WorldWideScience

Sample records for jovian auroras magnetospheric

  1. Modeling Jovian Magnetospheres Beyond the Solar System

    Williams, Peter K. G.

    2018-06-01

    Low-frequency radio observations are believed to represent one of the few means of directly probing the magnetic fields of extrasolar planets. However, a half-century of low-frequency planetary observations within the Solar System demonstrate that detailed, physically-motivated magnetospheric models are needed to properly interpret the radio data. I will present recent work in this area focusing on the current state of the art: relatively high-frequency observations of relatively massive objects, which are now understood to have magnetospheres that are largely planetary in nature. I will highlight the key challenges that will arise in future space-based observations of lower-mass objects at lower frequencies.

  2. Low Energy Particle Oscillations and Correlations with Hydromagnetic Waves in the Jovian Magnetosphere: Ulysses Measurements

    Krupp, N.; Tsurutani, B. T.; Lanzerotti, L. J.; Maclennan, C. G.

    1996-01-01

    We report on measurements of energetic particle modulations observed by the HI-SCALE instrument aboard the Ulysses Spacecraft that were associated with the only hydromagnetic wave event measured inside the Jovian magnetosphere by the Ulysses magnetometer investigation.

  3. Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits

    Connerney, J. E. P.; Adriani, Alberto; Allegrini, F.

    2017-01-01

    The Juno spacecraft acquired direct observations of the jovian magnetosphere and auroral emissions from a vantage point above the poles. Juno's capture orbit spanned the jovian magnetosphere from bow shock to the planet, providing magnetic field, charged particle, and wave phenomena context...

  4. Modeling the Interaction of Europa with the Jovian Magnetosphere

    Rubin, M.; Combi, M. R.; Daldorff, L.; Gombosi, T. I.; Hansen, K. C.; Jia, X.; Kivelson, M. G.; Tenishev, V.

    2011-12-01

    The interaction of Jupiter's corotating magnetosphere with Europa's subsurface water ocean is responsible for the observed induced dipolar magnetic field. Furthermore the pick-up process of newly ionized particles from Europa's neutral atmosphere alters the magnetic and electric field topology around the moon. We use the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme (BATS-R-US) of the Space Weather Modeling Framework (SWMF) to model the interaction of Europa with the Jovian magnetosphere. The BATS-R-US code solves the governing equations of magnetohydrodynamics (MHD) in a fully 3D adaptive mesh. In our approach we solve the equations for one single ion species, starting from the work by Kabin et al. (J. Geophys. Res., 104, A9, 19983-19992, 1999) accounting for the exospheric mass loading, ion-neutral charge exchange, and ion-electron recombination. We continue by separately solving the electron pressure equation and furthermore extend the magnetic induction equation by the resistive and Hall terms. The resistive term accounts for the finite electron diffusivity and thus allows a more adequate description of the effect of magnetic diffusion due to collisions [Ledvina et al., Sp. Sci. Rev., 139:143-189, 2008]. For this purpose we use ion-electron and electron-neutral collision rates presented by Schunk and Nagy (Ionospheres, Cambridge University Press, 2000). The Hall term allows ions and electrons to move at different velocities while the magnetic field remains frozen to the electrons. The assumed charge neutrality of the ion-electron plasma is maintained everywhere at all times. The model is run at different phases of Jupiter's rotation reflecting the different locations of Europa with respect to the center of the plasma sheet and is compared to measurements obtained by the Galileo magnetometer [Kivelson et al., J. Geophys. Res., 104:4609-4626, 1999]. The resulting influence on the induced magnetic dipolar field is studied and compared to the results from the

  5. An Overview of Energetic Particle Measurements in the Jovian Magnetosphere with the EPAC Sensor on Ulysses.

    Keppler, E; Blake, J B; Fränz, M; Korth, A; Krupp, N; Quenby, J J; Witte, M; Woch, J

    1992-09-11

    Observations of ions and electrons of probable Jovian origin upstream of Jupiter were observed after a corotating interplanetary particle event. During the passage of Ulysses through the Jovian bow shock, magnetopause, and outer magnetosphere, the fluxes of energetic particles were surprisingly low. During the passage through the "middle magnetosphere," corotating fluxes were observed within the current sheet near the jovimagnetic equato. During the outbound pass, fluxes were variably directed; in the later part of the flyby, they were probably related to high-latitude phenomena.

  6. Detection of the 'continuous' H3(+) electrojet in the Jovian Aurora

    Stallard, T. S.; Miller, S.; Achilleos, N.; Rego, D.; Prange, R.; Dougherty, M.; Joseph, R. D.

    1999-09-01

    Recently we have published the first detection of an auroral electrojet - a fast ion wind circulating around the auroral oval - on Jupiter (Rego et al., Nature, 399, 121-123). The detection was made during an unusual "auroral event", but raised the possibility that such electrojets might be detectable under "normal" auroral conditions. This work, currently in progress, is directed towards that aim. To accomplish this, high resolution infrared spectra and images of the Jovian aurora were taken on the nights of September 7-11(th) 1998, observing the nu_ {2} Q(1,0(-) ) line of H(+}_{3) at 3.953 mu m. The slit was aligned across the planet, perpendicular to the rotational axis, and the spectra were taken at 1 arcsec steps across the planet through the region of aurora. Each spectrum has been fitted row by row with a gaussian using height, width, background and central position as free parameters. This results in a measurement of how the relative central position varies across each spectra. Having processed the data, removing any systematic array effects, rotation, and instrumentally based spatial effects, we intend to show a measurable electrojet from the dopler shift it causes. This will be in the form of LOS maps of the auroral region at different CML taken over the 5 night observation period.

  7. NuSTAR hard X-ray observations of the Jovian magnetosphere during Juno perijove and apojove intervals

    Dunn, W.; Mori, K.; Hailey, C. J.; Branduardi-Raymont, G.; Grefenstette, B.; Jackman, C. M.; Hord, B. J.; Ray, L. C.

    2017-12-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is the first focusing hard X-ray telescope operating in the 3-79 keV band with sub-arcminute angular resolution (18" FWHM). For the first time, NuSTAR provides sufficient sensitivity to detect/resolve hard X-ray emission from Jupiter above 10 keV, since the in-situ Ulysses observation failed to detect X-ray emission in the 27-48 keV band [Hurley et al. 1993]. The initial, exploratory NuSTAR observation of Jupiter was performed in February 2015 with 100 ksec exposure. NuSTAR detected hard X-ray emission (E > 10 keV) from the south polar region at a marginally significance of 3 sigma level [Mori et al. 2016, AAS meeting poster]. This hard X-ray emission is likely an extension of the non-thermal bremsstrahlung component detected up to 7 keV by XMM-Newton [Branduardi-Raymont et al. 2007]. The Ulysses non-detection suggests there should be a spectral cutoff between 7 and 27 keV. Most intriguingly, the NuSTAR detection of hard X-ray emission from the south aurora is in contrast to the 2003 XMM-Newton observations where soft X-ray emission below 8 keV was seen from both the north and south poles [Gladstone et al. 2002]. Given the marginal, but tantalizing, hard X-ray detection of the southern Jovian aurora, a series of NuSTAR observations with total exposure of nearly half a million seconds were approved in the NuSTAR GO and DDT program. These NuSTAR observations coincided with one Juno apojove (in June 2017) and three perijoves (in May, July and September 2017), also joining the multi-wavelength campaigns of observing Jupiter coordinating with Chandra and XMM-Newton X-ray telescope (below 10 keV) and HST. We will present NuSTAR imaging, spectral and timing analysis of Jupiter. NuSTAR imaging analysis will map hard X-ray emission in comparison with soft X-ray and UV images. In addition to investigating any distinctions between the soft and hard X-ray morphology of the Jovian aurorae, we will probe whether hard X

  8. The first year of observations of Jupiter's magnetosphere from Juno's Jovian Auroral Distributions Experiment (JADE)

    Valek, P. W.; Allegrini, F.; Angold, N. G.; Bagenal, F.; Bolton, S. J.; Chae, K.; Connerney, J. E. P.; Ebert, R. W.; Gladstone, R.; Kim, T. K. H.; Kurth, W. S.; Levin, S.; Louarn, P.; Loeffler, C. E.; Mauk, B.; McComas, D. J.; Pollock, C. J.; Reno, M. L.; Szalay, J. R.; Thomsen, M. F.; Weidner, S.; Wilson, R. J.

    2017-12-01

    Juno observations of the Jovian plasma environment are made by the Jovian Auroral Distributions Experiment (JADE) which consists of two nearly identical electron sensors - JADE-E - and an ion sensor - JADE-I. JADE-E measures the electron distribution in the range of 100 eV to 100 keV and uses electrostatic deflection to measure the full pitch angle distribution. JADE-I measures the composition separated energy per charge in the range of 10 eV / q to 46 keV / q. The large orbit - apojove 110 Rj, perijove 1.05 Rj - allows JADE to periodically cross through the magnetopause into the magnetosheath, transverse the outer, middle, and inner magnetosphere, and measures the plasma population down to the ionosphere. We present here in situ plasma observations of the Jovian magnetosphere and topside ionosphere made by the JADE instrument during the first year in orbit. Dawn-side crossings of the plasmapause have shown a general dearth of heavy ions except during some intervals at lower magnetic latitudes. Plasma disk crossings in the middle and inner magnetosphere show a mixture of heavy and light ions. During perijove crossings at high latitudes when Juno was connected to the Io torus, JADE-I observed heavy ions with energies consistent with a corotating pickup population. In the auroral regions the core of the electron energy distribution is generally from about 100 eV when on field lines that are connected to the inner plasmasheet, several keVs when connected to the outer plasmasheet, and tens of keVs when Juno is over the polar regions. JADE has observed upward electron beams and upward loss cones, both in the north and south auroral regions, and downward electron beams in the south. Some of the beams are of short duration ( 1 s) implying that the magnetosphere has a very fine spatial and/or temporal structure within the auroral regions. Joint observations with the Waves instrument have demonstrated that the observed loss cone distributions provide sufficient growth rates

  9. The aurora at quite magnetospheric conditions: Repeatability and dipole tilt angle dependence

    Oznovich, I.; Eastes, R.W.; Huffman, R.E.; Tur, M.; Glaser, I.

    1993-01-01

    Is there a magnetospheric ground state? Do the position and size of the auroral oval depend on the magnetic dipole tilt angle at quiet magnetospheric conditions? In order to address these questions, northern hemisphere images of the aurora at 1356 Angstrom, obtained by Polar BEAR at solar minimum (beginning of 1987), were related to high temporal resolution IPM 8 measurements of the interplanetary magnetic field, to solar wind velocity, and to the ground-based activity index Kp. The first problem was addressed by a two-dimensional correlation study of the repeatability of auroral emissions in corrected geomagnetic space at conditions of minimum energy transfer from the magnetosphere. The correlation measure of auroral images was 0.6-0.85. Error simulations indicate that given the uncertainties in pixel position and intensity, the maximum expected value of the correlation measure is 0.65-0.9. The notion of a ground state magnetosphere is therefore supported by this data. Repeatability was found at the same level regardless of time or reconfigurations of the magnetosphere between images and independent of magnetic time sector. The second problem was addressed by relating latitudinal shifts of the aurora with dipole tilt angle without resorting to auroral boundary specification. This data indicate that the latitude of the continuous aurora is related to the dipole tilt angle at quiet magnetospheric conditions. In the winter hemisphere a 10 degrees increase in the dipole tilt angle causes a 1 degree decrease (increase) in the latitude of auroral emissions at noon (midnight). The magnetic local time distribution of the latitudinal shifts with dipole tilt angle support a simple model in which the dipole tilt angle determines the position of the center of the auroral circle along the magnetic meridian 1320-0120 MLT (for IMF B y positive) and does not affect its radius. 22 refs., 8 figs

  10. Empirical probability model of cold plasma environment in the Jovian magnetosphere

    Futaana, Yoshifumi; Wang, Xiao-Dong; Barabash, Stas; Roussos, Elias; Truscott, Pete

    2015-04-01

    We analyzed the Galileo PLS dataset to produce a new cold plasma environment model for the Jovian magneto- sphere. Although there exist many sophisticated radiation models, treating energetic plasma (e.g. JOSE, GIRE, or Salammbo), only a limited number of simple models has been utilized for cold plasma environment. By extend- ing the existing cold plasma models toward the probability domain, we can predict the extreme periods of Jovian environment by specifying the percentile of the environmental parameters. The new model was produced in the following procedure. We first referred to the existing cold plasma models of Divine and Garrett, 1983 (DG83) or Bagenal and Delamere 2011 (BD11). These models are scaled to fit the statistical median of the parameters obtained from Galileo PLS data. The scaled model (also called as "mean model") indicates the median environment of Jovian magnetosphere. Then, assuming that the deviations in the Galileo PLS parameters are purely due to variations in the environment, we extended the mean model toward the percentile domain. The input parameter of the model is simply the position of the spacecraft (distance, magnetic longitude and lati- tude) and the specific percentile (e.g. 0.5 for the mean model). All the parameters in the model are described in mathematical forms; therefore the needed computational resources are quite low. The new model can be used for assessing the JUICE mission profile. The spatial extent of the model covers the main phase of the JUICE mission; namely from the Europa orbit to 40 Rj (where Rj is the radius of Jupiter). In addition, theoretical extensions toward the latitudinal direction are also included in the model to support the high latitude orbit of the JUICE spacecraft.

  11. Energetic Charged-Particle Phenomena in the Jovian Magnetosphere: First Results from the Ulysses COSPIN Collaboration.

    Simpson, J A; Anglin, J D; Balogh, A; Burrows, J R; Cowley, S W; Ferrando, P; Heber, B; Hynds, R J; Kunow, H; Marsden, R G; McKibben, R B; Müller-Mellin, R; Page, D E; Raviart, A; Sanderson, T R; Staines, K; Wenzel, K P; Wilson, M D; Zhang, M

    1992-09-11

    The Ulysses spacecraft made the first exploration of the region of Jupiter's magnetosphere at high Jovigraphic latitudes ( approximately 37 degrees south) on the dusk side and reached higher magnetic latitudes ( approximately 49 degrees north) on the day side than any previous mission to Jupiter. The cosmic and solar particle investigations (COSPIN) instrumentation achieved a remarkably well integrated set of observations of energetic charged particles in the energy ranges of approximately 1 to 170 megaelectron volts for electrons and 0.3 to 20 megaelectron volts for protons and heavier nuclei. The new findings include (i) an apparent polar cap region in the northern hemisphere in which energetic charged particles following Jovian magnetic field lines may have direct access to the interplanetary medium, (ii) high-energy electron bursts (rise times approximately 17 megaelectron volts) on the dusk side that are apparently associated with field-aligned currents and radio burst emissions, (iii) persistence of the global 10-hour relativistic electron "clock" phenomenon throughout Jupiter's magnetosphere, (iv) on the basis of charged-particle measurements, apparent dragging of magnetic field lines at large radii in the dusk sector toward the tail, and (v) consistent outflow of megaelectron volt electrons and large-scale departures from corotation for nucleons.

  12. Ionosphere-Magnetosphere Energy Interplay in the Regions of Diffuse Aurora

    Khazanov, G. V.; Glocer, A.; Sibeck, D. G.; Tripathi, A. K.; Detweiler, L.G.; Avanov, L. A.; Singhal, R. P.

    2016-01-01

    Both electron cyclotron harmonic (ECH) waves and whistler mode chorus waves resonate with electrons of the Earths plasma sheet in the energy range from tens of eV to several keV and produce the electron diffuse aurora at ionospheric altitudes. Interaction of these superthermal electrons with the neutral atmosphere leads to the production of secondary electrons (E500600 eV) and, as a result, leads to the activation of lower energy superthermal electron spectra that can escape back to the magnetosphere and contribute to the thermal electron energy deposition processes in the magnetospheric plasma. The ECH and whistler mode chorus waves, however, can also interact with the secondary electrons that are coming from both of the magnetically conjugated ionospheres after they have been produced by initially precipitated high-energy electrons that came from the plasma sheet. After their degradation and subsequent reflection in magnetically conjugate atmospheric regions, both the secondary electrons and the precipitating electrons with high (E600 eV) initial energies will travel back through the loss cone, become trapped in the magnetosphere, and redistribute the energy content of the magnetosphere-ionosphere system. Thus, scattering of the secondary electrons by ECH and whistler mode chorus waves leads to an increase of the fraction of superthermal electron energy deposited into the core magnetospheric plasma.

  13. Corotation-driven magnetosphere-ionosphere coupling currents in Saturn’s magnetosphere and their relation to the auroras

    S. W. H. Cowley

    2003-08-01

    Full Text Available We calculate the latitude profile of the equatorward-directed ionospheric Pedersen currents that are driven in Saturn’s ionosphere by partial corotation of the magnetospheric plasma. The calculation incorporates the flattened figure of the planet, a model of Saturn’s magnetic field derived from spacecraft flyby data, and angular velocity models derived from Voyager plasma data. We also employ an effective height-integrated ionospheric Pedersen conductivity of 1 mho, suggested by a related analysis of Voyager magnetic field data. The Voyager plasma data suggest that on the largest spatial scales, the plasma angular velocity declines from near-rigid corotation with the planet in the inner magnetosphere, to values of about half of rigid corotation at the outer boundary of the region considered. The latter extends to ~ 15–20 Saturn radii (RS in the equatorial plane, mapping along magnetic field lines to ~ 15° co-latitude in the ionosphere. We find in this case that the ionospheric Pedersen current peaks near the poleward (outer boundary of this region, and falls toward zero over ~ 5°–10° equator-ward of the boundary as the plasma approaches rigid corotation. The peak current near the poleward boundary, integrated in azimuth, is ~ 6 MA. The field-aligned current required for continuity is directed out of the ionosphere into the magnetosphere essentially throughout the region, with the current density peaking at ~ 10 nA m-2 at ~ 20° co-latitude. We estimate that such current densities are well below the limit requiring field-aligned acceleration of magnetospheric electrons in Saturn’s environment ( ~ 70 nAm-2, so that no significant auroral features associated with this ring of upward current is anticipated. The observed ultraviolet auroras at Saturn are also found to occur significantly closer to the pole (at ~ 10°–15° co-latitude, and show considerable temporal and local time variability, contrary to expectations for corotation

  14. Optical observations of Magnetosphere-Ionosphere coupling: Inter-hemispheric electron reflections within pulsating aurora

    Samara, M.; Michell, R.; Khazanov, G. V.; Grubbs, G. A., II

    2017-12-01

    Magnetosphere-Ionosphere coupling is exhibited in reflected primary and secondary electrons which constitute the second step in the formation of the total precipitating electron distribution. While they have largely been missing from the current theoretical studies of particle precipitation, ground based observations point to the existence of a reflected electron population. We present evidence that pulsating aurora is caused by electrons bouncing back and forth between the two hemispheres. This means that these electrons are responsible for some of the total light in the aurora, a possibility that has largely been ignored in theoretical models. Pulsating auroral events imaged optically at high time resolution present direct observational evidence in agreement with the inter-hemispheric electron bouncing predicted by the SuperThermal Electron Trans-port (STET) model. Immediately following each of the `pulsation-on' times are equally spaced, and subsequently fainter pulsations, which can be explained by the primary precipitating electrons reflecting upwards from the ionosphere, traveling to the opposite hemisphere, and reflecting upwards again. The high time-resolution of these data, combined with the short duration of the `pulsation-on' time ( 1 s) and the relatively long spacing between pulsations ( 6 to 9 s) made it possible to observe the faint optical pulses caused by the reflected electrons coming from the opposite hemisphere. These results are significant and have broad implications because they highlight that the formation of the auroral electron distributions within regions of diffuse and pulsating aurora contain contributions from reflected primary and secondary electrons. These processes can ultimately lead to larger fluxes than expected when considering only the primary injection of magnetospheric electrons.

  15. Superthermal Electron Magnetosphere-Ionosphere Coupling in the Diffuse Aurora in the Presence of ECH Waves

    Khazanov, G. V.; Tripathi, A. K.; Singhal, R. P.; Himwich, Elizabeth; Glocer, A.; Sibeck, D. G.

    2015-01-01

    There are two main theories for the origin of the diffuse auroral electron precipitation: first, pitch angle scattering by electrostatic electron cyclotron harmonic (ECH) waves, and second, by whistler mode waves. Precipitating electrons initially injected from the plasma sheet to the loss cone via wave-particle interaction processes degrade in the atmosphere toward lower energies and produce secondary electrons via impact ionization of the neutral atmosphere. These secondary electrons can escape back to the magnetosphere, become trapped on closed magnetic field lines, and deposit their energy back to the inner magnetosphere. ECH and whistler mode waves can also move electrons in the opposite direction, from the loss cone into the trap zone, if the source of such electrons exists in conjugate ionospheres located at the same field lines as the trapped magnetospheric electron population. Such a situation exists in the simulation scenario of superthermal electron energy interplay in the region of diffuse aurora presented and discussed by Khazanov et al. (2014) and will be quantified in this paper by taking into account the interaction of secondary electrons with ECH waves.

  16. The aurora and the magnetosphere - The Chapman Memorial Lecture. [dynamo theory development, 1600-present

    Akasofu, S.-I.

    1974-01-01

    Review of recent progress in magnetospheric physics, in particular, in understanding the magnetospheric substorm. It is shown that a number of magnetospheric phenomena can now be understood by viewing the solar wind-magnetosphere interaction as an MHD dynamo; auroral phenomena are powered by the dynamo. Also, magnetospheric responses to variations of the north-south and east-west components of the interplanetary magnetic field have been identified. The magnetospheric substorm is entirely different from the responses of the magnetosphere to the southward component of the interplanetary magnetic field. It may be associated with the formation of a neutral line within the plasma sheet and with an enhanced reconnection along the line. A number of substorm-associated phenomena can be understood by noting that the new neutral line formation is caused by a short-circuiting of a part of the magnetotail current.

  17. Magnetospheric magnetic field modelling for the 2011 and 2012 HST Saturn aurora campaigns – implications for auroral source regions

    E. S. Belenkaya

    2014-06-01

    Full Text Available A unique set of images of Saturn's northern polar UV aurora was obtained by the Hubble Space Telescope in 2011 and 2012 at times when the Cassini spacecraft was located in the solar wind just upstream of Saturn's bow shock. This rare situation provides an opportunity to use the Kronian paraboloid magnetic field model to examine source locations of the bright auroral features by mapping them along field lines into the magnetosphere, taking account of the interplanetary magnetic field (IMF measured near simultaneously by Cassini. It is found that the persistent dawn arc maps to closed field lines in the dawn to noon sector, with an equatorward edge generally located in the inner part of the ring current, typically at ~ 7 Saturn radii (RS near dawn, and a poleward edge that maps variously between the centre of the ring current and beyond its outer edge at ~ 15 RS, depending on the latitudinal width of the arc. This location, together with a lack of response in properties to the concurrent IMF, suggests a principal connection with ring-current and nightside processes. The higher-latitude patchy auroras observed intermittently near to noon and at later local times extending towards dusk are instead found to straddle the model open–closed field boundary, thus mapping along field lines to the dayside outer magnetosphere and magnetopause. These emissions, which occur preferentially for northward IMF directions, are thus likely associated with reconnection and open-flux production at the magnetopause. One image for southward IMF also exhibits a prominent patch of very high latitude emissions extending poleward of patchy dawn arc emissions in the pre-noon sector. This is found to lie centrally within the region of open model field lines, suggesting an origin in the current system associated with lobe reconnection, similar to that observed in the terrestrial magnetosphere for northward IMF.

  18. Jovian magnetosphere-satellite interactions: aspects of energetic charged particle loss

    Thomsen, M.F.

    1979-01-01

    Observations of energetic charged particles obtained by Pioneers 10 and 11 near the orbits of the inner Jovian satellites are reviewed with particular emphasis on the implications of these observations with regard to possible models of the access of charged particles to the satellite surfaces. The observed effects on particle pitch angle distributions and the observed energy dependence of the intensity depletions seen at the satellite orbits are compared with predictions of satellite sweepup based on several different access models. The two major uncertainties which hamper the comparisons are those associated with the satellite conductivities and the ionospheric dynamo electric field power spectrum. The satellite conductivity is important because it governs the access of the particles to the satellite surface and therefore the lifetime tau: the dynamo power spectrum is important because it controls the magnitude and energy dependence of the radial diffusion coefficient. In spite of these uncertainties we can nevertheless make the following conclusions. The electron pitch angle distributions at Io's orbit are compatible with expectations based on sweeping. The energy dependences of the observed electron depletions at all three inner satellites (Amalthea, Io, and Europa) are incompatible with expectations based on a perfect conductor model of a satellite and its flux tube but are compatible with the energy dependence expected for perfectly insulating or partially conducting satellites However, the proton losses at Io are observed to be much stronger than the electron losses, in contradiction to expectations based on sweeping. The most attractive explanation for the proton-electron discrepancy at Io is that the large proton losses at Io's orbit are principally due to enhanced pitch angle scattering in the region of higher plasma density

  19. Comparative time-series analysis of MeV electron data by Ulysses and Pioneer 10/11 in the Jovian magnetosphere

    Dunzlaff, P. [North-West Univ., Potchefstroom (South Africa). Centre for Space Research; Kiel Univ. (Germany). Inst. fuer Experimentelle und Angewandte Physik; Heber, B. [Kiel Univ. (Germany). Inst. fuer Experimentelle und Angewandte Physik; Kopp, A. [Kiel Univ. (Germany). Inst. fuer Experimentelle und Angewandte Physik; North-West Univ., Potchefstroom (South Africa). Centre for Space Research; Potgieter, M.S. [North-West Univ., Potchefstroom (South Africa). Centre for Space Research

    2013-11-01

    The dynamics of the Jovian magnetosphere is dominated by the planet's fast rotation with a period of {proportional_to} 10 h.Within the magnetosphere, this periodicity can in particular be seen in the temporal variation of the spectral index of MeV electrons: every {proportional_to} 10 h the counting rates show a maximum (minimum), while the spectral index shows a minimum (maximum) known as the Jovian ''clock'' mechanism. In this study we re-analyse Ulysses and Pioneer 10/11 data and show that another periodic modulation in the MeV electrons can be identified, manifested by local maxima of the spectral index and local minima of the counting rates. For Ulysses, this modulation can be observed throughout the magnetosphere near the magnetic equator, suggesting an azimuthal asymmetric distribution of MeV electrons near the current sheet. This modulation is found to trail the ''clock'' mechanism by {proportional_to} 3.25 h. The Pioneer 10 data, however, only show occasional evidence of the presence of these local maxima while there is no evidence of this modulation in the Pioneer 11 data. A comparison of the times of observed minor peaks and Ulysses' distance from the current sheet using a simple rigid disc model as well as the model of Khurana and Schwarzl (2005) is performed.

  20. Comparative time-series analysis of MeV electron data by Ulysses and Pioneer 10/11 in the Jovian magnetosphere

    Dunzlaff, P.; Kiel Univ.; Heber, B.; Kopp, A.; North-West Univ., Potchefstroom; Potgieter, M.S.

    2013-01-01

    The dynamics of the Jovian magnetosphere is dominated by the planet's fast rotation with a period of ∝ 10 h.Within the magnetosphere, this periodicity can in particular be seen in the temporal variation of the spectral index of MeV electrons: every ∝ 10 h the counting rates show a maximum (minimum), while the spectral index shows a minimum (maximum) known as the Jovian ''clock'' mechanism. In this study we re-analyse Ulysses and Pioneer 10/11 data and show that another periodic modulation in the MeV electrons can be identified, manifested by local maxima of the spectral index and local minima of the counting rates. For Ulysses, this modulation can be observed throughout the magnetosphere near the magnetic equator, suggesting an azimuthal asymmetric distribution of MeV electrons near the current sheet. This modulation is found to trail the ''clock'' mechanism by ∝ 3.25 h. The Pioneer 10 data, however, only show occasional evidence of the presence of these local maxima while there is no evidence of this modulation in the Pioneer 11 data. A comparison of the times of observed minor peaks and Ulysses' distance from the current sheet using a simple rigid disc model as well as the model of Khurana and Schwarzl (2005) is performed.

  1. Magnetospheric Response Associated With Multiple Atmospheric Reflections of Precipitated Electrons in Aurora.

    Khazanov, G. V.; Merkin, V. G.; Zesta, E.; Sibeck, D. G.; Grubbs, G. A., II; Chu, M.; Wiltberger, M. J.

    2017-12-01

    The magnetosphere and ionosphere are strongly coupled by precipitating electrons during storm times. Therefore, first principle simulations of precipitating electron fluxes are required to understand storm time variations of ionospheric conductances and related electric fields. As has been discussed by Khazanov et al. [2015 - 2017], the first step in such simulations is initiation of electron precipitation from the Earth's plasma sheet via wave particle interaction processes into both magnetically conjugate points, and the step 2 is the follow up of multiple atmospheric reflections of electron fluxes formed at the boundary between the ionosphere and magnetosphere of two magnetically conjugate points. To demonstrate this effect on the global magnetospheric response the Lyon-Fedder-Mobarry global magnetosphere model coupled with the Rice Convection Model of the inner magnetosphere has been used and run for the geomagnetic storm of 17 March 2013.

  2. Magnetospheric source region of discrete auroras inferred from their relationship with isotropy boundaries of energetic particles

    A. G. Yahnin

    1997-08-01

    Full Text Available According to observations, the discrete auroral arcs can sometimes be found, either deep inside the auroral oval or at the poleward border of the wide (so-called double auroral oval, which map to very different regions of the magnetotail. To find common physical conditions for the auroral-arc generation in these magnetotail regions, we study the spatial relationship between the diffuse and discrete auroras and the isotropic boundaries (IBs of the precipitating energetic particles which can be used to characterise locally the equatorial magnetic field in the tail. From comparison of ground observation of auroral forms with meridional profiles of particle flux measured simultaneously by the low-altitude NOAA satellites above the ground observation region, we found that (1 discrete auroral arcs are always situated polewards from (or very close to the IB of >30-keV electrons, whereas (2 the IB of the >30-keV protons is often seen inside the diffuse aurora. These relationships hold true for both quiet and active (substorm conditions in the premidnight-nightside (18-01-h MLT sector considered. In some events the auroral arcs occupy a wide latitudinal range. The most equatorial of these arcs was found at the poleward edge of the diffuse auroras (but anyway in the vicinity of the electron IB, the most poleward arcs were simultaneously observed on the closed field lines near the polar-cap boundary. These observations disagree with the notion that the discrete aurora originate exclusively in the near-Earth portion of plasma sheet or exclusively on the PSBL field lines. Result (1 may imply a fundamental feature of auroral-arc formation: they originate in the current-sheet regions having very curved and tailward-stretched magnetic field lines.

  3. Effects of interplanetary magnetic field and magnetospheric substorm variations on the dayside aurora

    Sandholt, P. E.; Egeland, A.; Lybekk, B.; Deehr, C. S.; Sivjee, G. G.; Romick, G. J.

    1983-11-01

    Photometric auroral observations and geomagnetic measurements obtained simultaneously on the dayside in Norway and the nightside in the USSR, Alaska, and Canada are combined with ISEE-1 and 3 data on the interplanetary magnetic field (IMF) to study the relative importance of substorm perturbations and IMF in determining dayside auroral (DA) motion. Ten events from December, 1978, and January and December, 1979, are characterized, the data are presented in tables, illustrated with charts and graphs, and summarized. The equatorward and poleward motion of the DA is correlated with the growth and decay of DP2-mode geomagnetic disturbances and changes in the north-south component of the IMF. Discrete DA forms appear in a region of sunward-convecting field lines. A detailed model of DA motion is developed which explains these phenomena as the result of a direct global response of the magnetospheric electromagnetic state to the solar-wind magnetic field. Using the model, the potential drop, Pedersen current, and Joule heat-dissipation rate of the polar-cap ionosphere are estimated as 125 kV, 800,000 A, and 100 GW, respectively.

  4. Jupiter's Aurora Observed With HST During Juno Orbits 3 to 7

    Grodent, Denis; Bonfond, B.; Yao, Z.; Gérard, J.-C.; Radioti, A.; Dumont, M.; Palmaerts, B.; Adriani, A.; Badman, S. V.; Bunce, E. J.; Clarke, J. T.; Connerney, J. E. P.; Gladstone, G. R.; Greathouse, T.; Kimura, T.; Kurth, W. S.; Mauk, B. H.; McComas, D. J.; Nichols, J. D.; Orton, G. S.; Roth, L.; Saur, J.; Valek, P.

    2018-05-01

    A large set of observations of Jupiter's ultraviolet aurora was collected with the Hubble Space Telescope concurrently with the NASA-Juno mission, during an eight-month period, from 30 November 2016 to 18 July 2017. These Hubble observations cover Juno orbits 3 to 7 during which Juno in situ and remote sensing instruments, as well as other observatories, obtained a wealth of unprecedented information on Jupiter's magnetosphere and the connection with its auroral ionosphere. Jupiter's ultraviolet aurora is known to vary rapidly, with timescales ranging from seconds to one Jovian rotation. The main objective of the present study is to provide a simplified description of the global ultraviolet auroral morphology that can be used for comparison with other quantities, such as those obtained with Juno. This represents an entirely new approach from which logical connections between different morphologies may be inferred. For that purpose, we define three auroral subregions in which we evaluate the auroral emitted power as a function of time. In parallel, we define six auroral morphology families that allow us to quantify the variations of the spatial distribution of the auroral emission. These variations are associated with changes in the state of the Jovian magnetosphere, possibly influenced by Io and the Io plasma torus and by the conditions prevailing in the upstream interplanetary medium. This study shows that the auroral morphology evolved differently during the five 2 week periods bracketing the times of Juno perijove (PJ03 to PJ07), suggesting that during these periods, the Jovian magnetosphere adopted various states.

  5. Discontinuities in Jovian sulphur plasma

    Mekler, Y [Jet Propulsion Lab., Pasadena, CA (USA); Eviatar, A; Siscoe, G L

    1979-10-01

    In recent years, the Jovian sulphur nebula, which is the only component of the thermal plasma in the magnetosphere of Jupiter which emits in the visible, has been the subject of considerable study. A large number of investigators have come up with widely differing models for the density, composition and temperature of the Jovian magnetospheric plasma. In this paper a different characteristic of the sulphur emission, namely its radial distribution is discussed and an attempt is made to assess its implications for the plasma and magnetic field configuration of the inner magnetosphere of Jupiter.

  6. The magnetosphere

    Ratcliffe, J.A.

    1977-01-01

    The structure of the magnetosphere, deduced from observations in space craft, is described, together with some of the phenomena that occur in it. A simple non-mathematical outline is given of some of the processes involved. The effects of the magnetosphere on the aurora, and on the magnetic field observed at the ground, are described, and the way they change during magnetospheric storms is discussed. (author)

  7. One-Year Observations of Jupiter by the Jovian Infrared Auroral Mapper on Juno

    Adriani, A.; Mura, A.; Bolton, S. J.; Connerney, J. E. P.; Levin, S.; Becker, H. N.; Bagenal, F.; Hansen, C. J.; Orton, G.; Gladstone, R.; Kurth, W. S.; Mauk, B.; Valek, P. W.

    2017-12-01

    The Jovian InfraRed Auroral Mapper (JIRAM) [1] on board the Juno [2,3] spacecraft, is equipped with an infrared camera and a spectrometer working in the spectral range 2-5 μm. JIRAM was built to study the infrared aurora of Jupiter as well as to map the planet's atmosphere in the 5 µm spectral region. The spectroscopic observations are used for studying clouds and measuring the abundance of some chemical species that have importance in the atmosphere's chemistry, microphysics and dynamics like water, ammonia and phosphine. During 2017 the instrument will operate during all 7 of Juno's Jupiter flybys. JIRAM has performed several observations of the polar regions of the planet addressing the aurora and the atmosphere. Unprecedented views of the aurora and the polar atmospheric structures have been obtained. We present a survey of the most significant observations that the instrument has performed during the current year. [1] Adriani A. et al., JIRAM, the Jovian Infrared Auroral Mapper. Space Sci. Rew., DOI 10.1007/s11214-014-0094-y, 2014. [2] Bolton S.J. et al., Jupiter's interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft. Science DOI: 10.1126/science.aal2108, 2017. [3] Connerney J. E.P. et al., Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Science, DOI: 10.1126/science.aam5928, 2017.

  8. The Jovian Auroral Distributions Experiment (JADE) on the Juno Mission to Jupiter

    McComas, D. J.; Alexander, N.; Allegrini, F.; Bagenal, F.; Beebe, C.; Clark, G.; Crary, F.; Desai, M. I.; De Los Santos, A.; Demkee, D.; Dickinson, J.; Everett, D.; Finley, T.; Gribanova, A.; Hill, R.; Johnson, J.; Kofoed, C.; Loeffler, C.; Louarn, P.; Maple, M.; Mills, W.; Pollock, C.; Reno, M.; Rodriguez, B.; Rouzaud, J.; Santos-Costa, D.; Valek, P.; Weidner, S.; Wilson, P.; Wilson, R. J.; White, D.

    2017-11-01

    The Jovian Auroral Distributions Experiment (JADE) on Juno provides the critical in situ measurements of electrons and ions needed to understand the plasma energy particles and processes that fill the Jovian magnetosphere and ultimately produce its strong aurora. JADE is an instrument suite that includes three essentially identical electron sensors (JADE-Es), a single ion sensor (JADE-I), and a highly capable Electronics Box (EBox) that resides in the Juno Radiation Vault and provides all necessary control, low and high voltages, and computing support for the four sensors. The three JADE-Es are arrayed 120∘ apart around the Juno spacecraft to measure complete electron distributions from ˜0.1 to 100 keV and provide detailed electron pitch-angle distributions at a 1 s cadence, independent of spacecraft spin phase. JADE-I measures ions from ˜5 eV to ˜50 keV over an instantaneous field of view of 270∘×90∘ in 4 s and makes observations over all directions in space each 30 s rotation of the Juno spacecraft. JADE-I also provides ion composition measurements from 1 to 50 amu with m/Δ m˜2.5, which is sufficient to separate the heavy and light ions, as well as O+ vs S+, in the Jovian magnetosphere. All four sensors were extensively tested and calibrated in specialized facilities, ensuring excellent on-orbit observations at Jupiter. This paper documents the JADE design, construction, calibration, and planned science operations, data processing, and data products. Finally, the Appendix describes the Southwest Research Institute [SwRI] electron calibration facility, which was developed and used for all JADE-E calibrations. Collectively, JADE provides remarkably broad and detailed measurements of the Jovian auroral region and magnetospheric plasmas, which will surely revolutionize our understanding of these important and complex regions.

  9. Comparative Analysis and Variability of the Jovian X-Ray Spectra Detected by the Chandra and XMM-Newton Observatories

    Hui, Yawei [ORNL; Schultz, David Robert [ORNL; Kharchenko, Vasili A [ORNL; Bhardwaj, Anil [Vikram Sarabhai Space Center, Trivandrum, India; Branduardi-Raymont, Graziella [University College, London; Stancil, Phillip C. [University of Georgia, Athens, GA; Cravens, Thomas E. E. [University of Kansas; Lisse, Carey M. [Johns Hopkins University; Dalgarno, A. [Harvard-Smithsonian Center for Astrophysics

    2010-01-01

    Expanding upon recent work, a more comprehensive spectral model based on charge exchange induced X-ray emission by ions precipitating into the Jovian atmosphere is used to provide new understanding of the polar auroras. In conjunction with the Xspec spectral fitting software, the model is applied to analyze observations from both Chandra and XMM-Newton by systematically varying the initial precipitating ion parameters to obtain the best fit model for the observed spectra. In addition to the oxygen and sulfur ions considered previously, carbon is included to discriminate between solar wind and Jovian magnetospheric ion origins, enabled by the use of extensive databases of both atomic collision cross sections and radiative transitions. On the basis of fits to all the Chandra observations, we find that carbon contributes negligibly to the observed polar X-ray emission suggesting that the highly accelerated precipitating ions are of magnetospheric origin. Most of the XMM-Newton fits also favor this conclusion with one exception that implies a possible carbon contribution. Comparison among all the spectra from these two observatories in light of the inferred initial energies and relative abundances of precipitating ions from the modeling show that they are significantly variable in time (observation date) and space (north and south polar X-ray auroras).

  10. Magnetospheric substorm

    Ondoh, Tadanori

    1974-01-01

    The results of observation of electric field, magnetic field, high energy particles, plasma and aurora on the ground and with artificial satellites during magnetospheric substorm are reviewed, and the problems are mentioned. A new image of magnetospheric substorm is described. The whole description is divided into eight parts. The first part describes the ionospheric electric current and plasma convection accompanying magnetospheric substorm. The variation of geomagnetism during the magnetospheric substorm, the ionospheric equivalent current during the growth and expansion period of substorm, and the relationship between the high energy proton flux of equatorial zone current and peripheral plasma density are illustrated. The second part describes auroral storm. The time variation of aurora observed with a whole sky camera is illustrated. The third part describes the structure of magnetosphere tail. The variation of electron spectrum parameters when the inner edge of plasma sheet passes is illustrated. The fourth part describes the auroral zone of the plasma sheet. The fifth part describes the magnetospheric substorm in magnetosphere tail. The sixth part describes the electric connection of magnetosphere with high latitudinal ionosphere. The seventh part describes interplanet magnetic field and magnetospheric substorm. The eighth part is summary. The ''SC- triggered bay'' accompanied by rapid decrease of X- or H-component occurred frequently immediately after SC in the night side of auroral zone when the rapidstart type magnetic storm at mid- and low-latitudes occurred. The correlation between the Dsub(st) at low latitude and the DS at high latitude during magnetic storm should be reexamined. (Iwakiri, K.)

  11. Modeling of Jovian Auroral Polar Ion and Proton Precipitation

    Houston, S. J.; Ozak, N. O.; Cravens, T.; Schultz, D. R.; Mauk, B.; Haggerty, D. K.; Young, J. T.

    2017-12-01

    Auroral particle precipitation dominates the chemical and physical environment of the upper atmospheres and ionospheres of the outer planets. Precipitation of energetic electrons from the middle magnetosphere is responsible for the main auroral oval at Jupiter, but energetic electron, proton, and ion precipitation take place in the polar caps. At least some of the ion precipitation is associated with soft X-ray emission with about 1 GW of power. Theoretical modeling has demonstrated that the incident sulfur and oxygen ion energies must exceed about 0.5 MeV/nucleon (u) in order to produce the measured X-ray emission. In this work we present a model of the transport of magnetospheric oxygen ions as they precipitate into Jupiter's polar atmosphere. We have revised and updated the hybrid Monte Carlo model originally developed by Ozak et al., 2010 to model the Jovian X-ray aurora. We now simulate a wider range of incident oxygen ion energies (10 keV/u - 5 MeV/u) and update the collision cross-sections to model the ionization of the atmospheric neutrals. The polar cap location of the emission and magnetosphere-ionosphere coupling both indicate the associated field-aligned currents must originate near the magnetopause or perhaps the distant tail. Secondary electrons produced in the upper atmosphere by ion precipitation could be accelerated upward to relativistic energies due to the same field-aligned potentials responsible for the downward ion acceleration. To further explore this, we simulate the effect of the secondary electrons generated from the heavy ion precipitation. We use a two-stream transport model that computes the secondary electron fluxes, their escape from the atmosphere, and characterization of the H2 Lyman-Werner band emission, including a predicted observable spectrum with the associated color ratio. Our model predicts that escaping electrons have an energy range from 1 eV to 6 keV, H2 band emission rates produced are on the order of 75 kR for an input

  12. Theory of Jovian shadow bursts

    Gopalswamy, N

    1986-06-01

    The shadow events in the dynamic spectra of Jovian decametric emission are explained as the result of interaction between electron bunches responsible for S and L emissions. The relevant dispersion relation is derived for the fast extraordinary mode in the cold magnetospheric plasma in the presence of S and L electron bunches. The growth rate of the synchrotron maser instability is studied in the presence and absence of S-electrons. It is shown that the synchrotron maser instability responsible for L-emission can be temporarily quenched by the invasion of S-electrons, thereby stopping the L-emission. The theory accounts for various observed features of the shadow events. (Auth.).

  13. Jupiter's magnetosphere and radiation belts

    Kennel, C. F.; Coroniti, F. V.

    1979-01-01

    Radioastronomy and Pioneer data reveal the Jovian magnetosphere as a rotating magnetized source of relativistic particles and radio emission, comparable to astrophysical cosmic ray and radio sources, such as pulsars. According to Pioneer data, the magnetic field in the outer magnetosphere is radially extended into a highly time variable disk-shaped configuration which differs fundamentally from the earth's magnetosphere. The outer disk region, and the energetic particles confined in it, are modulated by Jupiter's 10 hr rotation period. The entire outer magnetosphere appears to change drastically on time scales of a few days to a week. In addition to its known modulation of the Jovian decametric radio bursts, Io was found to absorb some radiation belt particles and to accelerate others, and most importantly, to be a source of neutral atoms, and by inference, a heavy ion plasma which may significantly affect the hydrodynamic flow in the magnetosphere. Another important Pioneer finding is that the Jovian outer magnetosphere generates, or permits to escape, fluxes of relativistic electrons of such intensities that Jupiter may be regarded as the dominant source of 1 to 30 MeV cosmic ray electrons in the heliosphere.

  14. Auroral phenomenology and magnetospheric processes earth and other planets

    Keiling, Andreas; Bagenal, Fran; Karlsson, Tomas

    2013-01-01

    Published by the American Geophysical Union as part of the Geophysical Monograph Series. Many of the most basic aspects of the aurora remain unexplained. While in the past terrestrial and planetary auroras have been largely treated in separate books, Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets takes a holistic approach, treating the aurora as a fundamental process and discussing the phenomenology, physics, and relationship with the respective planetary magnetospheres in one volume. While there are some behaviors common in auroras of the diffe

  15. Planetary magnetospheres

    Hill, T.W.; Michel, F.C.

    1975-01-01

    Recent planetary probes have resulted in the realization of the generality of magnetospheric interactions between the solar wind and the planets. The three categories of planetary magnetospheres are discussed: intrinsic slowly rotating magnetospheres, intrinsic rapidly rotating magnetospheres, and induced magnetospheres. (BJG)

  16. Storm-time Convection Dynamics Viewed from Optical Auroras: from Streamer to Patchy Pulsating Aurora

    Yang, B.; Donovan, E.; Liang, J.; Grono, E.

    2016-12-01

    In a series of statistical and event studies we have demonstrated that the motion of patches in regions of Patchy Pulsating Aurora (PPA) is very close to if not exactly convection. Thus, 2D maps of PPA motion provides us the opportunity to remote sense magnetospheric convection with relatively high space and time resolution, subject to uncertainties associated with mapping between the ionosphere and magnetosphere. In this study, we use THEMIS ASI aurora observations (streamers and patchy pulsating aurora) combined with SuperDARN convection measurements, Swarm ion drift velocity measurements, and RBSP electric field measurements to explore the convection dynamics in storm time. From 0500 UT to 0600 UT on March 19 2015, convection observations across 5 magnetic local time (MLT) inferred from the motion of PPA patches and SuperDARN measurements show that a westward SAPS (Subauroral Polarized Streams) enhancement occurs after an auroral streamer. This suggests that plasma sheet fast flows can affect the inner magnetospheric convection, and possibly trigger very fast flows in the inner magnetosphere.

  17. Terrestrial magnetosphere and comparison with Jupiter's

    Michel, F.C.

    1974-01-01

    A review of the characteristics of Jupiter's magnetosphere, with comparisons to the earth's is given. Radio observations of Jupiter indicate that energetic electrons are trapped in its magnetic field. The interaction of the trapped radiation with the satellite Io and the centrifugal instability of Jupiter's magnetosphere are discussed. Jupiter's outer magnetosphere is constantly accreting plasma at an uncertain rate. Various mechanisms for supplying ions to the outer magnetosphere are discussed, including: gravitational and centrifugal forces acting on corotating particles; field-line diffusion; photoelectron injection; excitation by Io or other satellites; and viscous interaction with the solar wind. The over-all morphology of the Jovian magnetosphere seems to be highly distorted by centrifugal forces and is easily compressed or deflected by the solar wind

  18. Horse-collar aurora: A frequent pattern of the aurora in quiet times

    Hones, E.W. Jr.; Craven, J.D.; Frank, L.A.; Evans, D.S.; Newell, P.T.

    1989-01-01

    Reported here are DE 1 auroral imager observations of an auroral configuration which is given the name ''horse-collar aurora.'' The horse-collar pattern comprises the total area of auroral emissions from a single hemisphere and derives its name from the shape of the emitting area. The pattern is found in images recorded during quiet geomagnetic conditions and is possibly related to the theta aurora, another quiet time configuration of the auroras. This initial report of the DE 1 observations illustrates the horse-collar aurora with a 2-hour images sequence that displays its basic features and shows an example of its evolution into a theta-like auroral pattern. The interplanetary magnetic field was northward during this image sequence and there is some evidence for IMF B/sub y/ influence of the temporal development of the horse-collar pattern. A preliminary statistical analysis found the horse-collar pattern appearing in one-third or more of image sequences recorded during quiet conditions; it did not appear during disturbed conditions. Further study is required to establish more fully the characteristics of the horse-collar aurora and to determine its implications concerning solar wind-magnetosphere coupling when the IMF B/sub z/ is northward. copyright American Geophysical Union 1989

  19. Relative drift between black aurora and the ionospheric plasma

    E. M. Blixt

    2005-07-01

    Full Text Available Black auroras are recognized as spatially well-defined regions within uniform diffuse aurora where the optical emission is significantly reduced. Although a well studied phenomenon, there is no generally accepted theory for black auroras. One theory suggests that black regions are formed when energetic magnetospheric electrons no longer have access to the loss cone. If this blocking mechanism drifts with the source electron population in the magnetosphere, black auroras in the ionosphere should drift eastward with a velocity that increases with the energy of the precipitating electrons in the surrounding aurora, since the gradient-B curvature drift is energy dependent. It is the purpose of this paper to test this hypothesis. To do so we have used simultaneous measurements by the European Incoherent Scatter (EISCAT radar and an auroral TV camera at Tromsø, Norway. We have analyzed 8 periods in which a black aurora occurred frequently to determine their relative drift with respect to the ionospheric plasma. The black aurora was found to drift eastward with a velocity of 1.5–4km/s, which is in accordance with earlier observations. However, one case was found where a black patch was moving westward, this being the first report of such behaviour in the literature. In general, the drift was parallel to the ionospheric flow but at a much higher velocity. This suggests that the generating mechanism is not of ionospheric origin. The characteristic energy of the precipitating electron population was estimated through inversion of E-region plasma density profiles. We show that the drift speed of the black patches increased with the energy of the precipitating electrons in a way consistent with the gradient-B curvature drift, suggesting a magnetospheric mechanism for the black aurora. As expected, a comparison of the drift speeds with a rudimentary dipole field model of the gradient-B curvature drift speed only yields order-of-magnitude agreement, which

  20. Hubble Images Reveal Jupiter's Auroras

    1996-01-01

    These images, taken by the Hubble Space Telescope, reveal changes in Jupiter's auroral emissions and how small auroral spots just outside the emission rings are linked to the planet's volcanic moon, Io. The images represent the most sensitive and sharply-detailed views ever taken of Jovian auroras.The top panel pinpoints the effects of emissions from Io, which is about the size of Earth's moon. The black-and-white image on the left, taken in visible light, shows how Io and Jupiter are linked by an invisible electrical current of charged particles called a 'flux tube.' The particles - ejected from Io (the bright spot on Jupiter's right) by volcanic eruptions - flow along Jupiter's magnetic field lines, which thread through Io, to the planet's north and south magnetic poles. This image also shows the belts of clouds surrounding Jupiter as well as the Great Red Spot.The black-and-white image on the right, taken in ultraviolet light about 15 minutes later, shows Jupiter's auroral emissions at the north and south poles. Just outside these emissions are the auroral spots. Called 'footprints,' the spots are created when the particles in Io's 'flux tube' reach Jupiter's upper atmosphere and interact with hydrogen gas, making it fluoresce. In this image, Io is not observable because it is faint in the ultraviolet.The two ultraviolet images at the bottom of the picture show how the auroral emissions change in brightness and structure as Jupiter rotates. These false-color images also reveal how the magnetic field is offset from Jupiter's spin axis by 10 to 15 degrees. In the right image, the north auroral emission is rising over the left limb; the south auroral oval is beginning to set. The image on the left, obtained on a different date, shows a full view of the north aurora, with a strong emission inside the main auroral oval.The images were taken by the telescope's Wide Field and Planetary Camera 2 between May 1994 and September 1995.This image and other images and data

  1. Venus magnetosphere

    Podgornyj, I.M.

    1983-01-01

    Some peculiarities of the structure of the Venus magnetosphere are considered. A Swedish scientist H. Alfven supposes that nebular bodies with ionospheric shelles of the type of Venus atmosphere possess induced magnetospheres with dragged magnetic tails. In the Institute of Space Research of the USSR Academy of Sciences experiments on the modelling of such magnetosphere are performed. The possibility of formation of the shock wave in the body with plasma shell in the absence of the proper magnetic shell is proved. The cosmic ''Pioneer-Venus'' equipment is used to obtain such a distribution of the magnetic field depending on the distance to Venus as it was predicted by the laboratory model

  2. Relations between turbulent regions of interplanetary magnetic field and Jovian decametric radio wave emissions from the main source

    Oya, H.; Morioka, A.

    1981-01-01

    Jovian decametric radio wave emissions that were observed at Goddard Space Flight Center, U.S.A. for a period from 1 October to 31 December, 1974 and data obtained at Mt. Zao observatory, Tohoku University, Japan, for a period from 14 July to 6 December, 1975 have been used to investigate the relationship of the occurrence of the Jovian decametric radio waves (JDW), from the main source, to the geomagnetic disturbance index, ΣKAPPA sub(rho). The dynamic cross-correlation between JDW and ΣKAPPAsubrho indicates an enhanced correlation for certain values of delay time. The delay time is consistent with predicted values based on a model of rotating turbulent regions in interplanetary space associated with two sector boundaries of the interplanetary magnetic field, i.e. the rotating sector boundaries of the interplanetary magnetic field first encounter the Earth's magnetosphere producing the geomagnetic field disturbances, and after a certain period, they encounter the Jovian magnetosphere. There are also cases where the order of the encounter is opposite, i.e. the sector boundaries encounter first Jovian magnetosphere and encounter the Earth's magnetosphere after a certain period. (author)

  3. Outer magnetosphere

    Schardt, A.W.; Behannon, K.W.; Lepping, R.P.; Carbary, J.F.; Eviatar, A.; Siscoe, G.L.

    1984-01-01

    Similarities between the Saturnian and terrestrial outer magnetosphere are examined. Saturn, like earth, has a fully developed magnetic tail, 80 to 100 RS in diameter. One major difference between the two outer magnetospheres is the hydrogen and nitrogen torus produced by Titan. This plasma is, in general, convected in the corotation direction at nearly the rigid corotation speed. Energies of magnetospheric particles extend to above 500 keV. In contrast, interplanetary protons and ions above 2 MeV have free access to the outer magnetosphere to distances well below the Stormer cutoff. This access presumably occurs through the magnetotail. In addition to the H+, H2+, and H3+ ions primarily of local origin, energetic He, C, N, and O ions are found with solar composition. Their flux can be substantially enhanced over that of interplanetary ions at energies of 0.2 to 0.4 MeV/nuc

  4. Terrestrial magnetosphere

    Pande, D.C.; Agarwal, D.C.

    1982-01-01

    This paper presents a review about terrestrial magnetosphere. During the last few years considerable investigation have been carried out about the properties of Solar Wind and its interaction with planetary magnetic fields. It is therefore of high importance to accumulate all the investigations in a comprehensive form. The paper reviews the property of earth's magnetosphere, magnetosheath, magneto pause, polar cusps, bow shook and plasma sheath. (author)

  5. AuroraMAX!

    Donovan, E.; Spanswick, E. L.; Chicoine, R.; Pugsley, J.; Langlois, P.

    2011-12-01

    AuroraMAX is a public outreach and education initiative that brings auroral images to the public in real time. AuroraMAX utilizes an observing station located just outside Yellowknife, Canada. The station houses a digital All-Sky Imager (ASI) that collects full-colour images of the night sky every six seconds. These images are then transmitted via satellite internet to our web server, where they are made instantly available to the public. Over the last two years this program has rapidly become one of the most successful outreach programs in the history of Space Science in Canada, with hundreds of thousands of distinct visitors to the CSA AuroraMAX website, thousands of followers on social media, and hundreds of newspaper, magazine, radio, and television spots. Over the next few years, the project will expand to include a high-resolution SLR delivering real-time auroral images (also from Yellowknife), as well as a program where astronauts on the ISS will take pictures of the aurora with a handheld SLR. The objectives of AuroraMAX are public outreach and education. The ASI design, operation, and software were based on infrastructure that was developed for the highly successful ASI component of the NASA THEMIS mission as well as the Canadian Space Agency (CSA) Canadian GeoSpace Monitoring (CGSM) program. So from an education and public outreach perspective, AuroraMAX is a single camera operating in the Canadian north. On the other hand, AuroraMAX is one of nearly 40 All-Sky Imagers that are operating across North America. The AuroraMAX camera produces data that is seamlessly integrated with the CGSM ASI data, and made widely available to the Space Science community through open-access web and FTP sites. One of our objectives in the next few years is to incorporate some of the data from the THEMIS and CGSM imagers into the AuroraMAX system, to maximize viewing opportunities and generate more real-time data for public outreach. This is an exemplar of a program that

  6. The inner magnetosphere imager mission

    Johnson, L.; Herrmann, M.

    1993-01-01

    After 30 years of in situ measurements of the Earth's magnetosphere, scientists have assembled an incomplete picture of its global composition and dynamics. Imaging the magnetosphere from space will enable scientists to better understand the global shape of the inner magnetosphere, its components and processes. The proposed inner magnetosphere imager (IMI) mission will obtain the first simultaneous images of the component regions of the inner magnetosphere and will enable scientists to relate these global images to internal and external influences as well as local observations. To obtain simultaneous images of component regions of the inner magnetosphere, measurements will comprise: the ring current and inner plasma sheet using energetic neutral atoms; the plasmasphere using extreme ultraviolet; the electron and proton auroras using far ultraviolet (FUV) and x rays; and the geocorona using FUV. The George C. Marshall Space Flight Center (MSFC) is performing a concept definition study of the proposed mission. NASA's Office of Space Science and Applications has placed the IMI third in its queue of intermediate-class missions for launch in the 1990's. An instrument complement of approximately seven imagers will fly in an elliptical Earth orbit with a seven Earth Radii (R E ) altitude apogee and approximately 4,800-kin altitude perigee. Several spacecraft concepts were examined for the mission. The first concept utilizes a spinning spacecraft with a despun platform. The second concept splits the instruments onto a spin-stabilized spacecraft and a complementary three-axis stabilized spacecraft. Launch options being assessed for the spacecraft range from a Delta 11 for the single and dual spacecraft concepts to dual Taurus launches for the two smaller spacecraft. This paper will address the mission objectives, the spacecraft design considerations, the results of the MSFC concept definition study, and future mission plans

  7. A Panchromatic View of Brown Dwarf Aurorae

    Pineda, J. Sebastian [University of Colorado Boulder, Laboratory for Atmospheric and Space Physics, 3665 Discovery Drive, Boulder CO, 80303 (United States); Hallinan, Gregg; Kao, Melodie M. [California Institute of Technology, Department of Astronomy, 1200 E. California Avenue, Pasadena CA, 91125 (United States)

    2017-09-01

    Stellar coronal activity has been shown to persist into the low-mass star regime, down to late M-dwarf spectral types. However, there is now an accumulation of evidence suggesting that at the end of the main sequence, there is a transition in the nature of the magnetic activity from chromospheric and coronal to planet-like and auroral, from local impulsive heating via flares and MHD wave dissipation to energy dissipation from strong large-scale magnetospheric current systems. We examine this transition and the prevalence of auroral activity in brown dwarfs through a compilation of multiwavelength surveys of magnetic activity, including radio, X-ray, and optical. We compile the results of those surveys and place their conclusions in the context of auroral emission as a consequence of large-scale magnetospheric current systems that accelerate energetic electron beams and drive the particles to impact the cool atmospheric gas. We explore the different manifestations of auroral phenomena, like H α , in brown dwarf atmospheres and define their distinguishing characteristics. We conclude that large-amplitude photometric variability in the near-infrared is most likely a consequence of clouds in brown dwarf atmospheres, but that auroral activity may be responsible for long-lived stable surface features. We report a connection between auroral H α emission and quiescent radio emission in electron cyclotron maser instability pulsing brown dwarfs, suggesting a potential underlying physical connection between quiescent and auroral emissions. We also discuss the electrodynamic engines powering brown dwarf aurorae and the possible role of satellites around these systems both to power the aurorae and seed the magnetosphere with plasma.

  8. Enhanced ionosphere-magnetosphere data from the DMSP satellites

    Rich, F.J.; Hardy, D.A.; Gussenhoven, M.S.

    1985-01-01

    The satellites of the Defense Meteorological Satellite Program (DMSP) represent a series of low-altitude (835 km) polar-orbiting satellites. Their primary objective is related to the observation of the tropospheric weather with a high-resolution white light and infrared imaging system. It is also possible to make images of auroras. On a daily basis, information about auroras is used to assist various communication systems which are affected by the ionospheric disturbances associated with auroras. In the past few years, there have been several improvements in the ionospheric monitoring instrumentation. Since the high-latitude ionosphere is connected to the magnetosphere, the DMSP data are used to monitor magnetospheric processes. The instrumentation of the DMSP satellites is discussed, taking into account the data provided by them. 7 references

  9. Pulsating aurora from electron scattering by chorus waves

    Kasahara, S.; Miyoshi, Y.; Yokota, S.; Mitani, T.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Matsuoka, A.; Kazama, Y.; Frey, H. U.; Angelopoulos, V.; Kurita, S.; Keika, K.; Seki, K.; Shinohara, I.

    2018-02-01

    Auroral substorms, dynamic phenomena that occur in the upper atmosphere at night, are caused by global reconfiguration of the magnetosphere, which releases stored solar wind energy. These storms are characterized by auroral brightening from dusk to midnight, followed by violent motions of distinct auroral arcs that suddenly break up, and the subsequent emergence of diffuse, pulsating auroral patches at dawn. Pulsating aurorae, which are quasiperiodic, blinking patches of light tens to hundreds of kilometres across, appear at altitudes of about 100 kilometres in the high-latitude regions of both hemispheres, and multiple patches often cover the entire sky. This auroral pulsation, with periods of several to tens of seconds, is generated by the intermittent precipitation of energetic electrons (several to tens of kiloelectronvolts) arriving from the magnetosphere and colliding with the atoms and molecules of the upper atmosphere. A possible cause of this precipitation is the interaction between magnetospheric electrons and electromagnetic waves called whistler-mode chorus waves. However, no direct observational evidence of this interaction has been obtained so far. Here we report that energetic electrons are scattered by chorus waves, resulting in their precipitation. Our observations were made in March 2017 with a magnetospheric spacecraft equipped with a high-angular-resolution electron sensor and electromagnetic field instruments. The measured quasiperiodic precipitating electron flux was sufficiently intense to generate a pulsating aurora, which was indeed simultaneously observed by a ground auroral imager.

  10. Jovian Plasma Modeling for Mission Design

    Garrett, Henry B.; Kim, Wousik; Belland, Brent; Evans, Robin

    2015-01-01

    The purpose of this report is to address uncertainties in the plasma models at Jupiter responsible for surface charging and to update the jovian plasma models using the most recent data available. The updated plasma environment models were then used to evaluate two proposed Europa mission designs for spacecraft charging effects using the Nascap-2k code. The original Divine/Garrett jovian plasma model (or "DG1", T. N. Divine and H. B. Garrett, "Charged particle distributions in Jupiter's magnetosphere," J. Geophys. Res., vol. 88, pp. 6889-6903,1983) has not been updated in 30 years, and there are known errors in the model. As an example, the cold ion plasma temperatures between approx.5 and 10 Jupiter radii (Rj) were found by the experimenters who originally published the data to have been underestimated by approx.2 shortly after publication of the original DG1 model. As knowledge of the plasma environment is critical to any evaluation of the surface charging at Jupiter, the original DG1 model needed to be updated to correct for this and other changes in our interpretation of the data so that charging levels could beproperly estimated using the Nascap-2k charging code. As an additional task, the Nascap-2k spacecraft charging tool has been adapted to incorporate the so-called Kappa plasma distribution function--an important component of the plasma model necessary to compute the particle fluxes between approx.5 keV and 100 keV (at the outset of this study,Nascap-2k did not directly incorporate this common representation of the plasma thus limiting the accuracy of our charging estimates). The updating of the DG1 model and its integration into the Nascap-2k design tool means that charging concerns can now be more efficiently evaluated and mitigated. (We note that, given the subsequent decision by the Europa project to utilize solar arrays for its baseline design, surface charging effects have becomeeven more of an issue for its mission design). The modifications and

  11. Pulsar magnetospheres

    Kennel, C.F.; Fujimura, F.S.; Pellat, R.

    1979-01-01

    The structure of both the interior and exterior pulsar magnetospehere depends upon the strength of its plasma source near the surface of the star. We review magnetospheric models in the light of a vacuum pair-production source model proposed by Sturrock, and Ruderman and Sutherland. This model predicts the existence of a cutoff, determined by the neutron star's spin rate and magnetic field strength, beyond which coherent radio emission is no longer possible. The observed distribution of pulsar spin periods and period derivates, and the distribution of pulsars with missing radio pulses, is quantitatively consistent with the pair production threshold, when its variation of neutron star radius and moment of interia with mass is taken into account. All neutron stars observed as pulsars can have relativistic magneto-hydrodynamic wind exterior magnetospheres. The properties of the wind can be directly related to those of the pair production source. Radio pulsars cannot have relativistic plasma wave exterior magnetospheres. On the other hand, most erstwhile pulsars in the galaxy are probably halo objects that emit weak fluxes of energetic photons that can have relativistic wave exterior magnetospheres. Extinct pulsars have not been yet observed. (orig.)

  12. Pulsars Magnetospheres

    Timokhin, Andrey

    2012-01-01

    Current density determines the plasma flow regime. Cascades are non-stationary. ALWAYS. All flow regimes look different: multiple components (?) Return current regions should have particle accelerating zones in the outer magnetosphere: y-ray pulsars (?) Plasma oscillations in discharges: direct radio emission (?)

  13. A New Approach to Modeling Jupiter's Magnetosphere

    Fukazawa, K.; Katoh, Y.; Walker, R. J.; Kimura, T.; Tsuchiya, F.; Murakami, G.; Kita, H.; Tao, C.; Murata, K. T.

    2017-12-01

    The scales in planetary magnetospheres range from 10s of planetary radii to kilometers. For a number of years we have studied the magnetospheres of Jupiter and Saturn by using 3-dimensional magnetohydrodynamic (MHD) simulations. However, we have not been able to reach even the limits of the MHD approximation because of the large amount of computer resources required. Recently thanks to the progress in supercomputer systems, we have obtained the capability to simulate Jupiter's magnetosphere with 1000 times the number of grid points used in our previous simulations. This has allowed us to combine the high resolution global simulation with a micro-scale simulation of the Jovian magnetosphere. In particular we can combine a hybrid (kinetic ions and fluid electrons) simulation with the MHD simulation. In addition, the new capability enables us to run multi-parameter survey simulations of the Jupiter-solar wind system. In this study we performed a high-resolution simulation of Jovian magnetosphere to connect with the hybrid simulation, and lower resolution simulations under the various solar wind conditions to compare with Hisaki and Juno observations. In the high-resolution simulation we used a regular Cartesian gird with 0.15 RJ grid spacing and placed the inner boundary at 7 RJ. From these simulation settings, we provide the magnetic field out to around 20 RJ from Jupiter as a background field for the hybrid simulation. For the first time we have been able to resolve Kelvin Helmholtz waves on the magnetopause. We have investigated solar wind dynamic pressures between 0.01 and 0.09 nPa for a number of IMF values. These simulation data are open for the registered users to download the raw data. We have compared the results of these simulations with Hisaki auroral observations.

  14. Theory of aurora formation

    Hasegawa, Akira.

    1975-04-01

    A new theory of aurora formation is presented based on Alfven wave-electron interaction. The theory explains consistently 1) the electron acceleration process, 2) the formation of auroral layers and 3) the long wave formation in the longitudinal direction. (auth.)

  15. Aurora energy resources

    Falconer, D. [Aurora Energy Resources Inc., Vancouver, British Columbia (Canada)

    2009-07-01

    This paper describes the structure and activities of Aurora, a mining company which owns uranium mines, open pit mines at Michelin, Jacques Lake and Rainbow and underground mines at Michelin and Jacques Lake. The paper discusses issues such as economics, mining, processing and environmental impacts.

  16. Source of the dayside cusp aurora.

    Mende, S B; Frey, H U; Angelopoulos, V

    2016-08-01

    Monochromatic all-sky imagers at South Pole and other Antarctic stations of the Automatic Geophysical Observatory chain recorded the aurora in the region where the Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellites crossed the dayside magnetopause. In several cases the magnetic field lines threading the satellites when mapped to the atmosphere were inside the imagers' field of view. From the THEMIS magnetic field and the plasma density measurements, we were able to locate the position of the magnetopause crossings and map it to the ionosphere using the Tsyganenko-96 field model. Field line mapping is reasonably accurate on the dayside subsolar region where the field is strong, almost dipolar even though compressed. From these coordinated observations, we were able to prove that the dayside cusp aurora of high 630 nm brightness is on open field lines, and it is therefore direct precipitation from the magnetosheath. The cusp aurora contained significant highly structured N 2 + 427.8 nm emission. The THEMIS measurements of the magnetosheath particle energy and density taken just outside the magnetopause compared to the intensity of the structured N 2 + 427.8 nm emissions showed that the precipitating magnetosheath particles had to be accelerated. The most likely electron acceleration mechanism is by dispersive Alfvén waves propagating along the field line. Wave-accelerated suprathermal electrons were seen by FAST and DMSP. The 427.8 nm wavelength channel also shows the presence of a lower latitude hard-electron precipitation zone originating inside the magnetosphere.

