WorldWideScience

Sample records for jsc iss cell

  1. Cross-Linkable, Solvent-Resistant Fullerene Contacts for Robust and Efficient Perovskite Solar Cells with Increased JSC and VOC.

    Science.gov (United States)

    Watson, Brian L; Rolston, Nicholas; Bush, Kevin A; Leijtens, Tomas; McGehee, Michael D; Dauskardt, Reinhold H

    2016-10-05

    The active layers of perovskite solar cells are also structural layers and are central to ensuring that the structural integrity of the device is maintained over its operational lifetime. Our work evaluating the fracture energies of conventional and inverted solution-processed MAPbI3 perovskite solar cells has revealed that the MAPbI3 perovskite exhibits a fracture resistance of only ∼0.5 J/m(2), while solar cells containing fullerene electron transport layers fracture at even lower values, below ∼0.25 J/m(2). To address this weakness, a novel styrene-functionalized fullerene derivative, MPMIC60, has been developed as a replacement for the fragile PC61BM and C60 transport layers. MPMIC60 can be transformed into a solvent-resistant material through curing at 250 °C. As-deposited films of MPMIC60 exhibit a marked 10-fold enhancement in fracture resistance over PC61BM and a 14-fold enhancement over C60. Conventional-geometry perovskite solar cells utilizing cured films of MPMIC60 showed a significant, 205% improvement in fracture resistance while exhibiting only a 7% drop in PCE (13.8% vs 14.8% PCE) in comparison to the C60 control, enabling larger VOC and JSC values. Inverted cells fabricated with MPMIC60 exhibited a 438% improvement in fracture resistance with only a 6% reduction in PCE (12.3% vs 13.1%) in comparison to those utilizing PC61BM, again producing a higher JSC.

  2. Bioculture System: Expanding ISS Space Bioscience Capabilities for Fundamental Stem Cell Research and Commercial Applications

    Science.gov (United States)

    Blaber, Elizabeth; Dvorochkin, Natalya; Almeida, Eduardo; Fitzpatrick, Garret; Ellingson, Lance; Mitchell, Sarah; Yang, Anthony; Kosnik, Cristine; Rayl, Nicole; Cannon, Tom; Austin, Edward; Sato, Kevin

    With the recent call by the 2011 Decadal Report and the 2010 Space Biosciences Roadmap for the International Space Station (ISS) to be used as a National Laboratory for scientific research, there is now a need for new laboratory instruments on ISS to enable such research to occur. The Bioculture System supports the extended culturing of multiple cell types and microbiological specimens. It consists of a docking station that carries ten independent incubation units or ‘Cassettes’. Each Cassette contains a cooling chamber (5(°) C) for temperature sensitive solutions and samples, or long duration fluids and sample storage, as well as an incubation chamber (ambient up to 42(°) C). Each Cassette houses an independent fluidics system comprised of a biochamber, medical-grade fluid tubing, medium warming module, oxygenation module, fluid pump, and sixteen solenoid valves for automated biochamber injections of sampling. The Bioculture System provides the user with the ability to select the incubation temperature, fluid flow rate and automated biochamber sampling or injection events for each separate Cassette. Furthermore, the ISS crew can access the biochamber, media bag, and accessory bags on-orbit using the Microgravity Science Glovebox. The Bioculture System also permits initiation of cultures, subculturing, injection of compounds, and removal of samples for on-orbit processing using ISS facilities. The Bioculture System therefore provides a unique opportunity for the study of stem cells and other cell types in space. The first validation flight of the Bioculture System will be conducted on SpaceX5, consisting of 8 Cassettes and lasting for 30-37 days. During this flight we plan to culture two different mammalian cell types in bioreactors: a mouse osteocytic-like cell line, and human induced pluripotent stem cell (iPS)-derived cardiomyocytes. Specifically, the osteocytic line will enable the study of a type of cell that has been flown on the Bioculture System

  3. Effects of Lunar Dust Simulant (JSC-1A-vf) on WI-38 Human Embryonic Lung Cells

    Science.gov (United States)

    Currie, Stephen; Hammond, Dianne; Jeevarajan, Anthony

    2007-01-01

    In order to develop appropriate countermeasures for NASA's return mission to the moon, the potential toxicity of lunar dust needs to be examined. Due to its abrasiveness, reactivity, composition and small size, lunar dust may pose a serious health risk to astronauts who inhale it. This project focuses on the toxicity of lunar dust simulant (JSC-1A-vf) using WI-38 human embryonic lung cells. Past results show that the simulant has toxic effects on small animals using intratracheal instillation. Earlier studies in this lab suggest that the dust remaining in media after low speed centrifugation is toxic. In order to better assess its toxicity, the simulant has been diluted in media, filtered with a 5 micron filter before combining it with media. This filtered dust is compared with dust centrifuged in media. Whole dust toxicity is also tested. Toxicity is estimated using a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) toxicity test which measures the activity of reducing enzymes in the mitochondria of viable cells. Preliminary results suggest that simulant which is diluted in media at different concentrations is slightly toxic. Interestingly, the cells appear to sweep up and collect the simulant. Whether this contributes to its toxicity is unclear. This project provides possible toxicity testing protocols for lunar dust and contributes to the knowledge of nanosize particle toxicity.

  4. TSGC and JSC Alignment

    Science.gov (United States)

    Sanchez, Humberto

    2013-01-01

    NASA and the SGCs are, by design, intended to work closely together and have synergistic Vision, Mission, and Goals. The TSGC affiliates and JSC have been working together, but not always in a concise, coordinated, nor strategic manner. Today we have a couple of simple ideas to present about how TSGC and JSC have started to work together in a more concise, coordinated, and strategic manner, and how JSC and non-TSG Jurisdiction members have started to collaborate: Idea I: TSGC and JSC Technical Alignment Idea II: Concept of Clusters.

  5. Space Station Biological Research Project (SSBRP) Cell Culture Unit (CCU) and incubator for International Space Station (ISS) cell culture experiments.

    Science.gov (United States)

    Vandendriesche, Donald; Parrish, Joseph; Kirven-Brooks, Melissa; Fahlen, Thomas; Larenas, Patricia; Havens, Cindy; Nakamura, Gail; Sun, Liping; Krebs, Chris; de Luis, Javier; Vunjak-Novakovic, Gordana; Searby, Nancy D

    2004-03-01

    The CCU and Incubator are habitats under development by SSBRP for gravitational biology research on ISS. They will accommodate multiple specimen types and reside in either Habitat Holding Racks, or the Centrifuge Rotor, which provides selectable gravity levels of up to 2 g. The CCU can support multiple Cell Specimen Chambers, CSCs (18, 9 or 6 CSCs; 3, 10 or 30 mL in volume, respectively). CSCs are temperature controlled from 4-39 degrees C, with heat shock to 45 degrees C. CCU provides automated nutrient supply, magnetic stirring, pH/O2 monitoring, gas supply, specimen lighting, and video microscopy. Sixty sample containers holding up to 2 mL each, stored at 4-39 degrees C, are available for automated cell sampling, subculture, and injection of additives and fixatives. CSCs, sample containers, and fresh/spent media bags are crew-replaceable for long-term experiments. The Incubator provides a 4-45 degrees C controlled environment for life science experiments or storage of experimental reagents. Specimen containers and experiment unique equipment are experimenter-provided. The Specimen Chamber exchanges air with ISS cabin and has 18.8 liters of usable volume that can accommodate six trays and the following instrumentation: five relocatable thermometers, two 60 W power outlets, four analog ports, and one each relative humidity sensor, video port, ethernet port and digital input/output port.

  6. ISS & Nordea

    DEFF Research Database (Denmark)

    Pedersen, Torben; Petersen, Bent

    2012-01-01

    Nordea Bank had emerged as the largest financial group in the Nordic region. As part of its consolidated approach, Nordea’s top management had made the strategic decision to outsource a number of the company’s peripheral activities, such as catering, security, and cleaning, in order to focus...... on the core business of banking. In Denmark, Finland, and Sweden, some services had been outsourced to one of the leaders in the facility management (FM) market, the global service provider ISS. The relationship between Nordea and ISS on the delivery of facility services had a long history, but a new contract...... was successfully concluded by the end of 2010. Consequently, ISS was chosen as Nordea’s FM partner and would continually be providing Nordea with a scope of supportive services across 20 locations in the Nordic region. From 2010 and onwards, a significant switch was made to an output-based focus in the contract...

  7. Plasma cell growth fraction using Ki-67 antigen expression identifies a subgroup of multiple myeloma patients displaying short survival within the ISS stage I.

    Science.gov (United States)

    Gastinne, Thomas; Leleu, Xavier; Duhamel, Alain; Moreau, Anne-Sophie; Franck, Genevieve; Andrieux, Joris; Lai, Jean-Luc; Coiteux, Valerie; Yakoub-Agha, Ibrahim; Bauters, Francis; Harousseau, Jean-Luc; Zandecki, Marc; Facon, Thierry

    2007-10-01

    The current most powerful prognostic model in Multiple Myeloma (MM) combines beta-2 microglobulin (b2m) with albumin, corresponding to the International Staging System (ISS). However, the prognosis of patients within the ISS stage I (high albumin and low b2m) may vary. Ki-67 is a nuclear protein associated with cell proliferation. We retrospectively evaluated the percentage of bone marrow plasma cells expressing Ki-67 antigen (Ki-67 index) in a series of 174 untreated MM patients at diagnosis. Median survival was 51, 41 and 20 months respectively, and median Ki-67 index was 3.0%, 6.1% and 6.5% in ISS stages I, II, and III respectively. Independently of ISS, Ki-67 index > or =4% was highly predictive of adverse prognosis. Ki-67 index correlated with markers of intrinsic malignancy and with markers of tumour burden. Within ISS stage I, median survival was of 31 months (RR of death 2.65) in patients with Ki-67 index > or =4%. Eventually, the combination of Ki-67 with b2m produced an efficient prognostic model, which appeared most effective in our series when compared with b2m and KI-67 with chromosome 13 deletion models. In this series, we demonstrated that a proliferation marker provides clear-cut additional survival prognostic information to b2m into the ISS model.

  8. Stability Analysis of ISS Medications

    Science.gov (United States)

    Wotring, V. E.

    2014-01-01

    It is known that medications degrade over time, and that extreme storage conditions will hasten their degradation. The temperature and humidity conditions of the ISS have been shown to be within the ideal ranges for medication storage, but the effects of other environmental factors, like elevated exposure to radiation, have not yet been evaluated. Current operational procedures ensure that ISS medications are re-stocked before expiration, but this may not be possible on long duration exploration missions. For this reason, medications that have experienced long duration storage on the ISS were returned to JSC for analysis to determine any unusual effects of aging in the low- Earth orbit environment. METHODS Medications were obtained by the JSC Pharmacy from commercial distributors and were re-packaged by JSC pharmacists to conserve up mass and volume. All medication doses were part of the ISS crew medical kit and were transported to the International Space Station (ISS) via NASA's Shuttle Transportation System (Space Shuttle). After 568 days of storage, the medications were removed from the supply chain and returned to Earth on a Dragon (SpaceX) capsule. Upon return to Earth, medications were transferred to temperature and humidity controlled environmental chambers until analysis. Nine medications were chosen on the basis of their availability for study. The medications included several of the most heavily used by US crewmembers: 2 sleep aids, 2 antihistamines/decongestants, 3 pain relievers, an antidiarrheal and an alertness medication. Each medication was available at a single time point; analysis of the same medication at multiple time points was not possible. Because the samples examined in this study were obtained opportunistically from medical supplies, there were no control samples available (i.e. samples aged for a similar period of time on the ground); a significant limitation of this study. Medications were analyzed using the HPLC/MS methods described in

  9. ISS Asset Tracking Using SAW RFID Technology

    Science.gov (United States)

    Schellhase, Amy; Powers, Annie

    2004-01-01

    A team at the NASA Johnson Space Center (JSC) is undergoing final preparations to test Surface Acoustic Wave (SAW) Radio Frequency Identification (RFID) technology to track assets aboard the International Space Station (ISS). Currently, almost 10,000 U.S. items onboard the ISS are tracked within a database maintained by both the JSC ground teams and crew onboard the ISS. This barcode-based inventory management system has successfully tracked the location of 97% of the items onboard, but its accuracy is dependant on the crew to report hardware movements, taking valuable time away from science and other activities. With the addition of future modules, the volume of inventory to be tracked is expected to increase significantly. The first test of RFID technology on ISS, which will be conducted by the Expedition 16 crew later this year, will evaluate the ability of RFID technology to track consumable items. These consumables, which include office supplies and clothing, are regularly supplied to ISS and can be tagged on the ground. Automation will eliminate line-of-sight auditing requirements, directly saving crew time. This first step in automating an inventory tracking system will pave the way for future uses of RFID for inventory tracking in space. Not only are there immediate benefits for ISS applications, it is a crucial step to ensure efficient logistics support for future vehicles and exploration missions where resupplies are not readily available. Following a successful initial test, the team plans to execute additional tests for new technology, expanded operations concepts, and increased automation.

  10. ISS Asset Tracking Using SAW RFID Technology

    Science.gov (United States)

    Schellhase, Amy; Powers, Annie

    2004-01-01

    A team at the NASA Johnson Space Center (JSC) is undergoing final preparations to test Surface Acoustic Wave (SAW) Radio Frequency Identification (RFID) technology to track assets aboard the International Space Station (ISS). Currently, almost 10,000 U.S. items onboard the ISS are tracked within a database maintained by both the JSC ground teams and crew onboard the ISS. This barcode-based inventory management system has successfully tracked the location of 97% of the items onboard, but its accuracy is dependant on the crew to report hardware movements, taking valuable time away from science and other activities. With the addition of future modules, the volume of inventory to be tracked is expected to increase significantly. The first test of RFID technology on ISS, which will be conducted by the Expedition 16 crew later this year, will evaluate the ability of RFID technology to track consumable items. These consumables, which include office supplies and clothing, are regularly supplied to ISS and can be tagged on the ground. Automation will eliminate line-of-sight auditing requirements, directly saving crew time. This first step in automating an inventory tracking system will pave the way for future uses of RFID for inventory tracking in space. Not only are there immediate benefits for ISS applications, it is a crucial step to ensure efficient logistics support for future vehicles and exploration missions where resupplies are not readily available. Following a successful initial test, the team plans to execute additional tests for new technology, expanded operations concepts, and increased automation.

  11. Center Innovation Fund: JSC CIF (also includes JSC IRAD) Program

    Data.gov (United States)

    National Aeronautics and Space Administration — JSC provides and applies its preeminent capabilities in science and technology to develop, operate, and integrate human exploration missions.  The Center...

  12. Probability of cell hits in selected organs and tissues by high-LET particles at the ISS orbit

    Science.gov (United States)

    Yasuda, H.; Komiyama, T.; Fujitaka, K.; Badhwar, G. D. (Principal Investigator)

    2002-01-01

    The fluence of high-LET particles (HLP) with LET infinity H2O greater than 15 keV micrometers-1 in selected organs and tissues were measured with plastic nuclear track detectors using a life-size human phantom on the 9th Shuttle-Mir Mission (STS-91). The planar-track fluence of HLP during the 9.8-day mission ranged from 1.9 x 10(3) n cm-2 (bladder) to 5.1 x 10(3) n cm-2 (brain) by a factor of 2.7. Based on these data, a probability of HLP hits to a matured cell of each organ or tissue was roughly estimated for a 90-day ISS mission. In the calculation, all cells were assumed to be spheres with a geometric cross-sectional area of 500 micrometers2 and the cell-hit frequency from isotropic space radiation can be described by the Poisson-distribution function. As results, the probability of one or more than 1 hit to a single cell by HLP for 90 days ranged from 17% to 38%; that of two or more than 2 hits was estimated to be 1.3-8.2%. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  13. JSC Design and Procedural Standards, JSC-STD-8080

    Science.gov (United States)

    Punch, Danny T.

    2011-01-01

    This document provides design and procedural requirements appropriate for inclusion in specifications for any human spaceflight program, project, spacecraft, system, or end item. The term "spacecraft" as used in the standards includes launch vehicles, orbital vehicles, non-terrestrial surface vehicles, and modules. The standards are developed and maintained as directed by Johnson Space Center (JSC) Policy Directive JPD 8080.2, JSC Design and Procedural Standards for Human Space Flight Equipment. The Design and Procedural Standards contained in this manual represent human spacecraft design and operational knowledge applicable to a wide range of spaceflight activities. These standards are imposed on JSC human spaceflight equipment through JPD 8080.2. Designers shall comply with all design standards applicable to their design effort.

  14. Suspended Cell Culture ANalysis (SCAN) Tool to Enhance ISS On-Orbit Capabilities Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences and partner, Draper Laboratory, propose to develop an on-orbit immuno-based label-free Suspension Cell Culture ANalysis tool, SCAN tool, which...

  15. BIOLAB, EPU and EMCS for cell culture experiments on the ISS.

    Science.gov (United States)

    Brinckmann, Enno

    2004-03-01

    Two ESA facilities are under development for biological research on the International Space Station: BIOLAB as part of the European "Columbus" Laboratory and the European Modular Cultivation System (EMCS), foreseen for accommodation in the US Lab "Destiny". Both facilities have an incubator (18-40 degrees C) and use standard Experiment Containers, mounted on two centrifuge rotors providing either microgravity or variable g-levels from 0.001 x g to 2.0 x g. Standard interface plates supply each container with power and data lines, with gas (controlled CO2, O2 and water vapour concentration; trace gas removal), and--for EMCS only--with water. The degree of automation is higher in BIOLAB: it contains a robotic Handling Mechanism for automatic sampling and handling of liquids, which can be stored at cool or cold temperatures or injected for automatic on-board analysis into a microscope or a spectrophotometer. For analyses on the running centrifuge, small automatic microscopes can be installed in the Experiment Containers. Several designs for supporting cell culture experiments have been studied for BIOLAB and EMCS. BIOLAB has in addition a Bio-Glovebox, which can be sterilised and where new cell cultures may be prepared under 1 x g conditions from deep-frozen samples in the Experiment Preparation Unit (EPU): the cryo-protectant will be removed by automatic washing cycles. Both facilities, EMCS and BIOLAB (with EPU), have also provisions for telescience operations through video, data and command lines, either operated by the crew or by the experimenter on ground.

  16. Three-dimensional growth of human endothelial cells in an automated cell culture experiment container during the SpaceX CRS-8 ISS space mission - The SPHEROIDS project.

    Science.gov (United States)

    Pietsch, Jessica; Gass, Samuel; Nebuloni, Stefano; Echegoyen, David; Riwaldt, Stefan; Baake, Christin; Bauer, Johann; Corydon, Thomas J; Egli, Marcel; Infanger, Manfred; Grimm, Daniela

    2017-04-01

    Human endothelial cells (ECs) were sent to the International Space Station (ISS) to determine the impact of microgravity on the formation of three-dimensional structures. For this project, an automatic experiment unit (EU) was designed allowing cell culture in space. In order to enable a safe cell culture, cell nourishment and fixation after a pre-programmed timeframe, the materials used for construction of the EUs were tested in regard to their biocompatibility. These tests revealed a high biocompatibility for all parts of the EUs, which were in contact with the cells or the medium used. Most importantly, we found polyether ether ketones for surrounding the incubation chamber, which kept cellular viability above 80% and allowed the cells to adhere as long as they were exposed to normal gravity. After assembling the EU the ECs were cultured therein, where they showed good cell viability at least for 14 days. In addition, the functionality of the automatic medium exchange, and fixation procedures were confirmed. Two days before launch, the ECs were cultured in the EUs, which were afterwards mounted on the SpaceX CRS-8 rocket. 5 and 12 days after launch the cells were fixed. Subsequent analyses revealed a scaffold-free formation of spheroids in space.

  17. Microbial Challenge Testing of Single Liquid Cathode Feed Water Electrolysis Cells for the International Space Station (ISS) Oxygen Generator Assembly (OGA)

    Science.gov (United States)

    Roy, Robert J.; Wilson, Mark E.; Diderich, Greg S.; Steele, John W.

    2011-01-01

    The International Space Station (ISS) Oxygen Generator Assembly (OGA) operational performance may be adversely impacted by microbiological growth and biofilm formation over the electrolysis cell membranes. Biofilms could hinder the transport of water from the bulk fluid stream to the membranes and increase the cell concentration overpotential resulting in higher cell voltages and a shorter cell life. A microbial challenge test was performed on duplicate single liquid-cathode feed water electrolysis cells to evaluate operational performance with increasing levels of a mixture of five bacteria isolated from ISS and Space Shuttle potable water systems. Baseline performance of the single water electrolysis cells was determined for approximately one month with deionized water. Monthly performance was also determined following each inoculation of the feed tank with 100, 1000, 10,000 and 100,000 cells/ml of the mixed suspension of test bacteria. Water samples from the feed tank and recirculating water loops for each cell were periodically analyzed for enumeration and speciation of bacteria and total organic carbon. While initially a concern, this test program has demonstrated that the performance of the electrolysis cell is not adversely impacted by feed water containing the five species of bacteria tested at a concentration measured as high as 1,000,000 colony forming units (CFU)/ml. This paper presents the methodologies used in the conduct of this test program along with the performance test results at each level of bacteria concentration.

  18. Analyzing an Aging ISS

    Science.gov (United States)

    Scharf, R.

    2014-01-01

    The ISS External Survey integrates the requirements for photographic and video imagery of the International Space Station (ISS) for the engineering, operations, and science communities. An extensive photographic survey was performed on all Space Shuttle flights to the ISS and continues to be performed daily, though on a level much reduced by the limited available imagery. The acquired video and photo imagery is used for both qualitative and quantitative assessments of external deposition and contamination, surface degradation, dynamic events, and MMOD strikes. Many of these assessments provide important information about ISS surfaces and structural integrity as the ISS ages. The imagery is also used to assess and verify the physical configuration of ISS structure, appendages, and components.

  19. pGh9:ISS1 transpositional mutations in Streptococcus uberis UT888 causes reduced bacterial adherence to and internalization into bovine mammary epithelial cells.

    Science.gov (United States)

    Kerro Dego, O; Prado, M E; Chen, X; Luther, D A; Almeida, R A; Oliver, S P

    2011-08-05

    Streptococcus uberis is an important mastitis pathogen that affects dairy cows worldwide. In spite of the economic impact caused by the high prevalence of S. uberis intramammary infections (IMI) in many well-managed dairy herds, pathogenic strategies and associated virulence factors of S. uberis are not well understood. It has been shown that S. uberis attaches to and internalizes into mammary epithelial cells and can survive inside cells for extended periods of time. We hypothesize that early attachment to and internalization into mammary epithelial cells is a critical step for the establishment of intramammary infection. The aim of this study is to identify and characterize chromosomally encoded virulence factors of S. uberis that allow early bacterial attachment to and internalization into mammary epithelial cells. A common approach used to identify virulence factors is by generating random insertion mutants that are defective in adherence to and internalization into mammary epithelial cells using pGh9:ISS1 mutagenesis system. A random insertion mutant library of S. uberis strain UT888 was created using a thermo-sensitive plasmid pGh9:ISS1 carrying ISS1 insertion sequence. Integration of the insertion sequence into the chromosome of these mutant clones was confirmed by PCR and Southern blot. Southern blot analysis of mutant clones also showed that insertional integration was random. Of 1000 random chromosomal insertion mutants of S. uberis strain UT888 screened, 32 had significantly reduced ability to adhere to and internalize into mammary epithelial cells. Chromosomal mapping of insertion sequence integration sites in some of these defective mutants showed integration into penicillin binding protein 2A (pbp2A), sensor histidine kinase, tetR family regulatory protein, phosphoribosylaminoimidazole carboxylase catalytic subunit (purE), lactose phosphotransferase, phosphoribosylamine glycine ligase (purD), and other genes involved in metabolic activities. These

  20. The TRIPLE LUX-A Experiment for BIOLAB/ISS- Combined Effects of Microgravity and Cosmic Radiation on the Oxidative Burst of Mammalian Macrophageal Cells

    Science.gov (United States)

    Huber, K.; Sromicki, J.; Hock, B.; Ullrich, O.

    2008-06-01

    Phagocytes, the prominent cells of innate immunity, are responsible for the removal of foreign invaders, apoptotic as well as cancer cells. In a flight experiment in the BIOLAB facility on the ISS we will investigate the combined effects of microgravity and cosmic radiation on the oxidative burst, the production of reactive oxygen species (ROS), of the macrophageal cell line NR8383. A chemiluminescence assay (luminol) is used to determine the amount of ROS during phagocytosis of zymosan in a kinetic approach. Ground control experiments for the TRIPLE LUX-A flight experiment on a fast rotating 2D clinostat showed that the selected cell line responds to simulated weightlessness by an increase of ROS production.

  1. KSC ISS Logistics Support

    Science.gov (United States)

    Tellado, Joseph

    2014-01-01

    The presentation contains a status of KSC ISS Logistics Operations. It basically presents current top level ISS Logistics tasks being conducted at KSC, current International Partner activities, hardware processing flow focussing on late Stow operations, list of KSC Logistics POC's, and a backup list of Logistics launch site services. This presentation is being given at the annual International Space Station (ISS) Multi-lateral Logistics Maintenance Control Panel meeting to be held in Turin, Italy during the week of May 13-16. The presentatiuon content doesn't contain any potential lessons learned.

  2. ISS Payload Human Factors

    Science.gov (United States)

    Ellenberger, Richard; Duvall, Laura; Dory, Jonathan

    2016-01-01

    The ISS Payload Human Factors Implementation Team (HFIT) is the Payload Developer's resource for Human Factors. HFIT is the interface between Payload Developers and ISS Payload Human Factors requirements in SSP 57000. ? HFIT provides recommendations on how to meet the Human Factors requirements and guidelines early in the design process. HFIT coordinates with the Payload Developer and Astronaut Office to find low cost solutions to Human Factors challenges for hardware operability issues.

  3. Amine Swingbed Payload Testing on ISS

    Science.gov (United States)

    Button, Amy B.; Sweterlitsch, Jeffrey J.

    2014-01-01

    One of NASA Johnson Space Center's test articles of the amine-based carbon dioxide (CO2) and water vapor sorbent system known as the CO2 And Moisture Removal Amine Swing-bed, or CAMRAS, was incorporated into a payload on the International Space Station (ISS). The intent of the payload is to demonstrate the spacecraft-environment viability of the core atmosphere revitalization technology baselined for the new Orion vehicle. In addition to the air blower, vacuum connection, and controls needed to run the CAMRAS, the payload incorporates a suite of sensors for scientific data gathering, a water save function, and an air save function. The water save function minimizes the atmospheric water vapor reaching the CAMRAS unit, thereby reducing ISS water losses that are otherwise acceptable, and even desirable, in the Orion environment. The air save function captures about half of the ullage air that would normally be vented overboard every time the cabin air-adsorbing and space vacuum-desorbing CAMRAS beds swap functions. The JSC team conducted 1000 hours of on-orbit Amine Swingbed Payload testing in 2013 and early 2014. This paper presents the basics of the payload's design and history, as well as a summary of the test results, including comparisons with prelaunch testing.

  4. Center Independent Research & Developments: JSC IRAD Program

    Data.gov (United States)

    National Aeronautics and Space Administration — JSC provides and applies its preeminent capabilities in science and technology to develop, operate, and integrate human exploration missions.  The center...

  5. ISS-Lobster

    Science.gov (United States)

    Camp, Jordan; Barthelmy, S. D.; Petre, R.; Gehrels, N.; Marshall, F. E.; Racusin, J. L.; Ptak, A.

    2014-01-01

    This poster presents ISS-Lobster, a wide-field X-ray transient mission proposed to be deployed on the International Space Station. Through its unique imaging X-ray optics that allow a 30 deg by 30 deg FoV, a 1 arc min position resolution and a 10^-11 erg/(sec cm2) sensitivity in 2000 sec, ISS-Lobster will observe numerous events per year of X-ray transients related to compact objects, including: tidal disruptions of stars, supernova shock breakouts, neutron star bursts and superbursts, high redshift Gamma-Ray Bursts, and perhaps most exciting, X-ray counterparts of gravitational wave detections involving both stellar mass and supermassive black holes. A 3-axis gimbal system will allow fast pointing in response to any independent, multi-wavelength indication of these events. Finally, deployment of this detector on the ISS will realize significant cost savings compared to a free-flying satellite as power, communication, and ISS transport are provided.

  6. Building the ISS

    Institute of Scientific and Technical Information of China (English)

    石继忠; 李秀霞

    2007-01-01

    Have you seen people building houses?To build a house,you need workers.They use their hands,tools and machines to put everything together. Building the ISS is almost the same.The difference is that the workers are astronauts.They

  7. Evaluating the Medical Kit System for the International Space Station(ISS) - A Paradigm Revisited

    Science.gov (United States)

    Hailey, Melinda J.; Urbina, Michelle C.; Hughlett, Jessica L.; Gilmore, Stevan; Locke, James; Reyna, Baraquiel; Smith, Gwyn E.

    2010-01-01

    Medical capabilities aboard the International Space Station (ISS) have been packaged to help astronaut crew medical officers (CMO) mitigate both urgent and non-urgent medical issues during their 6-month expeditions. Two ISS crewmembers are designated as CMOs for each 3-crewmember mission and are typically not physicians. In addition, the ISS may have communication gaps of up to 45 minutes during each orbit, necessitating medical equipment that can be reliably operated autonomously during flight. The retirement of the space shuttle combined with ten years of manned ISS expeditions led the Space Medicine Division at the NASA Johnson Space Center to reassess the current ISS Medical Kit System. This reassessment led to the system being streamlined to meet future logistical considerations with current Russian space vehicles and future NASA/commercial space vehicle systems. Methods The JSC Space Medicine Division coordinated the development of requirements, fabrication of prototypes, and conducted usability testing for the new ISS Medical Kit System in concert with implementing updated versions of the ISS Medical Check List and associated in-flight software applications. The teams constructed a medical kit system with the flexibility for use on the ISS, and resupply on the Russian Progress space vehicle and future NASA/commercial space vehicles. Results Prototype systems were developed, reviewed, and tested for implementation. Completion of Preliminary and Critical Design Reviews resulted in a streamlined ISS Medical Kit System that is being used for training by ISS crews starting with Expedition 27 (June 2011). Conclusions The team will present the process for designing, developing, , implementing, and training with this new ISS Medical Kit System.

  8. ISS Robotic Student Programming

    Science.gov (United States)

    Barlow, J.; Benavides, J.; Hanson, R.; Cortez, J.; Le Vasseur, D.; Soloway, D.; Oyadomari, K.

    2016-01-01

    The SPHERES facility is a set of three free-flying satellites launched in 2006. In addition to scientists and engineering, middle- and high-school students program the SPHERES during the annual Zero Robotics programming competition. Zero Robotics conducts virtual competitions via simulator and on SPHERES aboard the ISS, with students doing the programming. A web interface allows teams to submit code, receive results, collaborate, and compete in simulator-based initial rounds and semi-final rounds. The final round of each competition is conducted with SPHERES aboard the ISS. At the end of 2017 a new robotic platform called Astrobee will launch, providing new game elements and new ground support for even more student interaction.

  9. Unusual ISS Rate Signature

    Science.gov (United States)

    Laible, Michael R.

    2011-01-01

    On November 23, 2011 International Space Station Guidance, Navigation, and Control reported unusual pitch rate disturbance. These disturbances were an order of magnitude greater than nominal rates. The Loads and Dynamics team was asked to review and analyze current accelerometer data to investigate this disturbance. This paper will cover the investigation process under taken by the Loads and Dynamics group. It will detail the accelerometers used and analysis performed. The analysis included performing Frequency Fourier Transform of the data to identify the mode of interest. This frequency data is then reviewed with modal analysis of the ISS system model. Once this analysis is complete and the disturbance quantified, a forcing function was produced to replicate the disturbance. This allows the Loads and Dynamics team to report the load limit values for the 100's of interfaces on the ISS.

  10. Soybean Growth Aboard ISS

    Science.gov (United States)

    2002-01-01

    This is a photo of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

  11. Sources of ISS

    Science.gov (United States)

    Goldreich, Peter

    1998-05-01

    Interstellar scintillations (ISS) of small angular diameter radio sources have been studied for 30 years. They arise from fluctuations of the interstellar electron density. These exhibit an anisotropic Kolmogorov spectrum over scales ranging from about 10(9) cm to 10(15) cm, with the power in these fluctuations varying by orders of magnitude from place to place. The optics of this phenomenon is fairly well understood. The same cannot be said for the physical process responsible for producing the electron density fluctuations. In recent work, Goldreich and Sridhar argue that incompressible MHD turbulence will produce a power law velocity spectrum of shear Alfven waves that matches the ISS electron density spectrum. The velocity spectrum arises from a critical balance between the linear wave periods and nonlinear wave interactions. Its connection to the electron density spectrum remains a puzzle. One might speculate that the turbulent velocity field mixes specific entropy as a passive contaminant thereby giving rise to isobaric temperature and density fluctuations whose spectra mimic that of the velocity field. This is the manner in which the atmospheric scintillations of optical stars arise. However, as a consequence of its rapid of cooling, specific entropy is not conserved in large scale motions of ionized interstellar gas. This severely limits the outer scale of the electron density spectrum. Implications of this limitation to potential sources and sites of ISS will be explored in this lecture.

  12. Battery Resistance Analysis of ISS Power System

    Science.gov (United States)

    Newstadt, Gregory E.

    2004-01-01

    The computer package, SPACE (Systems Power Analysis for Capability Evaluation) was created by the members of LT-9D to perform power analysis and modeling of the electrical power system on the International Space Station (ISS). Written in FORTRAN, SPACE comprises thousands of lines of code and has been used profficiently in analyzing missions to the ISS. LT-9D has also used its expertise recently to investigate the batteries onboard the Hubble telescope. During the summer of 2004, I worked with the members of LT-9D, under the care of Dave McKissock. Solar energy will power the ISS through eight solar arrays when the ISS is completed, although only two arrays are currently connected. During the majority of the periods of sunlight, the solar arrays provide enough energy for the ISS. However, rechargeable Nickel-Hydrogen batteries are used during eclipse periods or at other times when the solar arrays cannot be used (at docking for example, when the arrays are turned so that they will not be damaged by the Shuttle). Thirty-eight battery cells are connected in series, which make up an ORU (Orbital Replacement Unit). An ISS "battery" is composed of two ORUs. a great deal of time into finding the best way to represent them in SPACE. During my internship, I investigated the resistance of the ISS batteries. SPACE constructs plots of battery charge and discharge voltages vs. time using a constant current. To accommodate for a time-varying current, the voltages are adjusted using the formula, DeltaV = DeltaI * Cell Resistance. To enhance our model of the battery resistance, my research concentrated on several topics: investigating the resistance of a qualification unit battery (using data gathered by LORAL), comparing the resistance of the qualification unit to SPACE, looking at the internal resistance and wiring resistance, and examining the impact of possible recommended changes to SPACE. The ISS batteries have been found to be very difficult to model, and LT-9D has

  13. Automated ISS Flight Utilities

    Science.gov (United States)

    Offermann, Jan Tuzlic

    2016-01-01

    During my internship at NASA Johnson Space Center, I worked in the Space Radiation Analysis Group (SRAG), where I was tasked with a number of projects focused on the automation of tasks and activities related to the operation of the International Space Station (ISS). As I worked on a number of projects, I have written short sections below to give a description for each, followed by more general remarks on the internship experience. My first project is titled "General Exposure Representation EVADOSE", also known as "GEnEVADOSE". This project involved the design and development of a C++/ ROOT framework focused on radiation exposure for extravehicular activity (EVA) planning for the ISS. The utility helps mission managers plan EVAs by displaying information on the cumulative radiation doses that crew will receive during an EVA as a function of the egress time and duration of the activity. SRAG uses a utility called EVADOSE, employing a model of the space radiation environment in low Earth orbit to predict these doses, as while outside the ISS the astronauts will have less shielding from charged particles such as electrons and protons. However, EVADOSE output is cumbersome to work with, and prior to GEnEVADOSE, querying data and producing graphs of ISS trajectories and cumulative doses versus egress time required manual work in Microsoft Excel. GEnEVADOSE automates all this work, reading in EVADOSE output file(s) along with a plaintext file input by the user providing input parameters. GEnEVADOSE will output a text file containing all the necessary dosimetry for each proposed EVA egress time, for each specified EVADOSE file. It also plots cumulative dose versus egress time and the ISS trajectory, and displays all of this information in an auto-generated presentation made in LaTeX. New features have also been added, such as best-case scenarios (egress times corresponding to the least dose), interpolated curves for trajectories, and the ability to query any time in the

  14. JSC Pharmacy Services for Remote Operations

    Science.gov (United States)

    Stoner, Paul S.; Bayuse, Tina

    2005-01-01

    The Johnson Space Center Pharmacy began operating in March of 2003. The pharmacy serves in two main capacities: to directly provide medications and services in support of the medical clinics at the Johnson Space Center, physician travel kits for NASA flight surgeon staff, and remote operations, such as the clinics in Devon Island, Star City and Moscow; and indirectly provide medications and services for the International Space Station and Space Shuttle medical kits. Process changes that occurred and continued to evolve in the advent of the installation of the new JSC Pharmacy, and the process of stocking medications for each of these aforementioned areas will be discussed. Methods: The incorporation of pharmacy involvement to provide services for remote operations and supplying medical kits was evaluated. The first step was to review the current processes and work the JSC Pharmacy into the existing system. The second step was to provide medications to these areas. Considerations for the timeline of expiring medications for shipment are reviewed with each request. The third step was the development of a process to provide accountability for the medications. Results: The JSC Pharmacy utilizes a pharmacy management system to document all medications leaving the pharmacy. Challenges inherent to providing medications to remote areas were encountered. A process has been designed to incorporate usage into the electronic medical record upon return of the information from these remote areas. This is an evolving program and several areas have been identified for further improvement.

  15. JSC Search System Usability Case Study

    Science.gov (United States)

    Meza, David; Berndt, Sarah

    2014-01-01

    The advanced nature of "search" has facilitated the movement from keyword match to the delivery of every conceivable information topic from career, commerce, entertainment, learning... the list is infinite. At NASA Johnson Space Center (JSC ) the Search interface is an important means of knowledge transfer. By indexing multiple sources between directorates and organizations, the system's potential is culture changing in that through search, knowledge of the unique accomplishments in engineering and science can be seamlessly passed between generations. This paper reports the findings of an initial survey, the first of a four part study to help determine user sentiment on the intranet, or local (JSC) enterprise search environment as well as the larger NASA enterprise. The survey is a means through which end users provide direction on the development and transfer of knowledge by way of the search experience. The ideal is to identify what is working and what needs to be improved from the users' vantage point by documenting: (1) Where users are satisfied/dissatisfied (2) Perceived value of interface components (3) Gaps which cause any disappointment in search experience. The near term goal is it to inform JSC search in order to improve users' ability to utilize existing services and infrastructure to perform tasks with a shortened life cycle. Continuing steps include an agency based focus with modified questions to accomplish a similar purpose

  16. The ISS protontherapy LINAC

    Science.gov (United States)

    Picardi, L.; Ronsivalle, C.; Vignati, A.

    1997-02-01

    The TERA foundation stimulated in the past years a comparative study of compact proton accelerators for therapy and at the end of 1995 the Italian National Institute of Health (Istituto Superiore di Sanità, ISS) decided for the construction of a proton linac for its TOP (Terapia Oncologica con Protoni) project. The TOP-LINAC will be composed of a 7 MeV RFQ+DTL injector followed by a 7-65 MeV section of the innovative 3 GHz SCDTL structure and a 65-200 MeV variable energy SCL 3 GHz structure. A 5-cavity model of the SCDTL has been built and measured on a RF test bench while a 11-cavities prototype (accelerating until 12.5 MeV) is under construction and will be assembled within few months. The TOP LINAC whose construction will start at the end of 1996, will be the first linear accelerator dedicated to proton therapy, and the first 3 GHz proton linac. In this paper the accelerator design and the construction schedule will be presented, and the SCDTL structure RF measurements will be discussed.

  17. Assessment of lnternational Space Station (ISS) Lithium-ion Battery Thermal Runaway (TR)

    Science.gov (United States)

    Graika, Jason

    2017-01-01

    This task was developed in the wake of the Boeing 787 Dreamliner lithium-ion battery TR incidents of January 2013 and January 2014. The Electrical Power Technical Discipline Team supported the Dreamliner investigations and has followed up by applying lessons learned to conduct an introspective evaluation of NASA's risk of similar incidents in its own lithium-ion battery deployments. This activity has demonstrated that historically NASA, like Boeing and others in the aerospace industry, has emphasized the prevention of TR in a single cell within the battery (e.g., cell screening) but has not considered TR severity-reducing measures in the event of a single-cell TR event. center dotIn the recent update of the battery safety standard (JSC 20793) to address this paradigm shift, the NASA community included requirements for assessing TR severity and identifying simple, low-cost severity reduction measures. This task will serve as a pathfinder for meeting those requirements and will specifically look at a number of different lithium-ion batteries currently in the design pipeline within the ISS Program batteries that, should they fail in a Dreamliner-like incident, could result in catastrophic consequences. This test is an abuse test to understand the heat transfer properties of the cell and ORU in thermal runaway, with radiant barriers in place in a flight like test in on orbit conditions. This includes studying the heat flow and distribution in the ORU. This data will be used to validate the thermal runaway analysis. This test does not cover the ambient pressure case. center dotThere is no pass/ fail criteria for this test.

  18. ISS Expedition 09 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 09 from 04/2004-10/2004. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  19. ISS Expedition 05 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 05 from 06/2002-12/2002. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  20. ISS Expedition 10 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 10 from 10/2004-04/2005. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  1. ISS Expedition 02 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 02 from 03/2001-08/2001. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  2. ISS Expedition 37 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 37 from 05/2013-11/2013. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  3. ISS Expedition 23 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 23 from 12/2009-09/2010. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  4. ISS Expedition 24 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 24 from 04/2010-11/2010. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  5. ISS Expedition 42 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 42 from 09/2014-03/2015. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  6. ISS Expedition 34 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 34 from 12/2012-03/2013. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  7. ISS Expedition 16 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 16 from 10/2007-04/2008. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  8. ISS Expedition 03 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 03 from 08/2001-12/2001. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  9. ISS Expedition 06 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 06 from 11/2002-05/2003. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  10. ISS Expedition 11 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 11 from 04/2005-10/2005. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  11. ISS Expedition 35 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 35 from 03/2013-09/2013. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  12. ISS Expedition 38 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 38 from 09/2013-03/2014. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  13. ISS Expedition 20 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 20 from 05/2009-10/2009. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  14. ISS Expedition 08 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 08 from 10/2003-04/2004. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  15. ISS Expedition 30 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 30 from 11/2011-07/2012. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  16. ISS Expedition 39 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 39 from 11/2013-05/2014. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  17. ISS Expedition 01 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 01 from 10/2000-03/2001. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  18. ISS Expedition 36 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 36 from 03/2013-09/2013. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  19. ISS Expedition 04 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 04 from 12/2001-06/2002. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  20. ISS Expedition 32 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 32 from 05/2012-09/2012. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  1. ISS Expedition 12 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 12 from 10/2005-04/2006. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  2. ISS Expedition 41 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 41 from 05/2014-11/2014. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  3. ISS Expedition 17 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 17 from 04/2008-10/2008. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  4. ISS Expedition 26 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 26 from 10/2010-05/2011. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  5. ISS Expedition 28 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 28 from 04/2011-11/2011. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  6. ISS Expedition 40 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 40 from 03/2014-11/2014. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  7. ISS Expedition 31 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 31 from 12/2011-07/2012. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  8. ISS Expedition 18 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 18 from 10/2008-04/2009. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  9. ISS Expedition 25 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 25 from 06/2010-03/2011. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  10. ISS Expedition 14 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 14 from 09/2006-04/2007. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  11. ISS Expedition 27 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 27 from 12/2010-09/2011. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  12. Global Precipitation Measurement (GPM) and International Space Station (ISS) Coordination for CubeSat Deployments to Minimize Collision Risk

    Science.gov (United States)

    Pawloski, J.; Aviles, J.; Myers, R.; Parris, J.; Corley, B.; Hehn, G.; Pascucci, J.

    2016-09-01

    The Global Precipitation Measurement Mission (GPM) is a joint U.S. and Japan mission to observe global precipitation, extending the Tropical Rainfall Measuring Mission (TRMM), which was launched by H-IIA from Tanegashima in Japan on February 28TH, 2014 directly into its 407km operational orbit. The International Space Station (ISS) is an international human research facility operated jointly by Russia and the USA from NASA's Johnson Space Center (JSC) in Houston Texas. Mission priorities lowered the operating altitude of ISS from 415km to 400km in early 2015, effectively placing both vehicles into the same orbital regime. The ISS has begun a program of deployments of cost effective CubeSats from the ISS that allow testing and validation of new technologies. With a major new asset flying at the same effective altitude as the ISS, CubeSat deployments became a serious threat to GPM and therefore a significant indirect threat to the ISS. This paper describes the specific problem of collision threat to GPM and risk to ISS CubeSat deployment and the process that was implemented to keep both missions safe from collision and maximize their project goals.

  13. Global Precipitation Measurement (GPM) and International Space Station (ISS) Coordination for CubeSat Deployments to Minimize Collision Risk

    Science.gov (United States)

    Pawloski, James H.; Aviles, Jorge; Myers, Ralph; Parris, Joshua; Corley, Bryan; Hehn, Garrett; Pascucci, Joseph

    2016-01-01

    The Global Precipitation Measurement Mission (GPM) is a joint U.S. and Japan mission to observe global precipitation, extending the Tropical Rainfall Measuring Mission (TRMM), which was launched by H-IIA from Tanegashima in Japan on February 28TH, 2014 directly into its 407km operational orbit. The International Space Station (ISS) is an international human research facility operated jointly by Russia and the USA from NASA's Johnson Space Center (JSC) in Houston Texas. Mission priorities lowered the operating altitude of ISS from 415km to 400km in early 2105, effectively placing both vehicles into the same orbital regime. The ISS has begun a program of deployments of cost effective CubeSats from the ISS that allow testing and validation of new technologies. With a major new asset flying at the same effective altitude as the ISS, CubeSat deployments became a serious threat to GPM and therefore a significant indirect threat to the ISS. This paper describes the specific problem of collision threat to GPM and risk to ISS CubeSat deployment and the process that was implemented to keep both missions safe from collision and maximize their project goals.

  14. Status of Low Thrust Work at JSC

    Science.gov (United States)

    Condon, Gerald L.

    2004-01-01

    High performance low thrust (solar electric, nuclear electric, variable specific impulse magnetoplasma rocket) propulsion offers a significant benefit to NASA missions beyond low Earth orbit. As NASA (e.g., Prometheus Project) endeavors to develop these propulsion systems and associated power supplies, it becomes necessary to develop a refined trajectory design capability that will allow engineers to develop future robotic and human mission designs that take advantage of this new technology. This ongoing work addresses development of a trajectory design and optimization tool for assessing low thrust (and other types) trajectories. This work targets to advance the state of the art, enable future NASA missions, enable science drivers, and enhance education. This presentation provides a summary of the low thrust-related JSC activities under the ISP program and specifically, provides a look at a new release of a multi-gravity, multispacecraft trajectory optimization tool (Copernicus) along with analysis performed using this tool over the past year.

  15. Space Flight Resource Management for ISS Operations

    Science.gov (United States)

    Schmidt, Larry; Slack, Kelley; O'Keefe, William; Huning, Therese; Sipes, Walter; Holland, Albert

    2011-01-01

    This slide presentation reviews the International Space Station (ISS) Operations space flight resource management, which was adapted to the ISS from the shuttle processes. It covers crew training and behavior elements.

  16. JSC “ALFA-BANK” marketing policy. problems and perspectives

    OpenAIRE

    Kirillov, A.; Kuznetcova, E.; Martirosian, M.

    2013-01-01

    The article is devoted to the results of JSC “Alfa-Bank” consumers’ segmentation and the following complex marketing research. The article suggests the ways of the bank’s marketing policy improvement.

  17. CALET docked on the ISS

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    On 19 August, with a spectacular launch on board the Japanese H2-B rocket operated by the Japan Aerospace Exploration Agency (JAXA), the CALorimetric Electron Telescope (CALET) left the Tanegashima Space Center to reach the International Space Station five days later.   After berthing with the ISS, CALET was extracted by a robotic arm from the Japanese HTV-5 transfer vehicle and installed on the Japanese Exposure Facility (right) where it will start its first data-taking. (Image: NASA/JAXA.)   CALET is a space mission led by JAXA with the participation of the Italian Space Agency (ASI) and NASA. It is a CERN-recognised experiment and the second high-energy astroparticle experiment to be installed on the International Space Station (ISS) after AMS-02, which has been taking data since 2011. Designed to be a space observatory for long-term observations of cosmic radiation aboard the external platform JEM-EF of the Japanese module (KIBO) on the ISS, CALET aims to identify elect...

  18. Gas monitoring onboard ISS using FTIR spectroscopy

    Science.gov (United States)

    Gisi, Michael; Stettner, Armin; Seurig, Roland; Honne, Atle; Witt, Johannes; Rebeyre, Pierre

    2017-06-01

    In the confined, enclosed environment of a spacecraft, the air quality must be monitored continuously in order to safeguard the crew's health. For this reason, OHB builds the ANITA2 (Analysing Interferometer for Ambient Air) technology demonstrator for trace gas monitoring onboard the International Space Station (ISS). The measurement principle of ANITA2 is based on the Fourier Transform Infrared (FTIR) technology with dedicated gas analysis software from the Norwegian partner SINTEF. This combination proved to provide high sensitivity, accuracy and precision for parallel measurements of 33 trace gases simultaneously onboard ISS by the precursor instrument ANITA1. The paper gives a technical overview about the opto-mechanical components of ANITA2, such as the interferometer, the reference Laser, the infrared source and the gas cell design and a quick overview about the gas analysis. ANITA2 is very well suited for measuring gas concentrations specifically but not limited to usage onboard spacecraft, as no consumables are required and measurements are performed autonomously. ANITA2 is a programme under the contract of the European Space Agency, and the air quality monitoring system is a stepping stone into the future, as a precursor system for manned exploration missions.

  19. ISS National Laboratory Education Project: Enhancing and Innovating the ISS as an Educational Venue

    Science.gov (United States)

    Melvin, Leland D.

    2011-01-01

    The vision is to develop the ISS National Laboratory Education Project (ISS NLE) as a national resource for Science, Technology, Engineering and Mathematics (STEM) education, utilizing the unique educational venue of the International Space Station per the NASA Congressional Authorization Act of 2005. The ISS NLE will serve as an educational resource which enables educational activities onboard the ISS and in the classroom. The ISS NLE will be accessible to educators and students from kindergarten to post-doctoral studies, at primary and secondary schools, colleges and universities. Additionally, the ISS NLE will provide ISS-related STEM education opportunities and resources for learners of all ages via informal educational institutions and venues Though U.S. Congressional direction emphasized the involvement of U.S. students, many ISS-based educational activities have international student and educator participation Over 31 million students around the world have participated in several ISS-related education activities.

  20. Detection of Iss and Bor on the surface of Escherichia coli.

    Science.gov (United States)

    Lynne, A M; Skyberg, J A; Logue, C M; Nolan, L K

    2007-03-01

    To confirm the presence of Iss and Bor on the outer membrane of Escherichia coli using Western blots of outer membrane protein (OMP) preparations and fluorescence microscopy, and explore the use of fluorescence microscopy for the detection of avian pathogenic E. coli (APEC) and diagnosis of avian colibacillosis. Knockout mutants of iss and bor were created using a one-step recombination of target genes with PCR-generated antibiotic resistance cassettes. Anti-Iss monoclonal antibodies (Mabs) that cross-react with Bor protein were used to study the mutants relative to the wild-type organism. These Mabs were used as reagents to study OMP preparations of the mutants with Western blotting and intact E. coli cells with fluorescence microscopy. Iss and Bor were detected in Western blots of OMP preparations of the wild type. Also, Iss was detected on Deltabor mutants, and Bor was detected on Deltaiss mutants. Iss and Bor were also detected on the surface of the intact, wild-type cells and mutants using fluorescence microscopy. These results demonstrate that Bor and Iss are exposed on E. coli's outer membrane where they may be recognized by the host's immune system. To our knowledge, this is the first report confirming Iss' location in the outer membrane of an E. coli isolate. Such surface exposure has implications for the use of these Mabs for APEC detection and colibacillosis control.

  1. Expansion of Microbial Monitoring Capabilities on the International Space Station (ISS)

    Science.gov (United States)

    Khodadad, Christina L.; Oubre, Cherie; Castro, Victoria; Flint, Stephanie; Melendez, Orlando; Ott, C. Mark; Roman, Monsi

    2017-01-01

    Microbial monitoring is one of the tools that the National Aeronautics and Space Administration (NASA) uses on the International Space Station (ISS) to help maintain crew health and safety. In combination with regular housekeeping and disinfection when needed, microbial monitoring provides important information to the crew about the quality of the environment. Rotation of astronauts, equipment, and cargo on the ISS can affect the microbial load in the air, surfaces, and water. The current ISS microbial monitoring methods are focused on culture-based enumeration during flight and require a significant amount of crew time as well as long incubation periods of up to 5 days there by proliferating potential pathogens. In addition, the samples require return to Earth for complete identification of the microorganisms cultivated. Although the current approach assess the quality of the ISS environment, molecular technology offers faster turn-around of information particularly beneficial in an off-nominal situation. In 2011, subject matter experts from industry and academia recommended implementation of molecular-based technologies such as quantitative real-time polymerase chain reaction (qPCR) for evaluation to replace current, culture-based technologies. The RAZOR EX (BioFire Defense, Inc, Salt Lake City, UT) a ruggedized, compact, COTS (commercial off the shelf) qPCR instrument was tested, evaluated and selected in the 2 X 2015 JSC rapid flight hardware demonstration initiative as part of the Water Monitoring Suite. RAZOR EX was launched to ISS on SpaceX-9 in July 2016 to evaluate the precision and accuracy of the hardware by testing various concentrations of DNA in microgravity compared to ground controls. Flight testing was completed between September 2016 and March 2017. Data presented will detail the hardware performance of flight testing results compared to ground controls. Future goals include additional operational ground-based testing and assay development to

  2. Surveys of Returned ISS Hardware for MMMOD Impacts

    Science.gov (United States)

    Hyde, J. L.; Christiansen, E. L.; Lear, D. M.; Nagy, K.; Berger, E. L.

    2017-01-01

    Since February 2001, the Hypervelocity Impact Technology (HVIT) group at the Johnson Space Center (JSC) in Houston has performed 35 post-flight inspections on space exposed hardware returned from the International Space Station (ISS). Data on 1,188 observations of micrometeoroid and orbital debris (MMOD) damage have been collected from these inspections. Survey documentation typically includes impact feature location and size measurements as well as microscopic photography (25-200x). Sampling of impacts sites for projectile residue was performed for the largest features. Results of energy dispersive X-ray spectroscopic analysis to discern impactor source are included in the database when available. This paper will focus on two inspections, the Pressurized Mating Adapter 2 (PMA-2) cover returned in 2015 after 1.6 years exposure with 26 observed impact features, and two Airlock shield panels returned in 2010 after 8.75 years exposure with 58 MMOD impacts. Feature sizes from the observed data are compared to predictions using the Bumper 3 risk assessment code.

  3. Bone Metabolism on ISS Missions

    Science.gov (United States)

    Smith, S. M.; Heer, M. A.; Shackelford, L. C.; Zwart, S. R.

    2014-01-01

    Spaceflight-induced bone loss is associated with increased bone resorption (1, 2), and either unchanged or decreased rates of bone formation. Resistive exercise had been proposed as a countermeasure, and data from bed rest supported this concept (3). An interim resistive exercise device (iRED) was flown for early ISS crews. Unfortunately, the iRED provided no greater bone protection than on missions where only aerobic and muscular endurance exercises were available (4, 5). In 2008, the Advanced Resistive Exercise Device (ARED), a more robust device with much greater resistance capability, (6, 7) was launched to the ISS. Astronauts who had access to ARED, coupled with adequate energy intake and vitamin D status, returned from ISS missions with bone mineral densities virtually unchanged from preflight (7). Bone biochemical markers showed that while the resistive exercise and adequate energy consumption did not mitigate the increased bone resorption, bone formation was increased (7, 8). The typical drop in circulating parathyroid hormone did not occur in ARED crewmembers. In 2014, an updated look at the densitometry data was published. This study confirmed the initial findings with a much larger set of data. In 42 astronauts (33 male, 9 female), the bone mineral density response to flight was the same for men and women (9), and those with access to the ARED did not have the typical decrease in bone mineral density that was observed in early ISS crewmembers with access to the iRED (Figure 1) (7). Biochemical markers of bone formation and resorption responded similarly in men and women. These data are encouraging, and represent the first in-flight evidence in the history of human space flight that diet and exercise can maintain bone mineral density on long-duration missions. However, the maintenance of bone mineral density through bone remodeling, that is, increases in both resorption and formation, may yield a bone with strength characteristics different from those

  4. Development of an IVE/EVA Compatible Prototype Cold-Gas Cubesat Propulsion System at NASA/JSC

    Science.gov (United States)

    Radke, Christopher; Studak, Joseph

    2017-01-01

    Cold-gas propulsion systems are well suited for some applications because they are simple to design and build, have low operating costs, and are non-toxic. The inherent tradeoff, however, is their relatively low impulse density. Nevertheless, a modest propulsion system, sized for Cubesats and designed for affordability, presents an attractive system solution for some missions, such as an on-orbit inspection free-flyer. NASA has a long-standing effort to develop propulsion systems appropriate for very high delta-V cubesat missions, such as geo transfer orbits, and there are commercially available Cubesat propulsion systems with considerably more impulse capability, but, these are both prohibitively expensive for some development customers and face compatibility constraints for crewed applications, such as operation within ISS. A relatively conventional cold-gas system has been developed at NASA/JSC taking advantage of existing miniature industrial components, additive manufacturing techniques and in-house qualification of the system. The result is a nearly modular system with a 1U form factor. Compressed nitrogen is stored in a small high-pressure tank, then regulated and distributed to 12 thrusters. Maneuvering thrust can be adjusted, with a typical value of 40 mN, and the delta-V delivered to a 3U Cubesat would be approximately 7 m/s. These values correspond to the performance parameters for an inspection mission previously established at JSC for inspection of the orbiter prior to reentry. Environmental testing was performed to meet ISS launch and workmanship standards, along with the expected thermal environment for an inspection mission. Functionality has been demonstrated, and performance in both vacuum and relevant blow down scenarios was completed. Several avenues for further improvement are also explored. Details of the system, components, integration, tests, and test data are presented in this paper.

  5. Simpler ISS Flight Control Communications and Log Keeping via Social Tools and Techniques

    Science.gov (United States)

    Scott, David W.; Cowart, Hugh; Stevens, Dan

    2012-01-01

    The heart of flight operations control involves a) communicating effectively in real time with other controllers in the room and/or in remote locations and b) tracking significant events, decisions, and rationale to support the next set of decisions, provide a thorough shift handover, and troubleshoot/improve operations. International Space Station (ISS) flight controllers speak with each other via multiple voice circuits or loops, each with a particular purpose and constituency. Controllers monitor and/or respond to several loops concurrently. The primary tracking tools are console logs, typically kept by a single operator and not visible to others in real-time. Information from telemetry, commanding, and planning systems also plays into decision-making. Email is very secondary/tertiary due to timing and archival considerations. Voice communications and log entries supporting ISS operations have increased by orders of magnitude because the number of control centers, flight crew, and payload operations have grown. This paper explores three developmental ground system concepts under development at Johnson Space Center s (JSC) Mission Control Center Houston (MCC-H) and Marshall Space Flight Center s (MSFC) Payload Operations Integration Center (POIC). These concepts could reduce ISS control center voice traffic and console logging yet increase the efficiency and effectiveness of both. The goal of this paper is to kindle further discussion, exploration, and tool development.

  6. Reliability on ISS Talk Outline

    Science.gov (United States)

    Misiora, Mike

    2015-01-01

    1. Overview of ISS 2. Space Environment and it effects a. Radiation b. Microgravity 3. How we ensure reliability a. Requirements b. Component Selection i. Note: I plan to stay away from talk about Rad Hardened components and talk about why we use older processors because they are less susceptible to SEUs. c. Testing d. Redundancy / Failure Tolerance e. Sparing strategies 4. Operational Examples a. Multiple MDM Failures on 6A due to hard drive failure In general, my plan is to only talk about data that is currently available via normal internet sources to ensure that I stay away from any topics that would be Export Controlled, ITAR, or NDA-controlled. The operational example has been well-reported on in the media and those are the details that I plan to cover. Additionally I am not planning on using any slides or showing any photos during the talk.

