development of computer-aided software engineering tool for sequential control of JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Shimono, M.; Akasaka, H.; Kurihara, K.; Kimura, T. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1995-12-31

    Discharge sequential control (DSC) is an essential control function for the intermittent and pulse discharge operation of a tokamak device, so that many subsystems may work with each other in correct order and/or synchronously. In the development of the DSC program, block diagrams of logical operation for sequential control are illustrated in its design at first. Then, the logical operators and I/O`s which are involved in the block diagrams are compiled and converted to a certain particular form. Since the block diagrams of the sequential control amounts to about 50 sheets in the case of the JT-60 upgrade tokamak (JT-60U) high power discharge and the above steps of the development have been performed manually so far, a great effort has been required for the program development. In order to remove inefficiency in such development processes, a computer-aided software engineering (CASE) tool has been developed on a UNIX workstation. This paper reports how the authors design it for the development of the sequential control programs. The tool is composed of the following three tools: (1) Automatic drawing tool, (2) Editing tool, and (3) Trace tool. This CASE tool, an object-oriented programming tool having graphical formalism, can powerfully accelerate the cycle for the development of the sequential control function commonly associated with pulse discharge in a tokamak fusion device.

  6. NASA Lewis Stirling SPRE testing and analysis with reduced number of cooler tubes

    Energy Technology Data Exchange (ETDEWEB)

    Wong, W.A.; Cairelli, J.E.; Swec, D.M.; Doeberling, T.J.; Lakatos, T.F. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center; Madi, F.J. [Sverdrup Technology, Inc., Cleveland, OH (United States). Lewis Research Center Group

    1994-09-01

    Free-piston Stirling power converters are a candidate for high capacity space power applications. The Space Power Research Engine (SPRE), a free-piston Stirling engine coupled with a linear alternator, is being tested at the NASA Lewis Research Center in support of the Civil Space Technology Initiative. The SPRE is used as a test bed for evaluating converter modifications which have the potential to improve converter performance and for validating computer code predictions. Reducing the number of cooler tubes on the SPRE has been identified as a modification with the potential to significantly improve power and efficiency. This paper describes experimental tests designed to investigate the effects of reducing the number of cooler tubes on converter power, efficiency and dynamics. Presented are test results from the converter operating with a reduced number of cooler tubes and comparisons between this data and both baseline test data and computer code predictions.

  7. NASA Lewis Stirling SPRE testing and analysis with reduced number of cooler tubes

    Science.gov (United States)

    Wong, Wayne A.; Cairelli, James E.; Swec, Diane M.; Doeberling, Thomas J.; Lakatos, Thomas F.; Madi, Frank J.

    1992-08-01

    Free-piston Stirling power converters are candidates for high capacity space power applications. The Space Power Research Engine (SPRE), a free-piston Stirling engine coupled with a linear alternator, is being tested at the NASA Lewis Research Center in support of the Civil Space Technology Initiative. The SPRE is used as a test bed for evaluating converter modifications which have the potential to improve the converter performance and for validating computer code predictions. Reducing the number of cooler tubes on the SPRE has been identified as a modification with the potential to significantly improve power and efficiency. Experimental tests designed to investigate the effects of reducing the number of cooler tubes on converter power, efficiency and dynamics are described. Presented are test results from the converter operating with a reduced number of cooler tubes and comparisons between this data and both baseline test data and computer code predictions.

  8. Study of thermal-flow processes in ash cooler cooperating with CFB boiler

    Directory of Open Access Journals (Sweden)

    Paweł Regucki

    2016-03-01

    Full Text Available The article presents an example of thermal-flow analysis of the bottom ash cooler cooperating with the circulating fluidized bed boiler. There is presented a mathematical model of series-parallel hydraulic system supplying the ash cooler in cooling water. The numerical calculations indicate an influence of changes of the pipeline geometrical parameters on the cooling water flow rate in the system. Paper discusses the methodology of the studies and presents examples of the results of thermal balance calculations based on the results of measurements. The numerical results of the thermal-flow analysis in comparison with the measurements on the object indicate that the presented approach could be used as a diagnostic tool investigating the technical state of the bottom ash cooler.

  9. Influence of the outlet air temperature on the thermohydraulic behaviour of air coolers

    Directory of Open Access Journals (Sweden)

    Đorđević Emila M.

    2003-01-01

    Full Text Available The determination of the optimal process conditions for the operation of air coolers demands a detailed analysis of their thermohydraulic behaviour on the one hand, and the estimation of the operating costs, on the other. One of the main parameters of the thermohydraulic behaviour of this type of equipment, is the outlet air temperature. The influence of the outlet air temperature on the performance of air coolers (heat transfer coefficient overall heat transfer coefficient, required surface area for heat transfer air-side pressure drop, fan power consumption and sound pressure level was investigated in this study. All the computations, using AirCooler software [1], were applied to cooling of the process fluid and the condensation of a multicomponent vapour mixture on two industrial devices of known geometries.

  10. Numerical simulation and optimization design of the EGR cooler in vehicle

    Institute of Scientific and Technical Information of China (English)

    Yu-qi HUANG; Xiao-li Yu; Guo-dong Lu

    2008-01-01

    The EGR(exhaust gas reeirculation)technique can greatly reduce the Nox emission of diesel engines,especially when an EGR cooler iS employed.Numerical simulations are applied to study the flow field and tempemture distributions inside the EGR cooler.Three different models of EGR cooler are investigated,among which model A is a traditional one,and models B and C are improved by adding a helical bafile in the cooling area.In models B and C the elltry directions of cooling water are different,which mostly influences the flow resistance.The results show that the improved structures not only lengthen the flow path of the cooling water,but also enhante the heat exchange rate between the cool and hot media.In conclusion we suggest that the improved Structures are more powerful than the traditional one.

  11. Development and Evaluation of a Sandia Cooler-based Refrigerator Condenser

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kariya, Harumichi Arthur [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Leick, Michael T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zimmerman, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Li, Manjie [Univ. of Maryland, College Park, MD (United States); Du, Yilin [Univ. of Maryland, College Park, MD (United States); Lee, Hoseong [Univ. of Maryland, College Park, MD (United States); Hwang, Yunho [Univ. of Maryland, College Park, MD (United States); Radermacher, Reinhard [Univ. of Maryland, College Park, MD (United States)

    2015-07-01

    This report describes the first design of a refrigerator condenser using the Sandia Cooler, i.e. air - bearing supported rotating heat - sink impeller. The project included ba seline performance testing of a residential refrigerator, analysis and design development of a Sandia Cooler condenser assembly including a spiral channel baseplate, and performance measurement and validation of this condenser system as incorporated into the residential refrigerator. Comparable performance was achieved in a 60% smaller volume package. The improved modeling parameters can now be used to guide more optimized designs and more accurately predict performance.

  12. A thermoacoustically driven cooler capable of reaching temperature below 77 K with no moving part

    Institute of Scientific and Technical Information of China (English)

    DAI Wei; LUO Ercang; LING Hong; HU Jianying

    2005-01-01

    @@ The pulse tube cooler has no cryogenic displacer and has attracted lots of attention in the field of cryocooler research. On the other hand, the thermoacoustic engine can generate self-oscillation and output work without moving components[1]. Combining both technologies leads to a cryogenic cooler system with no moving components at all, which has great advantages of high reliability, low manufacturing cost, etc. Limited by largest available pressure ratio of thermoacoustic engines, up to now the best results on such a combined system are 88.6K when standing-wave thermoacoustic engine[2] is used and 80.9K when traveling-wave thermoacoustic engine[3] is used.

  13. Experimental investigation of the influences of shape and surface area on the EGR cooler efficiency

    Science.gov (United States)

    Jang, Sanghoon; Park, Sangki; Choi, Kapseung; Kim, Hyungman

    2011-06-01

    The cooled EGR system is one of the most effective techniques currently available for reducing NOx emissions. In this study, engine dynamometer experiments were performed to investigate the efficiencies of the shell and tube-type and stack-type EGR coolers. The results show that the heat exchange of the stack-type EGR cooler is much more effective than that of the shell and tube type because of the increased surface area and better mixing of the coolant flow, and also more PM is produced at low exhaust gas temperature than at high temperature.

  14. A polarimeter for JT-60SA: chords layout study with V3FIT for q profile reconstruction

    Science.gov (United States)

    Terranova, David; Boboc, Alexandru; Gil, Christophe; Soare, Sorin; Orsitto, Francesco; Imazawa, Ryota

    2016-10-01

    JT-60SA is the new tokamak device that is being built in Japan under the Broader Approach Satellite Tokamak Programme and the Japanese National Programme [JT-60SA Research Plan, Version 3.3, March 2016, www.jt60sa.org/pdfs/JT-60SA_Res_Plan.pdf] and will operate as a satellite machine for ITER. To provide valuable information for the steady state scenario for ITER and the design of DEMO, a high βN scenario is included in the program, where the real-time control of the q-profile is needed. In this work we present a study of the geometry of the polarimetry chords, derived from a true realistic CAD-driven feasibility study, aiming at an optimization in terms of q-profile reconstruction, using the V3FIT code. Some magnetic and kinetic measurements are considered along with the FIR poloidal polarimeter in order to assess the possibility of estimating q in the core with the required accuracy (around 10%) providing a diagnostic for a continuous measurement useful in high density pulses where MSE measurements would not have adequate time resolution.

  15. Development of a high power wideband polarizer for electron cyclotron current drive system in JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Saigusa, Mikio, E-mail: saigusa@mx.ibaraki.ac.jp [Ibaraki University, Hitachi, Ibaraki 316-8511 (Japan); Oyama, Gaku; Matsubara, Fumiaki; Takii, Keita; Sai, Takuma [Ibaraki University, Hitachi, Ibaraki 316-8511 (Japan); Kobayashi, Takayuki; Moriyama, Shinichi [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan)

    2015-10-15

    Highlights: • We developed a new wideband polarizer for JT-60SA ECCD system. • The wideband polarizer is optimized for dual frequency gyrotrons (110 and 138 GHz) in JT-60SA. • The wideband polarization properties were verified at cold tests. • The preliminary high power tests have been carried out at 0.25 MW, 3 s at 110 GHz. - Abstract: A wideband polarizer consisting of a polarization twister and a circular polarizer has been developed for an electron cyclotron current driving system in JT-60SA, where the output frequencies of a dual frequency gyrotron for JT-60SA are 110 and 138 GHz. The groove depths are optimized for the dual frequencies by numerical simulations using a FDTD method and cold test results. The polarization properties of a mock-up polarizer are measured at the dual frequencies in cold tests. The cold test results suggest that all practical polarizations for ECCD experiments can be achieved at the dual frequencies. The prototype polarization twister has been tested up to 0.25 MW during 3 s at the frequency of 110 GHz.

  16. Technical aspects and manufacturing methods for JT-60SA toroidal field coil casings

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo, E-mail: paolo.rossi@enea.it [ENEA, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Cucchiaro, A.; Brolatti, G.; Cocilovo, V.; Ginoulhiac, G.; Polli, G. [ENEA, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Gabriele, M.; Di Muzio, F. [Walter Tosto, Via Erasmo Piaggio, 66100 Chieti (Italy); Philips, G.; Tomarchio, V. [JT-60SA European Home Team, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2014-10-15

    Highlights: • A contract between ENEA and Walter Tosto started on July 2012 for the construction of 18 TF coil casings for JT-60SA. • Design and manufacturing of mock-ups representative of straight and curved legs of the casings have been completed. • Final design of the casings has been completed and manufacturing activities have already started and are ongoing. • The completion of the first three casings will be completed within the end of 2013 and the production of all the 18 casings is foreseen by the end of 2015. - Abstract: JT-60SA is a superconducting tokamak machine to be assembled in Naka site, Japan, designed to contribute to the early realization of fusion energy by supporting the exploitation of ITER and research toward DEMO. In the frame of the Broader Approach Agreement a contract between ENEA and Walter Tosto (Chieti, Italy) started on July 2012 for the construction of 18 TF coil casings for JT-60SA. Two different sets of 9 casings each will be progressively delivered, from 2013 to the end of 2015, to ASG Superconductors (Genoa, Italy) and to Alstom (Belfort, France), where the integration of the winding pack into the casing will be carried out. Each TF coil casing (height 7.5 m and width 4.5 m) consists of four main components: one “Straight Leg Outboard” and one “Curved Leg Outboard” both with their own covers, “Straight Leg Inboard” and “Curved Leg Inboard”. The casing components are segmented in forgings and plates made of FM316LNL. The straight leg outboard is composed of two wings welded to a central core and two elbows welded at the ends with a cooling channel installed inside. Elbows of straight leg outboard are segmented in two half-elbows machined from 1 rough forging and welded to the central core made by plate. Welding of wings to the central core is performed in EBW (electron beam welding) and the straight part is welded to the elbows by NGTIG (TIG narrow gap) process. The curved leg outboard is composed of two

  17. Design study of JT-60SA divertor for high heat and particle controllability

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, H.; Shimizu, K.; Takizuka, T.; Asakura, N.; Sakurai, S.; Matsukawa, M.; Fujita, T. [Japan Atomic Energy Agency (Japan)

    2007-07-01

    In steady-state high performance plasma over 41 MW/100 s in the JT-60SA tokamak, the heat and particle flux density on the divertor targets are considerably higher than those of existing devices such as JT-60U. A divertor modeling code, SOLDOR/NEUT2D, has been applied in order to optimiz the JT-60SA divertor design in such conditions. The heat load q{sub heat} on divertor target is estimated for a conceptual divertor design as the first step. Simulation of SOL/divertor plasmas is carried out at lower single null divertor (LSN) configuration with I{sub p}/B{sub t}=3.5 MA/2.5 T. For the present calculation, anticipated SOL power flux of Q{sub total}=35 MW and particle fuelling flux of G{sub ion}=5.10{sup 21}/s (n{sub e-dege}=3.10{sup 19}/m) are applied. The pumping speed (S{sub pump}=50 m{sup 3}/s) is specified by an albedo for neutrals in front of the cryopump set bottom of exhaust chamber. The recycling of deuterium is assumed to be 100% at the first wall. For the first simulation, the carbon contamination in SOL/divertor regions is set to 2% of electron density uniformly. Gas puff flux G{sub puff}=0.5.10{sup 21}/s is introduced from outside midplane. We assume particle diffusion coefficient D=0.3 m{sup 2}/s and thermal diffusivity of electron and ion X{sub e}=X{sub i}=1 m{sup 2}/s. As a result, attached and detached plasma conditions are simulated on outer and inner divertor regions, respectively. The heat load around the outer strike point reaches 31 MW/m{sup 2}, which largely exceeds the allowable range of 15 MW/m{sup 2} for CFC materials. Reduction of heat load must be achieved somehow. An effect of the radiation cooling is simulated to reduce such a large heat load as the second step. To enlarge the radiative cooling, we increased the gas puff flux by a factor of ten and the carbon contamination partly in the outer divertor region from 2% to 4%. It gives a favorable result that the peak heat load is reduced to 12 MW/m{sup 2} with radiation enhancement by a

  18. Optimization of the working fluid for a sorption-based Joule-Thomson cooler

    NARCIS (Netherlands)

    Wu, Y.; Zalewski, D.R.; Vermeer, C.H.; Brake, ter H.J.M.

    2013-01-01

    Sorption-based Joule–Thomson coolers operate vibration-free, have a potentially long life time, and cause no electromagnetic interference. Therefore, they are appealing to a wide variety of applications, such as cooling of low-noise amplifiers, superconducting electronics, and optical detectors. The

  19. Topology optimisation of passive coolers for light-emitting diode lamps

    DEFF Research Database (Denmark)

    Alexandersen, Joe

    2015-01-01

    This work applies topology optimisation to the design of passive coolers for light-emitting diode (LED) lamps. The heat sinks are cooled by the natural convection currents arising from the temperature difference between the LED lamp and the surrounding air. A large scale parallel computational...

  20. Development and Testing of an Integrated Sandia Cooler Thermoelectric Device (SCTD).

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A.; Staats, Wayne Lawrence,; Leick, Michael Thomas; Zimmerman, Mark D.; Radermacher, Reinhard; Martin, Cara; Nasuta, Dennis; Kalinowski, Paul; Hoffman, William

    2014-12-01

    This report describes a FY14 effort to develop an integrated Sandia Cooler T hermoelectric D evice (SCTD) . The project included a review of feasible thermoelectric (TE) cooling applications, baseline performance testing of an existing TE device, analysis and design development of an integrated SCTD assembly, and performance measurement and validation of the integrated SCTD prototype.

  1. A separate two-stage pulse tube cooler working at liquid helium temperature

    Institute of Scientific and Technical Information of China (English)

    QIU Limin; HE Yonglin; GAN Zhihua; WAN Laihong; CHEN Guobang

    2005-01-01

    A novel 4 K separate two-stage pulse tube cooler (PTC) was designed and tested. The cooler consists of two separate pulse tube coolers, in which the cold end of the first stage regenerator is thermally connected with the middle part of the second regenerator. Compared to the traditional coupled multi-stage pulse tube cooler, the mutual interference between stages can be significantly eliminated. The lowest refrigeration temperature obtained at the first stage pulse tube was 13.8 K. This is a new record for single stage PTC. With two compressors and two rotary valves driving mode, the separate two-stage PTC obtained a refrigeration temperature of 2.5 K at the second stage. Cooling capacities of 508 mW at 4.2 K and 15 W at 37.5 K were achieved simultaneously. A one-compressor and one-rotary valve driving mode has been proposed to further simplify the structure of separate type PTC.

  2. AUTOMATIC CONTROL SYSTEM OF HEAT PUMP STATION GAS COOLER AT THE WIDE RANGE OF HEAT LOAD

    Directory of Open Access Journals (Sweden)

    Juravleov A.A.

    2008-08-01

    Full Text Available There is examined the structure the of control system of gas cooler of heat pump station, which uses the carbon dioxide as the working fluid in the transctitical thermodynamical cycle. It is analiyed the structure of the complex: heat pump station – district heating system.

  3. Long-life micro vacuum chamber for a micromachined cryogenic cooler

    NARCIS (Netherlands)

    Cao, H.; Vermeer, C.H.; Vanapalli, S.; Holland, H.J.; Brake, ter H.J.M.

    2015-01-01

    Micromachined cryogenic coolers can be used for cooling small electronic devices to improve their performance. However, for reaching cryogenic temperatures, they require a very good thermal insulation from the warm environment. This is established by a vacuum space that for adequate insulation has t

  4. Condensation-Fouling Interaction in Low-Temperature EGR-Coolers

    Directory of Open Access Journals (Sweden)

    Reißig Martin

    2014-01-01

    Full Text Available EGR cooling is a worthwhile technology capable of reducing NOx-emissions and increasing the efficiency of CI engines. Challenges arise when low-temperature cooling is applied with high fuel sulfur contents. The resulting sulfuric acid condenses in conjunction with the water of the exhaust gas and gives rise to corrosion of coolers and engine components. Additionally, fouling of the EGR cooler is exacerbated by the condensation of acidic components compromising EGR performance. In order to gain a better understanding of the underlying processes a combined experimental and model-based approach is presented. Tests of two different EGR-cooler concepts under various conditions showed a strong influence of the fuel sulfur content on fouling and condensation. The one-dimensional cooler model developed alongside these experiments consists of an activity coefficient model (NRTL of the binary system water - sulfuric acid and a condensation model that allows for simulating the coupled condensation of both vapor components. Comparison of experimental fouling and simulated condensation results show good agreement in interpreting critical fouling phenomena that occur at temperatures in between the acid-water dew point and the dew point of pure water.

  5. Improved Performance of an Indigenous Stirling Type Pulse Tube Cooler and Pressure Wave Generator

    Science.gov (United States)

    Kumar, J. Kranthi; Jacob, S.; Karunanithi, R.; Narasimham, G. S. V. L.; Damu, C.; Praveen, T.; Samir, M.

    Sustained efforts have been made in our laboratory to improve the performance of an indigenously developed pressure wave gen- erator by reducing the mechanical losses and the required input power. An acoustically matching pulse tube cooler, with a design target of 0.5 W at 80 K, was designed using Sage and experience gained from previous studies. The pulse tube cooler was fabri- cated and tested. The effect of regenerator stacking pattern on the cooler performance was studied by filling the regenerator with mesh of the same size #400 and with multi meshes #250, 325, 400. In present experiments, regenerator with #400 mesh at 30 bar filling pressure performed better with more energy efficiency. A no load temperature of 74 K was achieved with input power of 59 W corresponding to a cooling power of 0.22 W at 80 K. Parasitic heat load to the cooler was measured be 0.68 W. This heat load is primarily by heat conduction through the regenerator and pulse tube wall. By reducing the wall thickness from 0.30 mm to 0.15 mm, the parasitic loads can be reduced by 50%.

  6. Bacteriological Quality of Water Cooler Dispensers of Educational Settings in Zanjan University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Hassan Hassanzadazar

    2017-03-01

    Full Text Available Background: Safe drinking water is one of the main factors in improving health status of the population. The aim of this study was assessment of the microbiological quality, determination of pH and residual chlorine in water coolers’ drinking water in educational centers of Zanjan University of medical Sciences in 2015 and comparing the results with the Iranian national standards. Methods: In this cross-sectional study, water samples of all used water cooler apparatuses were sampled and transferred rapidly to the laboratory. pH and residual free chlorine were measured by pH meter and Chlorine Residual Testing kit, respectively. Total coliforms, Escherichia coli, Mold and yeasts count were enumerated according to the Iranian national standards No. 1011, 3759, 5271 and 10899-1, respectively. Data were analyzed through the statistical soft wares. Results: The obtained results indicated that 44.44% of the samples were non-standard because of low residual chlorine. 44.44% and 27.8% of the taken water samples of water cooler dispensers were contaminated with mold or yeast and Escherichia coli, respectively. Conclusion: According to some microbial contamination in water samples of water cooler devices to ensure availability clean water to consumers (students and hospital’s visitors continuous monitoring, proper maintenance and regular inspection of the water cooler dispensers seems necessary.

  7. Air cooler ducts. A simple kind of air conditioner; Luftkuehlschaechte. Eine einfache Teilklimaanlage

    Energy Technology Data Exchange (ETDEWEB)

    Glueck, B. [F und E TGA, Joessnitz (Germany); Westsaechsische Hochschule Zwickau (F.H.) (Germany)

    2005-07-01

    Air cooler duct cabinets are used increasingly for cooling and demoisturizing of room air and fresh air, sometimes also as auxiliary heating systems. They are more complex than conventional and have specific characteristics concerning construction, dimensioning, optimisation and control. A newly developed computer program enables pre-assessment of specific operational situations. (orig.)

  8. 50 mK cooling solution with an ADR precooled by a sorption cooler

    Science.gov (United States)

    Luchier, N.; Duval, J. M.; Duband, L.; Camus, P.; Donnier-Valentin, G.; Linder, M.

    2010-09-01

    CEA/SBT is currently developing a 2.5 K-50 mK cooling solution composed of a small demagnetization refrigerator (ADR) precooled by a sorption cooler, equivalent to the high temperature stage of a two-stage ADR system. Thanks to the use of this dual technology, a low weight cooler able to reach 50 mK with a heat sink up to 2.5 K can be designed. Because the sorption cooler is probably the lightest solution to produce sub-Kelvin temperatures, these developments allow us to propose a solution to face the drastic reduction in the mass budget of space missions like SPICA or IXO. The European Space Agency (ESA) is funding the development of an engineering model able to produce 1 μW net heat lift at 50 mK. It is sized so that the sorption cooler provides an additional 10 μW at 300 mK. The ESA main requirements are an autonomy of more than 24 h and a recycling time smaller than 8 h. We present the design of the system able to meet these requirements as well as the expected performances and preliminary measurements.

  9. 76 FR 31795 - Energy Conservation Program: Energy Conservation Standards for Walk-In Coolers and Freezers...

    Science.gov (United States)

    2011-06-02

    ... Part 431 RIN 1904-AB85 Energy Conservation Program: Energy Conservation Standards for Walk-In Coolers... . SUPPLEMENTARY INFORMATION: I. Background The Energy Policy and Conservation Act (EPCA), as amended by section... Subjects in 10 CFR Part 431 Administrative practice and procedure, Energy conservation, Reporting...

  10. Long-life micro vacuum chamber for a micromachined cryogenic cooler

    NARCIS (Netherlands)

    Cao, Haishan; Vermeer, Cristian Hendrik; Vanapalli, Srinivas; Holland, Herman J.; ter Brake, Hermanus J.M.

    2015-01-01

    Micromachined cryogenic coolers can be used for cooling small electronic devices to improve their performance. However, for reaching cryogenic temperatures, they require a very good thermal insulation from the warm environment. This is established by a vacuum space that for adequate insulation has

  11. Low specimen drift holder, cooler and heat flow reductor for use in microscopy

    NARCIS (Netherlands)

    Zandbergen, H.W.

    2015-01-01

    The present invention is in the field of a low specimen drift holder and cooler for use in microscopy, and a microscope comprising said holder. The present invention is in the field of microscopy, specifically in the field of electron and focused ion beam mi- croscopy (EM and FIB). However it applic

  12. Split Stirling linear cryogenic cooler for a new generation of high temperature infrared imagers

    Science.gov (United States)

    Veprik, A.; Zechtzer, S.; Pundak, N.

    2010-04-01

    Split linear cryocoolers find use in a variety of infrared equipment installed in airborne, heliborne, marine and vehicular platforms along with hand held and ground fixed applications. An upcoming generation of portable, high-definition night vision imagers will rely on the high-temperature infrared detectors, operating at elevated temperatures, ranging from 95K to 200K, while being able to show the performance indices comparable with these of their traditional 77K competitors. Recent technological advances in industrial development of such high-temperature detectors initialized attempts for developing compact split Stirling linear cryogenic coolers. Their known advantages, as compared to the rotary integral coolers, are superior flexibility in the system packaging, constant and relatively high driving frequency, lower wideband vibration export, unsurpassed reliability and aural stealth. Unfortunately, such off-the-shelf available linear cryogenic coolers still cannot compete with rotary integral rivals in terms of size, weight and power consumption. Ricor developed the smallest in the range, 1W@95K, linear split Stirling cryogenic cooler for demanding infrared applications, where power consumption, compactness, vibration, aural noise and ownership costs are of concern.

  13. Mechanical cooler system for the next-generation infrared space telescope SPICA

    Science.gov (United States)

    Shinozaki, Keisuke; Ogawa, Hiroyuki; Nakagawa, Takao; Sato, Yoichi; Sugita, Hiroyuki; Yamawaki, Toshihiko; Mizutani, Tadahito; Matsuhara, Hideo; Kawada, Mitsunobu; Okabayashi, Akinobu; Tsunematsu, Shoji; Narasaki, Katsuhiro; Shibai, Hiroshi

    2016-07-01

    The Space Infrared Telescope for Cosmology and Astrophysics (SPICA) is a pre-project of JAXA in collaboration with ESA to be launched in the 2020s. The SPICA mission is to be launched into a halo orbit around the second Lagrangian point in the Sun-Earth system, which allows us to use effective radiant cooling in combination with a mechanical cooling system in order to cool a 2.5m-class large IR telescope below 8K. Recently, a new system design in particular thermal structure of the payload module has been studied by considering the technical feasibility of a cryogenic cooled telescope within current constraints of the mission in the CDF (Concurrent Design Facility) study of ESA/ESTEC. Then, the thermal design of the mechanical cooler system, for which the Japanese side is responsible, has been examined based on the CDF study and the feasible solution giving a proper margin has been obtained. As a baseline, 4K / 1K-class Joule-Thomson coolers are used to cool the telescope and thermal interface for Focal Plane Instruments (FPIs). Additionally, two sets of double stirling coolers (2STs) are used to cool the Telescope shield. In this design, nominal operation of FPIs can be kept when one mechanical cooler is in failure.

  14. The "ICE" study: feasibility of inexpensive commercial coolers on mobile EMS units.

    Science.gov (United States)

    Kane, Kathleen E; Tomsho, Robert J; Pheasant, Karen; Stauffer, Thomas; Schoenfeldt, Brent; Hamilton, Scott; Kain, Travis; Kane, Bryan G

    2014-06-01

    Prehospital postresuscitation induced hypothermia (IH) has been shown to reduce neurological complications in comatose cardiac-arrest survivors. Retrofitting ambulances to include equipment appropriate to initiate hypothermia, such as refrigeration units for cooled saline, is expensive. The objective of this nonhuman subject research study was to determine if inexpensive, commercially available coolers could, in conjunction with five reusable ice packs, keep two 1 L bags of precooled 0.9% normal saline solution (NSS) at or below 4°C for an average shift of eight to 12 hours in a real-world environment, on board in-service Emergency Medical Service (EMS) units, over varying weather conditions in all seasons. The coolers were chosen based on availability and affordability from two nationally available brands: The Igloo MaxxCold (Igloo Products Corp., Katy, Texas USA) and Coleman (The Coleman Company, Wichita, Kansas USA). Both are 8.5 liter (nine-quart) coolers that were chosen because they adequately held two 1 L bags of saline solution, along with the reusable ice packs designated in the study design, and were small enough for ease of placement on ambulances. Initial testing of the coolers was conducted in a controlled environment. Thereafter, each EMS unit was responsible to cool the saline to less than 4°C prior to shift. Data were collected by emergency medical technicians, paramedics, and resident physicians working in seven different ambulance squads. Data analysis was performed using repeated measurements recorded over a 12-hour period from 19 individual coolers and were summarized by individual time points using descriptive statistics. Initial testing determined that the coolers maintained temperatures of 4°C for 12 hours in a controlled environment. On the ambulances, results based on the repeated measurements over time revealed that the saline solution samples as defined in the protocol, remained consistently below 4°C for 12 hours. Utilizing the lower

  15. Simulation Study on the ITB Formation during LHCD in JT-60U

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A transport simulation has been done by using a 1.5D time dependent transport code to reproduce a formation of the ITB on electron temperature profile during the long pulse LHCD in JT-60U tokamak. The transport coefficients were assumed to reduce with a reversed magnetic shear and the LH driven current profile was evaluated by fitting dynamic change in the measured current profile. The gradual increase in the central electron temperature could be explained by the change in the current profile during LHCD in the present simulation model. The estimated LH-driven current profile by the transport code analysis shows a finite current density at the plasma center. Analysis of transport simulation suggests some mechanisms for broadening the LH-driven current profile at the central region of the plasma.

  16. Design of tangential viewing phase contrast imaging for turbulence measurements in JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K., E-mail: ktanaka@nifs.ac.jp [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Department of Advanced Energy Engineering, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Coda, S. [EPFL–SPC, Lausanne (Switzerland); Yoshida, M.; Sasao, H.; Kawano, Y.; Imazawa, R.; Kubo, H.; Kamada, Y. [National Institutes for Quantum and Radiological Science and Technology, Naka, Ibaraki 311-0193 (Japan)

    2016-11-15

    A tangential viewing phase contrast imaging system is being designed for the JT-60SA tokamak to investigate microturbulence. In order to obtain localized information on the turbulence, a spatial-filtering technique is applied, based on magnetic shearing. The tangential viewing geometry enhances the radial localization. The probing laser beam is injected tangentially and traverses the entire plasma region including both low and high field sides. The spatial resolution for an Internal Transport Barrier discharge is estimated at 30%–70% of the minor radius at k = 5 cm{sup −1}, which is the typical expected wave number of ion scale turbulence such as ion temperature gradient/trapped electron mode.

  17. Low vibration microminiature split Stirling cryogenic cooler for infrared aerospace applications

    Science.gov (United States)

    Veprik, A.; Zechtzer, S.; Pundak, N.; Kirkconnel, C.; Freeman, J.; Riabzev, S.

    2011-06-01

    The operation of the thermo-mechanical unit of a cryogenic cooler may originate a resonant excitation of the spacecraft frame, optical bench or components of the optical train. This may result in degraded functionality of the inherently vibration sensitive space-borne infrared imager directly associated with the cooler or neighboring instrumentation typically requiring a quiet micro-g environment. The best practice for controlling cooler induced vibration relies on the principle of active momentum cancellation. In particular, the pressure wave generator typically contains two oppositely actuated piston compressors, while the single piston expander is counterbalanced by an auxiliary active counter-balancer. Active vibration cancellation is supervised by a dedicated DSP feed-forward controller, where the error signals are delivered by the vibration sensors (accelerometers or load cells). This can result in oversized, overweight and overpriced cryogenic coolers with degraded electromechanical performance and impaired reliability. The authors are advocating a reliable, compact, cost and power saving approach capitalizing on the combined application of a passive tuned dynamic absorber and a low frequency vibration isolator. This concept appears to be especially suitable for low budget missions involving mini and micro satellites, where price, size, weight and power consumption are of concern. The authors reveal the results of theoretical study and experimentation on the attainable performance using a fullscale technology demonstrator relying on a Ricor model K527 tactical split Stirling cryogenic cooler. The theoretical predictions are in fair agreement with the experimental data. From experimentation, the residual vibration export is quite suitable for demanding wide range of aerospace applications. The authors give practical recommendations on heatsinking and further maximizing performance.

  18. 3-Methoxy-2-methyl-carbazole-1,4-quinone, carbazomycins D and F from Streptomyces sp. CMU-JT005.

    Science.gov (United States)

    Ruanpanun, Pornthip; Dame, Zerihun Teklemariam; Laatsch, Hartmut; Lumyong, Saisamorn

    2011-09-01

    3-Methoxy-2-methyl-carbazole-1,4-quinone (1) together with carbazomycins D (2) and F (3) were isolated from the crude extract of Streptomyces CMU-JT005, an actinomycete with nematicidal activity. 3-Methoxy-2-methyl-carbazole-1,4-quinone is reported here for the first time from nature. In this paper, we describe the isolation and structure elucidation of the compounds together with the characterization of the Streptomyces strain CMU-JT005.

  19. Cooler Rings and their Applications - Proceedings of the 19th Ins Symposium

    Science.gov (United States)

    Katayama, T.; Noda, A.

    1991-08-01

    The Table of Contents for the full book PDF is as follows: * Organizing Committee * Preface * Opening Address * I. STATUS REPORT * I-1 The IUCF Cooler after Three Years * I-2 The Heidelberg Heavy Ion Cooler Ring TSR * I-3 Storage and Cooling of Heavy Ions in the ESR up to 200 MeV/u * I-4 Present Status of CELSIUS * I-5 Cooler Synchrotron TARN II, Present and Future * I-6 SATURNE II and MIMAS Status Report * I-7 CRYRING - a Low Energy Heavy Ion Facility * I-8 The Ukrainian (INR, Kiev's) Storage Ring * I-9 Status of the COSY-Jülich Project * II. BEAM COOLING * II-1 In Memory of Dr. Helmut Poth * II-2 Performance of the IUCF Electron Cooling System * II-3 Electron Cooling at TARN II * II-4 Status of the ESR-Electron Cooler and First Results * II-5 Physics with Stored Lithium Ions: Intrabeam Relaxation, Laser Cooling, and Observation of a Cold and Long Lived Ion Beam * II-6 Laser Cooling and Beam Crystallization * II-7 Cyclotron Maser Cooling of Electron and Ion Beams * III. ION TRAP * III-1 Penning Trap Experiments at the University of Washington and at NIST in Boulder * III-2 The HITRAP Project at GSI * III-3 Electron Cooling of Trapped Antiprotons * III-4 Some Results of an RF Ion Trap at NRLM * III-5 Preliminary Results of Laser Cooling of Stored Be Ions in a Penning Trap * III-6 Construction of an RF Ion-Trap for Nuclear Laser Spectroscopy * IV. NUCLEAR AND PARTICLE PHYSICS * IV-1 High-Resolution Spectroscopy of Deeply-Bound Pionic Atoms in Heavy Nuclei by Pion-Transfer Reactions of Inverse Kinematics Using the GSI Cooler Ring ESR * IV-2 Study of Exotic Nuclei Using a Storage Ring * IV-3 Nuclear Physics with the Indiana Cooler * IV-4 The Anomalous Magnetic Moment of the Muon * IV-5 Particle Physics at CELSIUS * IV-6 ϕ0-Factory using TARN II Accelerator * IV-7 Measurement of Energy Dependent Phenomena with Intenal (Polarized) Targets in TARN II * V. ACCELERATOR * V-1 Advanced Stacking Methods Using Electron Cooling at the TSR Heidelberg * V-2 Ultra High Vacuum

  20. Influence of using plural household air coolers on the air cooling demand. Actual state survey of air coolers in use. Kateiyo eakon no fukusu hoyuka ga reibo juyo ni oyobosu eikyo. Eakon shiyo jittai chosa kara

    Energy Technology Data Exchange (ETDEWEB)

    Higashida, R. (The Institute of Energy Economics, Tokyo (Japan))

    1994-07-01

    The present rise in power peak is judged mainly attributable to the increase in household and business use energy demand particularly for air cooling. In the present investigation, the actual state of air coolers domestically used was surveyed in the afternoon (from 1200 to 1600 hours) during the last ten days of August, which survey was followed by a study of relation between the number of air coolers domestically installed and used, and their operational state. Explanation is made of the present status of household air cooling demand, questionnaire survey and sampling, actual state analysis of air coolers in use, and the trend of household air cooling demand. As a result of the survey, about 10% of the homes use simultaneously plural units of air cooler in the afternoon, while about 50% do only one unit. With an increase in number of air coolers installed, their operation rate rises. It is concluded that the room-by-room trend and potentiality of air coolers will depend upon the operation rate of household air coolers. In the long tern outlook, it is indispensable to uninterruptedly watch the future change in power peak due to that in life style such as the family composition and home structure in the society with ages advanced. 18 figs., 9 tabs.

