WorldWideScience

Sample records for jnk signaling pathways

  1. Diet-induced obesity mediated by the JNK/DIO2 signal transduction pathway

    Vernia, Santiago; Cavanagh-Kyros, Julie; Barrett, Tamera; Jung, Dae Young; Kim, Jason K.; Davis, Roger J.

    2013-01-01

    The cJun N-terminal kinase (JNK) signaling pathway is a key mediator of metabolic stress responses caused by consuming a high-fat diet, including the development of obesity. To test the role of JNK, we examined diet-induced obesity in mice with targeted ablation of Jnk genes in the anterior pituitary gland. These mice exhibited an increase in the pituitary expression of thyroid-stimulating hormone (TSH), an increase in the blood concentration of thyroid hormone (T4), increased energy expenditure, and markedly reduced obesity compared with control mice. The increased amount of pituitary TSH was caused by reduced expression of type 2 iodothyronine deiodinase (Dio2), a gene that is required for T4-mediated negative feedback regulation of TSH expression. These data establish a molecular mechanism that accounts for the regulation of energy expenditure and the development of obesity by the JNK signaling pathway. PMID:24186979

  2. cAMP-dependent proteolysis of GATA-6 is linked to JNK-signaling pathway

    Ushijima, Hironori [Department of Molecular Biology, School of Pharmacy, Iwate Medical University, 2-1-1, Nishitokuta, Yahaba, Shiwagun, Iwate 028-3694 (Japan); Maeda, Masatomo, E-mail: mmaeda@iwate-med.ac.jp [Department of Molecular Biology, School of Pharmacy, Iwate Medical University, 2-1-1, Nishitokuta, Yahaba, Shiwagun, Iwate 028-3694 (Japan)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer A JNK inhibitor SP600125 inhibited cAMP-dependent proteolysis of GATA-6. Black-Right-Pointing-Pointer Effect of a JNK activator anisomycin on the proteolysis was examined. Black-Right-Pointing-Pointer Anisomycin stimulated the export of nuclear GATA-6 into the cytoplasm. Black-Right-Pointing-Pointer JNK activated the CRM1 mediated nuclear export of GATA-6. Black-Right-Pointing-Pointer JNK further stimulated slowly the degradation of GATA-6 by cytoplasmic proteasomes. -- Abstract: A JNK inhibitor SP600125 inhibited cAMP-dependent proteolysis of GATA-6 by proteasomes around its IC50. We further examined the effects of SP600125 on the degradation of GATA-6 in detail, since an activator of JNK (anisomycin) is available. Interestingly, anisomycin immediately stimulated the export of nuclear GATA-6 into the cytoplasm, and then the cytoplasmic content of GATA-6 decreased slowly through degradation by proteasomes. Such an effect of anisomycin was inhibited by SP600125, indicating that the observed phenomenon might be linked to the JNK signaling pathway. The inhibitory effect of SP600125 could not be ascribed to the inhibition of PKA, since phosphorylation of CREB occurred in the presence of dbcAMP and SP600125. The nuclear export of GATA-6 was inhibited by leptomycin B, suggesting that CRM1-mediated export could be activated by anisomycin. Furthermore, it seems likely that the JNK activated by anisomycin may stimulate not only the nuclear export of GATA-6 through CRM1 but also the degradation of GATA-6 by cytoplasmic proteasomes. In contrast, A-kinase might activate only the latter process through JNK.

  3. Curcumol suppresses RANKL-induced osteoclast formation by attenuating the JNK signaling pathway

    Yu, Mingxiang; Chen, Xianying; Lv, Chaoyang; Yi, Xilu; Zhang, Yao; Xue, Mengjuan; He, Shunmei; Zhu, Guoying; Wang, Hongfu

    2014-01-01

    Highlights: • Curcumol suppresses osteoclasts differentiation in vitro. • Curcumol impairs JNK/AP-1 signaling pathway. • Curcumol may be used for treating osteoclast related diseases. - Abstract: Osteoclasts, derived from hemopoietic progenitors of the monocyte/macrophage lineage, have a unique role in bone resorption, and are considered a potential therapeutic target in the treatment of such pathologic bone diseases as osteoporosis, rheumatoid arthritis, and periodontitis. In the present study, we demonstrate that curcumol, one of the major components of the essential oil of Rhizoma Curcumae, exhibits an inhibitory effect on receptor activator of nuclear factor kappaB ligand (RANKL)-induced osteoclast differentiation with both bone marrow-derived macrophages and RAW264.7 cells in a dose-dependent manner. In addition, RANKL-induced mRNA expression of osteoclast-specific genes, such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K, is prominently reduced in the presence of curcumol. Furthermore, the molecular mechanism of action was investigated, and curcumol inhibited osteoclastogenesis by specifically impairing RANKL-induced c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) signaling, which was further identified in rescue studies by means of anisomycin, a JNK signaling-specific activator. Taken together, these findings suggest that curcumol suppresses RANKL-induced osteoclast differentiation through the JNK/AP-1 signaling pathway, and may be useful as a therapeutic treatment for bone resorption-associated diseases

  4. Curcumol suppresses RANKL-induced osteoclast formation by attenuating the JNK signaling pathway

    Yu, Mingxiang, E-mail: yu.mingxiang@zs-hospital.sh.cn [Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai (China); Chen, Xianying [Department of Endocrinology and Metabolism, Hainan Provincial Nong Ken Hospital, Hainan (China); Lv, Chaoyang [Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai (China); Yi, Xilu [Department of Endocrinology and Metabolism, Shanghai Songjiang District Central Hospital, Shanghai (China); Zhang, Yao; Xue, Mengjuan; He, Shunmei [Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai (China); Zhu, Guoying [Institute of Radiation Medicine, Fudan University, Shanghai (China); Wang, Hongfu, E-mail: hfwang@shmu.edu.cn [Institute of Radiation Medicine, Fudan University, Shanghai (China)

    2014-05-02

    Highlights: • Curcumol suppresses osteoclasts differentiation in vitro. • Curcumol impairs JNK/AP-1 signaling pathway. • Curcumol may be used for treating osteoclast related diseases. - Abstract: Osteoclasts, derived from hemopoietic progenitors of the monocyte/macrophage lineage, have a unique role in bone resorption, and are considered a potential therapeutic target in the treatment of such pathologic bone diseases as osteoporosis, rheumatoid arthritis, and periodontitis. In the present study, we demonstrate that curcumol, one of the major components of the essential oil of Rhizoma Curcumae, exhibits an inhibitory effect on receptor activator of nuclear factor kappaB ligand (RANKL)-induced osteoclast differentiation with both bone marrow-derived macrophages and RAW264.7 cells in a dose-dependent manner. In addition, RANKL-induced mRNA expression of osteoclast-specific genes, such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K, is prominently reduced in the presence of curcumol. Furthermore, the molecular mechanism of action was investigated, and curcumol inhibited osteoclastogenesis by specifically impairing RANKL-induced c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) signaling, which was further identified in rescue studies by means of anisomycin, a JNK signaling-specific activator. Taken together, these findings suggest that curcumol suppresses RANKL-induced osteoclast differentiation through the JNK/AP-1 signaling pathway, and may be useful as a therapeutic treatment for bone resorption-associated diseases.

  5. Interleukin-1 Acts via the JNK-2 Signaling Pathway to Induce Aggrecan Degradation by Human Chondrocytes.

    Ismail, Heba M; Yamamoto, Kazuhiro; Vincent, Tonia L; Nagase, Hideaki; Troeberg, Linda; Saklatvala, Jeremy

    2015-07-01

    Aggrecan enables articular cartilage to bear load and resist compression. Aggrecan loss occurs early in osteoarthritis and rheumatoid arthritis and can be induced by inflammatory cytokines such as interleukin-1 (IL-1). IL-1 induces cleavage of specific aggrecans characteristic of the ADAMTS proteinases. The aim of this study was to identify the intracellular signaling pathways by which IL-1 causes aggrecan degradation by human chondrocytes and to investigate how aggrecanase activity is controlled by chondrocytes. We developed a cell-based assay combining small interfering RNA (siRNA)-induced knockdown with aggrecan degradation assays. Human articular chondrocytes were overlaid with bovine aggrecan after transfection with siRNAs against molecules of the IL-1 signaling pathway. After IL-1 stimulation, released aggrecan fragments were detected with AGEG and ARGS neoepitope antibodies. Aggrecanase activity and tissue inhibitor of metalloproteinases 3 levels were measured by enzyme-linked immunosorbent assay. Low-density lipoprotein receptor-related protein 1 (LRP-1) shedding was analyzed by Western blotting. ADAMTS-5 is a major aggrecanase in human chondrocytes, regulating aggrecan degradation in response to IL-1. The tumor necrosis factor receptor-associated 6 (TRAF-6)/transforming growth factor β-activated kinase 1 (TAK-1)/MKK-4 signaling axis is essential for IL-1-induced aggrecan degradation, while NF-κB is not. Of the 3 MAPKs (ERK, p38, and JNK), only JNK-2 showed a significant role in aggrecan degradation. Chondrocytes constitutively secreted aggrecanase, which was continuously endocytosed by LRP-1, keeping the extracellular level of aggrecanase low. IL-1 induced aggrecanase activity in the medium in a JNK-2-dependent manner, possibly by reducing aggrecanase endocytosis, because IL-1 caused JNK-2-dependent shedding of LRP-1. The signaling axis TRAF-6/TAK-1/MKK-4/JNK-2 mediates IL-1-induced aggrecanolysis. The level of aggrecanase is controlled by its

  6. Huaier Aqueous Extract Induces Hepatocellular Carcinoma Cells Arrest in S Phase via JNK Signaling Pathway

    Chengshuo Zhang

    2015-01-01

    Full Text Available Huaier aqueous extract, the main active constituent of Huaier proteoglycan, has antihepatocarcinoma activity in experimental and clinical settings. However, the potential and associated antihepatoma mechanisms of Huaier extract are not yet fully understood. Therefore, in this study, we aimed to elucidate the inhibitory proliferation effect of Huaier extract on apoptosis and cycle of HepG2 and Bel-7402 cells. Our data demonstrated that incubation with Huaier extract resulted in a marked decrease in cell viability dose-dependently. Flow cytometric analysis showed that a 48 h treatment of Huaier extract caused cell apoptosis. Typical apoptotic nucleus alterations were observed with fluorescence microscope after Hoechst staining. Immunoblot analysis further demonstrated that Huaier extract activated caspase 3 and PARP. Additionally, Huaier extract inhibited the activity of p-ERK, p-p38, and p-JNK in terms of MAPK. Furthermore, Huaier extract induced HCC cells arrest in S phase and decreased the cycle related protein expression of β-catenin and cyclin D1. Studies with JNK specific inhibitor, SP600125, showed that Huaier extract induced S phase arrest and decreased β-catenin and cyclin D1 expression via JNK signaling pathway. In conclusion, we verify that Huaier extract causes cell apoptosis and induces hepatocellular carcinoma cells arrest in S phase via JNK pathway, which advances our understanding on the molecular mechanisms of Huaier extract in hepatocarcinoma management.

  7. Inhibition of NF-κB promotes autophagy via JNK signaling pathway in porcine granulosa cells

    Gao, Hui; Lin, Lu; Haq, Ihtesham Ul; Zeng, Shen-ming

    2016-01-01

    The transcription factor nuclear factor-κB (NF-κB) plays an important role in diverse processes, including cell proliferation and differentiation, apoptosis and inflammation. However, the role of NF-κB in porcine follicle development is not clearly elucidated. In this study, we demonstrated that follicle stimulating hormone (FSH) increased the level of inhibitor of NF-κB (IκB) protein and promoted the cytoplasmic localization of p65, indicating that FSH inhibits the activation of NF-κB in porcine granulosa cells. Moreover, inhibition of NF-κB by FSH or another specific inhibitor of NF-κB, pyrrolidine dithiocarbamate (PDTC), could activate JNK signaling and enhance autophagic activity in porcine granulosa cells. Knockdown of RelA (p65) Subunit of NF-κB by RNA interference abrogated the activation of JNK signaling pathway and the increase of autophagic protein expression by FSH. Meanwhile, the functional significance of FSH or PDTC-mediated autophagy were further investigated. Our results demonstrated that the increased autophagy promoted progesterone secretion in porcine granulosa cells. Blockage of autophagy by chloroquine obviated the FSH or PDTC-induced progesterone production. Taken together, these results indicate that inhibition of NF-κB increased autophagy via JNK signaling, and promote steroidogenesis in porcine granulosa cells. Our results provide new insights into the regulation and function of autophagy in mammalian follicle development. - Highlights: • FSH inhibits the activation of NF-κB in porcine primary granulosa cells. • Inhibition of NF-κB by FSH promotes autophagy via JNK signaling in granulosa cells. • Increased autophagy contributes to progesterone production in granulosa cells. • This is the first report against beclin1 regulation in porcine granulosa cells.

  8. Inhibition of NF-κB promotes autophagy via JNK signaling pathway in porcine granulosa cells

    Gao, Hui; Lin, Lu; Haq, Ihtesham Ul; Zeng, Shen-ming, E-mail: zengshenming@gmail.com

    2016-04-22

    The transcription factor nuclear factor-κB (NF-κB) plays an important role in diverse processes, including cell proliferation and differentiation, apoptosis and inflammation. However, the role of NF-κB in porcine follicle development is not clearly elucidated. In this study, we demonstrated that follicle stimulating hormone (FSH) increased the level of inhibitor of NF-κB (IκB) protein and promoted the cytoplasmic localization of p65, indicating that FSH inhibits the activation of NF-κB in porcine granulosa cells. Moreover, inhibition of NF-κB by FSH or another specific inhibitor of NF-κB, pyrrolidine dithiocarbamate (PDTC), could activate JNK signaling and enhance autophagic activity in porcine granulosa cells. Knockdown of RelA (p65) Subunit of NF-κB by RNA interference abrogated the activation of JNK signaling pathway and the increase of autophagic protein expression by FSH. Meanwhile, the functional significance of FSH or PDTC-mediated autophagy were further investigated. Our results demonstrated that the increased autophagy promoted progesterone secretion in porcine granulosa cells. Blockage of autophagy by chloroquine obviated the FSH or PDTC-induced progesterone production. Taken together, these results indicate that inhibition of NF-κB increased autophagy via JNK signaling, and promote steroidogenesis in porcine granulosa cells. Our results provide new insights into the regulation and function of autophagy in mammalian follicle development. - Highlights: • FSH inhibits the activation of NF-κB in porcine primary granulosa cells. • Inhibition of NF-κB by FSH promotes autophagy via JNK signaling in granulosa cells. • Increased autophagy contributes to progesterone production in granulosa cells. • This is the first report against beclin1 regulation in porcine granulosa cells.

  9. Targeting p53 via JNK pathway: a novel role of RITA for apoptotic signaling in multiple myeloma.

    Saha, Manujendra N; Jiang, Hua; Yang, Yijun; Zhu, Xiaoyun; Wang, Xiaoming; Schimmer, Aaron D; Qiu, Lugui; Chang, Hong

    2012-01-01

    The low frequency of p53 alterations e.g., mutations/deletions (∼10%) in multiple myeloma (MM) makes this tumor type an ideal candidate for p53-targeted therapies. RITA is a small molecule which can induce apoptosis in tumor cells by activating the p53 pathway. We previously showed that RITA strongly activates p53 while selectively inhibiting growth of MM cells without inducing genotoxicity, indicating its potential as a drug lead for p53-targeted therapy in MM. However, the molecular mechanisms underlying the pro-apoptotic effect of RITA are largely undefined. Gene expression analysis by microarray identified a significant number of differentially expressed genes associated with stress response including c-Jun N-terminal kinase (JNK) signaling pathway. By Western blot analysis we further confirmed that RITA induced activation of p53 in conjunction with up-regulation of phosphorylated ASK-1, MKK-4 and c-Jun. These results suggest that RITA induced the activation of JNK signaling. Chromatin immunoprecipitation (ChIP) analysis showed that activated c-Jun binds to the activator protein-1 (AP-1) binding site of the p53 promoter region. Disruption of the JNK signal pathway by small interfering RNA (siRNA) against JNK or JNK specific inhibitor, SP-600125 inhibited the activation of p53 and attenuated apoptosis induced by RITA in myeloma cells carrying wild type p53. On the other hand, p53 transcriptional inhibitor, PFT-α or p53 siRNA not only inhibited the activation of p53 transcriptional targets but also blocked the activation of c-Jun suggesting the presence of a positive feedback loop between p53 and JNK. In addition, RITA in combination with dexamethasone, known as a JNK activator, displays synergistic cytotoxic responses in MM cell lines and patient samples. Our study unveils a previously undescribed mechanism of RITA-induced p53-mediated apoptosis through JNK signaling pathway and provides the rationale for combination of p53 activating drugs with JNK

  10. Targeting p53 via JNK pathway: a novel role of RITA for apoptotic signaling in multiple myeloma.

    Manujendra N Saha

    Full Text Available The low frequency of p53 alterations e.g., mutations/deletions (∼10% in multiple myeloma (MM makes this tumor type an ideal candidate for p53-targeted therapies. RITA is a small molecule which can induce apoptosis in tumor cells by activating the p53 pathway. We previously showed that RITA strongly activates p53 while selectively inhibiting growth of MM cells without inducing genotoxicity, indicating its potential as a drug lead for p53-targeted therapy in MM. However, the molecular mechanisms underlying the pro-apoptotic effect of RITA are largely undefined. Gene expression analysis by microarray identified a significant number of differentially expressed genes associated with stress response including c-Jun N-terminal kinase (JNK signaling pathway. By Western blot analysis we further confirmed that RITA induced activation of p53 in conjunction with up-regulation of phosphorylated ASK-1, MKK-4 and c-Jun. These results suggest that RITA induced the activation of JNK signaling. Chromatin immunoprecipitation (ChIP analysis showed that activated c-Jun binds to the activator protein-1 (AP-1 binding site of the p53 promoter region. Disruption of the JNK signal pathway by small interfering RNA (siRNA against JNK or JNK specific inhibitor, SP-600125 inhibited the activation of p53 and attenuated apoptosis induced by RITA in myeloma cells carrying wild type p53. On the other hand, p53 transcriptional inhibitor, PFT-α or p53 siRNA not only inhibited the activation of p53 transcriptional targets but also blocked the activation of c-Jun suggesting the presence of a positive feedback loop between p53 and JNK. In addition, RITA in combination with dexamethasone, known as a JNK activator, displays synergistic cytotoxic responses in MM cell lines and patient samples. Our study unveils a previously undescribed mechanism of RITA-induced p53-mediated apoptosis through JNK signaling pathway and provides the rationale for combination of p53 activating drugs with

  11. Secreted phospholipase A2 of Clonorchis sinensis activates hepatic stellate cells through a pathway involving JNK signalling.

    Wu, Yinjuan; Li, Ye; Shang, Mei; Jian, Yu; Wang, Caiqin; Bardeesi, Adham Sameer A; Li, Zhaolei; Chen, Tingjin; Zhao, Lu; Zhou, Lina; He, Ai; Huang, Yan; Lv, Zhiyue; Yu, Xinbing; Li, Xuerong

    2017-03-16

    Secreted phospholipase A2 (sPLA2) is a protein secreted by Clonorchis sinensis and is a component of excretory and secretory products (CsESPs). Phospholipase A2 is well known for its role in liver fibrosis and inhibition of tumour cells. The JNK signalling pathway is involved in hepatic stellate cells (HSCs) activation. Blocking JNK activity with SP600125 inhibits HSCs activation. In a previous study, the protein CssPLA2 was expressed in insoluble inclusion bodies. Therefore, it's necessary to express CssPLA2 in water-soluble form and determine whether the enzymatic activity of CssPLA2 or cell signalling pathways is involved in liver fibrosis caused by clonorchiasis. Balb/C mice were given an abdominal injection of MBP-CssPLA2. Liver sections with HE and Masson staining were observed to detect accumulation of collagen. Western blot of mouse liver was done to detect the activation of JNK signalling pathway. In vitro, HSCs were incubated with MBP-CssPLA2 to detect the activation of HSCs as well as the activation of JNK signalling pathway. The mutant of MBP-CssPLA2 without enzymatic activity was constructed and was also incubated with HSCs to check whether activation of the HSCs was related to the enzymatic activity of MBP-CssPLA2. The recombinant protein MBP-CssPLA2 was expressed soluble and of good enzymatic activity. A mutant of CssPLA2, without enzymatic activity, was also constructed. In vivo liver sections of Balb/C mice that were given an abdominal injection of 50 μg/ml MBP-CssPLA2 showed an obvious accumulation of collagen and a clear band of P-JNK1 could be seen by western blot of the liver tissue. In vitro, MBP-CssPLA2, as well as the mutant, was incubated with HSCs and it was proved that activation of HSCs was related to activation of the JNK signalling pathway instead of the enzymatic activity of MBP-CssPLA2. Activation of HSCs by CssPLA2 is related to the activation of the JNK signalling pathway instead of the enzymatic activity of CssPLA2. This finding

  12. [Curcumin alleviates early brain injury following subarachnoid hemorrhage in rats by inhibiting JNK/c-Jun signal pathway].

    Li, Xia; Zhu, Ji

    2018-03-01

    Objective To investigate the inhibitory effect of curcumin on early brain injury following subarachnoid hemorrhage (SAH) by inhibiting JNK/ c-Jun signal pathway. Methods Sixty adult male SD rats were randomly divided into four groups: sham operation group (sham group), SAH group, SAH group treated with 100 mg/(kg.d) curcumin and SAH group treated with 200 mg/(kg.d) curcumin, with 15 rats in each group. Endovascular puncture was used to induce SAH model. Nissl staining was used to test whether neurons were broken. TUNEL staining was used to detect apoptosis. Immunohistochemistry was used to investigate the expression of caspase-3. Western blot analysis was used to detect the expressions of p-JNK, JNK, p-c-Jun, c-Jun, and caspase-3. Results Nissl staining indicated the decrease of Nissl bodies in SAH group, but increase of Nissl bodies in SAH group treated with curcumin. TUNEL staining showed that there were more apoptotic neurons in SAH group compared with sham group, while apoptotic neurons decreased after the treatment with curcumin, more obviously in the group treated with 200 mg/(kg.d) curcumin. The expressions of p-JNK, JNK, p-c-Jun, c-Jun, and caspase-3 were up-regulated in SAH group compared with sham group. However, the expressions of those proteins were down-regulated after the treatment with curcumin, especially by higher-dose curcumin treatment. Conclusion Curcumin might suppress early brain injury after SAH by inhibiting JNK/c-Jun signal pathway and neuron apoptosis.

  13. Curcumin Induced Human Gastric Cancer BGC-823 Cells Apoptosis by ROS-Mediated ASK1-MKK4-JNK Stress Signaling Pathway

    Tao Liang

    2014-09-01

    Full Text Available The signaling mediated by stress-activated MAP kinases (MAPK, c-Jun N-terminal kinase (JNK has well-established importance in cancer. In the present report, we investigated the effects of curcumin on the signaling pathway in human gastric cancer BGC-823 cells. Curcumin induced reactive oxygen species (ROS production and BGC-823 cells apoptosis. Inhibition of ROS generation by antioxidant (NAC or Trion significantly prevented curcumin-mediated apoptosis. Notably, we observed that curcumin activated ASK1, a MAPKKK that is oxidative stress sensitive and responsible to phosphorylation of JNK via triggering cascades, up-regulated an upstream effector of the JNK, MKK4, and phosphorylated JNK protein expression in BGC-823 cells. However, curcumin induced ASK1-MKK4-JNK signaling was attenuated by NAC. All the findings confirm the possibility that oxidative stress-activated ASK1-MKK4-JNK signaling cascade promotes the apoptotic response in curcumin-treated BGC-823 cells.

  14. JNK inhibition sensitizes tumor cells to radiation-induced premature senescence via Bcl-2/ROS/DDR signaling pathway

    Lee, Jae Seon; Lee, Je Jung

    2009-01-01

    Premature senescence is considered as a cellular defense mechanism to prevent tumorigenesis. Although recent evidences demonstrate that c-Jun N-terminal kinase (JNK) is involved in the senescence process, the target and exact mechanism of JNK signaling in the regulation of cell proliferation has yet to be defined. In this study, we investigated the role of JNK in premature senescence and demonstrated JNK inhibition sensitized tumor cells to radiation-induced premature senescence

  15. Reactive oxygen species activate differentiation gene transcription of acute myeloid leukemia cells via the JNK/c-JUN signaling pathway.

    Lam, Chung Fan; Yeung, Hoi Ting; Lam, Yuk Man; Ng, Ray Kit

    2018-05-01

    Reactive oxygen species (ROS) and altered cellular redox status are associated with many malignancies. Acute myeloid leukemia (AML) cells are maintained at immature state by differentiation blockade, which involves deregulation of transcription factors in myeloid differentiation. AML cells can be induced to differentiate by phorbol-12-myristate-13-acetate (PMA), which possesses pro-oxidative activity. However, the signaling events mediated by ROS in the activation of transcriptional program during AML differentiation has not been fully elucidated. Here, we investigated AML cell differentiation by treatment with PMA and ROS scavenger N-acetyl-l-cysteine (NAC). We observed elevation of intracellular ROS level in the PMA-treated AML cells, which correlated with differentiated cell morphology and increased CD11b + mature cell population. The effect of PMA can be abolished by NAC co-treatment, supporting the involvement of ROS in the process. Moreover, we demonstrated that short ROS elevation mediated cell cycle arrest, but failed to activate myeloid gene transcription; whereas prolonged ROS elevation activated JNK/c-JUN signaling pathway. Inhibition of JNK suppressed the expression of key myeloid transcriptional regulators c-JUN, SPI-1 and MAFB, and prevented AML cells from undergoing terminal differentiation. These findings provide new insights into the crucial role of JNK/c-Jun signaling pathway in the activation of transcriptional program during ROS-mediated AML differentiation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Regulation of the JNK3 signaling pathway during islet isolation: JNK3 and c-fos as new markers of islet quality for transplantation.