  7. JSC Case Study: Fleet Experience with E-85 Fuel

    Science.gov (United States)

    Hummel, Kirck

    2009-01-01

    JSC has used E-85 as part of an overall strategy to comply with Presidential Executive Order 13423 and the Energy Policy Act. As a Federal fleet, we are required to reduce our petroleum consumption by 2 percent per year, and increase the use of alternative fuels in our vehicles. With the opening of our onsite dispenser in October 2004, JSC became the second federal fleet in Texas and the fifth NASA center to add E-85 fueling capability. JSC has a relatively small number of GSA Flex Fuel fleet vehicles at the present time (we don't include personal vehicles, or other contractor's non-GSA fleet), and there were no reasonably available retail E-85 fuel stations within a 15-minute drive or within five miles (one way). So we decided to install a small 1000 gallon onsite tank and dispenser. It was difficult to obtain a supplier due to our low monthly fuel consumption, and our fuel supplier contract has changed three times in less than five years. We experiences a couple of fuel contamination and quality control issues. JSC obtained good information on E-85 from the National Ethanol Vehicle Coalition (NEVC). We also spoke with Defense Energy Support Center, (DESC), Lawrence Berkeley Laboratory, and US Army Fort Leonard Wood. E-85 is a liquid fuel that is dispensed into our Flexible Fuel Vehicles identically to regular gasoline, so it was easy for our vehicle drivers to make the transition.

  8. Vitamin D: Spaceflight, Antarctic, and JSC

    Science.gov (United States)

    Smith, Scott M.; Locke, J.; Zwart, S. R.

    2009-01-01

    Obtaining vitamin D is critical for space travelers because they lack ultraviolet light exposure and have an insufficient dietary supply of vitamin D. Despite the provision of vitamin D supplements to International Space Station (ISS) crewmembers, vitamin D status is consistently lower after flight than before flight, and in several crewmembers has decreased to levels considered clinically significant. Vitamin D has long been known to play a role in calcium metabolism, and more recently its non-calcitropic functions have been recognized. According to the results of several recent studies, functionally relevant measures indicate that the lower limit of serum 25-hydroxyvitamin D (a marker of vitamin D status) should be raised from the current 25 nmol/L to 80 nmol/L. The sub-optimal pre- and postflight vitamin D status is an issue that needs to be addressed, to allow NASA to better define the appropriate amount of supplemental vitamin D to serve as a countermeasure against vitamin D deficiency in astronaut crews. This is very important for long-duration crewmembers, and is critical for exploration-class missions. Ground-based models with limited sunlight exposure could be valuable for evaluating vitamin D supplementation efficacy. One such model is subjects spending the winter in Antarctica, where UV-B radiation levels are zero during the winter. Data from a study of such subjects will enable us to provide long-duration space flight crewmembers with evidence-based recommendations for vitamin D supplementation to achieve optimal vitamin D status before, during, and after flight. We report here results from a vitamin D supplementation study conducted in 2007 in Antarctica at McMurdo Station, and plans for a study to be implemented over the course of 2009. Additionally, in 2008, a study was initiated (and is ongoing) to assess efficacy and safety of supplementing with 2000 IU daily, 10,000 IU weekly, or 50,000 IU weekly for a month and then monthly after that. The data

  9. Humoral and cellular immunity in cosmonauts after the ISS missions

    Science.gov (United States)

    Rykova, M. P.; Antropova, E. N.; Larina, I. M.; Morukov, B. V.

    Spaceflight effects on the immune system were studied in 30 cosmonauts flown onto the International Space Station (ISS) for long- (125-195 d, n=15) and short-term (8-10 d, n=15) missions. Immunological investigations before launch and after landing were performed by using methods for quantitative and functional evaluation of the immunologically competent cells. Specific assays include: peripheral leukocyte distribution, natural killer (NK) cell cytotoxic activity, phagocytic activity of monocytes and granulocytes, proliferation of T-cells in response to a mitogen, levels of immunoglobulins IgA, IgM, IgG, virus-specific antibody and cytokine in serum. It was noticed that after long-term spaceflights the percentage of NK (CD3-/CD16+/CD56+) cells was significantly reduced compared with pre-flight data (pcytokines (IL- 1β, IL-2, IL-4 and TNF- α) in serum changed in an apparently random manner as compared with values before long- and short-term missions. Despite the fact that many improvements have been made to the living conditions of aboard the ISS our investigations demonstrate the remarkable depression of the immunological function after the ISS missions. These results suggest that the clinical health risk (related to immune dysfunction) will occur during exploration class missions.

  10. International Space Station (ISS) Soyuz Vehicle Descent Module Evaluation of Thermal Protection System (TPS) Penetration Characteristics

    Science.gov (United States)

    Davis, Bruce A.; Christiansen, Eric L.; Lear, Dana M.; Prior, Tom

    2013-01-01

    The descent module (DM) of the ISS Soyuz vehicle is covered by thermal protection system (TPS) materials that provide protection from heating conditions experienced during reentry. Damage and penetration of these materials by micrometeoroid and orbital debris (MMOD) impacts could result in loss of vehicle during return phases of the mission. The descent module heat shield has relatively thick TPS and is protected by the instrument-service module. The TPS materials on the conical sides of the descent module (referred to as backshell in this test plan) are exposed to more MMOD impacts and are relatively thin compared to the heat shield. This test program provides hypervelocity impact (HVI) data on materials similar in composition and density to the Soyuz TPS on the backshell of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz TPS penetration risk assessments. The impact testing was coordinated by the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology (HVIT) Group [1] in Houston, Texas. The HVI testing was conducted at the NASA-JSC White Sands Hypervelocity Impact Test Facility (WSTF) at Las Cruces, New Mexico. Figure

  11. Status of ISS Water Management and Recovery

    Science.gov (United States)

    Carter, Layne; Wilson, Laura Labuda; Orozco, Nicole

    2012-01-01

    Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment, and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of May 2011, and describes the technical challenges encountered and lessons learned over the past year.

  12. Status of ISS Water Management and Recovery

    Science.gov (United States)

    Carter, Layne; Pruitt, Jennifer; Brown, Christopher A.; Bazley, Jesse; Gazda, Daniel; Schaezler, Ryan; Bankers, Lyndsey

    2016-01-01

    Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of May 2016 and describes the technical challenges encountered and lessons learned over the past year.

  13. Status of ISS Water Management and Recovery

    Science.gov (United States)

    Carter, Layne; Takada, Kevin; Gazda, Daniel; Brown, Christopher; Bazley, Jesse; Schaezler, Ryan; Bankers, Lyndsey

    2017-01-01

    Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of June 2017 and describes the technical challenges encountered and lessons learned over the past year.

  14. Assessment of Ethanol Trends on the ISS

    Science.gov (United States)

    Perry, Jay; Carter, Layne; Kayatin, Matthew; Gazda, Daniel; McCoy, Torin; Limero, Thomas

    2016-01-01

    The International Space Station (ISS) Environmental Control and Life Support System (ECLSS) provides a working environment for six crewmembers through atmosphere revitalization and water recovery systems. In the last year, elevated ethanol levels have presented a unique challenge for the ISS ECLSS. Ethanol is monitored on the ISS by the Air Quality Monitor (AQM). The source of this increase is currently unknown. This paper documents the credible sources for the increased ethanol concentration, the monitoring provided by the AQM, and the impact on the atmosphere revitalization and water recovery systems.

  15. ISS qualified thermal carrier equipment

    Science.gov (United States)

    Deuser, Mark S.; Vellinger, John C.; Jennings, Wm. M.

    2000-01-01

    Biotechnology is undergoing a period of rapid and sustained growth, a trend which is expected to continue as the general population ages and as new medical treatments and products are conceived. As pharmaceutical and biomedical companies continue to search for improved methods of production and, for answers to basic research questions, they will seek out new avenues of research. Space processing on the International Space Station (ISS) offers such an opportunity! Space is rapidly becoming an industrial laboratory for biotechnology research and processing. Space bioprocessing offers exciting possibilities for developing new pharmaceuticals and medical treatments, which can be used to benefit mankind on Earth. It also represents a new economic frontier for the private sector. For over eight years, the thermal carrier development team at SHOT has been working with government and commercial sector scientists who are conducting microgravity experiments that require thermal control. SHOT realized several years ago that the hardware currently being used for microgravity thermal control was becoming obsolete. It is likely that the government, academic, and industrial bioscience community members could utilize SHOT's hardware as a replacement to their current microgravity thermal carrier equipment. Moreover, SHOT is aware of several international scientists interested in utilizing our space qualified thermal carrier. SHOT's economic financing concept could be extremely beneficial to the international participant, while providing a source of geographic return for their particular region. Beginning in 2000, flight qualified thermal carriers are expected to be available to both the private and government sectors. .

  16. Enhanced Ground Control for ISS Robotics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will investigate and adapt aides which will increase the efficiency of ISS robotics ground control operations with the intent of creating more...

  17. MBO ISS Update 1979 International Shorebird Survey

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The central purpose of the ISS, which is jointly sponsored by the Canadian Wildlife Service and MBO, is to identify and document areas of major importance to...

  18. ISS Crew Transportation and Services Requirements Document

    Science.gov (United States)

    Lueders, Kathryn L. (Compiler)

    2015-01-01

    Under the guidance of processes provided by Crew Transportation Plan (CCT-PLN-1100), this document with its sister documents, Crew Transportation Technical Management Processes (CCT-PLN-1120), Crew Transportation Technical Standards and Design Evaluation Criteria (CCT-STD-1140), and Crew Transportation Operations Standards (CCT-STD-1150), and International Space Station (ISS) to Commercial Orbital Transportation Services Interface Requirements Document (SSP 50808), provides the basis for a National Aeronautics and Space Administration (NASA) certification for services to the ISS for the Commercial Provider. When NASA Crew Transportation System (CTS) certification is achieved for ISS transportation, the Commercial Provider will be eligible to provide services to and from the ISS during the services phase of the NASA Commercial Crew Program (CCP).

  19. Space Flight Resource Management for ISS Operations

    Science.gov (United States)

    Schmidt, Lacey L.; Slack, Kelley; Holland, Albert; Huning, Therese; O'Keefe, William; Sipes, Walter E.

    2010-01-01

    Although the astronaut training flow for the International Space Station (ISS) spans 2 years, each astronaut or cosmonaut often spends most of their training alone. Rarely is it operationally feasible for all six ISS crewmembers to train together, even more unlikely that crewmembers can practice living together before launch. Likewise, ISS Flight Controller training spans 18 months of learning to manage incredibly complex systems remotely in plug-and-play ground teams that have little to no exposure to crewmembers before a mission. How then do all of these people quickly become a team - a team that must respond flexibly yet decisively to a variety of situations? The answer implemented at NASA is Space Flight Resource Management (SFRM), the so-called "soft skills" or team performance skills. Based on Crew Resource Management, SFRM was developed first for shuttle astronauts and focused on managing human errors during time-critical events (Rogers, et al. 2002). Given the nature of life on ISS, the scope of SFRM for ISS broadened to include teamwork during prolonged and routine operations (O'Keefe, 2008). The ISS SFRM model resembles a star with one competency for each point: Communication, Cross-Culture, Teamwork, Decision Making, Team Care, Leadership/Followership, Conflict Management, and Situation Awareness. These eight competencies were developed with international participation by the Human Behavior and Performance Training Working Group. Over the last two years, these competencies have been used to build a multi-modal SFRM training flow for astronaut candidates and flight controllers that integrates team performance skills into the practice of technical skills. Preliminary results show trainee skill increases as the flow progresses; and participants find the training invaluable to performing well and staying healthy during ISS operations. Future development of SFRM training will aim to help support indirect handovers as ISS operations evolve further with the

  20. Moduli stabilization in stringy ISS models

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Yu; Nakayama, Yu; Yamazaki, Masahito; Yanagida, T.T.

    2007-09-28

    We present a stringy realization of the ISS metastable SUSY breaking model with moduli stabilization. The mass moduli of the ISS model is stabilized by gauging of a U(1) symmetry and its D-term potential. The SUSY is broken both by F-terms and D-terms. It is possible to obtain de Sitter vacua with a vanishingly small cosmological constant by an appropriate fine-tuning of flux parameters.

  1. Dexterous Operations on ISS and Future Applications

    Science.gov (United States)

    Keenan, P. Andrew; Read, David A.

    2011-01-01

    The Mobile Servicing System (MSS) is a complex robotics system used extensively in the assembly, inspection and maintenance of the International Space Station (ISS). Its external components are comprised of the Space Station Remote Manipulator System (SSRMS), the Mobile Base System (MBS), and the Special Purpose Dexterous Manipulator (SPDM or "Dextre"). Dexterous robotic maintenance operations on the ISS are now enabled with the launch and deployment of "Dextre" in March 2008 and the recently completed commissioning to support nominal operations. These operations include allowing for maintenance of the MSS capability to be executed uniquely via robotic means. Examples are detailed inspection and the removal and replacement of On-orbit Replaceable Units (ORUs) located outside the pressurized volume of the ISS, alleviating astronauts from performing numerous risky and time-consuming extra-vehicular activities (EVAs). In light of the proposed extension of the ISS to 2020 and beyond, "Dextre" can also be seen as a resource for the support and conduct of external ISS experiments. "Dextre" can be utilized to move experiments around ISS, as test bed for more elaborate experiments outside the original design intent, and as a unique platform for external experiments. This paper summarizes the status of "Dextre", its planned use, and future potential for dexterous operations on the ISS. Lessons learned from the planning and execution of SPDM commissioning are first introduced, and significant differences between "Dextre" and SSRMS operations are discussed. The use of ground control as the predominant method for operating "Dextre" is highlighted, along with the benefits and challenges that this poses. Finally, the latest plans for dexterous operations on ISS are summarized including visiting vehicle unloading, nominal maintenance, and operations of a more experimental flavor.

  2. Technicians assembly the Hubble Space Telescope (HST) mockup at JSC

    Science.gov (United States)

    1989-01-01

    At JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A, technicians install a high gain antenna (HGA) on the Hubble Space Telescope (HST) mockup. On the ground a technician operates the controls for the overhead crane that is lifting the HGA into place on the Support System Module (SSM) forward shell. Others in a cherry picker basket wait for the HGA to near its final position so they can secure it on the mockup.

  3. STS-35 DTO 0634 EDO trash compactor demonstration at JSC

    Science.gov (United States)

    1990-01-01

    STS-35 Development Test Objective (DTO) 0634 Trash Compaction and Retention System Demostration extended duration orbiter (EDO) trash compactor is operated by Project Engineer Fred Abolfathi of Lockheed Engineering and Space Corporation (left) and JSC Man-Systems Division Subsystems Manager J.B. Thomas. The EDO trash compactor will occupy one middeck locker and consists of a geared mechanism that allows manual compaction of wet and dry trash.

  4. The JSC Engineering Directorate Product Peer Review Process

    Science.gov (United States)

    Jenks, Kenneth C.

    2009-01-01

    The JSC Engineering Directorate has developed a Product Peer Review process in support of NASA policies for project management and systems engineering. The process complies with the requirements of NPR 7120.5, NPR 7123.1 and NPR 7150.2 and follows the guidance in NASA/SP-2007-6105. This presentation will give an overview of the process followed by a brief demonstration of an actual peer review, with audience participation.

  5. IVIDIL experiment onboard the ISS

    Science.gov (United States)

    Shevtsova, Valentina

    2010-09-01

    The experiment IVIDIL (Influence of Vibrations on Diffusion in Liquids) is scheduled to be performed in forthcoming fall 2009 onboard the ISS, inside the SODI instrument mounted in the Glovebox on the ESA Columbus module. It is planned to carry out 39 experimental runs with each of them lasting 18 h. The objective of the experiment is threefold. After each space experiment there is a discussion about the role of onboard g-jitters. One objective is to identify the limit level of vibrations below which g-jitter does not play a role for onboard experiments. This objective will be fulfilled by observing diffusive process under different imposed controlled vibrations. Second, to perform precise measurements of diffusion and thermodiffusion coefficients for two binary mixtures in the absence of buoyant convection. The measured values can be used as standards for ground experiments. Two aqueous solutions will be used as test fluids: two different concentrations of water-isopropanol (IPA) with positive and negative Soret effect. This objective also includes studying the influence of vibrations on the measured values of diffusion and thermodiffusion coefficients. Finally, to investigate vibration-induced convection and, particularly, heat and mass transfer under vibrations. Three International Teams are involved in the preparation of the experiment ( Shevtsova et al., 2007). ULB (MRC) is responsible for all aspects related to IVIDIL experimental definition, theoretical and numerical modeling and coordination of the entire project. Team from Ryerson University (led by Z. Saghir), Ontario, Canada and Russian team from Perm, ICMM UB RAS (led by T. Lyubimova) provide theoretical and numerical support. As being the coordinator, the author will present a general description of the experiment and outline some results obtained by MRC, ULB researchers only, i.e. by A. Mialdun, D. Melnikov, I. Ryzhkov, Yu. Gaponenko.

  6. Selection of Leafy Green Vegetable Varieties for a Pick-and-Eat Diet Supplement on ISS

    Science.gov (United States)

    Massa, Gioia D.; Wheeler, Raymond M.; Stutte, Gary W.; Richards, Jeffrey T.; Spencer, LaShelle E.; Hummerick, Mary E.; Douglas, Grace L.; Sirmons, Takiyah

    2015-01-01

    Several varieties of leafy vegetables were evaluated with the goal of selecting those with the best growth, nutrition, and organoleptic acceptability for ISS. Candidate species were narrowed to commercially available cultivars with desirable growth attributes for space (e.g., short stature and rapid growth). Seeds were germinated in controlled environment chambers under conditions similar to what might be found in the Veggie plant growth chamber on ISS. Eight varieties of leafy greens were grown: 'Tyee' spinach, 'Flamingo' spinach, 'Outredgeous' Red Romaine lettuce, 'Waldmann's Dark Green' leaf lettuce, 'Bull's Blood' beet, 'Rhubarb' Swiss chard, 'Tokyo Bekana' Chinese cabbage, and Mizuna. Plants were harvested at maturity and biometric data on plant height, diameter, chlorophyll content, and fresh mass were obtained. Tissue was ground and extractions were performed to determine the tissue elemental content of Potassium (K), Magnesium (Mg), Calcium (Ca) and Iron (Fe). Following the biometric/elemental evaluation, four of the eight varieties were tested further for levels of anthocyanins, antioxidant (ORAC-fluorescein) capacity, lutein, zeaxanthin, and Vitamin K. For sensory evaluation, 'Outredgeous' lettuce, Swiss chard, Chinese cabbage, and Mizuna plants were grown, harvested when mature, packaged under refrigerated conditions, and sent to the JSC Space Food Systems Laboratory. Tasters evaluated overall acceptability, appearance, color intensity, bitterness, flavor, texture, crispness and tenderness. All varieties received acceptable scores with overall ratings greater than 6 on a 9-point hedonic scale. Chinese cabbage was the highest rated, followed by Mizuna, 'Outredgeous' lettuce, and Swiss chard. Based on our results, the selected varieties of Chinese cabbage, lettuce, Swiss chard and Mizuna seem suitable for a pick-and-eat scenario on ISS with a ranking based on all factors analyzed to help establish priority.

  7. Evaluating Bone Loss in ISS Astronauts.

    Science.gov (United States)

    Sibonga, Jean D; Spector, Elisabeth R; Johnston, Smith L; Tarver, William J

    2015-12-01

    The measurement of bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA) is the Medical Assessment Test used at the NASA Johnson Space Center to evaluate whether prolonged exposure to spaceflight increases the risk for premature osteoporosis in International Space Station (ISS) astronauts. The DXA scans of crewmembers' BMD during the first decade of the ISS existence showed precipitous declines in BMD for the hip and spine after the typical 6-mo missions. However, a concern exists that skeletal integrity cannot be sufficiently assessed solely by DXA measurement of BMD. Consequently, use of relatively new research technologies is being proposed to NASA for risk surveillance and to enhance long-term management of skeletal health in long-duration astronauts. Sibonga JD, Spector ER, Johnston SL, Tarver WJ. Evaluating bone loss in ISS astronauts.

  8. Adsorption of Water on JSC-1A Lunar Simulant Samples

    Science.gov (United States)

    Goering, John; Sah, Shweta; Burghaus, Uwe; Street, Kenneth W.

    2008-01-01

    Remote sensing probes sent to the moon in the 1990s indicated that water may exist in areas such as the bottoms of deep, permanently shadowed craters at the lunar poles, buried under regolith. Water is of paramount importance for any lunar exploration and colonization project which would require self-sustainable systems. Therefore, investigating the interaction of water with lunar regolith is pertinent to future exploration. The lunar environment can be approximated in ultra-high vacuum systems such as those used in thermal desorption spectroscopy (TDS). Questions about water dissociation, surface wetting, degree of crystallization, details of water-ice transitions, and cluster formation kinetics can be addressed by TDS. Lunar regolith specimens collected during the Apollo missions are still available though precious, so testing with simulant is required before applying to use lunar regolith samples. Hence, we used for these studies JSC-1a, mostly an aluminosilicate glass and basaltic material containing substantial amounts of plagioclase, some olivine and traces of other minerals. Objectives of this project include: 1) Manufacturing samples using as little raw material as possible, allowing the use of surface chemistry and kinetics tools to determine the feasibility of parallel studies on regolith, and 2) Characterizing the adsorption kinetics of water on the regolith simulant. This has implications for the probability of finding water on the moon and, if present, for recovery techniques. For condensed water films, complex TDS data were obtained containing multiple features, which are related to subtle rearrangements of the water adlayer. Results from JSC-1a TDS studies indicate: 1) Water dissociation on JSC-1a at low exposures, with features detected at temperatures as high as 450 K and 2) The formation of 3D water clusters and a rather porous condensed water film. It appears plausible that the sub- m sized particles act as nucleation centers.

  9. Mid-Latitude Ionospheric Disturbances Due to Geomagnetic Storms at ISS Altitudes

    Science.gov (United States)

    Minow, Joseph I.; Willis, Emily M.; Neergaard Parker, Linda

    2014-01-01

    Spacecraft charging of the International Space Station (ISS) is dominated by interaction of the US high voltage solar arrays with the F2-region ionosphere plasma environment. ISS solar array charging is enhanced in a high electron density environment due to the increased thermal electron currents to the edges of the solar cells. High electron temperature environments suppress charging due to formation of barrier potentials on the charged solar cell cover glass that restrict the charging currents to the cell edge [Mandell et al., 2003]. Environments responsible for strong solar array charging are therefore characterized by high electron densities and low electron temperatures. In support of the ISS space environmental effects engineering community, we are working to understand a number of features of solar array charging and to determine how well future charging behavior can be predicted from in-situ plasma density and temperature measurements. One aspect of this work is a need to characterize the magnitude of electron density and temperature variations that occur at ISS orbital altitudes (approximately 400 km) over time scales of days, the latitudes over which significant variations occur, and the time periods over which the disturbances persist once they start. This presentation provides examples of mid-latitude electron density and temperature disturbances at altitudes relevant to ISS using data sets and tools developed for our ISS plasma environment study. "Mid-latitude" is defined as the extra-tropical region between approx. 30 degrees to approx. 60 degrees magnetic latitude sampled by ISS over its 51.6 degree inclination orbit. We focus on geomagnetic storm periods because storms are well known drivers for disturbances in the ionospheric plasma environment.

  10. STS-47 crew extinquishes fire during JSC fire fighting exercises

    Science.gov (United States)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, crewmembers lined up along water hoses direct spray at fire blazing in JSC's Fire Training Pit. At the left are backup Payload Specialist Stan Koszelak, holding the hose nozzle, and Mission Specialist (MS) N. Jan Davis. Manning the hose on the right are backup Payload Specialist Takao Doi, holding the hose nozzle, followed by Commander Robert L. Gibson, Payload Specialist Mamoru Mohri, and MS Jerome Apt. Guiding the teams are MS Mae C. Jemison (front) and a veteran fire fighter and instructor (center). Doi and Mohri represent Japan's National Space Development Agency (NASDA). The Fire Training Pit is located across from the Gilruth Center Bldg 207.

  11. Organic Contamination Baseline Study on NASA JSC Astromaterial Curation Gloveboxes

    Science.gov (United States)

    Calaway, Michael J.; Allton, J. H.; Allen, C. C.; Burkett, P. J.

    2013-01-01

    Future planned sample return missions to carbon-rich asteroids and Mars in the next two decades will require strict handling and curation protocols as well as new procedures for reducing organic contamination. After the Apollo program, astromaterial collections have mainly been concerned with inorganic contamination [1-4]. However, future isolation containment systems for astromaterials, possibly nitrogen enriched gloveboxes, must be able to reduce organic and inorganic cross-contamination. In 2012, a baseline study was orchestrated to establish the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs that could be used as a benchmark for future mission designs.

  12. Human Spaceflight Technology Needs - A Foundation for JSC's Technology Strategy

    Science.gov (United States)

    Stecklein, Jonette M.

    2013-01-01

    Human space exploration has always been heavily influenced by goals to achieve a specific mission on a specific schedule. This approach drove rapid technology development, the rapidity of which adds risks as well as provides a major driver for costs and cost uncertainty. The National Aeronautics and Space Administration (NASA) is now approaching the extension of human presence throughout the solar system by balancing a proactive yet less schedule-driven development of technology with opportunistic scheduling of missions as the needed technologies are realized. This approach should provide cost effective, low risk technology development that will enable efficient and effective manned spaceflight missions. As a first step, the NASA Human Spaceflight Architecture Team (HAT) has identified a suite of critical technologies needed to support future manned missions across a range of destinations, including in cis-lunar space, near earth asteroid visits, lunar exploration, Mars moons, and Mars exploration. The challenge now is to develop a strategy and plan for technology development that efficiently enables these missions over a reasonable time period, without increasing technology development costs unnecessarily due to schedule pressure, and subsequently mitigating development and mission risks. NASA's Johnson Space Center (JSC), as the nation s primary center for human exploration, is addressing this challenge through an innovative approach in allocating Internal Research and Development funding to projects. The HAT Technology Needs (TechNeeds) Database has been developed to correlate across critical technologies and the NASA Office of Chief Technologist Technology Area Breakdown Structure (TABS). The TechNeeds Database illuminates that many critical technologies may support a single technical capability gap, that many HAT technology needs may map to a single TABS technology discipline, and that a single HAT technology need may map to multiple TABS technology

  13. ISS External Payload Accommodations (EXPRESS pallet)

    Science.gov (United States)

    Shelton, Harvey L.

    1996-01-01

    The 'expedite the process of experiments to Space Station' (EXPRESS) pallet which is attached to the DS3 truss segment of the International Space Station (ISS) via the payload attach structure is illustrated. The EXPRESS pallet constitutes the primary ISS external payload carrier. Each pallet carries six robotically replaceable payload adapters which are capable of containing one or more payloads. The following aspects of the EXPRESS program and pallet are illustrated: the concept drivers; the physical integration; the installation and in-orbit replacement; and the experiments to be implemented. The program status is summarized.

  14. Weaving Together Space Biology and the Human Research Program: Selecting Crops and Manipulating Plant Physiology to Produce High Quality Food for ISS Astronauts

    Science.gov (United States)

    Massa, Gioia; Hummerick, Mary; Douglas, Grace; Wheeler, Raymond

    2015-01-01

    Researchers from the Human Research Program (HRP) have teamed up with plant biologists at KSC to explore the potential for plant growth and food production on the international space station (ISS) and future exploration missions. KSC Space Biology (SB) brings a history of plant and plant-microbial interaction research for station and for future bioregenerative life support systems. JSC HRP brings expertise in Advanced Food Technology (AFT), Advanced Environmental Health (AEH), and Behavioral Health and Performance (BHP). The Veggie plant growth hardware on the ISS is the platform that first drove these interactions. As we prepared for the VEG-01 validation test of Veggie, we engaged with BHP to explore questions that could be asked of the crew that would contribute both to plant and to behavioral health research. AFT, AEH and BHP stakeholders were engaged immediately after the return of the Veggie flight samples of space-grown lettuce, and this team worked with the JSC human medical offices to gain approvals for crew consumption of the lettuce on ISS. As we progressed with Veggie testing we began performing crop selection studies for Veggie that were initiated through AFT. These studies consisted of testing and down selecting leafy greens, dwarf tomatoes, and dwarf pepper crops based on characteristics of plant growth and nutritional levels evaluated at KSC, and organoleptic quality evaluated at JSCs Sensory Analysis lab. This work has led to a successful collaborative proposal to the International Life Sciences Research Announcement for a jointly funded HRP-SB investigation of the impacts of light quality and fertilizer on salad crop productivity, nutrition, and flavor in Veggie on the ISS. With this work, and potentially with other pending joint projects, we will continue the synergistic research that will advance the space biology knowledge base, help close gaps in the human research roadmap, and enable humans to venture out to Mars and beyond.

  15. ISS Microgravity Research Payload Training Methodology

    Science.gov (United States)

    Schlagheck, Ronald; Geveden, Rex (Technical Monitor)

    2001-01-01

    The NASA Microgravity Research Discipline has multiple categories of science payloads that are being planned and currently under development to operate on various ISS on-orbit increments. The current program includes six subdisciplines; Materials Science, Fluids Physics, Combustion Science, Fundamental Physics, Cellular Biology and Macromolecular Biotechnology. All of these experiment payloads will require the astronaut various degrees of crew interaction and science observation. With the current programs planning to build various facility class science racks, the crew will need to be trained on basic core operations as well as science background. In addition, many disciplines will use the Express Rack and the Microgravity Science Glovebox (MSG) to utilize the accommodations provided by these facilities for smaller and less complex type hardware. The Microgravity disciplines will be responsible to have a training program designed to maximize the experiment and hardware throughput as well as being prepared for various contingencies both with anomalies as well as unexpected experiment observations. The crewmembers will need various levels of training from simple tasks as power on and activate to extensive training on hardware mode change out to observing the cell growth of various types of tissue cultures. Sample replacement will be required for furnaces and combustion type modules. The Fundamental Physics program will need crew EVA support to provide module change out of experiment. Training will take place various research centers and hardware development locations. It is expected that onboard training through various methods and video/digital technology as well as limited telecommunication interaction. Since hardware will be designed to operate from a few weeks to multiple research increments, flexibility must be planned in the training approach and procedure skills to optimize the output as well as the equipment maintainability. Early increment lessons learned

  16. ISS Has an Attitude! Determining ISS Attitude at the ISS Window Observational Research Facility (WORF) Using Landmarks

    Science.gov (United States)

    Runco, Susan K.; Pickard,Henry; Kowtha, Vijayanand; Jackson, Dan

    2011-01-01

    Universities and secondary schools can help solve a real issue for remote sensing from the ISS WORF through hands-on engineering and activities. Remote sensing technology is providing scientists with higher resolution, higher sensitivity sensors. Where is it pointing? - To take full advantage of these improved sensors, space platforms must provide commensurate improvements in attitude determination

  17. Spheres: from Ground Development to ISS Operations

    Science.gov (United States)

    Katterhagen, A.

    2016-01-01

    SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) is an internal International Space Station (ISS) Facility that supports multiple investigations for the development of multi-spacecraft and robotic control algorithms. The SPHERES National Lab Facility aboard ISS is managed and operated by NASA Ames Research Center (ARC) at Moffett Field California. The SPHERES Facility on ISS consists of three self-contained eight-inch diameter free-floating satellites which perform the various flight algorithms and serve as a platform to support the integration of experimental hardware. SPHERES has served to mature the adaptability of control algorithms of future formation flight missions in microgravity (6 DOF (Degrees of Freedom) / long duration microgravity), demonstrate key close-proximity formation flight and rendezvous and docking maneuvers, understand fault diagnosis and recovery, improve the field of human telerobotic operation and control, and lessons learned on ISS have significant impact on ground robotics, mapping, localization, and sensing in three-dimensions - among several other areas of study.

  18. Photography of Coral Reefs from ISS

    Science.gov (United States)

    Robinson, Julie A.

    2009-01-01

    This viewgraph presentation reviews the uses of photography from the International Space Station (ISS) in studying Earth's coral reefs. The photographs include reefs in various oceans . The photographs have uses for science in assisting NASA mapping initiatives, distribution worldwide through ReefBase, and by biologist in the field.

  19. ISS Logistics Hardware Disposition and Metrics Validation

    Science.gov (United States)

    Rogers, Toneka R.

    2010-01-01

    I was assigned to the Logistics Division of the International Space Station (ISS)/Spacecraft Processing Directorate. The Division consists of eight NASA engineers and specialists that oversee the logistics portion of the Checkout, Assembly, and Payload Processing Services (CAPPS) contract. Boeing, their sub-contractors and the Boeing Prime contract out of Johnson Space Center, provide the Integrated Logistics Support for the ISS activities at Kennedy Space Center. Essentially they ensure that spares are available to support flight hardware processing and the associated ground support equipment (GSE). Boeing maintains a Depot for electrical, mechanical and structural modifications and/or repair capability as required. My assigned task was to learn project management techniques utilized by NASA and its' contractors to provide an efficient and effective logistics support infrastructure to the ISS program. Within the Space Station Processing Facility (SSPF) I was exposed to Logistics support components, such as, the NASA Spacecraft Services Depot (NSSD) capabilities, Mission Processing tools, techniques and Warehouse support issues, required for integrating Space Station elements at the Kennedy Space Center. I also supported the identification of near-term ISS Hardware and Ground Support Equipment (GSE) candidates for excessing/disposition prior to October 2010; and the validation of several Logistics Metrics used by the contractor to measure logistics support effectiveness.

  20. Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7.

    Science.gov (United States)

    Alam, Md Asraful; Wan, Chun; Guo, Suo-Lian; Zhao, Xin-Qing; Huang, Zih-You; Yang, Yu-Liang; Chang, Jo-Shu; Bai, Feng-Wu

    2014-07-01

    High cost of biomass recovery is one of the bottlenecks for developing cost-effective processes with microalgae, particularly for the production of biofuels and bio-based chemicals through biorefinery, and microalgal biomass recovery through cell flocculation is a promising strategy. Some microalgae are naturally flocculated whose cells can be harvested by simple sedimentation. However, studies on the flocculating agents synthesized by microalgae cells are still very limited. In this work, the cell flocculation of a spontaneously flocculating microalga Chlorella vulgaris JSC-7 was studied, and the flocculating agent was identified to be cell wall polysaccharides whose crude extract supplemented at low dosage of 0.5 mg/L initiated the more than 80% flocculating rate of freely suspended microalgae C. vulgaris CNW11 and Scenedesmus obliquus FSP. Fourier transform infrared (FTIR) analysis revealed a characteristic absorption band at 1238 cm(-1), which might arise from PO asymmetric stretching vibration of [Formula: see text] phosphodiester. The unique cell wall-associated polysaccharide with molecular weight of 9.86×10(3) g/mol, and the monomers consist of glucose, mannose and galactose with a molecular ratio of 5:5:2. This is the first time to our knowledge that the flocculating agent from C. vulgaris has been characterized, which could provide basis for understanding the cell flocculation of microalgae and breeding of novel flocculating microalgae for cost-effective biomass harvest.

  1. Post-Shuttle EVA Operations on ISS

    Science.gov (United States)

    West, William; Witt, Vincent; Chullen, Cinda

    2010-01-01

    The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the One EVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more

  2. The Military Injury Severity Score (mISS): A better predictor of combat mortality than Injury Severity Score (ISS).

    Science.gov (United States)

    Le, Tuan D; Orman, Jean A; Stockinger, Zsolt T; Spott, Mary Ann; West, Susan A; Mann-Salinas, Elizabeth A; Chung, Kevin K; Gross, Kirby R

    2016-07-01

    The Military Injury Severity Score (mISS) was developed to better predict mortality in complex combat injuries but has yet to be validated. US combat trauma data from Afghanistan and Iraq from January 1, 2003, to December 31, 2014, from the US Department of Defense Trauma Registry (DoDTR) were analyzed. Military ISS, a variation of the ISS, was calculated and compared with standard ISS scores.Receiver operating characteristic curve, area under the curve, and Hosmer-Lemeshow statistics were used to discriminate and calibrate between mISS and ISS. Wilcoxon-Mann-Whitney, t test and χ tests were used, and sensitivity and specificity calculated. Logistic regression was used to calculate the likelihood of mortality associated with levels of mISS and ISS overall. Thirty thousand three hundred sixty-four patients were analyzed. Most were male (96.8%). Median age was 24 years (interquartile range [IQR], 21-29 years). Battle injuries comprised 65.3%. Penetrating (39.5%) and blunt (54.2%) injury types and explosion (51%) and gunshot wound (15%) mechanisms predominated. Overall mortality was 6.0%.Median mISS and ISS were similar in survivors (5 [IQR, 2-10] vs. 5 [IQR, 2-10]) but different in nonsurvivors, 30 (IQR, 16-75) versus 24 (IQR, 9-23), respectively (p ISS and ISS were discordant in 17.6% (n = 5,352), accounting for 56.2% (n = 1,016) of deaths. Among cases with discordant severity scores, the median difference between mISS and ISS was 9 (IQR, 7-16); range, 1 to 59. Military ISS and ISS shared 78% variability (R = 0.78).Area under the curve was higher in mISS than in ISS overall (0.82 vs. 0.79), for battle injury (0.79 vs. 0.76), non-battle injury (0.87 vs. 0.86), penetrating (0.81 vs. 0.77), blunt (0.77 vs. 0.75), explosion (0.81 vs. 0.78), and gunshot (0.79 vs. 0.73), all p ISS were associated with higher mortality. Compared with ISS, mISS had higher sensitivity (81.2 vs. 63.9) and slightly lower specificity (80.2 vs. 85.7). Military ISS predicts combat mortality

  3. Thermal Design and Analysis of an ISS Science Payload - SAGE III on ISS

    Science.gov (United States)

    Liles, Kaitlin, A. K.; Amundsen, Ruth M.; Davis, Warren T.; Carrillo, Laurie Y.

    2017-01-01

    The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument is the fifth in a series of instruments developed for monitoring aerosols and gaseous constituents in the stratosphere and troposphere. SAGE III will be launched in the SpaceX Dragon vehicle in 2017 and mounted to an external stowage platform on the International Space Station (ISS) to begin its three-year mission. The SAGE III thermal team at NASA Langley Research Center (LaRC) worked with ISS thermal engineers to ensure that SAGE III, as an ISS payload, would meet requirements specific to ISS and the Dragon vehicle. This document presents an overview of the SAGE III thermal design and analysis efforts, focusing on aspects that are relevant for future ISS payload developers. This includes development of detailed and reduced Thermal Desktop (TD) models integrated with the ISS and launch vehicle models, definition of analysis cases necessary to verify thermal requirements considering all mission phases from launch through installation and operation on-orbit, and challenges associated with thermal hardware selection including heaters, multi-layer insulation (MLI) blankets, and thermal tapes.

  4. Minu Vara võtab kasutusele nime ISS Eesti

    Index Scriptorium Estoniae

    2005-01-01

    ESS Puhastus, Minu Vara Lääne, Minu Vara Ida ja Majatek, mis kuuluvad kontserni ISS Haldus, hakkavad novembrikuust kandma ISS kaubamärki. 2006. aastal ühinevad need ettevõtted uueks juriidiliseks isikuks, mille nimi on ISS Eesti AS

  5. Minu Vara võtab kasutusele nime ISS Eesti

    Index Scriptorium Estoniae

    2005-01-01

    ESS Puhastus, Minu Vara Lääne, Minu Vara Ida ja Majatek, mis kuuluvad kontserni ISS Haldus, hakkavad novembrikuust kandma ISS kaubamärki. 2006. aastal ühinevad need ettevõtted uueks juriidiliseks isikuks, mille nimi on ISS Eesti AS

  6. Analysis and Design of Crew Sleep Station for ISS

    Science.gov (United States)

    Keener, John F.; Paul, Thomas; Eckhardt, Bradley; Smith, Fredrick

    2002-01-01

    This paper details the analysis and design of the Temporary Sleep Station (TeSS) environmental control system for International Space Station (ISS). The TeSS will provide crewmembers with a private and personal space, to accommodate sleeping, donning and doffing of clothing, personal communication and performance of recreational activities. The need for privacy to accommodate these activities requires adequate ventilation inside the TeSS. This study considers whether temperature, carbon dioxide, and humidity within the TeSS remain within crew comfort and safety levels for various expected operating scenarios. Evaluation of these scenarios required the use and integration of various simulation codes. An approach was adapted for this study, whereby results from a particular code were integrated with other codes when necessary. Computational Fluid Dynamics (CFD) methods were used to evaluate the flow field inside the TeSS, from which local gradients for temperature, velocity, and species concentration such as CO (sub 2) could be determined. A model of the TeSS, containing a human, as well as equipment such as a laptop computer, was developed in FLUENT, a finite-volume code. Other factors, such as detailed analysis of the heat transfer through the structure, radiation, and air circulation from the TeSS to the US Laboratory Aisle, where the TeSS is housed, were considered in the model. A complementary model was developed in G189A, a code which has been used by NASA/JSC for environmental control systems analyses since the Apollo program. Boundary conditions were exchanged between the FLUENT and G189A TeSS models. G189A provides human respiration rates to the FLUENT model, while the FLUENT model provides local convective heat transfer coefficients to G189A model. An additional benefit from using an approach with both a systems simulation and CFD model, is the capability to verify the results of each model by comparison to the results of the other model. The G189A and

  7. Reducing Organic Contamination in NASA JSC Astromaterial Curation Facility

    Science.gov (United States)

    Calaway, M. J.; Allen, C. C.; Allton, J. H.

    2013-01-01

    Future robotic and human spaceflight missions to the Moon, Mars, asteroids and comets will require handling and storing astromaterial samples with minimal inorganic and organic contamination to preserve the scientific integrity of each sample. Much was learned from the rigorous attempts to minimize and monitor organic contamination during Apollo, but it was not adequate for current analytical requirements; thus [1]. OSIRIS-REx, Hayabusa-2, and future Mars sample return will require better protocols for reducing organic contamination. Future isolation con-tainment systems for astromaterials, possibly nitrogen enriched gloveboxes, must be able to reduce organic and inorganic cross-contamination. In 2012, a baseline study established the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs that could be used as a benchmark for future mission designs [2, 3]. After standard ultra-pure water (UPW) cleaning, the majority of organic contaminates found were hydrocarbons, plasticizers, silicones, and solvents. Hydro-carbons loads (> C7) ranged from 1.9 to 11.8 ng/cm2 for TD-GC-MS wafer exposure analyses and 5.0 to 19.5 ng/L for TD-GC-MS adsorbent tube exposure. Plasticizers included nano grade solution), and heat sterilization at 130degC for 48 hours to reduce organic contamination. In addition, both heat sterilization and peracetic acid sterilization were used in the atmospheric de-contamination (R) cabinets. Later, Lunar curation gloveboxes were degreased with a pressurized Freon 113 wash. Today, UPW has replaced Freon as the standard cleaning procedure, but does not have the degreasing solvency power of Freon. Future Cleaning Studies: Cleaning experiments are cur-rently being orchestrated to study how to degrease and reduce organics in a JSC curation glovebox lower than the established baseline. Several new chemicals in the industry have replaced traditional degreasing solvents such as Freon and others that are now federally

  8. The JSC Research and Development Annual Report 1993

    Science.gov (United States)

    1994-01-01

    Issued as a companion to Johnson Space Center's Research and Technology Annual Report, which reports JSC accomplishments under NASA Research and Technology Operating Plan (RTOP) funding, this report describes 47 additional projects that are funded through sources other than the RTOP. Emerging technologies in four major disciplines are summarized: space systems technology, medical and life sciences, mission operations, and computer systems. Although these projects focus on support of human spacecraft design, development, and safety, most have wide civil and commercial applications in areas such as advanced materials, superconductors, advanced semiconductors, digital imaging, high density data storage, high performance computers, optoelectronics, artificial intelligence, robotics and automation, sensors, biotechnology, medical devices and diagnosis, and human factors engineering.

  9. [Taylor and Hill, Incorporated's JSC Cryo Chamber A

    Science.gov (United States)

    Morales, Rito

    2008-01-01

    NASA commissioned construction of an environmental simulation test chamber which was completed in 1964 at Johnson Space Center (JSC) in Houston, Texas. The facility, Chamber A, was invaluable for testing spacecraft and satellites before deployment to space. By testing spacecraft in an environment similar to the one they would be functioning in, potential problems could be addressed before launch. A new addition to NASA's observatory inventory is called the James Webb Space Telescope (JWST), after a former Administrator of NASA. The new telescope will have 7 times the mirror area of the Hubble, with a target destination approximately one million miles from earth. Scheduled for launch in 2013, the JWST will allow scientists the ability to see, for the first time, the first galaxies that formed in the early Universe. Pre-launch testing of JWST must be performed in environments that approximate its final target space environment as closely as possible.

  10. STS-26 crew in JSC Shuttle Mockup and Integration Laboratory

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, crewmembers have donned their new (navy blue) partial pressure suits (launch and entry suits (LESs)) for a training exercise in JSC's Shuttle Mockup and Integration Laboratory Bldg 9A. Commander Frederick H. Hauck is in the center foreground. Hauck is flanked by fellow crewmembers (left to right) Mission Specialist (MS) John M. Lounge, MS George D. Nelson, Pilot Richard O. Covey, and MS David C. Hilmers. Astronaut Steven R. Nagel, not assigned as crewmember but assisting in training, is at far right. During Crew Station Review (CSR) #3, the crew is scheduled to check out the new partial pressure suits and crew escape system (CES) configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options.

  11. IR Thermography NDE of ISS Radiator Panels

    Science.gov (United States)

    Koshti, Ajay; Winfree, William; Morton, Richard; Wilson, Walter; Reynolds, Gary

    2010-01-01

    The presentation covers an active and a passive infrared (IR) thermography for detection of delaminations in the radiator panels used for the International Space Station (ISS) program. The passive radiator IR data was taken by a NASA astronaut in an extravehicular activity (EVA) using a modified FLIR EVA hand-held camera. The IR data could be successfully analyzed to detect gross facesheet disbonds. The technique used the internal hot fluid tube as the heat source in analyzing the IR data. Some non-flight ISS radiators were inspected using an active technique of IR flash thermography to detect disbond of face sheet with honeycomb core, and debonds in facesheet overlap areas. The surface temperature and radiated heat emission from flight radiators is stable during acquisition of the IR video data. This data was analyzed to detect locations of unexpected surface temperature gradients. The flash thermography data was analyzed using derivative analysis and contrast evolutions. Results of the inspection are provided.

  12. ISS Habitability Data Collection and Preliminary Findings

    Science.gov (United States)

    Thaxton, Sherry (Principal Investigator); Greene, Maya; Schuh, Susan; Williams, Thomas; Archer, Ronald; Vasser, Katie

    2017-01-01

    Habitability is the relationship between an individual and their surroundings (i.e. the interplay of the person, machines, environment, and mission). The purpose of this study is to assess habitability and human factors on the ISS to better prepare for future long-duration space flights. Scheduled data collection sessions primarily require the use of iSHORT (iPad app) to capture near real-time habitability feedback and analyze vehicle layout and space utilization.

  13. Electrostatic Levitation Furnace for the ISS

    Science.gov (United States)

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko

    2012-01-01

    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  14. Chromosomal aberrations in ISS crew members

    Science.gov (United States)

    Johannes, Christian; Goedecke, Wolfgang; Antonopoulos, Alexandra

    2012-07-01

    High energy radiation is a major risk factor in manned space missions. Astronauts and cosmonauts are exposed to ionising radiations of cosmic and solar origin, while on the Earth's surface people are well protected by the atmosphere and a deflecting magnetic field. There are now data available describing the dose and the quality of ionising radiation on-board of the International Space Station (ISS). Nonetheless, the effect of increased radiation dose on mutation rates of ISS crew members are hard to predict. Therefore, direct measurements of mutation rates are required in order to better estimate the radiation risk for longer duration missions. The analysis of chromosomal aberrations in peripheral blood lymphocytes is a well established method to measure radiation-induced mutations. We present data of chromosome aberration analyses from lymphocyte metaphase spreads of ISS crew members participating in short term (10-14 days) or long term (around 6 months) missions. From each subject we received two blood samples. The first sample was drawn about 10 days before launch and a second one within 3 days after return from flight. From lymphocyte cultures metaphase plates were prepared on glass slides. Giemsa stained and in situ hybridised metaphases were scored for chromosome changes in pre-flight and post-flight blood samples and the mutation rates were compared. Results obtained in chromosomal studies on long-term flight crew members showed pronounced inter-individual differences in the response to elevated radiation levels. Overall slight but significant elevations of typical radiation induced aberrations, i.e., dicentric chromosomes and reciprocal translocations have been observed. Our data indicate no elevation of mutation rates due to short term stays on-board the ISS.

  15. Processing ISS Images of Titan's Surface

    Science.gov (United States)

    Perry, Jason; McEwen, Alfred; Fussner, Stephanie; Turtle, Elizabeth; West, Robert; Porco, Carolyn; Knowles, Ben; Dawson, Doug

    2005-01-01

    One of the primary goals of the Cassini-Huygens mission, in orbit around Saturn since July 2004, is to understand the surface and atmosphere of Titan. Surface investigations are primarily accomplished with RADAR, the Visual and Infrared Mapping Spectrometer (VIMS), and the Imaging Science Subsystem (ISS) [1]. The latter two use methane "windows", regions in Titan's reflectance spectrum where its atmosphere is most transparent, to observe the surface. For VIMS, this produces clear views of the surface near 2 and 5 microns [2]. ISS uses a narrow continuum band filter (CB3) at 938 nanometers. While these methane windows provide our best views of the surface, the images produced are not as crisp as ISS images of satellites like Dione and Iapetus [3] due to the atmosphere. Given a reasonable estimate of contrast (approx.30%), the apparent resolution of features is approximately 5 pixels due to the effects of the atmosphere and the Modulation Transfer Function of the camera [1,4]. The atmospheric haze also reduces contrast, especially with increasing emission angles [5].

  16. STS-29 Discovery, OV-103, MS Springer on JSC crew compartment trainer middeck

    Science.gov (United States)

    1989-01-01

    STS-29 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) Robert C. Springer, wearing navy blue launch and entry suit (LES) and launch and entry helmet (LEH), participates in JSC crew compartment trainer (CCT) exercises. MS Springer is seated in mission specialist seat on CCT middeck, the position he will occupy during the entry phase of flight. Behind Springer is the closed airlock hatch and stowed treadmill. The crew escape system (CES) pole extends overhead from starboard wall to side hatch. On Springer's left is the galley. CCT is located in JSC Mockup and Integration Laboratory Bldg 9A. Photo was taken by Bill Bowers of JSC.

  17. An Onboard ISS Virtual Reality Trainer

    Science.gov (United States)

    Miralles, Evelyn

    2013-01-01

    Prior to the retirement of the Space Shuttle, many exterior repairs on the International Space Station (ISS) were carried out by shuttle astronauts, trained on the ground and flown to the Station to perform these specific repairs. With the retirement of the shuttle, this is no longer an available option. As such, the need for ISS crew members to review scenarios while on flight, either for tasks they already trained for on the ground or for contingency operations has become a very critical issue. NASA astronauts prepare for Extra-Vehicular Activities (EVA) or Spacewalks through numerous training media, such as: self-study, part task training, underwater training in the Neutral Buoyancy Laboratory (NBL), hands-on hardware reviews and training at the Virtual Reality Laboratory (VRLab). In many situations, the time between the last session of a training and an EVA task might be 6 to 8 months. EVA tasks are critical for a mission and as time passes the crew members may lose proficiency on previously trained tasks and their options to refresh or learn a new skill while on flight are limited to reading training materials and watching videos. In addition, there is an increased need for unplanned contingency repairs to fix problems arising as the Station ages. In order to help the ISS crew members maintain EVA proficiency or train for contingency repairs during their mission, the Johnson Space Center's VRLab designed an immersive ISS Virtual Reality Trainer (VRT). The VRT incorporates a unique optical system that makes use of the already successful Dynamic On-board Ubiquitous Graphics (DOUG) software to assist crew members with procedure reviews and contingency EVAs while on board the Station. The need to train and re-train crew members for EVAs and contingency scenarios is crucial and extremely demanding. ISS crew members are now asked to perform EVA tasks for which they have not been trained and potentially have never seen before. The Virtual Reality Trainer (VRT

  18. The ISS Fluids Integrated Rack (FIR): a Summary of Capabilities

    Science.gov (United States)

    Gati, F.; Hill, M. E.

    2002-01-01

    the top and bottom of the rack. Transmission of micro-gravity disturbances to and from the rack is minimized through the Active Rack Isolation System (ARIS). The environmental subsystem will utilize air and water to remove heat generated by facility and experimental hardware. The air will be circulated throughout the rack and will be cooled by an air-water heat exchanger. Water will be used directly to cool some of the FIR components and will also be available to cool experiment hardware as required. The electrical subsystem includes the Electrical Power Control Unit (EPCU), which provides 28 VDC and 120 VDC power to the facility and the experiment hardware. The EPCU will also provide power management and control functions, as well as fault protection capabilities. The FIR will provide access to the ISS gaseous nitrogen and vacuum systems. These systems are available to support experiment operations such as the purging of experimental cells, creating flows within experimental cells and providing dry conditions where needed. The FIR Command and Data Management subsystem (CDMS) provides command and data handling for both facility and experiment hardware. The Input Output Processor (IOP) provides the overall command and data management functions for the rack including downlinking or writing data to removable drives. The IOP will also monitor the health and status of the rack subsystems. The Image Processing and Storage Units (IPSU) will perform diagnostic control and image data acquisition functions. An IPSU will be able to control a digital camera, receive image data from that camera and process/ compress image data as necessary. The Fluids Science and Avionics Package (FSAP) will provide the primary control over an experiment. The FSAP contains various computer boards/cards that will perform data and control functions. To support the imaging needs, cameras and illumination sources will be available to the investigator. Both color analog and black and white digital

  19. Evolution of the iss gene in Escherichia coli.

    Science.gov (United States)

    Johnson, Timothy J; Wannemuehler, Yvonne M; Nolan, Lisa K

    2008-04-01

    The increased serum survival gene iss has long been recognized for its role in extraintestinal pathogenic Escherichia coli (ExPEC) virulence. iss has been identified as a distinguishing trait of avian ExPEC but not of human ExPEC. This gene has been localized to large virulence plasmids and shares strong similarities with the bor gene from bacteriophage lambda. Here, we demonstrate that three alleles of iss occur among E. coli isolates that appear to have evolved from a common lambda bor precursor. In addition to the occurrence of iss on the ColV/BM virulence plasmids, at least two iss alleles occur within the E. coli chromosome. One of these alleles (designated type 3) was found to occur in the genomes of all currently sequenced ExPEC strains on a similar prophage element that also harbors the Sit iron and manganese transport system. When the prevalence of the three iss types was examined among 487 E. coli isolates, the iss type 3 gene was found to occur at a high frequency among ExPEC isolates, irrespective of the host source. The plasmid-borne iss allele (designated type 1) was highly prevalent among avian pathogenic E. coli and neonatal meningitis-associated E. coli isolates but not among uropathogenic E. coli isolates. This study demonstrates the evolution of iss in E. coli and provides an additional tool for discriminating among E. coli pathotypes through the differentiation of the three iss allele types and bor.

  20. ISS Utilization Potential for 2011-2020 and Beyond

    Science.gov (United States)

    Askew, R.; Chabrow, J.; Nakagawa, R.

    The US concept for a permanent human presence in space as directed by President Ronald Reagan in 1984 was called Space Station Freedom. This was the precursor to the International Space Station (ISS) that now orbits the earth. The first element of the ISS, Zarya, was launched November 20, 1998. The launch of STS-133 provides the final component of the assembly, the Multi-Purpose Logistics Module (MPLM). During the assembly the ISS was utilized to the extent possible for the conduct of scientific research and technology development, and for the development of enhancements to the ISS capabilities. These activities have resulted in a significant database of lessons learned regarding operations, both of the ISS platform as well as in the conduct of research. For the coming decade utilization of the ISS will be impacted by how these lessons learned are used to improve operations. Access to the ISS and to its capabilities will determine the types of projects that can use the ISS. Perhaps the most critical limitation is the funds that must be invested by potential users of the ISS. This paper examines the elements that have been identified as impediments to utilization of the ISS by both basic researchers and by the private sector over the past decade and provides an assessment of which of these are likely to be satisfactorily altered and on what time scale.

  1. Astronaut Kenneth D. Cameron in T-38A cockpit at Ellington Field near JSC

    Science.gov (United States)

    1989-01-01

    Astronaut Kenneth D. Cameron seated in the forward cockpit of a T-38A conducts preflight checkout procedures at Ellington Field near JSC. Cameron is preparing for a flight to Fairchild Air Force Base (AFB) in Spokane, Washington.

  2. STS-30 crewmembers pose for informal portrait on JSC FB-SMS middeck

    Science.gov (United States)

    1988-01-01

    STS-30 Atlantis, Orbiter Vehicle (OV) 104, crewmembers pause briefly from their training schedule to pose for informal portrait in JSC fixed base (FB) shuttle mission simulator (SMS). On FB-SMS middeck are (left to right) Commander David M. Walker, Mission Specialist (MS) Mark C. Lee, MS Mary L. Cleave, Pilot Ronald J. Grabe, and MS Norman E. Thagard. FB-SMS is located in JSC's Mission Simulation and Training Facility Bldg 5.

  3. VR Lab ISS Graphics Models Data Package

    Science.gov (United States)

    Paddock, Eddie; Homan, Dave; Bell, Brad; Miralles, Evely; Hoblit, Jeff

    2016-01-01

    All the ISS models are saved in AC3D model format which is a text based format that can be loaded into blender and exported to other formats from there including FBX. The models are saved in two different levels of detail, one being labeled "LOWRES" and the other labeled "HIRES". There are two ".str" files (HIRES _ scene _ load.str and LOWRES _ scene _ load.str) that give the hierarchical relationship of the different nodes and the models associated with each node for both the "HIRES" and "LOWRES" model sets. All the images used for texturing are stored in Windows ".bmp" format for easy importing.

  4. Towards ISS disturbance attenuation for randomly switched systems

    CERN Document Server

    Chatterjee, Debasish

    2007-01-01

    We are concerned with input-to-state stability (ISS) of randomly switched systems. We provide preliminary results dealing with sufficient conditions for stochastic versions of ISS for randomly switched systems without control inputs, and with the aid of universal formulae we design controllers for ISS-disturbance attenuation when control inputs are present. Two types of switching signals are considered: the first is characterized by a statistically slow-switching condition, and the second by a class of semi-Markov processes.

  5. Human Thermal Model Evaluation Using the JSC Human Thermal Database

    Science.gov (United States)

    Bue, Grant; Makinen, Janice; Cognata, Thomas

    2012-01-01

    Human thermal modeling has considerable long term utility to human space flight. Such models provide a tool to predict crew survivability in support of vehicle design and to evaluate crew response in untested space environments. It is to the benefit of any such model not only to collect relevant experimental data to correlate it against, but also to maintain an experimental standard or benchmark for future development in a readily and rapidly searchable and software accessible format. The Human thermal database project is intended to do just so; to collect relevant data from literature and experimentation and to store the data in a database structure for immediate and future use as a benchmark to judge human thermal models against, in identifying model strengths and weakness, to support model development and improve correlation, and to statistically quantify a model s predictive quality. The human thermal database developed at the Johnson Space Center (JSC) is intended to evaluate a set of widely used human thermal models. This set includes the Wissler human thermal model, a model that has been widely used to predict the human thermoregulatory response to a variety of cold and hot environments. These models are statistically compared to the current database, which contains experiments of human subjects primarily in air from a literature survey ranging between 1953 and 2004 and from a suited experiment recently performed by the authors, for a quantitative study of relative strength and predictive quality of the models.

  6. Pick-and-Eat Salad-Crop Productivity, Nutritional Value, and Acceptability to Supplement the ISS Food System

    Science.gov (United States)

    Massa, G. D.; Wheeler, R. M.; Hummerick, M. E.; Morrow, R. C.; Mitchell, C. A.; Whitmire, A. M.; Ploutz-Snyder, R. J.; Douglas, G. L.

    2016-01-01

    The capability to grow nutritious, palatable food for crew consumption during spaceflight has the potential to provide health-promoting, bioavailable nutrients, enhance the dietary experience, and reduce launch mass as we move toward longer-duration missions. However, studies of edible produce during spaceflight have been limited, leaving a significant knowledge gap in the methods required to grow safe, acceptable, nutritious crops for consumption in space. Researchers from Kennedy Space Center, Johnson Space Center, Purdue University and ORBITEC have teamed up to explore the potential for plant growth and food production on the International Space Station (ISS) and future exploration missions. KSC, Purdue, and ORBITEC bring a history of plant and plant-microbial interaction research for ISS and for future bioregenerative life support systems. JSC brings expertise in Advanced Food Technology (AFT), Behavioral Health and Performance (BHP), and statistics. The Veggie vegetable-production system on the ISS offers an opportunity to develop a pick-and-eat fresh vegetable component to the ISS food system as a first step to bioregenerative supplemental food production. We propose growing salad plants in the Veggie unit during spaceflight, focusing on the impact of light quality and fertilizer formulation on crop morphology, edible biomass yield, microbial food safety, organoleptic acceptability, nutritional value, and behavioral health benefits of the fresh produce. The first phase of the project will involve flight tests using leafy greens, with a small Chinese cabbage variety, Tokyo bekana, previously down selected through a series of research tests as a suitable candidate. The second phase will focus on dwarf tomato. Down selection of candidate varieties have been performed, and the dwarf cultivar Red Robin has been selected as the test crop. Four light treatments and three fertilizer treatments will be tested for each crop on the ground, to down select to two light

  7. The BioDyn facility on ISS: Advancing biomaterial production in microgravity for commercial applications

    Science.gov (United States)

    Myers, Niki; Wessling, Francis; Deuser, Mark; Anderson, C. D.; Lewis, Marian

    1999-01-01

    The primary goals of the BioDyn program are to foster use of the microgravity environment for commercial production of bio-materials from cells, and to develop services and processes for obtaining these materials through space processing. The scope of products includes commercial bio-molecules such as cytokines, other cell growth regulatory proteins, hormones, monoclonal antibodies and enzymes; transplantable cells or tissues which can be improved by low-G processes, or which cannot be obtained through standard processes in earth gravity; agriculture biotechnology products from plant cells; microencapsulation for diabetes treatment; and factors regulating cellular aging. To facilitate BioDyn's commercial science driven goals, hardware designed for ISS incorporates the flexibility for interchange between the different ISS facilities including the glovebox, various thermal units and centrifuges. By providing a permanent research facility, ISS is the critical space-based platform required by scientists for carrying out the long-term experiments necessary for developing bio-molecules and tissues using several cell culture modalities including suspension and anchorage-dependent cell types.