  1. Expression level of JT8 gene decreases in coronary artery disease%JT8基因在冠状动脉疾病患者的成纤维细胞中表达减低

    Institute of Scientific and Technical Information of China (English)

    郑芳; 周新; 叶水清; 严明; 李霞; 郭清莲

    2004-01-01

    目的:验证JT8基因在冠状动脉疾病患者的成纤维细胞中表达减低.方法: 利用逆转录PCR(RT-PCR)与Northern杂交技术对运用微量材料系列性基因表达(SAGE)技术建立的两个SAGE标签库(JT与WY)的真实性与可靠性进行验证.以管家基因磷酸甘油醛脱氢酶(GAPDH)和肌动蛋白(β-actin)的mRNA表达水平为对照,比较了在JT库中表达水平比在WY库中高8倍的JT8标签对应基因的表达.结果: RT-PCR与Northern杂交的结果与SAGE技术的研究结果一致,SAGE标签JT8对应基因在患者的成纤维细胞中表达减低.结论: SAGE实验的研究方法是可靠的,其实验结果也是可信的,JT8基因在冠状动脉疾病患者的成纤维细胞中表达降低.SAGE实验的研究数据可以为将来进一步寻找新的致病基因提供线索.

  2. Thermal Assessment of Landsat-7 ETM+ Radiative Cooler in Instrument and Spacecraft Thermal Vacuum Tests and in Flight

    Science.gov (United States)

    Choi, Michael K.

    1999-01-01

    During the radiative cooler cool-down phase of the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) instrument thermal vacuum test #3, the coldest temperature that the Cold Focal Plane Array (CFPA) achieved was 89.5 K. The cold stage/CFPA temperature decreased from 315 K to 89.5 K in 80 hours. In the spacecraft and instrument integrated thermal vacuum test, the cold stage/CFPA temperature decreased from 315 K to 86.9 K in 80 hours, and was still decreasing at a rate of 0.08 K/hr when the cool-down was terminated. The cool-down was faster, and a colder CFPA temperature was obtained. In flight, the cooler cool- down was even faster, and colder. The cold stage/CFPA temperature decreased from 315 K to 89.7 K in 33 hours, and was still decreasing at a rate of 1 K/hr when cool- down was terminated at 89.7 K. The factors that affected the ETM+ cooler cool-down are the radiation heat sink temperature for the cold stage and intermediate stage, parasitic radiation heat load to the cooler, parasitic conduction heat load to the cooler, and cooler outgas time preceding cooler cool-down.

  3. Thermal Assessment of Landsat-7 ETM+ Radiative Cooler in Instrument and Spacecraft Thermal Vacuum Tests and in Flight

    Science.gov (United States)

    Choi, Michael K.

    1999-01-01

    During the radiative cooler cool-down phase of the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) instrument thermal vacuum test #3, the coldest temperature that the Cold Focal Plane Array (CFPA) achieved was 89.5 K. The cold stage/CFPA temperature decreased from 315 K to 89.5 K in 80 hours. In the spacecraft and instrument integrated thermal vacuum test, the cold stage/CFPA temperature decreased from 315 K to 86.9 K in 80 hours, and was still decreasing at a rate of 0.08 K/hr when the cool-down was terminated. The cool-down was faster, and a colder CFPA temperature was obtained. In flight, the cooler cool- down was even faster, and colder. The cold stage/CFPA temperature decreased from 315 K to 89.7 K in 33 hours, and was still decreasing at a rate of 1 K/hr when cool- down was terminated at 89.7 K. The factors that affected the ETM+ cooler cool-down are the radiation heat sink temperature for the cold stage and intermediate stage, parasitic radiation heat load to the cooler, parasitic conduction heat load to the cooler, and cooler outgas time preceding cooler cool-down.

  4. 蛇管与夹套冷却CSTR温度双重控制%Temperature dual control of CSTR with coil cooler and jacket cooler

    Institute of Scientific and Technical Information of China (English)

    王再英; 王正宇

    2012-01-01

    The CSTR is important chemical industrys. The temperature dual temperature control system solution is proposed for CSTR with coil cooling and jacket cooling after researching the insufficiency the single loop control using only one manipulating variable and to be incapable satisfy the dynamic and static performance simultaneity. Under the dual control system, the coil cooler eliminates quickly the error and the temperature returns to set value as soon as the CSTR temperature error appear, then the coil cooler load variety for the CSTR cooling is replaced gradually by the more efficient jacket cooler, namely, CSTR temperature is controlled by the manipulating variable possessing finer dynamic property (coil cooler) in dynamic process, transition shorter and dynamic error smaller; and in the stable process, the main cooling load in the CSTR is shouldered by the jacket cooler, more cooling efficient and lower consumption of cooling water. The dual control solution takes advantage of coil cooling and jacket cooling respectively, so that both dynamic and static characteristic of the CSTR temperature control get more ideal. Finally, the advantage of the CSTR temperature dual control is verified for control precision and dynamic response, and energy-saving and consumption reducing by the semi-physical simulation. The dual control systems solution can also be applied to other production equipment or system with the similar structure features.%连续搅拌釜式化学反应器(CSTR)是重要的化工设备.对蛇管与夹套双冷却CSTR单回路温度控制方案只利用一种操纵变量,无法兼顾动态性能与静态性能的不足进行了深入分析后,提出了CSTR温度双重控制系统方案.通过双重系统的协调控制,在温度出现偏差时由蛇管冷却器快速消除温度偏差,使温度迅速返回设定值;然后由冷却效率高的夹套冷却器逐步取代蛇管冷却器所承担的冷却负荷变化——即在动态过程,由动态性

  5. Development of the negative ion beams relevant to ITER and JT-60SA at Japan Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    Hanada, M., E-mail: hanada.masaya@jaea.go.jp; Kojima, A.; Tobari, H.; Nishikiori, R.; Hiratsuka, J.; Kashiwagi, M.; Umeda, N.; Yoshida, M.; Ichikawa, M.; Watanabe, K. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka-shi, Ibaraki-ken 319-0913 (Japan); Yamano, Y. [Saitama University, Saitama, Saitama-ken 338-8570 (Japan); Grisham, L. R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2016-02-15

    In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification. As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications.

  6. Development of the negative ion beams relevant to ITER and JT-60SA at Japan Atomic Energy Agency.

    Science.gov (United States)

    Hanada, M; Kojima, A; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification. As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications.

  7. Model of the Interplay of Band J-T Effect with Magnetic Order Mediated by Exchange Interaction

    OpenAIRE

    Reddy, G. Gangadhar; Ramakanth, A.; Ghatak, S. K.; Behera, S. N.; Nolting, W.; Rao, T. Venkatappa

    2006-01-01

    A model calculation is presented with the aim to study the interplay between magnetic and structural transitions. The model consists of an orbitally doubly degenerate conduction band and a periodic array of local moments. The band electrons interact with the local spins via the s-f interaction. The interaction of the band electrons with phonons is introduced by including band Jahn-Teller (J-T) interaction. The model Hamiltonian, including the above terms, is solved for the single particle Gre...

  8. Numerical analysis of thermal effects in semiconductor disk laser with TEC cooler

    Science.gov (United States)

    Zhu, Renjiang; Zhang, Peng; Jiang, Maohua

    2016-11-01

    Based on generalized heat transfer model of thermoelectric cooler(TEC), the heat management model of semiconductor disk laser with TEC cooler has been built. With finite element method, this article has calculated the temperature distribution characteristics, and studied the effects of TEC current, heat exchange coefficient, the heatsink and the pump laser for the maximum temperature of quantum wells. Calculations show that the heat transfer coefficient significantly affects the ability of the TEC temperature shift, cooling system performance which is nearly inversely proportional to the heatsink thermal conductivity is not sensitive to its the thickness variation, and the performance of oxygen-free copper with optimization of the area is close to diamond. Meanwhile the maximum temperature of the quantum well has a linear relationship with the pump power, and increasing the pump spot size is an effective way to increase the optical power output

  9. Pulse tube cooler having 1/4 wavelength resonator tube instead of reservoir

    Science.gov (United States)

    Gedeon, David R. (Inventor)

    2008-01-01

    An improved pulse tube cooler having a resonator tube connected in place of a compliance volume or reservoir. The resonator tube has a length substantially equal to an integer multiple of 1/4 wavelength of an acoustic wave in the working gas within the resonator tube at its operating frequency, temperature and pressure. Preferably, the resonator tube is formed integrally with the inertance tube as a single, integral tube with a length approximately 1/2 of that wavelength. Also preferably, the integral tube is spaced outwardly from and coiled around the connection of the regenerator to the pulse tube at a cold region of the cooler and the turns of the coil are thermally bonded together to improve heat conduction through the coil.

  10. RFQ beam cooler and buncher for collinear laser spectroscopy of rare isotopes

    Science.gov (United States)

    Barquest, B. R.; Bollen, G.; Mantica, P. F.; Minamisono, K.; Ringle, R.; Schwarz, S.; Sumithrarachchi, C. S.

    2017-09-01

    A radiofrequency quadrupole (RFQ) ion beam cooler and buncher has been developed to deliver bunched beams with low transverse emittance, energy spread, and time spread to the BECOLA collinear laser spectroscopy system at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The beam cooler and buncher contains new features which enhance performance, especially for high count rate beams, as well as simplifying construction, maintenance, and operation. The transverse emittance, energy spread, and time spread of the bunched beam, as well as buncher efficiency are reported, showcasing the capabilities of the BECOLA facility to perform collinear laser spectroscopy measurements with bunched rare isotope beams at NSCL and at the future Facility for Rare Isotope Beams (FRIB).

  11. Parametric System Identification of Thermoelectric Cooler for Single Photon Avalanche Diode Application

    Directory of Open Access Journals (Sweden)

    Nurul Izzati Samsuddin

    2013-06-01

    Full Text Available The purpose of this study is to model the Thermoelectric Coolers (TEC by means of computational intelligence system identification. Thermoelectric coolers are widely used in cooling, maintaining and stabilizing the temperature of the Single Photon Avalanche Diode (SPAD. SPAD is a temperature sensitive optoelectronic device, where even a slight variation in temperature can cause unstable performance in quantum efficiency, responsibility and dark counts. However, it is not a simple task to derive a mathematical model for TEC since it varies with the operating condition. In this study, Particle Swarm Optimization (PSO was used to identify the mathematical model of the multistage TEC (1639733 from Element 14, which encapsulates dynamics of the SPAD, heat sink and components of the cooling heat exchanger. The model was validated by correlation tests, percentage accuracy and also by comparing its time and frequency responses against that of the TEC. It was found that the obtained model has a good representation of the actual system.

  12. Heat Transfer Research of Gas-solid-liquid Three Phase Coupling of EGR Cooler

    Directory of Open Access Journals (Sweden)

    Fu-Wu Yan

    2014-05-01

    Full Text Available The main aim of the study is to get the temperature and backpressure of a car engine exhaust gas which goes through the EGR-cooler. So the internal fluid flow and heat transfer process of the EGR cooler must be studied more clearly, numerical simulations are applied. Based on the strong coupling method, gas-solid-liquid three phases coupling model of the typical heat transfer unit is established. According to the coupling result, the heat flux of the tube’s outside surface is gained and then mapped to the inner surface of the cooler’s water. The water model is set up based on the separation coupling method. According to the analysis of the calculation, the detailed pressure and temperature distribution of the gas, water and solid are obtained. From the distribution cloud, we know the changes of the parameters along the fluid flows streamline.

  13. Comparison of Test Stand and Helicopter Oil Cooler Bearing Condition Indicators

    Science.gov (United States)

    Dempsey, Paula J.; Branning, Jeremy; Wade, Damiel R.; Bolander, Nathan

    2010-01-01

    The focus of this paper was to compare the performance of HUMS condition indicators (CI) when detecting a bearing fault in a test stand or on a helicopter. This study compared data from two sources: first, CI data collected from accelerometers installed on two UH-60 Black Hawk helicopters when oil cooler bearing faults occurred, along with data from helicopters with no bearing faults; and second, CI data that was collected from ten cooler bearings, healthy and faulted, that were removed from fielded helicopters and installed in a test stand. A method using Receiver Operating Characteristic (ROC) curves to compare CI performance was demonstrated. Results indicated the bearing energy CI responded differently for the helicopter and the test stand. Future research is required if test stand data is to be used validate condition indicator performance on a helicopter.

  14. Optimization of a Localized Air Conditioning System Using Thermoelectric Coolers for Commercial Vehicles

    Science.gov (United States)

    Wan, Qiushi; Deng, Yadong; Su, Chuqi; Wang, Yiping

    2016-11-01

    To improve the thermal comfort and energy saving of commercial vehicles, an auxiliary air conditioning (AC) system has been constructed. Several distributed components using thermoelectric coolers were applied in a localized AC system to adjust the microclimate around the driver only. A computational fluid dynamics model of a commercial vehicle cabin with a driver was built, the temperature field of the cabin investigated, and the thermal comfort analyzed. Based on the results of the simulations, the temperature around the cold side of the thermoelectric coolers is discussed and optimized by means of the response surface methodology and a multiobjective genetic algorithm. To validate the simulation and optimization results, a bench test was carried out; the results obtained from the simulation showed good agreement with the experimental results.

  15. Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, Eric Joseph

    2016-12-13

    An indirect evaporative cooler for cooling inlet supply air from a first temperature to a second, lower temperature using a stream of liquid coolant and a stream of exhaust or purge air. The cooler includes a first flow channel for inlet supply air and a second flow channel adjacent the first for exhaust air. The first and second flow channels are defined in part by sheets of a membrane permeable to water vapor such that mass is transferred as a vapor through the membrane from the inlet supply air to a contained liquid desiccant for dehumidification and also to the exhaust air as heat is transferred from the inlet supply air to the liquid coolant. A separation wall divides the liquid desiccant and the coolant but allows heat to be transferred from the supply air to the coolant which releases water vapor to the counter or cross flowing exhaust air.

  16. DC FLOW SUPPRESSION IN A SINGLE-STAGE G-M TYPE PULSE TUBE COOLER

    Institute of Scientific and Technical Information of China (English)

    JIANGYan-long; CHENGuo-bang; THUMMESGuenter

    2004-01-01

    An experimental investigation on DC flow suppression in a single-stage G-M type pulse tube cooler is made. The influence of DC flow induced by the introduction of the double-inlet on the refrigeration performance of the cooler is experimentally examined. Two parallelplaced needle valves with an opposite flow direction called as double-valved configuration, instead of conventional single-valved configuration as the double-inlet is used to reduce the DC flow. With the double-valved configuration, the minimum temperatures of 18.4 K and 14.7 K, and the cooling powers of 11.5 W and 29.5 W are also obtained by RW2 and CP4000, respectively.

  17. Comparison of Test Stand and Helicopter Oil Cooler Bearing Condition Indicators

    Science.gov (United States)

    Dempsey, Paula J.; Branning, Jeremy; Wade, Damiel R.; Bolander, Nathan

    2010-01-01

    The focus of this paper was to compare the performance of HUMS condition indicators (CI) when detecting a bearing fault in a test stand or on a helicopter. This study compared data from two sources: first, CI data collected from accelerometers installed on two UH-60 Black Hawk helicopters when oil cooler bearing faults occurred, along with data from helicopters with no bearing faults; and second, CI data that was collected from ten cooler bearings, healthy and faulted, that were removed from fielded helicopters and installed in a test stand. A method using Receiver Operating Characteristic (ROC) curves to compare CI performance was demonstrated. Results indicated the bearing energy CI responded differently for the helicopter and the test stand. Future research is required if test stand data is to be used validate condition indicator performance on a helicopter.

  18. Studies on an improved indigenous pressure wave generator and its testing with a pulse tube cooler

    Science.gov (United States)

    Jacob, S.; Karunanithi, R.; Narsimham, G. S. V. L.; Kranthi, J. Kumar; Damu, C.; Praveen, T.; Samir, M.; Mallappa, A.

    2014-01-01

    Earlier version of an indigenously developed Pressure Wave Generator (PWG) could not develop the necessary pressure ratio to satisfactorily operate a pulse tube cooler, largely due to high blow by losses in the piston cylinder seal gap and due to a few design deficiencies. Effect of different parameters like seal gap, piston diameter, piston stroke, moving mass and the piston back volume on the performance is studied analytically. Modifications were done to the PWG based on analysis and the performance is experimentally measured. A significant improvement in PWG performance is seen as a result of the modifications. The improved PWG is tested with the same pulse tube cooler but with different inertance tube configurations. A no load temperature of 130 K is achieved with an inertance tube configuration designed using Sage software. The delivered PV power is estimated to be 28.4 W which can produce a refrigeration of about 1 W at 80 K.

  19. Thermochemistry and Photochemistry in Cooler Hydrogen Dominated Extrasolar Planets: The Case of GJ436b

    CERN Document Server

    Line, Michael R; Chen, Pin; Angerhausen, D; Yung, Yuk L

    2011-01-01

    We introduce a new thermochemical kinetics and photochemical model. We use high-temperature bidirectional reaction rates for important H, C, O and N reactions (most importantly for CH$_4$ to CO interconversion), allowing us to attain thermochemical equilibrium, deep in an atmosphere, purely kinetically. This allows ab initio chemical modeling of an entire atmosphere, from deep-atmosphere thermochemical equilibrium to the photochemically dominated regime. We use our model to explore the atmospheric chemistry of cooler ($T_{eff} < 10^3$ K) extrasolar giant planets. In particular, we choose to model the nearby hot Neptune GJ436b, the only planet in this temperature regime for which spectroscopic measurements and estimates of chemical abundances now exist. Recent {\\it Spitzer} measurements with retrieval have shown that methane is driven strongly out of equilibrium and is deeply depleted on the dayside of GJ 436b, whereas quenched carbon monoxide is abundant. This is surprising because GJ 436b is cooler than m...

  20. The influence of the Thomson effect on the performance of a thermoelectric cooler

    Energy Technology Data Exchange (ETDEWEB)

    Mei Jiau Huang; Ruey Hor Yen [National Taiwan Univ. (China). Dept. of Mechanical Engineering; An Bang Wang [National Taiwan Univ. (China). Dept. of Applied Mathematics

    2005-01-01

    The temperature distribution of a thermoelectric cooler under the influence of the Thomson effect, the Joule heating, the Fourier's heat conduction, and the radiation and convection heat transfer is derived. The influence of the Thomson effect on the temperature profiles, on the fraction of the Joule's heat that flows back to the low-temperature side, and consequently on the maximum attainable temperature difference and the maximum allowable heat load are emphasized and explored. The results suggest that the cooling efficiency of a thermoelectric cooler can be improved not only by increasing the figure-of-merit of the thermoelectric materials but also by taking advantage of the Thomson effect. A possible development direction for the thermoelectric materials is thus given. (author)

  1. Development of residual thermal stress-relieving structure of CFC monoblock target for JT-60SA divertor

    Energy Technology Data Exchange (ETDEWEB)

    Tsuru, Daigo, E-mail: tsuru.daigo@jaea.go.jp; Sakurai, Shinji; Nakamura, Shigetoshi; Ozaki, Hidetsugu; Seki, Yohji; Yokoyama, Kenji; Suzuki, Satoshi

    2015-10-15

    Highlights: • We carried out numerical simulations on residual thermal stress of targets for the JT-60SA divertor. • We developed three measures to reduce residual thermal stress. • We proposed two structures of CFC monoblock target for the JT-60SA divertor. • We confirmed the effectiveness of the structure by infrared thermography inspection and high heat flux test. - Abstract: Carbon fibre-reinforced carbon composite (CFC) monoblock target for JT-60SA divertor is under development towards the mass-production. CFC monoblocks, WCu interlayers and a CuCrZr cooling tube at the centre of the monoblocks were bonded by vacuum brazing in a high temperature, to a target. If residual thermal stress due to difference of thermal expansions between CFC and CuCrZr exceeds the maximum allowable stress of the CFC after the bonding, cracks are generated in the CFC monoblock and heat removal capacity of the target degrades. In this paper, new structures of the targets were proposed, to reduce residual thermal stress and to mitigate the degradation of heat removal capacity of the targets. Some measures, including slitting of the CFC monoblock aside of the cooling tube, replacement of the interlayer material and shifting the position of the cooling tube, were implemented. The effectiveness of the measures was evaluated by numerical simulations. Target mock-ups with the proposed structures were manufactured. Infrared thermography inspection and high heat flux test were carried out on the mock-ups in order to evaluate the heat removal capacity.

  2. Modelling and Model-Based-Designed PID Control of the JT-60SA Cryogenic System Using the Simcryogenics Library

    Science.gov (United States)

    Bonne, F.; Bonnay, P.; Hoa, C.; Mahoudeau, G.; Rousset, B.

    2017-02-01

    This papers deals with the Japan Torus-60 Super Advanced fusion experiment JT-60SA cryogenic system. A presentation of the JT-60SA cryogenic system model, from 300K to 4.4K -using the Matlab/Simulink/Simscape Simcryogenics library- will be given. As a first validation of our modelling strategy, the obtained operating point will be compared with the one obtained from HYSYS simulations. In the JT60-SA tokamak, pulsed heat loads are expected to be coming from the plasma and must be handled properly, using both appropriate refrigerator architecture and appropriate control model, to smooth the heat load. This paper presents model-based designed PID control schemes to control the helium mass inside the phase separator. The helium mass inside the phase separator as been chosen to be the variable of interest in the phase separator since it is independent of the pressure which can vary from 1 bar to 1.8 bar during load smoothing. Dynamics simulations will be shown to assess the legitimacy of the proposed strategy. This work is partially supported through the French National Research Agency (ANR), task agreement ANR-13-SEED-0005.

  3. Development of a 6-W high-reliability cryogenic cooler at Thales Cryogenics

    Science.gov (United States)

    Benschop, Tonny; Mullie, Jeroen C.; Bruins, Peter; Martin, Jean-Yves

    2003-01-01

    The demand for more cooling power for infrared imagers, which may require up to 3 W of cooling power at 77 K, is nowadays surpassed as other industries are getting interested in cryogenic cooling as well. These potential markets require robust, efficient and affordable coolers with cooling capacities in excess of 6 W. As announced at the previous SPIE conference in 2000, Thales Cryogenics has been working on the development of a cryocooler based on the LSF 918x series consisting of a flexure bearing compressor in combination with a 20 mm Stirling cold finger in order to meet the demands of this emerging markets. Based on the proven principles of Thales LSF 91xx flexure bearing compressors, a moving magnet compressor was designed that delivers the required pressure wave for this larger cold finger. The compressor has been successfully tested in combination with the 20 mm cold finger resulting in the LSF 93xx cooler. For the second half of 2002, tests are planned for the combination of a version of this compressor with a 5 W pulse tube cold finger. At present, the European Space Agency is funding the space qualification of a modification the LSF 93xx cooler, in order to use it to provide the cryogenic cooling required for future manned missions. A test program for the specific requirements for the CRYOSYSTEM program is under progress. This paper describes the trade-offs that have been considered in the design phase, and gives a detailed overview of the test results and the resulting specification of the LSF 93xx coolers.

  4. Cooler reflective pavements give benefits beyond energy savings: durability and illumination

    Energy Technology Data Exchange (ETDEWEB)

    Pomerantz, Melvin; Akbari, Hashem; Harvey, John T.

    2000-06-01

    City streets are usually paved with asphalt concrete because this material gives good service and is relatively inexpensive to construct and maintain. We show that making asphalt pavements cooler, by increasing their reflection of sunlight, may lead to longer lifetime of the pavement, lower initial costs of the asphalt binder, and savings on street lighting and signs. Excessive glare due to the whiter surface is not likely to be a problem.

  5. Energy analysis of the cryogenic CO2 capture process based on Stirling coolers

    OpenAIRE

    Song, Chunfeng; Kitamura, Yutaka; Li, Shuhong

    2014-01-01

    In the existing coal-fired power plants, the energy penalty associated with CO2 capture process is an important challenge. For this reason, energy analysis has been widely used as a powerful tool to optimize the capture efficiency and reduce energy consumption. In our previous work, a Stirling cooler based cryogenic CO2 capture system was outlined. Process simulation and energy analysis of the system were undertaken in this research. The whole CO2 capture process is composed of three sections...

  6. Vibration Control of Linear Split Stirling Cryogenic Cooler for Airborne Infrared Application

    OpenAIRE

    A.M. Veprik; V.I. Babitsky; N. Pundak; S.V. Riabzev

    2000-01-01

    Modern infrared imagers often rely on the split Stirling cryogenic coolers the linear compressors of which are the well-known sources of harmonic disturbance. The traditional method of their passive isolation fails to meet the restraints on the static and dynamic deflections which are originated by the combined action of the airborne g-loading and harsh random vibration.The vibration protection system, which combines a stiff and heavily damped vibration isolator with tuned dynamic absorber, i...

  7. FPGA-BASED CONTROL OF THERMOELECTRIC COOLERS FOR LASER DIODE TEMPERATURE REGULATION

    Directory of Open Access Journals (Sweden)

    AHTESHAM ALI

    2012-04-01

    Full Text Available The proportional-integral-derivative (PID controller is the most used controller in the industry. Field programmable gate arrays (FPGAs allow efficient implementation of PID controllers. This paper presents the temperature regulation of a 48W laser diode through thermoelectric coolers (TECs. The temperature regulation system is designed and tested. The results demonstrate the feasibility and applicability of PID control through FPGA.

  8. Sorption-based vibration-free cooler for the METIS instrument on E-ELT

    Science.gov (United States)

    ter Brake, H. J. M.; Wu, Y.; Zalewski, D. R.; Vermeer, C. H.; Holland, H. J.; Doornink, J.; Benthem, B.; Boom, E.

    2012-09-01

    METIS is the 'Mid-infrared ELT Imager and Spectrograph' for the European Extremely Large Telescope. This E-ELT instrument will cover the thermal/mid-infrared wavelength range from 3 to 14 μm and will require cryogenic cooling of detectors and optics. We present a vibration-free cooling technology for this instrument based on sorption coolers developed at the University of Twente in collaboration with Dutch Space. In the baseline design, the instrument has four temperature levels: N-band: detector at 8 K and optics at 25 K; L/M-band: detector at 40K and optics at 77 K. The latter temperature is established by a liquid nitrogen supply with adequate cooling power. The cooling powers required at the lower three levels are 0.4 W, 1.1 W, and 1.4 W, respectively. The cryogenic cooling technology that we propose uses a compressor based on the cyclic adsorption and desorption of a working gas on a sorber material such as activated carbon. Under desorption, a high pressure can be established. When expanding the high-pressure fluid over a flow restriction, cooling is obtained. The big advantage of this cooling technology is that, apart from passive valves, it contains no moving parts and, therefore, generates no vibrations. This, obviously, is highly attractive in sensitive, high-performance optical systems. A further advantage is the high temperature stability down to the mK level. In a Dutch national research program we aim to develop a cooler demonstrator for METIS. In the paper we will describe our cooler technology and discuss the developments towards the METIS cooler demonstrator.

  9. Design of an electron cooling device for the accumulator cooler ring in MUSES project

    CERN Document Server

    Tanabé, T; Ohtomo, K; Katayama, T; Yamashita, A; Syresin, E M; Meshkov, I N

    2000-01-01

    As a part of new experimental facility in the Radio Isotope Beam Factory (RIBF) project at RIKEN, the Multi-Use Experimental Storage rings (MUSES) have an Accumulator Cooler Ring (ACR) which is used for both the accumulation and cooling of RI beams and various experiments. Besides a stochastic cooler, an electron cooler (EC) is presently under development. The ion energy in the ACR ranges from 60 to 400 MeV/u which corresponds to the electron beam (e-beam) energy for the EC from 30 to 250 kV. The maximum current from a 12.7 mm cathode is 4.1 A with a gun perveance of 0.79 mu P. A superconducting solenoid in the gun section generates a magnetic field of 4 T which corresponds to a factor of 20 in adiabatic expansion. The design issues of the gun section, collector, toroidal magnets and compensation solenoids are discussed in detail with some retrospection of the development.

  10. Interfacial Engineering of Semiconductor-Superconductor Junctions for High Performance Micro-Coolers

    Science.gov (United States)

    Gunnarsson, D.; Richardson-Bullock, J. S.; Prest, M. J.; Nguyen, H. Q.; Timofeev, A. V.; Shah, V. A.; Whall, T. E.; Parker, E. H. C.; Leadley, D. R.; Myronov, M.; Prunnila, M.

    2015-12-01

    The control of electronic and thermal transport through material interfaces is crucial for numerous micro and nanoelectronics applications and quantum devices. Here we report on the engineering of the electro-thermal properties of semiconductor-superconductor (Sm-S) electronic cooler junctions by a nanoscale insulating tunnel barrier introduced between the Sm and S electrodes. Unexpectedly, such an interface barrier does not increase the junction resistance but strongly reduces the detrimental sub-gap leakage current. These features are key to achieving high cooling power tunnel junction refrigerators, and we demonstrate unparalleled performance in silicon-based Sm-S electron cooler devices with orders of magnitudes improvement in the cooling power in comparison to previous works. By adapting the junctions in strain-engineered silicon coolers we also demonstrate efficient electron temperature reduction from 300 mK to below 100 mK. Investigations on junctions with different interface quality indicate that the previously unexplained sub-gap leakage current is strongly influenced by the Sm-S interface states. These states often dictate the junction electrical resistance through the well-known Fermi level pinning effect and, therefore, superconductivity could be generally used to probe and optimize metal-semiconductor contact behaviour.

  11. Numerical modeling of the thermoelectric cooler with a complementary equation for heat circulation in air gaps

    Science.gov (United States)

    Fang, En; Wu, Xiaojie; Yu, Yuesen; Xiu, Junrui

    2017-03-01

    In this paper, a numerical model is developed by combining thermodynamics with heat transfer theory. Taking inner and external multi-irreversibility into account, it is with a complementary equation for heat circulation in air gaps of a steady cooling system with commercial thermoelectric modules operating in refrigeration mode. With two modes concerned, the equation presents the heat flowing through air gaps which forms heat circulations between both sides of thermoelectric coolers (TECs). In numerical modelling, a TEC is separated as two temperature controlled constant heat flux reservoirs in a thermal resistance network. In order to obtain the parameter values, an experimental apparatus with a commercial thermoelectric cooler was built to characterize the performance of a TEC with heat source and sink assembly. At constant power dissipation, steady temperatures of heat source and both sides of the thermoelectric cooler were compared with those in a standard numerical model. The method displayed that the relationship between Φf and the ratio Φ_{c}'/Φ_{c} was linear as expected. Then, for verifying the accuracy of proposed numerical model, the data in another system were recorded. It is evident that the experimental results are in good agreement with simulation(proposed model) data at different heat transfer rates. The error is small and mainly results from the instabilities of thermal resistances with temperature change and heat flux, heat loss of the device vertical surfaces and measurements.

  12. Experimental Investigation of Using Evaporative Air Cooler for Winter Air-Conditioning in Baghdad

    Directory of Open Access Journals (Sweden)

    Zainab Hasson Hassan

    2012-01-01

    Full Text Available This paper presents an efficient methodology to design modified evaporative air-cooler for winter air-conditioning in Baghdad city as well as using it for summer air-conditioning by adding a heating process after the humidification process. Laboratory tests were performed on a direct evaporative cooler (DEC followed by passing the air on hot water through heat exchanger placed in the coolers air duct exit. The tests were conducted on the 2nd of December /2011 when the ambient temperature was 8.1°C and the relative humidity was (68%. The air flow rate is assumed to vary between 0.069 to 0.209 kg/s with constant water flow rate of 0.03 kg/s in the heat exchanger. The performance is reported in terms of effectiveness of DEC, saturation efficiency of DEC, outlet temperature of air and cooling capacity. Heat transfer rate in heat exchanger mode is also estimated. The paper presents the mathematical development of the equations of thermal exchanges through DEC and HE. Prediction of air condition that exits o this system show that the present system could bring the air stream to a comfortable winter zone .

  13. Optimisation of a desiccant cooling system design with indirect evaporative cooler

    Energy Technology Data Exchange (ETDEWEB)

    Goldsworthy, M.; White, S. [CSIRO Energy Technology, 10 Murray Dwyer Cr., Mayfield, 2300 Newcastle (Australia)

    2011-01-15

    Solar desiccant-based air-conditioning has the potential to significantly reduce cost and/or greenhouse gas emissions associated with cooling of buildings. Parasitic energy consumption for the operation of supply fans has been identified as a major hindrance to achieving these savings. The cooling performance is governed by the trade-off between supplying larger flow-rates of cool air or lower flow-rates of cold air. The performance of a combined solid desiccant-indirect evaporative cooler system is analysed by solving the heat and mass transfer equations for both components simultaneously. Focus is placed on varying the desiccant wheel supply/regeneration and indirect cooler secondary/primary air-flow ratios. Results show that for an ambient reference condition, and 70 C regeneration temperature, a supply/regeneration flow ratio of 0.67 and an indirect cooler secondary/primary flow ratio of 0.3 gives the best performance with COP{sub e} > 20. The proposed cooling system thus has potential to achieve substantial energy and greenhouse gas emission savings. (author)

  14. Effects of polyethylene film wrap on cooler shrink and the microbial status of beef carcasses.

    Science.gov (United States)

    Sampaio, Guilherme S L; Pflanzer-Júnior, Sérgio B; Roça, Roberto de O; Casagrande, Leandro; Bedeschi, Elaine A; Padovani, Carlos R; Miguel, Giulianna Z; Santos, Carolina T; Girão, Lucio V C; Miranda, Zander B; Franco, Robson M

    2015-02-01

    The present study evaluated the use of polyethylene film wrapping of beef half carcasses and its effects on cooler shrink, cooling characteristics and microbial status of the half carcasses. Film wrapping reduced cooler shrink by 55.2%, 43.1%, 36.0% and 30% after 24, 48, 72 and 96 h of cooling, respectively, compared to the unwrapped half carcasses, whereas the surface water activity showed no significant differences among the time periods. The wrapped half carcasses had a lower cooling rate and higher surface and internal temperatures. The highest values of the aerobic mesophiles, Staphylococcus aureus and Enterobacteriaceae were found in the half carcasses wrapped in film. No significant differences were found in the values of Escherichia coli. The polyethylene film was effective in reducing cooler shrink; however, it caused a delay in cooling, thereby enabling greater microbial occurrences and counts and impairing the hygienic and sanitary conditions of the carcasses, which may be an impediment to the practical application of this technology.

  15. Performance of four-stage thermoelectric cooler for extended wavelength InGaAs detectors

    Science.gov (United States)

    Mo, De-feng; Yang, Li-yi; Liu, Da-fu; Xu, Qin-fei; Li, Tao; Li, Xue

    2015-04-01

    Experimental setup for evaluating four-stage thermoelectric cooler's performance was designed. Effects of input power, heat dissipation condition and heat load on the temperature difference (ΔT) of four-stage thermoelectric coolers' hot and cold faces were obtained experimentally. The result shows that, the ΔT increases as the input power increases. A linear relationship exists between input current and feedback voltage. In different cooling conditions, the ΔT of thermoelectric cooler (TEC) increases with the temperature of hot face. As the temperature increasing on hot face is 1K, the ΔT increasing of TEC can be about 0.5K. Meanwhile, the power consumption of TEC also increases slightly. Water condensation can be prevented in either dry nitrogen environment or vacuum environment, but the vacuum level has great influence to the ΔT, especially in low operation temperature. The better the vacuum level is, the smaller the convection heat loss has. When the operation temperature of focal plane array (FPA) is lower than 220K, it is prior to use vacuum packaging. Considering the Joule-heat of readout circuit and the heat loss of wire conduction, the minimum working temperature of FPA can reach below 200 K when the temperature of the hot face is 285K. And the coefficient of performance (COP) of TEC can increase sharply from 0.8% to 4% when the controlled operation temperature is 220K rather than 200K.

  16. Status of the JWST/MIRI Focal Plane System and Cooler

    Science.gov (United States)

    Ressler, Michael E.; Goodson, G. B.; Khorrami, M. A.; Larson, M. E.; Mahoney, J. C.; Sukhatme, K. G.

    2009-01-01

    The Mid-Infrared Instrument (MIRI) is a multipurpose imager, coronagraph, and spectrometer for the James Webb Space Telescope. It provides wavelength coverage from 5 through 28 microns and is an integral contributor to all four of JWST's primary science themes. MIRI is being developed as a partnership between NASA and ESA, with JPL providing the Focal Plane System (FPS, consisting of the detectors, control electronics, and flight software) and the cooler, and a consortium of European astronomical institutes providing the optical bench and structure. The flight FPS is being prepared for delivery to the European Consortium for its integration into the optical bench, while the cooler is nearing its Critical Design Review. We describe the capabilities of the FPS and cooler, present test results and the predicted sensitivity performance of the FPS, and update the current status of each these systems. The research described in this poster was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  17. Installation and pre-commissioning of the cryogenic system of JT-60SA tokamak

    Science.gov (United States)

    Hoa, C.; Michel, F.; Roussel, P.; Fejoz, P.; Girard, S.; Goncalves, R.; Lamaison, V.; Natsume, K.; Kizu, K.; Koide, Y.; Yoshida, K.; Cardella, A.; Portone, A.; Verrecchia, M.; Wanner, M.; Beauvisage, J.; Bertholat, F.; Gaillard, G.; Heloin, V.; Langevin, B.; Legrand, J.; Maire, S.; Perrier, J. M.; Pudys, V.