    Saida Abdelli

    Full Text Available Stress conditions generated throughout pancreatic islet processing initiate the activation of pro-inflammatory pathways and beta-cell destruction. Our goal is to identify relevant and preferably beta-specific markers to assess the activation of beta-cell stress and apoptotic mechanisms, and therefore the general quality of the islet preparation prior to transplantation. Protein expression and activation were analyzed by Western blotting and kinase assays. ATP measurements were performed by a luminescence-based assay. Oxygen consumption rate (OCR was measured based on standard protocols using fiber optic sensors. Total RNA was used for gene expression analyzes. Our results indicate that pancreas digestion initiates a potent stress response in the islets by activating two stress kinases, c-Jun N-terminal Kinase (JNK and p38. JNK1 protein levels remained unchanged between different islet preparations and following culture. In contrast, levels of JNK3 increased after islet culture, but varied markedly, with a subset of preparations bearing low JNK3 expression. The observed changes in JNK3 protein content strongly correlated with OCR measurements as determined by the Spearman's rank correlation coefficient rho [Formula: see text] in the matching islet samples, while inversely correlating with c-fos mRNA expression [Formula: see text]. In conclusion, pancreas digestion recruits JNK and p38 kinases that are known to participate to beta-cell apoptosis. Concomitantly, the islet isolation alters JNK3 and c-fos expression, both strongly correlating with OCR. Thus, a comparative analysis of JNK3 and c-fos expression before and after culture may provide for novel markers to assess islet quality prior to transplantation. JNK3 has the advantage over all other proposed markers to be islet-specific, and thus to provide for a marker independent of non-beta cell contamination.

  17. Protection of Momordica charantia polysaccharide against intracerebral hemorrhage-induced brain injury through JNK3 signaling pathway.

    Duan, Zhen-Zhen; Zhou, Xiao-Ling; Li, Yi-Hang; Zhang, Feng; Li, Feng-Ying; Su-Hua, Qi

    2015-01-01

    It has been well documented that Momordica charantia polysaccharide (MCP) has multiple biological effects such as immune enhancement, anti-oxidation and anti-cancer. However, the potential protective effects of MCP on stroke damage and its relative mechanisms remain unclear. Our present study demonstrated that MCP could scavenge reactive oxygen species (ROS) in intra-cerebral hemorrhage damage, significantly attenuating the neuronal death induced by thrombin in primary hippocampal neurons. Furthermore, we found that MCP prevented the activation of the c-Jun N-terminal protein kinase (JNK3), c-Jun and caspase-3, which was caused by the intra-cerebral hemorrhage injury. Taken together, our study demonstrated that MCP had a neuroprotective effect in response to intra-cerebral hemorrhage and its mechanisms involved the inhibition of JNK3 signaling pathway.

  18. Acrolein induces Hsp72 via both PKCdelta/JNK and calcium signaling pathways in human umbilical vein endothelial cells.

    Misonou, Yoshiko; Takahashi, Motoko; Park, Yong Seek; Asahi, Michio; Miyamoto, Yasuhide; Sakiyama, Haruhiko; Cheng, Xinyao; Taniguchi, Naoyuki

    2005-05-01

    Acrolein is a highly electrophilic alpha,beta-unsaturated aldehydes to which humans are exposed in a variety of environment situations and is also a product of lipid peroxidation. Increased levels of unsaturated aldehydes play an important role in the pathogenesis of a number of human diseases such as Alzheimer's disease, atherosclerosis and diabetes. A number of studies have reported that acrolein evokes downstream signaling via an elevation in cellular oxidative stress. Here, we report that low concentrations of acrolein induce Hsp72 in human umbilical vein endothelial cells (HUVEC) and that both the PKCdelta/JNK pathway and calcium pathway were involved in the induction. The findings confirm that the production of reactive oxygen species (ROS) is not directly involved in the pathway. The induction of Hsp72 was not observed in other cells such as smooth muscle cells (SMC) or COS-1 cells. The results suggest that HUVEC have a unique defense system against cell damage by acrolein in which Hsp72 is induced via activation of both the PKCd/JNK and the calcium pathway.

  19. RhoA/ROCK signaling regulates smooth muscle phenotypic modulation and vascular remodeling via the JNK pathway and vimentin cytoskeleton.

    Tang, Lian; Dai, Fan; Liu, Yan; Yu, Xiaoqiang; Huang, Chao; Wang, Yuqin; Yao, Wenjuan

    2018-05-20

    The RhoA/ROCK signaling pathway regulates cell morphology, adhesion, proliferation, and migration. In this study, we investigated the regulatory role of RhoA/ROCK signaling on PDGF-BB-mediated smooth muscle phenotypic modulation and vascular remodeling and clarified the molecular mechanisms behind these effects. PDGF-BB treatment induced the activation of RhoA, ROCK, PDGF-Rβ, and the expression of PDGF-Rβ in HA-VSMCs (human aortic vascular smooth muscle cells). PDGF-Rβ inhibition and RhoA suppression blocked PDGF-BB-induced RhoA activation and ROCK induction. In addition, PDGF-BB-mediated cell proliferation and migration were suppressed by PDGF-Rβ inhibition, RhoA suppression, and ROCK inhibition, suggesting that PDGF-BB promotes phenotypic modulation of HA-VSMCs by activating the RhoA/ROCK pathway via the PDGF receptor. Moreover, suppressing both ROCK1 and ROCK2 blocked cell cycle progression from G0/G1 to S phase by decreasing the transcription and protein expression of cyclin D1, CDK2, and CDK4 via JNK/c-Jun pathway, thus reducing cell proliferation in PDGF-BB-treated HA-VSMCs. ROCK1 deletion, rather than ROCK2 suppression, significantly inhibited PDGF-BB-induced migration by reducing the expression of vimentin and preventing the remodeling of vimentin and phospho-vimentin. Furthermore, ROCK1 deletion suppressed vimentin by inhibiting the phosphorylation of Smad2/3 and the nuclear translocation of Smad4. These findings suggested that ROCK1 and ROCK2 might play different roles in PDGF-BB-mediated cell proliferation and migration in HA-VSMCs. In addition, PDGF-BB and its receptor participated in neointima formation and vascular remodeling by promoting cell cycle protein expression via the JNK pathway and enhancing vimentin expression in a rat balloon injury model; effects that were inhibited by treatment with fasudil. Together, the results of this study reveal a novel mechanism through which RhoA/ROCK signaling regulates smooth muscle phenotypic modulation and

  20. Inhibition of Spinal Interlukin-33/ST2 Signaling and Downstream ERK and JNK Pathways in Electroacupuncture Analgesia in Formalin Mice.

    Ping Han

    Full Text Available Although acupuncture is widely used to manage pain, it remains highly controversial, largely due to the lack of a clear mechanism for its benefits. Here, we investigated the role of IL-33, a novel interleukin (IL-1 family member, and its receptor ST2 in the analgesic effects of electroacupuncture (EA on formalin-induced inflammatory pain. The results showed that 1 EA stimulation of ipsilateral Zusanli (ST 36 and Yanglingquan (GB 34 acupoints for 30 min remarkably suppressed the two phases of formalin-induced spontaneous pain; 2 subcutaneous or intrathecal administration of recombinant IL-33 (rIL-33 significantly inhibited the analgesic effect of EA, whereas the ST2 antibody potentiated EA analgesia in formalin mice; 3 EA treatment decreased the up-regulation of IL-33 and ST2 protein following formalin injection; and 4 the suppression of the formalin-induced expression of spinal phosphorylated ERK and JNK induced by EA treatment was significantly attenuated following subcutaneous rIL-33 delivery, and was further decreased by the ST2 antibody. These data suggest that EA alleviates formalin-induced inflammatory pain, at least partially, by inhibiting of spinal IL-33/ST2 signaling and the downstream ERK and JNK pathways.

  1. Inhibition of Spinal Interlukin-33/ST2 Signaling and Downstream ERK and JNK Pathways in Electroacupuncture Analgesia in Formalin Mice

    Zhao, Jing; Wang, Yanqing; Wu, Gencheng; Mi, Wenli

    2015-01-01

    Although acupuncture is widely used to manage pain, it remains highly controversial, largely due to the lack of a clear mechanism for its benefits. Here, we investigated the role of IL-33, a novel interleukin (IL)-1 family member, and its receptor ST2 in the analgesic effects of electroacupuncture (EA) on formalin-induced inflammatory pain. The results showed that 1) EA stimulation of ipsilateral Zusanli (ST 36) and Yanglingquan (GB 34) acupoints for 30 min remarkably suppressed the two phases of formalin-induced spontaneous pain; 2) subcutaneous or intrathecal administration of recombinant IL-33 (rIL-33) significantly inhibited the analgesic effect of EA, whereas the ST2 antibody potentiated EA analgesia in formalin mice; 3) EA treatment decreased the up-regulation of IL-33 and ST2 protein following formalin injection; and 4) the suppression of the formalin-induced expression of spinal phosphorylated ERK and JNK induced by EA treatment was significantly attenuated following subcutaneous rIL-33 delivery, and was further decreased by the ST2 antibody. These data suggest that EA alleviates formalin-induced inflammatory pain, at least partially, by inhibiting of spinal IL-33/ST2 signaling and the downstream ERK and JNK pathways. PMID:26067287

  2. Proteomics and pathway analysis identifies JNK signaling as critical for high linear energy transfer radiation-induced apoptosis in non-small lung cancer cells.

    Ståhl, Sara; Fung, Eva; Adams, Christopher; Lengqvist, Johan; Mörk, Birgitta; Stenerlöw, Bo; Lewensohn, Rolf; Lehtiö, Janne; Zubarev, Roman; Viktorsson, Kristina

    2009-05-01

    During the past decade, we have witnessed an explosive increase in generation of large proteomics data sets, not least in cancer research. There is a growing need to extract and correctly interpret information from such data sets to generate biologically relevant hypotheses. A pathway search engine (PSE) has recently been developed as a novel tool intended to meet these requirements. Ionizing radiation (IR) is an anticancer treatment modality that triggers multiple signal transduction networks. In this work, we show that high linear energy transfer (LET) IR induces apoptosis in a non-small cell lung cancer cell line, U-1810, whereas low LET IR does not. PSE was applied to study changes in pathway status between high and low LET IR to find pathway candidates of importance for high LET-induced apoptosis. Such pathways are potential clinical targets, and they were further validated in vitro. We used an unsupervised shotgun proteomics approach where high resolution mass spectrometry coupled to nanoflow liquid chromatography determined the identity and relative abundance of expressed proteins. Based on the proteomics data, PSE suggested the JNK pathway (p = 6.10(-6)) as a key event in response to high LET IR. In addition, the Fas pathway was found to be activated (p = 3.10(-5)) and the p38 pathway was found to be deactivated (p = 0.001) compared with untreated cells. Antibody-based analyses confirmed that high LET IR caused an increase in phosphorylation of JNK. Moreover pharmacological inhibition of JNK blocked high LET-induced apoptotic signaling. In contrast, neither an activation of p38 nor a role for p38 in high LET IR-induced apoptotic signaling was found. We conclude that, in contrast to conventional low LET IR, high LET IR can trigger activation of the JNK pathway, which in turn is critical for induction of apoptosis in these cells. Thus PSE predictions were largely confirmed, and PSE was proven to be a useful hypothesis-generating tool.

  3. JNK signaling pathway regulates sorbitol-induced Tau proteolysis and apoptosis in SH-SY5Y cells by targeting caspase-3.

    Olivera Santa-Catalina, Marta; Caballero Bermejo, Montaña; Argent, Ricardo; Alonso, Juan C; Centeno, Francisco; Lorenzo, María J

    2017-12-15

    Growing evidence suggests that Diabetes Mellitus increases the risk of developing Alzheimer's disease. It is well known that hyperglycemia, a key feature of Diabetes Mellitus, may induce plasma osmolarity disturbances. Both hyperglycemia and hyperosmolarity promote the altered post-translational regulation of microtubule-associated protein Tau. Interestingly, abnormal hyperphosphorylation and cleavage of Tau have been proven to lead to the genesis of filamentous structures referred to as neurofibrillary tangles, the main pathological hallmark of Alzheimer's disease. We have previously described that hyperosmotic stress induced by sorbitol promotes Tau proteolysis and apoptosis in SH-SY5Y cells via caspase-3 activation. In order to gain insights into the regulatory mechanisms of such processes, in this work we explored the intracellular signaling pathways that regulate these events. We found that sorbitol treatment significantly enhanced the activation of conventional families of MAPK in SH-SY5Y cells. Tau proteolysis was completely prevented by JNK inhibition but not affected by either ERK1/2 or p38 MAPK blockade. Moreover, inhibition of JNK, but not ERK1/2 or p38 MAPK, efficiently prevented sorbitol-induced apoptosis and caspase-3 activation. In summary, we provide evidence that JNK signaling pathway is an upstream regulator of hyperosmotic stress-induced Tau cleavage and apoptosis in SH-SY5Y through the control of caspase-3 activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Proteomics and Pathway Analysis Identifies JNK Signaling as Critical for High Linear Energy Transfer Radiation-induced Apoptosis in Non-small Lung Cancer Cells*S⃞

    Ståhl, Sara; Fung, Eva; Adams, Christopher; Lengqvist, Johan; Mörk, Birgitta; Stenerlöw, Bo; Lewensohn, Rolf; Lehtiö, Janne; Zubarev, Roman; Viktorsson, Kristina

    2009-01-01

    During the past decade, we have witnessed an explosive increase in generation of large proteomics data sets, not least in cancer research. There is a growing need to extract and correctly interpret information from such data sets to generate biologically relevant hypotheses. A pathway search engine (PSE) has recently been developed as a novel tool intended to meet these requirements. Ionizing radiation (IR) is an anticancer treatment modality that triggers multiple signal transduction networks. In this work, we show that high linear energy transfer (LET) IR induces apoptosis in a non-small cell lung cancer cell line, U-1810, whereas low LET IR does not. PSE was applied to study changes in pathway status between high and low LET IR to find pathway candidates of importance for high LET-induced apoptosis. Such pathways are potential clinical targets, and they were further validated in vitro. We used an unsupervised shotgun proteomics approach where high resolution mass spectrometry coupled to nanoflow liquid chromatography determined the identity and relative abundance of expressed proteins. Based on the proteomics data, PSE suggested the JNK pathway (p = 6·10−6) as a key event in response to high LET IR. In addition, the Fas pathway was found to be activated (p = 3·10−5) and the p38 pathway was found to be deactivated (p = 0.001) compared with untreated cells. Antibody-based analyses confirmed that high LET IR caused an increase in phosphorylation of JNK. Moreover pharmacological inhibition of JNK blocked high LET-induced apoptotic signaling. In contrast, neither an activation of p38 nor a role for p38 in high LET IR-induced apoptotic signaling was found. We conclude that, in contrast to conventional low LET IR, high LET IR can trigger activation of the JNK pathway, which in turn is critical for induction of apoptosis in these cells. Thus PSE predictions were largely confirmed, and PSE was proven to be a useful hypothesis-generating tool. PMID:19168796

  5. Wnt-11 signaling leads to down-regulation of the Wnt/β-catenin, JNK/AP-1 and NF-κB pathways and promotes viability in the CHO-K1 cells

    Railo, Antti; Nagy, Irina I.; Kilpelaeinen, Pekka; Vainio, Seppo

    2008-01-01

    The Wnt family of glycoprotein growth factors controls a number of central cellular processes such as proliferation, differentiation and ageing. All the Wnt proteins analyzed so far either activate or inhibit the canonical β-catenin signaling pathway that regulates transcription of the target genes. In addition, some of them activate noncanonical signaling pathways that involve components such as the JNK, heterotrimeric G proteins, protein kinase C, and calmodulin-dependent protein kinase II, although the precise signaling mechanisms are only just beginning to be revealed. We demonstrate here that Wnt-11 signaling is sufficient to inhibit not only the canonical β-catenin mediated Wnt signaling but also JNK/AP-1 and NF-κB signaling in the CHO cells, thus serving as a noncanonical Wnt ligand in this system. Inhibition of the JNK/AP-1 pathway is mediated in part by the MAPK kinase MKK4 and Akt. Moreover, protein kinase C is involved in the regulation of JNK/AP-1 by Wnt-11, but not of the NF-κB pathway. Consistent with the central role of Akt, JNK and NF-κB in cell survival and stress responses, Wnt-11 signaling promotes cell viability. Hence Wnt-11 is involved in coordination of key signaling pathways

  6. Cantharidin Induced Oral Squamous Cell Carcinoma Cell Apoptosis via the JNK-Regulated Mitochondria and Endoplasmic Reticulum Stress-Related Signaling Pathways.

    Chin-Chuan Su

    Full Text Available Oral cancer is a subtype of head and neck cancer which represents 2.65% of all human malignancies. Most of oral cancer is histopathologically diagnosed as oral squamous cell carcinoma (OSCC. OSCC is characterized by a high degree of local invasion and a high rate of metastasis to the cervical lymph nodes. How to prevention and treatment of OSCC is important and imperative. Here, we investigated the therapeutic effect and molecular mechanism of cantharidin, an active compound isolated from blister beetles, on OSCC in vitro. Results showed that cantharidin significantly decreased cell viability in human tongue squamous carcinoma-derived SAS, CAL-27, and SCC-4 cell lines. The further mechanistic studies were carried out in SAS cells. Cantharidin also significantly increased apoptosis-related signals, including caspase-9, caspase-7 and caspase-3 proteins. Besides, cantharidin decreased mitochondrial transmembrane potential (MMP and induced cytochrome c and apoptosis inducing factor (AIF release. Cantharidin also increased Bax, Bid, and Bak protein expressions and decreased Bcl-2 protein expression. Cantharidin could also increase the endoplasmic reticulum (ER stress signals, including the expressions of phosphorylated eIF-2α and CHOP, but not Grp78 and Grp94. Furthermore, cantharidin reduced pro-caspase-12 protein expression. In signals of mitogen-activated protein kinases, cantharidin increased the phosphorylation of JNK, but not ERK and p38. Transfection of shRNA-JNK to OSCC cells effectively reversed the cantharidin-induced cell apoptotic signals, including the mitochondrial and ER stress-related signaling molecules. Taken together, these findings suggest that cantharidin induces apoptosis in OSCC cells via the JNK-regulated mitochondria and ER stress-related signaling pathways.

  7. Mineral trioxide aggregate upregulates odonto/osteogenic capacity of bone marrow stromal cells from craniofacial bones via JNK and ERK MAPK signalling pathways.

    Wang, Y; Li, J; Song, W; Yu, J

    2014-06-01

    The aim of this study was to investigate effects of mineral trioxide aggregate (MTA) on odonto/osteogenic differentiation of bone marrow stromal cells (BMSCs) from craniofacial bones. Craniofacial BMSCs were isolated from rat mandible and effects of MTA on their proliferation, differentiation and MAPK pathway involvement were subsequently investigated, in vitro. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2,5-tetrazoliumbromide) assay was performed to evaluate proliferation of the MTA-treated cells. Alkaline phosphatase (ALP) activity, alizarin red staining, real-time reverse transcription polymerase chain reaction and western blot assays were used to assess differentiation capacity as well as MAPK pathway involvement. 0.02 mg/ml MTA-treated BMSCs had significantly higher ALP activity and formed more mineralized nodules than the untreated group. Odonto/osteoblastic marker genes/proteins (Alp, Runx2/RUNX2, Osx/OSX, Ocn/OCN and Dspp/DSP respectively) in MTA-treated cells were remarkably upregulated compared to untreated ones. Mechanistically, phosphorylated Jun N-terminal kinase (P-JNK) and phosphorylated extracellular regulated protein kinases (P-ERK) in MTA-treated BMSCs increased significantly in a time-dependent manner, while inhibition of JNK and ERK MAPK pathways dramatically blocked MTA-induced odonto/osteoblastic differentiation, as indicated by reduced ALP levels, weakened mineralization capacity and downregulated levels of odonto/osteoblastic marker genes (Alp, Runx2, Osx, Ocn and Dspp). Mineral trioxide aggregate promoted odonto/osteogenic capacity of craniofacial BMSCs via JNK and ERK MAPK signalling pathways. © 2014 John Wiley & Sons Ltd.

  8. Neurotrophin receptors expression and JNK pathway activation in human astrocytomas

    Assimakopoulou, Martha; Kondyli, Maria; Gatzounis, George; Maraziotis, Theodore; Varakis, John

    2007-01-01

    Neurotrophins are growth factors that regulate cell growth, differentiation and apoptosis in the nervous system. Their diverse actions are mediated through two different transmembrane – receptor signaling systems: Trk receptor tyrosine kinases (TrkA, TrkB, TrkC) and p75 NTR neurotrophin receptor. Trk receptors promote cell survival and differentiation while p75 NTR induces, in most cases, the activity of JNK-p53-Bax apoptosis pathway or suppresses intracellular survival signaling cascades. Robust Trk activation blocks p75 NTR -induced apoptosis by suppressing the JNK-p53-Bax pathway. The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75 NTR , and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue. Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV) were immunostained following microwave pretreatment. Polyclonal antibodies against TrkA, TrkB, TrkC and monoclonal antibodies against p75 NTR and phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were used. The labeling index (LI), defined as the percentage of positive (labeled) cells out of the total number of tumor cells counted, was determined. Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75 NTR receptor expression was found in a small percentage of tumor cells (~1%) in some tumors. The endothelium of tumor capillaries showed conspicuous immunoreactivity for TrkB receptor. Trk immunoreactivity seemed to be localized in some neurons and astrocytes in non-neoplastic tissue. Phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were significantly co-expressed in a tumor

  9. Protective properties of sesamin against fluoride-induced oxidative stress and apoptosis in kidney of carp (Cyprinus carpio) via JNK signaling pathway.

    Cao, Jinling; Chen, Jianjie; Xie, Lingtian; Wang, Jundong; Feng, Cuiping; Song, Jing

    2015-10-01

    Sesamin, a major lignan derived from sesame seeds, has been reported to have many benefits and medicinal properties. However, its protective effects against fluoride-induced injury in kidney of fish have not been clarified. Previously we found that fluoride exposure caused damage and apoptosis in the kidneys of the common carp, Cyprinus carpio. In this study, the effects of sesamin on renal oxidative stress and apoptosis in fluoride-exposed fish were determined. The results showed that sesamin alleviated significantly fluoride-induced renal damage and apoptosis of carp in a dose-dependent manner, indicated by the histopathological examination and ultrastructural observation. Moreover, treatment with sesamin also inhibited significantly fluoride-induced remarkable enhancement of reactive oxygen species (ROS) production and oxidative stress, such as the increase of lipid peroxidation level and the depletion of intracellular reduced glutathione (GSH) level in kidney. To explore the underlying mechanisms of sesamin action, we found that activities of caspase-3 were notably inhibited by treatment with sesamin in the kidney of fluoride-exposed fish. Sesamin decreased the levels of p-JNK protein in kidney, which in turn inactivated pro-apoptotic signaling events by restoring the balance between mitochondrial pro- and anti-apoptotic Bcl-2 and Bax proteins and by decreasing the release of mitochondrial cytochrome c in kidney of fluoride-exposed fish. JNK was also involved in the mitochondrial extrinsic apoptotic pathways of sesamin effects against fluoride-induced renal injury by regulating the levels of p-c-Jun, necrosis factor-alpha (TNF-α) and Bak proteins. These findings indicated that sesamin could protect kidney against fluoride-induced apoptosis by the oxidative stress downstream-mediated change in the inactivation of JNK signaling pathway. Taken together, sesamin plays an important role in maintaining renal health and preventing kidney from toxic damage induced by

  10. Suppression of Hepatic Epithelial-to-Mesenchymal Transition by Melittin via Blocking of TGFβ/Smad and MAPK-JNK Signaling Pathways.

    Park, Ji-Hyun; Park, Byoungduck; Park, Kwan-Kyu

    2017-04-13

    Transforming growth factor (TGF)-β1 plays a crucial role in the epithelial-to-mesenchymal transition (EMT) in hepatocytes and hepatic stellate cells (HSC), which contributes to the pathogenesis of liver fibrosis. Melittin (MEL) is a major component of bee venom and is effective in rheumatoid arthritis, pain relief, cancer cell proliferation, fibrosis and immune modulating activity. In this study, we found that MEL inhibits hepatic EMT in vitro and in vivo, regulating the TGFβ/Smad and TGFβ/nonSmad signaling pathways. MEL significantly inhibited TGF-β1-induced expression of EMT markers (E-cadherin reduction and vimentin induction) in vitro. These results were confirmed in CCl₄-induced liver in vivo. Treatment with MEL almost completely blocked the phosphorylation of Smad2/3, translocation of Smad4 and phosphorylation of JNK in vitro and in vivo. Taken together, these results suggest that MEL suppresses EMT by inhibiting the TGFβ/Smad and TGFβ/nonSmad-c-Jun N-terminal kinase (JNK)/Mitogen-activated protein kinase (MAPK) signaling pathways. These results indicated that MEL possesses potent anti-fibrotic and anti-EMT properties, which may be responsible for its effects on liver diseases.

  11. The Bone Marrow-Mediated Protection of Myeloproliferative Neoplastic Cells to Vorinostat and Ruxolitinib Relies on the Activation of JNK and PI3K Signalling Pathways.

    Bruno A Cardoso

    Full Text Available The classical BCR-ABL-negative Myeloproliferative Neoplasms (MPN are a group of heterogeneous haematological diseases characterized by constitutive JAK-STAT pathway activation. Targeted therapy with Ruxolitinib, a JAK1/2-specific inhibitor, achieves symptomatic improvement but does not eliminate the neoplastic clone. Similar effects are seen with histone deacetylase inhibitors (HDACi, albeit with poorer tolerance. Here, we show that bone marrow (BM stromal cells (HS-5 protected MPN-derived cell lines (SET-2; HEL and UKE-1 and MPN patient-derived BM cells from the cytotoxic effects of Ruxolitinib and the HDACi Vorinostat. This protective effect was mediated, at least in part, by the secretion of soluble factors from the BM stroma. In addition, it correlated with the activation of signalling pathways important for cellular homeostasis, such as JAK-STAT, PI3K, JNK, MEK-ERK and NF-κB. Importantly, the pharmacological inhibition of JNK and PI3K pathways completely abrogated the BM protective effect on MPN cell lines and MPN patient samples. Our findings shed light on mechanisms of tumour survival and may indicate novel therapeutic approaches for the treatment of MPN.

  12. The Bone Marrow-Mediated Protection of Myeloproliferative Neoplastic Cells to Vorinostat and Ruxolitinib Relies on the Activation of JNK and PI3K Signalling Pathways

    Cardoso, Bruno A.; Belo, Hélio; Barata, João T.; Almeida, António M.