  8. Characterization of monoclonal antibodies to avian Escherichia coli Iss.

    Science.gov (United States)

    Lynne, Aaron M; Foley, Steven L; Nolan, Lisa K

    2006-09-01

    Colibacillosis accounts for annual multimillion dollar losses in the poultry industry, and control of this disease is hampered by limited understanding of the virulence mechanisms used by avian pathogenic Escherichia coli (APEC). Previous work in our laboratory has found that the presence of the increased serum survival gene (iss) is strongly associated with APEC but not commensal E. coli, making iss and the protein it encodes (Iss) candidate targets of colibacillosis-control procedures. Previously, we produced monoclonal antibodies (MAbs) against Iss to be used as a reagent in studies of APEC virulence and colibacillosis pathogenesis. Unfortunately, the utility of these MAbs was limited because these MAbs exhibited nonspecific binding. It was thought that the lack of specificity might be related to the fact that these MAbs were of the immunoglobulin M (IgM) isotype. In the present study, new MAbs were produced using a different immunization strategy in an effort to generate MAbs of a different isotype. Also, because Iss bears strong similarity to Bor, a lambda-derived protein that occurs commonly among E. coli, MAbs were assessed for their ability to distinguish Iss and Bor. For these studies, the bor gene from an APEC isolate was cloned into an expression vector. The fusion protein expressed from this construct was used to assess the potential of the anti-Iss MAbs produced in the past and present studies to distinguish Bor and Iss. The MAbs produced in this study were of the IgG1 isotype, which appeared to bind more specifically to Iss than previously generated antibodies in certain immunologic procedures. These results suggested that the MAbs generated in this study might prove superior to the previous MAbs as a reagent for study of APEC. However, both MAbs recognized recombinant Iss and Bor, suggesting that any results obtained using anti-Iss MAbs would need to be interpreted with this cross-reactivity in mind.

  9. Enhanced removal of Zn(2+) or Cd(2+) by the flocculating Chlorella vulgaris JSC-7.

    Science.gov (United States)

    Alam, Md Asraful; Wan, Chun; Zhao, Xin-Qing; Chen, Li-Jie; Chang, Jo-Shu; Bai, Feng-Wu

    2015-05-30

    Microalgae are attracting attention due to their potentials in mitigating CO2 emissions and removing environmental pollutants. However, harvesting microalgal biomass from diluted cultures is one of the bottlenecks for developing economically viable processes for this purpose. Microalgal cells can be harvested by cost-effective sedimentation when flocculating strains are used. In this study, the removal of Zn(2+) and Cd(2+) by the flocculating Chlorella vulgaris JSC-7 was studied. The experimental results indicated that more than 80% Zn(2+) and 60% Cd(2+) were removed by the microalgal culture within 3 days in the presence up to 20.0mg/L Zn(2+) and 4.0mg/L Cd(2+), respectively, which were much higher than that observed with the culture of the non-flocculating C. vulgaris CNW11. Furthermore, the mechanism underlying this phenomenon was explored by investigating the effect of Zn(2+) and Cd(2+) on the growth and metabolic activities of the microalgal strains. It was found that the flocculation of the microalga improved its growth, synthesis of photosynthetic pigments and antioxidation activity under the stressful conditions, indicating a better tolerance to the heavy metal ions for a potential in removing them more efficiently from contaminated wastewaters, together with a bioremediation of other nutritional components contributed to the eutrophication of aquatic ecosystems.

  10. Tipprežissöör Leni / Tiit Tuumalu

    Index Scriptorium Estoniae

    Tuumalu, Tiit, 1971-

    2004-01-01

    Eesti Televisioon näitab kaht legendaarse Leni Riefenstahli (1902-2003) osalusega dokumentaalfilmi - "Leni Riefenstahl : Unistus Aafrikast" : režissöör Ray Müller : Saksamaa 2000 ja "Vetesügavuste lummus" : režissöör Leni Riefenstahl : Saksamaa 2002

  11. Tipprežissöör Leni / Tiit Tuumalu

    Index Scriptorium Estoniae

    Tuumalu, Tiit, 1971-

    2004-01-01

    Eesti Televisioon näitab kaht legendaarse Leni Riefenstahli (1902-2003) osalusega dokumentaalfilmi - "Leni Riefenstahl : Unistus Aafrikast" : režissöör Ray Müller : Saksamaa 2000 ja "Vetesügavuste lummus" : režissöör Leni Riefenstahl : Saksamaa 2002

  12. Development of the ISS EMU Dashboard Software

    Science.gov (United States)

    Bernard, Craig; Hill, Terry R.

    2011-01-01

    The EMU (Extra-Vehicular Mobility Unit) Dashboard was developed at NASA s Johnson Space Center to aid in real-time mission support for the ISS (International Space Station) and Shuttle EMU space suit by time synchronizing down-linked video, space suit data and audio from the mission control audio loops. Once the input streams are synchronized and recorded, the data can be replayed almost instantly and has proven invaluable in understanding in-flight hardware anomalies and playing back information conveyed by the crew to missions control and the back room support. This paper will walk through the development from an engineer s idea brought to life by an intern to real time mission support and how this tool is evolving today and its challenges to support EVAs (Extra-Vehicular Activities) and human exploration in the 21st century.

  13. ISS Interface Mechanisms and their Heritage

    Science.gov (United States)

    Cook, John G.; Aksamentov, Valery; Hoffman, Thomas; Bruner, Wes

    2011-01-01

    The International Space Station, by nurturing technological development of a variety of pressurized and unpressurized interface mechanisms fosters "competition at the technology level". Such redundancy and diversity allows for the development and testing of mechanisms that might be used for future exploration efforts. The International Space Station, as a test-bed for exploration, has 4 types of pressurized interfaces between elements and 6 unpressurized attachment mechanisms. Lessons learned from the design, test and operations of these mechanisms will help inform the design for a new international standard pressurized docking mechanism for the NASA Docking System. This paper will examine the attachment mechanisms on the ISS and their attributes. It will also look ahead at the new NASA docking system and trace its lineage to heritage mechanisms.

  14. Space Debris in the neighborhood of the ISS

    Science.gov (United States)

    Sampaio, Jarbas; Vilhena de Moraes, Rodolpho; Celestino, Claudia C.; Fiorilo de Melo, Cristiano

    2016-07-01

    The International Space Station (ISS) is a great opportunity to use a research platform in space. An international partnership of space agencies provides the operation of the ISS since 2000. The ISS is in Low Earth Orbits, in the same region of most of the space debris orbiting the planet. In this way, several studies are important to preserve the operability of the space station and operational artificial satellites, considering the increasing number of distinct objects in the space environment offering collision risks. In this work, the orbital dynamics of space debris are studied in the neighborhood of the ISS - International Space Station. The results show that the collision risk of space debris with the ISS is high and purposes to avoid these events are necessary. Solutions for the space debris mitigation are considered.

  15. Measurements of the neutron dose and energy spectrum on the International Space Station during expeditions ISS-16 to ISS-21.

    Science.gov (United States)

    Smith, M B; Akatov, Yu; Andrews, H R; Arkhangelsky, V; Chernykh, I V; Ing, H; Khoshooniy, N; Lewis, B J; Machrafi, R; Nikolaev, I; Romanenko, R Y; Shurshakov, V; Thirsk, R B; Tomi, L

    2013-01-01

    As part of the international Matroshka-R and Radi-N experiments, bubble detectors have been used on board the ISS in order to characterise the neutron dose and the energy spectrum of neutrons. Experiments using bubble dosemeters inside a tissue-equivalent phantom were performed during the ISS-16, ISS-18 and ISS-19 expeditions. During the ISS-20 and ISS-21 missions, the bubble dosemeters were supplemented by a bubble-detector spectrometer, a set of six detectors that was used to determine the neutron energy spectrum at various locations inside the ISS. The temperature-compensated spectrometer set used is the first to be developed specifically for space applications and its development is described in this paper. Results of the dose measurements indicate that the dose received at two different depths inside the phantom is not significantly different, suggesting that bubble detectors worn by a person provide an accurate reading of the dose received inside the body. The energy spectra measured using the spectrometer are in good agreement with previous measurements and do not show a strong dependence on the precise location inside the station. To aid the understanding of the bubble-detector response to charged particles in the space environment, calculations have been performed using a Monte-Carlo code, together with data collected on the ISS. These calculations indicate that charged particles contribute space.

  16. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    Science.gov (United States)

    Minow, Joseph; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    Today s presentation describes how real time space weather data is used by the International Space Station (ISS) space environments team to obtain data on auroral charging of the ISS vehicle and support ISS crew efforts to obtain auroral images from orbit. Topics covered include: Floating Potential Measurement Unit (FPMU), . Auroral charging of ISS, . Real ]time space weather monitoring resources, . Examples of ISS auroral charging captured from space weather events, . ISS crew observations of aurora.

  17. Rapid culture-independent microbial analysis aboard the international space station (ISS) stage two: quantifying three microbial biomarkers.

    Science.gov (United States)

    Morris, Heather C; Damon, Michael; Maule, Jake; Monaco, Lisa A; Wainwright, Norm

    2012-09-01

    Abstract A portable, rapid, microbial detection unit, the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS), was launched to the International Space Station (ISS) as a technology demonstration unit in December 2006. Results from the first series of experiments designed to detect Gram-negative bacteria on ISS surfaces by quantifying a single microbial biomarker lipopolysaccharide (LPS) were reported in a previous article. Herein, we report additional technology demonstration experiments expanding the on-orbit capabilities of the LOCAD-PTS to detecting three different microbial biomarkers on ISS surfaces. Six different astronauts on more than 20 occasions participated in these experiments, which were designed to test the new beta-glucan (fungal cell wall molecule) and lipoteichoic acid (LTA; Gram-positive bacterial cell wall component) cartridges individually and in tandem with the existing Limulus Amebocyte Lysate (LAL; Gram-negative bacterial LPS detection) cartridges. Additionally, we conducted the sampling side by side with the standard culture-based detection method currently used on the ISS. Therefore, we present data on the distribution of three microbial biomarkers collected from various surfaces in every module present on the ISS at the time of sampling. In accordance with our previous experiments, we determined that spacecraft surfaces known to be frequently in contact with crew members demonstrated higher values of all three microbial molecules. Key Words: Planetary protection-Spaceflight-Microbiology-Biosensor. Astrobiology 12, 830-840.

  18. ISS Biotechnology Facility - Overview of Analytical Tools for Cellular Biotechnology Investigations

    Science.gov (United States)

    Jeevarajan, A. S.; Towe, B. C.; Anderson, M. M.; Gonda, S. R.; Pellis, N. R.

    2001-01-01

    The ISS Biotechnology Facility (BTF) platform provides scientists with a unique opportunity to carry out diverse experiments in a microgravity environment for an extended period of time. Although considerable progress has been made in preserving cells on the ISS for long periods of time for later return to Earth, future biotechnology experiments would desirably monitor, process, and analyze cells in a timely way on-orbit. One aspect of our work has been directed towards developing biochemical sensors for pH, glucose, oxygen, and carbon dioxide for perfused bioreactor system developed at Johnson Space Center. Another aspect is the examination and identification of new and advanced commercial biotechnologies that may have applications to on-orbit experiments.

  19. ISS Biotechnology Facility - Overview of Analytical Tools for Cellular Biotechnology Investigations

    Science.gov (United States)

    Jeevarajan, A. S.; Towe, B. C.; Anderson, M. M.; Gonda, S. R.; Pellis, N. R.

    2001-01-01

    The ISS Biotechnology Facility (BTF) platform provides scientists with a unique opportunity to carry out diverse experiments in a microgravity environment for an extended period of time. Although considerable progress has been made in preserving cells on the ISS for long periods of time for later return to Earth, future biotechnology experiments would desirably monitor, process, and analyze cells in a timely way on-orbit. One aspect of our work has been directed towards developing biochemical sensors for pH, glucose, oxygen, and carbon dioxide for perfused bioreactor system developed at Johnson Space Center. Another aspect is the examination and identification of new and advanced commercial biotechnologies that may have applications to on-orbit experiments.

  20. Recombinant Iss as a potential vaccine for avian colibacillosis.

    Science.gov (United States)

    Lynne, Aaron M; Kariyawasam, Subhashinie; Wannemuehler, Yvonne; Johnson, Timothy J; Johnson, Sara J; Sinha, Avanti S; Lynne, Dorie K; Moon, Harley W; Jordan, Dianna M; Logue, Catherine M; Foley, Steven L; Nolan, Lisa K

    2012-03-01

    Avian pathogenic Escherichia coli (APEC) cause colibacillosis, a disease which is responsible for significant losses in poultry. Control of colibacillosis is problematic due to the restricted availability of relevant antimicrobial agents and to the frequent failure of vaccines to protect against the diverse range of APEC serogroups causing disease in birds. Previously, we reported that the increased serum survival gene (iss) is strongly associated with APEC strains, but not with fecal commensal E. coli in birds, making iss and the outer membrane protein it encodes (Iss) candidate targets for colibacillosis control procedures. Preliminary studies in birds showed that their immunization with Iss fusion proteins protected against challenge with two of the more-commonly occurring APEC serogroups (O2 and O78). Here, the potential of an Iss-based vaccine was further examined by assessing its effectiveness against an additional and widely occurring APEC serogroup (O1) and its ability to evoke both a serum and mucosal antibody response in immunized birds. In addition, tissues of selected birds were subjected to histopathologic examination in an effort to better characterize the protective response afforded by immunization with this vaccine. Iss fusion proteins were administered intramuscularly to four groups of 2-wk-old broiler chickens. At 2 wk postimmunization, chickens were challenged with APEC strains of the O1, O2, or O78 serogroups. One week after challenge, chickens were euthanatized, necropsied, any lesions consistent with colibacillosis were scored, and tissues from these birds were taken aseptically. Sera were collected pre-immunization, postimmunization, and post-challenge, and antibody titers to Iss were determined by enzyme-linked immunosorbent assay (ELISA). Also, air sac washings were collected to determine the mucosal antibody response to Iss by ELISA. During the observation period following challenge, 3/12 nonimmunized chickens, 1/12 chickens immunized

  1. Engineer Calvin H. Seaman demonstrates STS-49 INTELSAT capture bar at JSC

    Science.gov (United States)

    1992-01-01

    Project Engineer Calvin H. Seaman (center) briefs news media representatives on the grapple fixture (capture bar) expected to be instrumental in the capture of the International Telecommunications Satellite Organization (INTELSAT) VI satellite in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9. Seaman is a JSC engineer who designed the capture bar. After Endeavour, Orbiter Vehicle (OV) 105, is maneuvered into a tight proximity operations configuration with the errant satellite, two STS-49 crewmembers will attach the grapple device to the aft side of INTELSAT, as demonstrated with this full-scale mockup. The communications satellite will then be mated with a perigee stage, which the crewmembers will carry with them on their May launch, and released into space. Its motor will be fired many hours afterward, sending it on its way to a higher, geosynchronous orbit. The Errant Satellite Simulator is set up on the Air Bearing Floor for the demonstration. Photo taken by NASA JSC contract

  2. MODERN RESOURCE-SAVING TECHNOLOGIES IN FOUNDRY PRODUCTION OF JSC «MINSK TRAKTOR PLANT»

    Directory of Open Access Journals (Sweden)

    F. A. Domotenko

    2016-01-01

    Full Text Available In article the main world tendencies of development of the production technology of sandy cores and value of this production in complex technology of manufacture of castings are considered. It is established that the most rational way of production technically and economically is manufacture of wafer sandy cores using the Cold-box-amin technology. Scientific, technical, technological and economic aspects of modernization of foundry production of JSC MTZ with complete transition to production of sandy cores on the resource-saving Cold-box-amin technology are provided. The main distinctive feature of this reequipment – all planned works are based on the domestic technological developments and the equipment created in the cooperation by specialists of JSC BELNIILIT and JSC MTZ. Within GNTP essential support to the provided works was given by the state.

  3. Life science experiments performed in space in the ISS/Kibo facility and future research plans.

    Science.gov (United States)

    Ohnishi, Takeo

    2016-08-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese 'Kibo' facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the 'Rad Gene' project, which utilized two human cultured lymphoblastoid cell lines containing a mutated P53 : gene (m P53 : ) and a parental wild-type P53 : gene (wt P53 : ) respectively. Four parameters were examined: (i) detecting space radiation-induced DSBs by observing γH2AX foci; (ii) observing P53 : -dependent gene expression during space flight; (iii) observing P53 : -dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type P53 : genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and

  4. Improvement of Operational Reliability Resource for JSC “Beltransgaz” Main Pipelines

    Directory of Open Access Journals (Sweden)

    V. Mayorov

    2013-01-01

    Full Text Available  The paper considers prospects for modernization of the operating linear portion of JSC “Beltransgaz” gas transportation system, various methods and materials which are used while implementing  construction and installation works in the oil and gas sector. It has been shown that in the recent decade one of the most technically, technologically and economically efficient application of the material is double-composite polyurethane coating. The method for coating deposition has been tested and introduced by JSC “Beltransgaz” with significant economic efficiency.

  5. ASTP crewmen in Apollo Command Module Trainer during training session at JSC

    Science.gov (United States)

    1975-01-01

    The three members of the American ASTP prime crew are photographed inside the Apollo Command Module (CM) trainer in a water tank in bldg 260 during water egress training at JSC. They are, left to right, Astronauts Thomas P. Stafford, commander; Vance D. Brand, command module pilot; and Donald K. Slayton, docking module pilot (23430); Slayton attaches his life preserver as he egresses an Apollo Command Module trainer in a water tank in bldg 260 during water egresss training at JSC. Astronauts Brand (on left) and Stafford have already egressed the trainer and are seated in a three-man life raft.

  6. STS-31 crewmembers during simulation on the flight deck of JSC's FB-SMS

    Science.gov (United States)

    1988-01-01

    On the flight deck of JSC's fixed based (FB) shuttle mission simulator (SMS), Mission Specialist (MS) Steven A. Hawley (left), on aft flight deck, looks over the shoulders of Commander Loren J. Shriver, seated at the commanders station (left) and Pilot Charles F. Bolden, seated at the pilots station and partially blocked by the seat's headrest (right). The three astronauts recently named to the STS-31 mission aboard Discovery, Orbiter Vehicle (OV) 103, go through a procedures checkout in the FB-SMS. The training simulation took place in JSC's Mission Simulation and Training Facility Bldg 5.

  7. Organic Contamination Baseline Study: In NASA JSC Astromaterials Curation Laboratories. Summary Report

    Science.gov (United States)

    Calaway, Michael J.

    2013-01-01

    In preparation for OSIRIS-REx and other future sample return missions concerned with analyzing organics, we conducted an Organic Contamination Baseline Study for JSC Curation Labsoratories in FY12. For FY12 testing, organic baseline study focused only on molecular organic contamination in JSC curation gloveboxes: presumably future collections (i.e. Lunar, Mars, asteroid missions) would use isolation containment systems over only cleanrooms for primary sample storage. This decision was made due to limit historical data on curation gloveboxes, limited IR&D funds and Genesis routinely monitors organics in their ISO class 4 cleanrooms.

  8. 77 FR 31794 - Financial Crimes Enforcement Network; Imposition of Special Measure Against JSC CredexBank as a...

    Science.gov (United States)

    2012-05-30

    ... Against JSC CredexBank as a Financial Institution of Primary Money Laundering Concern AGENCY: Financial... that JSC CredexBank is a financial institution of primary money laundering concern pursuant to 31 U.S.C...), Public Law 107-56. Title III of the USA PATRIOT Act amends the anti- money laundering provisions of...

  9. Astronaut Susan Helms in the ISS Unity Node

    Science.gov (United States)

    2001-01-01

    In this photograph, Astronaut Susan Helms, Expedition Two flight engineer, is positioned near a large amount of water temporarily stored in the Unity Node aboard the International Space Station (ISS). Astronaut Helms accompanied the STS-105 crew back to Earth after having spent five months with two crewmates aboard the ISS. The 11th ISS assembly flight, the Space Shuttle Orbiter Discovery STS-105 mission was launched on August 10, 2001, and landed on August 22, 2001 at the Kennedy Space Center after the completion of the successful 12-day mission.

  10. International Space Station environmental microbiome - microbial inventories of ISS filter debris.

    Science.gov (United States)

    Venkateswaran, Kasthuri; Vaishampayan, Parag; Cisneros, Jessica; Pierson, Duane L; Rogers, Scott O; Perry, Jay

    2014-01-01

    Despite an expanding array of molecular approaches for detecting microorganisms in a given sample, rapid and robust means of assessing the differential viability of the microbial cells, as a function of phylogenetic lineage, remain elusive. A propidium monoazide (PMA) treatment coupled with downstream quantitative polymerase chain reaction (qPCR) and pyrosequencing analyses was carried out to better understand the frequency, diversity, and distribution of viable microorganisms associated with debris collected from the crew quarters of the International Space Station (ISS). The cultured bacterial counts were more in the ISS samples than cultured fungal population. The rapid molecular analyses targeted to estimate viable population exhibited 5-fold increase in bacterial (qPCR-PMA assay) and 25-fold increase in microbial (adenosine triphosphate assay) burden than the cultured bacterial population. The ribosomal nucleic acid-based identification of cultivated strains revealed the presence of only four to eight bacterial species in the ISS samples, however, the viable bacterial diversity detected by the PMA-pyrosequencing method was far more diverse (12 to 23 bacterial taxa) with the majority consisting of members of actinobacterial genera (Propionibacterium, Corynebacterium) and Staphylococcus. Sample fractions not treated with PMA (inclusive of both live and dead cells) yielded a great abundance of highly diverse bacterial (94 to 118 taxa) and fungal lineages (41 taxa). Even though deep sequencing capability of the molecular analysis widened the understanding about the microbial diversity, the cultivation assay also proved to be essential since some of the spore-forming microorganisms were detected only by the culture-based method. Presented here are the findings of the first comprehensive effort to assess the viability of microbial cells associated with ISS surfaces, and correlate differential viability with phylogenetic affiliation.

  11. Bubble-detector measurements of neutron radiation in the international space station: ISS-34 to ISS-37.

    Science.gov (United States)

    Smith, M B; Khulapko, S; Andrews, H R; Arkhangelsky, V; Ing, H; Koslowksy, M R; Lewis, B J; Machrafi, R; Nikolaev, I; Shurshakov, V

    2016-02-01

    Bubble detectors have been used to characterise the neutron dose and energy spectrum in several modules of the International Space Station (ISS) as part of an ongoing radiation survey. A series of experiments was performed during the ISS-34, ISS-35, ISS-36 and ISS-37 missions between December 2012 and October 2013. The Radi-N2 experiment, a repeat of the 2009 Radi-N investigation, included measurements in four modules of the US orbital segment: Columbus, the Japanese experiment module, the US laboratory and Node 2. The Radi-N2 dose and spectral measurements are not significantly different from the Radi-N results collected in the same ISS locations, despite the large difference in solar activity between 2009 and 2013. Parallel experiments using a second set of detectors in the Russian segment of the ISS included the first characterisation of the neutron spectrum inside the tissue-equivalent Matroshka-R phantom. These data suggest that the dose inside the phantom is ∼70% of the dose at its surface, while the spectrum inside the phantom contains a larger fraction of high-energy neutrons than the spectrum outside the phantom. The phantom results are supported by Monte Carlo simulations that provide good agreement with the empirical data. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. PCS: The First Fluid Physics Payload on ISS

    Science.gov (United States)

    Doherty, M.; Sankaran, S.

    2002-01-01

    The Physics of Colloids in Space (PCS) experiment was accommodated within International Space Station (ISS) EXpedite the PRocessing of Experiments to Space Station (EXPRESS) Rack 2 and was remotely operated from early June 2001 until February 2002 from NASA Glenn Research Center's Telescience Support Center in Cleveland, Ohio and from a remote site at Harvard University in Cambridge, Massachusetts. PCS is an experiment conceived by Professor David A. Weitz of Harvard University (the Principal Investigator), focusing on the behavior of three different classes of colloid mixtures. The sophisticated light scattering instrumentation comprising PCS is capable of color imaging, and dynamic and static light scattering from 11 to 169 degrees, Bragg scattering over the range from 10 to 60 degrees, and laser light scattering at low angles from 0.3 to 6.0 degrees. The PCS instrumentation performed remarkably well, demonstrating a flexibility that enabled experiments to be performed that had not been envisioned prior to launch. While on-orbit, PCS accomplished 2400 hours of science operations, and was declared a resounding success. Each of the eight sample cells worked well and produced interesting and important results. Crystal nucleation and growth and the resulting structures of two binary colloidal crystal alloys were studied, with the long duration microgravity environment of the ISS facilitating extended studies on the growth and coarsening characteristics of the crystals. In another experiment run, the de-mixing of the colloid-polymer critical-point sample was studied as it phase-separates into two phases, one that resembles a gas and one that resembles a liquid. This process was studied over four decades of length scale, from 1 micron to 1 centimeter, behavior that cannot be observed in this sample on Earth because sedimentation would cause the colloids to fall to the bottom of the cell faster than the de-mixing process could occur. Similarly, the study of gelation and

  13. Estimating Consequences of MMOD Penetrations on ISS

    Science.gov (United States)

    Evans, H.; Hyde, James; Christiansen, E.; Lear, D.

    2017-01-01

    The threat from micrometeoroid and orbital debris (MMOD) impacts on space vehicles is often quantified in terms of the probability of no penetration (PNP). However, for large spacecraft, especially those with multiple compartments, a penetration may have a number of possible outcomes. The extent of the damage (diameter of hole, crack length or penetration depth), the location of the damage relative to critical equipment or crew, crew response, and even the time of day of the penetration are among the many factors that can affect the outcome. For the International Space Station (ISS), a Monte-Carlo style software code called Manned Spacecraft Crew Survivability (MSCSurv) is used to predict the probability of several outcomes of an MMOD penetration-broadly classified as loss of crew (LOC), crew evacuation (Evac), loss of escape vehicle (LEV), and nominal end of mission (NEOM). By generating large numbers of MMOD impacts (typically in the billions) and tracking the consequences, MSCSurv allows for the inclusion of a large number of parameters and models as well as enabling the consideration of uncertainties in the models and parameters. MSCSurv builds upon the results from NASA's Bumper software (which provides the probability of penetration and critical input data to MSCSurv) to allow analysts to estimate the probability of LOC, Evac, LEV, and NEOM. This paper briefly describes the overall methodology used by NASA to quantify LOC, Evac, LEV, and NEOM with particular emphasis on describing in broad terms how MSCSurv works and its capabilities and most significant models.

  14. The ISS Sensitizing Agents Data Bank (BDS).

    Science.gov (United States)

    Brunetto, Barbara; Binetti, Roberto; Ceccarelli, Federica; Costamagna, Francesca Marina; D'Angiolini, Antonella; Fabri, Alessandra; Ferri, Maurizio; Marcello, Ida; Riva, Giovanni; Roazzi, Paolo; Trucchi, Daniela; Tinghino, Raffaella

    2008-01-01

    The Istituto Superiore Sanità has developed a data bank on sensitizing substances (Banca Dati Sensibilizzanti, BDS), available on website (www.iss.it/bdse/), sharing complete, controlled and updated information coming from different sources, such as scientific publications, international agencies and governmental or non governmental organizations. It is worthwhile that the main objective of the BDS is not the classification of sensitizing or potentially sensitizing agents within specific risk classes, but it is essentially to provide concise and non confidential information related to this endpoint. At present, the BDS includes: all the substances officially classified by European Union, (Annex I to Directive 67/548/EEC), some substances listed in I (Directive 67/548/EEC) for endpoints different than "sensitization" but indicated as sensitizers by other relevant institutions, all the substances indicated as sensitizers by relevant agencies or institutions (ACGIH, DFG), some substances indicted as sensitizers by industry and other non-governmental organizations (ETAD and HERA), all the substances regarded as "potentially sensitizing dyes" by the Commission of the European Community for the award of the eco-label to textile products, some substances for which, even in the absence of any categorization by Union, ACGIH or DFG, it is not possible to exclude a sensitizing potential on the basis of reliable documents.

  15. Advanced planning for ISS payload ground processing

    Science.gov (United States)

    Page, Kimberly A.

    2000-01-01

    Ground processing at John F. Kennedy Space Center (KSC) is the concluding phase of the payload/flight hardware development process and is the final opportunity to ensure safe and successful recognition of mission objectives. Planning for the ground processing of on-orbit flight hardware elements and payloads for the International Space Station is a responsibility taken seriously at KSC. Realizing that entering into this operational environment can be an enormous undertaking for a payload customer, KSC continually works to improve this process by instituting new/improved services for payload developer/owner, applying state-of-the-art technologies to the advanced planning process, and incorporating lessons learned for payload ground processing planning to ensure complete customer satisfaction. This paper will present an overview of the KSC advanced planning activities for ISS hardware/payload ground processing. It will focus on when and how KSC begins to interact with the payload developer/owner, how that interaction changes (and grows) throughout the planning process, and how KSC ensures that advanced planning is successfully implemented at the launch site. It will also briefly consider the type of advance planning conducted by the launch site that is transparent to the payload user but essential to the successful processing of the payload (i.e. resource allocation, executing documentation, etc.) .

  16. Partnering with NASA JSC for Community Research Needs; Collaborative and Student Opportunities via Jacobs and Psams Initiative

    Science.gov (United States)

    Danielson, L. R.; Draper, D. S.

    2016-12-01

    NASA Johnson Space Center's (JSC) Astromaterials Research and Exploration Science Division houses a unique combination of laboratories and other assets for conducting cutting-edge planetary research. These facilities have been accessed for decades by outside scientists; over the past five years, the 16 full time contract research and technical staff members in our division have hosted a total of 223 visiting researchers, representing 35 institutions. We intend to submit a proposal to NASA specifically for facilities support and establishment of our laboratories as a collective, PSAMS, Planetary Sample Analyses and Mission Science, which should result in substantial cost savings to PIs who wish to use our facilities. JSC is a recognized NASA center of excellence for curation, and in future will allow PIs easy access to samples in Curation facilities that they have been approved to study. Our curation expertise could also be used for a collection of experimental run products and standards that could be shared and distributed to community members, products that could range from 1 bar controlled atmosphere furnace, piston cylinder, multi-anvil, to shocked products. Coordinated analyses of samples is one of the major strengths of our division, where a single sample can be prepared with minimal destruction for a variety of chemical and structural analyses, from macro to nano-scale. A CT scanner will be delivered August 2016 and installed in the same building as all the other division experimental and analytical facilities, allowing users to construct a 3 dimensional model of their run product and/or starting material before any destruction of their sample for follow up analyses. The 3D printer may also be utilized to construct containers for diamond anvil cell experiments. Our staff scientists will work with PIs to maximize science return and serve the needs of the community. We welcome student visitors, and a graduate semester internship is available through Jacobs.

  17. Recommendations on incurred sample stability (ISS) by GCC.

    Science.gov (United States)

    Lowes, Steve; LeLacheur, Richard; Shoup, Ronald; Garofolo, Fabio; Dumont, Isabelle; Martinez, Suzanne; Zimmer, Jennifer; Caturla, Maria Cruz; Couerbe, Philippe; Awaiye, Kayode; Fatmi, Saadya; Farmen, Raymond; Sheldon, Curtis; Bower, Joseph; Fiscella, Michele; Fast, Douglas; Cape, Stephanie; Hulse, Jim; Kamerud, John; Zhang, Tee; Pasas-Farmer, Stephanie; Garofolo, Wei; Moussallie, Marc; Rocci, Mario; Allinson, John; Gouty, Dominique; Buonarati, Mike; Boudreau, Nadine; Pellerin, Brigitte; Lin, Jenny; Xu, Allan; Hayes, Roger; Bouhajib, Mohammed; Stipancic, Mary; Nicholson, Robert; Nehls, Corey; Warren, Mark; Karnik, Shane; Houghton, Richard; Stovold, Craig; Reuschel, Scott; Cojocaru, Laura; Marcelletti, John; Fang, Xinping; Smith, Ian; Watson, Andrea

    2014-09-01

    The topic of incurred sample stability (ISS) has generated considerable discussion within the bioanalytical community in recent years. The subject was an integral part of the seventh annual Workshop on Recent Issues in Bioanalysis (WRIB) held in Long Beach, CA, USA, in April 2013, and at the Global CRO Council for Bioanalysis (GCC) meeting preceding it. Discussion at both events focused on the use of incurred samples for ISS purposes in light of results from a recent GCC survey completed by member companies. This paper reports the consensus resulting from these discussions and serves as a useful reference for depicting ISS issues and concerns, summarizing the GCC survey results and providing helpful recommendations on ISS in the context of bioanalytical method development and application.

  18. SPHERES/Universal ISS Battery Charging Station Project

    Data.gov (United States)

    National Aeronautics and Space Administration — With the retiring of the shuttle fleet, up-mass and down-mass to ISS are at a premium. The space station itself has a limited lifecycle as well, thus long-term...

  19. SPHERES/Universal ISS Battery Charging Station Project

    Data.gov (United States)

    National Aeronautics and Space Administration — With the retiring of the shuttle fleet, up-mass and down-mass to ISS are at a premium. The space station itself has a limited lifecycle as well, thus long-term...

  20. Finite temperature behaviour of the ISS-uplifted KKLT model

    Energy Technology Data Exchange (ETDEWEB)

    Papineau, C.

    2008-02-15

    We study the static phase structure of the ISS-KKLT model for moduli stabilisation and uplifting to a zero cosmological constant. Since the supersymmetry breaking sector and the moduli sector are only gravitationally coupled, we expect negligible quantum effects of the modulus upon the ISS sector, and the other way around. Under this assumption, we show that the ISS fields end up in the metastable vacua. The reason is not only that it is thermally favoured (second order phase transition) compared to the phase transition towards the supersymmetric vacua, but rather that the metastable vacua form before the supersymmetric ones. This nice feature is exclusively due to the presence of the KKLT sector. We also show that supergravity effects are negligible around the origin of the field space. Finally, we turn to the modulus sector and show that there is no destabilisation effect coming from the ISS sector. (orig.)

  1. System Interface for an Integrated Intelligent Safety System (ISS for Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Mahammad A. Hannan

    2010-01-01

    Full Text Available This paper deals with the interface-relevant activity of a vehicle integrated intelligent safety system (ISS that includes an airbag deployment decision system (ADDS and a tire pressure monitoring system (TPMS. A program is developed in LabWindows/CVI, using C for prototype implementation. The prototype is primarily concerned with the interconnection between hardware objects such as a load cell, web camera, accelerometer, TPM tire module and receiver module, DAQ card, CPU card and a touch screen. Several safety subsystems, including image processing, weight sensing and crash detection systems, are integrated, and their outputs are combined to yield intelligent decisions regarding airbag deployment. The integrated safety system also monitors tire pressure and temperature. Testing and experimentation with this ISS suggests that the system is unique, robust, intelligent, and appropriate for in-vehicle applications.

  2. Space Weather Monitoring for ISS Geomagnetic Storm Studies

    Science.gov (United States)

    Minow, Joseph I.; Parker, Linda Neergaard

    2013-01-01

    The International Space Station (ISS) space environments community utilizes near real time space weather data to support a variety of ISS engineering and science activities. The team has operated the Floating Potential Measurement Unit (FPMU) suite of plasma instruments (two Langmuir probes, a floating potential probe, and a plasma impedance probe) on ISS since 2006 to obtain in-situ measurements of plasma density and temperature along the ISS orbit and variations in ISS frame potential due to electrostatic current collection from the plasma environment (spacecraft charging) and inductive (vxB) effects from the vehicle motion across the Earth s magnetic field. An ongoing effort is to use FPMU for measuring the ionospheric response to geomagnetic storms at ISS altitudes and investigate auroral charging of the vehicle as it passes through regions of precipitating auroral electrons. This work is challenged by restrictions on FPMU operations that limit observation time to less than about a third of a year. As a result, FPMU campaigns ranging in length from a few days to a few weeks are typically scheduled weeks in advance for ISS engineering and payload science activities. In order to capture geomagnetic storm data under these terms, we monitor near real time space weather data from NASA, NOAA, and ESA sources to determine solar wind disturbance arrival times at Earth likely to be geoeffective (including coronal mass ejections and high speed streams associated with coronal holes) and activate the FPMU ahead of the storm onset. Using this technique we have successfully captured FPMU data during a number of geomagnetic storm periods including periods with ISS auroral charging. This presentation will describe the strategies and challenges in capturing FPMU data during geomagnetic storms, the near real time space weather resources utilized for monitoring the space weather environment, and provide examples of auroral charging data obtained during storm operations.

  3. Veggies in Space: Salad Crop Production on the ISS

    Science.gov (United States)

    Massa, Gioia

    2016-01-01

    NASA is currently testing Veggie, a low mass, low energy, salad crop production system on the International Space Station (ISS). Veggie grows crops with LED lights using ISS cabin air and passive watering that has presented challenges in microgravity. Initial tests included red romaine lettuce and zinnia, with testing of Chinese cabbage, and tomatoes planned. A goal is to add supplemental salad foods to the astronaut diet as we prepare for a future journey to Mars.

  4. Orthostatic Intolerance After ISS and Space Shuttle Missions.

    Science.gov (United States)

    Lee, Stuart M C; Feiveson, Alan H; Stein, Sydney; Stenger, Michael B; Platts, Steven H

    2015-12-01

    Cardiovascular deconditioning apparently progresses with flight duration, resulting in a greater incidence of orthostatic intolerance following long-duration missions. Therefore, we anticipated that the proportion of astronauts who could not complete an orthostatic tilt test (OTT) would be higher on landing day and the number of days to recover greater after International Space Station (ISS) than after Space Shuttle missions. There were 20 ISS and 65 Shuttle astronauts who participated in 10-min 80° head-up tilt tests 10 d before launch, on landing day (R+0), and 3 d after landing (R+3). Fisher's Exact Test was used to compare the ability of ISS and Shuttle astronauts to complete the OTT. Cox regression was used to identify cardiovascular parameters associated with OTT completion and mixed model analysis was used to compare the change and recovery rates between groups. The proportion of astronauts who completed the OTT on R+0 (2 of 6) was less in ISS than in Shuttle astronauts (52 of 65). On R+3, 13 of 15 and 19 of 19 of the ISS and Shuttle astronauts, respectively, completed the OTT. An index comprised of stroke volume and diastolic blood pressure provided a good prediction of OTT completion and was altered by spaceflight similarly for both astronaut groups, but recovery was slower in ISS than in Shuttle astronauts. The proportion of ISS astronauts who could not complete the OTT on R+0 was greater and the recovery rate slower after ISS compared to Shuttle missions. Thus, mission planners and crew surgeons should anticipate the need to tailor scheduled activities and level of medical support to accommodate protracted recovery after long-duration microgravity exposures.

  5. ISS groups: are we speaking the same language?

    Science.gov (United States)

    Rozenfeld, Michael; Radomislensky, Irina; Freedman, Laurence; Givon, Adi; Novikov, Iliya; Peleg, Kobi

    2014-10-01

    Despite ISS being a widely accepted tool for measuring injury severity, many researchers and practitioners use different partition of ISS into severity groups. The lack of uniformity in ISS use inhibits proper comparisons between different studies. Creation of ISS group boundaries based on single AIS value squares and their sums was proposed in 1988 during Major Trauma Study (MTOS) in the USA, but was not validated by analysis of large databases. A validation study analysing 316,944 patients in the Israeli National Trauma registry (INTR) and 249,150 patients in the American National Trauma Data Bases (NTDB). A binary algorithm (Classification and Regression Trees (CART)) was used to detect the most significantly different ISS groups and was also applied to original MTOS data. The division of ISS into groups by the CART algorithm was identical in both Trauma Registries and very similar to original division in the MTOS. For most samples, the recommended groups are 1-8, 9-14, 16-24 and 25-75, while in very large samples or in studies specifically targeting critical patients there is a possibility to divide the last group into 25-48 and 50-75 groups, with an option for further division into 50-66 and 75 groups. Using a statistical analysis of two very large databases of trauma patients, we have found that partitioning of ISS into groups based on their association with patient mortality enables us to establish clear cut-off points for these groups. We propose that the suggested partition of ISS into severity groups would be adopted as a standard in order to have a common language when discussing injury severity. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Injective objects and retracts of Fra\\"iss\\'e limits

    CERN Document Server

    Kubiś, Wieslaw

    2011-01-01

    We present a purely category-theoretic characterization of retracts of Fra\\"iss\\'e limits. For this aim, we consider a natural version of injectivity with respect to a pair of categories (a category and its subcategory). It turns out that retracts of Fra\\"iss\\'e limits are precisely the objects that are injective relatively to such a pair. One of the applications is a characterization of non-expansive retracts of Urysohn's universal metric space.

  7. STS-46 MS Chang-Diaz floats in life raft during water egress training at JSC

    Science.gov (United States)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) Franklin R. Chang-Diaz, wearing launch and entry suit (LES) and launch and entry helmet (LEH), relies on a one-person life raft to get him to 'safety' during a launch emergency egress (bailout) simulation conducted in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool.

  8. STS-35 Pilot Gardner shoots picture during water egress training at JSC

    Science.gov (United States)

    1990-01-01

    STS-35 Pilot Guy S. Gardner shoots picture using a 35mm camera during water egress training conducted in the Weightless Environment Training Facility (WETF) Bldg 29 at JSC. Gardner is wearing a launch and entry suit and a life jacket.

  9. STS-56 Commander Cameron, in LES, during JSC emergency egress training

    Science.gov (United States)

    1992-01-01

    STS-56 Discovery, Orbiter Vehicle (OV) 103, Commander Kenneth Cameron, wearing launch and entry suit (LES), poses at the Crew Compartment Trainer (CCT) side hatch before climbing into the mockup. Cameron, along with the other STS-56 crewmembers, is participating in an emergency egress simulation at JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE.

  10. STS-37 Pilot Kenneth D. Cameron during egress training in JSC's WETF Bldg 29

    Science.gov (United States)

    1990-01-01

    STS-37 Pilot Kenneth D. Cameron, wearing launch and entry suit (LES), discusses simulated emergency egress training on the pool side of JSC's Weightless Environment Training Facility (WETF) Bldg 29. Cameron will be dropped into a simulated ocean, the WETF's 25-ft pool, into which a parachute landing might be made.

  11. STS-37 Mission Specialist (MS) Godwin during simulation in JSC's FB-SMS

    Science.gov (United States)

    1991-01-01

    STS-37 Mission Specialist (MS) Linda M. Godwin rehearses some phases of her scheduled duties on the middeck of the fixed-based (FB) shuttle mission simulator (SMS) located in JSC's Mission Simulation and Training Facility Bldg 5. Godwin is inspecting supplies stowed in the middeck lockers during this unsuited simulation.

  12. STS-37 Mission Specialist (MS) Ross during simulation in JSC's FB-SMS

    Science.gov (United States)

    1991-01-01

    STS-37 Mission Specialist (MS) Jerry L. Ross 'borrows' the pilots station to rehearse some of his scheduled duties for his upcoming mission. He is on the flight deck of the fixed-based (FB) shuttle mission simulator (SMS) during this unsuited simulation. The SMS is part of JSC's Mission Simulation and Training Facility Bldg 5.

  13. STS-44 Atlantis, OV-104, MS Musgrave on FB-SMS middeck during JSC training

    Science.gov (United States)

    1991-01-01

    STS-44 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) F. Story Musgrave, wearing lightweight headset (HDST), adjusts controls on communications module mounted on a middeck overhead panel. Musgrave is on the middeck of the Fixed Base (FB) Shuttle Mission Simulator (SMS) located in JSC's Mission Simulation and Training Facility Bldg 5. The STS-44 crewmembers are participating in a flight simulation.

  14. STS-31 Pilot Bolden with beverages on the FB-SMS middeck during JSC training

    Science.gov (United States)

    1988-01-01

    STS-31 Pilot Charles F. Bolden holds three beverage containers while in front of the galley on the middeck of the fixed based (FB) shuttle mission simulator (SMS) during a training simulation at JSC's Mission Simulation and Training Facility Bldg 5. From the middeck, Bolden, wearing lightweight headset, simulates a communications link with ground controllers and fellow crewmembers.

  15. STS-31 crewmembers review checklist with instructor on JSC's FB-SMS middeck

    Science.gov (United States)

    1988-01-01

    STS-31 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) Bruce McCandless II (left) and Pilot Charles F. Bolden (right) discuss procedures with a training instructor on the middeck of JSC's fixed-based (FB) Shuttle Mission Simulator (SMS). The three are pointing to a checklist during this training simulation in the Mission Simulation and Training Facility Bldg 5.

  16. STS-44 Atlantis, OV-104, Pilot Henricks in FB-SMS training at JSC

    Science.gov (United States)

    1991-01-01

    STS-44 Atlantis, Orbiter Vehicle (OV) 104, Pilot Terence T. Henricks, seated at the pilots station on the forward flight deck, reviews checklists before a flight simulation in the Fixed Base (FB) Shuttle Mission Simulator (SMS) located in JSC's Mission Simulation and Training Facility Bldg 5. Surrounding Henricks are the seat back, the overhead panels, forward panels, and forward windows.

  17. STS-32 MS Dunbar trains in JSC Manipulator Development Facility (MDF)

    Science.gov (United States)

    1989-01-01

    STS-32 Mission Specialist (MS) Bonnie J. Dunbar reviews checklist with training personnel in the Manipulator Development Facility (MDF) in JSC's Mockup and Integration Facility (MAIL) Bldg 9A. Dunbar (left) discusses procedures with trainer in front of the aft flight deck onorbit station controls. Overhead window W8 is visible above their heads.

  18. Technicians assist STS-47 MS Jemison prior to JSC bailout training

    Science.gov (United States)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist (MS) Mae C. Jemison, assisted by technicians, adjusts a strap on her launch and entry suit (LES) prior to launch emergency egress (bailout) exercises in JSC's Mockup and Integration Laboratory Bldg 9A. Jemison is making her first flight in space.

  19. Spacelab Life Sciences (SLS) echocardiograph in mockup rack in JSC's Bldg 36

    Science.gov (United States)

    1987-01-01

    Spacelab Life Sciences (SLS) life sciences laboratory equipment (LSLE) echocardiograph is documented in the JSC Bioengineering and Test Support Facility Bldg 36. Displayed on the echocardiograph monitor is a heart image. The echocardiograph equipment is located in Rack 6 and will be used in conjunction with Experiment No. 294 Cardiovascular Adaptation to Zero Gravity during the STS-40 SLS-1 mission.

  20. STS-46 Payload Specialist Malerba sits at the pilots station in JSC mockup

    Science.gov (United States)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, Italian Payload Specialist Franco Malerba sits at the pilots station on the forward flight deck of the Full Fuselage Trainer (FFT) located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9. Malerba, wearing a flight suit, is participating in a hardware familiarity training session.

  1. STS-41 MS Akers looks up at mockup prior to egress training in JSC's MAIL

    Science.gov (United States)

    1990-01-01

    STS-41 Mission Specialist (MS) Thomas D. Akers, wearing launch and entry suit (LES), looks up at crew compartment trainer (CCT) prior to emergency egress training exercises. The exercises were conducted in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A.

  2. STS-28 Columbia, OV-102, MS Brown dons LES in JSC Mockup and Integration Lab

    Science.gov (United States)

    1989-01-01

    STS-28 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist (MS) Mark N. Brown, wearing communications carrier assembly (CCA) and launch and entry suit (LES), prepares to don launch and entry helmet (LEH). Brown suits up for shuttle emergency egress (bailout) procedures in JSC Mockup and Integration Laboratory Bldg 9A.

  3. STS-46 MS Chang-Diaz floats in life raft during water egress training at JSC

    Science.gov (United States)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) Franklin R. Chang-Diaz, wearing launch and entry suit (LES) and launch and entry helmet (LEH), relies on a one-person life raft to get him to 'safety' during a launch emergency egress (bailout) simulation conducted in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool.

  4. Payload Operations Center (POC) for the International Space Station (ISS)

    Science.gov (United States)

    2001-01-01

    The International Space Station (ISS) Payload Operations Center (POC) at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is the world's primary science command post for the International Space Station (ISS), the most ambitious space research facility in human history. The Payload Operations team is responsible for managing all science research experiments aboard the Station. The center is also home for coordination of the mission-plarning work of variety of international sources, all science payload deliveries and retrieval, and payload training and safety programs for the Station crew and all ground personnel. Within the POC, critical payload information from the ISS is displayed on a dedicated workstation, reading both S-band (low data rate) and Ku-band (high data rate) signals from a variety of experiments and procedures operated by the ISS crew and their colleagues on Earth. The POC is the focal point for incorporating research and experiment requirements from all international partners into an integrated ISS payload mission plan. This photograph is an overall view of the MSFC Payload Operations Center displaying the flags of the countries participating the ISS. The flags at the left portray The United States, Canada, France, Switzerland, Netherlands, Japan, Brazil, and Sweden. The flags at the right portray The Russian Federation, Italy, Germany, Belgium, Spain, United Kingdom, Denmark, and Norway.

  5. Payload Operations Center (POC) for the International Space Station (ISS)

    Science.gov (United States)

    2001-01-01

    The International Space Station (ISS) Payload Operations Center (POC) at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is the world's primary science command post for the International Space Station (ISS), the most ambitious space research facility in human history. The Payload Operations team is responsible for managing all science research experiments aboard the Station. The center is also home for coordination of the mission-plarning work of variety of international sources, all science payload deliveries and retrieval, and payload training and safety programs for the Station crew and all ground personnel. Within the POC, critical payload information from the ISS is displayed on a dedicated workstation, reading both S-band (low data rate) and Ku-band (high data rate) signals from a variety of experiments and procedures operated by the ISS crew and their colleagues on Earth. The POC is the focal point for incorporating research and experiment requirements from all international partners into an integrated ISS payload mission plan. This photograph is an overall view of the MSFC Payload Operations Center displaying the flags of the countries participating the ISS. The flags at the left portray The United States, Canada, France, Switzerland, Netherlands, Japan, Brazil, and Sweden. The flags at the right portray The Russian Federation, Italy, Germany, Belgium, Spain, United Kingdom, Denmark, and Norway.

  6. Psychological Support Operations and the ISS One-Year Mission

    Science.gov (United States)

    Beven, G.; Vander Ark, S. T.; Holland, A. W.

    2016-01-01

    Since NASA began human presence on the International Space Station (ISS) in November 1998, crews have spent two to seven months onboard. In March 2015 NASA and Russia embarked on a new era of ISS utilization, with two of their crewmembers conducting a one-year mission onboard ISS. The mission has been useful for both research and mission operations to better understand the human, technological, mission management and staffing challenges that may be faced on missions beyond Low Earth Orbit. The work completed during the first 42 ISS missions provided the basis for the pre-flight, in-flight and post-flight work completed by NASA's Space Medicine Operations Division, while our Russian colleagues provided valuable insights from their long-duration mission experiences with missions lasting 10-14 months, which predated the ISS era. Space Medicine's Behavioral Health and Performance Group (BHP) provided pre-flight training, evaluation, and preparation as well as in-flight psychological support for the NASA crewmember. While the BHP team collaboratively planned for this mission with the help of all ISS international partners within the Human Behavior and Performance Working Group to leverage their collective expertise, the US and Russian BHP personnel were responsible for their respective crewmembers. The presentation will summarize the lessons and experience gained within the areas identified by this Working Group as being of primary importance for a one-year mission.

  7. Innovative Sea Surface Monitoring with GNSS-Reflectometry aboard ISS: Overview and Recent Results from GEROS-ISS

    DEFF Research Database (Denmark)

    Wickert, Jens; Andersen, Ole Baltazar; Bandeiras, J.;

    GEROS-ISS (GEROS hereafter) stands for GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station. It is a scientific experiment, proposed to the European Space Agency (ESA)in 2011 for installation aboard the ISS. The main focus of GEROS is the dedicated use...... of signals from the currently available Global Navigation Satellite Systems (GNSS) for remote sensing of the System Earth with focus to Climate Change characterisation. The GEROS mission idea and the current status are briefly reviewed....

  8. ISS Ammonia Leak Detection Through X-Ray Fluorescence

    Science.gov (United States)

    Camp, Jordan; Barthelmy, Scott; Skinner, Gerry

    2013-01-01

    Ammonia leaks are a significant concern for the International Space Station (ISS). The ISS has external transport lines that direct liquid ammonia to radiator panels where the ammonia is cooled and then brought back to thermal control units. These transport lines and radiator panels are subject to stress from micrometeorites and temperature variations, and have developed small leaks. The ISS can accommodate these leaks at their present rate, but if the rate increased by a factor of ten, it could potentially deplete the ammonia supply and impact the proper functioning of the ISS thermal control system, causing a serious safety risk. A proposed ISS astrophysics instrument, the Lobster X-Ray Monitor, can be used to detect and localize ISS ammonia leaks. Based on the optical design of the eye of its namesake crustacean, the Lobster detector gives simultaneously large field of view and good position resolution. The leak detection principle is that the nitrogen in the leaking ammonia will be ionized by X-rays from the Sun, and then emit its own characteristic Xray signal. The Lobster instrument, nominally facing zenith for its astrophysics observations, can be periodically pointed towards the ISS radiator panels and some sections of the transport lines to detect and localize the characteristic X-rays from the ammonia leaks. Another possibility is to use the ISS robot arm to grab the Lobster instrument and scan it across the transport lines and radiator panels. In this case the leak detection can be made more sensitive by including a focused 100-microampere electron beam to stimulate X-ray emission from the leaking nitrogen. Laboratory studies have shown that either approach can be used to locate ammonia leaks at the level of 0.1 kg/day, a threshold rate of concern for the ISS. The Lobster instrument uses two main components: (1) a microchannel plate optic (also known as a Lobster optic) that focuses the X-rays and directs them to the focal plane, and (2) a CCD (charge

  9. Application of IRTAM to Support ISS Program Safety

    Science.gov (United States)

    Hartman, William A.; Schmidl, William D.; Mikatarian, Ronald; Koontz, Steven; Galkin, Ivan

    2017-01-01

    The International Space Station (ISS) orbits near the F-peak of the ionosphere (approximately 400 km altitude). Generally, satellites orbiting at this altitude would have a floating potential (FP) of approximately -1 V due to the electron temperature (Te). However, the ISS has 8 large negatively grounded 160 V solar array wings (SAW) that collect a significant electron current from the ionosphere. This current drives the ISS FP much more negative during insolation and is highly dependent on the electron density (Ne). Also, due to the size of the ISS, magnetic inductance caused by the geomagnetic field produces a delta potential up to 40 V across the truss, possibly producing positive potentials. During Extravehicular Activity (EVA) the negative FP can lead to an arcing hazard when it exceeds -45.5 V, and the positive FP can produce a DC current high enough to stimulate the astronaut's muscles and also cause a hazard. Data collected from the Floating Potential Monitoring Unit (FPMU) have shown that the probability of either of these hazards occurring during times with quiet to moderately disturbed geomagnetic activity is low enough to no longer be considered a risk. However, a study of the ionosphere Ne during severe geomagnetic storm activity has shown that the Ne can be enhanced by a factor of 6 in the ISS orbit. As a result, the ISS Safety Review Panel (SRP) requires that ionospheric conditions be monitored using the FPMU in conjunction with the ISS Plasma Interaction Model (PIM) to determine if a severe geomagnetic storm could result in a plasma environment that could produce a hazard. A 'Real-Time' plasma hazard assessment process was developed to support ISS Program real-time decision making providing constraint relief information for EVAs planning and operations. This process incorporates 'real time' ionospheric conditions, ISS solar arrays' orientation, ISS flight attitude, and where the EVA will be performed on the ISS. This assessment requires real time

  10. ISS Charging Hazards and Low Earth Orbit Space Weather Effects

    Science.gov (United States)

    Minow, Joseph; Parker, L.; Coffey, V.; Wright K.; Koontz, S.; Edwards, D.

    2008-01-01

    Current collection by high voltage solar arrays on the International Space Station (ISS) drives the vehicle to negative floating potentials in the low Earth orbit daytime plasma environment. Pre-flight predictions of ISS floating potentials Phi greater than |-100 V| suggested a risk for degradation of dielectric thermal control coatings on surfaces in the U.S. sector due to arcing and an electrical shock hazard to astronauts during extravehicular activity (EVA). However, hazard studies conducted by the ISS program have demonstrated that the thermal control material degradation risk is effectively mitigated during the lifetime of the ISS vehicle by a sufficiently large ion collection area present on the vehicle to balance current collection by the solar arrays. To date, crew risk during EVA has been mitigated by operating one of two plasma contactors during EVA to control the vehicle potential within Phi less than or equal to |-40 V| with a backup process requiring reorientation of the solar arrays into a configuration which places the current collection surfaces into wake. This operation minimizes current collection by the solar arrays should the plasma contactors fail. This paper presents an analysis of F-region electron density and temperature variations at low and midlatitudes generated by space weather events to determine what range of conditions represent charging threats to ISS. We first use historical ionospheric plasma measurements from spacecraft operating at altitudes relevant to the 51.6 degree inclination ISS orbit to provide an extensive database of F-region plasma conditions over a variety of solar cycle conditions. Then, the statistical results from the historical data are compared to more recent in-situ measurements from the Floating Potential Measurement Unit (FPMU) operating on ISS in a campaign mode since its installation in August, 2006.

  11. Space Science Investigation: NASA ISS Stowage Simulator

    Science.gov (United States)

    Crawford, Gary

    2017-01-01

    During this internship the opportunity was granted to work with the Integrated, Graphics, Operations and Analysis Laboratory (IGOAL) team. The main assignment was to create 12 achievement patches for the Space Station training simulator called the "NASA ISS Stowage Training Game." This project was built using previous IGOAL developed software. To accomplish this task, Adobe Photoshop and Adobe Illustrator were used to craft the badges and other elements required. Blender, a 3D modeling software, was used to make the required 3D elements. Blender was a useful tool to make things such as a CTB bag for the "No More Bob" patch which shows a gentleman kicking a CTB bag into the distance. It was also used to pose characters to the positions that was optimal for their patches as in the "Station Sanitation" patch which portrays and astronaut waving on a U.S module on a truck. Adobe Illustrator was the main piece of software for this task. It was used to craft the badges and upload them when they were completed. The style of the badges were flat, meaning that they shouldn't look three dimensional in any way, shape or form. Adobe Photoshop was used when any pictures need brightening and was where the texture for the CTB bag was made. In order for the patches to be ready for the game's next major release, they have to go under some critical reviewing, revising and re-editing to make sure the other artists and the rest of the staff are satisfied with the final products. Many patches were created and revamped to meet the flat setting and incorporate suggestions from the IGOAL team. After the three processes were completed, the badges were implemented into the game (reference fig1 for badges). After a month of designing badges, the finished products were placed into the final game build via the programmers. The art was the final piece in showcasing the latest build to the public for testing. Comments from the testers were often exceptional and the feedback on the badges were

  12. DRAGONS-A Micrometeoroid and Orbital Debris Impact Sensor on the ISS

    Science.gov (United States)

    Liou, J.-C.; Hamilton, J.; Liolios, S.; Anderson, C.; Sadilek, A.; Corsaro, R.; Giovane, F.; Burchell, M.

    2015-01-01

    by the NASA Science Mission Directorate and the NASA Exploration Systems Mission Directorate, then by the NASA JSC Innovative Research and Development Program and the NASA Orbital Debris Program Office. The NASA Orbital Debris Program Office leads the effort with collaboration from the U.S. Naval Academy, Naval Research Laboratory, University of Kent at Canterbury in Great Britain, and Virginia Tech. The project recently reached a major milestone when DRAGONS was approved for a technology demonstration mission by the International Space Station (ISS) Program in October 2014. The plan is to deploy a 1 sq m DRAGONS on the ISS with the detection surface facing the ram-direction for 2 to 3 years. The tentative launch schedule is in early 2017. This mission will collect data on orbital debris in the sub-millimeter size regime to better define the small orbital debris environment at the ISS altitude. The mission will also advance the DRAGONS Technology Readiness Level to 9 and greatly enhance the opportunities to deploy DRAGONS on other spacecraft to high LEO orbits in the future.