    2017-02-01

    The cryogenic system for the superconducting tokamak JT-60SA is currently being commissioned in Naka, Japan and shall be ready for operation in summer 2016. This contribution is part of the Broader Approach agreement between Japan and Europe. With an equivalent refrigeration capacity of about 9.5 kW at 4.5 K the cryogenic system will supply cryo-pump panels at 3.7 K, superconducting magnets and their structures at 4.4 K, high temperature superconducting current leads at 50 K and thermal shields between 80 K and 100 K. The system has been specifically designed to handle large pulse loads at 4.4 K during plasma operation. The mechanical and electrical assembly of the cryogenic system has been achieved within six months by October 2015. The main contractor Air Liquide Advanced Technology (AL-aT) have supplied eight parallel working screw compressors with a common oil removal and dryer system, a Refrigeration Cold Box and an Auxiliary Cold box with cold rotating machines. F4E has provided six GHe storage vessels and QST has provided the complete infrastructure and the facilities for the utilities. The paper gives an overview of the main design features, the infrastructure and the status of installation and pre-commissioning.

  18. Sensitivity study for N-NB-driven modes in JT-60U: boundary, diffusion, gyroaverage, compressibility

    Science.gov (United States)

    Bierwage, A.; Todo, Y.; Aiba, N.; Shinohara, K.

    2016-10-01

    The sensitivity of the growth and nonlinear evolution of fast-ion-driven modes is examined with respect to the choice of particle boundary conditions, diffusion coefficients, fast ion gyroradii and bulk compressibility. The primary purpose of this work is to justify the choice of parameters to be used in the self-consistent long-time simulations of fast ion dynamics using global MHD-kinetic hybrid codes that include fast ion sources and collisions. The present study is conducted for a scenario based on the N-NB-driven JT-60U shot E039672, which is subject to abrupt large events (ALE). We use realistic geometry, a realistic fast ion distribution, and focus on experimentally observed harmonics with low toroidal mode numbers n  =  1, 2, 3. The use of realistic boundary conditions and finite Larmor radii for the fast ions is shown to be essential. The usual values {μ0}η =ν =χ ∼ {{10}-6}{{v}\\text{A0}}{{R}0} used for resistivity, viscosity and thermal diffusivity, and Γ=5/3 used for the specific heat ratio (controlling the effect of compressibility) are shown to be reasonable choices. Our method for performing the parameter scans around the threshold for the onset of convective amplification is proposed as a strategy for nonlinear benchmark studies.

  19. Transition from accelerated to decelerated regimes in JT and CGHS cosmologies

    CERN Document Server

    Christmann, M H; Kremer, G M; Zanetti, C M

    2004-01-01

    In this work we discuss the possibility of positive-acceleration regimes, and their transition to decelerated regimes, in two-dimensional (2D) cosmological models. We use general relativity and the thermodynamics in a 2D space-time, where the gas is seen as the sources of the gravitational field. An early-Universe model is analyzed where the state equation of van der Waals is used, replacing the usual barotropic equation. We show that this substitution permits the simulation of a period of inflation, followed by a negative-acceleration era. The dynamical behavior of the system follows from the solution of the Jackiw-Teitelboim equations (JT equations) and the energy-momentum conservation laws. In a second stage we focus the Callan-Giddings-Harvey-Strominger model (CGHS model); here the transition from the inflationary period to the decelerated period is also present between the solutions, although this result depend strongly on the initial conditions used for the dilaton field. The temporal evolution of the c...

  20. Investigation of carbon dust accumulation in the JT-60U tokamak vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Asakura, N., E-mail: asakura.nobuyuki@jaea.go.jp [Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan); Hayashi, T. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Ashikawa, N. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Fukumoto, M. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan)

    2013-07-15

    Dust generated by plasma–wall interaction is a potential source of tritium retention in a fusion reactor. Evaluation of the dust accumulation in the entire vacuum vessel is required to estimate the total amount of tritium retention, but it was particularly difficult to measure for plasma-unexposed areas behind the PFC structures, i.e. “shadow areas”. Dust samples were collected at 3, 5 and 2–4 different toroidal locations on the first wall, divertor surface and the exhaust route under the divertor in JT-60U, respectively. On the tile surface, large mass area density was found at the inner divertor and baffle, in particular, upper tiles compared to the lower target tile where the thick deposition layers were produced. Mass area density was significantly increased at the shadow areas, i.e. under the divertor structure such as the divertor and baffle tiles and the divertor dome. It was found that the poloidal distribution is relatively symmetrical in the toroidal direction within a factor of three. In comparison with the previous collection just before major change of the plasma operations, dust accumulation was increased both at the exposed and shadow areas due to change in the operating conditions.

  1. Investigation of carbon dust accumulation in the JT-60U tokamak vacuum vessel

    Science.gov (United States)

    Asakura, N.; Hayashi, T.; Ashikawa, N.; Fukumoto, M.

    2013-07-01

    Dust generated by plasma-wall interaction is a potential source of tritium retention in a fusion reactor. Evaluation of the dust accumulation in the entire vacuum vessel is required to estimate the total amount of tritium retention, but it was particularly difficult to measure for plasma-unexposed areas behind the PFC structures, i.e. "shadow areas". Dust samples were collected at 3, 5 and 2-4 different toroidal locations on the first wall, divertor surface and the exhaust route under the divertor in JT-60U, respectively. On the tile surface, large mass area density was found at the inner divertor and baffle, in particular, upper tiles compared to the lower target tile where the thick deposition layers were produced. Mass area density was significantly increased at the shadow areas, i.e. under the divertor structure such as the divertor and baffle tiles and the divertor dome. It was found that the poloidal distribution is relatively symmetrical in the toroidal direction within a factor of three. In comparison with the previous collection just before major change of the plasma operations, dust accumulation was increased both at the exposed and shadow areas due to change in the operating conditions.

  2. Modification to poloidal charge exchange recombination spectroscopy measurement in JT-60U tokamak

    Institute of Scientific and Technical Information of China (English)

    Ding Bo-Jiang; Sakamoto Yoshiteru; Miura Yukitoshi

    2007-01-01

    With consideration of the effects of the atomic process and the sight line direction on the charge exchange recombination spectroscopy (CXRS), a code used to modify the poloidal CXRS measurement on Tokamak-60 Upgrade (JT-60U) in Japan Atomic Energy Research Institute is developed, offering an effective tool to modify the measurement and analyse experimental results further. The results show that the poloidal velocity of ion is overestimated but the ion temperature is underestimated by the poloidal CXRS measurement, and they also indicate that the effect of observation angle on rotation velocity is a dominant one in a core region (r/a< 0.65), whereas in an edge region where the sight line is nearly normal to the neutral beam, the observation angle effect is very small. The difference between the modified velocity and the neoclassical velocity is not larger than the error in measurement. The difference inside the internal transport barrier (ITB) region is 2-3 times larger than that outside the ITB region, and it increases when the effect of excited components in neutral beam is taken into account. The radial electric field profile is affected greatly by the poloidal rotation term, which possibly indicates the correlation between the poloidal rotation and the transport barrier formation.

  3. Design and realization of JT-60SA Fast Plasma Position Control Coils power supplies

    Energy Technology Data Exchange (ETDEWEB)

    Zito, P., E-mail: pietro.zito@enea.it [National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via E. Fermi, N. 45, 00044 Frascati (Italy); Lampasi, A. [National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via E. Fermi, N. 45, 00044 Frascati (Italy); Coletti, A.; Novello, L. [Fusion for Energy (F4E) Broader Fusion Development Department, Garching (Germany); Matsukawa, M.; Shimada, K. [Japan Atomic Energy Agency (JAEA), Naka Fusion Institute, Mukouyama, Naka-si, Ibaraki-ken (Japan); Cinarelli, D.; Portesine, M. [POSEICO, via Pillea 42-44, 16152 Genova (Italy); Dorronsoro, A.; Vian, D. [JEMA, Paseo del Circuito 10, 20160 Lasarte-Oria Gipuzkoa (Spain)

    2015-10-15

    Highlights: • Fast Plasma Position Control Coils PSs control the vertical position of the plasma during a plasma shot. • The design phase was developed considering of providing full voltage at any current level. • The testing phase was successfully completed, according to the IEC60146 standards. • The measured rise time of the voltage response is 2.88 ms for a reference voltage step of 1 kV. - Abstract: Fast Plasma Position Control Coils (FPPCC) PSs control the vertical position of the plasma during a plasma shot, to prevent Vertical Displacement Event (VDE), using FPPC coils installed in vacuum vessel for JT-60SA. For this task, the FPPCC PSs have to be very fast for reacting to plasma movements. Further, an open loop feed forward voltage control is adopted in order to achieve a fast control of FPPCC PSs. The main characteristics are: 4-quadrant AC/DC converter 12-pulse with circulating current, DC load voltage ±1000 V and DC load current ±5 kA. The overvoltage induced by FPPC coil during a plasma disruption can reach 10 kV and it is protected by a nonlinear resistor in parallel to the crowbar up to its intervention. All these technical characteristics have strongly influenced the design of the FPPCC converter and transformers which have been validated by simulation model of FPPCC PS. The outcomes of the simulation allowed to finalize the performances and dynamic behavior of voltage response.

  4. Evaluation of heat and particle controllability on the JT-60SA divertor

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, H., E-mail: kawashima.hisato@jaea.go.jp [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka, Ibaraki 311-0193 (Japan); Hoshino, K.; Shimizu, K.; Takizuka, T.; Ide, S.; Sakurai, S.; Asakura, N. [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2011-08-01

    The JT-60SA divertor design has been established on the basis of engineering requirements and physics analysis. Heat and particle fluxes under the full input power of 41 MW can give severe heat loads on the divertor targets, while the allowable heat load is limited below 15 MW/m{sup 2}. Dependence of the heat flux mitigation on a D{sub 2} gas-puff is evaluated by SONIC simulations for high density (n{sub e{_}ave} {approx} 1 x 10{sup 20} m{sup -3}) high current plasmas. It is found that the peak heat load 10 MW/m{sup 2} with dense (n{sub ed} > 4 x 10{sup 20} m{sup -3}) and cold (T{sub ed}, T{sub id} {<=} 1 eV) divertor plasmas are obtained at a moderate gas-puff of {Gamma}{sub puff} = 15 x 10{sup 21} s{sup -1}. Divertor plasmas are controlled from attached to detached condition using the divertor pump with pumping-speed below 100 m{sup 3}/s. In full non-inductive current drive plasmas with low density (n{sub e{_}ave} {approx} 5 x 10{sup 19} m{sup -3}), the reduction of divertor heat load is achieved with the Ar injection.

  5. Development of a Lithium Beam Probe and Measurement of Density Pedestal in JT-60U

    Science.gov (United States)

    Kojima, Atsushi; Kamiya, Kensaku; Fujita, Takaaki; Kubo, Hirotaka; Iguchi, Harukazu; Oyama, Naoyuki; Suzuki, Takahiro; Kamada, Yutaka; JT-60 Team

    A lithium beam probe (LiBP) has been developed for the measurement of electron density profiles with highly spatial and temporal resolutions in JT-60U. Using an electron beam heating ion source with a capability of 10 mA extraction, a 5.5 mA beam has been injected to the plasmas. It corresponds to the equivalent neutral beam current of 2 mA. A spectrum width of the beam emission has been small enough to separate Zeeman splitting. By use of the LiBP, time evolutions of pedestal density profiles during type I and grassy edge localized modes (ELMs) have been obtained for the first time. After a type I ELM crash, the drop of the line-integrated density measured by an interferometer delays by 2 ms later than that of the pedestal density. Comparing the line-integrated density to the line integration of the edge density profile measured by the LiBP, it is found that the recovery from the type I ELM crash is correlated with the reduction of core plasma density. As for grassy ELMs, grassy ELMs have smaller density crashes than that of type I ELMs, which is mainly derived from the narrower ELM affected area.

  6. Performance deterioration based on in-service engine data: JT9D jet engine diagnostics program

    Science.gov (United States)

    Sallee, G. P.

    1979-01-01

    Results of analyses of engine performance deterioration trends and levels with respect to service usage are presented. Thirty-two JT9D-7A engines were selected for this purpose. The selection of this engine fleet provided the opportunity of obtaining engine performance data starting before the first flight through initial service such that the trend and levels of engine deterioration related to both short and long term deterioration could be more carefully defined. The performance data collected and analyzed included in-flight, on wing (ground), and test stand prerepair and postrepair performance calibrations with expanded instrumentation where feasible. The results of the analyses of these data were used to: (1) close gaps in previously obtained historical data as well as augment the historical data with more carefully obtained data; (2) refine preliminary models of performance deterioration with respect to usage; (3) establish an understanding of the relationships between ground and altitude performance deterioration trends; (4) refine preliminary recommendations concerning means to reduce and control deterioration; and (5) identify areas where additional effort is required to develop an understanding of complex deterioration issues.

  7. Numerical analyses of JT-60SA tokamak with tungsten divertor by COREDIV code

    Science.gov (United States)

    Gałązka, K.; Ivanova-Stanik, I.; Stępniewski, W.; Zagórski, R.; Neu, R.; Romanelli, M.; Nakano, T.

    2017-04-01

    An analysis of radiative power exhaust for the JT-60SA tokamak with a tungsten divertor is performed with the help of the self-consistent, core-edge integrated COREDIV code. Two scenarios of operation (low and high density) were investigated in the scope of different parameters (electron density at the separatrix and the perpendicular transport in the scrape-off layer) with impurity seeding (Ne and Kr). The calculations show that in the case of the tungsten divertor the power load to the divertor plate is mitigated and the central plasma dilution is smaller compared to the carbon divertor. In the most cases the energy flux through the separatrix is above the L–H transition threshold. For the high density case with neon seeding operation in full detachment mode is observed. Changing the diffusion coefficient in the SOL has a strong influence on the result of the calculations as increased radial transport causes stronger screening effect. Also by changing the electron density on the separatrix the influx of heavy impurities (W, Kr) into the core region can be reduced. The results demonstrate that it is easier to achieve sustainable conditions in the divertor region for the high density scenario, whereas for the low density one reducing the auxiliary heating power seems unavoidable to prevent damaging of the target plate, even for strong seeding gas influx.

  8. EVALUATION OF DYNAMIC CARACTERISTICS OF GAS COOLER OF THE CARBON DIOXIDE HEAT PUMP ÎN THE TRANSCRITICAL CYCLE

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2008-12-01

    Full Text Available Dynamic characteristics of heat pump gas cooler obtained by means of the solution of the dynamics equations in partial derivatives are examined. Control system of the heat pump used for the heating of the heating–system water, supplied from CHP to the district heating system is examined. Possibility of PID-controller with gain scheduling utilization with the coefficients changing depending on gas cooler mode of operation for temperature disturbances compensation of direct heating–system water is shown.

  9. Study on the COP of free piston Stirling cooler (FPSC) in the anti-sublimation CO2 capture process

    OpenAIRE

    Song, Chunfeng; Lu, Jingwen; Kitamura, Yutaka

    2015-01-01

    Free piston Stirling cooler (FPSC) is a promising alternative for the conventional coolers and has been applied to various fields. In the previous research, a novel cryogenic CO2 capture system based on FPSCs has been exploited. In order to enhance the cryogenic CO2 capture efficiency, the investigation on the coefficient of performance (COP) of the FPSC is carried out in this work. In detail, the influence of different materials (aluminium and copper), size of cold head (length and diameter)...

  10. Process Calculation for Reciprocating Compressor Cooler%往复压缩机冷却器的工艺计算

    Institute of Scientific and Technical Information of China (English)

    李首霖; 姜晓川; 郭淑英

    2015-01-01

    Set the process calculation for reciprocating compressor cooler as an example, this paper briefly specified the process cal-culation method for cooler applying HTRI software and the practical meanings.%以往复压缩机用的冷却器工艺计算为例,简述了应用HTRI软件对冷却器进行工艺计算的方法以及实用意义。

  11. Asymmetric effects of cooler and warmer winters on beech phenology last beyond spring

    Science.gov (United States)

    Signarbieux, Constant; Toledano, Ester; Sangines, Paula; Fu, Yongshuo; Schlaepfer, Rodolphe; Buttler, Alexandre; Vitasse, Yann

    2017-04-01

    In temperate trees, the timing of plant growth onset and cessation affect biogeochemical cycles, water and energy balance. Currently, phenological studies largely focus on specific phenophases and on their responses to warming. How differently spring phenology responds to the warming and cooling, and affects the subsequent phases, has not been well investigated. Here, we exposed saplings of Fagus sylvatica L. to warmer and cooler climate during the winter 2013-2014 by conducting a reciprocal transplant experiment between two elevations (1340 vs. 371 m.a.s.l., ca. 6°C difference) in the Swiss Jura mountains. To test the legacy effects of earlier or later budburst on the budset timing, saplings were moved back to their original elevation shortly after the occurrence of budburst in spring 2014. One degree decrease of air temperature resulted in a delay of 10.9 days in budburst dates, whereas one degree of warming advanced the date by 8.8 days. Interestingly, we found an asymmetric effect of the warmer winter vs. cooler winter on the budset timing in autumn: saplings experiencing a cooler winter showed a delay of 31 days in their budset timing compared to the control, whereas saplings experiencing a warmer winter showed 10 days earlier budset. The dependency of spring over autumn phenophases might be partly explained by the building up of the non-structural carbohydrate storage and suggests that the potential delay in growth cessation due to global warming might be smaller than expected. We did not find a significant correlation in budburst dates between 2014 and 2015, indicating that the legacy effects of the different phenophases might be reset during each winter. Adapting phenological models to the whole annual phenological cycle, and considering the different response to cooling and warming, would improve predictions of tree phenology under future climate warming conditions.

  12. Operation of a pond-cooler: the case of Berezovskaya GRES-1

    Science.gov (United States)

    Morozova, O. G.; Kamoza, T. L.; Koyupchenko, I. N.; Savelyev, A. S.; Pen, R. Z.; Veselkova, N. S.; Kudryavtsev, M. D.

    2017-08-01

    Pond-coolers at heat and nuclear power stations are natural-technological systems, so the program of their monitoring should include the effect made by the SRPS (state regional power station) on the pond ecosystem, including thermal discharge of cooling water. The objectives of this study were development and implementation of a monitoring program for the cooling pond of Berezovskaya SRPS-1 on the chemical and biological water quality indicators and identification of patterns of the thermal and hydrochemical regime when operating the progressive power plant (from 1996 to 2015). The quality of the cooling water of the pond-cooler BGRES-1 was studied under full-scale conditions by selecting and analyzing the water samples of the pond in accordance with the principles of complexity, systematic observation, and consistency of timing their conduct with the characteristic hydrological phases. Processing of the obtained array of monitoring data by methods of mathematical statistics makes it possible to identify the main factors affecting the water quality of the pond. The data on water quality obtained during their monitoring and mathematical processing over a long time interval are the scientific basis for forecasting the ecological state of the pond, which is necessary to economically ensure the efficient energy production and safety of water use. Recommendations proposed by these authors, including those partially already implemented, have been to prevent the development of eutrophication processes in the pond-cooler: the construction of a dam that cuts off the main peat massif and cleaning the river banks forming the cooling pond.

  13. The Astro-H Soft X-ray Spectrometer (SXS)

    Science.gov (United States)

    Porter, F. Scott; Fujimoto, Ryuichi; Kelley, Richard L.; Kilbourne, Caroline A.; Mitsuda, Kazuhiasa; Ohashi, Takaya; Astro-H/SXS Collaboration

    2009-12-01

    The Soft-X-ray Spectrometer (SXS) is a high spectral resolution, cryogenic x-ray spectrometer that will fly on the Japan/U.S. Astro-H observatory in 2014. The SXS is composed of a 36 pixel, imaging, x-ray calorimeter array that will operate at 0.05 K utilizing a 2-stage adiabatic demagnetization refrigerator and a redundant pre-cooler design using both a 40 liter liquid helium tank and a 1.7 K Joule-Thomson (JT) cryocooler. Additional redundant Stirling cycle coolers provide pre-cooling for the (JT) and cool the outer thermal shields for the JT and the helium tank. The detector system, while similar to that flown on Suzaku, is composed of larger 0.81×0.81mm pixels, but has significantly better performance, currently predicted to be better than 4 eV FWHM at 6 keV with 95% quantum efficiency. This instrument is the result of a close collaboration between many institutions in the U.S. and Japan over the last 25 years. Here we will present an overview of the SXS instrument, the SXS cooling system, and recent laboratory improvements to the detector system.

  14. Exo-reversible staging of coolers in series and in parallel

    Science.gov (United States)

    Maytal, Ben-Zion

    2017-10-01

    Serial and parallel staging of exo-reversible coolers are formulated, analyzed and compared. The parallel staging includes an extensive parameter which is the proportion of combined stages. This extensive free parameter affects the intensive factors of specific power and figure of merit. Serial staging reduces the 1st Law efficiency and parallel staging improves the 2nd Law efficiency. Comparison of a parallel with a serial staging under common cooling capacity and cooling range, shows that it is always possible to find a parallel arrangement of lower specific power and more compact. Some results are demonstrated on staging of Joule-Thomson cryocoolers (below and above the Joule-Thomson inversion temperature).

  15. Laboratory Performance Of Evaporative Cooler Using Jute Fiber Ropes As Cooling Media

    OpenAIRE

    Kulkarni, R K; S.P.S. Rajput

    2014-01-01

    Evaporative coolers use a variety of cooling media like wood wool, cellulose, aspen. This paper analyses the performance of jute fiber ropes as alternative cooling media. They are capable of retaining high moisture and have a large wetted surface area. Hot and dry air is allowed to flow over the wet jute rope bank tightly held between two plates which are integral part of two tanks. The inlet conditions of air varied from 30.5 0C dry bulb temperature and 52 % relative humidity to ...

  16. Specification of a new electron cooler for the low energy ion accumulator ring, LEIR

    CERN Document Server

    Tranquille, Gerard

    2004-01-01

    For the cooling of Pb**5**4**+ ions in the future low-energy ion ring machine a new electron cooling device needs to be constructed. This new cooler will take advantage of all the recent developments in electron cooling in order to balance efficient and fast cooling with a sufficiently long ion beam lifetime for beam accumulation. This paper will present the special features of the device and how their combination will be used to obtain low emittance beams for transfer to the LHC.

  17. The heavy ion cooler-storage-ring project (HIRFL-CSR) at Lanzhou

    CERN Document Server

    Xia, J W; Wei, B W; Yuan, Y J; Song, M T; Zhang, W Z; Yang, X D; Yuan Ping; Gao, D Q; Zhao, H W; Yang, X T; Xiao, G Q; Man, K T; Dang, J R; Cai, X H; Wang, Y F; Tang, J Y; Qiao, W M; Rao, Y N; He, Y; Mao, L Z; Zhou, Z Z

    2002-01-01

    HIRFL-CSR, a new ion Cooler-Storage-Ring (CSR) project, is the post-acceleration system of the Heavy Ion Research Facility in Lanzhou (HIRFL). It consists of a main ring (CSRm) and an experimental ring (CSRe). From the HIRFL cyclotron system the heavy ions will be accumulated, cooled and accelerated in the CSRm, then extracted fast to produce radioactive ion beams (RIB) or highly charged heavy ions. Those secondary beams will be accepted and stored by the CSRe for many internal-target experiments with electron cooling.

  18. A radio frequency ring electrode cooler for low-energy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, S. [Sekt. Phys., Ludwig-Maximilians-Universitaet, Am Coulombwall 1, Muenchen, D-85748 Garching (Germany)]. E-mail: sophie.heinz@physik.uni-muenchen.de; Aeystoe, J. [Department of Physics, University of Jyvaeskylae, P.O. Box 35 (Y5), FIN-40351 Jyvaeskylae (Finland); Habs, D. [Sekt. Phys., Ludwig-Maximilians-Universitaet, Am Coulombwall 1, Muenchen, D-85748 Garching (Germany); Hegewisch, S. [Sekt. Phys., Ludwig-Maximilians-Universitaet, Am Coulombwall 1, Muenchen, D-85748 Garching (Germany); Huikari, J. [Department of Physics, University of Jyvaeskylae, P.O. Box 35 (Y5), FIN-40351 Jyvaeskylae (Finland); Nieminen, A. [Department of Physics, University of Jyvaeskylae, P.O. Box 35 (Y5), FIN-40351 Jyvaeskylae (Finland); Rinta-Antila, S. [Department of Physics, University of Jyvaeskylae, P.O. Box 35 (Y5), FIN-40351 Jyvaeskylae (Finland); Schumann, M. [Sekt. Phys., Ludwig-Maximilians-Universitaet, Am Coulombwall 1, Muenchen, D-85748 Garching (Germany); Szerypo, J. [Sekt. Phys., Ludwig-Maximilians-Universitaet, Am Coulombwall 1, Muenchen, D-85748 Garching (Germany)

    2004-11-11

    We are investigating a new concept for ion confinement while buffer-gas-cooling low-energy ion beams. Instead of applying the well-established technique of Radio Frequency Quadrupoles (RFQs) where the ions are transversely confined by a quadratic-pseudo potential we are using a stack of thin ring electrodes supplied by an RF field (RF funnel) which creates a box-shaped potential well. In Monte Carlo simulations we have investigated the transmission behavior and cooling performance of the RF funnel. First experimental investigations with ion currents up to 20 nA revealed a promising transmission characteristic which qualifies the RF funnel as high-current cooler.

  19. Triton burnup study using scintillating fiber detector on JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Harano, Hideki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1997-09-01

    The DT fusion reactor cannot be realized without knowing how the fusion-produced 3.5 MeV {alpha} particles behave. The {alpha} particles` behavior can be simulated using the 1 MeV triton. To investigate the 1 MeV triton`s behavior, a new type of directional 14 MeV neutron detector, scintillating fiber (Sci-Fi) detector has been developed and installed on JT-60U in the cooperation with LANL as part of a US-Japan collaboration. The most remarkable feature of the Sci-Fi detector is that the plastic scintillating fibers are employed for the neutron sensor head. The Sci-Fi detector measures and extracts the DT neutrons from the fusion radiation field in high time resolution (10 ms) and wide dynamic range (3 decades). Triton burnup analysis code TBURN has been made in order to analyze the time evolution of DT neutron emission rate obtained by the Sci-Fi detector. The TBURN calculations reproduced the measurements fairly well, and the validity of the calculation model that the slowing down of the 1 MeV triton was classical was confirmed. The Sci-Fi detector`s directionality indicated the tendency that the DT neutron emission profile became more and more peaked with the time progress. In this study, in order to examine the effect of the toroidal field ripple on the triton burnup, R{sub p}-scan and n{sub e}-scan experiments have been performed. The R{sub p}-scan experiment indicates that the triton`s transport was increased as the ripple amplitude over the triton became larger. In the n{sub e}-scan experiment, the DT neutron emission showed the characteristic changes after the gas puffing injection. It was theoretically confirmed that the gas puffing was effective for the collisionality scan. (J.P.N.) 127 refs.

  20. Fast dynamics of type I and grassy ELMs in JT-60U

    Science.gov (United States)

    Kojima, A.; Oyama, N.; Sakamoto, Y.; Kamada, Y.; Urano, H.; Kamiya, K.; Fujita, T.; Kubo, H.; Aiba, N.; JT-60 Team

    2009-11-01

    In order to understand the physics of the ELM trigger and determine the ELM size, the fast ELM dynamics of type I and grassy ELMs have been studied in JT-60U, using new fast diagnostics with high spatial and temporal resolutions such as a lithium beam probe (Δt ~ 0.5 ms) and a charge exchange recombination spectroscopy (Δt ~ 2.5 ms), which can measure the electron density and the ion temperature, respectively. The evolution of the ion pressure profile in the pedestal region has been evaluated for the first time by detailed edge profile measurements. Then, the dynamics of the density, the ion temperature and the ion pressure in the ELM cycle has been investigated. The co-rotating plasmas are compared with the counter (ctr)-rotating plasmas for the understanding of the toroidal rotation effects. Type I ELMs observed in co-rotating plasmas exhibit a larger and wider ELM affected area (Δnped/nped ~ 30%, radial extent >15 cm) than ctr-rotating plasmas (Δnped/nped ~ 20%, radial extent ~10 cm). Just before a type I ELM crash, the pedestal ion pressure and its maximum gradient in co-rotating plasmas are 20% and 12% higher than those in ctr-rotating plasmas, respectively. It is found that the radial extent of the ion pressure gradient at the pedestal region in co-rotating plasmas is 14% wider than that in ctr-rotating plasmas. The experimental results suggest that the ELM size is connected with the structure of the plasma pressure in the whole pedestal region. As for the dynamics of grassy ELMs, the collapse of density pedestal is smaller (narrower (~5 cm) than those of type I ELMs, as observed in the collapse of the electron temperature pedestal. Thus, it is confirmed that both conductive and convective losses due to grassy ELMs are small.

  1. Development of remote pipe cutting tool for divertor cassettes in JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Takao, E-mail: hayashi.takao@jaea.go.jp; Sakurai, Shinji; Shibanuma, Kiyoshi; Sakasai, Akira

    2014-10-15

    Remote pipe cutting tool accessing from inside pipe has been newly developed for JT-60SA. The tool head equips a disk-shaped cutter blade and four rollers which are subjected to the reaction force. The tool pushes out the cutter blade by decreasing the distance between two cams. The tool cuts a cooling pipe by both pushing out the cutter blade and rotating the tool head itself. The roller holder is not pushed out anymore after touching the inner wall of the pipe. In other words, only cutter blade is pushed out after bringing the tool axis into the pipe axis. Outer diameter of the cutting tool head is 44 mm. The cutting tool is able to push out the cutter blade up to 32.5 mm in radius, i.e. 65 mm in diameter, which is enough to cut the pipe having an outer diameter of 59.8 mm. The thickness and material of the cooling pipe are 2.8 mm and SUS316L, respectively. The length of the cutting tool head is about 1 m. The tool is able to cut a pipe locates about 480 mm in depth from the mounting surface on the divertor cassette. The pipe cutting system equips two cutting heads and they are able to cut two pipes at the same time in order to remove the inner target plate. Reproducibility of the cross-sectional shape of the cut pipe is required for re-welding. The degree of reproducibility is inside 0.1 mm except for burr at outside of the pipe, which is enough to re-weld the cut pipe. Some swarf is generated during cutting the double-layered pipe assuming a plug located on the top of the pipe. The swarf is deposited on the bottom of the plug and collected by pulling out the plug in the actual equipment.

  2. Edge radial electric field formation after the L-H transition on JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, K.; Matsunaga, G.; Honda, M.; Miyato, N.; Urano, H.; Kamada, Y.; Itoh, K. [Japan Atomic Energy Agency (JAEA), Naka (Japan); Ida, K. [National Institute for Fusion Science (NIFS), Toki (Japan); Collaboration: The JT-60 team

    2014-06-15

    Spatio-temporal measurements of the impurity ion temperature, density, and rotation profiles around the plasma edge region have been made in the JT-60U tokamak, allowing the determination of radial electric field, E{sub r}, with the key dimensionless parameter (poloidal Mach number, U{sub pm)} at the L-H transition in a number of operational regimes. We found that there is variation in the L-H transition in terms of its time-scale; not only ''hard'' type transition with a faster time-scale than that seen in the plasma transport (as represented by an energy confinement time, τ{sub E}) as seen in the many conventional tokamaks, but also ''soft'' one with a slow time-scale (∼τ{sub E}) is possible solution, including a complex multi-stage E{sub r} transition in the later H-phase. The most important point is that the critical condition for the L-H transition predicted by ion-orbit loss model could be applicable only for ''hard'' transition (occurred at U{sub pm} ≥ 1), and not necessary for ''slow'' one (occurred even at U{sub pm} < 1). Characteristics of the turbulent density fluctuation with the frequency range of 100 kHz at the plasma edge region, in addition to a uniform toroidal MHD oscillation (i.e., n = 0), during ELM-free H-phase are also reported. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Characterization of sorption compressor for mixed refrigerant J-T cryocooler

    Science.gov (United States)

    Mehta, Rohitkumar; Bapat, Shridhar; Atrey, Milind

    2012-06-01

    The requirement of a cryocooler with minimum vibrations for space borne system and highly sophisticated electronic devices for ground application, has led to the development of sorption compressor type J-T cryocooler. The adsorption capacity of any adsorbent material increases with an increase in pressure and decreases with an increase in temperature. In a Sorption compressor, adsorbed gases are desorbed in a confined volume by raising temperature of the sorption bed which results in increase in pressure of gas. A uniform temperature across the sorption bed ensures maximum discharge from the compressor amounting to higher flow rates and longer cycle time on account of reduced residual loading. In addition, it is also very important to determine the adsorption capacity of any material with respect to the gas or gases to be adsorbed as this varies with source of the adsorbent. The present work reports the characterization of a fully operational two-cell sorption compressor developed. The sorption compressor is characterized for discharge pressure variation with cycle time; this is essentially a function of a) the amount of adsorbent, b) the adsorption capacity for respective gas or gases, c) desorption temperature and its uniformity, and d) system dead volume. The present paper analyses these aspects theoretically and the results are compared with the experimental data obtained for individual gases as well as for gas mixtures. The effect of gas distribution on temperature uniformity across the bed and of heater power on high pressure generated is also studied. The paper also discusses the pressure profile obtained for a given amount of adsorbent for different gas or gas mixture. The work, based on the results obtained so far is being further extended for a four cell sorption compressor.

  4. Relativistic down-shift frequency effect on the application of electron cyclotron emission measurements to JT-60U tokamak plasmas. Second harmonics

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Masayasu; Isei, Nobuaki; Ishida, Sinichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1995-11-01

    Effect of relativistic frequency down-shift on the determination of the electron temperature profile from electron cyclotron emission(ECE) in JT-60U tokamak plasmas is studied. The radial shift of the electron temperature profile due to the effects is not negligible, compared with the spatial resolution of ECE measurement systems of JT-60U. Therefore it is necessary to correct the effect for precise measurement of the electron temperature profile. Dependencies of the shifted frequency on the electron density, electron temperature and toroidal magnetic field are studied for the uniform electron density and parabolic electron temperature profile in JT-60U. It is revealed to be necessary for the estimation of shift due to the relativistic down-shift frequency to take into account of the optical thickness. (author).

  5. Reference design of the power supply system for the resistive-wall-mode control in JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Ferro, Alberto, E-mail: alberto.ferro@igi.cnr.it [Consorzio RFX, C.so Stati Uniti 4, 35127 Padova (Italy); Gaio, Elena [Consorzio RFX, C.so Stati Uniti 4, 35127 Padova (Italy); Novello, Luca [Fusion for Energy, Broader Development of Fusion Department, Boltzmannstr 2, 85748 Garching (Germany); Matsukawa, Makoto; Shimada, Katsuhiro; Kawamata, Yoichi; Takechi, Manabu [Japan Atomic Energy Agency, Naka Fusion Institute, 801-1 Mukoyama, Naka, Ibaraki 311-019 (Japan)

    2015-10-15

    Highlights: • In JT-60SA, a power supply system (RWM-PS) will feed 18 coils to control the RWMs. • One power amplifier per coil will follow an arbitrary real-time reference. • Very fast dynamics is required (current bandwidth: 3 kHz; latency: 50 μs). • The requirements of the RWM-PS are updated and design solutions discussed. • The reference design of the RWM-PS is based on H-bridges operated at 20 – 30 kHz. - Abstract: The mission of JT-60SA, the satellite Tokamak under construction in Naka (Japan), includes the attainment of steady-state high-beta plasmas. For this purpose, an active control system based on 18 in-vessel sector coils (SC) is foreseen to suppress the resistive wall modes (RWM). Each coil will be independently fed by a dedicated converter, rated for 300 A and 240 V, which has to produce the required current/voltage following in real time the reference provided by the JT-60SA MHD Controller. To minimize the current rating, these converters shall be sufficiently fast to avoid an excessive growth of the RWM. This requires a very high dynamic performance, largely beyond that of standard industrial applications. This paper firstly reports the latest results of the studies on the requirements of the RWM active control system. Then, the reference design of the power supply system is presented, including the ac/dc conversion stage, the fast converters and the control section. The advantages of the proposed scheme are discussed and the main electrical parameters are presented.

  6. A Comparative Investigation on the JT Effect in Triangular Compounds of NaMnO2, NaNiO2 and NaTiO2

    Institute of Scientific and Technical Information of China (English)

    OUYANG Sheng-De; QUAN Ya-Min; LIU Da-Yong; ZOU Liang-Jian

    2011-01-01

    We present a study on the Jahn-Teller (JT) distortions of the TiOe, NiO6 and MnOe complexes in NaTiO2, NaNiO2 and NaMnO2 triangular compounds with a C2/m structure. The JT vibronic normal modes are found to be Q3, Q'4 and Q6 by the group symmetry on the C2/m. Structure. The magnitude of the normal coordinates (Q3, Q4, Qe) and the structural parameters of distorted octahedra Moe (M=Ti, Ni, Mn) are obtained and in good agreement with experimental data. The energy level splitting of 3d orbitals and the highest occupied molecular orbital (HOMO) character in the Moq complex are also calculated in accordance with the JT distortions. These results provide a first insight into the groundstate and magnetic properties of distorted triangular compounds AMO2.%@@ We present a study on the Jahn-Teller (JT) distortions of the TiO, NiO and MnO complexes in NaTiO, NaNiO and NaMnO triangular compounds with a C structure.The JT vibronic normal modes are found to be Q, Q' and Q by the group symmetry on the C structure.The magnitude of the normal coordinates (Q, Q', Q) and the structural parameters of distorted octahedra MO (M=Ti, Ni, Mn) are obtained and in good agreement with experimental data.The energy level splitting of 3d orbitals and the highest occupied molecular orbital (HOMO) character in the MO complex are also calculated in accordance with the JT distortions.These results provide a first insight into the groundstate and magnetic properties of distorted triangular compounds AMO.