    2015-01-01

    The classical BCR-ABL-negative Myeloproliferative Neoplasms (MPN) are a group of heterogeneous haematological diseases characterized by constitutive JAK-STAT pathway activation. Targeted therapy with Ruxolitinib, a JAK1/2-specific inhibitor, achieves symptomatic improvement but does not eliminate the neoplastic clone. Similar effects are seen with histone deacetylase inhibitors (HDACi), albeit with poorer tolerance. Here, we show that bone marrow (BM) stromal cells (HS-5) protected MPN-derived cell lines (SET-2; HEL and UKE-1) and MPN patient-derived BM cells from the cytotoxic effects of Ruxolitinib and the HDACi Vorinostat. This protective effect was mediated, at least in part, by the secretion of soluble factors from the BM stroma. In addition, it correlated with the activation of signalling pathways important for cellular homeostasis, such as JAK-STAT, PI3K, JNK, MEK-ERK and NF-κB. Importantly, the pharmacological inhibition of JNK and PI3K pathways completely abrogated the BM protective effect on MPN cell lines and MPN patient samples. Our findings shed light on mechanisms of tumour survival and may indicate novel therapeutic approaches for the treatment of MPN. PMID:26623653

  13. The role of the stress-activated protein kinase (SAPK/JNK) signaling pathway in radiation-induced apoptosis

    Verheij, M.; Ruiter, G.A.; Zerp, S.F.; Bartelink, H.; Blitterswijk, W.J. van; Fuks, Z.; Haimovitz-Friedman, A.

    1998-01-01

    Ionizing radiation, like a variety of other cellular stress factors, initiates apoptosis, or programmed cell death, in many cell systems. This mode of radiation-induced cell kill should be distinguished from clonogenic cell death due to unrepaired DNA damage. Ionizing radiation not only exerts its effect on the nuclear DNA, but also at the plasma membrane level where it may activate multiple signal transduction pathways. One of these pathways is the stress-activated protein kinase (SAPK) cascade which transduces death signals from the cell membrane to the nucleus. This review discusses recent evidence on the critical role of this signaling system in radiation- and stress-induced apoptosis. An improved understanding of the mechanisms involved in radiation-induced apoptosis may ultimately provide novel strategies of intervention in specific signal transduction pathways to favorably alter the therapeutic ratio in the treatment of human malignancies. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Neurotrophin receptors expression and JNK pathway activation in human astrocytomas

    Maraziotis Theodore

    2007-10-01

    Full Text Available Abstract Background Neurotrophins are growth factors that regulate cell growth, differentiation and apoptosis in the nervous system. Their diverse actions are mediated through two different transmembrane – receptor signaling systems: Trk receptor tyrosine kinases (TrkA, TrkB, TrkC and p75NTR neurotrophin receptor. Trk receptors promote cell survival and differentiation while p75NTR induces, in most cases, the activity of JNK-p53-Bax apoptosis pathway or suppresses intracellular survival signaling cascades. Robust Trk activation blocks p75NTR -induced apoptosis by suppressing the JNK-p53-Bax pathway. The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75NTR, and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue. Methods Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV were immunostained following microwave pretreatment. Polyclonal antibodies against TrkA, TrkB, TrkC and monoclonal antibodies against p75NTR and phosphorylated forms of JNK (pJNK and c-Jun (pc-Jun were used. The labeling index (LI, defined as the percentage of positive (labeled cells out of the total number of tumor cells counted, was determined. Results Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75NTR receptor expression was found in a small percentage of tumor cells (~1% in some tumors. The endothelium of tumor capillaries showed conspicuous immunoreactivity for TrkB receptor. Trk immunoreactivity seemed to be localized in some neurons and astrocytes in non-neoplastic tissue. Phosphorylated forms of JNK (pJNK and c-Jun (pc-Jun were

  15. Soluble Receptor for Advanced Glycation End Product Ameliorates Chronic Intermittent Hypoxia Induced Renal Injury, Inflammation, and Apoptosis via P38/JNK Signaling Pathways

    Xu Wu

    2016-01-01

    Full Text Available Obstructive sleep apnea (OSA associated chronic kidney disease is mainly caused by chronic intermittent hypoxia (CIH triggered tissue damage. Receptor for advanced glycation end product (RAGE and its ligand high mobility group box 1 (HMGB1 are expressed on renal cells and mediate inflammatory responses in OSA-related diseases. To determine their roles in CIH-induced renal injury, soluble RAGE (sRAGE, the RAGE neutralizing antibody, was intravenously administered in a CIH model. We also evaluated the effect of sRAGE on inflammation and apoptosis. Rats were divided into four groups: (1 normal air (NA, (2 CIH, (3 CIH+sRAGE, and (4 NA+sRAGE. Our results showed that CIH accelerated renal histological injury and upregulated RAGE-HMGB1 levels involving inflammatory (NF-κB, TNF-α, and IL-6, apoptotic (Bcl-2/Bax, and mitogen-activated protein kinases (phosphorylation of P38, ERK, and JNK signal transduction pathways, which were abolished by sRAGE but p-ERK. Furthermore, sRAGE ameliorated renal dysfunction by attenuating tubular endothelial apoptosis determined by immunofluorescence staining of CD31 and TUNEL. These findings suggested that RAGE-HMGB1 activated chronic inflammatory transduction cascades that contributed to the pathogenesis of the CIH-induced renal injury. Inhibition of RAGE ligand interaction by sRAGE provided a therapeutic potential for CIH-induced renal injury, inflammation, and apoptosis through P38 and JNK pathways.

  16. Apoptosis Induction of Human Prostate Carcinoma DU145 Cells by Diallyl Disulfide via Modulation of JNK and PI3K/AKT Signaling Pathways

    Young Hyun Yoo

    2012-11-01

    Full Text Available Diallyl disulfide (DADS, a sulfur compound derived from garlic, has various biological properties, such as anticancer, antiangiogenic and anti-inflammatory effects. However, the mechanisms of action underlying the compound's anticancer activity have not been fully elucidated. In this study, the apoptotic effects of DADS were investigated in DU145 human prostate carcinoma cells. Our results showed that DADS markedly inhibited the growth of the DU145 cells by induction of apoptosis. Apoptosis was accompanied by modulation of Bcl-2 and inhibitor of apoptosis protein (IAP family proteins, depolarization of the mitochondrial membrane potential (MMP, ΔΨm and proteolytic activation of caspases. We also found that the expression of death-receptor 4 (DR4 and Fas ligand (FasL proteins was increased and that the level of intact Bid proteins was down-regulated by DADS. Moreover, treatment with DADS induced phosphorylation of mitogen-activated protein kinases (MAPKs, including extracellular-signal regulating kinase (ERK, p38 MAPK and c-Jun N-terminal kinase (JNK. A specific JNK inhibitor, SP600125, significantly blocked DADS-induced-apoptosis, whereas inhibitors of the ERK (PD98059 and p38 MAPK (SB203580 had no effect. The induction of apoptosis was also accompanied by inactivation of phosphatidylinositol 3-kinase (PI3K/Akt and the PI3K inhibitor LY29004 significantly increased DADS-induced cell death. These findings provide evidence demonstrating that the proapoptotic effect of DADS is mediated through the activation of JNK and the inhibition of the PI3K/Akt signaling pathway in DU145 cells.

  17. Protective effect of sauchinone against regional myocardial ischemia/reperfusion injury: inhibition of p38 MAPK and JNK death signaling pathways.

    Kim, Seok Jai; Jeong, Cheol Won; Bae, Hong Beom; Kwak, Sang Hyun; Son, Jong-Keun; Seo, Chang-Seob; Lee, Hyun-Jung; Lee, JongUn; Yoo, Kyung Yeon

    2012-05-01

    Sauchinone has been known to have anti-inflammatory and antioxidant effects. We determined whether sauchinone is beneficial in regional myocardial ischemia/reperfusion (I/R) injury. Rats were subjected to 20 min occlusion of the left anterior descending coronary artery, followed by 2 hr reperfusion. Sauchinone (10 mg/kg) was administered intraperitoneally 30 min before the onset of ischemia. The infarct size was measured 2 hr after resuming the perfusion. The expression of cell death kinases (p38 and JNK) and reperfusion injury salvage kinases (phosphatidylinositol-3-OH kinases-Akt, extra-cellular signal-regulated kinases [ERK1/2])/glycogen synthase kinase (GSK)-3β was determined 5 min after resuming the perfusion. Sauchinone significantly reduced the infarct size (29.0% ± 5.3% in the sauchinone group vs 44.4% ± 6.1% in the control, P death signaling pathways.

  18. Insulin resistance in non-obese subjects is associated with activation of the JNK pathway and impaired insulin signaling in skeletal muscle.

    Umesh B Masharani

    2011-05-01

    Full Text Available The pathogenesis of insulin resistance in the absence of obesity is unknown. In obesity, multiple stress kinases have been identified that impair the insulin signaling pathway via serine phosphorylation of key second messenger proteins. These stress kinases are activated through various mechanisms related to lipid oversupply locally in insulin target tissues and in various adipose depots.To explore whether specific stress kinases that have been implicated in the insulin resistance of obesity are potentially contributing to insulin resistance in non-obese individuals, twenty healthy, non-obese, normoglycemic subjects identified as insulin sensitive or resistant were studied. Vastus lateralis muscle biopsies obtained during euglycemic, hyperinsulinemic clamp were evaluated for insulin signaling and for activation of stress kinase pathways. Total and regional adipose stores and intramyocellular lipids (IMCL were assessed by DXA, MRI and (1H-MRS. In muscle of resistant subjects, phosphorylation of JNK was increased (1.36±0.23 vs. 0.78±0.10 OD units, P<0.05, while there was no evidence for activation of p38 MAPK or IKKβ. IRS-1 serine phosphorylation was increased (1.30±0.09 vs. 0.22±0.03 OD units, P<0.005 while insulin-stimulated tyrosine phosphorylation decreased (10.97±0.95 vs. 0.89±0.50 OD units, P<0.005. IMCL levels were twice as high in insulin resistant subjects (3.26±0.48 vs. 1.58±0.35% H(2O peak, P<0.05, who also displayed increased total fat and abdominal fat when compared to insulin sensitive controls.This is the first report demonstrating that insulin resistance in non-obese, normoglycemic subjects is associated with activation of the JNK pathway related to increased IMCL and higher total body and abdominal adipose stores. While JNK activation is consistent with a primary impact of muscle lipid accumulation on metabolic stress, further work is necessary to determine the relative contributions of the various mediators of impaired

  19. Mesenchymal Stem Cell Conditioned Medium Promotes Proliferation and Migration of Alveolar Epithelial Cells under Septic Conditions In Vitro via the JNK-P38 Signaling Pathway

    Jie Chen

    2015-11-01

    Full Text Available Background/Aims: Mesenchymal stem cell (MSC based therapies may be useful for treating acute respiratory distress syndrome (ARDS, but the underlying mechanisms are incompletely understood. We investigated the impact of human umbilical cord Wharton's jelly-derived MSC (hUC-MSC secreted factors on alveolar epithelial cells under septic conditions and determined the relevant intracellular signaling pathways. Methods: Human alveolar epithelial cells (AEC and primary human small airway epithelial cells (SAEC were subjected to lipopolysaccharide (LPS with or without the presence of hUC-MSC-conditioned medium (CM. Proliferation and migration of AEC and SAEC were determined via an MTT assay, a wound healing assay and a transwell migration assay (only for AEC. Protein phosphorylation was determined by western blot and the experiments were repeated in presence of small-molecule inhibitors. The hMSC-secretory proteins were identified by LC-MS/MS mass spectrometry. Results: MSC-CM enhanced proliferation and migration. Activation of JNK and P38, but not ERK, was required for the proliferation and migration of AEC and SAEC. Pretreatment of AEC or SAEC with SP600125, an inhibitor of JNK1 or SB200358, an inhibitor of P38, significantly reduced cell proliferation and migration. An array of proteins including TGF-beta receptor type-1, TGF-beta receptor type-2, Ras-related C3 botulinum toxin substrate 1 and Ras-related C3 botulinum toxin substrate 2 which influencing the proliferation and migration of AEC and SAEC were detected in MSC-CM. Conclusion: Our data suggest MSC promote epithelial cell repair through releasing a repertoire of paracrine factors via activation of JNK and P38 MAPK.

  20. Salicortin inhibits osteoclast differentiation and bone resorption by down-regulating JNK and NF-κB/NFATc1 signaling pathways

    Nie, Shaobo; Xu, Jiawei; Zhang, Chenghua; Xu, Chen; Liu, Ming; Yu, Degang

    2016-01-01

    Receptor activator of nuclear factor (NF)-κB ligand (RANKL)-activated signaling is essential for osteoclast differentiation, activation, and survival. Salicortin is a phenolic glycoside that has been isolated from many plants such as Populus and Salix species, and has been shown to have anti-amnesic and anti-adipogenic effects. In this study, we investigated the effect of salicortin on RANKL-induced osteoclasts formation, bone resorption, and activation of osteoclast-related signaling pathways. Salicortin suppressed RANKL-induced osteoclastogenesis in bone marrow macrophage cultures in a dose-dependent manner, and inhibited osteoclastic bone resorption activity without any cytotoxicity. Salicortin inhibited RANKL-induced c-Jun N-terminal kinase and NF-κB activation, concomitant with retarded IκBα phosphorylation and inhibition of p65 nuclear translocation, leading to impaired transcription of nuclear factor of activated T cells c1 (NFATc1) and expression of osteoclastic-specific genes. Taken together, our findings demonstrate that salicortin inhibits NF-κB and NFATc1 activation, leading to attenuation of osteoclastogenesis and bone resorption. Thus, salicortin may be of interest in developments of treatment for osteoclast related diseases. - Highlights: • Salicortin suppresses osteoclastogenesis in vitro. • Salicortin impairs the JNK and NF-κB/NFATc1 signaling pathway. • Salicortin may be of interest in developments of osteoporosis treatment.

  1. Salicortin inhibits osteoclast differentiation and bone resorption by down-regulating JNK and NF-κB/NFATc1 signaling pathways

    Nie, Shaobo [Department of Orthopaedics, PLA General Hospital, Beijing 100853 (China); Xu, Jiawei [Department of Orthopaedics, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Zhang, Chenghua [Department of Orthopaedics, Changle County Hospital of Traditional Chinese Medicine, Weifang 262400 (China); Xu, Chen [Department of Orthopaedics, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Liu, Ming, E-mail: ming_li4717@sina.com [Department of Orthopaedics, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Yu, Degang, E-mail: ydg163@126.com [Department of Orthopaedics, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China)

    2016-01-29

    Receptor activator of nuclear factor (NF)-κB ligand (RANKL)-activated signaling is essential for osteoclast differentiation, activation, and survival. Salicortin is a phenolic glycoside that has been isolated from many plants such as Populus and Salix species, and has been shown to have anti-amnesic and anti-adipogenic effects. In this study, we investigated the effect of salicortin on RANKL-induced osteoclasts formation, bone resorption, and activation of osteoclast-related signaling pathways. Salicortin suppressed RANKL-induced osteoclastogenesis in bone marrow macrophage cultures in a dose-dependent manner, and inhibited osteoclastic bone resorption activity without any cytotoxicity. Salicortin inhibited RANKL-induced c-Jun N-terminal kinase and NF-κB activation, concomitant with retarded IκBα phosphorylation and inhibition of p65 nuclear translocation, leading to impaired transcription of nuclear factor of activated T cells c1 (NFATc1) and expression of osteoclastic-specific genes. Taken together, our findings demonstrate that salicortin inhibits NF-κB and NFATc1 activation, leading to attenuation of osteoclastogenesis and bone resorption. Thus, salicortin may be of interest in developments of treatment for osteoclast related diseases. - Highlights: • Salicortin suppresses osteoclastogenesis in vitro. • Salicortin impairs the JNK and NF-κB/NFATc1 signaling pathway. • Salicortin may be of interest in developments of osteoporosis treatment.

  2. Vitamin E and Lycopene Reduce Coal Burning Fluorosis-induced Spermatogenic Cell Apoptosis via Oxidative Stress-mediated JNK and ERK Signaling Pathways.

    Tian, Yuan; Xiao, Yuehai; Wang, Bolin; Sun, Chao; Tang, Kaifa; Sun, Fa

    2017-12-22

    Although fluoride has been widely used in toothpaste, mouthwash, and drinking water to prevent dental caries, the excessive intake of fluoride can cause fluorosis which is associated with dental, skeletal, and soft tissue fluorosis. Recent evidences have drawn the attention to its adverse effects on male reproductive system that include spermatogenesis defect, sperm count loss, and sperm maturation impairment. Fluoride induces oxidative stress through the activation of mitogen activated protein kinase (MAPK) cascade which can lead to cell apoptosis. Vitamin E (VE) and lycopene are two common anti-oxidants, being protective to reactive oxygen species (ROS)-induced toxic effects. However, whether and how these two anti-oxidants prevent fluoride-induced spermatogenic cell apoptosis are largely unknown. In the present study, a male rat model for coal burning fluorosis was established and the histological lesions and spermatogenic cell apoptosis in rat testes were observed. The decreased expression of clusterin, a heterodimeric glycoprotein reported to regulate spermatogenic cell apoptosis, is detected in fluoride-treated rat testes. Interestingly, the co-administration with VE or lycopene reduced fluorosis-mediated testicular toxicity and rescued clusterin expression. Further, fluoride caused the enhanced Jun N-terminal kinase (JNK) and extracellular signal-regulated protein kinase (ERK) phosphorylation, which was reduced by VE or lycopene. Thus, VE and lycopene prevent coal burning fluorosis-induced spermatogenic cell apoptosis through the suppression of oxidative stress-mediated JNK and ERK signaling pathway, which could be an alternative therapeutic strategy for the treatment of fluorosis. ©2017 The Author(s).

  3. Protective effect of resveratrol against nigrostriatal pathway injury in striatum via JNK pathway.

    Li, Dan; Liu, Nan; Zhao, Liang; Tong, Lei; Kawano, Hitoshi; Yan, Hong-Jing; Li, Hong-Peng

    2017-01-01

    Nigrostriatal pathway injury is one of the traumatic brain injury models that usually lead to neurological dysfunction or neuron necrosis. Resveratrol-induced benefits have recently been demonstrated in several models of neuronal degeneration diseases. However, the protective properties of resveratrol against neurodegeneration have not been explored definitely. Thus, we employ the nigrostriatal pathway injury model to mimic the insults on the brain. Resveratrol decreased the p-ERK expression and increased the p-JNK expression compared to the DMSO group, but not alter the p38 MAPK proteins around the lesion site by Western blot. Prior to the injury, mice were infused with resveratrol intracerebroventricularly with or without JNK-IN-8, a specific c-JNK pathway inhibitor for JNK1, JNK2 and JNK4. The study assessed modified improved neurological function score (mNSS) and beam/walking test, the level of inflammatory cytokines IL-1β, IL-6 and TNF-α, and striatal expression of Bax and Bcl-2 proteins associated with neuronal apoptosis. The results revealed that resveratrol exerted a neuroprotective effect as shown by the improved mNSS and beam latency, anti-inflammatory effects as indicated by the decreased level of IL-1β, TNF-α and IL-6. Furthermore, resveratrol up-regulated the protein expression of p-JNK and Bcl-2, down-regulated the expression of Bax and the number of Fluoro-Jade C (FJC) positive neurons. However, these advantages of resveratrol were abolished by JNK-IN-8 treatment. Overall, we demonstrated that resveratrol treatment attenuates the nigrostriatal pathway injury-induced neuronal apoptosis and inflammation via activation of c-JNK signaling. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Inhibition of Phosphodiesterase 4 by FCPR03 Alleviates Lipopolysaccharide-Induced Depressive-Like Behaviors in Mice: Involvement of p38 and JNK Signaling Pathways

    Hui Yu

    2018-02-01

    signaling pathway is possibly involved in this process. Our findings suggest that FCPR03 is a potential compound for the prevention or treatment of depression.

  5. The p75NTR mediates a bifurcated signal transduction cascade through the NFκB and JNK pathways to inhibit cell survival

    Allen, Jeffrey; Khwaja, Fatima; Byers, Stephen; Djakiew, Daniel

    2005-01-01

    p75 NTR is most abundantly expressed in the nervous system, but is also widely expressed in many other organs and tissues where it primarily functions as a negative regulator of cell survival. In the prostate, p75 NTR functions as an inhibitory protein capable of slowing proliferation and inducing apoptosis. It has been shown that p75 NTR is expressed in the normal prostate, progressively lost from malignant tumor cells in vivo, and largely absent from prostate cancer cell lines derived from metastases. Although the role of p75 NTR in prostate cancer has been well established, the signal transduction pathway that mediates its inhibitory activity has only been partially elucidated. This study demonstrates that exogenous expression of p75 NTR down-regulates, in a dose-dependent manner, a bifurcated signaling cascade that results in reduced expression of potent transcription effectors. This two-arm signal transduction cascade was directly linked to the upstream receptor by using dominant-negative deletion constructs of p75 NTR that rescued tumor cells from p75 NTR -induced loss of survival and promotion of apoptosis. Furthermore, the dominant negatives rescued alterations in the levels of signal transduction intermediates. Conversely, the use of kinase-inactive intermediates that are downstream of the receptor further reduced expression of involved transcription effectors and reduced survival of the cells. These results provide a definitive link between the proximate p75 NTR and signal transduction intermediates leading to the transcription effectors NFκB and JNK, with associated growth suppression and induction of apoptosis

  6. Vitamin K2 Induces Mitochondria-Related Apoptosis in Human Bladder Cancer Cells via ROS and JNK/p38 MAPK Signal Pathways.

    Duan, Fengsen; Yu, Yuejin; Guan, Rijian; Xu, Zhiliang; Liang, Huageng; Hong, Ling

    2016-01-01

    The effects of vitamin K2 on apoptosis in a variety of cancer cells have been well established in previous studies. However, the apoptotic effect of vitamin K2 on bladder cancer cells has not been evaluated. The aim of this study is to examine the apoptotic activity of Vitamin K2 in bladder cancer cells and investigate the underlying mechanism. In this study, Vitamin K2 induced apoptosis in bladder cancer cells through mitochondria pathway including loss of mitochondria membrane potential, cytochrome C release and caspase-3 cascade. Furthermore, the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK was detected in Vitamin K2-treated cells and both SP600125 (an inhibitor of JNK) and SB203580 (an inhibitor of p38 MAPK) completely abolished the Vitamin K2-induced apoptosis and loss of mitochondria membrane potential. Moreover, the generation of reactive oxygen species (ROS) was detected in bladder cancer cells, upon treatment of vitamin K2 and the anti-oxidant N-acetyl cysteine (NAC) almost blocked the Vitamin K2-triggered apoptosis, loss of mitochondria membrane potential and activation of JNK and p38 MAPK. Taken together, these findings revealed that Vitamin K2 induces apoptosis in bladder cancer cells via ROS-mediated JNK/p38 MAPK and Mitochondrial pathways.

  7. Fisetin attenuates cerulein-induced acute pancreatitis through down regulation of JNK and NF-κB signaling pathways.

    Jo, Il-Joo; Bae, Gi-Sang; Choi, Sun Bok; Kim, Dong-Goo; Shin, Joon-Yeon; Seo, Seung-Hee; Choi, Mee-Ok; Kim, Tae-Hyeon; Song, Ho-Joon; Park, Sung-Joo

    2014-08-15

    Acute pancreatitis (AP) is a complicated disease which is largely undiscovered. Fisetin, a natural flavonoid from fruits and vegetables, has been shown to have anti-inflammatory, antioxidant, and anti-cancer activities in various disease models. However, the effects of fisetin on AP have not been determined. Pre- and post- treatment of mice with fisetin reduced the severity of AP and pancreatitis-associated lung injury and inhibited several biochemical parameters (pancreatic weight to body weight ratio, amylase, lipase, and myeloperoxidase activity) and production of inflammatory cytokines. In pancreatic acinar cells, fisetin also inhibited cell death and production of inflammatory cytokines. In addition, fisetin inhibited activation of c-Jun NH2-terminal kinase (JNK) and nuclear factor (NF)-κB in vivo and in vitro. In conclusion, these results suggest that fisetin exhibits anti-inflammatory effect on AP and could be a beneficial agent in the treatment of AP and its pulmonary complications. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Synaptic and genomic responses to JNK and AP-1 signaling in Drosophila neurons

    Bohmann Dirk

    2005-06-01

    Full Text Available Abstract Background The transcription factor AP-1 positively controls synaptic plasticity at the Drosophila neuromuscular junction. Although in motor neurons, JNK has been shown to activate AP-1, a positive regulator of growth and strength at the larval NMJ, the consequences of JNK activation are poorly studied. In addition, the downstream transcriptional targets of JNK and AP-1 signaling in the Drosophila nervous system have yet to be identified. Here, we further investigated the role of JNK signaling at this model synapse employing an activated form of JNK-kinase; and using Serial Analysis of Gene Expression and oligonucleotide microarrays, searched for candidate early targets of JNK or AP-1 dependent transcription in neurons. Results Temporally-controlled JNK induction in postembryonic motor neurons triggers synaptic growth at the NMJ indicating a role in developmental plasticity rather than synaptogenesis. An unexpected observation that JNK activation also causes a reduction in transmitter release is inconsistent with JNK functioning solely through AP-1 and suggests an additional, yet-unidentified pathway for JNK signaling in motor neurons. SAGE profiling of mRNA expression helps define the neural transcriptome in Drosophila. Though many putative AP-1 and JNK target genes arose from the genomic screens, few were confirmed in subsequent validation experiments. One potentially important neuronal AP-1 target discovered, CG6044, was previously implicated in olfactory associative memory. In addition, 5 mRNAs regulated by RU486, a steroid used to trigger conditional gene expression were identified. Conclusion This study demonstrates a novel role for JNK signaling at the larval neuromuscular junction and provides a quantitative profile of gene transcription in Drosophila neurons. While identifying potential JNK/AP-1 targets it reveals the limitations of genome-wide analyses using complex tissues like the whole brain.

  9. Transforming growth factor-β1 induces expression of human coagulation factor XII via Smad3 and JNK signaling pathways in human lung fibroblasts.