  13. The International Space Station (ISS) Education Accomplishments and Opportunities

    Science.gov (United States)

    Alleyne, Camille W.; Blue, Regina; Mayo, Susan

    2012-01-01

    The International Space Station (ISS) has the unique ability to capture the imaginations of both students and teachers worldwide and thus stands as an invaluable learning platform for the advancement of proficiency in research and development and education. The presence of humans on board ISS for the past ten years has provided a foundation for numerous educational activities aimed at capturing that interest and motivating study in the sciences, technology, engineering and mathematics (STEM) disciplines which will lead to an increase in quality of teachers, advancements in research and development, an increase in the global reputation for intellectual achievement, and an expanded ability to pursue unchartered avenues towards a brighter future. Over 41 million students around the world have participated in ISS-related activities since the year 2000. Projects such as the Amateur Radio on International Space Station (ARISS) and Earth Knowledge Acquired by Middle School Students (EarthKAM), among others, have allowed for global student, teacher, and public access to space through radio contacts with crewmembers and student image acquisition respectively. . With planned ISS operations at least until 2020, projects like the aforementioned and their accompanying educational materials will be available to enable increased STEM literacy around the world. Since the launch of the first ISS element, a wide range of student experiments and educational activities have been performed by each of the international partner agencies: National Aeronautics and Space Administration (NASA), Canadian Space Agency (CSA), European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA) and Russian Federal Space Agency (Roscosmos). Additionally, a number of non-participating countries, some under commercial agreements, have also participated in Station-related activities. Many of these programs still continue while others are being developed and added to the station crewmembers tasks

  14. Integrating International Engineering Organizations For Successful ISS Operations

    Science.gov (United States)

    Blome, Elizabeth; Duggan, Matt; Patten, L.; Pieterek, Hhtrud

    2006-01-01

    The International Space Station (ISS) is a multinational orbiting space laboratory that is built in cooperation with 16 nations. The design and sustaining engineering expertise is spread worldwide. As the number of Partners with orbiting elements on the ISS grows, the challenge NASA is facing as the ISS integrator is to ensure that engineering expertise and data are accessible in a timely fashion to ensure ongoing operations and mission success. Integrating international engineering teams requires definition and agreement on common processes and responsibilities, joint training and the emergence of a unique engineering team culture. ISS engineers face daunting logistical and political challenges regarding data sharing requirements. To assure systematic information sharing and anomaly resolution of integrated anomalies, the ISS Partners are developing multi-lateral engineering interface procedures. Data sharing and individual responsibility are key aspects of this plan. This paper describes several examples of successful multilateral anomaly resolution. These successes were used to form the framework of the Partner to Partner engineering interface procedures, and this paper describes those currently documented multilateral engineering processes. Furthermore, it addresses the challenges experienced to date, and the forward work expected in establishing a successful working relationship with Partners as their hardware is launched.

  15. ISS and Space Shuttle Radiation Measurements at Solar Minimum

    Science.gov (United States)

    Gaza, Ramona; Welton, Andrew; Dunegan, Audrey; Lee, Kerry

    2011-01-01

    A summary of 2008-2011 ISS and Space Shuttle radiation dosimetry results for inside vehicle radiation monitoring in low-Earth orbit will be presented. Results include new data from ISS Expedition 22-25/20A radiation area monitors (RAM) and Shuttle Missions STS127-STS133 passive radiation dosimeters (PRD). ISS 20A radiation measurement locations included three Node 2 crew quarters locations at NOD2S5_CQ, NOD2P5_CQ and CQ-3 (Deck), as well as ESA Columbus, and JAXA Kibo locations. ISS 20A and STS127-STS133 missions were flown at 51.6 inclination with an altitude range of 330-350 km. The passive radiation results will be presented in terms of measured daily dose obtained using luminescence detectors (i.e., Al2O3:C, LiF:Mg,Ti and CaF2:Tm). In addition, preliminary results from the DOSIS 2 Project, in collaboration with the German Space Agency (DLR) will be presented. SRAG s participation to the DOSIS 2 exposure on ISS (11/16/2009-05/26/2010) involved passive radiation measurements at 10 different shielding locations inside the ESA Columbus Module.

  16. Low-power laser-based carbon monoxide sensor for fire and post-fire detection using a compact Herriott multipass cell

    Science.gov (United States)

    Thomazy, David; So, Stephen; Kosterev, Anatoliy; Lewicki, Rafal; Dong, Lei; Sani, Ardalan A.; Tittel, Frank K.

    2010-01-01

    With the anticipated retirement of Space Shuttles in the next few years, the re-supplying of short-lifetime sensors on the International Space Station (ISS) will be logistically more difficult. Carbon Monoxide (CO) is a well-known combustion product and its absence in a fire and post-fire environment is a reliable indicator for mission specialists that the air quality is at a safe to breathe level. We report on the development and performance of a prototype compact CO sensor, based on the PHOTONS platform [1], developed for the ISS based on tunable diode laser absorption spectroscopy (TDLAS). A CO absorption line at ~4285 cm-1 is targeted using a distributed-feedback (DFB) laser diode operating at room temperature. A custom designed Herriott multipass cell 16cm long, with an effective path length of 3.7 m is employed. Mechanical, optical and electronics systems are integrated into a compact package of dimensions measuring 12.4"x 3.4"x 5". Power consumption is less than 1 W, enabling prolonged battery life. A detection limit of 3 ppm is achieved when performing 40 second long temperature scans. A recent initial test at NASA-JSC was successful. Future improvements include the reduction of the sampling volume, scan time and an improved CO minimum detection limit.

  17. ISS-CREAM Thermal and Fluid System Design and Analysis

    Science.gov (United States)

    Thorpe, Rosemary S.

    2015-01-01

    Thermal and Fluids Analysis Workshop (TFAWS), Silver Spring MD NCTS 21070-15. The ISS-CREAM (Cosmic Ray Energetics And Mass for the International Space Station) payload is being developed by an international team and will provide significant cosmic ray characterization over a long time frame. Cold fluid provided by the ISS Exposed Facility (EF) is the primary means of cooling for 5 science instruments and over 7 electronics boxes. Thermal fluid integrated design and analysis was performed for CREAM using a Thermal Desktop model. This presentation will provide some specific design and modeling examples from the fluid cooling system, complex SCD (Silicon Charge Detector) and calorimeter hardware, and integrated payload and ISS level modeling. Features of Thermal Desktop such as CAD simplification, meshing of complex hardware, External References (Xrefs), and FloCAD modeling will be discussed.

  18. Unique Offerings of the ISS as an Earth Observing Platform

    Science.gov (United States)

    Cooley, Victor M.

    2013-01-01

    The International Space Station offers unique capabilities for earth remote sensing. An established Earth orbiting platform with abundant power, data and commanding infrastructure, the ISS has been in operation for twelve years as a crew occupied science laboratory and offers low cost and expedited concept-to-operation paths for new sensing technologies. Plug in modularity on external platforms equipped with structural, power and data interfaces standardizes and streamlines integration and minimizes risk and start up difficulties. Data dissemination is also standardized. Emerging sensor technologies and instruments tailored for sensing of regional dynamics may not be worthy of dedicated platforms and launch vehicles, but may well be worthy of ISS deployment, hitching a ride on one of a variety of government or commercial visiting vehicles. As global acceptance of the urgent need for understanding Climate Change continues to grow, the value of ISS, orbiting in Low Earth Orbit, in complementing airborne, sun synchronous polar, geosynchronous and other platform remote sensing will also grow.

  19. Report on ISS Oxygen Production, Resupply, and Partial Pressure Management

    Science.gov (United States)

    Schaezler, Ryan; Ghariani, Ahmed; Leonard, Daniel; Lehman, Daniel

    2011-01-01

    The majority of oxygen used on International Space Station (ISS) is for metabolic support and denitrogenation procedures prior to Extra-Vehicular Activities. Oxygen is supplied by various visiting vehicles such as the Progress and Shuttle in addition to oxygen production capability on both the United States On-Orbit Segment (USOS) and Russian Segment (RS). To maintain a habitable atmosphere the oxygen partial pressure is controlled between upper and lower bounds. The full range of the allowable oxygen partial pressure along with the increased ISS cabin volume is utilized as a buffer allowing days to pass between oxygen production or direct addition of oxygen to the atmosphere from reserves. This paper summarizes amount of oxygen supplied and produced from all of the sources and describes past experience of managing oxygen partial pressure along with the range of management options available to the ISS.

  20. Validating the Injury Severity Score (ISS) in different populations: ISS predicts mortality better among Hispanics and females.

    Science.gov (United States)

    Bolorunduro, O B; Villegas, C; Oyetunji, T A; Haut, E R; Stevens, K A; Chang, D C; Cornwell, E E; Efron, D T; Haider, A H

    2011-03-01

    The Injury Severity Score (ISS) is the most commonly used measure of injury severity. The score has been shown to have excellent predictive capability for trauma mortality and has been validated in multiple data sets. However, the score has never been tested to see if its discriminatory ability is affected by differences in race and gender. This study is aimed at validating the ISS in men and women and in three different race/ethnic groups using a nationwide database. Retrospective analysis of patients age 18-64 y in the National Trauma Data Bank 7.0 with blunt trauma was performed. ISS was categorized as mild (25). Logistic regression was done to measure the relative odds of mortality associated with a change in ISS categories. The discriminatory ability was compared using the receiver operating characteristics curves (ROC). A P value testing the equality of the ROC curves was calculated. Age stratified analyses were also conducted. A total of 872,102 patients had complete data for the analysis on ethnicity, while 763,549 patients were included in the gender analysis. The overall mortality rate was 3.7%. ROC in Whites was 0.8617, in Blacks 0.8586, and in Hispanics 0.8869. Hispanics have a statistically significant higher ROC (P value ISS possesses excellent discriminatory ability in all populations as indicated by the high ROCs. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Influence of optical interference and carrier lifetime on the short circuit current density of organic bulk heterojunction solar cells

    Institute of Scientific and Technical Information of China (English)

    You Hai-Long; Zhang Chun-Fu

    2009-01-01

    Based on simple analytical equations, short circuit current density (Jsc) of the organic bulk heterojunction solar cells has been calculated. It is found that the optical interference effect plays a very important role in the determination of JSC;and obvious oscillatory behaviour of Jsc was observed as a function of thickness. At the same time, the influence of JSC only increases the carrier lifetime on JSC also cannot be neglected. When the carrier lifetime is relatively short, at the initial stage and then decreases rapidly with the increase of active layer thickness. However, for a relatively long carrier lifetime, the exciton dissociation probability must be considered, and Jsc behaves wave-like with the increase of active layer thickness. The validity of this model is confirmed by the experimental results.

  2. The 2015-2016 SEPMAP Program at NASA JSC: Science, Engineering, and Program Management Training

    Science.gov (United States)

    Graham, L.; Archer, D.; Bakalyar, J.; Berger, E.; Blome, E.; Brown, R.; Cox, S.; Curiel, P.; Eid, R.; Eppler, D.; Fries, M.; Gruener, J.; Haddock, M.; Harder, K.; Hong, T.; McCann, C.; Neiss, K.; Newswander, J.; Odina, J.; Peslier, A.; Quadri, Z.; Ross, S.; Rutovic, M.; Schulte, R.; Thomas, R.; Vos, J.; Waid, M.; William, B.

    2017-01-01

    The Systems Engineering Project Management Advancement Program (SEPMAP) at NASA Johnson Space Center (JSC) is an employee development program designed to provide graduate level training in project management and systems engineering. The program includes an applied learning project with engineering and integrated science goals requirements. The teams were presented with a task: Collect a representative sample set from a field site using a hexacopter platform, as if performing a scientific reconnaissance to assess whether the site is of sufficient scientific interest to justify exploration by astronauts. Four teams worked through the eighteen-month course to design customized sampling payloads integrated with the hexacopter, and then operate the aircraft to meet sampling requirements of number (= 5) and mass (= 5g each). The "Mars Yard" at JSC was utilized for this purpose. This project activity closely parallels NASA plans for the future exploration of Mars, where remote sites will be reconnoitered ahead of crewed exploration.

  3. STS-56 Commander Cameron, in LES, with sky genie during JSC egress training

    Science.gov (United States)

    1992-01-01

    STS-56 Discovery, Orbiter Vehicle (OV) 103, Commander Kenneth Cameron, wearing launch and entry suit (LES), gives the sky-genie escape device a tug as training instructor Kenneth D. Trujillo holds it in position and explains its operation. Cameron, along with the other STS-56 crewmembers, is briefed on emergency egress procedures at JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE prior to a training simulation. The sky-genie is carried on all Space Shuttle flights for emergency egress purposes.

  4. STS-56 Commander Cameron and Pilot Oswald at CCT hatch during JSC training

    Science.gov (United States)

    1993-01-01

    STS-56 Discovery, Orbiter Vehicle (OV) 103, Commander Kenneth Cameron (right) and Pilot Stephen S. Oswald, wearing launch and entry suits (LESs), stand at the side hatch of the crew compartment trainer (CCT), a shuttle mockup, prior to entering the mockup. Once inside the CCT, they will don their launch and entry helmets (LEHs) and participate in emergency egress (bailout) procedures. The CCT is located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE.

  5. ASTP crewmen in Docking Module trainer during training session at JSC

    Science.gov (United States)

    1975-01-01

    An interior view of the Docking Module trainer in bldg 35 during Apollo Soyuz Test Project (ASTP) joint crew training at JSC. Astronaut Donald K. Slayton (right) is the docking module pilot of the American ASTP prime crew. The other man is Cosmonaut Valeriy N. Kubasov, engineer on the Soviet ASTP first (prime) crew. The training session simulated activities on the second day in space. The Docking module is designed to link the Apollo and Soyuz spacecraft.

  6. STS-37 crewmembers train in JSC's FB shuttle mission simulator (SMS)

    Science.gov (United States)

    1991-01-01

    STS-37 Commander Steven R. Nagel (left) and Mission Specialist (MS) Jerry L. Ross rehearse some of their scheduled duties on the flight deck of JSC's fixed-based (FB) shuttle mission simulator (SMS) located in the Mission Simulation and Training Facility Bldg 5. During the unsuited simulation, Nagel reviews checklist while seated at the commanders station as Ross looks on from the pilots station.

  7. STS-36 crewmembers train in JSC's FB shuttle mission simulator (SMS)

    Science.gov (United States)

    1989-01-01

    STS-36 Mission Specialist (MS) David C. Hilmers, seated on the aft flight deck, discusses procedures with Commander John O. Creighton (left) and Pilot John H. Casper during a simulation in JSC's Fixed Based (FB) Shuttle Mission Simulator (SMS). Casper reviews a checklist at the pilots station on the forward flight deck. The crewmembers are rehearsing crew cabin activities for their upcoming Department of Defense (DOD) mission aboard Atlantis, Orbiter Vehicle (OV) 104.

  8. STS-44 Atlantis, OV-104, crewmembers participate in JSC FB-SMS training

    Science.gov (United States)

    1991-01-01

    STS-44 Atlantis, Orbiter Vehicle (OV) 104, Commander Frederick D. Gregory and Pilot Terence T. Henricks are stationed at their appointed positions on the forward flight deck of the Fixed Base (FB) Shuttle Mission Simulator (SMS) in JSC's Mission Simulation and Training Facility Bldg 5. Gregory (left) in the commanders seat and Henricks (right) in the pilots seat look back toward aft flight deck and the photographer. Seat backs appear in the foreground and forward flight deck control panels in the background.

  9. STS-44 Atlantis, OV-104, crewmembers participate in FB-SMS training at JSC

    Science.gov (United States)

    1991-01-01

    STS-44 Atlantis, Orbiter Vehicle (OV) 104, Commander Frederick D. Gregory (left) and Pilot Terence T. Henricks, positioned at their appointed stations on the forward flight deck, are joined by Mission Specialist (MS) F. Story Musgrave (center) and MS James S. Voss (standing). The crewmembers are participating in a flight simulation in the Fixed Base (FB) Shuttle Mission Simulator (SMS) located in JSC's Mission Simulation and Training Facility Bldg 5. A maze of panel switches appear overhead and in the background.

  10. STS-49 crew in JSC's FB Shuttle Mission Simulator (SMS) during simulation

    Science.gov (United States)

    1992-01-01

    STS-49 Endeavour, Orbiter Vehicle (OV) 105, crewmembers participate in a simulation in JSC's Fixed Base (FB) Shuttle Mission Simulator (SMS) located in the Mission Simulation and Training Facility Bldg 5. Wearing launch and entry suits (LESs) and launch and entry helmets (LEH) and seated on the FB-SMS middeck are (left to right) Mission Specialist (MS) Thomas D. Akers, MS Kathryn C. Thornton, and MS Pierre J. Thuot.

  11. STS-46 crewmembers participate in Fixed Base (FB) SMS training at JSC

    Science.gov (United States)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, Pilot Andrew M. Allen hands Mission Specialist (MS) and Payload Commander (PLC) Jeffrey A. Hoffman checklists from middeck locker MF43E during training session in JSC's fixed base (FB) shuttle mission simulator (SMS) located in Mission Simulation and Training Facility Bldg 5. European Space Agency (ESA) MS Claude Nicollier outfitted with communications kit assembly headset (HDST) and equipment looks beyond Hoffman to the opposite side of the middeck.

  12. STS-38 Mission Specialist (MS) Robert C. Springer dons EMU in JSC's WETF

    Science.gov (United States)

    1990-01-01

    STS-38 Mission Specialist (MS) Robert C. Springer, wearing extravehicular mobility unit (EMU), fastens the strap on his communications carrier assembly (CCA) cap during suit donning in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Positioned on the WETF platform at pool side, Springer is preparing for an underwater extravehicular activity (EVA) simulation. During the training exercise, Springer will rehearse contingency EVA procedures for the STS-38 mission aboard Atlantis, Orbiter Vehicle (OV) 104.

  13. STS-38 Mission Specialist (MS) Robert C. Springer dons EMU in JSC's WETF

    Science.gov (United States)

    1990-01-01

    STS-38 Mission Specialist (MS) Robert C. Springer dons extravehicular mobility unit (EMU) upper torso with technicians' assistance in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Positioned on the WETF platform at pool side, Springer is preparing for an underwater extravehicular activity (EVA) simulation. During the training session, Springer will rehearse contingency EVA procedures for the STS-38 mission aboard Atlantis, Orbiter Vehicle (OV) 104.

  14. STS-34 crewmembers train with the IMAX camera in JSC's Bldg 9B mockup area

    Science.gov (United States)

    1989-01-01

    STS-34 crewmembers participate in IMAX camera training session held in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9B. The crew is briefed on the operation and handling of the IMAX camera scheduled to fly aboard Atlantis, Orbiter Vehicle (OV) 104. Standing behind the IMAX camera is Mission Specialist (MS) Franklin R. Chang-Diaz with IMAX instructors Grant Ferguson and David Douglas on his left. Commander Donald E. Williams (looking at IMAX lens) is at the right edge of the photo.

  15. Technicians complete assembly of Hubble Space Telescope (HST) mockup at JSC

    Science.gov (United States)

    1989-01-01

    A technician listens to instructions as he operates the controls for the overhead crane that is lifting one of the Hubble Space Telescope (HST) high gain antennas (HGAs) into place on the HST Support System Module (SSM) forward shell. Others in a cherry picker basket wait to install the HGA on the SSM mockup. The HST mockup will be used for astronaut training and is being assembled in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A.

  16. STS-29 crewmembers launch/landing procedural training in JSC mockup

    Science.gov (United States)

    1986-01-01

    STS-29 Discovery, Orbiter Vehicle (OV) 103, Pilot John E. Blaha and Mission Specialist (MS) Robert C. Springer participate in launch and landing training on JSC mockup flight deck in the Mockup and Integration Laboratory Bldg 9A. Blaha sits at the pilots station controls in front of Springer who is seated on aft flight deck in mission specialist seat. Springer prepares to don communications kit assembly headset.

  17. STS-40 Payload Specialist Millie Hughes-Fulford trains in JSC's SLS mockup

    Science.gov (United States)

    1987-01-01

    STS-40 Payload Specialist Millie Hughes-Fulford conducts Spacelab Life Sciences 1 (SLS-1) Experiment No. 198, Pulmonary Function During Weightlessness, in JSC's Life Sciences Project Division (LSPD) SLS mockup located in the Bioengineering and Test Support Facility Bldg 36. Hughes-Fulford monitors instruments and settings on Rack 8's panels. Behind her in the center aisle are the body mass measurement device (foreground) and the stowed bicycle ergometer.

  18. STS-26 Pilot Covey, wearing launch and entry suit, trains in JSC mockup area

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing the orange launch and entry suit (LES) and launch and entry helmet (LEH), pauses during a training exercise in JSC Mockup and Integration Laboratory Bldg 9A crew compartment trainer (CCT). LES, a partial pressure suit to be worn during launch and entry phases of the space shuttle flight, was evaluated and checked out.

  19. STS-34 crewmembers review IFM procedures on JSC's CCT mockup middeck

    Science.gov (United States)

    1989-01-01

    STS-34 crewmembers review inflight maintenance (IFM) procedures on the middeck of JSC's crew compartment trainer (CCT) located in the Mockup and Integration Laboratory (MAIL) Bldg 9A. IFM trainer, holding cable, discusses procedures with Mission Specialist (MS) Ellen S. Baker (center) and Pilot Michael J. McCulley. An open stowage locker appears in front of the group. Visible on the mockup's middeck are forward and aft stowage lockers, the airlock hatch, and the starboard wall mounted sleep restraints.

  20. STS-26 MS Nelson during training exercise in JSC Mockup and Integration Lab

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) George D. Nelson, wearing navy blue launch and entry suit (LES) and launch and entry helmet (LEH), is seated in his launch and entry position on crew compartment trainer (CCT) middeck during a training exercise in JSC Mockup and Integration Laboratory Bldg 9A. Visible in the background are the airlock, stowed treadmill, and sleep restraints. NOTE: Photo was taken by William H. Bowers, crew photo instructor, with wide angle lens.

  1. STS-46 Payload Specialist Malerba at aft flight deck controls in JSC mockup

    Science.gov (United States)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, Italian Payload Specialist Franco Malerba, wearing flight suit, operates controls on the aft flight deck of the Full Fuselage Trainer (FFT) located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9. During the training session, Malerba adjusts a control on the A3 panel closed circuit television (CCTV). Onorbit station panels appear in front of Malerba and payload station controls behind him.

  2. STS-26 crewmembers, wearing launch and entry suits, train in JSC mockup area

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck (left) and Pilot Richard O. Covey, wearing the orange launch and entry suits (LESs), discuss training exercise with technicians in JSC Mockup and Integration Laboratory Bldg 9A. During the exercise, the LES, a partial pressure suit to be worn during launch and entry phases of the space shuttle flight, was evaluated and checked out.

  3. STS-28 Columbia, OV-102, crewmembers train in JSC Mockup and Integration Lab

    Science.gov (United States)

    1989-01-01

    STS-28 Columbia, Orbiter Vehicle (OV) 102, crewmembers participate in shuttle emergency egress (bailout) procedures in JSC Mockup and Integration Laboratory Bldg 9A. Wearing orange launch and entry suits (LESs), crewmembers (left to right) Mission Specialist (MS) Mark C. Brown, MS David C. Leestma, MS James C. Adamson, Pilot Richard N. Richards, and Commander Brewster H. Shaw pause before training exercise. In the background are training personnel and the Manipulator Development Facility (MDF) surrounded by helium-filled mockups.

  4. STS-26 Commander Hauck, wearing launch and entry suit, trains in JSC mockup

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck, wearing the orange launch and entry suit (LES) and launch and entry helmet (LEH), gets assistance from a suit technician prior to participating in a training exercise in JSC Mockup and Integration Laboratory Bldg 9A crew compartment trainer (CCT). During the exercise, the LES, a partial pressure suit to be worn during launch and entry phases of the space shuttle flight, was evaluated and checked out.

  5. ESA MS Nicollier extends mockup tetherline prior to JSC WETF simulation

    Science.gov (United States)

    1987-01-01

    European Space Agency (ESA) Mission Specialist (MS) Claude Nicollier, turning a crank, extends a tetherline from a reel mounted on a mockup of the forward payload bay (PLB) bulkhead. Nicollier familiarizes himself with the operation of the safety tether system prior to donning an extravehicular mobility unit (EMU) and participating in an underwater extravehicular activity (EVA) simu- lation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool.

  6. STS-47 MS Jemison extends side hatch mockup CES pole during JSC training

    Science.gov (United States)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist (MS) Mae C. Jemison extends crew escape system (CES) pole through a side hatch mockup during launch emergency egress (bailout) training in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. MS Jerome Apt (right) looks on. The crewmembers practiced extending the CES pole prior to donning their launch and entry suits (LESs) and conducting the simulation in the Crew Compartment Trainer (CCT).

  7. At JSC's MCC, CAPCOMs display score cards rating STS-26 Discovery landing

    Science.gov (United States)

    1988-01-01

    In JSC's Mission Control Center (MCC) Bldg 30, astronauts and spacecraft communicators (CAPCOMs) L. Blaine Hammond, Jr, John O. Creighton, Frank L. Culbertson, Jr, and an unidentified man display score cards rating the STS-26 Discovery, Orbiter Vehicle (OV) 103, landing at Edwards Air Force Base(EAFB), California. Flight control room (FCR) front visual displays show world tracking map, EAFB post landing activity, and head alignment cone (HAC).

  8. STS-48 MS Gemar uses laptop during training session in JSC's MB SMS

    Science.gov (United States)

    1991-01-01

    STS-48 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) Charles D. Gemar, wearing lightweight headset, enters data into a portable laptop computer on the middeck of JSC's Motion Based (MB) Shuttle Mission Simulator (SMS). Gemar is participating in a preflight familiarization session in the MB-SMS located in the Mission Simulation and Training Facility Bldg 5. Visible to Gemar's right is a stowed extravehicular mobility unit (EMU) and on his left are forward locker mockups.

  9. Characterization and Glass Formation of JSC-1 Lunar and Martian Soil Simulants

    Science.gov (United States)

    Sen, Subhayu

    2008-01-01

    The space exploration mission of NASA requires long duration presence of human being beyond the low earth orbit (LEO), especially on Moon and Mars. Developing a human habitat or colony on these planets would require a diverse range of materials, whose applications would range from structural foundations, (human) life support, (electric) power generation to components for scientific instrumentation. A reasonable and cost-effective approach for fabricating the materials needed for establishing a self-sufficient human outpost would be to primarily use local (in situ) resources on these planets. Since ancient times, glass and ceramics have been playing a vital role on human civilization. A long term project on studying the feasibility of developing glass and ceramic materials using Lunar and Martian soil simulants (JSC-1) as developed by Johnson Space Center has been undertaken. The first step in this on-going project requires developing a data base on results that fully characterize the simulants to be used for further investigations. The present paper reports characterization data of both JSC-1 Lunar and JSC Mars-1 simulants obtained up to this time via x-ray diffraction analysis, scanning electron microscopy, thermal analysis (DTA, TGA) and chemical analysis. The critical cooling rate for glass formation for the melts of the simulants was also measured in order to quantitatively assess the glass forming tendency of these melts. The importance of the glasses and ceramics developed using in-situ resources for constructing human habitats on Moon or Mars is discussed.

  10. Gas Phase Pressure Effects on the Apparent Thermal Conductivity of JSC-1A Lunar Regolith Simulant

    Science.gov (United States)

    Yuan, Zeng-Guang; Kleinhenz, Julie E.

    2011-01-01

    Gas phase pressure effects on the apparent thermal conductivity of a JSC-1A/air mixture have been experimentally investigated under steady state thermal conditions from 10 kPa to 100 kPa. The result showed that apparent thermal conductivity of the JSC-1A/air mixture decreased when pressure was lowered to 80 kPa. At 10 kPa, the conductivity decreased to 0.145 W/m/degree C, which is significantly lower than 0.196 W/m/degree C at 100 kPa. This finding is consistent with the results of previous researchers. The reduction of the apparent thermal conductivity at low pressures is ascribed to the Knudsen effect. Since the characteristic length of the void space in bulk JSC-1A varies over a wide range, both the Knudsen regime and continuum regime can coexist in the pore space. The volume ratio of the two regimes varies with pressure. Thus, as gas pressure decreases, the gas volume controlled by Knudsen regime increases. Under Knudsen regime the resistance to the heat flow is higher than that in the continuum regime, resulting in the observed pressure dependency of the apparent thermal conductivity.

  11. Development and Validation of a Model for Hydrogen Reduction of JSC-1A

    Science.gov (United States)

    Hegde, U.; Balasubramaniam, R.; Gokoglu, S.

    2009-01-01

    Hydrogen reduction of lunar regolith has been proposed as a viable technology for oxygen production on the moon. Hydrogen reduces FeO present in the lunar regolith to form metallic iron and water. The water may be electrolyzed to recycle the hydrogen and produce oxygen. Depending upon the regolith composition, FeO may be bound to TiO2 as ilmenite or it may be dispersed in glassy substrates. Some testing of hydrogen reduction has been conducted with Apollo-returned lunar regolith samples. However, due to the restricted amount of lunar material available for testing, detailed understanding and modeling of the reduction process in regolith have not yet been developed. As a step in this direction, hydrogen reduction studies have been carried out in more detail with lunar regolith simulants such as JSC-1A by NASA and other organizations. While JSC-1A has some similarities with lunar regolith, it does not duplicate the wide variety of regolith types on the moon, for example, it contains almost no ilmenite. Nonetheless, it is a good starting point for developing an understanding of the hydrogen reduction process with regolith-like material. In this paper, a model utilizing a shrinking core formulation coupled with the reactor flow is described and validated against experimental data on hydrogen reduction of JSC-1A.

  12. International Space Station (ISS) Oxygen High Pressure Storage Management

    Science.gov (United States)

    Lewis, John R.; Dake, Jason; Cover, John; Leonard, Dan; Bohannon, Carl

    2004-01-01

    High pressure oxygen onboard the ISS provides support for Extra Vehicular Activities (EVA) and contingency metabolic support for the crew. This high pressure 02 is brought to the ISS by the Space Shuttle and is transferred using the Oxygen Recharge Compressor Assembly (ORCA). There are several drivers that must be considered in managing the available high pressure 02 on the ISS. The amount of O2 the Shuttle can fly up is driven by manifest mass limitations, launch slips, and on orbit Shuttle power requirements. The amount of 02 that is used from the ISS high pressure gas tanks (HPGT) is driven by the number of Shuttle docked and undocked EVAs, the type of EVA prebreath protocol that is used and contingency use of O2 for metabolic support. Also, the use of the ORCA must be managed to optimize its life on orbit and assure that it will be available to transfer the planned amount of O2 from the Shuttle. Management of this resource has required long range planning and coordination between Shuttle manifest on orbit plans. To further optimize the situation hardware options have been pursued.

  13. Radiation dosimetry onboard the International Space Station ISS.

    Science.gov (United States)

    Berger, Thomas

    2008-01-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is onboard the International Space Station (ISS) is accomplished to one part as "operational" dosimetry accomplished to one part as "operational" dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on "scientific" dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities.

  14. ISS Ambient Air Quality: Updated Inventory of Known Aerosol Sources

    Science.gov (United States)

    Meyer, Marit

    2014-01-01

    Spacecraft cabin air quality is of fundamental importance to crew health, with concerns encompassing both gaseous contaminants and particulate matter. Little opportunity exists for direct measurement of aerosol concentrations on the International Space Station (ISS), however, an aerosol source model was developed for the purpose of filtration and ventilation systems design. This model has successfully been applied, however, since the initial effort, an increase in the number of crewmembers from 3 to 6 and new processes on board the ISS necessitate an updated aerosol inventory to accurately reflect the current ambient aerosol conditions. Results from recent analyses of dust samples from ISS, combined with a literature review provide new predicted aerosol emission rates in terms of size-segregated mass and number concentration. Some new aerosol sources have been considered and added to the existing array of materials. The goal of this work is to provide updated filtration model inputs which can verify that the current ISS filtration system is adequate and filter lifetime targets are met. This inventory of aerosol sources is applicable to other spacecraft, and becomes more important as NASA considers future long term exploration missions, which will preclude the opportunity for resupply of filtration products.

  15. Exercise Countermeasures on ISS: Summary and Future Directions.

    Science.gov (United States)

    Loerch, Linda H

    2015-12-01

    The first decade of the International Space Station Program (ISS) yielded a wealth of knowledge regarding the health and performance of crewmembers living in microgravity for extended periods of time. The exercise countermeasures hardware suite evolved during the last decade to provide enhanced capabilities that were previously unavailable to support human spaceflight, resulting in attenuation of cardiovascular, muscle, and bone deconditioning. The ability to protect crew and complete mission tasks in the autonomous exploration environment will be a critical component of any decision to proceed with manned exploration initiatives.The next decade of ISS habitation promises to be a period of great scientific utilization that will yield both the tools and technologies required to safely explore the solar system. Leading countermeasure candidates for exploration class missions must be studied methodically on ISS over the next decade to ensure protocols and systems are highly efficient, effective, and validated. Lessons learned from the ISS experience to date are being applied to the future, and international cooperation enables us to maximize this exceptional research laboratory.

  16. Validation of the Intrinsic Spirituality Scale (ISS) with Muslims.

    Science.gov (United States)

    Hodge, David R; Zidan, Tarek; Husain, Altaf

    2015-12-01

    This study validates an existing spirituality measure--the intrinsic spirituality scale (ISS)--for use with Muslims in the United States. A confirmatory factor analysis was conducted with a diverse sample of self-identified Muslims (N = 281). Validity and reliability were assessed along with criterion and concurrent validity. The measurement model fit the data well, normed χ2 = 2.50, CFI = 0.99, RMSEA = 0.07, and SRMR = 0.02. All 6 items that comprise the ISS demonstrated satisfactory levels of validity (λ > .70) and reliability (R2 > .50). The Cronbach's alpha obtained with the present sample was .93. Appropriate correlations with theoretically linked constructs demonstrated criterion and concurrent validity. The results suggest the ISS is a valid measure of spirituality in clinical settings with the rapidly growing Muslim population. The ISS may, for instance, provide an efficient screening tool to identify Muslims that are particularly likely to benefit from spiritually accommodative treatments. (c) 2015 APA, all rights reserved).

  17. "Detsembrikuumuse" helirežissöör sai Emmy

    Index Scriptorium Estoniae

    2008-01-01

    Hollywoodis töötav helirežissöör Solange S. Schwalbe sai septembris Los Angeleses toimunud 2007-2008 Creative Arts Primetime Emmys tseremoonial Emmy minisarja "John Adams" heliefektide eest. Tema meeskond helindas ka meie uue mängufilmi

  18. Commitment and Compliance in the Evolution of the ISS Program

    Science.gov (United States)

    Covert, Liara M.

    2002-01-01

    To examine patterns of commitment and compliance in the ISS Program reveals connections between trends in international relations and perceptions of the effectiveness of legal structures. Whether or not ISS Agreements are considered successful depends on who is asking the question and what are their cultural points of reference or more general bases of comparison. Non-binding agreements as soft law can create an environment of political pressure with the aim of influencing change in national laws, multilateral compliance or diverse commercial practices. Proposed ISS codes need to become enshrined if they are to be effective in compelling action of ISS Partners, entities or other interested participants. Mechanisms of compelling action have included for example, U.S. export restrictions on elements of science and technology, ESA Ministerial and European legislative backing of ESA action, Russian Partner support of space tourism, and also State action and meditative roles of other Partners. Fundamental judgments made on acceptable ethics and principles may be controversial, but also justify respect of agreements for more global reasons. The political reality is that without diverse mechanisms of effective persuasion, there is less incentive for adherence. This paper is an analysis of language as a reflection of exerted power with respect to science and technology and suggests innovative approaches to alternative dispute resolution applicable in this context.

  19. ISS Potable Water Quality for Expeditions 26 through 30

    Science.gov (United States)

    Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.; McCoy, J. Torin

    2012-01-01

    International Space Station (ISS) Expeditions 26-30 spanned a 16-month period beginning in November of 2010 wherein the final 3 flights of the Space Shuttle program finished ISS construction and delivered supplies to support the post-shuttle era of station operations. Expedition crews relied on several sources of potable water during this period, including water recovered from urine distillate and humidity condensate by the U.S. water processor, water regenerated from humidity condensate by the Russian water recovery system, and Russian ground-supplied potable water. Potable water samples collected during Expeditions 26-30 were returned on Shuttle flights STS-133 (ULF5), STS-134 (ULF6), and STS-135 (ULF7), as well as Soyuz flights 24-27. The chemical quality of the ISS potable water supplies continued to be verified by the Johnson Space Center s Water and Food Analytical Laboratory (WAFAL) via analyses of returned water samples. This paper presents the chemical analysis results for water samples returned from Expeditions 26-30 and discusses their compliance with ISS potable water standards. The presence or absence of dimethylsilanediol (DMSD) is specifically addressed, since DMSD was identified as the primary cause of the temporary rise and fall in total organic carbon of the U.S. product water that occurred in the summer of 2010.

  20. ISS Radiation Shielding and Acoustic Simulation Using an Immersive Environment

    Science.gov (United States)

    Verhage, Joshua E.; Sandridge, Chris A.; Qualls, Garry D.; Rizzi, Stephen A.

    2002-01-01

    The International Space Station Environment Simulator (ISSES) is a virtual reality application that uses high-performance computing, graphics, and audio rendering to simulate the radiation and acoustic environments of the International Space Station (ISS). This CAVE application allows the user to maneuver to different locations inside or outside of the ISS and interactively compute and display the radiation dose at a point. The directional dose data is displayed as a color-mapped sphere that indicates the relative levels of radiation from all directions about the center of the sphere. The noise environment is rendered in real time over headphones or speakers and includes non-spatial background noise, such as air-handling equipment, and spatial sounds associated with specific equipment racks, such as compressors or fans. Changes can be made to equipment rack locations that produce changes in both the radiation shielding and system noise. The ISSES application allows for interactive investigation and collaborative trade studies between radiation shielding and noise for crew safety and comfort.

  1. [Medical care for Russian cosmonauts' health on the ISS].

    Science.gov (United States)

    Bogomolov, V V; Kozlovskaia, I B; Alferova, I V; Egorov, A D; Kovachevich, I V

    2008-01-01

    Established with the personal participation of O.G. Gazenko, the Russian system of medical care for cosmonauts' health has been largely preserved till this day. The system was fully functional on board the orbital complex MIR and, with appropriate modifications, has been adopted as a core of the medical care for Russian members of the ISS crews. In the period of 2000-2008, 22 cosmonauts were members of 17 ISS increments from 140 to 216 days in duration. The main functions of the medical care system were to control health, physical and mental performance, and to support implementation of space researches. The flow of readaptation to the normal gravity was, in most cases similar to what has been typical on return from the Russian orbital stations; some deviations are accounted for by application of the in-flight countermeasures. The paper familiarizes reader with some aspects of the theoretical work of academician O.G. Gazenko in the field of medical care in space flight. It outlines the principles of ISS medical management. The integrated medical support system combines medical equipment and items available on the Russian and US segments; the integrated medical group consists of flight surgeons, medical experts and biomedical engineers of the international partners and coordinates planning and implementation of medical operations. Also, challenges of health care on the phase of ISS utilization are defined.

  2. Instructional Support System (ISS): An Overview for Managers

    Science.gov (United States)

    1990-09-01

    other person or corporation ; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be...software to run on IBM- comnatible hardware. ISS is a Government-owned product written in Ada in a modular format, enabling it to run on machines

  3. ISS Efforts to Fully Utilize its Target Acquisition Capability Serves as an Analog for Future Laser Pointing Communications Systems

    Science.gov (United States)

    Jackson, Dan

    2017-01-01

    The ISS is an outstanding platform for developing, testing and refining laser communications systems for future exploration. A recent ISS project which improved ISS communications satellite acquisition performance proves the platform’s utility as a laser communications systems testbed.

  4. International Space Station (ISS) SERVIR Environmental Research and Visualization System Photos: 2013-2014

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The ISS SERVIR Environmental Research and Visualization System (ISERV) acquired images of the Earth's surface from the International Space Station (ISS). The goal...

  5. International Space Station (ISS) SERVIR Environmental Research and Visualization System Photos: 2013-2014

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The ISS SERVIR Environmental Research and Visualization System (ISERV) acquired images of the Earth's surface from the International Space Station (ISS). The goal...

  6. The study on apoptosis of liver cancer cell line HepG2 induced by culture supernatant of DCs transfection with recombinant plasmid pEGFP-N1/CpG-HBcAg(ISS)%重组质粒pEGFP-N1/CpG-HBcAg(ISS)转染DC培养上清诱导HepG2株凋亡的研究

    Institute of Scientific and Technical Information of China (English)

    周健; 田德英; 许东; 张振纲; 陈淼; 章述军; 吴会玲

    2010-01-01

    目的:探讨人类乙肝核心抗原重组质粒pEGFP-N1/CpG-HBcAg(ISS)转染人外周血单核细胞来源树突状细胞后,细胞培养上清诱导肝癌细胞株HepG2凋亡的作用及机制.方法:构建真核表达质粒pEGFP-N1/CpG-HBcAg(ISSa,c),将其转染人外周血来源DC,用培养上清诱导HepG2的凋亡.用流式细胞仪检测已转染DC表面CD80和CD86的表达,检测培养上清诱导HepG2凋亡的变化.用ELISA法检测转染后DC培养上清的IFN-γ、IL-2、IL-12、IL-4和IL-10的水平.结果:pEGFP-N1/CpG-HBcAg(ISSa)转染DC表面CD80和CD86的表达均有明显升高(P<0.01).转染后上清中Th1型细胞因子 IFN-γ、IL-2和IL-12的表达增强(P<0.01),Th2型细胞因子IL-4和IL-10的表达下降(P<0.05),pEGFP-N1/CpG-HBcAg(ISSa)组培养上清对HepG2细胞具有促凋亡作用,随着培养时间延长,细胞凋亡率逐渐增加,HepG2细胞在诱导后24小时凋亡率达到最大,为18.4%.结论:重组质粒pEGFP-N1/CpG-HBcAg(ISSa)转染培养上清能明显促进肝癌细胞株HepG2的凋亡.

  7. Combustion, Complex Fluids, and Fluid Physics Experiments on the ISS

    Science.gov (United States)

    Motil, Brian; Urban, David

    2012-01-01

    From the very first days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensible laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center both Combustion, Fluid Physics, and Acceleration Measurement GRC has led the successful implementation of an Acceleration Measurement systems, the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) as well as the continued use of other facilities on the ISS. These facilities have supported combustion experiments in fundamental droplet combustion fire detection fire extinguishment soot phenomena flame liftoff and stability and material flammability. The fluids experiments have studied capillary flow magneto-rheological fluids colloidal systems extensional rheology pool and nucleate boiling phenomena. In this paper, we provide an overview of the experiments conducted on the ISS over the past 12 years. We also provide a look to the future development. Experiments presented in combustion include areas such as droplet combustion, gaseous diffusion flames, solid fuels, premixed flame studies, fire safety, and super critical oxidation processes. In fluid physics, experiments are discussed in

  8. LOCAD-PTS: Operation of a New System for Microbial Monitoring Aboard the International Space Station (ISS)

    Science.gov (United States)

    Maule, J.; Wainwright, N.; Steele, A.; Gunter, D.; Flores, G.; Effinger, M.; Danibm N,; Wells, M.; Williams, S.; Morris, H.; Monaco, L.

    2008-01-01

    Microorganisms within the space stations Salyut, Mir and the International Space Station (ISS), have traditionally been monitored with culture-based techniques. These techniques involve growing environmental samples (cabin water, air or surfaces) on agar-type media for several days, followed by visualization of resulting colonies; and return of samples to Earth for ground-based analysis. This approach has provided a wealth of useful data and enhanced our understanding of the microbial ecology within space stations. However, the approach is also limited by the following: i) More than 95% microorganisms in the environment cannot grow on conventional growth media; ii) Significant time lags occur between onboard sampling and colony visualization (3-5 days) and ground-based analysis (as long as several months); iii) Colonies are often difficult to visualize due to condensation within contact slide media plates; and iv) Techniques involve growth of potentially harmful microorganisms, which must then be disposed of safely. This report describes the operation of a new culture-independent technique onboard the ISS for rapid analysis (within minutes) of endotoxin and -1, 3-glucan, found in the cell walls of gram-negative bacteria and fungi, respectively. This technique involves analysis of environmental samples with the Limulus Amebocyte Lysate (LAL) assay in a handheld device. This handheld device and sampling system is known as the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS). A poster will be presented that describes a comparative study between LOCAD-PTS analysis and existing culture-based methods onboard the ISS; together with an exploratory survey of surface endotoxin throughout the ISS. It is concluded that while a general correlation between LOCAD-PTS and traditional culture-based methods should not necessarily be expected, a combinatorial approach can be adopted where both sets of data are used together to generate a more complete story of

  9. Acquisition of the Korean Imperfective Aspect Markers "-ko iss-" and "-a iss-" by Japanese Learners: A Multiple-Factor Account

    Science.gov (United States)

    Ryu, Ju-Yeon; Horie, Kaoru; Shirai, Yasuhiro

    2015-01-01

    Although cross-linguistic research on second language tense-aspect acquisition has uncovered universal tendencies concerning the association between verbal semantics and tense-aspect markers, it is still unclear what mechanisms underlie this link. This study investigates the acquisition of two imperfective aspect markers ("-ko iss-" and…

  10. Acquisition of the Korean Imperfective Aspect Markers "-ko iss-" and "-a iss-" by Japanese Learners: A Multiple-Factor Account

    Science.gov (United States)

    Ryu, Ju-Yeon; Horie, Kaoru; Shirai, Yasuhiro

    2015-01-01

    Although cross-linguistic research on second language tense-aspect acquisition has uncovered universal tendencies concerning the association between verbal semantics and tense-aspect markers, it is still unclear what mechanisms underlie this link. This study investigates the acquisition of two imperfective aspect markers ("-ko iss-" and…

  11. GEROS-ISS: GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station

    DEFF Research Database (Denmark)

    Wickert, Jens; Cardellach, Estel; Bandeiras, Jorge

    2016-01-01

    GEROS-ISS stands for GNSS REflectometry, radio occultation, and scatterometry onboard the International Space Station (ISS). It is a scientific experiment, successfully proposed to the European Space Agency in 2011. The experiment as the name indicates will be conducted on the ISS. The main focus...

  12. The Planning of New Japanese Facilities for Life Science in ISS

    Science.gov (United States)

    Ohnishi, Takeo; Hoson, Takayuki

    Though basic rules and mechanisms of life have been rapidly advanced, in recent years, the most sciences are limited under earth environment. To clarify the universality and the real nature of life, it is necessary to perform the space experiments. We, Japanese Society for Biological Sciences in Space, schedule new five types of up-to-date facilities required for the forefront research in the Kibo Module for utilization during 2015-2020. The project was proposed to the Council of Japan and the utilization Committee of Space Environment Science. We aim (1) further high quality science, (2) widely utilization for various requirements among Japan and foreign scientists. The schedules are 2015-2016, manufacture of them and suitability for space experiments and safety tests; 2016-2018, settlement of the new facilities to ISS; 2018-2023, space experiments. At now stage, we are unable to use space shuttles any more. It is difficult to get the biological samples to the spot of launch. Tests of vibration and shock during launch and landing are required. We recommend the down-road of experimental results from ISS. Now, we schedule new facilities: (1) Plant culture system; culture of various kinds of plants for the cell cycle and the next generation, and space agriculture for long stay in space. (2) Whole-body animal culture system; fertilization, growth, development, movement, life keeping in closed environment and health life in space by many kinds of analysis. (3) Localization and movement of cellular components; gene expression, proteins, chromosome and organelles in the cell with a real time analysis. (4) Collection of biological samples from space and total analysis system; (a) settlement of samples in ISS, space experiments and analysis in space, (b) the collection the samples after space experiments. (5) Exposure area at ISS platform; biological effect and fine physical dosimetry of solar radiations and space radiations under various filters among different radiation

  13. ISS And Space Environment Interactions Without Operating Plasma Contactor

    Science.gov (United States)

    Carruth, M. R., Jr.; Ferguson, Dale; Suggs,Rob; McCollum, Matt

    2001-01-01

    The International Space Station (ISS) will be the largest, highest power spacecraft placed in orbit. Because of this the design of the electrical power system diverged markedly from previous systems. The solar arrays will operate at 160 V and the power distribution voltage will be 120 V. The structure is grounded to the negative side of the solar arrays so under the right circumstances it is possible to drive the ISS potential very negative. A plasma contactor has been added to the ISS to provide control of the ISS structure potential relative to the ambient plasma. The ISS requirement is that the ISS structure not be greater than 40 V positive or negative of local plasma. What are the ramifications of operating large structures with such high voltage power systems? The application of a plasma contactor on ISS controls the potential between the structure and the local plasma, preventing degrading effects. It is conceivable that there can be situations where the plasma contactor might be non-functional. This might be due to lack of power, the need to turn it off during some of the build-up sequences, the loss of functionality for both plasma contactors before a replacement can be installed, similar circumstances. A study was undertaken to understand how important it is to have the contactor functioning and how long it might be off before unacceptable degradation to ISS could occur. The details of interaction effects on spacecraft have not been addressed until driven by design. This was true for ISS. If the structure is allowed to float highly negative impinging ions can sputter exposed conductors which can degrade the primary surface and also generate contamination due to the sputtered material. Arcing has been known to occur on solar arrays that float negative of the ambient plasma. This can also generate electromagnetic interference and voltage transients. Much of the ISS structure and pressure module surfaces exposed to space is anodized aluminum. The anodization

  14. NASDA life science experiment facilities for ISS

    Science.gov (United States)

    Tanigaki, F.; Masuda, D.; Yano, S.; Fujimoto, N.; Kamigaichi, S.

    National Space Development Agency of Japan (NASDA) has been developing various experiment facilities to conduct space biology researches in KIBO (JEM). The Cell Biology Experiment Facility (CBEF) and the Clean Bench (CB) are installed into JEM Life Science Rack. The Biological Experiment Units (BEU) are operated in the CBEF and the CB for many kinds of experiments on cells, tissues, plants, microorganisms, or small animals. It is possible for all researchers to use these facilities under the system of the International Announcement of Opportunity. The CBEF is a CO2 incubator to provide a controlled environment (temperature, humidity, and CO2 concentration), in which a rotating table is equipped to make variable gravity (0-2g) for reference experiments. The containers called "Canisters" can be used to install the BEU in the CBEF. The CBEF supplies power, command, sensor, and video interfaces for the BEU through the utility connectors of Canisters. The BEU is a multiuser system consisting of chambers and control segments. It is operated by pre-set programs and by commands from the ground. NASDA is currently developing three types of the BEU: the Plant Experiment Unit (PEU) for plant life cycle observations and the Cell Experiment Unit (CEU1&2) for cell culture experiments. The PEU has an automated watering system with a water sensor, an LED matrix as a light source, and a CCD camera to observe the plant growth. The CEUs have culture chambers and an automated cultural medium exchange system. Engineering models of the PEU and CEU1 have been accomplished. The preliminary design of CEU2 is in progress. The design of the BEU will be modified to meet science requirements of each experiment. The CB provides a closed aseptic work-space (Operation Chamber) with gloves for experiment operations. Samples and the BEU can be manually handled in the CB. The CB has an air lock (Disinfection Chamber) to prevent contamination, and HEPA filters to make class-100-equivalent clean air

  15. Spaceflight of HUVEC: An Integrated eXperiment- SPHINX Onboard the ISS

    Science.gov (United States)

    Versari, S.; Maier, J. A. M.; Norfini, A.; Zolesi, V.; Bradamante, S.

    2013-02-01

    The spaceflight orthostatic challenge can promote in astronauts inadequate cardiovascular responses defined as cardiovascular deconditioning. In particular, disturbance of endothelial functions are known to lead to altered vascular performances, being the endothelial cells crucial in the maintenance of the functional integrity of the vascular wall. In order to evaluate whether weightlessness affects endothelial functions, we designed, developed, and performed the experiment SPHINX - SPaceflight of HUVEC: an INtegrated eXperiment - where HUVEC (Human Umbilical Vein Endothelial Cells) were selected as a macrovascular cell model system. SPHINX arrived at the International Space Station (ISS) onboard Progress 40P, and was processed inside Kubik 6 incubator for 7 days. At the end, all of the samples were suitably fixed and preserved at 6°C until return on Earth on Soyuz 23S.

  16. Rapid Monitoring of Bacteria and Fungi aboard the International Space Station (ISS)

    Science.gov (United States)

    Gunter, D.; Flores, G.; Effinger, M.; Maule, J.; Wainwright, N.; Steele, A.; Damon, M.; Wells, M.; Williams, S.; Morris, H.; hide

    2009-01-01

    Microorganisms within spacecraft have traditionally been monitored with culture-based techniques. These techniques involve growth of environmental samples (cabin water, air or surfaces) on agar-type media for several days, followed by visualization of resulting colonies or return of samples to Earth for ground-based analysis. Data obtained over the past 4 decades have enhanced our understanding of the microbial ecology within space stations. However, the approach has been limited by the following factors: i) Many microorganisms (estimated > 95%) in the environment cannot grow on conventional growth media; ii) Significant time lags (3-5 days for incubation and up to several months to return samples to ground); iii) Condensation in contact slides hinders colony counting by crew; and iv) Growth of potentially harmful microorganisms, which must then be disposed of safely. This report describes the operation of a new culture-independent technique onboard the ISS for rapid analysis (within minutes) of endotoxin and beta-1, 3-glucan, found in the cell walls of gramnegative bacteria and fungi, respectively. The technique involves analysis of environmental samples with the Limulus Amebocyte Lysate (LAL) assay in a handheld device, known as the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS). LOCADPTS was launched to the ISS in December 2006, and here we present data obtained from Mach 2007 until the present day. These data include a comparative study between LOCADPTS analysis and existing culture-based methods; and an exploratory survey of surface endotoxin and beta-1, 3-glucan throughout the ISS. While a general correlation between LOCAD-PTS and traditional culture-based methods should not be expected, we will suggest new requirements for microbial monitoring based upon culture-independent parameters measured by LOCAD-PTS.

  17. Commissioning of the Liquid Nitrogen Thermo-Siphon System for NASA-JSC Chamber-A

    Science.gov (United States)

    Homan, J.; Montz, M.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Garcia, S.; Garza, J.

    2013-01-01

    NASA's Space Environment Simulation Laboratory's (SESL) Chamber A, located at the Johnson Space Center in Houston Texas has recently implemented major enhancements of its cryogenic and vacuum systems. The new liquid nitrogen (LN2) thermo-siphon system was successfully commissioned in August of 2012. Chamber A, which has 20 K helium cryo-panels (or shrouds ) which are shielded by 80 K nitrogen shrouds, is capable of simulating a deep space environment necessary to perform ground testing of NASA s James Webb Space Telescope (JWST). Chamber A s previous system used forced flow LN2 cooling with centrifugal pumps, requiring 200,000 liters of LN2 to cool-down and consuming 180,000 liters per day of LN2 in steady operation. The LN2 system did not have the reliability required to meet the long duration test of the JWST, and the cost estimate provided in the initial approach to NASA-JSC by the sub-contractor for refurbishment of the system to meet the reliability goals was prohibitive. At NASA-JSC's request, the JLab Cryogenics Group provided alternative options in 2007, including a thermo-siphon, or natural flow system. This system, eliminated the need for pumps and used one tenth of the original control valves, relief valves, and burst disks. After the thermo-siphon approach was selected, JLab provided technical assistance in the process design, mechanical design, component specification development and commissioning oversight, while the installation and commissioning operations of the system was overseen by the Jacobs Technology/ESC group at JSC. The preliminary commissioning data indicate lower shroud temperatures, 70,000 liters to cool-down and less than 90,000 liters per day consumed in steady operation. All of the performance capabilities have exceeded the design goals. This paper will outline the comparison between the original system and the predicted results of the selected design option, and the commissioning results of thermo-siphon system.

  18. Commissioning of the Liquid Nitrogen Thermo-Siphon System for NASA-JSC Chamber A

    Science.gov (United States)

    Homan, J.; Montz, M.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Garcia, S.; Garza, J.

    2013-01-01

    NASA s Space Environment Simulation Laboratory s (SESL) Chamber A, located at the Johnson Space Center in Houston Texas has recently implemented major enhancements of its cryogenic and vacuum systems. The new liquid nitrogen (LN) thermo-siphon system was successfully commissioned in August of 2012. Chamber A, which has 20 K helium cryo-panels (or shrouds ) which are shielded by 80 K nitrogen shrouds, is capable of simulating a deep space environment necessary to perform ground testing of NASA s James Webb Space Telescope (JWST). Chamber A s previous system used forced flow LN cooling with centrifugal pumps, requiring 220,000 liters of LN to cool-down and consuming 180,000 liters per day of LN in steady operation. The LN system did not have the reliability required to meet the long duration test of the JWST, and the cost estimate provided in the initial approach to NASA-JSC by the subcontractor for refurbishment of the system to meet the reliability goals was prohibitive. At NASA-JSC s request, the JLab Cryogenics Group provided alternative options in 2007, including a thermo-siphon, or natural flow system. This system, eliminated the need for pumps and used one tenth of the original control valves, relief valves, and burst disks. After the thermo-siphon approach was selected, JLab provided technical assistance in the process design, mechanical design, component specification development and commissioning oversight, while the installation and commissioning operations of the system was overseen by the Jacobs Technology/ESC group at JSC. The preliminary commissioning data indicate lower shroud temperatures, 68,000 liters to cool-down and less than 91,000 liters per day consumed in steady operation. All of the performance capabilities have exceeded the design goals. This paper will outline the comparison between the original system and the predicted results of the selected design option, and the commissioning results of thermo-siphon system.

  19. Coordinated Analysis 101: A Joint Training Session Sponsored by LPI and ARES/JSC

    Science.gov (United States)

    Draper, D. S.; Treiman, A. H.

    2017-01-01

    The Lunar and Planetary Institute (LPI) and the Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate at NASA Johnson Space Center (JSC), co-sponsored a training session in November 2016 for four early-career scientists in the techniques of coordinated analysis. Coordinated analysis refers to the approach of systematically performing high-resolution and -precision analytical studies on astromaterials, particularly the very small particles typical of recent and near-future sample return missions such as Stardust, Hayabusa, Hayabusa2, and OSIRIS-REx. A series of successive analytical steps is chosen to be performed on the same particle, as opposed to separate subsections of a sample, in such a way that the initial steps do not compromise the results from later steps in the sequence. The data from the entire series can then be integrated for these individual specimens, revealing important in-sights obtainable no other way. ARES/JSC scientists have played a leading role in the development and application of this approach for many years. Because the coming years will bring new sample collections from these and other planned NASA and international exploration missions, it is timely to begin disseminating specialized techniques for the study of small and precious astromaterial samples. As part of the Cooperative Agreement between NASA and the LPI, this training workshop was intended as the first in a series of similar training exercises that the two organizations will jointly sponsor in the coming years. These workshops will span the range of analytical capabilities and sample types available at ARES/JSC in the Astromaterials Research and Astro-materials Acquisition and Curation Offices. Here we summarize the activities and participants in this initial training.

  20. Albedo protons and electrons at ISS - an important contribution to astronaut dose?

    Science.gov (United States)

    Norman, R. B.; Slaba, T. C.; Badavi, F. F.; Mertens, C. J.; Blattnig, S.

    2015-12-01

    Albedo particles, which are created by cosmic ray interactions in the atmosphere and are moving upwards away from the surface of the earth, are often considered a negligible contribution to astronaut radiation exposure on the International Space Station (ISS). Models of astronaut exposure, however, consistently underestimate measurements onboard ISS when these albedo particles are neglected. Recent measurements by instruments on ISS (AMS, PAMELA, and SEDA-AP) hint that there are high energy protons and electrons which are not being modeled and that may contribute to radiation exposure on ISS. Estimates of the contribution of radiation exposure on ISS due to albedo particles, along with open questions, will be discussed.

  1. International Space Station (ISS) Orbital Replaceable Unit (ORU) Wet Storage Risk Assessment

    Science.gov (United States)

    Squire, Michael D.; Rotter, Henry A.; Lee, Jason; Packham, Nigel; Brady, Timothy K.; Kelly, Robert; Ott, C. Mark

    2014-01-01

    The International Space Station (ISS) Program requested the NASA Engineering and Safety Center (NESC) to evaluate the risks posed by the practice of long-term wet storage of ISS Environmental Control and Life Support (ECLS) regeneration system orbital replacement units (ORUs). The ISS ECLS regeneration system removes water from urine and humidity condensate and converts it into potable water and oxygen. A total of 29 ORUs are in the ECLS system, each designed to be replaced by the ISS crew when necessary. The NESC assembled a team to review the ISS ECLS regeneration system and evaluate the potential for biofouling and corrosion. This document contains the outcome of the evaluation.