  7. Theoretical Performance Analysis of Indirect-Direct Evaporative Cooler in Hot and Dry Climates

    Directory of Open Access Journals (Sweden)

    R.K.KULKARNI,

    2011-02-01

    Full Text Available This paper theoretically analyses the performance of indirect-direct two stage cooler in hot and dry climate of Bhopal, India. Indirect cooling stage consisting of plate type wet surface heat exchangerfollowed by direct cooling stage consisting of rigid cellulose and aspen fiber in rectangular, semicylindrical and semi-hexagonal shapes as cooling media is considered. Based on summer weather data ofBhopal, most frequently occurring condition of 39.9 0C DBT and 32.8 % RH is selected for the analysis. Indirect evaporative cooler effectiveness is estimated in the range of 0.95 to 0.82 for primary air flow rate of 0.3 to 1.25 kg/s. Saturation efficiency in the direct cooling mode is obtained in the range of 89.1 to 63.4 % and cooling capacity from 11472 to 52576 kJ/h for different combinations. In combined mode saturation efficiency is obtained between 121.5 and 106.7 % and cooling capacity between 18244 to 73809 kJ/h. The final outlet temperature of air in combined mode ranges between 22.5 0C and 24.6 0C.

  8. Study on turbulent flow and heat transfer performance of tubes with internal fins in EGR cooler

    Science.gov (United States)

    Liu, Lin; Ling, Xiang; Peng, Hao

    2015-01-01

    In this paper, flow and heat transfer performances of the tubes with internal longitudinal fins in Exhaust Gas Recirculation (EGR ) cooler were investigated by three-dimension computation and experiment . Each test tube was a single-pipe structure, without inner tube. Three-dimension computation was performed to determine the thermal characteristics difference between the two kinds of tubes, that is, the tube with an inner solid staff as a blocked structure and the tube without the blocked structure. The effects of fin width and fin height on heat transfer and flow are examined. For proving the validity of numerical method, the calculated results were compared with corresponding experimental data. The tube-side friction factor and heat transfer coefficient were examined. As a result, the maximum deviations between the numerical results and the experimental data are approximately 5.4 % for friction factor and 8.6 % for heat transfer coefficient, respectively. It is found that two types of internally finned tubes enhance significantly heat transfer. The heat transfer of the tube with blocked structure is better, while the pressure drop of the tube without blocked structure is lower. The comprehensive performance of the unblocked tube is better to applied in EGR cooler.

  9. The low-energy electron cooler for the Cryogenic Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Stephen; Blaum, Klaus; Krantz, Claude; Wolf, Andreas [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany)

    2014-07-01

    The Cryogenic Storage Ring (CSR) at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany, is being commissioned. CSR will be an ideal tool for preparing and studying cold atomic and molecular ions using ion beams of 20-300 keV kinetic energy (per ion charge unit). As a first important upgrade CSR will be equipped with an electron cooler. Latter is designed for cooling beams with a charge-to-mass ratio q/m of 1 to 1/160 e/aμ. This corresponds to an electron beam energy range of 1 to 163 eV. The beam will be produced by a cryogenic photocathode and electron temperatures in the co-moving frame reach down to 10 K. The cooler can also be used as an electron target by detuning the electrons' kinetic energy. This allows precision experiments on low-energy collisions between cold electrons and stored atomic and molecular ions using counting and imaging detectors. The design and the status of the setup are presented.

  10. Development of a new RFQ beam cooler and buncher for the CANREB project at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Barquest, B.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); Bale, J.C.; Dilling, J. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); UBC Department of Physics and Astronomy, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Gwinner, G. [University of Manitoba, Department of Physics and Astronomy, Allen Building, Winnipeg, MB R3T 2N2 (Canada); Kanungo, R. [Saint Mary’s University, Astronomy and Physics Department, 923 Robie Street, Halifax, NS B3H 3C3 (Canada); Krücken, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); UBC Department of Physics and Astronomy, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Pearson, M.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada)

    2016-06-01

    A new radiofrequency quadrupole (RFQ) based ion beam cooler and buncher is under development for the CANadian Rare-isotope facility with Electron Beam ion source (CANREB) project at TRIUMF. The CANREB project requires an RFQ buncher that will efficiently accept continuous beams of rare isotopes from either the Advanced Rare IsotopE Laboratory (ARIEL) or Isotope Separator and ACcelerator (ISAC) target by way of a high resolution magnetic spectrometer, with energies up to 60 keV and deliver bunched beams to an electron beam ion source (EBIS) for charge breeding. The energy of the bunched beam delivered to the EBIS will be adjustable to match the requirements of the existing post acceleration infrastructure. The CANREB RFQ incorporates design considerations to facilitate ease of use over a wide range of ion masses, and is intended to accommodate incident beam rates as high as 10{sup 8} pps, delivering beam bunches at 100 Hz. An overview of the CANREB RFQ design concept will be presented, informed by results from both ion optical simulations as well as commissioning efforts with other beam cooler and buncher devices. Simulation results indicate that the design is well suited to deliver high quality bunched beams with high efficiency with as many as 10{sup 6} ions per bunch.

  11. HEAT PUMP GAS COOLER CONTROL USING CRITERION OF MINIMUM OF EXERGY LOSSSES

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2014-08-01

    Full Text Available This paper focuses on the development of the criterion of optimality of transients of the control system, based on the minimum of exergy losses in the gas cooler of carbon dioxide heat pump. It is noted that the exergy quality criterion has a clear physical meaning, as compared with the integral quadratic criterion in which the choice of the coefficients in the integrand is not justified. Mathematic model of heat exchanger is obtained using the method of solving differential equations, without going to the irrational transfer functions. The model is reduced to transfer functions of the first and second order with the delay. The continuous temperature control system of heat pump gas cooler is considered. It is shown, that one of the versions of the control system for the minimization of the proposed criterion can be a combined control system using both the principle of the negative feedback and the principle of the invariance related to a number of disturbances affecting the processes of heat transfer in the heat exchanger.

  12. Laboratory Performance Of Evaporative Cooler Using Jute Fiber Ropes As Cooling Media

    Directory of Open Access Journals (Sweden)

    R.K.Kulkarni

    2014-12-01

    Full Text Available Evaporative coolers use a variety of cooling media like wood wool, cellulose, aspen. This paper analyses the performance of jute fiber ropes as alternative cooling media. They are capable of retaining high moisture and have a large wetted surface area. Hot and dry air is allowed to flow over the wet jute rope bank tightly held between two plates which are integral part of two tanks. The inlet conditions of air varied from 30.5 0C dry bulb temperature and 52 % relative humidity to 34.5 0C dry bulb temperature and 32 % relative humidity. Outlet temperature of air is measured and saturation efficiency and cooling capacity are calculated. The outlet dry bulb temperature is obtained between 25.8 0C and 26.2 0C.The saturation efficiencies range from 69 % to 59 % and the cooling capacity is obtained between 6173 kJ/h and 11979 kJ/h. Thus jute fiber ropes prove to be a good alternative cooling media in evaporative cooler

  13. P-type InGaAsP coolers for integrated optic devices

    Science.gov (United States)

    Vashaee, Daryoosh; LaBounty, Christopher J.; Fang, Xiaofeng; Zeng, Gehong; Abraham, Patrick; Bowers, John E.; Shakouri, Ali

    2001-05-01

    Single stage thin film coolers based on thermoelectric and thermionic cooling in p-type InGaAsP superlattice structures have been fabricated. Devices with different sizes and at various ambient temperatures have been characterized. Experimental results showed 0.5 degree centigrade cooling below the ambient temperature at 25C. This cooling over 1 4mu2m thick superlattice barrier corresponds to cooling power densities on the order of 200 W/cm2. The device cools by a factor of two better at higher temperatures (70C). This is due to the reduction of the superlattice thermal conductivity and the broadening of the electronic distribution function at higher temperatures. 150x150 micrometers 2 devices provide largest cooling at room temperature while the optimum device size shrinks as the temperature increases. Simulations results that take into account finite thermal resistance of the InP substrate, the effect of the contact resistance, heat generation in the wire-bonds and metallic pads on top of the device predict accurately the optimum cooling of these micro refrigerators. By eliminating the major parasitic sources of heating (Joule heating in the substrate, heat conduction through the side contact and reducing the contact resistance to 5x7-7 ohm-cm2) simulations show that, ultimately, one can achieve 15 degree(s)C cooling (10's of kW/cm2 cooling power) with single stage p-InGaAsP thin film coolers.

  14. Improving the Efficiency of the Heat Pump Control System of Carbon Dioxide Heat Pump with Several Evaporators and Gas Coolers

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2016-12-01

    Full Text Available The problem of coordination of the values of the refrigerant flow through the evaporators and gas coolers of the heat pump for the simultaneous production of heat and cold is studied. The compensation of the variations of the total flow through the evaporators is implemented using the variation of the capacity of the compressor and a corresponding change in flow through the auxiliary gas cooler of the heat pump. Control system of this gas cooler is constructed using the invariance principle of the output value (outlet temperature of the heated agent with respect to perturbations on the control channel (the refrigerant flow through the gas cooler. Principle of dual-channel compensation of the disturbance and advancing signal on input of control valve of the refrigerant through the gas cooler is ensured. Due to proposed solution, the intensity of the disturbances on the flow of refrigerant is reduced. Due to proposed technical solution power consumed by the heat pump compressor drive under transients is decreased.

  15. Studi Numerik Peningkatan Cooling Performance pada Lube Oil Cooler Gas Turbine yang Disusun Secara Seri dan Paralel dengan Variasi Kapasitas Aliran Lube Oil

    Directory of Open Access Journals (Sweden)

    Annis Khoiri Wibowo

    2014-09-01

    Full Text Available Salah satu komponen pada gas turbine adalah lube oil cooler yang berfungsi sebagai heat exchanger untuk mendinginkan temperatur lube oil. Pemasangan tiga lube oil cooler type-Z compact heat exchanger pada susunan seri dan paralel berdampak pada cooling capacity lube oil cooler. Uniformity flow rate pada masing-masing tube merupakan salah satu faktor yang mempengaruhi cooling capacity dari lube oil coole. Oleh karena itu dilakukan simulasi Computational Fluid Dynamic (CFD untuk mengkaji pengaruh pemasangan susunan tiga lube oil cooler secara seri dan paralel dengan variasi kapasitas lube oil terhadap performance lube oil cooler. Pemodelan domain dilakukan dengan 3 dimensi pada sisi eksternal dan internal. Simulasi pada sisi eksternal dilakukan untuk memperoleh nilai koefisien heat transfer pada masing-masing baris tube. Selanjutnya, nilai koefisien heat transfer yang didapat pada sisi eksternal digunakan sebagai kondisi batas wall convection pada masing-masing baris tube untuk simulasi internal flow dengan variasi flow rate lube oil 30 gpm, 50 gpm, 74 gpm. Dari hasil simulasi, susunan cooler seri menghasilkan cooling capacity yang lebih baik dari pada susunan cooler paralel pada kapasitas lube oil yang sama. Hal tersebut terjadi karena flow ratio lube oil untuk masing-masing tube pada susunan cooler seri lebih seragam dari pada susunan cooler paralel. Keseragaman flow rate pada masing-masing tube ditunjukkan dengan kecilnya standard deviasi flow ratio. Kapasitas 50 gpm memiliki standard deviasi flow ratio sebesar 0,46 untuk susunan seri dan 0,75 untuk susunan paralel. Semakin besar kapasitas lube oil maka distribusi flow rate pada masing-masing tube semakin tidak seragam. Selain itu susunan cooler seri memiliki pressure drop yang lebih besar dari pada susunan cooler paralel. Pemasangan susunan cooler dengan kapasitas 30 gpm memiliki tingkat keseragaman yang paling tinggi ditunjukkan dengan standard deviasi flow ratio pada masing-masing tube yang

  16. Analyses of large scale tests addressing the performance of a containment cooler and its effect on gas distribution

    Energy Technology Data Exchange (ETDEWEB)

    Andreani, M.; Mignot, G. [Paul Scherrer Inst., Villigen (Switzerland)

    2011-07-01

    The performance of containment coolers and their effect on the hydrogen risk in the case of an accident with core overheat is an issue that needs to be addressed by means of simulation tools. Four tests performed in the PANDA facility within the OECD SETH 2 project provide a new database to evaluate the capability of the codes to predict the cooling effectiveness of a cooler and its effect on flow patterns and light gas distribution. All tests have been simulated with the GOTHIC code using a three-dimensional mesh and a rather detailed model for the cooler tube bundle. In general, the results obtained are in reasonable agreement with the data, although some major discrepancies have also been observed, which are mostly due to the limited detail permitted by the relatively coarse mesh adopted for all tests of the SETH 2 project. (author)

  17. 电机空冷器制造工艺改进%Manufacturing Process Improvements of Motor Air Cooler

    Institute of Scientific and Technical Information of China (English)

    谢常春; 苏启明; 梁子慧

    2013-01-01

    通过对空冷器制造工艺的改进,解决了空冷器因易变形而装配困难的问题.设计的钻模工装结构简单、定位准确,缩短了产品制造周期.与传统工艺相比优越性显著,对同类空冷器的加工制造,在工艺方法上值得借鉴和推广.%Through the improvement of motor air cooler manufacturing process,the air cooler assembly problem because of easy deformation was solved.The design of jig fixture structure was simple,accurate,and the product manufacturing cycle was shorted.Compared with the traditional process,the process method is worth reference and promotion similar to the processing and manufacturing of air cooler.

  18. On the Use of Thermoelectric (TE) Applications Based on Commercial Modules: The Case of TE Generator and TE Cooler

    Science.gov (United States)

    Zorbas, K.; Hatzikraniotis, E.; Paraskevopoulos, K. M.; Kyratsi, Th.

    2010-01-01

    In recent years, thermoelectricity sees rapidly increasing usages in applications like portable refrigerators, beverage coolers, electronic component coolers etc. when used as Thermoelectric Cooler (TEC), and Thermoelectric Generators (TEG) which make use of the Seebeck effect in semiconductors for the direct conversion of heat into electrical energy and is of particular interest for systems of highest reliability or for waste heat recovery. In this work, we examine the performance of commercially available TEC and TEG. A prototype TEC-refrigerator has been designed, modeled and constructed for in-car applications. Additionally, a TEG was made, in order to measure the gained power and efficiency. Furthermore, a TEG module was tested on a small size car (Toyota Starlet, 1300 cc), in order to measure the gained power and efficiency for various engine loads. With the use of a modeling approach, we evaluated the thermal contact resistances and their influence on the final device efficiency.

  19. Numerical Simulation on Flow and Heat Transfer Performance of Air-cooler for a Natural Gas Storage Compressor Unit

    Science.gov (United States)

    Liu, Biyuan; Zhang, Feng; Ma, Zenghui; Zheng, Zilong; Feng, Jianmei

    2017-08-01

    Heat transfer efficiency has been a key issue for large size air coolers with the noise reducers used in natural gas storage compressor unit, especially operated in summer with cooling air at a high temperature. The 3-D numerical simulation model of the whole air cooler was established to study the flow field characteristic with different inlet and outlet structures by CFD software. The system pressure loss distributions were calculated. The relationship was obtained among heat exchange efficiency, resistance loss, and the structure of air cooler, the results presented some methods to improve cooling air flow rate and heat exchange efficiency. Based on the results, some effective measures were proposed to improve heat exchanger efficiency and were implemented in the actual operation unit.

  20. Estimation of the lifetime of resin insulators against baking temperature for JT-60SA in-vessel coils

    Energy Technology Data Exchange (ETDEWEB)

    Sukegawa, Atsuhiko M., E-mail: morioka.atsuhiko@jaea.go.jp; Murakami, Haruyuki; Matsunaga, Go; Sakurai, Shinji; Takechi, Manabu; Yoshida, Kiyoshi; Ikeda, Yoshitaka

    2015-10-15

    Highlights: • The lifetime of resin insulators at about 200 °C was estimated. • We make use of the Arrhenius plot by the Weibull analysis for the estimation. • A suitable temperatures for the in-vessel coils were discussed. - Abstract: In the present study, the thermal endurance of epoxy-based, bismaleimides, and cyanate ester resins for the current design of the in-vessel coils was measured by performing acceleration tests to assess their insulation properties using the thermal endurance defined by the International Electrotechnical Commission (IEC-60216 Part1–Part 6) for a minimum of 5,000 h in the 180–240 °C temperature range. It was found that none of the resin insulators could tolerate the baking conditions of 40,000 h at ∼200 °C in the JT-60SA vacuum vessel. Therefore, the design of the in-vessel coils, including the error field correction coils (EFCC), was changed from the type without water cooling to with water cooling on JT-60SA.

  1. JT-60U Thomson scattering system with multiple ruby laser and high spatial resolution for high electron temperature plasma measurement

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Hidetoshi; Naito, Osamu; Yamashita, Osamu; Kitamura, Shigeru; Hatae, Takaki; Nagashima, Akira [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1996-11-01

    This article describes the design and operation of a 60 spatial channel Thomson scattering system as of 1996 with multiple ruby lasers to measure the electron temperature T{sub e} and density n{sub e} profiles of the JT-60U plasmas. The wide spectral range (403-683 nm) of the spectrometer and newly developed two-dimensional detector (high repetition photodiode array) has enabled this system to measure the high electron temperature plasma (5 keV or more) formed at the plasma core during negative magnetic shear discharge with high precision and reliability. The high spatial resolution (8 mm) have provided the precise measurement of steep electron temperature and density gradients formed at the plasma edge and in the scrape-off layer during H-mode discharge. The multilaser operation with the minimum time interval of 2 ms has provided an essential tool for the transient phenomenon measurement like the formation process of edge transport barrier during L- to H-mode transition and internal transport barrier during discharge with negative magnetic shear, the relaxation process of pellet injected plasma and so on. Measurement examples of recent JT-60U T{sub e} and n{sub e} profiles are also presented. (author)

  2. Study on impurity radiation and transport of JT-60U plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ishijima, Tatsuo [Tsukuba Univ., Ibaraki (Japan)

    2000-03-01

    This thesis describes an investigation on impurity transport in the JT-60U tokamak plasma both in the core and the divertor plasmas to provide a better understanding of plasma physics. This work has been performed under the collaborative graduate school between University of Tsukuba and Naka Fusion Research Establishment of Japan Atomic Energy Research Institute. A radiative divertor experiment with neon gas puff was carried out with an aim of investigating impurity behaviors in the divertor, after the open divertor was modified to the pumped W-shaped divertor. To evaluate neon radiation, analysis was made for lines from neon ions measured with a VUV spectrometer in the divertor plasma. As a result, lines from Ne IV-Ne VIII were identified. By combining the measurement with an absolutely calibrated multi-channel interference filter spectrometer and that with the VUV spectrometer, the radiation loss through neon line emission was estimated in the divertor plasma. In the case of pumping off, the detached plasma evolved into a MARFE. It was observed that the line intensities of highly ionized neon (Ne VII, Ne VIII) increased simultaneously with the formation of the MARFE and furthermore increased after the MARFE formation. It is considered that after the divertor plasma was detached, the plasma flow velocity and the friction force were weaker in the case of pumping off than in the case of pumping on and more impurities moved toward the X-point region. This observation implies reduction of impurity back flow from the divertor to the upstream by the friction force. This thesis indicates that the plasma flow in the SOL (Scrape-Off Layer) is important to confine the impurity in the divertor region and prevent the MARFE for the first time. In reversed shear discharges with ITB (internal transport barrier), electron density, temperature and radiation power strongly increased inside the ITB. The core radiation was analyzed by bolometry, VUV spectrometer and CXRS (charge

  3. Transport studies in boundary and divertor plasmas of JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Akira [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1999-03-01

    This thesis describes an investigation on transport of plasma, neutral particle and impurity in the boundary and divertor of the JT-60U tokamak to provide a better understanding of plasma-surface interactions and divertor physics. The asymmetry between the inboard and outboard divertor on plasma parameters (in-out asymmetry) are usually observed in tokamaks with the divertor. In this study, the in-out asymmetry was investigated under various plasma conditions and discharge parameters. The observed results were discussed with several mechanisms that can produce the in-out asymmetry. It was confirmed experimentally that the importance of each mechanism depends on the plasma parameters and discharge conditions. The current flowing in the scrape-off layer (SOL) due to the in-out asymmetry was observed. The SOL currents in the high density plasma with the occurrence of the plasma detachment were investigated for the first time in this study. The ion temperature in the divertor region is one of the most important factors for both generation and transport of impurity. However, the background ion temperature in the divertor region has not been measured in any tokamak so far. The ion temperature in the divertor region has been measured for the first time with the Doppler broading of the C{sup 3+} ion emission line. The measured temperature was analyzed by an impurity particle transport code. The code calculation showed that the measured temperature reflects the low temperature at the outside of the separatrix in the inboard region. The spectral profile of Balmer-{alpha} (D{sub {alpha}}) line emitted from the deuterium atoms reflects the velocity distribution of neutral particles by the Doppler effect and is effective for investigating the detailed neutral behavior and recycling process. The spatial variation of the D{sub {alpha}} line spectral profile in the divertor region has been measured for the first time in this study. The observed results were compared with the

  4. Novel concept for driving the linear compressor of a micro-miniature split Stirling cryogenic cooler

    Science.gov (United States)

    Maron, V.; Veprik, A.; Finkelstein, L.; Vilenchik, H.; Ziv, I.; Pundak, N.

    2009-05-01

    New methods of carrying out homeland security and antiterrorist operations call for the development of a new generation of mechanically cooled, portable, battery powered infrared imagers, relying on micro-miniature Stirling cryogenic coolers of rotary or linear types. Since split Stirling linearly driven micro-miniature cryogenic coolers have inherently longer life spans, low vibration export and better aural stealth as compared to their rotary driven rivals, they are more suitable for the above applications. The performance of such cryogenic coolers depends strongly on the efficacy of their electronic drivers. In a traditional approach, the PWM power electronics produce the fixed frequency tonal driving voltage/current, the magnitude of which is modulated via a PID control law so as to maintain the desired focal plane array temperature. The disadvantage of such drivers is that they draw high ripple current from the system's power bus. This results in the need for an oversized DC power supply (battery packs) and power electronic components, low efficiency due to excessive conductive losses and high residual electromagnetic interference which in turn degrades the performance of other systems connected to the same power bus. Without either an active line filter or large and heavy passive filtering, other electronics can not be powered from the same power bus, unless they incorporate heavy filtering at their inputs. The authors present the results of a feasibility study towards developing a novel "pumping" driver consuming essentially constant instant battery power/current without making use of an active or passive filter. In the tested setup, the driver relies on a bidirectional controllable bridge, invertible with the driving frequency, and a fast regulated DC/DC converter which maintains a constant level of current consumed from the DC power supply and thus operates in input current control mode. From the experimental results, the steady-state power consumed by the

  5. Finned tubes decide performance. A closer look at water coolers. Wasserkuehlsaetze unter der Lupe: Auf die Rippenrohre kommt es an

    Energy Technology Data Exchange (ETDEWEB)

    Menze, K.W.; Webb, R.L.; Apparao, T. (Pennsylvania State Univ., University Park (USA))

    1989-05-01

    The performance of standard and high-efficiency finned tubes in 800 kW water coolers was compared experimentally. Details are given of the dual-flow evaporators of the two R11 water coolers with 170 tubes each, the corrugated inner surface of the finned tube, the experimental facility, and the data acquisition system. After three years (9000 hours) of trial operation, it can be stated that the heat transfer was raised by an average 60% inside the condenser and by 40% inside the evaporator. Electricity savings amounted to about 13%. The amortisation period (replacement of standard tubes by high-efficiency tubes) is about 2 years. (HWJ).

  6. Numerical study on transverse asymmetry in the temperature profile of a regenerator in a pulse tube cooler

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Dietrich, M.; Carlsen, Henrik

    2007-01-01

    Transverse asymmetry in the temperature profile of the regenerator in a Stirling-type pulse tube cooler as observed in experiments was analysed in a numerical study. The asymmetry was reproduced using a one-dimensional model of the cooler where the regenerator was modelled using two identical...... parallel regenerator channels. The asymmetry was caused by a circulating flow that was superimposed on the oscillating flow. The primary mechanism driving the circulating flow was due to the wave form of the pressure difference between the ends of the regenerator and the dependence of the instantaneous...

  7. Numerical study on transverse asymmetry in the temperature profile of a regenerator in a pulse tube cooler

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Stig Kildegaard; Carlsen, Henrik [Department of Mechanical Engineering, Energy Engineering Section, Technical University of Denmark, Kgs. Lyngby (Denmark); Dietrich, Marc; Thummes, Guenter [Institute of Applied Physics, University of Giessen, D-35392 Giessen (Germany)

    2007-07-15

    Transverse asymmetry in the temperature profile of the regenerator in a Stirling-type pulse tube cooler as observed in experiments was analysed in a numerical study. The asymmetry was reproduced using a one-dimensional model of the cooler where the regenerator was modelled using two identical parallel regenerator channels. The asymmetry was caused by a circulating flow that was superimposed on the oscillating flow. The primary mechanism driving the circulating flow was due to the wave form of the pressure difference between the ends of the regenerator and the dependence of the instantaneous mass flow rate on the pressure difference and temperature. (author)

  8. Effect of transverse electron velocities on the longitudinal cooling force in the Fermilab electron cooler

    CERN Document Server

    Khilkevich, Andrei; Shemyakin, Alexander V

    2012-01-01

    In Fermilab's electron cooler, a 0.1A, 4.3MeV DC electron beam propagates through the 20 m cooling section, which is immersed in a weak longitudinal magnetic field. A proper adjustment of 200 dipole coils, installed in the cooling section for correction of the magnetic field imperfections, can create a helix-like trajectory with the wavelength of 1-10 m. The longitudinal cooling force is measured in the presence of such helixes at different wavelengths and amplitudes. The results are compared with a model calculating the cooling force as a sum of collisions with small impact parameters, where the helical nature of the coherent angle is ignored, and far collisions, where the effect of the coherent motion is neglected. A qualitative agreement is found.

  9. Forced circulation air coolers with internally finned tubes; Ventilator-Luftkuehler mit innenberippten Rohren

    Energy Technology Data Exchange (ETDEWEB)

    Arnemann, M. [Forschungszentrum fuer Kaelte- und Umwelttechnik GmbH (FKU), Berlin (Germany)

    1998-04-01

    Tubes with internal fins have a much higher heat transfer during evaporation as compared with unfinned tubes. The findings served as a basis for the new development of the ``FHV high-performance forced circulation air cooler`` by Walter Roller GmbH and Co. The new evaporator type was designed on the basis of DIN 8955 and ENV 328 for evaporation temperatures of 0 C to -31 C. (orig.) [Deutsch] Im Vergleich zu glatten Rohren laesst sich durch den Einsatz von innenberippten Rohren der innere Waermeuebergang bei der Verdampfung nachweislich deutlich verbessern. Die Ergebnisse bildeten die Grundlage fuer die Neuentwicklung `FHV Hochleistungs-Luftkuehler` im Hause Walter Roller GmbH and Co. Die energetische Bewertung des neuen Verdampfertyps erfolgte in Anlehnung an die Normen DIN 8955 bzw. ENV 328 fuer Verdampfungstemperaturen zwischen 0 C und -31 C. (orig.)

  10. Predicting the nonsteady-state temperature conditions in water reservoirs/coolers

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, I.K.; Domanov, V.N.; Kostin, A.G.; Zhadan, V.I.

    1981-01-01

    A method is proposed for computing the cooling capacity of water reservoirs/coolers operating in non-steady-state weather conditions and thermal loads. The method is based on solving, in finite differences, nonsteady-state thermal balance equations written for the water reservoir as a whole. The influence of the wind velocity over the water reservoir and a number of other factors are accounted for in the computations on the thermal heat exchange from the surface of the water reservoirs. The reliability of the method is confirmed by comparing the computations to data from full-scale observations. Computations of the nonsteady state conditions in extremum periods make it possible to determine the maximum peak values for the temperature of the cooling water.

  11. Study on a cascade pulse tube cooler with energy recovery: new method for approaching Carnot

    Science.gov (United States)

    Wang, L. Y.; Wu, M.; Zhu, J. K.; Jin, Z. Y.; Sun, X.; Gan, Z. H.

    2015-12-01

    A pulse tube cryocooler (PTC) can not achieve Carnot efficiency because the expansion work must be dissipated at the warm end of the pulse tube. How to recover this amount of dissipated work is a key for improving the PTC efficiency. A cascade PTC consists of PTCs those are staged by transmission tubes in between, these can be a two-stage or even more stages, each stage is driven by the recovered work from the last stage by a well-designed long transmission tube. It is shown that the more stages it has, the closer the efficiency will approach the Carnot efficiency. A two-stage cascade pulse tube cooler consisted of a primary and a secondary stage working at 233 K is designed, fabricated and tested in our lab. Experimental results show that the efficiency is improved by 33% compared with the single stage PTC.

  12. Transverse Feedback System For The Cooler Synchrotron COSY-Jülich - First Results

    CERN Document Server

    Kamerdzhiev, V; Mohos, I

    2003-01-01

    The cooler synchrotron COSY delivers unpolarized and polarized protons and deuterons in the momentum range 300 MeV/c up to 3.65 GeV/c. Electron cooling at injection level and stochastic cooling covering the range from 1.5 GeV/c up to maximum momentum are available to prepare high precision beams for internal as well as for external experiments in hadron physics. In case of electron cooled beam the intensity is limited by transverse instabilities. The major losses are due to the vertical coherent beam oscillations. To damp these instabilities a transverse feedback system is under construction. First results with a simple feedback system are presented. Due to the feedback system operation the intensity and lifetime of the electron cooled proton beam at injection energy could be significantly increased. Measurements in frequency and time domain illustrate the performance of the system.

  13. Causes and prevention of corrosion in carbon steel natural gas coolers

    Energy Technology Data Exchange (ETDEWEB)

    Kotwica, D.J.; Minevski, L. [BetzDearborn, The Woodlands, TX (United States)

    1998-12-31

    Two case histories in which high pressure natural gas coolers had failed due to the presence of carbon dioxide are reviewed. CO{sub 2} along with CO and H{sub 2}S are acid gases usually present in natural gas feeds. Carbonic acid can form in aqueous condensate, lowering the pH and locally corroding mild steel tube metal. Stress corrosion cracking (SCC) can occur in tubing containing residual tensile stresses from welding or manufacturing. Bicarbonates and carbonates concentrated in condensate from CO{sub 2} and CO present in natural gas are required to produce SCC. Cathodic depolarizers such as oxygen in conjunction with the presence of carbonic acid will increase the corrosion rate of mild steel. Oxygen also increases the susceptibility of mild steel to carbonate SCC.

  14. Toward a cold electron beam in the Fermilab's Electron Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Vitali S. Tupikov et al.

    2004-05-12

    Fermilab is developing a high-energy electron cooling system to cool 8.9-GeV/c antiprotons in the Recycler ring [1]. Cooling of antiprotons requires a round electron beam with a small angular spread propagating through 20-m long cooling section with a kinetic energy of 4.3 MeV. To confine the electron beam tightly and to keep its transverse angles below 0.1 mrad, the cooling section will be immersed into a solenoidal field of 50-150G. This paper describes the technique of measuring and adjusting the magnetic field quality in the cooling section and presents preliminary results of beam quality measurements in the cooler prototype.

  15. Upgrade of the radio frequency quadrupole cooler and buncher for the HIE-ISOLDE project

    CERN Document Server

    Babcock, Carla

    2013-01-01

    The upgrade to the ISOLDE facility, HIE-ISOLDE, will include an upgrade to the RFQCB (radio frequency quadrupole cooler and buncher), the focus of which will be fixing the problems of alignment with the current machine, improving the integrity of the vacuum system, stabilizing the internal gas pressure, and the changes associated with a new position. The beam passage inside the RFQCB has been simulated with an independent code to highlight the importance of the internal gas pressure, to motivate design changes in the new RFQCB and to explain ways to improve the performance of the current machine. The suspected misalignment of ISCOOL has been quantified, and, using a simulation of ions passing through the external injection electrodes, the effect of the misalignment on machine acceptance has been detailed. Plans for the future RFQCB test stand and HIE-ISOLDE installation have been outlined. (C) 2013 Elsevier B.V. All rights reserved.

  16. BEAM DYNAMICS ANALYSIS FOR THE ULTRA-FAST KICKER IN CIRCULAR COOLER RING OF JLEIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yulu [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Inst. Modern Phys., Chinese Academy of Sciences, Lanzhou, China; Wang, Haipeng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Rimmer, Robert A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, Shaoheng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    An ultra-fast kicker system consisting of four quarter wavelength resonator based deflecting cavities was developed that simultaneously resonates at 10 subharmonic modes of the 476.3MHz bunch repetition frequency. Thus every 10th bunch in the bunch train will experience a transverse kick while all the other bunches are undisturbed. This fast kicker is being developed for the Energy Recovery Linac (ERL) based electron Circular Cooler Ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously MEIC). The electron bunches can be reused 10-30 turns thus the beam current in the ERL can be reduced to 1/10 - 1/30 (150mA - 50mA) of the cooling bunch current (1.5A). In this paper, several methods to synthesize such a kicker waveform and the comparison made by the beam dynamics tracking in Elegant will be discussed.

  17. Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lv, Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-07-28

    Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO2) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO2 Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO2 Brayton cycle is that it enables dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately

  18. Demonstration of long-pulse acceleration of high power positive ion beam with JT-60 positive ion source in Japan–Korea joint experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, A., E-mail: kojima.atsushi@jaea.go.jp [Japan Atomic Energy Agency, Naka (Japan); Hanada, M. [Japan Atomic Energy Agency, Naka (Japan); Jeong, S.H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Bae, Y.S. [National Fusion Research Institute, Daejeon (Korea, Republic of); Chang, D.H.; Kim, T.S.; Lee, K.W.; Park, M.; Jung, B.K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Mogaki, K.; Komata, M.; Dairaku, M.; Kashiwagi, M.; Tobari, H.; Watanabe, K. [Japan Atomic Energy Agency, Naka (Japan)

    2016-01-15

    The long-pulse acceleration of the high-power positive ion beam has been demonstrated with the JT-60 positive ion source in the joint experiment among Japan Atomic Energy Agency (JAEA), Korea Atomic Energy Research Institute (KAERI) and National Fusion Research Institute (NFRI) under the collaboration program for the development of plasma heating and current drive systems. In this joint experiment, the increase of the heat load and the breakdowns induced by the degradation of the beam optics due to the gas accumulation was one of the critical issues for the long-pulse acceleration. As a result of development of the long-pulse operation techniques of the ion source and facilities of the neutral beam test stand in KAERI, 2 MW 100 s beam has been achieved for the first time. The achieved beam performance satisfies the JT-60SA requirement which is designed to be a 1.94 MW ion beam power from an ion source corresponding to total neutral beam power of 20 MW with 24 ion sources. Therefore, it was found that the JT-60 positive ion sources were applicable in the JT-60SA neutral beam injectors. Moreover, because this ion source is planned to be a backup ion source for KSTAR, the operational region and characteristic has been clarified to apply to the KSTAR neutral beam injector.

  19. Making Maps from Planck LFI 30GHz Data with Asymmetric Beams and Cooler Noise

    Energy Technology Data Exchange (ETDEWEB)

    The Planck CTP Working Group; Ashdown, M.A.J.; Baccigalupi, C.; Bartlett, J.G.; Borrill, J.; Cantalupo, C.; de Gasperis, G.; Gorski, K.M.; Hivon, E.; Huffenberger, K.; Keihanen, E.; Keskitalo, R.; Kisner, T.; Hurki-Suonio, H.; Lawrence, C.R.; Natoli, P.; Poutanen, T.; Prezeau, G.; Reinecke, M.; Rocha, G.; Sandri, M.; Stompor, R..; Villa, F.; Wandelt, B.; de Troia, G.

    2008-06-19

    The Planck satellite will observe the full sky at nine frequencies from 30 to 857 GHz. Temperature and polarization frequency maps made from these observations are prime deliverables of the Planck mission. The goal of this paper is to examine the effects of four realistic instrument systematics in the 30 GHz frequency maps: non-axially-symmetric beams, sample integration, sorption cooler noise, and pointing errors. They simulated one year long observations of four 30 GHz detectors. The simulated timestreams contained CMB, foreground component (both galactic and extra-galactic), instrument nolise (correlated and white), and the four instrument systematic effects. They made maps from the timelines and examined the magnitudes of the systematics effects in the maps and their angular power spectra. They also compared the maps of different mapmaking codes to see how they performed. They used five mapmaking codes (two destripers and three optimal codes). None of their mapmaking codes makes an attempt to deconvolve the beam from its output map. Therefore all our maps had similar smoothing due to beams and sample integration. This is a complicated smoothing, because every map pixel has its own effective beam. Temperature to polarization cross-coupling due to beam mismatch causes a detectable bias in the TE spectrum of the CMB map. The effects of cooler noise and pointing errors did not appear to be major concerns for the 30 GHz channel. The only essential difference found so far between mapmaking codes that affects accuracy (in terms of residual RMS) is baseline length. All optimal codes give essentially indistiguishable results. A destriper gives the same result as the optimal codes when the baseline is set short enough (Madam). For longer baselines destripers (Springtide and Madam) require less computing resources but deliver a noisier map.

  20. Cooler temperatures destabilize RNA interference and increase susceptibility of disease vector mosquitoes to viral infection.