    Jablonska, Ewa; Markart, Philipp; Zakrzewicz, Dariusz; Preissner, Klaus T; Wygrecka, Malgorzata

    2010-04-09

    Coagulation factor XII (FXII) is a liver-derived serine protease involved in fibrinolysis, coagulation, and inflammation. The regulation of FXII expression is largely unknown. Transforming growth factor-beta1 (TGF-beta1) is a multifunctional cytokine that has been linked to several pathological processes, including tissue fibrosis by modulating procoagulant and fibrinolytic activities. This study investigated whether TGF-beta1 may regulate FXII expression in human lung fibroblasts. Treatment of human lung fibroblasts with TGF-beta1 resulted in a time-dependent increase in FXII production, activation of p44/42, p38, JNK, and Akt, and phosphorylation and translocation into the nucleus of Smad3. However, TGF-beta1-induced FXII expression was repressed only by the JNK inhibitor and JNK and Smad3 antisense oligonucleotides but not by MEK, p38, or phosphoinositide 3-kinase blockers. JNK inhibition had no effect on TGF-beta1-induced Smad3 phosphorylation, association with Smad4, and its translocation into the nucleus but strongly suppressed Smad3-DNA complex formation. FXII promoter analysis revealed that the -299/+1 region was sufficient for TGF-beta1 to induce FXII expression. Sequence analysis of this region detected a potential Smad-binding element at position -272/-269 (SBE-(-272/-269)). Chromatin immunoprecipitation and streptavidin pulldown assays demonstrated TGF-beta1-dependent Smad3 binding to SBE-(-272/-269). Mutation or deletion of SBE-(-272/-269) substantially reduced TGF-beta1-mediated activation of the FXII promoter. Clinical relevance was demonstrated by elevated FXII levels and its co-localization with fibroblasts in the lungs of patients with acute respiratory distress syndrome. Our results show that JNK/Smad3 pathway plays a critical role in TGF-beta1-induced FXII expression in human lung fibroblasts and implicate its possible involvement in pathological conditions characterized by elevated TGF-beta1 levels.

  10. Joint inhibition of TOR and JNK pathways interacts to extend the lifespan of Brachionus manjavacas (Rotifera).

    Snell, Terry W; Johnston, Rachel K; Rabeneck, Brett; Zipperer, Cody; Teat, Stephanie

    2014-04-01

    The TOR kinase pathway is central in modulating aging in a variety of animal models. The target of rapamycin (TOR) integrates a complex network of signals from growth conditions, nutrient availability, energy status, and physiological stresses and matches an organism's growth rate to the resource environment. Important remaining problems are the identification of the pathways that interact with TOR and their characterization as additive or synergistic. One of the most versatile stress sensors in metazoans is the Jun-N-terminal kinase (JNK) signaling pathway. JNK is an evolutionarily conserved stress-activated protein kinase that is induced by a range of stressors, including UV irradiation, reactive oxygen species, DNA damage, heat, and bacterial antigens. JNK is thought to interact with the TOR pathway, but its effects on TOR are poorly understood. We used the rotifer Brachionus manjavacas as a model animal to probe the regulation of TOR and JNK pathways and explore their interaction. The effect of various chemical inhibitors was examined in life table and stressor challenge experiments. A survey of 12 inhibitors revealed two, rapamycin and JNK inhibitor, that significantly extended lifespan of B. manjavacas. At 1 μM concentration, exposure to rapamycin or JNK inhibitor extended mean rotifer lifespan by 35% and maximum lifespan by 37%. Exposure to both rapamycin and JNK inhibitor simultaneously extended mean rotifer lifespan by 65% more than either alone. Exposure to a combination of rapamycin and JNK inhibitors conveyed greater protection to starvation, UV and osmotic stress than either inhibitor alone. RNAi knockdown of TOR and JNK gene expression was investigated for its ability to extend rotifer lifespan. RNAi knockdown of the TOR gene resulted in 29% extension of the mean lifespan compared to control and knockdown of the JNK gene resulted in 51% mean lifespan extension. In addition to the lifespan, we quantified mitochondria activity using the fluorescent

  11. Intrinsic JNK-MAPK pathway involvement requires daf-16-mediated immune response during Shigella flexneri infection in C. elegans.

    Marudhupandiyan, Shanmugam; Balamurugan, Krishnaswamy

    2017-06-01

    The c-Jun N-terminal kinase-mitogen-activated protein kinase (JNK-MAPK) pathway assists in modulating signals for growth, survival, and metabolism, thereby coordinating many cellular events during normal and stress conditions. To understand the role of the JNK-MAPK pathway during bacterial infection, an in vivo model organism Caenorhabditis elegans was used. In order to check the involvement of the JNK-MAPK pathway, the survival rate of C. elegans wild type (WT), and JNK-MAPK pathway mutant worms' upon exposure to selective Gram-positive and Gram-negative pathogenic bacteria, was studied. Among the pathogens, Shigella flexneri M9OT was found to efficiently colonize inside the WT and JNK-MAPK pathway mutant worms. qPCR studies had suggested that the above pathway-specific genes kgb-2 and jnk-1 were prominently responsible for the immune response elicited by the host during the M9OT infection. In addition, daf-16, which is a major transcription factor of the insulin/insulin growth factor-1 signaling (IIS) pathway, was also found to be involved during the host response. Crosstalk between IIS and JNK-MAPK pathways has probably been involved in the activation of the host immune system, which consequently leads to lifespan extension. Furthermore, it is also observed that daf-16 activation by JNK-MAPK pathway leads to antimicrobial response, by activating lys-7 expression. These findings suggest that JNK-MAPK is not the sole pathway that enhances the immunity of the host. Nonetheless, the IIS pathway bridges the JNK-MAPK pathway that influences in protecting the host in counter to the M9OT infection.

  12. The anti-epidermal growth factor receptor (EGFR) monoclonal antibody, C225, enhances radiation-induced apoptosis in primary glioma cell lines through mediation of MAPK/JNK/p38 signaling pathways

    Chakravarti, A.; Noll, E.; Black, P.M.; Loeffler, J.S.

    2001-01-01

    Purpose: Increasing evidence suggests that signaling mediated by the epidermal growth factor receptor (EGFR) pathway contributes to radiation resistance. The anti-EGFR monoclonal antibody, C225, has been shown to enhance radiation response for several tumor types in preclinical models. Malignant gliomas are known to express, and quite frequently overexpress, EGFR. Our objectives in this study were to 1) Evaluate the efficacy of C225 as a radiation response modifier in EGFR-expressing glioma cell lines and to 2) Investigate the underlying molecular mechanisms mediating C225-induced enhancement of radiation response. Materials and Methods: Twelve EGFR-expressing glioma cells lines, established from patient tumors, were used for this study. Cells were incubated with C225, irradiated, and then evaluated for radiation response. Assays used to evaluate efficacy of C225-mediated radiosensitization included time-course apoptosis assays (Annexin V and TUNEL), viability assays (MTT), and clonogenic survival assays. The changes along MAPK (p44/p42)/JNK/p38-MAPK signal transduction pathways were then investigated using quantitative Western analysis with phospho-specific antibodies to determine the molecular mechanisms by which C225 mediates a given response. Results: C225 clearly enhanced radiation response for 7 of the 12 primary glioma cell lines studied. Enhancement of both immediate and delayed apoptotic responses was evident in these 7 responsive cell lines after C225 administration. The average apoptosis index at 6 hours post-RT+C225 for the 7 responsive lines was 9.5%, compared to 1.2% for the RT-only controls. A pattern of delayed apoptosis was evident in these 7 lines, with secondary apoptotic peaks (∼ 8.0%) occurring at 24 hours post-RT+C225. Time course viability measurements revealed a steady decrease in viable tumor cells in these responsive cell lines from 75% at 6 hours post-RT+C225 to 20% at 7 days. Clonogenic survival was also diminished in these 7 lines

  13. A Quantitative RNAi Screen for JNK Modifiers Identifies Pvr as a Novel Regulator of Drosophila Immune Signaling

    Bond, David; Foley, Edan

    2009-01-01

    Drosophila melanogaster responds to gram-negative bacterial challenges through the IMD pathway, a signal transduction cassette that is driven by the coordinated activities of JNK, NF-κB and caspase modules. While many modifiers of NF-κB activity were identified in cell culture and in vivo assays, the regulatory apparatus that determines JNK inputs into the IMD pathway is relatively unexplored. In this manuscript, we present the first quantitative screen of the entire genome of Drosophila for novel regulators of JNK activity in the IMD pathway. We identified a large number of gene products that negatively or positively impact on JNK activation in the IMD pathway. In particular, we identified the Pvr receptor tyrosine kinase as a potent inhibitor of JNK activation. In a series of in vivo and cell culture assays, we demonstrated that activation of the IMD pathway drives JNK-dependent expression of the Pvr ligands, Pvf2 and Pvf3, which in turn act through the Pvr/ERK MAP kinase pathway to attenuate the JNK and NF-κB arms of the IMD pathway. Our data illuminate a poorly understood arm of a critical and evolutionarily conserved innate immune response. Furthermore, given the pleiotropic involvement of JNK in eukaryotic cell biology, we believe that many of the novel regulators identified in this screen are of interest beyond immune signaling. PMID:19893628

  14. Oxidative stress by layered double hydroxide nanoparticles via an SFK-JNK and p38-NF-κB signaling pathway mediates induction of interleukin-6 and interleukin-8 in human lung epithelial cells

    Choi SJ

    2015-04-01

    Full Text Available Soo-Jin Choi, Hee-Jeong Paek, Jin YuDepartment of Food Science and Technology, Seoul Women’s University, Seoul, Republic of KoreaAbstract: Anionic nanoclays are layered double hydroxide nanoparticles (LDH-NPs that have been shown to exhibit toxicity by inducing reactive oxidative species and a proinflammatory mediator in human lung epithelial A549 cells. However, the molecular mechanism responsible for this LDH-NP-induced toxicity and the relationship between oxidative stress and inflammatory events remains unclear. In this study, we focused on intracellular signaling pathways and transcription factors induced in response to oxidative stress caused by exposure to LDH-NPs in A549 cells. Mitogen-activated protein kinase (MAPK cascades, such as extracellular signal-regulated kinase, c-Jun-N-terminal kinase (JNK, and p38, were investigated as potential signaling mechanisms responsible for regulation of oxidative stress and cytokine release. Src family kinases (SFKs, which are known to mediate activation of MAPK, together with redox-sensitive transcription factors, including nuclear factor kappa B and nuclear factor-erythroid 2-related factor-2, were also investigated as downstream events of MAPK signaling. The results obtained suggest that LDH-NP exposure causes oxidative stress, leading to expression of antioxidant enzymes, such as catalase, glucose reductase, superoxide dismutase, and heme oxygenase-1, via a SFK-JNK and p38-nuclear factor kappa B signaling pathway. Further, activation of this signaling was also found to regulate release of inflammatory cytokines, including interleukin-6 and interleukin-8, demonstrating the inflammatory potential of LDH-NP.Keywords: layered double hydroxide, mitogen-activated protein kinases, Src family kinases, nuclear factor kappa B, oxidative stress, inflammatory cytokine

  15. Ras promotes cell survival by antagonizing both JNK and Hid signals in the Drosophila eye.

    Wu, Yue; Zhuang, Yuan; Han, Min; Xu, Tian; Deng, Kejing

    2009-10-20

    Programmed cell death, or apoptosis, is a fundamental physiological process during normal development or in pathological conditions. The activation of apoptosis can be elicited by numerous signalling pathways. Ras is known to mediate anti-apoptotic signals by inhibiting Hid activity in the Drosophila eye. Here we report the isolation of a new loss-of-function ras allele, rasKP, which causes excessive apoptosis in the Drosophila eye. This new function is likely to be mediated through the JNK pathway since the inhibition of JNK signalling can significantly suppress rasKP-induced apoptosis, whereas the removal of hid only weakly suppresses the phenotype. Furthermore, the reduction of JNK signalling together with the expression of the baculovirus caspase inhibitor p35, which blocks Hid activity, strongly suppresses the rasKP cell death. In addition, we find a strong correlation between rasKP-induced apoptosis in the eye disc and the activation of JNK signalling. In the Drosophila eye, Ras may protect cells from apoptosis by inhibiting both JNK and Hid activities. Surprisingly, reducing Ras activity in the wing, however, does not cause apoptosis but rather affects cell and organ size. Thus, in addition to its requirement for cell viability, Ras appears to mediate different biological roles depending on the developmental context and on the level of its expression.

  16. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships

    Zeke, András; Misheva, Mariya

    2016-01-01

    SUMMARY The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states. PMID:27466283

  17. Antimony trioxide-induced apoptosis is dependent on SEK1/JNK signaling.

    Mann, Koren K; Davison, Kelly; Colombo, Myrian; Colosimo, April L; Diaz, Zuanel; Padovani, Alessandra M S; Guo, Qi; Scrivens, P James; Gao, Wenli; Mader, Sylvie; Miller, Wilson H

    2006-01-05

    Very little is known concerning the toxicity of antimony, despite its commercial use as a flame retardant and medical use as a treatment for parasitic infections. Our previous studies show that antimony trioxide (Sb(2)O(3)) induces growth inhibition in patient-derived acute promyelocytic leukemia (APL) cell lines, a disease in which a related metal, arsenic trioxide (As(2)O(3)), is used clinically. However, signaling pathways initiated by Sb(2)O(3) treatment remain undefined. Here, we show that Sb(2)O(3) treatment of APL cells is associated with increased apoptosis as well as differentiation markers. Sb(2)O(3)-induced reactive oxygen species (ROS) correlated with increased apoptosis. In addition, when we decreased the buffering capacity of the cell by depleting glutathione, ROS production and apoptosis was enhanced. Arsenic-resistant APL cells with increased glutathione levels exhibited increased cross-resistance to Sb(2)O(3). Based on studies implicating c-jun kinase (JNK) in the mediation of the response to As(2)O(3), we investigated the role for JNK in Sb(2)O(3)-induced apoptosis. Sb(2)O(3) activates JNK and its downstream target, AP-1. In fibroblasts with a genetic deletion in SEK1, an upstream regulator of JNK, Sb(2)O(3)-induced growth inhibition as well as JNK activation was decreased. These data suggest roles for ROS and the SEK1/JNK pathway in the cytotoxicity associated with Sb(2)O(3) exposure.

  18. Gardenia jasminoides extracts and gallic acid inhibit lipopolysaccharide-induced inflammation by suppression of JNK2/1 signaling pathways in BV-2 cells

    Wen-Hung Lin

    2015-06-01

    Conclusion:Taken together, these results indicate that the protective mechanism of the GJ extract involves an antioxidant effect and inhibition of JNK2/1 MAP kinase and COX-2 expressions in LPS-induced inflammation of BV-2 cells.

  19. 3-MCPD 1-Palmitate Induced Tubular Cell Apoptosis In Vivo via JNK/p53 Pathways

    Liu, Man; Huang, Guoren; Wang, Thomas T.Y.; Sun, Xiangjun; Yu, Liangli (Lucy)

    2016-01-01

    Fatty acid esters of 3-chloro-1, 2-propanediol (3-MCPD esters) are a group of processing induced food contaminants with nephrotoxicity but the molecular mechanism(s) remains unclear. This study investigated whether and how the JNK/p53 pathway may play a role in the nephrotoxic effect of 3-MCPD esters using 3-MCPD 1-palmitate (MPE) as a probe compound in Sprague Dawley rats. Microarray analysis of the kidney from the Sprague Dawley rats treated with MPE, using Gene Ontology categories and KEGG pathways, revealed that MPE altered mRNA expressions of the genes involved in the mitogen-activated protein kinase (JNK and ERK), p53, and apoptotic signal transduction pathways. The changes in the mRNA expressions were confirmed by qRT-PCR and Western blot analyses and were consistent with the induction of tubular cell apoptosis as determined by histopathological, TUNEL, and immunohistochemistry analyses in the kidneys of the Sprague Dawley rats. Additionally, p53 knockout attenuated the apoptosis, and the apoptosis-related protein bax expression and cleaved caspase-3 activation induced by MPE in the p53 knockout C57BL/6 mice, whereas JNK inhibitor SP600125 but not ERK inhibitor U0126 inhibited MPE-induced apoptosis, supporting the conclusion that JNK/p53 might play a critical role in the tubular cell apoptosis induced by MPE and other 3-MCPD fatty acid esters. PMID:27008853

  20. Activation of the JNK pathway is essential for transformation by the Met oncogene.

    Rodrigues, G A; Park, M; Schlessinger, J

    1997-05-15

    The Met/Hepatocyte Growth Factor (HGF) receptor tyrosine kinase is oncogenically activated through a rearrangement that creates a hybrid gene Tpr-Met. The resultant chimeric p65(Tpr-Met) protein is constitutively phosphorylated on tyrosine residues in vivo and associates with a number of SH2-containing signaling molecules including the p85 subunit of PI-3 kinase and the Grb2 adaptor protein, which couples receptor tyrosine kinases to the Ras signaling pathway. Mutation of the binding site for Grb2 impairs the ability of Tpr-Met oncoprotein to transform fibroblasts, suggesting that the activation of the Ras/MAP kinase signaling pathway through Grb2 may be essential for cellular transformation. To test this hypothesis dominant-negative mutants of Grb2 with deletions of the SH3 domains were introduced into Tpr-Met transformed fibroblasts. Cells overexpressing the mutants were found to be morphologically reverted and exhibited reduced growth in soft agar. Surprisingly, the Grb2 mutants blocked activation of the JNK/SAPK but not MAP kinase activity induced by the Tpr-Met oncoprotein. Additionally, cells expressing dominant-negative Grb2 mutants had reduced PI-3-kinase activity and dominant-negative mutants of Rac1 blocked both Tpr-Met-induced transformation and activation of JNK. These experiments reveal a novel link between Met and the JNK pathway, which is essential for transformation by this oncogene.

  1. Non-Smad signaling pathways.

    Mu, Yabing; Gudey, Shyam Kumar; Landström, Maréne

    2012-01-01

    Transforming growth factor-beta (TGFβ) is a key regulator of cell fate during embryogenesis and has also emerged as a potent driver of the epithelial-mesenchymal transition during tumor progression. TGFβ signals are transduced by transmembrane type I and type II serine/threonine kinase receptors (TβRI and TβRII, respectively). The activated TβR complex phosphorylates Smad2 and Smad3, converting them into transcriptional regulators that complex with Smad4. TGFβ also uses non-Smad signaling pathways such as the p38 and Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathways to convey its signals. Ubiquitin ligase tumor necrosis factor (TNF)-receptor-associated factor 6 (TRAF6) and TGFβ-associated kinase 1 (TAK1) have recently been shown to be crucial for the activation of the p38 and JNK MAPK pathways. Other TGFβ-induced non-Smad signaling pathways include the phosphoinositide 3-kinase-Akt-mTOR pathway, the small GTPases Rho, Rac, and Cdc42, and the Ras-Erk-MAPK pathway. Signals induced by TGFβ are tightly regulated and specified by post-translational modifications of the signaling components, since they dictate the subcellular localization, activity, and duration of the signal. In this review, we discuss recent findings in the field of TGFβ-induced responses by non-Smad signaling pathways.

  2. The Apoptotic Effect of Ursolic Acid on SK-Hep-1 Cells is Regulated by the PI3K/Akt, p38 and JNK MAPK Signaling Pathways

    Wan-Ling Chuang

    2016-04-01

    Full Text Available Ursolic acid (UA is a pentacyclic triterpene acid that is present in a wide variety of medicinal herbs and edible plants. This study investigated the effect of UA on apoptosis and proliferation of hepatocellular carcinoma SK-Hep-1 cells. After treatment of SK-Hep-1 cells with different concentrations of UA, we observed that cell viability was reduced in a dose- and time-dependent manner. Furthermore, there was a dose-dependent increase in the percentage of cells in the sub-G1 and G2/M phases, with cells treated with 60 μM showing the highest percentages of cells in those phases. UA-induced chromatin condensation of nuclei was observed by using DAPI staining. The western blot results revealed that exposure to UA was associated with decreased expression of the anti-apoptotic proteins Mcl-1, Bcl-xL, Bcl-2, and TCTP and increased expression of apoptosis-related proteins TNF-α, Fas, FADD, Bax, cleaved caspase-3, caspase-8, caspase-9, and PARP. Immunocytochemistry staining showed that treatment with UA resulted in increased expression of caspase-3. Moreover, exposure to UA resulted in the inhibition of the PI3K/Akt and p38 MAPK signaling pathways. These findings suggest that UA inhibits the proliferation of SK-Hep-1 cells and induces apoptosis.

  3. Forgetting in C. elegans Is Accelerated by Neuronal Communication via the TIR-1/JNK-1 Pathway

    Akitoshi Inoue

    2013-03-01

    Full Text Available The control of memory retention is important for proper responses to constantly changing environments, but the regulatory mechanisms underlying forgetting have not been fully elucidated. Our genetic analyses in C. elegans revealed that mutants of the TIR-1/JNK-1 pathway exhibited prolonged retention of olfactory adaptation and salt chemotaxis learning. In olfactory adaptation, conditioning induces attenuation of odor-evoked Ca2+ responses in olfactory neurons, and this attenuation is prolonged in the TIR-1/JNK-1-pathway mutant animals. We also found that a pair of neurons in which the pathway functions is required for the acceleration of forgetting, but not for sensation or adaptation, in wild-type animals. In addition, the neurosecretion from these cells is important for the acceleration of forgetting. Therefore, we propose that these neurons accelerate forgetting through the TIR-1/JNK-1 pathway by sending signals that directly or indirectly stimulate forgetting.

  4. Egr-1 activation by cancer-derived extracellular vesicles promotes endothelial cell migration via ERK1/2 and JNK signaling pathways.

    Yae Jin Yoon

    Full Text Available Various mammalian cells, including cancer cells, shed extracellular vesicles (EVs, also known as exosomes and microvesicles, into surrounding tissues. These EVs play roles in tumor growth and metastasis by promoting angiogenesis. However, the detailed mechanism of how cancer-derived EVs elicit endothelial cell activation remains unknown. Here, we provide evidence that early growth response-1 (Egr-1 activation in endothelial cells is involved in the angiogenic activity of colorectal cancer cell-derived EVs. Both RNA interference-mediated downregulation of Egr-1 and ERK1/2 or JNK inhibitor significantly blocked EV-mediated Egr-1 activation and endothelial cell migration. Furthermore, lipid raft-mediated endocytosis inhibitor effectively blocked endothelial Egr-1 activation and migration induced by cancer-derived EVs. Our results suggest that Egr-1 activation in endothelial cells may be a key mechanism involved in the angiogenic activity of cancer-derived EVs. These findings will improve our understanding regarding the proangiogenic activities of EVs in diverse pathological conditions including cancer, cardiovascular diseases, and neurodegenerative diseases.

  5. JNK signaling maintains the mesenchymal properties of multi-drug resistant human epidermoid carcinoma KB cells through snail and twist1

    Zhan, Xia; Feng, Xiaobing; Kong, Ying; Chen, Yi; Tan, Wenfu

    2013-01-01

    In addition to possess cross drug resistance characteristic, emerging evidences have shown that multiple-drug resistance (MDR) cancer cells exhibit aberrant metastatic capacity when compared to parental cells. In this study, we explored the contribution of c-Jun N-terminal kinases (JNK) signaling to the mesenchymal phenotypes and the aberrant motile capacity of MDR cells utilizing a well characterized MDR cell line KB/VCR, which is established from KB human epidermoid carcinoma cells by vincristine (VCR), and its parental cell line KB. Taking advantage of experimental strategies including pharmacological tool and gene knockdown, we showed here that interference with JNK signaling pathway by targeting JNK1/2 or c-Jun reversed the mesenchymal properties of KB/VCR cells to epithelial phenotypes and suppressed the motile capacity of KB/VCR cells, such as migration and invasion. These observations support a critical role of JNK signaling in maintaining the mesenchymal properties of KB/VCR cells. Furthermore, we observed that JNK signaling may control the expression of both snail and twist1 in KB/VCR cells, indicating that both snail and twist1 are involved in controlling the mesenchymal characteristics of KB/VCR cells by JNK signaling. JNK signaling is required for maintaining the mesenchymal phenotype of KB/VCR cells; and JNK signaling may maintain the mesenchymal characteristics of KB/VCR cells potentially through snail and twist1

  6. JNK signaling maintains the mesenchymal properties of multi-drug resistant human epidermoid carcinoma KB cells through snail and twist1.

    Zhan, Xia; Feng, Xiaobing; Kong, Ying; Chen, Yi; Tan, Wenfu

    2013-04-04

    In addition to possess cross drug resistance characteristic, emerging evidences have shown that multiple-drug resistance (MDR) cancer cells exhibit aberrant metastatic capacity when compared to parental cells. In this study, we explored the contribution of c-Jun N-terminal kinases (JNK) signaling to the mesenchymal phenotypes and the aberrant motile capacity of MDR cells utilizing a well characterized MDR cell line KB/VCR, which is established from KB human epidermoid carcinoma cells by vincristine (VCR), and its parental cell line KB. Taking advantage of experimental strategies including pharmacological tool and gene knockdown, we showed here that interference with JNK signaling pathway by targeting JNK1/2 or c-Jun reversed the mesenchymal properties of KB/VCR cells to epithelial phenotypes and suppressed the motile capacity of KB/VCR cells, such as migration and invasion. These observations support a critical role of JNK signaling in maintaining the mesenchymal properties of KB/VCR cells. Furthermore, we observed that JNK signaling may control the expression of both snail and twist1 in KB/VCR cells, indicating that both snail and twist1 are involved in controlling the mesenchymal characteristics of KB/VCR cells by JNK signaling. JNK signaling is required for maintaining the mesenchymal phenotype of KB/VCR cells; and JNK signaling may maintain the mesenchymal characteristics of KB/VCR cells potentially through snail and twist1.

  7. Nuclear movement regulated by non-Smad Nodal signaling via JNK is associated with Smad signaling during zebrafish endoderm specification.