  2. Configuration Management (CM) Support for KM Processes at NASA/Johnson Space Center (JSC)

    Science.gov (United States)

    Cioletti, Louis

    2010-01-01

    Collection and processing of information are critical aspects of every business activity from raw data to information to an executable decision. Configuration Management (CM) supports KM practices through its automated business practices and its integrated operations within the organization. This presentation delivers an overview of JSC/Space Life Sciences Directorate (SLSD) and its methods to encourage innovation through collaboration and participation. Specifically, this presentation will illustrate how SLSD CM creates an embedded KM activity with an established IT platform to control and update baselines, requirements, documents, schedules, budgets, while tracking changes essentially managing critical knowledge elements.

  3. STS-35 Pilot Gardner during fire fighting exercises at JSC fire training pit

    Science.gov (United States)

    1990-01-01

    STS-35 Pilot Guy S. Gardner extinguishes a small blaze during a fire handling training session for crewmembers at JSC Fire Training Pit across from the Gilruth Center Bldg 207. Wearing a navy blue flight suit, Gardner approaches fire while operating a fire extinguisher as Commander Vance D. Brand (far right) and Payload Specialist Samuel T. Durrance look on. The crew was briefed on types of potential blazes and the correct means of controlling each type. STS-35 will mark the first seven-member crew staffing since the Challenger accident of January 1986.

  4. STS-35 Pilot Gardner and MS Hoffman during egress training at JSC

    Science.gov (United States)

    1990-01-01

    STS-35 Pilot Guy S. Gardner (standing) and Mission Specialist (MS) Jeffrey A. Hoffman prepare for egress training at JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Gardner and Hoffman, wearing orange launch and entry suits (LESs), adjust their parachute harnesses as they listen to instructions before training begins. The astronaut crewmembers and payload specialists for the scheduled May flight were specifically learning proper measures to take in the event of an emergency on the launch pad necessitating emergency evacuation of the orbiter.

  5. STS-56 Commander Cameron and Pilot Oswald on CCT flight deck in JSC's MAIL

    Science.gov (United States)

    1993-01-01

    STS-56 Discovery, Orbiter Vehicle (OV) 103, Commander Kenneth Cameron, (left) and Pilot Stephen S. Oswald, wearing launch and entry suits (LESs) and launch and entry helmets (LEHs), are seated on the forward flight deck of the crew compartment trainer (CCT), a shuttle mockup. Cameron mans the commander station controls and Oswald the pilots station controls during an emergency egress (bailout) simulation. The view was taken from the aft flight deck looking forward and includes Cameron's and Oswald's profiles and the forward flight deck controls and checklists. The CCT is located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE.

  6. STS-57 crewmembers train in JSC's FB Shuttle Mission Simulator (SMS)

    Science.gov (United States)

    1993-01-01

    STS-57 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist 2 (MS2) Nancy J. Sherlock, holding computer diskettes and procedural checklist, discusses equipment operation with Commander Ronald J. Grabe on the middeck of JSC's fixed based (FB) shuttle mission simulator (SMS). Payload Commander (PLC) G. David Low points to a forward locker location as MS3 Peter J.K. Wisoff switches controls on overhead panels MO42F and MO58F, and MS4 Janice E. Voss looks on. The FB-SMS is located in the Mission Simulation and Training Facility Bldg 5.

  7. Spectral properties of simulated impact glasses produced from martian soil analogue JSC Mars-1

    Science.gov (United States)

    Moroz, L. V.; Basilevsky, A. T.; Hiroi, T.; Rout, S. S.; Baither, D.; van der Bogert, C. H.; Yakovlev, O. I.; Fisenko, A. V.; Semjonova, L. F.; Rusakov, V. S.; Khramov, D. A.; Zinovieva, N. G.; Arnold, G.; Pieters, C. M.

    2009-07-01

    To simulate the formation of impact glasses on Mars, an analogue of martian bright soil (altered volcanic soil JSC Mars-1) was melted at relevant oxygen fugacities using a pulsed laser and a resistance furnace. Reduction of Fe3+ to Fe2+ and in some cases formation of nanophase Fe0 in the glasses were documented by Mössbauer spectroscopy and TEM studies. Reflectance spectra for several size fractions of the JSC Mars-1 sample and the glasses were acquired between 0.3 and 25 μm. The glasses produced from the JSC Mars-1 soil show significant spectral variability depending on the method of production and the cooling rate. In general, they are dark and less red in the visible compared to the original JSC Mars-1 soil. Their spectra do not have absorption bands due to bound water and structural OH, have positive spectral slopes in the near-infrared range, and show two broad bands centered near 1.05 and 1.9 μm, typical of glasses rich in ferrous iron. The latter bands and low albedo partly mimic the spectral properties of martian dark regions, and may easily be confused with mafic materials containing olivine and low-Ca pyroxene. Due to their disordered structures and vesicular textures, the glasses show relatively weak absorption features from the visible to the thermal infrared. These weak absorption bands may be masked by the stronger bands of mafic minerals. Positive near-infrared spectral slopes typical of fresh iron-bearing impact or volcanic glasses may be masked either by oxide/dust coatings or by aerosols in the Mars' atmosphere. As a result, impact glasses may be present on the surface of Mars in significant quantities that have been either misidentified as other phases or masked by phases with stronger infrared features. Spectrometers with sufficient spatial resolution and wavelength coverage may detect impact glasses at certain locations, e.g., in the vicinity of fresh impact craters. Such dark materials are usually interpreted as accumulations of mafic

  8. STS-35 crewmembers during fire fighting exercises at JSC fire training pit

    Science.gov (United States)

    1990-01-01

    STS-35 crewmembers extinguish a small blaze during a fire handling training session at JSC Fire Training Pit across from the Gilruth Center Bldg 207. Wearing navy blue flight suits, Mission Specialist (MS) Robert A.R. Parker (second right) and MS John M. Lounge (third left) approach fire while operating a fire extinguishers. The crew was briefed on types of potential blazes and the correct means of controlling each type. Also pictured are (left to right) Commander Vance D. Brand, Payload Specialist Samuel T. Durrance, Pilot Guy S. Gardner, and training officer Al Putnam. STS-35 will mark the first seven-member crew staffing since the Challenger accident of January 1986.

  9. STS-26 crew in JSC Shuttle Mockup and Integration Laboratory Bldg 9A

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, crewmembers model the new (navy blue) partial pressure suits (launch and entry suits (LESs)) for entry and launch phases before a training exercise in JSC's Shuttle Mockup and Integration Laboratory Bldg 9A. Pictured (left to right) are Mission Specialist (MS) David C. Hilmers, Commander Frederick H. Hauck, Pilot Richard O. Covey, MS John M. Lounge, and MS George D. Nelson. During Crew Station Review (CSR) #3, the crew is scheduled to check out the new partial pressure suits and crew escape system (CES) configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options.

  10. STS-45 payload specialists with crew escape system (CES) mockup at JSC's MAIL

    Science.gov (United States)

    1991-01-01

    STS-45 Atlantis, Orbiter Vehicle (OV) 104, Payload Specialist Dirk D. Frimout (European Space Agency (ESA) Belgian crewmember) (left), backup Payload Specialist Charles R. Chappell (center), and Payload Specialist Byron K. Lichtenberg (right) listen to technician explain the operation of the crew escape system (CES) pole. Frimout is engaging the handle which extends the CES pole out the side hatch. The payload specialists along with the other STS-45 crewmembers are participating in side hatch emergency egress exercises in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A.

  11. STS-26 crew trains in JSC crew compartment trainer (CCT) shuttle mockup

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck tests cushion outside the crew compartment trainer (CCT) side hatch. Hauck, wearing new (navy blue) partial pressure suit (launch and entry suit (LES)) and helmet, tumbles out CCT side hatch onto cushion as technicians look on. During Crew Station Review (CSR) #3, the crew donned the new partial pressure suits and checked out crew escape system (CES) configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options. CCT is located in JSC's Shuttle Mockup and Integration Laboratory Bldg 9A.

  12. STS-31 MS Sullivan exits airlock mockup during JSC WETF underwater simulation

    Science.gov (United States)

    1990-01-01

    STS-31 Mission Specialist (MS) Kathryn D. Sullivan, fully suited in an extravehicular mobility unit (EMU) and holding a semirigid tether (SRT) and ratchet caddy assembly, egresses the airlock (AL) mockup during an underwater simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The open AL extravehicular (EV) hatch appears in the foreground as Sullivan backs out into the payload bay (PLB). Though no extravehicular activity (EVA) is planned for STS-31, two crewmembers train for contingencies that would necessitate leaving the shirt sleeve environment of Discovery's, Orbiter Vehicle (OV) 103's, cabin and performing chores with their Hubble Space Telescope (HST) payload or related hardware in the PLB.

  13. STS-46 Payload Specialist Malerba on the middeck of JSC's FFT mockup

    Science.gov (United States)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, Italian Payload Specialist Franco Malerba with his hand resting on the crew escape system (CES) pole stands on the middeck of the Full Fuselage Trainer (FFT) located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9. Malerba, wearing a flight suit, familiarizes himself with the operation of the CES pole which extends out the shuttle mockup's open side hatch. The CES pole is used if emergency egress is required during the launch or ascent phase of flight.

  14. Glassmaking Units and Glass Feeders Production——a New Production Development Stage at JSC "Krastsvetmet"

    Institute of Scientific and Technical Information of China (English)

    MALTSEV E. V.; MAMONOV S. N.; DMITRIEV V. A.; KHORIKOV P. A.

    2012-01-01

    JSC "Krastsvetmet" has launched the production of glass melting units (GU) and glass feeders (GF),with the number of bushings being from 200 to 4000,made from platinum-rhodium alloys doped with oxide-forming and reinforcing elements.The proprietary technology for dispersion-stabilized material of PtRh10DS composition having high strength and performance properties has been developed and applied.Combined products production was launched where bushings made of PtRh-20 alloy are welded to the plate of the dispersion-stabilized PtRh10DS material.The manufacture of seamless spinning assemblies has been organized.

  15. Development and Making of New Jewellery Palladium Based Alloys at JSC "Krastsvetmet"

    Institute of Scientific and Technical Information of China (English)

    YEFIMOV V. N.; MAMONOV S. N.; SHULGIN D. R.; YELTSIN S. I.

    2012-01-01

    Complex of research and development work aimed at implementation of jewellery palladium based alloys technology has been carried out at JSC Krastsvetmet.A range of palladium alloys jewellery fabrication has been organized.Compositions of a number of jewellery palladium alloys grade 850,900,950 and 990 have been proposed,their production and application in jewellery manufacture has been organized.To produce palladium alloys induction melting in inert atmosphere and melt pouring into a copper mould has been used.The ingots heat treatment conditions,as well as semi-finished jewelry plastic deformation parameters have been determined.

  16. Human spaceflight technology needs-a foundation for JSC's technology strategy

    Science.gov (United States)

    Stecklein, J. M.

    Human space exploration has always been heavily influenced by goals to achieve a specific mission on a specific schedule. This approach drove rapid technology development, the rapidity of which added risks and became a major driver for costs and cost uncertainty. The National Aeronautics and Space Administration (NASA) is now approaching the extension of human presence throughout the solar system by balancing a proactive yet less schedule-driven development of technology with opportunistic scheduling of missions as the needed technologies are realized. This approach should provide cost effective, low risk technology development that will enable efficient and effective manned spaceflight missions. As a first step, the NASA Human Spaceflight Architecture Team (HAT) has identified a suite of critical technologies needed to support future manned missions across a range of destinations, including in cis-lunar space, near earth asteroid visits, lunar exploration, Mars moons, and Mars exploration. The challenge now is to develop a strategy and plan for technology development that efficiently enables these missions over a reasonable time period, without increasing technology development costs unnecessarily due to schedule pressure, and subsequently mitigating development and mission risks. NASA's Johnson Space Center (JSC), as the nation's primary center for human exploration, is addressing this challenge through an innovative approach in allocating Internal Research and Development funding to projects. The HAT Technology Needs (Tech Needs) Database has been developed to correlate across critical technologies and the NASA Office of Chief Technologist Technology Area Breakdown Structure (TABS). The TechNeeds Database illuminates that many critical technologies may support a single technical capability gap, that many HAT technology needs may map to a single TABS technology discipline, and that a single HAT technology need may map to multiple TABS technology disciplines. Th

  17. Status of UHECR detector KLYPVE on-board the ISS

    Science.gov (United States)

    Klimov, Pavel; Garipov, Gali; Khrenov, Boris; Yashin, Ivan; Panasyuk, Mikhail; Tkachev, Leonid; Sharakin, Sergey; Zotov, Mikhail; Churilo, Igor; Markov, Alexander

    A preliminary project of the KLYPVE detector of ultra high energy cosmic rays (UHECR) on board the International Space Station (ISS) was developed in Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics in cooperation with RSC “Energia”. The main scientific aims of the mission are measurements of the primary particles energy spectrum, their arrival directions and a search for large and small scale anisotropy (including point sources) in the energy region above the Greisen-Zatsepin-Kuzmin cut-off. Various types of optical systems, photo detectors, mechanical structures and multiple issues related to transportation and accommodation on the Russian Segment of the ISS were considered. Recent development of KLYPVE is made in close cooperation with the JEM-EUSO collaboration in order to improve the detector parameters such as field of view, angular and energy resolution, energy threshold. Current status of the project is presented in the report.

  18. Development of Onboard Computer Complex for Russian Segment of ISS

    Science.gov (United States)

    Branets, V.; Brand, G.; Vlasov, R.; Graf, I.; Clubb, J.; Mikrin, E.; Samitov, R.

    1998-01-01

    Report present a description of the Onboard Computer Complex (CC) that was developed during the period of 1994-1998 for the Russian Segment of ISS. The system was developed in co-operation with NASA and ESA. ESA developed a new computation system under the RSC Energia Technical Assignment, called DMS-R. The CC also includes elements developed by Russian experts and organizations. A general architecture of the computer system and the characteristics of primary elements of this system are described. The system was integrated at RSC Energia with the participation of American and European specialists. The report contains information on software simulators, verification and de-bugging facilities witch were been developed for both stand-alone and integrated tests and verification. This CC serves as the basis for the Russian Segment Onboard Control Complex on ISS.

  19. Modeling Common Cause Failures of Thrusters on ISS Visiting Vehicles

    Science.gov (United States)

    Haught, Megan

    2014-01-01

    This paper discusses the methodology used to model common cause failures of thrusters on the International Space Station (ISS) Visiting Vehicles. The ISS Visiting Vehicles each have as many as 32 thrusters, whose redundancy makes them susceptible to common cause failures. The Global Alpha Model (as described in NUREG/CR-5485) can be used to represent the system common cause contribution, but NUREG/CR-5496 supplies global alpha parameters for groups only up to size six. Because of the large number of redundant thrusters on each vehicle, regression is used to determine parameter values for groups of size larger than six. An additional challenge is that Visiting Vehicle thruster failures must occur in specific combinations in order to fail the propulsion system; not all failure groups of a certain size are critical.

  20. Computer Aided Safety Assessment(CASA) Tool for ISS Payloads

    Science.gov (United States)

    Hochstein, Jason; Festa, Fabrizio

    2010-09-01

    In an effort to streamline the processes established by the partners of the International Space Station(ISS) to certify the safety of hardware and experiments destined for the Station, the European Space Agency’s(ESA) ISS System Safety Team is developing the Computer Aided Safety Assessment(CASA) tool suite. These software tools guide payload developers through the creation process of two types of standard payload hazard reports via a series of questions following a predetermined logic. The responses provided by the user are used by the CASA system to complete the majority of each hazard report requisite for payload flight safety reviews, employing consistent, approved descriptions of most hazards, hazard causes, controls and verification methods. Though some manual inputs will still be required to complete these reports, working with CASA will considerably reduce the amount of time necessary to review the documentation by agency safety authorities.

  1. Assessment of RFID Read Accuracy for ISS Water Kit

    Science.gov (United States)

    Chu, Andrew

    2011-01-01

    The Space Life Sciences Directorate/Medical Informatics and Health Care Systems Branch (SD4) is assessing the benefits Radio Frequency Identification (RFID) technology for tracking items flown onboard the International Space Station (ISS). As an initial study, the Avionic Systems Division Electromagnetic Systems Branch (EV4) is collaborating with SD4 to affix RFID tags to a water kit supplied by SD4 and studying the read success rate of the tagged items. The tagged water kit inside a Cargo Transfer Bag (CTB) was inventoried using three different RFID technologies, including the Johnson Space Center Building 14 Wireless Habitat Test Bed RFID portal, an RFID hand-held reader being targeted for use on board the ISS, and an RFID enclosure designed and prototyped by EV4.

  2. ISS ECLSS: 3 Years of Logistics for Maintenance

    Science.gov (United States)

    Shkedi, Brienne; Thompson, Dean

    2004-01-01

    The International Space Station (ISS) Environmental Control and Life Support System (ECLSS) is designed to be maintainable. During the 3 years since the ISS US Lab became operational, there have been numerous ECLSS Orbital Replacement Units (ORUs) launched and returned to Maintain the ECLSS operation in the US segments. The maintenance logistics have provided tools for maintenance, replaced limited life ORUs and failed ORUs, upgraded ECLSS hardware to improve reliability and placed critical spares onboard prior to need. In most cases, the removed ORUs have been returned for either failure analysis and repair or refurbishment. This paper describes the ECLSS manifesting history and maintenance events and quantifies the numbers of ECLSS items, weights, and volumes.

  3. [The importance of Injury Severity Score (ISS) in the management of thoracolumbar burst fracture].

    Science.gov (United States)

    Rezende, Rodrigo; Avanzi, Osmar

    2009-02-01

    There are few publications which relate the injury severity score (ISS) to the thoracolumbar burst fractures. For that reason and for the frequency in which they occur, we have evaluated the severity of the trauma in these patients. We have evaluated 190 burst fractures in the spinal cord according to Denis, using the codes of Abbreviated Injury Scales (AIS) for the calculation of the ISS, which uses the three parts of the human body with major severity. These lesions are a squared number and the results are summed up. Among 190 cases evaluated, the median value of the ISS was 13 and the average was 14,4. Males presented a higher ISS than females. The young adult patients presented an average and a median value of the ISS higher than the old patients. The higher the ISS is, the longer the hospitalization period is, except for the patients with the ISS over 35. The fractures in thoracic level show the ISS higher than the rest. The ISS is directly related to surgical treatment and mortality. The ISS values which were found show that a less severe trauma can cause a burst thoracic or lumbar spinal cord fracture. The value of the ISS has not shown correlation to the sex and the fracture level, but it is proportional to the hospitalization period, the surgical treatment and the mortality rate. This result shows a value which is inversely proportional to the age of the patients.

  4. Exercise Countermeasure Hardware Evolution on ISS: The First Decade.

    Science.gov (United States)

    Korth, Deborah W

    2015-12-01

    The hardware systems necessary to support exercise countermeasures to the deconditioning associated with microgravity exposure have evolved and improved significantly during the first decade of the International Space Station (ISS), resulting in both new types of hardware and enhanced performance capabilities for initial hardware items. The original suite of countermeasure hardware supported the first crews to arrive on the ISS and the improved countermeasure system delivered in later missions continues to serve the astronauts today with increased efficacy. Due to aggressive hardware development schedules and constrained budgets, the initial approach was to identify existing spaceflight-certified exercise countermeasure equipment, when available, and modify it for use on the ISS. Program management encouraged the use of commercial-off-the-shelf (COTS) hardware, or hardware previously developed (heritage hardware) for the Space Shuttle Program. However, in many cases the resultant hardware did not meet the additional requirements necessary to support crew health maintenance during long-duration missions (3 to 12 mo) and anticipated future utilization activities in support of biomedical research. Hardware development was further complicated by performance requirements that were not fully defined at the outset and tended to evolve over the course of design and fabrication. Modifications, ranging from simple to extensive, were necessary to meet these evolving requirements in each case where heritage hardware was proposed. Heritage hardware was anticipated to be inherently reliable without the need for extensive ground testing, due to its prior positive history during operational spaceflight utilization. As a result, developmental budgets were typically insufficient and schedules were too constrained to permit long-term evaluation of dedicated ground-test units ("fleet leader" type testing) to identify reliability issues when applied to long-duration use. In most cases

  5. Autonomic function testing aboard the ISS using “PNEUMOCARD”

    Science.gov (United States)

    Baevsky, R. M.; Funtova, I. I.; Diedrich, A.; Chernikova, A. G.; Drescher, J.; Baranov, V. M.; Tank, J.

    2009-10-01

    Investigations of blood pressure, heart rate (HR), and heart rate variability (HRV) during long term space flights on board the "ISS" have shown characteristic changes of autonomic cardiovascular control. Therefore, alterations of the autonomic nervous system occurring during spaceflight may be responsible for in- and post-flight disturbances. The device "Pneumocard" was developed to further investigate autonomic cardiovascular and respiratory function aboard the ISS. The hard-software diagnostic complex "Pneumocard" was used during in-flight experiment aboard ISS for autonomic function testing. ECG, photoplethysmography, respiration, transthoracic bioimpedance and seismocardiography were assessed in one male cosmonaut (flight lengths six month). Recordings were made prior to the flight, late during flight, and post-flight during spontaneous respiration and controlled respiration at different rates. HR remained stable during flight. The values were comparable to supine measurements on earth. Respiratory frequency and blood pressure decreased during flight. Post flight HR and BP values increased compared to in-flight data exceeding pre-flight values. Cardiac time intervals did not change dramatically during flight. Pulse wave transit time decreased during flight. The maximum of the first time derivative of the impedance cardiogram, which is highly correlated with stroke volume was not reduced in-flight. Our results demonstrate that autonomic function testing aboard the ISS using "Pneumocard" is feasible and generates data of good quality. Despite the decrease in BP, pulse wave transit time was found reduced in space as shown earlier. However, cardiac output did not decrease profoundly in the investigated cosmonaut. Autonomic testing during space flight detects individual changes in cardiovascular control and may add important information to standard medical control. The recent plans to support a flight to Mars, makes these kinds of observations all the more relevant

  6. The ISS National Inventory of Chemical Substances (INSC).

    Science.gov (United States)

    Binetti, Roberto; Costamagna, Francesca Marina; Ceccarelli, Federica; D'angiolini, Antonella; Fabri, Alessandra; Riva, Giovanni; Satalia, Susanna; Marcello, Ida

    2008-01-01

    The INSC (Inventario Nazionale delle Sostanze Chimiche), a factual data bank, produced by Istituto Superiore di Sanità (ISS), consists of an electronic tool on chemical information developed for routine and emergency purposes. Historical background, current status and future perspectives of INSC are discussed. The structure and the feature of INSC are briefly examined. Aspects of information retrieval and the criteria for inclusion of data and priority selection are also considered.

  7. Biological Imaging Capability in the ABRS Facility on ISS

    Science.gov (United States)

    Cox, David R.; Murdoch, T.; Regan, M. F.; Meshlberger, R. J.; Mortenson, T. E.; Albino, S. A.; Paul, A. L.; Ferl, R. J.

    2010-01-01

    This slide presentation reviews the Advanced Biological Research System (ABRS) on the International Space Station (ISS) and its biological imaging capability. The ABRS is an environmental control chamber. It has two indpendently controlled Experiment Research Chambers (ERCs) with temperature, relative humidity and carbon dioxide controls. ABRS is a third generation plant growth system. Several experiments are reviewed, with particular interest in the use of Green Fluorescent Protein (GFP) a non-destructive plant stress reporting mechanism, naturally found in jellyfish.

  8. A novel marine bacterium Isoptericola sp. JS-C42 with the ability to saccharifying the plant biomasses for the aid in cellulosic ethanol production.

    Science.gov (United States)

    Santhi, Velayudhan Satheeja; Gupta, Ashutosh; Saranya, Somasundaram; Jebakumar, Solomon Robinson David

    2014-06-01

    The ever growing demands for food products such as starch and sugar produces; there is a need to find the sources for saccharification for cellulosic bioethanol production. This study provides the first evidence of the lignocellulolytic and saccharifying ability of a marine bacterium namely Isoptericola sp. JS-C42, a Gram positive actinobacterium with the cocci cells embedded on mycelia isolated from the Arabian Sea, India. It exhibited highest filter paper unit effect, endoglucanase, exoglucanase, cellobiohydrolase, β-glucosidase, xylanase and ligninase effect. The hydrolytic potential of the enzymes displayed the efficient saccharification capability of steam pretreated biomass. It was also found to degrade the paddy, sorghum, Acacia mangium and Ficus religiosa into simple reducing sugars by its efficient lignocellulose enzyme complex with limited consumption of sugars. Production of ethanol was also achieved with the Saccharomyces cerevisiae. Overall, it offers a great potential for the cellulosic ethanol production in an economically reliable and eco-friendly point-of-care.

  9. SpaceOps 2012 Plus 2: Social Tools to Simplify ISS Flight Control Communications and Log Keeping

    Science.gov (United States)

    Cowart, Hugh S.; Scott, David W.

    2014-01-01

    A paper written for the SpaceOps 2012 Conference (Simplify ISS Flight Control Communications and Log Keeping via Social Tools and Techniques) identified three innovative concepts for real time flight control communications tools based on social mechanisms: a) Console Log Tool (CoLT) - A log keeping application at Marshall Space Flight Center's (MSFC) Payload Operations Integration Center (POIC) that provides "anywhere" access, comment and notifications features similar to those found in Social Networking Systems (SNS), b) Cross-Log Communication via Social Techniques - A concept from Johnsson Space Center's (JSC) Mission Control Center Houston (MCC-H) that would use microblogging's @tag and #tag protocols to make information/requests visible and/or discoverable in logs owned by @Destination addressees, and c) Communications Dashboard (CommDash) - A MSFC concept for a Facebook-like interface to visually integrate and manage basic console log content, text chat streams analogous to voice loops, text chat streams dedicated to particular conversations, generic and position-specific status displays/streams, and a graphically based hailing display. CoLT was deployed operationally at nearly the same time as SpaceOps 2012, the Cross- Log Communications idea is currently waiting for a champion to carry it forward, and CommDash was approved as a NASA Iinformation Technoloby (IT) Labs project. This paper discusses lessons learned from two years of actual CoLT operations, updates CommDash prototype development status, and discusses potential for using Cross-Log Communications in both MCC-H and/or POIC environments, and considers other ways for synergizing console applcations.

  10. Status and Plan of the ISS-CREAM Experiment

    Science.gov (United States)

    Picot-Clemente, Nicolas; Iss-Cream Collaboration

    2016-03-01

    The Cosmic Ray Energetics and Mass (CREAM) project began as a balloon-borne experiment, which was flown successfully for 161 days in six flights over Antarctica. It was subsequently reconfigured for implementation on the International Space Station (ISS) to provide an order of magnitude increase in the exposure time with no atmospheric overburden. The ISS-CREAM instrument is configured of four subsystems: four layers of silicon charge detector (SCD) for charge measurements, top and bottom counting detectors (TCD/BCD) for electron/proton separation, a calorimeter (CAL) for energy measurements, and a boronated scintillator detector (BSD) for additional electron/proton distinction. CREAM is designed to investigate cosmic-ray origin, acceleration, and propagation by directly measuring individual particles with energy between 1012-1015eV and determining cosmic ray composition from protons to iron. The hardware was successfully tested, and remote monitoring and control capabilities were verified. It is scheduled for launch in 2016. The status and plan of the ISS-CREAM experiment will be presented.

  11. Computational Model of Heat Transfer on the ISS

    Science.gov (United States)

    Torian, John G.; Rischar, Michael L.

    2008-01-01

    SCRAM Lite (SCRAM signifies Station Compact Radiator Analysis Model) is a computer program for analyzing convective and radiative heat-transfer and heat-rejection performance of coolant loops and radiators, respectively, in the active thermal-control systems of the International Space Station (ISS). SCRAM Lite is a derivative of prior versions of SCRAM but is more robust. SCRAM Lite computes thermal operating characteristics of active heat-transport and heat-rejection subsystems for the major ISS configurations from Flight 5A through completion of assembly. The program performs integrated analysis of both internal and external coolant loops of the various ISS modules and of an external active thermal control system, which includes radiators and the coolant loops that transfer heat to the radiators. The SCRAM Lite run time is of the order of one minute per day of mission time. The overall objective of the SCRAM Lite simulation is to process input profiles of equipment-rack, crew-metabolic, and other heat loads to determine flow rates, coolant supply temperatures, and available radiator heat-rejection capabilities. Analyses are performed for timelines of activities, orbital parameters, and attitudes for mission times ranging from a few hours to several months.

  12. Viewing ISS Data in Real Time via the Internet

    Science.gov (United States)

    Myers, Gerry; Chamberlain, Jim

    2004-01-01

    EZStream is a computer program that enables authorized users at diverse terrestrial locations to view, in real time, data generated by scientific payloads aboard the International Space Station (ISS). The only computation/communication resource needed for use of EZStream is a computer equipped with standard Web-browser software and a connection to the Internet. EZStream runs in conjunction with the TReK software, described in a prior NASA Tech Briefs article, that coordinates multiple streams of data for the ground communication system of the ISS. EZStream includes server components that interact with TReK within the ISS ground communication system and client components that reside in the users' remote computers. Once an authorized client has logged in, a server component of EZStream pulls the requested data from a TReK application-program interface and sends the data to the client. Future EZStream enhancements will include (1) extensions that enable the server to receive and process arbitrary data streams on its own and (2) a Web-based graphical-user-interface-building subprogram that enables a client who lacks programming expertise to create customized display Web pages.

  13. Performance Evaluation of the ISS Water Processor Multifiltration Beds

    Science.gov (United States)

    Bowman, Elizabeth M.; Carter, Layne; Wilson, Mark; Cole, Harold; Orozco, Nicole; Snowdon, Doug

    2012-01-01

    The ISS Water Processor Assembly (WPA) produces potable water from a waste stream containing humidity condensate and urine distillate. The primary treatment process is achieved in the Multifiltration Bed, which includes adsorbent media and ion exchange resin for the removal of dissolved organic and inorganic contaminants. The first Multifiltration Bed was replaced on ISS in July 2010 after initial indication of inorganic breakthrough. This bed was returned to ground in July 2011 for an engineering investigation. The water resident in the bed was analyzed for various parameters to evaluate adsorbent loading, performance of the ion exchange resin, microbial activity, and generation of leachates from the ion exchange resin. Portions of the adsorbent media and ion exchange resin were sampled and subsequently desorbed to identify the primary contaminants removed at various points in the bed. In addition, an unused Multifiltration Bed was evaluated after two years in storage to assess the generation of leachates during storage. This assessment was performed to evaluate the possibility that these leachates are impacting performance of the Catalytic Reactor located downstream of the Multifiltration Bed. The results of these investigations and implications to the operation of the WPA on ISS are documented in this paper.

  14. Updated Performance Evaluation of the ISS Water Processor Multifiltration Beds

    Science.gov (United States)

    Bowman, Elizabeth M.; Carter, Layne; Carpenter, Joyce; Orozco, Nicole; Weir, Natalee; Wilson, Mark

    2014-01-01

    The ISS Water Processor Assembly (WPA) produces potable water from a waste stream containing humidity condensate and urine distillate. The primary treatment process is achieved in the Multifiltration Beds, which include adsorbent media and ion exchange resin for the removal of dissolved organic and inorganic contaminants. Two Multifiltration Beds (MF Beds) were replaced on ISS in July 2010 after initial indication of inorganic breakthrough of the first bed and an increasing Total Organic Carbon (TOC) trend in the product water. The first bed was sampled and analyzed Sept 2011 through March 2012. The second MF Bed was sampled and analyzed June 2012 through August 2012. The water resident in the both beds was analyzed for various parameters to evaluate adsorbent loading, performance of the ion exchange resin, microbial activity, and generation of leachates from the ion exchange resin. Portions of the adsorbent media and ion exchange resin were sampled and subsequently desorbed to identify the primary contaminants removed at various points in the bed in addition to microbial analysis. Analysis of the second bed will be compared to results from the first bed to provide a comprehensive overview of how the Multifiltration Beds function on orbit. New data from the second bed supplements the analysis of the first bed (previously reported) and gives a more complete picture of breakthrough compounds, resin breakdown products, microbial activity, and difficult to remove compounds. The results of these investigations and implications to the operation of the WPA on ISS are documented in this paper.

  15. ISS Potable Water Sampling and Chemical Analysis Results for 2016

    Science.gov (United States)

    Straub, John E., II; Plumlee, Debrah K.; Wallace William T.; Alverson, James T.; Benoit, Mickie J.; Gillispie, Robert L.; Hunter, David; Kuo, Mike; Rutz, Jeffrey A.; Hudson, Edgar K.; Loh, Leslie J.; Gazda, Daniel B.

    2017-01-01

    This paper continues the annual tradition of summarizing at this conference the results of chemical analyses performed on archival potable water samples returned from the International Space Station (ISS). 2016 represented a banner year for life on board the ISS, including the successful conclusion for two crew members of a record one-year mission. Water reclaimed from urine and/or humidity condensate remained the primary source of potable water for the crew members of ISS Expeditions 46-50. The year 2016 was also marked by the end of a long-standing tradition of U.S. sampling and monitoring of Russian Segment potable water sources. Two water samples taken during Expedition 46 in February 2016 and returned on Soyuz 44, represented the final Russian Segment samples to be collected and analyzed by the U.S. side. Although anticipated for 2016, a rise in the total organic carbon (TOC) concentration of the product water from the U.S. water processor assembly due to breakthrough of organic contaminants from the system did not materialize, as evidenced by the onboard TOC analyzer and archive sample results.

  16. Isolation and Identification of Microorganisms in JSC Mars-1 Simulant Soil

    Science.gov (United States)

    Mendez, Claudia; Garza, Elizabeth; Gulati, Poonam; Morris, Penny A.; Allen, Carlton C.

    2005-01-01

    Microorganisms were isolated and identified in samples of JSC Mars-1, a Mars simulant soil. JSC Mars-1 is an altered volcanic ash from a cinder cone south of Mauna Kea, Hawaii. This material was chosen because of its similarity to the Martian soil in physical and chemical composition. The soil was obtained by excavating 40 cm deep in a vegetated area to prevent contamination. In previous studies, bacteria from this soil has been isolated by culturing on different types of media, including minimal media, and using biochemical techniques for identification. Isolation by culturing is successful only for a small percentage of the population. As a result, molecular techniques are being employed to identify microorganisms directly from the soil without culturing. In this study, bacteria were identified by purifying and sequencing the DNA encoding the 16s ribosomal RNA (16s rDNA). This gene is well conserved in species and demonstrates species specificity. In addition, biofilm formation, an indicator of microbial life, was studied with this soil. Biofilms are microbial communities consisting of microbes and exopolysaccharides secreted by them. This is a protective way of life for the microbes as they are more resistant to environmental pressures.

  17. Lyndon B. Johnson Space Center (JSC) proposed dual-use technology investment program in intelligent robots

    Science.gov (United States)

    Erikson, Jon D.

    1994-01-01

    This paper presents an overview of the proposed Lyndon B. Johnson Space Center (JSC) precompetitive, dual-use technology investment project in robotics. New robotic technology in advanced robots, which can recognize and respond to their environments and to spoken human supervision so as to perform a variety of combined mobility and manipulation tasks in various sectors, is an obejective of this work. In the U.S. economy, such robots offer the benefits of improved global competitiveness in a critical industrial sector; improved productivity by the end users of these robots; a growing robotics industry that produces jobs and profits; lower cost health care delivery with quality improvements; and, as these 'intelligent' robots become acceptable throughout society, an increase in the standard of living for everyone. In space, such robots will provide improved safety, reliability, and productivity as Space Station evolves, and will enable human space exploration (by human/robot teams). The proposed effort consists of partnerships between manufacturers, universities, and JSC to develop working production prototypes of these robots by leveraging current development by both sides. Currently targeted applications are in the manufacturing, health care, services, and construction sectors of the U.S. economy and in the inspection, servicing, maintenance, and repair aspects of space exploration. But the focus is on the generic software architecture and standardized interfaces for custom modules tailored for the various applications allowing end users to customize a robot as PC users customize PC's. Production prototypes would be completed in 5 years under this proposal.

  18. Emir Kusturica - maailmakuulus režissöör või lihtne bändi bassimees?

    Index Scriptorium Estoniae

    2008-01-01

    26. aprillil esineb Tallinnas Serbia filmirežissöör Emir Kusturica koos Balkani ansambliga No Smoking Orchestra. Esitlusele tuleb muusika, mis kirjutatud režissööri filmile "Lubadus" ("Zavet"). Muusika autoriteks on ansambli juht Nele Karajlic ja režissöör ise. Režissöörist

  19. Emir Kusturica - maailmakuulus režissöör või lihtne bändi bassimees?

    Index Scriptorium Estoniae

    2008-01-01

    26. aprillil esineb Tallinnas Serbia filmirežissöör Emir Kusturica koos Balkani ansambliga No Smoking Orchestra. Esitlusele tuleb muusika, mis kirjutatud režissööri filmile "Lubadus" ("Zavet"). Muusika autoriteks on ansambli juht Nele Karajlic ja režissöör ise. Režissöörist

  20. ISS-Lobster: a low-cost wide-field x-ray transient detector on the ISS

    Science.gov (United States)

    Camp, Jordan; Barthelmy, Scott; Petre, Rob; Gehrels, Neil; Marshall, Francis; Ptak, Andy; Racusin, Judith

    2015-05-01

    ISS-Lobster is a wide-field X-ray transient detector proposed to be deployed on the International Space Station. Through its unique imaging X-ray optics that allow a 30 deg by 30 deg FoV, a 1 arc min position resolution and a 1.6x10-11 erg/(sec cm2) sensitivity in 2000 sec, ISS-Lobster will observe numerous events per year of X-ray transients related to compact objects, including: tidal disruptions of stars by supermassive black holes, supernova shock breakouts, neutron star bursts and superbursts, high redshift Gamma-Ray Bursts, and perhaps most exciting, X-ray counterparts of gravitational wave detections involving stellar mass and possibly supermassive black holes. The mission includes a 3-axis gimbal system that allows fast Target of Opportunity pointing, and a small gamma-ray burst monitor. In this article we focus on ISS-Lobster measurements of X-ray counterparts of detections by the world-wide ground-based gravitational wave network.

  1. The SOS-LUX-LAC-FLUORO-Toxicity-test on the International Space Station (ISS)

    Science.gov (United States)

    Rabbow, E.; Rettberg, P.; Baumstark-Khan, C.; Horneck, G.

    reacts with a dose-dependent reduction of GFP-fluorescence. Currently, a fully automated miniaturized hardware system for the bacterial set up, which includes measurements of luminescence and fluorescence or absorption and the image analysis based evaluation is under development. During the first mission of the SOS-LUX-LAC-FLUORO-Toxicity-Test on the ISS, a standardized, DNA-damaging radiation source still to be determined will be used as a genotoxic inducer. A panel of recombinant Salmonella typhimurium strains carrying either the SOS-LUX plasmid or the fluorescence-mediating lac-GFPuv plasmid will be used to determine in parallel on one microplate the genotoxic and the cytotoxic action of the applied radiation in combination with microgravity. Either in addition to or in place of the fluorometric measurements of the cytotoxic agents, photometric measurements will simultaneously monitor cell growth, giving additional data on survival of the cells. The obtained data will be available on line during the TRIPLE-LUX mission time. Though it is the main goal during the TRIPLE-LUX mission to measure the radiation effect in microgravity, the SOS-LUX-LAC-FLUORO-Toxicity-test in principle is also applicable as a biomonitor for the detection and measurement of genotoxic substances in air or in the (recycled) water system on the ISS or on earth in general.

  2. Radiation safety analysis of the ISS bone densitometer

    Science.gov (United States)

    Todd, Paul; Vellinger, John C.; Barton, Kenneth; Faget, Paul

    A Bone Densitometer (BD) has been developed for installation on the International Space Station (ISS) with delivery by the Space-X Dragon spacecraft planned for mid 2014. After initial tests on orbit the BD will be used in longitudinal measurements of bone mineral density in experimental mice as a means of evaluating countermeasures to bone loss. The BD determines bone mineral density (and other radiographic parameters) by dual energy x-ray absorptiometry (DEXA). In a single mouse DEXA “scan” its 80 kV x-ray tube is operated for 15 seconds at 35 kV and 3 seconds at 80 kV in four repetitions, giving the subject a total dose of 2.5 mSv. The BD is a modification of a commercial mouse DEXA product known as PIXImus(TM). Before qualifying the BD for utilization on ISS it was necessary to evaluate its radiation safety features and any level of risk to ISS crew members. The BD design reorients the PIXImus so that it fits in an EXPRESS locker on ISS with the x-ray beam directed into the crew aisle. ISS regulation SSP 51700 considers the production of ionizing radiation to be a catastrophic-level hazard. Accidental exposure is prevented by three independent levels of on-off control as required for a catastrophic hazard. The ALARA (As Low as Reasonably Achievable) principle was applied to the BD hazard just as would be done on the ground, so deliberate exposure is limited by lead shielding according to ALARA. Hot spots around the BD were identified by environmental dosimetry using a Ludlum 9DP pressurized ionization chamber survey meter. Various thicknesses of lead were applied to the BD housing in areas where highest dose-per-scan readings were made. It was concluded that 0.4 mm of lead shielding at strategic locations, adding only a few kg of mass to the payload, would accomplish ALARA. With shielding in place the BD now exposes a crew member floating 40 cm away to less than 0.08 microSv per mouse scan. There is an upper limit of 20 scans per day, or 1.6 microSv per day

  3. ANALYSIS OF TRAIN SHEET IN THE INFORMATION SYSTEM OF JSC «UKRZALIZNYTSIA»: PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    S. M. Ovcharenko

    2016-04-01

    Full Text Available Purpose. The system of train sheet analysis (TSA in the information system of JSC «Ukrzaliznytsia» provides work with passenger and suburban trains and has considerable potential. Therefore it is necessary to establish the prospects of development of the system. Methodology. Departments’ setup and the train delay causes should be carried out at every station and span, where such delays took place. This requires the fixation of condition deviations of infrastructure from normal and other adverse factors. In the sector of freight transportations the train schedule analysis is insufficient, since this analysis does not account for deviations from the terms of delivery. Therefore it also is necessary to analyze the delivery graphs. The basis for monitoring the cargo delivery is the method of control time points (CTP of technological operations performed with cargo at railway stations. On the basis of CTP to assess the quality of the transport process one should calculate the values of the analysis of cargo delivery schedule (performance level of the cargo delivery schedule, the coefficient of ahead of schedule/delay delivery. Findings. The article proposes to develop the system TSA using the input and display of the train delay causes on-line by transportation service employees, expansion of statistical databases and processing of the input delay causes during its calculation train sheet analysis of freight trains and quality assessment of the delivery schedule fulfillment. It is also appropriate before the new operator companies had appeared to make changes in the instructions TSCHU-TSD-0002 on the list of departments, which include delayed trains, by adding «the department» «The fault of operator companies» and corresponding causes of delays. Originality. The scheme of automated TSA in the information system of JSC «Ukrzaliznytsia» was improved. The author proposes to determine the cargo delivery quality on the certain polygon using the

  4. Medical Support for ISS Crewmember Training in Star City, Russia

    Science.gov (United States)

    Chough, Natacha; Pattarini, James; Cole, Richard; Patlach, Robert; Menon, Anil

    2017-01-01

    Medical support of spaceflight training operations across international lines is a unique circumstance with potential applications to other aerospace medicine support scenarios. KBRwyle's Star City Medical Support Group (SCMSG) has fulfilled this role since the Mir-Shuttle era, with extensive experience and updates to share with the greater AsMA community. OVERVIEW: The current Soyuz training flow for assigned ISS crewmembers takes place in Star City, Russia. Soyuz training flow involves numerous activities that pose potential physical and occupational risks to crewmembers, including centrifuge runs and pressurized suit simulations at ambient and hypobaric pressures. In addition, Star City is a relatively remote location in a host nation with variable access to reliable, Western-standard medical care. For these reasons, NASA's Human Health & Performance contract allocates full-time physician support to assigned ISS crewmembers training in Star City. The Star City physician also treats minor injuries and illnesses as needed for both long- and short-term NASA support personnel traveling in the area, while working to develop and maintain relationships with local health care resources in the event of more serious medical issues that cannot be treated on-site. The specifics of this unique scope of practice will be discussed. SIGNIFICANCE: ISS crewmembers training in Star City are at potential physical and occupational risk of trauma or dysbarism during nominal Soyuz training flow, requiring medical support from an on-duty aerospace medicine specialist. This support maintains human health and performance by preserving crewmember safety and well-being for mission success; sharing information regarding this operational model may contribute to advances in other areas of international, military, and civilian operational aerospace medicine.

  5. RUSALKA experiment to measure carbon dioxide and methane from ISS

    Science.gov (United States)

    Korablev, Oleg; Trokhimovskiy, Alexander; Vinogradov, Imant; Fedorova, Anna; Ivanov, Andrei; Rodin, Alexander; Smirnov, Yurii

    2010-05-01

    RUSALKA is an experiment aimed to demonstrate the method to monitor CO2 and CH4 with low cost and weight equipment. It was delivered to the Russian segment of the International Space Station (ISS) in the end of summer 2009. The novel instrument is a high-resolution near-IR spectrometer combining an echelle grating with an acousto-optic tunable filter (AOTF) for separation of diffraction orders. A compact design with no moving parts within the mass budget of 2 kg allows to reach the resolving power of 20000 in the spectral range of 1580 nm (CO2), 1640 nm (CH4), in 49 and 47 echelle grating diffraction orders, and of reference O2 bands 760 and 1270 nm, in 101 and 61 diffraction orders. Only one diffraction order can be measured at a time, but thanks to flexibility of the AOTF tuning, any order can be measured randomly and rapidly within the spectral range. A spectrometer, based on this principle, SOIR (Solar Occultation InfraRed) is operational on Venus Express ESA mission since 2005. RUSALKA investigation targets precision measurements of CO2 and CH4 integral quantities, in nadir/oblique or observing solar glint over the water surfaces. Test measurements are also planned in solar occultation mode. Battery-powered RUSALKA package consists of the spectrometer itself, standard photographic camera for context imaging, and adapters. Measurements are performed by crew members pointing manually the target areas. Such measurements from ISS allow to verify methods used on different satellite platforms. The small size of the instrument makes it ideal for micro-satellites, capable to provide necessary pointing for glint or solar occultation observations. By the end of year 2009 all technical and organizing problems were solved and first datasets (high resolution spectra and exact ISS position data) where acquired for further processing.

  6. Progress of Crew Autonomous Scheduling Test (CAST) On the ISS

    Science.gov (United States)

    Healy, Matthew; Marquez, Jessica; Hillenius, Steven; Korth, David; Bakalyar, Lauren Rush; Woodbury, Neil; Larsen, Crystal M.; Bates, Shelby; Kockler, Mikayla; Rhodes, Brooke; hide

    2017-01-01

    The United States space policy is evolving toward missions beyond low Earth orbit. In an effort to meet that policy, NASA has recognized Autonomous Mission Operations (AMO) as a valuable capability. Identified within AMO capabilities is the potential for autonomous planning and replanning during human spaceflight operations. That is allowing crew members to collectively or individually participate in the development of their own schedules. Currently, dedicated mission operations planners collaborate with international partners to create daily plans for astronauts aboard the International Space Station (ISS), taking into account mission requirements, ground rules, and various vehicle and payload constraints. In future deep space operations the crew will require more independence from ground support due to communication transmission delays. Furthermore, crew members who are provided with the capability to schedule their own activities are able to leverage direct experience operating in the space environment, and possibly maximize their efficiency. CAST (Crew Autonomous Scheduling Test) is an ISS investigation designed to analyze three important hypotheses about crew autonomous scheduling. First, given appropriate inputs, the crew is able to create and execute a plan in a reasonable period of time without impacts to mission success. Second, the proximity of the planner, in this case the crew, to the planned operations increases their operational efficiency. Third, crew members are more satisfied when given a role in plan development. This presentation shows the progress done in this study with a single astronaut test subject participating in five CAST sessions. CAST is a technology demonstration payload sponsored by the ISS Research Science and Technology Office, and performed by experts in Mission Operations Planning from the Flight Operations Directorate at NASA Johnson Space Center, and researchers across multiple NASA centers.

  7. Corporate sponsored education initiatives on board the ISS

    Science.gov (United States)

    Durham, Ian T.; Durham, Alyson S.; Pawelczyk, James A.; Brod, Lawrence B.; Durham, Thomas F.

    1999-01-01

    This paper proposes the creation of a corporate sponsored ``Lecture from Space'' program on board the International Space Station (ISS) with funding coming from a host of new technology and marketing spin-offs. This program would meld existing education initiatives in NASA with new corporate marketing techniques. Astronauts in residence on board the ISS would conduct short ten to fifteen minute live presentations and/or conduct interactive discussions carried out by a teacher in the classroom. This concept is similar to a program already carried out during the Neurolab mission on Shuttle flight STS-90. Building on that concept, the interactive simulcasts would be broadcast over the Internet and linked directly to computers and televisions in classrooms worldwide. In addition to the live broadcasts, educational programs and demonstrations can be recorded in space, and marketed and sold for inclusion in television programs, computer software, and other forms of media. Programs can be distributed directly into classrooms as an additional presentation supplement, as well as over the Internet or through cable and broadcast television, similar to the Canadian Discovery Channel's broadcasts of the Neurolab mission. Successful marketing and advertisement can eventually lead to the creation of an entirely new, privately run cottage industry involving the distribution and sale of educationally related material associated with the ISS that would have the potential to become truly global in scope. By targeting areas of expertise and research interest in microgravity, a large curriculum could be developed using space exploration as a unifying theme. Expansion of this concept could enhance objectives already initiated through the International Space University to include elementary and secondary school students. The ultimate goal would be to stimulate interest in space and space related sciences in today's youth through creative educational marketing initiatives while at the

  8. Medical Support for ISS Crewmember Training in Star City, Russia

    Science.gov (United States)

    Chough, Natacha; Pattarini, James; Cole, Richard; Patlach, Robert; Menon, Anil

    2017-01-01

    Medical support of spaceflight training operations across international lines is a unique circumstance with potential applications to other aerospace medicine support scenarios. KBRwyle's Star City Medical Support Group (SCMSG) has fulfilled this role since the Mir-Shuttle era, with extensive experience and updates to share with the greater AsMA community. OVERVIEW: The current Soyuz training flow for assigned ISS crewmembers takes place in Star City, Russia. Soyuz training flow involves numerous activities that pose potential physical and occupational risks to crewmembers, including centrifuge runs and pressurized suit simulations at ambient and hypobaric pressures. In addition, Star City is a relatively remote location in a host nation with variable access to reliable, Western-standard medical care. For these reasons, NASA's Human Health & Performance contract allocates full-time physician support to assigned ISS crewmembers training in Star City. The Star City physician also treats minor injuries and illnesses as needed for both long- and short-term NASA support personnel traveling in the area, while working to develop and maintain relationships with local health care resources in the event of more serious medical issues that cannot be treated on-site. The specifics of this unique scope of practice will be discussed. SIGNIFICANCE: ISS crewmembers training in Star City are at potential physical and occupational risk of trauma or dysbarism during nominal Soyuz training flow, requiring medical support from an on-duty aerospace medicine specialist. This support maintains human health and performance by preserving crewmember safety and well-being for mission success; sharing information regarding this operational model may contribute to advances in other areas of international, military, and civilian operational aerospace medicine.

  9. GEROS-ISS: Ocean Remote Sensing with GNSS Reflectometry from the International Space Station

    DEFF Research Database (Denmark)

    Wickert, Jens; Andersen, Ole Baltazar; Camps, Adriano

    In response to an European Space Agency (ESA) announcement of opportunity for climate change relevant science aboard the ISS, the GEROS-ISS (GEROS hereafter) proposal was submitted in 2011 and accepted by ESA to proceed to Phase A. GEROS-ISS is an innovative experiment primarily focused on exploi......In response to an European Space Agency (ESA) announcement of opportunity for climate change relevant science aboard the ISS, the GEROS-ISS (GEROS hereafter) proposal was submitted in 2011 and accepted by ESA to proceed to Phase A. GEROS-ISS is an innovative experiment primarily focused...... the oceanographic significance of the expected measurements and to demonstrate the usefulness of the GEROS concept. The presentation will give an overview on the current status of the GEROS experiment, review the science activities within the international GARCA study and related ESA-supported science activities....

  10. Materials Science Standard Rack on Interntional Space Station (ISS)

    Science.gov (United States)

    1999-01-01

    Line drawing depicts the location of one of three racks that will make up the Materials Science Research Facility in the U.S. Destiny laboratory module to be attached to the International Space Station (ISS). Other positions will be occupied by a variety of racks supporting research in combustion, fluids, biotechnology, and human physiology, and racks to support lab and station opertions. The Materials Science Research Facility is managed by NASA's Marshall Space Flight Center. Photo credit: NASA/Marshall Space Flight Center

  11. Orion Handling Qualities During ISS Rendezvous and Docking

    Science.gov (United States)

    Hart, Jeremy J.; Stephens, J. P.; Spehar, P.; Bilimoria, K.; Foster, C.; Gonzalex, R.; Sullivan, K.; Jackson, B.; Brazzel, J.; Hart, J.

    2011-01-01

    The Orion spacecraft was designed to rendezvous with multiple vehicles in low earth orbit (LEO) and beyond. To perform the required rendezvous and docking task, Orion must provide enough control authority to perform coarse translational maneuvers while maintaining precision to perform the delicate docking corrections. While Orion has autonomous docking capabilities, it is expected that final approach and docking operations with the International Space Station (ISS) will initially be performed in a manual mode. A series of evaluations was conducted by NASA and Lockheed Martin at the Johnson Space Center to determine the handling qualities (HQ) of the Orion spacecraft during different docking and rendezvous conditions using the Cooper-Harper scale. This paper will address the specifics of the handling qualities methodology, vehicle configuration, scenarios flown, data collection tools, and subject ratings and comments. The initial Orion HQ assessment examined Orion docking to the ISS. This scenario demonstrates the Translational Hand Controller (THC) handling qualities of Orion. During this initial assessment, two different scenarios were evaluated. The first was a nominal docking approach to a stable ISS, with Orion initializing with relative position dispersions and a closing rate of approximately 0.1 ft/sec. The second docking scenario was identical to the first, except the attitude motion of the ISS was modeled to simulate a stress case ( 1 degree deadband per axis and 0.01 deg/sec rate deadband per axis). For both scenarios, subjects started each run on final approach at a docking port-to-port range of 20 ft. Subjects used the THC in pulse mode with cues from the docking camera image, window views, and range and range rate data displayed on the Orion display units. As in the actual design, the attitude of the Orion vehicle was held by the automated flight control system at 0.5 degree deadband per axis. Several error sources were modeled including Reaction

  12. Low Temperature Microgravity Physics Facility Payload for the ISS

    Science.gov (United States)

    Langford, Don; Pensinger, John

    2003-01-01

    The LTMPF Payload is a 182-liter superfluid-helium dewar that will be attached to the JEM-EF facility of the International Space Station after launch in the cargo bay of the Space Shuttle. The LTMPF Payload will provide a major low-temperature research laboratory for Fundamental Physics experiments on the International Space Station. The LTMPF payload will provide instrument temperatures below superfluid helium temperatures and the ISS will provide microgravity to allow the experiments to study condensed matter and gravitational physics. Each flight will be allocated to one condensed matter instrument and one gravitation instrument.

  13. ISS External Contamination Environment for Space Science Utilization

    Science.gov (United States)

    Soares, Carlos; Mikatarian, Ron; Steagall, Courtney; Huang, Alvin; Koontz, Steven; Worthy, Erica

    2014-01-01

    (1) The International Space Station is the largest and most complex on-orbit platform for space science utilization in low Earth orbit, (2) Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives, (3) Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle, and (4)The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets.

  14. Electrodynamic Dust Shield for Lunar/ISS Experiment Project

    Science.gov (United States)

    Zeitlin, Nancy; Calle, Carlos; Hogue, Michael; Johansen, Michael; Mackey, Paul

    2015-01-01

    The Electrostatics and Surface Physics Laboratory at Kennedy Space Center is developing a dust mitigation experiment and testing it on the lunar surface and on the International Space Station (ISS). The Electrodynamic Dust Shield (EDS) clears dust off surfaces and prevents accumulation by using a pattern of electrodes to generate a non-uniform electric field over the surface being protected. The EDS experiment will repel dust off materials such as painted Kapton and glass to demonstrate applications for thermal radiators, camera lenses, solar panels, and other hardware and equipment.

  15. Productivity of Mizuna Cultivated in the Space Greenhouse Onboard the Russian Module of the Iss

    Science.gov (United States)

    Levinskikh, Margarita; Sychev, Vladimir; Podolsky, Igor; Bingham, Gail; Moukhamedieva, Lana

    As stipulated by the science program of research into the processes of growth, development, metabolism and reproduction of higher plants in microgravity in view of their potential use in advanced life support systems, five experiments on Mizuna plants (Brassica rapa var. nipponisica) were performed using the Lada space greenhouse onboard the ISS Russian Module (RM) during Expeditions ISS-5, 17 and 20-22. One of the goals of the experiments was to evaluate the productivity of Mizuna plants grown at different levels of ISS RM air contamination. Mizuna plants were cultivated for 31 - 36 days when exposed to continuous illumination. The root growing medium was made of Turface enriched with a controlled release fertilizer Osmocote. In the course of the flight experiments major parameters of plant cultivation, total level of ISS RM air contamination and plant microbiological status were measured. The grown plants were returned to Earth as fresh or frozen samples. After the three last vegetation cycles the plants were harvested, packed and frozen at -80 0C in the MELFI freezer on the ISS U.S. Module and later returned to Earth onboard Space Shuttle. It was found that the productivity and morphometric (e.g., plant height and mass, number of leaves) parameters of the plants grown in space did not differ from those seen in ground controls. The T coefficient, which represents the total contamination level of ISS air), was 4 (ISS-5), 22 (ISS-17), 55 (ISS-20), 22 (ISS-21) and 28 (ISS-22) versus the norm of no more than 5. In summary, a significant increase in the total contamination level of the ISS RM air did not reduce the productivity of the leaf vegetable plant used in the flight experiments.

  16. Enhancing International Space Station (ISS) Mission Control Center (MCC) Operations Using Tcl/Tk

    Science.gov (United States)

    OHagan, Brian; Long, Stephen K., Sr.

    2004-01-01

    This paper will discuss the use of Tcl/Tk to enhance the abilities of flight controllers to control the International Space Station (ISS) from the Mission Control Center (MCC) at the Johnson Space Center. We will discuss why existing tools where not able to meet these needs as easily as Tcl/Tk. In addition, we will also discuss how we interfaced with the existing MCC infrastructure to receive ISS telemetry, find servers, register services, and send commands to ISS.

  17. Technology Development and Production of Certain Chemical Platinum Metals Compounds at JSC "Krastsvetmet"

    Institute of Scientific and Technical Information of China (English)

    ILYASHEVICH V.D.; PAVLOVA E.I.; KORITSKAYA N.G.; MAMONOV S.N.; SHULGIN D.R.; MALTSEV E.V.

    2012-01-01

    In recent years JSC "Krastsvetmet" has successfully developed the production of chemically pure compounds of precious metals.Currently methods have been developed and facilities have been provided for industrial production of the following platinum metals compounds:- Rhodium (Ⅲ) chloride hydrate,rhodium (Ⅲ) chloride solution,rhodium ( Ⅲ) nitrate solution,rhodium ( Ⅲ)iodide,rhodium ( Ⅲ) sulfate,hydrated rhodium ( Ⅲ) oxide,ammonium hexachlororodiate,rhodium ( Ⅲ)phosphate solution,rhodium electrolytes;Iridium (Ⅳ) chloride hydrate,iridium (Ⅲ) chloride hydrate,ammonium hexachloroiridate (Ⅳ),hexachloriridium acid solution,hexachloriridium crystalline acid;- Ruthenium (Ⅲ) chloride hydrate,ruthenium (Ⅳ) hydroxide chloride,ruthenium (Ⅳ) hydroxide chloride solution,ammonium hexachlororuthenate,ruthenium (Ⅲ) chloride solution,potassium,diaquaoctachloronitrido diruthenate.The quality of the production meets the requirements of Russian and foreign consumers.

  18. STS-26 MS Hilmers during egress training at JSC's MAIL full fuselage trainer

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) David C. Hilmers, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), tries out the new crew escape system (CES) inflated slide during an emergency egress training exercise in JSC's Shuttle Mockup and Integration Laboratory (MAIL) Bldg 9A. Technicians stand on either side of the slide ready to help Hilmers to his feet once he reaches the bottom. Watching from floor level at the far left is astronaut Steven R. Nagel. A second crewmember stands in the open side hatch of the Full Fuselage Trainer (FFT) awaiting his turn to slide to 'safety'. During Crew Station Review (CSR) #3, the crew donned the new (navy blue) partial pressure suits (LESs) and checked out CES slide and other CES configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options. The CES pole extends out the side hatch just above Hilmers' head.