  17. Jupiter's Magnetosphere: Plasma Description from the Ulysses Flyby.

    Bame, S J; Barraclough, B L; Feldman, W C; Gisler, G R; Gosling, J T; McComas, D J; Phillips, J L; Thomsen, M F; Goldstein, B E; Neugebauer, M

    1992-09-11

    Plasma observations at Jupiter show that the outer regions of the Jovian magnetosphere are remarkably similar to those of Earth. Bow-shock precursor electrons and ions were detected in the upstream solar wind, as at Earth. Plasma changes across the bow shock and properties of the magnetosheath electrons were much like those at Earth, indicating that similar processes are operating. A boundary layer populated by a varying mixture of solar wind and magnetospheric plasmas was found inside the magnetopause, again as at Earth. In the middle magnetosphere, large electron density excursions were detected with a 10-hour periodicity as planetary rotation carried the tilted plasma sheet past Ulysses. Deep in the magnetosphere, Ulysses crossed a region, tentatively described as magnetically connected to the Jovian polar cap on one end and to the interplanetary magnetic field on the other. In the inner magnetosphere and lo torus, where corotation plays a dominant role, measurements could not be made because of extreme background rates from penetrating radiation belt particles.

  18. Drifting black aurorae?

    Schoute-Vanneck, H.; Scourfield, M.W.J.; Nielsen, E.

    1990-01-01

    Characteristics of eastward drifting forms, previously described in the literature as black aurorae, have been identified in low-light level TV camera data. The TV field of view was within the field of view of STARE and that of an all-sky camera. On the basis of these observations the authors propose that these auroral forms are a manifestation of folds or waves on the borders of auroral bands propagating along the dark regions between neighboring auroral bands. Conditions under which the folds or waves occur are compatible with their formation by the Kelvin-Helmholtz electrostatic instability

  19. Observation and Study of Proton Aurora by using Scanning Photometer

    Mochizuki, T.; Ono, T.; Kadokura, A.; Sato, N.

    2009-12-01

    The proton auroras have significant differences from electron auroras in their spectral shape. They show Doppler-shifted and broadened spectra: the spectra have Doppler-shifted (~0.5 nm shorter) peak and both bluewing (~2-4 nm) and redwing (~1.5 nm) extending. Energy spectra of precipitating protons have been estimated from this shape. Recently it is found that the intensity in the extent of the blue wing reflects more effectively by the change of the mean energy of precipitating protons than the shift of peak wavelength [Lanchester et al., 2003]. Another character of the H-beta aurora is that it is diffuse form because a proton becomes hydrogen atom due to a charge-exchange reaction with atmospheric constituent and then possible to move across the magnetic field line. By using a scanning photometer, the movement of the proton auroral belt and change of a spectrum shape associated with the variation of proton source region due to storm and substorm were reported, however, not discussed in detail yet [Deehr and Lummerzheim, 2001]. The purpose of this study is to obtain the detail characteristics of H-beta aurora for understanding of source region of energetic protons in the magnetosphere. For this purpose, a new meridian-scanning photometer (SPM) was installed at Husafell station in Iceland in last summer season and Syowa Station, Antarctica. It will contribute to investigate the distribution of energetic protons and plasma waves which cause the pitch angle scattering in the magnetosphere. The meridian-scanning photometer is able to observe at five wavelengths for H-beta emission. One channel is to measure the background level. By analyzing the data obtained by the SPM, the H-beta spectrum can be estimated by fitting a model function with it. Then it is possible to obtain distribution of precipitating protons in north-south direction. It is also possible to estimate an energy spectrum of precipitating proton, simultaneously. The instrumental parameters of the SPM is

  20. Aurora laser optical system

    Hanlon, J.A.; McLeod, J.

    1987-01-01

    Aurora is the Los Alamos short-pulse high-power krypton fluoride laser system. It is primarily an end-to-end technology demonstration prototype for large-scale UV laser systems of interest for short-wavelength inertial confinement fusion (ICF) investigations. The system is designed to employ optical angular multiplexing and aerial amplification by electron-beam-driven KrF laser amplifiers to deliver to ICF targets a stack of pulses with a duration of 5 ns containing several kilojoules at a wavelength of 248 nm. A program of high-energy density plasma physics investigations is now planned, and a sophisticated target chamber was constructed. The authors describe the design of the optical system for Aurora and report its status. This optical system was designed and is being constructed in two phases. The first phase carries only through the amplifier train and does not include a target chamber or any demultiplexing. Installation should be complete, and some performance results should be available. The second phase provides demultiplexing and carries the laser light to target. The complete design is reported

  1. Energies of precipitating electrons during pulsating aurora events derived from ionosonde observations

    MacDougall, J.W.; Hofstee, J.; Koehler, J.A.

    1981-01-01

    The time-history of particle energies and fluxes associated with pulsating auroras in the morning sector is derived from ionosonde measurements. All the pulsating auroras studied showed a similar history with the pulsations occurring during a time interval of the order of an hour during which the average auroral Maxwellian characteristic energy stays relatively constant but the energy flux decreases progressively during the event. A possible explanation for this behaviour in terms of an injection of particles into a magnetospheric 'bottle' near the midnight meridian and the progressive precipitation out of the bottle during the pulsating event is suggested. (auth)

  2. Electromagnetic field for an open magnetosphere

    Heikkila, W.J.

    1984-01-01

    The boundary-layer-dominated models of the earth EM field developed by Heikkila (1975, 1978, 1982, and 1983) and Heikkila et al. (1979) to account for deficiencies in the electric-field descriptions of quasi-steady-state magnetic-field-reconnection models (such as that of Cowley, 1980) are characterized, reviewing the arguments and indicating the most important implications. The mechanisms of boundary-layer formation and field direction reversal are explained and illustrated with diagrams, and it is inferred that boundary-layer phenomena rather than magnetic reconnection may be the cause of large-scale magnetospheric circulation, convection, plasma-sheet formation and sunward convection, and auroras, the boundary layer acting basically as a viscous process mediating solar-wind/magnetosphere interactions. 23 references

  3. The electromagnetic field for an open magnetosphere

    Heikkila, W. J.

    1984-01-01

    The boundary-layer-dominated models of the earth EM field developed by Heikkila (1975, 1978, 1982, and 1983) and Heikkila et al. (1979) to account for deficiencies in the electric-field descriptions of quasi-steady-state magnetic-field-reconnection models (such as that of Cowley, 1980) are characterized, reviewing the arguments and indicating the most important implications. The mechanisms of boundary-layer formation and field direction reversal are explained and illustrated with diagrams, and it is inferred that boundary-layer phenomena rather than magnetic reconnection may be the cause of large-scale magnetospheric circulation, convection, plasma-sheet formation and sunward convection, and auroras, the boundary layer acting basically as a viscous process mediating solar-wind/magnetosphere interactions.

  4. Aurorae in Australian Aboriginal Traditions

    Hamacher, Duane W.

    2013-07-01

    Transient celestial phenomena feature prominently in the astronomical knowledge and traditions of Aboriginal Australians. In this paper, I collect accounts of the Aurora Australis from the literature regarding Aboriginal culture. Using previous studies of meteors, eclipses, and comets in Aboriginal traditions, I anticipate that the physical properties of aurora, such as their generally red colour as seen from southern Australia, will be associated with fire, death, blood, and evil spirits. The survey reveals this to be the case and also explores historical auroral events in Aboriginal cultures, aurorae in rock art, and briefly compares Aboriginal auroral traditions with other global indigenous groups, including the Maori of New Zealand.

  5. Adventures in search of auroras

    Forsyth, Colin

    2016-09-01

    In her book Aurora: In Search of the Northern Lights, Melanie Windridge describes travelling around the Arctic Circle on a quest to see the biggest and best auroral displays and to understand the physics that drives them.

  6. Jupiter's Mid-Infrared Aurora: Solar Connection and Minor Constituents

    Kostiuk, Theodore; Livengood, T.A.; Fast, K.E.; Hewagama, T.; Schmilling, F.; Sonnabend, G.; Delgado, J.

    2009-01-01

    High spectral resolution in the 12 pin region of the polar regions of Jupiter reveal unique information on auroral phenomena and upper stratospheric composition. Polar aurorae in Jupiter's atmosphere radiate; throughout the electromagnetic spectrum from X-ray through mid-infrared (mid-IR, 5 - 20 micron wavelength). Voyager IRIS data and ground-based. spectroscopic measurements of Jupiter's northern mid-IR aurora acquired since 1982, reveal a correlation between auroral brightness and solar activity that has not been observed in Jovian aurora at other wavelengths. Over nearly three solar cycles, Jupiter auroral ethane, emission brightness and solar 10.7-cm radar flux and sunspot number are positively correlated with high confidence. Ethane line emission intensity varies over tenfold between low and high scalar activity periods. Detailed measurements have been made using the GSFC HIPWAC spectrometer at the NASA IRTF since the last solar maximum, following the mid-IR emission through the declining phase toward solar minimum. An even more convincing correlation with solar activity is evident in these data. The spectra measured contain features that cannot be attributed to ethane and are most likely spectra of minor constituents whose molecular bands overlap the v9 band of ethane. Possible candidates are allene, propane, and other higher order hydrocarbons. These features appear to be enhanced in the active polar regions. Laboratory measurements at comparable spectral resolution of spectra of candidate molecules will be used to identify the constituents. Current analyses of these results will be described, including planned measurements on polar ethane line emission scheduled through the rise of the next solar maximum beginning in 2009, with a steep gradient to a maximum in 2012. This work is relevant to the Juno mission and to the development of the NASA/ESA Europa Jupiter System Mission.

  7. Mercury's Dynamic Magnetosphere

    Imber, S. M.

    2018-05-01

    The global dynamics of Mercury's magnetosphere will be discussed, focussing on observed asymmetries in the magnetotail and on the precipitation of particles of magnetospheric origin onto the nightside planetary surface.

  8. Dynamics of magnetospheric plasmas

    Horwitz, J.L.

    1985-01-01

    The dynamical behavior of the magnetospheric plasmas which control the electrostatic charging of spacecraft is the result of the complex interaction of a variety of production, loss, transport, and energization mechanisms in the magnetosphere. This paper is intended to provide the spacecraft engineer with a foundation in the basic morphology and controlling processes pertaining to magnetospheric plasma dynamics in the inner magnetosphere, including the synchronous orbit region. 32 references

  9. The Aurora space launcher concept

    Kopp, Alexander; Stappert, Sven; Mattsson, David; Olofsson, Kurt; Marklund, Erik; Kurth, Guido; Mooij, Erwin; Roorda, Evelyne

    2017-11-01

    This paper gives an overview about the Aurora reusable space launcher concept study that was initiated in late-2015/early-2016. Within the Aurora study, several spaceplane-like vehicle configurations with different geometries, propulsion systems and mission profiles will be designed, investigated and evaluated with respect to their technical and economic feasibility. The first part of this paper will discuss the study logic and the current status of the Aurora studies and introduces the first vehicle configurations and their system design status. As the identification of highly efficient structural designs is of particular interest for Aurora, the structural design and analysis approach will be discussed in higher level of detail. A special design feature of the Aurora vehicle configurations is the utilization of the novel thin-ply composite material technology for structural mass reductions. Therefore, the second part of this paper will briefly discuss this technology and investigate the application and potential mass savings on vehicle level within simplified structural analysis studies. The results indicate that significant mass savings could be possible. Finally, an outlook on the next steps is provided.

  10. The Aurora space launcher concept

    Kopp, Alexander; Stappert, Sven; Mattsson, David; Olofsson, Kurt; Marklund, Erik; Kurth, Guido; Mooij, Erwin; Roorda, Evelyne

    2018-06-01

    This paper gives an overview about the Aurora reusable space launcher concept study that was initiated in late-2015/early-2016. Within the Aurora study, several spaceplane-like vehicle configurations with different geometries, propulsion systems and mission profiles will be designed, investigated and evaluated with respect to their technical and economic feasibility. The first part of this paper will discuss the study logic and the current status of the Aurora studies and introduces the first vehicle configurations and their system design status. As the identification of highly efficient structural designs is of particular interest for Aurora, the structural design and analysis approach will be discussed in higher level of detail. A special design feature of the Aurora vehicle configurations is the utilization of the novel thin-ply composite material technology for structural mass reductions. Therefore, the second part of this paper will briefly discuss this technology and investigate the application and potential mass savings on vehicle level within simplified structural analysis studies. The results indicate that significant mass savings could be possible. Finally, an outlook on the next steps is provided.

  11. On Jovian plasma sheet structure

    Khurana, K.K.; Kivelson, M.G.

    1989-01-01

    The authors evaluate several models of Jovian plasma sheet structure by determining how well they organize several aspects of the observed Voyager 2 magnetic field characteristics as a function of Jovicentric radial distance. It is shown that in the local time sector of the Voyager 2 outbound pass (near 0300 LT) the published hinged-magnetodisc models with wave (i.e., models corrected for finite wave velocity effects) are more successful than the published magnetic anomaly model in predicting locations of current sheet crossings. They also consider the boundary between the plasma sheet and the magnetotail lobe which is expected to vary slowly with radial distance. They use this boundary location as a further test of the models of the magnetotail. They show that the compressional MHD waves have much smaller amplitude in the lobes than in the plasma sheet and use this criterion to refine the identification of the plasma-sheet-lobe boundary. When the locations of crossings into and out of the lobes are examined, it becomes evident that the magnetic-anomaly model yields a flaring plasma sheet with a halfwidth of ∼ 3 R J at a radial distance of 20 R J and ∼ 12 R J at a radial distance of 100 R J . The hinged-magnetodisc models with wave, on the other hand, predict a halfwidth of ∼ 3.5 R J independent of distance beyond 20 R J . New optimized versions of the two models locate both the current sheet crossings and lobe encounters equally successfully. The optimized hinged-magnetodisc model suggests that the wave velocity decreases with increasing radial distance. The optimized magnetic anomaly model yields lower velocity contrast than the model of Vasyliunas and Dessler (1981)

  12. Aurora status and plans

    Kristal, R.; Blair, L.S.; Burrows, M.D.

    1987-10-01

    Aurora is a short wavelength (248 nm) 10 to kJ KrF laser systems in the ICF program at Los Alamos National Laboratory. It is both an experiment in driver technology and a means for studying target performance using KrF laser light. Both features will be used to help evaluate the uv excimer laser as a viable fusion driver. The system has been designed to employ several electron-beam pumped amplifiers in series, with a final aperture of one meter square, to amplify 96 angularly mulitplexed 5 ns beamlets to the 10 kJ level. In Phase I, 48 of these beamlets are brought to target by demultiplexing and focusing with f26 optics. The beamlet ensemble, contained within an f1.9 bundle, is focused as a single beam;however, pointing is done individually. Spot size in the target plane is variable from 0.1-4 mm, with maximum averaged intensity of /similar to/ 4 x 10 15 Wcm 2 . The illumination geometry is designed specifically for several classes of important target physics experiments. These include: energy flow, symmetry and preheat studies related to indirectly driven targets;x-ray conversion and plasma coupling characterization on disc targets, and hydrodynamic instability studies in planar geometry. System integration is proceeding toward initial target experiments in /similar to/ late 1988. Ninety-six beam amplification through the penultimate amplifier has been obtained at the sub-kJ level. Installation of beam train optics is proceeding, and the target system vacuum envelope is in place. 18 refs., 12 figs., 2 tabs

  13. Latitudinal distribution of the Jovian plasma sheet ions observed by Juno JADE-I

    Kim, T. K. H.; Valek, P. W.; McComas, D. J.; Allegrini, F.; Bagenal, F.; Bolton, S. J.; Connerney, J. E. P.; Ebert, R. W.; Levin, S.; Louarn, P.; Pollock, C. J.; Ranquist, D. A.; Szalay, J.; Thomsen, M. F.; Wilson, R. J.

    2017-12-01

    The Jovian plasma sheet is a region where the centrifugal force dominates the heavy ion plasma. Properties of the plasma sheet ions near the equatorial plane have been studied with in-situ measurements from the Pioneer, Voyager, and Galileo spacecraft. However, the ion properties for the off-equator regions are not well known due to the limited measurements. Juno is the first polar orbiting spacecraft that can investigate the high latitude region of the Jovian magnetosphere. With Juno's unique trajectory, we will investigate the latitudinal distribution of the Jovian plasma sheet ions using measurements from the Jovian Auroral Distributions Experiment Ion sensor (JADE-I). JADE-I measures an ion's energy-per-charge (E/Q) from 0.01 keV/q to 46.2 keV/q with an electrostatic analyzer (ESA) and a mass-per-charge (M/Q) up to 64 amu/q with a carbon-foil-based time-of-flight (TOF) mass spectrometer. We have shown that the ambiguity between and (both have M/Q of 16) can be resolved in JADE-I using a semi-empirical simulation tool based on carbon foil effects (i.e., charge state modification, angular scattering, and energy loss) from incident ions passing through the TOF mass spectrometer. Based on the simulation results, we have developed an Ion Composition Analysis Tool (ICAT) that determines ion composition at each energy step of JADE-I (total of 64 steps). The velocity distribution for each ion species can be obtained from the ion composition as a function of each energy step. Since there is an ambipolar electric field due to mobile electrons and equatorially confined heavy ions, we expect to see acceleration along the field line. This study will show the species separated velocity distribution at various latitudes to investigate how the plasma sheet ions evolve along the field line.

  14. Distribution of positive ion species above a diffuse midnight aurora

    Moore, T.E.

    1978-01-01

    The origin of the hot plasma in the Earth's magnetosphere is still open to investigation. Mass composition is an indicator of source region, while the distribution functions bear the signatures of transport and energization processes. Only ions identified as H + and He ++ were detected, and the He ++ was statistically marginal. Coincident magnetic storms are likely to play a crucial role in populating the magnetosphere with energized ionospheric ions. The measured proton distribution was nearly isotropic over downcoming pitch angles at all energies and showed a depleted atmospheric source cone. The high-altitude proton energy distribution had a best fit temperature of 4.5 keV and a number density of 0.17 cm- 3 , corresponding to a peak intensity just over 10 5 cm -2 s -1 sr -1 keV -1 . Altitudinal variations are consistent with the theory of charge exchange of a time-steady incident proton population. Simultaneous electron measurements can be interpreted in terms of an incident electron distribution that is also thermal wih a similar number density but a temperature of 2.5 keV. Taken together, the ion and electron data are consistent with the model of diffuse auroras in which plasma convecting in from the magnetospheric tail precipitates due to strong pitch angle diffusion on auroral field lines linking the near Earth plasma sheet

  15. Thermally-Induced Chemistry and the Jovian Icy Satellites: A Laboratory Study of the Formation of Sulfur Oxyanions

    Loeffler, Mark J.; Hudson, Reggie L.

    2011-01-01

    Laboratory experiments have demonstrated that magnetospheric radiation in the Jovian system drives reaction chemistry in ices at temperatures relevant to Europa and other icy satellites. Here we present new results on thermally-induced reactions at 50-100 K in solid H2O-SO2 mixtures, reactions that take place without the need for a high-radiation environment. We find that H2O and SO2 react to produce sulfur Oxyanions, such as bisulfite, that as much as 30% of the SO2 can be consumed through this reaction, and that the products remain in the ice when the temperature is lowered, indicating that these reactions are irreversible. Our results suggest that thermally-induced reactions can alter the chemistry at temperatures relevant to the icy satellites in the Jovian system.

  16. Response of Jupiter's Aurora to Plasma Mass Loading Rate Monitored by the Hisaki Satellite During Volcanic Eruptions at Io

    Kimura, T.; Hiraki, Y.; Tao, C.; Tsuchiya, F.; Delamere, P. A.; Yoshioka, K.; Murakami, G.; Yamazaki, A.; Kita, H.; Badman, S. V.; Fukazawa, K.; Yoshikawa, I.; Fujimoto, M.

    2018-03-01

    The production and transport of plasma mass are essential processes in the dynamics of planetary magnetospheres. At Jupiter, it is hypothesized that Io's volcanic plasma carried out of the plasma torus is transported radially outward in the rotating magnetosphere and is recurrently ejected as plasmoid via tail reconnection. The plasmoid ejection is likely associated with particle energization, radial plasma flow, and transient auroral emissions. However, it has not been demonstrated that plasmoid ejection is sensitive to mass loading because of the lack of simultaneous observations of both processes. We report the response of plasmoid ejection to mass loading during large volcanic eruptions at Io in 2015. Response of the transient aurora to the mass loading rate was investigated based on a combination of Hisaki satellite monitoring and a newly developed analytic model. We found that the transient aurora frequently recurred at a 2-6 day period in response to a mass loading increase from 0.3 to 0.5 t/s. In general, the recurrence of the transient aurora was not significantly correlated with the solar wind, although there was an exceptional event with a maximum emission power of 10 TW after the solar wind shock arrival. The recurrence of plasmoid ejection requires the precondition that an amount comparable to the total mass of magnetosphere, 1.5 Mt, is accumulated in the magnetosphere. A plasmoid mass of more than 0.1 Mt is necessary in case that the plasmoid ejection is the only process for mass release.

  17. Image analysis of dayside aurora

    Lybekk, B.

    1989-12-01

    Ground based observations from Svalbard of the midday aurora by all sky cameras and meridian scanning photometers showed the sporadic occurrence of discrete auroral forms within or near the stable cusp or cleft aurora. Some of these forms appeared near the equatorward boundary of the stable cusp/cleft aurora and moved westward and northward. The duration of the whole event was typically less than 10 minutes. Series of such events were observed when the cusp/cleft was located at low latitudes. Satellite measurements of magnetic field and ion drift components above auroral strucures gave detailed information of auroral electrodynamics in the cusp/cleft ionosphere. Satellite observations of the dayside oval at ∼ 09 MLT showed that auroral emissions can be separated in different latitudinal zones with corresponding structures in the particle precipitation. The ground based optical instruments at Svalbard measured the stationary cleft aurora produced by soft electrons and transient discrete arcs produced by precipitating keV electrons. 89 refs

  18. Mission Concept to Connect Magnetospheric Physical Processes to Ionospheric Phenomena

    Dors, E. E.; MacDonald, E.; Kepko, L.; Borovsky, J.; Reeves, G. D.; Delzanno, G. L.; Thomsen, M. F.; Sanchez, E. R.; Henderson, M. G.; Nguyen, D. C.; Vaith, H.; Gilchrist, B. E.; Spanswick, E.; Marshall, R. A.; Donovan, E.; Neilson, J.; Carlsten, B. E.

    2017-12-01

    On the Earth's nightside the magnetic connections between the ionosphere and the dynamic magnetosphere have a great deal of uncertainty: this uncertainty prevents us from scientifically understanding what physical processes in the magnetosphere are driving the various phenomena in the ionosphere. Since the 1990s, the space plasma physics group at Los Alamos National Laboratory has been working on a concept to connect magnetospheric physical processes to auroral phenomena in the ionosphere by firing an electron beam from a magnetospheric spacecraft and optically imaging the beam spot in the ionosphere. The magnetospheric spacecraft will carry a steerable electron accelerator, a power-storage system, a plasma contactor, and instruments to measure magnetic and electric fields, plasma, and energetic particles. The spacecraft orbit will be coordinated with a ground-based network of cameras to (a) locate the electron beam spot in the upper atmosphere and (b) monitor the aurora. An overview of the mission concept will be presented, including recent enabling advancements based on (1) a new understanding of the dynamic spacecraft charging of the accelerator and plasma-contactor system in the tenuous magnetosphere based on ion emission rather than electron collection, (2) a new understanding of the propagation properties of pulsed MeV-class beams in the magnetosphere, and (3) the design of a compact high-power 1-MeV electron accelerator and power-storage system. This strategy to (a) determine the magnetosphere-to-ionosphere connections and (b) reduce accelerator- platform charging responds to one of the six emerging-technology needs called out in the most-recent National Academies Decadal Survey for Solar and Space Physics. [LA-UR-17-23614

  19. Inner Magnetospheric Physics

    Gallagher, Dennis

    2018-01-01

    Outline - Inner Magnetosphere Effects: Historical Background; Main regions and transport processes: Ionosphere, Plasmasphere, Plasma sheet, Ring current, Radiation belt; Geomagnetic Activity: Storms, Substorm; Models.

  20. Exploring the Secrets of the Aurora Second Edition

    Akasofu, Syun-Ichi

    2007-01-01

    This new edition of Exploring the Secrets of the Aurora is based on the author's own experiences as a scientist. It describes the history of progress made in auroral science and magnetospheric physics by providing examples of ideas, controversies, struggles, acceptance, and success. Although no general methodologies are mentioned, the hope is that the reader will learn about the history of progress in auroral science and examples of dealing with the many controversies. This book aims to help young scientific researchers learn how to persevere during periods of controversy and struggles for acceptance. In this second edition, by utilizing multiple examples, Akasofu is successful in demonstrating the importance and usefulness of Synthesis. "Probably the book's most valuable contribution to the history of space physics is precisely the narration of the discovery of substorms.---The book has special features.---Akasofu's coverage of the history of pre-space age solar-terrestrial relations is the most comprehensiv...

  1. Strong Solar Control of Infrared Aurora on Jupiter: Correlation Since the Last Solar Maximum

    Kostiuk, T.; Livengood, T. A.; Hewagama, T.

    2009-01-01

    Polar aurorae in Jupiter's atmosphere radiate throughout the electromagnetic spectrum from X ray through mid-infrared (mid-IR, 5 - 20 micron wavelength). Voyager IRIS data and ground-based spectroscopic measurements of Jupiter's northern mid-IR aurora, acquired since 1982, reveal a correlation between auroral brightness and solar activity that has not been observed in Jovian aurora at other wavelengths. Over nearly three solar cycles, Jupiter auroral ethane emission brightness and solar 10.7 cm radio flux and sunspot number are positively correlated with high confidence. Ethane line emission intensity varies over tenfold between low and high solar activity periods. Detailed measurements have been made using the GSFC HIPWAC spectrometer at the NASA IRTF since the last solar maximum, following the mid-IR emission through the declining phase toward solar minimum. An even more convincing correlation with solar activity is evident in these data. Current analyses of these results will be described, including planned measurements on polar ethane line emission scheduled through the rise of the next solar maximum beginning in 2009, with a steep gradient to a maximum in 2012. This work is relevant to the Juno mission and to the development of the Europa Jupiter System Mission. Results of observations at the Infrared Telescope Facility (IRTF) operated by the University of Hawaii under Cooperative Agreement no. NCC5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. This work was supported by the NASA Planetary Astronomy Program.

  2. Concepts of magnetospheric convection

    Vasyliunas, V.M.

    1975-01-01

    Magnetospheric physics, which grew out of attempts to understand the space environment of the Earth, is becoming increasingly applicable to other systems in the Universe. Among the planets, in addition to the Earth, Jupiter, Mercury, Mars and (in a somewhat different way) Venus are now known to have magnetospheres. The magnetospheres of pulsars have been regarded as an essential part of the pulsar phenomenon. Other astrophysical systems, such as supernova remnant shells or magnetic stars and binary star systems, may be describable as magnetospheres. The major concepts of magnetospheric physics thus need to be formulated in a general way not restricted to the geophysical context in which they may have originated. Magnetospheric convection has been one of the most important and fruitful concepts in the study of the Earth's magnetosphere. This paper describes the basic theoretical notions of convection in a manner applicable to magnetospheres generally and discusses the relative importance of convective corotational motions, with particular reference to the comparison of the Earth and Jupiter. (Auth.)

  3. Axi-symmetric models of auroral current systems in Jupiter's magnetosphere with predictions for the Juno mission

    S. W. H. Cowley

    2008-12-01

    Full Text Available We develop two related models of magnetosphere-ionosphere coupling in the jovian system by combining previous models defined at ionospheric heights with magnetospheric magnetic models that allow system parameters to be extended appropriately into the magnetosphere. The key feature of the combined models is thus that they allow direct connection to be made between observations in the magnetosphere, particularly of the azimuthal field produced by the magnetosphere-ionosphere coupling currents and the plasma angular velocity, and the auroral response in the ionosphere. The two models are intended to reflect typical steady-state sub-corotation conditions in the jovian magnetosphere, and transient super-corotation produced by sudden major solar wind-induced compressions, respectively. The key simplification of the models is that of axi-symmetry of the field, flow, and currents about the magnetic axis, limiting their validity to radial distances within ~30 RJ of the planet, though the magnetic axis is appropriately tilted relative to the planetary spin axis and rotates with the planet. The first exploration of the jovian polar magnetosphere is planned to be undertaken in 2016–2017 during the NASA New Frontiers Juno mission, with observations of the polar field, plasma, and UV emissions as a major goal. Evaluation of the models along Juno planning orbits thus produces predictive results that may aid in science mission planning. It is shown in particular that the low-altitude near-periapsis polar passes will generally occur underneath the corresponding auroral acceleration regions, thus allowing brief examination of the auroral primaries over intervals of ~1–3 min for the main oval and ~10 s for narrower polar arc structures, while the "lagging" field deflections produced by the auroral current systems on these passes will be ~0.1°, associated with azimuthal fields above the ionosphere of a few hundred nT.

  4. Terrestrial aurora: astrophysical laboratory for anomalous abundances in stellar systems

    I. Roth

    2014-02-01

    Full Text Available The unique magnetic structure of the terrestrial aurora as a conduit of information between the ionosphere and magnetosphere can be utilized as a laboratory for physical processes at similar magnetic configurations and applied to various evolutionary phases of the solar (stellar system. The most spectacular heliospheric abundance enhancement involves the 3He isotope and selective heavy elements in impulsive solar flares. In situ observations of electromagnetic waves on active aurora are extrapolated to flaring corona in an analysis of solar acceleration processes of 3He, the only element that may resonate strongly with the waves, as well as heavy ions with specific charge-to-mass ratios, which may resonate weaker via their higher gyroharmonics. These results are applied to two observed anomalous astrophysical abundances: (1 enhanced abundance of 3He and possibly 13C in the late stellar evolutionary stages of planetary nebulae; and (2 enhanced abundance of the observed fossil element 26Mg in meteorites as a decay product of radioactive 26Al isotope due to interaction with the flare-energized 3He in the early solar system.

  5. Compression of Jupiter's magnetosphere by the solar wind: Reexamination via MHD simulation of evolving corotating interaction regions

    Smith, Z.K.; Dryer, M.; Fillius, R.W.; Smith, E.J.; Wolfe, J.H.

    1981-01-01

    We examine the major changes in the solar wind before, during, and after the Pioneer 10 and 11 encounters with the Jovian magnetosphere during 1973 and 1974, respectively. In an earlier study, Smith et al. (1978) concluded that the Jovian magnetosphere was subjected to large-scale compression during at least three or four intervals during which it appeared that the spacecraft had reentered the solar wind or magnetosheath near 50 R/sub J/ after having first entered the magnetosphere near 100 R/sub J/. They based this suggestion on the observations of the sister spacecraft, which indicated--on the basis of a kinematic translation of corotating interaction regions (CIR's)--that these structures would be expected to arrive at Jupiter at the appropriate beginning of these three intervals. Our reexamination of this suggestion involved the numerical simulation of the multiple CIR evolutions from one spacecraft to the sister spacecraft. This approach, considered to be a major improvement, confirms the suggestion by Smith et al. (1978) that Jupiter's magnetosphere was compressed by interplanetary CIR's during three or four of these events. Our MHD simulation also suggests that Jupiter's magnetosphere reacts to solar wind rarefactions in the opposite way--by expanding. A previously unexplained pair of magnetopause crossings on the Pioneer 11 outbound pass may simply be due to a delayed reexpansion of Jupiter's magnetosphere from a compression that occurred during the inbound pass

  6. Aurora oil switch upgrade program

    Warren, T.

    1989-03-01

    This report describes the short pulse synchronization requirements, the original Aurora trigger scheme, and the PI/SNLA approach to improving the synchronization. It also describes the oil switching design study undertaken as the first phase of the program. A discussion of oil-switch closure analysis and the conceptual design motivated by this analysis are presented. This paper also describes the oil-switch trigger pulser tests required to validate the concept. This includes the design of the testing facility, a description of the test goals, and a discussion of the results. This paper finally describes oil-switch trigger pulser testing on one of the four Aurora Blumlein modules, which includes the hardware design and operation, the testing goals, hardware installation, and test results. 9 refs., 26 figs

  7. Vortex, ULF wave and Aurora Observation after Solar Wind Dynamic Pressure Change

    Shi, Q.

    2017-12-01

    Here we will summarize our recent study and show some new results on the Magnetosphere and Ionosphere Response to Dynamic Pressure Change/disturbances in the Solar Wind and foreshock regions. We study the step function type solar wind dynamic pressure change (increase/decrease) interaction with the magnetosphere using THEMIS satellites at both dayside and nightside in different geocentric distances. Vortices generated by the dynamic pressure change passing along the magnetopause are found and compared with model predictions. ULF waves and vortices are excited in the dayside and nightside plasma sheet when dynamic pressure change hit the magnetotail. The related ionospheric responses, such as aurora and TCVs, are also investigated. We compare Global MHD simulations with the observations. We will also show some new results that dayside magnetospheric FLRs might be caused by foreshock structures.Shi, Q. Q. et al. (2013), THEMIS observations of ULF wave excitation in the nightside plasma sheet during sudden impulse events, J. Geophys. Res. Space Physics, 118, doi:10.1029/2012JA017984. Shi, Q. Q. et al. (2014), Solar wind pressure pulse-driven magnetospheric vortices and their global consequences, J. Geophys. Res. Space Physics, 119, doi:10.1002/2013JA019551. Tian, A.M. et al.(2016), Dayside magnetospheric and ionospheric responses to solar wind pressure increase: Multispacecraft and ground observations, J. Geophys. Res., 121, doi:10.1002/2016JA022459. Shen, X.C. et al.(2015), Magnetospheric ULF waves with increasing amplitude related to solar wind dynamic pressure changes: THEMIS observations, J. Geophys. Res., 120, doi:10.1002/2014JA020913Zhao, H. Y. et al. (2016), Magnetospheric vortices and their global effect after a solar wind dynamic pressure decrease, J. Geophys. Res. Space Physics, 121, doi:10.1002/2015JA021646. Shen, X. C., et al. (2017), Dayside magnetospheric ULF wave frequency modulated by a solar wind dynamic pressure negative impulse, J. Geophys. Res

  8. Jovian cloud structure and velocity fields

    Mitchell, J.L.; Terrile, R.J.; Collins, S.A.; Smith, B.A.; Muller, J.P.; Ingersoll, A.P.; Hunt, G.E.; Beebe, R.F.

    1979-01-01

    A regional comparison of the cloud structures and velocity fields (meridional as well as zonal velocities) in the jovian atmosphere (scales > 200 km) as observed by the Voyager 1 imaging system is given. It is shown that although both hemispheres of Jupiter show similar patterns of diminishing and alternating eastward and westward jets as one progresses polewards, there is a pronounced asymmetry in the structural appearance of the two hemispheres. (UK)

  9. Swarm-Aurora: A web-based tool for quickly identifying multi-instrument auroral events

    Chaddock, D.; Donovan, E.; Spanswick, E.; Knudsen, D. J.; Frey, H. U.; Kauristie, K.; Partamies, N.; Jackel, B. J.; Gillies, M.; Holmdahl Olsen, P. E.

    2016-12-01

    In recent years there has been a dramatic increase in ground-based auroral imaging systems. These include the continent-wide THEMIS-ASI network, and imagers operated by other programs including GO-Canada, MIRACLE, AGO, OMTI, and more. In the near future, a new Canadian program called TREx will see the deployment of new narrow-band ASIs that will provide multi-wavelength imaging across Western Canada. At the same time, there is an unprecedented fleet of international spacecraft probing geospace at low and high altitudes. We are now in the position to simultaneously observe the magnetospheric drivers of aurora, observe in situ the waves, currents, and particles associated with MI coupling, and the conjugate aurora. Whereas a decade ago, a single magnetic conjunction between one ASI and a low altitude satellite was a relatively rare event, we now have a plethora of triple conjunctions between imagers, low-altitude spacecraft, and near-equatorial magnetospheric probes. But with these riches comes a new level of complexity. It is often difficult to identify the many useful conjunctions for a specific line of inquiry from the multitude of conjunctions where the geospace conditions are often not relevant and/or the imaging is compromised by clouds, moon, or other factors. Swarm-Aurora was designed to facilitate and drive the use of Swarm in situ measurements in auroral science. The project seeks to build a bridge between the Swarm science community, Swarm data, and the complimentary auroral data and community. Swarm-Aurora (http://swarm-aurora.phys.ucalgary.ca) incorporates a web-based tool which provides access to quick-look summary data for a large array of instruments, with Swarm in situ and ground-based ASI data as the primary focus. This web interface allows researchers to quickly and efficiently browse Swarm and ASI data to identify auroral events of interest to them. This allows researchers to be able to easily and quickly identify Swarm overflights of ASIs that

  10. Hydrogeology baseline study Aurora Mine

    1996-01-01

    A baseline hydrogeologic study was conducted in the area of Syncrude's proposed Aurora Mine in order to develop a conceptual regional hydrogeologic model for the area that could be used to understand groundwater flow conditions. Geologic information was obtained from over 2,000 coreholes and from data obtained between 1980 and 1996 regarding water level for the basal aquifer. A 3-D numerical groundwater flow model was developed to provide quantitative estimates of the potential environmental impacts of the proposed mining operations on the groundwater flow system. The information was presented in the context of a regional study area which encompassed much of the Athabasca Oil Sands Region, and a local study area which was defined by the lowlands of the Muskeg River Basin. Characteristics of the topography, hydrology, climate, geology, and hydrogeology of the region are described. The conclusion is that groundwater flow in the aquifer occurs mostly in a westerly direction beneath the Aurora Mine towards its inferred discharge location along the Athabasca River. Baseflow in the Muskeg River is mostly related to discharge from shallow surficial aquifers. Water in the river under baseflow conditions was fresh, of calcium-carbonate type, with very little indication of mineralization associated with deeper groundwater in the Aurora Mine area. 44 refs., 5 tabs., 31 figs

  11. Significance of Aurora B overexpression in hepatocellular carcinoma. Aurora B Overexpression in HCC

    Lin, Zhong-Zhe; Jeng, Yung-Ming; Hu, Fu-Chang; Pan, Hung-Wei; Tsao, Hsin-Wei; Lai, Po-Lin; Lee, Po-Huang; Cheng, Ann-Lii; Hsu, Hey-Chi

    2010-01-01

    To investigate the significance of Aurora B expression in hepatocellular carcinoma (HCC). The Aurora B and Aurora A mRNA level was measured in 160 HCCs and the paired nontumorous liver tissues by reverse transcription-polymerase chain reaction. Mutations of the p53 and β-catenin genes were analyzed in 134 and 150 tumors, respectively, by direct sequencing of exon 2 to exon 11 of p53 and exon 3 of β-catenin. Anticancer effects of AZD1152-HQPA, an Aurora B kinase selective inhibitor, were examined in Huh-7 and Hep3B cell lines. Aurora B was overexpressed in 98 (61%) of 160 HCCs and in all 7 HCC cell lines examined. The overexpression of Aurora B was associated with Aurora A overexpression (P = 0.0003) and p53 mutation (P = 0.002) and was inversely associated with β-catenin mutation (P = 0.002). Aurora B overexpression correlated with worse clinicopathologic characteristics. Multivariate analysis confirmed that Aurora B overexpression was an independent poor prognostic factor, despite its interaction with Aurora A overexpression and mutations of p53 and β-catenin. In Huh-7 and Hep3B cells, AZD1152-HQPA induced proliferation blockade, histone H3 (Ser10) dephosphorylation, cell cycle disturbance, and apoptosis. Aurora B overexpression is an independent molecular marker predicting tumor invasiveness and poor prognosis of HCC. Aurora B kinase selective inhibitors are potential therapeutic agents for HCC treatment

  12. Observations of whistler mode waves in the Jovian system and their consequences for the onboard processing within the RPWI instrument for JUICE

    Santolik, O.; Soucek, J.; Kolmasova, I.; Grison, B.; Wahlund, J.-E.; Bergmann, J.

    2013-09-01

    Evidence for a magnetosphere at Ganymede has been found in 1996 using measurements of plasma waves onboard the Galileo spacecraft (fig. 1). This discovery demonstrates the importance of measurements of waves in plasmas around Jovian moons [1]. Galileo also observed whistler-mode waves in the magnetosphere of Ganymede similar to important classes of waves in the Earth magnetosphere: chorus and hiss [2]. Data from the Galileo spacecraft have therefore shown the importance of measurements of waves in plasmas around Jovian moons, especially in the light of recent advances in analysis of whistler-mode waves in the Earth magnetosphere and their importance for acceleration of radiation belt electrons to relativistic energies. Multicomponent measurements of the fluctuating magnetic and electric fields are needed for localization and characterization of source regions of these waves. Radio & Plasma Waves Investigation (RPWI) experiment will be implemented on the JUICE (JUpiter ICy moon Explorer) spacecraft. RPWI is a highly integrated instrument package that provides a comprehensive set of plasma and fields measurements. Proposed measurement modes for the low frequency receiver subsystem of RPWI include onboard processing which will be suitable for analysis of whistler-mode waves: (1) Polarization and propagation analysis based on phase relations to identify wave modes and propagation directions (2) Poynting vector to determine source regions (3) Detailed frequency-time structure, polarization, wave vector directions to identify linear or nonlinear source mechanisms

  13. MESSENGER: Exploring Mercury's Magnetosphere

    Slavin, James A.

    2008-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet's miniature magnetosphere since Mariner 10's brief fly-bys in 1974-5. Mercury's magnetosphere is unique in many respects. The magnetosphere of Mercury is the smallest in the solar system with its magnetic field typically standing off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed dri-fi paths for energetic particles and, hence, no radiation belts; the characteristic time scales for wave propagation and convective transport are short possibly coupling kinetic and fluid modes; magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to directly impact the dayside regolith; inductive currents in Mercury's interior should act to modify the solar In addition, Mercury's magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionosphere. This lack of an ionosphere is thought to be the underlying reason for the brevity of the very intense, but short lived, approx. 1-2 min, substorm-like energetic particle events observed by Mariner 10 in Mercury's magnetic tail. In this seminar, we review what we think we know about Mercury's magnetosphere and describe the MESSENGER science team's strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic magnetosphere.

  14. Macro-micro interlocked simulation algorithm: an exemplification for aurora arc evolution

    Sato, Tetsuya [University of Hyogo, Kobe 650-0044 (Japan); Hasegawa, Hiroki; Ohno, Nobuaki [Japan Agency for Marine-Earth Science and Technology, Yokohama 236-0001 (Japan)], E-mail: sato@hq.u-hyogo.ac.jp

    2009-01-01

    Using an innovative holistic simulation algorithm that can self-consistently treat a system that evolves as cooperation between macroscopic and microscopic processes, the evolution of a colorful aurora arc is beautifully reproduced as the result of cooperation between the global field-aligned feedback instability of the coupled magnetosphere-ionosphere system and the ensuing microscopic ion-acoustic instability that generates electric double layers and accelerates aurora electrons. These results are in agreement with rocket and satellite observations. This shows that the proposed holistic algorithm could be a reliable tool to reveal complex real dramatic events and become, in the near future, a viable scientifically secure prediction tool for natural disasters such as earthquakes, landslides and floods caused by typhoons.

  15. Saturn's outer magnetosphere

    Schardt, A. W.; Behannon, K. W.; Carbary, J. F.; Eviatar, A.; Lepping, R. P.; Siscoe, G. L.

    1983-01-01

    Similarities between the Saturnian and terrestrial outer magnetosphere are examined. Saturn, like Earth, has a fully developed magnetic tail, 80 to 100 RS in diameter. One major difference between the two outer magnetospheres is the hydrogen and nitrogen torus produced by Titan. This plasma is, in general, convected in the corotation direction at nearly the rigid corotation speed. Energies of magnetospheric particles extend to above 500 keV. In contrast, interplanetary protons and ions above 2 MeV have free access to the outer magnetosphere to distances well below the Stormer cutoff. This access presumably occurs through the magnetotail. In addition to the H+, H2+, and H3+ ions primarily of local origin, energetic He, C, N, and O ions are found with solar composition. Their flux can be substantially enhanced over that of interplanetary ions at energies of 0.2 to 0.4 MeV/nuc.

  16. Dayside magnetospheric and ionospheric responses to a foreshock transient on June 25, 2008: 2. 2-D evolution based on dayside auroral imaging

    Wang, Boyi; Nishimura, Yukitoshi; Hietala, Heli; Shen, Xiao-Chen; Shi, Quanqi; Zhang, Hui; Lyons, Larry; Zou, Ying; Angelopoulos, Vassilis; Ebihara, Yusuke; Weatherwax, Allan

    2018-01-01

    The foreshock region involves localized and transient structures such as foreshock cavities and hot flow anomalies due to solar wind-bow shock interactions, and foreshock transients have been shown to lead to magnetospheric and ionospheric responses. In this paper, the interaction between a foreshock transient and the magnetosphere-ionosphere system is investigated using dayside aurora imagers revealing structures and propagation in greater detail than previously possible. A foreshock transie...

  17. Galileo Measurements of the Jovian Electron Radiation Environment

    Garrett, H. B.; Jun, I.; Ratliff, J. M.; Evans, R. W.; Clough, G. A.; McEntire, R. W.

    2003-12-01

    The Galileo spacecraft Energetic Particle Detector (EPD) has been used to map Jupiter's trapped electron radiation in the jovian equatorial plane for the range 8 to 16 Jupiter radii (1 jovian radius = 71,400 km). The electron count rates from the instrument were averaged into 10-minute intervals over the energy range 0.2 MeV to 11 MeV to form an extensive database of observations of the jovian radiation belts between Jupiter orbit insertion (JOI) in 1995 and end of mission in 2003. These data were then used to provide differential flux estimates in the jovian equatorial plane as a function of radial distance (organized by magnetic L-shell position). These estimates provide the basis for an omni-directional, equatorial model of the jovian electron radiation environment. The comparison of these results with the original Divine model of jovian electron radiation and their implications for missions to Jupiter will be discussed. In particular, it was found that the electron dose predictions for a representative mission to Europa were about a factor of 2 lower than the Divine model estimates over the range of 100 to 1000 mils (2.54 to 25.4 mm) of aluminum shielding, but exceeded the Divine model by about 50% for thicker shielding for the assumed Europa orbiter trajectories. The findings are a significant step forward in understanding jovian electron radiation and represent a valuable tool for estimating the radiation environment to which jovian science and engineering hardware will be exposed.

  18. Bifurcation of Jovian magnetotail current sheet

    P. L. Israelevich

    2006-07-01

    Full Text Available Multiple crossings of the magnetotail current sheet by a single spacecraft give the possibility to distinguish between two types of electric current density distribution: single-peaked (Harris type current layer and double-peaked (bifurcated current sheet. Magnetic field measurements in the Jovian magnetic tail by Voyager-2 reveal bifurcation of the tail current sheet. The electric current density possesses a minimum at the point of the Bx-component reversal and two maxima at the distance where the magnetic field strength reaches 50% of its value in the tail lobe.

  19. Bifurcation of Jovian magnetotail current sheet

    P. L. Israelevich

    2006-07-01

    Full Text Available Multiple crossings of the magnetotail current sheet by a single spacecraft give the possibility to distinguish between two types of electric current density distribution: single-peaked (Harris type current layer and double-peaked (bifurcated current sheet. Magnetic field measurements in the Jovian magnetic tail by Voyager-2 reveal bifurcation of the tail current sheet. The electric current density possesses a minimum at the point of the Bx-component reversal and two maxima at the distance where the magnetic field strength reaches 50% of its value in the tail lobe.

  20. Source of broadband Jovian Kilometric radiation

    Jones, D.; Leblanc, Y.

    1987-02-01

    Broadband Jovian Kilometric radiation was observed by Voyagers 1 and 2 to be beamed away from the zenomagnetic equatorial plane. Two theories were proposed for the equatorial shadow zone. One suggested that Io plasma torus forms an obstacle to radiation produced on auroral field lines. The other theory proposed that the source is located on the outer flanks of the torus, the beaming being inherent to the emission mechanism. Results are presented which indicate that the latter is consistent with the observations and it would appear that the emission is produced by linear mode conversion of electrostatic upper hybrid to electromagnetic waves in plasma density gradients.

  1. Source of broadband Jovian Kilometric radiation

    Jones, D.; Leblanc, Y.

    1987-01-01

    Broadband Jovian Kilometric radiation was observed by Voyagers 1 and 2 to be beamed away from the zenomagnetic equatorial plane. Two theories were proposed for the equatorial shadow zone. One suggested that Io plasma torus forms an obstacle to radiation produced on auroral field lines. The other theory proposed that the source is located on the outer flanks of the torus, the beaming being inherent to the emission mechanism. Results are presented which indicate that the latter is consistent with the observations and it would appear that the emission is produced by linear mode conversion of electrostatic upper hybrid to electromagnetic waves in plasma density gradients

  2. Double layers above the aurora

    Temerin, M.; Mozer, F.S.

    1987-01-01

    Two different kinds of double layers were found in association with auroral precipitation. One of these is the so-called electrostatic shock, which is oriented at an oblique angle to the magnetic field in such a way that the perpendicular electric field is much larger than the parallel electric field. This type of double layer is often found at the edges of regions of upflowing ion beams and the direction of the electric fields in the shock points toward the ion beam. The potential drop through the shock can be several kV and is comparable to the total potential needed to produce auroral acceleration. Instabilities associated with the shock may generate obliquely propagating Alfven waves, which may accelerate electrons to produce flickering auroras. The flickering aurora provides evidence that the electrostatic shock may have large temporal fluctuations. The other kind of double layer is the small-amplitude double layer found in regions of upward flowing in beams, often in association with electrostatic ion cyclotron waves. The parallel and perpendicular electric fields in these structures are comparable in magnitude. The associated potentials are a few eV. Since many such double layers are found in regions of upward flowing ion beams, the combined potential drop through a set of these double layers can be substantial

  3. Intrinsic luminosities of the Jovian planets

    Hubbard, W.B.

    1980-01-01

    We review available data and theories on the size and nature of interior power sources in the Jovian planets. Broad band infrared measurements indicate that Jupiter and Saturn have interior heat fluxes about 150 and 50 times larger, respectively, than the terrestrial value. While Neptune has a modest heat flux (approx.5 times terrestrial), it is clearly detected by earth-based measurements. Only Uranus seems to lack a detectable interior heat flow. Various models, ranging from simple cooling to gravitational layering to radioactivity, are discussed. Current evidence seems to favor a cooling model in which the escape of heat is regulated by the atmosphere. This model seems capable of explaining phenomena such as the uniformity of effective temperature over Jupiter's surface and the different emission rates of Uranus and Neptune. In such a model the heat radiated from the atmosphere may derived from depletion of a thermal reservoir in the interior, or it may derive from separation of chemical elements during formation of a core. Calculations indicate that in the earlier stages of cooling, Jupiter and Saturn may have more homogeneous abundances of hydrogen and helium and radiate energy derived from simple cooling. At a subsequent phase (which may be later than the present time), hydrogen and helium will separate and supply grativational energy. Either model is consistent with a hot, high-luminosity origin for the Jovian Planets

  4. Excitation mechanisms for Jovian seismic modes

    Markham, Steve; Stevenson, Dave

    2018-05-01

    Recent (2011) results from the Nice Observatory indicate the existence of global seismic modes on Jupiter in the frequency range between 0.7 and 1.5 mHz with amplitudes of tens of cm/s. Currently, the driving force behind these modes is a mystery; the measured amplitudes are many orders of magnitude larger than anticipated based on theory analogous to helioseismology (that is, turbulent convection as a source of stochastic excitation). One of the most promising hypotheses is that these modes are driven by Jovian storms. This work constructs a framework to analytically model the expected equilibrium normal mode amplitudes arising from convective columns in storms. We also place rough constraints on Jupiter's seismic modal quality factor. Using this model, neither meteor strikes, turbulent convection, nor water storms can feasibly excite the order of magnitude of observed amplitudes. Next we speculate about the potential role of rock storms deeper in Jupiter's atmosphere, because the rock storms' expected energy scales make them promising candidates to be the chief source of excitation for Jovian seismic modes, based on simple scaling arguments. We also suggest some general trends in the expected partition of energy between different frequency modes. Finally we supply some commentary on potential applications to gravity, Juno, Cassini and Saturn, and future missions to Uranus and Neptune.

  5. Magnetically-driven oceans on Jovian satellites

    Gissinger, C.; Petitdemange, L.

    2017-12-01

    During the last decade, data from Galileo space missions have added strong support for the existence of subsurface liquid oceans on several moons of Jupiter. For instance, it is now commonly accepted that an electrically conducting fluid beneath the icy crust of Europa's surface may explain the variations of the induced field measured near the satellite. These observations have raised many questions regarding the size and the salinity of such subsurface ocean, or how and why the water remains liquid. In addition, the hydrodynamics of such oceans is mostly unknown. These questions are of primary importance since Europa is often considered as a good candidate for the presence of life beyond the Earth. Here, we present the first numerical modeling of the rapidly-rotating magnetohydrodynamic (MHD) flow generated in Europa's interior: due to Jupiter's rotation with respect to Europa, we show that the Lorentz force induced by the time-varying Jovian magnetic field is able to generate an oceanic flow of a few km/h. Our results are understood in the framework of a simple theoretical model and we obtain a scaling law for the prediction of the mean oceanic velocity and the total heating generated inside the ocean of Europa. Finally, by comparing our simulations to Galileo observations, we make predictions on both the thickness and the electrical conductivity of the ocean of different Jovian's satellites.

  6. The Jovian rings as observed from Jupiter.

    Malinnikova Bang, A.; Joergensen, J. L.; Joergensen, P. S.; Denver, T.; Connerney, J. E. P.; Bolton, S. J.; Levin, S.

    2017-12-01

    Juno entered a highly eliptic orbit around Jupiter on the 4. July 2016. Since then, it has completed 8 perijove passages. The Magnetometer experiment consists of two measurement platforms mounted 10m and 12m from the spacecraft spin axis, on one of three large solar panels. Each magnetometer platform is equipped with two star trackers to provide accurate attitude information to the vector magnetometers. The star trackers are pointed 13deg from the (anti) spin vector, and clocked 180deg to avoid simultaneous blinding effects from bright Jupiter only 6000km away, during perijove. This brings Juno well inside the innermost known satellite, Metis. The star trackers pointing close to, and above the Jovian horizon for most of each rotation of Juno, has an excellent view of the Jovian ring systems with a beta-angle close to 180deg. We report on the ring imaging performed during the first 8 orbits, discuss the structure, optical depth and moon sheparding of the inner rings as measured so far.

  7. Occurrence and average behavior of pulsating aurora

    Partamies, N.; Whiter, D.; Kadokura, A.; Kauristie, K.; Nesse Tyssøy, H.; Massetti, S.; Stauning, P.; Raita, T.

    2017-05-01

    Motivated by recent event studies and modeling efforts on pulsating aurora, which conclude that the precipitation energy during these events is high enough to cause significant chemical changes in the mesosphere, this study looks for the bulk behavior of auroral pulsations. Based on about 400 pulsating aurora events, we outline the typical duration, geomagnetic conditions, and change in the peak emission height for the events. We show that the auroral peak emission height for both green and blue emission decreases by about 8 km at the start of the pulsating aurora interval. This brings the hardest 10% of the electrons down to about 90 km altitude. The median duration of pulsating aurora is about 1.4 h. This value is a conservative estimate since in many cases the end of event is limited by the end of auroral imaging for the night or the aurora drifting out of the camera field of view. The longest durations of auroral pulsations are observed during events which start within the substorm recovery phases. As a result, the geomagnetic indices are not able to describe pulsating aurora. Simultaneous Antarctic auroral images were found for 10 pulsating aurora events. In eight cases auroral pulsations were seen in the southern hemispheric data as well, suggesting an equatorial precipitation source and a frequent interhemispheric occurrence. The long lifetimes of pulsating aurora, their interhemispheric occurrence, and the relatively high-precipitation energies make this type of aurora an effective energy deposition process which is easy to identify from the ground-based image data.

  8. Magnetospheric plasma physics

    Bingham, R.

    1989-09-01

    The discovery of the earth's radiation belts in 1957 by Van Allen marked the beginning of what is now known as magnetospheric physics. In this study of plasma physics in the magnetosphere, we shall take the magnetosphere to be that part of the earth's ionized atmosphere which is formed by the interaction of the solar wind with the earth's dipole-like magnetic field. It extends from approximately 100km above the earth's surface where the proton-neutral atom collision frequency is equal to the proton gyrofrequency to about ten earth radii (R E ∼ 6380km) in the sunward direction and to several hundred earth radii in the anti-sunward direction. The collision dominated region is called the ionosphere and is sometimes considered separate from the collisionless plasma region. In the ionosphere ion-neutral collisions are dominant and one may think of the ionosphere as a frictional boundary layer ∼ 1000km thick. Other planets are also considered. (author)

  9. The Jovian and galactic electrons in the heliosphere as seen by the KET experiment on board the spacecraft named ULYSSE

    Rastoin, Cecile

    1995-01-01

    The KET electron telescope onboard the Ulysse spacecraft flawlessly provides measurements of electrons, protons and alphas of energies above some MeV. This present work focuses on the electron data analysis and interpretation from the Ulysse's launch in 90 to the beginning of 95. The first stage of the odyssey was the Jovian encounter in February 92. The MeV electrons are here used as markers of the magnetic field global structure. We specially study the complex and highly dynamic outer magnetosphere. With reference of previous fly-by, the KET observations permit to characterize the 10-hour modulation of the Jovian electron flux and spectrum and suggest a mechanism involving the rotation of the north low-latitude polar cap. The boundary layers are seen as thick regions with transitions from magnetosheath to magnetospheric particle populations and field properties. The electron anisotropy and flux discontinuities are investigated with support of field data and provide the first evidence of magnetic reconnection occurring around the Jovian magnetopause. Taking advantage of the gravity assistance of the giant planet, Ulysse dipped towards the south heliospheric regions. Along its trajectory KET has detected Jovian electrons in interplanetary space. The first type of events is non-diffusive, with rapid increases discovered by KET at less than 1 AU from the magnetosphere: Jovian electrons have probably escaped through reconnection process which preserves their spectrum modulation and anisotropy characteristics. The events of second category are diffusive, observed since launch up to 30 degrees south. This work highlights the roles of interplanetary shocks and of the heliospheric current sheet in the propagation. A 3D transport model including adiabatic deceleration is presented here and accounts for the Jovian electron flux detected along the Ulysse's trajectory. New estimates of the 3D diffusion coefficients are performed for MeV electrons: K(perpendicular) = 8 * 10

  10. Dynamics of the dayside aurora

    Creutzberg, F.; Mcewen, D.J.

    1982-01-01

    A clearer picture of the dynamical nature of the post-noon aurora has been obtained with instrumental studies during rocket flights over the Northwest Territories of Canada. A sequence of meridian scans showing the measured intensities of the emissions along the meridian from south to north is presented. An all-sky picture of an auroral event is presented which shows a very narrow arc running through the zenith in an east-west direction, typical of many occurring during the period 1-3 hrs after local magnetic noon. A contemporaneous meridian scan taken over the same location shows a narrow spike in the zenith. The frequent occurrence of these narrow, transient auroral arcs with lifetimes of 1-2 minutes, resulting from inverted V events, is discussed

  11. The mechanism of pulsating aurora

    Johnstone, A.D.

    1983-01-01

    New measurement using ground-based techniques, sounding-rockets and geostationary satellites show that pulsating aurora is almost certainly caused by a modulation of the precipitating electron beam. The modulation is probably imposed near the magnetic equator by an interaction with ELF waves which are observed to be modulated at the same frequency. The measured wave intensity is not strong enough to cause pulsations by variation of the rate of pitch angle diffusion so it is suggested that the pulsation is caused by a coherent interaction involving the generation of ELF chorus. The periodicity arises because the chorus is shut-off after approximately half a bounce period when the increased rate of precipitation removes most of the resonant electrons. The supply is then replenished by pitch angle diffusion

  12. Aurora Bertrana: bringing "otherness" home

    M. Pilar Godayol i Nogué

    2008-01-01

    Full Text Available “Decidida a viure al preu que sigui” underscores contemporary writer Maria-Antònia Oliver in her prologue to Aurora Bertrana’s fourth book, El Marroc sensual i fanàtic (1936. The urge to travel, to explore the world and to slake her thirst for new experiences shaped much of the personality and the work of this Girona-born writer. Taking her own travels as a starting point, Bertrana distinguished herself in the genre of travel writing on exotic countries, which at that time underwent a significant revival in Catalonia. Bertrana’s originality lies partly in the image of the woman traveller that she consciously cultivated for herself, and partly in the way she narrates her travels. This article seeks to recover this author and make visible her singular way of presenting otherness.

  13. Aurora Police Lieutenant Gains Intelligence Insight

    Center for Homeland Defense and Security

    2012-01-01

    Center for Homeland Defense and Security, PRESS RELEASES Aurora (Colo.) Police Lt. Sam McGhee has served numerous traditional roles in law enforcement such as emergency services coordinator, media relations manager, narcotics and intelligence commander and sector commander. Currently,...

  14. Materials Degradation in the Jovian Radiation Environment

    Miloshevsky, Gennady; Caffrey, Jarvis A.; Jones, Jonathan E.; Zoladz, Thomas F.

    2017-01-01

    The radiation environment of Jupiter represents a significant hazard for Europa Lander deorbit stage components, and presents a significant potential mission risk. The radiolytic degradation of ammonium perchlorate (AP) oxidizer in solid propellants may affect its properties and performance. The Monte Carlo code MONSOL was used for modeling of laboratory experiments on the electron irradiation of propellant samples. An approach for flattening dose profiles along the depth of irradiated samples is proposed. Depth-dose distributions produced by Jovian electrons in multi-layer slabs of materials are calculated. It is found that the absorbed dose in a particular slab is significantly affected by backscattered electrons and photons from neighboring slabs. The dose and radiolytic decomposition of AP crystals are investigated and radiation-induced chemical yields and weight percent of radical products are reported.

  15. Spitzbergen - a unique site for observing aurorae

    Egeland, A.; Sandholt, P.E.

    1981-01-01

    An international research project situated on Spitzbergen was begun in 1978-79 by Norwegian, British, and American scientists. The main purpose of the project is systematic studies of midday aurorae. Midday aurorae are a new and interesting research theme for which Norway has special qualifications. Through international cooperation a comprehensive instrument park and a practical and economic distribution of tasks have been attained. (Auth./JIW)

  16. Pulsating aurora and cosmic noise absorption associated with growth-phase arcs

    D. McKay

    2018-01-01

    Full Text Available The initial stage of a magnetospheric substorm is the growth phase, which typically lasts 1–2 h. During the growth phase, an equatorward moving, east–west extended, optical auroral arc is observed. This is called a growth-phase arc. This work aims to characterize the optical emission and riometer absorption signatures associated with growth-phase arcs of isolated substorms. This is done using simultaneous all-sky camera and imaging riometer observations. The optical and riometric observations allow determination of the location of the precipitation within growth-phase arcs of low- (< 10  keV and high- (>  10 keV energy electrons, respectively. The observations indicate that growth-phase arcs have the following characteristics: 1. The peak of the cosmic noise absorption (CNA arc is equatorward of the optical emission arc. This CNA is contained within the region of diffuse aurora on the equatorward side.2. Optical pulsating aurora are seen in the border region between the diffuse emission region on the equatorward side and the bright growth-phase arc on the poleward side. CNA is detected in the same region. 3. There is no evidence of pulsations in the CNA. 4. Once the equatorward drift starts, it proceeds at constant speed, with uniform separation between the growth-phase arc and CNA of 40 ± 10 km. Optical pulsating aurora are known to be prominent in the post-onset phase of a substorm. The fact that pulsations are also seen in a fairly localized region during the growth phase shows that the substorm expansion-phase dynamics are not required to closely precede the pulsating aurora.

  17. Shock aurora: Field-aligned discrete structures moving along the dawnside oval

    Zhou, Xiaoyan; Haerendel, Gerhard; Moen, Jøran I.; Trondsen, Espen; Clausen, Lasse; Strangeway, Robert J.; Lybekk, Bjørn; Lorentzen, Dag A.

    2017-03-01

    Generated by interplanetary shocks or solar wind pressure pulses, shock aurora has transient, global, and dynamic significances and provides a direct manifestation of the solar wind-magnetosphere-ionosphere interaction. As a part of a series of studies of the shock aurora, this paper focuses on the interaction at the morning magnetopause and its auroral manifestation at 06 magnetic local time, where the velocity and magnetic field shears dominate the interaction. Flow shears can generate wave-like structures inside a viscous boundary layer or even larger-scale vortices. These structures couple to the ionosphere via quasi-static field-aligned currents or via kinetic Alfvén waves. Potential drops along field-aligned filaments may be generated accelerating electrons to form auroral manifestations of the structures. A shock aurora event at dawnside is used to test this scenario. The findings include moving auroral streaks/rays that have a vertical profile from red (at 250 km altitude) to purple (at 100 km). The streaks moved antisunward along the poleward boundary of the oval at an ionospheric speed of 3 km s-1. It was mapped to the magnetopause flank at 133 km s-1, which was consistent with the observed speed of the magnetopause surface waves generated by the Kelvin-Helmholtz instability. The calculated field-aligned potential drop using Haerendel's analytic model was 5 kV that reasonably explained the observations. The results support the above scenario and reveal that magnetic and velocity shears at the flanks of the magnetospause may be the main cause of the fast moving shock aurora streaks.

  18. Ionospheric Electron Heating Associated With Pulsating Auroras: Joint Optical and PFISR Observations

    Liang, Jun; Donovan, E.; Reimer, A.; Hampton, D.; Zou, S.; Varney, R.

    2018-05-01

    In a recent study, Liang et al. (2017, https://doi.org/10.1002/2017JA024127) repeatedly identified strong electron temperature (Te) enhancements when Swarm satellites traversed pulsating auroral patches. In this study, we use joint optical and Poker Flat Incoherent Scatter Radar (PFISR) observations to further investigate the F region plasma signatures related to pulsating auroras. On 19 March 2015 night, which contained multiple intervals of pulsating auroral activities, we identify a statistical trend, albeit not a one-to-one correspondence, of strong Te enhancements ( 500-1000 K) in the upper F region ionosphere during the passages of pulsating auroras over PFISR. On the other hand, there is no discernible and repeatable density enhancement in the upper F region during pulsating auroral intervals. Collocated optical and NOAA satellite observations suggest that the pulsating auroras are composed of energetic electron precipitation with characteristic energy >10 keV, which is inefficient in electron heating in the upper F region. Based upon PFISR observations and simulations from Liang et al. (2017) model, we propose that thermal conduction from the topside ionosphere, which is heated by precipitating low-energy electrons, offers the most likely explanation for the observed electron heating in the upper F region associated with pulsating auroras. Such a heating mechanism is similar to that underlying the "stable auroral red arcs" in the subauroral ionosphere. Our proposal conforms to the notion on the coexistence of an enhanced cold plasma population and the energetic electron precipitation, in magnetospheric flux tubes threading the pulsating auroral patch. In addition, we find a trend of enhanced ion upflows during pulsating auroral intervals.

  19. Possible Cause of Extremely Bright Aurora Witnessed in East Asia on 17 September 1770

    Ebihara, Yusuke; Hayakawa, Hisashi; Iwahashi, Kiyomi; Tamazawa, Harufumi; Kawamura, Akito Davis; Isobe, Hiroaki

    2017-10-01

    Extremely bright aurora was witnessed in East Asia on 17 September 1770, according to historical documents. The aurora was described as "as bright as a night with full moon" at magnetic latitude of 25°. The aurora was dominated by red color extending from near the horizon up beyond the polar star (corresponding to elevation angle of 35°). We performed a two-stream electron transport code to calculate the volume emission rates at 557.7 nm (OI) and 630.0 nm (OI). Two types of distribution of precipitating electrons were assumed. The first one is based on the unusually intense electron flux measured by the DMSP satellite in the March 1989 storm. The distribution consists of hot (peaking at 3 keV) and cold (peaking at 71 eV) components. The second one is the same as the first one, but the hot component is removed. We call this high-intensity low-energy electrons (HILEEs). The first spectrum results in an auroral display with a bright, lower green border. The second one results in red-dominated aurora extending up to the elevation angle of 35° when the equatorward boundary of the electron precipitation is located at 32° invariant latitude. The poleward boundary of the precipitation would be 42° invariant latitude or greater to explain the auroral display extending from near the horizon. The origin of the HILEEs is probably the plasma sheet or the plasmasphere that is transported earthward to L 1.39 due to enhanced magnetospheric convection. Local heating or acceleration is also plausible.

  20. Aurora Research: Earth/Space Data Fusion Powered by GIS and Python

    Kalb, V. L.; Collado-Vega, Y. M.; MacDonald, E.; Kosar, B.