    Hozumi, Shunya; Aoki, Shun; Kikuchi, Yutaka

    2017-11-01

    Asymmetric nuclear positioning is observed during animal development, but its regulation and significance in cell differentiation remain poorly understood. Using zebrafish blastulae, we provide evidence that nuclear movement towards the yolk syncytial layer, which comprises extraembryonic tissue, occurs in the first cells fated to differentiate into the endoderm. Nodal signaling is essential for nuclear movement, whereas nuclear envelope proteins are involved in movement through microtubule formation. Positioning of the microtubule-organizing center, which is proposed to be crucial for nuclear movement, is regulated by Nodal signaling and nuclear envelope proteins. The non-Smad JNK signaling pathway, which is downstream of Nodal signaling, regulates nuclear movement independently of the Smad pathway, and this nuclear movement is associated with Smad signal transduction toward the nucleus. Our study provides insight into the function of nuclear movement in Smad signaling toward the nucleus, and could be applied to the control of TGFβ signaling. © 2017. Published by The Company of Biologists Ltd.

  8. Arsenic trioxide synergistically enhances radiation response in human cervical cancer cells through ROS-dependent p38 MAPK and JNK signalling pathway

    Kang, Young-Hee; Park, Seung-Moo; Kim, Min-Jeong [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)] (and others)

    2006-07-01

    Many factors affect susceptibility of tumor cells to ionizing radiation. Among them intrinsic apoptosis sensitivity or resistancy seems to play an important role. The use of chemical modifiers as radiosensitizers in combination with low-dose irradiation may increase the therapeutic efficacy by overcoming a high apoptotic threshold. Several recent studies demonstrated additive effects of As{sub 2}O{sub 3} with conventional chemotherapeutic agents such as cisplatin, adriamycin, and etoposide, but no synergism. Previously, we have shown for the first time that As{sub 2}O{sub 3} sensitize human cervical cancer cells to ionizing radiation. Treatment of As{sub 2}O{sub 3} in combination of ionizing radiation has synergistic effects in decreasing clonogenic survival and in the regression of tumor growth in xenografts. We also have shown that the combination treatment enhanced apoptotic cell death through a reactive oxygen species-dependent pathway in human cervical cancer cells. In this study, we investigated the regulatory mechanism of ROS-mediated mitochondrial apoptotic cell death induced by combination treatment with As{sub 2}O{sub 3} and ionizing radiation in human cervical cancer cells.

  9. β3-adrenergic receptor activation induces TGFβ1 expression in cardiomyocytes via the PKG/JNK/c-Jun pathway.

    Xu, Zhongcheng; Wu, Jimin; Xin, Junzhou; Feng, Yenan; Hu, Guomin; Shen, Jing; Li, Mingzhe; Zhang, Youyi; Xiao, Han; Wang, Li

    2018-06-05

    In heart failure, the expression of cardiac β 3 -adrenergic receptors (β 3 -ARs) increases. However, the precise role of β 3 -AR signaling within cardiomyocytes remains unclear. Transforming growth factor β1 (TGFβ1) is a crucial cytokine mediating the cardiac remodeling that plays a causal role in the progression of heart failure. Here, we set out to determine the effect of β 3 -AR activation on TGFβ1 expression in rat cardiomyocytes and examine the underlying mechanism. The selective β 3 -AR agonist BRL37344 induced an increase in TGFβ1 expression and the phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun in β 3 -AR-overexpressing cardiomyocytes. Those effects of BRL37344 were suppressed by a β 3 -AR antagonist. Moreover, the inhibition of JNK and c-Jun activity by a JNK inhibitor and c-Jun siRNA blocked the increase in TGFβ1 expression upon β 3 -AR activation. A protein kinase G (PKG) inhibitor also attenuated β 3 -AR-agonist-induced TGFβ1 expression and the phosphorylation of JNK and c-Jun. In conclusion, the β 3 -AR activation in cardiomyocytes increases the expression of TGFβ1 via the PKG/JNK/c-Jun pathway. These results help us further understand the role of β 3 -AR signaling in heart failure. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. A Fat-Facets-Dscam1-JNK Pathway Enhances Axonal Growth in Development and after Injury

    Marta Koch

    2018-02-01

    Full Text Available Injury to the adult central nervous systems (CNS can result in severe long-term disability because damaged CNS connections fail to regenerate after trauma. Identification of regulators that enhance the intrinsic growth capacity of severed axons is a first step to restore function. Here, we conducted a gain-of-function genetic screen in Drosophila to identify strong inducers of axonal growth after injury. We focus on a novel axis the Down Syndrome Cell Adhesion Molecule (Dscam1, the de-ubiquitinating enzyme Fat Facets (Faf/Usp9x and the Jun N-Terminal Kinase (JNK pathway transcription factor Kayak (Kay/Fos. Genetic and biochemical analyses link these genes in a common signaling pathway whereby Faf stabilizes Dscam1 protein levels, by acting on the 3′-UTR of its mRNA, and Dscam1 acts upstream of the growth-promoting JNK signal. The mammalian homolog of Faf, Usp9x/FAM, shares both the regenerative and Dscam1 stabilizing activities, suggesting a conserved mechanism.

  11. Loss of catalase increases malignant mouse keratinocyte cell growth through activation of the stress activated JNK pathway.

    Hanke, Neale T; Finch, Joanne S; Bowden, G Timothy

    2008-05-01

    A cell line that produces mouse squamous cell carcinoma (6M90) was modified to develop a cell line with an introduced Tet-responsive catalase transgene (MTOC2). We have previously reported that the overexpressed catalase in the MTOC2 cells reverses the malignant phenotype in part by decreasing epidermal growth factor receptor (EGFR) signaling. With this work we expanded the investigation into the differences between these two cell lines. We found that the decreased EGFR pathway activity of the MTOC2 cells is not because of reduced autocrine secretion of an epidermal growth factor (EGF) ligand but rather because of lower basal receptor activity. Phosphorylated levels of the mitogen-activated protein kinase (MAPK) members JNK and p38 were both higher in the 6M90 cells with low catalase when compared with the MTOC2 cell line. Although treatment with an EGFR inhibitor, AG1478, blocked the increased activity of JNK in the 6M90 cells, a similar effect was not observed for p38. Basal levels of downstream c-jun transcription were also found to be higher in the 6M90 cells versus MTOC2 cells. Activated p38 was found to down-regulate the JNK MAPK pathway in the 6M90 cells. However, the 6M90 cells contain constitutively high levels of phosphorylated JNK, generating higher levels of phosphorylated c-jun and total c-jun than those in the MTOC2 cells. Inhibition of JNK activity in the 6M90 cells reduced AP-1 transcription and cell proliferation. The data confirm the inhibitory effects of catalase on tumor cell growth, specifically through a ligand-independent decrease in the stress activated JNK pathway. (c) 2007 Wiley-Liss, Inc.

  12. JNK1 induces hedgehog signaling from stellate cells to accelerate liver regeneration in mice.

    Langiewicz, Magda; Graf, Rolf; Humar, Bostjan; Clavien, Pierre A

    2018-04-27

    To improve outcomes of two-staged hepatectomies for large/multiple liver tumors, portal vein ligation (PVL) has been combined with parenchymal transection (coined ALPPS; Associated Liver Partition and Portal vein ligation for Staged hepatectomy) to greatly accelerate liver regeneration. In a novel ALPPS mouse model, we have reported paracrine Indian hedgehog (IHH) signaling from stellate cells as an early contributor to augmented regeneration. Here, we sought to identify upstream regulators of IHH. ALPPS in mice was compared against PVL and additional control surgeries. Potential IHH regulators were identified through in silico mining of transcriptomic data. JNK1 activity was reduced through SP600125 to evaluate its effects on IHH signaling. Recombinant IHH was injected after JNK diminution to substantiate their relationship during accelerated liver regeneration. Mining linked Ihh to Mapk8. JNK1 upregulation after ALPPS was validated and preceded the IHH peak. On immunofluorescence, JNK1 and IHH co-localized in ASMA-positive non-parenchymal cells. Inhibition of JNK1 prior to ALPPS surgery reduced liver weight gain to PVL levels and was accompanied by downregulation of hepatocellular proliferation and the IHH-GLI1-CCND1 axis. In JNK1-inhibited mice, recombinant IHH restored ALPPS-like acceleration of regeneration and re-elevated JNK1 activity, suggesting the presence of a positive IHH-JNK1 feedback loop. JNK1-mediated induction of IHH paracrine signaling from HSCs is essential for accelerated regeneration of parenchymal mass. The JNK1-IHH axis is a mechanism unique to ALPPS surgery and may point to therapeutic alternatives for patients with insufficient regenerative capacity. ALPPS, a novel two-staged hepatectomy, induces an unprecedented acceleration of liver regeneration to enable treatment of unresectable liver tumors. Here, we demonstrate JNK1-IHH signaling as a mechanism underlying the regenerative acceleration induced by ALPPS. Copyright © 2018 European

  13. Activation of Erk and JNK MAPK pathways by acute swim stress in rat brain regions

    Salvadore Christopher

    2004-09-01

    Full Text Available Abstract Background The mitogen-activated protein kinases (MAPKs have been shown to participate in a wide array of cellular functions. A role for some MAPKs (e.g., extracellular signal-regulated kinase, Erk1/2 has been documented in response to certain physiological stimuli, such as ischemia, visceral pain and electroconvulsive shock. We recently demonstrated that restraint stress activates the Erk MAPK pathway, but not c-Jun-N-terminal kinase/stress-activated protein kinase (JNK/SAPK or p38MAPK, in several rat brain regions. In the present study, we investigated the effects of a different stressor, acute forced swim stress, on the phosphorylation (P state of these MAPKs in the hippocampus, neocortex, prefrontal cortex, amygdala and striatum. In addition, effects on the phosphorylation state of the upstream activators of the MAPKs, their respective MAPK kinases (MAPKKs; P-MEK1/2, P-MKK4 and P-MKK3/6, were determined. Finally, because the Erk pathway can activate c-AMP response element (CRE binding (CREB protein, and swim stress has recently been reported to enhance CREB phosphorylation, changes in P-CREB were also examined. Results A single 15 min session of forced swimming increased P-Erk2 levels 2–3-fold in the neocortex, prefrontal cortex and striatum, but not in the hippocampus or amygdala. P-JNK levels (P-JNK1 and/or P-JNK2/3 were increased in all brain regions about 2–5-fold, whereas P-p38MAPK levels remained essentially unchanged. Surprisingly, levels of the phosphorylated MAPKKs, P-MEK1/2 and P-MKK4 (activators of the Erk and JNK pathways, respectively were increased in all five brain regions, and much more dramatically (P-MEK1/2, 4.5 to > 100-fold; P-MKK4, 12 to ~300-fold. Consistent with the lack of forced swim on phosphorylation of p38MAPK, there appeared to be no change in levels of its activator, P-MKK3/6. P-CREB was increased in all but cortical (prefrontal, neocortex areas. Conclusions Swim stress specifically and markedly

  14. Reactive oxygen species mediate nitric oxide production through ERK/JNK MAPK signaling in HAPI microglia after PFOS exposure

    Wang, Cheng; Nie, Xiaoke; Zhang, Yan; Li, Ting; Mao, Jiamin; Liu, Xinhang; Gu, Yiyang; Shi, Jiyun; Xiao, Jing; Wan, Chunhua; Wu, Qiyun

    2015-01-01

    Perfluorooctane sulfonate (PFOS), an emerging persistent contaminant that is commonly encountered during daily life, has been shown to exert toxic effects on the central nervous system (CNS). However, the molecular mechanisms underlying the neurotoxicity of PFOS remain largely unknown. It has been widely acknowledged that the inflammatory mediators released by hyper-activated microglia play vital roles in the pathogenesis of various neurological diseases. In the present study, we examined the impact of PFOS exposure on microglial activation and the release of proinflammatory mediators, including nitric oxide (NO) and reactive oxidative species (ROS). We found that PFOS exposure led to concentration-dependent NO and ROS production by rat HAPI microglia. We also discovered that there was rapid activation of the ERK/JNK MAPK signaling pathway in the HAPI microglia following PFOS treatment. Moreover, the PFOS-induced iNOS expression and NO production were attenuated after the inhibition of ERK or JNK MAPK by their corresponding inhibitors, PD98059 and SP600125. Interestingly, NAC, a ROS inhibitor, blocked iNOS expression, NO production, and activation of ERK and JNK MAPKs, which suggested that PFOS-mediated microglial NO production occurs via a ROS/ERK/JNK MAPK signaling pathway. Finally, by exposing SH-SY5Y cells to PFOS-treated microglia-conditioned medium, we demonstrated that NO was responsible for PFOS-mediated neuronal apoptosis. - Highlights: • PFOS exposure induced expression of iNOS and production of NO in HAPI microglia. • PFOS induced the production of ROS in HAPI microglia. • ERK/JNK MAPK pathways were activated following PFOS exposure in HAPI microglia. • NO released by HAPI microglia participated in the apoptosis of SH-SY5Y cells.

  15. Reactive oxygen species mediate nitric oxide production through ERK/JNK MAPK signaling in HAPI microglia after PFOS exposure

    Wang, Cheng; Nie, Xiaoke; Zhang, Yan [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Li, Ting; Mao, Jiamin [Department of Labor and Environmental Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Liu, Xinhang [Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Gu, Yiyang; Shi, Jiyun [Department of Labor and Environmental Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Xiao, Jing [Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Wan, Chunhua [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Wu, Qiyun, E-mail: wqy@ntu.edu.cn [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China)

    2015-10-15

    Perfluorooctane sulfonate (PFOS), an emerging persistent contaminant that is commonly encountered during daily life, has been shown to exert toxic effects on the central nervous system (CNS). However, the molecular mechanisms underlying the neurotoxicity of PFOS remain largely unknown. It has been widely acknowledged that the inflammatory mediators released by hyper-activated microglia play vital roles in the pathogenesis of various neurological diseases. In the present study, we examined the impact of PFOS exposure on microglial activation and the release of proinflammatory mediators, including nitric oxide (NO) and reactive oxidative species (ROS). We found that PFOS exposure led to concentration-dependent NO and ROS production by rat HAPI microglia. We also discovered that there was rapid activation of the ERK/JNK MAPK signaling pathway in the HAPI microglia following PFOS treatment. Moreover, the PFOS-induced iNOS expression and NO production were attenuated after the inhibition of ERK or JNK MAPK by their corresponding inhibitors, PD98059 and SP600125. Interestingly, NAC, a ROS inhibitor, blocked iNOS expression, NO production, and activation of ERK and JNK MAPKs, which suggested that PFOS-mediated microglial NO production occurs via a ROS/ERK/JNK MAPK signaling pathway. Finally, by exposing SH-SY5Y cells to PFOS-treated microglia-conditioned medium, we demonstrated that NO was responsible for PFOS-mediated neuronal apoptosis. - Highlights: • PFOS exposure induced expression of iNOS and production of NO in HAPI microglia. • PFOS induced the production of ROS in HAPI microglia. • ERK/JNK MAPK pathways were activated following PFOS exposure in HAPI microglia. • NO released by HAPI microglia participated in the apoptosis of SH-SY5Y cells.

  16. The Ste20 Family Kinases MAP4K4, MINK1, and TNIK Converge to Regulate Stress-Induced JNK Signaling in Neurons.

    Larhammar, Martin; Huntwork-Rodriguez, Sarah; Rudhard, York; Sengupta-Ghosh, Arundhati; Lewcock, Joseph W

    2017-11-15

    The c-Jun- N -terminal kinase (JNK) signaling pathway regulates nervous system development, axon regeneration, and neuronal degeneration after acute injury or in chronic neurodegenerative disease. Dual leucine zipper kinase (DLK) is required for stress-induced JNK signaling in neurons, yet the factors that initiate DLK/JNK pathway activity remain poorly defined. In the present study, we identify the Ste20 kinases MAP4K4, misshapen-like kinase 1 (MINK1 or MAP4K6) and TNIK Traf2- and Nck-interacting kinase (TNIK or MAP4K7), as upstream regulators of DLK/JNK signaling in neurons. Using a trophic factor withdrawal-based model of neurodegeneration in both male and female embryonic mouse dorsal root ganglion neurons, we show that MAP4K4, MINK1, and TNIK act redundantly to regulate DLK activation and downstream JNK-dependent phosphorylation of c-Jun in response to stress. Targeting MAP4K4, MINK1, and TNIK, but not any of these kinases individually, is sufficient to protect neurons potently from degeneration. Pharmacological inhibition of MAP4Ks blocks stabilization and phosphorylation of DLK within axons and subsequent retrograde translocation of the JNK signaling complex to the nucleus. These results position MAP4Ks as important regulators of the DLK/JNK signaling pathway. SIGNIFICANCE STATEMENT Neuronal degeneration occurs in disparate circumstances: during development to refine neuronal connections, after injury to clear damaged neurons, or pathologically during disease. The dual leucine zipper kinase (DLK)/c-Jun- N -terminal kinase (JNK) pathway represents a conserved regulator of neuronal injury signaling that drives both neurodegeneration and axon regeneration, yet little is known about the factors that initiate DLK activity. Here, we uncover a novel role for a subfamily of MAP4 kinases consisting of MAP4K4, Traf2- and Nck-interacting kinase (TNIK or MAP4K7), and misshapen-like kinase 1 (MINK1 or MAP4K6) in regulating DLK/JNK signaling in neurons. Inhibition of

  17. CPT-11 activates NLRP3 inflammasome through JNK and NF-κB signalings

    Li, Qian [Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, 300, Guangzhou Road, Nanjing 210029 (China); Zhang, Xiong [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210046 (China); Wang, Weicheng; Li, LeLe [Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, 300, Guangzhou Road, Nanjing 210029 (China); Xu, Qiang, E-mail: molpharm@163.com [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210046 (China); Wu, Xudong, E-mail: xudongwu@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210046 (China); Gu, Yanhong, E-mail: guluer@163.com [Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, 300, Guangzhou Road, Nanjing 210029 (China)

    2015-12-01

    CPT-11 is widely used for cancer therapy as a chemotherapeutic agent. Despite its good efficacy, a large number of side effects appeared during decades of clinical application. Delayed diarrhea, at dose limiting toxicity, happens after 24 h of treatment and the rate of occurrence is up to 90%. Although many investments have been made on this negative impact, the real molecular mechanism of delayed diarrhea is poorly understood. In this study, we have discovered that CPT-11 promotes macrophage infiltration into intestinal tissues and activates the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome, resulting in a robust IL-1β response and colonic inflammation similar to DSS (dextran sodium sulfate) induced experimental colitis. CPT-11 plus LPS primed mouse bone marrow-derived macrophages (BMDMs) and human acute monocytic leukemia cells (THP-1 cells) staying in a highly activated status, showing increased caspase-1 activity and releasing great amounts of IL-1β and IL-18 as detected by ELISA and western blot. A further mechanism showed that JNK and NF-κB signaling pathways participated in inflammatory responses activated by CPT-11. These results prompted us to suggest that the NLRP3-IL-1β signaling pathway might play an important role in CPT11-induced colitis. Our findings provide a basis for developing novel strategies that improve clinical implications of CPT-11. - Highlights: • CPT-11 induced experimental colitis in vivo. • CPT-11 induced intestine injury and macrophage infiltration. • CPT-11 significantly elevated levels of macrophage derived inflammatory cytokines in mice intestines. • CPT-11 activated NLRP3 inflammasome in vitro and in vivo. • CPT-11 activated JNK and NF-κB signalings in THP-1 and BMDMs.

  18. PDGF stimulation of Mueller cell proliferation: Contributions of c-JNK and the PI3K/Akt pathway

    Moon, Sang Woong; Chung, Eun Jee; Jung, Sun-Ah; Lee, Joon H.

    2009-01-01

    Platelet-derived growth factor (PDGF) has a critical role in proliferative vitreoretinopathy (PVR) as a chemoattractant and mitogen for retinal pigment epithelial cells and retinal glial cells. Here, we investigated the potential effects of PDGF on the proliferation of Mueller cells and the intracellular signaling pathway mediating these changes. PDGF induced Mueller cell proliferation and increased phosphorylation of the PDGF receptor (PDGFR), as shown by an MTT assay and immunoprecipitation analyses. Both effects were blocked by JNJ, a PDGFR-selective tyrosine kinase inhibitor. PDGF also stimulated phosphorylation of c-JNK and Akt. PDGF-induced Mueller cell proliferation was significantly reduced by pre-treatment with SP600125 and LY294002, inhibitors of c-JNK and Akt phosphorylation, respectively. Our findings collectively indicate that PDGF-stimulated Mueller cell proliferation occurs via activation of the c-JNK and PI3K/Akt signaling pathways. These data provide useful information in establishing the role of Mueller cells in the development of proliferative vitreoretinopathy.

  19. Arsenic trioxide mediates HAPI microglia inflammatory response and subsequent neuron apoptosis through p38/JNK MAPK/STAT3 pathway

    Mao, Jiamin [Department of Environmental Health, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Yang, Jianbing [Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001 (China); Zhang, Yan [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Li, Ting [Department of Environmental Health, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Wang, Cheng [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Xu, Lingfei; Hu, Qiaoyun; Wang, Xiaoke; Jiang, Shengyang [Department of Environmental Health, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Nie, Xiaoke [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Chen, Gang, E-mail: chengang@ntu.edu.cn [Department of Environmental Health, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China)

    2016-07-15

    Arsenic is a widely distributed toxic metalloid all over the world. Inorganic arsenic species are supposed to affect astrocytic functions and to cause neuron apoptosis in CNS. Microglias are the key cell type involved in innate immune responses in CNS, and microglia activation has been linked to inflammation and neurotoxicity. In this study, using ELISA, we showed that Arsenic trioxide up-regulated the expression and secretion of IL-1β in a dose-dependent manner and a time-dependent manner in cultured HAPI microglia cells. The secretion of IL-1β caused the apoptosis of SH-SY5Y. These pro-inflammatory responses were inhibited by the STAT3 blocker, AG490 and P38/JNK MAPK blockers SB202190, SP600125. Further, Arsenic trioxide exposure could induce phosphorylation and activation of STAT3, and the translocation of STAT3 from the cytosol to the nucleus in this HAPI microglia cell line. Thus, the STAT3 signaling pathway can be activated after Arsenic trioxide treatment. However, P38/JNK MAPK blockers SB202190, SP600125 also obviously attenuated STAT3 activation and transnuclear transport induced by Arsenic trioxide. In concert with these results, we highlighted that the secretion of IL-1β and STAT3 activation induced by Arsenic trioxide can be mediated by elevation of P38/JNK MAPK in HAPI microglia cells and then induced the toxicity of neurons. - Highlights: • Arsenic trioxide exposure induced expression of IL-β in HAPI microglia. • Arsenic trioxide exposure induced activation of MAPK pathways in HAPI microglia. • Arsenic trioxide exposure induced activation of STAT3 pathways in HAPI microglia. • The expression of IL-β though P38/JNK MAPK/STAT3 pathways in HAPI microglia.

  20. Arsenic trioxide mediates HAPI microglia inflammatory response and subsequent neuron apoptosis through p38/JNK MAPK/STAT3 pathway

    Mao, Jiamin; Yang, Jianbing; Zhang, Yan; Li, Ting; Wang, Cheng; Xu, Lingfei; Hu, Qiaoyun; Wang, Xiaoke; Jiang, Shengyang; Nie, Xiaoke; Chen, Gang

    2016-01-01

    Arsenic is a widely distributed toxic metalloid all over the world. Inorganic arsenic species are supposed to affect astrocytic functions and to cause neuron apoptosis in CNS. Microglias are the key cell type involved in innate immune responses in CNS, and microglia activation has been linked to inflammation and neurotoxicity. In this study, using ELISA, we showed that Arsenic trioxide up-regulated the expression and secretion of IL-1β in a dose-dependent manner and a time-dependent manner in cultured HAPI microglia cells. The secretion of IL-1β caused the apoptosis of SH-SY5Y. These pro-inflammatory responses were inhibited by the STAT3 blocker, AG490 and P38/JNK MAPK blockers SB202190, SP600125. Further, Arsenic trioxide exposure could induce phosphorylation and activation of STAT3, and the translocation of STAT3 from the cytosol to the nucleus in this HAPI microglia cell line. Thus, the STAT3 signaling pathway can be activated after Arsenic trioxide treatment. However, P38/JNK MAPK blockers SB202190, SP600125 also obviously attenuated STAT3 activation and transnuclear transport induced by Arsenic trioxide. In concert with these results, we highlighted that the secretion of IL-1β and STAT3 activation induced by Arsenic trioxide can be mediated by elevation of P38/JNK MAPK in HAPI microglia cells and then induced the toxicity of neurons. - Highlights: • Arsenic trioxide exposure induced expression of IL-β in HAPI microglia. • Arsenic trioxide exposure induced activation of MAPK pathways in HAPI microglia. • Arsenic trioxide exposure induced activation of STAT3 pathways in HAPI microglia. • The expression of IL-β though P38/JNK MAPK/STAT3 pathways in HAPI microglia.

  1. Balanites aegyptiaca ameliorates insulin secretion and decreases pancreatic apoptosis in diabetic rats: Role of SAPK/JNK pathway.

    Hassanin, Kamel M A; Mahmoud, Mohamed O; Hassan, Hossam M; Abdel-Razik, Abdel-Razik H; Aziz, Lourin N; Rateb, Mostafa E

    2018-06-01

    SAPK-JNK pathway performs a significant role in the pathogenesis of type 2 diabetes. Balanites aegyptiaca (BA) is used as an anti-diabetic agent in folk medicine however its hypoglycemic mechanism is not fully elucidated. The current study aimed to evaluate the effect of crude extract, butanol, and dichloromethane fractions from BA on the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK-JNK) pathway in experimental diabetic rats. Six groups of male Wistar rats were included: normal control, diabetic, diabetic rats treated with crude, butanol or dichloromethane fraction from BA (50 mg/kg BW) and diabetic rats treated with gliclazide as a reference drug for one month. Our results suggested a protective role of treatment of diabetic rats with BA against oxidative stress-induced SAPK-JNK pathway. Moreover, BA treatment produced a reduction in plasma glucose, HbA 1c , lactic acid, lipid profile, malondialdehyde levels and produced an increase in insulin, reduced glutathione levels, catalase and superoxide dismutase activities compared with untreated diabetic rats. Moreover, it decreased apoptosis signal-regulating kinase 1, c-Jun N-terminal kinase 1, protein 53 and increased insulin receptor substrate 1 in rat pancreas while it increased glucose transporter 4 in rat muscle. Analysis of BA extracts by LC-HRMS revealed the presence of different saponins with reported hypoglycemic effect. In conclusion, BA exerted hypoglycemic, hypolipidemic, insulinotropic and antioxidant effects. Additionally, it reduced apoptosis in pancreatic β-cells and increased glucose uptake in muscle. These results suggest that the hypoglycemic effect of BA is due to the inhibition of the SAPK-JNK pathway. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Endothelial Dysfunction in Human Diabetes Is Mediated by Wnt5a-JNK Signaling.

    Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G; Fetterman, Jessica L; Linder, Erika A; Berk, Brittany D; Masaki, Nobuyuki; Weisbrod, Robert M; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J; Walsh, Kenneth; Hamburg, Naomi M

    2016-03-01

    Endothelial dysfunction is linked to insulin resistance, inflammatory activation, and increased cardiovascular risk in diabetes mellitus; however, the mechanisms remain incompletely understood. Recent studies have identified proinflammatory signaling of wingless-type family member (Wnt) 5a through c-jun N-terminal kinase (JNK) as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in 85 subjects with type 2 diabetes mellitus (n=42) and age- and sex-matched nondiabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Endothelial cells from patients with diabetes mellitus displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes mellitus. In endothelial cells from nondiabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In human aortic endothelial cells, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Our findings demonstrate that noncanonical Wnt5a signaling and JNK activity contribute to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes mellitus. © 2016 American Heart

  3. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling

    Kim, Beom Su [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Bonecell Biotech Inc., 77, Dunsan-dong, Seo-gu, Daejeon 302-830 (Korea, Republic of); Park, Ji-Yun [Bonecell Biotech Inc., 77, Dunsan-dong, Seo-gu, Daejeon 302-830 (Korea, Republic of); Kang, Hyo-Jin [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kim, Hyung-Jin [Department of Microbiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Lee, Jun, E-mail: omslee@wku.ac.kr [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Bonecell Biotech Inc., 77, Dunsan-dong, Seo-gu, Daejeon 302-830 (Korea, Republic of)

    2014-08-08

    Graphical abstract: Schematic diagram of the angiogenic activity mechanism by FGF-2/fucoidan treatment in HUVECs. Fucoidan enhances the FGF-2-induced phosphorylation of p38, JNK, and ERK MAPKs. However, p38 and JNK were involved in AKT phosphorylation and MMP-2 activation and resulted in enhanced angiogenic activity, such as tube formation and migration, in HUVECs. - Highlights: • The angiogenic activity of fucoidan in HUVECs was explored. • Fucoidan enhanced HUVEC proliferation, migration, and tube formation. • Fucoidan enhanced angiogenesis through p38 and JNK but not ERK in HUVECs. • Fucoidan targeted angiogenesis-mediated AKT/MMP-2 signalling in HUVECs. - Abstract: Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK

  4. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling

    Kim, Beom Su; Park, Ji-Yun; Kang, Hyo-Jin; Kim, Hyung-Jin; Lee, Jun

    2014-01-01

    Graphical abstract: Schematic diagram of the angiogenic activity mechanism by FGF-2/fucoidan treatment in HUVECs. Fucoidan enhances the FGF-2-induced phosphorylation of p38, JNK, and ERK MAPKs. However, p38 and JNK were involved in AKT phosphorylation and MMP-2 activation and resulted in enhanced angiogenic activity, such as tube formation and migration, in HUVECs. - Highlights: • The angiogenic activity of fucoidan in HUVECs was explored. • Fucoidan enhanced HUVEC proliferation, migration, and tube formation. • Fucoidan enhanced angiogenesis through p38 and JNK but not ERK in HUVECs. • Fucoidan targeted angiogenesis-mediated AKT/MMP-2 signalling in HUVECs. - Abstract: Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK

  5. Selenite exacerbates hepatic insulin resistance in mouse model of type 2 diabetes through oxidative stress-mediated JNK pathway

    Zhou, Jun, E-mail: hustzhj@hust.edu.cn; Xu, Gang; Bai, Zhaoshuai; Li, Kaicheng; Yan, Junyan; Li, Fen; Ma, Shuai; Xu, Huibi; Huang, Kaixun, E-mail: hxxzrf@hust.edu.cn

    2015-12-15

    Recent evidence suggests a potential pro-diabetic effect of selenite treatment in type 2 diabetics; however, the underlying mechanisms remain elusive. Here we investigated the effects and the underlying mechanisms of selenite treatment in a nongenetic mouse model of type 2 diabetes. High-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice were orally gavaged with selenite at 0.5 or 2.0 mg/kg body weight/day or vehicle for 4 weeks. High-dose selenite treatment significantly elevated fasting plasma insulin levels and insulin resistance index, in parallel with impaired glucose tolerance, insulin tolerance and pyruvate tolerance. High-dose selenite treatment also attenuated hepatic IRS1/Akt/FoxO1 signaling and pyruvate kinase gene expressions, but elevated the gene expressions of phosphoenolpyruvate carboxyl kinase (PEPCK), glucose 6-phosphatase (G6Pase), peroxisomal proliferator-activated receptor-γ coactivator 1α (PGC-1α) and selenoprotein P (SelP) in the liver. Furthermore, high-dose selenite treatment caused significant increases in MDA contents, protein carbonyl contents, and a decrease in GSH/GSSG ratio in the liver, concurrent with enhanced ASK1/MKK4/JNK signaling. Taken together, these findings suggest that high-dose selenite treatment exacerbates hepatic insulin resistance in mouse model of type 2 diabetes, at least in part through oxidative stress-mediated JNK pathway, providing new mechanistic insights into the pro-diabetic effect of selenite in type 2 diabetes. - Highlights: • Selenite exacerbates hepatic insulin resistance in HFD/STZ-induced diabetic mice. • Selenite elevates hepatic gluconeogenesis and reduces glycolysis in diabetic mice. • Selenite exacerbates hepatic oxidative stress and triggers JNK signaling pathway. • Selenite elevates hepatic selenoprotein P expression in diabetic mice.

  6. Selenite exacerbates hepatic insulin resistance in mouse model of type 2 diabetes through oxidative stress-mediated JNK pathway

    Zhou, Jun; Xu, Gang; Bai, Zhaoshuai; Li, Kaicheng; Yan, Junyan; Li, Fen; Ma, Shuai; Xu, Huibi; Huang, Kaixun

    2015-01-01

    Recent evidence suggests a potential pro-diabetic effect of selenite treatment in type 2 diabetics; however, the underlying mechanisms remain elusive. Here we investigated the effects and the underlying mechanisms of selenite treatment in a nongenetic mouse model of type 2 diabetes. High-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice were orally gavaged with selenite at 0.5 or 2.0 mg/kg body weight/day or vehicle for 4 weeks. High-dose selenite treatment significantly elevated fasting plasma insulin levels and insulin resistance index, in parallel with impaired glucose tolerance, insulin tolerance and pyruvate tolerance. High-dose selenite treatment also attenuated hepatic IRS1/Akt/FoxO1 signaling and pyruvate kinase gene expressions, but elevated the gene expressions of phosphoenolpyruvate carboxyl kinase (PEPCK), glucose 6-phosphatase (G6Pase), peroxisomal proliferator-activated receptor-γ coactivator 1α (PGC-1α) and selenoprotein P (SelP) in the liver. Furthermore, high-dose selenite treatment caused significant increases in MDA contents, protein carbonyl contents, and a decrease in GSH/GSSG ratio in the liver, concurrent with enhanced ASK1/MKK4/JNK signaling. Taken together, these findings suggest that high-dose selenite treatment exacerbates hepatic insulin resistance in mouse model of type 2 diabetes, at least in part through oxidative stress-mediated JNK pathway, providing new mechanistic insights into the pro-diabetic effect of selenite in type 2 diabetes. - Highlights: • Selenite exacerbates hepatic insulin resistance in HFD/STZ-induced diabetic mice. • Selenite elevates hepatic gluconeogenesis and reduces glycolysis in diabetic mice. • Selenite exacerbates hepatic oxidative stress and triggers JNK signaling pathway. • Selenite elevates hepatic selenoprotein P expression in diabetic mice.

  7. Cambogin Induces Caspase-Independent Apoptosis through the ROS/JNK Pathway and Epigenetic Regulation in Breast Cancer Cells.

    Shen, Kaikai; Xie, Jianling; Wang, Hua; Zhang, Hong; Yu, Mengyuan; Lu, Fangfang; Tan, Hongsheng; Xu, Hongxi

    2015-07-01

    Cambogin is a polycyclic polyprenylated acylphoroglucinol (PPAP) from the Garcinia genus, which has been used traditionally for cancer treatment across Southeastern Asia. In this study, we found that cambogin inhibited breast cancer cell proliferation and induced cell apoptosis in vitro. Cambogin induced the activation of the caspase-independent mitochondrial apoptotic pathway, as indicated by an increase in the ratio of Bax/Bcl-2 and the nuclear translocation of apoptosis inducing factor (AIF). Two-dimensional gel electrophoresis and mass spectrometry revealed that the expression of proteins involving in the radical oxygen species (ROS) pathway was among the most affected upon cambogin treatment. Cambogin enhanced cellular ROS production, and induced the activation of the ASK1-MKK4/MKK7-JNK/SAPK signaling pathway. Pretreatment with ROS scavenger N-acetylcysteine (NAC), an antioxidant, or the JNK inhibitor SP600125 was able to restore cell viability in the presence of cambogin. Importantly, cambogin treatment led to the activation of activating transcription factor-2 (ATF-2) and the trimethylation of histone H3K9 in the activator protein 1 (AP-1) binding region of the Bcl-2 gene promoter. Finally, cambogin exhibited a potential antitumor effect in MCF-7 breast cancer xenografts without apparent toxicity. Taken in conjunction, the present study indicates that cambogin can induce breast adenocarcinoma cell apoptosis and therefore represents therapeutic potential for cancer treatment. ©2015 American Association for Cancer Research.

  8. Low Dose Cadmium Inhibits Proliferation of Human Renal Mesangial Cells via Activation of the JNK Pathway

    Chen, Xiaocui; Li, Jing; Cheng, Zuowang; Xu, Yinghua; Wang, Xia; Li, Xiaorui; Xu, Dongmei; Kapron, Carolyn M.; Liu, Ju

    2016-01-01

    Cadmium (Cd) is a heavy metal and environmental pollutant. The kidney is the principal target organ of Cd exposure. Previously, we found that low concentration of Cd damages the integrity of the glomerular filtration barrier. However, little is known about the effects of Cd on renal mesangial cells, which provide structural support for the glomerular capillary loops and regulate intraglomerular blood flow. In this study, human renal mesangial cells (HRMCs) were cultured in the presence of serum and treated with 4 μM Cd. We found that Cd activates the c-Jun N-terminal kinase (JNK) pathway, and increases the protein levels of c-Jun and c-Fos. Cd treatment also induces a decrease in proliferation and an increase in apoptosis of HRMCs, but only the decrease in HRMC proliferation was reversed by pretreatment with SP600125, an inhibitor of the JNK pathway. In addition, Cd does not change the expression of α-smooth muscle actin and platelet-derived growth factor receptor-β, the markers of mesangial cells, or the alignment of the filamentous actin (F-actin) cytoskeleton of HRMCs. Our data indicate that the JNK pathway mediates the inhibitory effects of Cd on HRMC proliferation. PMID:27739415

  9. Blockage of JNK pathway enhances arsenic trioxide-induced apoptosis in human keratinocytes

    Huang, H.-S.; Liu, Z.-M.; Hong, D.-Y.

    2010-01-01

    Arsenic is well known as a carcinogen predisposing humans to some severe diseases and also as an effective medicine for treating acute promyelocytic leukemia, syphilis, and psoriasis. Multiple active mechanisms, including cell cycle arrest and apoptosis, have been proposed in therapy; however, the opposing effects of arsenic remain controversial. Our previous study found that arsenic trioxide (ATO)-induced activation of p21 WAF1/CIP1 (p21) led to A431 cell death through the antagonistic effects of the signaling of ERK1/2 and JNK1. In the current study, the inhibitory effects of JNK1 on ATO-induced p21 expression were explored. Over-expression of JNK1 in A431 cells could inhibit p21 expression, which was associated with HDAC1 and TGIF. Using the GST pull-down assay and fluorescence resonance energy transfer analysis, N-terminal domain (amino acids 1-108) of TGIF, critical to its binding with c-Jun, was found. Using reporter assays, requirement of the C-terminal domain (amino acids 138-272) of TGIF to suppress ATO-induced p21 expression was observed. Thus, the domains of TGIF that carried out its inhibitory effects on p21 were identified. Finally, treatment with JNK inhibitor SP600125 could enhance ATO-induced apoptosis of HaCaT keratinocytes by using flow cytometry.

  10. Gα12/13 signaling promotes cervical cancer invasion through the RhoA/ROCK-JNK signaling axis

    Yuan, Bo; Cui, Jinquan; Wang, Wuliang; Deng, Kehong

    2016-01-01

    Several reports have indicated a role for the members of the G12 family of heterotrimeric G proteins (Gα12 and Gα13) in oncogenesis and tumor cell growth. The aims of the present study were to evaluate the role of G12 signaling in cervical cancer. We demonstrated that expression of the G12 proteins was highly upregulated in cervical cancer cells. Additionally, expression of the activated forms of Gα12/Gα13 but not expression of activated Gαq induced cell invasion through the activation of the RhoA family of G proteins, but had no effect on cell proliferation in the cervical cancer cells. Inhibition of G12 signaling by expression of the RGS domain of the p115-Rho-specific guanine nucleotide exchange factor (p115-RGS) blocked thrombin-stimulated cell invasion, but did not inhibit cell proliferation in cervical cells, whereas the inhibition of Gαq (RGS2) had no effect. Furthermore, G12 signaling was able to activate Rho proteins, and this stimulation was inhibited by p115-RGS, and Gα12-induced invasion was blocked by an inhibitor of RhoA/B/C (C3 toxin). Pharmacological inhibition of JNK remarkably decreased G12-induced JNK activation. Both a JNK inhibitor (SP600125) and a ROCK inhibitor (Y27632) reduced G12-induced JNK and c-Jun activation, and markedly inhibited G12-induced cellular invasion. Collectively, these findings demonstrate that stimulation of G12 proteins is capable of promoting invasion through RhoA/ROCK-JNK activation. -- Highlights: •Gα12/Gα13 is upregulated in cervical cancer cell lines. •Gα12/Gα13 is not involved in cervical cancer cell proliferation. •Gα12/Gα13 promotes cervical cancer cell invasion. •The role of Rho G proteins in G12-promoted cervical cancer cell invasion. •G12 promotes cell invasion through activation of the ROCK-JNK signaling axis.

  11. Ethanol Extracts of Fruiting Bodies of Antrodia cinnamomea Suppress CL1-5 Human Lung Adenocarcinoma Cells Migration by Inhibiting Matrix Metalloproteinase-2/9 through ERK, JNK, p38, and PI3K/Akt Signaling Pathways

    Ying-Yi Chen

    2012-01-01

    Full Text Available Cancer metastasis is a primary cause of cancer death. Antrodia cinnamomea (A. cinnamomea, a medicinal mushroom in Taiwan, has shown antioxidant and anticancer activities. In this study, we first observed that ethanol extract of fruiting bodies of A. cinnamomea (EEAC exerted a concentration-dependent inhibitory effect on migration and motility of the highly metastatic CL1-5 cells in the absence of cytotoxicity. The results of a gelatin zymography assay showed that A. cinnamomea suppressed the activities of matrix metalloproteinase-(MMP- 2 and MMP-9 in a concentration-dependent manner. Western blot results demonstrated that treatment with A. cinnamomea decreased the expression of MMP-9 and MMP-2; while the expression of the endogenous inhibitors of these proteins, that is, tissue inhibitors of MMP (TIMP-1 and TIMP-2 increased. Further investigation revealed that A. cinnamomea suppressed the phosphorylation of ERK1/2, p38, and JNK1/2. A. cinnamomea also suppressed the expressions of PI3K and phosphorylation of Akt. Furthermore, treatment of CL1-5 cells with inhibitors specific for PI3K (LY 294002, ERK1/2 (PD98059, JNK (SP600125, and p38 MAPK (SB203580 decreased the expression of MMP-2 and MMP-9. This is the first paper confirming the antimigration activity of this potentially beneficial mushroom against human lung adenocarcinoma CL1-5 cancer cells.

  12. Effect of JNK inhibitor SP600125 on hair cell regeneration in zebrafish (Danio rerio) larvae

    Sun, Shaoyang; Wang, Xu; Li, Wenyan; Li, Huawei

    2016-01-01

    The c-Jun amino-terminal kinase (JNK) proteins are a subgroup of the mitogen-activated protein kinase family. They play a complex role in cell proliferation, survival, and apoptosis. Here, we report a novel role of JNK signalling in hair cell regeneration. We eliminated hair cells of 5-day post-fertilization zebrafish larvae using neomycin followed by JNK inhibition with SP600125. JNK inhibition strongly decreased the number of regenerated hair cells in response to neomycin damage. These changes were associated with reduced proliferation. JNK inhibition also increased cleaved caspase-3 activity and induced apoptosis in regenerating neuromasts. Finally, JNK inhibition with SP600125 decreased the expression of genes related to Wnt. Over-activation of the Wnt signalling pathway partly rescued the hair cell regeneration defects induced by JNK inhibition. Together, our findings provide novel insights into the function of JNK and show that JNK inhibition blocks hair cell regeneration by controlling the Wnt signalling pathway. PMID:27438150

  13. Drosophila MOF regulates DIAP1 and induces apoptosis in a JNK dependent pathway.

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Ramaiah, M Janaki; Koteswara Rao, G; Bag, Indira; Bhadra, Utpal; Pal-Bhadra, Manika

    2016-03-01

    Histone modulations have been implicated in various cellular and developmental processes where in Drosophila Mof is involved in acetylation of H4K16. Reduction in the size of larval imaginal discs is observed in the null mutants of mof with increased apoptosis. Deficiency involving Hid, Reaper and Grim [H99] alleviated mof (RNAi) induced apoptosis in the eye discs. mof (RNAi) induced apoptosis leads to activation of caspases which is suppressed by over expression of caspase inhibitors like P35 and Diap1 clearly depicting the role of caspases in programmed cell death. Also apoptosis induced by knockdown of mof is rescued by JNK mutants of bsk and tak1 indicating the role of JNK in mof (RNAi) induced apoptosis. The adult eye ablation phenotype produced by ectopic expression of Hid, Rpr and Grim, was restored by over expression of Mof. Accumulation of Mof at the Diap1 promoter 800 bp upstream of the transcription start site in wild type larvae is significantly higher (up to twofolds) compared to mof (1) mutants. This enrichment coincides with modification of histone H4K16Ac indicating an induction of direct transcriptional up regulation of Diap1 by Mof. Based on these results we propose that apoptosis triggered by mof (RNAi) proceeds through a caspase-dependent and JNK mediated pathway.

  14. Wound-Induced Polyploidization: Regulation by Hippo and JNK Signaling and Conservation in Mammals.

    Losick, Vicki P; Jun, Albert S; Spradling, Allan C

    2016-01-01

    Tissue integrity and homeostasis often rely on the proliferation of stem cells or differentiated cells to replace lost, aged, or damaged cells. Recently, we described an alternative source of cell replacement- the expansion of resident, non-dividing diploid cells by wound-induced polyploidization (WIP). Here we show that the magnitude of WIP is proportional to the extent of cell loss using a new semi-automated assay with single cell resolution. Hippo and JNK signaling regulate WIP; unexpectedly however, JNK signaling through AP-1 limits rather than stimulates the level of Yki activation and polyploidization in the Drosophila epidermis. We found that polyploidization also quantitatively compensates for cell loss in a mammalian tissue, mouse corneal endothelium, where increased cell death occurs with age in a mouse model of Fuchs Endothelial Corneal Dystrophy (FECD). Our results suggest that WIP is an evolutionarily conserved homeostatic mechanism that maintains the size and synthetic capacity of adult tissues.

  15. Taurine prevents arsenic-induced cardiac oxidative stress and apoptotic damage: Role of NF-κB, p38 and JNK MAPK pathway

    Ghosh, Jyotirmoy; Das, Joydeep; Manna, Prasenjit; Sil, Parames C.

    2009-01-01

    Cardiac dysfunction is a major cause of morbidity and mortality worldwide due to its complex pathogenesis. However, little is known about the mechanism of arsenic-induced cardiac abnormalities and the use of antioxidants as the possible protective agents in this pathophysiology. Conditionally essential amino acid, taurine, accounts for 25% to 50% of the amino acid pool in myocardium and possesses antioxidant properties. The present study has, therefore, been carried out to investigate the underlying mechanism of the beneficial role of taurine in arsenic-induced cardiac oxidative damage and cell death. Arsenic reduced cardiomyocyte viability, increased reactive oxygen species (ROS) production and intracellular calcium overload, and induced apoptotic cell death by mitochondrial dependent caspase-3 activation and poly-ADP ribose polymerase (PARP) cleavage. These changes due to arsenic exposure were found to be associated with increased IKK and NF-κB (p65) phosphorylation. Pre-exposure of myocytes to an IKK inhibitor (PS-1145) prevented As-induced caspase-3 and PARP cleavage. Arsenic also markedly increased the activity of p38 and JNK MAPKs, but not ERK to that extent. Pre-treatment with SP600125 (JNK inhibitor) and SB203580 (p38 MAPK inhibitor) attenuated NF-κB and IKK phosphorylation indicating that p38 and JNK MAPKs are mainly involved in arsenic-induced NF-κB activation. Taurine treatment suppressed these apoptotic actions, suggesting that its protective role in arsenic-induced cardiomyocyte apoptosis is mediated by attenuation of p38 and JNK MAPK signaling pathways. Similarly, arsenic intoxication altered a number of biomarkers related to cardiac oxidative stress and other apoptotic indices in vivo and taurine supplementation could reduce it. Results suggest that taurine prevented arsenic-induced myocardial pathophysiology, attenuated NF-κB activation via IKK, p38 and JNK MAPK signaling pathways and could possibly provide a protection against As

  16. TRX-ASK1-JNK signaling regulation of cell density-dependent cytotoxicity in cigarette smoke-exposed human bronchial epithelial cells.

    Lee, Yong Chan; Chuang, Chun-Yu; Lee, Pak-Kei; Lee, Jin-Soo; Harper, Richart W; Buckpitt, Alan B; Wu, Reen; Oslund, Karen

    2008-05-01

    Cigarette smoke is a major environmental air pollutant that injures airway epithelium and incites subsequent diseases including chronic obstructive pulmonary disease. The lesion that smoke induces in airway epithelium is still incompletely understood. Using a LIVE/DEAD cytotoxicity assay, we observed that subconfluent cultures of bronchial epithelial cells derived from both human and monkey airway tissues and an immortalized normal human bronchial epithelial cell line (HBE1) were more susceptible to injury by cigarette smoke extract (CSE) and by direct cigarette smoke exposure than cells in confluent cultures. Scraping confluent cultures also caused an enhanced cell injury predominately in the leading edge of the scraped confluent cultures by CSE. Cellular ATP levels in both subconfluent and confluent cultures were drastically reduced after CSE exposure. In contrast, GSH levels were significantly reduced only in subconfluent cultures exposed to smoke and not in confluent cultures. Western blot analysis demonstrated ERK activation in both confluent and subconfluent cultures after CSE. However, activation of apoptosis signal-regulating kinase 1 (ASK1), JNK, and p38 were demonstrated only in subconfluent cultures and not in confluent cultures after CSE. Using short interfering RNA (siRNA) to JNK1 and JNK2 and a JNK inhibitor, we attenuated CSE-mediated cell death in subconfluent cultures but not with an inhibitor of the p38 pathway. Using the tetracycline (Tet)-on inducible approach, overexpression of thioredoxin (TRX) attenuated CSE-mediated cell death and JNK activation in subconfluent cultures. These results suggest that the TRX-ASK1-JNK pathway may play a critical role in mediating cell density-dependent CSE cytotoxicity.

  17. Low humidity environmental challenge causes barrier disruption and cornification of the mouse corneal epithelium via a c-jun N-terminal kinase 2 (JNK2) pathway.

    Pelegrino, F S A; Pflugfelder, S C; De Paiva, C S

    2012-01-01

    Patients with tear dysfunction often experience increased irritation symptoms when subjected to drafty and/or low humidity environmental conditions. The purpose of this study was to investigate the effects of low humidity stress (LHS) on corneal barrier function and expression of cornified envelope (CE) precursor proteins in the epithelium of C57BL/6 and c-jun N-terminal kinase 2 (JNK2) knockout (KO) mice. LHS was induced in both strains by exposure to an air draft for 15 (LHS15D) or 30 days (LHS30D) at a relative humidity LHS15D showed corneal barrier dysfunction, decreased apical corneal epithelial cell area, higher MMP-9 expression and gelatinase activity and increased involucrin and SPRR-2 immunoreactivity in the corneal epithelium compared to NS mice. JNK2KO mice were resistant to LHS-induced corneal barrier disruption. MMP-3,-9,-13, IL-1α, IL-1β, involucrin and SPRR-2a RNA transcripts were significantly increased in C57BL/6 mice at LHS15D, while no change was noted in JNK2KO mice. LHS is capable of altering corneal barrier function, promoting pathologic alteration of the TJ complex and stimulating production of CE proteins by the corneal epithelium. Activation of the JNK2 signaling pathway contributes to corneal epithelial barrier disruption in LHS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. High sugar diet disrupts gut homeostasis though JNK and STAT pathways in Drosophila.