  19. STS-26 Pilot Covey during egress training at JSC's MAIL full fuselage trainer

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), slides to safety using the new crew escape system (CES) inflated slide during an emergency egress training exercise in JSC's Shuttle Mockup and Integration Laboratory (MAIL) Bldg 9A. Technicians stand on either side of the slide ready to help Covey to his feet once he reaches the bottom. The CES pole extends out the open side hatch of the Full Fuselage Trainer (FFT). During Crew Station Review (CSR) #3, the crew donned the new (navy blue) partial pressure suits (LESs) and checked out CES slide and other CES configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options.

  20. Measurement of Apparent Thermal Conductivity of JSC-1A Under Ambient Pressure

    Science.gov (United States)

    Yuan, Zeng-Guang; Kleinhenz, Julie E.

    2011-01-01

    The apparent thermal conductivity of JSC-1A lunar regolith simulant was measured experimentally using a cylindrical apparatus. Eleven thermocouples were embedded in the simulant bed to obtain the steady state temperature distribution at various radial, axial, and azimuthal locations. The high aspect ratio of a cylindrical geometry was proven to provide a one-dimensional, axisymmetric temperature field. A test series was performed at atmospheric pressure with varying heat fluxes. The radial temperature distribution in each test fit a logarithmic function, indicating a constant thermal conductivity throughout the soil bed. However, thermal conductivity was not constant between tests at different heat fluxes. This variation is attributed to stresses created by thermal expansion of the simulant particles against the rigid chamber wall. Under stress-free conditions (20 deg C), the data suggest a temperature independent apparent conductivity of 0.1961 +/- 0.0070 W/m/ deg C

  1. STS-47 crew during fire fighting exercises at JSC's Fire Training Pit

    Science.gov (United States)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, crewmembers line up along water hoses to extinguish a blaze in JSC's Fire Training Pit during fire fighting exercises. Manning the hose in the foreground are Payload Specialist Mamoru Mohri, holding the hose nozzle, backup Payload Specialist Takao Doi, Mission Specialist (MS) Jerome Apt, and Commander Robert L. Gibson, at rear. Lined up on the second hose are Pilot Curtis L. Brown, Jr, holding the hose nozzle, followed by MS N. Jan Davis, MS and Payload Commander (PLC) Mark C. Lee, and backup Payload Specialist Stan Koszelak. A veteran firefighter monitors the effort from a position between the two hoses. In the background, backup Payload Specialist Chiaki Naito-Mukai, donning gloves, and MS Mae C. Jemison look on. The Fire Training Pit is located across from the Gilruth Center Bldg 207. Mohri, Doi, and Mukai all represent Japan's National Space Development Agency (NASDA).

  2. Student experimenter stands near middeck lockers in JSC Bldg 9A mockup

    Science.gov (United States)

    1991-01-01

    Student experimenter Constantine Costes, STS-42 Commander Ronald J. Grabe, STS-42 Mission Specialist (MS) William F. Readdy, and Integration Engineer Neal Christie discuss Coates' student experiment 83-02 (SE 83-02) entitled 'Zero-G Capillary Rise of Liquid through Granular Porous Media' in JSC Mockup and Integration Laboratory Bldg 9A Full Fuselage Trainer (FFT). On FFT middeck, Costes stands behind Readdy (kneeling) as Christie demonstrates experiment setup and Grabe looks on (47326). The team also examines experiment components at middeck stowage locker (47323) and at FFT open side hatch (47324, 47325). The experiment is designed to investigate the capillary and forced flow characteristics of blue-tinted water in three glass tubes with three sizes of glass beads. SE 83-02 is scheduled to be flown on STS-42 aboard Discovery, Orbiter Vehicle (OV) 103.

  3. STS-33 crewmembers during training exercise in JSC Mockup and Integration Lab

    Science.gov (United States)

    1989-01-01

    STS-33 Discovery, Orbiter Vehicle (OV) 103, crewmembers, wearing orange launch and entry suits (LESs) and launch and entry helmets (LEHs), are seated in their launch and entry positions on crew compartment trainer (CCT) flight deck during a training exercise in JSC Mockup and Integration Laboratory (MAIL) Bldg 9A. Commander Frederick D. Gregory (far right) is stationed at forward flight deck commanders controls, Pilot John E. Blaha (far left) at the pilots controls and on aft flight deck are mission specialists Manley L. Carter, Jr (left), MS F. Story Musgrave (center, holding clipboard), and MS Kathryn C. Thornton (standing). Overhead forward control panels are visible above the astronauts and aft flight deck onorbit station control panels and windows are visible in the background. Thornton is on the flight deck for this photo but during launch and entry will be seated on the middeck.

  4. STS-29 MS Bagian during post landing egress exercises in JSC FFT mockup

    Science.gov (United States)

    1989-01-01

    STS-29 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) James P. Bagian works his way down to 'safety' using a sky-genie device during post landing emergency egress exercises in JSC full fuselage trainer (FFT) located in the Mockup and Integration Laboratory Bldg 9A. Bagian, wearing orange launch and entry suit (LES) and launch and entry helmet (LEH), lowers himself using the sky genie after egressing from crew compartment overhead window W8. Fellow crewmembers and technicians watch Bagian's progress. Standing in navy blue LES is MS Robert C. Springer with MS James F. Buchli seated behind him on his right and Pilot John E. Blaha seated behind him on his left. Bagian is one of several astronauts who has been instrumental in developing the new crew escape system (CES) equipment (including parachute harness).

  5. STS-26 crewmembers during training exercise in JSC Mockup and Integration Lab

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, crewmembers, wearing navy blue launch and entry suits (LESs) and launch and entry helmets (LEHs), are seated in their launch and entry positions on crew compartment trainer (CCT) flight deck during a training exercise in JSC Mockup and Integration Laboratory Bldg 9A. Commander Frederick H. Hauck (far right) is stationed at forward flight deck commanders controls, Pilot Richard O. Covey (far left) at the pilots controls and on aft flight deck are mission specialists John M. Lounge (left) and David C. Hilmers. Overhead forward control panels are visible above the astronauts and aft flight deck onorbit station control panels and windows are visible in the background. NOTE: Photo was taken by William H. Bowers, crew photo instructor, with wide angle lens.

  6. STS-40 crew trains in JSC's SLS mockup located in Bldg 36

    Science.gov (United States)

    1987-01-01

    STS-40 Payload Specialist Millie Hughes-Fulford along with backup payload specialist Robert Ward Phillips familiarize themselves with Spacelab Life Sciences 1 (SLS-1) equipment. The two scientists are in JSC's Life Sciences Project Division (LSPD) SLS mockup located in the Bioengineering and Test Support Facility Bldg 36. Hughes-Fulford, in the center aisle, pulls equipment from an overhead stowage locker while Phillips, in the foreground, experiments with the baroreflex neck pressure chamber at Rack 11. The baroreflex collar will be used in conjuction with Experiment No. 022, Influence of Weightlessness Upon Human Autonomic Cardiovascular Control. Behind Phillips in the center aisle are body mass measurement device (BMMD) (foreground) and the stowed bicycle ergometer.

  7. STS-26 crew training in JSC Shuttle Mockup and Integration Laboratory Bldg 9A

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, crewmembers use a bit of orchestrated humor to demonstrate the aft (back) zipper feature on the new (navy blue) partial pressure suits (launch and entry suits (LESs)) before a training exercise in JSC's Shuttle Mockup and Integration Laboratory Bldg 9A. Left to right are Commander Frederick H. Hauck, Mission Specialist (MS) George D. Nelson, MS David C. Hilmers, MS John M. Lounge, and Pilot Richard O. Covey. During Crew Station Review (CSR) #3, the crew is scheduled to check out the new partial pressure suits and crew escape system (CES) configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options.

  8. The potential of 1018 ISS adjuvant in hepatitis B vaccines: HEPLISAV™ review.

    Science.gov (United States)

    Eng, Nelson F; Bhardwaj, Nitin; Mulligan, Rebecca; Diaz-Mitoma, Francisco

    2013-08-01

    Hepatitis B (HBV) virus infects the liver, and upon chronic infection, can cause liver cirrhosis and hepatocellular carcinoma. Despite universal vaccination programs against the virus, HBV still affects over 2 billion people worldwide, with over 240 million developing a chronic infection. While current alum-adjuvanted vaccines have shown efficacy in promoting seroprotection in healthy adults, 5-10% of immune-competent populations fail to achieve long-lasting seroprotection from these formulations. Furthermore, a large proportion of immunocompromised patients fail to achieve seroprotective antibody titers after receiving these vaccines. A novel vaccine candidate, HEPLISAV™, uses immunostimulatory sequences (ISS), in its formulation that helps induce a robust humoral and cell mediated immunity against HBV. In Phase III clinical trials, HEPLISAV™ has been shown to elicit seroprotective antibody titers with fewer immunizations. Similar safety profiles are demonstrated when compared with current HBV vaccines. For these reasons, HEPLISAV™ is an attractive vaccine to combat this global disease.

  9. Analyzing Power Supply and Demand on the ISS

    Science.gov (United States)

    Thomas, Justin; Pham, Tho; Halyard, Raymond; Conwell, Steve

    2006-01-01

    Station Power and Energy Evaluation Determiner (SPEED) is a Java application program for analyzing the supply and demand aspects of the electrical power system of the International Space Station (ISS). SPEED can be executed on any computer that supports version 1.4 or a subsequent version of the Java Runtime Environment. SPEED includes an analysis module, denoted the Simplified Battery Solar Array Model, which is a simplified engineering model of the ISS primary power system. This simplified model makes it possible to perform analyses quickly. SPEED also includes a user-friendly graphical-interface module, an input file system, a parameter-configuration module, an analysis-configuration-management subsystem, and an output subsystem. SPEED responds to input information on trajectory, shadowing, attitude, and pointing in either a state-of-charge mode or a power-availability mode. In the state-of-charge mode, SPEED calculates battery state-of-charge profiles, given a time-varying power-load profile. In the power-availability mode, SPEED determines the time-varying total available solar array and/or battery power output, given a minimum allowable battery state of charge.

  10. Phase Change Material Heat Sink for an ISS Flight Experiment

    Science.gov (United States)

    Quinn, Gregory; Stieber, Jesse; Sheth, Rubik; Ahlstrom, Thomas

    2015-01-01

    A flight experiment is being constructed to utilize the persistent microgravity environment of the International Space Station (ISS) to prove out operation of a microgravity compatible phase change material (PCM) heat sink. A PCM heat sink can help to reduce the overall mass and volume of future exploration spacecraft thermal control systems (TCS). The program is characterizing a new PCM heat sink that incorporates a novel phase management approach to prevent high pressures and structural deformation that often occur with PCM heat sinks undergoing cyclic operation in microgravity. The PCM unit was made using brazed aluminum construction with paraffin wax as the fusible material. It is designed to be installed into a propylene glycol and water cooling loop, with scaling consistent with the conceptual designs for the Orion Multipurpose Crew Vehicle. This paper reports on the construction of the PCM heat sink and on initial ground test results conducted at UTC Aerospace Systems prior to delivery to NASA. The prototype will be tested later on the ground and in orbit via a self-contained experiment package developed by NASA Johnson Space Center to operate in an ISS EXPRESS rack.

  11. The Mini-EUSO telescope on the ISS

    Science.gov (United States)

    Scotti, Valentina; Osteria, Giuseppe

    2017-02-01

    The Mini-EUSO project aims to perform observations of the UV-light night emission from Earth. The UV background produced in atmosphere is a key measurement for any experiment aiming at the observation of Extreme Energy Cosmic Rays (EECR) from space, the most energetic component of the cosmic radiation. The Mini-EUSO instrument will be placed within the International Space Station (ISS) in the Russian Module and measures through a UV transparent window. The instrument comprises a compact telescope with a large field of view, based on an optical system employing two Fresnel lenses for increased light collection. The light is focused onto an array of photo-multipliers and the resulting signal is converted into digital, processed and stored via the electronics subsystems on-board. The instrument is designed and built by the members of the JEM-EUSO collaboration. JEM-EUSO is a wide-angle refractive UV telescope being proposed for attachment to the ISS, which has been designed to address basic problems of fundamental physics and high-energy astrophysics investigating the nature of cosmic rays with energies above 1020 eV. Mini-EUSO will be able to study beside EECRs a wide range of scientific phenomena including atmospheric physics, strange quark matter and bioluminescence. The mission is approved by the Italian Space Agency and the Russian Space Agency. Scientific, technical and programmatic aspects of this project will be described.

  12. ISS observations of aluminium surfaces under hydrogen ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Sagara, A.; Kamada, K.; Higashida, Y.

    1984-12-01

    The shadowing effect of ISS was applied to observe the surface behavior of H atoms implanted with 500 eV/atom on a high-purity Al sample. This study confirmed that this technique is powerful to observe the retention kinetics of H atoms especially on the topmost material surface with simultaneous analysis for surface contaminants such as oxygen during irradiation with hydrogen ions. The result obtained from the initially cleaned surface showed a remarkable increase in the H retention with increasing fluence of H/sub 2//sup +/ up to about 10/sup 18/ H/cm/sup 2/ at room temperature, depending on the fluence of predamage given by He/sup +/ ions, but showed no increase in the retention at the temperatures above 100/sup 0/C. Therefore, because Al is a metal well known to be passive for chemisorption of H/sub 2/ molecules and H atoms, it was concluded that the observed H retention originates from the traps produced by radiation damage. The activation energy for thermal desorption of the trapped H atoms was estimated to be 1.1 +- 0.4 eV by ISS measurements. The oxygen-covered surface showed a rapid increase in the retention at fluence of less than 10/sup 17/ H/cm/sup 2/. (orig.).

  13. Iss observations of aluminum surfaces under hydrogen ion bombardment

    Science.gov (United States)

    Sagara, A.; Kamada, K.; Higashida, Y.

    1984-12-01

    The shadowing effect of ISS was applied to observe the surface behavior of H atoms implanted with 500 eV/atom on a high-purity A1 sample. This study confirmed that this technique is powerful to observe the retention kinetics of H atoms especially on the topmost material surface with simultaneous analysis for surface contaminants such as oxygen during irradiation with hydrogen ions. The result obtained from the initially cleaned surface showed a remarkable increase in the H retention with increasing fluence of H2+ up to about 1018 H/cm2 at room temperature, depending on the fluence of predamage given by He+ ions, but showed no increase in the retention at the temperatures above 100 ° C. Therefore, because Al is a metal well known to be passive for chemisorption of H2 molecules and H atoms, it was concluded that the observed H retention originates from the traps produced by radiation damage. The activation energy for thermal desorption of the trapped H atoms was estimated to be 1.1±0.4 eV by ISS measurements. The oxygen-covered surface showed a rapid increase in the retention at fluence of less than 1017 H/cm2.

  14. ISS observations of aluminium surfaces under hydrogen ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Sagara, A.; Kamada, K. (Nagoya Univ. (Japan). Inst. of Plasma Physics); Higashida, Y. (Seiun Senior High School (Japan))

    1984-12-01

    The shadowing effect of ISS was applied to observe the surface behavior of H atoms implanted with 500 eV/atom on a high-purity Al sample. This study confirmed that this technique is powerful to observe the retention kinetics of H atoms especially on the topmost material surface with simultaneous analysis for surface contaminants such as oxygen during irradiation with hydrogen ions. The result obtained from the initially cleaned surface showed a remarkable increase in the H retention with increasing fluence of H/sub 2//sup +/ up to about 10/sup 18/ H/cm/sup 2/ at room temperature, depending on the fluence of predamage given by He/sup +/ ions, but showed no increase in the retention at the temperatures above 100/sup 0/C. Therefore, because Al is a metal well known to be passive for chemisorption of H/sub 2/ molecules and H atoms, it was concluded that the observed H retention originates from the traps produced by radiation damage. The activation energy for thermal desorption of the trapped H atoms was estimated to be 1.1 +- 0.4 eV by ISS measurements. The oxygen-covered surface showed a rapid increase in the retention at fluence of less than 10/sup 17/ H/cm/sup 2/.

  15. Coordinated Observations with Pulsar Timing Arrays and ISS-Lobster

    CERN Document Server

    Schnittman, Jeremy D

    2014-01-01

    Supermassive black hole binaries are the strongest gravitational wave sources in the universe. The systems most likely to be observed with pulsar timing arrays (PTAs) will have particularly high masses ($\\gtrsim 10^9 M_\\odot$), long periods ($T_{\\rm orb} \\gtrsim 1$ yr), and be in the local universe ($z \\lesssim 1$). These features are also the most favorable for bright electromagnetic counterparts, which should be easily observable with existing ground- and space-based telescopes. Wide-field X-ray observatories such as ISS-Lobster will provide independent candidates that can be used to lower the threshold for PTA detections of resolvable binary sources. The primary challenge lies in correctly identifying and characterizing binary sources with long orbital periods, as opposed to "normal" active galactic nuclei (AGN) hosting single black holes. Here too ISS-Lobster will provide valuable new understanding into the wide range of behaviors seen in AGN by vastly expanding our sample of X-ray light curves from accre...

  16. ISS and Shuttle Payload Research Development and Processing

    Science.gov (United States)

    Calhoun, Kyle A.

    2010-01-01

    NASA's ISS and Spacecraft Processing Directorate (UB) is charged with the performance of payload development for research originating through NASA, ISS international partners, and the National Laboratory. The Payload Development sector of the Directorate takes biological research approved for on orbit experimentation from its infancy stage and finds a way to integrate and implement that research into a payload on either a Shuttle sortie or Space Station increment. From solicitation and selection, to definition, to verification, to integration and finally to operations and analysis, Payload Development is there every step of the way. My specific work as an intern this summer has consisted of investigating data received by separate flight and ground control Advanced Biological Research Systems (ABRS) units for Advanced Plant Experiments (APEX) and Cambium research. By correlation and analysis of this data and specific logbook information I have been working to explain changes in environmental conditions on both the flight and ground control unit. I have then, compiled all of that information into a form that can be presentable to the Principal Investigator (PI). This compilation allows that PI scientist to support their findings and add merit to their research. It also allows us, as the Payload Developers, to further inspect the ABRS unit and its performance

  17. Launch and landing site science processing for ISS utilization

    Science.gov (United States)

    Shao, Mimi; van Twest, Jacqueline; van den Ende, Oliver; Gruendel, Douglas; Wells, Deborah; Moyer, Jerry; Heuser, Jan; Etheridge, Guy

    2000-01-01

    Since 1986, Kennedy Space Center (KSC) has provided support to over 500 spaceflight experiments from NASA, international agencies, academic institutions, commercial entities, and the military sector. The experiments cover a variety of science disciplines including molecular, cellular, developmental biology, chemistry, physiology, and material sciences. KSC supports simulation, pre-flight, in-flight, and post-flight processing of flight hardware, specimens, and data at the primary and secondary landing sites. Science processing activities for spaceflight experiments occurs at the Life Science Support Facility (Hangar L) on the Cape Canaveral Air Station (CCAS) and select laboratories in the Industrial Area at KSC. Planning is underway to meet the challenges of the International Space Station (ISS). ISS support activities are expected to exceed the current launch site capability. KSC plans to replace the current facilities with Space Experiments Research and Processing Laboratory (SERPL), a collaborative effort between NASA and the State of Florida. This facility will be the cornerstone of a larger Research Park at KSC and is expected to foster relations between commercial industry and academia in areas related to space research. .

  18. Results From the Physics of Colloids Experiment on ISS

    Science.gov (United States)

    Weitz, David; Bailey, Arthur; Manley, Suliana; Prasad, Vikram; Christianson, Rebecca; Sankaran, Subramanian; Doherty, Michael; Jankovsky, Amy; Lorik, Tibor; Shiley, William

    2002-12-01

    The Physics of Colloids in Space (PCS) experiment was accommodated within International Space Station (ISS) EXpedite the PRocessing of Experiments to Space Station (EXPRESS) Rack 2 and was remotely operated from early June 2001 until February 2002 from NASA Glenn Research Center's Telescience Support Center (TSC) in Cleveland, Ohio, and from the remote site at Harvard University in Cambridge, Massachusetts. PCS was launched on 4/19/2001 on Space Shuttle STS-100. The experiment was activated on 5/31/2001. The entire experimental setup performed remarkably well, and accomplished 2400 hours of science operations on-orbit. The sophisticated instrumentation in PCS is capable of dynamic and static light scattering from 11 to 169 degrees, Bragg scattering over the range from 10 to 60 degrees, dynamic and static light scattering at low angles from 0.3 to 6.0 degrees, and color imaging. The long duration microgravity environment on the ISS facilitated extended studies on the growth and coarsening characteristics of binary crystals. The de-mixing of the colloid-polymer critical-point sample was also studied as it phase-separated into two phases. Further, aging studies on a col-pol gel, gelation rate studies in extremely low concentration fractal gels over several days, and studies on a glass sample, all provided valuable information. Several exciting and unique aspects of these results are discussed here.

  19. Development and Capabilities of ISS Flow Boiling and Condensation Experiment

    Science.gov (United States)

    Nahra, Henry; Hasan, Mohammad; Balasubramaniam, R.; Patania, Michelle; Hall, Nancy; Wagner, James; Mackey, Jeffrey; Frankenfield, Bruce; Hauser, Daniel; Harpster, George; hide

    2015-01-01

    An experimental facility to perform flow boiling and condensation experiments in long duration microgravity environment is being designed for operation on the International Space Station (ISS). This work describes the design of the subsystems of the FBCE including the Fluid subsystem modules, data acquisition, controls, and diagnostics. Subsystems and components are designed within the constraints of the ISS Fluid Integrated Rack in terms of power availability, cooling capability, mass and volume, and most importantly the safety requirements. In this work we present the results of ground-based performance testing of the FBCE subsystem modules and test module which consist of the two condensation modules and the flow boiling module. During this testing, we evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, heat loss from different modules and components, and performance of the test modules. These results will be used in the refinement of the flight system design and build-up of the FBCE which is manifested for flight in late 2017-early 2018.

  20. [Retrospective computation of the ISS in multiple trauma patients: Potential pitfalls and limitations of findings in full body CT scans].

    Science.gov (United States)

    Bogner, V; Brumann, M; Kusmenkov, T; Kanz, K G; Wierer, M; Berger, F; Mutschler, W

    2016-03-01

    The Injury Severity Score (ISS) is a well-established anatomical scoring system for polytraumatized patients. However, any inaccuracy in the Abbreviated Injury Score (AIS) directly increases the ISS impreciseness. Using the full body computed tomography (CT) scan report, ISS computation can be associated with certain pitfalls. This study evaluates interpretation variations depending on radiological reports and indicates requirements to reliably determine the ISS. The ISS of 81 polytraumatized patients was calculated based on the full body CT scan report. If an injury could not be attributed to a precise AIS cipher, the minimal and maximal ISS was computed. Real ISS included all conducted investigations, intraoperative findings, and final medical reports. The differences in ISS min, ISS max, and ISS real were evaluated using the Kruskal-Wallis test (pISS min was 24.0 (± 0.7 SEM) points, mean ISS real 38.6 (±1.3 SEM) and mean ISS max was 48.3 (±1.4 SEM) points. All means were significantly different compared to one another (pISS showed a distinctive variation. Mean deviation was 9.7 (±0.9 SEM) points downward and 14.5 (±1.1 SEM) points upward. The difference between deviation to ISS min and ISS max was highly significant (pISS is an internationally well-established method in clinical and scientific settings. The full body CT scan report must meet distinct criteria and has to be written in acquaintance to the AIS scale if intended to be used for correct ISS computation.

  1. Tidal Control of Jet Eruptions Observed by Cassini ISS

    Science.gov (United States)

    Hurford, T. A.; Helfenstein, P.; Spitale, J. N.

    2012-01-01

    Observations by Cassini's Imaging Science Subsystem (ISS) of Enceladus' south polar region at high phase angles has revealed jets of material venting into space. Observations by Cassini's Composite Infrared Spectrometer (CIRS) have also shown that the south polar region is anomalously warm with hotspots associated with geological features called the Tiger Stripes. The Tiger Stripes are large rifts near the south pole of Enceladus, which are typically about 130 km in length, 2 km wide, with a trough 500 m deep, and are l1anked on each side by 100m tall ridges. Preliminary triangulation of jets as viewed at different times and with different viewing geometries in Cassini ISS images taken between 2005 and 2007 have constrained the locations of eight major eruptions of material and found all of them associated with the south polar fractures unofficially the 'Tiger Stripes', and found four of them coincident with the hotspots reported in 2006 by CIRS. While published ISS observations of jet activity suggest that individual eruption sites stay active on the timescale of years, any shorter temporal variability (on timescales of an orbital period, or 1.3 Earth days, for example) is more difficult to establish because of the spotty temporal coverage and the difficulty of visually isolating one jet from the forest of many seen in a typical image. Consequently, it is not known whether individual jets are continuously active, randomly active, or if they erupt on a predictable, periodic schedule. One mechanism that may control the timing of eruptions is diurnal tidal stress, which oscillates between compression/tension as well as right and left lateral shear at any given location throughout Enceladus' orbit and may allow the cracks to open and close regularly. We examine the stresses on the Tiger Stripe regions to see how well diurnal tidal stress caused by Enceladus' orbital eccentricity may possibly correlate with and thus control the observed eruptions. We then identify

  2. Veggie ISS Validation Test Results and Produce Consumption

    Science.gov (United States)

    Massa, Gioia; Hummerick, Mary; Spencer, LaShelle; Smith, Trent

    2015-01-01

    The Veggie vegetable production system flew to the International Space Station (ISS) in the spring of 2014. The first set of plants, Outredgeous red romaine lettuce, was grown, harvested, frozen, and returned to Earth in October. Ground control and flight plant tissue was sub-sectioned for microbial analysis, anthocyanin antioxidant phenolic analysis, and elemental analysis. Microbial analysis was also performed on samples swabbed on orbit from plants, Veggie bellows, and plant pillow surfaces, on water samples, and on samples of roots, media, and wick material from two returned plant pillows. Microbial levels of plants were comparable to ground controls, with some differences in community composition. The range in aerobic bacterial plate counts between individual plants was much greater in the ground controls than in flight plants. No pathogens were found. Anthocyanin concentrations were the same between ground and flight plants, while antioxidant and phenolic levels were slightly higher in flight plants. Elements varied, but key target elements for astronaut nutrition were similar between ground and flight plants. Aerobic plate counts of the flight plant pillow components were significantly higher than ground controls. Surface swab samples showed low microbial counts, with most below detection limits. Flight plant microbial levels were less than bacterial guidelines set for non-thermostabalized food and near or below those for fungi. These guidelines are not for fresh produce but are the closest approximate standards. Forward work includes the development of standards for space-grown produce. A produce consumption strategy for Veggie on ISS includes pre-flight assessments of all crops to down select candidates, wiping flight-grown plants with sanitizing food wipes, and regular Veggie hardware cleaning and microbial monitoring. Produce then could be consumed by astronauts, however some plant material would be reserved and returned for analysis. Implementation of

  3. 3D Printing in Zero-G ISS Technology Demonstration

    Science.gov (United States)

    Johnston, Mallory M.; Werkheiser, Mary J.; Cooper, Kenneth G.; Snyder, Michael P.; Edmunson, Jennifer E.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) has a long term strategy to fabricate components and equipment on-demand for manned missions to the Moon, Mars, and beyond. To support this strategy, NASA and Made in Space, Inc. are developing the 3D Printing In Zero-G payload as a Technology Demonstration for the International Space Station. The 3D Printing In Zero-G experiment will be the first machine to perform 3D printing in space. The greater the distance from Earth and the longer the mission duration, the more difficult resupply becomes; this requires a change from the current spares, maintenance, repair, and hardware design model that has been used on the International Space Station up until now. Given the extension of the ISS Program, which will inevitably result in replacement parts being required, the ISS is an ideal platform to begin changing the current model for resupply and repair to one that is more suitable for all exploration missions. 3D Printing, more formally known as Additive Manufacturing, is the method of building parts/ objects/tools layer-by-layer. The 3D Print experiment will use extrusion-based additive manufacturing, which involves building an object out of plastic deposited by a wire-feed via an extruder head. Parts can be printed from data files loaded on the device at launch, as well as additional files uplinked to the device while on-orbit. The plastic extrusion additive manufacturing process is a low-energy, low-mass solution to many common needs on board the ISS. The 3D Print payload will serve as the ideal first step to proving that process in space. It is unreasonable to expect NASA to launch large blocks of material from which parts or tools can be traditionally machined, and even more unreasonable to fly up specialized manufacturing hardware to perform the entire range of function traditionally machining requires. The technology to produce parts on demand, in space, offers unique design options that are not possible

  4. Incorporation of a light and carrier collection management nano-element array into superstrate a-Si:H solar cells

    Science.gov (United States)

    Jun Nam, Wook; Ji, Liming; Benanti, Travis L.; Varadan, Vasundara V.; Wagner, Sigurd; Wang, Qi; Nemeth, William; Neidich, Douglas; Fonash, Stephen J.

    2011-08-01

    Superstrate a-Si:H solar cells incorporating a nano-column array for light and photocarrier collection have been fabricated and evaluated. It is found that the short circuit current density (JSC) is significantly increased while the open circuit voltage and fill factor are not detrimentally affected by this architecture. Numerical analysis of JSC matches experiment and shows that the enhanced JSC observed is due to both effective absorber thickness and photonic-plasmonic effects. Further analysis shows that this nano-column architecture can lead to a 42% increase in conversion efficiency over that of the planar control for a 200 nm absorber thickness cell.

  5. WetLab-2: Wet Lab RNA SmartCycler Providing PCR Capability on ISS

    Science.gov (United States)

    Parra, Macarena; Schonfeld, Julie

    2015-01-01

    The WetLab-2 system will provide sample preparation and qRT-PCR analysis on-board the ISS, a capability to enable using the ISS as a real laboratory. The system will be validated on SpX-7, and is planned for its first PI use on SpX-9.

  6. GNSS-Reflectometry with GEROS-ISS: Overview and recent results

    DEFF Research Database (Denmark)

    Wickert, Jens; Andersen, Ole Baltazar; G., Beyerle;

    2015-01-01

    GEROS-ISS (GEROS hereafter) stands for GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station. It is a scientific experiment, proposed to the European Space Agency (ESA) in 2011 for installation aboard the ISS. The main focus of GEROS is the dedicated use ...

  7. Potteri filmi režissöör murdis needuse

    Index Scriptorium Estoniae

    2007-01-01

    Harry Potteri viienda filmi "Harry Potter ja Fööniksi ordu" režissöör David Yates on andnud oma nõusoleku jätkata režissöörina ka järgmise, "Harry Potter ja segavereline prints" filmi juures. Esilinastus 21. nov. 2008

  8. Potteri filmi režissöör murdis needuse

    Index Scriptorium Estoniae

    2007-01-01

    Harry Potteri viienda filmi "Harry Potter ja Fööniksi ordu" režissöör David Yates on andnud oma nõusoleku jätkata režissöörina ka järgmise, "Harry Potter ja segavereline prints" filmi juures. Esilinastus 21. nov. 2008

  9. Bigelow Expandable Activity Module (BEAM) - ISS Inflatable Module Technology Demonstration

    Science.gov (United States)

    Dasgupta, Rajib; Munday, Steve; Valle, Gerard D.

    2014-01-01

    INNOVATION: BEAM is a pathway project demonstrating the design, fabrication, test, certification, integration, operation, on-orbit performance, and disposal of the first ever man-rated space inflatable structure. The groundwork laid through the BEAM project will support developing and launching a larger inflatable space structure with even greater mass per volume (M/V) advantages need for longer space missions. OVERVIEW: Inflatable structures have been shown to have much lower mass per volume ratios (M/V) when compared with conventional space structures. BEAM is an expandable structure, launched in a packed state, and then expanded once on orbit. It is a temporary experimental module to be used for gathering structural, thermal, and radiation data while on orbit. BEAM will be launched on Space X-8, be extracted from the dragon trunk, and will attach to ISS at Node 3- Aft. BEAM performance will be monitored over a two-year period and then BEAM will be jettison using the SSRMS.

  10. Simulations of MATROSHKA experiments at ISS using PHITS

    CERN Document Server

    Sihver, L; Puchalska, M; Reitz, G

    2010-01-01

    Concerns about the biological effects of space radiation are increasing rapidly due to the perspective of long-duration manned missions, both in relation to the International Space Station (ISS) and to manned interplanetary missions to Moon and Mars in the future. As a preparation for these long duration space missions it is important to ensure an excellent capability to evaluate the impact of space radiation on human health in order to secure the safety of the astronauts/cosmonauts and minimize their risks. It is therefore necessary to measure the radiation load on the personnel both inside and outside the space vehicles and certify that organ and tissue equivalent doses can be simulated as accurate as possible. In this paper we will present simulations using the three-dimensional Monte Carlo Particle and Heavy Ion Transport code System (PHITS) of long term dose measurements performed with the ESA supported experiment MATROSHKA (MTR), which is an anthropomorphic phantom containing over 6000 radiation detecto...

  11. Assessing Sensorimotor Function Following ISS with Computerized Dynamic Posturography.

    Science.gov (United States)

    Wood, Scott J; Paloski, William H; Clark, Jonathan B

    2015-12-01

    Postflight postural ataxia reflects both the control strategies adopted for movement in microgravity and the direct effects of deconditioning. Computerized dynamic posturography (CDP) has been used during the first decade of the International Space Station (ISS) expeditions to quantify the initial postflight decrements and recovery of postural stability. The CDP data were obtained on 37 crewmembers as part of their pre- and postflight medical examinations. Sensory organization tests evaluated the ability to make effective use of (or suppress inappropriate) visual, vestibular, and somatosensory information for balance control. This report focuses on eyes closed conditions with either a fixed or sway-referenced base of support, with the head erect or during pitch-head tilts (± 20° at 0.33 Hz). Equilibrium scores were derived from peak-to-peak anterior-posterior sway. Motor-control tests were also used to evaluate a crewmember's ability to automatically recover from unexpected support-surface perturbations. The standard Romberg condition was the least sensitive. Dynamic head tilts led to increased incidence of falls and revealed significantly longer recovery than head-erect conditions. Improvements in postflight postural performance during the later expeditions may be attributable to higher preflight baselines and/or advanced exercise capabilities aboard the ISS. The diagnostic assessment of postural instability is more pronounced during unstable-support conditions requiring active head movements. In addition to supporting return-to-duty decisions by flight surgeons, the CDP provides a standardized sensorimotor measure that can be used to evaluate the effectiveness of countermeasures designed to either minimize deconditioning on orbit or promote reconditioning upon return to Earth.

  12. Saturn's equatorial jet structure from Cassini/ISS

    Science.gov (United States)

    García-Melendo, Enrique; Legarreta, Jon; Sánchez-Lavega, Agustín.; Pérez-Hoyos, Santiago; Hueso, Ricardo

    2010-05-01

    Detailed wind observations of the equatorial regions of the gaseous giant planets, Jupiter and Saturn, are crucial for understanding the basic problem of the global circulation and obtaining new detailed information on atmospheric phenomena. In this work we present high resolution data of Saturn's equatorial region wind profile from Cassini/ISS images. To retrieve wind measurements we applied an automatic cross correlator to image pairs taken by Cassini/ISS with the MT1, MT2, MT3 filters centred at the respective three methane absorbing bands of 619nm, 727nm, and 889nm, and with the adjacent continuum CB1, CB2, and CB3 filters. We obtained a complete high resolution coverage of Saturn's wind profile in the equatorial region. The equatorial jet displays an overall symmetric structure similar to that shown the by same region in Jupiter. This result suggests that, in accordance to some of the latest compressible atmosphere computer models, probably global winds in gaseous giants are deeply rooted in the molecular hydrogen layer. Wind profiles in the methane absorbing bands show the effect of strong vertical shear, ~40m/s per scale height, confirming previous results and an important decay in the wind intensity since the Voyager era (~100 m/s in the continuum and ~200 m/s in the methane absorbing band). We also report the discovery of a new feature, a very strong and narrow jet on the equator, about only 5 degrees wide, that despite the vertical shear maintains its intensity (~420 m/s) in both, the continuum and methane absorbing band filters. Acknowledgements: Work supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07.

  13. Leak Rate Performance of Silicone Elastomer O-Rings Contaminated with JSC-1A Lunar Regolith Simulant

    Science.gov (United States)

    Oravec, Heather Ann; Daniels, Christopher C.

    2014-01-01

    Contamination of spacecraft components with planetary and foreign object debris is a growing concern. Face seals separating the spacecraft cabin from the debris filled environment are particularly susceptible; if the seal becomes contaminated there is potential for decreased performance, mission failure, or catastrophe. In this study, silicone elastomer O-rings were contaminated with JSC- 1A lunar regolith and their leak rate performance was evaluated. The leak rate values of contaminated O-rings at four levels of seal compression were compared to those of as-received, uncontaminated, O-rings. The results showed a drastic increase in leak rate after contamination. JSC-1A contaminated O-rings lead to immeasurably high leak rate values for all levels of compression except complete closure. Additionally, a mechanical method of simulant removal was examined. In general, this method returned the leak rate to as-received values.

  14. Evaluating the Effectiveness of Internal Corporate Controls in Coal Mines Illustrated By the Example of JSC “SUEK-Kuzbass”

    OpenAIRE

    Kucherova Elena; Ponkratova Tamara; Tyuleneva Tatiana; Cherepanova Natalia

    2017-01-01

    The article gives reasons for the need to develop the mechanism and tools of performance evaluation based on the implementation of specific management functions, as well as the integrated evaluation of the effectiveness of internal corporate controls. It presents the approbation of the proposed assessment methodology on the example of JSC “SUEK-Kuzbass”. The monitoring role as one of the functions of management is constantly increasing in the market economy. The participation of Russian compa...

  15. ISSE在安全系统设计中的应用%The Application of ISSE in Security System Design

    Institute of Scientific and Technical Information of China (English)

    谭兴烈; 周明天; 沈昌祥

    2003-01-01

    ISSE is a kind of methodology in information system security designing and security management. In thispaper,we first give simple discussions of the main steps and basic functions of ISSE,then we take a large scale net-work security system as an example to discuss how to use ISSE,and finally,we point out the importance of ISSE indesigning security system and in security management.

  16. LDH is an adverse prognostic factor independent of ISS in transplant-eligible myeloma patients receiving bortezomib-based induction regimens.

    Science.gov (United States)

    Chim, Chor Sang; Sim, Joycelyn; Tam, Sidney; Tse, Eric; Lie, Albert Kwok Wai; Kwong, Yok Lam

    2015-04-01

    Serum lactate dehydrogenase (LDH) has been an adverse prognostic factor for myeloma but does not feature in the International Staging System (ISS). We examined whether elevated serum LDH at diagnosis remains an adverse risk factor independent of ISS for survivals transplant-eligible myeloma patients receiving early/frontline bortezomib-based induction, followed by autologous stem cell transplantation (ASCT). Seventy-seven transplant-eligible Chinese patients received three induction regimens [staged approach (N = 25), PAD (N = 19), VTD (N = 33)], followed by ASCT and thalidomide maintenance. Five-year overall (OS) and event-free (EFS) survivals were 66.4% and 36.2%. There was no difference in demographics, complete remission/near complete remission (CR/nCR rates postinduction or ASCT, and survivals among patients induced by the three induction regimens. Elevated LDH was associated with male gender (P = 0.006), ISS III (P = 0.042) and serum β2-microglobulin (P = 0.040). Univariate analysis showed that elevated LDH, ISS III, high β2-microglobulin, and failure to attain CR/nCR post-ACST were risk factors adversely impacting both OS and EFS. Multivariate analysis showed that elevated LDH was the only factor impacting both OS (P = 0.007) and EFS (P = 0.008). In this uniformly treated cohort of transplant-eligible myeloma patients, elevated serum LDH is an adverse risk factor independent of ISS for both OS and EFS. Bortezomib-based induction/ASCT regimen had not abolished the adverse impact of elevated LDH. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. JSC Advanced Curation: Research and Development for Current Collections and Future Sample Return Mission Demands

    Science.gov (United States)

    Fries, M. D.; Allen, C. C.; Calaway, M. J.; Evans, C. A.; Stansbery, E. K.

    2015-01-01

    Curation of NASA's astromaterials sample collections is a demanding and evolving activity that supports valuable science from NASA missions for generations, long after the samples are returned to Earth. For example, NASA continues to loan hundreds of Apollo program samples to investigators every year and those samples are often analyzed using instruments that did not exist at the time of the Apollo missions themselves. The samples are curated in a manner that minimizes overall contamination, enabling clean, new high-sensitivity measurements and new science results over 40 years after their return to Earth. As our exploration of the Solar System progresses, upcoming and future NASA sample return missions will return new samples with stringent contamination control, sample environmental control, and Planetary Protection requirements. Therefore, an essential element of a healthy astromaterials curation program is a research and development (R&D) effort that characterizes and employs new technologies to maintain current collections and enable new missions - an Advanced Curation effort. JSC's Astromaterials Acquisition & Curation Office is continually performing Advanced Curation research, identifying and defining knowledge gaps about research, development, and validation/verification topics that are critical to support current and future NASA astromaterials sample collections. The following are highlighted knowledge gaps and research opportunities.

  18. NASA-JSC Protocol for the Characterization of Single Wall Carbon Nanotube Material Quality

    Science.gov (United States)

    Arepalli, Sivaram; Nikolaev, Pasha; Gorelik, Olga; Hadjiev, Victor; Holmes, William; Devivar, Rodrigo; Files, Bradley; Yowell, Leonard

    2010-01-01

    It is well known that the raw as well as purified single wall carbon nanotube (SWCNT) material always contain certain amount of impurities of varying composition (mostly metal catalyst and non-tubular carbon). Particular purification method also creates defects and/or functional groups in the SWCNT material and therefore affects the its dispersability in solvents (important to subsequent application development). A number of analytical characterization tools have been used successfully in the past years to assess various properties of nanotube materials, but lack of standards makes it difficult to compare these measurements across the board. In this work we report the protocol developed at NASA-JSC which standardizes measurements using TEM, SEM, TGA, Raman and UV-Vis-NIR absorption techniques. Numerical measures are established for parameters such as metal content, homogeneity, thermal stability and dispersability, to allow easy comparison of SWCNT materials. We will also report on the recent progress in quantitative measurement of non-tubular carbon impurities and a possible purity standard for SWCNT materials.

  19. The International Scoring System (ISS) for multiple myeloma remains a robust prognostic tool independently of patients' renal function.

    Science.gov (United States)

    Dimopoulos, M A; Kastritis, E; Michalis, E; Tsatalas, C; Michael, M; Pouli, A; Kartasis, Z; Delimpasi, S; Gika, D; Zomas, A; Roussou, M; Konstantopoulos, K; Parcharidou, A; Zervas, K; Terpos, E

    2012-03-01

    The International Staging System (ISS) is the most widely used staging system for patients with multiple myeloma (MM). However, serum β2-microglobulin increases in renal impairment (RI) and there have been concerns that ISS-3 stage may include 'up-staged' MM patients in whom elevated β2-microglobulin reflects the degree of renal dysfunction rather than tumor load. In order to assess the impact of RI on the prognostic value of ISS, we analyzed 1516 patients with symptomatic MM and the degree of RI was classified according to the Kidney Disease Outcomes Quality Initiative-Chronic Kidney Disease (CKD) criteria. Forty-eight percent patients had stages 3-5 CKD while 29% of patients had ISS-1, 38% had ISS-2 and 33% ISS-3. The frequency and severity of RI were more common in ISS-3 patients. RI was associated with inferior survival in univariate but not in multivariate analysis. When analyzed separately, ISS-1 and ISS-2 patients with RI had inferior survival in univariate but not in multivariate analysis. In ISS-3 MM patients, RI had no prognostic impact either in univariate or multivariate analysis. Results were similar, when we analyzed only patients with Bence-Jones >200 mg/day. ISS remains unaffected by the degree of RI, even in patients with ISS-3, which includes most patients with renal dysfunction.

  20. Application of combined TLD and CR-39 PNTD method for measurement of total dose and dose equivalent on ISS

    Energy Technology Data Exchange (ETDEWEB)

    Benton, E.R. [Eril Research, Inc., Stillwater, Oklahoma (United States); Deme, S.; Apathy, I. [KFKI Atomic Energy Research Institute, Budapest (Hungary)

    2006-07-01

    To date, no single passive detector has been found that measures dose equivalent from ionizing radiation exposure in low-Earth orbit. We have developed the I.S.S. Passive Dosimetry System (P.D.S.), utilizing a combination of TLD in the form of the self-contained Pille TLD system and stacks of CR-39 plastic nuclear track detector (P.N.T.D.) oriented in three mutually orthogonal directions, to measure total dose and dose equivalent aboard the International Space Station (I.S.S.). The Pille TLD system, consisting on an on board reader and a large number of Ca{sub 2}SO{sub 4}:Dy TLD cells, is used to measure absorbed dose. The Pille TLD cells are read out and annealed by the I.S.S. crew on orbit, such that dose information for any time period or condition, e.g. for E.V.A. or following a solar particle event, is immediately available. Near-tissue equivalent CR-39 P.N.T.D. provides Let spectrum, dose, and dose equivalent from charged particles of LET{sub {infinity}}H{sub 2}O {>=} 10 keV/{mu}m, including the secondaries produced in interactions with high-energy neutrons. Dose information from CR-39 P.N.T.D. is used to correct the absorbed dose component {>=} 10 keV/{mu}m measured in TLD to obtain total dose. Dose equivalent from CR-39 P.N.T.D. is combined with the dose component <10 keV/{mu}m measured in TLD to obtain total dose equivalent. Dose rates ranging from 165 to 250 {mu}Gy/day and dose equivalent rates ranging from 340 to 450 {mu}Sv/day were measured aboard I.S.S. during the Expedition 2 mission in 2001. Results from the P.D.S. are consistent with those from other passive detectors tested as part of the ground-based I.C.C.H.I.B.A.N. intercomparison of space radiation dosimeters. (authors)

  1. Rapid culture-independent microbial analysis aboard the International Space Station (ISS).

    Science.gov (United States)

    Maule, Jake; Wainwright, Norm; Steele, Andrew; Monaco, Lisa; Morris, Heather; Gunter, Daniel; Damon, Michael; Wells, Mark

    2009-10-01

    A new culture-independent system for microbial monitoring, called the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS), was operated aboard the International Space Station (ISS). LOCAD-PTS was launched to the ISS aboard Space Shuttle STS-116 on December 9, 2006, and has since been used by ISS crews to monitor endotoxin on cabin surfaces. Quantitative analysis was performed within 15 minutes, and sample return to Earth was not required. Endotoxin (a marker of Gram-negative bacteria) was distributed throughout the ISS, despite previous indications that mostbacteria on ISS surfaces were Gram-positive [corrected].Endotoxin was detected at 24 out of 42 surface areas tested and at every surface site where colony-forming units (cfu) were observed, even at levels of 4-120 bacterial cfu per 100 cm(2), which is below NASA in-flight requirements (3.78 EU per 100 cm(2)). Based upon data collected from the ISS so far, new culture-independent requirements (defined in EU) are suggested, which are verifiable in flight with LOCAD-PTS yet high enough to avoid false alarms. The suggested requirements are intended to supplement current ISS requirements (defined in cfu) and would serve a dual purpose of safeguarding crew health (internal spacecraft surfaces <20 EU per 100 cm(2)) and monitoring forward contamination during Constellation missions (surfaces periodically exposed to the external environment, including the airlock and space suits, <0.24 EU per 100 cm(2)).

  2. The NASA ISS-RapidScat Mission (Invited)

    Science.gov (United States)

    Rodriguez, E.

    2013-12-01

    After NASA's QuikSCAT satellite stopped spinning on November 2009, an observational gap opened in the international ocean surface winds constellation of observing satellites that also includes EUMETSAT's ASCAT and ISRO's OSCAT. While QuikSCAT continues to provide calibration data to the ISRO OSCAT on OceanSat-2 scatterometer, these data are sorely limited due to the satellite's hampered capabilities. Recognizing this gap, NASA has put together in a matter of a few months the ISS-RapidScat mission, which is a partnership between JPL, the ISS, ESA, KSC, and SpaceX. This mission, expected to launch in spring of 2014, is a very low-cost mission, enabled by the creative use of spare parts and a very rapid development process that nevertheless has great benefit to the science and operational weather and marine support communities. Since it uses the QuikSCAT engineering model, the RapidScat data will be quite similar to QuikSAT's in terms of data quality and spatial resolution, although modest gains in the latter are foreseen. However, due to the lower orbit and inclination, the RapidScat swath will be approximately a factor of two smaller than QuikSCAT's, and its geographic coverage will be limited to latitudes smaller than about 55 deg. Nevertheless, the unique sampling capabilities of the ISS non-sun-synchronous orbit opens up new science applications not available for typical sun-synchronous scatterometers. Foremost among these, is the ability to provide many more data that are collocated in space and time with each of the satellites in the international scatterometer constellation. Sun-synchronous satellites typically see each other with a suitably small temporal separation at high latitudes, and therefore, cross-calibration is limited in terms of the conditions that occur. RapidScat's orbit enables coincident wind observations in nearly every orbit, with a global geographical distribution, which will enable the determination of the global patterns of wind biases

  3. Thermal Modeling Method Improvements for SAGE III on ISS

    Science.gov (United States)

    Liles, Kaitlin; Amundsen, Ruth; Davis, Warren; McLeod, Shawn

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument is the fifth in a series of instruments developed for monitoring aerosols and gaseous constituents in the stratosphere and troposphere. SAGE III will be delivered to the International Space Station (ISS) via the SpaceX Dragon vehicle. A detailed thermal model of the SAGE III payload, which consists of multiple subsystems, has been developed in Thermal Desktop (TD). Many innovative analysis methods have been used in developing this model; these will be described in the paper. This paper builds on a paper presented at TFAWS 2013, which described some of the initial developments of efficient methods for SAGE III. The current paper describes additional improvements that have been made since that time. To expedite the correlation of the model to thermal vacuum (TVAC) testing, the chambers and GSE for both TVAC chambers at Langley used to test the payload were incorporated within the thermal model. This allowed the runs of TVAC predictions and correlations to be run within the flight model, thus eliminating the need for separate models for TVAC. In one TVAC test, radiant lamps were used which necessitated shooting rays from the lamps, and running in both solar and IR wavebands. A new Dragon model was incorporated which entailed a change in orientation; that change was made using an assembly, so that any potential additional new Dragon orbits could be added in the future without modification of the model. The Earth orbit parameters such as albedo and Earth infrared flux were incorporated as time-varying values that change over the course of the orbit; despite being required in one of the ISS documents, this had not been done before by any previous payload. All parameters such as initial temperature, heater voltage, and location of the payload are defined based on the case definition. For one component, testing was performed in both air and vacuum; incorporating the air convection in a submodel that was

  4. Vitamin D: Findings from Antarctic, Bed Rest, Houston, and ISS

    Science.gov (United States)

    Zwart, Sara R.; Locke, J.; Pierson, D.; Mehta, S.; Bourbeau, Y.; Parsons, H.; Smith, S. M.

    2009-01-01

    Obtaining vitamin D is critical for space travelers because they lack ultraviolet light exposure and have an insufficient dietary supply of vitamin D. Despite the provision of 400 IU vitamin D supplements to International Space Station (ISS) early crewmembers, vitamin D status was consistently lower after flight than before flight, and in several crewmembers has decreased to levels considered clinically significant. Vitamin D has long been known to play a role in calcium metabolism, and more recently its non-calcitropic functions have been recognized. According to the results of several recent studies, functionally relevant measures indicate that the lower limit of serum 25-hydroxyvitamin D (a marker of vitamin D status) should be raised from the current 23 nmol/L to 80 nmol/L. The mean preflight serum 25-hydroxyvitamin D (25-OH vit D) for U.S. ISS crewmembers to date is 63 +/- 16 nmol/L, and after a 4- to 6-mo space flight it typically decreases 25-30% despite supplementation (400 IU/d). The sub-optimal pre- and postflight vitamin D status is an issue that needs to be addressed, to allow NASA to better define the appropriate amount of supplemental vitamin D to serve as a countermeasure against vitamin D deficiency in astronaut crews. A series of ground-based and flight studies in multiple models have been conducted, including Antarctica in winter months when UV-B radiation levels are essentially zero, bed rest where subjects are not exposed to UV-B radiation for 60-90 days, in free-living individuals in Houston, and in International Space Station crewmembers. In these studies, we looked at dose regimen and efficacy, compliance issues, as well as toxicity. Preliminary results from these studies will be presented. Together, the data from these studies will enable us to provide space crews with evidence-based recommendations for vitamin D supplementation. The findings also have implications for other persons with limited UV light exposure, including polar workers and

  5. [Effect of the ISS Russian segment configuration on the service module radiation environment].

    Science.gov (United States)

    Mitrikas, V G

    2011-01-01

    Mathematical modeling of variations in the Service module radiation environment as a function of ISS Russian segment configuration was carried out using models of the RS modules and a spherical humanoid phantom. ISS reconfiguration impacted significantly only the phantom brought into the transfer compartment (ExT). The Radiation Safety Service prohibition for cosmonauts to stay in this compartment during solar flare events remains valid. In all other instances, error of dose estimation is higher as compared to dose value estimation with consideration for ISS RS reconfiguration.

  6. Organization, Management and Function of International Space Station (ISS) Multilateral Medical Operations

    Science.gov (United States)

    Duncan, James M.; Bogomolov, V. V.; Castrucci, F.; Koike, Y.; Comtois, J. M.; Sargsyan, A. E.

    2007-01-01

    Long duration crews have inhabited the ISS since November of 2000. The favorable medical outcomes of its missions can be largely attributed to sustained collective efforts of all ISS Partners medical organizations. In-flight medical monitoring and support, although crucial, is just a component of the ISS system of Joint Medical Operations. The goal of this work is to review the principles, design, and function of the multilateral medical support of the ISS Program. The governing documents, which describe the relationships among all ISS partner medical organizations, were evaluated, followed by analysis of the roles, responsibilities, and decision-making processes of the ISS medical boards, panels, and working groups. The degree of integration of the medical support system was evaluated by reviewing the multiple levels of the status reviews and mission assurance activities carried out throughout the last six years. The Integrated Medical Group, consisting of physicians and other essential personnel in the mission control centers represents the front-line medical support of the ISS. Data from their day-to-day activities are presented weekly at the Space Medicine Operations Team (SMOT), where known or potential concerns are addressed by an international group of physicians. A broader status review is conducted monthly to project the state of crew health and medical support for the following month, and to determine measures to return to nominal state. Finally, a comprehensive readiness review is conducted during preparations for each ISS mission. The Multilateral Medical Policy Board (MMPB) issues medical policy decisions and oversees all health and medical matters. The Multilateral Space Medicine Board (MSMB) certifies crewmembers and visitors for training and space flight to the Station, and physicians to practice space medicine for the ISS. The Multilateral Medical Operations Panel (MMOP) develops medical requirements, defines and supervises implementation of

  7. Rapid Biochemical Analysis on the International Space Station (ISS): Preparing for Human Exploration of the Moon and Mars

    Science.gov (United States)

    Maule, J.; Morris, Heather; Monaco, L.; Steele, A.; Wainwright, N.

    2008-01-01

    The Lab-on-a-Chip Application Development - Portable Test System, known as LOCAD-PTS, was launched to the International Space Station (ISS) aboard Space Shuttle Discovery (STS-116) on December 9th,2006. Since that time, it has remained onboard ISS and has been operated by the crew on 10 separate occasions LOCAD-PTS is a handheld device for rapid biochemical analysis; it consists of a spectrophotometer, a series of interchangeable cartridges, a pipette and several clean/sterilized swabbing kits to obtain samples from ISS surfaces. Sampling, quantitative analysis and data retrieval is performed onboard, therefore reducing the need to return samples to Earth. Less than 20 minutes are required from sampling to data, significantly faster than existing culture-based methods on ISS, which require 3-5 days. Different cartridges are available for the detection of different target molecules (simply by changing the formulation within each cartridge), thereby maximizing the benefit and applications addressed by a single instrument. Initial tests on ISS have focused on the detection of the bact.erial macromolecule endotoxin, a component of bacterial cell walls. LOCAD-PTS detects endotoxin with a cartridge that contains a formulation known as Limulus Amebocyte Lysate (LAL) assay. LAL is derived from blood of the horseshoe crab, Limulus polyphemus, and detects enodotoxin with an enzyme cascade that triggers generation Of a yellow colored dye, p-nitroanaline. The more p-nitroanaline product, the more endotoxin is in the original sample. To enable quantitative analysis, the absorbance of this color is measured by LOCAD-PTS through a 395 nm filter and compared with an internal calibration curve, to provide a reading on the LED display that ranges from 0.05 Endotoxin Units (EU)/ml to 5 EU/ml. Several surface sites were analyzed within ISS between March 2007 and February 2008, including multiple locations in the US Laboratory Destiny, Node 1 Unity, AMock, and Service Module Zvezda

  8. Rapid Biochemical Analysis on the International Space Station (ISS): Preparing for Human Exploration of the Moon and Mars

    Science.gov (United States)

    Maule, J.; Morris, Heather; Monaco, L.; Steele, A.; Wainwright, N.

    2008-01-01

    The Lab-on-a-Chip Application Development - Portable Test System, known as LOCAD-PTS, was launched to the International Space Station (ISS) aboard Space Shuttle Discovery (STS-116) on December 9th,2006. Since that time, it has remained onboard ISS and has been operated by the crew on 10 separate occasions LOCAD-PTS is a handheld device for rapid biochemical analysis; it consists of a spectrophotometer, a series of interchangeable cartridges, a pipette and several clean/sterilized swabbing kits to obtain samples from ISS surfaces. Sampling, quantitative analysis and data retrieval is performed onboard, therefore reducing the need to return samples to Earth. Less than 20 minutes are required from sampling to data, significantly faster than existing culture-based methods on ISS, which require 3-5 days. Different cartridges are available for the detection of different target molecules (simply by changing the formulation within each cartridge), thereby maximizing the benefit and applications addressed by a single instrument. Initial tests on ISS have focused on the detection of the bact.erial macromolecule endotoxin, a component of bacterial cell walls. LOCAD-PTS detects endotoxin with a cartridge that contains a formulation known as Limulus Amebocyte Lysate (LAL) assay. LAL is derived from blood of the horseshoe crab, Limulus polyphemus, and detects enodotoxin with an enzyme cascade that triggers generation Of a yellow colored dye, p-nitroanaline. The more p-nitroanaline product, the more endotoxin is in the original sample. To enable quantitative analysis, the absorbance of this color is measured by LOCAD-PTS through a 395 nm filter and compared with an internal calibration curve, to provide a reading on the LED display that ranges from 0.05 Endotoxin Units (EU)/ml to 5 EU/ml. Several surface sites were analyzed within ISS between March 2007 and February 2008, including multiple locations in the US Laboratory Destiny, Node 1 Unity, AMock, and Service Module Zvezda

  9. Rapid Biochemical Analysis on the International Space Station (ISS): Preparing for Human Exploration of the Moon and Mars

    Science.gov (United States)

    Maule, J.; Morris, Heather; Monaco, L.; Steele, A.; Wainwright, N.

    2008-01-01

    The Lab-on-a-Chip Application Development - Portable Test System, known as LOCAD-PTS, was launched to the International Space Station (ISS) aboard Space Shuttle Discovery (STS-116) on December 9th,2006. Since that time, it has remained onboard ISS and has been operated by the crew on 10 separate occasions LOCAD-PTS is a handheld device for rapid biochemical analysis; it consists of a spectrophotometer, a series of interchangeable cartridges, a pipette and several clean/sterilized swabbing kits to obtain samples from ISS surfaces. Sampling, quantitative analysis and data retrieval is performed onboard, therefore reducing the need to return samples to Earth. Less than 20 minutes are required from sampling to data, significantly faster than existing culture-based methods on ISS, which require 3-5 days. Different cartridges are available for the detection of different target molecules (simply by changing the formulation within each cartridge), thereby maximizing the benefit and applications addressed by a single instrument. Initial tests on ISS have focused on the detection of the bact.erial macromolecule endotoxin, a component of bacterial cell walls. LOCAD-PTS detects endotoxin with a cartridge that contains a formulation known as Limulus Amebocyte Lysate (LAL) assay. LAL is derived from blood of the horseshoe crab, Limulus polyphemus, and detects enodotoxin with an enzyme cascade that triggers generation Of a yellow colored dye, p-nitroanaline. The more p-nitroanaline product, the more endotoxin is in the original sample. To enable quantitative analysis, the absorbance of this color is measured by LOCAD-PTS through a 395 nm filter and compared with an internal calibration curve, to provide a reading on the LED display that ranges from 0.05 Endotoxin Units (EU)/ml to 5 EU/ml. Several surface sites were analyzed within ISS between March 2007 and February 2008, including multiple locations in the US Laboratory Destiny, Node 1 Unity, AMock, and Service Module Zvezda

  10. International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update

    Science.gov (United States)

    Hernandez-Pellerano, Amri; Iannello, Christopher J.; Garrett, Henry B.; Ging, Andrew T.; Katz, Ira; Keith, R. Lloyd; Minow, Joseph I.; Willis, Emily M.; Schneider, Todd A.; Whittlesey, Edward J.; Wollack, Edward J.; Wright, Kenneth H.