    Directory of Open Access Journals (Sweden)

    Zach N Adelman

    Full Text Available BACKGROUND: The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus, exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference (RNAi pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery. METHODOLOGY/PRINCIPAL FINDINGS: We utilized transgenic "sensor" strains of Aedes aegypti to examine the role of temperature on RNA silencing. These "sensor" strains express EGFP only when RNAi is inhibited; for example, after knockdown of the effector proteins Dicer-2 (DCR-2 or Argonaute-2 (AGO-2. We observed an increase in EGFP expression in transgenic sensor mosquitoes reared at 18°C as compared with 28°C. Changes in expression were dependent on the presence of an inverted repeat with homology to a portion of the EGFP sequence, as transgenic strains lacking this sequence, the double stranded RNA (dsRNA trigger for RNAi, showed no change in EGFP expression when reared at 18°C. Sequencing small RNAs in sensor mosquitoes reared at low temperature revealed normal processing of dsRNA substrates, suggesting the observed deficiency in RNAi occurs downstream of DCR-2. Rearing at cooler temperatures also predisposed mosquitoes to higher levels of infection with both chikungunya and yellow fever viruses. CONCLUSIONS/SIGNIFICANCE: This data suggest that microclimates, such as those present in mosquito breeding sites, as well as more general climactic variables may influence the dynamics of mosquito-borne viral diseases by affecting

  1. Nanoscale coatings for erosion and corrosion protection of copper microchannel coolers for high powered laser diodes

    Science.gov (United States)

    Flannery, Matthew; Fan, Angie; Desai, Tapan G.

    2014-03-01

    High powered laser diodes are used in a wide variety of applications ranging from telecommunications to industrial applications. Copper microchannel coolers (MCCs) utilizing high velocity, de-ionized water coolant are used to maintain diode temperatures in the recommended range to produce stable optical power output and control output wavelength. However, aggressive erosion and corrosion attack from the coolant limits the lifetime of the cooler to only 6 months of operation. Currently, gold plating is the industry standard for corrosion and erosion protection in MCCs. However, this technique cannot perform a pin-hole free coating and furthermore cannot uniformly cover the complex geometries of current MCCs involving small diameter primary and secondary channels. Advanced Cooling Technologies, Inc., presents a corrosion and erosion resistant coating (ANCERTM) applied by a vapor phase deposition process for enhanced protection of MCCs. To optimize the coating formation and thickness, coated copper samples were tested in 0.125% NaCl solution and high purity de-ionized (DIW) flow loop. The effects of DIW flow rates and qualities on erosion and corrosion of the ANCERTM coated samples were evaluated in long-term erosion and corrosion testing. The robustness of the coating was also evaluated in thermal cycles between 30°C - 75°C. After 1000 hours flow testing and 30 thermal cycles, the ANCERTM coated copper MCCs showed a corrosion rate 100 times lower than the gold plated ones and furthermore were barely affected by flow rates or temperatures thus demonstrating superior corrosion and erosion protection and long term reliability.

  2. Making maps from Planck LFI 30 GHz data with asymmetric beams and cooler noise

    Science.gov (United States)

    Ashdown, M. A. J.; Baccigalupi, C.; Bartlett, J. G.; Borrill, J.; Cantalupo, C.; de Gasperis, G.; de Troia, G.; Górski, K. M.; Hivon, E.; Huffenberger, K.; Keihänen, E.; Keskitalo, R.; Kisner, T.; Kurki-Suonio, H.; Lawrence, C. R.; Natoli, P.; Poutanen, T.; Prézeau, G.; Reinecke, M.; Rocha, G.; Sandri, M.; Stompor, R.; Villa, F.; Wandelt, B.; Planck Ctp Working Group

    2009-01-01

    The Planck satellite will observe the full sky at nine frequencies from 30 to 857 GHz. Temperature and polarization frequency maps made from these observations are prime deliverables of the Planck mission. The goal of this paper is to examine the effects of four realistic instrument systematics in the 30 GHz frequency maps: non-axially-symmetric beams, sample integration, sorption cooler noise, and pointing errors. We simulated one-year long observations of four 30 GHz detectors. The simulated timestreams contained cosmic microwave background (CMB) signal, foreground components (both galactic and extra-galactic), instrument noise (correlated and white), and the four instrument systematic effects. We made maps from the timelines and examined the magnitudes of the systematics effects in the maps and their angular power spectra. We also compared the maps of different mapmaking codes to see how they performed. We used five mapmaking codes (two destripers and three optimal codes). None of our mapmaking codes makes any attempt to deconvolve the beam from its output map. Therefore all our maps had similar smoothing due to beams and sample integration. This is a complicated smoothing, because each map pixel has its own effective beam. Temperature to polarization cross-coupling due to beam mismatch causes a detectable bias in the TE spectrum of the CMB map. The effects of cooler noise and pointing errors did not appear to be major concerns for the 30 GHz channel. The only essential difference found so far between mapmaking codes that affects accuracy (in terms of residual root-mean-square) is baseline length. All optimal codes give essentially indistinguishable results. A destriper gives the same result as the optimal codes when the baseline is set short enough (Madam). For longer baselines destripers (Springtide and Madam) require less computing resources but deliver a noisier map.

  3. Adaptation of the low-cost and low-power tactical split Stirling cryogenic cooler for aerospace applications

    Science.gov (United States)

    Veprik, A.; Zechtzer, S.; Pundak, N.; Kirkconnell, C.; Freeman, J.; Riabzev, S.

    2011-06-01

    Cryogenic coolers are often used in modern spacecraft in conjunction with sensitive electronics and sensors of military, commercial and scientific instrumentation. The typical space requirements are: power efficiency, low vibration export, proven reliability, ability to survive launch vibration/shock and long-term exposure to space radiation. A long-standing paradigm of exclusively using "space heritage" equipment has become the standard practice for delivering high reliability components. Unfortunately, this conservative "space heritage" practice can result in using outdated, oversized, overweight and overpriced cryogenic coolers and is becoming increasingly unacceptable for space agencies now operating within tough monetary and time constraints. The recent trend in developing mini and micro satellites for relatively inexpensive missions has prompted attempts to adapt leading-edge tactical cryogenic coolers for suitability in the space environment. The primary emphasis has been on reducing cost, weight and size. The authors are disclosing theoretical and practical aspects of a collaborative effort to develop a space qualified cryogenic refrigerator system based on the tactical cooler model Ricor K527 and the Iris Technology radiation hardened Low Cost Cryocooler Electronics (LCCE). The K27/LCCE solution is ideal for applications where cost, size, weight, power consumption, vibration export, reliability and time to spacecraft integration are of concern.

  4. 75 FR 55067 - Energy Conservation Program: Test Procedures for Walk-In Coolers and Walk-In Freezers

    Science.gov (United States)

    2010-09-09

    ... Concrete a. Floorless Coolers b. Pre-Installed Freezer Floor c. Insulated Floor Shipped by Manufacturer 7... structural members. (7) Alternatives to ASTM C1303. (8) Heat transfer through concrete. (9) U-factor of glass..., ``Standard Test Method for Predicting Long-Term Thermal Resistance of Closed-Cell Foam Insulation.''...

  5. 76 FR 33631 - Energy Conservation Program: Test Procedures for Walk-In Coolers and Walk-In Freezers

    Science.gov (United States)

    2011-06-09

    ... regulatory text should read as set forth below: PART 431--ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL... measure the energy consumption of the components that make up the envelope of a walk-in cooler or walk-in... ``external conditions'' of the shared surface(s) must reflect the internal conditions of the adjacent walk-in...

  6. Re-Design dan Modifikasi Generator Cooler Heat Exchanger Pembangkit Listrik Tenaga Panas Bumi (PLTP untuk Meningkatkan Performasi

    Directory of Open Access Journals (Sweden)

    Ria Mahmudah

    2013-12-01

    Full Text Available Cooler Generator adalah alat yang berfungsi untuk menjaga temperature udara yang ada di dalam generator akibat kenaikan beban pada generator. Dan apabila kerja dari generator cooler tidak maksimal dalam menjaga temperatur di dalam generator maka akan terjadi overheating dan kerusakan pada generator, yang akan menyebabkan generator akan shutdown. Hal tersebut akan mengganggu proses produksi pada pembangkit listrik. Hal ini sering terjadi pada pembangkit listrik, salah satunya adalah PLTP dimana desain generator cooler sudah tidak dapat lagi menjaga temperatur didalam generator karena kenaikan beban. Sehingga perlu dilakukan desain ulang generator cooler untuk mendapatkan hasil yang maksimal yang dapat menjaga temperatur didalam generator agar generator tidak cepat mengalami overheating dan kerusakan. Penelitian ini dilakukan dengan menggunakan analisa perhitungan termodinamika dan perpindahan panas. Dilakukan trial error konfigurasi geometri heat exchanger berupa diameter tube dan P/Do yang didapat dari standart TEMA untuk mendapatkan UA yang maksimal dan mendapatkan nilai effectiveness tinggi. Dimana dalam re-desain ini menggunkan volume heat exchanger yang tetap dan jumlah dan jenis fin yang digunakan juga tetap. Dari analisa perhitungan, bahwa semakin besar nilai P/Do maka nilai effectiveness, NTU dan Pressure drop akan semakin kecil, begitu juga sebaliknya. Dari analisa didapatkan  konfigurasi geometri generator cooler yang menghasilkan performa yang maksimal yaitu  P/Do = 1,42 dengan  Do = 19,05 mm ; Di = 16,3 mm ; ST = 28,6 mm; SL= 24,7 mm ; Nt = 420. Dari perhitungan didapatkan bahwa geometri desain baru memiliki effektiveness 0,91 dan menghasilkan Th,o = 40,8 oC pada beban Th,I = 74,11 oC.

  7. Conductor and joint test results of JT-60SA CS and EF coils using the NIFS test facility

    Science.gov (United States)

    Obana, Tetsuhiro; Takahata, Kazuya; Hamaguchi, Shinji; Kizu, Kaname; Murakami, Haruyuki; Chikaraishi, Hirotaka; Noguchi, Hiroki; Kobuchi, Takashi; Moriuchi, Sadatomo; Imagawa, Shinsaku; Mito, Toshiyuki; Tsuchiya, Katsuhiko; Natsume, Kyohei; Yoshida, Kiyoshi; Nomoto, Kazuhiro; Kim, Tae-hyun

    2016-01-01

    In 2007, JAEA and NIFS launched the test project to evaluate the performance of cable-in-conduit (CIC) conductors and conductor joints for the JT-60SA CS and EF coils. In this project, conductor tests for four types of coil conductor and joint tests for seven types of conductor joint have been conducted for the past eight years using the NIFS test facility. As a result, the test project indicated that the CIC conductors and conductor joints fulfill the design requirement for the CS and EF coils. In addition, the NIFS test facility is expected to be utilized as the test facility for the development of a conductor and conductor joint for the purpose of the DEMO nuclear fusion power plant, provided that the required magnetic field strength is within 9 T.

  8. Energy loss for grassy ELMs and effects of plasma rotation on the ELM characteristics in JT-60U

    Science.gov (United States)

    Oyama, N.; Sakamoto, Y.; Isayama, A.; Takechi, M.; Gohil, P.; Lao, L. L.; Snyder, P. B.; Fujita, T.; Ide, S.; Kamada, Y.; Miura, Y.; Oikawa, T.; Suzuki, T.; Takenaga, H.; Toi, K.; JT-60 Team

    2005-08-01

    The energy loss for grassy edge localized modes (ELMs) has been studied to investigate the applicability of the grassy ELM regime to ITER. The grassy ELM regime is characterized by high frequency periodic collapses of 800-1500 Hz, which is ~15 times faster than that for type I ELMs. The divertor peak heat flux due to grassy ELMs is less than 10% of that for type I ELMs. This smaller heat flux is caused by a narrower radial extent of the collapse of the temperature pedestal. The different radial extent between type I ELMs and grassy ELMs agrees qualitatively with the different radial distribution of the eigenfunctions as determined from ideal MHD stability analysis. The dominant ELM energy loss for grassy ELMs appears to be caused by temperature reduction, and its ratio to the pedestal stored energy was 0.4-1%. This ratio is lower by a factor of about 10 than that for type I ELMs, which typically have between 2-10% fractional loss of the pedestal energy. A systematic study of the effects of counter (CTR) plasma rotation on the ELM characteristics has been performed using a combination of tangential and perpendicular neutral beam injections (NBIs) in JT-60U. In the high plasma triangularity (δ) regime, ELM characteristics (e.g. amplitude, frequency and type) can be changed from type I ELMs to high frequency grassy ELMs as the CTR plasma rotation is increased. On the other hand, in the low δ regime, complete ELM suppression (QH-mode) can be sustained for long periods up to 3.4 s (~18τE or energy confinement times), when the plasma position in terms of the clearance between the first wall and the plasma separatrix is optimized during the application of CTR-NBIs. In JT-60U, a transient QH phase was also observed during the CO-NBI phase with almost no net toroidal rotation at the plasma edge.

  9. Draft Genome Sequence of the Deep-Sea Bacterium Moritella sp. JT01 and Identification of Biotechnologically Relevant Genes.

    Science.gov (United States)

    Freitas, Robert Cardoso de; Odisi, Estácio Jussie; Kato, Chiaki; da Silva, Marcus Adonai Castro; Lima, André Oliveira de Souza

    2017-07-22

    Deep-sea bacteria can produce various biotechnologically relevant enzymes due to their adaptations to high pressures and low temperatures. To identify such enzymes, we have sequenced the genome of the polycaprolactone-degrading bacterium Moritella sp. JT01, isolated from sediment samples from Japan Trench (6957 m depth), using a Illumina HiSeq2000 sequencer (12.1 million paired-end reads) and CLC Genomics Workbench (version 6.5.1) for the assembly, resulting in a 4.83-Mb genome (42 scaffolds). The genome was annotated using Rapid Annotation using Subsystem Technology (RAST), Protein Homology/analogY Recognition Engine V 2.0 (PHYRE2), and BLAST2Go, revealing 4439 protein coding sequences and 101 RNAs. Gene products with industrial relevance, such as lipases (three) and esterases (four), were identified and are related to bacterium's ability to degrade polycaprolactone. The annotation revealed proteins related to deep-sea survival, such as cold-shock proteins (six) and desaturases (three). The presence of secondary metabolite biosynthetic gene clusters suggests that this bacterium could produce nonribosomal peptides, polyunsaturated fatty acids, and bacteriocins. To demonstrate the potential of this genome, a lipase was cloned an introduced into Escherichia coli. The lipase was purified and characterized, showing activity over a wide temperature range (over 50% at 20-60 °C) and pH range (over 80% at pH 6.3 to 9). This enzyme has tolerance to the surfactant action of sodium dodecyl sulfate and shows 30% increased activity when subjected to a working pressure of 200 MPa. The genomic characterization of Moritella sp. JT01 reveals traits associated with survival in the deep-sea and their potential uses in biotechnology, as exemplified by the characterized lipase.

  10. Lonely drinking fountains and comforting coolers: paradoxes of water value and ironies of water use.

    Science.gov (United States)

    Kaplan, Martha

    2011-01-01

    This article focuses ethnographically on Americans and technologies of drinking water, as tokens of and vehicles for health, agency, and surprising kinds of community. Journalists and water scholars have argued that bottled water is a material concomitant of privatization and alienation in U.S. society. But, engaging Latour, this research shows that water technologies and the groups they assemble, are plural. Attention to everyday entwining of workplace lives with drinking fountains, single-serve bottles, and spring water coolers shows us several different quests, some individualized, some alienated, but some seeking health via public, collective care, acknowledgment of stakeholding, and community organizing. Focused on water practices on a college campus, in the roaring 1990s and increasingly sober 2000s in the context of earlier U.S. water histories of inclusion and exclusion, I draw on ethnographic research from the two years that led up to the recession and the presidential election of 2008. I argue for understanding of water value through attention to water use, focusing both on the social construction of water and the use of water for social construction.

  11. Drought and Cooler Temperatures Are Associated with Higher Nest Survival in Mountain Plovers

    Directory of Open Access Journals (Sweden)

    Victoria J Dreitz

    2012-06-01

    Full Text Available Native grasslands have been altered to a greater extent than any other biome in North America. The habitats and resources needed to support breeding performance of grassland birds endemic to prairie ecosystems are currently threatened by land management practices and impending climate change. Climate models for the Great Plains prairie region predict a future of hotter and drier summers with strong multiyear droughts and more frequent and severe precipitation events. We examined how fluctuations in weather conditions in eastern Colorado influenced nest survival of an avian species that has experienced recent population declines, the Mountain Plover (Charadrius montanus. Nest survival averaged 27.2% over a 7-yr period (n = 936 nests and declined as the breeding season progressed. Nest survival was favored by dry conditions and cooler temperatures. Projected changes in regional precipitation patterns will likely influence nest survival, with positive influences of predicted declines in summer rainfall yet negative effects of more intense rain events. The interplay of climate change and land use practices within prairie ecosystems may result in Mountain Plovers shifting their distribution, changing local abundance, and adjusting fecundity to adapt to their changing environment.

  12. Optimization Of Thermo-Electric Coolers Using Hybrid Genetic Algorithm And Simulated Annealing

    Directory of Open Access Journals (Sweden)

    Khanh Doan V.K.

    2014-06-01

    Full Text Available Thermo-electric Coolers (TECs nowadays are applied in a wide range of thermal energy systems. This is due to their superior features where no refrigerant and dynamic parts are needed. TECs generate no electrical or acoustical noise and are environmentally friendly. Over the past decades, many researches were employed to improve the efficiency of TECs by enhancing the material parameters and design parameters. The material parameters are restricted by currently available materials and module fabricating technologies. Therefore, the main objective of TECs design is to determine a set of design parameters such as leg area, leg length and the number of legs. Two elements that play an important role when considering the suitability of TECs in applications are rated of refrigeration (ROR and coefficient of performance (COP. In this paper, the review of some previous researches will be conducted to see the diversity of optimization in the design of TECs in enhancing the performance and efficiency. After that, single-objective optimization problems (SOP will be tested first by using Genetic Algorithm (GA and Simulated Annealing (SA to optimize geometry properties so that TECs will operate at near optimal conditions. Equality constraint and inequality constraint were taken into consideration.

  13. Parametric analysis of a novel cryogenic CO2 capture system based on Stirling coolers.

    Science.gov (United States)

    Song, Chun Feng; Kitamura, Yutaka; Li, Shu Hong; Jiang, Wei Zhong

    2012-11-20

    CO(2) capture and storage (CCS) is an important alternative to control greenhouse gas (GHG) effects. In previous work, a novel desublimation CO(2) capture process has been exploited making use of three free piston Stirling coolers (namely, SC-1, SC-2, and SC-3, respectively). Based on the developed system, moisture and CO(2) in the flue gas can condense and desublimate in the prefreezing and main-freezing towers, respectively. Meanwhile, the storage column is chilled by SC-3 to preserve the frosted CO(2), and permanent gas (such as N(2)) passes through the system without phase change. The whole process can be implemented at atmospheric pressure and reduce the energy penalty (e.g., solvent regeneration and pressure drop) in other technologies. In this work, the influence of process parameters has been investigated in detail. The optimal conditions for the system are as follows: idle operating time is 240 min, flow rate is 5 L/min, vacuum degree of the interlayer is 2.2 × 10(3) Pa, and temperatures of SC-1, -2, and -3 are -30, -120, and -120 °C, respectively. Under these conditions, the energy consumption of the system is around 0.5 MJ(electrical)/kg CO(2) with above 90% CO(2) recovery.

  14. Dewar cooler integrated MWIR spectrometer for high rates and high dynamic range measurements

    Science.gov (United States)

    Guérineau, N.; Rommeluère, S.; Ferrec, Y.; Druart, G.; Lasfargues, G.; de Borniol, E.; Magli, S.

    2015-06-01

    There is a need for compact, hand-held, spectrometers for the measurement of spectral signatures of chemicals or objects. To achieve this goal, a new concept of Fourier-transform interferometer (FTIR) directly integrated on the infrared focal plane array (FPA) has been developed at ONERA. The fundamental properties of this key element called MICROSPOC will be recalled and we will see how those properties can be exploited to get a snapshot, compact and cryogenic MWIR spectrometer. These design rules have been applied to develop a very compact device that combines the metrological properties of a FTIR-FPA of quantum HgCdTe technology with the radiometric performances of a last generation Sofradir detection block (Infrared Detector Dewar Cooler Assembly - IDDCA). The experimental performances of the prototype will be presented, in terms of spectral resolution, acquisition rate, dynamic range and noise equivalent spectral radiance. We will discuss at the end the potential of this technology to meet the requirements of different applications.

  15. Feasibility of a solar-assisted winter air-conditioning system using evaporative air-coolers

    Directory of Open Access Journals (Sweden)

    Mohamed M. El-Awad

    2011-03-01

    Full Text Available The paper presents a winter air-conditioning system which is suitable for regions with mildly cold but dry winters. The system modifies the evaporative air-cooler that is commonly used for summer air-conditioning in such regions by adding a heating process after the humidification process. The paper describes a theoretical model that is used to estimate the system's water and energy consumption. It is shown that a 150-LPD solar heater is adequate for air-conditioning a 500 ft3/min (14.4 m3/min air flow rate for four hours of operation. The maximum air-flow rate that can be heated by a single solar water-heater for four hours of operation is about 900-cfm, unless a solar water heater large than a 250-LPD heater is used. For the 500 ft3/min air flow rate the paper shows that the 150, 200, 250 and 300 LPD solar water-heaters can provide air-conditioning for 4, 6, 8 and 10 hours, respectively, while consuming less energy than the equivalent refrigerated-type air-conditioner.

  16. Feasibility of a solar-assisted winter air-conditioning system using evaporative air-coolers

    Energy Technology Data Exchange (ETDEWEB)

    El-Awad, Mohamed M. [Mechanical Engineering Department, the University of Khartoum, P.O. Box 321 Khartoum (Sudan)

    2011-07-01

    The paper presents a winter air-conditioning system which is suitable for regions with mildly cold but dry winters. The system modifies the evaporative air-cooler that is commonly used for summer air-conditioning in such regions by adding a heating process after the humidification process. The paper describes a theoretical model that is used to estimate the system's water and energy consumption. It is shown that a 150-LPD solar heater is adequate for air-conditioning a 500 ft3/min (14.4 m3/min) air flow rate for four hours of operation. The maximum air-flow rate that can be heated by a single solar water-heater for four hours of operation is about 900-cfm, unless a solar water heater large than a 250-LPD heater is used. For the 500 ft3/min air flow rate the paper shows that the 150, 200, 250 and 300 LPD solar water-heaters can provide air-conditioning for 4, 6, 8 and 10 hours, respectively, while consuming less energy than the equivalent refrigerated-type air-conditioner.

  17. Development of the RFQ Cooler SHIRaC: beam transport and nuclearization

    CERN Document Server

    Boussaid, Ramzi

    2016-01-01

    The development of the new RFQ Cooler, called SHIRaC, was carried out. As a part of SPIRAL 2 facility, SHIRaC aims to handle and cool typical SPIRAL 2 beams with large emittances (up to 80 pi.mm.mrad) and high currents (up to 1 uA). Its purposes are to enhance as much as possible the beam quality (transverse geometric emittance of less than 3 pi.mm.mrad and longitudinal energy spread close to 1 eV) and to transmit more than 60 % of ions. Numerical simulations and experimental studies have shown that the required beam quality can be reached only in term of the emittance. The energy spread is very far from expected values. It is sensitive to the space charge and the buffer gas diffusion and more importantly to the RF field derivative effect. The latter arises at the RFQ exit and increases with the RF parameters (the frequency and the amplitude of the RF voltage). Studies allowing to enhance the cooled beam quality, mainly the energy spread reduction, are presented and discussed along this paper. They consist in...

  18. RICOR's new development of a highly reliable integral rotary cooler: engineering and reliability aspects

    Science.gov (United States)

    Filis, Avishai; Pundak, Nachman; Barak, Moshe; Porat, Ze'ev; Jaeger, Mordechai

    2011-06-01

    The growing demand for EO applications that work around the clock 24hr/7days a week, such as in border surveillance systems, emphasizes the need for a highly reliable cryocooler having increased operational availability and decreased integrated system Life Cycle (ILS) cost. In order to meet this need RICOR has developed a new rotary Stirling cryocooler, model K508N, intended to double the K508's operating MTTF achieving 20,000 operating MTTF hours. The K508N employs RICOR's latest mechanical design technologies such as optimized bearings and greases, bearings preloading, advanced seals, laser welded cold finger and robust design structure with increased natural frequency compared to the K508 model. The cooler enhanced MTTF was demonstrated by a Validation and Verification (V&V) plan comprising analytical means and a comparative accelerated life test between the standard K508 and the K508N models. Particularly, point estimate and confidence interval for the MTTF improvement factor where calculated periodically during and after the test. The (V&V) effort revealed that the K508N meets its MTTF design goal. The paper will focus on the technical and engineering aspects of the new design. In addition it will discuss the market needs and expectations, investigate the reliability data of the present reference K508 model; and report the accelerate life test data and the statistical analysis methodology as well as its underlying assumptions and results.

  19. Beam diagnostic developments at the cooler synchrotron COSY-Jülich

    Indian Academy of Sciences (India)

    J Dietrich; I Mohos

    2002-12-01

    New developments of beam diagnostic devices and methods at the cooler synchrotron and storage ring COSY at the Forschungszentrum J¨ulich are described. A Schottky-pickup was tested and installed. The new pickup consists of four diagonally arranged plates which can be combined by means of relays to measure either in the horizontal or in the vertical plane. A new method for resonant tuning of the Schottky-pickup for transversal measurements was realized. A tune meter was developed for real-time tune measurements in the acceleration ramp and is used as routine diagnostic tool. Based on the developed bunch synchronous tracking generator an on-line phase space measurement was realized. For beam profile measurements a residual-gas ionization beam profile monitor was installed in the COSY-ring and tested. To measure the beam quality in case of fast and slow extraction a universal spill detector was developed and tested in the extraction beam line.

  20. Blower/air cooler with internally finned tubes; Ventilator-Luftkuehler mit innenberippten Rohren

    Energy Technology Data Exchange (ETDEWEB)

    Arnemann, M. [FKU - Forschungszentrum fuer Kaelte- und Umwelttechnik, Berlin (Germany)

    1997-12-31

    Heat transfer is higher in finned tubes than in smooth tubes. In order to assess the extent of improvement, internal heat tranfer coefficients and pressure losses of smooth and finned tubes were investigated on behalf of Walter Roller GmbH and Co. Two blower-type air coolers of identical design (except for the tubes) were investigated in a calorimeter using R22 and different refrigerant mass flows, evaporation temperatures and air temperatures. The results are the basis for new develoments by Walter Roller. Energetic assessment of the new type of evaporator was made on the basis of the DIN 8955 and ENV 328 standards. The results and findings are presented. (orig.) [Deutsch] Der Einsatz von innenberippten Rohren laesst im Vergleich mit glatten Rohren einen deutlich verbesserten inneren Waermeuebergang erwarten. Zur Abschaetzung der Groessenordnung dieser Verbesserungen wurden im Auftrag der Firma Walter Roller GmbH and Co. die inneren Waermeuebergangskoeffizienten und die Druckverluste von glatten und innenberippten Rohren experimentell bestimmt. Dazu wurden zwei bis auf die Rohre baugleiche Ventilator-Luftkuehler ineinem Kalorimeter untersucht. Mit dem Kaeltemittel R22 wurden fuer verschiedene Kaeltemittelmassenstroeme, Verdampfungstemperaturen und Lufttemperaturen die Kennzahlen bestimmt, die zur Charakterisierung der Rohre dienlich sind. Die Ergebnisse bildeten die Grundlage fuer eine Neuentwicklung im Hause Walter Roller. Die energetische Bewertung des neuen Verdampfertyps erfolgte in Anlehnung an die Normen DIN 8955 bzw. ENV 328. Die Untersuchungen und die Ergebnisse werden praesentiert. (orig.)

  1. Making Maps from Planck LFI 30GHz Data with Asymmetric Beams and Cooler Noise

    CERN Document Server

    Ashdown, M A J; Bartlett, J G; Borrill, J; Cantalupo, C; De Gasperis, G; de Troia, G; Górski, K M; Hivon, E; Huffenberger, Kevin M; Keihanen, E; Keskitalo, R; Kisner, T; Kurki-Suonio, H; Lawrence, C R; Natoli, P; Poutanen, T; Prezeau, G; Reinecke, M; Rocha, G; Sandri, M; Stompor, R; Villa, F; Wandelt, B

    2008-01-01

    The Planck satellite will observe the full sky at nine frequencies from 30 to 857 GHz. The goal of this paper is to examine the effects of four realistic instrument systematics in the 30 GHz frequency maps: non-axially-symmetric beams, sample integration, sorption cooler noise, and pointing errors. We simulated one year long observations of four 30 GHz detectors. The simulated timestreams contained CMB, foreground components (both galactic and extra-galactic), instrument noise (correlated and white), and the four instrument systematic effects. We made maps from the timelines and examined the magnitudes of the systematics effects in the maps and their angular power spectra. We also compared the maps of different mapmaking codes to see how they performed. We used five mapmaking codes (two destripers and three optimal codes). None of our mapmaking codes makes an attempt to deconvolve the beam from its output map. Therefore all our maps had similar smoothing due to beams and sample integration. Temperature to pol...

  2. Unified theory for inhomogeneous thermoelectric generators and coolers including multistage devices

    Science.gov (United States)

    Gerstenmaier, York Christian; Wachutka, Gerhard

    2012-11-01

    A novel generalized Lagrange multiplier method for functional optimization with inclusion of subsidiary conditions is presented and applied to the optimization of material distributions in thermoelectric converters. Multistaged devices are considered within the same formalism by inclusion of position-dependent electric current in the legs leading to a modified thermoelectric equation. Previous analytical solutions for maximized efficiencies for generators and coolers obtained by Sherman [J. Appl. Phys.JAPIAU0021-897910.1063/1.1735380 31, 1 (1960)], Snyder [Phys. Rev. B1098-012110.1103/PhysRevB.86.045202 86, 045202 (2012)], and Seifert [Phys. Status Solidi APSSABA0031-896510.1002/pssa.200925460 207, 760 (2010)] by a method of local optimization of reduced efficiencies are recovered by independent proof. The outstanding maximization problems for generated electric power and cooling power can be solved swiftly numerically by solution of a differential equation-system obtained within the new formalism. As far as suitable materials are available, the inhomogeneous TE converters can have increased performance by use of purely temperature-dependent material properties in the thermoelectric legs or by use of purely spatial variation of material properties or by a combination of both. It turns out that the optimization domain is larger for the second kind of device which can, thus, outperform the first kind of device.

  3. Long-life micro vacuum chamber for a micromachined cryogenic cooler

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Haishan, E-mail: H.Cao@utwente.nl, E-mail: HaishanCao@gmail.com; Vermeer, Cristian H.; Vanapalli, Srinivas; Holland, Harry J.; Brake, H. J. Marcel ter [Energy, Materials and Systems, Faculty of Science and Technology, University of Twente, 7500 AE Enschede (Netherlands)

    2015-11-15

    Micromachined cryogenic coolers can be used for cooling small electronic devices to improve their performance. However, for reaching cryogenic temperatures, they require a very good thermal insulation from the warm environment. This is established by a vacuum space that for adequate insulation has to be maintained at a pressure of 0.01 Pa or lower. In this paper, the challenge of maintaining a vacuum chamber with a volume of 3.6 × 10{sup −5} m{sup 3} and an inner wall area of 8.1 × 10{sup −3} m{sup 2} at a pressure no higher than 0.01 Pa for five years is theoretically analyzed. The possible sources of gas, the mechanisms by which these gases enter the vacuum space and their effects on the pressure in the vacuum chamber are discussed. In a long-duration experiment with four stainless steel chambers of the above dimensions and equipped with a chemical getter, the vacuum pressures were monitored for a period of two years. In that period, the measured pressure increase stayed within 0.01 Pa. This study can be used to guide the design of long-lifetime micro vacuum chambers that operate without continuous mechanical pumping.

  4. A genetic algorithm optimization technique for compact high intensity cooler design

    Energy Technology Data Exchange (ETDEWEB)

    Schmit, T.S.; Dhingra, A.K.; Landis, F.; Kojasoy, G. [Univ. of Wisconsin, Milwaukee, WI (United States). Dept. of Mechanical Engineering

    1995-12-31

    This paper initially reviews the operation and design criteria for a compact high intensity cooler (CHIC) unit as used in avionic equipment. Here high heat loads are dissipated via multiple impinging jets fed sequentially through a series of fins connected with a bus bar to the heat source. The analytical basis for the heat transfer design, most of which has been published previously, is shown to predict the performance of CHIC units to a high degree of accuracy. This then permits an approach at optimizing the design. Most optimization techniques depend on continuous variables, while in the design of a CHIC unit many of the critical geometrical variables must assume discrete values. A genetic algorithm, generally not well known in engineering circles, that looks for an optimum by simulating an evolutionary process was found to be satisfactory for this problem with its mixture of discrete and continuous variables. It is also shown that in an actual optimization problem, where the fluid pressure drop across the unit has to be balanced against a low overall thermal resistance, an optimum geometrical design can be determined. This design is an improvement over the empirical best design previously reported the literature.

  5. Upgrade of the radio frequency quadrupole cooler and buncher for the HIE-ISOLDE project

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, Carla, E-mail: cbabcock@cern.ch; Giles, Tim, E-mail: tgiles@cern.ch

    2013-12-15

    Highlights: • Simulations show pressure inside trap needs to be near 0.1 mbar for optimal emittance. • Misalignment of 0.75 mm measured and corrected for. • Installation in HIE-ISOLDE will require design changes associated with new position -- Abstract: The upgrade to the ISOLDE facility, HIE-ISOLDE, will include an upgrade to the RFQCB (radio frequency quadrupole cooler and buncher), the focus of which will be fixing the problems of alignment with the current machine, improving the integrity of the vacuum system, stabilizing the internal gas pressure, and the changes associated with a new position. The beam passage inside the RFQCB has been simulated with an independent code to highlight the importance of the internal gas pressure, to motivate design changes in the new RFQCB and to explain ways to improve the performance of the current machine. The suspected misalignment of ISCOOL has been quantified, and, using a simulation of ions passing through the external injection electrodes, the effect of the misalignment on machine acceptance has been detailed. Plans for the future RFQCB test stand and HIE-ISOLDE installation have been outlined.

  6. Improving eco-sustainable characteristics and energy efficiency of evaporative fluid cooler via experimental and numerical study

    Directory of Open Access Journals (Sweden)

    Rašković Predrag O.

    2008-01-01

    Full Text Available This paper presents an on-going research project that aims to identify possibilities for wider use of evaporative cooling in process industry, especially the use of evaporative fluid cooler units. Experimental study is performed on small scale evaporative fluid cooler, while the correlation based model has been carried out to explore the detailed heat and mass transfer processes inside this unit. Numerical integration of mathematical model is executed by new approach, based on differential, collocation Simpson method. Proposed models have been verified by comparing the computed results with those obtained by the experimental measurements. The results of research will enable the creation of more comprehensive simulation software, with wider range of operating and construction parameters.

  7. Side-effects of the space charge field introduced by a hollow electron beam in the electron cooler of CSRm

    Science.gov (United States)

    Tang, Mei-Tang; Yang, Xiao-Dong; Mao, Li-Jun; Li, Jie; Ma, Xiao-Ming; Yan, Tai-Lai; Zheng, Wen-Heng; Zhao, He; Wu, Bo; Wang, Geng; Ruan, Shuang; Sha, Xiao-Ping

    2015-12-01

    An electron cooler is used to improve the quality of the ion beam in a synchrotron; however it also introduces a nonlinear electromagnetic field to the accelerator, which causes tune shift, tune spread and may drive resonances leading to ion beam loss. In this paper the tune shift and the tune spread caused by the nonlinear electromagnetic field of a hollow electron beam is investigated, and the resonance driving terms of the nonlinear electromagnetic field are analysed. The differences are presented compared with a solid electron beam. Calculations are performed for 238U32+ ions of energy 1.272 MeV stored in the main Cooler Storage Ring (CSRm) at the Institute of Modern Physics, Lanzhou. It is found that in this situation the nonlinear field caused by the hollow electron beam does not lead to serious resonances. Supported by National Natural Science Foundation of China (11375245)

  8. Fast Super-Resolution Imaging with Ultra-High Labeling Density Achieved by Joint Tagging Super-Resolution Optical Fluctuation Imaging (JT-SOFI)

    CERN Document Server

    Zeng, Zhiping; Wang, Hening; Huang, Ning; Shan, Chunyan; Zhang, Hao; Teng, Junlin; Xi, Peng

    2015-01-01

    Previous stochastic localization-based super-resolution techniques are largely limited by the labeling density and the fidelity to the morphology of specimen. We report on an optical super-resolution imaging scheme implementing joint tagging using multiple fluorescent blinking dyes associated with super-resolution optical fluctuation imaging (JT-SOFI), achieving ultra-high labeling density super-resolution imaging. To demonstrate the feasibility of JT-SOFI, quantum dots with different emission spectra were jointly labeled to the tubulin in COS7 cells, creating ultra-high density labeling. After analyzing and combining the fluorescence intermittency images emanating from spectrally resolved quantum dots, the microtubule networks are capable of being investigated with high fidelity and remarkably enhanced contrast at sub-diffraction resolution. The spectral separation also significantly decreased the frame number required for SOFI, enabling fast super-resolution microscopy through simultaneous data acquisition....