    2017-12-01

    The Aurora Borealis and Australis Borealis are visually spectacular, but are also an indicator of Sun-magnetosphere-ionosphere energy transfer during geomagnetic storms. The Saint Patrick's Day Storm of 2015 is a stellar example of this, and is the focus of our study that utilizes the Geographical Information Services of ArcGIS to bring together diverse and cross disciplinary data for analysis. This research leverages data from a polar-orbiting Earth science sensor band that is exquisitely sensitive to visible light, namely the Day/Night Band (DNB) of the VIIRS instrument onboard the Suomi NPP satellite. This Sun-synchronous data source can provide high temporal and spatial resolution observations of the aurorae, which is not possible with current space science instruments. This data can be compared with auroral model data, solar wind measurements, and citizen science data of aurora observations and tweets. While the proposed data sources are diverse in type and format, their common attribute is location. This is exploited by bringing all the data into ArcGIS for mapping and analysis. The Python programming language is used extensively to automate the data preprocessing, group the DNB and citizen science observations to temporal windows associated with an auroral model timestep, and print the data to a pdf mapbook for sharing with team members. There are several goals for this study: compare the auroral model predictions with DNB data, look for fine-grained structure of the aurora in the DNB data, compare citizen science data with DNB values, and correlate DNB intensity with solar wind data. This study demonstrates the benefits of using a GIS platform to bring together data that is diverse in type and format for scientific exploration, and shows how Python can be used to scale up to large datasets.

  1. A Radiation Hard Multi-Channel Digitizer ASIC for Operation in the Harsh Jovian Environment

    Aslam, Shahid; Aslam, S.; Akturk, A.; Quilligan, G.

    2011-01-01

    ultimately impact the surface of Europa after the mission is completed. The current JEO mission concept includes a range of instruments on the payload, to monitor dynamic phenomena (such as Io's volcanoes and Jupiters atmosphere), map the Jovian magnetosphere and its interactions with the Galilean satellites, and characterize water oceans beneath the ice shells of Europa and Ganymede. The payload includes a low mass (3.7 Kg) and low power (ASIC that resides very close to the thermopile linear array outputs. Both the thermopile array and the MCD ASIC will need to show full functionality within the harsh Jovian radiation environment, operating at cryogenic temperatures, typically 150 K to 170 K. In the following, a radiation mitigation strategy together with a low risk Radiation-Hardened-By-Design (RHBD) methodology using commercial foundry processes is given for the design and manufacture of a MCD ASIC that will meet this challenge.

  2. Magnetospheric plasma waves

    Shawhan, S.D.

    1977-01-01

    A brief history of plasma wave observations in the Earth's magnetosphere is recounted and a classification of the identified plasma wave phenomena is presented. The existence of plasma waves is discussed in terms of the characteristic frequencies of the plasma, the energetic particle populations and the proposed generation mechanisms. Examples are given for which plasmas waves have provided information about the plasma parameters and particle characteristics once a reasonable theory has been developed. Observational evidence and arguments by analogy to the observed Earth plasma wave processes are used to identify plasma waves that may be significant in other planetary magnetospheres. The similarities between the observed characteristics of the terrestrial kilometric radiation and radio bursts from Jupiter, Saturn and possibly Uranus are stressed. Important scientific problems concerning plasma wave processes in the solar system and beyond are identified and discussed. Models for solar flares, flare star radio outbursts and pulsars include elements which are also common to the models for magnetospheric radio bursts. Finally, a listing of the research and development in terms of instruments, missions, laboratory experiments, theory and computer simulations needed to make meaningful progress on the outstanding scientific problems of plasma wave research is given. (Auth.)

  3. RGB Colors of the Jovian Trojan Asteroids

    Chen, Haoyuan; Zhang, Xiaofei; University of Western Australia, Youth Astronomy Teachers' Link

    2017-10-01

    We use SPIRIT I&II telescopes which has 43cm diameter, to observe around 50 Jovian Trojan asteroids. Due to the limiting magnitude of our equipment, We only choose some bright asteriods as our targets.To testify the feasibility of using RGB Bayer filter system for research project, we use the RGB Bayer filter system instead of the Johnson-Cousins BVR filters system. Once proved, the photometry data will be significantly enlarged. More collected data can be used on scientific researches and more scholars can do relevant researches by using the RGB Bayer filter system. What we did is using a software called Astrometrica to measure the magnitude of the asteroids under RGB filter. Then we transform the RGB data to BVR data. Later on we calculate the color index by using those BVR data from our calculations. The final step to do the statistic work and make graphs, and compare it with the former research data. We are aim to find same result as the research before, or why there are differnt result.We are still in the process of handling the data, so the final result will be released at the conference. This project is based on data acquired using the SPIRIT robotic telescopes at The University of Western Australia. We gratefully acknowledge the assistance of Paul Luckas, SPIRIT Program Manager.The project is supported by The University of Western Australia, Youth Astronomy Teachers' Link.

  4. Io's Magnetospheric Interaction: An MHD Model with Day-Night Asymmetry

    Kabin, K.; Combi, M. R.; Gombosi, T. I.; DeZeeuw, D. L.; Hansen, K. C.; Powell, K. G.

    2001-01-01

    In this paper we present the results of all improved three-dimensional MHD model for Io's interaction with Jupiter's magnetosphere. We have included the day-night asymmetry into the spatial distribution of our mass-loading, which allowed us to reproduce several smaller features or the Galileo December 1995 data set. The calculation is performed using our newly modified description of the pick-up processes that accounts for the effects of the corotational electric field existing in the Jovian magnetosphere. This change in the formulation of the source terms for the MHD equations resulted in significant improvements in the comparison with the Galileo measurements. We briefly discuss the limitations of our model and possible future improvements.

  5. Recent developments in pulsating aurora studies

    Sandahl, I.

    1985-11-01

    The field of pulsating aurora studies is reviewed. The paper begins with a short description of the characteristics of pulsating auroras and the theoretical ideas which, in view of existing experimental results, seem most important. A selection of new theoretical results and experimental results from both ground based instruments and instruments on rockets and satellites is then presented. There is now convincing evidence that the luminosity modulation is caused by a modulated flux of electron. The electron flux modulation seems to arise from a modulated resonant interaction between electrons and whistler mode waves in the equatorial plane, but the reason for the modulation is not known. Measurements concerning the drift and location of patches and the creation of Pi1 micropulsations are also deiscussed. Finally some suggestions for future research work are outlined. Optical measurements, especially with low light level TV, have proven to be of great importance in experimental studies of pulsating auroras. (author)

  6. The first accurate description of an aurora

    Schröder, Wilfried

    2006-12-01

    As technology has advanced, the scientific study of auroral phenomena has increased by leaps and bounds. A look back at the earliest descriptions of aurorae offers an interesting look into how medieval scholars viewed the subjects that we study.Although there are earlier fragmentary references in the literature, the first accurate description of the aurora borealis appears to be that published by the German Catholic scholar Konrad von Megenberg (1309-1374) in his book Das Buch der Natur (The Book of Nature). The book was written between 1349 and 1350.

  7. 2-Aminobenzimidazoles as potent Aurora kinase inhibitors.

    Zhong, Min; Bui, Minna; Shen, Wang; Baskaran, Subramanian; Allen, Darin A; Elling, Robert A; Flanagan, W Michael; Fung, Amy D; Hanan, Emily J; Harris, Shannon O; Heumann, Stacey A; Hoch, Ute; Ivy, Sheryl N; Jacobs, Jeffrey W; Lam, Stuart; Lee, Heman; McDowell, Robert S; Oslob, Johan D; Purkey, Hans E; Romanowski, Michael J; Silverman, Jeffrey A; Tangonan, Bradley T; Taverna, Pietro; Yang, Wenjin; Yoburn, Josh C; Yu, Chul H; Zimmerman, Kristin M; O'Brien, Tom; Lew, Willard

    2009-09-01

    This Letter describes the discovery and key structure-activity relationship (SAR) of a series of 2-aminobenzimidazoles as potent Aurora kinase inhibitors. 2-Aminobenzimidazole serves as a bioisostere of the biaryl urea residue of SNS-314 (1c), which is a potent Aurora kinase inhibitor and entered clinical testing in patients with solid tumors. Compared to SNS-314, this series of compounds offers better aqueous solubility while retaining comparable in vitro potency in biochemical and cell-based assays; in particular, 6m has also demonstrated a comparable mouse iv PK profile to SNS-314.

  8. Charged particle periodicity in the Saturnian magnetosphere

    Carbary, J.F.; Krimigis, S.M.

    1982-01-01

    The low energy charged particles (LECP) experiments on the Voyager 1 and 2 spacecraft performed measurements of electrons (approx.22 keV to approx.20 MeV) and ions (approx.28 keV to approx.150 MeV) during the Saturn encounters in 1980 and 1981. Count rate ratios of two of the low energy electron (22 to 35 keV and 183 to 500 keV) and ion (43 to 80 keV and 137 to 215 keV) channels exhibit an approximation 10 hour periodicity in the outer Saturnian magnetosphere beyond the orbit of Titan. Electron ratios vary from approx.50 to approx.300; ion ratios vary from approx.3 to approx.20. Similar but less pronounced periodicities are observed for higher and lower energy electron and ion spectral indices. Three complete cycles were observed during the Voyager 2 outbound portion of the encounter from which were determined an electron ratio period of 10/sup h/21/sup m/ +- 48/sup m/ and an ion ratio period of 9/sup h/49/sup m/ +- 59/sup m/. Using Saturn Kilometric Radiation (SKR) and Saturn Electrostatic Discharge (SED) periods, extrapolation backward from Voyager 2 to Voyager 1 suggests that the periodicities are Saturnian rather than Jovian in nature, and that they persist in phase for time intervals at least as long as 287 days. Ratio minima, or spectral hardenings, occur in the same hemisphere as do auroral brightenings, SKR activity, and spoke enhanement. We interpret the observations as prima facie evidence of an asymmetry in the Saturian magnetic field and the root cause of the observed SKR periodicity

  9. Albedos of Jovian Trojans, Hildas and Centaurs

    Romanishin, William; Tegler, Stephen C.

    2017-10-01

    We present distributions of optical V band albedos for samples of outer solar system minor bodies including Centaurs, Jovian Trojans and Hildas. Diameters come almost entirely from the NEOWISE catalog (Mainzer etal 2016- Planetary Data System). Optical photometry (H values) for about 2/3 of the approximately 2700 objects studied are from PanStarrrs (Veres et al 2015 Icarus 261, 34). The PanStarrs optical photometry is supplemented by H values from JPL Horizons (corrected to be on the same photometric system as the PanStarrs data) for the objects in the NEOWISE catalog that are not in the PanStarrs catalog. We compare the albedo distributions of various pairs of subsamples using the nonparametric Wilcoxon rank sum test. Examples of potentially interesting comparisons include: (1) The Hildas are 15-25% darker than the Trojans at a very high level of statistical significance. If the Hildas and Trojans started out with similar surfaces, the Hildas may have darkened due to the effects of gardening as they pass through zone III of the asteroid belt. (2) The median albedo of the gray Centaurs lies between that of the L4 and L5 Trojan groups (3) The median L5 Trojan cloud albedo is about 10% darker than that of the L4 cloud at a high level of significance. However, the modes of the L4 and L5 albedo distributions are very similar, perhaps indicating the presence of a distinct brighter component in the L4 cloud that is not found in the L5 cloud.

  10. The polar cusp: Particle-, optical- and geomagnetic manifistations of solar wind - magnetosphere interaction

    Sandholt, P.E.; Egeland, A.; Lybekk, B.

    1985-08-01

    In this study observations of particle precipitation, optical emissions and geomagnetic disturbances associated with the low-altitude polar cusp are presented. The main observational basis is photometer data from two stations on Svalbard (Spitsbergen), Norway. These data have been used to map the location and dynamics of polar cusp auroras. One event with coordinated observations of low-energy precipitation from satellite HILAT and optical observations from the ground is discussed. Simultaneous photometer observations of the midday (Svalbard) and midnight (Alaska) sectors of the auroral oval are also presented. Thus, dynamical auroral phenomena with different temporal and spatial scales are investigated in relation to the interplanetary magnetic field and magnetospheric substorms. Certain large- and small-scale dynamics of the aurora and the geomagnetic field are shown to be consistent with the quasi steady-state/large-scale and impulsive/small-scale modes of magnetic reconnection at the frontside magnetopause

  11. Pulsar Magnetospheres and Pulsar Winds

    Beskin, Vasily S.

    2016-01-01

    Surprisingly, the chronology of nearly 50 years of the pulsar magnetosphere and pulsar wind research is quite similar to the history of our civilization. Using this analogy, I have tried to outline the main results obtained in this field. In addition to my talk, the possibility of particle acceleration due to different processes in the pulsar magnetosphere is discussed in more detail.

  12. Proyecto Aurora: Building a Community of Women.

    Noya, Gladys R. Capella

    1997-01-01

    Describes the development of Proyecto Aurora, a program to develop and implement educational, support, and research programs to benefit low-income women in Puerto Rico. Portraits of some clients illustrate the rewards and challenges of working with this community and furthering their educational experiences and opportunities. (SLD)

  13. Analysis and Modeling of Jovian Radio Emissions Observed by Galileo

    Menietti, J. D.

    2003-01-01

    Our studies of Jovian radio emission have resulted in the publication of five papers in refereed journals, with three additional papers in progress. The topics of these papers include the study of narrow-band kilometric radio emission; the apparent control of radio emission by Callisto; quasi-periodic radio emission; hectometric attenuation lanes and their relationship to Io volcanic activity; and modeling of HOM attenuation lanes using ray tracing. A further study of the control of radio emission by Jovian satellites is currently in progress. Abstracts of each of these papers are contained in the Appendix. A list of the publication titles are also included.

  14. Influence of the solar wind and IMF on Jupiter's magnetosphere: Results from global MHD simulations

    Sarkango, Y.; Jia, X.; Toth, G.; Hansen, K. C.

    2017-12-01

    Due to its large size, rapid rotation and presence of substantial internal plasma sources, Jupiter's magnetosphere is fundamentally different from that of the Earth. How and to what extent do the external factors, such as the solar wind and interplanetary magnetic field (IMF), influence the internally-driven magnetosphere is an open question. In this work, we solve the 3D semi-relativistic magnetohydrodynamic (MHD) equations using a well-established code, BATSRUS, to model the Jovian magnetosphere and study its interaction with the solar wind. Our global model adopts a non-uniform mesh covering the region from 200 RJ upstream to 1800 RJ downstream with the inner boundary placed at a radial distance of 2.5 RJ. The Io plasma torus centered around 6 RJ is generated in our model through appropriate mass-loading terms added to the set of MHD equations. We perform systematic numerical experiments in which we vary the upstream solar wind properties to investigate the impact of solar wind events, such as interplanetary shock and IMF rotation, on the global magnetosphere. From our simulations, we extract the location of the magnetopause boundary, the bow shock and the open-closed field line boundary (OCB), and determine their dependence on the solar wind properties and the IMF orientation. For validation, we compare our simulation results, such as density, temperature and magnetic field, to published empirical models based on in-situ measurements.

  15. IMF dependence of Saturn's auroras: modelling study of HST and Cassini data from 12–15 February 2008

    E. S. Belenkaya

    2010-08-01

    Full Text Available To gain better understanding of auroral processes in Saturn's magnetosphere, we compare ultraviolet (UV auroral images obtained by the Hubble Space Telescope (HST with the position of the open-closed field line boundary in the ionosphere calculated using a magnetic field model that employs Cassini measurements of the interplanetary magnetic field (IMF as input. Following earlier related studies of pre-orbit insertion data from January 2004 when Cassini was located ~ 1300 Saturn radii away from the planet, here we investigate the interval 12–15 February 2008, when UV images of Saturn's southern dayside aurora were obtained by the HST while the Cassini spacecraft measured the IMF in the solar wind just upstream of the dayside bow shock. This configuration thus provides an opportunity, unique to date, to determine the IMF impinging on Saturn's magnetosphere during imaging observations, without the need to take account of extended and uncertain interplanetary propagation delays. The paraboloid model of Saturn's magnetosphere is then employed to calculate the magnetospheric magnetic field structure and ionospheric open-closed field line boundary for averaged IMF vectors that correspond, with appropriate response delays, to four HST images. We show that the IMF-dependent open field region calculated from the model agrees reasonably well with the area lying poleward of the UV emissions, thus supporting the view that the poleward boundary of Saturn's auroral oval in the dayside ionosphere lies adjacent to the open-closed field line boundary.

  16. Globally Imaging the Magnetosphere

    Sibeck, D. G.

    2017-12-01

    Over the past two decades, a host of missions have provided the multipoint in situ measurementsneeded to understand the meso- and micro-scale physics governing the solar wind-magnetosphereinteraction. Observations by the ISTP missions, Cluster, THEMIS, Double Star, and most recentlyMMS, have enabled us to identify the occurrence of some of the many proposed models for magneticreconnection and particle acceleration in a wide range of accessible magnetospheric contexts. However, todetermine which of these processes are most important to the overall interaction, we need globalobservations, from both ground-based instrumentation and imaging spacecraft. This talk outlinessome of the the global puzzles that remain to be solved and some of the very novel means that are availableto address them, including soft X-ray, energetic neutral atom, far and extreme ultraviolet imaging andenhanced arrays of ground observatories.

  17. The Extended Pulsar Magnetosphere

    Constantinos, Kalapotharakos; Demosthenes, Kazanas; Ioannis, Contopoulos

    2012-01-01

    We present the structure of the 3D ideal MHD pulsar magnetosphere to a radius ten times that of the light cylinder, a distance about an order of magnitude larger than any previous such numerical treatment. Its overall structure exhibits a stable, smooth, well-defined undulating current sheet which approaches the kinematic split monopole solution of Bogovalov 1999 only after a careful introduction of diffusivity even in the highest resolution simulations. It also exhibits an intriguing spiral region at the crossing of two zero charge surfaces on the current sheet, which shows a destabilizing behavior more prominent in higher resolution simulations. We discuss the possibility that this region is physically (and not numerically) unstable. Finally, we present the spiral pulsar antenna radiation pattern.

  18. Upper ionosphere and magnetospheric-ionospheric coupling

    Manzano, J.R.

    1989-02-01

    After a presentation of the ionospheric physics and of the earth magnetosphere morphology, generation and dynamics, the magnetosphere-ionosphere coupling in quiet and perturbed conditions is discussed. Some summary information about other planetary magnetospheres, particularly Venus and Jupiter magnetospheres, are finally given. 41 refs, 24 figs

  19. Hot plasma parameters in Neptune's magnetosphere

    Krimigis, S.M.; Mauk, B.H.; Cheng, A.F.; Keath, E.P.; Kane, M.; Armstrong, T.P.; Gloeckler, G.; Lanzerotti, L.J.

    1990-01-01

    Energy spectra of energetic protons and electrons (E p approx-gt 28 keV, E e approx-gt 22 keV, respectively) obtained with the Low Energy Charged Particle (LECP) instrument during the Voyager 2 encounter with Neptune on August 24-25, 1989 are presented. The proton spectral form was a power law (dj/dE = KE -γ ), outside the orbit of Triton (∼14.3 R N ); inside that distance, it was found to be a hot (kT ≅ 60 keV) Maxwellian distribution. Such distributions, observed in other planets as well, have yet to be explained theoretically. Similarly, the electron spectral form changed from a simple power law outside Triton to a two-slope power law with a high energy tail inside. Intensity and spectral features in both proton and electron fluxes were identified in association with the crossings of the Triton and 1989 N1 L-shells, but these features do not occur simultaneously in both species. Such signatures were manifested by relative peaks in both kT and γ spectral indices. Peak proton pressures of ∼2x10 -9 dynes cm -2 , and β ∼ 0.2 were measured at successive magnetic equatorial crossings, both inbound and outbound. These parameters show Neptune's magnetosphere to be relatively undistorted by hot plasma loading, similar to that of Uranus and unlike those of Saturn and Jupiter. Trapped electron fluxes at Neptune, as at Uranus, exceed the whistler mode stably trapped flux limit. Whistler-induced pitch angle scattering of energetic electrons in the radiation belts can yield a precipitating energy flux sufficient to drive Neptune's aurora

  20. WISE/NEOWISE OBSERVATIONS OF THE JOVIAN TROJAN POPULATION: TAXONOMY

    Grav, T. [Planetary Science Institute, Tucson, AZ 85719 (United States); Mainzer, A. K.; Bauer, J. M.; Masiero, J. R. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Nugent, C. R., E-mail: tgrav@psi.edu [Department of Earth and Space Sciences, University of California, Los Angeles, CA 90095 (United States)

    2012-11-01

    We present updated/new thermal model fits for 478 Jovian Trojan asteroids observed with the Wide-field Infrared Survey Explorer (WISE). Using the fact that the two shortest bands used by WISE, centered on 3.4 and 4.6 {mu}m, are dominated by reflected light, we derive albedos of a significant fraction of these objects in these bands. While the visible albedos of both the C-, P-, and D-type asteroids are strikingly similar, the WISE data reveal that the albedo at 3.4 {mu}m is different between C-/P- and D-types. The albedo at 3.4 {mu}m can thus be used to classify the objects, with C-/P-types having values less than 10% and D-types have values larger than 10%. Classifying all objects larger than 50 km shows that the D-type objects dominate both the leading cloud (L {sub 4}), with a fraction of 84%, and trailing cloud (L {sub 5}), with a fraction of 71%-80%. The two clouds thus have very similar taxonomic distribution for these large objects, but the leading cloud has a larger number of these large objects, L {sub 4}/L {sub 5} = 1.34. The taxonomic distribution of the Jovian Trojans is found to be different from that of the large Hildas, which is dominated by C- and P-type objects. At smaller sizes, the fraction of D-type Hildas starts increasing, showing more similarities with the Jovian Trojans. If this similarity is confirmed through deeper surveys, it could hold important clues to the formation and evolution of the two populations. The Jovian Trojans does have similar taxonomic distribution to that of the Jovian irregular satellites, but lacks the ultra red surfaces found among the Saturnian irregular satellites and Centaur population.

  1. WISE/NEOWISE OBSERVATIONS OF THE JOVIAN TROJAN POPULATION: TAXONOMY

    Grav, T.; Mainzer, A. K.; Bauer, J. M.; Masiero, J. R.; Nugent, C. R.

    2012-01-01

    We present updated/new thermal model fits for 478 Jovian Trojan asteroids observed with the Wide-field Infrared Survey Explorer (WISE). Using the fact that the two shortest bands used by WISE, centered on 3.4 and 4.6 μm, are dominated by reflected light, we derive albedos of a significant fraction of these objects in these bands. While the visible albedos of both the C-, P-, and D-type asteroids are strikingly similar, the WISE data reveal that the albedo at 3.4 μm is different between C-/P- and D-types. The albedo at 3.4 μm can thus be used to classify the objects, with C-/P-types having values less than 10% and D-types have values larger than 10%. Classifying all objects larger than 50 km shows that the D-type objects dominate both the leading cloud (L 4 ), with a fraction of 84%, and trailing cloud (L 5 ), with a fraction of 71%-80%. The two clouds thus have very similar taxonomic distribution for these large objects, but the leading cloud has a larger number of these large objects, L 4 /L 5 = 1.34. The taxonomic distribution of the Jovian Trojans is found to be different from that of the large Hildas, which is dominated by C- and P-type objects. At smaller sizes, the fraction of D-type Hildas starts increasing, showing more similarities with the Jovian Trojans. If this similarity is confirmed through deeper surveys, it could hold important clues to the formation and evolution of the two populations. The Jovian Trojans does have similar taxonomic distribution to that of the Jovian irregular satellites, but lacks the ultra red surfaces found among the Saturnian irregular satellites and Centaur population.

  2. Near-infrared brightness of the Galilean satellites eclipsed in Jovian shadow: A new technique to investigate Jovian upper atmosphere

    Tsumura, K. [Frontier Research Institute for Interdisciplinary Science, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Arimatsu, K.; Matsuura, S.; Shirahata, M.; Wada, T. [Department of Space Astronomy and Astrophysics, Institute of Space and Astronoutical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 252-5210 (Japan); Egami, E. [Department of Astronomy, Arizona University, Tucson, AZ 85721 (United States); Hayano, Y.; Minowa, Y. [Hawaii Observatory, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Honda, C. [Research Center for Advanced Information Science and Technology, Aizu Research Cluster for Space Science, The University of Aizu, Aizu-Wakamatsu, Fukushima 965-8589 (Japan); Kimura, J. [Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Kuramoto, K.; Takahashi, Y. [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Nakajima, K. [Department of Earth and Planetary Sciences, Kyushu University, Fukuoka 812-8581 (Japan); Nakamoto, T. [Department of Earth and Planetary Sciences, Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8551 (Japan); Surace, J., E-mail: tsumura@astr.tohoku.ac.jp [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-07-10

    Based on observations from the Hubble Space Telescope and the Subaru Telescope, we have discovered that Europa, Ganymede, and Callisto are bright around 1.5 μm even when not directly lit by sunlight. The observations were conducted with non-sidereal tracking on Jupiter outside of the field of view to reduce the stray light subtraction uncertainty due to the close proximity of Jupiter. Their eclipsed luminosity was 10{sup –6}-10{sup –7} of their uneclipsed brightness, which is low enough that this phenomenon has been undiscovered until now. In addition, Europa in eclipse was <1/10 of the others at 1.5 μm, a potential clue to the origin of the source of luminosity. Likewise, Ganymede observations were attempted at 3.6 μm by the Spitzer Space Telescope, but it was not detected, suggesting a significant wavelength dependence. It is still unknown why they are luminous even when in the Jovian shadow, but forward-scattered sunlight by hazes in the Jovian upper atmosphere is proposed as the most plausible candidate. If this is the case, observations of these Galilean satellites while eclipsed by the Jovian shadow provide us with a new technique to investigate the Jovian atmospheric composition. Investigating the transmission spectrum of Jupiter by this method is important for investigating the atmosphere of extrasolar giant planets by transit spectroscopy.

  3. Aurora Mine project - historical resources baseline study

    Reeves, B.

    1996-01-01

    This volume contains the results of a base line archaeological study of the Aurora Mine Project local study area. It was compiled in support of Syncrude Canada's application to the Alberta Energy and Utilities Board (AEUB) and Alberta Environmental Protection to construct and operate it new Aurora Mine, located northeast of Fort McMurray, Alberta. The objective of this study was to compile, consolidate, review and analyze the reports for the area compiled over the past 22 years in and adjacent to the local study area (LSA), particularly those of now existing and Syncrude projects, and previously proposed Alsands and OSLO projects. The report is a summary of the human history in the area including pre-contact native archaeological sites, past archaeological studies, the Hinterland site pattern, post-contact native traditional sites, oil sands exploration/development related sites and paleontological sites in the subject area, and areas adjacent to it. 150 refs., 5 tabs., 43 figs

  4. Jung's quest for the "Aurora consurgens"

    Haaning, Aksel

    2014-01-01

    Auriferae (1593); and it raises the question of whether this could be the possible missing link to Jung's subsequent research in Alchemy and Hermetic Philosophy in the years to come. It is argued that here was the beginning of Jung's quest for the Aurora consurgens, the publication of which concludes...... the Mysterium Conuinctionis more than twenty years later. It is further maintained that this choice of the Aurora is a profound expression of Jung's ambition to revitalize the past from within the individual, and helps explain Jung's deep concern with the welfare and future of modern society.......The paper focuses on the year 1929 when Jung published ‘A European commentary’ to Richard Wilhelm's German translation of the Taoist text The Secret of the Golden Flower. This shows that Jung had already started on the track of European alchemy by following up Conrad Waldkirch's preface in Artis...

  5. Aurorae. Firework in the sky. 2. upd. ed.

    Pfoser, Andreas; Eklund, Tom

    2013-01-01

    Aurorae are fascinating phenomena. As aurora borealis and aurora australis occurring in the polar regions of both earth hemispheres, their incessant color and shape games put people in wonder. The meteorologist Andreas Pfoser explains the physical connections, which lead to the formation of this natural phenomenon. The link with the activity of the sun and the interaction in the earth atmosphere are explained detailedly and understandably. The fantastic recordings, presented in generous horizontal format has collected the Finnish aurora photographer Tom Eklund over a period of time of 14 years. Thereby it succeeded, to document also some events, the origin of which on our daystar were recorded by solar satellites, so that the sequence of events from the solar eruption until the aurora spectacle can be reproduced. The present 2nd edition contains new scientific findings. Additionally numerous aurora pictures were replaced by more actual photos created with modern technology.

  6. Aurora A's functions during mitotic exit: the Guess Who game

    David eReboutier

    2015-12-01

    Full Text Available Until recently, the knowledge of Aurora A kinase functions during mitosis was limited to pre-metaphase events, particularly centrosome maturation, G2/M transition, and mitotic spindle assembly. However, an involvement of Aurora A in post-metaphase events was also suspected, but not clearly demonstrated due to the technical difficulty to perform the appropriate experiments. Recent developments of both an analog specific version of Aurora A, and of small molecule inhibitors have led to the first demonstration that Aurora A is required for the early steps of cytokinesis. As in pre-metaphase, Aurora A plays diverse functions during anaphase, essentially participating in astral microtubules dynamics and central spindle assembly and functioning. The present review describes the experimental systems used to decipher new functions of Aurora A during late mitosis and situate these functions into the context of cytokinesis mechanisms.

  7. Aurora kinase inhibitors: Progress towards the clinic

    Kollareddy, M.; Zheleva, D.; Dzubak, P.; Brahmkshatriya, Pathik; Lepšík, Martin; Hajduch, M.

    2012-01-01

    Roč. 30, č. 6 (2012), s. 2411-2432 ISSN 0167-6997 Grant - others:GA ČR(CZ) GA301/08/1649; GA ČR(CZ) GD303/09/H048 Program:GA; GD Institutional research plan: CEZ:AV0Z40550506 Keywords : Aurora kinases * cancer * inhibitors Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.498, year: 2012

  8. The Magnetospheric Multiscale Mission

    Burch, James

    Magnetospheric Multiscale (MMS), a NASA four-spacecraft mission scheduled for launch in November 2014, will investigate magnetic reconnection in the boundary regions of the Earth’s magnetosphere, particularly along its dayside boundary with the solar wind and the neutral sheet in the magnetic tail. Among the important questions about reconnection that will be addressed are the following: Under what conditions can magnetic-field energy be converted to plasma energy by the annihilation of magnetic field through reconnection? How does reconnection vary with time, and what factors influence its temporal behavior? What microscale processes are responsible for reconnection? What determines the rate of reconnection? In order to accomplish its goals the MMS spacecraft must probe both those regions in which the magnetic fields are very nearly antiparallel and regions where a significant guide field exists. From previous missions we know the approximate speeds with which reconnection layers move through space to be from tens to hundreds of km/s. For electron skin depths of 5 to 10 km, the full 3D electron population (10 eV to above 20 keV) has to be sampled at rates greater than 10/s. The MMS Fast-Plasma Instrument (FPI) will sample electrons at greater than 30/s. Because the ion skin depth is larger, FPI will make full ion measurements at rates of greater than 6/s. 3D E-field measurements will be made by MMS once every ms. MMS will use an Active Spacecraft Potential Control device (ASPOC), which emits indium ions to neutralize the photoelectron current and keep the spacecraft from charging to more than +4 V. Because ion dynamics in Hall reconnection depend sensitively on ion mass, MMS includes a new-generation Hot Plasma Composition Analyzer (HPCA) that corrects problems with high proton fluxes that have prevented accurate ion-composition measurements near the dayside magnetospheric boundary. Finally, Energetic Particle Detector (EPD) measurements of electrons and

  9. Electron energy measurements in pulsating auroras

    McEwan, D.J.; Yee, E.; Whalen, B.A.; Yau, A.W.

    1981-01-01

    Electron spectra were obtained during two rocket flights into pulsating aurora from Southend, Saskatchewan. The first rocket launched at 1143:24 UT on February 15, 1980 flew into an aurora of background intensity 275 R of N 2 + 4278 A and showing regular pulsations with about a 17 s period. Electron spectra of Maxwellian energy distributions were observed with an average E 0 = 1.5 keV, rising to 1.8 keV during the pulsations. There was one-to-one correspondence between the electron energy modulation and the observed optical pulsations. The second rocket, launched at 1009:10 UT on February 23, flew into a diffuse auroral surface of intensity 800 R of N 2 + 4278 A and with somewhat irregular pulsations. The electron spectra were again of Maxwellian energy distribution with an average E 0 = 1.8 keV increasing to 2.1 keV during the pulsations. The results from these flights suggest that pulsating auroras occurring in the morning sector may be quite commonly excited by low energy electrons. The optical pulsations are due to periodic increases in the energy of the electrons with the source of modulation in the vicintiy of the geomagnetic equatorial plane. (auth)

  10. BOOK REVIEW: Electron acceleration in the aurora and beyond

    McClements, K. G.

    1999-08-01

    Duncan Bryant is a retired space plasma physicist who spent most of his career at the Rutherford-Appleton Laboratory in Oxfordshire, England. For many years he has been challenging a widely accepted theory, that auroral electrons are accelerated by double layers, on the grounds that it contains a fundamental error (allegedly, an implicit assumption that charged particles can gain energy from conservative fields). It is, of course, right that models of particle acceleration in natural plasmas should be scrutinized carefully in terms of their consistency with basic physical principles, and I believe that Dr Bryant has performed a valuable service by highlighting this issue. He maintains that auroral electron acceleration by double layers is fundamentally untenable, and that acceleration takes place instead via resonant interactions with lower hybrid waves. In successive chapters, he asserts that essentially the same process can account for electron acceleration observed at the Earth's bow shock, in the neighbourhood of an `artificial comet' produced as part of the Active Magnetospheric Particle Explorers (AMPTE) space mission in 1984/85, in the solar wind, at the Earth's magnetopause, and in the Earth's magneto- sphere. The evidence for this is not always convincing: waves with frequencies of the order of the lower hybrid resonance are often observed in these plasma environments, but in general it is difficult to identify clearly which wave mode is being observed (whistlers, for example, have frequencies in approximately the same range as lower hybrid waves). Moreover, it is not at all clear that the waves which are observed, even if they were of the appropriate type, would have sufficient intensity to accelerate electrons to the extent observed. The author makes a persuasive case, however, that acceleration in the aurora, and in other plasma environments accessible to in situ measurements, involves some form of wave turbulence. In Chapter 2 it is pointed out that

  11. Dayside aurorae and their relation to other geophysical phenomena

    Leontyev, S.V.; Starkov, G.V.; Vorobjev, V.G.; Zverev, V.L.; Feldstein, Ya.I.

    1992-01-01

    Principal morphological peculiarities of auroral luminosity are investigated on the basis of the data from multi-year aurorae observations in day hours at Spitzbergen and Franz Jozef Land. It is shown that in this region the typical forms of aurorae are moving poleward rayed arcs appearing at the equatorward boundary of the auroral oval and disappearing at its pole boundary. Discrete forms of aurorae are located inside a much broader red luminosity band in its equatorward part. Auroral pulsations with a period of 10 50 s are observed in the prenoon sector in a region of much harder precipitations found more equatorward with respect to the daytime red luminosity band. The influence of a B z IMF component upon daytime aurorae is exercised both directly through an equatorward (poleward) shift of daytime aurorae upon decreasing (increasing) B z and via an increase in planetary geomagnetic activity related to the appearance of substorms during which the whole region of the daytime luminosity is shifted to much lower latitudes. A decrease of intensity of daytime aurorae with duration of 5-10 min before the beginning of an expansive phase of a substorm on the night side is detected. The peculiarities of the daytime aurorae dynamics during substorms are also investigated. A scheme of the daytime auroral luminosity distribution is presented. Analytical expressions of the dependence of the daytime aurorae position on IMF are provided. Certain physical mechanisms that can explain the peculiarities of daytime aurorae dynamics are also discussed. (Author)

  12. Chandra's Observations of Jupiter's X-Ray Aurora During Juno Upstream and Apojove Intervals

    Jackman, C.M.; Dunn, W.; Kraft, R.; Gladstone, R.; Branduardi-Raymont, G.; Knigge, C.; Altamirano, D.; Elsner, R.

    2017-01-01

    The Chandra space telescope has recently conducted a number of campaigns to observe Jupiter's X-ray aurora. The first set of campaigns took place in summer 2016 while the Juno spacecraft was upstream of the planet sampling the solar wind. The second set of campaigns took place in February, June and August 2017 at times when the Juno spacecraft was at apojove (expected close to the magnetopause). We report on these upstream and apojove campaigns including intensities and periodicities of auroral X-ray emissions. This new era of jovian X-ray astronomy means we have more data than ever before, long observing windows (up to 72 kiloseconds for this Chandra set), and successive observations relatively closely spaced in time. These features combine to allow us to pursue novel methods for examining periodicities in the X-ray emission. Our work will explore significance testing of emerging periodicities, and the search for coherence in X-ray pulsing over weeks and months, seeking to understand the robustness and regularity of previously reported hot spot X-ray emissions. The periods that emerge from our analysis will be compared against those which emerge from radio and UV wavelengths.

  13. The Magnetospheric Multiscale Magnetometers

    Russell, C. T.; Anderson, B. J.; Baumjohann, W.; Bromund, K. R.; Dearborn, D.; Fischer, D.; Le, G.; Leinweber, H. K.; Leneman, D.; Magnes, W.; hide

    2014-01-01

    The success of the Magnetospheric Multiscale mission depends on the accurate measurement of the magnetic field on all four spacecraft. To ensure this success, two independently designed and built fluxgate magnetometers were developed, avoiding single-point failures. The magnetometers were dubbed the digital fluxgate (DFG), which uses an ASIC implementation and was supplied by the Space Research Institute of the Austrian Academy of Sciences and the analogue magnetometer (AFG) with a more traditional circuit board design supplied by the University of California, Los Angeles. A stringent magnetic cleanliness program was executed under the supervision of the Johns Hopkins University,s Applied Physics Laboratory. To achieve mission objectives, the calibration determined on the ground will be refined in space to ensure all eight magnetometers are precisely inter-calibrated. Near real-time data plays a key role in the transmission of high-resolution observations stored onboard so rapid processing of the low-resolution data is required. This article describes these instruments, the magnetic cleanliness program, and the instrument pre-launch calibrations, the planned in-flight calibration program, and the information flow that provides the data on the rapid time scale needed for mission success.

  14. Origins of magnetospheric physics

    Van Allen, J.A.

    1983-01-01

    The history of the scientific investigation of the earth magnetosphere during the period 1946-1960 is reviewed, with a focus on satellite missions leading to the discovery of the inner and outer radiation belts. Chapters are devoted to ground-based studies of the earth magnetic field through the 1930s, the first U.S. rocket flights carrying scientific instruments, the rockoon flights from the polar regions (1952-1957), U.S. planning for scientific use of artificial satellites (1956), the launch of Sputnik I (1957), the discovery of the inner belt by Explorers I and III (1958), the Argus high-altitude atomic-explosion tests (1958), the confirmation of the inner belt and discovery of the outer belt by Explorer IV and Pioneers I-V, related studies by Sputniks II and III and Luniks I-III, and the observational and theoretical advances of 1959-1961. Photographs, drawings, diagrams, graphs, and copies of original notes and research proposals are provided. 227 references

  15. Magnetospheric radio sounding

    Ondoh, Tadanori; Nakamura, Yoshikatsu; Koseki, Teruo; Watanabe, Sigeaki; Murakami, Toshimitsu

    1977-01-01

    Radio sounding of the plasmapause from a geostationary satellite has been investigated to observe time variations of the plasmapause structure and effects of the plasma convection. In the equatorial plane, the plasmapause is located, on the average, at 4 R sub(E) (R sub(E); Earth radius), and the plasma density drops outwards from 10 2 -10 3 /cm 3 to 1-10/cm 3 in the plasmapause width of about 600 km. Plasmagrams showing a relation between the virtual range and sounding frequencies are computed by ray tracing of LF-VLF waves transmitted from a geostationary satellite, using model distributions of the electron density in the vicinity of the plasmapause. The general features of the plasmagrams are similar to the topside ionograms. The plasmagram has no penetration frequency such as f 0 F 2 , but the virtual range of the plasmagram increases rapidly with frequency above 100 kHz, since the distance between a satellite and wave reflection point increases rapidly with increasing the electron density inside the plasmapause. The plasmapause sounder on a geostationary satellite has been designed by taking account of an average propagation distance of 2 x 2.6 R sub(E) between a satellite (6.6 R sub(E)) and the plasmapause (4.0 R sub(E)), background noise, range resolution, power consumption, and receiver S/N of 10 dB. The 13-bit Barker coded pulses of baud length of 0.5 msec should be transmitted in direction parallel to the orbital plane at frequencies for 10 kHz-2MHz in a pulse interval of 0.5 sec. The transmitter peak power of 70 watts and 700 watts are required respectively in geomagnetically quiet and disturbed (strong nonthermal continuum emissions) conditions for a 400 meter cylindrical dipole of 1.2 cm diameter on the geostationary satellite. This technique will open new area of radio sounding in the magnetosphere. (auth.)

  16. Adiabatic motion of charged dust grains in rotating magnetospheres

    Northrop, T.G.; Hill, J.R.

    1983-01-01

    Dust grains in the ring systems and rapidly rotating magnetospheres of the outer planets such as Jupiter and Saturn may be sufficiently charged that the magnetic and electric forces on them are comparable with the gravitational force. The adiabatic theory of charged particle motion has previously been applied to electrons and atomic size particles. But it is also applicable to these charged dust grains in the micrometer and smaller size range. We derive here the guiding center equation of motion, drift velocity, and parallel equation of motion for these grains in a rotating magnetosphere. The effects of periodic grain charge-discharge have not been treated previously and have been included in this analysis. Grain charge is affected by the surrounding plasma properties and by the grain plasma velocity (among other factors), both of which may vary over the gyrocircle. The resulting charge-discharge process at the gyrofrequency destroys the invariance of the magnetic moment and causes a grain to move radially. The magnetic moment may increase or decrease, depending on the gyrophase of the charge variation. If it decreases, the motion is always toward synchronous radius for an equatorial grain. But the orbit becomes circular before the grain reaches synchronous radius, a conclusion that follows from an exact constant of the motion. This circularization can be viewed as a consequence of the gradual reduction in the magnetic moment. This circularization also suggests that dust grains leaving Io could not reach the region of the Jovian ring, but several effects could change that conclusion. Excellent qualitative and quantitative agreement is obtained between adiabatic theory and detailed numerical orbit integrations

  17. Thermal shallow water models of geostrophic turbulence in Jovian atmospheres

    Warneford, Emma S.; Dellar, Paul J.

    2014-01-01

    Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [“Equatorial superrotation in shallow atmospheres,” Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their model does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune

  18. Studies of thermal wave phenomena on the Jovian planets

    Deming, Drake

    1991-01-01

    Ground-based and Voyager observations of Jupiter provided evidence that the tropospheric temperature shows global-scale longitudinal variations which are often wavelike in character. The investigation is presented which is directed toward obtaining additional ground-based data in IR spectral bands whose contribution functions are optimized for specific atmospheric regions, in order to confirm the previous results, and to identify the nature and physical significance of wavelike longitudinal temperature fluctuations on the Jovian planets.

  19. Alfvén Waves and the Aurora (Hannes Alfvén Medal Lecture)

    Lysak, Robert

    2015-04-01

    The most compelling visual evidence of plasma processes in the magnetosphere of Earth as well as the other magnetized planets is the aurora. Over 40 years of research have indicated that the aurora is a consequence of the acceleration of charged particles toward the neutral atmosphere, where the excitation of neutral atoms and their subsequent relaxation to the ground state produces the auroral light. Much of this acceleration can be described by acceleration in a quasi-static electric field parallel to the geomagnetic field, producing nearly monoenergetic beams of electrons. While a variety of quasi-static models to describe such parallel electric fields have been developed, the dynamics of how these fields evolve is still an open question. Satellite measurements have indicated that a primary source of energy to support these fields is the Poynting flux associated with shear Alfvén waves propagating along auroral field lines. These Alfvén waves are generated in the magnetosphere and reflect from the ionosphere. On closed field lines, Alfvén waves bouncing between conjugate ionospheres produce field line resonances that have be observed both in space and by ground magnetometers. However, some auroral emissions do not follow this scenario. In these cases, the accelerated electrons are observed to have a broad energy spectrum, rather than a monoenergetic peak. Such a spectrum is suggestive of a time-dependent acceleration process that operates on a time scale of a few seconds, comparable to the electron transit time across the acceleration region. While field line resonances have a time scale on the order of minutes, waves with periods of a few seconds can be produced by partial reflections in the Ionospheric Alfvén Resonator, a resonant cavity formed by the rapid decrease of the plasma density and increase of the Alfvén speed above the ionosphere. In order to develop a parallel electric field that can accelerate auroral particles, these Alfvén waves must

  20. Electric fields in the magnetosphere

    Faelthammar, C.G.

    1989-12-01

    The electric field plays an important role in the complex plasma system called the magnetosphere. In spite of this, direct measurement of this quantity are still scarce except in its lowest-altitude part, i.e. the ionosphere. The large scale ionospheric electric field has been determined from measurement on the ground and in low satellite orbit. For most of the magnetosphere, our concepts of the electric field have mostly been based on theoretical considerations and extrapolations of the ionspheric electric field. Direct, in situ, electric field measurements in the outer parts of the magnetosphere have been made only relatively recently. A few satellite missions. most recently the Viking mission, have extended the direct empirical knowledge so as to include major parts of the magnetosphere. These measurements have revealed a number of unexpected features. The actual electric field has been found to have unexpectedly strong space and time variations, which reflect the dynamic nature of the system. Examples are give of measured electric fields in the plasmasphere, the plasmasheet, the neutral sheet, the magnetotail, the flanks of the magnetosphere, the dayside magnetopause and the auroral acceleration region. (author)

  1. Cladistical Analysis of the Jovian and Saturnian Satellite Systems

    Holt, Timothy. R.; Brown, Adrian. J.; Nesvorný, David; Horner, Jonathan; Carter, Brad

    2018-06-01

    Jupiter and Saturn each have complex systems of satellites and rings. These satellites can be classified into dynamical groups, implying similar formation scenarios. Recently, a larger number of additional irregular satellites have been discovered around both gas giants that have yet to be classified. The aim of this paper is to examine the relationships between the satellites and rings of the gas giants, using an analytical technique called cladistics. Cladistics is traditionally used to examine relationships between living organisms, the “tree of life.” In this work, we perform the first cladistical study of objects in a planetary science context. Our method uses the orbital, physical, and compositional characteristics of satellites to classify the objects in the Jovian and Saturnian systems. We find that the major relationships between the satellites in the two systems, such as families, as presented in previous studies, are broadly preserved. In addition, based on our analysis of the Jovian system, we identify a new retrograde irregular family, the Iocaste family, and suggest that the Phoebe family of the Saturnian system can be further divided into two subfamilies. We also propose that the Saturnian irregular families be renamed, to be consistent with the convention used in Jovian families. Using cladistics, we are also able to assign the new unclassified irregular satellites into families. Taken together, the results of this study demonstrate the potential use of the cladistical technique in the investigation of relationships between orbital bodies.

  2. Temperature structure and emergent flux of the Jovian planets

    Silvaggio, P.; Sagan, C.

    1978-01-01

    Long path, low temperature, moderate resolution spectra of methane and ammonia, broadened by hydrogen and helium, are used to calculate non-gray model atmospheres for the four Jovian planets. The fundamental and first overtone of hydrogen contributes enough absorption to create a thermal inversion for each of the planets. The suite of emergent spectral fluxes and representative limb darkenings and brightenings are calculated for comparison with the Voyager infrared spectra. The temperature differences between Jovian belts and zones corresponds to a difference in the ammonia cirrus particle radii (1 to 3 micron in zones; 10 micron in belts). The Jovian tropopause is approximately at the 0.1 bar level. A thin ammonia cirrus haze should be distributed throughout the Saturnian troposphere; and NH3 gas must be slightly supersaturated or ammonia ice particles are carried upwards convectively in the upper troposphere of Saturn. Substantial methane clouds exist on both Uranus and Neptune. There is some evidence for almost isothermal structures in the deep atmospheres of these two planets.

  3. WISE/NEOWISE OBSERVATIONS OF THE JOVIAN TROJANS: PRELIMINARY RESULTS

    Grav, T.; Mainzer, A. K.; Bauer, J.; Masiero, J.; Eisenhardt, P. R. M.; Blauvelt, E.; DeBaun, E.; Elsbury, D.; Gautier, T. IV; Gomillion, S.; Hand, E.; Wilkins, A.; Spahr, T.; McMillan, R. S.; Walker, R.; Cutri, R.; Wright, E.

    2011-01-01

    We present the preliminary analysis of over 1739 known and 349 candidate Jovian Trojans observed by the NEOWISE component of the Wide-field Infrared Survey Explorer (WISE). With this survey the available diameters, albedos, and beaming parameters for the Jovian Trojans have been increased by more than an order of magnitude compared to previous surveys. We find that the Jovian Trojan population is very homogenous for sizes larger than ∼10 km (close to the detection limit of WISE for these objects). The observed sample consists almost exclusively of low albedo objects, having a mean albedo value of 0.07 ± 0.03. The beaming parameter was also derived for a large fraction of the observed sample, and it is also very homogenous with an observed mean value of 0.88 ± 0.13. Preliminary debiasing of the survey shows that our observed sample is consistent with the leading cloud containing more objects than the trailing cloud. We estimate the fraction to be N(leading)/N(trailing) ∼ 1.4 ± 0.2, lower than the 1.6 ± 0.1 value derived by Szabó et al.

  4. Preclinical validation of Aurora kinases-targeting drugs in osteosarcoma

    Tavanti, E.; Sero, V.; Vella, S.; Fanelli, M.; Michelacci, F.; Landuzzi, L.; Magagnoli, G.; Versteeg, R.; Picci, P.; Hattinger, C. M.; Serra, M.

    2013-01-01

    Aurora kinases are key regulators of cell cycle and represent new promising therapeutic targets in several human tumours. Biological relevance of Aurora kinase-A and -B was assessed on osteosarcoma clinical samples and by silencing these genes with specific siRNA in three human osteosarcoma cell

  5. Genetic diversity in two populations of Limicolaria aurora (Jay, 1839 ...

    Limicolaria aurora belongs to the group of land snails commonly called garden snails. This study seeks to use shell morphology and random amplified polymorphic DNA-polymerase chain reaction (RAPDPCR) to examine gross morphological differences in populations of L. aurora from New Bussa (guinea savannah) and ...

  6. Research in magnetospheric wave phenomena

    Barfield, J.N.

    1975-01-01

    During the last 4 years a number of developments have occurred which have led to an increased understanding of the role of wave phenomena in the physical processes of the magnetosphere. While the studies span the frequency regime from millihertz to the electron gyrofrequency, the developments to be discussed in this paper have in common that they have added substantially to the understanding of the controlling processes, regions, and boundaries in the magnetosphere. The topics discussed are the increased awareness and documentation of the role of the plasmapause in micropulsation generation and propagation; the establishment of the role of ion cyclotron waves in the wave-particle interactions at the plasmapause; the discovery of magnetospheric electrostatic waves with ω = (3/2)Ω/sub -/; the discovery and preliminary identification of the source of plasmaspheric hiss; and the analysis of storm time Pc 5 waves as observed on the satellites ATS 1 and Explorer 45. (auth)

  7. Substorms in the earth's magnetosphere

    Baker, D.N.

    1984-01-01

    Magnetospheres are plasma regions of large scale in space dominated by magnetic field effects. The earth, and many planets in our solar system, are known to have magnetospheric regions around them. Magnetospheric substorms represent the intense, rapid dissipation of energy that has been extracted from the solar wind and stored temporarily in the terrestrial magnetotail. In this paper a widely, but not universally, accepted model of substorms is described. The energy budgets, time scales, and conversion efficiencies for substorms are presented. The primary forms of substorm energy dissipation are given along with the average levels of the dissipation. Aspects of particle acceleration and precipitation, Joule heating mechanisms, ring current formation, and plasmoid escape are illustrated based on in situ observations taken from the large available data base. A brief description is given of possible analogues of substorm-like behavior in other astrophysical systems. 27 references, 12 figures

  8. Jovian electron bursts: Correlation with the interplanetary field direction and hydromagnetic waves

    Smith, E.J.; Tsurutani, B.T.; Chenette, D.L.; Conlon, T.F.; Simpson, J.A.

    1976-01-01

    The bursts of relativistic electrons detected on Pioneer 10 upstream from Jupiter and within 400r/subj/ of the planet have been found to be correlated with the interplanetary magnetic field. In the three examples upon which this study is based, during the month prior to the Pioneer 10 encounter, electrons with energies between 3 and 6 MeV escaping from Jupiter's magnetosphere were observed only when the interplanetary magnetic field was along the Jupiter-spacecraft line. In addition, large-amplitude interplanetary waves with characteristic periods of 10 min were observed and found to be well correlated with intervals during which the field was along the Jupiter-spacecraft line. Abrupt changes in the field away from the preferred direction caused equally abrupt terminations of the waves with an accompanying reduction in the electron flux. These results are consistent with propagation of the electrons from Jupiter to Pioneer along, rather than across, the magnetic field lines. The direction of the interplanetary magnetic field is apparently not affected by the electron bursts or by other particles from Jupiter. The average Parker spiral direction is clear with no enhancement in the Jupiter-spacecraft direction. Two alternative possibilities are considered for the origin of the waves. If they were generated near Jupiter, they would have to propagate to the spacecraft in the whistler mode. The expected attenuation of these waves over distances of several hundred r/subj/ an their long travel times make this explanation unattractive. Alternatively, hydromagnetic wave generation by Jovian charged particles, presumably the relativistic electrons themselves, as they travel upstream, appears to be an attractive explanation

  9. Global Coupled Model Studies of The Jovian Upper Atmosphere In Response To Electron Precipitation and Ionospheric Convection Within The Auroral Region.

    Millward, G. H.; Miller, S.; Aylward, A. D.

    The Jovian Ionospheric Model (JIM) is a global three-dimensional model of Jupiter's coupled ionosphere and thermosphere, developed at University College London. Re- cently, the model has been used to investigate the atmospheric response to electron precipitation within the high-latitude auroral region. A series of simulations have been performed in which the model atmosphere is subjected to monochromatic precipitat- ing electrons of varying number flux and initial energy and, in addition, to various degrees of ionospheric convection. The auroral ionospheric conductivity which re- sults is shown to be strongly non-linear with respect to the incoming electron energy, with a maximum observed for incident particles of initial energy 60 KeV. Electrons with higher energies penetrate the thermospheric region completely, whilst electrons of lower energy (say 10 keV) produce ionisation at higher levels in the atmosphere which are less less condusive to the creation of ionospheric conductivity. Studies of the thermospheric winds with the auroral region show that zonal winds (around the auroral oval) can attain values of around 70% of the driving zonal ion velocity. Also the results show that these large neutral winds are limited in vertical extent to the region of large ionospheric conductivity, tailing off markedly at altitudes above this. The latest results from this work will be presented, and the implications for Jovian magnetospheric-ionospheric coupling will be discussed.

  10. Source region of aurora kilometric radiation

    Morioka, Akira; Oya, Hiroshi; Tokumaru, Munetoshi

    1981-01-01

    This paper discusses the source region of aurora kilometric radiation (AKR), and the relation between the particle acceleration region and the polar ionosphere. The observation was made by the satellite 'Jikiken'. The AKR can be transferred to Jikiken without any interception, when the magnetic latitude of the apogee of the satellite is low. The spectra taken in June, 1980, were analyzed. The observed spectra showed the source regions of the AKR were in the aurora bands of the north and south poles. One example showed that the 200 kHz component of AKR from both poles showed the similar behavior, and another example showed that the AKR spectra from both poles showed different behavior. The altitude distribution of source regions was able to be obtained. The altitude of AKR-A was in the range between 6200 and 12000 km, and that of AKR-B was in the range of 3500 and 5200 km. The source of AKR-A was identified as that in the south hemisphere, and that of AKR-B in the north hemisphere. The asymmetric spectra of AKR-A and B showed that the spread and intensity of the electric field along magnetic lines generated above the polar ionosphere were related with the conditions of the ionosphere. (Kato, T.)

  11. Energetic particles in the inner magnetosphere of Jupiter: simulation and results from the energetic particles detector on board the Galileo spacecraft

    Lagg, A.

    1997-11-01

    The simulation of the Low Energy Magnetospheric Measurement System (LEMMS) on board the GALILEO spacecraft and the analysis of data from the Jovian magnetosphere are the main topics of this work. The geometric factors obtained from this simulation can reproduce spectral electron fluxes measured in the Jovian magnetosphere without applying additional corrections. The depletion of particles at high pitch angles measured during the first encounter period with Io is used to calculate neutral number density and latitudinal extension of the neutral gas torus at the Io orbit. As the most likely interaction process the charge exchange between energetic charged particles and the neutral sulfur and oxygen atoms in the torus is discussed. A simple model for this region including this interaction mechanism is the basis for the first calculation of the neutral number density from in-situ measurements of charged particle fluxes. An additional topic of the data analysis is an energy dispersive enhancement of electron fluxes observed in the Io torus. The plasma transport as a consequence of the gradient-curvature drift motion is examined. The time and the origin of a possible injection process is estimated. (author)

  12. Magnetosphere imager science definition team: Executive summary

    Armstrong, T. P.; Gallagher, D. L.; Johnson, C. L.

    1995-01-01

    For three decades, magnetospheric field and plasma measurements have been made by diverse instruments flown on spacecraft in many different orbits, widely separated in space and time, and under various solar and magnetospheric conditions. Scientists have used this information to piece together an intricate, yet incomplete view of the magnetosphere. A simultaneous global view, using various light wavelengths and energetic neutral atoms, could reveal exciting new data and help explain complex magnetospheric processes, thus providing a clear picture of this region of space. This report summarizes the scientific rationale for such a magnetospheric imaging mission and outlines a mission concept for its implementation.

  13. Magnetosphere imager science definition team interim report

    Armstrong, T. P.; Johnson, C. L.

    1995-01-01

    For three decades, magnetospheric field and plasma measurements have been made by diverse instruments flown on spacecraft in may different orbits, widely separated in space and time, and under various solar and magnetospheric conditions. Scientists have used this information to piece together an intricate, yet incomplete view of the magnetosphere. A simultaneous global view, using various light wavelengths and energetic neutral atoms, could reveal exciting new data nd help explain complex magnetospheric processes, thus providing a clear picture of this region of space. This report documents the scientific rational for such a magnetospheric imaging mission and provides a mission concept for its implementation.

  14. GAMERA - The New Magnetospheric Code

    Lyon, J.; Sorathia, K.; Zhang, B.; Merkin, V. G.; Wiltberger, M. J.; Daldorff, L. K. S.

    2017-12-01

    The Lyon-Fedder-Mobarry (LFM) code has been a main-line magnetospheric simulation code for 30 years. The code base, designed in the age of memory to memory vector ma- chines,is still in wide use for science production but needs upgrading to ensure the long term sustainability. In this presentation, we will discuss our recent efforts to update and improve that code base and also highlight some recent results. The new project GAM- ERA, Grid Agnostic MHD for Extended Research Applications, has kept the original design characteristics of the LFM and made significant improvements. The original de- sign included high order numerical differencing with very aggressive limiting, the ability to use arbitrary, but logically rectangular, grids, and maintenance of div B = 0 through the use of the Yee grid. Significant improvements include high-order upwinding and a non-clipping limiter. One other improvement with wider applicability is an im- proved averaging technique for the singularities in polar and spherical grids. The new code adopts a hybrid structure - multi-threaded OpenMP with an overarching MPI layer for large scale and coupled applications. The MPI layer uses a combination of standard MPI and the Global Array Toolkit from PNL to provide a lightweight mechanism for coupling codes together concurrently. The single processor code is highly efficient and can run magnetospheric simulations at the default CCMC resolution faster than real time on a MacBook pro. We have run the new code through the Athena suite of tests, and the results compare favorably with the codes available to the astrophysics community. LFM/GAMERA has been applied to many different situations ranging from the inner and outer heliosphere and magnetospheres of Venus, the Earth, Jupiter and Saturn. We present example results the Earth's magnetosphere including a coupled ring current (RCM), the magnetospheres of Jupiter and Saturn, and the inner heliosphere.

  15. Report of the magnetospheric physics panel

    Burch, J.L.; Potemra, T.A.; Ashourabdalla, M.; Baker, D.N.; Cattell, C.A.; Chang, A.F.; Frank, L.A.; Goertz, C.K.; Kivelson, M.G.; Lee, Lou-Chuang

    1991-01-01

    Magnetospheric research is a relatively new area in the study of the Earth's environment. The present report attempts to overview past and future research on this topic. The goals of magnetospheric research are numerous, and include: understanding large scale magnetospheres of the Earth and other planets; understanding the plasma physical processes operating within the various magnetospheres; to understand how mass, energy and momentum are transmitted from the solar wind; to understand quantitatively the coupling between magnetospheres and their ionospheres; and to understand the magnetospheric mechanisms which accelerate particles to high energies, as well as the ultimate fate of these particles. The report continues on to summarize a number of proposed space missions aimed at data acquisition. Finally, there is a brief discussion of the theory and modeling of magnetospheres

  16. Boundary layers of the earth's outer magnetosphere

    Eastman, T. E.; Frank, L. A.

    1984-01-01

    The magnetospheric boundary layer and the plasma-sheet boundary layer are the primary boundary layers of the earth's outer magnetosphere. Recent satellite observations indicate that they provide for more than 50 percent of the plasma and energy transport in the outer magnetosphere although they constitute less than 5 percent by volume. Relative to the energy density in the source regions, plasma in the magnetospheric boundary layer is predominantly deenergized whereas plasma in the plasma-sheet boundary layer has been accelerated. The reconnection hypothesis continues to provide a useful framework for comparing data sampled in the highly dynamic magnetospheric environment. Observations of 'flux transfer events' and other detailed features near the boundaries have been recently interpreted in terms of nonsteady-state reconnection. Alternative hypotheses are also being investigated. More work needs to be done, both in theory and observation, to determine whether reconnection actually occurs in the magnetosphere and, if so, whether it is important for overall magnetospheric dynamics.

  17. Boundary layers of the earth's outer magnetosphere

    Eastman, T.E.; Frank, L.A.

    1984-01-01

    The magnetospheric boundary layer and the plasma-sheet boundary layer are the primary boundary layers of the earth's outer magnetosphere. Recent satellite observations indicate that they provide for more than 50 percent of the plasma and energy transport in the outer magnetosphere although they constitute less than 5 percent by volume. Relative to the energy density in the source regions, plasma in the magnetospheric boundary layer is predominantly deenergized whereas plasma in the plasma-sheet boundary layer has been accelerated. The reconnection hypothesis continues to provide a useful framework for comparing data sampled in the highly dynamic magnetospheric environment. Observations of flux transfer events and other detailed features near the boundaries have been recently interpreted in terms of nonsteady-state reconnection. Alternative hypotheses are also being investigated. More work needs to be done, both in theory and observation, to determine whether reconnection actually occurs in the magnetosphere and, if so, whether it is important for overall magnetospheric dynamics. 30 references

  18. Survival of the Jovian planets with the Sun a red giant

    Vila, S.C.

    1985-01-01

    The survival of the Jovian planets and their satellites as the Sun becomes a Red Giant is considered. It is found that the Jovian planets would not lose any matter - not even hydrogen. The satellites would lose their gaseous or volatile envelopes. Their rocky cores would resist melting and survive. Both the planets and the satellites would be unsuited to support human life. (Auth.)

  19. Survival of the Jovian planets with the Sun a red giant

    Vila, S C

    1985-12-01

    The survival of the Jovian planets and their satellites as the Sun becomes a Red Giant is considered. It is found that the Jovian planets would not lose any matter - not even hydrogen. The satellites would lose their gaseous or volatile envelopes. Their rocky cores would resist melting and survive. Both the planets and the satellites would be unsuited to support human life. (Auth.).

  20. Radiation chemistry in the Jovian stratosphere - Laboratory simulations

    Mcdonald, Gene D.; Thompson, W. R.; Sagan, Carl

    1992-01-01

    The results of the present low-pressure/continuous-flow laboratory simulations of H2/He/CH4/NH3 atmospheres' plasma-induced chemistry indicate radiation yields of both hydrocarbon and N2-containing organic compounds which increase with decreasing pressure. On the basis of these findings, upper limits of 1 million-1 billion molecules/sq cm/sec are established for production rates of major auroral-chemistry species in the Jovian stratosphere. It is noted that auroral processes may account for 10-100 percent of the total abundances of most of the observed polar-region organic species.

  1. The structure of standing Alfvén waves in a dipole magnetosphere with moving plasma

    D. A. Kozlov

    2006-03-01

    Full Text Available The structure and spectrum of standing Alfvén waves were theoretically investigated in a dipole magnetosphere with moving plasma. Plasma motion was simulated with its azimuthal rotation. The model's scope allowed for describing a transition from the inner plasmasphere at rest to the outer magnetosphere with convecting plasma and, through the magnetopause, to the moving plasma of the solar wind. Solutions were found to equations describing longitudinal and transverse (those formed, respectively, along field lines and across magnetic shells structures of standing Alfvén waves with high azimuthal wave numbers m>>1. Spectra were constructed for a number of first harmonics of poloidal and toroidal standing Alfvén waves inside the magnetosphere. For charged particles with velocities greatly exceeding the velocity of the background plasma, an effective parallel wave component of the electric field appears in the region occupied by such waves. This results in structured high-energy-particle flows and in the appearance of multiband aurorae. The transverse structure of the standing Alfvén waves' basic harmonic was shown to be analogous to the structure of a discrete auroral arc.

  2. Dayside aurorae and polar arcs under south-east IMF orientation

    P. E. Sandholt

    2006-12-01

    Full Text Available We document a characteristic spatial and temporal structure of the aurora in the postnoon sector present during a 10-h-long interval of very steady southeast IMF orientation (clock angle=135° ending in a sharp south-to-north transition. Focus is placed on the detailed morphology of auroral forms/activities corresponding to merging and lobe convection cells obtained from SuperDARN convection data and Greenland magnetograms. The ground optical instruments at Ny Ålesund, Svalbard (76° MLAT recorded different auroral forms/activities as the station moved to higher magnetic local times (MLTs in the 13:00–17:00 MLT sector. Whereas the 13:00–15:00 MLT sector is characterized by classical poleward moving auroral forms (PMAFs associated with merging cell transients, the aurora in the 15:00–17:00 MLT sector shows instead a characteristic latitudinal bifurcation consisting of standard oval forms and polar arcs, and a corresponding composite pattern of merging and lobe convection cells. The merging and lobe cells respond to the southward and northward IMF transitions by activation/fading and fading/activation, respectively. A sequence of brightening events is characterized by successive activations progressing in latitude from the merging cell regime to the lobe cell regime. Emphasis is placed on the association between polar arc brightenings and the activation of the channel of enhanced sunward flow in the lobe cell. The observations are discussed in relation to recent work on solar wind-magnetosphere-ionosphere interconnection topology.

  3. Global magnetic anomaly and aurora of Neptune

    Cheng, A.F.

    1990-01-01

    The large offset and tilt of Neptune's dipole magnetic field combine to create a global magnetic anomaly, analogous to but much more important than Earth's South Atlantic Anomaly. Energetic particle precipitation loss within the Neptune anomaly creates atmospheric drift shadows within which particle fluxes are greatly reduced. The energetic particle dropout observed by Voyager near closest approach occurred near the predicted times when Voyager passed within the atmospheric drift shadow. Extremely soft, structured bursts of ions and electrons within the drift shadow may result from plasma wave-induced pitch angle scattering of trapped particles confined near the magnetic equator. The dropout does not necessarily imply that Voyager passed through an Earth-like discrete auroral zone, as earlier reported. The ion and electron fluxes observed within the dropout period correspond to particles that must precipitate to Neptune's atmosphere within the anomaly region. This anomaly precipitation can account for a major portion of the ultraviolet emissions previously identified as Neptune aurora

  4. The Aurora accelerator's triggered oil switch

    Weidenheimer, D.M.; Pereira, N.R.; Judy, D.C.; Stricklett, K.L.

    1993-01-01

    Achieving a radiation pulse with 15 ns risetime using all four of the Aurora accelerator's Blumlein pulse-forming lines demands synchronization of the Blumleins to within 10 ns (in addition to a 15 ns risetime for a single line). Timing of each Blumlein is controlled by a triggered 12 MV oil switch. A smaller-than-customary trigger electrode makes the switching time more reproducible. Time-resolved photography of the oil arcs suggests that triggering occurs simultaneously around the sharp edge of the trigger electrode, perhaps with small deviations that grow into the most prominent arcs characteristically seen in open-shutter photographs. However, many smaller arcs that are usually overlooked in open-shutter pictures may contribute to current conduction in a closed switch

  5. Jupiter's Magnetic Field and Magnetosphere after Juno's First 8 Orbits

    Connerney, J. E. P.; Oliversen, R. J.; Espley, J. R.; Gruesbeck, J.; Kotsiaros, S.; DiBraccio, G. A.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M. G.; Denver, T.; Benn, M.; Bjarno, J. B.; Malinnikova Bang, A.; Bloxham, J.; Moore, K.; Bolton, S. J.; Levin, S.; Gershman, D. J.