    2014-01-01

    The International Space Station (ISS) vehicle undergoes spacecraft charging as it interacts with Earth's ionosphere and magnetic field. The interaction can result in a large potential difference developing between the ISS metal chassis and the local ionosphere plasma environment. If an astronaut conducting extravehicular activities (EVA) is exposed to the potential difference, then a possible electrical shock hazard arises. The control of this hazard was addressed by a number of documents within the ISS Program (ISSP) including Catastrophic Safety Hazard for Astronauts on EVA (ISS-EVA-312-4A_revE). The safety hazard identified the risk for an astronaut to experience an electrical shock in the event an arc was generated on an extravehicular mobility unit (EMU) surface. A catastrophic safety hazard, by the ISS requirements, necessitates mitigation by a two-fault tolerant system of hazard controls. Traditionally, the plasma contactor units (PCUs) on the ISS have been used to limit the charging and serve as a "ground strap" between the ISS structure and the surrounding ionospheric plasma. In 2009, a previous NASA Engineering and Safety Center (NESC) team evaluated the PCU utilization plan (NESC Request #07-054-E) with the objective to assess whether leaving PCUs off during non-EVA time periods presented risk to the ISS through assembly completion. For this study, in situ measurements of ISS charging, covering the installation of three of the four photovoltaic arrays, and laboratory testing results provided key data to underpin the assessment. The conclusion stated, "there appears to be no significant risk of damage to critical equipment nor excessive ISS thermal coating damage as a result of eliminating PCU operations during non- EVA times." In 2013, the ISSP was presented with recommendations from Boeing Space Environments for the "Conditional" Marginalization of Plasma Hazard. These recommendations include a plan that would keep the PCUs off during EVAs when the

  11. Constraints on Mimas' interior from Cassini ISS libration measurements.

    Science.gov (United States)

    Tajeddine, R; Rambaux, N; Lainey, V; Charnoz, S; Richard, A; Rivoldini, A; Noyelles, B

    2014-10-17

    Like our Moon, the majority of the solar system's satellites are locked in a 1:1 spin-orbit resonance; on average, these satellites show the same face toward the planet at a constant rotation rate equal to the satellite's orbital rate. In addition to the uniform rotational motion, physical librations (oscillations about an equilibrium) also occur. The librations may contain signatures of the satellite's internal properties. Using stereophotogrammetry on Cassini Image Science Subsystem (ISS) images, we measured longitudinal physical forced librations of Saturn's moon Mimas. Our measurements confirm all the libration amplitudes calculated from the orbital dynamics, with one exception. This amplitude depends mainly on Mimas' internal structure and has an observed value of twice the predicted one, assuming hydrostatic equilibrium. After considering various possible interior models of Mimas, we argue that the satellite has either a large nonhydrostatic interior, or a hydrostatic one with an internal ocean beneath a thick icy shell. Copyright © 2014, American Association for the Advancement of Science.

  12. SAGE III on ISS Lessons Learned on Thermal Interface Design

    Science.gov (United States)

    Davis, Warren

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument - the fifth in a series of instruments developed for monitoring vertical distribution of aerosols, ozone, and other trace gases in the Earth's stratosphere and troposphere - is currently scheduled for delivery to the International Space Station (ISS) via the SpaceX Dragon vehicle in 2016. The Instrument Adapter Module (IAM), one of many SAGE III subsystems, continuously dissipates a considerable amount of thermal energy during mission operations. Although a portion of this energy is transferred via its large radiator surface area, the majority must be conductively transferred to the ExPRESS Payload Adapter (ExPA) to satisfy thermal mitigation requirements. The baseline IAM-ExPA mechanical interface did not afford the thermal conductance necessary to prevent the IAM from overheating in hot on-orbit cases, and high interfacial conductance was difficult to achieve given the large span between mechanical fasteners, less than stringent flatness specifications, and material usage constraints due to strict contamination requirements. This paper will examine the evolution of the IAM-ExPA thermal interface over the course of three design iterations and will include discussion on design challenges, material selection, testing successes and failures, and lessons learned.

  13. Matroshka DOSTEL measurements onboard the International Space Station (ISS

    Directory of Open Access Journals (Sweden)

    Labrenz Johannes

    2015-01-01

    Full Text Available This paper presents the absorbed dose and dose equivalent rate measurements achieved with the DOSimetry TElescope (DOSTEL during the two Matroshka (MTR experiment campaigns in 2004/2005 (MTR-1 and 2007/2008 (MTR-2B. The comparison between the inside (MTR-2B and outside (MTR-1 mission has shown that the shielding thickness provided by the International Space Station (ISS spacecraft hull has a minor effect on the radiation exposure caused by Galactic Cosmic Rays (GCR. The exposure varies with the solar modulation of the GCR, too. Particles from Earth’s radiation belts are effectively shielded by the spacecraft hull, and thus the contribution to the radiation exposure is lower for the inside measurement during MTR-2B. While the MTR-DOSTEL absorbed dose rate shows a good agreement with passive detectors of the MTR experiment for the MTR-2B mission phase, the MTR-1 absorbed dose rates from MTR-DOSTEL measurements are much lower than those obtained by a nearby passive detector. Observed discrepancies between the MTR-DOSTEL measurements and the passive detectors located nearby could be explained by the additional exposure to an enhanced flux of electrons trapped between L-parameter 2.5 and 3.5 caused by solar storms in July 2004.

  14. The gamma-ray burst monitor for Lobster-ISS

    CERN Document Server

    Amati, L; Auricchio, N; Caroli, E; Basili, A; Bogliolo, A; Domenico, G D; Franceschini, T; Guidorzi, C; Landini, G; Masetti, N; Montanari, E; Orlandini, M; Palazzi, E; Silvestri, S; Stephen, J B; Ventura, G

    2006-01-01

    Lobster-ISS is an X-ray all-sky monitor experiment selected by ESA two years ago for a Phase A study (now almost completed) for a future flight (2009) aboard the Columbus Exposed Payload Facility of the International Space Station. The main instrument, based on MCP optics with Lobster-eye geometry, has an energy passband from 0.1 to 3.5 keV, an unprecedented daily sensitivity of 2x10^{-12} erg cm^{-2}s$^{-1}, and it is capable to scan, during each orbit, the entire sky with an angular resolution of 4--6 arcmin. This X-ray telescope is flanked by a Gamma Ray Burst Monitor, with the minimum requirement of recognizing true GRBs from other transient events. In this paper we describe the GRBM. In addition to the minimum requirement, the instrument proposed is capable to roughly localize GRBs which occur in the Lobster FOV (162x22.5 degrees) and to significantly extend the scientific capabilities of the main instrument for the study of GRBs and X-ray transients. The combination of the two instruments will allow an ...

  15. Analysis of Advanced Respiratory Support Onboard ISS and CCV

    Science.gov (United States)

    Shah, Ronak V.; Kertsman, Eric L.; Alexander, David J.; Duchesne, Ted; Law, Jennifer; Roden, Sean K.

    2014-01-01

    NASA is collaborating with private entities for the development of commercial space vehicles. The Space and Clinical Operations Division was tasked to review the oxygen and respiratory support system and recommend what capabilities, if any, the vehicle should have to support the return of an ill or injured crewmember. The Integrated Medical Model (IMM) was utilized as a data source for the development of these recommendations. The Integrated Medical Model (IMM) was used to simulate a six month, six crew, International Space Station (ISS) mission. Three medical system scenarios were considered based on the availability of (1) oxygen only, (2) oxygen and a ventilator, or (3) neither oxygen nor ventilator. The IMM analysis provided probability estimates of medical events that would require either oxygen or ventilator support. It also provided estimates of crew health, the probability of evacuation, and the probability of loss of crew life secondary to medical events for each of the three medical system scenarios. These IMM outputs were used as objective data to enable evidence-based decisions regarding oxygen and respiratory support system requirements for commercial crew vehicles. The IMM provides data that may be utilized to support informed decisions regarding the development of medical systems for commercial crew vehicles.

  16. CALET: a high energy astroparticle physics experiment on the ISS

    CERN Document Server

    Marrocchesi, Pier Simone

    2015-01-01

    CALET (CALorimetric Electron Telescope) is a high energy astroparticle physics experiment planned for a long exposure mission aboard the International Space Station (ISS) by the Japanese Aerospace Exploration Agency, in collaboration with the Italian Space Agency (ASI) and NASA. The main science goal is high precision measurements of the inclusive electron (+positron) spectrum below 1 TeV and the exploration of the energy region above 1 TeV, where the shape of the high end of the spectrum might unveil the presence of nearby sources of acceleration. CALET has been designed to achieve a large proton rejection capability (>10$^5$) with a fine grained imaging calorimeter (IMC) followed by a total absorption calorimeter (TASC), for a total thickness of 30 X$_{0}$ and 1.3 proton interaction length. With an excellent energy resolution and a lower background contamination with respect to previous experiments, CALET will search for possible spectral signatures of dark matter with both electrons and gamma rays. CALET w...

  17. Spacesuit Water Membrane Evaporator Integration with the ISS Extravehicular Mobility

    Science.gov (United States)

    Margiott, Victoria; Boyle, Robert

    2014-01-01

    NASA has developed a Solid Water Membrane Evaporation (SWME) to provide cooling for the next generation spacesuit. One approach to increasing the TRL of the system is to incorporate this hardware with the existing EMU. Several integration issues were addressed to support a potential demonstration of the SWME with the existing EMU. Systems analysis was performed to assess the capability of the SWME to maintain crewmember cooling and comfort as a replacement for sublimation. The materials of the SWME were reviewed to address compatibility with the EMU. Conceptual system placement and integration with the EMU via an EVA umbilical system to ensure crew mobility and Airlock egress were performed. A concept of operation for EVA use was identified that is compatible with the existing system. This concept is extensible as a means to provide cooling for the existing EMU. The cooling system of one of the EMUs on orbit has degraded, with the root cause undetermined. Should there be a common cause resident on ISS, this integration could provide a means to recover cooling capability for EMUs on orbit.

  18. ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project

    Science.gov (United States)

    Morrison, Russell H.; Holt, Mike

    2005-01-01

    The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate buffer concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered. The remediation steps include changes in the coolant chemistry specification, development of a suite of new antimicrobial additives, and development of devices for the removal of nickel and phosphate ions from the coolant. This paper presents an overview of the anomalies, their known and suspected system effects, their causes, and the actions being taken to remediate the coolant.

  19. Internet-Based System for Voice Communication With the ISS

    Science.gov (United States)

    Chamberlain, James; Myers, Gerry; Clem, David; Speir, Terri

    2005-01-01

    The Internet Voice Distribution System (IVoDS) is a voice-communication system that comprises mainly computer hardware and software. The IVoDS was developed to supplement and eventually replace the Enhanced Voice Distribution System (EVoDS), which, heretofore, has constituted the terrestrial subsystem of a system for voice communications among crewmembers of the International Space Station (ISS), workers at the Payloads Operations Center at Marshall Space Flight Center, principal investigators at diverse locations who are responsible for specific payloads, and others. The IVoDS utilizes a communication infrastructure of NASA and NASArelated intranets in addition to, as its name suggests, the Internet. Whereas the EVoDS utilizes traditional circuitswitched telephony, the IVoDS is a packet-data system that utilizes a voice over Internet protocol (VOIP). Relative to the EVoDS, the IVoDS offers advantages of greater flexibility and lower cost for expansion and reconfiguration. The IVoDS is an extended version of a commercial Internet-based voice conferencing system that enables each user to participate in only one conference at a time. In the IVoDS, a user can receive audio from as many as eight conferences simultaneously while sending audio to one of them. The IVoDS also incorporates administrative controls, beyond those of the commercial system, that provide greater security and control of the capabilities and authorizations for talking and listening afforded to each user.

  20. Measuring CMB polarization from ISS: the SPOrt experiment

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, L.P.L. [Physics Dep. ' G. Occhialini' , Universita di Milano-Bicocca and INFN sezione di Milano-Bicocca, Piazza della Scienza, 3 I-20126 Milan (Italy)

    2004-09-01

    The SPOrt (Sky Polarization Observatory) experiment aims to measure CMBP (cosmic microwave background polarization) on about 80% of the sky from space. Selected by ESA to fly on board the ISS in 2006, it is funded by the Italian Space Agency (ASI). As shown also by the recent WMAP release, CMBP data, besides of removing various degeneracies among cosmological parameters, provided new and important information on the cosmic opacity {tau} and, therefore, on very early cosmic objects which reionized the world at z {approx} 15. Most such information is obtained from low-l spectral components, that SPOrt, with its HPBW resolution of 7 degrees will explore with a high level of sensitivity. The 4 polarimeters of SPOrt work at 22, 32 and (2x) 90 GHz. At lower frequencies they will provide a (nearly) all-sky survey of Galactic synchrotron polarized emission, while data at the higher frequency will measure the CMBP signal. Correlating SPOrt with anisotropy data, by other experiments, shall therefore provide significant cosmological information. We performed a number of simulations of SPOrt performance, aimed to determine how far {tau} and/or other parameter(s) concerning reionization are constrained by the expected data. We also considered a possible interplay between reionization histories and Dark Energy nature. Besides of information on technological developments for systematics reduction, long term stability and observing time efficiency, we report here recent outputs on the expected SPOrt performance in constraining cosmological models.

  1. Improved Emergency Egress Lighting System for the ISS

    Science.gov (United States)

    Eaton, Leslie L.; Barr, Don A.

    2005-01-01

    Emergency lights provide illumination in corridors, stairwells, ramps, escalators, aisles, and exit passageways during power failures. Safety and visibility are critical during a power outage. If emergency lights fail to operate properly, the building occupants can become disoriented. Four documents in a collection discuss different topics relating to a proposed improved emergency egress lighting system (EELS) for the International Space Station (ISS). While the present EELS is designed around rows of green-light-emitting diodes, the proposed system contains strips of electroluminescent tape using different colors for each egress path. The proposed EELS can be powered by the same battery currently used by the present EELS, but would require an inverter because electroluminescent devices require AC. Electroluminescent devices also require significantly less current and, depending on the color, would emit 3 to 8 times the light of the present EELS. In addition, they could operate for up to 75 hours (versus .20 minutes for the present system). The first document contains a one-page summary of the proposal and an evaluation of technical merit. The second document summarizes the motivation for, and the design of, the proposed EELS. The third document addresses relevant aspects of the measurement of spectral sensitivity and the psychophysics of perception of light. The fourth document presents additional background information and technical specifications for the electroluminescent tapes.

  2. Evaluating the effectiveness of the use of fixed assets defense enterprises (by the example of JSC “Concern ‘Sozvezdie’”

    Directory of Open Access Journals (Sweden)

    A. I. Khorev

    2016-01-01

    Full Text Available Currently, the problem of sustainable development of enterprises of the Russian military-industrial complex has not only military, but economic importance. The article provides an analysis of the availability, scope, composition and structure of the basic production assets of JSC "Concern "Sozvezdie" for 2013-2015, and analysis of efficiency of use of the basic production assets in JSC "Concern "Sozvezdie" for 2013-2015. JSC "Concern "Sozvezdie" JSC approved the program of innovative development and technological modernization, the development objective of which is the proved choice of the list and content of activities, the implementation of which should ensure the development of the Concern as a scientific and industrial socio-economic system – a holistic entity. Assessment of the dynamics of the basic production assets has shown that the security of JSC "Concern "Sozvezdie" OPF for 2013-2015 increased by 89,81%. The degree of updating of production assets during the period was 50.7%. The analysis of the efficiency of the basic production assets in JSC "Concern "Sozvezdie" has shown that for every 1% increase in revenue major funds have grown by 0.65%. The rate of fondamenti decreased by 18.2%. The assessment of efficiency of use of the basic production assets of JSC "Concern "Sozvezdie" shows that the total technical re-equipment of scientific and technological, testing and production and technological base of the enterprises of the Concern is directed on creation of production capacities to ensure serial production of advanced weapons, military and special equipment in the framework of the state defense order, as the main activity of the majority of the companies of the Group, and reconstruction, the expansion and creation of production to the production of innovative civilian products.

  3. A novel marine bacterium Isoptericola sp. JS-C42 with the ability to saccharifying the plant biomasses for the aid in cellulosic ethanol production

    Directory of Open Access Journals (Sweden)

    Velayudhan Satheeja Santhi

    2014-06-01

    Full Text Available The ever growing demands for food products such as starch and sugar produces; there is a need to find the sources for saccharification for cellulosic bioethanol production. This study provides the first evidence of the lignocellulolytic and saccharifying ability of a marine bacterium namely Isoptericola sp. JS-C42, a Gram positive actinobacterium with the cocci cells embedded on mycelia isolated from the Arabian Sea, India. It exhibited highest filter paper unit effect, endoglucanase, exoglucanase, cellobiohydrolase, β-glucosidase, xylanase and ligninase effect. The hydrolytic potential of the enzymes displayed the efficient saccharification capability of steam pretreated biomass. It was also found to degrade the paddy, sorghum, Acacia mangium and Ficus religiosa into simple reducing sugars by its efficient lignocellulose enzyme complex with limited consumption of sugars. Production of ethanol was also achieved with the Saccharomyces cerevisiae. Overall, it offers a great potential for the cellulosic ethanol production in an economically reliable and eco-friendly point-of-care.

  4. 20 K Helium Refrigeration System for NASA-JSC Chamber-A

    Science.gov (United States)

    Homan, J.; Redman, R.; Ganni, V.; Sidi-Yekhelef, A.; Knudsen, P.; Norton, R.; Lauterbach, J.; Linza, R.; Vargas, G.

    2013-01-01

    A new 20 K helium refrigerator installed at NASA Johnson Space Center's Space Environment Simulation Laboratory (SESL) was successfully commissioned and tested in 2012. The refrigerator is used to create a deep space environment within SESL s Chamber A to perform ground testing of the James Webb Space Telescope. The chamber previously and currently still has helium cryopumping panels (CPP) and LN2 shrouds used to create Low Earth Orbit environments. Now with the new refrigerator and new helium shrouds (45 x 65 ) the chamber can create a deep space environment. The process design, system analysis, specification development, and commissioning oversight were performed by the cryogenics department at Jefferson Labs, while the contracts and system installation was performed by the ESC group at JSC. Commissioning data indicate a inverse coefficient of performance better than 70 W/W for a 18 KW load at 20 K (accounting for liquid nitrogen precooling power) that remains essentially constant down to 1/3 of this load. Even at 10 percent of the maximum capacity, the performance is better than 140 W/W at 20K. The refrigerator exceeded all design goals and demonstrated the ability to support a wide load range from 10kW at 15 K to 100 kW at 100K. The refrigerator is capable of operating at any load temperature from 15K to ambient with tight temperature stability. The new shroud (36 tons of aluminum) can be cooled from room temperature to 20 K in 24 hours. This paper will outline the process design and commissioning results.

  5. 76 FR 65752 - International Space Station (ISS) National Laboratory Advisory Committee; Charter Renewal

    Science.gov (United States)

    2011-10-24

    ... SPACE ADMINISTRATION International Space Station (ISS) National Laboratory Advisory Committee; Charter Renewal AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal and... Relations, (202) 358-0550, National Aeronautics and Space Administration, Washington, DC 20546-0001....

  6. ISS Leak Detection and Astrophysics with Lobster-Eye X-Ray Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Demonstrate angular resolution and sensitivity. Successful lab demonstration of ISS leak checking, using nitrogen, electron beam, and Lobster x-ray optic. 

  7. Režissöör Jaini film on omasuguste seas ainus / Berit Toodo

    Index Scriptorium Estoniae

    Toodo, Berit

    2008-01-01

    Pärnu 22. dokumentaal- ja antropoloogiafilmide festivalil esilinastus india režissööri Rajele Jaini dokumentaalfilm "Silmalau üheksa liikumist". Filmis tegi oma viimase esinemise ka kuulus koreograaf Pina Bausch

  8. Observation Platform for Dynamic Biomedical and Biotechnology Experiments using the ISS Light Microscopy Module Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed "Observation platform for dynamic biomedical and biotechnology experiments using the ISS Light Microscopy Module" consists of a platen sized to fit the...

  9. Low-Cost Small Payload Return to Enable High Frequency ISS Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Terminal Velocity Aerospace, LLC (TVA) proposes to improve utilization of the International Space Station (ISS) by providing a system for on-demand return of...

  10. Survival time estimation using Injury Severity Score (ISS) in homicide cases.

    Science.gov (United States)

    Cros, Jérôme; Alvarez, Jean-Claude; Sbidian, Emilie; Charlier, Philippe; de la Grandmaison, Geoffroy Lorin

    2013-12-10

    The aim of our study was to assess the value of ISS to estimate survival time in a retrospective study of all homicidal deaths in the Western suburbs of Paris between 1994 and 2008. Stab wounds were the most common cause of death. Survival time between assault and death, determined in 107 cases out of 511 homicide cases, ranged from 0 min to 25 days (mean 39 h). There was an overall significant association between the survival time and the ISS score. ISS and survival time were strongly associated with male victims and a clear trend was seen with women. Regarding the type of wounds, a trend was seen with gunshot wounds and blunt injuries, but not with stab wounds. There was no influence of blood toxicological results and resuscitation attempts. Overall, ISS was a good predictor of a survival under 30 min. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Näitleja Tommy Lee Jonesi meditatsioon režissööritoolis / Andris Feldmanis

    Index Scriptorium Estoniae

    Feldmanis, Andris, 1982-

    2007-01-01

    Vestern "Melquiades Estrada kolm matust" ("The Three Burials of Melquiades Estrada") : stsenarist Guillermo Arriaga : režissöör ja osatäitja Tommy Lee Jones : operaator Chris Menges : Ameerika Ühendriigid, 2005

  12. Intelligent, Semi-Automated Procedure Aid (ISAPA) for ISS Flight Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop the Intelligent, Semi-Automated Procedure Aid (ISAPA) intended for use by International Space Station (ISS) ground controllers to increase the...

  13. Synchronized Position and Hold Reorient Experimental Satellites - International Space Station (SPHERES-ISS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Payload Systems Inc. (PSI) and the MIT Space Systems Laboratory (MIT-SSL) propose an innovative research program entitled SPHERES-ISS that uses their satellite...

  14. ISS U. S. National Laboratory NanoRacks III Facility Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I study will design a flight qualified NanoRacks III Facility that is similar to the conventional NanoRacks facilities currently on the ISS but with...

  15. Robotic, MEMS-based Multi Utility Sample Preparation Instrument for ISS Biological Workstation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a multi-functional, automated sample preparation instrument for biological wet-lab workstations on the ISS. The instrument is based on a...

  16. Näitleja Tommy Lee Jonesi meditatsioon režissööritoolis / Andris Feldmanis

    Index Scriptorium Estoniae

    Feldmanis, Andris, 1982-

    2007-01-01

    Vestern "Melquiades Estrada kolm matust" ("The Three Burials of Melquiades Estrada") : stsenarist Guillermo Arriaga : režissöör ja osatäitja Tommy Lee Jones : operaator Chris Menges : Ameerika Ühendriigid, 2005

  17. Observation Platform for Dynamic Biomedical and Biotechnology Experiments using the ISS Light Microscopy Module Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the research is the completion of an observation platform for the ISS Light Microscopy Module (LMM) as it currently resides on the US Fluids...

  18. Režissöör Jaini film on omasuguste seas ainus / Berit Toodo

    Index Scriptorium Estoniae

    Toodo, Berit

    2008-01-01

    Pärnu 22. dokumentaal- ja antropoloogiafilmide festivalil esilinastus india režissööri Rajele Jaini dokumentaalfilm "Silmalau üheksa liikumist". Filmis tegi oma viimase esinemise ka kuulus koreograaf Pina Bausch

  19. Global Precipitation Measurement (GPM) and International Space Station (ISS) Coordination for Cubesat Deployments

    Science.gov (United States)

    Pawloski, James H.; Aviles, Jorge; Myers, Ralph; Parris, Joshua; Corley, Bryan; Hehn, Garrett; Pascucci, Joseph

    2016-01-01

    This paper describes the specific problem of collision threat to GPM and risk to ISS CubeSat deployment and the process that was implemented to keep both missions safe from collision and maximize their project goals.

  20. 11th International Symposium on Superconductivity(ISS98); Dai 11 kai kokusai chodendo shinpojiumu (ISS '98)

    Energy Technology Data Exchange (ETDEWEB)

    Koshitsuka, Naomi

    1999-01-25

    The 11th international symposium on superconductivity(ISS98) was held at Sunpalace hotel in Fukuoka city for 3 days from 17th to 19th in November 1998. As a total impression, it is felt that the high temperature superconductivity started to apply for the SQUID, the microwave filters and the refrigerating machine cryogenic magnets etc. and that the developments of various equipment progressed by using the Bi wires and the bulk materials of Y type. Prof. Yonezawa gave the first basic lecture regarding not only the superconductivity but also the tendency of 21 century for all fields of science and technology. And he said that the superconductivity might be become the important parts in life science, energy, and the revolution of information which would be become the keywords of 21 century. Another two lectures were given regarding a tendency for development of SQUID and its application. In the afternoon of the first day, 5 speakers gave the basic lectures regarding the electronic applications of superconductivity, the new materials, the critical current, the wire materials of the next generation and the SQF devices. (NEDO)

  1. Space Environment Data Acquisition with the Kibo Exposed Facility on the International Space Station (ISS

    Directory of Open Access Journals (Sweden)

    T Obara

    2010-02-01

    Full Text Available The Space Environment Data Acquisition equipment (SEDA, which was mounted on the Exposed Facility (EF of the Japanese Experiment Module (JEM, also known as "Kibo" on the International Space Station (ISS, was developed to measure the space environment along the orbit of the ISS. This payload module, called the SEDA-Attached Payload (AP, began to measure the space environment in August 2009. This paper reports the mission objectives, instrumentation, and current status of the SEDA-AP.

  2. Space Environment Data Acquisition with KIBO Exposed Facility on the International Space Station (ISS)

    Science.gov (United States)

    Obara, Takahiro

    Space Environment Data Acquisition equipment with attached payload (SEDA-AP) which was mounted on the Exposed Facility (EF) of the Japanese Experiment Module (JEM, also known as “Kibo”) on the International Space Station (ISS) started to measure the space environment along the orbit of ISS from Sept. 2009. This paper reports the mission objectives, instrumentation, and current status of SEDA-AP.

  3. A Novel Ion Exchange System to Purify Mixed ISS Waste Water Brines for Chemical Production and Enhanced Water Recovery

    Science.gov (United States)

    Lunn, Griffin; Spencer, LaShelle; Ruby, Anna-Maria; McCaskill, Andrew

    2014-01-01

    Current International Space Station water recovery regimes produce a sizable portion of waste water brine. This brine is highly toxic and water recovery is poor: a highly wasteful proposition. With new biological techniques that do not require waste water chemical pretreatment, the resulting brine would be chromium-free and nitrate rich which can allow possible fertilizer recovery for future plant systems. Using a system of ion exchange resins we can remove hardness, sulfate, phosphate and nitrate from these brines to leave only sodium and potassium chloride. At this point modern chlor-alkali cells can be utilized to produce a low salt stream as well as an acid and base stream. The first stream can be used to gain higher water recovery through recycle to the water separation stage while the last two streams can be used to regenerate the ion exchange beds used here, as well as other ion exchange beds in the ISS. Conveniently these waste products from ion exchange regeneration would be suitable as plant fertilizer. In this report we go over the performance of state of the art resins designed for high selectivity of target ions under brine conditions. Using ersatz ISS waste water we can evaluate the performance of specific resins and calculate mass balances to determine resin effectiveness and process viability. If this system is feasible then we will be one step closer to closed loop environmental control and life support systems (ECLSS) for current or future applications.

  4. Observation Platform for Dynamic Biomedical and Biotechnology Experiments Using the International Space Station (ISS) Light Microscopy Module (LMM)

    Science.gov (United States)

    Kurk, Michael A. (Andy)

    2015-01-01

    Techshot, Inc., has developed an observation platform for the LMM on the ISS that will enable biomedical and biotechnology experiments. The LMM Dynamic Stage consists of an electronics module and the first two of a planned suite of experiment modules. Specimens and reagent solutions can be injected into a small, hollow microscope slide-the heart of the innovation-via a combination of small reservoirs, pumps, and valves. A life science experiment module allows investigators to load up to two different fluids for on-orbit, real-time image cytometry. Fluids can be changed to initiate a process, fix biological samples, or retrieve suspended cells. A colloid science experiment module conducts microparticle and nanoparticle tests for investigation of colloid self-assembly phenomena. This module includes a hollow glass slide and heating elements for the creation of a thermal gradient from one end of the slide to the other. The electronics module supports both experiment modules and contains a unique illuminator/condenser for bright and dark field and phase contrast illumination, power supplies for two piezoelectric pumps, and controller boards for pumps and valves. This observation platform safely contains internal fluids and will greatly accelerate the research and development (R&D) cycle of numerous experiments, products, and services aboard the ISS.

  5. Organization and Management of the International Space Station (ISS) Multilateral Medical Operations

    Science.gov (United States)

    Duncan, J. M.; Bogomolov, V. V.; Castrucci, F.; Koike, Y.; Comtois, J. M.; Sargsyan, A. E.

    2007-01-01

    The goal of this work is to review the principles, design, and function of the ISS multilateral medical authority and the medical support system of the ISS Program. Multilateral boards and panels provide operational framework, direct, and supervise the ISS joint medical operational activities. The Integrated Medical Group (IMG) provides front-line medical support of the crews. Results of ongoing activities are reviewed weekly by physician managers. A broader status review is conducted monthly to project the state of crew health and medical support for the following month. All boards, panels, and groups function effectively and without interruptions. Consensus prevails as the primary nature of decisions made by all ISS medical groups, including the ISS medical certification board. The sustained efforts of all partners have resulted in favorable medical outcomes of the initial fourteen long-duration expeditions. The medical support system appears to be mature and ready for further expansion of the roles of all Partners, and for the anticipated increase in the size of ISS crews.

  6. Space Environment Effects on Materials at Different Positions and Operational Periods of ISS

    Science.gov (United States)

    Kimoto, Yugo; Ichikawa, Shoichi; Miyazaki, Eiji; Matsumoto, Koji; Ishizawa, Junichiro; Shimamura, Hiroyuki; Yamanaka, Riyo; Suzuki, Mineo

    2009-01-01

    A space materials exposure experiment was condcuted on the exterior of the Russian Service Module (SM) of the International Space Station (ISS) using the Micro-Particles Capturer and Space Environment Exposure Device (MPAC&SEED) of the Japan Aerospace Exploration Agency (JAXA). Results reveal artificial environment effects such as sample contamination, attitude change effects on AO fluence, and shading effects of UV on ISS. The sample contamination was coming from ISS components. The particles attributed to micrometeoroids and/or debris captured by MPAC might originate from the ISS solar array. Another MPAC&SEED will be aboard the Exposure Facility of the Japanese Experiment Module, KIBO Exposure Facility (EF) on ISS. The JEM/MPAC&SEED is attached to the Space Environment Data Acquisition Equipment-Attached Payload (SEDA-AP) and is exposed to space. Actually, SEDA-AP is a payload on EF to be launched by Space Shuttle flight 2J/A. In fact, SEDA-AP has space environment monitors such as a high-energy particle monitor, atomic oxygen monitor, and plasma monitor to measure in-situ natural space environment data during JEM/MPAC&SEED exposure. Some exposure samples for JEM/MPAC&SEED are identical to SM/MPAC&SEED samples. Consequently, effects on identical materials at different positions and operation periods of ISS will be evaluated. This report summarizes results from space environment monitoring samples for atomic oxygen analysis on SM/MPAC&SEED, along with experimental plans for JEM/MPAC&SEED.

  7. Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS)

    Science.gov (United States)

    Gasbarre, Joseph; Walker, Richard; Cisewski, Michael; Zawodny, Joseph; Cheek, Dianne; Thornton, Brooke

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will extend the SAGE data record from the ideal vantage point of the International Space Station (ISS). The ISS orbital inclination is ideal for SAGE measurements providing coverage between 70 deg north and 70 deg south latitude. The SAGE data record includes an extensively validated data set including aerosol optical depth data dating to the Stratospheric Aerosol Measurement (SAM) experiments in 1975 and 1978 and stratospheric ozone profile data dating to the Stratospheric Aerosol and Gas Experiment (SAGE) in 1979. These and subsequent data records, notably from the SAGE II experiment launched on the Earth Radiation Budget Satellite in 1984 and the SAGE III experiment launched on the Russian Meteor-3M satellite in 2001, have supported a robust, long-term assessment of key atmospheric constituents. These scientific measurements provide the basis for the analysis of five of the nine critical constituents (aerosols, ozone (O3), nitrogen dioxide (NO2), water vapor (H2O), and air density using O2) identified in the U.S. National Plan for Stratospheric Monitoring. SAGE III on ISS was originally scheduled to fly on the ISS in the same timeframe as the Meteor-3M mission, but was postponed due to delays in ISS construction. The project was re-established in 2009.

  8. The First Decade of ISS Exercise: Lessons Learned on Expeditions 1-25.

    Science.gov (United States)

    Hayes, Judith

    2015-12-01

    Long-duration spaceflight results in musculoskeletal, cardiorespiratory, and sensorimotor deconditioning. Historically, exercise has been used as a countermeasure to mitigate these deleterious effects that occur as a consequence of microgravity exposures. The International Space Station (ISS) exercise community describes their approaches, biomedical surveillance, and lessons learned in the development of exercise countermeasure modalities and prescriptions for maintaining health and performance among station crews. This report is focused on the first 10 yr of ISS defined as Expeditions 1-25 and includes only crewmembers with missions > 30 d on ISS for all 5 partner agencies (United States, Russia, Europe, Japan, and Canada). All 72 cosmonauts and astronauts participated in the ISS exercise countermeasures program. This Supplement presents a series of papers that provide an overview of the first decade of ISS exercise from a multidisciplinary, multinational perspective to evaluate the initial countermeasure program and record its operational limitations and challenges. In addition, we provide results from standardized medical evaluations before, during, and after each mission. Information presented in this context is intended to describe baseline conditions of the ISS exercise program. This paper offers an introduction to the subsequent series of manuscripts.

  9. Growth of 48 built environment bacterial isolates on board the International Space Station (ISS).

    Science.gov (United States)

    Coil, David A; Neches, Russell Y; Lang, Jenna M; Brown, Wendy E; Severance, Mark; Cavalier, Darlene; Eisen, Jonathan A

    2016-01-01

    Background. While significant attention has been paid to the potential risk of pathogenic microbes aboard crewed spacecraft, the non-pathogenic microbes in these habitats have received less consideration. Preliminary work has demonstrated that the interior of the International Space Station (ISS) has a microbial community resembling those of built environments on Earth. Here we report the results of sending 48 bacterial strains, collected from built environments on Earth, for a growth experiment on the ISS. This project was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS). Results. Of the 48 strains sent to the ISS, 45 of them showed similar growth in space and on Earth using a relative growth measurement adapted for microgravity. The vast majority of species tested in this experiment have also been found in culture-independent surveys of the ISS. Only one bacterial strain showed significantly different growth in space. Bacillus safensis JPL-MERTA-8-2 grew 60% better in space than on Earth. Conclusions. The majority of bacteria tested were not affected by conditions aboard the ISS in this experiment (e.g., microgravity, cosmic radiation). Further work on Bacillus safensis could lead to interesting insights on why this strain grew so much better in space.

  10. International Space Station (ISS) Bacterial Filter Elements (BFEs): Filter Efficiency and Pressure Testing of Returned Units

    Science.gov (United States)

    Green, Robert D.; Agui, Juan H.; Vijayakumar, R.

    2017-01-01

    The air revitalization system aboard the International Space Station (ISS) provides the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation due to the microgravity environment in Low Earth Orbit (LEO). The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Adsorption (HEPA) media filters deployed at multiple locations in each U.S. Segment module; these filters are referred to as Bacterial Filter Elements, or BFEs. These filters see a replacement interval, as part of maintenance, of 2-5 years dependent on location in the ISS. In this work, we present particulate removal efficiency, pressure drop, and leak test results for a sample set of 8 BFEs returned from the ISS after filter replacement. The results can potentially be utilized by the ISS Program to ascertain whether the present replacement interval can be maintained or extended to balance the on-ground filter inventory with extension of the lifetime of ISS beyond 2024. These results can also provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.

  11. Growth of 48 built environment bacterial isolates on board the International Space Station (ISS

    Directory of Open Access Journals (Sweden)

    David A. Coil

    2016-03-01

    Full Text Available Background. While significant attention has been paid to the potential risk of pathogenic microbes aboard crewed spacecraft, the non-pathogenic microbes in these habitats have received less consideration. Preliminary work has demonstrated that the interior of the International Space Station (ISS has a microbial community resembling those of built environments on Earth. Here we report the results of sending 48 bacterial strains, collected from built environments on Earth, for a growth experiment on the ISS. This project was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS. Results. Of the 48 strains sent to the ISS, 45 of them showed similar growth in space and on Earth using a relative growth measurement adapted for microgravity. The vast majority of species tested in this experiment have also been found in culture-independent surveys of the ISS. Only one bacterial strain showed significantly different growth in space. Bacillus safensis JPL-MERTA-8-2 grew 60% better in space than on Earth. Conclusions. The majority of bacteria tested were not affected by conditions aboard the ISS in this experiment (e.g., microgravity, cosmic radiation. Further work on Bacillus safensis could lead to interesting insights on why this strain grew so much better in space.

  12. The FASES instrument development and experiment preparation for the ISS

    Science.gov (United States)

    Picker, Gerold; Gollinger, Klaus; Greger, Ralf; Dettmann, Jan; Winter, Josef; Dewandre, Thierry; Castiglione, Luigi; Vincent-Bonnieu, Sebastien; Liggieri, Libero; Clausse, Daniele; Antoni, Mickael

    The FASES experiments target the investigation of the stability of emulsions. The main objec-tives are the study of the surfactant adsorption at the liquid / liquid interfaces, the interaction of the droplets as well as the behaviour of the liquid film between nearby drops. Particular focus is given to the dynamic droplet evolution during emulsion destabilisation. The results of the experiments shall support development of methods for the modelling of droplet size distri-butions, which are important to many industries using stable emulsions like food production, cosmetics and pharmaceutics or unstable emulsions as required for applications in waste water treatment or crude oil recovery. The development of the experimental instrumentation was initiated in 2002. The flight instru-ment hardware development was started in 2004 and finally the flight unit was completed in 2009. Currently the final flight preparation is proceeding targeting a launch to the International Space Station (ISS) with Progress 39P in September 2010. The experiment setup of the instrument is accommodated in a box type insert called Experiment Container (EC), which will be installed in the Fluid Science Laboratory part of the European Columbus module of the ISS. The EC is composed of two diagnostics instruments for the investigation of transparent and opaque liquid emulsion. The transparent emulsions will be subject to the experiment called "Investigations on drop/drop interactions in Transparent Emulsions" (ITEM). The opaque emulsion samples will be studied in the experiment called "Investigations on concentrated or opaque Emulsions and on Phase Inversions" (EMPI). The thermal conditioning unit (TCU) allows performing homogeneous thermalization, tem-perature sweeps, emulsion preparation by stirrer, and optical diagnostics with a scanning mi-croscope. The objective of the instrument is the 3D reconstruction of the emulsion droplet distribution in the liquid matrix in terms of the droplet sizes

  13. CALET on the ISS: a high energy astroparticle physics experiment

    Science.gov (United States)

    Marrocchesi, Pier Simone; CALET Collaboration

    2016-05-01

    CALET is a space mission of the Japanese Aerospace Agency (JAXA) in collaboration with the Italian Space Agency (ASI) and NASA. The CALET instrument (CALorimetric Electron Telescope) is planned for a long exposure on the JEM-EF, an external platform of the Japanese Experiment Module KIBO, aboard the International Space Station (ISS). The main science objectives include high precision measurements of the inclusive electron (+positron) spectrum below 1 TeV and the exploration of the energy region above 1 TeV, where the shape of the high end of the spectrum might reveal the presence of nearby sources of acceleration. With an excellent energy resolution and low background contamination CALET will search for possible spectral signatures of dark matter with both electrons and gamma rays. It will also measure the high energy spectra and relative abundance of cosmic nuclei from proton to iron and detect trans-iron elements up to Z ~ 40. With a large exposure and high energy resolution, CALET will be able to verify and complement the observations of CREAM, PAMELA and AMS-02 on a possible deviation from a pure power-law of proton and He spectra in the region of a few hundred GeV and to extend the study to the multi-TeV region. CALET will also contribute to clarify the present experimental picture on the energy dependence of the boron/carbon ratio, below and above 1 TeV/n, thereby providing valuable information on cosmic-ray propagation in the galaxy. Gamma-ray transients will be studied with a dedicated Gamma-ray Burst Monitor (GBM).

  14. Tidally modulated eruptions on Enceladus: Cassini ISS observations and models

    Energy Technology Data Exchange (ETDEWEB)

    Nimmo, Francis [Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064 (United States); Porco, Carolyn; Mitchell, Colin, E-mail: carolyn@ciclops.org [CICLOPS, Space Science Institute, Boulder, CO 80304 (United States)

    2014-09-01

    We use images acquired by the Cassini Imaging Science Subsystem (ISS) to investigate the temporal variation of the brightness and height of the south polar plume of Enceladus. The plume's brightness peaks around the moon's apoapse, but with no systematic variation in scale height with either plume brightness or Enceladus' orbital position. We compare our results, both alone and supplemented with Cassini near-infrared observations, with predictions obtained from models in which tidal stresses are the principal control of the eruptive behavior. There are three main ways of explaining the observations: (1) the activity is controlled by right-lateral strike slip motion; (2) the activity is driven by eccentricity tides with an apparent time delay of about 5 hr; (3) the activity is driven by eccentricity tides plus a 1:1 physical libration with an amplitude of about 0.°8 (3.5 km). The second hypothesis might imply either a delayed eruptive response, or a dissipative, viscoelastic interior. The third hypothesis requires a libration amplitude an order of magnitude larger than predicted for a solid Enceladus. While we cannot currently exclude any of these hypotheses, the third, which is plausible for an Enceladus with a subsurface ocean, is testable by using repeat imaging of the moon's surface. A dissipative interior suggests that a regional background heat source should be detectable. The lack of a systematic variation in plume scale height, despite the large variations in plume brightness, is plausibly the result of supersonic flow; the details of the eruption process are yet to be understood.

  15. LEAP - A Large Area GRB Polarimeter for the ISS

    Science.gov (United States)

    McConnell, Mark L.; Baring, Matthew G.; Bloser, Peter F.; Briggs, Michael Stephen; Connaughton, Valerie; Dwyer, Joseph; Gaskin, Jessica; Grove, J. Eric; Gunji, Shuichi; Hartmann, Dieter; Hayashida, Kiyoshi; Hill, Joanne E.; Kippen, R. Marc; Kishimoto, Shunji; Kishimoto, Yuji; Krizmanic, John F.; Lundman, Christoffer; Mattingly, David; McBreen, Sheila; Meegan, Charles A.; Mihara, Tatehiro; Nakamori, Takeshi; Pearce, Mark; Phlips, Bernard; Preece, Robert D.; Produit, Nicolas; Ryan, James M.; Ryde, Felix; Sakamoto, Takanori; Strickman, Mark Samuel; Sturner, Steven J.; Takahashi, Hiromitsu; Toma, Kenji; Vestrand, W. Thomas; Wilson-Hodge, Colleen A.; yatsu, Yoichi; Yonetoku, Daisuke; Zhang, Bing

    2017-08-01

    The LargE Area burst Polarimeter (LEAP) is a mission concept for a wide FOV Compton scatter polarimeter instrument that would be mounted as an external payload on the International Space Station (ISS) in 2022. It has recently been proposed as an astrophysics Mission of Opportunity (MoO), with the primary objective of measuring polarization of the prompt emission of Gamma Ray Bursts (GRBs). It will achieve its science objectives with a simple mission design that features a single instrument based entirely on well-established, flight-proven scintillator-photomultiplier tube (PMT) technologies. LEAP will provide GRB polarization measurements from 30-500 keV and GRB spectroscopy from 5 keV up to 5 MeV, and will self-sufficiently provide the source localization that is required for analysis of the polarization data. The instrument consists of 9 independent polarimeter modules and associated electronics. Each module is a 12 x 12 array of independent plastic and CsI(Tl) scintillator elements, each with individual PMT readout, to identify and measure Compton scatter events. It will provide coverage of GRB spectra over a range that includes most values of Ep. With a total geometric scintillator area of 5000 cm2, LEAP will provide a total effective area for polarization (double scatter) events of ~500 cm2. LEAP will trigger on >200 GRBs within its FOV during a two-year mission. At least 120 GRBs will have sufficient counts to enable localization with an error of 50%, as suggested by published results, LEAP will provide definitive polarization measurements on ~100 GRBs. These data will allow LEAP to differentiate between the intrinsic and geometric classes of GRB models and further distinguish between two geometric models at the 95% confidence level. Detailed time-resolved and/or energy-resolved studies will be conducted for the brightest GRBs.

  16. Radiation Test Results on COTS and non-COTS Electronic Devices for NASA-JSC Space Flight Projects

    Science.gov (United States)

    Allums, Kimberly K.; O'Neill, P. M.; Reddell, B. D.; Nguyen, K. V.; Bailey, C. R.

    2012-01-01

    This presentation reports the results of recent proton and heavy ion Single Event Effect (SEE) testing on a variety of COTS and non-COTs electronic devices and assemblies tested for the Space Shuttle, International Space Station (ISS) and Multi-Purpose Crew Vehicle (MPCV).

  17. Additive Manufacturing, Design, Testing, and Fabrication: A Full Engineering Experience at JSC

    Science.gov (United States)

    Zusack, Steven

    2016-01-01

    I worked on several projects this term. While most projects involved additive manufacturing, I was also involved with two design projects, two testing projects, and a fabrication project. The primary mentor for these was Richard Hagen. Secondary mentors were Hai Nguyen, Khadijah Shariff, and fabrication training from James Brown. Overall, my experience at JSC has been successful and what I have learned will continue to help me in my engineering education and profession long after I leave. My 3D printing projects ranged from less than a 1 cubic centimeter to about 1 cubic foot and involved several printers using different printing technologies. It was exciting to become familiar with printing technologies such as industrial grade FDM (Fused Deposition Modeling), the relatively new SLA (Stereolithography), and PolyJet. My primary duty with the FDM printers was to model parts that came in from various sources to print effectively and efficiently. Using methods my mentor taught me and the Stratasys Insight software, I was able to minimize imperfections, hasten build time, improve strength for specific forces (tensile, shear, etc...), and reduce likelihood of a print-failure. Also using FDM, I learned how to repair a part after it was printed. This is done by using a special kind of glue that chemically melts the two faces of plastic parts together to form a fused interface. My first goal with SLA technology was to bring the printer back to operational readiness. In becoming familiar with the Pegasus SLA printer, I researched the leveling, laser settings, and different vats to hold liquid material. With this research, I was successfully able to bring the Pegasus back online and have successfully printed multiple sample parts as well as functional parts. My experience with PolyJet technology has been focused on an understanding of the abilities/limits, costs, and the maintenance for daily use. Still upcoming will be experience with using a composite printer that uses FDM

  18. The possible interplanetary transfer of microbes: assessing the viability of Deinococcus spp. under the ISS Environmental conditions for performing exposure experiments of microbes in the Tanpopo mission.

    Science.gov (United States)

    Kawaguchi, Yuko; Yang, Yinjie; Kawashiri, Narutoshi; Shiraishi, Keisuke; Takasu, Masako; Narumi, Issay; Satoh, Katsuya; Hashimoto, Hirofumi; Nakagawa, Kazumichi; Tanigawa, Yoshiaki; Momoki, Yoh-Hei; Tanabe, Maiko; Sugino, Tomohiro; Takahashi, Yuta; Shimizu, Yasuyuki; Yoshida, Satoshi; Kobayashi, Kensei; Yokobori, Shin-Ichi; Yamagishi, Akihiko

    2013-10-01

    To investigate the possible interplanetary transfer of life, numerous exposure experiments have been carried out on various microbes in space since the 1960s. In the Tanpopo mission, we have proposed to carry out experiments on capture and space exposure of microbes at the Exposure Facility of the Japanese Experimental Module of the International Space Station (ISS). Microbial candidates for the exposure experiments in space include Deinococcus spp.: Deinococcus radiodurans, D. aerius and D. aetherius. In this paper, we have examined the survivability of Deinococcus spp. under the environmental conditions in ISS in orbit (i.e., long exposure to heavy-ion beams, temperature cycles, vacuum and UV irradiation). A One-year dose of heavy-ion beam irradiation did not affect the viability of Deinococcus spp. within the detection limit. Vacuum (10(-1) Pa) also had little effect on the cell viability. Experiments to test the effects of changes in temperature from 80 °C to -80 °C in 90 min (± 80 °C/90 min cycle) or from 60 °C to -60 °C in 90 min (± 60 °C/90 min cycle) on cell viability revealed that the survival rate decreased severely by the ± 80 °C/90 min temperature cycle. Exposure of various thicknesses of deinococcal cell aggregates to UV radiation (172 nm and 254 nm, respectively) revealed that a few hundred micrometer thick aggregate of deinococcal cells would be able to withstand the solar UV radiation on ISS for 1 year. We concluded that aggregated deinococcal cells will survive the yearlong exposure experiments. We propose that microbial cells can aggregate as an ark for the interplanetary transfer of microbes, and we named it 'massapanspermia'.

  19. Sustainable development through innovation (the example of JSC «Concern» Constellation»

    Directory of Open Access Journals (Sweden)

    T. I. Ovchinnikova

    2016-01-01

    Full Text Available In the article the «economic growth» theoretical approaches to the terms and «sustainable development». It is indicated that «sustainable development» is related to the introduction of new technologies and innovations, as well as the mechanisms of perfection economic activity. The concept of «sustainable development» includes the principles of sustainability and balanced-ness, while economic growth is associated with the dominant country economic policy objectives, including innovative factors, with the well-being of its population level: the development of the social structure, from the labor market level and other factors. Prospects of development of the country based on the justification of the socio-economic model of its translational movement in the world civilization. Excessive political risks and economic sanctions have shown that Russia should not rely on foreign imports of high-tech, and the need to develop import substitution. Change the vector of development of the Russian economy made their adjustments to the development of the Voronezh region economy slowed down the speed of displacements, of capital, the regional financial centers develop poorly, due to lack of investment has slowed the growth of innovational and information development. There is a growing dependence of the region on the processes taking place at the international and national levels. In the example of the Voronezh area are considered factors of sustainable development such as the coordination of organizational efforts and financial resources in order to achieve a new quality of the region's population lives, and necessity of formation of a new development paradigm of management in the region, based on the modernization of diversified bath economy and the introduction of mechanisms to ensure the implementation of sustainable development. In view of the innovative-investment activity of JSC «Concern» Constellation «steady growth

  20. The ISS as a platform for a fully simulated mars voyage

    Science.gov (United States)

    Narici, Livio; Reitz, Guenther

    2016-07-01

    The ISS can mimic the impact of microgravity, radiation, living and psychological conditions that astronauts will face during a deep space cruise, for example to Mars. This suggests the ISS as the most valuable "analogue" for deep space exploration. NASA has indeed suggested a 'full-up deep space simulation on last available ISS Mission: 6/7 crew for one year duration; full simulation of time delays & autonomous operations'. This idea should be pushed further. It is indeed conceivable to use the ISS as the final "analogue", performing a real 'dry-run' of a deep space mission (such as a mission to Mars), as close as reasonably possible to what will be the real voyage. This Mars ISS dry run (ISS4Mars) would last 500-800 days, mimicking most of the challenges which will be undertaken such as length, isolation, food provision, decision making, time delays, health monitoring diagnostic and therapeutic actions and more: not a collection of "single experiments", but a complete exploration simulation were all the pieces will come together for the first in space simulated Mars voyage. Most of these challenges are the same that those that will be encountered during a Moon voyage, with the most evident exceptions being the duration and the communication delay. At the time of the Mars ISS dry run all the science and technological challenges will have to be mostly solved by dedicated works. These solutions will be synergistically deployed in the dry run which will simulate all the different aspects of the voyage, the trip to Mars, the permanence on the planet and the return to Earth. During the dry run i) There will be no arrivals/departure of spacecrafts; 2) Proper communications delay with ground will be simulated; 3) Decision processes will migrate from Ground to ISS; 4) Permanence on Mars will be simulated. Mars ISS dry run will use just a portion of the ISS which will be totally isolated from the rest of the ISS, leaving to the other ISS portions the task to provide the

  1. ISS--an electronic syndromic surveillance system for infectious disease in rural China.

    Directory of Open Access Journals (Sweden)

    Weirong Yan

    Full Text Available BACKGROUND: Syndromic surveillance system has great advantages in promoting the early detection of epidemics and reducing the necessities of disease confirmation, and it is especially effective for surveillance in resource poor settings. However, most current syndromic surveillance systems are established in developed countries, and there are very few reports on the development of an electronic syndromic surveillance system in resource-constrained settings. OBJECTIVE: This study describes the design and pilot implementation of an electronic surveillance system (ISS for the early detection of infectious disease epidemics in rural China, complementing the conventional case report surveillance system. METHODS: ISS was developed based on an existing platform 'Crisis Information Sharing Platform' (CRISP, combining with modern communication and GIS technology. ISS has four interconnected functions: 1 work group and communication group; 2 data source and collection; 3 data visualization; and 4 outbreak detection and alerting. RESULTS: As of Jan. 31(st 2012, ISS has been installed and pilot tested for six months in four counties in rural China. 95 health facilities, 14 pharmacies and 24 primary schools participated in the pilot study, entering respectively 74,256, 79,701, and 2330 daily records into the central database. More than 90% of surveillance units at the study sites are able to send daily information into the system. In the paper, we also presented the pilot data from health facilities in the two counties, which showed the ISS system had the potential to identify the change of disease patterns at the community level. CONCLUSIONS: The ISS platform may facilitate the early detection of infectious disease epidemic as it provides near real-time syndromic data collection, interactive visualization, and automated aberration detection. However, several constraints and challenges were encountered during the pilot implementation of ISS in rural China.

  2. ISS--an electronic syndromic surveillance system for infectious disease in rural China.

    Science.gov (United States)

    Yan, Weirong; Palm, Lars; Lu, Xin; Nie, Shaofa; Xu, Biao; Zhao, Qi; Tao, Tao; Cheng, Liwei; Tan, Li; Dong, Hengjin; Diwan, Vinod K

    2013-01-01

    Syndromic surveillance system has great advantages in promoting the early detection of epidemics and reducing the necessities of disease confirmation, and it is especially effective for surveillance in resource poor settings. However, most current syndromic surveillance systems are established in developed countries, and there are very few reports on the development of an electronic syndromic surveillance system in resource-constrained settings. This study describes the design and pilot implementation of an electronic surveillance system (ISS) for the early detection of infectious disease epidemics in rural China, complementing the conventional case report surveillance system. ISS was developed based on an existing platform 'Crisis Information Sharing Platform' (CRISP), combining with modern communication and GIS technology. ISS has four interconnected functions: 1) work group and communication group; 2) data source and collection; 3) data visualization; and 4) outbreak detection and alerting. As of Jan. 31(st) 2012, ISS has been installed and pilot tested for six months in four counties in rural China. 95 health facilities, 14 pharmacies and 24 primary schools participated in the pilot study, entering respectively 74,256, 79,701, and 2330 daily records into the central database. More than 90% of surveillance units at the study sites are able to send daily information into the system. In the paper, we also presented the pilot data from health facilities in the two counties, which showed the ISS system had the potential to identify the change of disease patterns at the community level. The ISS platform may facilitate the early detection of infectious disease epidemic as it provides near real-time syndromic data collection, interactive visualization, and automated aberration detection. However, several constraints and challenges were encountered during the pilot implementation of ISS in rural China.

  3. Long-term results after in-situ split (ISS) liver resection.

    Science.gov (United States)

    Lang, Sven A; Loss, Martin; Benseler, Volker; Glockzin, Gabriel; Schlitt, Hans J

    2015-04-01

    In-situ split (ISS) liver resection is a novel method to induce rapid hypertrophy of the contralateral liver lobe in patients at risk for postoperative liver failure due to insufficient liver remnant. So far, no data about oncological long-term survival after ISS liver resection is available. We retrospectively analyzed our patients treated with ISS liver resection at the Department of Surgery of the University of Regensburg, the first center worldwide to perform ISS. Between 2007 and 2014, ISS liver resection was performed in 16 patients. Two patients (12.5 %) were lost in early postoperative phase (90 days) and one was lost to follow-up. Thirteen patients with a follow-up period of more than 3 months were included into oncologically focused analyses. Median follow-up was 26.4 months (range 3.2-54.6). Seven patients had suffered from colorectal liver metastases (CRLM) and six from various other liver malignancies (non-CRLM). The ISS procedure had led to a median increase of 86.3 % of the left lateral liver lobe after a median of 9 days (range 4-28 days). Median disease-free survival (DFS) was 14.6 months and median overall survival (OS) was 41.7 months (26.4 months when including 90-days mortality). Three-year survival was calculated with 56.4 and 48.9 % when including perioperative mortality, respectively (CRLM 64.3 % vs. non-CRLM 50 %). ISS liver resection can provide long-term survival of selected patients with advanced liver malignancies that otherwise are not eligible for liver resection due to insufficient liver remnant.

  4. Space-borne imaging observation of the terrestrial upper atmosphere by ISS-IMAP

    Science.gov (United States)

    Saito, Akinori; Otsuka, Yuichi; Yamamoto, Mamoru; Yamazaki, Atsushi; Yoshikawa, Ichiro; Sakanoi, Takeshi

    ISS-IMAP (Ionosphere, Mesosphere, upper Atmosphere, and Plasmasphere mapping) mission is a space-borne mission on the international space station (ISS) to elucidate the mesoscale structures in the ionosphere, the mesosphere, and the plasmasphere by imaging observations. ISS-IMAP measures the following three parameters: (1) distribution of the atmospheric gravity wave in the mesopause (87km), the ionospheric E-region (95km), and the ionospheric F-region (250km) (2) distribution of the ionized atmosphere in the ionospheric F-region (3) distribution of O+ and He+ ions in the ionosphere and plasmasphere. After the initial check outs, its observation was started in October 2012. ISS-IMAP consists of two imaging instruments on the Exposed Facility of Japanese Experiment Module of the International Space Station, EF of ISS-JEM. Visible-light and infrared spectrum imager (VISI) observes the Mesosphere and the Ionosphere. Extra ultraviolet imager (EUVI) observes the Ionosphere and the Plasmasphere. VISI observes the airglow of 730nm (OH, Alt. 85km), 762nm (O2, Alt. 95km), and 630nm (O, Alt. 250km) in the Nadir direction. The global distributions of the airglow structures whose scale size is 50-500km in the nightside of the Mesosphere and the Ionosphere have been obtained by the VISI observation. EUVI measures the resonant scattering of 30.4nm [He+] and 83.4nm [O+]. Its field- of-view is 15 degrees, and points the limb of the Earth to observe the vertical distribution of the ions. The continuous observation of ISS-IMAP started in October 2012. The coordinated observation between ISS-IMAP and the several ground-based instruments have been carried out to elucidate the coupling process between the lower atmosphere and the upper atmosphere by the wave structures in this scale.

  5. GNSS-Reflectometry aboard ISS with GEROS: Investigation of atmospheric propagation effects

    Science.gov (United States)

    Zus, F.; Heise, S.; Wickert, J.; Semmling, M.

    2015-12-01

    GEROS-ISS (GNSS rEflectometry Radio Occultation and Scatterometry) is an ESA mission aboard the International Space Station (ISS). The main mission goals are the determination of the sea surface height and surface winds. Secondary goals are monitoring of land surface parameters and atmosphere sounding using GNSS radio occultation measurements. The international scientific study GARCA (GNSS-Reflectometry Assessment of Requirements and Consolidation of Retrieval Algorithms), funded by ESA, is part of the preparations for GEROS-ISS. Major goals of GARCA are the development of an end2end Simulator for the GEROS-ISS measurements (GEROS-SIM) and the evaluation of the error budget of the GNSS reflectometry measurements. In this presentation we introduce some of the GARCA activities to quantify the influence of the ionized and neutral atmosphere on the altimetric measurements, which is a major error source for GEROS-ISS. At first, we analyse, to which extend the standard linear combination of interferometric paths at different carrier frequencies can be used to correct for the ionospheric propagation effects. Second, we make use of the tangent-linear version of our ray-trace algorithm to propagate the uncertainty of the underlying refractivity profile into the uncertainty of the interferometric path. For comparison the sensitivity of the interferometric path with respect to the sea surface height is computed. Though our calculations are based on a number of simplifying assumptions (the Earth is a sphere, the atmosphere is spherically layered and the ISS and GNSS satellite orbits are circular) some general conclusions can be drawn. In essence, for elevation angles above -5° at the ISS the higher-order ionospheric errors and the uncertaintiy of the inteferometric path due to the uncertainty of the underlying refractivity profile are small enough to distinguish a sea surface height of ± 0.5 m.