  9. Micro-jitter attenuation of spaceborne cooler by using a blade-type hyperelastic shape memory alloy passive isolator

    Science.gov (United States)

    Kwon, Seong-Cheol; Jeon, Young-Hyeon; Oh, Hyun-Ung

    2017-10-01

    In this study, the primary design objective is to develop a passive isolator that can guarantee structural safety of the cooler assembly in a launch vibration environment without a launch locking mechanism, while effectively isolating the cooler-induced micro-jitter during the on-orbit operation of the cooler. To achieve the design objective, we focused on the utilization of characteristics of the hyperelastic shape memory effects. The major advantage of the isolator is that the micro-jitter isolation performance is much less sensitive to the aligned position of the isolator in comparison with the conventional isolator. Moreover, implementation of an additional 0g compensation device during a satellite level on-ground test, such as a jitter measurement test, is not required. In this study, the basic characteristics of the isolator were measured using the torque test and free vibration test. The micro-jitter attenuation capability and position sensitivity of the proposed isolator design were validated by the micro-jitter measurement test.

  10. Operating modes and cooling capabilities of the 3-stage ADR developed for the Soft-X-ray Spectrometer instrument on Astro-H

    Science.gov (United States)

    Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theodore; DiPirro, Michael J.; Letmate, Richard V.; Sampson, Michael A.; Bialas, Tom G.; Sneiderman, Gary A.; Porter, Frederick S.; Kelley, Richard L.

    2016-03-01

    A 3-stage adiabatic demagnetization refrigerator (ADR) (Shirron et al., 2012) is used on the Soft X-ray Spectrometer instrument (Mitsuda et al., 2010) on Astro-H (Takahashi et al., 2010) [3] to cool a 6 × 6 array of X-ray microcalorimeters to 50 mK. The ADR is supported by a cryogenic system (Fujimoto et al., 2010) consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and cool radiation shields within the cryostat. The ADR is configured so that it can use either the liquid helium or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated into the flight dewar in early 2014, and have since been extensively characterized and calibrated. This paper summarizes the operation and performance of the ADR in all of its operating modes.

  11. Operating Modes and Cooling Capabilities of the Flight ADR for the SXS Instrument on Astro-H

    Science.gov (United States)

    Shirron, Peter; Kimball, Mark; DiPirro, Michael

    2015-01-01

    The microcalorimeter array on the Soft X-ray Spectrometer instrument on Astro-H requires cooling to 50 mK, which will be accomplished by a 3-stage adiabatic demagnetization refrigerator (ADR). The ADR is surrounded by a cryogenic system consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and radiation shields within the cryostat. The unique ADR design allows the instrument to meet all of its science requirements using either the stored cryogen or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated in early 2014, and have since been extensively characterized and calibrated. At present, the four instruments are being integrated with the spacecraft in preparation for an early 2016 launch. This presentation summarizes the operation and performance of the ADR in all of its operating modes.

  12. Relationship between composition of mixture charged and that in circulation in an auto refrigerant cascade and a J-T refrigerator operating in liquid refrigerant supply mode

    Science.gov (United States)

    Sreenivas, Bura; Nayak, H. Gurudath; Venkatarathnam, G.

    2017-01-01

    The composition of the refrigerant mixture in circulation during steady state operation of J-T and allied refrigerators is not the same as that charged due to liquid hold up in the heat exchangers and phase separators, as well as the differential solubility of different refrigerant components in the compressor lubricating oil. The performance of refrigerators/liquefiers operating on mixed refrigerant cycles is dependent on the mixture composition. It is therefore important to charge the right mixture that results in an optimum composition in circulation during steady state operation. The relationship between the charged and circulating composition has been experimentally studied in a J-T refrigerator operating in the liquid refrigerant supply (LRS) mode and an auto refrigerant cascade refrigerator (with a phase separator) operating in the gas refrigerant supply (GRS) mode. The results of the study are presented in this work. The results show that the method presented earlier for J-T refrigerators operating in GRS mode is also applicable in the case of refrigerators studied in this work.

  13. Vacuum packaging of InGaAs focal plane array with four-stage thermoelectric cooler

    Science.gov (United States)

    Mo, De-feng; Liu, Da-fu; Yang, Li-yi; Xu, Qin-fei; Li, Xue

    2013-09-01

    The InGaAs focal plane array (FPA) detectors, covering the near-infrared 1~2.4 μm wavelength range, have been developed for application in space-based spectroscopy of the Earth atmosphere. This paper shows an all-metal vacuum package design for area array InGaAs detector of 1024×64 pixels, and its architecture will be given. Four-stage thermoelectric cooler (TEC) is used to cool down the FPA chip. To acquire high heat dissipation for TEC's Joule-heat, tungsten copper (CuW80) and kovar (4J29) is used as motherboard and cavity material respectively which joined by brazing. The heat loss including conduction, convection and radiation is analyzed. Finite element model is established to analyze the temperature uniformity of the chip substrate which is made of aluminum nitride (AlN). The performance of The TEC with and without heat load in vacuum condition is tested. The results show that the heat load has little influence to current-voltage relationship of TEC. The temperature difference (ΔT) increases as the input current increases. A linear relationship exists between heat load and ΔT of the TEC. Theoretical analysis and calculation show that the heat loss of radiation and conduction is about 187 mW and 82 mW respectively. Considering the Joule-heat of readout circuit and the heat loss of radiation and conduction, the FPA for a 220 K operation at room temperature can be achieved. As the thickness of AlN chip substrate is thicker than 1 millimeter, the temperature difference can be less than 0.3 K.

  14. The influence of Thomson effect in the performance optimization of a two stage thermoelectric cooler

    Science.gov (United States)

    Kaushik, S. C.; Manikandan, S.

    2015-12-01

    The exoreversible and irreversible thermodynamic models of a two stage thermoelectric cooler (TTEC) considering Thomson effect in conjunction with Peltier, Joule and Fourier heat conduction effects have been investigated using exergy analysis. New expressions for the interstage temperature, optimum current for the maximum cooling power, energy and exergy efficiency conditions, energy efficiency and exergy efficiency of a TTEC are derived as well. The number of thermocouples in the first and second stages of a TTEC for the maximum cooling power, energy and exergy efficiency conditions are optimized. The results show that the exergy efficiency is lower than the energy efficiency e.g., in an irreversible TTEC with total 30 thermocouples, heat sink temperature (TH) of 300 K and heat source temperature (TC) of 280 K, the obtained maximum cooling power, maximum energy and exergy efficiency are 20.37 W, 0.7147 and 5.10% respectively. It has been found that the Thomson effect increases the cooling power and energy efficiency of the TTEC system e.g., in the exoreversible TTEC the cooling power and energy efficiency increased from 14.87 W to 16.36 W and from 0.4079 to 0.4998 respectively for ΔTC of 40 K when Thomson effect is considered. It has also been found that the heat transfer area at the hot side of an irreversible TTEC should be higher than the cold side for maximum performance operation. This study will help in the designing of the actual multistage thermoelectric cooling systems.

  15. Developments for the HITRAP cooler trap and mass measurements around A = 96 at SHIPTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Koszudowski, Stephen

    2009-07-08

    The HITRAP (Highly charged Ions Trap) facility is currently being set up and commissioned at GSI in Darmstadt. It will provide bunches of 10{sup 5} heavy highly-charged ions, for example hydrogen-like uranium (U{sup 91+}), to high-precision atomic physics experiments. The ions are produced by the GSI accelerator complex and decelerated to 4 MeV/u in the Experimental Storage Ring. Then the ions are decelerated by a two-step linear decelerator down to 6 keV/u. The first deceleration step down to 500 keV/u was successfully commissioned. The decelerated ions are injected into a Penning trap (the Cooler Trap), where they are cooled to 4 K by electron and resistive cooling. Resonant circuits for non-destructive detection and the resistive cooling of the trapped particles were designed and tested. The time control of the trap-cycle (trapping, cooling, extraction) with a time resolution of 25 ns was implemented into the control system CS. CS is also used at the mass measurement Penning trap SHIPTRAP, where the new time control is successfully operated. SHIPTRAP measures radioactive ions stemming from fusion evaporation reactions at the velocity filter SHIP. The masses of 9 nuclides ({sup 93,94,95}Technetium, {sup 94,96}Ruthenium, {sup 95,96,97,98}Rhodium) near the line of stability were precisely measured and compared with the Atomic Mass Evaluation. The detection of isomeric states with the present SHIPTRAP set-up was studied. (orig.)

  16. Design study of a wide-angle infrared thermography and visible observation diagnostic on JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, K., E-mail: kamiya.kensaku@jaea.go.jp [Japan Atomic Energy Agency (JAEA), Naka 311-0193, Ibaraki-ken (Japan); Itami, K.; Takeuchi, M. [Japan Atomic Energy Agency (JAEA), Naka 311-0193, Ibaraki-ken (Japan); Enokuchi, A. [Genesia Co., Mitaka, Tokyo 181-0013 (Japan)

    2014-12-15

    Design study of a wide-angle infrared (IR) thermography (surface temperature measurement) and visible observation diagnostics for JT-60SA are reported. The new design offers an optical solution without a “blind spot” which is one of the advantages. In order to image a large section inside the vacuum vessel (both in poloidal and toroidal directions), the optical system of endoscope is to provide a wide-angle view in the IR and visible wavelength ranges. The estimated IR optical spatial resolution is approximately 2 cm at a distance of 7.6 m from the front optics with a pupil diameter of 4 mm. For a surface temperature measurement it would be larger (∼4 cm for a surface temperature error less than 5%). The optics of this system can be divided into three parts: (1) a mirror based optical head (two set of spherical mirrors plus two flat mirrors) that produces an intermediate image, (2) a Cassegrain telescope system, and (3) a relay group of lenses, being adapted to the two kinds of detectors for IR and visible observations.

  17. Titanium honeycomb acoustic lining structural and thermal test report. [for acoustic tailpipe for JT8D engine

    Science.gov (United States)

    Joynes, D.; Balut, J. P.

    1974-01-01

    The results are presented of static, fatigue and thermal testing of titanium honeycomb acoustic panels representing the acoustic tailpipe for the Pratt and Whitney Aircraft JT8D Refan engine which is being studied for use on the Boeing 727-200 airplane. Test specimens represented the engine and tailpipe flange joints, the rail to which the thrust reverser is attached and shear specimens of the tailpipe honeycomb. Specimens were made in four different batches with variations in configuration, materials and processes in each. Static strength of all test specimens exceeded the design ultimate load requirements. Fatigue test results confirmed that aluminum brazed titanium, as used in the Refan tailpipe design, meets the fatigue durability objectives. Quality of welding was found to be critical to life, with substandard welding failing prematurely, whereas welding within the process specification exceeded the panel skin life. Initial fatigue testing used short grip length bolts which failed prematurely. These were replaced with longer bolts and subsequent testing demonstrated the required life. Thermal tests indicate that perforated skin acoustic honeycomb has approximately twice the heat transfer of solid skin honeycomb.

  18. Development of modelling tools for thermo-hydraulic analyses and design of JT-60SA TF coils

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, Benoit, E-mail: benoit.lacroix@cea.fr [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Portafaix, Christophe [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Barabaschi, Pietro [Fusion For Energy, D-85748 Garching (Germany); Duchateau, Jean-Luc; Hertout, Patrick; Lamaison, Valerie; Nicollet, Sylvie; Reynaud, Pascal [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Villari, Rosaria [Euratom-ENEA Association, IT-00044 Frascati (Italy); Zani, Louis [Fusion For Energy, D-85748 Garching (Germany)

    2011-10-15

    In the framework of the JT-60SA project, the Toroidal Field (TF) coils design has required to address reliably the choice between multiple design options and to calculate the temperature margin criterion for the superconductor. For this purpose, a tool was developed in two stages, interfacing the ANSYS code, used to model the thermal diffusion between the casing and the winding pack, with the GANDALF code which solves the 1D thermo-hydraulics inside each conductor. The first version of this Thermo-hydraulic EXtended TOol (TEXTO) was developed for producing conservative results and has allowed to simulate the fast discharge of the magnet, providing valuable results such as the mass flow expelled from each pancake. In the second stage, the ANSYS code was configured for modelling the helium transport in the casing and in the winding pack, thus computing more realistic transverse heat fluxes to be injected into the GANDALF code for an accurate calculation of the temperature margin. This second version of TEXTO, which integrates the TACOS (Thermo-hydraulic Ansys COmputation Semi 3D) module, has been used for studying the feasibility of positioning the helium inlets in the electrical connections. The temperature margin has then been found close but below the criterion of 1 K.

  19. Optical designs of reflection and refraction collection optics for a JT-60SA core Thomson scattering system.

    Science.gov (United States)

    Tojo, H; Hatae, T; Hamano, T; Sakuma, T; Itami, K

    2013-09-01

    Collection optics for core measurements in a JT-60SA Thomson scattering system were designed. The collection optics will be installed in a limited space and have a wide field of view and wide wavelength range. Two types of the optics are therefore suggested: refraction and reflection types. The reflection system, with a large primary mirror, avoids large chromatic aberrations. Because the size limit of the primary mirror and vignetting due to the secondary mirror affect the total collection throughput, conditions that provide the high throughput are found through an optimization. A refraction system with four lenses forming an Ernostar system is also employed. The use of high-refractive-index glass materials enhances the freedom of the lens curvatures, resulting in suppression of the spherical and coma aberration. Moreover, sufficient throughput can be achieved, even with smaller lenses than that of a previous design given in [H. Tojo, T. Hatae, T. Sakuma, T. Hamano, K. Itami, Y. Aida, S. Suitoh, and D. Fujie, Rev. Sci. Instrum. 81, 10D539 (2010)]. The optical resolutions of the reflection and refraction systems are both sufficient for understanding the spatial structures in plasma. In particular, the spot sizes at the image of the optics are evaluated as ~0.3 mm and ~0.4 mm, respectively. The throughput for the two systems, including the pupil size and transmissivity, are also compared. The results show that good measurement accuracy (refraction system.

  20. Detailed in situ laser calibration of the infrared imaging video bolometer for the JT-60U tokamak

    Science.gov (United States)

    Parchamy, H.; Peterson, B. J.; Konoshima, S.; Hayashi, H.; Seo, D. C.; Ashikawa, N.; JT-60U Team

    2006-10-01

    The infrared imaging video bolometer (IRVB) in JT-60U includes a single graphite-coated gold foil with an effective area of 9 × 7 cm 2 and a thickness of 2.5 μ m . The thermal images of the foil resulting from the plasma radiation are provided by an IR camera. The calibration technique of the IRVB gives confidence in the absolute levels of the measured values of the plasma radiation. The in situ calibration is carried out in order to obtain local foil properties such as the thermal diffusivity κ and the product of the thermal conductivity k and the thickness t f of the foil. These quantities are necessary for solving the two-dimensional heat diffusion equation of the foil which is used in the experiments. These parameters are determined by comparing the measured temperature profiles (for k t f ) and their decays (for κ ) with the corresponding results of a finite element model using the measured HeNe laser power profile as a known radiation power source. The infrared camera (Indigo/Omega) is calibrated by fitting the temperature rise of a heated plate to the resulting camera data using the Stefan-Boltzmann law.

  1. Spatial Variation of the Foil Parameters from in Situ Calibration of the JT-60U Imaging Bolometer Foil

    Science.gov (United States)

    Araghy, Homaira P.; Peterson, Byron J.; Hayashi, Hiromi; Konoshima, Shigeru; Ashikawa, Naoko; Seo, Dongcheol; JT-60U Team

    We obtained the local foil properties of the JT-60U imaging bolometer foil (a single graphite-coated gold foil with an effective area of 9 × 7 cm2 and a nominal thickness of 2.5 μm) such as the thermal diffusivity, κ, and the product of the thermal conductivity, k, and the thickness, tf , by calibrating some parts of the foil. Calibration of the foil was made in situ using a He-Ne laser (˜27 mW) as a known radiation source to heat the foil. The thermal images of the foil are provided by an infrared (IR) camera (microbolometer type). The parameters are determined by finite element modeling (FEM) of the foil temperature and comparing the solution to the experimental results. In this work we apply this calibration technique to investigate the spatial variation of the foil parameters. Significant variation in the local temperature rise of the foil due to local heating by the laser beam indicates a spatial variation of the foil parameters κ, k and tf. This variation is possibly due to nonuniformity in carbon coating and/or the thickness of the foil.

  2. Operation experiences of the super conducting magnet for a gyrotron of the JT-60U ECH system

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Koichi; Seki, Masami; Shimono, Mitsugu; Terakado, Masayuki; Ishii, Kazuhiro; Takahashi, Masami [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2003-03-01

    The JT-60U electron cyclotron heating (ECH) system can heat plasmas locally and drive a plasma current with four 1 MW-5 sec gyrotrons. The super conducting magnets (SCM) are required for oscillation of the gyrotron at a working frequency of 110 GHz. The SCM provides a high magnetic field of 4.5T at the cavity inside the gyrotron. This SCM system is characterized by 1) operation without liquid Helium owing to a 4K-refrigerator applied to the magnetic coils, 2) easy maintenance. Operational experiences about the SCM system through a long term experiment for a high power gyrotron are very valuable. According to those operational experiences, it is clarified the 4K-refrigerator should be renewed in order to keep low temperature of the SCM. It is also found that 200 hours or less are required for the super conducting condition (<5K) after long stopping time of the refrigerator up to 150 hours. This is useful information for making a plan about ECH experiments. (author)

  3. Tubular Ridge Surfaces with Intensified Heat Exchange and Technology of Their Manufacturing for Air Coolers of Fuel and Energy Complex

    Directory of Open Access Journals (Sweden)

    V. Кuntysh

    2013-01-01

    Full Text Available The paper presents designs of bimetallic ridge pipes (BRP with spirally-wound aluminium KLM-edges for heat exchange air coolers. Heat exchange BRP differ from the applied ones in heat-transfer coefficient which is higher by 10–15 %, extended temperature of applicability up to 320 °С for a cooled heat carrier at the pipe input, higher thermal reliability at alternating thermal burdens, current consumption for their manufacturing which is less by 1.8–2.5-fold, aluminium consumption which is less up to 1.8-fold, manufacturability in batch production,  availability high-production equipment.

  4. Investigation of the composition of emissions from the vent of a carbon disulfide column condenser-cooler

    Energy Technology Data Exchange (ETDEWEB)

    Lisina, L.A.; Yaroslavskaya, T.A.; Ivanova, V.V.

    1983-01-01

    The gas-vapor mixture entering the atmosphere from the condenser-cooler vent consists not only of hydrocarbon vapors, but also noncondensing gases. On an increase in the temperature of the gas-vapor mixture there is an increase in the quantity of emissions, as well as an increase in the volatility of the hydrocarbons, with a decrease in the solubility of the gases. The noncondensing gases present in the crude benzol are apparently absorbed by the wash oil from the coke oven gas.

  5. Containment fan cooler heat transfer calculation during main steam line break for Maanshan PWR plant

    Energy Technology Data Exchange (ETDEWEB)

    Yuann, Yng-Ruey, E-mail: ryyuann@iner.gov.tw; Kao, Lain-Su, E-mail: lskao@iner.gov.tw

    2013-10-15

    Highlights: • Evaluate component cooling water (CCW) thermal response during MSLB for Maanshan. • Using GOTHIC to calculate CCW temperature and determine time required to boil CCW. • Both convective and condensation heat transfer from the air side are considered. • Boiling will not occur since T{sub B} is sufficiently longer than CCW pump restart time. -- Abstract: A thermal analysis has been performed for the Containment Fan Cooler Unit (FCU) during Main Steam Line Break (MSLB) accident, concurrent with loss of offsite power, for Maanshan PWR plant. The analysis is performed in order to address the waterhammer and two-phase flow issues discussed in USNRC's Generic Letter 96-06 (GL 96-06). Maanshan plant is a twin-unit Westinghouse 3-loop PWR currently operated at rated core thermal power of 2822 MWt for each unit. The design basis for containment temperature is Main Steam Line Break (MSLB) accident at power of 2830.5 MWt, which results in peak vapor temperature of 387.6 °F. The design is such that when MSLB occurs concurrent with loss of offsite power (MSLB/LOOP), both the coolant pump on the secondary side and the fan on the air side of the FCU loose power and coast down. The pump has little inertia and coasts down in 2–3 s, while the FCU fan coasts down over much longer period. Before the pump is restored through emergency diesel generator, there is potential for boiling the coolant in the cooling coils by the high-temperature air/steam mixture entering the FCU. The time to boiling depends on the operating pressure of the coolant before the pump is restored. The prediction of the time to boiling is important because it determines whether there is potential for waterhammer or two-phase flow to occur before the pump is restored. If boiling occurs then there exists steam region in the pipe, which may cause the so called condensation induced waterhammer or column closure waterhammer. In either case, a great amount of effort has to be spent to

  6. Optical designs of reflection and refraction collection optics for a JT-60SA core Thomson scattering system

    Energy Technology Data Exchange (ETDEWEB)

    Tojo, H.; Hatae, T.; Hamano, T.; Sakuma, T.; Itami, K. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka 311-0193 (Japan)

    2013-09-15

    Collection optics for core measurements in a JT-60SA Thomson scattering system were designed. The collection optics will be installed in a limited space and have a wide field of view and wide wavelength range. Two types of the optics are therefore suggested: refraction and reflection types. The reflection system, with a large primary mirror, avoids large chromatic aberrations. Because the size limit of the primary mirror and vignetting due to the secondary mirror affect the total collection throughput, conditions that provide the high throughput are found through an optimization. A refraction system with four lenses forming an Ernostar system is also employed. The use of high-refractive-index glass materials enhances the freedom of the lens curvatures, resulting in suppression of the spherical and coma aberration. Moreover, sufficient throughput can be achieved, even with smaller lenses than that of a previous design given in [H. Tojo, T. Hatae, T. Sakuma, T. Hamano, K. Itami, Y. Aida, S. Suitoh, and D. Fujie, Rev. Sci. Instrum. 81, 10D539 (2010)]. The optical resolutions of the reflection and refraction systems are both sufficient for understanding the spatial structures in plasma. In particular, the spot sizes at the image of the optics are evaluated as ∼0.3 mm and ∼0.4 mm, respectively. The throughput for the two systems, including the pupil size and transmissivity, are also compared. The results show that good measurement accuracy (<10%) even at high electron temperatures (<30 keV) can be expected in the refraction system.

  7. Compatibility of advanced tokamak plasma with high density and high radiation loss operation in JT-60U

    Science.gov (United States)

    Takenaga, H.; Asakura, N.; Kubo, H.; Higashijima, S.; Konoshima, S.; Nakano, T.; Oyama, N.; Porter, G. D.; Rognlien, T. D.; Rensink, M. E.; Ide, S.; Fujita, T.; Takizuka, T.; Kamada, Y.; Miura, Y.; JT-60 Team

    2005-12-01

    Compatibility of advanced tokamak plasmas with high density and high radiation loss has been investigated in both reversed shear (RS) plasmas and high βp H-mode plasmas with a weak positive shear on JT-60U. In the RS plasmas, the operating regime is extended to high density above the Greenwald density (nGW) with high confinement (HHy2 > 1) and high radiation loss fraction (frad > 0.9) by tailoring the internal transport barriers (ITBs). With a small plasma-wall gap, the radiation loss in the main plasma (inside the magnetic separatrix) reaches 80% of the heating power due to metal impurity accumulation. However, high confinement of HHy2 = 1.2 is sustained even with such a large radiation loss in the main plasma. By neon seeding, the divertor radiation loss is enhanced from 20% to 40% of the total radiation loss. In the high βp H-mode plasmas, high confinement (HHy2 = 0.96) is maintained at high density ( \\bar{n}_{\\rme}/n_GW=0.92 ) with high radiation loss fraction (frad ~ 1) by utilizing high-field-side pellets and argon (Ar) injection. The high \\bar{n}_{\\rme}/n_GW is attributed to the formation of strong density ITB. Strong core-edge parameter linkage for confinement improvement is observed, where the pedestal pressure and the core plasma confinement increase together. The measured radiation profile including contributions from all impurities in the main plasma is peaked, and the central radiation is ascribed to the contribution from Ar accumulated inside the ITB. Impurity transport analyses indicate that the Ar density profile, twice as peaked as the electron density profile, which is the same level as that observed in the high βp H-mode plasma, can yield an acceptable radiation profile even with a peaked density profile in a fusion reactor.

  8. Long-pulse production of high current negative ion beam by using actively temperature controlled plasma grid for JT-60SA negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, A.; Hanada, M.; Yoshida, M.; Umeda, N.; Hiratsuka, J.; Kashiwagi, M.; Tobari, H.; Watanabe, K. [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka 311-0193 (Japan); Grisham, L. R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2015-04-08

    The temperature control system of the large-size plasma grid has been developed to realize the long pulse production of high-current negative ions for JT-60SA. By using this prototype system for the JT-60SA ion source, 15 A negative ions has been sustained for 100 s for the first time, which is three times longer than that obtained in JT-60U. In this system, a high-temperature fluorinated fluid with a high boiling point of 270 degree Celsius is circulated in the cooling channels of the plasma grids (PG) where a cesium (Cs) coverage is formed to enhance the negative ion production. Because the PG temperature control had been applied to only 10% of the extraction area previously, the prototype PG with the full extraction area (110 cm × 45 cm) was developed to increase the negative ion current in this time. In the preliminary results of long pulse productions of high-current negative ions at a Cs conditioning phase, the negative ion production was gradually degraded in the last half of 100 s pulse where the temperature of an arc chamber wall was not saturated. From the spectroscopic measurements, it was found that the Cs flux released from the wall might affect to the negative ion production, which implied the wall temperature should be kept low to control the Cs flux to the PG for the long-pulse high-current production. The obtained results of long-pulse production and the PG temperature control method contributes the design of the ITER ion source.

  9. A Harmonic Kicker Scheme for the Circulator Cooler Ring in the Proposed Medium Energy Electron-Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Nissen, Edward W.; Hutton, Andrew M.; Kimber, Andrew J.

    2013-06-01

    The current electron cooler design for the proposed Medium Energy Electron-Ion collider (MEIC) at Jefferson Lab utilizes a circulator ring for reuse of the cooling electron bunch up to 100 times to cool the ion beams. This cooler requires a fast kicker system for injecting and extracting individual bunches in the circulator ring. Such a kicker must work at a high repetition rate, up to 7.5 to 75 MHz depending on the number of turns in the recirculator ring. It also must have a very short rise and fall time (of order of 1 ns) such that it will kick an individual bunch without disturbing the others in the ring. Both requirements are orders of magnitude beyond the present state-of-the-art as well as the goals of other on-going kicker R&D programs such as that for the ILC damping rings. In this paper we report a scheme of creating this fast, high repetition rate kicker by combining RF waveforms at multiple frequencies to create a kicker waveform that will, for example, kick every eleventh bunch while leaving the other ten unperturbed. We also present a possible implementation of this scheme as well as discuss its limitations.

  10. Performance Analysis of a Fiber Reinforced Plastic Oil Cooler Cover Considering the Anisotropic Behavior of the Fiber Reinforced PA66

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2016-09-01

    Full Text Available In this paper, a simulation method based on an orthogonal anisotropic material is proposed. A numerical example using a simple plate is presented to show the difference in the static performance between the orthogonal anisotropic and the isotropic models. Comparing with the tested modal data of a diesel engine oil cooler cover made by glass fiber reinforced polyamide 66 (PA66, the proposed simulation method was confirmed to be much closer to reality than the general isotropic model. After that, a comprehensive performance comparison between the plastic oil cooler covers with the orthogonal anisotropic and the isotropic fiber orientations was carried out including a static deformation and stress analysis under a pressure-temperature coupled load, a forced response analysis, and an acoustic analysis under real operating conditions. The results show that the stress, the deformation, the peak vibration velocity, and the overall sound power level of the orthogonal anisotropic model are different from that obtained with the isotropic model. More importantly, the proposed method can provide a much more detailed frequency content compared to the isotropic model.

  11. Development of the performance of an alpha-type heat engine by using elbow-bend transposed-fluids heat exchanger as a heater and a cooler

    Energy Technology Data Exchange (ETDEWEB)

    El-Ehwany, A.A.; Hennes, G.M. [Mechanical Power Department, Faculty of Engineering, Ain Shams University, 11566 Cairo (Egypt); Eid, E.I. [Mechanical Department, Faculty of Industrial Education, Suez Canal University, 43515 Suez (Egypt); El-Kenany, E.A. [Technological Development Department, Technological Studies Academy, Workers University, Tanta (Egypt)

    2011-02-15

    In this work, elbow-bend heat exchangers were suggested to be used as a heater and a cooler in an alpha-type Stirling engine. Elbow-bend heat exchanger is a bank of tubes arranged in a quadrant either in line or staggered with different normal and parallel pitches. Eight of such heat exchangers having different dimensions were tested experimentally for steady flow (in a previous work by the same authors). The experimental results were correlated for heat transfer and pressure drop. In the present work, an alpha-Stirling engine with twin parallel cylinders on a common crankcase was suggested to use elbow-bend heat exchangers as a heater and a cooler. In the heater, the flue gases flow inside the tubes and the working gas fluctuates about the heater tubes. In the cooler, the coolant flows inside the cooler tubes and the gas flows about the cooler tubes. A computer program in the form of a spread sheet was prepared to solve numerically the engine cycle in the vision of Schmidt theory. Upon calculations, the most suitable stroke/bore ratio, phase angle and speed were found out for nitrogen as a working gas. In a comparison among the proposed engine and practical ones by the literature, it was found that; the proposed engine delivers about 13% more power per cc per {delta}T than those by the literature at high thermal efficiency level. (author)

  12. Effect of cooler electrons on a compressive ion acoustic solitary wave in a warm ion plasma — Forbidden regions, double layers, and supersolitons

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S. S., E-mail: sukti@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel, Navi Mumbai 410218 (India); Sekar Iyengar, A. N. [Plasma Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India)

    2014-08-15

    It is observed that the presence of a minority component of cooler electrons in a three component plasma plays a deterministic role in the evolution of solitary waves, double layers, or the newly discovered structures called supersolitons. The inclusion of the cooler component of electrons in a single electron plasma produces sharp increase in nonlinearity in spite of a decrease in the overall energy of the system. The effect maximizes at certain critical value of the number density of the cooler component (typically 15%–20%) giving rise to a hump in the amplitude variation profile. For larger amplitudes, the hump leads to a forbidden region in the ambient cooler electron concentration which dissociates the overall existence domain of solitary wave solutions in two distinct parameter regime. It is observed that an inclusion of the cooler component of electrons as low as < 1% affects the plasma system significantly resulting in compressive double layers. The solution is further affected by the cold to hot electron temperature ratio. In an adequately hotter bulk plasma (i.e., moderately low cold to hot electron temperature ratio), the parameter domain of compressive double layers is bounded by a sharp discontinuity in the corresponding amplitude variation profile which may lead to supersolitons.

  13. Investigations for low noise cooling by means of a pulse tube cooler for highly sensitive SQUID magnetometers from high temperature superconductors

    CERN Document Server

    Lienerth, C

    2000-01-01

    110fT/[Root]Hz at 10 Hz. For the discret peaks at the working frequency the vibration compensation is capable of reducing the cooler-generated peaks in the field noise spectrum by a factor of the order of 4. This noise level is low enough for applications such as nondestructive evaluation of materials. For identifying the origin of the remaining disturbances, one has to consider in addition to the residual vibrations also temperature oscillations and oscillating fields from eddy current at the SQUID location. The commercial acceptance of superconducting applications is closely associated with the availability of appropriate cryocoolers that enable continuous operation without the need to re-fill liquid cryogens. For cooling of highly-sensitive HT-SQUID sensors the cryocooler has to meet rather severe demands concerning interference from the cooler itself. In particular, cooler-generated noise from electromagnetic interference (EMI), mechanical vibrations and temperature fluctuations should be below the intrin...

  14. Evaporative Cooler Use Influences Temporal Indoor Relative Humidity but Not Dust Mite Allergen Levels in Homes in a Semi-Arid Climate.

    Directory of Open Access Journals (Sweden)

    James D Johnston

    Full Text Available Concerns about energy consumption and climate change make residential evaporative coolers a popular alternative to central air conditioning in arid and semi-arid climates. However, evaporative coolers have been shown to significantly increase indoor relative humidity and dust mite allergen levels in some studies, while showing no association in other studies. Improved measurement of temporal fluctuations in indoor relative humidity may help identify factors that promote mite growth in homes in dry climates. Dust samples and continuous indoor relative humidity measurements were collected from homes with central air conditioning and homes with evaporative coolers in Utah. Samples were collected over two seasons, winter/spring (Jan-Apr and summer (July-Sept, 2014. Dust samples were analyzed for Der p 1 and Der f 1 using a two-site monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA analysis. Housing characteristics including age of home, occupant density, and age of mattresses, furniture, and carpeting were also measured. Positive Der p 1 or Der f 1 samples were found in 25.0% of the homes and there was no difference in mean allergen levels by type of air conditioning. Indoor relative humidity was significantly higher in homes with evaporative coolers compared to those with central air conditioning during the summer. Homes with evaporative coolers also spent significantly more time during summer above 55.0% and 65.0% relative humidity compared to central air homes, but not above 75.0%. Findings from this study suggest that increased humidity from evaporative coolers may not be sufficient to exceed the critical equilibrium humidity or maintain humidity excursions for sufficient duration in relatively larger single-family homes in semi-arid climates to support mite growth and reproduction.

  15. Characteristics of confinement and fusion reactivity in JT-60U high-{beta}{rho} and TFTR supershot regimes with deuterium neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.K.; Bell, M.G.; Yamada, M.

    1995-03-01

    The high performance regimes achieved in JT-60U and TFTR have produced peak DD fusion neutron rates up to 5.6 {times} 10{sup 16}/s for similar heating beam powers, in spite of considerable differences in machine operation and plasma configuration. A common scaling for the DD fusion neutron rate (S{sub DD} {proportional_to} P{sub abs}{sup 2.0} H{sub ne} V{sub p}{sup {minus}0.9}) is obtained, where P{sub abs} and H{sub ne} are the absorbed beam power and beam fueling peaking factor, respectively, and V{sub p} is the plasma volume. The maximum stored energy obtained in each machine has been up to 5.4 MJ in TFTR and 8.7 MJ in JT-60U. Further improvements in the fusion neutron rate and the stored energy are limited by the {beta}-limit in Troyon range, {beta}{sub N} {approximately} 2.0--2.5. A common scaling for the stored energy (W{sub tot} {proportional_to} P{sub abs}V{sub p}H{sub ne}{sup 0.2}) is also proposed.

  16. Simulation of radiative divertor plasmas by Ar seeding with the full W-wall in JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, H.; Shimizu, K.; Nakano, T.; Asakura, N. [Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Hoshino, K. [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan)

    2016-08-15

    Radiative divertor plasmas for JT-60SA with a full tungsten (W) wall, which is one of options in future, have been simulated with a SOL/divertor integrated code, SONIC. A conventional modified-coronal radiation (MCR) model with a finite confinement time is used for both Ar and W for the purpose of wide-range parameter surveys for the divertor plasma to obtain the required conditions (q{sub t} ≤ 10 MW/m{sup 2}, n{sup Sep}{sub e-mid} = 3∝8 x 10{sup 19} m{sup -3}, P{sub rad} < ∝30 MW), saving the calculation time. At low W density ratio (n{sub W}/n{sub i} = 1 x 10{sup -5}), due to low radiative power from W ions, Ar density ratio (n{sub Ar}/n{sub i} ≥ 1.0 x 10{sup -3}) and a strong gas puff (Γ{sub p} ≥ 3.0 x 10{sup 22} s{sup -1}) are inevitable to suppress the divertor heat flux down to 10 MW/m{sup 2}. Increasing n{sub W}/n{sub i} to 1 x 10{sup -3} in the divertor region, the divertor heat load becomes low and the operative regions are expanded. While, the W production shall be suppressed since the W radiation is increased with replacement of Ar radiation and the particle recycling decreased. A Monte-Carlo module (IMPMC) implemented in SONIC for Ar seeding reveals that the spatial distribution of Ar ions is predominantly determined by shell structures of the Ar ions. The consistency between IMPMC and MCR calculations is demonstrated for the averaged n{sub Ar}/n{sub i} ratio, the electron density and temperature profiles on the divertor target and typical parameter such as the divertor heat load. It shows that the detailed analysis with IMPMC model can be speedily obtained, using a steady state solution obtained by MCR model as an initial state. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. The Side-Effects of the Space Charge Field Introduced by Hollow Electron Beam in the Electron Cooler of CSRm

    CERN Document Server

    Tang, Mei-Tang; Mao, Li-Jun; Li, Jie; Ma, Xiao-Ming; Yan, Tai-Lai; Zheng, Wen-Heng; Zhao, He; Wu, Bo; Wang, Geng; Ruan, Shuang; Sha, Xiao-Ping

    2015-01-01

    Electron cooler is used to improve the quality of the beam in synchrotron, however it also introduces nonlinear electromagnetic field, which cause tuneshift, tunespread and may drive resonances leading to beam loss. In this paper the tuneshift and the tunespread caused by nonlinear electromagnetic field of the hollow electron beam was investigated, and the resonance driving terms of the nonlinear electromagnetic field was analysed. The differences were presented comparing with the solid electron beam. The calculations were performed for $^{238}U^{32+}$ ions of energy 1.272MeV stored in CSRm, using the parameters given in table1. The conclusion is that in this situation nonlinear field caused by the hollow electron beam do not lead to serious resonances.