    2017-12-01

    The Juno spacecraft entered polar orbit about Jupiter on July 4, 2016, embarking upon an ambitious mission to map Jupiter's magnetic and gravitational potential fields and probe its deep atmosphere, in search of clues to the planet's formation and evolution. Juno is also instrumented to conduct the first exploration of the polar magnetosphere and to acquire images and spectra of its polar auroras and atmosphere. Juno's 53.5-day orbit trajectory carries her science instruments from pole to pole in approximately 2 hours, with a closest approach to within 1.05 Rj of the center of the planet (one Rj = 71,492 km, Jupiter's equatorial radius), just a few thousand km above the clouds. Repeated periapsis passes will eventually encircle the planet with a dense net of observations equally spaced in longitude (magnetometer sensor suites, located 10 and 12 m from the center of the spacecraft at the end of one of Juno's three solar panel wings. Each contains a vector fluxgate magnetometer (FGM) sensor and a pair of co-located non-magnetic star tracker camera heads, providing accurate attitude determination for the FGM sensors. We present an overview of the magnetometer observations obtained during Juno's first year in orbit in context with prior observations and those acquired by Juno's other science instruments.

  6. Research Ship Aurora Australis Underway Meteorological Data, Quality Controlled

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Aurora Australis Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  7. Outer Magnetospheric Boundaries Cluster Results

    Paschmann, Goetz; Schwartz, S J

    2006-01-01

    When the stream of plasma emitted from the Sun (the solar wind) encounters Earth's magnetic field, it slows down and flows around it, leaving behind a cavity, the magnetosphere. The magnetopause is the surface that separates the solar wind on the outside from the Earth's magnetic field on the inside. Because the solar wind moves at supersonic speed, a bow shock must form ahead of the magnetopause that acts to slow the solar wind to subsonic speeds. Magnetopause, bow shock and their environs are rich in exciting processes in collisionless plasmas, such as shock formation, magnetic reconnection, particle acceleration and wave-particle interactions. They are interesting in their own right, as part of Earth's environment, but also because they are prototypes of similar structures and phenomena that are ubiquitous in the universe, having the unique advantage that they are accessible to in situ measurements. The boundaries of the magnetosphere have been the target of direct in-situ measurements since the beginning ...

  8. Particle acceleration in pulsar magnetospheres

    Baker, K.B.

    1978-10-01

    The structure of pulsar magnetospheres and the acceleration mechanism for charged particles in the magnetosphere was studied, using a pulsar model which required large acceleration of the particles near the surface of the star. A theorem was developed which showed that particle acceleration cannot be expected when the angle between the magnetic field lines and the rotation axis is constant (e.g. radial field lines). If this angle is not constant, however, acceleration must occur. The more realistic model of an axisymmetric neutron star with a strong dipole magnetic field aligned with the rotation axis was investigated. In this case, acceleration occurred at large distances from the surface of the star. The magnitude of the current can be determined using the model presented. In the case of nonaxisymmetric systems, the acceleration is expected to occur nearer to the surface of the star

  9. Discontinuities and the magnetospheric phenomena

    Rajaram, R.; Kalra, G.L.; Tandon, J.N.

    1978-01-01

    Wave coupling at contact discontinuities has an important bearing on the transmission of waves from the solar wind into the magnetosphere across the cusp region of the solar wind-magnetosphere boundary and on the propagation of geomagnetic pulsations in the polar exosphere. Keeping this in view, the problems of wave coupling across a contact discontinuity in a collisionless plasma, described by a set of double adiabatic fluid equations, is examined. The magnetic field is taken normal to the interface and it is shown that total reflection is not possible for any angle of incidence. The Alfven and the magneto-acoustic waves are not coupled. The transmission is most efficient for small density discontinuities. Inhibition of the transmission of the Alfven wave by the sharp density gradients above the F2-peak in the polar exosphere appears to account for the decrease in the pulsation amplitude, on the ground, as the poles are approached from the auroral zone. (author)

  10. Magnetosphere as an Alfven maser

    Trakhtengerts, V.Yu.

    1979-01-01

    The Earth magnetosphere is considered as an Alfven maser. The operation mechanism of such a maser is duscussed. The main fact of this mechanism is ''overpopulation'' of the Earth radiation belt with particles moving with cross velocities. The cross velocity particles excess results in the excitation of cyclotron instability in the radiation belt and in the self-arbitrary increase of Alfven waves. At late the theory of cyclotron instability of radiation belts has been universally developed. On the basis of ideas on magnetosphere maser on cyclotron resonance it was possible to explain many geophysical phenomena such as periodical spillings out of particles from the radiation belts, pulsing polar lights, oscillations of magnetic force tubes etc. It is proposed to carry out active cosmic experiments to understand deeper the processes occuring in radiation belts

  11. A statistical analysis of the location and width of Saturn's southern auroras

    S. V. Badman

    2006-12-01

    Full Text Available A selection of twenty-two Hubble Space Telescope images of Saturn's ultraviolet auroras obtained during 1997–2004 has been analysed to determine the median location and width of the auroral oval, and their variability. Limitations of coverage restrict the analysis to the southern hemisphere, and to local times from the post-midnight sector to just past dusk, via dawn and noon. It is found that the overall median location of the poleward and equatorward boundaries of the oval with respect to the southern pole are at ~14° and ~16° co-latitude, respectively, with a median latitudinal width of ~2°. These median values vary only modestly with local time around the oval, though the poleward boundary moves closer to the pole near noon (~12.5° such that the oval is wider in that sector (median width ~3.5° than it is at both dawn and dusk (~1.5°. It is also shown that the position of the auroral boundaries at Saturn are extremely variable, the poleward boundary being located between 2° and 20° co-latitude, and the equatorward boundary between 6° and 23°, this variability contrasting sharply with the essentially fixed location of the main oval at Jupiter. Comparison with Voyager plasma angular velocity data mapped magnetically from the equatorial magnetosphere into the southern ionosphere indicates that the dayside aurora lie poleward of the main upward-directed field-aligned current region associated with corotation enforcement, which maps to ~20°–24° co-latitude, while agreeing reasonably with the position of the open-closed field line boundary based on estimates of the open flux in Saturn's tail, located between ~11° and ~15°. In this case, the variability in location can be understood in terms of changes in the open flux present in the system, the changes implied by the Saturn data then matching those observed at Earth as fractions of the total planetary flux. We infer that the broad (few degrees diffuse auroral emissions

  12. Small Jovian Trojan Asteroids: An Excess of Slow Rotators

    French, Linda M.

    2016-01-01

    Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We discuss the rotation properties of Jovian Trojan asteroids less than 30 km in diameter. Approximately half of the objects discussed here were studied using densely sampled lightcurves (French et al. 2015a, b); Stephens et al. 2015), and the other half were sparse lightcurves obtained by the Palomar Transient Factory (PTF; Waszcazk et al. 2015). A significant fraction (~40%) of the objects in the ground-based sample rotate slowly (P > 24h), with measured periods as long as 375 h (Warner and Stephens 2011). The PTF data show a similar excess of slow rotators. Only 5 objects in the combined data set have rotation periods of less than six hours. Three of these fast rotators were contained in the data set of French et al. these three had a geometric mean rotation period of 5.29 hours. A prolate spheroid held together by gravity rotating with this period would have a critical density of 0.43 gm/cm3, a density similar to that of comets (Lamy et al. 2004). Harris et al. (2012) and Warner et al. (2011) have explored the possible effects on asteroid rotational statistics with the results from wide-field surveys. We will examine Trojan rotation statistics with and without the results from the PTF.

  13. Observations and Numerical Modeling of the Jovian Ribbon

    Cosentino, R. G.; Simon, A.; Morales-Juberias, R.; Sayanagi, K. M.

    2015-01-01

    Multiple wavelength observations made by the Hubble Space Telescope in early 2007 show the presence of a wavy, high-contrast feature in Jupiter's atmosphere near 30 degrees North. The "Jovian Ribbon," best seen at 410 nanometers, irregularly undulates in latitude and is time-variable in appearance. A meridional intensity gradient algorithm was applied to the observations to track the Ribbon's contour. Spectral analysis of the contour revealed that the Ribbon's structure is a combination of several wavenumbers ranging from k equals 8-40. The Ribbon is a dynamic structure that has been observed to have spectral power for dominant wavenumbers which vary over a time period of one month. The presence of the Ribbon correlates with periods when the velocity of the westward jet at the same location is highest. We conducted numerical simulations to investigate the stability of westward jets of varying speed, vertical shear, and background static stability to different perturbations. A Ribbon-like morphology was best reproduced with a 35 per millisecond westward jet that decreases in amplitude for pressures greater than 700 hectopascals and a background static stability of N equals 0.005 per second perturbed by heat pulses constrained to latitudes south of 30 degrees North. Additionally, the simulated feature had wavenumbers that qualitatively matched observations and evolved throughout the simulation reproducing the Jovian Ribbon's dynamic structure.

  14. Electric fields in the magnetosphere

    Falthammar, C.G.

    1989-01-01

    Electric field measurements on the satellites GEOS-1, GEOS-2, ISEE-1, and Viking have extended the empirical knowledge of electric fields in space so as to include the outer regions of the magnetosphere. While the measurements confirm some of the theoretically expected properties of the electric fields, they also reveal unexpected features and a high degree of complexity and variability. The existence of a magnetospheric dawn-to-dusk electric field, as expected on the basis of extrapolation from low altitude measurements, is confirmed in an average sense. However, the actual field exhibits large spatial and temporal variations, including strong fields of inductive origin. At the magnetopause, the average (dawn-to-dusk directed) tangential electric field component is typically obscured by irregular fluctuations of larger amplitude. The magnetic-field aligned component of the electric field, which is of particular importance for ionosphere-magnetosphere coupling and for auroral acceleration, is even now very difficult to measure directly. However, the data from electric field measurements provide further support for the conclusion, based on a variety of evidence, that a non-vanishing magnetic-field aligned electric field exists in the auroral acceleration region

  15. Low latitude aurorae on October 21, 1989, 2

    Kuwashima, Masayuki; Tsunomura, Satoru; Uwai, Tetsuya; Saito, Buniti; Takahasi, Tosiyasu; Kiyama, Yositaka.

    1990-01-01

    Appearance of low-latitude aurorae was seen in Hokkaido, a northern district in Japan, on October 21 and November 17, 1989, during severe magnetic storms. Some characteristics of the associated magnetic variations are shown and discussed in the present short report. The appearance of low-latitude aurora events was found during a time interval of a sharp H-component increase succeeding to the maximum development of the storm time ring current. The cause of the increase in the H-component seems to be associated with the bay disturbance because Pi2 magnetic pulsations were always associated with the low-latitude aurora event. The period of an aurora associated Pi2 event is shorter (40-60 seconds) than that of a usual Pi2 event (100 seconds). During the main phase of geomagnetic storm on October 21, optical and spectroscopic observations of low latitude aurora were made with an airglow-photometer, spectrograph and an all sky camera at Niigata (latitude 37.7degN, longitude 138.8degE and geomagnetic latitude 27.7degN). Spectra of low latitude aurorae observed in Niigata are given and discussed. A model for the main part of the auroral emission is also presented. (N.K.)

  16. Chandra observations of Jupiter's X-ray Aurora during Juno upstream and apojove intervals

    Dunn, W.; Jackman, C. M.; Kraft, R.; Gladstone, R.; Branduardi-Raymont, G.; Knigge, C.; Altamirano, D.; Elsner, R.; Kammer, J.

    2017-12-01

    The Chandra space telescope has recently conducted a number of campaigns to observe Jupiter's X-ray aurora. The first set of campaigns took place in summer 2016 while the Juno spacecraft was upstream of the planet sampling the solar wind. The second set of campaigns took place in February, June and August 2017 at times when the Juno spacecraft was at apojove. These campaigns were planned following the Juno orbit correction to capitalise on the opportunity to image the X-ray emission while Juno was orbiting close to the expected position of the magnetopause. Previous work has suggested that the auroral X-ray emissions map close to the magnetopause boundary [e.g. Vogt et al., 2015; Kimura et al., 2016; Dunn et al., 2016] and thus in situ spacecraft coverage in this region combined with remote observation of the X-rays afford the chance to constrain the drivers of these energetic emissions and determine if they originate on open or closed field lines. We aim to examine possible drivers of X-ray emission including reconnection and the Kelvin-Helmholtz instability and to explore the role of the solar wind in controlling the emissions. We report on these upstream and apojove campaigns including intensities and periodicities of auroral X-ray emissions. This new era of jovian X-ray astronomy means we have more data than ever before, long observing windows (up to 72 ks for this Chandra set), and successive observations relatively closely spaced in time. These features combine to allow us to pursue novel methods for examining periodicities in the X-ray emission. Our work will explore significance testing of emerging periodicities, and the search for coherence in X-ray pulsing over weeks and months, seeking to understand the robustness and regularity of previously reported hot spot X-ray emissions. The periods that emerge from our analysis will be compared against those which emerge from radio and UV wavelengths.

  17. Does the Magnetosphere go to Sleep?

    Hesse, M.; Moretto, T.; Friis-Christensen, E. A.; Kuznetsova, M.; Østgaard, N.; Tenfjord, P.; Opgenoorth, H. J.

    2017-12-01

    An interesting question in magnetospheric research is related to the transition between magnetospheric configurations under substantial solar wind driving, and a putative relaxed state after the driving ceases. While it is conceivable that the latter state may be unique and only dependent on residual solar wind driving, a more likely scenario has magnetospheric memory playing a key role. Memory processes may be manifold: constraints from conservation of flux tube entropy to neutral wind inertia in the upper atmosphere may all contribute. In this presentation, we use high-resolution, global, MHD simulations to begin to shed light on this transition, as well as on the concept of a quiet state of the magnetosphere. We will discuss key elements of magnetospheric memory, and demonstrate their influence, as well as the actual memory time scale, through simulations and analytical estimates. Finally, we will point out processes with the potential to effect magnetospheric memory loss.

  18. Open and partially closed models of the solar wind interaction with outer planet magnetospheres. The case of Saturn

    Belenkaya, Elena S.; Alexeev, Igor I.; Kalegaev, Vladimir V.; Pensionerov, Ivan A.; Blokhina, Marina S.; Parunakian, David A. [Federal State Budget Educational Institution of Higher Education M.V. Lomonosov Moscow State Univ., Moscow (Russian Federation). Skobeltsyn Inst. of Nuclear Physics (SINP MSU); Cowley, Stanley W. H. [Leicester Univ. (United Kingdom). Dept. of Physics and Astronomy

    2017-07-01

    A wide variety of interactions take place between the magnetized solar wind plasma outflow from the Sun and celestial bodies within the solar system. Magnetized planets form magnetospheres in the solar wind, with the planetary field creating an obstacle in the flow. The reconnection efficiency of the solar-wind-magnetized planet interaction depends on the conditions in the magnetized plasma flow passing the planet. When the reconnection efficiency is very low, the interplanetary magnetic field (IMF) does not penetrate the magnetosphere, a condition that has been widely discussed in the recent literature for the case of Saturn. In the present paper, we study this issue for Saturn using Cassini magnetometer data, images of Saturn's ultraviolet aurora obtained by the HST, and the paraboloid model of Saturn's magnetospheric magnetic field. Two models are considered: first, an open model in which the IMF penetrates the magnetosphere, and second, a partially closed model in which field lines from the ionosphere go to the distant tail and interact with the solar wind at its end. We conclude that the open model is preferable, which is more obvious for southward IMF. For northward IMF, the model calculations do not allow us to reach definite conclusions. However, analysis of the observations available in the literature provides evidence in favor of the open model in this case too. The difference in magnetospheric structure for these two IMF orientations is due to the fact that the reconnection topology and location depend on the relative orientation of the IMF vector and the planetary dipole magnetic moment. When these vectors are parallel, two-dimensional reconnection occurs at the low-latitude neutral line. When they are antiparallel, three-dimensional reconnection takes place in the cusp regions. Different magnetospheric topologies determine different mapping of the open-closed boundary in the ionosphere, which can be considered as a proxy for the poleward edge

  19. Modeling Magnetospheric Fields in the Jupiter System

    Saur, Joachim; Chané, Emmanuel; Hartkorn, Oliver

    2018-01-01

    The various processes which generate magnetic fields within the Jupiter system are exemplary for a large class of similar processes occurring at other planets in the solar system, but also around extrasolar planets. Jupiter’s large internal dynamo magnetic field generates a gigantic magnetosphere, which in contrast to Earth’s magnetosphere is strongly rotational driven and possesses large plasma sources located deeply within the magnetosphere. The combination of the latter two effects is the ...

  20. Aurora B kinase inhibition in mitosis: strategies for optimising the use of aurora kinase inhibitors such as AT9283.

    Curry, Jayne; Angove, Hayley; Fazal, Lynsey; Lyons, John; Reule, Matthias; Thompson, Neil; Wallis, Nicola

    2009-06-15

    Aurora kinases play a key role in regulating mitotic division and are attractive oncology targets. AT9283, a multi-targeted kinase inhibitor with potent activity against Aurora A and B kinases, inhibited growth and survival of multiple solid tumor cell lines and was efficacious in mouse xenograft models. AT9283-treatment resulted in endoreduplication and ablation of serine-10 histone H3 phosphorylation in both cells and tumor samples, confirming that in these models it acts as an Aurora B kinase inhibitor. In vitro studies demonstrated that exposure to AT9283 for one complete cell cycle committed an entire population of p53 checkpoint-compromised cells (HCT116) to multinucleation and death whereas treatment of p53 checkpoint-competent cells (HMEC, A549) for a similar length of time led to a reversible arrest of cells with 4N DNA. Further studies in synchronized cell populations suggested that exposure to AT9283 during mitosis was critical for optimal cytotoxicity. We therefore investigated ways in which these properties might be exploited to optimize the efficacy and therapeutic index of Aurora kinase inhibitors for p53 checkpoint compromised tumors in vivo. Combining Aurora B kinase inhibition with paclitaxel, which arrests cells in mitosis, in a xenograft model resulted in promising efficacy without additional toxicity. These findings have implications for optimizing the efficacy of Aurora kinase inhibitors in clinical practice.

  1. Dancing Lights: Creating the Aurora Story

    Wood, E. L.; Cobabe-Ammann, E. A.

    2009-12-01

    Science tells a story about our world, our existence, our history, and the larger environment our planet occupies. Bearing this in mind, we created a series of lessons for 3rd-5th grades using a cross-disciplinary approach to teaching about the aurora by incorporating stories, photos, movies, and geography into the science in order to paint a broad picture and answer the question, “why do we care?” The fundamental backbone of the program is literacy. Students write and illustrate fiction and non-fiction work, poetry, and brochures that solidify both language arts skills and science content. In a time when elementary teachers relegate science to less than one hour per week, we have developed a novel science program that can be easily integrated with other topics during the typical school day to increase the amount of science taught in a school year. We are inspiring students to take an interest in the natural world with this program, a stepping-stone for larger things.

  2. Electric discharge synthesis of HCN in simulated Jovian atmospheres

    Stribling, Roscoe; Miller, Stanley L.

    1987-01-01

    Corona discharge is presently considered as a possible source of the HCN detected in the Jovian atmosphere at 2.2 x 10 to the -7th moles/sq cm column density, for the cases of gas mixtures containing H2, CH4, and NH3, with H2/CH4 ratios from 4.4 to 1585. A 3:1 ratio of corona discharge to lightning energy similar to that of the earth is applied to Jupiter. Depending on the lightning energy available on Jupiter and the eddy diffusion coefficients in the synthesis region, HCN column densities generated by corona discharge could account for about 10 percent of the HCN observed.

  3. Ethane and acetylene abundances in the Jovian atmosphere

    Tokunaga, A.; Knacke, R. F.; Owen, T.

    1976-01-01

    The paper reports spectra of Jupiter in the spectral region from 755 to 850 kaysers, which covers the nu-9 fundamental of ethane and contains lines from the R branch of the nu-5 fundamental of acetylene. The monochromatic absorption coefficient of the central Q branch of the nu-9 fundamental of ethane, which was determined in the laboratory, is applied in a radiative-transfer calculation to evaluate the ethane mixing ratio in the Jovian atmosphere; the present data are also used to place an upper limit on the acetylene mixing ratio. For the radiative-transfer calculation, emission intensity is computed for the region above the 0.02-atm level assuming both an isothermal inversion layer and a previously reported temperature profile. The resulting maximum mixing ratios consistent with the observations are 0.00003 for ethane and 7.5 by 10 to the -8th power for acetylene.

  4. A New Standard Pulsar Magnetosphere

    Contopoulos, Ioannis; Kalapotharakos, Constantinos; Kazanas, Demosthenes

    2014-01-01

    In view of recent efforts to probe the physical conditions in the pulsar current sheet, we revisit the standard solution that describes the main elements of the ideal force-free pulsar magnetosphere. The simple physical requirement that the electric current contained in the current layer consists of the local electric charge moving outward at close to the speed of light yields a new solution for the pulsar magnetosphere everywhere that is ideal force-free except in the current layer. The main elements of the new solution are as follows: (1) the pulsar spindown rate of the aligned rotator is 23% larger than that of the orthogonal vacuum rotator; (2) only 60% of the magnetic flux that crosses the light cylinder opens up to infinity; (3) the electric current closes along the other 40%, which gradually converges to the equator; (4) this transfers 40% of the total pulsar spindown energy flux in the equatorial current sheet, which is then dissipated in the acceleration of particles and in high-energy electromagnetic radiation; and (5) there is no separatrix current layer. Our solution is a minimum free-parameter solution in that the equatorial current layer is electrostatically supported against collapse and thus does not require a thermal particle population. In this respect, it is one more step toward the development of a new standard solution. We discuss the implications for intermittent pulsars and long-duration gamma-ray bursts. We conclude that the physical conditions in the equatorial current layer determine the global structure of the pulsar magnetosphere.

  5. Pulsar magnetospheres in binary systems

    Ershkovich, A. I.; Dolan, J. F.

    1985-01-01

    The criterion for stability of a tangential discontinuity interface in a magnetized, perfectly conducting inviscid plasma is investigated by deriving the dispersion equation including the effects of both gravitational and centrifugal acceleration. The results are applied to neutron star magnetospheres in X-ray binaries. The Kelvin-Helmholtz instability appears to be important in determining whether MHD waves of large amplitude generated by instability may intermix the plasma effectively, resulting in accretion onto the whole star as suggested by Arons and Lea and leading to no X-ray pulsar behavior.

  6. Magnetohydrodynamic calculations on pulsar magnetospheres

    Brinkmann, W.

    1976-01-01

    In this paper, the relativistic magnetohydrodynamic is presented in covariant form and applied to some problems in the field of pulsar magnetospheres. In addition, numerical methods to solve the resulting equations of motion are investigated. The theory of relativistic magnetohydrodynamic presented here is valid in the framework of the theory of general relativity, describing the interaction of electromagnetic fields with an ideal fluid. In the two-dimensional case, a Lax-Wendroff method is studied which should be optimally stable with the operator splitting of Strang. In the framework of relativistic magnetohydrodynamic also the model of a stationary aequatorial stellar pulsar wind as well as the parallel rotator is investigated. (orig.) [de

  7. X-ray pulsar magnetosphere

    Lipunov, V.

    1981-01-01

    A pulsar consists of a close binary star system whose one component is a neutron star and the other a normal star. This supplies the neutron star with fuel in form of star wind or a gas stream. A hot plasma-like matter falls onto the neutron star, penetrates in its magnetic field and interacts with it. The matter coming from the normal star has a great rotational moment and forms a hot diamagnetic disk around the neutron star. The plasma penetrates in the internal parts of the magnetosphere where hard x radiation is formed as a result of the plasma impingement on the neutron star surface. (M.D.)

  8. The magnetosphere in relativistic physics

    Zapffe, C.A.

    1982-01-01

    The present paper takes off from the author's earlier epistemological analysis and criticism of the Special Theory of Relativity, identifies the problem as lying in Einstein's choice of the inertial frame of Newtonian mechanics rather than the electromagnetic frame of the locally embedding Maxwellian field when discussing electrodynamics, then proposes this Maxwellian field of the magnetosphere as the specific rest frame proper to all experimentation of optical or electromagnetic sort conducted within its bounds. The result is shown to remove all paradoxes from relativistic physics. (author)

  9. Energetic electron precipitation in the aurora as determined by x-ray imaging

    Werden, S.C.

    1988-01-01

    This work examines two aspects of energetic-particle dynamics in the Earth's magnetosphere through the use of an x-ray imager flown from a stratospheric balloon in the auroral zone. The design and theory of this instrument is completely described, including the technique of image formation using an on-board microprocessor and a statistical analysis of the imaging process. Day-side energetic-electron precipitation is examined in the context of global energy dissipation during the substorm process. It is found that the relationship between events on the night side and the day side are considerably more complex that can be modeled with just a simple picture of drifting particles that induced instabilities, wave growth, and pitch-angle diffusion into the loss cone. The driving force for precipitation is probably not the presence of the energetic electrons (>30 keV) alone, but is influenced either by local effects or the less energetic component. The presence of small-scale structure, including gradients and complex motions in the precipitation region in the morning sector, suggests a local process influencing the rate of electron precipitation. The spatial and temporal evolution of a classic 5-15 second pulsating aurora during the post-breakup phase is also examined with the x-ray imager

  10. Detectability of H2-Ar and H2-Ne Dimers in Jovian Atmospheres

    Young-Key Minn

    1997-12-01

    Full Text Available The detection of jovian hydrogen-hydrogen dimers through the clear telluric 2-micron window(Kim et al. 1995, Trafton et al. 1997 suggests possibility to detect noble gases in the form of dimer with hydrogen in jovian atmospheres. Since noble gases do not have spectral structures in the infrared, it has been difficult to derive their abundances in the atmospheres of jovian planets. If there is a significant component of noble gases other than helium in the jovian atmospheres. it might be detected through its dimer spectrum with hydrogen molecule. The relatively sharp spectral structures of hydrogen-argon and hydrogen-neon dimers compared with those of hydrogen-hydrogen dimers are useful for the detection, if an adequate signal-to-noise (S/N is obtained. If we use a large telescope, such as the Keck telescope, with a long exposure time (>24 hours, then H2-Ar spectral structure may be detected.

  11. Theories of magnetospheres around accreting compact objects

    Vasyliunas, V.M.

    1979-01-01

    A wide class of galactic X-ray sources are believed to be binary systems where mass is flowing from a normal star to a companion that is a compact object, such as a neutron star. The strong magnetic fields of the compact object create a magnetosphere around it. We review the theoretical models developed to describe the properties of magnetospheres in such accreting binary systems. The size of the magnetosphere can be estimated from pressure balance arguments and is found to be small compared to the over-all size of the accretion region but large compared object if the latter is a neutron star. In the early models the magnetosphere was assumed to have open funnels in the polar regions, through which accreting plasma could pour in. Later, magnetically closed models were developed, with plasma entry made possible by instabilities at the magnetosphere boundary. The theory of plasma flow inside the magnetosphere has been formulated in analogy to a stellar wind with reversed flow; a complicating factor is the instability of the Alfven critical point for inflow. In the case of accretion via a well-defined disk, new problems if magnetospheric structure appear, in particular the question to what extent and by what process the magnetic fields from the compact object can penetrate into the acretion disk. Since the X-ray emission is powered by the gravitational energy released in the accretion process, mass transfer into the magnetosphere is of fundamental importance; the various proposed mechanisms are critically examined. (orig.)

  12. Polar cap particle precipitation and aurora: Review and commentary

    Newell, Patrick T.; Liou, Kan; Wilson, Gordon R.

    2009-02-01

    Polar rain has a beautiful set of symmetry properties, individually established, but not previously discussed collectively, which can be organized by a single unifying principle. The key polar rain properties are favored hemisphere (controlled by the interplanetary magnetic field Bx), dawn/dusk gradient (IMF By), merging rate (IMF Bz or more generally d[Phi]MP/dt), nightside/dayside gradient, and seasonal effect. We argue that all five properties involve variants on a single theme: the further downstream a field line exits the magnetosphere (or less directly points toward the solar wind electron heat flux), the weaker the polar rain. This effect is the result of the requirements of charge quasi-neutrality, and because the ion thermal velocity declines and the tailward ion bulk flow velocity rises moving down tail from the frontside magnetopause. Polar cap arcs (or more properly, high-latitude sun-aligned arcs) are largely complementary to the polar rain, occurring most frequently when the dayside merging rate is low, and thus when polar rain is weak. Sun-aligned arcs are often considered as originating either in the polar rain or the expansion of the plasma sheet into the polar cap. In fact three quite distinct types of sun-aligned high-latitude arcs exist, two common, and one rare. One type of arc occurs as intensifications of the polar rain, and is common, but weak, typically 0.1 ergs/cm2 s usually occurs adjacent to the auroral oval, and includes ion precipitation. The plasma regime of these common, and at times intense, arcs is often distinct from the oval which they abut. Convection alone does not specify the open/closed nature of these arcs, because multiple narrow convection reversals are common around such arcs, and the arcs themselves can be embedded within flows that are either sunward or anti-sunward. These observational facts do not neatly fit into either a plasma sheet origin or a polar rain origin (e.g., the necessity to abut the auroral oval, and the

  13. Aurora Borealis, A Painting by Frederic Edwin Church

    Love, J. J.

    2015-12-01

    This year marks the sesquicentennial anniversary of the end of the American Civil War. In 1865, the same year as the War's end, the great American landscape artist, Frederic Edwin Church, unveiled Aurora Borealis, a painting that depicts a fantastic, far-northern place, an auroral arch stretched across a quiet night-time sky, above dark mountains and a frozen sea. Church was born in Connecticut, lived in New York, and traveled to Labrador; he would have often seen the northern lights. Church might have also been influenced by the spectacular displays of aurora that were caused by some unusually intense magnetic storms in 1859. Aurora Borealis can certainly be interpreted in terms of 19th-century romanticism, scientific philosophy, and Arctic missions of exploration, all subjects of interest to Church. As with so many of his paintings, Church's meticulous attention to detail in Aurora Borealis reveals his deep admiration of nature. But his depiction of auroral light is a curious and possibly intentional departure from natural verisimilitude. Some art historians have suggested that Church painted Aurora Borealis as a subdued tribute to the end of the Civil War, with the drapery of auroral light forming an abstract representation of the American flag. If so, then colors of the flag have been unfurled across a cold and barren landscape, not in extravagant celebration, but in somber recognition of the reality of post-war desolation and an uncertain future.

  14. Microbial mats in Antarctica as models for the search of life on the Jovian moon Europa

    Dudeja, S.; Bhattacherjee, A.B.; Chela-Flores, J.

    2008-06-01

    The possibility of sulfur patches on the Jovian satellite Europa being of biogenic origin is discussed. The presence of microbial mats and the accumulation of sulfur on the surface of some Antarctic subglacial lakes are correlated with the sulfur traces found on Europa by means of microbiological processes. Special attention has been paid to the influence of temperature and radiation on the icy surface of this Jovian satellite. An optimum penetration depth to look for biomarkers is proposed based on biogeochemical parameters. (author)

  15. Pulsar magnetosphere-wind or wave

    Kennel, C.F.

    1979-01-01

    The structure of both the interior and exterior pulsar magnetosphere depends upon the strength of its plasma source near the surface of the star. We review wave models of exterior pulsar magnetospheres in the light of a vacuum pair-production source model proposed by Sturrock, and Ruderman and Sutherland. This model predicts the existence of a cutoff, determined by the neutron star's spin rate and magnetic field strenght, beyond which coherent radio emission is no longer possible. Since the observed distribution of pulsar spin periods and period derivatives, and the distribution of pulsars with missing radio pulses, is consistent with the pair production threshold, those neutron stars observed as radio pulsars can have relativistic magnetohydrodynamic wind exterior magnetospheres, and cannot have relativistic plasma wave exterior magnetospheres. On the other hand, most erstwhile pulsars in the galaxy are probably halo objects that emit weak fluxes of energetic photons that can have relativistic wave exterior magnetospheres. Extinct pulsars have not been yet observed

  16. Ionospheric response to particle precipitation within aurora

    Wahlund, J.E.

    1992-03-01

    The aurora is just the visible signature of a large number of processes occurring in a planetary ionosphere as a response to energetic charged particles falling in from the near-empty space far above the planetary atmosphere. This thesis, based on measurements using the EISCAT incoherent scatter radar system in northern Scandinavia, discusses ionospheric response processes and especially a mechanism leading to atmospheric gas escape from a planet. One of the most spectacular events in the high latitude atmosphere on earth are the 'auroral arcs' - dynamic rayed sheets of light. An investigation of the conditions of the ionosphere surrounding auroral arcs shows that strong field-aligned bulk ion outflows appear in the topside ionosphere which account for a large fraction of the escape of atmospheric oxygen from earth. Four different additional ionospheric responses are closely related to this ion outflow; 1. enhanced electron temperatures of several thousand Kelvin above an altitude of about 250 km, 2. enhanced ionization around an altitude of 200 km corresponding to electron precipitation with energies of a few hundred eV, 3. the occurrence of naturally enhanced ion acoustic fluctuations seen in the radar spectrum, most likely produced by an ion-ion two-stream instability, and 4. upward directed field-aligned currents partly carried by the outflowing ions. From these observations, it is suggested that the energy dissipation into the background plasma through Joule heating, the production of a few hundred eV energetic run-away electrons, and strong ion outflows are partly produced by the simultaneous presence of ion acoustic turbulence and field-aligned currents above auroral arcs. (20 refs.) (au)

  17. Optical tomography of the aurora and EISCAT

    H. U. Frey

    1998-10-01

    Full Text Available Tomographic reconstruction of the three-dimensional auroral arc emission is used to obtain vertical and horizontal distributions of the optical auroral emission. Under the given experimental conditions with a very limited angular range and a small number of observers, algebraic reconstruction methods generally yield better results than transform techniques. Different algebraic reconstruction methods are tested with an auroral arc model and the best results are obtained with an iterative least-square method adapted from emission-computed tomography. The observation geometry used during a campaign in Norway in 1995 is tested with the arc model and root-mean-square errors, to be expected under the given geometrical conditions, are calculated. Although optimum geometry was not used, root-mean-square errors of less than 2% for the images and of the order of 30% for the distribution could be obtained. The method is applied to images from real observations. The correspondence of original pictures and projections of the reconstructed volume is discussed, and emission profiles along magnetic field lines through the three-dimensionally reconstructed arc are calibrated into electron density profiles with additional EISCAT measurements. Including a background profile and the temporal changes of the electron density due to recombination, good agreement can be obtained between measured profiles and the time-sequence of calculated profiles. These profiles are used to estimate the conductivity distribution in the vicinity of the EISCAT site. While the radar can only probe the ionosphere along the radar beam, the three-dimensional tomography enables conductivity estimates in a large area around the radar site.Key words. Tomography · Aurora · EISCAT · Ionosphere · Conductivity

  18. Optical tomography of the aurora and EISCAT

    H. U. Frey

    Full Text Available Tomographic reconstruction of the three-dimensional auroral arc emission is used to obtain vertical and horizontal distributions of the optical auroral emission. Under the given experimental conditions with a very limited angular range and a small number of observers, algebraic reconstruction methods generally yield better results than transform techniques. Different algebraic reconstruction methods are tested with an auroral arc model and the best results are obtained with an iterative least-square method adapted from emission-computed tomography. The observation geometry used during a campaign in Norway in 1995 is tested with the arc model and root-mean-square errors, to be expected under the given geometrical conditions, are calculated. Although optimum geometry was not used, root-mean-square errors of less than 2% for the images and of the order of 30% for the distribution could be obtained. The method is applied to images from real observations. The correspondence of original pictures and projections of the reconstructed volume is discussed, and emission profiles along magnetic field lines through the three-dimensionally reconstructed arc are calibrated into electron density profiles with additional EISCAT measurements. Including a background profile and the temporal changes of the electron density due to recombination, good agreement can be obtained between measured profiles and the time-sequence of calculated profiles. These profiles are used to estimate the conductivity distribution in the vicinity of the EISCAT site. While the radar can only probe the ionosphere along the radar beam, the three-dimensional tomography enables conductivity estimates in a large area around the radar site.

    Key words. Tomography · Aurora · EISCAT · Ionosphere · Conductivity

  19. TV morphology of some episodes of pulsating auroras

    Vallance Jones, A.; Gattinger, R.L.

    1981-01-01

    Sets of all-sky TV images of pulsating auroras obtained during the displays through which the sounding rockets of the Pulsating Aurora Campaign were fired are presented and discussed. It is emphasized that these displays are considerably more complex and variable than might seem to be the case on the basis of zenith photometer records. The pulsation modulation pattern was observed to be travelling westward during the first flight; later in the same display this apparent motion ceased. For the second flight the pulsation modulation pattern was almost stationary. (auth)

  20. Navigation GPS/GLONASS in the Arctic and aurora

    Chernouss S. A.

    2016-12-01

    Full Text Available The correspondence of the time-spatial distribution of the radiances of the aurora oval and time-spatial changes in the parameters of the navigation satellites' signal has been shown. For this aim the experimental data on the regional and local heterogeneities of the Total Electron Content (or TEC and the data on the signal delays in the polar ionosphere have been analyzed. Using the data concerning aurora as the indicator of disturbances in the work of the GPS/GLONASS systems can give the opportunity to increase considerably the accuracy of positioning in the Arctic with the help of satellite navigation systems (SNS.

  1. Ionospheric control of the magnetosphere: conductance

    A. J. Ridley

    2004-01-01

    Full Text Available It is well known that the ionosphere plays a role in determining the global state of the magnetosphere. The ionosphere allows magnetospheric currents to close, thereby allowing magnetospheric convection to occur. The amount of current which can be carried through the ionosphere is mainly determined by the ionospheric conductivity. This paper starts to quantify the nonlinear relationship between the ionospheric conductivity and the global state of the magnetosphere. It is found that the steady-state magnetosphere acts neither as a current nor as a voltage generator; a uniform Hall conductance can influence the potential pattern at low latitudes, but not at high latitude; the EUV generated conductance forces the currents to close in the sunlight, while the potential is large on the nightside; the solar generated Hall conductances cause a large asymmetry between the dawn and dusk potential, which effects the pressure distribution in the magnetosphere; a uniform polar cap potential removes some of this asymmetry; the potential difference between solar minimum and maximum is ∼11%; and the auroral precipitation can be related to the local field-aligned current through an exponential function. Key words. Ionosphere (ionosphere-magnetosphere interactions; modelling and forecasting; polar ionosphere

  2. Ionospheric control of the magnetosphere: conductance

    A. J. Ridley

    2004-01-01

    Full Text Available It is well known that the ionosphere plays a role in determining the global state of the magnetosphere. The ionosphere allows magnetospheric currents to close, thereby allowing magnetospheric convection to occur. The amount of current which can be carried through the ionosphere is mainly determined by the ionospheric conductivity. This paper starts to quantify the nonlinear relationship between the ionospheric conductivity and the global state of the magnetosphere. It is found that the steady-state magnetosphere acts neither as a current nor as a voltage generator; a uniform Hall conductance can influence the potential pattern at low latitudes, but not at high latitude; the EUV generated conductance forces the currents to close in the sunlight, while the potential is large on the nightside; the solar generated Hall conductances cause a large asymmetry between the dawn and dusk potential, which effects the pressure distribution in the magnetosphere; a uniform polar cap potential removes some of this asymmetry; the potential difference between solar minimum and maximum is ∼11%; and the auroral precipitation can be related to the local field-aligned current through an exponential function.

    Key words. Ionosphere (ionosphere-magnetosphere interactions; modelling and forecasting; polar ionosphere

  3. Theory of neutron star magnetospheres

    Curtis Michel, F

    1990-01-01

    An incomparable reference for astrophysicists studying pulsars and other kinds of neutron stars, "Theory of Neutron Star Magnetospheres" sums up two decades of astrophysical research. It provides in one volume the most important findings to date on this topic, essential to astrophysicists faced with a huge and widely scattered literature. F. Curtis Michel, who was among the first theorists to propose a neutron star model for radio pulsars, analyzes competing models of pulsars, radio emission models, winds and jets from pulsars, pulsating X-ray sources, gamma-ray burst sources, and other neutron-star driven phenomena. Although the book places primary emphasis on theoretical essentials, it also provides a considerable introduction to the observational data and its organization. Michel emphasizes the problems and uncertainties that have arisen in the research as well as the considerable progress that has been made to date.

  4. Electric current model of magnetosphere

    Alfen, H.

    1979-05-01

    A dualism between the field and the particle approach exists also in plasma physics. A number of phenomena, such as the formation of double layers and the energy transport form one region to another, can be understood only by the particle (electric current) description. Hence a translation of the traditional field description into a particle (electric current) description is essential. Such a translation has earlier been made for the heliosphere. The purpose of this paper is to outline a similar application to the magnetosphere, focussing on the energy transfer from the solar wind. As a first approximation a magnetic field consisting of a dipole field and homogeneous magnetic field is used whereas in a second approximation the configuration is more realistic. (author)

  5. Electron ECHO 6: a study by particle detectors of electrons artificially injected into the magnetosphere

    Malcolm, P.R.

    1986-01-01

    The ECHO-6 sounding rocket was launched from the Poke Flat Research Range, Alaska on 30 March 1983. A Terrier-Black Brant launch vehicle carried the payload on a northward trajectory over an auroral arc and to an apogee of 216 kilometers. The primary objective of the ECHO-6 experiment was to evaluate electric fields, magnetic fields, and plasma processes in the distant magnetosphere by injecting electron beams in the ionosphere and observing conjugate echoes. The experiment succeeded in injection 10-36 keV beams during the existence of a moderate growth-phase aurora, an easterly electrojet system, and a pre-midnight inflation condition of the magnetosphere. The ECHO-6 payload system consisted of an accelerator MAIN payload, a free-flying Plasma Diagnostics Package (PDP), and four rocket-propelled Throw Away Detectors (TADs). The PDP was ejected from the MAIN payload to analyze electric fields, plasma particles, energetic electrons, and photometric effects produced by beam injections. The TADs were ejected from the MAIN payload in a pattern to detect echoes in the conjugate echo region south of the beam-emitting MAIN payload. The TADs reached distances exceeding 3 kilometers from the MAIN payload and made measurements of the ambient electrons by means of solid-state detectors and electrostatic analyzers

  6. Simulation of the interchange instability in a magnetospheric substorm site

    O. V. Mingalev

    2006-07-01

    Full Text Available We perform modeling of the interchange instability driven by longitudinal pressure asymmetry in the region of the pressure buildup that forms in the inner magnetosphere at the substorm growth phase. The simulation refers to the dawnward side of the Harang discontinuity and times after Bz IMF turning northward. The solution for the equilibrium state indicates tailward flows associated with vortices, which is in agreement with a previous finding of Ashour-Abdalla et al. (1999, 2002. We show that in the regions of equilibrium field-aligned currents (FACs, small initial perturbations in pVγ (p is the isotropic plasma pressure, V is the unit magnetic flux tube volume, γ=5/3 the adiabatic exponent, set up as ripples inclined to azimuth, grow in time. For the background FAC of ~10-6 A/m2, the linear growth rate of the instability is ~6 min. Starting from the 12th min of evolution, the perturbations exhibit nonlinear deformations, develop undulations and front steepening. An interesting peculiarity in the distribution of the associated small-scale FACs is that they become asymmetric with time. Specifically, the downward currents are more localised, reaching densities up to 15×10-6 A/m2 at the nonlinear stage. The upward FACs are more dispersed. When large enough, these currents are likely to produce the aurora. We also run our simulation for the initial perturbations of large transverse scales in order to demonstrate that the interchange instability can be responsible for pressure and cross-tail current spatial variations of great extent.

  7. Antitumor activity of TY-011 against gastric cancer by inhibiting Aurora A, Aurora B and VEGFR2 kinases

    Wang Liu

    2016-11-01

    Full Text Available Abstract Background Overexpression of Aurora A and B has been reported in a wide range of tumor types, including gastric cancer. Anti-angiogenesis has been considered as an important therapeutic modality in advanced gastric cancer. Here we identified a novel compound TY-011 with promising antitumor activity by targeting mitotic kinases (Aurora A and B and angiogenic receptor tyrosine kinase (VEGFR2. Methods HTRF® KinEASE™ assay was used to detect the effect of TY-011 against Aurora A, Aurora B and VEGFR2 activities. Docking simulation study was performed to predict the binding mode of TY-011 with Aurora A and B kinases. CCK-8 assay was used to test cell growth. Cell cycle and cell apoptosis was analyzed by flow cytometry. Gastric cancer cell xenograft mouse models were used for in vivo study. TUNEL kit was used to determine the apoptosis of tumor tissues. Immunohistochemistry analysis and HUVEC tube formation assay were performed to determine the anti-angiogenesis ability. Immunofluorescence and western blot were used to test protein expression. Results TY-011 was identified as a potential Aurora A and B inhibitor by HTRF® KinEASE™ assay. It effectively inhibited cellular Aurora A and B activities in a concentration-dependent manner. TY-011 occupied the ATP-binding site of both Aurora A and B kinases. TY-011 demonstrated prominent inhibitory effects on proliferation of gastric cancer cells. TY-011 treatment induced an obvious accumulation of cells at G2/M phase and a modest increase of cells with >4 N DNA content, which then underwent apoptosis. Meaningfully, orally administration of TY-011 demonstrated superior efficacy against the tumor growth in gastric cancer cell xenograft, with ~90% inhibition rate and 100% tumor regression at 9 mg/kg dose, and TY-011 did not affect the body weight of mice. Interestingly, we observed that TY-011 also antagonized tumor angiogenesis by targeting VEGFR2 kinase. Conclusions These results indicate that

  8. Magnetopause reconnection rate estimates for Jupiter's magnetosphere based on interplanetary measurements at ~5AU

    J. D. Nichols

    2006-03-01

    Full Text Available We make the first quantitative estimates of the magnetopause reconnection rate at Jupiter using extended in situ data sets, building on simple order of magnitude estimates made some thirty years ago by Brice and Ionannidis (1970 and Kennel and Coroniti (1975, 1977. The jovian low-latitude magnetopause (open flux production reconnection voltage is estimated using the Jackman et al. (2004 algorithm, validated at Earth, previously applied to Saturn, and here adapted to Jupiter. The high-latitude (lobe magnetopause reconnection voltage is similarly calculated using the related Gérard et al. (2005 algorithm, also previously used for Saturn. We employ data from the Ulysses spacecraft obtained during periods when it was located near 5AU and within 5° of the ecliptic plane (January to June 1992, January to August 1998, and April to October 2004, along with data from the Cassini spacecraft obtained during the Jupiter flyby in 2000/2001. We include the effect of magnetospheric compression through dynamic pressure modulation, and also examine the effect of variations in the direction of Jupiter's magnetic axis throughout the jovian day and year. The intervals of data considered represent different phases in the solar cycle, such that we are also able to examine solar cycle dependency. The overall average low-latitude reconnection voltage is estimated to be ~230 kV, such that the average amount of open flux created over one solar rotation is ~500 GWb. We thus estimate the average time to replenish Jupiter's magnetotail, which contains ~300-500 GWb of open flux, to be ~15-25 days, corresponding to a tail length of ~3.8-6.5 AU. The average high-latitude reconnection voltage is estimated to be ~130 kV, associated with lobe "stirring". Within these averages, however, the estimated voltages undergo considerable variation. Generally, the low-latitude reconnection voltage exhibits a "background" of ~100 kV that is punctuated by one or two significant

  9. Jovian Vortices and Barges: HST observations 1994-1998

    Morales, R.; Sanchez-Lavega, A.; Lecacheux, J.; Colas, F.; Miyazaki, I.

    2000-10-01

    We have used the HST-WFPC2 archived images of Jupiter in the period 1994-1998 to study the zonal and meridional distributions, long-term motions, lifetimes, interactions and other properties of the vortices larger than 2 degrees. The latitude range covered spans from +75 to -75 degrees. High-resolution images obtained with the 890nm, 410nm and 953nm wavelength filters allowed us to make a morphological classification based on their appearance in each filter. The vortices are anticyclones, and their long-term motions have been completed with ground-based images and are compared to the mean Jovian zonal wind profile. Significant differences are found between the vortex velocities and the mean zonal winds. Some vortices exhibited important drift changes in short period times. We analyze a possible correlation between their size and zonal wind velocity. On the other hand, the "barges" lie in the cyclone domains of the wind-profile and have been identified in several latitudes. Their latitudinal size is similar in all of them (typically 1.6 degrees) but their longitudinal size ranges from 1 to 32 degrees. We discuss the temporal evolution of some of these cyclonic regions. The Spanish team was supported by Gobierno Vasco PI 034/97. The French team was supported by the "Programme National de Planetologie." RM acknowledges a fellowship from Universidad Pais Vasco.

  10. Dynamics and Chemistry in Jovian Atmospheres: 2D Hydrodynamical Simulations

    Bordwell, B. R.; Brown, B. P.; Oishi, J.

    2016-12-01

    A key component of our understanding of the formation and evolution of planetary systems is chemical composition. Problematically, however, in the atmospheres of cooler gas giants, dynamics on the same timescale as chemical reactions pull molecular abundances out of thermochemical equilibrium. These disequilibrium abundances are treated using what is known as the "quench" approximation, based upon the mixing length theory of convection. The validity of this approximation is questionable, though, as the atmospheres of gas giants encompass two distinct dynamic regimes: convective and radiative. To resolve this issue, we conduct 2D hydrodynamical simulations using the state-of-the-art pseudospectral simulation framework Dedalus. In these simulations, we solve the fully compressible equations of fluid motion in a local slab geometry that mimics the structure of a planetary atmosphere (convective zone underlying a radiative zone). Through the inclusion of passive tracers, we explore the transport properties of both regimes, and assess the validity of the classical eddy diffusion parameterization. With the addition of active tracers, we examine the interactions between dynamical and chemical processes, and generate prescriptions for the observational community. By providing insight into mixing and feedback mechanisms in Jovian atmospheres, this research lays a solid foundation for future global simulations and the construction of physically-sound models for current and future observations.

  11. Hektor - an exceptional D-type family among Jovian Trojans

    Rozehnal, J.; Brož, M.; Nesvorný, D.; Durda, D. D.; Walsh, K.; Richardson, D. C.; Asphaug, E.

    2016-11-01

    In this work, we analyse Jovian Trojans in the space of suitable resonant elements and we identify clusters of possible collisional origin by two independent methods: the hierarchical clustering and a so-called randombox. Compared to our previous work, we study a twice larger sample. Apart from Eurybates, Ennomos and 1996 RJ families, we have found three more clusters - namely families around asteroids (20961) Arkesilaos, (624) Hektor in the L4 libration zone and (247341) 2001 UV209 in L5. The families fulfill our stringent criteria, I.e. a high statistical significance, an albedo homogeneity and a steeper size-frequency distribution than that of background. In order to understand their nature, we simulate their long term collisional evolution with the Boulder code and dynamical evolution using a modified SWIFT integrator. Within the framework of our evolutionary model, we were able to constrain the age of the Hektor family to be either 1-4 Gyr or, less likely, 0.1-2.5 Gyr, depending on initial impact geometry. Since (624) Hektor itself seems to be a bilobed-shape body with a satellite, I.e. an exceptional object, we address its association with the D-type family and we demonstrate that the moon and family could be created during a single impact event. We simulated the cratering event using a smoothed particle hydrodynamics. This is also the first case of a family associated with a D-type parent body.

  12. Jovian seismology: preliminary results of the SYMPA instrument

    Gaulme, P.; Schmider, F. X.; Gay, J.; Jacob, C.; Jeanneaux, F.; Alvarez, M.; Reyes, M.; Valtier, J. C.; Fossat, E.; Palle, P. L.; Belmonte, J. C.; Gelly, B.

    2006-06-01

    Jupiter's internal structure is poorly known (Guillot et al. 2004). Seismology is a powerful tool to investigate the internal structure of planets and stars, by analyzing how acoustic waves propagate. Mosser (1997) and Gudkova & Zarkhov (1999) showed that the detection and the identification of non-radial modes up to degree ℓ=25 can constrain strongly the internal structure. SYMPA is a ground-based network project dedicated to the Jovian oscillations (Schmider et al. 2002). The instrument is composed of a Mach-Zehnder interferometer producing four interferograms of the planetary spectrum. The combination of the four images in phase quadrature allows the reconstruction of the incident light phase, which is related to the Doppler shift generated by the oscillations. Two SYMPA instruments were built at the Nice university and were used simultaneously during two observation campaigns, in 2004 and 2005, at the San Pedro Martir observatory (Mexico) and the Teide observatory (Las Canarias). We will present for the first time the data processing and the preliminary results of the experiment.

  13. An evolutionary framework for the Jovian and Saturnian satellites

    Stevenson, R.J.

    1987-01-01

    The position of the satellite within the protonebula, the influence of the parent planet, particularly the relative effects of tidal (gravitational) as opposed to radiogenic (internal) heat generating processes, as well as the type of ice, exert a control on the evolutionary histories of the Jovian and Saturnian satellites. The landscapes of the moons are modified by surface deformational processes (tectonic activity derived from within the body) and externally derived cratering. The geological history of the Galilean satellites is deduced from surface stratigraphic successions of geological units. Io and Europa, with crater-free surfaces, are tectonically more advanced than crater-saturated Callisto. Two thermal-drive models are proposed based on: an expression for externally derived gravitational influences between two bodies; and internal heat generation via radiogenic decay (expressed by surface area/volume ratio). Both parameters, for the Galilean satellites, are plotted against an inferred product of tectonic processes - the age of the surface terrain. From these diagrams, the tectonic evolutionary state of the more distant Saturnian system are predicted. These moons are fitted into an evolutionary framework for the Solar System. 34 refs.; 4 figs.; 2 tabs

  14. Altered expression of Aurora kinases in Arabidopsis results in aneu- and polyploidization.

    Demidov, Dmitri; Lermontova, Inna; Weiss, Oda; Fuchs, Joerg; Rutten, Twan; Kumke, Katrin; Sharbel, Timothy F; Van Damme, Daniel; De Storme, Nico; Geelen, Danny; Houben, Andreas

    2014-11-01

    Aurora is an evolutionary conserved protein kinase family involved in monitoring of chromosome segregation via phosphorylation of different substrates. In plants, however, the involvement of Aurora proteins in meiosis and in sensing microtubule attachment remains to be proven, although the downstream components leading to the targeting of spindle assembly checkpoint signals to anaphase-promoting complex have been described. To analyze the three members of Aurora family (AtAurora1, -2, and -3) of Arabidopsis we employed different combinations of T-DNA insertion mutants and/or RNAi transformants. Meiotic defects and the formation of unreduced pollen were revealed including plants with an increased ploidy level. The effect of reduced expression of Aurora was mimicked by application of the ATP-competitive Aurora inhibitor II. In addition, strong overexpression of any member of the AtAurora family is not possible. Only tagged or truncated forms of Aurora kinases can be overexpressed. Expression of truncated AtAurora1 resulted in a high number of aneuploids in Arabidopsis, while expression of AtAurora1-TAPi construct in tobacco resulted in 4C (possible tetraploid) progeny. In conclusion, our data demonstrate an essential role of Aurora kinases in the monitoring of meiosis in plants. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  15. Nutritive potentials and utilization of garden snail (Limicolaria aurora ...

    AJB SERVER

    2006-10-16

    Oct 16, 2006 ... The possibility of using garden snail (Limicolaria aurora) meat meal as a protein source in fish feeds was tested in ... garden snail meat meal was used to replace fish meal at 0%, (control diet), 25, 50, 75 and 100% inclusion ..... Randall DJ, Brett JR (eds) Fish Physiology, Academic Press, NY 8: 279-352,.

  16. Nutritive potentials and utilization of garden snail (Limicolaria aurora ...

    The possibility of using garden snail (Limicolaria aurora) meat meal as a protein source in fish feeds was tested in Clarias gariepinus fingerlings. Five isonitrogenous (43% crude protein) diets in which garden snail meat meal was used to replace fish meal at 0%, (control diet), 25, 50, 75 and 100% inclusion levels were used ...

  17. Canine osteosarcoma cells exhibit resistance to aurora kinase inhibitors.

    Cannon, C M; Pozniak, J; Scott, M C; Ito, D; Gorden, B H; Graef, A J; Modiano, J F

    2015-03-01

    We evaluated the effect of Aurora kinase inhibitors AZD1152 and VX680 on canine osteosarcoma cells. Cytotoxicity was seen in all four cell lines; however, half-maximal inhibitory concentrations were significantly higher than in human leukaemia and canine lymphoma cells. AZD1152 reduced Aurora kinase B phosphorylation, indicating resistance was not because of failure of target recognition. Efflux mediated by ABCB1 and ABCG2 transporters is one known mechanism of resistance against these drugs and verapamil enhanced AZD1152-induced apoptosis; however, these transporters were only expressed by a small percentage of cells in each line and the effects of verapamil were modest, suggesting other mechanisms contribute to resistance. Our results indicate that canine osteosarcoma cells are resistant to Aurora kinase inhibitors and suggest that these compounds are unlikely to be useful as single agents for this disease. Further investigation of these resistance mechanisms and the potential utility of Aurora kinase inhibitors in multi-agent protocols is warranted. © 2013 Blackwell Publishing Ltd.

  18. Functions of Aurora kinase C in meiosis and cancer

    Suzanne M. Quartuccio

    2015-08-01

    Full Text Available The mammalian genome encodes three Aurora kinase protein family members: A, B, and C. While Aurora kinase A (AURKA and B (AURKB are found in cells throughout the body, significant protein levels of Aurora kinase C (AURKC are limited to cells that undergo meiosis (sperm and oocyte. Despite its discovery nearly 15 years ago, we know little about the function of AURKC compared to that of the other 2 Aurora kinases. This lack of understanding can be attributed to the high sequence homology between AURKB and AURKC preventing the use of standard approaches to understand non-overlapping and meiosis I (MI-specific functions of the two kinases. Recent evidence has revealed distinct functions of AURKC in meiosis and may aid in our understanding of why chromosome segregation during MI often goes awry in oocytes. Many cancers aberrantly express AURKC, but because we do not fully understand AURKC function in its normal cellular context, it is difficult to predict the biological significance of this expression on the disease. Here, we consolidate and update what is known about AURKC signaling in meiotic cells to better understand why it has oncogenic potential.

  19. Interaction of Titan's atmosphere with Saturn's magnetosphere

    Hartle, R.E.

    1985-01-01

    The Voyager 1 measurements made during the Titan flyby reveal that Saturn's rotating magnetospheric plasma interacts directly with Titan's neutral atmosphere and ionosphere. This results from the lack of an intrinsic magnetic field at Titan. The interaction induces a magnetosphere which deflects the flowing plasma around Titan and forms a plasma wake downstream. Within the tail of the induced magnetosphere, ions of ionospheric origin flow away from Titan. Just outside Titan's magnetosphere, a substantial ion-exosphere forms from an extensive hydrogen-nitrogen exosphere. The exospheric ions are picked up and carried downstream into the wake by the plasma flowing around Titan. Mass loading produced by the addition of exospheric ions slows the wake plasma down considerably in the vicinity of the magnetopause. 36 references

  20. A very bright SAR arc: implications for extreme magnetosphere-ionosphere coupling

    J. Baumgardner

    2007-01-01

    Full Text Available In contrast to the polar aurora visible during geomagnetic storms, stable auroral red (SAR arcs offer a sub-visual manifestation of direct magnetosphere-ionosphere (M-I coupling at midlatitudes. The SAR arc emission at 6300 Å is driven by field-aligned magnetospheric energy transport from ring current/plasmapause locations into the ionosphere-thermosphere system. The first SAR arc was observed at the dawn of the space age (1956, and the typical brightness levels and occurrence patterns obtained from subsequent decades of observations appear to be consistent with the downward heat conduction theory, i.e., heated ambient F-layer electrons excite oxygen atoms to produce a spectrally pure emission. On very rare occasions, a SAR arc has been reported to be at brightness levels visible to the naked eye. Here we report on the first case of a very bright SAR arc (~13 kilo-Rayleighs observed by four diagnostic systems that sampled various aspects of the sub-auroral domain near Millstone Hill, MA, on the night of 29 October 1991: an imaging spectrograph, an all-sky camera, an incoherent scatter radar (ISR, and a DMSP satellite. Simulations of emission using the ISR and DMSP data with the MSIS neutral atmosphere succeed in reproducing the brightness levels observed. This provides a robust confirmation of M-I coupling theory in its most extreme aeronomic form within the innermost magnetosphere (L~2 during a rare superstorm event. The unusually high brightness value appears to be due to the rare occurrence of the heating of dense ionospheric plasma just equatorward of the trough/plasmapause location, in contrast to the more typical heating of the less dense F-layer within the trough.

  1. A very bright SAR arc: implications for extreme magnetosphere-ionosphere coupling

    J. Baumgardner

    2008-01-01

    Full Text Available In contrast to the polar aurora visible during geomagnetic storms, stable auroral red (SAR arcs offer a sub-visual manifestation of direct magnetosphere-ionosphere (M-I coupling at midlatitudes. The SAR arc emission at 6300 Å is driven by field-aligned magnetospheric energy transport from ring current/plasmapause locations into the ionosphere-thermosphere system. The first SAR arc was observed at the dawn of the space age (1956, and the typical brightness levels and occurrence patterns obtained from subsequent decades of observations appear to be consistent with the downward heat conduction theory, i.e., heated ambient F-layer electrons excite oxygen atoms to produce a spectrally pure emission. On very rare occasions, a SAR arc has been reported to be at brightness levels visible to the naked eye. Here we report on the first case of a very bright SAR arc (~13 kilo-Rayleighs observed by four diagnostic systems that sampled various aspects of the sub-auroral domain near Millstone Hill, MA, on the night of 29 October 1991: an imaging spectrograph, an all-sky camera, an incoherent scatter radar (ISR, and a DMSP satellite. Simulations of emission using the ISR and DMSP data with the MSIS neutral atmosphere succeed in reproducing the brightness levels observed. This provides a robust confirmation of M-I coupling theory in its most extreme aeronomic form within the innermost magnetosphere (L~2 during a rare superstorm event. The unusually high brightness value appears to be due to the rare occurrence of the heating of dense ionospheric plasma just equatorward of the trough/plasmapause location, in contrast to the more typical heating of the less dense F-layer within the trough.

  2. Structural Biology Insight for the Design of Sub-type Selective Aurora Kinase Inhibitors.

    Sarvagalla, Sailu; Coumar, Mohane Selvaraj

    2015-01-01

    Aurora kinase A, B and C, are key regulators of mitosis and are over expressed in many of the human cancers, making them an ideal drug target for cancer chemotherapy. Currently, over a dozen of Aurora kinase inhibitors are in various phases of clinical development. The majority of the inhibitors (VX-680/MK-0457, PHA-739358, CYC116, SNS-314, AMG 900, AT-9283, SCH- 1473759, ABT-348, PF-03814735, R-763/AS-703569, KW-2449 and TAK-901) are pan-selective (isoform non-selective) and few are Aurora A (MLN8054, MLN8237, VX-689/MK5108 and ENMD 2076) and Aurora B (AZD1152 and GSK1070916) sub-type selective. Despite the intensive research efforts in the past decade, no Aurora kinase inhibitor has reached the market. Recent evidence suggests that the sub-type selective Aurora kinase A inhibitor could possess advantages over pan-selective Aurora inhibitors, by avoiding Aurora B mediated neutropenia. However, sub-type selective Aurora kinase A inhibitor design is very challenging due to the similarity in the active site among the isoforms. Structural biology and computational aspects pertaining to the design of Aurora kinase inhibitors were analyzed and found that a possible means to develop sub-type selective inhibitor is by targeting Aurora A specific residues (Leu215, Thr217 and Arg220) or Aurora B specific residues (Arg159, Glu161 and Lys164), near the solvent exposed region of the protein. Particularly, a useful strategy for the design of sub-type selective Aurora A inhibitor could be by targeting Thr217 residue as in the case of MLN8054. Further preclinical and clinical studies with the sub-type selective Aurora inhibitors could help bring them to the market for the treatment of cancer.

  3. The Magnetospheric Cusps Structure and Dynamics

    Fritz, Theodore A

    2005-01-01

    This collection of papers will address the question "What is the Magnetospheric Cusp?" and what is its role in the coupling of the solar wind to the magnetosphere as well as its role in the processes of particle transport and energization within the magnetosphere. The cusps have traditionally been described as narrow funnel-shaped regions that provide a focus of the Chapman-Ferraro currents that flow on the magnetopause, a boundary between the cavity dominated by the geomagnetic field (i.e., the magnetosphere) and the external region of the interplanetary medium. Measurements from a number of recent satellite programs have shown that the cusp is not confined to a narrow region near local noon but appears to encompass a large portion of the dayside high-latitude magnetosphere and it appears that the cusp is a major source region for the production of energetic charged particles for the magnetosphere. Audience: This book will be of interest to space science research organizations in governments and industries, ...

  4. Pair plasma in pulsar magnetospheres

    Asseo, Estelle

    2003-01-01

    The main features of radiation received from pulsars imply that they are neutron stars which contain an extremely intense magnetic field and emit coherently in the radio domain. Most recent studies attribute the origin of the coherence to plasma instabilities arising in pulsar magnetospheres; they mainly concern the linear, or the nonlinear, character of the involved unstable waves. We briefly introduce radio pulsars and specify physical conditions in pulsar emission regions: geometrical properties, magnetic field, pair creation processes and repartition of relativistic charged particles. We point to the main ingredients of the linear theory, extensively explored since the 1970s: (i) a dispersion relation specific to the pulsar case; (ii) the characteristics of the waves able to propagate in relativistic pulsar plasmas; (iii) the different ways in which a two-humped distribution of particles may arise in a pulsar magnetosphere and favour the development of a two-stream instability. We sum up recent improvements of the linear theory: (i) the determination of a 'coupling function' responsible for high values of the wave field components and electromagnetic energy available; (ii) the obtention of new dispersion relations for actually anisotropic pulsar plasmas with relativistic motions and temperatures; (iii) the interaction between a plasma and a beam, both with relativistic motions and temperatures; (iv) the interpretation of observed 'coral' and 'conal' features, associated with the presence of boundaries and curved magnetic field lines in the emission region; (v) the detailed topology of the magnetic field in the different parts of the emission region and its relation to models recently proposed to interpret drifting subpulses observed from PSR 0943+10, showing 20 sub-beams of emission. We relate the nonlinear evolution of the two-stream instability and development of strong turbulence in relativistic pulsar plasmas to the emergence of relativistic solitons, able

  5. Charged dust in saturn's magnetosphere

    Mendis, D.A.; Hill, J.R.; Houpis, H.L.F.

    1983-01-01

    Gravito-electrodynamic theory of charged dust grains is used to explain a variety of phenomena in those portions of the Saturnian ring system that are known to be dominated by fine (micron- and submicron-sized) dust, and in which collisional forces and Coulomb drag can be neglected. Among the phenomena discussed are the formation and evolution of the rotating near-radial spokes in the B-ring, the formation of waves in the F-ring, the cause of eccentricities of certain isolated ringlets, and the origin and morphology of the broad diffuse E-ring. Several novel processes predicted by the gravitoelectrodynamic theory, including 'magneto-gravitational capture' of exogenic dust by the magnetosphere, '1:1 magneto-gravitational orbital resonances' of charged dust with nearby satellites, and 'gyro-orbital resonances,' are used to explain individual observations. The effect of a ring current associated with this charged dust is also evaluated. Finally, the cosmogonic implications of the magneto-gravitational theory are briefly discussed. While several (although not all) of these processes have been discussed by one or more of the present authors elsewhere, the purpose of this paper is to synthesize all these processes within the framework of gravito-electrodynamics, and also to show its range of applicability within Saturn's ring system

  6. Mercury's magnetosphere and magnetotial revisited

    Bergan, S.; Engle, I.M.

    1981-01-01

    Magnetic observations which are not complicated by currents of trapped plasma are a good test of geomagnetopause and geomagnetotail predictions. Recent attempts to model the Hermean magnetospheric field based on a planet-centered magnetic multipole field with a quadrupole moment in addition to the planetary dipole field or a dipole field linearly displaced from planet center and no quadrupole moment have produced reasonably good fits to the Mercury magnetic field measurements. In this work we find a better fit for a dipole displacement from the planet center by making use of an improved representation of the magnetic field in the magnetotail, where many of the Mercury measurements were made. The rms deviation of the data was reduced from 10. or 11. γ to 9.3 γ by employing this new tail field representation. Also, by making use of this new tail field representation, we find a best fit for a dipole displacement of -0.0285 R/sub M/ (earlier, 0.026 R/sub M/) toward the dawn in the magnetic equatorial plane and 0.17 R/sub M/ (earlier, 0.189 R/sub M/ (earlier 0.189 R/sub M/) northward along the magnetic dipole axis, where R/sub M/ is the planet radius. Thus with only minor adjustments in the displacement vector of the dipole from the planet center we achieve a measurable improvement in the fit of the data by using the improved magnetotail field representation

  7. Interplanetary magnetic field rotations followed from L1 to the ground: the response of the Earth's magnetosphere as seen by multi-spacecraft and ground-based observations

    M. Volwerk

    2011-09-01

    Full Text Available A study of the interaction of solar wind magnetic field rotations with the Earth's magnetosphere is performed. For this event there is, for the first time, a full coverage over the dayside magnetosphere with multiple (multispacecraft missions from dawn to dusk, combined with ground magnetometers, radar and an auroral camera, this gives a unique coverage of the response of the Earth's magnetosphere. After a long period of southward IMF Bz and high dynamic pressure of the solar wind, the Earth's magnetosphere is eroded and compressed and reacts quickly to the turning of the magnetic field. We use data from the solar wind monitors ACE and Wind and from magnetospheric missions Cluster, THEMIS, DoubleStar and Geotail to investigate the behaviour of the magnetic rotations as they move through the bow shock and magnetosheath. The response of the magnetosphere is investigated through ground magnetometers and auroral keograms. It is found that the solar wind magnetic field drapes over the magnetopause, while still co-moving with the plasma flow at the flanks. The magnetopause reacts quickly to IMF Bz changes, setting up field aligned currents, poleward moving aurorae and strong ionospheric convection. Timing of the structures between the solar wind, magnetosheath and the ground shows that the advection time of the structures, using the solar wind velocity, correlates well with the timing differences between the spacecraft. The reaction time of the magnetopause and the ionospheric current systems to changes in the magnetosheath Bz seem to be almost immediate, allowing for the advection of the structure measured by the spacecraft closest to the magnetopause.