    Zhang, Xiaoyue; Jin, Qiuxia; Jin, Li Hua

    2017-06-10

    The incidence of diseases associated with a high sugar diet has increased in the past years, and numerous studies have focused on the effect of high sugar intake on obesity and metabolic syndrome. However, how a high sugar diet influences gut homeostasis is still poorly understood. In this study, we used Drosophila melanogaster as a model organism and supplemented a culture medium with 1 M sucrose to create a high sugar condition. Our results indicate that a high sugar diet promoted differentiation of intestinal stem cells through upregulation of the JNK pathway and downregulation of the JAK/STAT pathway. Moreover, the number of commensal bacteria decreased in the high sugar group. Our data suggests that the high caloric diet disrupts gut homeostasis and highlights Drosophila as an ideal model system to explore gastrointestinal disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. ShenFu Preparation Protects AML12 Cells Against Palmitic Acid-Induced Injury Through Inhibition of Both JNK/Nox4 and JNK/NFκB Pathways

    Jia-Fu Ji

    2018-02-01

    Full Text Available Background/Aims: Nonalcoholic steatohepatitis includes steatosis along with liver inflammation, hepatocyte injury and fibrosis. In this study, we investigated the protective role and the potential mechanisms of a traditional Chinese medicine ShenFu (SF preparation in an in vitro hepatic steatosis model. Methods: In palmitic acid (PA-induced murine hepatic AML12 cell injury, effects of SF preparation on cellular apoptosis and intracellular triglyceride (iTG level were assessed using TUNEL and TG Colorimetric Assay. Reactive oxygen species (ROS and mitochondrial membrane potential (MMP levels were measured using DCF and JC-1 assay. Cytokine levels were evaluated using ELISA assay. Immunoblot was used to compare the activation level of c-Jun N terminal kinase (JNK, NADPH oxidase (Nox4, and NFκB pathways. Results: Addition of SF preparation prevented PA-mediated increase of apoptosis and iTG as well as IL-8 and IL-6. In PA-treated cell, SF preparation reduced the level of Nox4 and ROS, while increasing the level of MMP and the expression of manganese superoxide dismutase (MnSOD and catalase, indicating emendation of mitochondrial dysfunction. Nox4 inhibitor GKT137381 prevented PA-induced increase of ROS and apoptosis, while decreasing iTG slightly and not influencing the level of IL-8 and IL-6. SF preparation prevented PA-induced upregulation of phospho-JNK. JNK inhibitor SP600125 prevented PA-mediated increase of Nox4, IL-8, IL-6 and iTG. Nuclear translocation of NFκB/p65 was detected in PA-treated cells, which was prevented by SF preparation. An IκB degradation inhibitor, BAY11-7082, prevented PA-induced increase of IL-8 and IL-6 as well as iTG, whereas it only decreased ROS levels slightly and showed no influence on cellular apoptosis. Conclusion: SF preparation shows a beneficial role in prevention of hepatocyte injury by attenuating oxidative stress and cytokines production at least partially through inhibition of JNK/Nox4 and JNK

  20. Apoptosis of bone marrow mesenchymal stem cells caused by homocysteine via activating JNK signal.

    Benzhi Cai

    Full Text Available Bone marrow mesenchymal stem cells (BMSCs are capable of homing to and repair damaged myocardial tissues. Apoptosis of BMSCs in response to various pathological stimuli leads to the attenuation of healing ability of BMSCs. Plenty of evidence has shown that elevated homocysteine level is a novel independent risk factor of cardiovascular diseases. The present study was aimed to investigate whether homocysteine may induce apoptosis of BMSCs and its underlying mechanisms. Here we uncovered that homocysteine significantly inhibited the cellular viability of BMSCs. Furthermore, TUNEL, AO/EB, Hoechst 333342 and Live/Death staining demonstrated the apoptotic morphological appearance of BMSCs after homocysteine treatment. A distinct increase of ROS level was also observed in homocysteine-treated BMSCs. The blockage of ROS by DMTU and NAC prevented the apoptosis of BMSCs induced by homocysteine, indicating ROS was involved in the apoptosis of BMSCs. Moreover, homocysteine also caused the depolarization of mitochondrial membrane potential of BMSCs. Furthermore, apoptotic appearance and mitochondrial membrane potential depolarization in homocysteine-treated BMSCs was significantly reversed by JNK inhibitor but not p38 MAPK and ERK inhibitors. Western blot also confirmed that p-JNK was significantly activated after exposing BMSCs to homocysteine. Homocysteine treatment caused a significant reduction of BMSCs-secreted VEGF and IGF-1 in the culture medium. Collectively, elevated homocysteine induced the apoptosis of BMSCs via ROS-induced the activation of JNK signal, which provides more insight into the molecular mechanisms of hyperhomocysteinemia-related cardiovascular diseases.

  1. Molybdenum induces pancreatic β-cell dysfunction and apoptosis via interdependent of JNK and AMPK activation-regulated mitochondria-dependent and ER stress-triggered pathways

    Yang, Tsung-Yuan; Yen, Cheng-Chieh; Lee, Kuan-I; Su, Chin-Chuan; Yang, Ching-Yao; Wu, Chin-Ching; Hsieh, Shang-Shu; Ueng, Kwo-Chang; Huang, Chun-Fa

    2016-01-01

    Molybdenum (Mo), a well-known toxic environmental and industrial pollutant, causes adverse health effects and diseases in humans and has received attention as a potential risk factor for DM. However, the roles of Mo in the mechanisms of the toxicological effects in pancreatic β-cells are mostly unclear. In this study, the results revealed dysfunction of insulin secretion and apoptosis in the pancreatic β-cell-derived RIN-m5F cells and the isolated mouse islets in response to Mo. These effects were accompanied by a mitochondria-dependent apoptotic signals including a decreased in the MMP, an increase in cytochrome c release, and the activation of caspase cascades and PARP. In addition, ER stress was triggered as indicated by several key molecules of the UPR. Furthermore, exposure to Mo induced the activation of ERK1/2, JNK, AMPKα, and GSK3-α/β. Pretreatment with specific pharmacological inhibitors (in RIN-m5F cells and isolated mouse islets) of JNK (SP600125) and AMPK (Compound C) or transfection with si-RNAs (in RIN-m5F cells) specific to JNK and AMPKα effectively prevented the Mo-induced apoptosis and related signals, but inhibitors of ERK1/2 and GSK3-α/β (PD98059 and LiCl, respectively) did not reverse the Mo-induced effects. Additionally, both the inhibitors and specific si-RNAs could suppress the Mo-induced phosphorylation of JNK and AMPKα each other. Taken together, these results suggest that Mo exerts its cytotoxicity on pancreatic β-cells by inducing dysfunction and apoptosis via interdependent JNK and AMPK activation downstream-regulated mitochondrial-dependent and ER stress-triggered apoptosis pathways. - Highlights: • Molybdenum (Mo) induces pancreatic β-cell dysfunction and apoptosis. • Mo causes β-cell death via mitochondria-dependent caspase cascades signals. • ER stress-triggered apoptotic pathway also regulates Mo-induced β-cell death. • Interdependent of JNK and AMPK activation involves in Mo-induced β-cell apoptosis.

  2. Molybdenum induces pancreatic β-cell dysfunction and apoptosis via interdependent of JNK and AMPK activation-regulated mitochondria-dependent and ER stress-triggered pathways

    Yang, Tsung-Yuan [Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Yen, Cheng-Chieh [Department of Occupational Safety and Health, College of Health Care and Management, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Lee, Kuan-I [Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan (China); Su, Chin-Chuan [Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan (China); Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan (China); Yang, Ching-Yao [Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan (China); Department of Surgery, College of Medicine, National Taiwan University, Taipei 100, Taiwan (China); Wu, Chin-Ching [Department of Public Health, China Medical University, Taichung 404, Taiwan (China); Hsieh, Shang-Shu, E-mail: gile1123@yahoo.com.tw [Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan (China); Ueng, Kwo-Chang, E-mail: kcueng@gmail.com [Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Huang, Chun-Fa, E-mail: cfhuang@mail.cmu.edu.tw [School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan (China)

    2016-03-01

    Molybdenum (Mo), a well-known toxic environmental and industrial pollutant, causes adverse health effects and diseases in humans and has received attention as a potential risk factor for DM. However, the roles of Mo in the mechanisms of the toxicological effects in pancreatic β-cells are mostly unclear. In this study, the results revealed dysfunction of insulin secretion and apoptosis in the pancreatic β-cell-derived RIN-m5F cells and the isolated mouse islets in response to Mo. These effects were accompanied by a mitochondria-dependent apoptotic signals including a decreased in the MMP, an increase in cytochrome c release, and the activation of caspase cascades and PARP. In addition, ER stress was triggered as indicated by several key molecules of the UPR. Furthermore, exposure to Mo induced the activation of ERK1/2, JNK, AMPKα, and GSK3-α/β. Pretreatment with specific pharmacological inhibitors (in RIN-m5F cells and isolated mouse islets) of JNK (SP600125) and AMPK (Compound C) or transfection with si-RNAs (in RIN-m5F cells) specific to JNK and AMPKα effectively prevented the Mo-induced apoptosis and related signals, but inhibitors of ERK1/2 and GSK3-α/β (PD98059 and LiCl, respectively) did not reverse the Mo-induced effects. Additionally, both the inhibitors and specific si-RNAs could suppress the Mo-induced phosphorylation of JNK and AMPKα each other. Taken together, these results suggest that Mo exerts its cytotoxicity on pancreatic β-cells by inducing dysfunction and apoptosis via interdependent JNK and AMPK activation downstream-regulated mitochondrial-dependent and ER stress-triggered apoptosis pathways. - Highlights: • Molybdenum (Mo) induces pancreatic β-cell dysfunction and apoptosis. • Mo causes β-cell death via mitochondria-dependent caspase cascades signals. • ER stress-triggered apoptotic pathway also regulates Mo-induced β-cell death. • Interdependent of JNK and AMPK activation involves in Mo-induced β-cell apoptosis.

  3. miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-jun pathway

    He, Siyi; Liu, Peng; Jian, Zhao; Li, Jingwei; Zhu, Yun; Feng, Zezhou; Xiao, Yingbin, E-mail: xiaoyb@vip.sina.com

    2013-11-29

    a protective role in myocardial adaptation to chronic hypoxia, which is mediated mainly by MLK3/JNK/c-jun signaling pathway.

  4. Inhibiting Src family tyrosine kinase activity blocks glutamate signalling to ERK1/2 and Akt/PKB but not JNK in cultured striatal neurones.

    Crossthwaite, Andrew J; Valli, Haseeb; Williams, Robert J

    2004-03-01

    Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.

  5. 3-MCPD 1-palmitate induced renal tubular cell apoptosis in vivo via JNK/p53 pathway

    Fatty acid esters of 3-chloro-1, 2-propanediol (3-MCPD esters) are a group of processing-induced food contaminants with nephrotoxicity, but the molecular mechanism(s) remains unclear. This study investigated whether and how the JNK/p53 pathway may play a role in the nephrotoxic effect of 3-MCPD este...

  6. Involvement of the JNK/FOXO3a/Bim Pathway in Neuronal Apoptosis after Hypoxic-Ischemic Brain Damage in Neonatal Rats.

    Deyuan Li

    Full Text Available c-Jun N-terminal kinase (JNK plays a key role in the regulation of neuronal apoptosis. Previous studies have revealed that forkhead transcription factor (FOXO3a is a critical effector of JNK-mediated tumor suppression. However, it is not clear whether the JNK/FOXO3a pathway is involved in neuronal apoptosis in the developing rat brain after hypoxia-ischemia (HI. In this study, we generated an HI model using postnatal day 7 rats. Fluorescence immunolabeling and Western blot assays were used to detect the distribution and expression of total and phosphorylated JNK and FOXO3a and the pro-apoptotic proteins Bim and CC3. We found that JNK phosphorylation was accompanied by FOXO3a dephosphorylation, which induced FOXO3a translocation into the nucleus, resulting in the upregulation of levels of Bim and CC3 proteins. Furthermore, we found that JNK inhibition by AS601245, a specific JNK inhibitor, significantly increased FOXO3a phosphorylation, which attenuated FOXO3a translocation into the nucleus after HI. Moreover, JNK inhibition downregulated levels of Bim and CC3 proteins, attenuated neuronal apoptosis and reduced brain infarct volume in the developing rat brain. Our findings suggest that the JNK/FOXO3a/Bim pathway is involved in neuronal apoptosis in the developing rat brain after HI. Agents targeting JNK may offer promise for rescuing neurons from HI-induced damage.

  7. Membrane-Type 1 Matrix Metal loproteinase Is Regulated by Sp1 through the Differential Activation of AKT, JNK, and ERK Pathways in Human Prostate Tumor Cells

    Isis C. Sroka

    2007-05-01

    Full Text Available We and other investigators have previously shown that membrane-type 1 matrix metalloproteinase (MT1-MMP is overexpressed in invasive prostate cancer cells. However, the mechanism for this expression is not known. Here, we show that MT1-MMP is minimally expressed in nonmalignant primary prostate cells, moderately expressed in DU-145 cells, and highly expressed in invasive PC-3 and PC-3N cells. Using human MT1-MMP promoter reporter plasmids and mobility shift assays, we show that Spi regulates MT1-MMP expression in DU-145, PC-3, and PC-3N cells and in PC3-N cells using chromatin immunoprecipitation analysis and silencing RNA. Investigation of signaling pathway showed that DU-145 cells express constitutively phosphorylated extracellular stress-regulated kinase (ERK, whereas PC-3 and PC-3N cells express constitutively phosphorylated AKT/PKB and c-Jun NH2 terminal kinase (JNK. We show that MT1-MMP and Spi levels are decreased in PC-3 and PC-3N cells when phosphatidylinositol-3 kinase and JNK are inhibited, and that MT1-MMP levels are decreased in DU-145 cells when MEK is inhibited. Transient transfection of PC-3 and PC-3N cells with a dominant-negative JNK or p85, and of DU-145 cells with a dominant negative ERK, reduces MT1-MMP promoter activity. These results indicate differential signaling control of Spi-mediated transcriptional regulation of MT1-MMP in prostate cancer cell lines.

  8. Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity

    Ryu, Yuhee; Jin, Li; Kee, Hae Jin; Piao, Zhe Hao; Cho, Jae Yeong; Kim, Gwi Ran; Choi, Sin Young; Lin, Ming Quan; Jeong, Myung Ho

    2016-01-01

    Gallic acid, a type of phenolic acid, has been shown to have beneficial effects in inflammation, vascular calcification, and metabolic diseases. The present study was aimed at determining the effect and regulatory mechanism of gallic acid in cardiac hypertrophy and fibrosis. Cardiac hypertrophy was induced by isoproterenol (ISP) in mice and primary neonatal cardiomyocytes. Gallic acid pretreatment attenuated concentric cardiac hypertrophy. It downregulated the expression of atrial natriuretic peptide, brain natriuretic peptide, and beta-myosin heavy chain in vivo and in vitro. Moreover, it prevented interstitial collagen deposition and expression of fibrosis-associated genes. Upregulation of collagen type I by Smad3 overexpression was observed in cardiac myoblast H9c2 cells but not in cardiac fibroblasts. Gallic acid reduced the DNA binding activity of phosphorylated Smad3 in Smad binding sites of collagen type I promoter in rat cardiac fibroblasts. Furthermore, it decreased the ISP-induced phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal regulated kinase (ERK) protein in mice. JNK2 overexpression reduced collagen type I and Smad3 expression as well as GATA4 expression in H9c2 cells and cardiac fibroblasts. Gallic acid might be a novel therapeutic agent for the prevention of cardiac hypertrophy and fibrosis by regulating the JNK2 and Smad3 signaling pathway. PMID:27703224

  9. Catalpol ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by suppressing the JNK and NF-κB pathways

    Zhou, Jun, E-mail: hustzhj@hust.edu.cn; Xu, Gang; Ma, Shuai; Li, Fen; Yuan, Miao; Xu, Huibi; Huang, Kaixun

    2015-11-27

    Catalpol, a bioactive component from the root of Rehmannia glutinosa, has been shown to possess hypoglycemic effects in type 2 diabetic animal models, however, the underlying mechanisms remain poorly understood. Here we investigated the effect of catalpol on high-fat diet (HFD)-induced insulin resistance and adipose tissue inflammation in mice. Oral administration of catalpol at 100 mg/kg for 4 weeks had no effect on body weight of HFD-induced obese mice, but it significantly improved fasting glucose and insulin levels, glucose tolerance and insulin tolerance. Moreover, macrophage infiltration into adipose tissue was markedly reduced by catalpol. Intriguingly, catalpol also significantly reduced mRNA expressions of M1 pro-inflammatory cytokines, but increased M2 anti-inflammatory gene expressions in adipose tissue. Concurrently, catalpol significantly suppressed the c-Jun NH2-terminal kinase (JNK) and nuclear factor-kappa B (NF-κB) signaling pathways in adipose tissue. Collectively, these results suggest that catalpol may ameliorate HFD-induced insulin resistance in mice by attenuating adipose tissue inflammation and suppressing the JNK and NF-κB pathways, and thus provide important new insights into the underlying mechanisms of the antidiabetic effect of catalpol. - Highlights: • Catalpol ameliorates high-fat diet (HFD)-induced insulin resistance in mice. • Catalpol reduces adipose tissue macrophage infiltration in HFD-fed mice. • Catalpol regulates M1 and M2 inflammatory gene expression in obese adipose tissue. • Catalpol suppresses the JNK and NF-κB signaling pathways in obese adipose tissue.

  10. Catalpol ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by suppressing the JNK and NF-κB pathways

    Zhou, Jun; Xu, Gang; Ma, Shuai; Li, Fen; Yuan, Miao; Xu, Huibi; Huang, Kaixun

    2015-01-01

    Catalpol, a bioactive component from the root of Rehmannia glutinosa, has been shown to possess hypoglycemic effects in type 2 diabetic animal models, however, the underlying mechanisms remain poorly understood. Here we investigated the effect of catalpol on high-fat diet (HFD)-induced insulin resistance and adipose tissue inflammation in mice. Oral administration of catalpol at 100 mg/kg for 4 weeks had no effect on body weight of HFD-induced obese mice, but it significantly improved fasting glucose and insulin levels, glucose tolerance and insulin tolerance. Moreover, macrophage infiltration into adipose tissue was markedly reduced by catalpol. Intriguingly, catalpol also significantly reduced mRNA expressions of M1 pro-inflammatory cytokines, but increased M2 anti-inflammatory gene expressions in adipose tissue. Concurrently, catalpol significantly suppressed the c-Jun NH2-terminal kinase (JNK) and nuclear factor-kappa B (NF-κB) signaling pathways in adipose tissue. Collectively, these results suggest that catalpol may ameliorate HFD-induced insulin resistance in mice by attenuating adipose tissue inflammation and suppressing the JNK and NF-κB pathways, and thus provide important new insights into the underlying mechanisms of the antidiabetic effect of catalpol. - Highlights: • Catalpol ameliorates high-fat diet (HFD)-induced insulin resistance in mice. • Catalpol reduces adipose tissue macrophage infiltration in HFD-fed mice. • Catalpol regulates M1 and M2 inflammatory gene expression in obese adipose tissue. • Catalpol suppresses the JNK and NF-κB signaling pathways in obese adipose tissue.

  11. The HIV-1 Vpu protein induces apoptosis in Drosophila via activation of JNK signaling.

    Christelle Marchal

    Full Text Available The genome of the human immunodeficiency virus type 1 (HIV-1 encodes the canonical retroviral proteins, as well as additional accessory proteins that enhance the expression of viral genes, the infectivity of the virus and the production of virions. The accessory Viral Protein U (Vpu, in particular, enhances viral particle production, while also promoting apoptosis of HIV-infected human T lymphocytes. Some Vpu effects rely on its interaction with the ubiquitin-proteasome protein degradation system, but the mechanisms responsible for its pro-apoptotic effects in vivo are complex and remain largely to be elucidated.We took advantage of the Drosophila model to study the effects of Vpu activity in vivo. Expression of Vpu in the developing Drosophila wing provoked tissue loss due to caspase-dependent apoptosis. Moreover, Vpu induced expression of the pro-apoptotic gene reaper, known to down-regulate Inhibitor of Apoptosis Proteins (IAPs which are caspase-antagonizing E3 ubiquitin ligases. Indeed, Vpu also reduced accumulation of Drosophila IAP1 (DIAP1. Though our results demonstrate a physical interaction between Vpu and the proteasome-addressing SLIMB/β-TrCP protein, as in mammals, both SLIMB/βTrCP-dependent and -independent Vpu effects were observed in the Drosophila wing. Lastly, the pro-apoptotic effect of Vpu in this tissue was abrogated upon inactivation of the c-Jun N-terminal Kinase (JNK pathway. Our results in the fly thus provide the first functional evidence linking Vpu pro-apoptotic effects to activation of the conserved JNK pathway.

  12. CD274 promotes cell cycle entry of leukemia-initiating cells through JNK/Cyclin D2 signaling

    Xia Fang

    2016-11-01

    Full Text Available Abstract Background CD274 (programmed death ligand 1, also known as B7H1 is expressed in both solid tumors and hematologic malignancies and is of critical importance for the escape of tumor cells from immune surveillance by inhibiting T cell function via its receptor, programmed death 1 (PD-1. Increasing evidence indicates that functional monoclonal antibodies of CD274 may potently enhance the antitumor effect in many cancers. However, the role of CD274 in leukemia-initiating cells (LICs remains largely unknown. Methods We established an MLL-AF9-induced acute myeloid leukemia (AML model with wild-type (WT and CD274-null mice to elucidate the role of CD274 in the cell fates of LICs, including self-renewal, differentiation, cell cycle, and apoptosis. RNA sequencing was performed to reveal the potential downstream targets, the results of which were further validated both in vitro and in vivo. Results In silico analysis indicated that CD274 level was inversely correlated with the overall survival of AML patients. In Mac-1+/c-Kit+ mouse LICs, CD274 was expressed at a much higher level than in the normal hematopoietic stem cells (HSCs. The survival of the mice with CD274-null leukemia cells was dramatically extended during the serial transplantation compared with that of their WT counterparts. CD274 deletion led to a significant decrease in LIC frequency and arrest in the G1 phase of the cell cycle. Interestingly, CD274 is not required for the maintenance of HSC pool as shown in our previous study. Mechanistically, we demonstrated that the levels of both phospho-JNK and Cyclin D2 were strikingly downregulated in CD274-null LICs. The overexpression of Cyclin D2 fully rescued the loss of function of CD274. Moreover, CD274 was directly associated with JNK and enhanced the downstream signaling to increase the Cyclin D2 level, promoting leukemia development. Conclusions The surface immune molecule CD274 plays a critical role in the proliferation of LICs

  13. Fucoidan extract induces apoptosis in MCF-7 cells via a mechanism involving the ROS-dependent JNK activation and mitochondria-mediated pathways.

    Zhongyuan Zhang

    Full Text Available BACKGROUND: Fucoidan extract (FE, an enzymatically digested compound with a low molecular weight, is extracted from brown seaweed. As a natural compound with various actions, FE is attractive, especially in Asian countries, for improving the therapeutic efficacy and safety of cancer treatment. The present study was carried out to investigate the anti-tumor properties of FE in human carcinoma cells and further examine the underlying mechanisms of its activities. METHODOLOGY/PRINCIPAL FINDING: FE inhibits the growth of MCF-7, MDA-MB-231, HeLa, and HT1080 cells. FE-mediated apoptosis in MCF-7 cancer cells is accompanied by DNA fragmentation, nuclear condensation, and phosphatidylserine exposure. FE induces mitochondrial membrane permeabilization (MMP through loss of mitochondrial membrane potential (ΔΨm and regulation of the expression of Bcl-2 family members. Release of apoptosis-inducing factor (AIF and cytochrome c precedes MMP. AIF release causes DNA fragmentation, the final stage of apoptosis, via a caspase-independent mitochondrial pathway. Additionally, FE was found to induce phosphorylation of c-Jun N-terminal kinase (JNK, p38, and extracellular signal-regulated kinase (ERK 1/2, and apoptosis was found to be attenuated by inhibition of JNK. Furthermore, FE-mediated apoptosis was found to involve the generation of reactive oxygen species (ROS, which are responsible for the decrease of ΔΨm and phosphorylation of JNK, p38, and ERK1/2 kinases. CONCLUSIONS/SIGNIFICANCE: These data suggest that FE activates a caspase-independent apoptotic pathway in MCF-7 cancer cells through activation of ROS-mediated MAP kinases and regulation of the Bcl-2 family protein-mediated mitochondrial pathway. They also provide evidence that FE deserves further investigation as a natural anticancer and cancer preventive agent.

  14. The reverse-mode NCX1 activity inhibitor KB-R7943 promotes prostate cancer cell death by activating the JNK pathway and blocking autophagic flux.

    Long, Zhou; Chen, BaiJun; Liu, Qian; Zhao, Jiang; Yang, ZhenXing; Dong, XingYou; Xia, LiuBin; Huang, ShengQuan; Hu, XiaoYan; Song, Bo; Li, LongKun

    2016-07-05

    We explored the effects of KB-R7943, an inhibitor of reverse-mode NCX1 activity, in prostate cancer (PCa). NCX1 was overexpressed in PCa tissues and cell lines, and higher NCX1 levels were associated higher PCa grades. At concentrations greater than 10 μM, KB-R7943 dose-dependently decreased PC3 and LNCaP cell viability. KB-R7943 also increased cell cycle G1/S phase arrest and induced apoptosis in PC3 cells. KB-R7943 increased autophagosome accumulation in PCa cells as indicated by increases in LC3-II levels and eGFP-LC3 puncta. Combined treatment with chloroquine (CQ) and KB-R7943 decreased P62 and increased LC3-II protein levels in PC3 cells, indicating that KB-R7943 blocked autophagic flux. KB-R7943 induced autophagosome accumulation mainly by downregulating the PI3K/AKT/m-TOR pathway and upregulating the JNK pathway. In xenograft experiments, KB-R7943 inhibited tumor growth. Combined treatment with KB-R7943 and an autophagy inhibitor inhibited growth and increased apoptosis. These results indicate that KB-R7943 promotes cell death in PCa by activating the JNK signaling pathway and blocking autophagic flux.

  15. Hyperoside Downregulates the Receptor for Advanced Glycation End Products (RAGE and Promotes Proliferation in ECV304 Cells via the c-Jun N-Terminal Kinases (JNK Pathway Following Stimulation by Advanced Glycation End-Products In Vitro

    Zhengyu Zhang

    2013-11-01

    Full Text Available Hyperoside is a major active constituent in many medicinal plants which are traditionally used in Chinese medicines for their neuroprotective, anti-inflammatory and antioxidative effects. The molecular mechanisms underlying these effects are unknown. In this study, quiescent ECV304 cells were treated in vitro with advanced glycation end products (AGEs in the presence or absence of hyperoside. The results demonstrated that AGEs induced c-Jun N-terminal kinases (JNK activation and apoptosis in ECV304 cells. Hyperoside inhibited these effects and promoted ECV304 cell proliferation. Furthermore, hyperoside significantly inhibited RAGE expression in AGE-stimulated ECV304 cells, whereas knockdown of RAGE inhibited AGE-induced JNK activation. These results suggested that AGEs may promote JNK activation, leading to viability inhibition of ECV304 cells via the RAGE signaling pathway. These effects could be inhibited by hyperoside. Our findings suggest a novel role for hyperoside in the treatment and prevention of diabetes.