  18. Multi Channels PWM Controller for Thermoelectric Cooler Using a Programmable Logic Device and Lab-Windows CVI

    Directory of Open Access Journals (Sweden)

    Eli FLAXER

    2008-09-01

    Full Text Available We present a complete design of a multi channels PID controller for Thermoelectric Cooler (TEC using a pulse width modulation (PWM technique implemented by a dedicated programmable logic device (PLD programmed by VHDL. The PID control loop is implemented by software written by National Instrument Lab-Windows CVI. Due to the fact that the implementation is by a VHDL and PLD the design is modular, as a result, the circuit is very compact in size and very low cost as compared to any commercial product. In addition, since the control loop is implemented by software running on a personal computer (PC using a C language, it is easy to adjust the controller to various environmental conditions and for a width range of sensors like: a thermo couple (TC, thermistor, resistance temperature detectors (RTD etc. We demonstrate the performance of this circuit as a controller for a small incubator using thermistor as the temperature sensor.

  19. Experimental study on the optimization of general conditions for a free-flow electrophoresis device with a thermoelectric cooler.

    Science.gov (United States)

    Yan, Jian; Yang, Cheng-Zhang; Zhang, Qiang; Liu, Xiao-Ping; Kong, Fan-Zhi; Cao, Cheng-Xi; Jin, Xin-Qiao

    2014-12-01

    With a given free-flow electrophoresis device, reasonable conditions (electric field strength, carrier buffer conductivity, and flow rate) are crucial for an optimized separation. However, there has been no experimental study on how to choose reasonable general conditions for a free-flow electrophoresis device with a thermoelectric cooler in view of Joule heat generation. Herein, comparative experiments were carried out to propose the selection procedure of general conditions in this study. The experimental results demonstrated that appropriate conditions were (i) electrophoresis separation would be destroyed by bubbles caused by more Joule heating. Additionally, a series of applications under the appropriate conditions were performed with samples of model dyes, proteins (bovine serum albumin, myoglobin, and cytochrome c), and cells (Escherichia coli, Streptococcus thermophilus, and Saccharomyces cerevisiae). The separation results showed that under the appropriate conditions, separation efficiency was obviously better than that in the previous experiments with randomly or empirically selected conditions.

  20. Experimental study of the influence of cold heat exchanger geometry on the performance of a co-axial pulse tube cooler

    NARCIS (Netherlands)

    Pang, Xiaomin; Dai, Wei; Wang, Xiaotao; Vanapalli, S.; Luo, Ercang

    2016-01-01

    Improving the performance of the pulse tube cooler is one of the important objectives of the current studies. Besides the phase shifters and regenerators, heat exchangers also play an important role in determining the system efficiency and cooling capacity. A series of experiments on a 10 W @ 77 K c

  1. 10 CFR 431.304 - Uniform test method for the measurement of energy consumption of walk-in coolers and walk-in...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test method for the measurement of energy consumption of walk-in coolers and walk-in freezers. 431.304 Section 431.304 Energy DEPARTMENT OF ENERGY... measuring, pursuant to EPCA, the energy consumption of refrigerated bottled or canned beverage vending...

  2. New technology of waste heat recovery from gas primary cooler%煤气初冷器余热回收新技术

    Institute of Scientific and Technical Information of China (English)

    祝仰勇; 宁述芹; 王健; 梁荣华

    2014-01-01

    开发了初冷器余热回收利用新技术。通过热泵机组,夏季回收初冷器上段循环水余热制取低温水,冬季回收初冷器中段循环水余热加热采暖水,实现了初冷器余热的综合利用,降低了能耗,改善了环境。%This paper introduced a new technology of waste heat recovery from gas primary cooler,by which chilled water can be prepared by recovering the waste heat from the upper stage circulating water of the primary cooler in summer and heating water can be heated up by recovering the waste heat from the medium stage circulating water of the primary cooler in winter so that the waste heat from the gas primary cooler can be fully utilized,energy consumption can be saved and environment can be improved.

  3. Improvement of uniformity of the negative ion beams by tent-shaped magnetic field in the JT-60 negative ion source

    Science.gov (United States)

    Yoshida, Masafumi; Hanada, Masaya; Kojima, Atsushi; Kashiwagi, Mieko; Grisham, Larry R.; Akino, Noboru; Endo, Yasuei; Komata, Masao; Mogaki, Kazuhiko; Nemoto, Shuji; Ohzeki, Masahiro; Seki, Norikazu; Sasaki, Shunichi; Shimizu, Tatsuo; Terunuma, Yuto

    2014-02-01

    Non-uniformity of the negative ion beams in the JT-60 negative ion source with the world-largest ion extraction area was improved by modifying the magnetic filter in the source from the plasma grid (PG) filter to a tent-shaped filter. The magnetic design via electron trajectory calculation showed that the tent-shaped filter was expected to suppress the localization of the primary electrons emitted from the filaments and created uniform plasma with positive ions and atoms of the parent particles for the negative ions. By modifying the magnetic filter to the tent-shaped filter, the uniformity defined as the deviation from the averaged beam intensity was reduced from 14% of the PG filter to ˜10% without a reduction of the negative ion production.

  4. Dynamics of energetic particle driven modes and MHD modes in wall-stabilized high-β plasmas on JT-60U and DIII-D

    Science.gov (United States)

    Matsunaga, G.; Okabayashi, M.; Aiba, N.; Boedo, J. A.; Ferron, J. R.; Hanson, J. M.; Hao, G. Z.; Heidbrink, W. W.; Holcomb, C. T.; In, Y.; Jackson, G. L.; Liu, Y. Q.; Luce, T. C.; McKee, G. R.; Osborne, T. H.; Pace, D. C.; Shinohara, K.; Snyder, P. B.; Solomon, W. M.; Strait, E. J.; Turnbull, A. D.; Van Zeeland, M. A.; Watkins, J. G.; Zeng, L.; the DIII-D Team; the JT-60 Team

    2013-12-01

    In the wall-stabilized high-β plasmas in JT-60U and DIII-D, interactions between energetic particle (EP) driven modes (EPdMs) and edge localized modes (ELMs) have been observed. The interaction between the EPdM and ELM are reproducibly observed. Many EP diagnostics indicate a strong correlation between the distorted waveform of the EPdM and the EP transport to the edge. The waveform distortion is composed of higher harmonics (n ⩾ 2) and looks like a density snake near the plasma edge. According to statistical analyses, ELM triggering by the EPdMs requires a finite level of waveform distortion and pedestal recovery. ELM pacing by the EPdMs occurs when the repetition frequency of the EPdMs is higher than the natural ELM frequency. EPs transported by EPdMs are thought to contribute to change the edge stability.

  5. Thermosyphon Cooler Hybrid System for Water Savings in an Energy-Efficient HPC Data Center: Modeling and Installation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Thomas; Liu, Zan; Sickinger, David; Regimbal, Kevin; Martinez, David

    2017-02-01

    The Thermosyphon Cooler Hybrid System (TCHS) integrates the control of a dry heat rejection device, the thermosyphon cooler (TSC), with an open cooling tower. A combination of equipment and controls, this new heat rejection system embraces the 'smart use of water,' using evaporative cooling when it is most advantageous and then saving water and modulating toward increased dry sensible cooling as system operations and ambient weather conditions permit. Innovative fan control strategies ensure the most economical balance between water savings and parasitic fan energy. The unique low-pressure-drop design of the TSC allows water to be cooled directly by the TSC evaporator without risk of bursting tubes in subfreezing ambient conditions. Johnson Controls partnered with the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories to deploy the TSC as a test bed at NREL's high-performance computing (HPC) data center in the first half of 2016. Located in NREL's Energy Systems Integration Facility (ESIF), this HPC data center has achieved an annualized average power usage effectiveness rating of 1.06 or better since 2012. Warm-water liquid cooling is used to capture heat generated by computer systems direct to water; that waste heat is either reused as the primary heat source in the ESIF building or rejected using evaporative cooling. This data center is the single largest source of water and power demand on the NREL campus, using about 7,600 m3 (2.0 million gal) of water during the past year with an hourly average IT load of nearly 1 MW (3.4 million Btu/h) -- so dramatically reducing water use while continuing efficient data center operations is of significant interest. Because Sandia's climate is similar to NREL's, this new heat rejection system being deployed at NREL has gained interest at Sandia. Sandia's data centers utilize an hourly average of 8.5 MW (29 million Btu/h) and are also one of the largest consumers of

  6. Comparative study in LTC Combustion between a short HP EGR loop without cooler and a variable lift and duration system

    Energy Technology Data Exchange (ETDEWEB)

    Bression, Guillaume; Pacaud, Pierre; Soleri, Dominique; Cessou, Jerome [IFP (France); Azoulay, David [Renault Powertrain Div. (France); Lawrence, David [Mechadyne (United Kingdom); Doradoux, Laurent; Guerrassi, Noureddine [Delphi Diesel Systems (France)

    2008-07-01

    In order to reach future Diesel emission standards such as Euro 6 or Tier 2 Bin 5, NO{sub x} emissions need to be dramatically reduced. Advanced technologies and engine settings such as higher EGR rates, reduced compression ratio, EGR cooler and low-pressure EGR loop - depending on vehicle application - may help to reach this target whilst maintaining low CO{sub 2} emissions and fuel consumption. However, the resulting low combustion temperatures and the low air-fuel ratios lead to a significant increase in HC and CO emissions, especially during the start-up phase prior to catalyst light-off. Moreover, high levels of EGR make transient operation even more difficult. So HC-CO emissions and EGR transient operation represent two key issues that could limit the extension of this alternative combustion mode. Consequently, an in-depth investigation of a variable lift and duration (VLD) system was performed to overcome these problems on a 4-cylinder engine, which was also equipped with a dual HP-LP EGR loop. The VLD system tested in this paper produces a variable camshaft-operated exhaust valve re-opening, which is controlled by a hydraulic rotary actuator, ensuring quick and accurate regulation of the internal gas recirculation (IGR). By increasing gas temperature in the combustion chamber, this advanced technology allows us to reduce HC-CO emissions by 50% under 3 bar BMEP. Although efficient, this technology has to be compared with other solutions from a cost-to-value point of view. The aim of this paper is firstly to compare the double lift exhaust system with a short route high-performance EGR loop without cooler by quantifying their respective gains on steady state points of the NEDC cycle, then by evaluating their potential performances during transient conditions. With the short-route EGR, the potential in HC-CO emission reduction remains significant on a large scale of engine temperatures representative of engine warm up. However, the VLD system allows us to

  7. DC-9/JT8D refan, Phase 1. [technical and economic feasibility of retrofitting DC-9 aircraft with refan engine to achieve desired acoustic levels

    Science.gov (United States)

    1973-01-01

    Analyses and design studies were conducted on the technical and economic feasibility of installing the JT8D-109 refan engine on the DC-9 aircraft. Design criteria included minimum change to the airframe to achieve desired acoustic levels. Several acoustic configurations were studied with two selected for detailed investigations. The minimum selected acoustic treatment configuration results in an estimated aircraft weight increase of 608 kg (1,342 lb) and the maximum selected acoustic treatment configuration results in an estimated aircraft weight increase of 809 kg (1,784 lb). The range loss for the minimum and maximum selected acoustic treatment configurations based on long range cruise at 10 668 m (35,000 ft) altitude with a typical payload of 6 804 kg (15,000 lb) amounts to 54 km (86 n. mi.) respectively. Estimated reduction in EPNL's for minimum selected treatment show 8 EPNdB at approach, 12 EPNdB for takeoff with power cutback, 15 EPNdB for takeoff without power cutback and 12 EPNdB for sideline using FAR Part 36. Little difference was estimated in EPNL between minimum and maximum treatments due to reduced performance of maximum treatment. No major technical problems were encountered in the study. The refan concept for the DC-9 appears technically feasible and economically viable at approximately $1,000,000 per airplane. An additional study of the installation of JT3D-9 refan engine on the DC-8-50/61 and DC-8-62/63 aircraft is included. Three levels of acoustic treatment were suggested for DC-8-50/61 and two levels for DC-8-62/63. Results indicate the DC-8 technically can be retrofitted with refan engines for approximately $2,500,000 per airplane.

  8. Shaping of nested potentials for electron cooling of highly-charged ions in a cooler Penning trap

    Science.gov (United States)

    Paul, Stefan; Kootte, Brian; Lascar, Daniel; Gwinner, Gerald; Dilling, Jens; Titan Collaboration

    2016-09-01

    TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) is dedicated to mass spectrometry and decay spectroscopy of short-lived radioactive nuclides in a series of ion traps including a precision Penning trap. In order to boost the achievable precision of mass measurements TITAN deploys an Electron Beam Ion Trap (EBIT) providing Highly-Charged Ions (HCI). However, the charge breeding process in the EBIT leads to an increase in the ion bunch's energy spread which is detrimental to the overall precision gain. To reduce this effect a new cylindrical Cooler PEnning Trap (CPET) is being commissioned to sympathetically cool the HCI via a simultaneously trapped electron plasma. Simultaneous trapping of ions and electrons requires a high level of control over the nested potential landscape and sophisticated switching schemes for the voltages on CPET's multiple ring electrodes. For this purpose, we are currently setting up a new experimental control system for multi-channel voltage switching. The control system employs a Raspberry Pi communicating with a digital-to-analog board via a serial peripheral interface. We report on the implementation of the voltage control system and its performance with respect to electron and ion manipulation in CPET. University of British Columbia, Vancouver, BC, Canada.

  9. Application Effect of Dual-disk Cooler%双盘冷却器的使用效果

    Institute of Scientific and Technical Information of China (English)

    吴毅

    2012-01-01

    分析了不同砂冷却设备的原理、结构及使用情况,对比了采用双盘冷却器替换沸腾冷却床的效果,指出对于结构比较复杂且表面积大,浇注温度较高,砂芯用量较多和铁砂比较高的铸件,尤其是汽车缸体类铸件的生产,必须根据实际的生产状况选择合适的设备才能保证型砂质量。%The principle, structure and service condition of different sand cooling equipments was analyzed. The effects of fluidized cooling bed and dual-disk cooler were compared. It's pointed out that the appropriate equipments should be selected to ensure molding sand quality in production of castings with complex structure, and large superficial area, higher pouring temperature and more sand core, especially for automobile cylinders.

  10. Optimal design of an atmospheric water generator (AWG) based on thermo-electric cooler (TEC) for drought in rural area

    Science.gov (United States)

    Suryaningsih, Sri; Nurhilal, Otong

    2016-02-01

    Drinking water availability is a major issue in some rural area in Indonesia during the summer season due to lack of rainfall, which peoples in this area have to fetch the water a few kilometers away from home. The Atmospheric Water Generator (AWG) is one of the alternative solution for fresh water recovery from atmosphere which is directly condensed the moisture content of water vapor from the air. This paper presents the method to develop a prototype of an AWG based on Thermo-electric cooler (TEC) that used 12 Volt DC, hence its suitability for using renewable energy resource. Computational Fluid Dynamics (CFD) is utilized to optimize the design process in the flow region only, it's not suitable for recent CFD software to use in Multi physics, because inaccuracy, cost and time saving. Some parameters such as temperature, moisture content, air flow, pressure, form of air flow channel and the water productivity per unit input of energy are to be considered. The result is presented as an experimental prototype of an AWG based on TEC and compared with other conventional commercial products.

  11. Examples of cooler reflective streets for urban heat-island mitigation : Portland cement concrete and chip seals

    Energy Technology Data Exchange (ETDEWEB)

    Pomerantz, M.; Akbari, H.; Chang, S.-C.; Levinson, R.; Pon, B.

    2003-04-30

    Part of the urban heat island effect can be attributed to dark pavements that are commonly used on streets and parking lots. In this paper we consider two light colored, hence cooler, alternative paving materials that are in actual use in cities today. These are Portland cement concrete (PCC) pavements and chip seals. We report measurements of the albedos of some PCC and chip sealed pavements in the San Francisco Bay Area. The albedos of the PCC pavements ranged from about 0.18 to 0.35. The temperatures of some PCC pavements are also measured and calculated. We then consider how the albedos of the constituent materials of the PCC (stone, sand and cement) contribute to the albedos of the resulting finished concrete. The albedos of a set of chip sealed pavements in San Jose, CA, were measured and correlated with the times of their placement. It is found that the albedos decrease with age (and use) but remain higher than that of standard asphalt concrete (AC) for about five years. After t hat, the albedos of the chip seals are about 0.12, similar to aged AC. The fact that many PCC pavements have albedos at least twice as high as aged AC suggests that it is possible to have pavement albedos that remain high for many years.

  12. Design instructions for condensers and recirculation coolers with axial blowers; Auslegungshinweis fuer Verfluessiger und Rueckkuehler mit Axialventilatoren

    Energy Technology Data Exchange (ETDEWEB)

    Handschuh, R. [Hans Guentner GmbH, Fuerstenfeldbruck (Germany)

    2003-07-01

    Apart from an explanation of the selectrion criteria for condensers and recirculation coolers with axial blowers for outside installation, information is presented on sound propagation. Selection according to the condensing capacity O{sub c}, the recooling rate Q{sub H} and the available floor space can be made with the aid of the Guentner Product Calculator GPC. Permissible noise emissions and adjacent installation of condensers and recoolers are gone into as well as noise propagation as a function of external noise, noise direction, noise reflection, the number of noise sources, the distance of the noise source from the emission point, and possible noise abatement factors are gone into as well. (orig.) [German] Neben der Erlaeuterung der Auswahlkriterien fuer Verfluessiger und Rueckkuehler mit Axialventilatoren zur Aufstellung im Freien werden Hinweise fuer die Schallausbreitung gegeben. Die Auswahl nach der Verfluessigungsleistung Q{sub c} bzw. der Rueckkuehlleistung Q{sub H} und der vorhandenen Aufstellflaeche kann mit dem Guentner Product Calculator GPC geschehen. Es wird auf die zulaessige Geraeuschimmission auf die Nachbarschaft von Verfluessigern und Rueckkuehlern eingegangen und deren Schallausbreitung in Abhaengigkeit von Fremdgeraeuscheinwirkungen, Schallrichtwirkung, der Schallreflexion, der Anzahl der Schallquellen, der Entfernung der Schallquelle zur Emissionsstelle und moegliche Daempfungen betrachtet. (orig.)

  13. Optimized autonomous operations of a 20 K space hydrogen sorption cryocooler

    Energy Technology Data Exchange (ETDEWEB)

    Borders, J.; Prina, M.; Pearson, D.; Bhandari, P. [California Inst. of Technology, Jet Propulsion Lab., Pasadena, CA (United States); Morgante, G. [California Inst. of Technology, Jet Propulsion Lab., Pasadena, CA (United States); IASF/CNR-Sezione di Bologna, Bologna (Italy)

    2004-08-01

    A fully redundant hydrogen sorption cryocooler is being developed for the European Space Agency Planck mission, dedicated to the measurement of the temperature anisotropies of the cosmic microwave background radiation with unprecedented sensitivity and resolution [Advances in Cryogenic Engineering 45A (2000) 499]. In order to achieve this ambitious scientific task, this cooler is required to provide a stable temperature reference ({approx}20 K) and appropriate cooling ({approx}1 W) to the two instruments on-board, with a flight operational lifetime of 18 months. During mission operations, communication with the spacecraft will be possible in a restricted time-window, not longer than 2 h/day. This implies the need for an operations control structure with the required robustness to safely perform autonomous procedures. The cooler performance depends on many operating parameters (such as the temperatures of the pre-cooling stages and the warm radiator), therefore the operation control system needs the capability to adapt to variations of these boundary conditions, while maintaining safe operating procedures. An engineering bread board (EBB) cooler was assembled and tested to evaluate the behavior of the system under conditions simulating flight operations and the test data were used to refine and improve the operation control software. In order to minimize scientific data loss, the cooler is required to detect all possible failure modes and to autonomously react to them by taking the appropriate action in a rapid fashion. Various procedures and schemes both general and specific in nature were developed, tested and implemented to achieve these goals. In general, the robustness to malfunctions was increased by implementing an automatic classification of anomalies in different levels relative to the seriousness of the error. The response is therefore proportional to the failure level. Specifically, the start-up sequence duration was significantly reduced, allowing a much

  14. 两种新型油冷却器传热性能对比实验研究%Two Kinds of New Type of High-efficiency Oil Cooler Heat Transfer Performance Contrast Experimental Research

    Institute of Scientific and Technical Information of China (English)

    梁建活; 江楠; 曾纪成

    2014-01-01

    The experimental validation is used to study the heat transfer performance of two kinds of high-efficiency oil cooler.A fin tube type oil cooler with aluminum fin tubes supported by segmental baffles and an oil cooler with spiral tubes supported by helical baffles are explored in the research respectively.The test results show that the fin tube type oil cooler get a better com-prehensive performance.The heat flow rate of fin tube type oil cooler is larger and the pressure drop through the shell pass is smaller than the values of the helical baffle oil cooler under the same condition of low to moderate oil flow rate.The heat transfer capacity of unit pressure drop in the fin tube type oil cooler is 1 .5 times as that of the helical baffle oil cooler.Furthermore,the compact structure of the fin tube type oil cooler is good enough to meet the development trend of miniaturization equipment and high efficiency.%对采用铝翅片扩展表面与弓形折流板支撑结构相结合的新型叠片式油冷却器和采用螺纹强化管的螺旋折流板油冷却器分别进行实验测试研究。结果表明,叠片式油冷却器具有更优良的综合性能;在中、小油流量时,其热交换量大、壳程压降较小,单位压降下的换热量要比螺旋折流板油冷却器约高50%,结构的紧凑性能够较好地满足设备小型及高效的发展趋势。

  15. A Computational Model for Two-stage 4K-Pulse Tube Cooler: Part I.Theoretical Model and Numerical Method

    Institute of Scientific and Technical Information of China (English)

    Y.L. Ju; A.T.A.M. de Waele

    2001-01-01

    A new mixed Eulerian-Lagrangian computational model for simulating and visualizing the internal processes and the variations of dynamic parameters of a two-stage pulse tube cooler (PTC) operating at 4 K-temperature region has been developed. We use the Lagrangian method, a set of moving grids, to follow the exact tracks of gas particles as they move with pressure oscillation in the pulse tube to avoid any numerical false diffusion. The Eulerian approach, a set of fixed computational grids, is used to simulate the variations of dynamic parameters in the regenerator. A variety of physical factors, such as real thermal properties of helium, multi-layered magnetic regenerative materials, pressure drop and heat transfer in the regenerator, and heat exchangers, are taken into account in this model. The present modeling is very effective for visualizing the internal physical processes in 4 K-pulse tube coolers.

  16. Capability of 19-L polycarbonate plastic water cooler containers for efficient solar water disinfection (SODIS): Field case studies in India, Bahrain and Spain

    OpenAIRE

    Mathur, Chandana

    2015-01-01

    The small treated volume (typically ~2 L) associated with polyethylene terephthalate (PET) bottles that are most frequently used in solar water disinfection (SODIS), is a major obstacle to uptake of this water treatment technology in resource-poor environments. In order to address this problem we have conducted a series of experiments in Spain, Bahrain and India, to assess the efficacy of large volume (19 L) transparent plastic (polycarbonate) water cooler/dispenser containers (WDCs)...

  17. Capability of 19-litre polycarbonate plastic water cooler containers for efficient solar water disinfection (SODIS): field case studies in India, Bahrain and Spain.

    OpenAIRE

    Keogh, Michael B; Castro-Alférez, M; Polo-López, M I; Calderero, I Fernández; Al-Eryani, Y A; Joseph-Titus, C; Sawant, B; R Dhodapkar; Mathur, C; McGuigan, Kevin G; Fernández-Ibáñez, P.

    2015-01-01

    The small treated volume (typically ~2 litres) associated with polyethylene terephthalate (PET) bottles that are most frequently used in solar water disinfection (SODIS), is a major obstacle to uptake of this water treatment technology in the developing world. In order to address this problem we have conducted a series of experiments in Spain, Bahrain and India, to assess the efficacy of large volume (19 litres) transparent plastic (polycarbonate) water cooler/dispenser containers (WDCs) as S...

  18. Were the tropics significantly cooler during the last glacial maximum?; Des tropiques plus frais qu`aujourd`hui au dernier maximum glaciaire?

    Energy Technology Data Exchange (ETDEWEB)

    Stute, M. [Lamont-Doherty Earth Observatory, New York (United States)

    1998-12-31

    A paleo-temperature record derived from noble gases dissolved in groundwater indicates that lowland equatorial Brazil has been about 5 deg C cooler during the glacial maximum that today. This new evidence contradicts the long-held belief that the tropical regions maintained their warm climate during the last glacial maximum. It appears now that the tropical Americas are characterized by a temperature sensitivity comparable to that in higher latitudes. (author) 14 refs.

  19. Research of Heat Transfer Model in Rotary Ash Coolers%滚筒冷渣器传热模型的研究

    Institute of Scientific and Technical Information of China (English)

    司小东; 吕俊复; 王巍; 李金晶

    2011-01-01

    分析了携带翅片滚筒冷渣器内灰渣颗粒的流动过程和传热过程,提出了滚筒冷渣器一维轴向传热模型,模型中考虑了渣中未燃尽碳的残余燃烧,模型参数根据文献和实验室实验确定.利用该模型对一台300MW循环流化床锅炉上滚筒冷渣器的温度进行了预测,并与实际运行参数进行了比较.结果表明:该模型可以很好地预测滚筒冷渣器出口灰渣的温度和冷却水温度.%By analyzing the flow and heat transfer process of ash particles in a rotary ash cooler with fins, a one-dimensional heat transfer model was proposed, in which the reburning of residual carbon in bottom ash was considered while the model parameters determined in accordance with relevant reference materials and experimental results. Using the model, temperatures of rotary ash cooler for a 300 MW circulating fluidized bed boiler were predicted, which were then compared with actual operation parameters. Comparison results prove the model to be accurate in predicting ash discharge and cooling water temperatures of rotary ash coolers.

  20. Performance of compact liquid helium free {sup 3}He-{sup 4}He dilution refrigerator directly coupled with GM cooler in TES microcalorimeter operation

    Energy Technology Data Exchange (ETDEWEB)

    Umeno, T; Kamioka, Y; Yoshida, S [Taiyo Nippon Sanso Corporation, 1-3-26 Koyama, Shinagawa-ku, 142-8558 (Japan); Maehata, K; Ishibashi, K [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka-shi, 819-0395 (Japan); Takasaki, K [Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai-mura, Naka-gun, Ibaraki-ken, 319-1194 (Japan); Tanaka, K [SII NanoTechnology Inc., 36-1 Takenoshita, Oyama-cho, Suntou-gun, Shizuoka-ken, 410-1393 (Japan)], E-mail: Takahiro.Umeno@tn-sanso.co.jp

    2009-02-01

    A superconducting transition edge thermosensor (TES) microcalorimeter was cooled by a compact liquid-helium-free {sup 3}He-{sup 4}He dilution refrigerator with loading a Gifford-McMahon (GM) cooler for detection of LX-ray photons emitted from an {sup 241}Am source. The first and second stages of the GM cooler are directly coupled with the first and the second precool heat exchangers of a stick shaped dilution unit through copper plates in the vacuum chamber, respectively. The circulating {sup 3}He-{sup 4}He gas through the precooled heat exchangers is condensed into a liquid of condense mixture by the isoenthalpic expansion through the Joule-Thomson impedance. A cascade of two mixing chambers are employed for achieving sufficient cooling power. The helium-free dilution refrigerator performs the cooling power of 20 {mu}W at 100 mK. The TES and SQUID chips suffered from mechanical vibrations induced by a reciprocating motion of the displacer of the GM cooler. Detection signals of LX-ray photons emitted from {sup 241}Am source were observed by operating the TES microcalorimeter in severe noise environment induced by mechanical vibrations.

  1. Experimental study of the influence of cold heat exchanger geometry on the performance of a co-axial pulse tube cooler

    Science.gov (United States)

    Pang, Xiaomin; Dai, Wei; Wang, Xiaotao; Vanapalli, S.; Luo, Ercang

    2016-09-01

    Improving the performance of the pulse tube cooler is one of the important objectives of the current studies. Besides the phase shifters and regenerators, heat exchangers also play an important role in determining the system efficiency and cooling capacity. A series of experiments on a 10 W @ 77 K class co-axial type pulse tube cooler with different cold heat exchanger geometries are presented in this paper. The cold heat exchangers are made from a copper block with radial slots, cut through using electrical discharge machining. Different slot widths varying from 0.12 mm to 0.4 mm and different slot numbers varying from around 20-60 are investigated, while the length of cold heat exchangers are kept the same. The cold heat exchanger geometry is classified into three groups, namely, constant heat transfer area, constant porosity and constant slot width. The study reveals that a large channel width of 0.4 mm (about ten times the thermal penetration depth of helium gas at 77 K, 100 Hz and 3.5 MPa) shows poor performance, the other results show complicated interaction effects between slot width and slot number. These systematic comparison experiments provide a useful reference for selecting a cold heat exchanger geometry in a practical cooler.

  2. Neotropical eocene coastal floras and [sup 18]O/[sup 16]O-estimated warmer vs. cooler equatorial waters

    Energy Technology Data Exchange (ETDEWEB)

    Graham, A. (Kent State Univ., OH (United States))

    1994-03-01

    The history of the earth's sea-surface temperature (SST) in equatorial regions during the Tertiary is unsettled because of uncertainty as to the presence and extent of glaciers during the Paleogene. The [sup 16]O trapped in glaciers and subsequently released back to the ocean basins as meltwater during interglacials affects the [sup 18]O/[sup 16]O ratio of sea water, one of the variables that must be known for oxygen isotope paleotemperature analysis of calcareous fossils. Estimates of SST range from [approximately]18 to 20 C, assuming an ice-free earth, to [approximately]28 C assuming glaciers were present in the Paleogene. Low latitude SST presently averages 28C, so the former estimate gives a value 8 to 10 C cooler than present, while the latter gives a value as warm or slightly warmer than present. The figures are important for interpreting terrestrial vegetational history because the temperature differential between low and high latitudes is a major factor in determining global climates through the control of poleward transfer of heat. The middle( ) to late Eocene Gatuncillo Formation palynoflora of Panama was deposited at the ocean-continental interface at [approximately]9[degrees]N latitude. The individual components and paleocommunities are distinctly tropical and similar to the present vegetation along the Atlantic coast of southern Central America. This is consistent with data emerging from other recently studied tropical coastal biotas and represents a contribution from paleobiology toward eventually resolving the problem of Eocene equatorial marine environments. Collectively, the evidence is beginning to favor a model of Eocene SST near present values. 50 refs., 1 fig., 2 tabs.

  3. Carbon Nanotube Thermoelectric Coolers

    Science.gov (United States)

    2015-02-06

    conductance. Inside thecentral section of the carbon nanotube, we obtained an impressive Peltier cooling 57 K down from the liquid nitrogentemperature. 15... trapped charges or dipoles) that occur either at the interface between the CNT and the gate dielectric (interface defects) or at some position within... liquid nitrogen temperature 77T  K up to hot 134 8T  K, or decreases from 77T  K down to about cold 20 6T  K, thus evidencing a strong

  4. Can Cooler Heads Prevail?

    Science.gov (United States)

    Rice, A. R.

    2015-12-01

    The significant correlation between dropping temperatures throughout the Pliocene and the concomitant explosive expansion of the Hominid brain has led a number of workers to postulate climate change drove human evolution. Our brain (that of Homo sapiens), comprises 1-2 percent of our body weight but consumes 20 -25 percent of the body's caloric intake. We are "hotheads". Brains are extremely sensitive to overheating but we are endowed with unparalleled thermal regulation, much of it given over to protecting the Central Nervous System (CNS). Will there be reversed trends with global warming? The human brain has been shrinking since the end of the Ice Ages, losing about 150cc over the past 10,000 years. Polar bear skulls have been downsizing as well. Almost all mass extinctions or evolutionary upheavals are attributed to global warming: e.g. the Permian/Triassic (P/T) event, i.e., "The Great Dying", 250 million years ago (~90% of all life forms wiped out); the Paleocene/ Eocene Thermal Maximum (PETM) 55 million years ago. They may be analogs for what might await us. Large creatures, whose body size inhibits cooling, melted away during the PETM. Horses, initially the size of dogs then, reduced to the size of cats. An unanticipated hazard for humans that may attend extreme global warming is dumbing down or needing to retreat to the Poles as did those creatures that survived the P/T event (some references: http://johnhawks.net/research/hawks-2011-brain-size-selection-holocene; Kandel, E. et al Principles of Neural Science 4th ed. New York (US): McGraw-Hill, 2000; Selective Brain Cooling in Early Hominids:phylogenetic and evolutionary implications, Reeser, H., reeser@flmnh.ufl.edu; How the body controls brain temperature; the temperature shielding effect of cerebral blood flow, Mingming Z. et al. J Appl Physiol. 2006 November; 101(5): 1481-1488; news.nationalgeographic.com/ news/2014/03/140327-climate-change-shrinks-salamanders-global-warming-science/; Heat illness and heat stroke, www.ozemedicine.com/wiki/doku.php?id=heat illness 7/3/2010)

  5. Thermoelectric Cooler Design

    Science.gov (United States)

    1992-12-01

    coefficient of performance which is the term to the left of the brackets in equation (36) Egli (Ref. 4: p. 31] and Tipler [Ref. 5:pp 575-576]. H. CASCADED...Thermoelectricity, John Wiley and Sons Inc., 1960. 5. Tipler , P. A., Physics for Scientists and Engineers, 3rd ed., Worth Publishers, 1991. 70 BIBLIOGRAPHY 1

  6. Linear Resonance Cooler.

    Science.gov (United States)

    1985-04-01

    7.0 % % o the testing of an experimental linear motor driven expander using a standard production 1/4W split Stirling Common Module compressor. . - o...3 2.2 Expander Design CTI-CRYOGENICS has long recognized the potential of employing a linear drive motor to assist regenerator displacement and...assessment of the expander’s performance with lip seals and clearance seals for a regenerator comprised of nickel balls. Further comparison of a stainless

  7. RFQ Cooler and Buncher

    Institute of Scientific and Technical Information of China (English)

    HuangWenxue; WangYue; XuHushan; XiaoGuoqing; ZhanWenlong

    2003-01-01

    The study of nuclides far from the valley of stability in recent years, with various spectroscopic methods, sets new demands for the handling of the ion beams. A relative old technique that was first proved to be feasible by Paul and his coworkers has been revived by using electromagnetic fields to prevent the low energy ions from losing in the gas. In the past few years, emittance improvement of low-energy radioactive ion beams has gained a lot of interest and several devices for an emittance improver and buncher have been constructed.

  8. Sound propagation in narrow tubes including effects of viscothermal and turbulent damping with application to charge air coolers

    Science.gov (United States)

    Knutsson, Magnus; Åbom, Mats

    2009-02-01

    Charge air coolers (CACs) are used on turbocharged internal combustion engines to enhance the overall gas-exchange performance. The cooling of the charged air results in higher density and thus volumetric efficiency. It is also important for petrol engines that the knock margin increases with reduced charge air temperature. A property that is still not very well investigated is the sound transmission through a CAC. The losses, due to viscous and thermal boundary layers as well as turbulence, in the narrow cooling tubes result in frequency dependent attenuation of the transmitted sound that is significant and dependent on the flow conditions. Normally, the cross-sections of the cooling tubes are neither circular nor rectangular, which is why no analytical solution accounting for a superimposed mean flow exists. The cross-dimensions of the connecting tanks, located on each side of the cooling tubes, are large compared to the diameters of the inlet and outlet ducts. Three-dimensional effects will therefore be important at frequencies significantly lower than the cut-on frequencies of the inlet/outlet ducts. In this study the two-dimensional finite element solution scheme for sound propagation in narrow tubes, including the effect of viscous and thermal boundary layers, originally derived by Astley and Cummings [Wave propagation in catalytic converters: Formulation of the problem and finite element scheme, Journal of Sound and Vibration 188 (5) (1995) 635-657] is used to extract two-ports to represent the cooling tubes. The approximate solutions for sound propagation, accounting for viscothermal and turbulent boundary layers derived by Dokumaci [Sound transmission in narrow pipes with superimposed uniform mean flow and acoustic modelling of automobile catalytic converters, Journal of Sound and Vibration 182 (5) (1995) 799-808] and Howe [The damping of sound by wall turbulent shear layers, Journal of the Acoustical Society of America 98 (3) (1995) 1723-1730], are

  9. Thermal-hydraulic analysis of transients in the HELIOS loop including a CICC section representative of the JT-60SA Central Solenoid

    Science.gov (United States)

    Carli, S.; Bonifetto, R.; Hoa, C.; Savoldi, L.; Zanino, R.

    2015-12-01

    The HELIOS facility at CEA Grenoble is a supercritical helium (SHe) loop which is being used to investigate the effects on the cryogenic cooling system of the pulsed heat loads which are typical of superconducting tokamak operation. In the standard configuration, the magnet heat load is simulated by electrical heaters wrapped around a section of cryoline. In the present work, the resistively heated section is substituted in the HELIOS model of the 4C code, already validated for the standard configuration of HELIOS, by a sub-size winding structure made of JT-60SA Cable-In-Conduit Conductors (CICCs). The new model is then used to highlight the differences in the circuit behaviour when the heated pipe is substituted by an actual magnet wound with CICCs, checking the representativeness of the control strategies developed for the present HELIOS configuration. The use of CICCs will be shown to produce an intrinsic smoothing of the temperature profiles which is not affecting the capability of the control strategies to smooth the heat loads to the cryoplant.