  8. Jovian cloud structure from 5-mu M images

    Ortiz, J. L.; Moreno, F.; Molina, A.; Roos-Serote, M.; Orton, G. S.

    1999-09-01

    Most radiative transfer studies place the cloud clearings responsible for the 5-mu m bright areas at pressure levels greater than 1.5 bar whereas the low-albedo clouds are placed at lower pressure levels, in the so-called ammonia cloud. If this picture is correct, and assuming that the strong vertical shear of the zonal wind detected by the Galileo Entry Probe exists at all latitudes in Jupiter, the bright areas at 5 mu m should drift faster than the dark clouds, which is not observed. At the Galileo Probe Entry latitude this can be explained by a wave, but this is not a likely explanation for all regions where the anticorrelation between 5-mu m brightness and red-nIR reflectivity is observed. Therefore, either the vertical zonal wind shears are not global or cloud clearings and dark clouds are located at the same pressure level. We have developed a multiple scattering radiative transfer code to model the limb-darkening at several jovian features derived from IRTF 4.8-mu m images, in order to retrieve information on the cloud levels. The limb darkening coefficients range from 1.4 at hot spots to 0.58 at the Equatorial Region. We also find that reflected light is dominant over thermal emission in the Equatorial Region, as already pointed out by other investigators. Preliminary results from our code tend to favor the idea that the ammonia cloud is a very high-albedo cloud with little influence on the contrast seen in the red and nIR and that a deeper cloud at P >1.5 bar can be responsible for the cloud clearings and for the low-albedo features simultaneously. This research was supported by the Comision Interministerial de Ciencia y Tecnologia under contract ESP96-0623.

  9. Growth and evolution of satellites in a Jovian massive disc

    Moraes, R. A.; Kley, W.; Vieira Neto, E.

    2018-03-01

    The formation of satellite systems in circum-planetary discs is considered to be similar to the formation of rocky planets in a proto-planetary disc, especially super-Earths. Thus, it is possible to use systems with large satellites to test formation theories that are also applicable to extrasolar planets. Furthermore, a better understanding of the origin of satellites might yield important information about the environment near the growing planet during the last stages of planet formation. In this work, we investigate the formation and migration of the Jovian satellites through N-body simulations. We simulated a massive, static, low-viscosity, circum-planetary disc in agreement with the minimum mass sub-nebula model prescriptions for its total mass. In hydrodynamic simulations, we found no signs of gaps, therefore type II migration is not expected. Hence, we used analytic prescriptions for type I migration, eccentricity and inclination damping, and performed N-body simulations with damping forces added. Detailed parameter studies showed that the number of final satellites is strong influenced by the initial distribution of embryos, the disc temperature, and the initial gas density profile. For steeper initial density profiles, it is possible to form systems with multiple satellites in resonance while a flatter profile favours the formation of satellites close to the region of the Galilean satellites. We show that the formation of massive satellites such as Ganymede and Callisto can be achieved for hotter discs with an aspect ratio of H/r ˜ 0.15 for which the ice line was located around 30RJ.

  10. On the motion of dayside auroras caused by a solar wind pressure pulse

    A. Kozlovsky

    2005-02-01

    Full Text Available Global ultraviolet auroral images from the IMAGE satellite were used to investigate the dynamics of the dayside auroral oval responding to a sudden impulse (SI in the solar wind pressure. At the same time, the TV all-sky camera and the EISCAT radar on Svalbard (in the pre-noon sector allowed for detailed investigation of the auroral forms and the ionospheric plasma flow. After the SI, new discrete auroral forms appeared in the poleward part of the auroral oval so that the middle of the dayside oval moved poleward from about 70° to about 73° of the AACGM latitude. This poleward shift first occurred in the 15 MLT sector, then similar shifts were observed in the MLT sectors located more westerly, and eventually the shift was seen in the 6 MLT sector. Thus, the auroral disturbance "propagated" westward (from 15 MLT to 6 MLT at an apparent speed of the order of 7km/s. This motion of the middle of the auroral oval was caused by the redistribution of the luminosity within the oval and was not associated with the corresponding motion of the poleward boundary of the oval. The SI was followed by an increase in the northward plasma convection velocity. Individual auroral forms showed poleward progressions with velocities close to the velocity of the northward plasma convection. The observations indicate firstly a pressure disturbance propagation through the magnetosphere at a velocity of the order of 200km/s which is essentially slower than the velocity of the fast Alfvén (magnetosonic wave, and secondly a potential (curl-free electric field generation behind the front of the propagating disturbance, causing the motion of the auroras. We suggest a physical explanation for the slow propagation of the disturbance through the magnetosphere and a model for the electric field generation. Predictions of the model are supported by the global convection maps produced by the SuperDARN HF radars. Finally, the interchange instability and the eigenmode toroidal

  11. IQGAP1 interacts with Aurora-A and enhances its stability and its role in cancer

    Yin, Ning; Shi, Ji; Wang, Dapeng; Tong, Tong; Wang, Mingrong; Fan, Feiyue; Zhan, Qimin

    2012-01-01

    Highlights: ► IQGAP1 interacts with Aurora-A through its RGCt domain. ► Overexpression of IQGAP1 prevents ubiquitination of Aurora-A. ► Overexpression of IQGAP1 enhances the protein stability of Aurora-A. ► Overexpression of IQGAP1 promotes the kinase activity of Aurora-A. -- Abstract: IQGAP1, a ubiquitously expressed scaffold protein, has been identified in a wide range of organisms. It participates in multiple aspects of cellular events by binding to and regulating numerous interacting proteins. In our present study, we identified a new IQGAP1 binding protein named Aurora-A which is an oncogenic protein and overexpressed in various types of human tumors. In vitro analysis with GST-Aurora-A fusion proteins showed a physical interaction between Aurora-A and IQGAP1. Moreover, the binding also occurred in HeLa cells as endogenous Aurora-A co-immunoprecipitated with IQGAP1 from the cell lysates. Overexpression of IQGAP1 resulted in an elevation of both expression and activity of Aurora-A kinase. Endogenous IQGAP1 knockdown by siRNA promoted Aurora-A degradation whereas IQGAP1 overexpression enhanced the stability of Aurora-A. Additionally, we documented that the IQGAP1-induced cell proliferation was suppressed by knocking down Aurora-A expression. Taken together, our results showed an unidentified relationship between Aurora-A and IQGAP1, and provided a new insight into the molecular mechanism by which IQGAP1 played a regulatory role in cancer.

  12. ORIGIN OF THE DIFFERENT ARCHITECTURES OF THE JOVIAN AND SATURNIAN SATELLITE SYSTEMS

    Sasaki, T.; Ida, S.; Stewart, G. R.

    2010-01-01

    The Jovian regular satellite system mainly consists of four Galilean satellites that have similar masses and are trapped in mutual mean-motion resonances except for the outer satellite, Callisto. On the other hand, the Saturnian regular satellite system has only one big icy body, Titan, and a population of much smaller icy moons. We have investigated the origin of these major differences between the Jovian and Saturnian satellite systems by semi-analytically simulating the growth and orbital migration of proto-satellites in an accreting proto-satellite disk. We set up two different disk evolution/structure models that correspond to Jovian and Saturnian systems, by building upon previously developed models of an actively supplied proto-satellite disk, the formation of gas giants, and observations of young stars. Our simulations extend previous models by including the (1) different termination timescales of gas infall onto the proto-satellite disk and (2) different evolution of a cavity in the disk, between the Jovian and Saturnian systems. We have performed Monte Carlo simulations and have shown that in the case of the Jovian systems, four to five similar-mass satellites are likely to remain trapped in mean-motion resonances. This orbital configuration is formed by type I migration, temporal stopping of the migration near the disk inner edge, and quick truncation of gas infall caused by Jupiter opening a gap in the solar nebula. The Saturnian systems tend to end up with one dominant body in the outer regions caused by the slower decay of gas infall associated with global depletion of the solar nebula. The total mass and compositional zoning of the predicted Jovian and Saturnian satellite systems are consistent with the observed satellite systems.

  13. 3-D Force-balanced Magnetospheric Configurations

    Sorin Zaharia; Cheng, C.Z.; Maezawa, K.

    2003-01-01

    The knowledge of plasma pressure is essential for many physics applications in the magnetosphere, such as computing magnetospheric currents and deriving magnetosphere-ionosphere coupling. A thorough knowledge of the 3-D pressure distribution has however eluded the community, as most in-situ pressure observations are either in the ionosphere or the equatorial region of the magnetosphere. With the assumption of pressure isotropy there have been attempts to obtain the pressure at different locations by either (a) mapping observed data (e.g., in the ionosphere) along the field lines of an empirical magnetospheric field model or (b) computing a pressure profile in the equatorial plane (in 2-D) or along the Sun-Earth axis (in 1-D) that is in force balance with the magnetic stresses of an empirical model. However, the pressure distributions obtained through these methods are not in force balance with the empirical magnetic field at all locations. In order to find a global 3-D plasma pressure distribution in force balance with the magnetospheric magnetic field, we have developed the MAG-3D code, that solves the 3-D force balance equation J x B = (upside-down delta) P computationally. Our calculation is performed in a flux coordinate system in which the magnetic field is expressed in terms of Euler potentials as B = (upside-down delta) psi x (upside-down delta) alpha. The pressure distribution, P = P(psi,alpha), is prescribed in the equatorial plane and is based on satellite measurements. In addition, computational boundary conditions for y surfaces are imposed using empirical field models. Our results provide 3-D distributions of magnetic field and plasma pressure as well as parallel and transverse currents for both quiet-time and disturbed magnetospheric conditions

  14. Magnetosphere Modeling: From Cartoons to Simulations

    Gombosi, T. I.

    2017-12-01

    Over the last half a century physics-based global computer simulations became a bridge between experiment and basic theory and now it represents the "third pillar" of geospace research. Today, many of our scientific publications utilize large-scale simulations to interpret observations, test new ideas, plan campaigns, or design new instruments. Realistic simulations of the complex Sun-Earth system have been made possible by the dramatically increased power of both computing hardware and numerical algorithms. Early magnetosphere models were based on simple E&M concepts (like the Chapman-Ferraro cavity) and hydrodynamic analogies (bow shock). At the beginning of the space age current system models were developed culminating in the sophisticated Tsyganenko-type description of the magnetic configuration. The first 3D MHD simulations of the magnetosphere were published in the early 1980s. A decade later there were several competing global models that were able to reproduce many fundamental properties of the magnetosphere. The leading models included the impact of the ionosphere by using a height-integrated electric potential description. Dynamic coupling of global and regional models started in the early 2000s by integrating a ring current and a global magnetosphere model. It has been recognized for quite some time that plasma kinetic effects play an important role. Presently, global hybrid simulations of the dynamic magnetosphere are expected to be possible on exascale supercomputers, while fully kinetic simulations with realistic mass ratios are still decades away. In the 2010s several groups started to experiment with PIC simulations embedded in large-scale 3D MHD models. Presently this integrated MHD-PIC approach is at the forefront of magnetosphere simulations and this technique is expected to lead to some important advances in our understanding of magnetosheric physics. This talk will review the evolution of magnetosphere modeling from cartoons to current systems

  15. Closed model of the earth's magnetosphere

    Piddington, J.H.

    1979-01-01

    The existence of large-scale motions within the earth's magnetosphere and that of a long magnetotail were predicted in 1960 as results of a hypothetical frictional interaction between the solar wind and the geomagnetic field. The boundary layer model of this interaction involves the flow of magnetosheath plasma in a magnetospheric boundary layer. The flow is across magnetic field lines, and so the layer must be polarized, with a space charge field nearly balancing the induction field V x B. The space charge tends to discharge through the ionosphere, thus providing some magnetic and related activity as well as the Lorentz frictional force. This closed magnetosphere model has been largely neglected in favor of the reconnection model but is now strongly supported by observational results and their interpretation as follows. (1) The evidence for the reconnection model, increasing activity with a southward interplanetary field and invasion of the polar caps by flare particles, is shown to be equally compatible with the closed field model. (2) The magnetotail grows by the motions of closed flux tubes through the dawn and dusk meridians, a process which depends on the nature of the boundary between magnetosphere and magnetosheath plasmas and perhaps also on the solar wind dynamo. Both of these features depend, in turn, on the direction of the interplanetary magnetic field. (3) Closed field lines entering the tail may be stretched to a few tens of earth radii and then contract back to the corotating magnetosphere. Others enter the long tail and are stretched to hundreds of earth radii and so are pervious to fast solar particles. (4) A new model of the magnetospheric substorm involves the entry of closed field lines into the tail and their rapid return to the corotating magnetosphere. The return is due, first, to the release of their trapped plasma as it becomes electrically polarized and, second, to mounting magnetic and plasma stresses in the inflated magnetotail

  16. Jovian decametric radiation seen from Juno, Cassini, STEREO A, WIND, and Earth-based radio observatories

    Imai, M.; Kurth, W. S.; Hospodarsky, G. B.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.; Lecacheux, A.; Lamy, L.; Zarka, P.; Clarke, T. E.; Higgins, C. A.

    2017-09-01

    Jupiter's decametric (DAM) radiation is generated very close to the local gyrofrequency by the electron cyclotron maser instability (CMI). The first two-point common detections of Jovian DAM radiation were made using the Voyager spacecraft and ground-based radio observatories in early 1979, but, due to geometrical constraints and limited flyby duration, a full understanding of the latitudinal beaming of Jovian DAM radiation remains elusive. The stereoscopic DAM radiation viewed from Juno, Cassini, STEREO A, WIND, and Earth-based radio observatories provides a unique opportunity to analyze the CMI emission mechanism and beaming properties.

  17. Medium-energy electrons and heavy ions in Jupiter's magnetosphere - Effects of lower hybrid wave-particle interactions

    Barbosa, D. D.

    1986-01-01

    A theory of medium-energy (about keV) electrons and heavy ions in Jupiter's magnetosphere is presented. Lower hybrid waves are generated by the combined effects of a ring instability of neutral wind pickup ions and the modified two-stream instability associated with transport of cool Iogenic plasma. The quasi-linear energy diffusion coefficient for lower hybrid wave-particle interactions is evaluated, and several solutions to the diffusion equation are given. Calculations based on measured wave properties show that the noise substantially modifies the particle distribution functions. The effects are to accelerate superthermal ions and electrons to keV energies and to thermalize the pickup ions on time scales comparable to the particle residence time. The S(2+)/S(+) ratio at medium energies is a measure of the relative contribution from Iogenic thermal plasma and neutral wind ions, and this important quantity should be determined from future measurements. The theory also predicts a preferential acceleration of heavy ions with an accleration time that scales inversely with the root of the ion mass. Electrons accelerated by the process contribute to further reionization of the neutral wind by electron impact, thus providing a possible confirmation of Alfven's critical velocity effect in the Jovian magnetosphere.

  18. A combined multiwavelength VLA/ALMA/Chandra study unveils the complex magnetosphere of the B-type star HR5907

    Leto, P.; Trigilio, C.; Oskinova, L. M.; Ignace, R.; Buemi, C. S.; Umana, G.; Ingallinera, A.; Leone, F.; Phillips, N. M.; Agliozzo, C.; Todt, H.; Cerrigone, L.

    2018-05-01

    We present new radio/millimeter measurements of the hot magnetic star HR 5907 obtained with the VLA and ALMA interferometers. We find that HR 5907 is the most radio luminous early type star in the cm-mm band among those presently known. Its multi-wavelength radio light curves are strongly variable with an amplitude that increases with radio frequency. The radio emission can be explained by the populations of the non-thermal electrons accelerated in the current sheets on the outer border of the magnetosphere of this fast-rotating magnetic star. We classify HR 5907 as another member of the growing class of strongly magnetic fast-rotating hot stars where the gyro-synchrotron emission mechanism efficiently operates in their magnetospheres. The new radio observations of HR 5907 are combined with archival X-ray data to study the physical condition of its magnetosphere. The X-ray spectra of HR 5907 show tentative evidence for the presence of non-thermal spectral component. We suggest that non-thermal X-rays originate a stellar X-ray aurora due to streams of non-thermal electrons impacting on the stellar surface. Taking advantage of the relation between the spectral indices of the X-ray power-law spectrum and the non-thermal electron energy distributions, we perform 3-D modelling of the radio emission for HR 5907. The wavelength-dependent radio light curves probe magnetospheric layers at different heights above the stellar surface. A detailed comparison between simulated and observed radio light curves leads us to conclude that the stellar magnetic field of HR 5907 is likely non-dipolar, providing further indirect evidence of the complex magnetic field topology of HR 5907.

  19. Observations of Heavy Ions in the Magnetosphere

    Kistler, L. M.

    2017-12-01

    There are two sources for the hot ions in the magnetosphere: the solar wind and the ionosphere. The solar wind is predominantly protons, with about 4% He++ and less than 1% other high charge state heavy ions. The ionospheric outflow is also predominantly H+, but can contain a significant fraction of heavy ions including O+, N+, He+, O++, and molecular ions (NO+, N2+, O2+). The ionospheric outflow composition varies significantly both with geomagnetic activity and with solar EUV. The variability in the contribution of the two sources, the variability in the ionospheric source itself, and the transport paths of the different species are all important in determining the ion composition at a given location in the magnetosphere. In addition to the source variations, loss processes within the magnetosphere can be mass dependent, changing the composition. In particular, charge exchange is strongly species dependent, and can lead to heavy ion dominance at some energies in the inner magnetosphere. In this talk we will review the current state of our understanding of the composition of the magnetosphere and the processes that determine it.

  20. Auroral kilometric radiation and magnetospheric substorm

    Morioka, Akira; Oya, Hiroshi

    1980-01-01

    The auroral kilometric radiation (AKR) and its relation to the development of the magnetospheric substorm have been studied based on the data obtained by JIKIKEN (EXOS-B) satellite. The occurrence of AKR is closely correlated to the intense UHR emission outside the plasmapause at the satellite position; the evidence clearly suggests that the development of the field aligned current system is associated with AKR generated at the upward current region and with the UHR emission at the downward current region. The drifting plasma due to the electric field that is generated in the magnetosphere at the moment of the magnetospheric substorm is derived from the frequency change of the plasma waves. The enhancement of the westward electric field in the duskside magnetosphere is detected simultaneously with the appearence of AKR. The altitude of the center of the AKR source region varies with intimate relation to the substorm activity suggesting that the generation of AKR is taking place in the region where the polar ionosphere and the magnetosphere are predominantly coupling through the precipitating or up going particles. From the fine structure of the dynamic spectra of AKR, it is suggested that the source of AKR might be closely related to the double layer type electric field along the magnetic field. (author)

  1. Aurora-A regulates MCRS1 function during mitosis.

    Meunier, Sylvain; Timón, Krystal; Vernos, Isabelle

    2016-07-02

    The mitotic spindle is made of microtubules (MTs) nucleated through different pathways involving the centrosomes, the chromosomes or the walls of pre-existing MTs. MCRS1 is a RanGTP target that specifically associates with the chromosome-driven MTs protecting them from MT depolymerases. MCRS1 is also needed for the control of kinetochore fiber (K-fiber) MT minus-ends dynamics in metaphase. Here, we investigated the regulation of MCRS1 activity in M-phase. We show that MCRS1 is phosphorylated by the Aurora-A kinase in mitosis on Ser35/36. Although this phosphorylation has no role on MCRS1 localization to chromosomal MTs and K-fiber minus-ends, we show that it regulates MCRS1 activity in mitosis. We conclude that Aurora-A activity is particularly important in the tuning of K-fiber minus-ends dynamics in mitosis.

  2. Identification of clouds and aurorae in optical data images

    Seviour, R; Honary, F

    2003-01-01

    In this paper we present an automatic image recognition technique used to identify clouds and aurorae in digital images, taken with a CCD all-sky imager. The image recognition algorithm uses image segmentation to generate a binary block object image. Object analysis is then performed on the binary block image, the results of which are used to assess whether clouds, aurorae and stars are present in the original image. The need for such an algorithm arises because the optical study of particle precipitation into the Earth's atmosphere by the Ionosphere and Radio Propagation Group at Lancaster generates vast data-sets, over 25 000 images/year, making manual classification of all the images impractical.

  3. The solar-terrestrial environment. An introduction to geospace - the science of the terrestrial upper atmosphere, ionosphere and magnetosphere.

    Hargreaves, J. K.

    This textbook is a successor to "The upper atmosphere and solar-terrestrial relations" first published in 1979. It describes physical conditions in the upper atmosphere and magnetosphere of the Earth. This geospace environment begins 70 kilometres above the surface of the Earth and extends in near space to many times the Earth's radius. It is the region of near-Earth environment where the Space Shuttle flies, the aurora is generated, and the outer atmosphere meets particles streaming out of the sun. The account is introductory. The intent is to present basic concepts, and for that reason the mathematical treatment is not complex. There are three introductory chapters that give basic physics and explain the principles of physical investigation. The principal material contained in the main part of the book covers the neutral and ionized upper atmosphere, the magetosphere, and structures, dynamics, disturbances and irregularities. The concluding chapter deals with technological applications.

  4. Aurorasaurus: A citizen science platform for viewing and reporting the aurora

    MacDonald, E. A.; Case, N. A.; Clayton, J. H.; Hall, M. K.; Heavner, M.; Lalone, N.; Patel, K. G.; Tapia, A.

    2015-09-01

    A new, citizen science-based, aurora observing and reporting platform has been developed with the primary aim of collecting auroral observations made by the general public to further improve the modeling of the aurora. In addition, the real-time ability of this platform facilitates the combination of citizen science observations with auroral oval models to improve auroral visibility nowcasting. Aurorasaurus provides easily understandable aurora information, basic gamification, and real-time location-based notification of verified aurora activity to engage citizen scientists. The Aurorasaurus project is one of only a handful of space weather citizen science projects and can provide useful results for the space weather and citizen science communities. Early results are promising with over 2000 registered users submitting over 1000 aurora observations and verifying over 1700 aurora sightings posted on Twitter.

  5. Aurorae. Firework in the sky. 2. upd. ed.; Polarlichter. Feuerwerk am Himmel

    Pfoser, Andreas; Eklund, Tom

    2013-07-01

    Aurorae are fascinating phenomena. As aurora borealis and aurora australis occurring in the polar regions of both earth hemispheres, their incessant color and shape games put people in wonder. The meteorologist Andreas Pfoser explains the physical connections, which lead to the formation of this natural phenomenon. The link with the activity of the sun and the interaction in the earth atmosphere are explained detailedly and understandably. The fantastic recordings, presented in generous horizontal format has collected the Finnish aurora photographer Tom Eklund over a period of time of 14 years. Thereby it succeeded, to document also some events, the origin of which on our daystar were recorded by solar satellites, so that the sequence of events from the solar eruption until the aurora spectacle can be reproduced. The present 2nd edition contains new scientific findings. Additionally numerous aurora pictures were replaced by more actual photos created with modern technology.

  6. Planetary protection in the framework of the Aurora exploration program

    Kminek, G.

    The Aurora Exploration Program will give ESA new responsibilities in the field of planetary protection. Until now, ESA had only limited exposure to planetary protection from its own missions. With the proposed ExoMars and MSR missions, however, ESA will enter the realm of the highest planetary protection categories. As a consequence, the Aurora Exploration Program has initiated a number of activities in the field of planetary protection. The first and most important step was to establish a Planetary Protection Working Group (PPWG) that is advising the Exploration Program Advisory Committee (EPAC) on all matters concerning planetary protection. The main task of the PPWG is to provide recommendations regarding: Planetary protection for robotic missions to Mars; Planetary protection for a potential human mission to Mars; Review/evaluate standards & procedures for planetary protection; Identify research needs in the field of planetary protection. As a result of the PPWG deliberations, a number of activities have been initiated: Evaluation of the Microbial Diversity in SC Facilities; Working paper on legal issues of planetary protection and astrobiology; Feasibility study on a Mars Sample Return Containment Facility; Research activities on sterilization procedures; Training course on planetary protection (May, 2004); Workshop on sterilization techniques (fall 2004). In parallel to the PPWG, the Aurora Exploration Program has established an Ethical Working Group (EWG). This working group will address ethical issues related to astrobiology, planetary protection, and manned interplanetary missions. The recommendations of the working groups and the results of the R&D activities form the basis for defining planetary protection specification for Aurora mission studies, and for proposing modification and new inputs to the COSPAR planetary protection policy. Close cooperation and free exchange of relevant information with the NASA planetary protection program is strongly

  7. Measurement of the electrostatic field in aurora by antarctic rocket

    Takeya, Yoshio; Minami, Shigeyuki

    1974-01-01

    The direct measurement of the electrostatic field produced by the flow of charged particles and geomagnetic field in aurora has been carried out by means of rockets or satellites. The construction of an electric field meter and its characteristics are described, which measures the vectors of electric field with antarctic rockets. New scheme is presented: three components of an electric field are directly obtained through the probes set in three directions. (Mori, K.)

  8. Aurora kinase A controls meiosis I progression in mouse oocytes

    Šašková, Adéla; Šolc, Petr; Baran, V.; Kubelka, Michal; Schultz, R. M.; Motlík, Jan

    2008-01-01

    Roč. 7, č. 15 (2008), s. 2368-2376 ISSN 1538-4101 R&D Projects: GA ČR GA305/06/1413; GA ČR GD204/05/H023 Institutional research plan: CEZ:AV0Z50450515 Keywords : aurora-A * MTOC * CDK1 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.120, year: 2008 www.landesbioscience.com/journals/cc/article/6361

  9. Dynamics of Auroras Conjugate to the Dayside Reconnection Region.

    Mende, S. B.; Frey, H. U.; Doolittle, J. H.

    2006-12-01

    During periods of northward IMF Bz, observations of the IMAGE satellite FUV instrument demonstrated the existence of an auroral footprint of the dayside lobe reconnection region. Under these conditions the dayside "reconnection spot" is a distinct feature being separated from the dayside auroral oval. In the IMAGE data, ~100 km spatial and 2 minutes temporal resolution, this feature appeared as a modest size, 200 to 500 km in diameter, diffuse spot which was present steadily while the IMF conditions lasted and the solar wind particle pressure was large enough to create a detectable signature. Based on this evidence, dayside reconnection observed with this resolution appears to be a steady state process. There have been several attempts to identify and study the "reconnection foot print aurora" with higher resolution from the ground. South Pole Station and the network of the US Automatic Geophysical Observatories (AGO-s) in Antarctica have all sky imagers that monitor the latitude region of interest (70 to 85 degrees geomagnetic) near midday during the Antarctic winter. In this paper we present sequences of auroral images that were taken during different conditions of Bz and therefore they are high spatial resolution detailed views of the auroras associated with reconnection. During negative Bz, auroras appear to be dynamic with poleward moving auroral forms that are clearly observed by ground based imagers with a ~few km spatial resolution. During positive Bz however the extremely high latitude aurora is much more stable and shows no preferential meridional motions. It should be noted that winter solstice conditions, needed for ground based observations, produce a dipole tilt in which reconnection is not expected to be symmetric and the auroral signatures might favor the opposite hemisphere.

  10. Control system for compact SR light source 'AURORA'

    Fukami, Nobutaka; Kariya, Hiroyuki; Yamada, Hironari

    1991-01-01

    The computer control system developed for 'AURORA' has a three level hierarchical architecture. The top level is Central Intelligence System (CIS), and the second one is Autonomic Control System (ACS). The bottom one is an assembly of distributed local controllers linked to the ACS level through optical fibers. This system provides fully automated operation, and a powerful machine study capability through the associated man-machine console and an interpretive operation language. (author)

  11. Evidence for open field lines in Jupiter's magnetosphere

    Goertz, C. K.; Randall, B. A.; Thomsen, M. F.; Jones, D. E.; Smith, E. J.

    1976-01-01

    A model for the night-side Jovian magnetic field is derived partly on the basis of theoretical considerations and partly on the basis of the magnetic-field data obtained during the outbound leg of the path of Pioneer 10. This model can explain the observed sawtooth modulation of energetic particle fluxes in terms of closed and open field lines that cannot contain the particles. The model is applicable only to the Jovian magnetotail.

  12. Performance of the Aurora KrF ICF laser system

    Jones, J.E.; Czuchlewski, S.J.; Turner, T.P.; Watt, R.G.; Thomas, S.J.; Netz, D.A.; Tallman, C.R.; Mack, J.M.; Figueira, J.F.

    1990-01-01

    Because short wavelength lasers are attractive for inertial confinement fusion (ICF), the Department of Energy is sponsoring work at Los Alamos National Laboratory in krypton-fluoride (KrF) laser technology. Aurora is a short-pulse, high-power, KrF laser system. It serves as an end-to-end technology demonstration prototype for large-scale ultraviolet laser systems for short wavelength ICF research. The system employs optical angular multiplexing and serial amplification by electron-beam-driven KrF laser amplifiers. The 1 to 5 ns pulse of the Aurora front end is split into 96 beams which are angularly and temporally multiplexed to produce a 480 ns pulse train for amplification by four KrF laser amplifiers. In the present system configuration half (48) of the amplified pulses are demultiplexed using different optical path lengths and delivered simultaneously to target. This paper discusses how the Aurora laser system has entered the initial operational phase by delivering pulse energies of greater than one kilojoule to target

  13. Identifying Cassini's Magnetospheric Location Using Magnetospheric Imaging Instrument (MIMI) Data and Machine Learning

    Vandegriff, J. D.; Smith, G. L.; Edenbaum, H.; Peachey, J. M.; Mitchell, D. G.

    2017-12-01

    We analyzed data from Cassini's Magnetospheric Imaging Instrument (MIMI) and Magnetometer (MAG) and attempted to identify the region of Saturn's magnetosphere that Cassini was in at a given time using machine learning. MIMI data are from the Charge-Energy-Mass Spectrometer (CHEMS) instrument and the Low-Energy Magnetospheric Measurement System (LEMMS). We trained on data where the region is known based on a previous analysis of Cassini Plasma Spectrometer (CAPS) plasma data. Three magnetospheric regions are considered: Magnetosphere, Magnetosheath, and Solar Wind. MIMI particle intensities, magnetic field values, and spacecraft position are used as input attributes, and the output is the CAPS-based region, which is available from 2004 to 2012. We then use the trained classifier to identify Cassini's magnetospheric regions for times after 2012, when CAPS data is no longer available. Training accuracy is evaluated by testing the classifier performance on a time range of known regions that the classifier has never seen. Preliminary results indicate a 68% accuracy on such test data. Other techniques are being tested that may increase this performance. We present the data and algorithms used, and will describe the latest results, including the magnetospheric regions post-2012 identified by the algorithm.

  14. The Discovery of Aurora Kinase Inhibitor by Multi-Docking-Based Virtual Screening

    Jun-Tae Kim

    2014-11-01

    Full Text Available We report the discovery of aurora kinase inhibitor using the fragment-based virtual screening by multi-docking strategy. Among a number of fragments collected from eMololecules, we found four fragment molecules showing potent activity (>50% at 100 μM against aurora kinase. Based on the explored fragment scaffold, we selected two compounds in our synthesized library and validated the biological activity against Aurora kinase.

  15. Advances in magnetospheric physics, 1971--1974: energetic particles

    West, H.I. Jr.

    1974-12-01

    An account is given of energetic particle research in magnetospheric physics for the time period 1971--1974. Emphasis is on relating the various aspects of energetic particles to magnetospheric processes. 458 refs. (U.S.)

  16. Inclined Zenith Aurora over Kyoto on 17 September 1770: Graphical Evidence of Extreme Magnetic Storm

    Kataoka, Ryuho; Iwahashi, Kiyomi

    2017-10-01

    Red auroras were observed in Japan during an extreme magnetic storm that occurred on 17 September 1770. We show new evidence that the red aurora extended toward the zenith of Kyoto around midnight. The basic appearance of the historical painting of the red aurora is geometrically reproduced based on the inclination of the local magnetic field and a detailed description in a newly discovered diary. The presence of the inclined zenith aurora over Kyoto suggests that the intensity of the September 1770 magnetic storm is comparable to, or slightly larger than that of the September 1859 Carrington storm.

  17. Ancient writings reveal presence of aurora in 13th-century Canadian Arctic

    Silverman, Sam

    Modern Norway, Iceland, and Greenland are subject to frequent displays of the aurora borealis. The aurora can be viewed on almost every clear night in the northern part of Iceland and southern Greenland, which lie in or near the auroral oval. Thus, it is surprising to find almost no mention of the aurora in medieval Norse chronicles or in the extensive Icelandic saga literature. Only one paragraph, in the "King's Mirror," a Norwegian writing dating to about 1250 C.E., notes the occurrence of the aurora in Greenland. The author reports this as hearsay and not from personal knowledge. For a fuller discussion of the Norse literature, see Brekke and Egeland [1983].

  18. Magnetospheric structure of rotation powered pulsars

    Arons, J. (California Univ., Berkeley, CA (USA) California Univ., Livermore, CA (USA). Inst. of Geophysics and Planetary Physics)

    1991-01-07

    I survey recent theoretical work on the structure of the magnetospheres of rotation powered pulsars, within the observational constraints set by their observed spindown, their ability to power synchrotron nebulae and their ability to produce beamed collective radio emission, while putting only a small fraction of their energy into incoherent X- and gamma radiation. I find no single theory has yet given a consistent description of the magnetosphere, but I conclude that models based on a dense outflow of pairs from the polar caps, permeated by a lower density flow of heavy ions, are the most promising avenue for future research. 106 refs., 4 figs., 2 tabs.

  19. Theory of imperfect magnetosphere-ionosphere coupling

    Kan, J.R.; Lee, L.C.

    1980-01-01

    Atheory of magnetosphere-ionosphere coupling in the presence of field-aligned potential drops is formulated within the framework of magnetohydrodynamic equations. Our formulation allows the magnetosphere as well as the ionosphere to respond self-consistently to the parallel potential drop along auroral field lines. Equipotential contours are distorted into a V-shaped structure near the convection reversal boundary and S-shaped on the equatorward side, each gives rise to an inverted V precipitation band. The loading effect of the imperfect coupling results in a valley in the electric field profile which occurs equatorward of the convection reversal boundary

  20. Magnetosphere, exosphere, and surface of Mercury

    Cheng, A.F.; Krimigis, S.M.; Johnson, R.E.; Lanzerotti, L.J.

    1987-01-01

    It is presently suggested in light of the atomic Na exosphere discovered for Mercury that this planet, like the Jupiter moon Io, is capable of maintaining a heavy ion magnetosphere. Na(+) ions from the exosphere are in this scenario accelerated to keV energies en route to making substantial contributions to the mass and energy budgets of the magnetosphere. Since Mercury's Na supply to the exosphere is primarily internal, it would appear that Mercury is losing its semivolatiles and that this process will proceed by way of photosputtering, which maintains an adequate Na-ejection rate from the planet's surface. 39 references

  1. Magnetic reconnection in the terrestrial magnetosphere

    Feldman, W.C.

    1984-01-01

    An overview is given of quantitative comparisons between measured phenomena in the terrestrial magnetosphere thought to be associated with magnetic reconnection, and related theoretical predictions based on Petschek's simple model. Although such a comparison cannot be comprehensive because of the extended nature of the process and the relatively few in situ multipoint measurements made to date, the agreement is impressive where comparisons have been possible. This result leaves little doubt that magnetic reconnection does indeed occur in the terrestrial magnetosphere. The maximum reconnection rate, expressed in terms of the inflow Mach number, M/sub A/, is measured to be M/sub A/ = 0.2 +- 0.1

  2. Evolutionary relationships of Aurora kinases: Implications for model organism studies and the development of anti-cancer drugs

    Patrick Denis R

    2004-10-01

    Full Text Available Abstract Background As key regulators of mitotic chromosome segregation, the Aurora family of serine/threonine kinases play an important role in cell division. Abnormalities in Aurora kinases have been strongly linked with cancer, which has lead to the recent development of new classes of anti-cancer drugs that specifically target the ATP-binding domain of these kinases. From an evolutionary perspective, the species distribution of the Aurora kinase family is complex. Mammals uniquely have three Aurora kinases, Aurora-A, Aurora-B, and Aurora-C, while for other metazoans, including the frog, fruitfly and nematode, only Aurora-A and Aurora-B kinases are known. The fungi have a single Aurora-like homolog. Based on the tacit assumption of orthology to human counterparts, model organism studies have been central to the functional characterization of Aurora kinases. However, the ortholog and paralog relationships of these kinases across various species have not been rigorously examined. Here, we present comprehensive evolutionary analyses of the Aurora kinase family. Results Phylogenetic trees suggest that all three vertebrate Auroras evolved from a single urochordate ancestor. Specifically, Aurora-A is an orthologous lineage in cold-blooded vertebrates and mammals, while structurally similar Aurora-B and Aurora-C evolved more recently in mammals from a duplication of an ancestral Aurora-B/C gene found in cold-blooded vertebrates. All so-called Aurora-A and Aurora-B kinases of non-chordates are ancestral to the clade of chordate Auroras and, therefore, are not strictly orthologous to vertebrate counterparts. Comparisons of human Aurora-B and Aurora-C sequences to the resolved 3D structure of human Aurora-A lends further support to the evolutionary scenario that vertebrate Aurora-B and Aurora-C are closely related paralogs. Of the 26 residues lining the ATP-binding active site, only three were variant and all were specific to Aurora-A. Conclusions In

  3. A simple model of the distant Jovian tail with magnetic flux loss

    Grzedzielski, S.; Macek, W.; Oberc, P.

    1982-01-01

    The influence of a small rate of magnetic flux loss on a simple hydromagnetic model of the distant Jovian tail was estimated. The loss of flux leads to a 10-15% decrease of the tail radius at Saturn's distance. Possible encounter of the tail with Uranus in 1983 is also briefly discussed. (author)

  4. Properties of the single Jovian planet population and the pursuit of Solar system analogues

    Agnew, Matthew T.; Maddison, Sarah T.; Horner, Jonathan

    2018-04-01

    While the number of exoplanets discovered continues to increase at a rapid rate, we are still to discover any system that truly resembles the Solar system. Existing and near future surveys will likely continue this trend of rapid discovery. To see if these systems are Solar system analogues, we will need to efficiently allocate resources to carry out intensive follow-up observations. We seek to uncover the properties and trends across systems that indicate how much of the habitable zone is stable in each system to provide focus for planet hunters. We study the dynamics of all known single Jovian planetary systems, to assess the dynamical stability of the habitable zone around their host stars. We perform a suite of simulations of all systems where the Jovian planet will interact gravitationally with the habitable zone, and broadly classify these systems. Besides the system's mass ratio (Mpl/Mstar), and the Jovian planet's semi-major axis (apl) and eccentricity (epl), we find that there are no underlying system properties which are observable that indicate the potential for planets to survive within the system's habitable zone. We use Mpl/Mstar, apl and epl to generate a parameter space over which the unstable systems cluster, thus allowing us to predict which systems to exclude from future observational or numerical searches for habitable exoplanets. We also provide a candidate list of 20 systems that have completely stable habitable zones and Jovian planets orbiting beyond the habitable zone as potential first order Solar system analogues.

  5. AURORA on MEGSAT 1 a photon counting observatory for the Earth UV night-sky background and Aurora emission

    Monfardini, A; Stalio, R; Mahne, N; Battiston, R; Menichelli, M; Mazzinghi, P

    2001-01-01

    A low-mass, low-cost photon-counting scientific payload has been developed and launched on a commercial microsatellite in order to study the near-UV night-sky background emission with a telescope nicknamed 'Notte' and the Aurora emission with 'Alba'. AURORA, this is the name of the experiment, will determine, with the 'Notte' channel, the overall night-side photon background in the 300-400 nm spectral range, together with a particular 2 sup + N sub 2 line (lambda sub c =337 nm). The 'Alba' channel, on the other hand, will study the Aurora emissions in four different spectral bands (FWHM=8.4-9.6 nm) centered on: 367 nm (continuum evaluation), 391 nm (1 sup - N sup + sub 2), 535 nm (continuum evaluation), 560 nm (OI). The instrument has been launched on the 26 September, 2000 from the Baikonur cosmodrome on a modified SS18 Dnepr-1 'Satan' rocket. The satellite orbit is nearly circular (h sub a sub p sub o sub g sub e sub e =648 km, e=0.0022), and the inclination of the orbital plane is 64.56 deg. An overview of...

  6. AURORA on MEGSAT 1: a photon counting observatory for the Earth UV night-sky background and Aurora emission

    Monfardini, A.; Trampus, P.; Stalio, R.; Mahne, N.; Battiston, R.; Menichelli, M.; Mazzinghi, P.

    2001-01-01

    A low-mass, low-cost photon-counting scientific payload has been developed and launched on a commercial microsatellite in order to study the near-UV night-sky background emission with a telescope nicknamed 'Notte' and the Aurora emission with 'Alba'. AURORA, this is the name of the experiment, will determine, with the 'Notte' channel, the overall night-side photon background in the 300-400 nm spectral range, together with a particular 2 + N 2 line (λ c =337 nm). The 'Alba' channel, on the other hand, will study the Aurora emissions in four different spectral bands (FWHM=8.4-9.6 nm) centered on: 367 nm (continuum evaluation), 391 nm (1 - N + 2 ), 535 nm (continuum evaluation), 560 nm (OI). The instrument has been launched on the 26 September, 2000 from the Baikonur cosmodrome on a modified SS18 Dnepr-1 'Satan' rocket. The satellite orbit is nearly circular (h apogee =648 km, e=0.0022), and the inclination of the orbital plane is 64.56 deg. An overview of the techniques adopted is given in this paper

  7. Aurora-A overexpression and aneuploidy predict poor outcome in serous ovarian carcinoma.

    Lassus, Heini; Staff, Synnöve; Leminen, Arto; Isola, Jorma; Butzow, Ralf

    2011-01-01

    Aurora-A is a potential oncogene and therapeutic target in ovarian carcinoma. It is involved in mitotic events and overexpression leads to centrosome amplification and chromosomal instability. The objective of this study was to evaluate the clinical significance of Aurora-A and DNA ploidy in serous ovarian carcinoma. Serous ovarian carcinomas were analysed for Aurora-A protein by immunohistochemistry (n=592), Aurora-A copy number by CISH (n=169), Aurora-A mRNA by real-time PCR (n=158) and DNA ploidy by flowcytometry (n=440). Overexpression of Aurora-A was found in 27% of the tumors, cytoplasmic overexpression in 11% and nuclear in 17%. The cytoplasmic and nuclear overexpression were nearly mutually exclusive. Both cytoplasmic and nuclear overexpression were associated with shorter survival, high grade, high proliferation index and aberrant p53. Interestingly, only cytoplasmic expression was associated with aneuploidy and expression of phosphorylated Aurora-A. DNA ploidy was associated with poor patient outcome as well as aggressive clinicopathological parameters. In multivariate analysis, Aurora-A overexpression appeared as an independent prognostic factor for disease-free survival, together with grade, stage and ploidy. Aurora-A protein expression is strongly linked with poor patient outcome and aggressive disease characteristics, which makes Aurora-A a promising biomarker and a potential therapeutic target in ovarian carcinoma. Cytoplasmic and nuclear Aurora-A protein may have different functions. DNA aneuploidy is a strong predictor of poor prognosis in serous ovarian carcinoma. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Propagation of microwaves in pulsar magnetospheres

    Bodo, G; Ferrari, A [Turin Univ. (Italy). Ist. di Fisica Generale; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica); Massaglia, S [Turin Univ. (Italy). Ist. di Fisica Generale; Cambridge Univ. (UK). Inst. of Astronomy)

    1981-12-01

    We discuss the dispersion relation of linearly-polarized waves, propagating along a strong background magnetic field embedded in an electron-positron plasma. The results are then applied to the study of the propagation conditions of coherent curvature radio radiation inside neutron stars magnetospheres, as produced by electric discharges following current pulsar models.

  9. Polarized curvature radiation in pulsar magnetosphere

    Wang, P. F.; Wang, C.; Han, J. L.

    2014-07-01

    The propagation of polarized emission in pulsar magnetosphere is investigated in this paper. The polarized waves are generated through curvature radiation from the relativistic particles streaming along curved magnetic field lines and corotating with the pulsar magnetosphere. Within the 1/γ emission cone, the waves can be divided into two natural wave-mode components, the ordinary (O) mode and the extraordinary (X) mode, with comparable intensities. Both components propagate separately in magnetosphere, and are aligned within the cone by adiabatic walking. The refraction of O mode makes the two components separated and incoherent. The detectable emission at a given height and a given rotation phase consists of incoherent X-mode and O-mode components coming from discrete emission regions. For four particle-density models in the form of uniformity, cone, core and patches, we calculate the intensities for each mode numerically within the entire pulsar beam. If the corotation of relativistic particles with magnetosphere is not considered, the intensity distributions for the X-mode and O-mode components are quite similar within the pulsar beam, which causes serious depolarization. However, if the corotation of relativistic particles is considered, the intensity distributions of the two modes are very different, and the net polarization of outcoming emission should be significant. Our numerical results are compared with observations, and can naturally explain the orthogonal polarization modes of some pulsars. Strong linear polarizations of some parts of pulsar profile can be reproduced by curvature radiation and subsequent propagation effect.

  10. Whistler instability in a magnetospheric duct

    Talukdar, I.; Tripathi, V.K.; Jain, V.K.

    1989-01-01

    A whistler wave propagating through a preformed magnetospheric duct is susceptible to growth/amplification by an electron beam. The interaction is non-local and could be of Cerenkov or slow-cyclotron type. First-order perturbation theory is employed to obtain the growth rate for flat and Gaussian beam densities. (author)

  11. The Magnetospheric Boundary in Cataclysmic Variables

    Hellier Coel

    2014-01-01

    During outbursts, when the accretion flow increases by orders of magnitude, the disk pushes the magnetosphere inwards, and appears to feed field lines over a much greater range of magnetic azimuth. The non-equilibrium outburst behaviour shows an even richer phenomenology than in quiescence, adding DNOs and QPOs into the mix.

  12. Impulsive Alfven coupling between the magnetosphere and ionosphere

    Reddy, R.V.; Watanabe, K.; Sato, T.; Watanabe, T.H.

    1994-04-01

    Basic properties of the impulsive Alfven interaction between the magnetosphere and ionosphere have been studied by means of a three-dimensional self-consistent simulation of the coupled magnetosphere and ionosphere system. It is found that the duration time of an impulsive perturbation at the magnetospheric equator, the latitudinal distribution of the Alfven propagation time along the field lines, and the ratio between the magnetospheric impedance and the ionospheric resistance is the main key factors that determine the propagation dynamics and the ionospheric responses for an impulsive MHD perturbation in the magnetosphere. (author)

  13. A magnetospheric specification model validation study: Geosynchronous electrons

    Hilmer, R. V.; Ginet, G. P.

    2000-09-01

    The Rice University Magnetospheric Specification Model (MSM) is an operational space environment model of the inner and middle magnetosphere designed to specify charged particle fluxes up to 100keV. Validation test data taken between January 1996 and June 1998 consist of electron fluxes measured by a charge control system (CCS) on a defense satellite communications system (DSCS) spacecraft. The CCS includes both electrostatic analyzers to measure the particle environment and surface potential monitors to track differential charging between various materials and vehicle ground. While typical RMS error analysis methods provide a sense of the models overall abilities, they do not specifically address physical situations critical to operations, i.e., how well does the model specify when a high differential charging state is probable. In this validation study, differential charging states observed by DSCS are used to determine several threshold fluxes for the associated 20-50keV electrons and joint probability distributions are constructed to determine Hit, Miss, and False Alarm rates for the models. An MSM run covering the two and one-half year interval is performed using the minimum required input parameter set, consisting of only the magnetic activity index Kp, in order to statistically examine the model's seasonal and yearly performance. In addition, the relative merits of the input parameter, i.e., Kp, Dst, the equatorward boundary of diffuse aurora at midnight, cross-polar cap potential, solar wind density and velocity, and interplanetary magnetic field values, are evaluated as drivers of shorter model runs of 100 d each. In an effort to develop operational tools that can address spacecraft charging issues, we also identify temporal features in the model output that can be directly linked to input parameter variations and model boundary conditions. All model output is interpreted using the full three-dimensional, dipole tilt-dependent algorithms currently in

  14. Hydromagnetic wave coupling in the magnetosphere

    Lee, D.

    1990-01-01

    The hydromagnetic wave phenomena in the magnetosphere has been an area of space physics and plasma physics where theory has been successful in explaining many features in satellite experiments and ground-based observations. Magnetohydrodynamic (MHD) waves, which are composed of transverse Alven waves and compressional waves, are usually coupled in space due to an inhomogeneous plasma density and curved magnetic field lines. In addition to these effects, hot temperature plasmas invoke various ultra low frequency (ULF) wave phenomena via macroscopic wave instabilities or wave particle resonant interactions. These properties of the coupling between the two different MHD waves were analytically and numerically studied in a simplified model such as the box model with straight field lines. However, the real magnetosphere is rather close to a dipole field, even though the night side of the magnetosphere is significantly distorted from dipole geometry. The curvature of field lines plays an important role in understanding hydromagnetic wave coupling in the magnetosphere since the MHD wave propagation depends strongly on the curved magnetic fields. The study of the hydromagnetic wave properties on an inhomogeneous and curved magnetic field system by considering realistic geometry is emphasized. Most of the current theories are reviewed and a number of observations are introduced according to the wave excitation mechanism. Studies are also performed with the development of numerical models such as the two and three dimensional MHD dipole models. An attempt is made to understand and classify the hydromagnetic wave behavior in inhomogeneous and hot plasmas with respect to the energy sources and their frequency band in the magnetosphere. Therefore, various excitation mechanisms for hydromagnetic waves are examined to compare analytical and numerical results with the observations

  15. Particle Acceleration in Dissipative Pulsar Magnetospheres

    Kazanas, Z.; Kalapotharakos, C.; Harding, A.; Contopoulos, I.

    2012-01-01

    Pulsar magnetospheres represent unipolar inductor-type electrical circuits at which an EM potential across the polar cap (due to the rotation of their magnetic field) drives currents that run in and out of the polar cap and close at infinity. An estimate ofthe magnitude of this current can be obtained by dividing the potential induced across the polar cap V approx = B(sub O) R(sub O)(Omega R(sub O)/c)(exp 2) by the impedance of free space Z approx eq 4 pi/c; the resulting polar cap current density is close to $n {GJ} c$ where $n_{GJ}$ is the Goldreich-Julian (GJ) charge density. This argument suggests that even at current densities close to the GJ one, pulsar magnetospheres have a significant component of electric field $E_{parallel}$, parallel to the magnetic field, a condition necessary for particle acceleration and the production of radiation. We present the magnetic and electric field structures as well as the currents, charge densities, spin down rates and potential drops along the magnetic field lines of pulsar magnetospheres which do not obey the ideal MHD condition $E cdot B = 0$. By relating the current density along the poloidal field lines to the parallel electric field via a kind of Ohm's law $J = sigma E_{parallel}$ we study the structure of these magnetospheres as a function of the conductivity $sigma$. We find that for $sigma gg OmegaS the solution tends to the (ideal) Force-Free one and to the Vacuum one for $sigma 11 OmegaS. Finally, we present dissipative magnetospheric solutions with spatially variable $sigma$ that supports various microphysical properties and are compatible with the observations.

  16. Aurora B is dispensable for megakaryocyte polyploidization, but contributes to the endomitotic process.

    Lordier, Larissa; Chang, Yunhua; Jalil, Abdelali; Aurade, Frédéric; Garçon, Loïc; Lécluse, Yann; Larbret, Frédéric; Kawashima, Toshiyuki; Kitamura, Toshio; Larghero, Jérôme; Debili, Najet; Vainchenker, William

    2010-09-30

    Polyploidization of megakaryocytes (MKs), the platelet precursors, occurs by endomitosis, a mitotic process that fails at late stages of cytokinesis. Expression and function of Aurora B kinase during endomitosis remain controversial. Here, we report that Aurora B is normally expressed during the human MK endomitotic process. Aurora B localized normally in the midzone or midbody during anaphase and telophase in low ploidy megakaryocytes and in up to 16N rare endomitotic MKs was observed. Aurora B was also functional during cytokinesis as attested by phosphorylation of both its activation site and MgcRacGAP, its main substrate. However, despite its activation, Aurora B did not prevent furrow regression. Inhibition of Aurora B by AZD1152-HQPA decreased cell cycle entry both in 2N to 4N and polyploid MKs and induced apoptosis mainly in 2N to 4N cells. In both MK classes, AZD1152-HQPA induced p53 activation and retinoblastoma hypophosphorylation. Resistance of polyploid MKs to apoptosis correlated to a high BclxL level. Aurora B inhibition did not impair MK polyploidization but profoundly modified the endomitotic process by inducing a mis-segregation of chromosomes and a mitotic failure in anaphase. This indicates that Aurora B is dispensable for MK polyploidization but is necessary to achieve a normal endomitotic process.

  17. Bora and Aurora-A continue to activate Plk1 in mitosis.

    Bruinsma, Wytse; Macurek, Libor; Freire, Raimundo; Lindqvist, Arne; Medema, René H

    2014-02-15

    Polo-like kinase-1 (Plk1) is required for proper cell division. Activation of Plk1 requires phosphorylation on a conserved threonine in the T-loop of the kinase domain (T210). Plk1 is first phosphorylated on T210 in G2 phase by the kinase Aurora-A, in concert with its cofactor Bora. However, Bora was shown to be degraded prior to entry into mitosis, and it is currently unclear how Plk1 activity is sustained in mitosis. Here we show that the Bora-Aurora-A complex remains the major activator of Plk1 in mitosis. We show that a small amount of Aurora-A activity is sufficient to phosphorylate and activate Plk1 in mitosis. In addition, a fraction of Bora is retained in mitosis, which is essential for continued Aurora-A-dependent T210 phosphorylation of Plk1. We find that once Plk1 is activated, minimal amounts of the Bora-Aurora-A complex are sufficient to sustain Plk1 activity. Thus, the activation of Plk1 by Aurora-A may function as a bistable switch; highly sensitive to inhibition of Aurora-A in its initial activation, but refractory to fluctuations in Aurora-A activity once Plk1 is fully activated. This provides a cell with robust Plk1 activity once it has committed to mitosis.

  18. Akt Inhibitor A-443654 Interferes with Mitotic Progression by Regulating Aurora A Kinase Expression

    Xuesong Liu

    2008-08-01

    Full Text Available Both Akt and Aurora A kinase have been shown to be important targets for intervention for cancer therapy. We report here that Compound A (A-443654, a specific Akt inhibitor, interferes with mitotic progression and bipolar spindle formation. Compound A induces G2/M accumulation, defects in centrosome separation, and formation of either monopolar arrays or disorganized spindles. On the basis of gene expression array studies, we identified Aurora A as one of the genes regulated transcriptionally by Akt inhibitors including Compound A. Inhibition of the phosphatidylinositol 3-kinase (PI3K/Akt pathway, either by PI3K inhibitor LY294002 or by Compound A, dramatically inhibits the promoter activity of Aurora A, whereas the mammalian target of rapamycin inhibitor has little effect, suggesting that Akt might be responsible for up-regulating Aurora A for mitotic progression. Further analysis of the Aurora A promoter region indicates that the Ets element but not the Sp1 element is required for Compound A-sensitive transcriptional control of Aurora A. Overexpression of Aurora A in cells treated with Compound A attenuates the mitotic arrest and the defects in bipolar spindle formation induced by Akt inhibition. Our studies suggest that that Akt may promote mitotic progression through the transcriptional regulation of Aurora A.

  19. Latitudinally propagating on-off switching aurorae and associated geomagnetic pulsations

    Oguti, T.; Kokubun, S.; Hayashi, K.; Tsuruda, K.; Machida, S.; Kitamura, T.; Saka, O.; Watanabe, T.

    1981-01-01

    Poleward propagating on-off switching aurorae and equatorward propagating aurorae, otherwise similar, were observed simultaneously at Rabbit Lake and La Ronge, respectively, for about 40 min before dawn of Feb 20, 1980. Rabbit Lake is a high auroral latitude site at the northern end of the Saskatchewan chain of stations for the Pulsating Aurora Campaign, whereas La Ronge, due south of Rabbit, is almost at the southern edge of the auroral zone. The repetition periods of the on-off switching aurorae are about 6 to 13 s. The poleward propagating aurorae had well defined fronts of light which extended a few hundred kilometres or more in the east-west direction. The light fronts of the equatorward propagating aurorae, though comparable in extent, were less well defined: they were thicker and fuzzier. The poleward propagating aurorae moved with a speed of approximately 10 km/s whereas the equatorward ones did so with a slightly greater velocity. Geomagnetic field fluctuations were concurrent with the aurorae at both sites. At Rabbit Lake, northward (southward) field changes were associated with upward (downward) changes, whereas the trend is reversed at La Ronge, viz., northward (southward) changes with downward (upward) changes. These trends are consistent with a model of a periodic occurrence of two line currents, westward and eastward, the former moving poleward north of Rabbit Lake and the latter approaching La Ronge from the north

  20. Double layers in the laboratory and above the aurora

    Block, L.P.

    1980-11-01

    Recent laboratory double layer experiments have simulated, much better than before, the conditions prevailing on auroral field lines at high altitudes. In particular, magnetic fields strong enough to magnetize the electrons (but not quite the ions) have been used. Particle and wave spectra have been measured. Wave-particle interaction has been shown to play a minor role in the only case that has been quantitatively analyzed. The three-dimensional potential distribution has been mapped. The particle budget requires the radial electric field to be outward in the no magnetic field case but inward with magnetic field, in agreement with what is observed above the aurora. (author)

  1. Dayside auroras in relation to the interplanetary magnetic field

    Sandholt, P.E.; Egeland, A.; Lybekk, B.; Deehr, C.S.

    1986-01-01

    Dynamics of dayside auroras, including cusp emissions, and their relation to the interplanetary magnetic field (IMF) have been investigated by optical ground-based observations from Svalbard, Norway, and IMF data from various satellites. Combined with the Svalbard program, simultaneous night-side observations from Alaska provide information on the large-scale behaviour of the auroral oval. Drift characteristics, spatial scale, time of duration and repetition frequency of auroral structures on the day-side, occuring at the time of large-scale oval expansions (IMF B z z positive and negative values

  2. Expression of Aurora-B and FOXM1 predict poor survival in patients with nasopharyngeal carcinoma

    Huang, Pei-Yu; Luo, Dong-Hua; Mai, Hai-Qiang [State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou (China); Sun Yat-sen University Cancer Center, Department of Nasopharyngeal Carcinoma, Guangzhou (China); Li, Yan; Zeng, Ting-Ting; Li, Meng-Qing [State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou (China); Hou, Xue; Zhang, Li [State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou (China); Sun Yat-sen University Cancer Center, Department of Medical Oncology, Guangzhou (China)

    2015-08-15

    The purpose of this work was to investigate the relationship between Aurora-B, FOXM1, and clinical outcomes in patients with nasopharyngeal carcinoma (NPC) who were treated with a combination of induction chemotherapy and radiotherapy. The expression of Aurora-B and FOXM1 were investigated by immunohistochemistry using a tissue microarray (TMA) containing samples from 166 NPC patients who were treated with cisplatin (DDP) + fluorouracil (5-FU) induction chemotherapy and radiotherapy between 1999 and 2005. The relationship of Aurora-B, FOXM1, and survival of these NPC patients was analyzed. Informative TMA results were obtained in 91 tumor cases for Aurora-B and 93 tumor cases for FOXM1. The 8-year failure-free survival rate (FFS) for the Aurora-B-negative and Aurora-B-positive group was 65.6 and 37.3 %, respectively (p = 0.024), and the 8-year distant FFS (D-FFS) rate was 65.6 and 41.5 %, respectively (p = 0.047). The 8-year overall survival (OS) in the FOXM1-negative group was moderately higher than in the FOXM1-positive group (58.4 vs 39.1 %, p = 0.081). Cox regression analysis revealed that for FFS, Aurora-B expression was a significant prognostic factor (p = 0.025), while for D-FFS, Aurora-B expression was a marginally significant prognostic factor (p = 0.056). When FOXM1 expression was analyzed, the Cox regression analyses showed that FOXM1 expression was a marginally significant prognostic factor (p = 0.056) for OS. Correlation analysis showed that Aurora-B and FOXM1 expression had no significant correlation. Aurora-B and FOXM1 were both adverse prognostic markers for NPC patients treated with chemoradiotherapy. However, the two markers had no significant correlation. (orig.) [German] Ziel war die Untersuchung der Beziehung zwischen Aurora-B, FOXM1 und den klinischen Ergebnissen bei Patienten mit nasopharyngealem Karzinom (NPC), die mit einer Kombinationstherapie aus Induktionschemotherapie und Radiotherapie behandelt wurden. Die Expression von Aurora-B und

  3. Correspondence of vacuum ultraviolet aurora image with the inverted-V structure observed by Kyokko

    Kaneda, Eisuke; Mukai, Toshifumi; Hirao, Kunio.

    1982-01-01

    Since the Kyokko has been in an orbit with the inclination of 65.3 degree, various patterns of the inverted-V structure can be observed. Correspondence of vacuum ultraviolet aurora image with the inverted-V structure was studied. The energy-time diagrams were obtained. The inverted-V event occurrence map was made. The down-dusk asymmetry was recognized. The patterns of the inverted-V structure observed at present were not much different from previous ones. The observed aurora images showed not only the patterns of aurora, but also the state of aurora spreading in the polar region. Some of the observed results of energy characteristics and the aurora images are shown. (Kato, T.)

  4. The Aurora B kinase in chromosome biorientation and spindle checkpoint signalling

    Veronica eKrenn

    2015-10-01

    Full Text Available Aurora B, a member of the Aurora family of serine/threonine protein kinases, is a key player in chromosome segregation. As part of a macromolecular complex known as the chromosome passenger complex, Aurora B concentrates early during mitosis in the proximity of centromeres and kinetochores, the sites of attachment of chromosomes to spindle microtubules. There, it contributes to a number of processes that impart fidelity to cell division, including kinetochore stabilization, kinetochore-microtubule attachment, and the regulation of a surveillance mechanism named the spindle assembly checkpoint. In the regulation of these processes, Aurora B is the fulcrum of a remarkably complex network of interactions that feed back on its localization and activation state. In this review we discuss the multiple roles of Aurora B during mitosis, focusing in particular on its role at centromeres and kinetochores. Many details of the network of interactions at these locations remain poorly understood, and we focus here on several crucial outstanding questions.

  5. Basal aurora kinase B activity is sufficient for histone H3 phosphorylation in prophase

    Ly-Thuy-Tram Le

    2013-02-01

    Histone H3 phosphorylation is the hallmark of mitosis deposited by aurora kinase B. Benzo[e]pyridoindoles are a family of potent, broad, ATP-competitive aurora kinase inhibitors. However, benzo[e]pyridoindole C4 only inhibits histone H3 phosphorylation in prophase but not in metaphase. Under the C4 treatment, the cells enter into mitosis with dephosphorylated histone H3, assemble chromosomes normally and progress to metaphase, and then to anaphase. C4 also induces lagging chromosome in anaphase but we demonstrated that these chromosome compaction defects are not related to the absence of H3 phosphorylation in prophase. As a result of C4 action, mitosis lasts longer and the cell cycle is slowed down. We reproduced the mitotic defects with reduced concentrations of potent pan aurora kinase as well as with a specific aurora B ATP-competitive inhibitor; we therefore propose that histone H3 phosphorylation and anaphase chromosome compaction involve the basal activity of aurora kinase B. Our data suggest that aurora kinase B is progressively activated at mitosis entry and at anaphase onset. The full activation of aurora kinase B by its partners, in prometaphase, induces a shift in the catalytic domain of aurora B that modifies its affinity for ATP. These waves of activation/deactivation of aurora B correspond to different conformations of the chromosomal complex revealed by FRAP. The presence of lagging chromosomes may have deleterious consequences on the daughter cells and, unfortunately, the situation may be encountered in patients receiving treatment with aurora kinase inhibitors.

  6. Variability of Jovian ion winds: an upper limit for enhanced Joule heating

    M. B. Lystrup

    2007-05-01

    Full Text Available It has been proposed that short-timescale fluctuations about the mean electric field can significantly increase the upper atmospheric energy inputs at Jupiter, which may help to explain the high observed thermospheric temperatures. We present data from the first attempt to detect such variations in the Jovian ionosphere. Line-of-sight ionospheric velocity profiles in the Southern Jovian auroral/polar region are shown, derived from the Doppler shifting of H3+ infrared emission spectra. These data were recently obtained from the high-resolution CSHELL spectrometer at the NASA Infrared Telescope Facility. We find that there is no variability within this data set on timescales of the order of one minute and spatial scales of 640 km, putting upper limits on the timescales of fluctuations that would be needed to enhance Joule heating.

  7. Prospects for Jovian seismological observations following the impact of comet Shoemaker-Levy 9

    Deming, Drake

    1994-01-01

    The impact of each fragment of comet SL-9 will produce a downward-propagating pressure wave which will travel at the sound speed through the jovian interior. Since the sound speed increases with depth, most of the energy in the pressure pulse will be strongly refracted and return to the surface, as recently computed by Marley (1994). This wave may in principle be observable as it propagates into the stratosphere, using sufficiently sensitive thermal infrared imaging. If so, it will provide a unique opportunity to constrain models of the jovian interior. This paper extends Marley's calculations to include the effect of the limited spatial resolution which will be characteristic of real observations. The wave pattern on the disk will consist of closely spaced regions of alternating temperature increases and decreases. Spatial averaging will significantly reduce the observed amplitude for resolutions attainable using earth-based telescopes, but the waves should remain above the detection limit.

  8. Attitude Ground System (AGS) for the Magnetospheric Multi-Scale (MMS) Mission

    Raymond, Juan C.; Sedlak, Joseph E.; Vint, Babak

    2015-01-01

    MMS Overview Recall from Conrads presentation earlier today MMS launch: March 13, 2015 on an Atlas V from Space Launch Complex 40, Cape Canaveral, Florida MMS Observatory Separation: five minute intervals spinning at 3 rpm approximately 1.5 hours after launch MMS Science Goals: study magnetospheric plasma physics and understand the processes that cause power grids, communication disruptions and Aurora formation Mission: 4 identical spacecraft in tetrahedral formation with variable size1.2 x 12 RE in Phase 1, with apogee on dayside to observe bow shock1.2 x 25 RE in Phase 2, with apogee on night side to observe magneto tail Challenges Tight attitude control box, orbit and formation maintenance requirements Maneuvers on thrusters every two weeks Delta-H Spin axis direction and spin rate maintenance Delta-V Orbit and Formation maintenance Mission phase transitions AGS support Smart targeting prediction of Spin-Axis attitude in the presence of environmental torques to stay within the science attitude Determination of the spacecraft attitude and spin rate (sensitive to knowledge of inertia tensor)Calibrations to improve attitude determination results and improve orbit maneuvers Mass properties (Center of Mass, and inertia tensor for nutation and coning) Accelerometer bias (sensitive to the accuracy of the rate estimates) Sensor alignments.

  9. X-ray scanning of overhead aurorae from rockets

    Barcus, J.R.; Goldberg, R.A.

    1981-01-01

    Two Nike Tomahawk rocket payloads were launched into energetic auroral events to investigate their structure and effects on the atmosphere. The instrument complement included X-ray scintillation detectors with energy discrimination in four ranges to measure the deposition of bremsstrahlung produced X-rays within the stratosphere and mesosphere. For this purpose, each instrument was designed for wide angle viewing; however, properties of the rocket motion have permitted coarse observation of distinct spatial X-ray structure. The detectors were mounted at a 45 0 angle with respect to the payload axis to permit scanning of the upper hemisphere, with rocket spin rates near 5 c/s during the upleg portion of each flight. Here, atmospheric shielding reduced energetic particle contamination effects to insignificant values below 65 to 75 km. Iterative computer techniques were used to reconstruct X-ray source maps at 100 km, taking atmospheric absorption effects into account. Payload 18.178 was launched on 21 September (0302 LMT) into an aurora observed to have two distinct azimuthal regions of optical brightness. Payload 18.179 (23 September, 0147 LMT) was launched into an aurora of more diffuse character. The presence of a two component spectrum is indicated for each event with the hard component originating in the more diffuse, optically faint regions. (author)

  10. Dynamic rayed aurora and enhanced ion-acoustic radar echoes

    E. M. Blixt

    2005-01-01

    Full Text Available The generation mechanism for naturally enhanced ion-acoustic echoes is still debated. One important issue is how these enhancements are related to auroral activity. All events of enhanced ion-acoustic echoes observed simultaneously with the EISCAT Svalbard Radar (ESR and with high-resolution narrow field-of-view auroral imagers have been collected and studied. Characteristic of all the events is the appearance of very dynamic rayed aurora, and some of the intrinsic features of these auroral displays are identified. Several of these identified features are directly related to the presence of low energy (10-100eV precipitating electrons in addition to the higher energy population producing most of the associated light. The low energy contribution is vital for the formation of the enhanced ion-acoustic echoes. We argue that this type of aurora is sufficient for the generation of naturally enhanced ion-acoustic echoes. In one event two imagers were used to observe the auroral rays simultaneously, one from the radar site and one 7km away. The data from these imagers shows that the auroral rays and the strong backscattering filaments (where the enhanced echoes are produced are located on the same field line, which is in contrast to earlier statements in the litterature that they should be separated.

  11. Magnetosphere - Ionosphere - Thermosphere (MIT) Coupling at Jupiter

    Yates, J. N.; Ray, L. C.; Achilleos, N.