  6. Rapid Culture-Independent Microbial Analysis Aboard the International Space Station (ISS)

    Science.gov (United States)

    Maule, Jake; Wainwright, Norm; Steele, Andrew; Monaco, Lisa; Morris, Heather; Gunter, Daniel; Damon, Michael; Wells, Mark

    2009-10-01

    A new culture-independent system for microbial monitoring, called the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS), was operated aboard the International Space Station (ISS). LOCAD-PTS was launched to the ISS aboard Space Shuttle STS-116 on December 9, 2006, and has since been used by ISS crews to monitor endotoxin on cabin surfaces. Quantitative analysis was performed within 15 minutes, and sample return to Earth was not required. Endotoxin (a marker of Gram-negative bacteria and fungi) was distributed throughout the ISS, despite previous indications that most bacteria on ISS surfaces were Gram-positive. Endotoxin was detected at 24 out of 42 surface areas tested and at every surface site where colony-forming units (cfu) were observed, even at levels of 4-120 bacterial cfu per 100 cm2, which is below NASA in-flight requirements (dining facilities. Endotoxin was absent from airlock surfaces, except the Extravehicular Hatch Handle (>3.78 EU per 100 cm2). Based upon data collected from the ISS so far, new culture-independent requirements (defined in EU) are suggested, which are verifiable in flight with LOCAD-PTS yet high enough to avoid false alarms. The suggested requirements are intended to supplement current ISS requirements (defined in cfu) and would serve a dual purpose of safeguarding crew health (internal spacecraft surfaces <20 EU per 100 cm2) and monitoring forward contamination during Constellation missions (surfaces periodically exposed to the external environment, including the airlock and space suits, <0.24 EU per 100 cm2).

  7. International Space Station (ISS) Gas Logistics Planning in the Post Shuttle Era

    Science.gov (United States)

    Leonard, Daniel J.; Cook, Anthony J.; Lehman, Daniel A.

    2011-01-01

    Over its life the International Space Station (ISS) has received gas (nitrogen, oxygen, and air) from various sources. Nitrogen and oxygen are used in the cabin to maintain total pressure and oxygen partial pressures within the cabin. Plumbed nitrogen is also required to support on-board experiments and medical equipment. Additionally, plumbed oxygen is required to support medical equipment as well as emergency masks and most importantly EVA support. Gas are supplied to ISS with various methods and vehicles. Vehicles like the Progress and ATV deliver nitrogen (both as a pure gas and as air) and oxygen via direct releases into the cabin. An additional source of nitrogen and oxygen is via tanks on the ISS Airlock. The Airlock nitrogen and oxygen tanks can deliver to various users via pressurized systems that run throughout the ISS except for the Russian segment. Metabolic oxygen is mainly supplied via cabin release from the Elektron and Oxygen Generator Assembly (OGA), which are water electrolyzers. As a backup system, oxygen candles (Solid Fuel Oxygen Generators-SFOGs) supply oxygen to the cabin as well. In the past, a major source of nitrogen and oxygen has come from the Shuttle via both direct delivery to the cabin as well as to recharge the ISS Airlock tanks. To replace the Shuttle capability to recharge the ISS Airlock tanks, a new system was developed called Nitrogen/Oxygen Recharge System (NORS). NIORS consists of high pressure (7000 psi) tanks which recharge the ISS Airlock tanks via a blowdown fill for both nitrogen and oxygen. NORS tanks can be brought up on most logistics vehicles such as the HTV, COTS, and ATV. A proper balance must be maintained to insure sufficient gas resources are available on-orbit so that all users have the required gases via the proper delivery method (cabin and/or plumbed).

  8. Neutrophil to lymphocyte ratio (NLR) improves the risk assessment of ISS staging in newly diagnosed MM patients treated upfront with novel agents.

    Science.gov (United States)

    Romano, A; Parrinello, N L; Consoli, M L; Marchionni, L; Forte, S; Conticello, C; Pompa, A; Corso, A; Milone, G; Di Raimondo, F; Borrello, I

    2015-11-01

    Recent reports identify the ratio between absolute neutrophil count (ANC) and absolute lymphocyte count (ALC), called neutrophil to lymphocyte ratio (NLR), as a predictor of progression-free survival (PFS) and overall survival (OS) in various malignancies. We retrospectively examined the NLR in a cohort of 309 newly diagnosed multiple myeloma (MM) patients treated upfront with novel agents. NLR was calculated using data obtained from the complete blood count (CBC) at diagnosis and subsequently correlated with PFS and OS. The median NLR was 1.9 (range 0.4-15.9). Higher NLR was independent of international staging system (ISS) stage, plasma cell infiltration or cytogenetics. The 5-year PFS and OS estimates were, respectively, 18.2 and 36.4 % for patients with NLR ≥ 2 versus 25.5 and 66.6 % in patients with NLR ISS stages. By combining ISS stage and NLR in a model limited to young patients, we found that 19 % of the patients were classified as very low risk, 70 % standard risk and 11 % very high risk. The 5-year estimates were 39.3, 19.4 and 10.9 % for PFS and 95.8, 50.9 and 23.6 % for OS for very low, standard-risk and very high-risk groups. We found NLR to be a predictor of PFS and OS in MM patients treated upfront with novel agents. NLR can be combined with ISS staging system to identify patients with dismal outcome. However, larger cohorts and prospective studies are needed to use NLR as additional parameter to personalise MM therapy in the era of novel agents.

  9. INCREASE OF FIRMNESS OF FETTLING OF DSP-2 AT USING THE BURNED MAGNESIA CALCIC FLUX IN CONDITIONS OF JSC «BMZ» – MANAGEMENT COMPANY OF HOLDING «BMK»

    Directory of Open Access Journals (Sweden)

    I. A. Bondarenko

    2013-01-01

    Full Text Available It is shown that the burned magnesia calcic flux of JSC “Complex “Magnesite” production is recommended for industrial use on all steel-smelting units of JSC “BMZ —management company BMK holding” on the basis of positive results on increase in firmness of fettling DSP-2.

  10. WetLab-2: Tools for Conducting On-Orbit Quantitative Real-Time Gene Expression Analysis on ISS

    Science.gov (United States)

    Parra, Macarena; Almeida, Eduardo; Boone, Travis; Jung, Jimmy; Schonfeld, Julie

    2014-01-01

    The objective of NASA Ames Research Centers WetLab-2 Project is to place on the ISS a research platform capable of conducting gene expression analysis via quantitative real-time PCR (qRT-PCR) of biological specimens sampled or cultured on orbit. The project has selected a Commercial-Off-The-Shelf (COTS) qRT-PCR system, the Cepheid SmartCycler and will fly it in its COTS configuration. The SmartCycler has a number of advantages including modular design (16 independent PCR modules), low power consumption, rapid ramp times and the ability to detect up to four separate fluorescent channels at one time enabling multiplex assays that can be used for normalization and to study multiple genes of interest in each module. The team is currently working with Cepheid to enable the downlink of data from the ISS to the ground and provide uplink capabilities for programming, commanding, monitoring, and instrument maintenance. The project has adapted commercial technology to design a module that can lyse cells and extract RNA of sufficient quality and quantity for use in qRT-PCR reactions while using a housekeeping gene to normalize RNA concentration and integrity. The WetLab-2 system is capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on-orbit. The ability to conduct qRT-PCR on-orbit eliminates the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples. The system can be used to validate terrestrial analyses of samples returned from ISS by providing on-orbit gene expression benchmarking prior to sample return. The ability to get on orbit data will provide investigators with the opportunity to adjust experiment parameters for subsequent trials based on the real-time data analysis without need for sample return and re-flight. Researchers will also be able to sample multigenerational changes in organisms. Finally, the system can be

  11. Re-Engineering the ISS Payload Operations Control Center During Increased Utilization and Critical Onboard Events

    Science.gov (United States)

    Dudley, Stephanie R. B.; Marsh, Angela L.

    2014-01-01

    With an increase in utilization and hours of payload operations being executed onboard the International Space Station (ISS), upgrading the NASA Marshall Space Flight Center (MSFC) Huntsville Operations Support Center (HOSC) ISS Payload Control Area (PCA) was essential to gaining efficiencies and assurance of current and future payload health and science return. PCA houses the Payload Operations Integration Center (POIC) responsible for the execution of all NASA payloads onboard the ISS. POIC Flight Controllers are responsible for the operation of voice, stowage, command, telemetry, video, power, thermal, and environmental control in support of ISS science experiments. The methodologies and execution of the PCA refurbishment were planned and performed within a four-month period in order to assure uninterrupted operation of ISS payloads and minimal impacts to payload operations teams. To vacate the PCA, three additional HOSC control rooms were reconfigured to handle ISS real-time operations, Backup Control Center (BCC) to Mission Control in Houston, simulations, and testing functions. This involved coordination and cooperation from teams of ISS operations controllers, multiple engineering and design disciplines, management, and construction companies performing an array of activities simultaneously and in sync delivering a final product with no issues that impacted the schedule. For each console operator discipline, studies of Information Technology (IT) tools and equipment layouts, ergonomics, and lines of sight were performed. Infusing some of the latest IT into the project was an essential goal in ensuring future growth and success of the ISS payload science returns. Engineering evaluations led to a state of the art Video Wall implementation and more efficient ethernet cabling distribution providing the latest products and the best solution for the POIC. These engineering innovations led to cost savings for the project. Constraints involved in the management of

  12. Progress in Spacecraft Environment Interactions: International Space Station (ISS) Development and Operations

    Science.gov (United States)

    Koontz, Steve; Suggs, Robb; Schneider, Todd; Minow, Joe; Alred, John; Cooke, Bill; Mikatarian, Ron; Kramer, Leonard; Boeder, paul; Soares, Carlos

    2007-01-01

    The set of spacecraft interactions with the space flight environment that have produced the largest impacts on the design, verification, and operation of the International Space Station (ISS) Program during the May 2000 to May 2007 time frame are the focus of this paper. In-flight data, flight crew observations, and the results of ground-based test and analysis directly supporting programmatic and operational decision-making are reported as are the analysis and simulation efforts that have led to new knowledge and capabilities supporting current and future space explorations programs. The specific spacecraft-environment interactions that have had the greatest impact on ISS Program activities during the first several years of flight are: 1) spacecraft charging, 2) micrometeoroids and orbital debris effects, 3) ionizing radiation (both total dose to materials and single event effects [SEE] on avionics), 4) hypergolic rocket engine plume impingement effects, 5) venting/dumping of liquids, 6) spacecraft contamination effects, 7) neutral atmosphere and atomic oxygen effects, 8) satellite drag effects, and 9) solar ultraviolet effects. Orbital inclination (51.6deg) and altitude (nominally between 350 km and 460 km) determine the set of natural environment factors affecting the performance and reliability of materials and systems on ISS. ISS operates in the F2 region of Earth s ionosphere in well-defined fluxes of atomic oxygen, other ionospheric plasma species, solar UV, VUV, and x-ray radiation as well as galactic cosmic rays, trapped radiation, and solar cosmic rays. The micrometeoroid and orbital debris environment is an important determinant of spacecraft design and operations in any orbital inclination. The induced environment results from ISS interactions with the natural environment as well as environmental factors produced by ISS itself and visiting vehicles. Examples include ram-wake effects, hypergolic thruster plume impingement, materials out-gassing, venting

  13. Methodology and Assumptions of Contingency Shuttle Crew Support (CSCS) Calculations Using ISS Environmental Control and Life Support Systems

    Science.gov (United States)

    Prokhorov, Kimberlee; Shkedi, Brienne

    2006-01-01

    The current International Space Station (ISS) Environmental Control and Life Support (ECLS) system is designed to support an ISS crew size of three people. The capability to expand that system to support nine crew members during a Contingency Shuttle Crew Support (CSCS) scenario has been evaluated. This paper describes how the ISS ECLS systems may be operated for supporting CSCS, and the durations expected for the oxygen supply and carbon dioxide control subsystems.

  14. Near Real Time Tools for ISS Plasma Science and Engineering Applications

    Science.gov (United States)

    Minow, Joseph I.; Willis, Emily M.; Parker, Linda Neergaard; Shim, Ja Soon; Kuznetsova, Maria M.; Pulkkinen, Antti, A.

    2013-01-01

    The International Space Station (ISS) program utilizes a plasma environment forecast for estimating electrical charging hazards for crews during extravehicular activity (EVA). The process uses ionospheric electron density (Ne) and temperature (Te) measurements from the ISS Floating Potential Measurement Unit (FPMU) instrument suite with the assumption that the plasma conditions will remain constant for one to fourteen days with a low probability for a space weather event which would significantly change the environment before an EVA. FPMU data is typically not available during EVA's, therefore, the most recent FPMU data available for characterizing the state of the ionosphere during EVA is typically a day or two before the start of an EVA or after the EVA has been completed. Three near real time space weather tools under development for ISS applications are described here including: (a) Ne from ground based ionosonde measurements of foF2 (b) Ne from near real time satellite radio occultation measurements of electron density profiles (c) Ne, Te from a physics based ionosphere model These applications are used to characterize the ISS space plasma environment during EVA periods when FPMU data is not available, monitor for large changes in ionosphere density that could render the ionosphere forecast and plasma hazard assessment invalid, and validate the "persistence of conditions" forecast assumption. In addition, the tools are useful for providing space environment input to science payloads on ISS and anomaly investigations during periods the FPMU is not operating.

  15. Remote Advanced Payload Test Rig (RAPTR) Portable Payload Test System for the International Space Station (ISS)

    Science.gov (United States)

    Calvert, John; Freas, George, II

    2017-01-01

    The RAPTR was developed to test ISS payloads for NASA. RAPTR is a simulation of the Command and Data Handling (C&DH) interfaces of the ISS (MIL-STD 1553B, Ethernet and TAXI) and is designed to facilitate rapid testing and deployment of payload experiments to the ISS. The ISS Program's goal is to reduce the amount of time it takes a payload developer to build, test and fly a payload, including payload software. The RAPTR meets this need with its user oriented, visually rich interface. Additionally, the Analog and Discrete (A&D) signals of the following payload types may be tested with RAPTR: (1) EXPRESS Sub Rack Payloads; (2) ELC payloads; (3) External Columbus payloads; (4) External Japanese Experiment Module (JEM) payloads. The automated payload configuration setup and payload data inspection infrastructure is found nowhere else in ISS payload test systems. Testing can be done with minimal human intervention and setup, as the RAPTR automatically monitors parameters in the data headers that are sent to, and come from the experiment under test.

  16. Human and robotic repair of a solar array wing during ISS assembly mission 10A

    Science.gov (United States)

    Oghenekevwe, Viano; Redmond, Scott; Hiltz, Michael; Rembala, Richard

    2009-12-01

    With the installation of a new module and the relocation of three other modules, including multiple hand-offs from the station arm (SSRMS) to the shuttle arm (SRMS), International Space Station (ISS) assembly mission 10A/STS-120 was anticipated to be one of the most complicated ISS assembly missions ever attempted. The assembly operations became even more complex when a solar array wing (SAW) on the relocated Port-6 (P6) truss segment ripped while being extended. Repairing the torn SAW became the single most important objective for the remainder of STS-120, with future ISS assembly missions threatened by reduced power generation capacity if the SAW could not be repaired. Precise coordination between the space shuttle and ISS robotics teams led to an operational concept that combined the capabilities of the SRMS and SSRMS robotic systems in ways far beyond their original design capacities. Benefits of consistent standards for ISS robotic interfaces have been previously identified, but the advantages of having two such versatile and compatible robotic systems have never been quite so spectacular. This paper describes the role of robotics in the emergency SAW repair and highlights how versatility within space robotics systems can allow operations far beyond the intended design scenarios.

  17. Sorting variables for each case: a new algorithm to calculate injury severity score (ISS) using SPSS-PC.

    Science.gov (United States)

    Linn, S

    One of the more often used measures of multiple injuries is the injury severity score (ISS). Determination of the ISS is based on the abbreviated injury scale (AIS). This paper suggests a new algorithm to sort the AISs for each case and calculate ISS. The program uses unsorted abbreviated injury scale (AIS) levels for each case and rearranges them in descending order. The first three sorted AISs representing the three most severe injuries of a person are then used to calculate injury severity score (ISS). This algorithm should be useful for analyses of clusters of injuries especially when more patients have multiple injuries.

  18. Phototropism experiments in microgravity-the Seedling Growth project in the EMCS on the ISS

    Science.gov (United States)

    Kiss, John; Edelmann, Richard; Herranz, Raul; Medina, Francisco Javier; Millar, Katherine

    The microgravity environment aboard orbiting spacecraft has provided a unique laboratory to explore important topics in basic plant biology. Our group has utilized the European Modular Cultivation System (EMCS) aboard the International Space Station (ISS) to study plant growth, development, tropisms, and gene expression in a series of spaceflight experiments. The most current project performed on the ISS was termed Seeding Growth-1 (SG-1) which builds on the previous TROPI (for tropisms) experiments. TROPI-1 was the first EMCS experiment, and we discovered a novel red-light-based phototropism in hypocotyls of seedlings grown in microgravity (Millar et al. 2010). In TROPI-2, our experiments were extended to reduced gravity levels and found that 0.1-0.3 g can attenuate the red-light response (Kiss et al. 2012). In addition, we performed gene profiling studies and noted that approximately 280 genes that were differentially regulated at least two-fold in the space samples compared to the ground controls (Correll et al. 2013). Major technical and operational changes in SG-1 (launched in March 2013) compared to the TROPI experiments include: improvements in lighting conditions within the EMCS to optimize the environment for phototropism studies and the use of infrared illumination to provide high-quality images of the seedlings. In SG-1, the red-light-based phototropism in roots and hypocotyls of seedlings that was noted in TROPI-2 was confirmed and now can be more precisely characterized based on the improvements in procedures. As we move forward, the SG-2 experiments (to be launched in 2014), in addition to a continued focus on phototropism, will consider the cell cycle as well as the growth and proliferation of plant cells in microgravity (Matía et al. 2010). Furthermore, the lessons learned from sequential experiments from TROPI-1 to TROPI-2 to SG-1 can provide insights to other researchers developing space experiments in plant biology. References: Correll M.J., T

  19. Analysis of financial potential of engineering enterprises the example of JSC «TEMP»

    Directory of Open Access Journals (Sweden)

    L.S. Stasiuk

    2014-03-01

    Full Text Available The aim of the article. The aim of the article is the disclosure of theoretical foundations and methodological aspects regarding calculation of basic performance indicators of financial capacity building enterprises using the balance sheet Khmelnytskii JSC «Temp» for the period of 2009-2011 years. The results of the analysis. Intensification of competition between companies is becoming increasingly important. The financial potential of the company determines the competitiveness of business cooperation opportunities, assesses as far as are guaranteed economic interests of the company and its partners in the financial and production relationship. In the current economic conditions the company must improve production efficiency, product competitiveness on the basis of effective forms of management and production management, business revitalization. This generally determines the importance of control over the economic activities of enterprises, which is why determining the financial condition of the company and its optimization is one of the main conditions for successful development. The main objective of financial potential of the company is to optimize financial flows in order to increase the positive financial result. The main factor in shaping the financial capacity of serving the financial position of the company. Determining the financial condition of the company and its optimization is one of the basic conditions for its successful development. Analysis of the financial condition of the company involves determining the estimated characteristics, choice of methods of measurement and characterization of these features on certain principles, assessment of deviations from the standard, generally accepted values. The main target of financial analysis is its assessment and identification of reserves, its stabilization and improvement. Means of implementation of this setup is the organization of economic and financial policy. There is a need to

  20. The VASIMR[registered trademark] VF-200-1 ISS Experiment as a Laboratory for Astrophysics

    Science.gov (United States)

    Glover Tim W.; Squire, Jared P.; Longmier, Benjamin; Cassady, Leonard; Ilin, Andrew; Carter, Mark; Olsen, Chris S.; McCaskill, Greg; Diaz, Franklin Chang; Girimaji, Sharath; hide

    2010-01-01

    The VASIMR[R] Flight Experiment (VF-200-1) will be tested in space aboard the International Space Station (ISS) in about four years. It will consist of two 100 kW parallel plasma engines with opposite magnetic dipoles, resulting in a near zero-torque magnetic system. Electrical energy will come from ISS at low power level, be stored in batteries and used to fire the engine at 200 kW. The VF-200-1 project will provide a unique opportunity on the ISS National Laboratory for astrophysicists and space physicists to study the dynamic evolution of an expanding and reconnecting plasma loop. Here, we review the status of the project and discuss our current plans for computational modeling and in situ observation of a dynamic plasma loop on an experimental platform in low-Earth orbit. The VF-200-1 project is still in the early stages of development and we welcome new collaborators.

  1. How Do Lessons Learned on the International Space Station (ISS) Help Plan Life Support for Mars?

    Science.gov (United States)

    Jones, Harry W.; Hodgson, Edward W.; Gentry, Gregory J.; Kliss, Mark H.

    2016-01-01

    How can our experience in developing and operating the International Space Station (ISS) guide the design, development, and operation of life support for the journey to Mars? The Mars deep space Environmental Control and Life Support System (ECLSS) must incorporate the knowledge and experience gained in developing ECLSS for low Earth orbit, but it must also meet the challenging new requirements of operation in deep space where there is no possibility of emergency resupply or quick crew return. The understanding gained by developing ISS flight hardware and successfully supporting a crew in orbit for many years is uniquely instructive. Different requirements for Mars life support suggest that different decisions may be made in design, testing, and operations planning, but the lessons learned developing the ECLSS for ISS provide valuable guidance.

  2. Would Current International Space Station (ISS) Recycling Life Support Systems Save Mass on a Mars Transit?

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    The oxygen and water are recycled on the International Space Station (ISS) to save the cost of launching their mass into orbit. Usually recycling systems are justified by showing that their launch mass would be much lower than the mass of the oxygen or water they produce. Short missions such as Apollo or space shuttle directly provide stored oxygen and water, since the needed total mass of oxygen and water is much less than that of there cycling equipment. Ten year or longer missions such as the ISS or a future moon base easily save mass by recycling while short missions of days or weeks do not. Mars transit and long Mars surface missions have an intermediate duration, typically one to one and a half years. Some of the current ISS recycling systems would save mass if used on a Mars transit but others would not.

  3. Portable radiography: a reality and necessity for ISS and explorer-class missions.

    Science.gov (United States)

    Lerner, David J; Parmet, Allen J

    2015-02-01

    On ISS missions and explorer class missions, unexpected medical and surgical emergencies could be disastrous. Lack of ability to rapidly assess and make critical decisions affects mission capability. Current imaging modalities on ISS consist only of ultrasound. There are many acute diagnoses which ultrasound alone cannot diagnose. Portable X-Ray imaging (radiography) technology has advanced far enough to where it is now small enough, cheap enough, and accurate enough to give diagnostic quality images sent wirelessly to the onboard computer and on Earth for interpretation while fitting in something the size of a briefcase. Although further research is warranted, Portable Radiography is an important addition to have on ISS and future Explorer Class Missions while maintaining a very small footprint.

  4. Visual assessment of the radiation distribution in the ISS Lab module: visualization in the human body

    Science.gov (United States)

    Saganti, P. B.; Zapp, E. N.; Wilson, J. W.; Cucinotta, F. A.

    2001-01-01

    The US Lab module of the International Space Station (ISS) is a primary working area where the crewmembers are expected to spend majority of their time. Because of the directionality of radiation fields caused by the Earth shadow, trapped radiation pitch angle distribution, and inherent variations in the ISS shielding, a model is needed to account for these local variations in the radiation distribution. We present the calculated radiation dose (rem/yr) values for over 3,000 different points in the working area of the Lab module and estimated radiation dose values for over 25,000 different points in the human body for a given ambient radiation environment. These estimated radiation dose values are presented in a three dimensional animated interactive visualization format. Such interactive animated visualization of the radiation distribution can be generated in near real-time to track changes in the radiation environment during the orbit precession of the ISS.

  5. Assembling and supplying the ISS the space shuttle fulfills its mission

    CERN Document Server

    Shayler, David J

    2017-01-01

    The creation and utilization of the International Space Station (ISS) is a milestone in space exploration. But without the Space Shuttle, it would have remained an impossible dream. Assembling and Supplying the ISS is the story of how, between 1998 and 2011, the Shuttle became the platform which enabled the construction and continued operation of the primary scientific research facility in Earth orbit. Fulfilling an objective it had been designed to complete decades before, 37 Shuttle missions carried the majority of the hardware needed to build the ISS and then acted as a ferry and supply train for early resident crews to the station. Building upon the decades of development and experience described in the companion volume Linking the Space Shuttle and Space Stations: Early Docking Technologies from Concept to Implementation, this book explores • a purpose-built hardware processing facility • challenging spacewalking objectives • extensive robotic operations • undocking a unmanned orbiter The experie...

  6. Simulation of Malfunctions for the ISS Double-Gimbal Control Moment Gyroscope

    Science.gov (United States)

    Inampudi, Ravi; Gordeuk, John

    2016-01-01

    This paper presents a simplified approach to simulation of malfunctions of the Control Moment Gyroscope (CMG) on board the International Space Station (ISS). These malfunctions will be used as part of flight training of CMG failure scenarios in the guidance navigation control (GNC) subsystem of the Training Systems for 21st Century (TS21) simulator. The CMG malfunctions are grouped under mechanical, thermal and electrical categories. A malfunction can be as simple as one which only affects the telemetry or a complex one that changes the state and behavior of the CMG model. In both cases, the ISS GNC flight software will read the telemetry and respond accordingly. The user executes these malfunctions by supplying conditional data which modify internal model states and then elicit a response as seen on the user displays. Ground operators and crew on board the ISS use CMG malfunction procedures to better understand and respond to anomalies observed within the CMG subsystem.

  7. Report by the International Space Station (ISS) Management and Cost Evaluation (IMCE) Task Force

    Science.gov (United States)

    Young, A. Thomas; Kellogg, Yvonne (Technical Monitor)

    2001-01-01

    The International Space Station (ISS) Management and Cost Evaluation Task Force (IMCE) was chartered to conduct an independent external review and assessment of the ISS cost, budget, and management. In addition, the Task Force was asked to provide recommendations that could provide maximum benefit to the U.S. taxpayers and the International Partners within the President's budget request. The Task Force has made the following principal findings: (1) The ISS Program's technical achievements to date, as represented by on-orbit capability, are extraordinary; (2) The Existing ISS Program Plan for executing the FY 02-06 budget is not credible; (3) The existing deficiencies in management structure, institutional culture, cost estimating, and program control must be acknowledged and corrected for the Program to move forward in a credible fashion; (4) Additional budget flexibility, from within the Office of Space Flight (OSF) must be provided for a credible core complete program; (5) The research support program is proceeding assuming the budget that was in place before the FY02 budget runout reduction of $1B; (6) There are opportunities to maximize research on the core station program with modest cost impact; (7) The U.S. Core Complete configuration (three person crew) as an end-state will not achieve the unique research potential of the ISS; (8) The cost estimates for the U.S.-funded enhancement options (e.g., permanent seven person crew) are not sufficiently developed to assess credibility. After these findings, the Task Force has formulated several primary recommendations which are published here and include: (1) Major changes must be made in how the ISS program is managed; (2) Additional cost reductions are required within the baseline program; (3) Additional funds must be identified and applied from the Human Space Flight budget; (4) A clearly defined program with a credible end-state, agreed to by all stakeholders, must be developed and implemented.

  8. ISS Operations Cost Reductions Through Automation of Real-Time Planning Tasks

    Science.gov (United States)

    Hall, Timothy A.; Clancey, William J.; McDonald, Aaron; Toschlog, Jason; Tucker, Tyson; Khan, Ahmed; Madrid, Steven (Eric)

    2011-01-01

    In 2007 the Johnson Space Center s Mission Operations Directorate (MOD) management team challenged their organizations to find ways to reduce the cost of operations for supporting the International Space Station (ISS) in the Mission Control Center (MCC). Each MOD organization was asked to define and execute projects that would help them attain cost reductions by 2012. The MOD Operations Division Flight Planning Branch responded to this challenge by launching several software automation projects that would allow them to greatly improve console operations and reduce ISS console staffing and intern reduce operating costs. These tasks ranged from improving the management and integration mission plan changes, to automating the uploading and downloading of information to and from the ISS and the associated ground complex tasks that required multiple decision points. The software solutions leveraged several different technologies including customized web applications and implementation of industry standard web services architecture; as well as engaging a previously TRL 4-5 technology developed by Ames Research Center (ARC) that utilized an intelligent agent-based system to manage and automate file traffic flow, archive data, and generate console logs. These projects to date have allowed the MOD Operations organization to remove one full time (7 x 24 x 365) ISS console position in 2010; with the goal of eliminating a second full time ISS console support position by 2012. The team will also reduce one long range planning console position by 2014. When complete, these Flight Planning Branch projects will account for the elimination of 3 console positions and a reduction in staffing of 11 engineering personnel (EP) for ISS.

  9. Establishing a Distance Learning Plan for International Space Station (ISS) Interactive Video Education Events (IVEE)

    Science.gov (United States)

    Wallington, Clint

    1999-01-01

    Educational outreach is an integral part of the International Space Station (ISS) mandate. In a few scant years, the International Space Station has already established a tradition of successful, general outreach activities. However, as the number of outreach events increased and began to reach school classrooms, those events came under greater scrutiny by the education community. Some of the ISS electronic field trips, while informative and helpful, did not meet the generally accepted criteria for education events, especially within the context of the classroom. To make classroom outreach events more acceptable to educators, the ISS outreach program must differentiate between communication events (meant to disseminate information to the general public) and education events (designed to facilitate student learning). In contrast to communication events, education events: are directed toward a relatively homogeneous audience who are gathered together for the purpose of learning, have specific performance objectives which the students are expected to master, include a method of assessing student performance, and include a series of structured activities that will help the students to master the desired skill(s). The core of the ISS education events is an interactive videoconference between students and ISS representatives. This interactive videoconference is to be preceded by and followed by classroom activities which help the students aftain the specified learning objectives. Using the interactive videoconference as the centerpiece of the education event lends a special excitement and allows students to ask questions about what they are learning and about the International Space Station and NASA. Whenever possible, the ISS outreach education events should be congruent with national guidelines for student achievement. ISS outreach staff should recognize that there are a number of different groups that will review the events, and that each group has different criteria

  10. Russian Countermeasure Systems for Adverse Effects of Microgravity on Long-Duration ISS Flights.

    Science.gov (United States)

    Kozlovskaya, Inessa B; Yarmanova, E N; Yegorov, A D; Stepantsov, V I; Fomina, E V; Tomilovaskaya, E S

    2015-12-01

    The system of countermeasures for the adverse effects of microgravity developed in the USSR supported the successful implementation of long-duration spaceflight (LDS) programs on the Salyut and Mir orbital stations and was subsequently adapted for flights on the International Space Station (ISS). From 2000 through 2010, crews completed 26 ISS flight increments ranging in duration from 140 to 216 d, with the participation of 27 Russian cosmonauts. These flights have made it possible to more precisely determine a crew-member's level of conditioning, better assess the advantages and disadvantages of training processes, and determine prospects for future developments.

  11. ISS mapped from ICD-9-CM by a novel freeware versus traditional coding: a comparative study.

    Science.gov (United States)

    Di Bartolomeo, Stefano; Tillati, Silvia; Valent, Francesca; Zanier, Loris; Barbone, Fabio

    2010-03-31

    Injury severity measures are based either on the Abbreviated Injury Scale (AIS) or the International Classification of diseases (ICD). The latter is more convenient because routinely collected by clinicians for administrative reasons. To exploit this advantage, a proprietary program that maps ICD-9-CM into AIS codes has been used for many years. Recently, a program called ICDPIC trauma and developed in the USA has become available free of charge for registered STATA users. We compared the ICDPIC calculated Injury Severity Score (ISS) with the one from direct, prospective AIS coding by expert trauma registrars (dAIS). The administrative records of the 289 major trauma cases admitted to the hospital of Udine-Italy from 1 July 2004 to 30 June 2005 and enrolled in the Italian Trauma Registry were retrieved and ICDPIC-ISS was calculated. The agreement between ICDPIC-ISS and dAIS-ISS was assessed by Cohen's Kappa and Bland-Altman charts. We then plotted the differences between the 2 scores against the ratio between the number of traumatic ICD-9-CM codes and the number of dAIS codes for each patient (DIARATIO). We also compared the absolute differences in ISS among 3 groups identified by DIARATIO. The discriminative power for survival of both scores was finally calculated by ROC curves. The scores matched in 33/272 patients (12.1%, k 0.07) and, when categorized, in 80/272 (22.4%, k 0.09). The Bland-Altman average difference was 6.36 (limits: minus 22.0 to plus 34.7). ICDPIC-ISS of 75 was particularly unreliable. The differences increased (p ISS was lower (0.63 vs. 0.76, p = 0.02). Despite its great potential convenience, ICPIC-ISS agreed poorly with its conventionally calculated counterpart. Its discriminative power for survival was also significantly lower. Incomplete ICD-9-CM coding was a main cause of these findings. Because this quality of coding is standard in Italy and probably in other European countries, its effects on the performances of other trauma scores based

  12. Progress Towards a Microgravity CFD Validation Study Using the ISS SPHERES-SLOSH Experiment

    Science.gov (United States)

    Storey, Jedediah M.; Kirk, Daniel; Marsell, Brandon (Editor); Schallhorn, Paul (Editor)

    2017-01-01

    Understanding, predicting, and controlling fluid slosh dynamics is critical to safety and improving performance of space missions when a significant percentage of the spacecrafts mass is a liquid. Computational fluid dynamics simulations can be used to predict the dynamics of slosh, but these programs require extensive validation. Many CFD programs have been validated by slosh experiments using various fluids in earth gravity, but prior to the ISS SPHERES-Slosh experiment1, little experimental data for long-duration, zero-gravity slosh existed. This paper presents the current status of an ongoing CFD validation study using the ISS SPHERES-Slosh experimental data.

  13. Lightning Imaging Sensor (LIS) on the International Space Station (ISS): Launch, Installation, Activation, and First Results

    Science.gov (United States)

    Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M. G.; Stewart, M. F.; O'Brien, S.; Wilson, T. O.; Pavelitz, S. D.; Coker, C.

    2016-12-01

    Over the past 20 years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based lightning observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global lightning climatology. The observations included measurements from the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) and its Optical Transient Detector (OTD) predecessor that acquired global observations of total lightning (i.e., intracloud and cloud-to-ground discharges) spanning a period from May 1995 through April 2015. As an exciting follow-on to these prior missions, a space-qualified LIS built as a flight-spare for TRMM will be delivered to the International Space Station (ISS) for a 2 year or longer mission, flown as a hosted payload on the Department of Defense (DoD) Space Test Program-Houston 5 (STP-H5) mission. The STP-H5 payload containing LIS is scheduled launch from NASA's Kennedy Space Center to the ISS in November 2016, aboard the SpaceX Cargo Resupply Services-10 (SpaceX-10) mission, installed in the unpressurized "trunk" of the Dragon spacecraft. After the Dragon is berth to ISS Node 2, the payload will be removed from the trunk and robotically installed in a nadir-viewing location on the external truss of the ISS. Following installation on the ISS, the LIS Operations Team will work with the STP-H5 and ISS Operations Teams to power-on LIS and begin instrument checkout and commissioning. Following successful activation, LIS orbital operations will commence, managed from the newly established LIS Payload Operations Control Center (POCC) located at the National Space Science Technology Center (NSSTC) in Huntsville, AL. The well-established and robust processing, archival, and distribution infrastructure used for TRMM was easily adapted to the ISS mission, assuring that lightning

  14. The P3 truss, an ISS segment, is prepared for transfer to O&C

    Science.gov (United States)

    1999-01-01

    With its cargo off-loaded (background), the nose cone of the Super Guppy aircraft is closed. The cargo is a P3 port-side truss, a segment of the International Space Station (ISS). The truss is scheduled to be added to the ISS on mission STS-115 in 2002 aboard Space Shuttle Atlantis. The second port truss segment, P3 will be attached to the first port truss segment (P1). The P3 truss will be taken to the Operations and Checkout Building.

  15. Alpha Magnetic Spectrometer (AMS02) experiment on the International Space Station (ISS)

    Institute of Scientific and Technical Information of China (English)

    Behcet ALPAT

    2003-01-01

    The Alpha Magnetic Spectrometer experiment is realized in two phases. A precursor flight (STS-91)with a reduced experimental configuration (AMS01) has successfully flown on space shuttle Discovery in June 1998.The final version (AMS02) will be installed on the International Space Station (ISS) as an independent module inearly 2006 for an operational period of three years. The main scientific objectives of AMS02 include the searches forthe antimatter and dark matter in cosmic rays. In this work we will discuss the experimental details as well as the im-proved physics capabilities of AMS02 on ISS.

  16. Saarlane debüteeris kinolinal helirežissöörina / Janne Nurmik

    Index Scriptorium Estoniae

    Nurmik, Janne

    2008-01-01

    Kinos Sõprus esilinastunud tudengifilmide programmis "Kuhu põgenevad pinged" jõudsid vaatajate ette üheksa Balti Filmi- ja Meediakooli ning Eesti Kunstiakadeemia filmiüliõpilaste II kursuse kevadsemestri tööd. Tallinna Ülikooli Balti Filmi- ja Meediakoolis filmi ja video õppetooli III kursusel helirežissööriks õppiv Ando Naulainen osales helirežissöörina filmides "Peatus" ja "Metsa süda", viimases koos kursuseõe Luisa Värgiga

  17. USE OF METAL RESERVOIRS – JET DAMPERS ON MNLZ-3 OF JSC «BMZ – MANAGEMENT COMPANY OF HOLDING «BMK» AFTER RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    I. A. Bondarenko

    2014-01-01

    Full Text Available Within the period from 2010 to 2013 MNLZ-3 of JSC BMZ has completely solved the problem of metal discharge from pouring boxes at their filling on the first melting in line at pouring of all assortment of steels due to use of metal reservoir jet damper of optimal design and chemical composition.

  18. Suspending in School Suspension?: Is ISS a Valid Means of Disciplinary Action to Reduce Negative Student Behaviors?

    Science.gov (United States)

    Rahynes, Leron M.

    2015-01-01

    This paper explored whether or not In School Suspensions (ISS) is effective in reducing student behavioral problems. Research was conducted with 6-8th grade students in a rural middle school in the upstate of South Carolina for the purposes of determining if ISS, in its current design a viable and effective method to reduce negative student…

  19. Observation platform for colloid science experiments using the ISS Light Microscopy Module

    Science.gov (United States)

    Kurk, Michael Andy; Todd, Paul; Vellinger, John C.

    2012-07-01

    The role of gravity in colloid self-assembly is a long-standing subject of inquiry. The International Space Station Light Microscopy Module (LMM) is a potentially powerful tool for implementing the observation of colloids in a high-quality low-gravity environment. The main requirements for making observations of colloid self-assembly include a small-volume, thermally stabilized environment, the addition and removal of small volumes of fluids (colloidal suspensions or reagents), and on-demand access to electrokinetic and/or magnetophoretic body forces. A modular device has been designed in which a custom electronics module is designed to mate with the existing LMM cold plate and LMM controlling power. All control features, electrical power, microscope illuminator, fluid pumps and valves are components of this module. This module lies under, mates with and serves an experiment module which houses the fluid containers that fit under the LMM objective lenses and fluid transfer tubing. Four versions of the experiment module have been designed: a hollow-slide stopped flow cell, a multiwell quiescent module, a magnetization module and an electrokinetic module. Interfaces can be established in the viewing field using the stopped-flow cell, which is also applicable to living systems such as microbial cultures, suspended blood cells, nematodes, etc. Multi-well modules can be equipped with in-line static mixers that allow the investigator to combine pairs of fluids or to re-homogenize settled samples. The maximum dimension of all modules is 16 cm, so the modules can be transported in large numbers on cargo or manned spacecraft to the ISS. A doubly-contained transfer tool can be used to transfer fluids in and out of the experiment module, which is equipped with a fluid coupling that mates to the transfer tool. Experiment-specific versions of these modules can be prepared for approved experimenters within a 1-year period. The research for these devices is supported by NASA

  20. IV measurements of mc-Si solar cells. Comparison of results from institute and industry partners within the EU CrystalClear project

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, G.; Herguth, A.; Helfricht, A. [University of Konstanz, Department of Physics, Jacob-Burckhardt-Str. 29, 78464 Konstanz (Germany); Hofmann, M; Warta, W. [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Van der Borg, N.J.C.M.; Weeber, A.W. [ECN Solar Energy, PO Box 1, NL 1755 ZG Petten (Netherlands); John, J.; Beaucarne, G. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Bagus, S.; Nagel, H. [SCHOTT Solar GmbH, Carl-Zeiss-Strasse 4, 63755 Alzenau (Germany); Le Quang, N.; Nichiporuk, O. [Photowatt International S.A.S. 33, Rue St. Honore 38300 Bourgoin Jallieu (France); Vincueria, I. [BP Solar Espana SAU, P.I. Tres Cantos Zona Oeste, s/n 28760, Madrid (Spain); Brochs, M. [REC Scancell, 8512 Narvik (Norway)

    2008-10-15

    Determination of solar cell parameters by illuminated IV measurement is a standard characterisation technique used by many partners active in photovoltaics. The aim of this work is to carry out a cross check of different measurement set-ups used by different research partners of the EU CrystalClear project using industrial type multicrystalline Si solar cells. In a first round robin a significant spread of all cell parameters (Voc, jsc, FF and efficiency) could be observed. After distribution of sister cells to selected cells calibrated at ISE CalLab, a second round robin was carried out. The spread in FF and jsc could be significantly reduced. Repeatability tests showed that by using a photo diode fluctuations of light intensity can be minimised and variations in jsc can be decreased down to 0.2 mA/cm{sup 2}. Remaining systematic errors are control of cell temperature, contacting geometry, and use of appropriate reference cells.

  1. The Atmosphere-Space Interactions Monitor (ASIM) Payload Facility on the ISS

    DEFF Research Database (Denmark)

    Reibaldi, Giuseppe; Nasca, Rosario; Neubert, Torsten

    ASIM is a payload facility to be mounted on a Columbus external platform on the International Space Station (ISS). ASIM will study the coupling of thunderstorm processes to the upper atmosphere, ionosphere and radiation belts. ASIM is the most complex Earth Observation payload facility planned...

  2. Utilizing the ISS Mission as a Testbed to Develop Cognitive Communications Systems

    Science.gov (United States)

    Jackson, Dan

    2016-01-01

    The ISS provides an excellent opportunity for pioneering artificial intelligence software to meet the challenges of real-time communications (comm) link management. This opportunity empowers the ISS Program to forge a testbed for developing cognitive communications systems for the benefit of the ISS mission, manned Low Earth Orbit (LEO) science programs and future planetary exploration programs. In November, 1998, the Flight Operations Directorate (FOD) started the ISS Antenna Manager (IAM) project to develop a single processor supporting multiple comm satellite tracking for two different antenna systems. Further, the processor was developed to be highly adaptable as it supported the ISS mission through all assembly stages. The ISS mission mandated communications specialists with complete knowledge of when the ISS was about to lose or gain comm link service. The current specialty mandated cognizance of large sun-tracking solar arrays and thermal management panels in addition to the highly-dynamic satellite service schedules and rise/set tables. This mission requirement makes the ISS the ideal communications management analogue for future LEO space station and long-duration planetary exploration missions. Future missions, with their precision-pointed, dynamic, laser-based comm links, require complete autonomy for managing high-data rate communications systems. Development of cognitive communications management systems that permit any crew member or payload science specialist, regardless of experience level, to control communications is one of the greater benefits the ISS can offer new space exploration programs. The IAM project met a new mission requirement never previously levied against US space-born communications systems management: process and display the orientation of large solar arrays and thermal control panels based on real-time joint angle telemetry. However, IAM leaves the actual communications availability assessment to human judgement, which introduces

  3. Measurement of high-energy neutrons at ISS by SEDA-AP

    Science.gov (United States)

    Koga, K.; Goka, T.; Matsumoto, H.; Obara, T.; Muraki, Y.; Yamamoto, T.

    2011-09-01

    A new type of solar neutron detector (NEM) was launched by the space shuttle Endeavour on 16 July 2009 and it began collecting data on 25 August 2009 at the International Space Station (ISS). In this paper we introduce preliminary results obtained by the NEM.

  4. Video- Demonstration of Seltzer Tablet in Water Onboard the International Space Station (ISS)

    Science.gov (United States)

    2002-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video clip, Pettit demonstrates dropping an Alka Seltzer tablet into a film of water which becomes a floating ball of activity filled water. Watch the video to see the surprising results!

  5. Validation of a self-reported HIV symptoms list: the ISS-HIV symptoms scale.

    Science.gov (United States)

    Bucciardini, Raffaella; Pugliese, Katherina; Francisci, Daniela; Costantini, Andrea; Schiaroli, Elisabetta; Cognigni, Miriam; Tontini, Chiara; Lucattini, Stefano; Fucili, Luca; Di Gregorio, Massimiliano; Mirra, Marco; Fragola, Vincenzo; Pompili, Sara; Murri, Rita; Vella, Stefano

    2016-01-01

    To describe the development and the psychometric properties of the Istituto Superiore di Sanità-HIV symptoms scale (lSS-HIV symptoms scale). The ISS-HIV symptom scale was developed by an Italian working team including researchers, physicians and people living with HIV. The development process went through the following steps: (1) review of HIV/AIDS literature; (2) focus group; (3) pre-test analysis; (4) scale validation. The 22 symptoms of HIV-ISS symptoms scale were clustered in five factors: pain/general discomfort (7 items); depression/anxiety (4 items); emotional reaction/psychological distress (5 items); gastrointestinal discomfort (4 items); sexual discomfort (2 items). The internal consistence reliability was for all factors within the minimum accepted standard of 0.70. The results of this study provide a preliminary evidence of the reliability and validity of the ISS-HIV symptoms scale. In the new era where HIV infection has been transformed into a chronic diseases and patients are experiencing a complex range of symptoms, the ISS-HIV symptoms scale may represent an useful tool for a comprehensive symptom assessment with the advantage of being easy to fill out by patients and potentially attractive to physicians mainly because it is easy to understand and requires short time to interpret the results.

  6. The Foreign Expansion of a Service Company: The Case of ISS A/S

    DEFF Research Database (Denmark)

    Pedersen, Kurt; Strandskov, Jesper

    2008-01-01

    on the case of ISS - International Service Systems - which over the past four decades has pursued an aggressive internationalization strategy. The article describes the foreign expansion history in the period from 1960 to the year 2000 that reflected the vision of top management in combination...

  7. ISS EarthKam: Taking Photos of the Earth from Space

    Science.gov (United States)

    Haste, Turtle

    2008-01-01

    NASA is involved in a project involving the International Space Station (ISS) and an Earth-focused camera called EarthKam, where schools, and ultimately students, are allowed to remotely program the EarthKAM to take images. Here the author describes how EarthKam was used to help middle school students learn about biomes and develop their…

  8. Vabariigi juubelifilmi režissööriks saab Asko Kase / Andris Feldmanis

    Index Scriptorium Estoniae

    Feldmanis, Andris, 1982-

    2007-01-01

    Produtsent Artur Talvik, stsenaristid Lauri Vahtre ja Mihkel Ullman, režissöör Asko Kase valmistuvad 1924.a. 1. detsembri mässust jutustavaks mängufilmiks, mis peab valmima Eesti vabariigi 90-ndaks aastapäevaks

  9. ISS: Efficient Search Scheme Based on Immune Method in Modern Unstructured Peer-to-Peer Networks

    Institute of Scientific and Technical Information of China (English)

    GUAN Zhitao; CAO Yuanda; ZHU Liehuang; ZHANG Changyou; FAN Xiumei

    2007-01-01

    Flooding is the most famous technique for locating contents in unstructured P2P networks. Recently traditional flooding has been replaced by more efficient dynamic query (DQ) and different variants of such algorithms. Dynamic query is a new flooding technique which could estimate a proper time-to-live (TTL) value for a query flooding by estimating the popularity of the searched files, and retrieve sufficient results under controlled flooding range for reducing network traffic. However, all DQ-like search algorithms are "blind" so that a large amount of redundant messages are caused. In this paper, we proposed a new search scheme, called Immune Search Scheme (ISS), to cope with this problem. In ISS, an immune systems inspired concept of similarity-governed clone proliferation and mutation for query message movement is applied. Some assistant strategies, that is, shortcuts creation and peer traveling are incorporated into ISS to develop "immune memory" for improving search performance, which can make ISS not be blind but heuristic.

  10. Evaluating ACLS Algorithms for the International Space Station (ISS) - A Paradigm Revisited

    Science.gov (United States)

    Alexander, Dave; Brandt, Keith; Locke, James; Hurst, Victor, IV; Mack, Michael D.; Pettys, Marianne; Smart, Kieran

    2007-01-01

    The ISS may have communication gaps of up to 45 minutes during each orbit and therefore it is imperative to have medical protocols, including an effective ACLS algorithm, that can be reliably autonomously executed during flight. The aim of this project was to compare the effectiveness of the current ACLS algorithm with an improved algorithm having a new navigation format.

  11. Applying lessons learned to enhance human performance and reduce human error for ISS operations

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, W.R.

    1998-09-01

    A major component of reliability, safety, and mission success for space missions is ensuring that the humans involved (flight crew, ground crew, mission control, etc.) perform their tasks and functions as required. This includes compliance with training and procedures during normal conditions, and successful compensation when malfunctions or unexpected conditions occur. A very significant issue that affects human performance in space flight is human error. Human errors can invalidate carefully designed equipment and procedures. If certain errors combine with equipment failures or design flaws, mission failure or loss of life can occur. The control of human error during operation of the International Space Station (ISS) will be critical to the overall success of the program. As experience from Mir operations has shown, human performance plays a vital role in the success or failure of long duration space missions. The Department of Energy`s Idaho National Engineering and Environmental Laboratory (INEEL) is developed a systematic approach to enhance human performance and reduce human errors for ISS operations. This approach is based on the systematic identification and evaluation of lessons learned from past space missions such as Mir to enhance the design and operation of ISS. This paper describes previous INEEL research on human error sponsored by NASA and how it can be applied to enhance human reliability for ISS.

  12. Intervjuu filmi "Tabamata ime" režissööridega / Marianne Kõrver

    Index Scriptorium Estoniae

    Kõrver, Marianne, 1980-

    2007-01-01

    Kuus noorema põlve režissööri R. Sarnet, M. Raat, A. Tammiksaar, J. Kilmi, A. Maimik ja vestluse kirja pannud M. Kõrver avaldavad mõtteid oma lühifilmidest kogumikule E. Vilde näidendi "Tabamata ime" ainetel

  13. Toxicological Assessment of ISS Air Quality: SpaceX-2 First Ingress

    Science.gov (United States)

    Meyers, Valerie

    2013-01-01

    One mini-grab sample container (M-GSC) was collected by crew members onboard ISS during first ingress into SpaceX-2 on March 3, 2013, three days after late cargo loading and a pre-launch clean air purge. Recoveries of the three surrogate standards from the m-GSC were: 13C-acetone, 97%; fluorobenzene, 95%; and chlorobenzene, 68%.

  14. The Atmosphere-Space Interactions Monitor (ASIM) Payload Facility on the ISS

    DEFF Research Database (Denmark)

    Reibaldi, Giuseppe; Nasca, Rosario; Neubert, Torsten

    ASIM is a payload facility to be mounted on a Columbus external platform on the International Space Station (ISS). ASIM will study the coupling of thunderstorm processes to the upper atmosphere, ionosphere and radiation belts. ASIM is the most complex Earth Observation payload facility planned...

  15. Lessons learned from the STS-120/ISS 10A robotics operations

    Science.gov (United States)

    Aziz, Sarmad

    2010-01-01

    The STS-120/ISS 10A assembly mission was an unprecedented period during the life of the International Space Stations (ISS). The successful completion of the mission laid the foundation for the launch of the European and Japanese laboratories and continued assembly of the station. Unlike previous missions that concluded when the Space Shuttle undocked from the ISS, the 10A mission required critical assembly operations to continue after the Shuttle's departure to relocate the Harmony module to its permanent location and activate its systems. The end-to-end mission lasted for almost a month and required the execution of seven space walks, over 20 major robotics operations, and countless hours of ground commanding. The Canadian built mobile servicing system (MSS) and its robotics space station remote manipulator system (SSRMS) played a key a role in the success of the assembly operations. The mission presented the ISS robotics flight control team (ROBO) with unique challenges during the pre-mission planning and real-time execution of complex assembly tasks. The mission included the relocation of the P6 truss segment from the Z1 Node to its permanent location on the P5 truss; a three day marathon of highly choreographed sequence of robotics operations and space walks, and the reconfiguration of ISS structure to attach Harmony (Node 2) to the US destiny laboratory module; a six day sequence of complex robotics operations the majority of which was executed after the departure of the shuttle and included an unprecedented amount of ground commanded robotics operations. Of all the robotics operations executed during the mission, none were more challenging than supporting the repair of a torn P6 solar array that was damaged during its deployment; a dramatic space walk that pushed the MSS and the robotics flight control team to new limits and required the real-time planning and execution of an intricate series of operations that spanned two days. This paper will present an

  16. Experimental and design activities on WDS and ISS as EU contribution to ITER fue

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, Ion; Cristescu, Iona; Glugla, M.; Hellriegel, G.; Michling, R.; Schaefer, P.; Welte, S.; Wurster, W.; Doerr, L. [Forschungszentrum Karlsruhe (Germany); Murdoch, D. [EFDA Garching (Germany)

    2007-07-01

    The Water Detritiation System (WDS) of ITER is one of the key systems to control the tritium content in the effluents streams, to recover as much tritium as possible and consequently to minimize the impact on the environment. In order to mitigate the concern over tritium releases into the environment during pulsed operation of the Torus, the WDS and Isotope Separation System (ISS) will be operated in such way that WDS will be a final barrier for the processed protium waste gas stream discharged from ISS. The ITER ISS consists of a cascade of four cryogenic distillation columns with the aim to process mainly two gas streams, one from Torus Exhaust Processing (TEP) and other from WDS mixed with the returned stream from Neutral Beam Injectors (NBI). The behaviour of the CD cascade has to be characterized with high accuracy in view of thermal and isotopic fluctuations during Torus pulses. To support the research activities needed to characterize the performances of various components for WDS and ISS processes in various working conditions and configurations as needed for ITER detailed design, an experimental facility called TRENTA based on the combination Combined Electrolysis Catalytic Exchange (CECE) - Cryogenic Distillation (CD), representative of the ITER WDS and ISS protium separation column is in operation at TLK. The CECE process consists of a solid polymer electrolyser unit as envisaged to be used in ITER WDS, and an 8 m Liquid Phase Catalytic Exchange Column (LPCE). The CD system consists of a refrigeration unit of 250 W cooling capacity at 16 K and a cryogenic distillation column of 55 mm in diameter and 2.7 m as process lengths. The experimental program on the TRENTA facility is focused on two major issues: - To investigate the separation performances and liquid hold up of different packings potentially to be used on cryogenic distillation process and the separation performances of the catalyst/packing for the LPCE process. - Trade off studies between the

  17. GEROS-ISS: Innovative Ocean Remote Sensing using GNSS Reflectometry onboard the International Space Station

    Science.gov (United States)

    Wickert, Jens; Andersen, Ole; Beyerle, Georg; Chapron, Bertrand; Cardellach, Estel; Gommenginger, Christine; Hoeg, Per; Jäggi, Adrian; Jakowski, Norbert; Kern, Michael; Lee, Tony; Martin-Neira, Manuel; Pierdicca, Nazzareno; Shum, Ck; Zuffada, Cinzia

    2014-05-01

    In response to an European Space Agency (ESA) announcement of opportunity the GEROS-ISS (GEROS hereafter) proposal was submitted in 2011 and accepted by ESA to proceed to Phase A. GEROS-ISS is an innovative ISS experiment primarily focused on exploiting reflected signals of opportunity from Global Navigation Satellite Systems (GNSS) at L-band to measure key parameters of ocean surfaces. Secondary mission goals are remote sensing of land/ice surface parameters and global atmosphere and ionosphere observations using the GNSS radio occultation technique. GEROS will pioneer the exploitation of signals from Galileo and possibly other GNSS systems (GLONASS, QZSS, Beidou), for reflectometry and occultation, thereby improving the accuracy as well as the spatio-temporal resolution of the derived geophysical properties. GEROS will contribute to the long-term S.I. traceable observation of the variations of major climate components of the Earth System: Oceans/Hydrosphere, Cryosphere/Snow, Atmosphere/Ionosphere and solid Earth/landcover changes with innovative and complementary aspects compared to current Earth Observation satellite missions. GEROS will mainly provide mid- and low-latitude observations on submesoscale or longer oceanic variability with a focus on the coastal region, surface ocean currents, surface winds, wave heights for a period of at least ten years. These observations will lead to a better understanding of the climate system. GEROS takes advantage of the capacious infrastructure onboard the ISS for the payload setup. GEROS also provides a sensor calibration/validation option for other upcoming satellite missions including ISS-RapidScatt, CYGNSS and FormoSAT-7/COSMIC-II. The definition of the GEROS mission and system requirements was completed end of 2013 and the industrial phase A studies are expected to start in early 2014. We overview the GEROS mission and review the status of the experiment.

  18. Design Solutions for the Treatment of DMSD in the ISS Water Recovery System

    Science.gov (United States)

    Perry, Jay; Carter, Donald; Kayatin, Matthew; Bowman, Elizabeth; Gentry, Greg; Muirhead, Brian; Gazda, Daniel; Wilson, Mark

    2017-01-01

    Dimethylsilanediol (DMSD) has been identified as a problematic organic on ISS. This contaminant was initially identified in the Water Processor Assembly (WPA) product water in 2010 by the Total Organic Carbon Analyzer (TOCA). DMSD is not a crew health hazard at the levels observed in the product water, but it may degrade the performance of the Oxygen Generation System (OGS) which uses the WPA product water for electrolysis and does impact the effective operation of the WPA catalytic reactor. To mitigate these impacts, early replacement of the Multifiltration Beds in the WPA is required. An investigation has determined that the decomposition of atmospheric polydimethylsiloxanes (PDMSs) is the primary source of DMSD in the condensate. PDMSs are prevalent on ISS from a variety of sources, including crew hygiene products, adhesives, caulks, lubricants, and various nonmetallics. These PDMSs also contribute to degradation of the CHX hydrophilic coating, rendering it hydrophobic and therefore affecting its ability to transmit water to the condensate bus. In addition, literature research has determined that PDMSs are likely oxidized to DMSD in the atmosphere when exposed to hydroxyl radicals in the ISS atmosphere. To address these mechanisms, filters have been developed for removal of PDMSs from the ISS atmosphere. However, ongoing analysis indicates a significant reduction in atmospheric PDMSs is required to achieve a measurable reduction of DMSD in the condensate. As a result, additional measures are being pursued to mitigate this issue. First, credible sources are being investigated to quantity to the extent possible the significant sources of PDMSs and identify sources that can be reasonably removed from ISS. Second, a Reverse Osmosis technology is being investigated as an alternate means for removing DMSD from the condensate. This paper summarizes the current status of the overall effort to mitigate DMSD in the US condensate.

  19. Developing a burn injury severity score (BISS): adding age and total body surface area burned to the injury severity score (ISS) improves mortality concordance.

    Science.gov (United States)

    Cassidy, J Tristan; Phillips, Michael; Fatovich, Daniel; Duke, Janine; Edgar, Dale; Wood, Fiona

    2014-08-01

    There is limited research validating the injury severity score (ISS) in burns. We examined the concordance of ISS with burn mortality. We hypothesized that combining age and total body surface area (TBSA) burned to the ISS gives a more accurate mortality risk estimate. Data from the Royal Perth Hospital Trauma Registry and the Royal Perth Hospital Burns Minimum Data Set were linked. Area under the receiver operating characteristic curve (AUC) measured concordance of ISS with mortality. Using logistic regression models with death as the dependent variable we developed a burn-specific injury severity score (BISS). There were 1344 burns with 24 (1.8%) deaths, median TBSA 5% (IQR 2-10), and median age 36 years (IQR 23-50). The results show ISS is a good predictor of death for burns when ISS≤15 (OR 1.29, p=0.02), but not for ISS>15 (ISS 16-24: OR 1.09, p=0.81; ISS 25-49: OR 0.81, p=0.19). Comparing the AUCs adjusted for age, gender and cause, ISS of 84% (95% CI 82-85%) and BISS of 95% (95% CI 92-98%), demonstrated superior performance of BISS as a mortality predictor for burns. ISS is a poor predictor of death in severe burns. The BISS combines ISS with age and TBSA and performs significantly better than the ISS. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  20. Charge transport in dye-sensitized solar cell

    Science.gov (United States)

    Yanagida, Masatoshi

    2015-03-01

    The effect of charge transport on the photovoltaic properties of dye-sensitized solar cells (DSCs) was investigated by the experimental results and the ion transport. The short current photocurrent density (Jsc) is determined by the electron transport in porous TiO2 when the diffusion limited current (Jdif) due to the {{I}3}- transport is larger than the photo-generated electron flux (Jg) estimated from the light harvesting efficiency of dye-sensitized porous TiO2 and the solar spectrum. However, the Jsc value is determined by the ion transport in the electrolyte solution at Jdif Nanotechnology IWAMSN2014, 2-6 November, 2014, Ha Long, Vietnam.