  10. 记忆合金在节流制冷器中的应用%Application of shape memory alloy in J-T cryocoolers

    Institute of Scientific and Technical Information of China (English)

    徐庆松; 崔戈

    2014-01-01

    介绍了一种红外探测器上所应用的新型节流制冷器,该制冷器采用形状记忆合金(Shape Memory Alloy)作为自调机构的调节元件;与传统波纹管型自调式制冷器相比,具有结构简单、装调方便、寿命长、稳定性好等优点;文中还对记忆合金工作原理、制冷器结构及低温记忆合金现状和前景等进行了简要的介绍和分析。%A novel self-regulated J-T cryocooler for infrared detector is introduced,shape memory alloy is used as regu-lated elements.Compared with the bellows self-regulated cryocooler,the cryocooler has the advantages of simple struc-ture,easy adjustment,long life and good stability.Working principle of shape memory alloy and the cryocoolers struc-ture are discussed.The current status and prospect of cryogenic shape memory alloy are introduced.

  11. Self-consistent long-time simulation of chirping energetic particle modes and abrupt large events in beam-driven JT-60U tokamak plasmas

    Science.gov (United States)

    Bierwage, A.; Shinohara, K.; Todo, Y.; Aiba, N.; Ishikawa, M.; Matsunaga, G.; Takechi, M.; Yagi, M.

    2016-10-01

    Recurring bursts of chirping Alfvén modes as well as so-called Abrupt Large Events (ALE) that were observed in JT-60U tokamak plasmas driven by negative-ion-based neutral beams (N-NB) are reproduced in first-principle simulations performed with an extended version of the hybrid code MEGA. This code simulates the interactions between gyrokinetic fast ions and magnetohydrodynamic (MHD) modes in the presence of a realistic fast ion source and collisions, so that it self-consistently captures dynamics across a wide range of time scales (0.01-100 ms). Detailed comparisons with experimental measurements are performed. On the long time scale (10-100 ms) the simulation reproduces ALEs with the associated avalanche-like transport of fast ions. ALEs are shown to occur when multiple modes with toroidal mode numbers n = 1 , 2 , 3 are excited to large amplitudes. On the meso time scale (1-10 ms), bursts of chirping modes are reproduced, which are shown to be n = 1 energetic particle modes (EPM). On the short time scale (0.01-0.1 ms), pulsations and phase jumps are reproduced, which we interpret as the result of beating between multiple resonant wave packets. JSPS Grant-in-Aid for Scientific Research (No. 25820443, 16K18341). NIFS Collaborative Research Program (NIFS12KNTT016).

  12. Explore the Water-cooled Slag Cooler Drum Master Cylinder Structure%滚筒水冷式冷渣机主筒结构探讨

    Institute of Scientific and Technical Information of China (English)

    吴浪

    2014-01-01

    在锅炉系统中,冷渣机对高温炉渣的冷却起着重要的作用,而滚筒水冷式冷渣机因其自身所具有的一些优点得到了较为广泛的应用。在滚筒水冷式冷渣机中,其主筒结构对其性能和工作效率等都会产生直接的影响。针对生产的实际需求,对滚筒水冷式冷渣机进行改进和完善时,要充分考虑主筒结构设计和所要改善的问题,从而使其能够更好地发挥冷却作用。%In the boiler system, slag cooler for cooling high-temperature slag plays an important role, and the cold cylinder water-cooled slag machine has its own advantages has been more widely used. In the cylinder water-cooled slag cooler in the main tube structures have a direct impact on their performance and work efficiency will be. When the actual demand for the production of cylinder water-cooled slag cooler to improve and perfect, to fully consider the master cylinder and the structural design issues to be improved, making it better able to exert a cooling effect.

  13. Air Coolers and Fin Tubes for Heat Transfer Enhancement%空气冷却器及其强化传热翅片管型

    Institute of Scientific and Technical Information of China (English)

    曲燕; 仇性启; 王丽飞

    2012-01-01

    对干式、湿式以及干湿联合式空气冷却器的换热特点、常用的翅片管结构、三维翅片等强化传热翅型以及空气冷却器翅片管的加工工艺、选材等方面进行了综述研究.采用套片式加工工艺的条缝型错置带状三维翅片和采用无屑加工方法成形的锯齿翅片,在较低空气流速下具有较高的传热因子和摩擦因子比,是提高空气冷却器空气侧换热的高效翅片管型,为石化行业空气冷却器翅片管的改造提供参考.%The heat transfer characteristics of dry-type, wet-type and combined type air coolers, and the commonly-used fin-tube structures, the 3D enhanced heat transfer fins and the fin-tube processing as well as the material selection of air coolers were studied, the results show that the slotted 3D fin-tube which boasting of continuous integral technology and the serrated fin-tube which boasting of chipless machining method can enhance the air-side heat transfer efficiency because of their higher heat transfer factor and friction factor at lower air velocity. This provides the reference for upgrading of air cooler' s fin-tube in petrochemical industry.

  14. A Cold Model Experimental Study on the Flow Characterisitcs of Bed Baterial in A Fluidized ed Bottom Ash Cooler in a CFB Boiler

    Institute of Scientific and Technical Information of China (English)

    LuXiaofeng; LiYourong

    2000-01-01

    A cold model experimental study on the flowing characteristics of bed meterial between a fluidized bed ash cooler and a furnace of CFB boiler were discussed in this paper.The research results showed that flowing status of the bed material in a bubbling bed,which was run with a circulating fluidized bed together in parallel operation,was influenced by the pressure difference between the CFB and the bubbling bed,the switch status of unlocking air ,and the structure of the exit of the bubbling bed.There was a circulating flow of bed material between CFB and bubbling bed.

  15. Cryopreservation of encapsulated liver spheroids using a cryogen-free cooler: high functional recovery using a multi-step cooling profile.

    Science.gov (United States)

    Massie, I; Selden, C; Morris, J; Hodgson, H; Fuller, B

    2011-01-01

    Acute liver failure has high mortality with unpredictable onset. A bioartificial liver, comprising alginate-encapsulated HepG2 spheroids, could temporarily replace liver function but must be cryopreservable. For clinical use, contamination risks from liquid coolants for cryopreservation and storage should be minimized. A cryogen-free cooler was compared to nitrogen vapour-controlled cryopreservation of alginate-encapsulated liver cell spheroids (AELS). AELS were cooled using a multi-step, slow-cooling profile in 12 percent v/v Me2SO Celsior and stored in liquid nitrogen; temperatures were recorded throughout, and the AELS were assayed at 24, 48 and 72 hours post-warming and results compared to unfrozen control values. Viability was assessed by fluorescent staining and quantified using image analysis; cell numbers were quantified using nuclear counts, and cell function using albumin synthesis. The cryogen-free cooler performed the cooling profile as desired, apart from one step requiring a rapid cool ramp. Viability, cell numbers and function were similarly decreased in both cryopreserved groups to about 90 percent, 70 percent and 65 percent of the controls respectively. This technology offers a clinic alternative to liquid nitrogen-coolant cryopreservation.

  16. Design of the Palmer pickup for stochastic pre-cooling of heavy ions in the CR

    CERN Document Server

    Barker, D J; Peschke, C; Thorndahl, L

    2013-01-01

    We report on the design of a Faltin type pickup for the stochastic cooling of rare isotope beams (RIBs), using a bandwidth of 1–2 GHz, for the Collector Ring (CR) at GSI. Through HFSS simulations using an eigenmode solver, the impedance and signal output phases are calculated and presented.

  17. 环冷机密封对烧结余热回收效率影响的研究%Research on Annular Cooler Sealing Influence to Sinter Waste Heat Recovery Efficiency

    Institute of Scientific and Technical Information of China (English)

    徐启明; 兰军鹏; 石伟丽; 高慧文; 顾铮

    2014-01-01

    Take two completely identical sintering machine waste heat recovery systems as testing platform to research the annular cooler sealing influence on sintering waste heat recovery system .The testing result shows that the annular cooler sealing improvement can reduce annular cooler air leakage rate and increase fume volume as well as reducing the fume temperature .However , when the annular cooler blast volume reach certain level , the improve-ment of annular cooler sealing will decrease the waste heat recovery efficiency .The reason is that when the annular cooler blast volume increase , the heat taken from the sinter ore by air will reach limit value and become stable , but the boiler flue gas loss will keep increasing , finally the waste heat recovery system recovery efficiency will decrease .%以两套完全相同的烧结机余热回收系统为测试平台,研究了环冷机密封对烧结余热回收系统的影响。测试结果表明,环冷机密封的改善降低了环冷机漏风率,提高烟气量、同时降低烟气温度。在环冷机鼓风量达到某一特定值时,通过改善环冷机密封反而降低了余热回收效率。这主要是因为环冷机鼓风量增加时,空气从烧结矿中带走的热量会达到一个极限值并趋于稳定,而锅炉的排烟损失始终增加,最终导致余热回收系统的回收效率降低。

  18. 加气母站压缩机冷却器水垢的酸洗清除%Pickling for scale of compressor cooler in primary filling station

    Institute of Scientific and Technical Information of China (English)

    王少杰; 宋玉红

    2013-01-01

    管壳式冷却器是往复式压缩机的重要部件,冷却管附着水垢会降低冷却效率和供气量,影响压缩机性能.以某加气母站压缩机冷却器为例,采取以氨基磺酸、柠檬酸为主的有机酸混合溶液对冷却器进行清洗,有效清除水垢的同时,减少了对冷却系统部件材质的腐蚀.对于气缸、润滑油冷却管等部件的清洗,提出逆流向、分段式清洗方法,解决了因冷却管路复杂而清洗困难的问题.为了降低故障发生率,总结了压缩机日常保养注意事项,对其冷却系统的运行管理具有借鉴意义.%Tubular cooler is an important part of reciprocating compressor. Scale on the cooling pipes will reduce the cooling efficiency and gas supply so as to affect performance of the compressor. Taking compressor coolers in some primary filling station as an example, sulfamic acid and citric acid-based organic acid mixed solutions are used to clean coolers, which can reduce material corrosion of cooling system components in addition to effectively removing the scale. For cleaning of the cylinder, lubricating oil cooling pipe and other parts, the reverse and sectional cleaning method is proposed to solve the problem of difficult cleaning due to the complexity of cooling lines. In order to reduce failure rate, routine maintenance considerations of cooling systems are summarized, which can provide references to the operation and management of compressor cooling systems.

  19. Improving Best Air Conditioner Efficiency by 20-30% through a High Efficiency Fan and Diffuser Stage Coupled with an Evaporative Condenser Pre-Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Danny S; Sherwin, John R; Raustad, Richard

    2014-04-10

    The Florida Solar Energy Center (FSEC) conducted a research project to improve the best residential air conditioner condenser technology currently available on the market by retrofitting a commercially-available unit with both a high efficiency fan system and an evaporative pre-cooler. The objective was to integrate these two concepts to achieve an ultra-efficient residential air conditioner design. The project produced a working prototype that was 30% more efficient compared to the best currently-available technologies; the peak the energy efficiency ratio (EER) was improved by 41%. Efficiency at the Air-Conditioning and Refrigeration Institute (ARI) standard B-condition which is used to estimate seasonal energy efficiency ratio (SEER), was raised from a nominal 21 Btu/Wh to 32 Btu/Wh.

  20. 一种安全快捷的空冷器管束现场堵漏技术%Safe and Quick Technology of Air Cooler Plugging

    Institute of Scientific and Technical Information of China (English)

    王明礼

    2011-01-01

    通过对天然气压缩机组空冷器的结构与制造工艺的研究分析,对翅片管泄漏采用了具有安全、快捷、在线显著特点的堵漏新方法,由此达到了不动火封堵泄漏翅片管的目的.%Based on natural gas compressor air cooler structure and manufacture process of research and analysis, new plugging technology of sealing leakage of finned tube was successfully a-dopted, with safe, efficient, on-site plugging. The result showed that the new method achieve not-hot sealing leakage finned tube purpose.

  1. Comparative study between a ceramic evaporative cooler (CEC) and an air-source heat pump applied to a dwelling in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Francisco Javier Rey; Gomez, Eloy Velasco; Gonzalez, Ana Tejero [University of Valladolid, Dept. of Energy and Fluidmechanics, School of Engineering, Paseo del Cauce s/n, C. P. 47011, Valladolid (Spain); Murrieta, Fernando Enrique Flores [University of Quintana Roo, Science and Engineering Division, Blvd. Bahia s/n esq. I. Comonfort. Col. Del Bosque. 77019, Chetumal, Quintana Roo (Mexico)

    2010-10-15

    The study described in this paper aims to evaluate comparatively the interest of an implementation of a ceramic evaporative cooler (CEC) compared to the use of a conventional device such as an air-source heat pump. This comparison is presented in three closely related ways: energy consumption, environmental impact and economic costs. This analysis is based on the hypothetical cooling of a specific room in a dwelling in six Spanish cities, each characterised by a different climate. The behaviour of the CEC in each climate is determined experimentally, reproducing the typical air conditions by an air-treatment unit. The total cooling demand in each city during the summer months is obtained from the data of the thermal load evolution in the room, provided by thermal load calculation software. (author)

  2. Simulations of the HIE-ISOLDE radio frequency quadrupole cooler and buncher vacuum using the Monte Carlo test particle code Molflow

    CERN Document Server

    Hermann, M; Vandoni, G; Kersevan, R

    2013-01-01

    The existing ISOLDE radio frequency quadrupole cooler and buncher (RFQCB) will be upgraded in the framework of the HIE-ISOLDE design study. In order to improve beam properties, the upgrade includes vacuum optimization with the aim of tayloring the overall pressure profile: increasing gas pressure at the injection to enhance cooling and reducing it at the extraction to avoid emittance blow up while the beam is being bunched. This paper describes the vacuum modelling of the present RFQCB using Test Particle Monte Carlo (Molflow+). In order to benchmark the simulation results, real pressure profiles along the existing RFQCB are measured using variable helium flux in the cooling section and compared with the pressure profiles obtained with Molflow+. Vacuum conditions of the improved future RFQCB can then be simulated to validate its design. (C) 2013 Elsevier B.V. All rights reserved.

  3. What do we do, if some of the MICE magnets can't be kept cold using the two-stage coolers?

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-01-26

    Tests of the spectrometer solenoids have not been encouraging in terms of keeping the magnets cold using three 1.5 W (at 4.2 K) coolers. The spectrometer solenoids are being rebuilt with additional cooling capacity at 4.2 K. It is hoped that there will be sufficient 4.2 K cooling to keep the magnets cold. The spectrometer solenoids can be kept cold using liquid helium (up to a boil-off of 20 liters per day). This option does not apply for the other magnets in the MICE cooling channel, because there is not enough liquid helium storage within the magnet cold mass. It is important that the MICE collaboration ask the question, “How do we keep the MICE cooling channel magnets cold, if there isn’t sufficient cooling from the 4.2 K coolers?” This report discusses the cooling requirements at both 40 K and 4.2 K for all three types of MICE cooling channel magnets. This report discusses the steps that must be taken in the magnet fabrication to permit the magnets to be cooled using a small (20 to 40 W) external 4.2 K Claude cycle refrigerator. One must also ask the question as to whether there is enough excess capacity in the decay solenoid refrigerator to cool some of the MICE magnets. A plan for cooling the magnets using a Linde 1400 series refrigerator is presented. A plan for increasing the 4.4 K refrigeration from the existing decay solenoid refrigerator is also presented.

  4. 氨冷凝器漏氨对水冷器设备影响状况及分析%EFFECT ON WATER COOLER BY AMMONIA-LEAK FROM AMMONIA CONDENSER AND ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    高万飞; 唐丛林

    2012-01-01

    The ammonia level in circulation water once ammonia is leaked irom the condenser, me cor- rosion and fouling inside the water-cooler and under-ground piping network are introduced as well as the corrosion on monitoring test-blocks, test-tube of monitoring heat-exchanger and data of fouling sample in wa- ter-cooler are analyzed;all those show that a long-term ammonia-leak from the condenser may cause the wa- ter-cooler to have a fouling deposits and this may directly or in-directly lead to a corrosion increase in the water-cooler.%介绍氨冷凝器氨泄漏后循环水中氨的状况,根据水冷器设备及地下管网腐蚀和结垢的检查情况,以及对监测试片、监测换热器试管的腐蚀情况和水冷器垢样数据的分析情况,表明氨冷凝器长期漏氨对水冷器设备有结垢沉积,并直接和间接引起水冷器设备腐蚀增加。

  5. Lecture review, question collection: accelerators, detectors, particle and heavy ion physics, cosmology / Az előadások megbeszélése, kérdések összegyűjtése: gyorsítók, detektorok, részecske- és nehézion-fizika, kozmológia

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Lecture review, question collection: accelerators, detectors, particle and heavy ion physics, cosmology / Az előadások megbeszélése, kérdések összegyűjtése: gyorsítók, detektorok, részecske- és nehézion-fizika, kozmológia

  6. 蒸发式空冷器强化传热性能%Enhanced heat transfer performance of evaporative air coolers

    Institute of Scientific and Technical Information of China (English)

    朱康玲; 于飞; 戴建军; 赵福臣; 秦国民; 范敦贵

    2014-01-01

    The evaporative air cooler is a complex system whose essential components comprise heat exchanger pipe coil,circulation water pump and fan.As these essential components interact within the system,the optimal combination of which is significant for heat transfer enhancement.The effects of circulation water pump frequency, fan frequency,inlet temperature and fluid rate of the process fluid on the heat transfer performance of evaporative air coolers were experimentally studied.The results show that the heat transfer rate and united heat transfer coefficient outside the tubes all increase continuously with the inlet temperature of the process fluid rising.When the hot water pump frequency increases,the united heat transfer coefficient outside the tubes is unchanged,but the heat transfer rate accordingly increases to a certain extent,then remains stable.The effects of circulation water pump and fan frequencies on the heat transfer performance are not a simple positive correlation,and there exists an optimal coupling.When the inlet temperature of the process fluid is 50 ℃,the optimum heat transfer performance can be obtained as the circulation water pump frequency,the fan frequency and the hot water pump frequency are 30,45,42 Hz respectively.The concept of united heat transfer coefficient outside the tubes was presented and researched,which simplified the process calculation.The results provide the basis for the optimal design and operation of evaporative air coolers.%蒸发式空冷器是由换热盘管、循环水泵和风机等组成的一个复杂系统,系统内部各部件相互影响,优化组合对强化传热至关重要。实验研究了循环水泵频率、风机频率、管内流体进口温度和热水泵频率等因素对蒸发式空冷器传热性能的影响。结果表明:管内流体进口温度增加时,传热速率和管外联合传热系数均呈现持续增加的趋势;热水泵频率增加时,管外联合传热系数基本没有变

  7. The Energy -saving Effect Evaluation of Fuel Gas Cooler%烟气冷却器的节能效果评价

    Institute of Scientific and Technical Information of China (English)

    段立强; 李冉; 杨勇平

    2012-01-01

    By taking full advantage of the waste heat from the flue gas of power plant to heat the condensate by the flue gas cooler can replace part of heat of feeding water heating, thus reducing the steam extraction of the low -pressure (LP) cylinder, which will increase the output power of LP turbine and decrease the unit energy consumption of system. With the reduction of the unit load, the differences of the energy saving effect brought about by the different integration ways of linking gas cooler and the regenerative heater system gradually increases. Meanwhile, the effects of different integration methods on the additional unit consumption of heaters are different. In addition, the corrosion problem is still the bottleneck that will limit the deep use of low - temperature flue gas heat. The breakthrough in material technology will make it possible to further lower the temperature of fuel gas, which will further improve the thermal performance of power plant.%通过烟气冷却器充分利用电站锅炉的排烟余热加热凝结水能够替代部分回热抽汽,减少了回热系统对低压缸的抽汽,使汽轮机做功量增加,机组煤耗降低.烟气冷却器按照不同的联结方式与回热系统的加热器集成后,随着机组负荷的降低,所带来的节煤效果的差别逐渐变大.并且,不同的集成方式对加热器内部附加单耗的影响差异较大.另外,腐蚀问题仍然是限制低温烟气余热深度利用的瓶颈.若能在材料上有所突破,就能得到更低的排烟温度,使机组的热经济性进一步提高.

  8. Compound Evaporative Air Cooler and Its Equipment and Piping Layout%复合型蒸发式空冷器及其设备和管道布置

    Institute of Scientific and Technical Information of China (English)

    郑志伟; 朱大亮; 王浩; 臧红斌

    2016-01-01

    Compound evaporative air cooler is a new kind of effective heat exchange equipment developed in recent years. It has many advantages, such as compact construction, low investment, scale prevention, 'white mist' prevention and high heat transfer efficiency. The equipment layout and piping arrangement of compound evaporative air cooler has its own requirements apart from meeting the general provisions of air cooler. Compared to ordinary air cooler, and with the respect of occupying area, the equipment layout of 'back to back, side by side' was proposed. The piping arrangement was then introduced from respects of the two-phase flow, support of inlet pipe and pipe stress calculation. It was conclude that there is no additional displacement existed in the nozzles in compound evaporative air cooler, and the nozzle stress can be reduced from self-compensation of pipe. What presented herein can be referenced in equipment layout and piping arrangement for compound evaporative air cooler.%复合型蒸发式空冷器是近几年研发的新型高效冷换设备,具有结构紧凑、投资低、防垢防"白雾"、传热效率高等诸多优点.复合空冷的设备及管道布置除要满足空冷器的一般规定外,有其自身特点.通过与普通空冷对比,从占地面积角度介绍其平面布置,提出了"背靠背、面靠面"的设备布置形式;从两相流管道布置、入口管道支撑及管道应力计算方面介绍其管道布置,提出了复合空冷管嘴处不存在附加位移,可通过自然补偿来降低管嘴受力,为复合型蒸发式空冷器的设备及管道布置提供参考.

  9. Entropy Minimum Generation Analysis Of Circular Fin for Air Cooler%空冷器环肋的熵最小化原理分析

    Institute of Scientific and Technical Information of China (English)

    詹福才; 王立新; 荣丁石; 张志荣

    2011-01-01

    Circular fin parameters for regular triangle arrangement tubes of air cooler are analyzed by EMG (entropy minimum generation) principle. The impact of face velocity,bundle width,tube length, tube rows, fin height, fin thickness, fin density and horizontal tube pitch on heat exchange performance and motor power are studied. The results show that lower face velocity,higher and thinner fin, higher fin density, more tube rows and smaller tube pitch can lead to less irreversible loss. The presentations of this paper is applicable for other type of fins optimization design.%运用熵最小化原理对空冷器正三角形排列换热管的环肋进行了优化,分析了迎面风速、管束宽度、换热管长度、管排数、翅片高度、翅片厚度、翅片密度以及管间距对其换热性能和电机功率消耗的影响.结果表明,低迎面风速、高薄翅片、高翅片密度、多管排数和较小的管间距造成的不可逆损失较小.这一分析结果也适用于其它类型翅片的优化设计.

  10. Quadrupole Moments of odd-A 53-63Mn: First use of optical pumping in the ISOLDE cooler/buncher

    Science.gov (United States)

    Babcock, Carla; Collaps Collaboration

    2016-09-01

    The technique of optical pumping has been used in the ISOLDE (CERN) cooler/buncher ion trap in order to study the previously inaccessible quadrupole moments of neutron-rich manganese ions via collinear laser spectroscopy. Previously, the insensitivity of the ground state atomic transitions to the quadrupole interaction prevented the determination of the electric quadrupole moment with any reasonable accuracy. Instead, a transition from an ionic metastable state was used and this state was populated via optical pumping. This was done in the bunching region of the ion trap, to allow multiple laser-ion interactions. Spectroscopic quadrupole moments were measured for the odd-even isotopes in the range 53-63Mn. They were compared to the predictions of three modern shell model effective interactions. The inclusion of both the 1 νg9 / 2 and 2 νd5 / 2 orbitals in the model space was thus shown to be necessary to reproduce the observed increase in the quadrupole deformation from N = 36 onwards. Specifically, the inclusion of the 2 νd5 / 2 orbital induces an increase in neutron and proton excitations across the proposed gaps at N = 40 and Z = 28 , leading to an increase in deformation in the more neutron-rich isotopes.

  11. Phased array ultrasonic technology (PAUT) contribution to detection and sizing of microbially influenced corrosion (MIC) of service water systems and shutdown coolers heat exchangers in OPG CANDU stations

    Energy Technology Data Exchange (ETDEWEB)

    Ciorau, P.; Pullia, L.; Hazelton, T., E-mail: peter.ciorau@opg.com, E-mail: lou.pullia@opg.com, E-mail: trek.hazelton@opg.com [Ontario Power Generation, Toronto, Ontario (Canada); Daks, W. [CAD WIRE, Markham, Ontario (Canada)

    2008-07-01

    Three PAUT techniques [linear scan - longitudinal waves, sector scan -longitudinal waves and sector scan-transverse waves] were developed and validated to assess the MIC attack in service water systems (SWS) and shutdown coolers heat-exchangers (SDC-HX) of Darlington and Pickering CANDU stations. PAUT employs linear array probes with a frequency between 4-12 MHz, depending on surface conditions, component geometry and MIC size/category to be detected. Examples from lab validation and field trials are presented. Based on field trials results, the techniques were optimized and new cal blocks were manufactured. It was demonstrated for mid-length pipes and for SDC-HX, the PAUT is the best technique compared with D-meter conventional UT and with guided waves. The expected field accuracy is about 0.5 mm (0.020{sup )} for large MIC attack. The ligament evaluation is technically achievable for colonies / pin holes located 2 mm under the outer surface. Improvements were identified and implemented for the next outages. (author)

  12. 新型叠片式油冷却器传热及综合性能的研究%Study on Heat Transfer and Comprehensive Performance of a New Laminated Oil Cooler

    Institute of Scientific and Technical Information of China (English)

    魏小兵; 江楠; 梁帅

    2012-01-01

    探讨一种铝叠片和弓形折流板相结合的新型叠片式油冷却器,对其传热及综合性能进行了研究,并与螺纹管弓形折流板油冷却器进行了对比.试验结果表明,新型叠片式油冷却器热交换量较螺纹管弓形折流板油冷却器平均提高52.5%,单位压降热交换量较螺纹管弓形折流板油冷却器平均提高24.1%.在整体结构方面,其单位体积换热面积为螺纹管弓形折流板油冷却器的2.84倍,而材料总重量仅为螺纹管弓形折流板油冷却器的60.7%,说明新型叠片式油冷却器具有体积小、换热面积大、重量轻的优点;从经济效益角度看,新型叠片式油冷却器相比螺纹管弓形折流板油冷却器更加节省耗材成本,体现了新型换热器的高效性、紧凑性和节能性.%The heat transfer and comprehensive performance of a new laminated oil cooler which is combined aluminum plates with segmental baffle in shell side was studied and compared with spiral tube and segmental baffle oil cooler. Experimental results indicated that the heat quantity of new laminated oil cooler improves about 52. 5% than the spiral tube and segmental baffle oil cooler,and the heat quantity unit pressure drop increases about 24.1%. At the aspect of integral structure, its heat transfer area unit volume is 2.84 times as much as the spiral tube and segmental baffle oil cooler,and the total material weight is only 60.1% of the spiral tube and segmental baffle oil cooler, which shows the advantages of small volume, large heat transfer area and light weight;From an economic point view,the new laminated oil cooler saves more material cost than the spiral tube and segmental baffle oil cooler which embodies the high - efficiency , compactness and energy conservation of new type of heat exchanger.

  13. Analysis and Improvement of Problems in Operation of Bottom Ash Cooler of Wind and Water Union%风水联合冷渣器在运行中的问题分析及改进

    Institute of Scientific and Technical Information of China (English)

    王凯; 胡娜娜

    2013-01-01

      风水联合冷渣器广泛应用于大型循环流化床锅炉,但在运行中出现了诸多问题。针对某电厂风水联合冷渣器在运行中出现的问题,提出了改进措施与建议。%Bottom ash cooler of wind and water union was widely used in large-scale circulating fluidized bed boiler. Howev-er, there were many problems in operation. Aiming at problems in operation of bottom ash cooler of wind and water union, the paper was put forward improving measures and suggestions.

  14. 环冷机余热回收与利用系统的能量分析%Energy analysis of waste heat recovery and utilization system for ring cooler

    Institute of Scientific and Technical Information of China (English)

    刘传鹏; 李国俊; 林文佺; 李明浩; 许渡姜; 郁鸿凌

    2015-01-01

    Based on the process of waste heat recovery from sintering and utilization system for ring cooler,the energy flow diagram and the energy flow diagram were draw,the relevant energy evaluation was established. The thermal bal-ance method and exergy analysis were applied to study waste heat utilization in a ring cooler,such as heat loss,energy loss,thermal efficiency and energy efficiency during the process of the conversion and utilization for waste heat resourc-es. The results show that,the thermal efficiency of ring cooler and waste heat boiler were 26.78%and 45.60%,respective-ly,the corresponding energy efficiencies were 22.88%and 45.08%,respectively,hence,ring cooler was the weak link during the recovery and utilization of waste heat system. The main factors affecting the recovery and utilization of waste heat were the air leakage of ring cooler,Un-utilization of sensible heat of the third cooling gas and the process of gas-sol-id heat transfer in sintering bed.%根据某钢厂的环冷机系统回收与利用烧结矿显热的工艺流程,绘制了能流图、(火用)流图,并建立相关能量评价指标,采用热平衡方法和(火用)分析方法对环冷机的余热回收利用状况进行研究,分析了余热资源在回收与利用过程中的热量损失、(火用)量损失、热效率与(火用)效率.结果表明:环冷机、余热锅炉2个环节的热效率分别为26.78%和45.60%,(火用)利用效率分别为22.88%和45.08%,环冷机是余热回收与利用的薄弱环节;目前影响余热回收与利用的主要因素是环冷机取热段的漏风问题、第三段冷却废气所携带的显热尚未被利用以及烧结矿层的气固换热过程.

  15. 平行轴布置的斯特林制冷机设计原理与应用分析%THE PRINCIPLE AND APPLICATIONS OF PARALLEL-AXIS LAYOUT STIRLING COOLER

    Institute of Scientific and Technical Information of China (English)

    孙皓; 陈晓屏

    2015-01-01

    IR imaging system on stabilized platform with gimbals is usually designed employing the linear cryocooler for small vibration. These systems trade off weight,size,and input power. Common rotary Stirling coolers take on bigger vibration than that of linear cooler though more efficient. The rotary cooler possessing parallel-axis layout could have a small effect on platform with high efficiency. This paper depicts the sources of self induced vibration and the characteristic of the stabilized platform. The rotary Stirling cooler is designed according to gimbals. Overturning moment can be coun-tered by the bearings in platform,and then the payload jitter smaller. The new rotary Stirling cooler is compatible with the stabilized platform.%稳定平台光电系统设计常用线性斯特林制冷机以达到振动小的要求,但以牺牲重量、尺寸、功耗为代价。旋转式制冷机功耗低、尺寸小却振动大;设计平行轴布置斯特林制冷机以减小旋转制冷机对稳定平台的振动影响。分析了旋转制冷机振动源与稳定平台框架的系统刚性特点;从系统耦合的角度,通过力学模型分析平行轴布置斯特林制冷机振动源叠加的情况,根据分析结果提出利用稳定平台刚度高的方向吸收制冷机翻倒力矩的激励,降低平台的抖动程度。最后指出平行轴布置斯特林制冷机与框架结合应用的合理性与可行性。

  16. Efficiency Analysis of Ejector Cooler

    Directory of Open Access Journals (Sweden)

    Vytautas Ališauskas

    2017-01-01

    Full Text Available In this article the review of ejection coolers’ constructions and operation principles is presented. The ejection cooler’s with diffe-rent separators work efficiency reates’ dependence from confusor inlet opening’s angle and the cooled water’s temperature is exa-mined.

  17. Integrated Sensing and Controls for Coal Gasification - Development of Model-Based Controls for GE's Gasifier and Syngas Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Aditya Kumar

    2010-12-30

    This report summarizes the achievements and final results of this program. The objective of this program is to develop a comprehensive systems approach to integrated design of sensing and control systems for an Integrated Gasification Combined Cycle (IGCC) plant, using advanced model-based techniques. In particular, this program is focused on the model-based sensing and control system design for the core gasification section of an IGCC plant. The overall approach consists of (i) developing a first-principles physics-based dynamic model of the gasification section, (ii) performing model-reduction where needed to derive low-order models suitable for controls analysis and design, (iii) developing a sensing system solution combining online sensors with model-based estimation for important process variables not measured directly, and (iv) optimizing the steady-state and transient operation of the plant for normal operation as well as for startup using model predictive controls (MPC). Initially, available process unit models were implemented in a common platform using Matlab/Simulink{reg_sign}, and appropriate model reduction and model updates were performed to obtain the overall gasification section dynamic model. Also, a set of sensor packages were developed through extensive lab testing and implemented in the Tampa Electric Company IGCC plant at Polk power station in 2009, to measure temperature and strain in the radiant syngas cooler (RSC). Plant operation data was also used to validate the overall gasification section model. The overall dynamic model was then used to develop a sensing solution including a set of online sensors coupled with model-based estimation using nonlinear extended Kalman filter (EKF). Its performance in terms of estimating key unmeasured variables like gasifier temperature, carbon conversion, etc., was studied through extensive simulations in the presence sensing errors (noise and bias) and modeling errors (e.g. unknown gasifier kinetics, RSC

  18. LOREF: Air cooler optimisation with reduction of ice and frost formation - Optimisation of lamella air-coolers/evaporators of air/water heat pumps - Part 1: theoretical and experimental research; LOREF: Luftkuehler-Optimierung mit Reduktion von Eis- und Frostbildung - Optimierung des Lamellenluftkuehlers/Verdampfers von Luft/Wasser-Waermepumpen - Teil 1: theoretische und experimentelle Untersuchungen

    Energy Technology Data Exchange (ETDEWEB)

    Berlinger, L.; Imholz, M.; Albert, M.; Wellig, B.; Hilfiker, K.

    2008-04-15

    The use of air/water heat pumps for heating of houses is progressively increasing. It is to be expected that the average coefficient of performance (COP) can be improved substantially over the next decade. Its success will depend on controlling and reducing the formation of frost and ice which reduce the air flow and the heat and mass transfer in the fin tube evaporator. In the LOREF research project a mathematical-physical simulation program has been developed which permits to calculate the formation of condensate, ice and frost and also the pressure loss of the air as a function of space and time at any condition of the ambient air. The theoretical results have been validated by numerous experiments in which the air temperature and humidity, the temperature difference and the air velocity have been systematically varied. Particular emphasis has been given to the geometries of the fin tube evaporator. Several fin partitions along the cooler have been investigated. Using the simulation program the evaporator of a commercial heat pump was optimized and experimentally compared to the original evaporator. The resulting seasonal performance factors were nearly equal what confirms the small differences obtained by simulations. Nevertheless, the optimized evaporator features advantages in respect of the defrosting with ambient air because of its bigger fin spacing and the resulting decrease in pressure drop. The results of the LOREF research project are now the basis for the overall optimization of air/water heat pumps. (author)

  19. Boundary condition for toroidal plasma flow imposed at the separatrix in high confinement JT-60U plasmas with edge localized modes and the physics process in pedestal structure formation

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, K.; Honda, M.; Urano, H.; Yoshida, M.; Kamada, Y. [Japan Atomic Energy Agency (JAEA), Naka, Ibaraki-ken 311-0193 (Japan); Itoh, K. [National Institute for Fusion Science (NIFS), Toki, Gifu 509-5292 (Japan)

    2014-12-15

    Modulation charge eXchange recombination spectroscopy measurements with high spatial and temporal resolution have made the evaluation of the toroidal plasma flow of fully stripped carbon impurity ions (V{sub ϕ}{sup C6+}) in the JT-60U tokamak peripheral region (including, in particular, the separatrix) possible with a better signal-to-noise ratio. By comparing co- and counter-neutral beam injection discharges experimentally, we have identified the boundary condition of V{sub ϕ}{sup C6+} and radial electric field shear (∇E{sub r}) imposed at the separatrix in high confinement (H-mode) plasmas with edge localized modes (ELMs). The V{sub ϕ}{sup C6+} value at the separatrix is not fixed at zero but varies with the momentum input direction. On the other hand, the ∇E{sub r} value is nearly zero (or very weakly positive) at the separatrix. Furthermore, the edge localized mode perturbation does not appear to affect both V{sub ϕ}{sup C6+} and ∇E{sub r} values at the separatrix as strongly as that in the pedestal region. The above experimental findings based on the precise edge measurements have been used to validate a theoretical model and develop a new empirical model. A better understanding of the physical process in the edge transport barrier (ETB) formation due to the sheared E{sub r} formation is also discussed.

  20. Džīnas Vebsteres garstāsta "Garkājtētiņš" trīs tulkojumu latviešu valodā salīdzinājums

    OpenAIRE

    Berga, Madara

    2013-01-01

    Dž. Vebsteres garstāsts „Garkājtētiņš” ir viens no viņas populārākajiem darbiem. Latviski šis darbs ir tulkots trīs reizes —1927., 1979. (pārpublicēts 1991. gadā) un 2000. gadā. Šos tulkojumus šķir vairāki gadu desmiti, valoda šajā laikā ir attīstījusies un mainījusies, tāpēc tulkojumos ir vērojamas lielas atšķirības. Šī pētījuma mērķis ir salīdzināt visus trīs tulkojumus, analizējot tajos izmantotās metodes. Veicu arī aptauju, lai noskaidrotu, kurš variants ir tuvākais mūsdienu lasītājam. ...