    2017-12-01

    Jupiter's upper atmospheric temperature is considerably higher than that predicted by Solar Extreme Ultraviolet (EUV) heating alone. Simulations incorporating magnetosphere-ionosphere coupling effects into general circulation models have, to date, struggled to reproduce the observed atmospheric temperatures under simplifying assumptions such as azimuthal symmetry and a spin-aligned dipole magnetic field. Here we present the development of a full three-dimensional thermosphere model coupled in both hemispheres to an axisymmetric magnetosphere model. This new coupled model is based on the two-dimensional MIT model presented in Yates et al., 2014. This coupled model is a critical step towards to the development of a fully coupled 3D MIT model. We discuss and compare the resulting thermospheric flows, energy balance and MI coupling currents to those presented in previous 2D MIT models.

  12. Two-stream instability in pulsar magnetospheres

    Usov, V.V.

    1987-01-01

    If the electron-positron plasma flow from the pulsar environment is stationary, the two-stream instability does not have enough time to develop in the pulsar magnetosphere. In that case the outflowing electron-positron plasma gathers into separate clouds. The clouds move along magnetic field lines and disperse as they go farther from the pulsar. At a distance of about 10 to the 8th cm from the pulsar surface, the high-energy particles of a given cloud catch up with the low-energy particles that belong to the cloud going ahead of it. In this region of a pulsar magnetosphere, the energy distribution of plasma particles is two-humped, and a two-stream instability may develop. The growth rate of the instability is quite sufficient for its development. 17 references

  13. Arsenic-induced Aurora-A activation contributes to chromosome instability and tumorigenesis

    Wu, Chin-Han; Tseng, Ya-Shih; Yang, Chao-Chun; Kao, Yu-Ting; Sheu, Hamm-Ming; Liu, Hsiao-Sheng

    2013-11-01

    Arsenic may cause serious environmental pollution and is a serious industrial problem. Depending on the dosage, arsenic may trigger the cells undergoing either proliferation or apoptosis-related cell death. Because of lack of the proper animal model to study arsenic induced tumorigenesis, the accurate risk level of arsenic exposure has not been determined. Arsenic shows genotoxic effect on human beings who uptake water contaminated by arsenic. Chromosome aberration is frequently detected in arsenic exposure-related diseases and is associated with increased oxidative stress and decreased DNA repairing activity, but the underlying mechanism remains elusive. Aurora-A is a mitotic kinase, over-expression of Aurora-A leads to centrosome amplification, chromosomal instability and cell transformation. We revealed that Aurora-A is over-expressed in the skin and bladder cancer patients from blackfoot-disease endemic areas. Our cell line studies reveal that arsenic exposure between 0.5 μM and 1 μM for 2-7 days are able to induce Aurora-A expression and activation based on promoter activity, RNA and protein analysis. Aurora-A overexpression further increases the frequency of unsymmetrical chromosome segregation through centrosome amplification followed by cell population accumulated at S phase in immortalized keratinocyte (HaCaT) and uroepithelial cells (E7). Furthermore, Aurora-A over-expression was sustained for 1-4 weeks by chronic treatment of immortalized bladder and skin cells with NaAsO2. Aurora-A promoter methylation and gene amplification was not detected in the long-term arsenic treated E7 cells. Furthermore, the expression level of E2F1 transcription factor (E2F1) is increased in the presence of arsenic, and arsenic-related Aurora-A over-expression is transcriptionally regulated by E2F1. We further demonstrated that overexpression of Aurora-A and mutant Ha-ras or Aurora-A and mutant p53 may act additively to trigger arsenic-related bladder and skin cancer

  14. Chandra X-ray Observations of Jovian Low-latitude Emissions: Morphological, Temporal, and Spectral Characteristics

    Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Cravens, Thomas E.; Waiate J. Hunter, Jr.; Branduardi-Raymont, Graziella; Ford, Peter

    2004-01-01

    Chandra observed X-rays from Jupiter during 24-26 February 2003 for about 40 hours with the ACIS-S and HRC-I instruments. The analysis of Jovian low-latitude "disk" Xray emissions are presented and compared with the high-latitude "auroral" emissions. We report the first Chandra ACIS-S measured X-ray spectrum (0.3-2 keV) of Jupiter's low-latitude disk The disk X-ray emission is harder and extends to higher energies than the auroral spectrum. The temporal variation in the Jovian disk X-rays is on an average consistent with those in the solar X-rays observed by GOES, and TIMED/SSE. Contrary to the auroral X-rays, the disk emissions are uniformly distributed over Jupiter; no indication of longitudinal dependence or correlation with surface magneh field strength is visible. Also, unlike the approx. 40 +/- 20 min periodic oscillations seen in the auroral X-ray emissions, the disk emissions do not show any periodic oscillations. The disk spectrum seems to be consistent with resonant and fluorescent scattering of solar X-rays by the Jovian upper atmosphere. Jupiter's disk is found to be about 50% dimmer in soft X-rays in February 2003 compared that in December 2000, which is consistent with the decrease in solar activity. No evidence of lightning-induced X-rays is seen in the Chandra X-ray data. The Jovian disk spectra observed with Chandra-ACIS is stronger than that observed with XMM-Newton two months later during April 28-29, 2003. The XMM-Newton Xray image of Jupiter shows evidence of limb darkening on the anti-sunward side as seen from Earth, as well as an asymmetry with respect to the subsolar point: suggesting a solar driven process.

  15. Terrestrial VLF transmitter injection into the magnetosphere

    Cohen, M. B.; Inan, U. S.

    2012-08-01

    Very Low Frequency (VLF, 3-30 kHz) radio waves emitted from ground sources (transmitters and lightning) strongly impact the radiation belts, driving electron precipitation via whistler-electron gyroresonance, and contributing to the formation of the slot region. However, calculations of the global impacts of VLF waves are based on models of trans-ionospheric propagation to calculate the VLF energy reaching the magnetosphere. Limited comparisons of these models to individual satellite passes have found that the models may significantly (by >20 dB) overestimate amplitudes of ground based VLF transmitters in the magnetosphere. To form a much more complete empirical picture of VLF transmitter energy reaching the magnetosphere, we present observations of the radiation pattern from a number of ground-based VLF transmitters by averaging six years of data from the DEMETER satellite. We divide the slice at ˜700 km altitude above a transmitter into pixels and calculate the average field for all satellite passes through each pixel. There are enough data to see 25 km features in the radiation pattern, including the modal interference of the subionospheric signal mapped upwards. Using these data, we deduce the first empirical measure of the radiated power into the magnetosphere from these transmitters, for both daytime and nighttime, and at both the overhead and geomagnetically conjugate region. We find no detectable variation of signal intensity with geomagnetic conditions at low and mid latitudes (L ionospheric heating by one VLF transmitter which modifies the trans-ionospheric absorption of signals from other transmitters passing through the heated region.

  16. The magnetosphere under weak solar wind forcing

    C. J. Farrugia

    2007-02-01

    Full Text Available The Earth's magnetosphere was very strongly disturbed during the passage of the strong shock and the following interacting ejecta on 21–25 October 2001. These disturbances included two intense storms (Dst*≈−250 and −180 nT, respectively. The cessation of this activity at the start of 24 October ushered in a peculiar state of the magnetosphere which lasted for about 28 h and which we discuss in this paper. The interplanetary field was dominated by the sunward component [B=(4.29±0.77, −0.30±0.71, 0.49±0.45 nT]. We analyze global indicators of geomagnetic disturbances, polar cap precipitation, ground magnetometer records, and ionospheric convection as obtained from SuperDARN radars. The state of the magnetosphere is characterized by the following features: (i generally weak and patchy (in time low-latitude dayside reconnection or reconnection poleward of the cusps; (ii absence of substorms; (iii a monotonic recovery from the previous storm activity (Dst corrected for magnetopause currents decreasing from ~−65 to ~−35 nT, giving an unforced decreased of ~1.1 nT/h; (iv the probable absence of viscous-type interaction originating from the Kelvin-Helmholtz (KH instability; (v a cross-polar cap potential of just 20–30 kV; (vi a persistent, polar cap region containing (vii very weak, and sometimes absent, electron precipitation and no systematic inter-hemisphere asymmetry. Whereas we therefore infer the presence of a moderate amount of open flux, the convection is generally weak and patchy, which we ascribe to the lack of solar wind driver. This magnetospheric state approaches that predicted by Cowley and Lockwood (1992 but has never yet been observed.

  17. Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices

    Newell, P. T.; Gjerloev, J. W.

    2011-12-01

    A generalization of the traditional 12-station auroral electrojet (AE) index to include more than 100 magnetometer stations, SME, is an excellent predictor of global auroral power (AP), even at high cadence (1 min). We use this index, and a database of more than 53,000 substorms derived from it, covering 1980-2009, to investigate time and energy scales in the magnetosphere, during substorms and otherwise. We find, contrary to common opinion, that substorms do not have a preferred recurrence rate but instead have two distinct dynamic regimes, each following a power law. The number of substorms recurring after a time Δt, N(Δt), varies as Δt-1.19 for short times (3 hours). Other evidence also shows these distinct regimes for the magnetosphere, including a break in the power law spectra for SME at about 3 hours. The time between two consecutive substorms is only weakly correlated (r = 0.18 for isolated and r = 0.06 for recurrent) with the time until the next, suggesting quasiperiodicity is not common. However, substorms do have a preferred size, with the typical peak SME magnitude reaching 400-600 nT, but with a mean of 656 nT, corresponding to a bit less than 40 GW AP. More surprisingly, another characteristic scale exists in the magnetosphere, namely, a peak in the SME distribution around 61 nT, corresponding to about 5 GW precipitating AP. The dominant form of auroral precipitation is diffuse aurora; thus, these values are properties of the magnetotail thermal electron distribution. The characteristic 5 GW value specifically represents a preferred minimum below which the magnetotail rarely drops. The magnetotail experiences continuous loss by precipitation, so the existence of a preferred minimum implies driving that rarely disappears altogether. Finally, the distribution of SME values across all times, in accordance with earlier work on AE, is best fit by the sum of two distributions, each normal in log(SME). The lower distribution (with a 40% weighting

  18. High pH ammonia toxicity, and the search for life on the Jovian planets.

    Deal, P H; Souza, K A; Mack, H M

    1975-10-01

    Jovian plants have enviroments apparently suitable for the evolution of life, but nevertheless, present severe challenges to organisms. One such challenge arises from the presence of ammonia. Ammonia is an efficient biocide, its effect being dependent on pH as well as on concentration. The effects of pH and ammonia concentration were studied separately, where possible, on a variety of organisms, including some isolated from natural enviornments of high pH and/or ammonia concentration. Escherichia coli and Bacillus subtilis are both extremely sensitive to ammonia. An aerobic organism (growth up to pH 11.4) from an alkaline spring is more resistant, but exhibits a toxic response to ammonia at a pH much lower than its maximum for growth. The greatest ammonia resistance has been found in an unidentified organism growing at near neutral pH. Even in this case, however, survival at ammonia concentrations reasonably expected on the Jovian planets is measured in hours. This is, nevertheless, two to three orders of magnitude longer than for E. coli. Our data support the tentative conclusion that contamination of the Jovian planets with terrestrial organisms that can grow is unlikely. However, the range of toxic response noted, coupled with the observation that terrestrial life has not been exposed to high ammonia concentrations for millions of years, suggests that adaptation to greater ammonia tolerance may be possible.

  19. Jovian longitudinal asymmetry in Io-related and Europa-related auroral hot spots

    Dessler, A.J.; Chamberlain, J.W.

    1979-01-01

    Jupiter's internal magnetic field is markedly non-dipolar. We propose that Io- or Europa-generated auroral emissions (originating at the foot of either Io's or Europa's magnetic flux tube) are largely restricted to longitudes where Jupiter's ionospheric conductivity is enhanced. Trapped, energetic electrons that drift into Jupiter's atmosphere, in regions where the Jovian magnetic field is anomalously weak, produce the increased conductivity. The longitude range of enchanced auroral hot-spot emissions is thus restricted to an active sector that is determined from dekametric radio emission to lie in the northern hemisphere in the Jovian System III (1965) longitude range of 205 0 +- 30 0 . Relatively weaker auroral hot spots should occur in the southern hemisphere along the mgnetic conjugate trace covering the longitude range of 215 0 +- 55 0 . At other longitudes, the brightness of the hot spot should decrease by at least one order of magnitude. These results, with respect to both brightness and longitude, are in accord with the observations of Jovian auroral hot spots reported by Atreya et al. We show that the northern hemisphere foot of either Io's or Europa's magnetic flux tube was in the preferred longitude range (the active sector) at the time of each observation

  20. K2-60b and K2-107b. A Sub-Jovian and a Jovian Planet from the K2 Mission

    Eigmüller, Philipp; Csizmadia, Szilard; Smith, Alexis M. S.; Cabrera, Juan; Erikson, Anders [Institute of Planetary Research, German Aerospace Center, Rutherfordstrasse 2, D-12489 Berlin (Germany); Gandolfi, Davide; Barragán, Oscar [Dipartimento di Fisica, Universitá di Torino, via P. Giuria 1, I-10125 Torino (Italy); Persson, Carina M.; Fridlund, Malcolm [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Donati, Paolo; Cusano, Felice [INAF—Osservatorio Astronomico di Bologna, Via Ranzani, 1, I-40127, Bologna (Italy); Korth, Judith; Grziwa, Sascha [Rheinisches Institut für Umweltforschung an der Universität zu Köln, Aachener Strasse 209, D-50931 Köln (Germany); Prieto-Arranz, Jorge; Nespral, David; Deeg, Hans J. [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Saario, Joonas [Nordic Optical Telescope, Apartado 474, E-38700, Santa Cruz de La Palma (Spain); Cochran, William D.; Endl, Michael [Department of Astronomy and McDonald Observatory, University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States); Guenther, Eike W. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenberg (Germany); and others

    2017-03-01

    We report the characterization and independent detection of K2-60b, as well as the detection and characterization of K2-107b, two transiting hot gaseous planets from the K2 space mission. We confirm the planetary nature of the two systems and determine their fundamental parameters combining the K2 time-series data with FIES@NOT and HARPS-N@TNG spectroscopic observations. K2-60b has a radius of 0.683 ± 0.037 R {sub Jup} and a mass of 0.426 ± 0.037 M {sub Jup} and orbits a G4 V star with an orbital period of 3.00267 ± 0.00006 days. K2-107b has a radius of 1.44 ± 0.15 R {sub Jup} and a mass of 0.84 ± 0.08 M {sub Jup} and orbits an F9 IV star every 3.31392 ± 0.00002 days. K2-60b is among the few planets at the edge of the so-called “desert” of short-period sub-Jovian planets. K2-107b is a highly inflated Jovian planet orbiting an evolved star about to leave the main sequence.

  1. K2-60b and K2-107b. A Sub-Jovian and a Jovian Planet from the K2 Mission

    Eigmüller, Philipp; Csizmadia, Szilard; Smith, Alexis M. S.; Cabrera, Juan; Erikson, Anders; Gandolfi, Davide; Barragán, Oscar; Persson, Carina M.; Fridlund, Malcolm; Donati, Paolo; Cusano, Felice; Korth, Judith; Grziwa, Sascha; Prieto-Arranz, Jorge; Nespral, David; Deeg, Hans J.; Saario, Joonas; Cochran, William D.; Endl, Michael; Guenther, Eike W.

    2017-01-01

    We report the characterization and independent detection of K2-60b, as well as the detection and characterization of K2-107b, two transiting hot gaseous planets from the K2 space mission. We confirm the planetary nature of the two systems and determine their fundamental parameters combining the K2 time-series data with FIES@NOT and HARPS-N@TNG spectroscopic observations. K2-60b has a radius of 0.683 ± 0.037 R Jup and a mass of 0.426 ± 0.037 M Jup and orbits a G4 V star with an orbital period of 3.00267 ± 0.00006 days. K2-107b has a radius of 1.44 ± 0.15 R Jup and a mass of 0.84 ± 0.08 M Jup and orbits an F9 IV star every 3.31392 ± 0.00002 days. K2-60b is among the few planets at the edge of the so-called “desert” of short-period sub-Jovian planets. K2-107b is a highly inflated Jovian planet orbiting an evolved star about to leave the main sequence.

  2. The selective Aurora B kinase inhibitor AZD1152 is a potential new treatment for multiple myeloma.

    Evans, Robert P; Naber, Claudia; Steffler, Tara; Checkland, Tamara; Maxwell, Christopher A; Keats, Jonathan J; Belch, Andrew R; Pilarski, Linda M; Lai, Raymond; Reiman, Tony

    2008-02-01

    Aurora kinases are potential targets for cancer therapy. Previous studies have validated Aurora kinase A as a therapeutic target in multiple myeloma (MM), and have demonstrated in vitro anti-myeloma effects of small molecule Aurora kinase inhibitors that inhibit both Aurora A and B. This study demonstrated that Aurora B kinase was strongly expressed in myeloma cell lines and primary plasma cells. The selective Aurora B inhibitor AZD1152-induced apoptotic death in myeloma cell lines at nanomolar concentrations, with a cell cycle phenotype consistent with that reported previously for Aurora B inhibition. In some cases, AZD1152 in combination with dexamethasone showed increased anti-myeloma activity compared with the use of either agent alone. AZD1152 was active against sorted CD138(+) BM plasma cells from myeloma patients but also, as expected, was toxic to CD138(-) marrow cells from the same patients. In a murine myeloma xenograft model, AZD1152-inhibited tumour growth at well-tolerated doses and induced cell death in established tumours, with associated mild, transient leucopenia. AZD1152 shows promise in these preclinical studies as a novel treatment for MM.

  3. Survivin inhibits anti-growth effect of p53 activated by aurora B

    Jung, Ji-Eun; Kim, Tae-Kyung; Lee, Joong-Seob; Oh, Se-Yeong; Kwak, Sungwook; Jin, Xun; Sohn, Jin-Young; Song, Min-Keun; Sohn, Young-Woo; Lee, Soo-Yeon; Pian, Xumin; Lee, Jang-Bo; Chung, Yong Gu; Choi, Young Ki; You, Seungkwon; Kim, Hyunggee

    2005-01-01

    Genomic instability and apoptosis evasion are hallmarks of cancer, but the molecular mechanisms governing these processes remain elusive. Here, we found that survivin, a member of the apoptosis-inhibiting gene family, and aurora B kinase, a chromosomal passenger protein, were co-overexpressed in the various glioblastoma cell lines and tumors. Notably, exogenous introduction of the aurora B in human BJ cells was shown to decrease cell growth and increase the senescence-associated β-galactosidase activity by activation of p53 tumor suppressor. However, aurora B overexpression failed to inhibit cell proliferation in BJ and U87MG cells transduced with dominant-negative p53 as well as in p53 -/- mouse astrocytes. Aurora B was shown to increase centrosome amplification in the p53 -/- astrocytes. Survivin was shown to induce anchorage-independent growth and inhibit anti-proliferation and drug-sensitive apoptosis caused by aurora B. Overexpression of both survivin and aurora B further accelerated the proliferation of BJ cells. Taken together, the present study indicates that survivin should accelerate tumorigenesis by inhibiting the anti-proliferative effect of p53 tumor suppressor that is activated by aurora B in normal and glioblastoma cells containing intact p53

  4. Targeting Aurora B to the equatorial cortex by MKlp2 is required for cytokinesis.

    Mayumi Kitagawa

    Full Text Available Although Aurora B is important in cleavage furrow ingression and completion during cytokinesis, the mechanism by which kinase activity is targeted to the cleavage furrow and the molecule(s responsible for this process have remained elusive. Here, we demonstrate that an essential mitotic kinesin MKlp2 requires myosin-II for its localization to the equatorial cortex, and this event is required to recruit Aurora B to the equatorial cortex in mammalian cells. This recruitment event is also required to promote the highly focused accumulation of active RhoA at the equatorial cortex and stable ingression of the cleavage furrow in bipolar cytokinesis. Specifically, in drug-induced monopolar cytokinesis, targeting Aurora B to the cell cortex by MKlp2 is essential for cell polarization and furrow formation. Once the furrow has formed, MKlp2 further recruits Aurora B to the growing furrow. This process together with continuous Aurora B kinase activity at the growing furrow is essential for stable furrow propagation and completion. In contrast, a MKlp2 mutant defective in binding myosin-II does not recruit Aurora B to the cell cortex and does not promote furrow formation during monopolar cytokinesis. This mutant is also defective in maintaining the ingressing furrow during bipolar cytokinesis. Together, these findings reveal that targeting Aurora B to the cell cortex (or the equatorial cortex by MKlp2 is essential for the maintenance of the ingressing furrow for successful cytokinesis.

  5. A SUMOylation Motif in Aurora-A: Implications for Spindle Dynamics and Oncogenesis

    Pérez de Castro, Ignacio; Aguirre-Portolés, Cristina [Molecular Oncology Programme, Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid (Spain); Martin, Benedicte [CNRS-UMR 6061, Institut de Génétique et Développement de Rennes, IFR 140 GFAS, Faculté de Médecine, Université Rennes 1, Rennes (France); Fernández-Miranda, Gonzalo [Molecular Oncology Programme, Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid (Spain); Klotzbucher, Andrea; Kubbutat, Michael H. G. [ProQinase GmBH, Freiburg (Germany); Megías, Diego [Confocal Microscopy Core Unit, Centro Nacional de Investigaciones Oncológicas, Madrid (Spain); Arlot-Bonnemains, Yannick [CNRS-UMR 6061, Institut de Génétique et Développement de Rennes, IFR 140 GFAS, Faculté de Médecine, Université Rennes 1, Rennes (France); Malumbres, Marcos, E-mail: mmm@cnio.es, E-mail: iperez@cnio.es [Molecular Oncology Programme, Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid (Spain)

    2011-12-14

    Aurora-A is a serine/threonine kinase that plays critical roles in centrosome maturation, spindle dynamics, and chromosome orientation and it is frequently over-expressed in human cancers. In this work, we show that Aurora-A interacts with the SUMO-conjugating enzyme UBC9 and co-localizes with SUMO1 in mitotic cells. Aurora-A can be SUMOylated in vitro and in vivo. Mutation of the highly conserved SUMOylation residue lysine 249 significantly disrupts Aurora-A SUMOylation and mitotic defects characterized by defective and multipolar spindles ensue. The Aurora-A{sup K249R} mutant has normal kinase activity but displays altered dynamics at the mitotic spindle. In addition, ectopic expression of the Aurora-A{sup K249R} mutant results in a significant increase in susceptibility to malignant transformation induced by the Ras oncogene. These data suggest that modification by SUMO residues may control Aurora-A function at the spindle and that deficiency of SUMOylation of this kinase may have important implications for tumor development.

  6. Pick-Up Ion Instabilities at Planetary Magnetospheres

    Strangeway, Robert J.; Sharber, James (Technical Monitor)

    2001-01-01

    This effort involved the analysis of low frequency waves as observed by the Galileo spacecraft near the Galilean moon, Io. Io is a significant source of material, especially SO2, and various products of dissociation, and further these atoms and molecules are readily ionized. The initial velocity of the ions is essentially that of the neutral species, i.e., the Keplerian velocity. The plasma, on the other hand is co-rotating, and there is a differential flow of the order 57 km/s between the plasma and the neutral particles. Thus pick-up ion instabilities are Rely to occur within the Jovian magnetosphere. Indeed, magnetometer observations from the Galileo spacecraft clearly show ion cyclotron waves that have been identified with a large variety of plasma species, such as O+, S++ (which has the same gyro-frequency as O+), S+, and SO2+. Typically, however, the dominant frequency is near the SO2+ gyro-frequency. The research effort was originally planned to be a team effort between Robert J. Strangeway as the Principal Investigator, and Debbie Huddleston, who was an Assistant Research Geophysicist at UCLA. Unfortunately, Dr. Huddleston took a position within Industry. The effort was therefore descoped, and Dr. Strangeway instead pursued a collaboration with Dr. Xochitl Blanco-Cano, of the Instituto de Geofisica, Universidad Nacional Autonoma de Mexico. This has proved to be a productive collaboration, with several papers and publications arising out of the effort. The magnetic field oscillations near lo generally fall into two types: ion cyclotron waves, with frequencies near an ion gyro-frequency, and lower frequency mirror-mode waves. The ion cyclotron waves are mainly transverse, and frequently propagate along the ambient magnetic field. The mirror-mode waves are compressional waves, and they have essentially zero frequency in the plasma rest frame. One of the purposes of our investigation is to understand what controls the types of wave modes that occur, since both

  7. Simulations of the neutral structure within the dusk side aurora

    H. F. Parish

    2006-10-01

    Full Text Available Observations of neutral winds from rocket release experiments within the premidnight and postmidnight substorm recovery phase aurora, show very large E-region neutral winds of several hundred m/s, where winds measured on the dusk side are even larger than those on the dawn side. These large winds are also associated with strong shears, and there is evidence that some of the regions below these shears may be unstable. The mechanisms which generate this strong vertical structure are not well understood. It is also not known whether the acceleration conditions in the pre and post midnight sectors of the aurora may produce significantly different neutral responses on the dawn and dusk sides. Simulations have been performed using a three-dimensional high resolution limited area thermosphere model to try to understand the neutral structure within the dawn and dusk side aurora. When simulations are performed using auroral forcing alone, for equivalent conditions within the dawn and dusk sectors, differences are found in the simulated response on each side. When measured values of auroral forcing parameters, and background winds and tides consistent with recent observations, are used as model inputs, some of the main features of the zonal and meridional wind observations are reproduced in the simulations, but the magnitude of the peak zonal wind around 140 km tends to be too small and the maximum meridional wind around 130 km is overestimated. The winds above 120 km altitude are found to be sensitive to changes in electric fields and ion densities, as was the case for the dawn side, but the effects of background winds and tides on the magnitudes of the winds above 120 km are found to be relatively small on the dusk side. The structure below 120 km appears to be related mainly to background winds and tides rather than auroral forcing, as was found in earlier studies on the dawn side, although the peak magnitudes of simulated wind variations in the 100 to

  8. The role of scientific ballooning for exploration of the magnetosphere

    Block, L.P.; Lazutin, L.L.; Riedler, W.

    1984-11-01

    The magnetosphere is explored in situ by satellites, but measurements near the low altitude magnetospheric boundary by rockets, balloons and groundbased instruments play a very significant role. The geomagnetic field provides a frame with anisotropic wave and particle propagation effects, enabling remote sensing of the distant magnetosphere by means of balloon-borne and groundbased instruments. Examples will be given of successful studies, with coordinated satellite and balloon observations, of substorm, pulsation and other phenomena propagating both along and across the geomagnetic field. Continued efforts with sophisticated balloon-borne instrumentations should contribute substantially to our understanding of magnetospheric physics. (Author)

  9. Beam propagation considerations in the Aurora laser system

    Rosoche, L.A.; Mc Leod, J.; Hanlon, J.A.

    1987-01-01

    Aurora is a high-power KrF laser system now being constructed for inertial confinement fusion (ICF) studies. It will use optical angular multiplexing and serial amplification by electron-beam-driven KrF amplifiers to deliver a stacked, multikilojoule 5-ns-duration laser pulse to ICF targets. The requirements of angular multiplexing KrF lasers at the multikilojoule level dictate path lengths on the order of 1 km. The inherent complicated path crossings produced by angular multiplexing and pulse stacking do not allow isolation of individual beam lines, so the optical quality of the long beam paths must be controlled. Propagation of the 248-nm light beams over long paths in air is affected by scattering, absorption thermal gradients and turbulence, beam alignment, and control and optical component figure errors

  10. Environmental impact assessment for the Syncrude Aurora Mine

    1996-01-01

    Syncrude Canada has applied to the Alberta Energy and Utilities Board (AEUB) and Alberta Environmental Protection for approval to construct and operate the Aurora Mine, its new oil sands mine and associated bitumen facilities located 70 km northeast of Fort McMurray, Alberta. Volume 1, the principal volume in the set of 31 volumes, includes the detailed assessment of environmental effects on air quality, noise, surface water flows, surface water quality, groundwater flow and quality, geology, terrain and soils overburden, fisheries and aquatic resources, vegetation and resource use, wildlife population and habitat, human health and public safety. Baseline data for each of the above areas are contained in separate volumes. 400 refs., 162 tabs., 190 figs

  11. The charge spectrum of positive ions in a hydrogen aurora

    Lynch, J.; Pulliam, D.; Leach, R.; Scherb, F.

    1976-01-01

    An auroral ion charge spectrometer was flown into a hydrogen aurora on a Javelin sounding rocket launched from Churchill, Manitoba. The instrument contained an electrostatic analyzer which selected particles with incident energy per unit charge up to 20 keV/charge and an 80-kV power supply which accelerated these ions onto an array of solid state detectors. Ions tentatively identified as H(+), He(+2), and O(+) were detected from 225 to 820 km in altitude. The experiment did not discriminate between H(+) and He(+), or between O(+), N(+), and C(+). Upper limits of highly charged heavy ion abundances have been set at 20% of the He(+2) and 0.15% of the H(+). It is concluded that both terrestrial and solar wind sources play significant roles in auroral ion precipitation.

  12. Aurora A kinase RNAi and small molecule inhibition of Aurora kinases with VE-465 induce apoptotic death in multiple myeloma cells.

    Evans, Robert; Naber, Claudia; Steffler, Tara; Checkland, Tamara; Keats, Jonathan; Maxwell, Christopher; Perry, Troy; Chau, Heidi; Belch, Andrew; Pilarski, Linda; Reiman, Tony

    2008-03-01

    The expression of RHAMM and other centrosome-associated genes are known to correlate with the extent of centrosome amplification in multiple myeloma, and with poor prognosis. RHAMM has a significant interaction with TPX2, a protein which regulates the localization and action of Aurora A kinase (AURKA) at the spindle poles. AURKA is known to be a central determinant of centrosome and spindle function and is a target for cancer therapy. Given these observations, we investigated the role of Aurora kinases as therapeutic targets in myeloma. Here we report that AURKA is expressed ubiquitously in myeloma, to varying degrees, in both cell lines and patients' bone marrow plasma cells. siRNA targeting AURKA induces apoptotic cell death in myeloma cell lines. The Aurora kinase inhibitor VE-465 also induces apoptosis and death in myeloma cell lines and primary myeloma plasma cells. The combination of VE-465 and dexamethasone improves cell killing compared with the use of either agent alone, even in cells resistant to the single agents. The phenotype of myeloma cells treated with VE-465 is consistent with published reports on the effects of Aurora kinase inhibition. Aurora kinase inhibitors should be pursued as potential treatments for myeloma.

  13. A survey of solar wind conditions at 5 AU: A tool for interpreting solar wind-magnetosphere interactions at Jupiter

    Robert Wilkes Ebert

    2014-09-01

    Full Text Available We examine Ulysses solar wind and interplanetary magnetic field (IMF observations at 5 AU for two ~13 month intervals during the rising and declining phases of solar cycle 23 and the predicted response of the Jovian magnetosphere during these times. The declining phase solar wind, composed primarily of corotating interaction regions and high-speed streams, was, on average, faster, hotter, less dense, and more Alfvénic relative to the rising phase solar wind, composed mainly of slow wind and interplanetary coronal mass ejections. Interestingly, none of solar wind and IMF distributions reported here were bimodal, a feature used to explain the bimodal distribution of bow shock and magnetopause standoff distances observed at Jupiter. Instead, many of these distributions had extended, non-Gaussian tails that resulted in large standard deviations and much larger mean over median values. The distribution of predicted Jupiter bow shock and magnetopause standoff distances during these intervals were also not bimodal, the mean/median values being larger during the declining phase by ~1 – 4%. These results provide data-derived solar wind and IMF boundary conditions at 5 AU for models aimed at studying solar wind-magnetosphere interactions at Jupiter and can support the science investigations of upcoming Jupiter system missions. Here, we provide expectations for Juno, which is scheduled to arrive at Jupiter in July 2016. Accounting for the long-term decline in solar wind dynamic pressure reported by McComas et al. (2013, Jupiter’s bow shock and magnetopause is expected to be at least 8 – 12% further from Jupiter, if these trends continue.

  14. A survey of solar wind conditions at 5 AU: a tool for interpreting solar wind-magnetosphere interactions at Jupiter

    Ebert, Robert W. [Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX (United States); Bagenal, Fran [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO (United States); McComas, David J. [Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX (United States); Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX (United States); Fowler, Christopher M., E-mail: rebert@swri.edu [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO (United States)

    2014-09-19

    We examine Ulysses solar wind and interplanetary magnetic field (IMF) observations at 5 AU for two ~13 month intervals during the rising and declining phases of solar cycle 23 and the predicted response of the Jovian magnetosphere during these times. The declining phase solar wind, composed primarily of corotating interaction regions and high-speed streams, was, on average, faster, hotter, less dense, and more Alfvénic relative to the rising phase solar wind, composed mainly of slow wind and interplanetary coronal mass ejections. Interestingly, none of solar wind and IMF distributions reported here were bimodal, a feature used to explain the bimodal distribution of bow shock and magnetopause standoff distances observed at Jupiter. Instead, many of these distributions had extended, non-Gaussian tails that resulted in large standard deviations and much larger mean over median values. The distribution of predicted Jupiter bow shock and magnetopause standoff distances during these intervals were also not bimodal, the mean/median values being larger during the declining phase by ~1–4%. These results provide data-derived solar wind and IMF boundary conditions at 5 AU for models aimed at studying solar wind-magnetosphere interactions at Jupiter and can support the science investigations of upcoming Jupiter system missions. Here, we provide expectations for Juno, which is scheduled to arrive at Jupiter in July 2016. Accounting for the long-term decline in solar wind dynamic pressure reported by McComas et al. (2013a), Jupiter's bow shock and magnetopause is expected to be at least 8–12% further from Jupiter, if these trends continue.

  15. Magnetic field in the magnetosphere. Numerical simulation of the magnetospheric magnetic field

    Mal'kov, M.V.

    1993-01-01

    The last version of the empirical model of the magnetospheric magnetic field (Tsyganenko, 1989) is considered. Total number of data used for construction of the model contains 36682 average vector values of the field. This number of data is obtained by satellite measurements at distances of r=4-66 R e (R e is the Earth radius). 5 figs., 2 tabs

  16. Actions of magnetospheres on planetary atmospheres

    Hultqvist, Bengt.

    1989-12-01

    Planet Earth is rather special in terms of transfer of magnetospheric energy to the atmosphere (apart from Jupiter, which is extreme in almost all respects). The auroral particle energy input rate to the atmosphere per unit area, and therefore the resulting auroral emission intensity, is second only to that of Jupiter. The contribution of the Joule heating to the heating of the upper atmosphere, measured in terms of the energetic particle precipitation power, is probably larger on Earth than on all the other planets, possibly with the exception of Uranus (and perhaps Neptune, which we know nothing of when this is written). For all those planets which have a corotating plasmasphere extending to the magnetopause, the Joule heating power is small compared with the precipitating particle power. The extremely successful Pioneer and Voyager missions have provided us with most impressive sets of data from the outer planets and Phobos has recently added unique new data from Mars. Still, the conclusion that the observational basis for our understanding of the physics of the magnetosphere-atmosphere interactions at all the planets other than Earth is very limited, is a self-evident one. Even at Earth many aspects of this interaction are frontline areas of research. The grand tour of the Voyagers has demonstrated very clearly how different the magnetospheres and atmospheres of the various planets are and the very high degree of complexity of the plasma systems around the planets. Most questions of physics are still unanswered; those related to source and sink processes of the plasma and energetic particles being one set of examples. The Galileo and Cassini-Huygens missions will certainly contribute in very important ways to the answering of many open questions. (147 refs.)

  17. Origins Of Magnetospheric Physics An Expanded Edition

    Van Allen, James A

    2004-01-01

    Early in 1958, instruments on the space satellites Explorer I and Explorer III revealed the presence of radiation belts, enormous populations of energetic particles trapped in the magnetic field of the earth. Originally published in 1983 but long out of print until now, Origins of Magnetospheric Physics tells the story of this dramatic and hugely transformative period in scientific and Cold War history. Writing in an accessible style and drawing on personal journals, correspondence, published papers, and the recollections of colleagues, James Van Allen documents a trail-blazing era in space hi

  18. The art of mapping the magnetosphere

    Stern, D.P.

    1994-01-01

    A comprehensive review is presented of the mathematical methods used to represent magnetic fields in the Earth's magnetosphere, of the way existing data-based models use these methods and of the associated problems and concepts. The magnetic field has five main components: the internal field, the magnetopause, the ring current, the tail and Birkeland currents. Methods of representing separately each of these are discussed, as is the deformation of magnetic fields; Appendix B traces the connection between deformations and the Cauchy integral. A summary section lists the uses of data-based models and their likely evolution, and Appendix A supplements the text with a set of problems. 55 refs., 20 figs

  19. Bcl-XL represents a druggable molecular vulnerability during aurora B inhibitor-mediated polyploidization.

    Shah, O Jameel; Lin, Xiaoyu; Li, Leiming; Huang, Xiaoli; Li, Junling; Anderson, Mark G; Tang, Hua; Rodriguez, Luis E; Warder, Scott E; McLoughlin, Shaun; Chen, Jun; Palma, Joann; Glaser, Keith B; Donawho, Cherrie K; Fesik, Stephen W; Shen, Yu

    2010-07-13

    Aurora kinase B inhibitors induce apoptosis secondary to polyploidization and have entered clinical trials as an emerging class of neocytotoxic chemotherapeutics. We demonstrate here that polyploidization neutralizes Mcl-1 function, rendering cancer cells exquisitely dependent on Bcl-XL/-2. This "addiction" can be exploited therapeutically by combining aurora kinase inhibitors and the orally bioavailable BH3 mimetic, ABT-263, which inhibits Bcl-XL, Bcl-2, and Bcl-w. The combination of ABT-263 with aurora B inhibitors produces a synergistic loss of viability in a range of cell lines of divergent tumor origin and exhibits more sustained tumor growth inhibition in vivo compared with aurora B inhibitor monotherapy. These data demonstrate that Bcl-XL/-2 is necessary to support viability during polyploidization in a variety of tumor models and represents a druggable molecular vulnerability with potential therapeutic utility.

  20. Optical aurora detectors: using natural optics to motivate education and outreach

    Shaw, Joseph A.; Way, Jesse M.; Pust, Nathan J.; Nugent, Paul W.; Coate, Hans; Balster, Daniel

    2009-06-01

    Natural optical phenomena enjoy a level of interest sufficiently high among a wide array of people to provide ideal education and outreach opportunities. The aurora promotes particularly high interest, perhaps because of its relative rarity in the areas of the world where most people live. A project is being conducted at Montana State University to use common interest and curiosity about auroras to motivate learning and outreach through the design and deployment of optical sensor systems that detect the presence of an auroral display and send cell phone messages to alert interested people. Project participants learn about the physics and optics of the aurora, basic principles of optical system design, radiometric calculations and calibrations, electro-optical detectors, electronics, embedded computer systems, and computer software. The project is moving into a stage where it will provide greatly expanded outreach and education opportunities as optical aurora detector kits are created and disbursed to colleges around our region.

  1. E region neutral winds in the postmidnight diffuse aurora during the atmospheric response in aurora 1 rocket campaign

    Brinkman, D.G.; Walterscheid, R.L.; Lyons, L.R.

    1995-01-01

    Measured E region neutral winds from the Atmospheric Response in Aurora (ARIA 1) rocket campaign are compared with winds predicted by a high-resolution nonhydrostatic dynamical thermosphere model. The ARIA 1 rockets were launched into the postmidnight diffuse aurora during the recovery phase of a substorm. Simulations have shown that electrodynamical coupling between the auroral ionosphere and the thermosphere was expected to be strong during active diffuse auroral conditions. This is the first time that simulations using the time history of detailed specifications of the magnitude and latitudinal variation of the auroral forcing based on measurements have been compared to simultaneous wind measurements. Model inputs included electron densities derived from ground-based airglow measurements, precipitating electron fluxes measured by the rocket, electron densities measured on the rocket, electric fields derived from magnetometer and satellite ion drift measurements, and large-scale background winds from a thermospheric general circulation model. Our model predicted a strong jet of eastward winds at E region heights. A comparison between model predicted and observed winds showed modest agreement. Above 135 km the model predicted zonal winds with the correct sense, the correct profile shape, and the correct altitude of the peak wind. However, it overpredicted the magnitude of the eastward winds by more than a factor or 2. For the meridional winds the model predicted the general sense of the winds but was unable to predict the structure or strength of the winds seen in the observations. Uncertainties in the magnitude and latitudinal structure of the electric field and in the magnitude of the background winds are the most likely sources of error contributing to the differences between model and observed winds. Between 110 and 135 km the agreement between the model and observations was poor because of a large unmodeled jetlike feature in the observed winds

  2. Atmospheric response in aurora experiment: Observations of E and F region neutral winds in a region of postmidnight diffuse aurora

    Larsen, M.F.; Marshall, T.R.; Mikkelsen, I.S.

    1995-01-01

    The goal of the Atmospheric Response in Aurora (ARIA) experiment carried out at Poker Flat, Alaska, on March 3, 1992, was to determine the response of the neutral atmosphere to the long-lived, large-scale forcing that is characteristic of the diffuse aurora in the postmidnight sector. A combination of chemical release rocket wind measurements, intrumented rocket composition measurements, and ground-based optical measurements were used to characterize the response of the neutral atmosphere. The rocket measurements were made at the end of a 90-min period of strong Joule heating. We focus on the neutral wind measurements made with the rocket. The forcing was determined by running the assimilated mapping of ionospheric electrodynamics (AMIE) analysis procedure developed at the National Center for Atmospheric Research. The winds expected at the latitude and longitude of the experiment were calculated using the spectral thermospheric general circulation model developed at the Danish Meteorological Institute. Comparisons of the observations and the model suggest that the neutral winds responded strongly in two height ranges. An eastward wind perturbation of ∼100 m s -1 developed between 140 and 200 km altitude with a peak near 160 km. A southwestward wind with peak magnitude of ∼150 m s -1 developed near 115 km altitude. The large amplitude winds at the lower altitude are particularly surprising. They appear to be associated with the upward propagating semidiurnal tide. However, the amplitude is much larger than predicted by any of the tidal models, and the shear found just below the peak in the winds was nomially unstable with a Richardson number of ∼0.08. 17 refs., 12 figs

  3. Detection of aurorae in light time of the day at rocket investigations of atmospheric radiation

    Khokhlov, V.N.

    1996-01-01

    Results of rocket observations of aurorae in light time of the day were analyzed. Characteristic features of Rayleigh scattering, day airglow, solar radiation, scattered in the device and near-rocket glow were considered. The contribution of aurorae in the light time of the day was determined on the basis of analyzing results of rocket experiments, laboratory measurements and theoretical simulation. 4 refs., 2 figs

  4. Aurorae between miracle and reality. History of culture and physics of a celestial phenomenon

    Schlegel, Birgit; Schlegel, Kristian

    2011-01-01

    Since the 18th century natural-researchers have searched for the natural-scientific explanations for the generation of aurorae, but just in ther 20th century the puzzle was completely solved. Facts from physics, geophysics, and space research, which are in connection with the generation of aurorae, are scientifically precisely explained in a generally understandable text up to the latest researches. Numerous pictures, photos, graphics, text extracts, as well as statements on the literature and on internet pages supplement the text.

  5. Phosphorylation of CPAP by Aurora-A Maintains Spindle Pole Integrity during Mitosis

    En-Ju Chou; Liang-Yi Hung; Chieh-Ju C. Tang; Wen-Bin Hsu; Hsin-Yi Wu; Pao-Chi Liao; Tang K. Tang

    2016-01-01

    CPAP is required for centriole elongation during S/G2 phase, but the role of CPAP in mitosis is incompletely understood. Here, we show that CPAP maintains spindle pole integrity through its phosphorylation by Aurora-A during mitosis. Depletion of CPAP induced a prolonged delay in mitosis, pericentriolar material (PCM) dispersion, and multiple mitotic abnormalities. Further studies demonstrated that CPAP directly interacts with and is phosphorylated by Aurora-A at serine 467 during mitosis. In...

  6. The evening diffuse radio aurora, field-aligned currents and particle precipitation

    Unwin, R.S.

    1980-01-01

    The relationship of the afternoon/evening diffuse radio aurora, proton and electron precipitation and field-aligned currents is studied with data from the auroral radar at Slope Point, New Zealand, and the ISIS 2 satellite. It is shown that there is a very close association between the radio aurora and (primarily downward) field-aligned currents, which confirms and extends previous work, but that there is no clear relation with either proton or electron precipitation. (author)

  7. A determination of the L dependence of the radial diffusion coefficient for protons in Jupiter's inner magnetosphere

    Thomsen, M. F.; Goertz, C. K.; Van Allen, J. A.

    1977-01-01

    In a previous paper (Thomsen et al., 1977), a technique was proposed for estimating the radial diffusion coefficient (n) in the inner magnetosphere of Jupiter from the observations of the sweeping effect of the inner Jovian satellites on the fluxes of the energetic charged particles. The present paper extends this technique to permit the unique identification of the parameters D sub O and n, where the diffusion coefficient is assumed to be of the form D = D sub O L to the nth. The derived value of D sub O depends directly on assumptions regarding the nature and efficiency of the loss mechanism operating on the particles, while the value of n depends only on the assumed width of the loss region. The extended technique is applied to the University of Iowa Pioneer 11 proton data, leading to values of n of about O and D(6) of about 3 x 10 to the -8th (R sub J)-squared/sec, when satellite sweepup losses are assumed to be the only loss operating on the protons. The small value of n is strong evidence that the radial diffusion is driven by ionospheric winds.

  8. Historical space weather monitoring of prolonged aurora activities in Japan and in China

    Kataoka, Ryuho; Isobe, Hiroaki; Hayakawa, Hisashi; Tamazawa, Harufumi; Kawamura, Akito Davis; Miyahara, Hiroko; Iwahashi, Kiyomi; Yamamoto, Kazuaki; Takei, Masako; Terashima, Tsuneyo; Suzuki, Hidehiko; Fujiwara, Yasunori; Nakamura, Takuji

    2017-02-01

    Great magnetic storms are recorded as aurora sightings in historical documents. The earliest known example of "prolonged" aurora sightings, with aurora persistent for two or more nights within a 7 day interval at low latitudes, in Japan was documented on 21-23 February 1204 in Meigetsuki, when a big sunspot was also recorded in China. We have searched for prolonged events over the 600 year interval since 620 in Japan based on the catalogue of Kanda and over the 700 year interval since 581 in China based on the catalogues of Tamazawa et al. (2017) and Hayakawa et al. (2015). Before the Meigetsuki event, a significant fraction of the 200 possible aurora sightings in Sòng dynasty (960-1279) of China was detected at least twice within a 7 day interval and sometimes recurred with approximately the solar rotation period of 27 days. The majority of prolonged aurora activity events occurred around the maximum phase of solar cycles rather than around the minimum, as estimated from the 14C analysis of tree rings. They were not reported during the Oort Minimum (1010-1050). We hypothesize that the prolonged aurora sightings are associated with great magnetic storms resulting from multiple coronal mass ejections from the same active region. The historical documents therefore provide useful information to support estimation of great magnetic storm frequency, which are often associated with power outages and other societal concerns.

  9. Aurora Kinase A Promotes AR Degradation via the E3 Ligase CHIP.

    Sarkar, Sukumar; Brautigan, David L; Larner, James M

    2017-08-01

    Reducing the levels of the androgen receptor (AR) is one of the most viable approaches to combat castration-resistant prostate cancer. Previously, we observed that proteasomal-dependent degradation of AR in response to 2-methoxyestradiol (2-ME) depends primarily on the E3 ligase C-terminus of HSP70-interacting protein (STUB1/CHIP). Here, 2-ME stimulation activates CHIP by phosphorylation via Aurora kinase A (AURKA). Aurora A kinase inhibitors and RNAi knockdown of Aurora A transcript selectively blocked CHIP phosphorylation and AR degradation. Aurora A kinase is activated by 2-ME in the S-phase as well as during mitosis, and phosphorylates CHIP at S273. Prostate cancer cells expressing an S273A mutant of CHIP have attenuated AR degradation upon 2-ME treatment compared with cells expressing wild-type CHIP, supporting the idea that CHIP phosphorylation by Aurora A activates its E3 ligase activity for the AR. These results reveal a novel 2-ME→Aurora A→CHIP→AR pathway that promotes AR degradation via the proteasome that may offer novel therapeutic opportunities for prostate cancer. Mol Cancer Res; 15(8); 1063-72. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. Solar wind conditions for a quiet magnetosphere

    Kerns, K.J.; Gussenhoven, M.S.

    1990-01-01

    The conditions of the solar wind that lead to a quiet magnetosphere are determined under the assumption that the quiet or baseline magnetosphere can be identified by prolonged periods of low values of the am index. The authors analyzed solar wind data from 1978 to 1984 (7 years) during periods in which am ≤ 3 nT to identify those solar wind parameters that deviate significantly from average values. Parallel studies were also performed for prolonged periods of Kp = 0, 0+ and AE z ) show distinctive variations from average values. They independently varied these solar wind parameters and the length of time the conditions must persist to minimize am. This was done with the additional requirement that the conditions yield a reasonable number of occurrences (5% of the data set). The resulting baseline conditions are V ≤ 390 km/s; 180 degree - arctan |B y /B z | ≤ 101 degree, when b z ≤ 0 (no restriction on B z positive); B ≤ 6.5 nT; and persistence of these conditions for at least 5 hours. Minimizing the am index does not require a clear upper limit on the value of B z as might be anticipated from the work of Gussenhoven (1988) and Berthelier (1980). Apparently, this is a result of the requirement that the conditions must occur 5% of the time. When the requirement is lowered to 1% occurrence, an upper limit to B z emerges

  11. Fast Plasma Investigation for Magnetospheric Multiscale

    Pollock, C.; Moore, T.; Coffey, V.; Dorelli J.; Giles, B.; Adrian, M.; Chandler, M.; Duncan, C.; Figueroa-Vinas, A.; Garcia, K.; hide

    2016-01-01

    The Fast Plasma Investigation (FPI) was developed for flight on the Magnetospheric Multiscale (MMS) mission to measure the differential directional flux of magnetospheric electrons and ions with unprecedented time resolution to resolve kinetic-scale plasma dynamics. This increased resolution has been accomplished by placing four dual 180-degree top hat spectrometers for electrons and four dual 180-degree top hat spectrometers for ions around the periphery of each of four MMS spacecraft. Using electrostatic field-of-view deflection, the eight spectrometers for each species together provide 4pi-sr-field-of-view with, at worst, 11.25-degree sample spacing. Energy/charge sampling is provided by swept electrostatic energy/charge selection over the range from 10 eVq to 30000 eVq. The eight dual spectrometers on each spacecraft are controlled and interrogated by a single block redundant Instrument Data Processing Unit, which in turn interfaces to the observatory's Instrument Suite Central Instrument Data processor. This paper described the design of FPI, its ground and in-flight calibration, its operational concept, and its data products.

  12. Quantitative magnetotail characteristics of different magnetospheric states

    M. A. Shukhtina

    2004-03-01

    Full Text Available Quantitative relationships allowing one to compute the lobe magnetic field, flaring angle and tail radius, and to evaluate magnetic flux based on solar wind/IMF parameters and spacecraft position are obtained for the middle magnetotail, X=(–15,–35RE, using 3.5 years of simultaneous Geotail and Wind spacecraft observations. For the first time it was done separately for different states of magnetotail including the substorm onset (SO epoch, the steady magnetospheric convection (SMC and quiet periods (Q. In the explored distance range the magnetotail parameters appeared to be similar (within the error bar for Q and SMC states, whereas at SO their values are considerably larger. In particular, the tail radius is larger by 1–3 RE at substorm onset than during Q and SMC states, for which the radius value is close to previous magnetopause model values. The calculated lobe magnetic flux value at substorm onset is ~1GWb, exceeding that at Q (SMC states by ~50%. The model magnetic flux values at substorm onset and SMC show little dependence on the solar wind dynamic pressure and distance in the tail, so the magnetic flux value can serve as an important discriminator of the state of the middle magnetotail. Key words. Magnetospheric physics (solar windmagnetosphere- interactions, magnetotail, storms and substorms

  13. Quantitative magnetotail characteristics of different magnetospheric states

    M. A. Shukhtina

    2004-03-01

    Full Text Available Quantitative relationships allowing one to compute the lobe magnetic field, flaring angle and tail radius, and to evaluate magnetic flux based on solar wind/IMF parameters and spacecraft position are obtained for the middle magnetotail, X=(–15,–35RE, using 3.5 years of simultaneous Geotail and Wind spacecraft observations. For the first time it was done separately for different states of magnetotail including the substorm onset (SO epoch, the steady magnetospheric convection (SMC and quiet periods (Q. In the explored distance range the magnetotail parameters appeared to be similar (within the error bar for Q and SMC states, whereas at SO their values are considerably larger. In particular, the tail radius is larger by 1–3 RE at substorm onset than during Q and SMC states, for which the radius value is close to previous magnetopause model values. The calculated lobe magnetic flux value at substorm onset is ~1GWb, exceeding that at Q (SMC states by ~50%. The model magnetic flux values at substorm onset and SMC show little dependence on the solar wind dynamic pressure and distance in the tail, so the magnetic flux value can serve as an important discriminator of the state of the middle magnetotail.

    Key words. Magnetospheric physics (solar windmagnetosphere- interactions, magnetotail, storms and substorms

  14. Cosmogony as an extrapolation of magnetospheric research

    Alfven, H.

    1984-03-01

    A theory of the origin and evolution of the Solar System (Alfven and Arrhenius, 1975: 1976) which considered electromagnetic forces and plasma effects is revised in the light of new information supplied by space research. In situ measurements in the magnetospheres and solar wind have changed our views of basic properties of cosmic plasmas. These results can be extrapolated both outwards in space, to interstellar clouds, backwards in time, to the formation of the solar system. The first extrapolation leads to a revision of some cloud properties which are essential for the early phases in the formation of stars and solar nebule. The latter extrapolation makes possible to approach the cosmogonic processes by extrapolation of (rather) well-known magnetospheric phenomena. Pioneer-Voyager observations of the Saturnian rings indicate that essential parts of their structure are fossils from cosmogonic times. By using detailed information from these space missions, it seems possible to reconstruct certain events 4-5 billion years ago with an accuracy of a few percent. This will cause a change in our views of the evolution of the solar system.(author)

  15. A kinetic approach to magnetospheric modeling

    Whipple, E.C. Jr.

    1979-01-01

    The earth's magnetosphere is caused by the interaction between the flowing solar wind and the earth's magnetic dipole, with the distorted magnetic field in the outer parts of the magnetosphere due to the current systems resulting from this interaction. It is surprising that even the conceptually simple problem of the collisionless interaction of a flowing plasma with a dipole magnetic field has not been solved. A kinetic approach is essential if one is to take into account the dispersion of particles with different energies and pitch angles and the fact that particles on different trajectories have different histories and may come from different sources. Solving the interaction problem involves finding the various types of possible trajectories, populating them with particles appropriately, and then treating the electric and magnetic fields self-consistently with the resulting particle densities and currents. This approach is illustrated by formulating a procedure for solving the collisionless interaction problem on open field lines in the case of a slowly flowing magnetized plasma interacting with a magnetic dipole

  16. A kinetic approach to magnetospheric modeling

    Whipple, E. C., Jr.

    1979-01-01

    The earth's magnetosphere is caused by the interaction between the flowing solar wind and the earth's magnetic dipole, with the distorted magnetic field in the outer parts of the magnetosphere due to the current systems resulting from this interaction. It is surprising that even the conceptually simple problem of the collisionless interaction of a flowing plasma with a dipole magnetic field has not been solved. A kinetic approach is essential if one is to take into account the dispersion of particles with different energies and pitch angles and the fact that particles on different trajectories have different histories and may come from different sources. Solving the interaction problem involves finding the various types of possible trajectories, populating them with particles appropriately, and then treating the electric and magnetic fields self-consistently with the resulting particle densities and currents. This approach is illustrated by formulating a procedure for solving the collisionless interaction problem on open field lines in the case of a slowly flowing magnetized plasma interacting with a magnetic dipole.

  17. The Comprehensive Inner Magnetosphere-Ionosphere Model

    Fok, M.-C.; Buzulukova, N. Y.; Chen, S.-H.; Glocer, A.; Nagai, T.; Valek, P.; Perez, J. D.

    2014-01-01

    Simulation studies of the Earth's radiation belts and ring current are very useful in understanding the acceleration, transport, and loss of energetic particles. Recently, the Comprehensive Ring Current Model (CRCM) and the Radiation Belt Environment (RBE) model were merged to form a Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. CIMI solves for many essential quantities in the inner magnetosphere, including ion and electron distributions in the ring current and radiation belts, plasmaspheric density, Region 2 currents, convection potential, and precipitation in the ionosphere. It incorporates whistler mode chorus and hiss wave diffusion of energetic electrons in energy, pitch angle, and cross terms. CIMI thus represents a comprehensive model that considers the effects of the ring current and plasmasphere on the radiation belts. We have performed a CIMI simulation for the storm on 5-9 April 2010 and then compared our results with data from the Two Wide-angle Imaging Neutral-atom Spectrometers and Akebono satellites. We identify the dominant energization and loss processes for the ring current and radiation belts. We find that the interactions with the whistler mode chorus waves are the main cause of the flux increase of MeV electrons during the recovery phase of this particular storm. When a self-consistent electric field from the CRCM is used, the enhancement of MeV electrons is higher than when an empirical convection model is applied. We also demonstrate how CIMI can be a powerful tool for analyzing and interpreting data from the new Van Allen Probes mission.

  18. Magnetospheric MultiScale (MMS) System Manager

    Schiff, Conrad; Maher, Francis Alfred; Henely, Sean Philip; Rand, David

    2014-01-01

    The Magnetospheric MultiScale (MMS) mission is an ambitious NASA space science mission in which 4 spacecraft are flown in tight formation about a highly elliptical orbit. Each spacecraft has multiple instruments that measure particle and field compositions in the Earths magnetosphere. By controlling the members relative motion, MMS can distinguish temporal and spatial fluctuations in a way that a single spacecraft cannot.To achieve this control, 2 sets of four maneuvers, distributed evenly across the spacecraft must be performed approximately every 14 days. Performing a single maneuver on an individual spacecraft is usually labor intensive and the complexity becomes clearly increases with four. As a result, the MMS flight dynamics team turned to the System Manager to put the routine or error-prone under machine control freeing the analysts for activities that require human judgment.The System Manager is an expert system that is capable of handling operations activities associated with performing MMS maneuvers. As an expert system, it can work off a known schedule, launching jobs based on a one-time occurrence or on a set reoccurring schedule. It is also able to detect situational changes and use event-driven programming to change schedules, adapt activities, or call for help.

  19. THE GROWTH AND MIGRATION OF JOVIAN PLANETS IN EVOLVING PROTOSTELLAR DISKS WITH DEAD ZONES

    Matsumura, Soko; Pudritz, Ralph E.; Thommes, Edward W.

    2009-01-01

    The growth of Jovian mass planets during migration in their protoplanetary disks is one of the most important problems that needs to be solved in light of observations of the small orbital radii of exosolar planets. Studies of the migration of planets in standard gas disk models routinely show that the migration speeds are too high to form Jovian planets, and that such migrating planetary cores generally plunge into their central stars in less than a million years. In previous work, we have shown that a poorly ionized, less viscous region in a protoplanetary disk called a dead zone slows down the migration of fixed-mass planets. In this paper, we extend our numerical calculations to include dead zone evolution along with the disk, as well as planet formation via accretion of rocky and gaseous materials. Using our symplectic integrator-gas dynamics code, we find that dead zones, even in evolving disks wherein planets grow by accretion as they migrate, still play a fundamental role in saving planetary systems. We demonstrate that Jovian planets form within 2.5 Myr for disks that are 10 times more massive than a minimum-mass solar nebula (MMSN) with an opacity reduction and without slowing down migration artificially. Our simulations indicate that protoplanetary disks with an initial mass comparable to the MMSN only produce Neptunian mass planets. We also find that planet migration does not help core accretion as much in the oligarchic planetesimal-accretion scenario as was expected in the runaway planetesimal-accretion scenario. Therefore, we expect that an opacity reduction (or some other mechanisms) is needed to solve the formation timescale problem even for migrating protoplanets, as long as we consider the oligarchic growth. We also point out a possible role of a dead zone in explaining long-lived, strongly accreting gas disks.

  20. Jovian meterology: Large-scale moist convection without a lower boundary

    Gierasch, P. J.

    1975-01-01

    It is proposed that Jupiter's cloud bands represent large scale convection whose character is determined by the phase change of water at a level where the temperature is about 275K. It is argued that there are three important layers in the atmosphere: a tropopause layer where emission to space occurs; an intermediate layer between the tropopause and the water cloud base; and the deep layer below the water cloud. All arguments are only semi-quantitative. It is pointed out that these ingredients are essential to Jovian meteorology.

  1. Affirmation of triggered Jovian radio emissions and their attribution to corotating radio lasers

    Calvert, W.

    1985-01-01

    It is argued that the original statistical evidence for the existence of triggered radio emissions and corotating radio lasers on Jupiter remains valid notwithstanding the critique of Desch and Kaiser (1985). The Voyager radio spectrograms used to identify the triggered emissions are analyzed and the results are discussed. It is shown that the critique by Desch and Kaiser is unjustified because it is not based on the original event criteria, i.e., the correlation between the occurrence of Jovian auroral kilometric radiation and fast-drift type III solar bursts in the same frequency.

  2. AURORA BOREALIS: a polar-dedicated European Research Platform

    Wolff-Boenisch, Bonnie; Egerton, Paul; Thiede, Joern; Roberto, Azzolini; Lembke-Jene, Lester

    2010-05-01

    Polar research and in particular the properties of northern and southern high latitude oceans are currently a subject of intense scientific debate and investigations, because they are subject to rapid and dramatic climatic variations. Polar regions react more rapidly and intensively to global change than other regions of the earth. A shrinking of the Arctic sea-ice cover, potentially leading to an opening of sea passages to the north of North America and Eurasia, on the long to a "blue" Arctic Ocean would additionally have a strong impact on transport, commerce and tourism bearing potential risk for humans and complex ecosystems in the future. In spite of their critical role processes and feedbacks, especially in winter but not exclusively, are virtually unknown: The Arctic Ocean for example, it is the only basin of the world's oceans that has essentially not been sampled by the drill ships of the Deep-Sea Drilling Project (DSDP) or the Ocean Drilling Program (ODP) and its long-term environmental history and tectonic structure is therefore poorly known. Exceptions are the ODP Leg 151 and the more recent very successful ACEX-expedition of the Integrated Ocean Drilling Program (IODP) in 2004. To help to address the most pressing questions regarding climate change and related processes, a Pan-European initiative in the field of Earth system science has been put in place: AURORA BOREALIS is the largest environmental research infrastructure on the ESFRI roadmap of the European Community. AURORA BOREALIS is a very powerful research icebreaker, which will enable year-round operations in the Arctic and the Antarctic as well as in the adjacent ocean basins. Equipped with its drilling rig, the vessel is also capable to explore the presently completely unknown Arctic deep-sea floor. Last but not least, the ship is a floating observatory and mobile monitoring platform that permits to measure on a long-term basis comprehensive time series in all research fields relevant to

  3. Indomethacin promotes apoptosis in gastric cancer cells through concomitant degradation of Survivin and Aurora B kinase proteins.

    Chiou, Shiun-Kwei; Hoa, Neil; Hodges, Amy; Ge, Lishen; Jadus, Martin R

    2014-09-01

    Regular usage of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with reduced incidence of a variety of cancers. The molecular mechanisms underlying these chemopreventive effects remain poorly understood. This current investigation showed that in gastric cancer cells: (1) Indomethacin treatment enhanced the degradation of chromosomal passenger proteins, Survivin and Aurora B kinase; (2) Indomethacin treatment down-regulated Aurora B kinase activity in a cell cycle-independent fashion; (3) siRNA knockdown of Survivin level promoted Aurora B kinase protein degradation, and vice versa; (4) ectopic overexpression of Survivin blocked reduction of Aurora B kinase level and activity by indomethacin treatment, and vice versa; (5) siRNA knockdown of Aurora B kinase level and AZD1152 inhibition of its activity induced apoptosis, and overexpression of Aurora B kinase inhibited indomethacin-induced apoptosis; (6) indomethacin treatment reduced Aurora B kinase level, coinciding with reduction of Survivin level and induction of apoptosis, in KATO III and HT-29 cells, and in mouse gastric mucosa. A role for Aurora B kinase function in NSAID-induced apoptosis was not previously explored. Thus this report provides better understanding of the molecular mechanisms underlying the anti-cancer effect of NSAIDs by elucidating a significant role for Aurora B kinase in indomethacin-induced apoptosis.

  4. On the mapping of ionospheric convection into the magnetosphere

    Hesse, M.; Birn, J.; Hoffman, R.A.

    1997-01-01

    Under steady state conditions and in the absence of parallel electric fields, ionospheric convection is a direct map of plasma and magnetic flux convection in the magnetosphere, and quantitative estimates can be obtained from the mapping along magnetic field lines of electrostatic ionospheric electric fields. The resulting magnetospheric electrostatic potential distribution then provides the convection electric field in various magnetospheric regions. We present a quantitative framework for the investigation of the applicability and limitations of this approach based on an analytical theory derived from first principles. Particular emphasis is on the role of parallel electric field regions and on inductive effects, such as expected during the growth and expansive phases of magnetospheric substorms. We derive quantitative estimates for the limits in which either effect leads to a significant decoupling between ionospheric and magnetospheric convection and provide an interpretation of ionospheric convection which is independent of the presence of inductive electric fields elsewhere in the magnetosphere. Finally, we present a study of the relation between average and instantaneous convection, using two periodic dynamical models. The models demonstrate and quantify the potential mismatch between the average electric fields in the ionosphere and the magnetosphere in strongly time-dependent cases that may exist even when they are governed entirely by ideal MHD

  5. The earth's palaeomagnetosphere as the third type of planetary magnetosphere

    Saito, T; Sakurai, T.; Yumoto, K.

    1978-01-01

    From the viewpoint of dynamical topology, planetary magnetospheres are classified into three: Types 1,2 and 3. When the rotation vector and dipole moment of a planet and the velocity vector of the solar wind are denoted as Ω,M, and V, respectively, the planetary magnetosphere with Ωparallel to M perpendicular to V is called Type 1. The magnetospheres of the present Earth, Jupiter, and Uranus at its equinoctial points belong to this type. The magnetosphere with Ωparallel to M parallel to V is called Type 2, which includes the Uranium magnetosphere at its solstitial points. The magnetosphere with Ωperpendicular M and perpendicular V is called Type 3. The Earth's palaeomagnetosphere is considered to have experienced Type 3 during excursions and transition stages of palaeomagnetic polarity reversals. In the Type 3 magnetosphere, drastic variations are expected in configurations of the dayside cusps, tail axis, neutral sheet, polar caps, and so on. A possible relation between the Type 3 palaeomagnetosphere and palaeoclimate of the Earth during polarity reversals and geomagnetic excursions is suggested. It is also suggested that the heliomagnetosphere during polarity reversals of the general field of the Sun exhibits a drastic configuration change similar to the Type 3 palaeomagnetosphere of the Earth. A relation between the perpendicular condition Ω perpendicular to M and magnetic variable stars and pulsars is briefly discussed. (author)

  6. The solar wind-magentosphere energy coupling and magnetospheric disturbances

    Akasofu, S.I.

    1980-01-01

    The recent finding of the solar wind-magnetosphere energy coupling function epsilon has advanced significantly our understanding of magnetosphere disturbances. It is shown that the magnetosphere-ionosphere coupling system responds somewhat differently to three different input energy flux levels of epsilon. As epsilon increases from 17 erg s -1 to >10 19 erg s -1 , typical responses of the magnetosphere-ionosphere coupling system are: (1) epsilon 17 erg s -1 : an enhancement of the Ssub(q)sup(p), etc. (2) epsilon approximately 10 18 erg s -1 : substorm onset. (3) 10 18 erg s -1 19 erg s -1 : a typical substorm. (4) epsilon >10 19 erg s -1 : an abnormal growth of the ring current belt, resulting in a magnetospheric storm. It is stressed that the magnetospheric substorm results as a direct response of the magnetosphere to a rise and fall of epsilon above approximately 10 18 erg s -1 , so that it is not caused by a sudden conversion of magnetic energy accumulated prior to substorm onset. The variety of the development of the main phase of geomagnetic storms is also primarily controlled by epsilon. (author)

  7. Rotation Frequencies of Small Jovian Trojan Asteroids: An Excess of Slow Rotators

    French, Linda M.; Stephens, Robert D.; James, David J.; Coley, Daniel; Connour, Kyle

    2015-11-01

    Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We discuss the rotation properties of Jovian Trojan asteroids less than 30 km in diameter. Approximately half the 131 objects discussed here were studied using densely sampled lightcurves (French et al. 2015a, b); Stephens et al. 2015), and the other half were sparse lightcurves obtained by the Palomar Transient Factory (PTF; Waszcazk et al. 2015).A significant fraction (~40%) of the objects in the ground-based sample rotate slowly (P > 24h), with measured periods as long as 375 h (Warner and Stephens 2011). The PTF data show a similar excess of slow rotators. Only 5 objects in the combined data set have rotation periods of less than six hours. Three of these fast rotators were contained in the data set of French et al. these three had a geometric mean rotation period of 5.29 hours. A prolate spheroid held together by gravity rotating with this period would have a critical density of 0.43 gm/cm3, a density similar to that of comets (Lamy et al. 2004).Harris et al. (2012) and Warner et al. (2011) have explored the possible effects on asteroid rotational statistics with the results from wide-field surveys. We will examine Trojan rotation statistics with and without the results from the PTF.

  8. A Survey of Rotation Lightcurves of Small Jovian Trojan Asteroids in the L4 Cloud

    French, Linda M.; Stephens, Robert; Warner, Brian; James, David; Rohl, Derrick; Connour, Kyle

    2017-10-01

    Jovian Trojan asteroids are of interest both as objects in their own right and as possible relics of Solar System formation. Several lines of evidence support a common origin for, and possible hereditary link between, Jovian Trojan asteroids and cometary nuclei. Asteroid lightcurves give information about processes that have affected a group of asteroids including their density. Due to their distance and low albedos, few comet-sized Trojans have been studied. We have been carrying out a survey of Trojan lightcurve properties comparing small Trojan asteroids with comets (French et al 2015). We present new lightcurve information for 39 Trojans less than about 35 km in diameter. We report our latest results and compare them with results from the sparsely-sampled lightcurves from the Palomar Transient Factory (Waszazak et al., Chang et al. 2015). The minimum densities for objects with complete lightcurves are estimated and are found to becomparable to those measured for cometary nuclei. A significant fraction (~40%) of thisobserved small Trojan population rotates slowly (P > 24 hours), with measured periods as over 500 hours (Waszczak et al 2015). The excess of slow rotators may be due to the YORP effect. Results of the Kolmogorov-Smirnov test suggest that the distribution of Trojan rotation rates is dissimilar to those of Main Belt Asteroids of the same size.

  9. High Ph, Ammonia Toxicity, and the Search for Life on the Jovian Planets

    Deal, P. H.; Souza, K. A.; Mack, H. M.

    1975-01-01

    The effects of pH and ammonia concentration were studied separately, where possible, on a variety of organisms, including some isolated from natural environments of high pH and/or ammonia concentration. Escherichia coli and Bacillus subtilis are both extremely sensitive to ammonia. An aerobic organism (growth up to pH 11.4) from an alkaline spring is more resistant, but exhibits a toxic response to ammonia at a pH much lower than its maximum for growth. The greatest ammonia resistance has been found in an unidentified organism growing at near neutral pH. Even in this case, however, urvival at ammonia concentrations reasonably expected on the Jovian planets is measured in hours. This is two to three orders of magnitude longer than for E. coli. Results support the tentative conclusion that contamination of the Jovian planets with terrestrial organisms that can grow is unlikely. However, the range of toxic response noted, coupled with the observation that terrestrial life has not been exposed to high ammonia concentrations for millions of years, suggests that adaptation to greater ammonia tolerance may be possible.

  10. Birkeland currents in the earth's magnetosphere

    Potemra, T.A.

    1988-01-01

    As a result of his polar expeditions at the beginning of this century, Kristian Birkeland determined that intense ionspheric currents were associated with the aurora. Birkeland suggested that these currents originated far from the Earth and that they flowed into and away from the polar atmosphere along the geomagnetic field lines. The existence of such field-aligned or Birkeland currents was disputed because it was not possible to unambiguously identify current systems that are field-aligned and those which are completely contained in the ionosphere with surface magnetic field observations. The presence of Birkeland currents has been absolutely confirmed with satellite-borne particle and magnetic field experiments conducted over the past two decades. These satellite observations have determined the large-scale patterns, flow directions, and intensities of Birkeland currents in the auroral and polar regions, and their relationship to the orientation and magnitude of the interplanetary magnetic field. The Birkeland currents are directly associated with visible and UV auroral forms observed with satellites. The results obtained from a variety of recently launched satellites are discussed here. These include Sweden's first satellite, VIKING, which has provided evidence for resonant Alfven waves on the same geomagnetic field lines that guide stationary Birkeland currents. These observations demonstrate the important role that these currents play in the coupling of energy between the interplanetary medium and the lower ionosphere and atmosphere

  11. Amplified spontaneous emission measurements on the Aurora large aperture module

    Oertel, J.A.; Czuchlewski, S.J.; Leland, W.T.; Turner, T.P.

    1990-01-01

    The large aperture module (LAM) of the Aurora KrF laser can be used to address a number of issues that relate to the scaling of KrF amplifiers to larger ICF systems. Perhaps foremost among these are the possible effects of amplified spontaneous emission (ASE) on laser performance. To assess this problem a 3-D computer code has been developed to model these ASE effects. The code uses an iterative procedure to arrive at a self-consistent steady state solution to the 3-D distribution of coherent and incoherent fluxes within the amplifier. Two-pass energy extraction, wall reflectivity, and nonuniform excitation are included in the model. The authors previously reported the effects of ASE on the small signal gains measured in the 1- x 1- x 2-m 3 LAM. The code also makes quantitative predictions of the ASE that should be generated in the amplifier. This paper indicates the radiance expected for a medium of uniform gain in terms of the (g - ν)L product and the parameter g/a. The quantity (g - ν)L is the product of the net gain and the path length along the direction of observation. The present experiments compare values of ASE measured at various locations around the LAM with the code predictions. The impact of ASE on amplifier output, is also discussed

  12. Ezekiel and the Northern Lights: Biblical aurora seems plausible

    Siscoe, George L.; Silverman, Samuel M.; Siebert, Keith D.

    Auroral specialists have suggested that in the Bible's Old Testament book of Ezekiel, the opening vision of a "storm cloud out of the north" depicts imagery inspired by a low-latitude auroral display [Link, 1967; Eather, 1980; Silverman, 1998]. Naturally, other interpretations have been suggested, including a true epiphany, a sandstorm, a thunderstorm, a tornado, a solar halo, a hallucination, and a UFO. Biblical scholars place the site of the Ezekiel's vision about 100 km south of Babylon near Nippur, latitude ˜32°, longitude ˜45°, and the date is within a year or two of 593 B.C., or about 2600 years ago.An auroral interpretation of the vision is subject to possible refutation due to several geophysical considerations. Can auroras be seen at Ezekiel's latitude? More important, can they reach a coronal stage of development, which is what the vision requires? Was the tilt of the dipole axis favorable? Was the general level of solar activity favorable? And finally, What effect does a larger dipole moment in Ezekiel's time have on the question? All but the last question could have been answered on the basis of geophysical data a decade ago or earlier.

  13. Aurora 7 the Mercury space flight of M. Scott Carpenter

    Burgess, Colin

    2016-01-01

    TO A NATION enthralled by the heroic exploits of the Mercury astronauts, the launch of Lt. Cmdr. Scott Carpenter on NASA’s second orbital space flight was a renewed cause for pride, jubilation and celebration. Within hours, that excitement had given way to stunned disbelief and anxiety as shaken broadcasters began preparing the American public for the very real possibility that an American astronaut and his spacecraft may have been lost at sea. In fact, it had been a very close call. Completely out of fuel and forced to manually guide Aurora 7 through the frightening inferno of re-entry, Carpenter brought the Mercury spacecraft down to a safe splashdown in the ocean. In doing so, he controversially overshot the intended landing zone. Despite his efforts, Carpenter’s performance on the MA-7 mission was later derided by powerful figures within NASA. He would never fly into space again. Taking temporary leave of NASA, Carpenter participated in the U.S. Navy’s pioneering Sealab program. For a record 30 days...

  14. Recent advances in magnetospheric substorm research

    Fairfield, D.H.

    1990-01-01

    More than two decades of magnetospheric exploration have led to a reasonably clear morphological picture of geomagnetic substorms, which is often summarized in terms of the near-Earth neutral line (NENL) model of substorms. Although this qualitative theory is quite comprehensive and explains a great many observations, it is hard pressed to explain both recent observations of consistently earthward flow within 19 R E and also the prompt onset of magnetic turbulence at 8 R E at the time of substorm onset. Other theories have recently been proposed which tend to be more quantitative, but which explain a more limited number of substorm observations. The challenge seems to be to understand the essential physics of these various quantitative theories and integrate them into a large structure such as is provided by the near-Earth neutral line model. (author)

  15. Ground observations of magnetospheric boundary layer phenomena

    McHenry, M.A.; Clauer, C.R.; Friis-Christensen, E.; Newell, P.T.; Kelly, J.D.

    1990-01-01

    Several classes of traveling vortices in the dayside ionospheric convection have been detected and tracked using the Greenland magnetometer chain (Friis-Christensen et al., 1988, McHenry et al., 1989). One class observed during quiet times consists of a continuous series of vortices moving generally anti-sunward for several hours at a time. The vortices strength is seen to be approximately steady and neighboring vortices rotate in opposite directions. Sondrestrom radar observations show that the vortices are located at the ionospheric convection reversal boundary. Low altitude DMSP observations indicate the vortices are on field lines which map to the inner edge of the low latitude boundary layer. Because the vortices are conjugate to the boundary layer, repeat in a regular fashion and travel antisunward, the authors argue that this class of vortices is caused by the Kelvin-Helmholtz instability of the inner edge of the magnetospheric boundary layer

  16. Kinetic Theory of the Inner Magnetospheric Plasma

    Khazanov, George V

    2011-01-01

    This book provides a broad introduction to the kinetic theory of space plasma physics with the major focus on the inner magnetospheric plasma. It is designed to provide a comprehensive description of the different kinds of transport equations for both plasma particles and waves with an emphasis on the applicability and limitations of each set of equations. The major topics are: Kinetic Theory of Superthermal Electrons, Kinetic Foundation of the Hydrodynamic Description of Space Plasmas (including wave-particle interaction processes), and Kinetic Theory of the Terrestrial Ring Current. Distinguishable features of this book are the analytical solutions of simplified transport equations. Approximate analytic solutions of transport phenomena are very useful because they help us gain physical insight into how the system responds to varying sources of mass, momentum and energy and also to various external boundary conditions. They also provide us a convenient method to test the validity of complicated numerical mod...

  17. Global Particle-in-Cell Simulations of Mercury's Magnetosphere

    Schriver, D.; Travnicek, P. M.; Lapenta, G.; Amaya, J.; Gonzalez, D.; Richard, R. L.; Berchem, J.; Hellinger, P.

    2017-12-01

    Spacecraft observations of Mercury's magnetosphere have shown that kinetic ion and electron particle effects play a major role in the transport, acceleration, and loss of plasma within the magnetospheric system. Kinetic processes include reconnection, the breakdown of particle adiabaticity and wave-particle interactions. Because of the vast range in spatial scales involved in magnetospheric dynamics, from local electron Debye length scales ( meters) to solar wind/planetary magnetic scale lengths (tens to hundreds of planetary radii), fully self-consistent kinetic simulations of a global planetary magnetosphere remain challenging. Most global simulations of Earth's and other planet's magnetosphere are carried out using MHD, enhanced MHD (e.g., Hall MHD), hybrid, or a combination of MHD and particle in cell (PIC) simulations. Here, 3D kinetic self-consistent hybrid (ion particle, electron fluid) and full PIC (ion and electron particle) simulations of the solar wind interaction with Mercury's magnetosphere are carried out. Using the implicit PIC and hybrid simulations, Mercury's relatively small, but highly kinetic magnetosphere will be examined to determine how the self-consistent inclusion of electrons affects magnetic reconnection, particle transport and acceleration of plasma at Mercury. Also the spatial and energy profiles of precipitating magnetospheric ions and electrons onto Mercury's surface, which can strongly affect the regolith in terms of space weathering and particle outflow, will be examined with the PIC and hybrid codes. MESSENGER spacecraft observations are used both to initiate and validate the global kinetic simulations to achieve a deeper understanding of the role kinetic physics play in magnetospheric dynamics.

  18. Impulsive ion acceleration in earth's outer magnetosphere

    Baker, D.N.; Belian, R.D.

    1985-01-01

    Considerable observational evidence is found that ions are accelerated to high energies in the outer magnetosphere during geomagnetic disturbances. The acceleration often appears to be quite impulsive causing temporally brief (10's of seconds), very intense bursts of ions in the distant plasma sheet as well as in the near-tail region. These ion bursts extend in energy from 10's of keV to over 1 MeV and are closely associated with substorm expansive phase onsets. Although the very energetic ions are not of dominant importance for magnetotail plasma dynamics, they serve as an important tracer population. Their absolute intensity and brief temporal appearance bespeaks a strong and rapid acceleration process in the near-tail, very probably involving large induced electric fields substantially greater than those associated with cross-tail potential drops. Subsequent to their impulsive acceleration, these ions are injected into the outer trapping regions forming ion ''drift echo'' events, as well as streaming tailward away from their acceleration site in the near-earth plasma sheet. Most auroral ion acceleration processes occur (or are greatly enhanced) during the time that these global magnetospheric events are occurring in the magnetotail. A qualitative model relating energetic ion populations to near-tail magnetic reconnection at substorm onset followed by global redistribution is quite successful in explaining the primary observational features. Recent measurements of the elemental composition and charge-states have proven valuable for showing the source (solar wind or ionosphere) of the original plasma population from which the ions were accelerated

  19. Investigation of Magnetospheric Line Radiation above China

    Sheng, X.; Wu, J.; Pu, X.

    2017-12-01

    Magnetospheric Line Radiation (MLR) is a kind of VLF emission that is considered by some researchers to be related with the power system on ground, and in frequency-time spectrograms of electromagnetic field, it has a line structure with large frequency bandwidth. These emission waves propagate through the magnetosphere and strongly interact with energetic electrons trapped in the earth's magnetic field. Such a wave-particle interaction amplifies the radiation and scatters energetic electrons, which may trigger new radiations. We detected 328 MLR events by analyzing the electric field data observed by DEMETER satellite in the space above China from the year of 2008 to 2010. Their characteristics and possible cause have been investigated systematically. There were more MLR events in daytime than in nighttime and more in winter than in summer. Such diurnal and seasonal differences were closely associated with whistlers and ionosphere conditions. Comparing Kp indices at the occurring time of MLR events and nationwide Kp indices through the analyzed years, we found these MLR events were not significantly dependent on geomagnetic activity. Most of events were distributed in the low latitude, while their peak intensities in frequency-time spectrograms seemed to be independent of latitude. The frequency intervals of MLR events were between 50 to 95Hz, and the frequency drifts were mostly in 0 0.4Hz/s. The above characteristics of MLR events were similar to those of Power Line Harmonic Radiation (PLHR) events observed in the space above China, therefore we inferred that these two emissions have close relation.

  20. Motion of charged particles in the magnetosphere

    Mukherjee, G.K.; Rajaram, R.

    1981-01-01

    The adiabatic motion of charged particles in the magnetosphere has been investigated using Mead-Fairfield magnetospheric field model (Mead and Fairfield, 1975). Since the motion of charged particles in a dipolar field geometry is well understood, we bring out in this paper some important features in characteristic motion due to non-dipolar distortions in the field geometry. We look at the tilt averaged picture of the field configuration and estimate theoretically the parameters like bounce period, longitudinal invariant and the bounce averaged drift velocities of the charged particle in the Mead-Fairfield field geometry. These parameters are evaluated as a function of pitch angle and azimuthal position in the region of ring current (5 to 7 Earth radii from the centre of the Earth) for four ranges of magnetic activity. At different longitudes the non-dipolar contribution as a percentage of dipole value in bounce period and longitudinal invariant shows maximum variation for particles close to 90 0 pitch angles. For any low pitch angle, these effects maximize at the midnight meridian. The radial component of the bounce averaged drift velocity is found to be greatest at the dawn-dusk meridians and the contribution vanishes at the day and midnight meridians for all pitch angles. In the absence of tilt-dependent terms in the model, the latitudinal component of the drift velocity vanishes. On the other hand, the relative non-dipolar contribution to bounce averaged azimuthal drift velocity is very high as compared to similar contribution in other characteristic parameters of particle motion. It is also shown that non-dipolar contribution in bounce period, longitudinal invariant and bounce averaged drift velocities increases in magnitude with increase in distance and magnetic activity. (orig.)

  1. Substorms - Future of magnetospheric substorm-storm research

    Akasofu, S.I.

    1989-01-01

    Seven approaches and/or areas of magnetospheric substorm and storm science which should be emphasized in future research are briefly discussed. They are: the combining of groups of researchers who study magnetic storms and substorms in terms of magnetic reconnection with those that do not, the possible use of a magnetosphere-ionosphere coupling model to merge the groups, the development of improved input-output relationships, the complementing of satellite and ground-based observations, the need for global imaging of the magnetosphere, the complementing of observations with computer simulations, and the need to study the causes of changes in the north-south component of the IMF. 36 refs

  2. Global properties of the magnetosphere during a substorm growth phase: A case study

    Baker, D.N.; Hones, E.W. Jr.; Higbie, P.R.; Belian, R.D.; Stauning, P.

    1981-01-01

    At approximately 0100 UT on December 29, 1976, a large injection of energetic (>30 keV) particles was observed by Los Alamos instrumentation onboard spacecraft 1976--059 (35 0 W longitude) at geostationary orbit. This injection was closely associated with the onset of a major substorm (also at 0100 UT) identified by sharp negative bays in the H components of magnetic records at Leirvogur (22 0 W) and Narssarssuaq (45 0 W) and by the occurrence of a positive H component bay at 0100 UT in the mid-latitude magnetogram record at M'Bour (17 0 W). This substorm expansion onset (and concomitant particle injection) was preceded (between 2330 and 0100 UT) by a pronounced 'stretching' of the magnetic field at synchronous orbit into a taillike configuration and by a development of highly cigarlike (field-aligned) electron distributions at geostationary orbit that we have in the past identified with the substorm growth phase. Of principal importance in this case are two other auxiliary data sets. The first is a well-timed set of DMSP auroral images taken during the course of the growth and expansion phases of the substorm. The images before and during the growth (cigar) phase, including one auroral zone crossing at approx.0050 UT, show quiet aurora with no observable substorm activity in the visible polar region. The second relevant data set is a broad set of riometer data from 13 separate stations in three general meridians (west coast Greenland, east coast Greenland, and northern Scandinavia) from magnetic latitudes of approx.65 0 to approx.90 0 . The riometer data also show clearly that there was no measurable substorm activity anywhere, either in longitude or latitude, as the magnetosphere developed its very stressed, growth-phase configuration prior to substorm expansion onset. These results support the concept of a storage of energy (growth phase) prior to its rapid release at substorm onset

  3. Syncrude's Aurora Mine : the key to future Athabasca oil sands development

    Kershaw, D.

    1998-01-01

    Syncrude's newest mine, the Aurora mine is located 35 km northeast of Syncrude's existing Mildred Lake plant, across the Athabasca River. It has a potential to produce more than 2.5 billion barrels of bitumen. Aurora will eventually consist of two surface mines, the Aurora North and Aurora South. Mining and extraction will occur at Aurora with the resulting bitumen transported as a froth by pipeline back to the existing plant for upgrading to Syncrude Sweet Blend. A total of 120 km of pipeline will be used. Syncrude has developed a new method of sending oilsand from its Athabasca deposit to the extraction plant. The company plans to phase out the dragline, bucketwheel reclaimer, and conveyor ore mining and delivery system in favour of shovel, truck, and hydrotransport technology. The advantages of hydrotransport include significant energy savings and considerably less plant infrastructure. A hydrotransport prototype is at work at Syncrude's base mine where it is responsible for 15 per cent of the production

  4. Summary of environmental impact assessment for the Syncrude Canada Ltd. Aurora Mine

    1996-01-01

    A summary of the environmental impact assessment for the Syncrude's proposed Aurora Mine was provided. Two mining areas will be opened. Aurora Mine North, located on oil sands leases 10, 12 and 34 will open first followed by the opening of Aurora Mine South, located on Lease 31. Each mining area will contain two extraction facilities, each capable of producing 6.25 million cubic metres of bitumen per year for a total annual capacity of 25 million cubic metres. The areas of land that will be disturbed by development of the Aurora Mines will total 15,171 hectares. The preferred pipeline, roadway and utility corridor and river crossing to be used for the Mine are shown. Production of SO 2 and NO x emissions from the Aurora Mine is expected to be very low, nevertheless, the cumulative effects of emissions from the mines will be addressed in the context of emissions from the existing or proposed oil sand facilities in the area. 7 tabs., 15 figs

  5. Rebamipide inhibits gastric cancer growth by targeting survivin and Aurora-B

    Tarnawski, A.; Pai, R.; Chiou, S.-K.; Chai, J.; Chu, E.C.

    2005-01-01

    Rebamipide accelerates healing of gastric ulcers and gastritis but its actions on gastric cancer are not known. Survivin, an anti-apoptosis protein, is overexpressed in stem, progenitor, and cancer cells. In gastric cancer, increased and sustained survivin expression provides survival advantage and facilitates tumor progression and resistance to anti-cancer drugs. Aurora-B kinase is essential for chromosome alignment and mitosis progression but surprisingly its role in gastric cancer has not been explored. We examined in human gastric cancer AGS cells: (1) survivin expression, (2) localization of survivin and Aurora-B (3) cell proliferation, and (4) effects of specific survivin siRNA and/or rebamipide (free radical scavenging drug) on survivin and Aurora-B expression and cell proliferation. Survivin and Aurora-B are strongly expressed in human AGS gastric cancer cells and co-localize during mitosis. Survivin siRNA significantly reduces AGS cell viability. Rebamipide significantly downregulates in AGS cell survivin expression, its association with Aurora-B and cell proliferation. Rebamipide-induced downregulation of survivin is at the transcription level and does not involve ubiquitin-proteasome pathway

  6. Nonlinear dynamics of the magnetosphere and space weather

    Sharma, A. Surjalal

    1996-01-01

    The solar wind-magnetosphere system exhibits coherence on the global scale and such behavior can arise from nonlinearity on the dynamics. The observational time series data were used together with phase space reconstruction techniques to analyze the magnetospheric dynamics. Analysis of the solar wind, auroral electrojet and Dst indices showed low dimensionality of the dynamics and accurate prediction can be made with an input/output model. The predictability of the magnetosphere in spite of the apparent complexity arises from its dynamical synchronism with the solar wind. The electrodynamic coupling between different regions of the magnetosphere yields its coherent, low dimensional behavior. The data from multiple satellites and ground stations can be used to develop a spatio-temporal model that identifies the coupling between different regions. These nonlinear dynamical models provide space weather forecasting capabilities.

  7. Problems related to macroscopic electric fields in the magnetosphere

    Faelthammar, C.

    1977-01-01

    The macroscopic electric fields in the magnetosphere originate from internal as well as external sources. The fields are intimately coupled with the dynamics of magnetospheric plasma convection. They also depend on the complicated electrical properties of the hot collisionless plasma. Macroscopic electric fields are responsible for some important kinds of energization of charged particles that take place in the magnetosphere and affect not only particles of auroral energy but also, by multistep processes, trapped high-energy particles. A particularly interesting feature of magnetospheric electric fields is that they can have substantial components along the geomagnetic field, as has recently been confirmed by observations. Several physical mechanisms have been identified by which such electric fields can be supported even when collisions between particles are negligible. Comments are made on the magnetic mirror effect, anomalous resistivity, the collisionless thermoelectric effect, and electric double layers, emphasizing key features and differences and their significance in the light of recent observational data

  8. From the Solar Wind to the Magnetospheric Substorm

    E.A. Ponomarev; P.A. Sedykh; O.V. Mager

    2005-01-01

    This paper gives a brief outline of the progression from the first substorm model developed in Ref.[4] and [8] based on Kennel's ideas[3], to the present views about the mechanism by which solar wind kinetic energy is converted to electromagnetic energy at the Bow Shock and by which this energy is transferred to the magnetosphere in the form of current; about the transformation of the energy of this current to gas kinetic energy of convecting plasma tubes, and, finally, the back transformation of gas kinetic energy to electromagnetic energy in secondary magnetospheric MHD generators. The questions of the formation of the magnetospheric convection system, the nature of substorm break-up, and of the matching of currents in the magnetosphere-ionosphere system are discussed.

  9. Echo 7: Magnetospheric properties determined by artificial electron beams

    Nemzek, R.J.

    1990-01-01

    The sounding rocket Echo 7 was launched from the Poker Flat Research Range. An on-board accelerator injected high-power electron beams into the magnetospheric tail near L = 6.5. After mirroring at the southern conjugate point, about 20 percent of the initial beam electrons returned to the North as Conjugate Echoes, where detectors (scintillators and spectrometers) on four subpayloads measured their energy and bounce time. The other 80 percent of the beam was pitch angle diffused by wave near the equatorial plane either into the conjugate atmosphere or up to mirror points above the payload. Comparison of measured values to calculations showed that the actual magnetosphere during the flight was well-described by the Tsyganenko-Usmanov model magnetosphere with a Kp value of 2- or 2+. Analysis of echo energies yielded values for the highly variable magnetospheric convection electric field

  10. The outer magnetosphere. [composition and comparison with earth

    Schardt, A. W.; Behannon, K. W.; Lepping, R. P.; Carbary, J. F.; Eviatar, A.; Siscoe, G. L.

    1984-01-01

    Similarities between the Saturnian and terrestrial outer magnetosphere are examined. Saturn, like earth, has a fully developed magnetic tail, 80 to 100 RS in diameter. One major difference between the two outer magnetospheres is the hydrogen and nitrogen torus produced by Titan. This plasma is, in general, convected in the corotation direction at nearly the rigid corotation speed. Energies of magnetospheric particles extend to above 500 keV. In contrast, interplanetary protons and ions above 2 MeV have free access to the outer magnetosphere to distances well below the Stormer cutoff. This access presumably occurs through the magnetotail. In addition to the H+, H2+, and H3+ ions primarily of local origin, energetic He, C, N, and O ions are found with solar composition. Their flux can be substantially enhanced over that of interplanetary ions at energies of 0.2 to 0.4 MeV/nuc.

  11. Interactions of planetary magnetospheres with icy satellite surfaces

    Cheng, A.F.; Haff, P.K.; Johnson, R.E.; Lanzerotti, L.J.

    1986-01-01

    When natural satellites and ring particles are embedded within magnetospheric plasmas, the charged particles interact with the surfaces of these solid bodies. These interactions have important implications for the surface, the atmosphere of the parent body, and the magnetosphere as a whole. Significant erosion of the surface by sputtering, as well as redeposition of sputter ejecta, can occur over geologic time. The surface can also be chemically modified. Sputter ejecta can make important contributions to the atmosphere; sputtering provides a lower limit to the atmospheric column density even for arbitrarily cold satellite surfaces. Sputter ejecta escaping from the parent body can form extensive neutral clouds within the magnetosphere. Ionization and dissociation within these neutral clouds can be dominant sources of low-energy plasma. The importance of these processes is discussed for the satellites and magnetospheres of Jupiter, Saturn and Uranus

  12. Overview of Mercury Magnetospheric Orbiter (MMO) for BepiColombo

    Murakami, G.; Hayakawa, H.; Fujimoto, M.; BepiColombo Project Team

    2018-05-01

    The next Mercury exploration mission BepiColombo will be launched in October 2018 and will arrive at Mercury in December 2025. We present the current status, science goals, and observation plans of JAXA's Mercury Magnetospheric Orbiter (MMO).

  13. From the Sun to the Earth: impact of the 27-28 May 2003 solar events on the magnetosphere, ionosphere and thermosphere

    C. Hanuise

    2006-03-01

    Full Text Available During the last week of May 2003, the solar active region AR 10365 produced a large number of flares, several of which were accompanied by Coronal Mass Ejections (CME. Specifically on 27 and 28 May three halo CMEs were observed which had a significant impact on geospace. On 29 May, upon their arrival at the L1 point, in front of the Earth's magnetosphere, two interplanetary shocks and two additional solar wind pressure pulses were recorded by the ACE spacecraft. The interplanetary magnetic field data showed the clear signature of a magnetic cloud passing ACE. In the wake of the successive increases in solar wind pressure, the magnetosphere became strongly compressed and the sub-solar magnetopause moved inside five Earth radii. At low altitudes the increased energy input to the magnetosphere was responsible for a substantial enhancement of Region-1 field-aligned currents. The ionospheric Hall currents also intensified and the entire high-latitude current system moved equatorward by about 10°. Several substorms occurred during this period, some of them - but not all - apparently triggered by the solar wind pressure pulses. The storm's most notable consequences on geospace, including space weather effects, were (1 the expansion of the auroral oval, and aurorae seen at mid latitudes, (2 the significant modification of the total electron content in the sunlight high-latitude ionosphere, (3 the perturbation of radio-wave propagation manifested by HF blackouts and increased GPS signal scintillation, and (4 the heating of the thermosphere, causing increased satellite drag. We discuss the reasons why the May 2003 storm is less intense than the October-November 2003 storms, although several indicators reach similar intensities.

  14. From the Sun to the Earth: impact of the 27-28 May 2003 solar events on the magnetosphere, ionosphere and thermosphere

    C. Hanuise

    2006-03-01

    Full Text Available During the last week of May 2003, the solar active region AR 10365 produced a large number of flares, several of which were accompanied by Coronal Mass Ejections (CME. Specifically on 27 and 28 May three halo CMEs were observed which had a significant impact on geospace. On 29 May, upon their arrival at the L1 point, in front of the Earth's magnetosphere, two interplanetary shocks and two additional solar wind pressure pulses were recorded by the ACE spacecraft. The interplanetary magnetic field data showed the clear signature of a magnetic cloud passing ACE. In the wake of the successive increases in solar wind pressure, the magnetosphere became strongly compressed and the sub-solar magnetopause moved inside five Earth radii. At low altitudes the increased energy input to the magnetosphere was responsible for a substantial enhancement of Region-1 field-aligned currents. The ionospheric Hall currents also intensified and the entire high-latitude current system moved equatorward by about 10°. Several substorms occurred during this period, some of them - but not all - apparently triggered by the solar wind pressure pulses. The storm's most notable consequences on geospace, including space weather effects, were (1 the expansion of the auroral oval, and aurorae seen at mid latitudes, (2 the significant modification of the total electron content in the sunlight high-latitude ionosphere, (3 the perturbation of radio-wave propagation manifested by HF blackouts and increased GPS signal scintillation, and (4 the heating of the thermosphere, causing increased satellite drag. We discuss the reasons why the May 2003 storm is less intense than the October-November 2003 storms, although several indicators reach similar intensities.

  15. Coupled rotational dynamics of Jupiter's thermosphere and magnetosphere

    C. G. A. Smith

    2009-01-01

    Full Text Available We describe an axisymmetric model of the coupled rotational dynamics of the thermosphere and magnetosphere of Jupiter that incorporates self-consistent physical descriptions of angular momentum transfer in both systems. The thermospheric component of the model is a numerical general circulation model. The middle magnetosphere is described by a simple physical model of angular momentum transfer that incorporates self-consistently the effects of variations in the ionospheric conductivity. The outer magnetosphere is described by a model that assumes the existence of a Dungey cycle type interaction with the solar wind, producing at the planet a largely stagnant plasma flow poleward of the main auroral oval. We neglect any decoupling between the plasma flows in the magnetosphere and ionosphere due to the formation of parallel electric fields in the magnetosphere. The model shows that the principle mechanism by which angular momentum is supplied to the polar thermosphere is meridional advection and that mean-field Joule heating and ion drag at high latitudes are not responsible for the high thermospheric temperatures at low latitudes on Jupiter. The rotational dynamics of the magnetosphere at radial distances beyond ~30 RJ in the equatorial plane are qualitatively unaffected by including the detailed dynamics of the thermosphere, but within this radial distance the rotation of the magnetosphere is very sensitive to the rotation velocity of the thermosphere and the value of the Pedersen conductivity. In particular, the thermosphere connected to the inner magnetosphere is found to super-corotate, such that true Pedersen conductivities smaller than previously predicted are required to enforce the observed rotation of the magnetosphere within ~30 RJ. We find that increasing the Joule heating at high latitudes by adding a component due to rapidly fluctuating electric fields is unable to explain the high equatorial temperatures. Adding a component of Joule

  16. Energetic Nitrogen Ions within the Inner Magnetosphere of Saturn

    Sittler, E. C.; Johnson, R. E.; Richardson, J. D.; Jurac, S.; Moore, M.; Cooper, J. F.; Mauk, B. H.; Smith, H. T.; Michael, M.; Paranicus, C.; Armstrong, T. P.; Tsurutani, B.; Connerney, J. E. P.

    2003-05-01

    Titan's interaction with Saturn's magnetosphere will result in the energetic ejection of atomic nitrogen atoms into Saturn's magnetosphere due to dissociation of N2 by electrons, ions, and UV photons. The ejection of N atoms into Saturn's magnetosphere will form a nitrogen torus around Saturn with mean density of about 4 atoms/cm3 with source strength of 4.5x1025 atoms/sec. These nitrogen atoms are ionized by photoionization, electron impact ionization and charge exchange reactions producing an N+ torus of 1-4 keV suprathermal ions centered on Titan's orbital position. We will show Voyager plasma observations that demonstrate presence of a suprathermal ion component within Saturn's outer magnetosphere. The Voyager LECP data also reported the presence of inward diffusing energetic ions from the outer magnetosphere of Saturn, which could have an N+ contribution. If so, when one conserves the first and second adiabatic invariant the N+ ions will have energies in excess of 100 keV at Dione's L shell and greater than 400 keV at Enceladus' L shell. Energetic charged particle radial diffusion coefficients are also used to constrain the model results. But, one must also consider the solar wind as another important source of keV ions, in the form of protons and alpha particles, for Saturn's outer magnetosphere. Initial estimates indicate that a solar wind source could dominate in the outer magnetosphere, but various required parameters for this estimate are highly uncertain and will have to await Cassini results for confirmation. We show that satellite sweeping and charged particle precipitation within the middle and outer magnetosphere will tend to enrich N+ ions relative to protons within Saturn's inner magnetosphere as they diffuse radially inward for radial diffusion coefficients that do not violate observations. Charge exchange reactions within the inner magnetosphere can be an important loss mechanism for O+ ions, but to a lesser degree for N+ ions. Initial LECP

  17. Urochordate ascidians possess a single isoform of Aurora kinase that localizes to the midbody via TPX2 in eggs and cleavage stage embryos.

    Celine Hebras

    Full Text Available Aurora kinases are key proteins found throughout the eukaryotes that control mitotic progression. Vertebrate Aurora-A and B kinases are thought to have evolved from a single Aurora-kinase isoform closest to that found in present day urochordates. In urochordate ascidians Aurora binds both TPX2 (a vertebrate AURKA partner and INCENP (a vertebrate AURKB partner and localizes to centrosomes and spindle microtubules as well as chromosomes and midbody during both meiosis and mitosis. Ascidian Aurora also displays this localization pattern during mitosis in echinoderms, strengthening the idea that non-vertebrate deuterostomes such as the urochordates and echinoderms possess a single form of Aurora kinase that has properties of vertebrate Aurora-kinase A and B. In the ascidian, TPX2 localizes to the centrosome and the spindle poles also as in vertebrates. However, we were surprised to find that TPX2 also localized strongly to the midbody in ascidian eggs and embryos. We thus examined more closely Aurora localization to the midbody by creating two separate point mutations of ascidian Aurora predicted to perturb binding to TPX2. Both forms of mutated Aurora behaved as predicted: neither localized to spindle poles where TPX2 is enriched. Interestingly, neither form of mutated Aurora localized to the midbody where TPX2 is also enriched, suggesting that ascidian Aurora midbody localization required TPX2 binding in ascidians. Functional analysis revealed that inhibition of Aurora kinase with a pharmacological inhibitor or with a dominant negative kinase dead form of Aurora caused cytokinesis failure and perturbed midbody formation during polar body extrusion. Our data support the view that vertebrate Aurora-A and B kinases evolved from a single non-vertebrate deuterostome ancestor. Moreover, since TPX2 localizes to the midbody in ascidian eggs and cleavage stage embryos it may be worthwhile re-assessing whether Aurora A kinase or TPX2 localize to the midbody

  18. Electrostatic Discharge Testing of Carbon Composite Solar Array Panels for Use in the Jovian Environment

    Green, Nelson W.; Dawson, Stephen F.

    2015-01-01

    NASA is currently considering a mission to investigate the moons of Jupiter. When designing a spacecraft for this type of mission, there are a number of engineering challenges, especially if the mission chooses to utilize solar arrays to provide the spacecraft power. In order for solar arrays to be feasible for the mission, their total mass needed to fit within the total budget for the mission, which strongly suggested the use of carbon composite facesheets on an aluminum core for the panel structure. While these composite structures are a good functional substitution for the metallic materials they replace, they present unique challenges when interacting with the harsh Jovian space environment. As a composite material, they are composed of more than one material and can show different base properties depending in differing conditions. Looking at the electrical properties, in an Earth-based environment the carbon component of the composite dominates the response of the material to external stimulus. Under these conditions, the structures strongly resembles a conductor. In the Jovian environment, with temperatures reaching 50K and under the bombardment from energetic electrons, the non-conducting pre-preg binding materials may come to the forefront and change the perceived response. Before selecting solar arrays as the baseline power source for a mission to Jupiter, the response of the carbon composites to energetic electrons while held at cryogenic temperatures needed to be determined. A series of tests were devised to exam the response of a sample solar array panel composed of an M55J carbon weave layup with an RS-3 pre-preg binder. Test coupons were fabricated and exposed to electrons ranging from 10 keV to 100 keV, at 1 nA/cm2, while being held at cryogenic temperatures. While under electron bombardment, electrical discharges were observed and recorded with the majority of discharges occurring with electron energies of 25 keV. A decrease in temperature to liquid

  19. Investigating dynamical complexity in the magnetosphere using various entropy measures

    Balasis, Georgios; Daglis, Ioannis A.; Papadimitriou, Constantinos; Kalimeri, Maria; Anastasiadis, Anastasios; Eftaxias, Konstantinos

    2009-09-01

    The complex system of the Earth's magnetosphere corresponds to an open spatially extended nonequilibrium (input-output) dynamical system. The nonextensive Tsallis entropy has been recently introduced as an appropriate information measure to investigate dynamical complexity in the magnetosphere. The method has been employed for analyzing Dst time series and gave promising results, detecting the complexity dissimilarity among different physiological and pathological magnetospheric states (i.e., prestorm activity and intense magnetic storms, respectively). This paper explores the applicability and effectiveness of a variety of computable entropy measures (e.g., block entropy, Kolmogorov entropy, T complexity, and approximate entropy) to the investigation of dynamical complexity in the magnetosphere. We show that as the magnetic storm approaches there is clear evidence of significant lower complexity in the magnetosphere. The observed higher degree of organization of the system agrees with that inferred previously, from an independent linear fractal spectral analysis based on wavelet transforms. This convergence between nonlinear and linear analyses provides a more reliable detection of the transition from the quiet time to the storm time magnetosphere, thus showing evidence that the occurrence of an intense magnetic storm is imminent. More precisely, we claim that our results suggest an important principle: significant complexity decrease and accession of persistency in Dst time series can be confirmed as the magnetic storm approaches, which can be used as diagnostic tools for the magnetospheric injury (global instability). Overall, approximate entropy and Tsallis entropy yield superior results for detecting dynamical complexity changes in the magnetosphere in comparison to the other entropy measures presented herein. Ultimately, the analysis tools developed in the course of this study for the treatment of Dst index can provide convenience for space weather

  20. Nonlinear dynamical modeling and prediction of the terrestrial magnetospheric activity

    Vassiliadis, D.

    1992-01-01

    The irregular activity of the magnetosphere results from its complex internal dynamics as well as the external influence of the solar wind. The dominating self-organization of the magnetospheric plasma gives rise to repetitive, large-scale coherent behavior manifested in phenomena such as the magnetic substorm. Based on the nonlinearity of the global dynamics this dissertation examines the magnetosphere as a nonlinear dynamical system using time series analysis techniques. Initially the magnetospheric activity is modeled in terms of an autonomous system. A dimension study shows that its observed time series is self-similar, but the correlation dimension is high. The implication of a large number of degrees of freedom is confirmed by other state space techniques such as Poincare sections and search for unstable periodic orbits. At the same time a stability study of the time series in terms of Lyapunov exponents suggests that the series is not chaotic. The absence of deterministic chaos is supported by the low predictive capability of the autonomous model. Rather than chaos, it is an external input which is largely responsible for the irregularity of the magnetospheric activity. In fact, the external driving is so strong that the above state space techniques give results for magnetospheric and solar wind time series that are at least qualitatively similar. Therefore the solar wind input has to be included in a low-dimensional nonautonomous model. Indeed it is shown that such a model can reproduce the observed magnetospheric behavior up to 80-90 percent. The characteristic coefficients of the model show little variation depending on the external disturbance. The impulse response is consistent with earlier results of linear prediction filters. The model can be easily extended to contain nonlinear features of the magnetospheric activity and in particular the loading-unloading behavior of substorms

  1. Advances in magnetospheric storm and substorm research: 1989-1991

    Fairfield, D.H.

    1992-01-01

    Geomagnetic storms represent the magnetospheric response to fast solar wind and unusually large southward interplanetary magnetic fields that are caused by solar processes and resulting dynamics in the interplanetary medium. The solar wind/magnetosphere interaction is, however, more commonly studied via smaller, more common, magnetospheric substorms. Accumulating evidence suggests that two separate magnetospheric current systems are important during magnetospheric substorms. Currents directly driven by the solar wind/magnetosphere interaction produce magnetic field variations that make important contributions to the AE index but have little relation to the many effects traditionally associated with sudden substorm onsets. Currents driven by energy unloaded from the magnetotail form the nightside current wedge and are associated with onset effects such as auroral breakup, field dipolarization, and particle acceleration. Observations are gradually leading to a coherent picture of the interrelations among these various onset phenomena, but their cause remains a controversial question. The abrupt nature of substorm onsets suggests a magnetospheric instability, but doubt remains as to its nature and place of origin. Measurements increasingly suggest the region of 7-10 R E near midnight as the likely point of origin, but it is not clear that the long-popular tearing mode can go unstable this close to the Earth, where it may be stabilized by a small northward field component. Also the tailward flows that would be expected tailward of a near-Earth neutral line are seldom seen inside of 19 R E . The changing magnetic field configuration during substorms means that existing static models cannot be used to map phenomena between the magnetosphere and the ground at these interesting times

  2. Jovian atmospheres

    Allison, M.; Travis, L.D.

    1986-10-01

    A conference on the atmosphere of Jupiter produced papers in the areas of thermal and ortho-para hydrogen structure, clouds and chemistry, atmospheric structure, global dynamics, synoptic features and processes, atmospheric dynamics, and future spaceflight opportunities. A session on the atmospheres of Uranus and Neptune was included, and the atmosphere of Saturn was discussed in several papers

  3. Project Aether Aurora: STEM outreach near the arctic circle

    Longmier, B. W.; Bering, E. A.

    2012-12-01

    Project Aether is a program designed to immerse high-school through graduate students to field research in some of the fields of STEM. The program leaders launch high altitude weather balloons in collaboration with schools and students to teach physics concepts, experimental research skills, and to make space exploration accessible to students. A weather balloon lifts a specially designed payload package that is composed of HD cameras, GPS tracking devices, and other science equipment. The payload is constructed and attached to the balloon by the students with low-cost materials. The balloon and payload are launched with FAA clearance from a site chosen based on wind patterns and predicted landing locations. The balloon ascends over 2 hours to a maximum altitude of 100,000 feet where it bursts and allows the payload to slowly descend using a built-in parachute. The balloon's location is monitored during its flight by GPS-satellite relay. Most of the science and video data are recorded on SD cards using an Arduino digitizer. The payload is located using the GPS device. The science data are recovered from the payload and shared with the students. In April 2012, Project Aether leaders conducted a field campaign near Fairbanks Alaska, sending several student-built experiments to an altitude of 30km, underneath several strong auroral displays. Auroral physics experiments that can be done on ultra small balloons (5 cubic meters) include electric field and magnetic fluctuation observations, full spectrum and narrow band optical imaging, GPS monitoring of the total electron content of the ionosphere, x-ray detection and infrared and UV spectroscopy. The actual undergraduate student experiments will be reviewed and some data presented.; Balloon deployment underneath aurora, Fairbanks Alaska, 2012.

  4. Radiation Belts of Antiparticles in Planetary Magnetospheres

    Pugacheva, G. I.; Gusev, A. A.; Jayanthi, U. B.; Martin, I. M.; Spjeldvik, W. N.

    2007-05-01

    The Earth's radiation belts could be populated, besides with electrons and protons, also by antiparticles, such as positrons (Basilova et al., 1982) and antiprotons (pbar). Positrons are born in the decay of pions that are directly produced in nuclear reactions of trapped relativistic inner zone protons with the residual atmosphere at altitudes in the range of about 500 to 3000 km over the Earth's surface. Antiprotons are born by high energy (E > 6 GeV) cosmic rays in p+p - p+p+p+ pbar and in p+p - p+p+n+nbar reactions. The trapping and storage of these charged anti-particles in the magnetosphere result in radiation belts similar to the classical Van Allen belts of protons and electrons. We describe the mathematical techniques used for numerical simulation of the trapped positron and antiproton belt fluxes. The pion and antiproton yields were simulated on the basis of the Russian nuclear reaction computer code MSDM, a Multy Stage Dynamical Model, Monte Carlo code, (i.e., Dementyev and Sobolevsky, 1999). For estimates of positron flux there we have accounted for ionisation, bremsstrahlung, and synchrotron energy losses. The resulting numerical estimates show that the positron flux with energy >100 MeV trapped into the radiation belt at L=1.2 is of the order ~1000 m-2 s-1 sr-1, and that it is very sensitive to the shape of the trapped proton spectrum. This confined positron flux is found to be greater than that albedo, not trapped, mixed electron/positron flux of about 50 m-2 s-1 sr-1 produced by CR in the same region at the top of the geomagnetic field line at L=1.2. As we show in report, this albedo flux also consists mostly of positrons. The trapped antiproton fluxes produced by CR in the Earth's upper rarified atmosphere were calculated in the energy range from 10 MeV to several GeV. In the simulations we included a mathematic consideration of the radial diffusion process, both an inner and an outer antiproton source, losses of particles due to ionization process

  5. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    1998-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted research aircraft, seen here during a test flight in June 1998. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST

  6. Morphology and dynamics of aurora at fine scale: first results from the ASK instrument

    H. Dahlgren

    2008-05-01

    Full Text Available The ASK instrument (Auroral Structure and Kinetics is a narrow field auroral imager, providing simultaneous images of aurora in three different spectral bands at multiple frames per second resolution. The three emission species studied are O2+ (5620 Å, O+ (7319 Å and O (7774 Å. ASK was installed and operated for the first time in an observational campaign on Svalbard, from December 2005 to March 2006. The measurements were supported by data from the Spectrographic Imaging Facility (SIF. The relation between the morphology and dynamics of the visible aurora and its spectral characteristics is studied for selected events from this period. In these events it is found that dynamic aurora is coupled to high energy electron precipitation. By studying the O2+/O intensity ratio we find that some auroral filaments are caused by higher energy precipitation within regions of lower energy precipitation, whereas other filaments are the result of a higher particle flux compared to the surroundings.

  7. Global Current Circuit Structure in a Resistive Pulsar Magnetosphere Model

    Kato, Yugo. E.

    2017-12-01

    Pulsar magnetospheres have strong magnetic fields and large amounts of plasma. The structures of these magnetospheres are studied using force-free electrodynamics. To understand pulsar magnetospheres, discussions must include their outer region. However, force-free electrodynamics is limited in it does not handle dissipation. Therefore, a resistive pulsar magnetic field model is needed. To break the ideal magnetohydrodynamic (MHD) condition E\\cdot B=0, Ohm’s law is used. This work introduces resistivity depending upon the distance from the star and obtain a self-consistent steady state by time integration. Poloidal current circuits form in the magnetosphere while the toroidal magnetic field region expands beyond the light cylinder and the Poynting flux radiation appears. High electric resistivity causes a large space scale poloidal current circuit and the magnetosphere radiates a larger Poynting flux than the linear increase outside of the light cylinder radius. The formed poloidal-current circuit has width, which grows with the electric conductivity. This result contributes to a more concrete dissipative pulsar magnetosphere model.

  8. Possibility of detecting magnetospheric radio bursts from Uranus and Neptune

    Kennel, C.F.; Maggs, J.E.

    1976-01-01

    It is known that Earth, Jupiter and Saturn are sources of intense sporadic bursts of electromagnetic radiation, known as magnetospheric radio bursts. These bursts are here described. It is thought that the similarities in the power flux spectra, together with the burst occurrence patterns, suggest a common physical origin for these bursts in all three planets. The common mechanism may be noise amplification by field aligned currents, since it has been shown that the Earth's MRBs are associated with bright auroral arcs that involve intense field aligned currents. Such currents result from the interaction of the solar wind with the magnetosphere and should be a general feature of the interaction between the solar wind and planetary magnetospheres. If MRBs are produced by solar wind-magnetosphere interaction their total radiated power might scale with the solar wind input into the magnetosphere, and it has been suggested that the frequency of emission scales with the polar magnetic field strength of a planet. The intensity of MRBs is here scaled to the solar wind input and the frequency of emission to the polar field strength with a view to estimating the possibility of detecting MRBs from Uranus and Neptune. It is found that scaling of MRB power to the solar wind-magnetosphere dissipation power is probably a reasonable hypothesis. It is suggested that detection of MRB bursts from Uranus and Neptune might be a reasonable radioastronomy objective on future missions to the outer Solar System. (U.K.)

  9. Aurora kinase A as a possible marker for endocrine resistance in early estrogen receptor positive breast cancer

    Lykkesfeldt, Anne E; Iversen, Benedikte R; Jensen, Maj-Britt

    2018-01-01

    in 980 tumors and semi quantitively scored into three groups; negative/weak, moderate and high. The Aurora A expression levels were compared to other clinico-pathological parameters and outcome, defined as disease-free survival (DFS) and overall survival (OS). RESULTS: High expression of Aurora......BACKGROUND: Cell culture studies have disclosed that the mitotic Aurora kinase A is causally involved in both tamoxifen and aromatase inhibitor resistant cell growth and thus may be a potential new marker for endocrine resistance in the clinical setting. MATERIAL AND METHODS: Archival tumor tissue...... A was found in 26.9% of patients and moderate in 57.0%. High expression was significantly associated with high malignancy grade and HER2 amplification. High Aurora A expression was significantly more frequent in ductal compared to lobular carcinomas. We found no significant association between Aurora...

  10. RETIRED A STARS AND THEIR COMPANIONS. VII. 18 NEW JOVIAN PLANETS

    Johnson, John Asher; Clanton, Christian; Crepp, Justin R.; Howard, Andrew W.; Marcy, Geoffrey W.; Bowler, Brendan P.; Isaacson, Howard; Henry, Gregory W.; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.; Wright, Jason T.

    2011-01-01

    We report the detection of 18 Jovian planets discovered as part of our Doppler survey of subgiant stars at Keck Observatory, with follow-up Doppler and photometric observations made at McDonald and Fairborn Observatories, respectively. The host stars have masses 0.927 ≤ M * /M ☉ ≤ 1.95, radii 2.5 ≤ R * /R ☉ ≤ 8.7, and metallicities –0.46 ≤ [Fe/H] ≤+0.30. The planets have minimum masses 0.9 M Jup ≤ M P sin i ∼ Jup and semimajor axes a ≥ 0.76 AU. These detections represent a 50% increase in the number of planets known to orbit stars more massive than 1.5 M ☉ and provide valuable additional information about the properties of planets around stars more massive than the Sun.

  11. Aurora-A overexpression enhances cell-aggregation of Ha-ras transformants through the MEK/ERK signaling pathway

    Tseng, Ya-Shih; Lee, Jenq-Chang; Huang, Chi-Ying F; Liu, Hsiao-Sheng

    2009-01-01

    Overexpression of Aurora-A and mutant Ras (Ras V12 ) together has been detected in human bladder cancer tissue. However, it is not clear whether this phenomenon is a general event or not. Although crosstalk between Aurora-A and Ras signaling pathways has been reported, the role of these two genes acting together in tumorigenesis remains unclear. Real-time PCR and sequence analysis were utilized to identify Ha- and Ki-ras mutation (Gly -> Val). Immunohistochemistry staining was used to measure the level of Aurora-A expression in bladder and colon cancer specimens. To reveal the effect of overexpression of the above two genes on cellular responses, mouse NIH3T3 fibroblast derived cell lines over-expressing either Ras V12 and wild-type Aurora-A (designated WT) or Ras V12 and kinase-inactivated Aurora-A (KD) were established. MTT and focus formation assays were conducted to measure proliferation rate and focus formation capability of the cells. Small interfering RNA, pharmacological inhibitors and dominant negative genes were used to dissect the signaling pathways involved. Overexpression of wild-type Aurora-A and mutation of Ras V12 were detected in human bladder and colon cancer tissues. Wild-type Aurora-A induces focus formation and aggregation of the Ras V12 transformants. Aurora-A activates Ral A and the phosphorylation of AKT as well as enhances the phosphorylation of MEK, ERK of WT cells. Finally, the Ras/MEK/ERK signaling pathway is responsible for Aurora-A induced aggregation of the Ras V12 transformants. Wild-type-Aurora-A enhances focus formation and aggregation of the Ras V12 transformants and the latter occurs through modulating the Ras/MEK/ERK signaling pathway

  12. Plasma sources of solar system magnetospheres

    Blanc, Michel; Chappell, Charles; Krupp, Norbert

    2016-01-01

    This volume reviews what we know of the corresponding plasma source for each intrinsically magnetized planet. Plasma sources fall essentially in three categories: the solar wind, the ionosphere (both prevalent on Earth), and the satellite-related sources. Throughout the text, the case of each planet is described, including the characteristics, chemical composition and intensity of each source. The authors also describe how the plasma generated at the source regions is transported to populate the magnetosphere, and how it is later lost. To summarize, the dominant sources are found to be the solar wind and sputtered surface ions at Mercury, the solar wind and ionosphere at Earth (the relative importance of the two being discussed in a specific introductory chapter), Io at Jupiter and – a big surprise of the Cassini findings – Enceladus at Saturn. The situation for Uranus and Neptune, which were investigated by only one fly-by each, is still open and requires further studies and exploration. In the final cha...

  13. Lunar biological effects and the magnetosphere.

    Bevington, Michael

    2015-12-01

    The debate about how far the Moon causes biological effects has continued for two millennia. Pliny the Elder argued for lunar power "penetrating all things", including plants, fish, animals and humans. He also linked the Moon with tides, confirmed mathematically by Newton. A review of modern studies of biological effects, especially from plants and animals, confirms the pervasive nature of this lunar force. However calculations from physics and other arguments refute the supposed mechanisms of gravity and light. Recent space exploration allows a new approach with evidence of electromagnetic fields associated with the Earth's magnetotail at full moon during the night, and similar, but more limited, effects from the Moon's wake on the magnetosphere at new moon during the day. The disturbance of the magnetotail is perhaps shown by measurements of electric fields of up to 16V/m compared with the usual lunar biological effects, such as acute myocardial infarction, could help the development of strategies to reduce adverse effects for people sensitive to geomagnetic disturbance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Wave propagation in the magnetosphere of Jupiter

    Liemohn, H. B.

    1972-01-01

    A systematic procedure is developed for identifying the spatial regimes of various modes of wave propagation in the Jupiter magnetosphere that may be encountered by flyby missions. The Clemmow-Mullaly-Allis (CMA) diagram of plasma physics is utilized to identify the frequency regimes in which different modes of propagation occur in the magnetoplasma. The Gledhill model and the Ioannidis and Brice model of the magnetoplasma are summarized, and configuration-space CMA diagrams are constructed for each model for frequencies from 10 Hz to 1 MHz. The distinctive propagation features, the radio noise regimes, and the wave-particle interactions are discussed. It is concluded that the concentration of plasma in the equatorial plane makes this region of vital importance for radio observations with flyby missions. Local radio noise around the electron cyclotron frequency will probably differ appreciably from its terrestrial counterpart due to the lack of field-line guidance. Hydromagnetic wave properties at frequencies near the ion cyclotron frequency and below will probably be similar to the terrestrial case.

  15. General-relativistic pulsar magnetospheric emission

    Pétri, J.

    2018-06-01

    Most current pulsar emission models assume photon production and emission within the magnetosphere. Low-frequency radiation is preferentially produced in the vicinity of the polar caps, whereas the high-energy tail is shifted to regions closer but still inside the light cylinder. We conducted a systematic study of the merit of several popular radiation sites like the polar cap, the outer gap, and the slot gap. We computed sky maps emanating from each emission site according to a prescribed distribution function for the emitting particles made of an electron/positron mixture. Calculations are performed using a three-dimensional integration of the plasma emissivity in the vacuum electromagnetic field of a rotating and centred general-relativistic dipole. We compare Newtonian electromagnetic fields to their general-relativistic counterpart. In the latter case, light bending is also taken into account. As a typical example, light curves and sky maps are plotted for several power-law indices of the particle distribution function. The detailed pulse profiles strongly depend on the underlying assumption about the fluid motion subject to strong electromagnetic fields. This electromagnetic topology enforces the photon propagation direction directly, or indirectly, from aberration effects. We also discuss the implication of a net stellar electric charge on to sky maps. Taking into account, the electric field strongly affects the light curves originating close to the light cylinder, where the electric field strength becomes comparable to the magnetic field strength.

  16. Electron acoustic nonlinear structures in planetary magnetospheres

    Shah, K. H.; Qureshi, M. N. S.; Masood, W.; Shah, H. A.

    2018-04-01

    In this paper, we have studied linear and nonlinear propagation of electron acoustic waves (EAWs) comprising cold and hot populations in which the ions form the neutralizing background. The hot electrons have been assumed to follow the generalized ( r , q ) distribution which has the advantage that it mimics most of the distribution functions observed in space plasmas. Interestingly, it has been found that unlike Maxwellian and kappa distributions, the electron acoustic waves admit not only rarefactive structures but also allow the formation of compressive solitary structures for generalized ( r , q ) distribution. It has been found that the flatness parameter r , tail parameter q , and the nonlinear propagation velocity u affect the propagation characteristics of nonlinear EAWs. Using the plasmas parameters, typically found in Saturn's magnetosphere and the Earth's auroral region, where two populations of electrons and electron acoustic solitary waves (EASWs) have been observed, we have given an estimate of the scale lengths over which these nonlinear waves are expected to form and how the size of these structures would vary with the change in the shape of the distribution function and with the change of the plasma parameters.

  17. Density Variations in the Earth's Magnetospheric Cusps

    Walsh, B. M.; Niehof, J.; Collier, M. R.; Welling, D. T.; Sibeck, D. G.; Mozer, F. S.; Fritz, T. A.; Kuntz, K. D.

    2016-01-01

    Seven years of measurements from the Polar spacecraft are surveyed to monitor the variations of plasma density within the magnetospheric cusps. The spacecraft's orbital precession from 1998 through 2005 allows for coverage of both the northern and southern cusps from low altitude out to the magnetopause. In the mid- and high- altitude cusps, plasma density scales well with the solar wind density (n(sub cusp)/n(sub sw) approximately 0.8). This trend is fairly steady for radial distances greater then 4 R(sub E). At low altitudes (r less than 4R(sub E)) the density increases with decreasing altitude and even exceeds the solar wind density due to contributions from the ionosphere. The density of high charge state oxygen (O(greater +2) also displays a positive trend with solar wind density within the cusp. A multifluid simulation with the Block-Adaptive-Tree Solar Wind Roe-Type Upwind Scheme MHD model was run to monitor the relative contributions of the ionosphere and solar wind plasma within the cusp. The simulation provides similar results to the statistical measurements from Polar and confirms the presence of ionospheric plasma at low altitudes.

  18. Energetic Particles Dynamics in Mercury's Magnetosphere

    Walsh, Brian M.; Ryou, A.S.; Sibeck, D. G.; Alexeev, I. I.

    2013-01-01

    We investigate the drift paths of energetic particles in Mercury's magnetosphere by tracing their motion through a model magnetic field. Test particle simulations solving the full Lorentz force show a quasi-trapped energetic particle population that gradient and curvature drift around the planet via "Shabansky" orbits, passing though high latitudes in the compressed dayside by equatorial latitudes on the nightside. Due to their large gyroradii, energetic H+ and Na+ ions will typically collide with the planet or the magnetopause and will not be able to complete a full drift orbit. These simulations provide direct comparison for recent spacecraft measurements from MESSENGER. Mercury's offset dipole results in an asymmetric loss cone and therefore an asymmetry in particle precipitation with more particles precipitating in the southern hemisphere. Since the planet lacks an atmosphere, precipitating particles will collide directly with the surface of the planet. The incident charged particles can kick up neutrals from the surface and have implications for the formation of the exosphere and weathering of the surface

  19. First results from the Magnetospheric Multiscale mission

    Lavraud, B.

    2017-12-01

    Since its launch in March 2015, NASA's Magnetospheric Multiscale mission (MMS) provides a wealth of unprecedented high resolution measurements of space plasma properties and dynamics in the near-Earth environment. MMS was designed in the first place to study the fundamental process of collision-less magnetic reconnection. The two first results reviewed here pertain to this topic and highlight how the extremely high resolution MMS data (electrons, in particular, with full three dimensional measurements at 30 ms in burst mode) have permitted to tackle electron dynamics in unprecedented details. The first result demonstrates how electrons become demagnetized and scattered near the magnetic reconnection X line as a result of increased magnetic field curvature, together with a decrease in its magnitude. The second result demonstrates that electrons form crescent-shaped, agyrotropic distribution functions very near the X line, suggestive of the existence of a perpendicular current aligned with the local electric field and consistent with the energy conversion expected in magnetic reconnection (such that J\\cdot E > 0). Aside from magnetic reconnection, we show how MMS contributes to topics such as wave properties and their interaction with particles. Thanks again to extremely high resolution measurements, the lossless and periodical energy exchange between wave electromagnetic fields and particles, as expected in the case of kinetic Alfvén waves, was confirmed. Although not discussed, MMS has the potential to solve many other outstanding issues in collision-less plasma physics, for example regarding shock or turbulence acceleration, with obvious broader impacts in astrophysics in general.

  20. Recent laser experiments on the Aurora KrF/ICF laser system

    Turner, T.P.; Jones, J.E.; Czuchlewski, S.J.; Watt, R.G.; Thomas, S.J.; Kang, M.; Tallman, C.R.; Mack, J.M.; Figueira, J.F.

    1990-01-01

    The Aurora KrF/ICF Laser Facility at Los Alamos is operational at the kilojoule-level for both laser and target experiments. We report on recent laser experiments on the system and resulting system improvements. 3 refs., 4 figs

  1. 76 FR 65216 - Beacon Medical Services, LLC, Aurora, CO; Notice of Negative Determination Regarding Application...

    2011-10-20

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-80,219] Beacon Medical Services... workers and former workers of Beacon Medical Services, LLC, Aurora, Colorado (Beacon Medical Services... published in the Federal Register on July 8, 2011 (76 FR 40401). The workers of Beacon Medical Services are...

  2. Cancer Cell Resistance to Aurora Kinase Inhibitors: Identification of Novel Targets for Cancer Therapy

    Hrabáková, Rita; Kollaredy, M.; Tylečková, Jiřina; Halada, Petr; Hajdúch, M.; Gadher, S. J.; Kovářová, Hana

    2013-01-01

    Roč. 12, č. 1 (2013), s. 455-469 ISSN 1535-3893 R&D Projects: GA MŠk LC07017 Institutional support: RVO:67985904 ; RVO:61388971 Keywords : Aurora kinase inhibitors * resistance * p53 * apoptosis Subject RIV: CE - Biochemistry Impact factor: 5.001, year: 2013

  3. Aurora kinase A is essential for correct chromosome segregation in mouse zygote

    Kovaříková, V.; Burkus, J.; Rehák, P.; Brzáková, Adéla; Šolc, Petr; Baran, V.

    2016-01-01

    Roč. 24, č. 3 (2016), s. 326-337 ISSN 0967-1994 R&D Projects: GA MŠk ED2.1.00/03.0124 Institutional support: RVO:67985904 Keywords : apoptosis * aurora A * MLN8237 * mouse zygote * spindle Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.053, year: 2016

  4. GATEWAY Demonstrations: OLED Lighting in the Offices of Aurora Lighting Design, Inc.

    Miller, Naomi J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-31

    At the offices of Aurora Lighting Design, Inc., in Grayslake, IL, the GATEWAY program conducted its first investigation involving OLED lighting. The project experienced several challenges, but also highlighted a number of promising attributes – which indicate that with continued improvements in efficacy, longevity, size, and flexibility, OLEDs could provide a new tool for creative and effective lighting.

  5. Discovery of Salamandra atra aurorae (Trevisan, 1982 on the Altopiano di Vezzena, Trentino (Northeastern Italy

    Wouter Beukema

    2008-05-01

    Full Text Available Aurora’s Alpine Salamander is a limited distributed subspecies endemic to the Altopiano di Asiago, Veneto. In the current paper the occurrence of Salamandra atra aurorae is described for the Altopiano di Vezzena, Trentino. The aim of this paper is to review the distribution as well as to comment on the conservational status of the subspecies in Trentino.

  6. Aurora T: a Monte Carlo code for transportation of neutral atoms in a toroidal plasma

    Bignami, A.; Chiorrini, R.

    1982-01-01

    This paper contains a short description of Aurora code. This code have been developed at Princeton with Monte Carlo method for calculating neutral gas in cylindrical plasma. In this work subroutines such one can take in account toroidal geometry are developed

  7. Radar and photometric measurements of an intense type A red aurora

    Robinson, R. M.; Mende, S. B.; Vondrak, R. R.; Kozyra, J. U.; Nagy, A. F.

    1985-01-01

    On the evening of March 5, 1981, an intense, type A red aurora appeared over southern Alaska. Radar and photometric measurements were made of the aurora from the Chatanika radar site. The line of sight intensity of the 630.0-nm emissions exceeded 150 kR and was accompanied by enhanced emissions at 486.1 and 427.8 nm. The Chatanika radar measured electron densities of 10 to the 6th per cu cm and electron temperatures of 6000 K at an altitude of 400 km and an invariant latitude of 59 deg in association with the aurora. Comparison of optical and radar measurements indicated that the 630.0-nm emissions were produced to a large degree by thermal excitation of O(1D) in the region of high electron temperatures and densities. Model calculations indicate that the observed density and temperature enhancements and the related optical emissions were the results of a relatively short duration (5-10 min) pulse of precipitating, low-energy (about 30 eV) electrons. Whereas conventional stable auroral red arcs are associated with a gradual decrease in ring current energy density during the recovery phase of a magnetic storm, the type A red aurora may be produced by impulsive ring current energy loss during the main phase.

  8. Solar wind and its interaction with the Earth magnetosphere

    Grib, S.A.

    1978-01-01

    A critical review is given regarding the research of the stationary and non-stationary interaction of the solar wind with the Earth magnetosphere. Highlighted is the significance of the interplanetary magnetic field in the non-stationary movement of the solar wind flux. The problem of the solar wind shock waves interaction with the ''bow wave-Earth's magnetosphere'' system is being solved. Considered are the secondary phenomena, as a result of which the depression-type wave occurs, that lowers the pressure on the Earth's maanetosphere. The law, governing the movement of the magnetosphere subsolar point during the abrupt start of a geomagnetic storm has been discovered. Stationary circumvention of the magnetosphere by the solar wind flux is well described by the gas dynamic theory of the hypersonic flux. Non-stationary interaction of the solar wind shock waves with the magnetosphere is magnetohydrodynamic. It is pointed out, that the problems under consideration are important for the forecasting of strong geomagnetic perturbations on the basis of cosmic observations

  9. Wave--particle interactions in the magnetosphere and ionosphere

    Thorne, R.M.

    1975-01-01

    Two distinct aspects of the interaction between waves and particles in the earth's magnetosphere and ionosphere were discussed at the Yosemite Conference on Magnetosphere-Ionosphere Coupling; these will be briefly reviewed. Intense field-aligned currents flow between the ionosphere and magnetosphere at auroral latitudes. Under certain conditions these currents can become unstable, permitting potential drops to be established along the field lines. The present status of experimental evidence favoring such parallel electric fields is somewhat controversial. Theoretical models for their origin invoke regions of anomalous resistivity or electrostatic double layers. To date it is impossible to distinguish between these alternatives on the basis of experimental data. The nonadiabatic behavior of magnetospheric ring current particles during geomagnetic storms is largely controlled by wave-particle processes. During the storm main phase, intense fluctuating convection electric fields are responsible for injecting trapped particles into the outer radiation zone. The outer radiation zone also moves in closer to the earth following the storm time compression of the plasmapause. Simultaneous pitch angle scattering by higher-frequency plasma turbulence causes precipitation loss near the strong diffusion limit throughout the outer magnetosphere. During the storm recov []ry phase the plasmapause slowly moves out toward its prestorm location; energetic particle loss at such times appears to be dominated by cyclotron resonant scattering from electromagnetic turbulence. (auth)

  10. Evaluation of recent quantitative magnetospheric magnetic field models

    Walker, R.J.

    1976-01-01

    Recent quantitative magnetospheric field models contain many features not found in earlier models. Magnetopause models which include the effects of the dipole tilt were presented. More realistic models of the tail field include tail currents which close on the magnetopause, cross-tail currents of finite thickness, and cross-tail current models which model the position of the neutral sheet as a function of tilt. Finally, models have attempted to calculate the field of currents distributed in the inner magnetosphere. As the purpose of a magnetospheric model is to provide a mathematical description of the field that reasonably reproduces the observed magnetospheric field, several recent models were compared with the observed ΔB(B/sub observed/--B/sub main field/) contours. Models containing only contributions from magnetopause and tail current systems are able to reproduce the observed quiet time field only in an extremely qualitative way. The best quantitative agreement between models and observations occurs when currents distributed in the inner magnetosphere are added to the magnetopause and tail current systems. However, the distributed current models are valid only for zero tilt. Even the models which reproduce the average observed field reasonably well may not give physically reasonable field gradients. Three of the models evaluated contain regions in the near tail in which the field gradient reverses direction. One region in which all the models fall short is that around the polar cusp, though most can be used to calculate the position of the last closed field line reasonably well

  11. Observations & modeling of solar-wind/magnetospheric interactions

    Hoilijoki, Sanni; Von Alfthan, Sebastian; Pfau-Kempf, Yann; Palmroth, Minna; Ganse, Urs

    2016-07-01

    The majority of the global magnetospheric dynamics is driven by magnetic reconnection, indicating the need to understand and predict reconnection processes and their global consequences. So far, global magnetospheric dynamics has been simulated using mainly magnetohydrodynamic (MHD) models, which are approximate but fast enough to be executed in real time or near-real time. Due to their fast computation times, MHD models are currently the only possible frameworks for space weather predictions. However, in MHD models reconnection is not treated kinetically. In this presentation we will compare the results from global kinetic (hybrid-Vlasov) and global MHD simulations. Both simulations are compared with in-situ measurements. We will show that the kinetic processes at the bow shock, in the magnetosheath and at the magnetopause affect global dynamics even during steady solar wind conditions. Foreshock processes cause an asymmetry in the magnetosheath plasma, indicating that the plasma entering the magnetosphere is not symmetrical on different sides of the magnetosphere. Behind the bow shock in the magnetosheath kinetic wave modes appear. Some of these waves propagate to the magnetopause and have an effect on the magnetopause reconnection. Therefore we find that kinetic phenomena have a significant role in the interaction between the solar wind and the magnetosphere. While kinetic models cannot be executed in real time currently, they could be used to extract heuristics to be added in the faster MHD models.

  12. Aurora: Los Alamos multikilojoule angular-multiplexed KrF driver prototype for ICF

    Rosocha, L.A.; Hanlon, J.A.; McLeod, J.

    1987-01-01

    The Los Alamos National Laboratory (LANL) has participated in programs to apply high-power gas lasers to inertial confinement fusion (ICF). The bulk of this effort has been in the development of CO/sub 2/ laser systems and laser-plasma interaction experiments at a 10.6-μm wavelength. The main hardware element in this program is the Aurora KrF laser system, which is a prototype for using optical angular multiplexing and serial amplification by large electron-beam-driven KrF laser amplifiers to study KrF systems as potential fusion drivers. Aurora will serve as a test-bed for specific laser, optical, and electron-beam-pumping technology aspects of larger KrF fusion systems. The Aurora system is being built in two phases. The first-phase portion of the Aurora system contains all the main optical and laser elements from the front end to the final amplifier output. In the first phase, the front end output is replicated using aperture slicers and beam splitters to produce a 480-ns long pulse train consisting of 96 separate 5-ns pulses. This pulse train is encoded in angular separation, relayed through the amplifier chain by means of the centered optical system and the computer-controlled alignment station, and delivered to a diagnostic station which follows the main power amplifier [large aperture module (LAM)]. The second phase of the system contains the first-phase portion and the additional optical and target hardware needed to stack 48 of the 96 multiplexed and amplified beams into a single multikilojoule 5-ns pulse at the fusion target. The authors give a description of the Aurora system and discuss its present status

  13. Instability of equatorial protons in Jupiter's mid-magnetosphere

    Northrop, T.G.; Schardt, A.W.

    1980-01-01

    Two different models for the distribution function are fit to the Jovian protons seen by Pioneer 10 inbound. The models reproduce the observed energy and angular distributions. These models are then used to assess the collisionless mirror instability. Because of the pancake proton angular distributions in the equatorial ring current region, the ring current particle population appears to be mirror unstable at times, with instability growth rates of approx.10 min. Such a time is consistent with observed proton flux autocorrelation times. An instability such as this (there are other candidates) may be responsible for the previously established proton flux flowing parallel to the magnetic field away from the equatorial region

  14. Corotating Magnetic Reconnection Site in Saturn’s Magnetosphere

    Yao, Z. H.; Coates, A. J.; Ray, L. C.; Rae, I. J.; Jones, G. H.; Owen, C. J.; Dunn, W. R.; Lewis, G. R. [UCL Mullard Space Science Laboratory, Dorking RH5 6NT (United Kingdom); Grodent, D.; Radioti, A.; Gérard, J.-C. [Laboratoire de Physique Atmosphérique et Planétaire, STAR institute, Université de Liège, B-4000 Liège (Belgium); Dougherty, M. K. [Imperial College of Science, Technology and Medicine, Space and Atmospheric Physics Group, Department of Physics, London SW7 2BW (United Kingdom); Guo, R. L. [Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing (China); Pu, Z. Y. [School of Earth and Space Sciences, Peking University, Beijing (China); Waite, J. H., E-mail: z.yao@ucl.ac.uk [Southwest Research Institute, San Antonio, TX (United States)

    2017-09-10

    Using measurements from the Cassini spacecraft in Saturn’s magnetosphere, we propose a 3D physical picture of a corotating reconnection site, which can only be driven by an internally generated source. Our results demonstrate that the corotating magnetic reconnection can drive an expansion of the current sheet in Saturn’s magnetosphere and, consequently, can produce Fermi acceleration of electrons. This reconnection site lasted for longer than one of Saturn’s rotation period. The long-lasting and corotating natures of the magnetic reconnection site at Saturn suggest fundamentally different roles of magnetic reconnection in driving magnetospheric dynamics (e.g., the auroral precipitation) from the Earth. Our corotating reconnection picture could also potentially shed light on the fast rotating magnetized plasma environments in the solar system and beyond.

  15. Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions

    Anderson, B. J.; Hamilton, D. C.

    1993-01-01

    AMPTE/CCE magnetic field and particle data are used to test the suggestion that increased hot proton temperature anisotropy resulting from convection during magnetospheric compression is responsible for the enhancement in Pc 1 emission via generation of electromagnetic ion cyclotron (EMIC) waves in the dayside outer equatorial magnetosphere. The relative increase in magnetic field is used to gauge the strength of the compression, and an image dipole model is used to estimate the motion of the plasma during compression. Proton data are used to analyze the evolution of the proton distribution and the corresponding changes in EMIC wave activity expected during the compression. It is suggested that enhancements in dynamic pressure pump the energetic proton distributions in the outer magnetosphere, driving EMIC waves. Waves are expected to be generated most readily close to the magnetopause, and transient pressure pulses may be associated with bursts of EMIC waves, which would be observed on the ground in association with ionospheric transient signatures.

  16. Improving magnetosphere in situ observations using solar sails

    Parsay, Khashayar; Schaub, Hanspeter; Schiff, Conrad; Williams, Trevor

    2018-01-01

    Past and current magnetosphere missions employ conventional spacecraft formations for in situ observations of the geomagnetic tail. Conventional spacecraft flying in inertially fixed Keplerian orbits are only aligned with the geomagnetic tail once per year, since the geomagnetic tail is always aligned with the Earth-Sun line, and therefore, rotates annually. Solar sails are able to artificially create sun-synchronous orbits such that the orbit apse line remains aligned with the geomagnetic tail line throughout the entire year. This continuous presence in the geomagnetic tail can significantly increase the science phase for magnetosphere missions. In this paper, the problem of solar sail formation design is explored using nonlinear programming to design optimal two-craft, triangle, and tetrahedron solar sail formations, in terms of formation quality and formation stability. The designed formations are directly compared to the formations used in NASA's Magnetospheric Multi-Scale mission.

  17. On the penetration of solar wind inhomogeneities into the magnetosphere

    Maksimov, V.P.; Senatorov, V.N.

    1980-01-01

    Laboratory experiments were used as a basis to study the process of interaction between solar wind inhomogeneities and the Earth's magnetosphere. The given inhomogeneity represents a lump of plasma characterized by an increased concentration of particles (nsub(e) approximately 20-30 cm -3 ), a discrete form (characteristic dimensions of the lump are inferior to the magnetosphere diameter) and the velocity v approximately 350 km/s. It is shown that there is the possibility of penetration of solar wind inhomogeneities inside the Earth's magnetosphere because of the appearance in the inhomogeneity of an electric field of transverse polarization. The said process is a possible mechanism of the formation of the magnetopshere entrance layer

  18. Magnetospheric storm dynamics in terms of energy output rate

    Prigancova, A.; Feldstein, Ya.I.

    1992-01-01

    Using hourly values of both the global magnetospheric disturbance characteristic DR, and AE index of auroral ionospheric currents during magnetic storm intervals, the energy output rate dynamics is evaluated for a magnetic storm main/recovery phase and a whole storm interval. The magnetospheric response to the solar wind energy input rate under varying interplanetary and magnetospheric conditions is considered from the temporal variability point of view. The peculiarities of the response are traced separately. As far as quantitative characteristics of energy output rate are concerned, the time dependence pattern of the ring current decay parameter is emphasized to be fairly important. It is pointed out that more insight into the plasma processes, especially at L = 3 - 5, is needed for adequate evidence of the dependence. (Author)

  19. On the significance of magnetospheric research for progress in astrophysics

    Faelthammar, C-G.; Akasofu, S-I.; Alfen, H.

    1978-04-01

    Recent discoveries by means of in situ measurements have led to a substantial revision of our picture of the magnetosphere and parts of the heliosphere. This concerns such essential aspects as the character and distribution of electric fields and currents, the ways in which charged particles are energized, and the chemical composition of the magnetospheric plasma. This revision reflects the fact that even in fundamental respects, real cosmical plasmas behave in different ways than predicted by the idealized models that have traditionally been used in magnetospheric physics as well as in astrophysics. The new understanding of the general properties of cosmical plasma that has been, and continues to be, provided by in situ measurements gives us a much improved basis on which to interpret astrophysical observations

  20. Some recent results from European sounding rocket and satellite observations of the hot magnetospheric plasma

    Hultqvist, B.

    1979-03-01

    A brief summary of some recent results from European studies of the hot magnetospheric plasma is presented. The material is organized in four main sections: 1) Observations of keV auroral electrons. 2) Observation of the hot ion component of the magnetospheric plasma. 3) Sudden changes of the distribution of the hot plasma in the dayside magnetosphere. 4) Banded electron cyclotron harmonic instability in the magnetosphere - a first comparison of theory and experiment. (E.R.)

  1. Outstanding Issues and Future Directions of Inner Magnetospheric Research (Invited)

    Brandt, P. C.

    2009-12-01

    Several research areas of the inner magnetosphere and ionosphere (MI) system have reached a state, where the coupling mechanisms can no longer be treated as boundary conditions or ad-hoc assumptions in our physical models. It is nothing new that our community has become increasingly aware of the necessity to use global measurements from multiple observation platforms and missions, in order to understand both the system as a whole as well as its individual subsystems. In this presentation we briefly review the current status and outstanding issues of inner MI research. We attempt to establish a working definition of the term "Systems Approach", then present observational tools and techniques that enable such an approach. Physical modeling plays a central role not only in understanding the mechanisms at work, but also in determining the key quantities to be measured. We conclude by discussing questions relevant to future directions. Are there new techniques that need more attention? Should multi-platform observations be included as a default component already at the mission-level in the future? Is solar minimum uninteresting from an MI perspective? Should we actively compare to magnetospheres of other planets? Examples of outstanding issues in inner MI research include the circulation of ionospheric plasma from low to high latitudes and its escape to the magnetosphere, where it is energized by magnetospheric processes and becomes a part of the plasma pressure that in turn affects the ionospheric and magnetospheric electric field. The electric field, in turn, plays a controlling role in the transport of both magnetospheric and ionospheric plasma, which is intimately linked with ionospheric conductance. The conductance, in turn, is controlled by thermospheric chemistry coupled with plasma flow and heating and magnetospheric precipitation and Joule heating. Several techniques have emerged as important tools: auroral imaging, inversions of ENA images to retrieve the

  2. Dynamics of electrons and heavy ions in Mercury's magnetosphere

    Ip, W.H.

    1987-01-01

    The present investigation of Mercury magnetosphere processes employs simple models for the adiabatic acceleration and convection of equatorially mirroring charged particles, as well as the current sheet acceleration effect and the acceleration of such exospheric ions as that of Na(+) by both electric and magnetic magnetospheric fields near Mercury's surface. The large gyroradii of such heavy ions as those of Na allow surface reimpact as well as magnetopause-interception losses to occur; gyromotion-derived kinetic energy could in the case of the latter process account for the loss of as many as half of the planet's exospheric ions. 27 references

  3. Modelling Mercury's magnetosphere and plasma entry through the dayside magnetopause

    Massetti, S.; Orsini, S.; Milillo, A.; Mura, A.

    2007-09-01

    Owing to the next space mission Messenger (NASA) and BepiColombo (ESA/JAXA), there is a renewed interest in modelling the Mercury's environment. The geometry of the Mercury's magnetosphere, as well as its response to the solar wind conditions, is one of the major issues. The weak magnetic field of the planet and the increasing weight of the IMF BX component at Mercury's orbit, introduce critical differences with respect to the Earth's case, such as a strong north-south asymmetry and a significant solar wind precipitation into the dayside magnetosphere even for non-negative IMF BZ. With the aim of analysing the interaction between the solar wind and Mercury's magnetosphere, we have developed an empirical-analytical magnetospheric model starting from the Toffoletto-Hill TH93 code. Our model has been tuned to reproduce the key features of the Mariner 10 magnetic data, and to mimic the magnetic field topology obtained by the self-consistent hybrid simulation developed by Kallio and Janhunen [Solar wind and magnetospheric ion impact on Mercury's magnetosphere. Geophys. Res. Lett. 30, 1877, doi: 10.1029/2003GL017842]. The new model has then been used to study the effect of the magnetic reconnection on the magnetosheath plasma entry through the open areas of the dayside magnetosphere (cusps), which are expected to be one of the main sources of charged particles circulating inside the magnetosphere. We show that, depending on the Alfvén speeds on both sides of the magnetopause discontinuity, the reconnection process would be able to accelerate solar wind protons up to few tens of keV: part of these ions can hit the surface and then trigger, via ion-sputtering, the refilling of the planetary exosphere. Finally, we show that non-adiabatic effects are expected to develop in the cusp regions as the energy gained by injected particles increases. The extent of these non-adiabatic regions is shown to be also modulated by upstream IMF condition.

  4. Energy coupling function and solar wind-magnetosphere dynamo

    Kan, J.R.; Lee, L.C.

    1979-01-01

    The power delivered by the solar wind dynamo to the open magnetosphere is calculated based on the concept of field line reconnection, independent of the MHD steady reconnection theories. By recognizing a previously overlooked geometrical relationship between the reconnection electric field and the magnetic field, the calculated power is shown to be approximately proportional to the Akasofu-Perreault energy coupling function for the magnetospheric substorm. In addition to the polar cap potential, field line reconnection also gives rise to parallel electric fields on open field lines in the high-latitude cusp and the polar cap reions

  5. Expected Navigation Flight Performance for the Magnetospheric Multiscale (MMS) Mission

    Olson, Corwin; Wright, Cinnamon; Long, Anne

    2012-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four formation-flying spacecraft placed in highly eccentric elliptical orbits about the Earth. The primary scientific mission objective is to study magnetic reconnection within the Earth s magnetosphere. The baseline navigation concept is the independent estimation of each spacecraft state using GPS pseudorange measurements (referenced to an onboard Ultra Stable Oscillator) and accelerometer measurements during maneuvers. State estimation for the MMS spacecraft is performed onboard each vehicle using the Goddard Enhanced Onboard Navigation System, which is embedded in the Navigator GPS receiver. This paper describes the latest efforts to characterize expected navigation flight performance using upgraded simulation models derived from recent analyses.

  6. Movement of a charged particle beam in the Earth magnetosphere

    Veselovskij, I.S.

    1977-01-01

    The motion of a charged particle beam injected into the Earth magnetosphere in a dipole magnetic field was investigated. Examined were the simplest stationary distributions of particles. The evolution of the distribution function after pulse injection of the beam into the magnetosphere was studied. It was shown that the pulse shape depends on its starting duration. A long pulse spreads on the base and narrows on the flat top with the distance away from the point of injection. A short pulse spreads both on the base and along the height. The flat top is not present. An analytical expression for the pulse shape as a time function is given

  7. Design and performance of large area monolithic electron guns for the Aurora KrF laser system

    Kang, M.; Rosocha, L.A.; Romero, V.O.; Van Haaften, F.W.; Brucker, J.P.

    1985-01-01

    Aurora is an inertial confinement fusion laser system using optical angular multiplexing and a chain of four cold cathode electron beam driven KrF laser amplifiers to produce 10 to 20 kJ of optical energy

  8. BAROMETRIC PRESSURE and Other Data from AURORA AUSTRALIS and Other Platforms from 19910106 to 19920306 (NODC Accession 9500152)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD) and other data were collected from Ship AURORA AUSTRALIS. The data was collected over a period spanning from January 6,...

  9. Identification of critical chemical features for Aurora kinase-B inhibitors using Hip-Hop, virtual screening and molecular docking

    Sakkiah, Sugunadevi; Thangapandian, Sundarapandian; John, Shalini; Lee, Keun Woo

    2011-01-01

    This study was performed to find the selective chemical features for Aurora kinase-B inhibitors using the potent methods like Hip-Hop, virtual screening, homology modeling, molecular dynamics and docking. The best hypothesis, Hypo1 was validated toward a wide range of test set containing the selective inhibitors of Aurora kinase-B. Homology modeling and molecular dynamics studies were carried out to perform the molecular docking studies. The best hypothesis Hypo1 was used as a 3D query to screen the chemical databases. The screened molecules from the databases were sorted based on ADME and drug like properties. The selective hit compounds were docked and the hydrogen bond interactions with the critical amino acids present in Aurora kinase-B were compared with the chemical features present in the Hypo1. Finally, we suggest that the chemical features present in the Hypo1 are vital for a molecule to inhibit the Aurora kinase-B activity.

  10. Monopole abundance in the Solar System and the intrinsic heat in the Jovian planets

    Arafune, J.; Fukugita, M.; Yanagita, S.

    1985-01-01

    The intrinsic-heat generation has long been known in the Jovian planets. The current view ascribes its origin to the gradual release of primordial heat produced at the birth of these planets. This scenario, however, fails to explain coherently the magnitude of the excess heat in each planet, other than Jupiter, and must invoke some additional sources. We point out the possibility that this heat, or at least a part of it, could be attributed to proton decay which is catalyzed by grand-unified magnetic monopoles (Rubakov effect) captured in the planets. The monopole flux required for this is of order approx.1 x 10 -23 cm -2 sr -1 sec -1 , which is smaller than the limit on the cosmic monopole flux so far obtained. We also show that if the monopole flux is of this order the monopole captured in the Sun gives rise to the neutrino flux ( approx. =35 MeV) which should be detectable in the underground experiment searching for nucleon decays currently in progress

  11. An Unusual Rotationally Modulated Attenuation Band in the Jovian Hectometric Radio Emission Spectrum

    Gurnett, D. A.; Kurth, W. S.; Menietti, J. D.; Persoon, A. M.

    1998-01-01

    A well-defined attenuation band modulated by the rotation of Jupiter has been found in the spectrum of Jovian hectometric radiation using data from the Galileo plasma wave instrument. The center frequency of this band usually occurs in the frequency range from about 1 to 3 MHz and the bandwidth is about 10 to 20 percent. The center frequency varies systematically with the rotation of Jupiter and has two peaks per rotation, the first at a system III longitude of about 50 deg, and the second at about 185 deg. It is now believed that the attenuation occurs as the ray path from a high-latitude cyclotron maser source passes approximately parallel to the magnetic field near the northern or southern edges of the Io L-shell. The peak at 50 deg system 3 longitude is attributed to radiation from a southern hemisphere source and the peak at 185 deg is from a northern hemisphere source. The attenuation is thought to be caused by coherent scattering or shallow angle reflection from field-aligned density irregularities near the Io L-shell. The narrow bandwidth indicates that the density irregularities are confined to a very narrow range of L values (Delta L = 0.2 to 0.4) near the Io L-shell.

  12. A NEAR-INFRARED SEARCH FOR SILICATES IN JOVIAN TROJAN ASTEROIDS

    Yang Bin; Jewitt, David

    2011-01-01

    We obtained near-infrared (NIR; 0.8-2.5 μm) spectra of seven Jovian Trojan asteroids that have been formerly reported to show silicate-like absorption features near 1 μm. Our sample includes the Trojan (1172) Aneas, which is one of the three Trojans known to possess a comet-like 10 μm emission feature, indicative of fine-grained silicates. Our observations show that all seven Trojans appear featureless in high signal-to-noise ratio spectra. The simultaneous absence of the 1 μm band and the presence of the 10 μm emission can be understood if the silicates on (1172) Aneas are iron-poor. In addition, we present NIR observations of five optically gray Trojans, including three objects from the collisionally produced Eurybates family. The five gray Trojans appear featureless in the NIR with no diagnostic absorption features. The NIR spectrum of Eurybates can be best fitted with the spectrum of a CM2 carbonaceous chondrite, which hints that the C-type Eurybates family members may have experienced aqueous alteration.

  13. Jovian System as a Demonstration of JWST’s Capabilities for Solar System Science: Status Update

    Conrad, Al; Fouchet, Thierry

    2018-06-01

    Characterize Jupiter’s cloud layers, winds, composition, auroral activity, and temperature structureProduce maps of the atmosphere and surface of volcanically-active Io and icy satellite Ganymede to constrain their thermal and atmospheric structure, and search for plumesCharacterize the ring structure, and its sources, sinks and evolution.We will present our progress to date in planning these observations and provide an update on our expectations.Our program will utilize all JWST instruments in different observing modes to demonstrate the capabilities of JWST’s instruments on one of the largest and brightest sources in the Solar System and on very faint targets next to it. We will also observe weak emission/absorption bands on strong continua, and with NIRIS/AMI we will maximize the Strehl ratio on unresolved features, such as Io’s volcanoes.We will deliver a number of science enabling products that will facilitate community science, including, e.g.: i) characterizing Jupiter’s scattered light in the context of scientific observations, ii) resolve point sources with AMI in a crowded field (Io’s volcanoes), and compare this to classical observations, iii) develop tools to mosaic/visualize spectral datacubes using MIRI and NIRSpec on Jupiter. Finally, our program will also set a first temporal benchmark to study time variations in the jovian system and any interconnectivity (e.g., through its magnetic field) during JWST’s lifetime.

  14. THE RELATIONSHIP BETWEEN THE SEPTEMBER 2017 MARS GLOBAL AURORA EVENT AND CRUSTAL MAGNETIC FIELDS

    Nasr, Camella-Rosa; Schneider, Nick; Connour, Kyle; Jain, Sonal; Deighan, Justin; Jakosky, Bruce; MAVEN/IUVS Team

    2018-01-01

    In September 2017, the Imaging UltraViolet Spectrograph (IUVS) on the MAVEN spacecraft observed global aurora on Mars caused by a surprisingly strong solar energetic particle event. Widespread “diffuse aurora” have previously been detected on Mars through more limited observations (Schneider et al., Science 350, (2015); DOI: 10.1126/science.aad0313), but recent observations established complete coverage of the observable portion of Mars’ nightside. The aurora was global due to Mars’s lack of a global magnetic field, which allowed energetic electrons from the Sun to directly precipitate into the atmosphere. On September 11th, IUVS detected aurora more than 25 times brighter than any prior IUVS observation, with high SNR detections of aurora at the limb and against the disk of the planet. Fainter auroral emission was seen around the nightside limb over 13 orbits spanning nearly 3 days.On September 14th, during the declining phase of the event, faint linear features and patches were detected by the spacecraft, which were higher than the noise floor, with a similar spatial distribution to “discrete aurora” patches observed on Mars by the SPICAM instrument on the Mars Express spacecraft (Bertaux et al., Nature 435, doi :10.1038/nature03603). Discrete aurora occur near areas of the crust affected by the magnetism left over from Mars’ once-strong dipole field. Emission is limited to regions of the crustal magnetic field where the field lines are likely to be open to solar wind interactions. Those regions are concentrated in Mars’ southern hemisphere centered on 180 degrees east longitude.We studied the localized emissions on 14 September to determine whether there might be a connection between the observed diffuse aurora event and discrete auroral processes. First, we investigated the localized emissions to confirm that the observed signal was consistent with expected auroral spectra. Second, their locations were projected on a map of the crustal magnetic

  15. A multievent study of broadband electrons observed by the DMSP satellites and their relation to red aurora observed at midlatitude stations

    Shiokawa, K.; Meng, C.; Reeves, G.D.; Rich, F.J.; Yumoto, K.

    1997-01-01

    Broadband electrons during magnetic storms are characterized by an unusually intense flux of precipitating electrons in the broadband energy range from 30 eV to 30 keV near the equatorward edge of the auroral oval (47 degree endash 66 degree magnetic latitude). Broadband electrons were first reported by Shiokawa et al. [1996]. In this paper, we report a multievent study of broadband electrons, using particle data obtained by the Defense Meteorological Satellite Program (DMSP) satellites during 23 magnetic storms from January 1989 through May 1992. Twelve broadband electron events are identified. Most of them are observed in the night sector, but some are observed in the morning sector. Particle data for successive polar passes of the DMSP multisatellites are used to show that broadband electrons generally last for less than 30 min and that for some events, they precipitate over a wide range of local times simultaneously. On the basis of a quantitative calculation of optical emissions from electrons in the neutral atmosphere, we conclude that broadband electrons are a possible cause of red auroras observed at midlatitude ground stations. We suggest that broadband electrons are associated with certain substorms during the main phase of magnetic storms. This conjecture comes from observations of H component positive bays and Pi 2 pulsations observed at low-latitude magnetic stations and from magnetic field variations observed at geosynchronous satellites. We conclude that the magnetospheric source of broadband electrons lies within the inner part of the plasma sheet. This conclusion is based on the facts that broadband electrons appear in latitudes where plasma sheet particles were observed before the event and that broadband electrons are observed poleward of the subauroral ion drifts, a position that corresponds to the inner edge of the injected particle layer during storms. (Abstract Truncated)

  16. Spectral characteristics of aurorae connected with high-velocity flows of the solar wind from coronal holes

    Khviyuzova, T.A.; Leont'ev, S.V.

    1997-01-01

    Bright electron aurorae almost always followed by red lower edge occur when the Earth is being passed by high-velocity flows from coronal holes within the auroral range at the night meridian. In contrast to other types of the solar wind the high-velocity flows from coronal holes do not cause the occurrence of A type red polar aurorae, that is, the spectrum of electrons pouring into the Earth atmosphere in these cases is shifted towards higher energies

  17. Simultaneous Aurora-A/STK15 overexpression and centrosome amplification induce chromosomal instability in tumour cells with a MIN phenotype

    Lentini, Laura; Amato, Angela; Schillaci, Tiziana; Di Leonardo, Aldo

    2007-01-01

    Genetic instability is a hallmark of tumours and preneoplastic lesions. The predominant form of genome instability in human cancer is chromosome instability (CIN). CIN is characterized by chromosomal aberrations, gains or losses of whole chromosomes (aneuploidy), and it is often associated with centrosome amplification. Centrosomes control cell division by forming a bipolar mitotic spindle and play an essential role in the maintenance of chromosomal stability. However, whether centrosome amplification could directly cause aneuploidy is not fully established. Also, alterations in genes required for mitotic progression could be involved in CIN. A major candidate is represented by Aurora-A/STK15 that associates with centrosomes and is overexpressed in several types of human tumour. Centrosome amplification were induced by hydroxyurea treatment and visualized by immunofluorescence microscopy. Aurora-A/STK15 ectopic expression was achieved by retroviral infection and puromycin selection in HCT116 tumour cells. Effects of Aurora-A/STK15 depletion on centrosome status and ploidy were determined by Aurora-A/STK15 transcriptional silencing by RNA interference. Changes in the expression levels of some mitotic genes were determined by Real time RT-PCR. We investigated whether amplification of centrosomes and overexpression of Aurora-A/STK15 induce CIN using as a model system a colon carcinoma cell line (HCT116). We found that in HCT116 cells, chromosomally stable and near diploid cells harbouring a MIN phenotype, centrosome amplification induced by hydroxyurea treatment is neither maintained nor induces aneuploidy. On the contrary, ectopic overexpression of Aurora-A/STK15 induced supernumerary centrosomes and aneuploidy. Aurora-A/STK15 transcriptional silencing by RNA interference in cells ectopically overexpressing this kinase promptly decreased cell numbers with supernumerary centrosomes and aneuploidy. Our results show that centrosome amplification alone is not sufficient

  18. Terrestrial magnetospheric imaging: Numerical modeling of low energy neutral atoms

    Moore, K.R.; Funsten, H.O.; McComas, D.J.; Scime, E.E.; Thomsen, M.F.

    1993-01-01

    Imaging of the terrestrial magnetosphere can be performed by detection of low energy neutral atoms (LENAs) that are produced by charge exchange between magnetospheric plasma ions and cold neutral atoms of the Earth's geocorona. As a result of recent instrumentation advances it is now feasible to make energy-resolved measurements of LENAs from less than I key to greater than 30 key. To model expected LENA fluxes at a spacecraft, we initially used a simplistic, spherically symmetric magnetospheric plasma model. 6 We now present improved calculations of both hydrogen and oxygen line-of-sight LENA fluxes expected on orbit for various plasma regimes as predicted by the Rice University Magnetospheric Specification Model. We also estimate expected image count rates based on realistic instrument geometric factors, energy passbands, and image accumulation intervals. The results indicate that presently proposed LENA instruments are capable of imaging of storm time ring current and potentially even quiet time ring current fluxes, and that phenomena such as ion injections from the tail and subsequent drifts toward the dayside magnetopause may also be deduced

  19. Hydromagnetic Waves in the Magnetosphere and the Ionosphere

    Alperovich, Leonid S

    2007-01-01

    The book deals with Ultra-Low-Frequency (ULF)-electromagnetic waves observed on Earth and in Space. These are so-called geomagnetic variations or pulsations. Alfvén's discovery related to the influence of the strong magnetic field on the conducting fluids (magnetohydrodynamics) led to development of the concept that the ULF-waves are magnetospheric magnetohydrodynamic (MHD)-waves. MHD-waves at their propagation gather information about the magnetosphere, ionosphere, and the ground. There are two applied aspects based on using the ULF electromagnetic oscillations. The first one is the ground-based diagnostics of the magnetosphere. This is an attempt to monitor in the real time the magnetosphere size, distance to the last closed field-lines, distribution of the cold plasma, etc. The second one is the deep electromagnetic sounding of the Earth. The basis for these studies is the capability of any electromagnetic wave to penetrate a conductor to a finite depth. The ULF-waves can reach the depth of a few hundred ...

  20. Energetic charged particles in the magnetosphere of Neptune

    Stone, E.C.; Cummings, A.C.; Looper, M.D.; Selesnick, R.S.; Lal, N.; McDonald, F.B.; Trainor, J.H.; Chenette, D.L.

    1989-01-01

    The Voyager 2 cosmic ray system (CRS) measured significant fluxes of energetic [approx-lt 1 megaelectron volt (MeV)] trapped electrons and protons in the magnetosphere of Neptune. The intensities at maximum near a magnetic L shell of 7, decreasing closer to the planet because of absorption by satellites and rings. In the region of the inner satellites of Neptune, the radiation belts have a complicated structure, which provides some constraints on the magnetic field geometry of the inner magnetosphere. Electron phase-space densities have a positive radial gradient, indicating that they diffuse inward from a source in the outer magnetosphere. Electron spectra from 1 to 5 MeV are generally well represented by power laws with indices near 6, which harden in the region of peak flux to power law indices of 4 to 5. Protons have significantly lower fluxes than electrons throughout the magnetosphere, with large anisotropies due to radial intensity gradients. The radiation belts resemble those of Uranus to the extent allowed by the different locations of the satellites, which limit the flux at each planet

  1. Global Scale Periodic Responses in Saturn’s Magnetosphere

    Jia, Xianzhe; Kivelson, Margaret G.

    2017-10-01

    Despite having an axisymmetric internal magnetic field, Saturn’s magnetosphere exhibits periodic modulations in a variety of properties at periods close to the planetary rotation period. While the source of the periodicity remains unidentified, it is evident from Cassini observations that much of Saturn’s magnetospheric structure and dynamics is dominated by global-scale responses to the driving source of the periodicity. We have developed a global MHD model in which a rotating field-aligned current system is introduced by imposing vortical flows in the high-latitude ionosphere in order to simulate the magnetospheric periodicities. The model has been utilized to quantitatively characterize various periodic responses in the magnetosphere, such as the displacement of the magnetopause and bow shock and flapping of the tail plasma sheet, all of which show quantitative agreement with Cassini observations. One of our model predictions is periodic release of plasmoids in the tail that occurs preferentially in the midnight-to-dawn local time sector during each rotation cycle. Here we present detailed analysis of the periodic responses seen in our simulations focusing on the properties of plasmoids predicted by the model, including their spatial distribution, occurrence frequency, and mass loss rate. We will compare these modeled parameters with published Cassini observations, and discuss their implications for interpreting in-situ measurements.

  2. Magnetospheric Control of Density and Composition in the Polar Ionosphere

    2015-06-24

    verified calculation of three-dimensional plasma continuity at the geomagnetic pole [Dahlgren et al., 2012a; Perry et al., 2015; Semeter et al., 2014...variations in a camera system. This data flow describes a forward model, which may be reversed to reconstruct the magnetospheric drivers, in this case

  3. Recent investigation at INPE in magnetospheric physics and geomagnetism

    Gonzales, W.D.; Trivedi, N.B.

    1984-01-01

    During recent years the following research activities related to the earth's magnetosphere have been intensified: a) studies on electric field and energy transfer from the solar wind to the magnetosphere; b) studies on high latitude magnetospheric electric fields and on their penetration into the plasmasphere; c) measurements of atmospheric-large scale-electric fields, related to the low latitude magnetospheric-ionospheric coupling and to the local atmospheric electrodynamics, using detectors on board stratospheric balloons; and d) measurements of atmospheric X-rays, related to the process of energetic particle precipitation at the South Atlantic Magnetic Anomaly, using detectors also on board stratospheric balloons. Similarly, the following research activities related to geomagnetism are being pursued: a) studies on the variability of the geomagnetic field and on the dynamics of the equatorial electrojet from local geomagnetic field measurements; b) studies on terrestrial electromagnetic induction through local measurements of the geo-electromagnetic field; and c) studies on the influence of geomagnetic activity on particle precipitation at the South Atlantic Magnetic Anomaly. (Author) [pt

  4. Magnetospheric and atmospheric physics at the University of Natal

    Walker, A.D.M.

    1982-01-01

    A historical outline of geophysical work done at the University of Natal from 1938-1982 is given. Mention is also made of experimental work concerning whistlers and VLF, low-light level TV and geomagnetic pulsations. Current work on the magnetosphere, namely plasma convection in plasmasphere, auroral features, geomagnetic pulsations and the measuring of plasma properties is discussed

  5. Modelling of the ring current in Saturn's magnetosphere

    G. Giampieri

    2004-01-01

    Full Text Available The existence of a ring current inside Saturn's magnetosphere was first suggested by Smith et al. (1980 and Ness et al. (1981, 1982, in order to explain various features in the magnetic field observations from the Pioneer 11 and Voyager 1 and 2 spacecraft. Connerney et al. (1983 formalized the equatorial current model, based on previous modelling work of Jupiter's current sheet and estimated its parameters from the two Voyager data sets. Here, we investigate the model further, by reconsidering the data from the two Voyager spacecraft, as well as including the Pioneer 11 flyby data set. First, we obtain, in closed form, an analytic expression for the magnetic field produced by the ring current. We then fit the model to the external field, that is the difference between the observed field and the internal magnetic field, considering all the available data. In general, through our global fit we obtain more accurate parameters, compared to previous models. We point out differences between the model's parameters for the three flybys, and also investigate possible deviations from the axial and planar symmetries assumed in the model. We conclude that an accurate modelling of the Saturnian disk current will require taking into account both of the temporal variations related to the condition of the magnetosphere, as well as non-axisymmetric contributions due to local time effects. Key words. Magnetospheric physics (current systems; planetary magnetospheres; plasma sheet

  6. Magnetosphere of Uranus: plasma sources, convection, and field configuration

    Voigt, G.; Hill, T.W.; Dessler, A.J.

    1983-01-01

    At the time of the Voyager 2 flyby of Uranus, the planetary rotational axis will be roughly antiparallel to the solar wind flow. If Uranus has a magnetic dipole moment that is approximately aligned with its spin axis, and if the heliospheric shock has not been encountered, we will have the rare opportunity to observe a ''pole-on'' magnetosphere as discussed qualitatively by Siscoe. Qualitative arguments based on analogy with Earth, Jupiter, and Saturn suggest that the magnetosphere of Uranus may lack a source of plasma adequate to produce significant internal currents, internal convection, and associated effects. In order to provide a test of this hypothesis with the forthcoming Voyager measurements, we have constructed a class of approximately self-consistent quantitative magnetohydrostatic equilibrium configurations for a pole-on magnetosphere with variable plasma pressure parameters. Given a few simplifying assumptions, the geometries of the magnetic field and of the tail current sheet can be computed for a given distribution of trapped plasma pressure. The configurations have a single funnel-shaped polar cusp that points directly into the solar wind and a cylindrical tail plasma sheet whose currents close within the tail rather than on the tail magnetopause, and whose length depends on the rate of decrease of thermal plasma pressure down the tail. Interconnection between magnetospheric and interplanetary fields results in a highly asymmetric tail-field configuration. These features were predicted qualtitatively by Siscoe; the quantitative models presented here may be useful in the interpretation of Voyager encounter results

  7. A new method of diagnostics for the magnetospheric plasma

    Etcheto, Jacqueline; Petit, Michel

    1977-01-01

    A new diagnostic technique for magnetospheric plasma, based on in situ excitation of the plasma resonances, has been used for the first time on board the Geos satellite. The preliminary results are very gratifying: electron density and magnetic field intensity are derived reliably and accurately from the resonances observed; hopefully, temperature and electric field will be deduced from the data as well [fr

  8. ON THE GLOBAL STRUCTURE OF PULSAR FORCE-FREE MAGNETOSPHERE

    Petrova, S. A.

    2013-01-01

    The dipolar magnetic field structure of a neutron star is modified by the plasma originating in the pulsar magnetosphere. In the simplest case of a stationary axisymmetric force-free magnetosphere, a self-consistent description of the fields and currents is given by the well-known pulsar equation. Here we revise the commonly used boundary conditions of the problem in order to incorporate the plasma-producing gaps and to provide a framework for a truly self-consistent treatment of the pulsar magnetosphere. A generalized multipolar solution of the pulsar equation is found, which, as compared to the customary split monopole solution, is suggested to better represent the character of the dipolar force-free field at large distances. In particular, the outer gap location entirely inside the light cylinder implies that beyond the light cylinder the null and critical lines should be aligned and become parallel to the equator at a certain altitude. Our scheme of the pulsar force-free magnetosphere, which will hopefully be followed by extensive analytic and numerical studies, may have numerous implications for different fields of pulsar research.

  9. Quasiperiodic ULF-pulsations in Saturn's magnetosphere

    G. Kleindienst

    2009-02-01

    Full Text Available Recent magnetic field investigations made onboard the Cassini spacecraft in the magnetosphere of Saturn show the existence of a variety of ultra low frequency plasma waves. Their frequencies suggest that they are presumably not eigenoscillations of the entire magnetospheric system, but excitations confined to selected regions of the magnetosphere. While the main magnetic field of Saturn shows a distinct large scale modulation of approximately 2 nT with a periodicity close to Saturn's rotation period, these ULF pulsations are less obvious superimposed oscillations with an amplitude generally not larger than 3 nT and show a package-like structure. We have analyzed these wave packages and found that they are correlated to a certain extent with the large scale modulation of the main magnetic field. The spatial localization of the ULF wave activity is represented with respect to local time and Kronographic coordinates. For this purpose we introduce a method to correct the Kronographic longitude with respect to a rotation period different from its IAU definition. The observed wave packages occur in all magnetospheric regions independent of local time, elevation, or radial distance. Independent of the longitude correction applied the wave packages do not occur in an accentuated Kronographic longitude range, which implies that the waves are not excited or confined in the same selected longitude ranges at all times or that their lifetime leads to a variable phase with respect to the longitudes where they have been exited.

  10. Energetic magnetospheric protons in the plasma depletion layer

    Fuselier, S.A.

    1992-01-01

    Interplanetary magnetic field draping against the Earth's dayside subsolar magnetopause creates a region of reduced plasma density and increased magnetic field called the plasma depletion layer. In this region, leakage of energetic ions from the Earth's magnetosphere onto magnetic field lines in the plasma depletion layer can be studied without interference from ions accelerated at the Earth's quasi-parallel bow shock. Active Magnetospheric Particle Tracer Experiment/Charge Composition Explorer (AMPTE/CCE) observations for 13 plasma depletion layer events are used to determine the characteristics of energetic protons between a few keV/e and ∼100keV/e leaked from the magnetosphere. Results indicate that the leaked proton distributions resemble those in the magnetosphere except that they have lower densities and temperatures and much higher velocities parallel (or antiparallel) and perpendicular to the magnetic field. Compared to the low-energy magnetosheath proton distributions present in the depletion layer, the leaked energetic proton distributions typically have substantially higher flow velocities along the magnetic field indicate that the leaked energetic proton distributions to contribute to the energetic proton population seen upstream and downstream from the quasi-parallel bow shock. However, their contribution is small compared to the contribution from acceleration of protons at the bow shock because the leaked proton densities are on the order of 10 times smaller than the energetic proton densities typically observed in the vicinity of the quasi-parallel bow shock

  11. Coupling between the solar wind and the magnetosphere: CDAW 6

    Tsurutani, B.T.; Slavin, J.A.; Kamide, Y.; Zwickl, R.D.; King, J.H.; Russell, C.T.

    1985-01-01

    Interplanetary conditions (VB 3 , V 2 B 3 and epsilon-c) are derived from ISEE 3 and IMP 8 field and plasma data for the two Coordinated Data Analysis Workshop (CDAW 6) intervals of study and are compared with various aspects of geomagnetic activity (AE, U/sub T/, derived Joule heating, electric potential, westward eastward and total electrojet currents). The March 22 (day 81), 1979, interval contains two distinct periods of geomagnetic activity, both highly correlated with interplanetary features. The start of the first active interval is caused by a southward turning of the interplanetary magnetic field (IMF) associated with the passage of a heliospheric current sheet. The start of the second interval is related to a second IMF southward turning. The geomagnetic activity intensifies when the second crossing of the current sheet, and a ram pressure increase of 4 to 6, impinges on the magnetosphere. Because the interplanetary parameters VB 3 , V 2 B 3 and epsilon-c decrease across the discontinuity, it is concluded that either additional energy is injected into the magnetosphere from the conversion of ram energy into magnetospheric substorm energy or some feature associated with current sheet crossing ''triggers'' the release of previously stored magnetosphere/magnetotail energy. It is not possible at this time to distinguish between these two possibilities. For day 81, VB 3 , V 2 4 3 , and epsilon-c were highly correlated with AL, AE, westward and equivalent currents with coefficients ranging from approx.0.75 to 0.90

  12. Magnetosonic resonance in a dipole-like magnetosphere

    A. S. Leonovich

    2006-09-01

    Full Text Available A theory of resonant conversion of fast magnetosonic (FMS waves into slow magnetosonic (SMS oscillations in a magnetosphere with dipole-like magnetic field has been constructed. Monochromatic FMS waves are shown to drive standing (along magnetic field lines SMS oscillations, narrowly localized across magnetic shells. The longitudinal and transverse structures, as well as spectrum of resonant SMS waves are determined. Frequencies of fundamental harmonics of standing SMS waves lie in the range of 0.1–1 mHz, and are about two orders of magnitude lower than frequencies of similar Alfvén field line resonance harmonics. This difference makes an effective interaction between these MHD modes impossible. The amplitude of SMS oscillations rapidly decreases along the field lines from the magnetospheric equator towards the ionosphere. In this context, magnetospheric SMS oscillations cannot be observed on the ground, and the ionosphere does not play any role either in their generation or dissipation. The theory developed can be used to interpret the occurrence of compressional Pc5 waves in a quiet magnetosphere with a weak ring current.

  13. Laboratory simulation of energetic flows of magnetospheric planetary plasma

    Shaikhislamov, I F; Posukh, V G; Melekhov, A V; Boyarintsev, E L; Zakharov, Yu P; Prokopov, P A; Ponomarenko, A G

    2017-01-01

    Dynamic interaction of super-sonic counter-streaming plasmas moving in dipole magnetic dipole is studied in laboratory experiment. First, a quasi-stationary flow is produced by plasma gun which forms a magnetosphere around the magnetic dipole. Second, explosive plasma expanding from inner dipole region outward is launch by laser beams focused at the surface of the dipole cover. Laser plasma is energetic enough to disrupt magnetic field and to sweep through the background plasma for large distances. Probe measurements showed that far from the initially formed magnetosphere laser plasma carries within itself a magnetic field of the same direction but order of magnitude larger in value than the vacuum dipole field at considered distances. Because no compression of magnetic field at the front of laser plasma was observed, the realized interaction is different from previous experiments and theoretical models of laser plasma expansion into uniform magnetized background. It was deduced based on the obtained data that laser plasma while expanding through inner magnetosphere picks up a magnetized shell formed by background plasma and carries it for large distances beyond previously existing magnetosphere. (paper)

  14. Current Sheets in Pulsar Magnetospheres and Winds: Particle Acceleration and Pulsed Gamma Ray Emission

    Arons, Jonathan

    The research proposed addresses understanding of the origin of non-thermal energy in the Universe, a subject beginning with the discovery of Cosmic Rays and continues, including the study of relativistic compact objects - neutron stars and black holes. Observed Rotation Powered Pulsars (RPPs) have rotational energy loss implying they have TeraGauss magnetic fields and electric potentials as large as 40 PetaVolts. The rotational energy lost is reprocessed into particles which manifest themselves in high energy gamma ray photon emission (GeV to TeV). Observations of pulsars from the FERMI Gamma Ray Observatory, launched into orbit in 2008, have revealed 130 of these stars (and still counting), thus demonstrating the presence of efficient cosmic accelerators within the strongly magnetized regions surrounding the rotating neutron stars. Understanding the physics of these and other Cosmic Accelerators is a major goal of astrophysical research. A new model for particle acceleration in the current sheets separating the closed and open field line regions of pulsars' magnetospheres, and separating regions of opposite magnetization in the relativistic winds emerging from those magnetopsheres, will be developed. The currents established in recent global models of the magnetosphere will be used as input to a magnetic field aligned acceleration model that takes account of the current carrying particles' inertia, generalizing models of the terrestrial aurora to the relativistic regime. The results will be applied to the spectacular new results from the FERMI gamma ray observatory on gamma ray pulsars, to probe the physics of the generation of the relativistic wind that carries rotational energy away from the compact stars, illuminating the whole problem of how compact objects can energize their surroundings. The work to be performed if this proposal is funded involves extending and developing concepts from plasma physics on dissipation of magnetic energy in thin sheets of

  15. Artificial Neural Network L* from different magnetospheric field models

    Yu, Y.; Koller, J.; Zaharia, S. G.; Jordanova, V. K.

    2011-12-01

    The third adiabatic invariant L* plays an important role in modeling and understanding the radiation belt dynamics. The popular way to numerically obtain the L* value follows the recipe described by Roederer [1970], which is, however, slow and computational expensive. This work focuses on a new technique, which can compute the L* value in microseconds without losing much accuracy: artificial neural networks. Since L* is related to the magnetic flux enclosed by a particle drift shell, global magnetic field information needed to trace the drift shell is required. A series of currently popular empirical magnetic field models are applied to create the L* data pool using 1 million data samples which are randomly selected within a solar cycle and within the global magnetosphere. The networks, trained from the above L* data pool, can thereby be used for fairly efficient L* calculation given input parameters valid within the trained temporal and spatial range. Besides the empirical magnetospheric models, a physics-based self-consistent inner magnetosphere model (RAM-SCB) developed at LANL is also utilized to calculate L* values and then to train the L* neural network. This model better predicts the magnetospheric configuration and therefore can significantly improve the L*. The above neural network L* technique will enable, for the first time, comprehensive solar-cycle long studies of radiation belt processes. However, neural networks trained from different magnetic field models can result in different L* values, which could cause mis-interpretation of radiation belt dynamics, such as where the source of the radiation belt charged particle is and which mechanism is dominant in accelerating the particles. Such a fact calls for attention to cautiously choose a magnetospheric field model for the L* calculation.

  16. Time sequence analysis of flickering auroras. I - Application of Fourier analysis. [in atmosphere

    Berkey, F. T.; Silevitch, M. B.; Parsons, N. R.

    1980-01-01

    Using a technique that enables one to digitize the brightness of auroral displays from individual fields of a video signal, we have analyzed the frequency content of flickering aurora. Through the application of Fourier analysis to our data, we have found that flickering aurora contains a wide range of enhanced frequencies, although the dominant frequency enhancement generally occurs in the range 6-12 Hz. Each incidence of flickering that we observed was associated with increased radio wave absorption. Furthermore, we have found that flickering occurs in bright auroral surges, the occurrence of which is not limited to the 'breakup' phase of auroral substorms. Our results are interpreted in terms of a recently proposed theory of fluctuating double layers that accounts for a number of the observational features.

  17. Aurora multikilojoule KrF laser system prototype for inertial confinement fusion

    Rosocha, L.A.; Hanlon, J.A.; Mc Leod, J.; Kang, M.; Kortegaard, B.L.; Burrows, M.D.; Bowling, P.S.

    1987-01-01

    Aurora is the Los Alamos National Laboratory short-pulse, high-power, KrF laser system. It serves as an end-to-end technology demonstration for large-scale ultraviolet laser systems of interest for short wavelength, inertial confinement fusion (ICF) investigations. The systems is a prototype for using optical angular multiplexing and serial amplification by large electron-beam-driven KrF laser amplifiers to deliver stacked, 248-nm, 5-ns duration multikilojoule laser pulses to ICF targets using an --1-km-long optical beam path. The entire Aurora KrF laser system is described and the design features of the following major system components are summarized: front-end lasers, amplifier train, multiplexer, optical relay train, demultiplexer, target irradiation apparatus, and alignment and controls systems

  18. Computer control system of the superconducting SR-light source ''Aurora''

    Yamada, H.

    1989-01-01

    The Aurora is a compact SR-light system optimized for x-ray lithography. The system includes a superconducting electron storage ring, a 150-MeV race track microtron as an injector, and light beamlines. The SR-ring features a single magnet body, in which the 650-MeV electron beam orbits a true circular trajectory of 1 m diameter. The computer control system developed for Aurora has a three-level hierarchical architecture. The top level is the Central Intelligence System, and the second an Autonomic Control System (ACS). The bottom is an assembly of distributed local controllers linked to the ACS level through optical fibers. This system provides fully automatic and remote operation, and a powerful machine study capability through the associated man--machine console and the interpretive operation language

  19. Computer control system of the superconducting SR-light source ``Aurora''

    Yamada, Hironari

    1989-07-01

    The Aurora is a compact SR-light system optimized for x-ray lithography. The system includes a superconducting electron storage ring, a 150-MeV race track microtron as an injector, and light beamlines. The SR-ring features a single magnet body, in which the 650-MeV electron beam orbits a true circular trajectory of 1 m diameter. The computer control system developed for Aurora has a three-level hierarchical architecture. The top level is the Central Intelligence System, and the second an Autonomic Control System (ACS). The bottom is an assembly of distributed local controllers linked to the ACS level through optical fibers. This system provides fully automatic and remote operation, and a powerful machine study capability through the associated man-machine console and the interpretive operation language.

  20. Did Aboriginal Australians record a simultaneous eclipse and aurora in their oral traditions?

    Fuller, Robert S.; Hamacher, Duane W.

    2017-12-01

    We investigate an Australian Aboriginal cultural story that seems to describe an extraordinary series of astronomical events occurring at the same time. We hypothesise that this was a witnessed natural event and explore natural phenomena that could account for the description. We select a thunderstorm, total solar eclipse, and strong Aurora Australis as the most likely candidates, then conclude a plausible date of 764 CE. We evaluate the different factors that would determine whether all these events could have been visible, include meteorological data, alternative total solar eclipse dates, solar activity cycles, aurorae appearances, and sky brightness during total solar eclipses. We conduct this study as a test-case for rigorously and systematically examining descriptions of rare natural phenomena in oral traditions, highlighting the difficulties and challenges with interpreting this type of hypothesis.

  1. A numerical solution of the coupled proton-H atom transport equations for the proton aurora

    Basu, B.; Jasperse, J.R.; Grossbard, N.J.

    1990-01-01

    A numerical code has been developed to solve the coupled proton-H atom linear transport equations for the proton aurora. The transport equations have been simplified by using plane-parallel geometry and the forward-scattering approximations only. Otherwise, the equations and their numerical solutions are exact. Results are presented for the particle fluxes and the energy deposition rates, and they are compared with the previous analytical results that were obtained by using additional simplifying approximations. It is found that although the analytical solutions for the particle fluxes differ somewhat from the numerical solutions, the energy deposition rates calculated by the two methods agree to within a few percent. The accurate particle fluxes given by the numerical code are useful for accurate calculation of the characteristic quantities of the proton aurora, such as the ionization rates and the emission rates

  2. Proteomic analysis of human metaphase chromosomes reveals Topoisomerase II alpha as an Aurora B substrate

    Morrison, Ciaran; Henzing, Alexander J; Jensen, Ole Nørregaard

    2002-01-01

    B in the presence of radioactive ATP. Immunoblot analysis confirmed the HeLa scaffold fraction to be enriched for known chromosomal proteins including CENP-A, CENP-B, CENP-C, ScII and INCENP. Mass spectrometry of bands excised from one-dimensional polyacrylamide gels further defined the protein......The essential Aurora B kinase is a chromosomal passenger protein that is required for mitotic chromosome alignment and segregation. Aurora B function is dependent on the chromosome passenger, INCENP. INCENP, in turn, requires sister chromatid cohesion for its appropriate behaviour. Relatively few...... composition of the extracted chromosome fraction. Cloning, fluorescent tagging and expression in HeLa cells of the putative GTP-binding protein NGB/CRFG demonstrated it to be a novel mitotic chromosome protein, with a perichromosomal localisation. Identi fication of the protein bands corresponding to those...

  3. Modeling the energy deposition in the Aurora KrF laser amplifier chain

    Comly, J.C.; Czuchlewski, S.J.; Greene, D.P.; Hanson, D.E.; Krohn, B.J.; McCown, A.W.

    1988-01-01

    Monte Carlo calculations model the energy depositions by highly energetic electron beams into the cavities of the four KrF laser amplifiers in the Aurora chain. Deposited energy density distributions are presented and studied as functions of e-beam energy and gas pressure. Results are useful for analyzing small signal gain (SSG) measurements and optimizing deposition in future experiments. 7 refs., 7 figs., 1 tab

  4. Observation of the pulsating aurora by S-520-12 rocket at Norway

    Tsuruda, K.; Hayakawa, H.; Machida, S.; Mukai, T.; Morioka, A.; Nagano, I.; Miyaoka, H.

    1991-01-01

    Particle, field an wave observations in a pulsating aurora have been carried out using the sounding rocket S-520-12, at northern polar region, Norway, on February 26, 1990. The initial analysis has disclosed two new findings, (i) precipitating low energy electrons associated with the auroral patch region, which suggests the secondary local acceleration of the auroral particles, (ii) pulsating LF wave component that is generated by periodically precipitating energetic electrons above the auroral ionosphere. (author)

  5. Status of the Aurora laser system: Angular-multiplexed multikilojoule krypton fluoride prototype for inertial fusion

    Rosocha, L.A.; Goldstone, P.D.; Kristal, R.

    1986-01-01

    In this presentation, the authors report on the present status of the Aurora system including: The operation of the final stage 1-X 1-m laser at the 10-kJ level; the generation of 5-ns pulses by the front end; integration of the front end, multiplexer, amplifiers, and the extraction of long-pulse energy from the amplifier chain. Progress on the design and construction of the demultiplexer are also reported

  6. Bora and Aurora-A continue to activate Plk1 in mitosis

    Bruinsma, W.; Macůrek, Libor; Freire, R.; Lindqvist, A.; Medema, R.H.

    2014-01-01

    Roč. 127, č. 4 (2014), s. 801-811 ISSN 0021-9533 R&D Projects: GA ČR GA13-18392S Grant - others:Ministerio de Economía y Competitividad(ES) SAF2010-22357; CONSOLIDER-Ingenio(NL) CDS2007-0015 Keywords : Aurora-A * Bora * Mitosis * Plk1 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.432, year: 2014

  7. Integrating Felting in Elementary Science Classrooms to Facilitate Understanding of the Polar Auroras

    Brandy Terrill

    2017-10-01

    Full Text Available The Next Generation Science Standards (NGSS emphasize conceptual science instruction that draws on students’ ability to make observations, explain natural phenomena, and examine concept relationships. This paper explores integrating the arts, in the form of felting, in elementary science classrooms as a way for students to model and demonstrate understanding of the complex scientific processes that cause the polar auroras. The steps for creating felting, and using the felting artwork students create for assessing science learning, are described.

  8. GATEWAY Report Brief: OLED Lighting in the Offices of Aurora Lighting Design, Inc.

    None, None

    2016-05-31

    Summary of a GATEWAY report evaluation at the offices of Aurora Lighting Design, Inc., in Grayslake, IL, where the GATEWAY program conducted its first investigation involving OLED lighting. The project experienced several challenges, but also highlighted a number of promising attributes – which indicate that with continued improvements in efficacy, longevity, size, and flexibility, OLEDs could provide a new tool for creative and effective lighting.

  9. A compact SR light source for x-ray lithography 'AURORA'

    Toba, Y.

    1990-01-01

    A compact synchrotron radiation (SR) light source called AURORA has been developed for industrial use. It is specially designed for X-ray lithography. AURORA consists of a storage ring, injector microtron and SR light beam lines. The storage ring is a superconducting single magnet machine, designed to accelerate a 150 MeV electron beam to 650 MeV and to store as high as 300 mA current. The injector is a racetrack microtron (RTM) producing a pulsed 150 MeV beam. As many as 16 SR light beam channels are available for AURORA. Prototypes of the storage ring and RTM are constructed, and beam commissioning is performed. A hundred and fifty MeV electron beam of a pulsed current 10 μA from the RTM is successfully injected to the ring and accelerated to 600 MeV and 10 mA current stored with a lifetime of more than 20 hours. The half-integer method investigated is shown to work well with the injection efficiency being found to be very high. Improvement of the design is now under way. (N.K.)

  10. Observation of O+ (4P-4D0 lines in electron aurora over Svalbard

    K. Throp

    2004-09-01

    Full Text Available This work reports on observations of O+ lines in aurora over Svalbard, Norway. The Spectrographic Imaging Facility measures auroral spectra in three wavelength intervals (Hβ, N+2 1N(0,2 and N+2 1N(1,3. The oxygen ion multiplet (4639-4696Å is blended with the band. It is found that in electron aurora, the brightness of this multiplet, is on average, about 0.1 of the total brightness. A joint optical and incoherent scatter radar study of an electron aurora event shows that the ratio is enhanced when the ionisation in the upper E-layer (140-190km is significant with respect to the E-layer peak below 130km. Rayed arcs were observed on one such occasion, whereas on other occasions the auroral intensity was below the threshold of the imager. A one-dimensional electron transport model is used to estimate the cross section for production of the multiplet in electron collisions, yielding 0.18x10-18cm2.

  11. Morphology and dynamics of aurora at fine scale: first results from the ASK instrument

    H. Dahlgren

    2008-05-01

    Full Text Available The ASK instrument (Auroral Structure and Kinetics is a narrow field auroral imager, providing simultaneous images of aurora in three different spectral bands at multiple frames per second resolution. The three emission species studied are O2+ (5620 Å, O+ (7319 Å and O (7774 Å. ASK was installed and operated for the first time in an observational campaign on Svalbard, from December 2005 to March 2006. The measurements were supported by data from the Spectrographic Imaging Facility (SIF. The relation between the morphology and dynamics of the visible aurora and its spectral characteristics is studied for selected events from this period. In these events it is found that dynamic aurora is coupled to high energy electron precipitation. By studying the O2+/O intensity ratio we find that some auroral filaments are caused by higher energy precipitation within regions of lower energy precipitation, whereas other filaments are the result of a higher particle flux compared to the surroundings.

  12. Phosphorylation of CPAP by Aurora-A Maintains Spindle Pole Integrity during Mitosis.

    Chou, En-Ju; Hung, Liang-Yi; Tang, Chieh-Ju C; Hsu, Wen-Bin; Wu, Hsin-Yi; Liao, Pao-Chi; Tang, Tang K

    2016-03-29

    CPAP is required for centriole elongation during S/G2 phase, but the role of CPAP in mitosis is incompletely understood. Here, we show that CPAP maintains spindle pole integrity through its phosphorylation by Aurora-A during mitosis. Depletion of CPAP induced a prolonged delay in mitosis, pericentriolar material (PCM) dispersion, and multiple mitotic abnormalities. Further studies demonstrated that CPAP directly interacts with and is phosphorylated by Aurora-A at serine 467 during mitosis. Interestingly, the dispersal of the PCM was effectively rescued by ectopic expression of wild-type CPAP or a phospho-mimic CPAP-S467D mutant, but not a non-phosphorylated CPAP-S467A mutant. Finally, we found that CPAP-S467D has a low affinity for microtubule binding but a high affinity for PCM proteins. Together, our results support a model wherein CPAP is required for proper mitotic progression, and phosphorylation of CPAP by Aurora-A is essential for maintaining spindle pole integrity. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. The instantaneous relationship between polar cap and oval auroras at times of northward interplanetary magnetic field

    Murphree, J.S.; Anger, C.D.; Cogger, L.L.

    1982-01-01

    Optical images of the polar cap region at both 5577 and 3914 A obtained from 1400 km above the earth have been used to study the relationship between polar cap and oval aurora during periods when the interplanetary magnetic field is strongly northward, i.e., B > 3.5 nT. When this rather rare condition occurs, distinction between the two types of aurora is no longer as clear as depicted on the basis of statistical definitions of the auroral oval. Diffuse, weak emission can fill in the region between the auroral oval and discrete auroral features in the polar cap. The polar cap discrete features can appear very similar to auroral oval arcs in intensity, intensity ratio, and structure. Even more striking are the situations where discrete polar cap features merge with oval auroras. From this study it is concluded that under conditions of large positive B the region of closed magnetic field lines can expand poleward to occupy much of the high latitude region

  14. Phosphorylation of CPAP by Aurora-A Maintains Spindle Pole Integrity during Mitosis

    En-Ju Chou

    2016-03-01

    Full Text Available CPAP is required for centriole elongation during S/G2 phase, but the role of CPAP in mitosis is incompletely understood. Here, we show that CPAP maintains spindle pole integrity through its phosphorylation by Aurora-A during mitosis. Depletion of CPAP induced a prolonged delay in mitosis, pericentriolar material (PCM dispersion, and multiple mitotic abnormalities. Further studies demonstrated that CPAP directly interacts with and is phosphorylated by Aurora-A at serine 467 during mitosis. Interestingly, the dispersal of the PCM was effectively rescued by ectopic expression of wild-type CPAP or a phospho-mimic CPAP-S467D mutant, but not a non-phosphorylated CPAP-S467A mutant. Finally, we found that CPAP-S467D has a low affinity for microtubule binding but a high affinity for PCM proteins. Together, our results support a model wherein CPAP is required for proper mitotic progression, and phosphorylation of CPAP by Aurora-A is essential for maintaining spindle pole integrity.

  15. A 230 ka record of glacial and interglacial events from Aurora Cave, Fiordland, New Zealand

    Williams, P.W.

    1996-01-01

    Caves overrun by glaciers are known to accumulate dateable evidence of past glacial and interglacial events. Results are reported from an investigation of Aurora Cave on the slopes above Lake Te Anau in Fiordland. The cave commenced to form before c. 230 ka B.P. Sequences of glaciofluvial sediments interbedded with speleothems are evidence of the number and timing of glacial advances and the status of intervals between them. Twenty-six uranium series dates on speleothems underpin a chronology of seven glacial advances in the last 230 ka, with the peak of the late Otira glaciation, Aurora 3 advance, at c. 19 ka B.P. With five advances in the Otiran, the last glaciation is more complex than previously recognised. Comparison of the record with that recorded offshore from DSDP Site 594 reveals little matching, but the correspondence of the Aurora sequence with that interpreted from other onshore deposits is more convincing. Glacial deposits on slopes above the cave for a further 660 m may be evidence of the 'missing' glacial events of the mid-early Pleistocene. (author). 44 refs., 12 figs., 5 tabs

  16. High resolution transmission spectroscopy as a diagnostic for Jovian exoplanet atmospheres: constraints from theoretical models

    Kempton, Eliza M.-R. [Department of Physics, Grinnell College, Grinnell, IA 50112 (United States); Perna, Rosalba [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Heng, Kevin, E-mail: kemptone@grinnell.edu [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2014-11-01

    We present high resolution transmission spectra of giant planet atmospheres from a coupled three-dimensional (3D) atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model Jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9-55 day orbital periods around solar-type stars. The results of our 3D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple one-dimensional (1D) models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blueshifts of up to 3 km s{sup –1}, whereas less irradiated planets show almost no net Doppler shifts. We find only minor differences between transmission spectra for atmospheres with temperature inversions and those without. Compared to 1D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1D atmospheric models may be inadequate, as 3D atmospheric motions can produce a noticeable effect on the absorption

  17. Jovian electrons as an instrument of investigation of the interplanetary medium structure

    Daibog, E; Lazutin, L; Logachev, Yu; Kecskemety, K

    2016-01-01

    Electrons accelerated in the Jupiter magnetosphere are usually registered by near-earth spacecraft under optimal magnetic connection between the Earth and Jupiter, taking place once in 13 months (Earth- Jupiter synodic period). During the period of minimal solar activity between 23 and 24 cycles in 2007-2009 electrons of MeV energies were observed practically at each of 14 solar rotations (more than a year), which requires extremely long quasistationary state of inner heliosphere with constant Earth- Jupiter connection. To explain this situation the model with long living magnetic trap, co-rotating with the Sun, was suggested. Passing by the Jupiter this trap captures electrons, which then are registered by subsequent passing of the trap by the Earth. (paper)

  18. First Joint Observations of Radio Aurora by the VHF and HF Radars of the ISTP SB RAS

    Berngardt, O. I.; Lebedev, V. P.; Kutelev, K. A.; Kushnarev, D. S.; Grkovich, K. V.

    2018-01-01

    Two modern radars for diagnosis of the ionosphere by the radio-wave backscattering method, namely, the Irkutsk incoherent scatter radar at VHF (IISR, 154-162 MHz) and the Ekaterinburg coherent radar at HF (EKB, 8-20 MHz) are operated at the Institute of Solar-Terrestrial Physics, Siberian Branch of the Russian Academy of Sciences (ISTP SB RAS). The paper analyzes the results of joint observations of strong scattering (radio aurora) on June 8, 2015. To determine the geographical position of the radio aurora, we developed original methods that take into account both the features of the radio-wave propagation and the features of the radar antenna systems. It is shown that there are areas where the spatial position of the HF and VHF radio aurora can coincide. This permits using the radars as a single complex for diagnosis of the characteristics of small-scale high-latitude irregularities in the ionospheric E and F layers. A comparative analysis of the characteristics and temporal dynamics of the radio-aurora region in the HF and VHF ranges is performed. Using the DMSP satellite data, it has been shown that the radio aurora dynamics during this experiment with the EKB radar can be related with the spatial dynamics of the localized area with high electric field, which moves from high to equatorial latitudes. It is found that due to the broader field of view, radio aurora at the HF radar was stably observed 6-12 min earlier than at the VHF radar. This permits using the EKB radar data for prediction of the radio-aurora detection by the IISR radar.

  19. Electron-positron plasma generation in a pulsar magnetosphere

    Gurevich, A.V.; Istomin, Ya.N.

    1985-01-01

    The generation of an electron-positron plasma in vacuum (vacuum ''breakdown'') in the presence of an inhomogeneous electric field and strong curvilinear magnetic field is considered. A situation of this type may occur in the magnetosphere of a rotating neutron star. A general set of kinetic equations for electrons, positrons and γ quanta in a curvilinear magnetic field is derived by taking into account electron-positron pair production and emission of curvicur and synchrotron photons. The conditions for appearance of ''breakdown'' are determined and the threshold value of the elec tric field discontinuity at the surface of the star is found. Multiplication of particles in the magnetosphere is investigated and the electron, positron and γ quantum distribution functions are found. The extinction limit of pulsars is determined. The theory is shown to be in accordance with the observation results

  20. Acceleration processes in the magnetospheric plasma: a review

    Nishida, A [Tokyo Univ. (Japan). Inst. of Space and Aeronautical Science

    1975-01-01

    Our present knowledge on the acceleration process in the magnetospheric plasma is reviewed and major problems are summarized. Acceleration processes can be classified into three categories. First, acceleration can be made by the reconnection process in the magnetotail. The occurrence of reconnection during substorm expansion phases has been confirmed, but details of the energy conversion mechanism need be clarified. Second, acceleration by the electric potential drop along magnetic field lines has been strongly suggested from observations of precipitating particles. The position and structure of the potential layer, however, have not been clarified, and theoretical understanding of the process is still in the early stage of development. Third, particles can be adiabatically heated as they are driven toward the earth in the course of their convective motion. Spatial structure and dynamical development of the auroral precipitation pattern represent both challenge and clue to the understanding of the magnetospheric acceleration process.