  16. TGF-β1 is Involved in Vitamin D-Induced Chondrogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells by Regulating the ERK/JNK Pathway

    Xiaorui Jiang

    2017-08-01

    Full Text Available Background/Aims: Osteoarthritis (OA is characterized by degradation of cartilage, sole cell type of which is chondrocytes. Bone marrow-derived mesenchymal stem cells (BMSCs possess multipotency and can be directionally differentiated into chondrocytes under stimulation. This study was aimed to explore the possible roles of vitamin D and transforming growth factor-β1 (TGF-β1 in the chondrogenic differentiation of BMSCs. Methods: BMSCs were isolated from femurs and tibias of rats and characterized by flow cytometry. After stimulation with vitamin D, BMSC proliferation and migration were measured by Cell Counting Kit-8 (CCK-8 and Transwell assays, respectively. Chondrogenic differentiation was estimated through expression levels of specific markers by qRT-PCR and Western blot analysis. After stable transfection, the effects of aberrantly expressed TGF-β1 on vitamin D-induced alterations, including BMSC viability, migration and chondrogenic differentiation, were all evaluated utilizing CCK-8 assay, Transwell assay, qRT-PCR and Western blot analysis. Finally, the phosphorylation levels of key kinases in the extracellular signal-regulated kinase (ERK and c-Jun N-terminal kinase (JNK pathways were determined by Western blot analysis. Results: Vitamin D remarkably promoted BMSC viability, migration and chondrogenic differentiation. These alterations of BMSCs induced by vitamin D were reinforced by TGF-β1 overexpression while were reversed by TGF-β1 silencing. Additionally, the phosphorylation levels of ERK, JNK and c-Jun were enhanced by TGF-β1 overexpression but were reduced by TGF-β1 knockdown. Conclusion: Vitamin D promoted BMSC proliferation, migration and chondrogenic differentiation. TGF-β1 might be implicated in the vitamin D-induced alterations of BMSCs through regulating ERK/JNK pathway.

  17. Critical nodes in signalling pathways

    Taniguchi, Cullen M; Emanuelli, Brice; Kahn, C Ronald

    2006-01-01

    Physiologically important cell-signalling networks are complex, and contain several points of regulation, signal divergence and crosstalk with other signalling cascades. Here, we use the concept of 'critical nodes' to define the important junctions in these pathways and illustrate their unique role...... using insulin signalling as a model system....

  18. Calcineurin inhibitors recruit protein kinases JAK2 and JNK, TLR signaling and the UPR to activate NF-κB-mediated inflammatory responses in kidney tubular cells

    González-Guerrero, Cristian; Ocaña-Salceda, Carlos; Berzal, Sergio; Carrasco, Susana; Fernández-Fernández, Beatriz

    2013-01-01

    The calcineurin inhibitors (CNIs) cyclosporine (CsA) and tacrolimus are key drugs in current immunosuppressive regimes for solid organ transplantation. However, they are nephrotoxic and promote death and profibrotic responses in tubular cells. Moreover, renal inflammation is observed in CNI nephrotoxicity but the mechanisms are poorly understood. We have now studied molecular pathways leading to inflammation elicited by the CNIs in cultured and kidney tubular cells. Both CsA and tacrolimus elicited a proinflammatory response in tubular cells as evidenced by a transcriptomics approach. Transcriptomics also suggested several potential pathways leading to expression of proinflammatory genes. Validation and functional studies disclosed that in tubular cells, CNIs activated protein kinases such as the JAK2/STAT3 and TAK1/JNK/AP-1 pathways, TLR4/Myd88/IRAK signaling and the Unfolded Protein Response (UPR) to promote NF-κB activation and proinflammatory gene expression. CNIs also activated an Nrf2/HO-1-dependent compensatory response and the Nrf2 activator sulforaphane inhibited JAK2 and JNK activation and inflammation. A murine model of CsA nephrotoxicity corroborated activation of the proinflammatory pathways identified in cell cultures. Human CNIs nephrotoxicity was also associated with NF-κB, STAT3 and IRE1α activation. In conclusion, CNIs recruit several intracellular pathways leading to previously non-described proinflammatory actions in renal tubular cells. Identification of these pathways provides novel clues for therapeutic intervention to limit CNIs nephrotoxicity. - Highlights: • Molecular mechanisms modulating CNI renal inflammation were investigated. • Kinases, immune receptors and ER stress mediate the inflammatory response to CNIs. • Several intracellular pathways activate NF-κB in CNIs-treated tubular cells. • A NF-κB-dependent cytokine profile characterizes CNIs-induced inflammation. • CNI nephrotoxicity was associated to inflammatory

  19. Melatonin inhibits the migration of human lung adenocarcinoma A549 cell lines involving JNK/MAPK pathway.

    Qiaoyun Zhou

    Full Text Available OBJECTIVE: Melatonin, an indolamine produced and secreted predominately by the pineal gland, exhibits a variety of physiological functions, possesses antioxidant and antitumor properties. But, the mechanisms for the anti-cancer effects are unknown. The present study explored the effects of melatonin on the migration of human lung adenocarcinoma A549 cells and its mechanism. METHODS: MTT assay was employed to measure the viability of A549 cells treated with different concentrations of melatonin. The effect of melatonin on the migration of A549 cells was analyzed by wound healing assay. Occludin location was observed by immunofluorescence. The expression of occludin, osteopontin (OPN, myosin light chain kinase (MLCK and phosphorylation of myosin light chain (MLC, JNK were detected by western blots. RESULTS: After A549 cells were treated with melatonin, the viability and migration of the cells were inhibited significantly. The relative migration rate of A549 cells treated with melatonin was only about 20% at 24 h. The expression level of OPN, MLCK and phosphorylation of MLC of A549 cells were reduced, while the expression of occludin was conversely elevated, and occludin located on the cell surface was obviously increased. The phosphorylation status of JNK in A549 cells was also reduced when cells were treated by melatonin. CONCLUSIONS: Melatonin significantly inhibits the migration of A549 cells, and this may be associated with the down-regulation of the expression of OPN, MLCK, phosphorylation of MLC, and up-regulation of the expression of occludin involving JNK/MAPK pathway.

  20. Sodium fluoride induces apoptosis in mouse embryonic stem cells through ROS-dependent and caspase- and JNK-mediated pathways

    Nguyen Ngoc, Tam Dan; Son, Young-Ok; Lim, Shin-Saeng; Shi, Xianglin; Kim, Jong-Ghee; Heo, Jung Sun; Choe, Youngji; Jeon, Young-Mi; Lee, Jeong-Chae

    2012-01-01

    Sodium fluoride (NaF) is used as a source of fluoride ions in diverse applications. Fluoride salt is an effective prophylactic for dental caries and is an essential element required for bone health. However, fluoride is known to cause cytotoxicity in a concentration-dependent manner. Further, no information is available on the effects of NaF on mouse embryonic stem cells (mESCs). We investigated the mode of cell death induced by NaF and the mechanisms involved. NaF treatment greater than 1 mM reduced viability and DNA synthesis in mESCs and induced cell cycle arrest in the G 2 /M phase. The addition of NaF induced cell death mainly by apoptosis rather than necrosis. Catalase (CAT) treatment significantly inhibited the NaF-mediated cell death and also suppressed the NaF-mediated increase in phospho-c-Jun N-terminal kinase (p-JNK) levels. Pre-treatment with SP600125 or z-VAD-fmk significantly attenuated the NaF-mediated reduction in cell viability. In contrast, intracellular free calcium chelator, but not of sodium or calcium ion channel blockers, facilitated NaF-induced toxicity in the cells. A JNK specific inhibitor (SP600125) prevented the NaF-induced increase in growth arrest and the DNA damage-inducible protein 45α. Further, NaF-mediated loss of mitochondrial membrane potential was apparently inhibited by pifithrin-α or CAT inhibitor. These findings suggest that NaF affects viability of mESCs in a concentration-dependent manner, where more than 1 mM NaF causes apoptosis through hydroxyl radical-dependent and caspase- and JNK-mediated pathways. -- Highlights: ► The mode of NaF-induced cell death and the mechanisms involved were examined. ► NaF induced mainly apoptotic death of mouse embryonic stem cells (mESCs). ► NaF induced mitochondrial-mediated and caspase-dependent apoptosis. ► JNK- and p53-mediated pathways are involved in NaF-mediated apoptosis in the cells. ► ROS are the up-stream effector in NaF-mediated activation of JNK and p53 in mESCs.

  1. Sodium fluoride induces apoptosis in mouse embryonic stem cells through ROS-dependent and caspase- and JNK-mediated pathways

    Nguyen Ngoc, Tam Dan [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Son, Young-Ok [Graduate Center for Toxicology, School of Medicine, University of Kentucky, Lexington, KY 40536-0305 (United States); Lim, Shin-Saeng [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Shi, Xianglin [Graduate Center for Toxicology, School of Medicine, University of Kentucky, Lexington, KY 40536-0305 (United States); Kim, Jong-Ghee [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Heo, Jung Sun [Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Choe, Youngji [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Jeon, Young-Mi, E-mail: young@jbnu.ac.kr [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Jeong-Chae, E-mail: leejc88@jbnu.ac.kr [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Graduate Center for Toxicology, School of Medicine, University of Kentucky, Lexington, KY 40536-0305 (United States); Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2012-03-15

    Sodium fluoride (NaF) is used as a source of fluoride ions in diverse applications. Fluoride salt is an effective prophylactic for dental caries and is an essential element required for bone health. However, fluoride is known to cause cytotoxicity in a concentration-dependent manner. Further, no information is available on the effects of NaF on mouse embryonic stem cells (mESCs). We investigated the mode of cell death induced by NaF and the mechanisms involved. NaF treatment greater than 1 mM reduced viability and DNA synthesis in mESCs and induced cell cycle arrest in the G{sub 2}/M phase. The addition of NaF induced cell death mainly by apoptosis rather than necrosis. Catalase (CAT) treatment significantly inhibited the NaF-mediated cell death and also suppressed the NaF-mediated increase in phospho-c-Jun N-terminal kinase (p-JNK) levels. Pre-treatment with SP600125 or z-VAD-fmk significantly attenuated the NaF-mediated reduction in cell viability. In contrast, intracellular free calcium chelator, but not of sodium or calcium ion channel blockers, facilitated NaF-induced toxicity in the cells. A JNK specific inhibitor (SP600125) prevented the NaF-induced increase in growth arrest and the DNA damage-inducible protein 45α. Further, NaF-mediated loss of mitochondrial membrane potential was apparently inhibited by pifithrin-α or CAT inhibitor. These findings suggest that NaF affects viability of mESCs in a concentration-dependent manner, where more than 1 mM NaF causes apoptosis through hydroxyl radical-dependent and caspase- and JNK-mediated pathways. -- Highlights: ► The mode of NaF-induced cell death and the mechanisms involved were examined. ► NaF induced mainly apoptotic death of mouse embryonic stem cells (mESCs). ► NaF induced mitochondrial-mediated and caspase-dependent apoptosis. ► JNK- and p53-mediated pathways are involved in NaF-mediated apoptosis in the cells. ► ROS are the up-stream effector in NaF-mediated activation of JNK and p53 in mESCs.

  2. GADD45a Regulates Olaquindox-Induced DNA Damage and S-Phase Arrest in Human Hepatoma G2 Cells via JNK/p38 Pathways

    Daowen Li

    2017-01-01

    Full Text Available Olaquindox, a quinoxaline 1,4-dioxide derivative, is widely used as a feed additive in many countries. The potential genotoxicity of olaquindox, hence, is of concern. However, the proper mechanism of toxicity was unclear. The aim of the present study was to investigate the effect of growth arrest and DNA damage 45 alpha (GADD45a on olaquindox-induced DNA damage and cell cycle arrest in HepG2 cells. The results showed that olaquindox could induce reactive oxygen species (ROS-mediated DNA damage and S-phase arrest, where increases of GADD45a, cyclin A, Cdk 2, p21 and p53 protein expression, decrease of cyclin D1 and the activation of phosphorylation-c-Jun N-terminal kinases (p-JNK, phosphorylation-p38 (p-p38 and phosphorylation-extracellular signal-regulated kinases (p-ERK were involved. However, GADD45a knockdown cells treated with olaquindox could significantly decrease cell viability, exacerbate DNA damage and increase S-phase arrest, associated with the marked activation of p-JNK, p-p38, but not p-ERK. Furthermore, SP600125 and SB203580 aggravated olaquindox-induced DNA damage and S-phase arrest, suppressed the expression of GADD45a. Taken together, these findings revealed that GADD45a played a protective role in olaquindox treatment and JNK/p38 pathways may partly contribute to GADD45a regulated olaquindox-induced DNA damage and S-phase arrest. Our findings increase the understanding on the molecular mechanisms of olaquindox.

  3. Involvement of JNK and NF-κB pathways in lipopolysaccharide (LPS)-induced BAG3 expression in human monocytic cells.

    Wang, Hua-Qin; Meng, Xin; Liu, Bao-Qin; Li, Chao; Gao, Yan-Yan; Niu, Xiao-Fang; Li, Ning; Guan, Yifu; Du, Zhen-Xian

    2012-01-01

    Lipopolysaccharide (LPS) is an outer-membrane glycolipid component of Gram-negative bacteria known for its fervent ability to activate monocytic cells and for its potent proinflammatory capabilities. Bcl-2-associated athanogene 3 (BAG3) is a survival protein that has been shown to be stimulated during cell response to stressful conditions, such as exposure to high temperature, heavy metals, proteasome inhibition, and human immunodeficiency virus 1 (HIV-1) infection. In addition, BAG3 regulates replication of Varicella-Zoster Virus (VZV) and Herpes Simplex Virus (HSV) replication, suggesting that BAG3 could participate in the host response to infection. In the current study, we found that LPS increased the expression of BAG3 in a dose- and time-dependent manner. Actinomycin D completely blocked the LPS-induced BAG3 accumulation, as well as LPS activated the proximal promoter of BAG3 gene, supported that the induction by LPS occurred at the level of gene transcription. LPS-induced BAG3 expression was blocked by JNK or NF-κB inhibition, suggesting that JNK and NF-κB pathways participated in BAG3 induction by LPS. In addition, we also found that induction of BAG3 was implicated in monocytic cell adhesion to extracellular matrix induced by LPS. Overall, the data support that BAG3 is induced by LPS via JNK and NF-κB-dependent signals, and involved in monocytic cell-extracellular matrix interaction, suggesting that BAG3 may have a role in the host response to LPS stimulation. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Lycium barbarum (wolfberry reduces secondary degeneration and oxidative stress, and inhibits JNK pathway in retina after partial optic nerve transection.

    Hongying Li

    Full Text Available Our group has shown that the polysaccharides extracted from Lycium barbarum (LBP are neuroprotective for retinal ganglion cells (RGCs in different animal models. Protecting RGCs from secondary degeneration is a promising direction for therapy in glaucoma management. The complete optic nerve transection (CONT model can be used to study primary degeneration of RGCs, while the partial optic nerve transection (PONT model can be used to study secondary degeneration of RGCs because primary degeneration of RGCs and secondary degeneration can be separated in location in the same retina in this model; in other situations, these types of degeneration can be difficult to distinguish. In order to examine which kind of degeneration LBP could delay, both CONT and PONT models were used in this study. Rats were fed with LBP or vehicle daily from 7 days before surgery until sacrifice at different time-points and the surviving numbers of RGCs were evaluated. The expression of several proteins related to inflammation, oxidative stress, and the c-jun N-terminal kinase (JNK pathways were detected with Western-blot analysis. LBP did not delay primary degeneration of RGCs after either CONT or PONT, but it did delay secondary degeneration of RGCs after PONT. We found that LBP appeared to exert these protective effects by inhibiting oxidative stress and the JNK/c-jun pathway and by transiently increasing production of insulin-like growth factor-1 (IGF-1. This study suggests that LBP can delay secondary degeneration of RGCs and this effect may be linked to inhibition of oxidative stress and the JNK/c-jun pathway in the retina.

  5. Lycium Barbarum (Wolfberry) Reduces Secondary Degeneration and Oxidative Stress, and Inhibits JNK Pathway in Retina after Partial Optic Nerve Transection

    Li, Hongying; Liang, Yuxiang; Chiu, Kin; Yuan, Qiuju; Lin, Bin; Chang, Raymond Chuen-Chung; So, Kwok-Fai

    2013-01-01

    Our group has shown that the polysaccharides extracted from Lycium barbarum (LBP) are neuroprotective for retinal ganglion cells (RGCs) in different animal models. Protecting RGCs from secondary degeneration is a promising direction for therapy in glaucoma management. The complete optic nerve transection (CONT) model can be used to study primary degeneration of RGCs, while the partial optic nerve transection (PONT) model can be used to study secondary degeneration of RGCs because primary degeneration of RGCs and secondary degeneration can be separated in location in the same retina in this model; in other situations, these types of degeneration can be difficult to distinguish. In order to examine which kind of degeneration LBP could delay, both CONT and PONT models were used in this study. Rats were fed with LBP or vehicle daily from 7 days before surgery until sacrifice at different time-points and the surviving numbers of RGCs were evaluated. The expression of several proteins related to inflammation, oxidative stress, and the c-jun N-terminal kinase (JNK) pathways were detected with Western-blot analysis. LBP did not delay primary degeneration of RGCs after either CONT or PONT, but it did delay secondary degeneration of RGCs after PONT. We found that LBP appeared to exert these protective effects by inhibiting oxidative stress and the JNK/c-jun pathway and by transiently increasing production of insulin-like growth factor-1 (IGF-1). This study suggests that LBP can delay secondary degeneration of RGCs and this effect may be linked to inhibition of oxidative stress and the JNK/c-jun pathway in the retina. PMID:23894366

  6. Stimulation of JNK Phosphorylation by the PTTH in Prothoracic Glands of the Silkworm, Bombyx mori

    Shi-Hong Gu

    2018-02-01

    Full Text Available In this study, phosphorylation of c-Jun N-terminal kinase (JNK by the prothoracicotropic hormone (PTTH was investigated in prothoracic glands (PGs of the silkworm, Bombyx mori. Results showed that JNK phosphorylation was stimulated by the PTTH in time- and dose-dependent manners. In vitro activation of JNK phosphorylation in PGs by the PTTH was also confirmed in an in vivo experiment, in which a PTTH injection greatly increased JNK phosphorylation in PGs of day-6 last instar larvae. JNK phosphorylation caused by PTTH stimulation was greatly inhibited by U73122, a potent and specific inhibitor of phospholipase C (PLC and an increase in JNK phosphorylation was also detected when PGs were treated with agents (either A23187 or thapsigargin that directly elevated the intracellular Ca2+ concentration, thereby indicating involvement of PLC and Ca2+. Pretreatment with an inhibitor (U0126 of mitogen-activated protein kinase (MAPK/extracellular signal-regulated kinase (ERK kinase (MEK and an inhibitor (LY294002 of phosphoinositide 3-kinase (PI3K failed to significantly inhibit PTTH-stimulated JNK phosphorylation, indicating that ERK and PI3K were not related to JNK. We further investigated the effect of modulation of the redox state on JNK phosphorylation. In the presence of either an antioxidant (N-acetylcysteine, NAC or diphenylene iodonium (DPI, PTTH-stimulated JNK phosphorylation was blocked. The JNK kinase inhibitor, SP600125, markedly inhibited PTTH-stimulated JNK phosphorylation and ecdysteroid synthesis. The kinase assay of JNK in PGs confirmed its stimulation by PTTH and inhibition by SP600125. Moreover, PTTH treatment did not affect JNK or Jun mRNA expressions. Based on these findings, we concluded that PTTH stimulates JNK phosphorylation in Ca2+- and PLC-dependent manners and that the redox-regulated JNK signaling pathway is involved in PTTH-stimulated ecdysteroid synthesis in B. mori PGs.

  7. Amitriptyline induces early growth response-1 gene expression via ERK and JNK mitogen-activated protein kinase pathways in rat C6 glial cells.

    Chung, Eun Young; Shin, Soon Young; Lee, Young Han

    2007-07-05

    Astrocytes play important roles in guiding the construction of the nervous system, controlling extracellular ions and neurotransmitters, and regulating CNS synaptogenesis. Egr-1 is a transcription factor involved in neuronal differentiation and astrocyte cell proliferation. In this study, we investigated whether the tricyclic antidepressant (TCA) amitriptyline induces Egr-1 expression in astrocytes using rat C6 glioma cells as a model. We found that amitriptyline increased the expression of Egr-1 in a dose- and time-dependent manner. The amitriptyline-induced Egr-1 expression was mediated through serum response elements (SREs) in the Egr-1 promoter. SREs were activated by the Ets-domain transcription factor Elk-1 through the ERK and JNK mitogen-activated protein (MAP) kinase pathways. The inhibition of the ERK and JNK MAP kinase signals attenuated amitriptyline-induced transactivation of Gal4-Elk-1 and Egr-1 promoter activity. Our findings suggest that the induction of Egr-1 expression in astrocytes may be required to attain the therapeutic effects of antidepressant drugs.

  8. Pentraxin 3 Activates JNK Signaling and Regulates the Epithelial-To-Mesenchymal Transition in Renal Fibrosis

    Tung-Wei Hung

    2016-12-01

    Full Text Available Background/Aims: Tubulointerstitial fibrosis can lead to end-stage renal disease. Pentraxin 3 (PTX3 is an acute phase protein produced by resident and innate immunity cells. We investigated the effect of PTX3 on cultured human proximal tubular epithelial (HK-2 cells and a rat unilateral ureteral obstruction (UUO model of renal fibrosis. Methods: Gain-of-function experiments were used to examine the effect of recombinant human PTX3 (Rh-PTX3 on HK-2 cells. Cell proliferation (MTT assay and in vitro cell migration were measured. The levels of PTX3, p-JNK, and EMT markers were measured using immunohistochemistry, RT-PCR, and western blotting in UUO rats and HK-2 cells. Results: HK-2 cells treated with Rh PTX3 did not affect cell viability, but significantly increased cell migration. Moreover, Rh-PTX3 increased the expression of snail, slug, N-cadherin, and vimentin, decreased the expression of E-cadherin, and increased the phosphorylation of JNK. SP600126 (a specific JNK inhibitor enhanced the effects of Rh-PTX3. Rats with UUO exhibited time-dependent increased levels of PTX3, p-JNK, and vimentin, and decreased expression of E-cadherin. Conclusions: Our results suggest that PTX3 induces cell migration via upregulation of EMT in a JNK-dependent mechanism, and highlight the role of PTX3 in the pathogenesis renal fibrosis.

  9. Metformin and pioglitazone combination therapy ameliorate polycystic ovary syndrome through AMPK/PI3K/JNK pathway

    Wu, Yuanyuan; Li, Pengfen; Zhang, Dan; Sun, Yingpu

    2018-01-01

    Polycystic ovary syndrome (PCOS) is a common gynecological endocrine disorder, which results in health problems such as menstrual disorders, hyperandrogenism and persistent anovulation. Hyperandrogenism and insulin resistance are the basic characteristics of PCOS. To investigate the combined effect of metformin and pioglitazone on POCS and the potential mechanisms, a rat model of PCOS was established by intramuscular injection of estradiol valerate (EV). The effect of metformin and pioglitazone monotherapy or combination therapy in control rats and PCOS rats was evaluated, involving the testosterone level, follicular development and insulin resistance. The potential mechanism for the therapeutic effect of metformin and pioglitazone on POCS was explored through using three inhibitors of the 5′adenosine monophosphate-activated protein kinase (AMPK)/phosphoinositide-3 kinase (PI3K)/c-Jun N-terminal kinase (JNK) pathway (Compound C, Wortmannin and SP600125). The results showed that EV-induced PCOS rats demonstrated hyperandrogenemia, hyperinsulinemia and follicular dysplasia. Metformin or pioglitazone monotherapy significantly suppressed the high level of testosterone, reduced the raised percentage of cystic follicles and primary follicles, promoted the number of early antral follicles, and markedly decreased the high concentration of fasting insulin and homeostatic model assessment for insulin resistance index in PCOS rats. In addition, metformin and pioglitazone combination therapy demonstrated greater efficacy than its individual components. Furthermore, individual or joint treatment with metformin and pioglitazone affected the phosphorylation level of JNK in PCOS rats. Compound C and Wortmannin eliminated the effect of metformin and pioglitazone combination therapy on improving the follicular growth in PCOS rats, whereas SP600125 treatment enhanced this combination therapy effect. These data suggested that metformin and pioglitazone combination therapy

  10. Retroactive signaling in short signaling pathways.

    Jacques-Alexandre Sepulchre

    Full Text Available In biochemical signaling pathways without explicit feedback connections, the core signal transduction is usually described as a one-way communication, going from upstream to downstream in a feedforward chain or network of covalent modification cycles. In this paper we explore the possibility of a new type of signaling called retroactive signaling, offered by the recently demonstrated property of retroactivity in signaling cascades. The possibility of retroactive signaling is analysed in the simplest case of the stationary states of a bicyclic cascade of signaling cycles. In this case, we work out the conditions for which variables of the upstream cycle are affected by a change of the total amount of protein in the downstream cycle, or by a variation of the phosphatase deactivating the same protein. Particularly, we predict the characteristic ranges of the downstream protein, or of the downstream phosphatase, for which a retroactive effect can be observed on the upstream cycle variables. Next, we extend the possibility of retroactive signaling in short but nonlinear signaling pathways involving a few covalent modification cycles.

  11. Aberrant Signaling Pathways in Glioma

    Nakada, Mitsutoshi; Kita, Daisuke; Watanabe, Takuya; Hayashi, Yutaka; Teng, Lei; Pyko, Ilya V.; Hamada, Jun-Ichiro

    2011-01-01

    Glioblastoma multiforme (GBM), a WHO grade IV malignant glioma, is the most common and lethal primary brain tumor in adults; few treatments are available. Median survival rates range from 12–15 months. The biological characteristics of this tumor are exemplified by prominent proliferation, active invasiveness, and rich angiogenesis. This is mainly due to highly deregulated signaling pathways in the tumor. Studies of these signaling pathways have greatly increased our understanding of the biology and clinical behavior of GBM. An integrated view of signal transduction will provide a more useful approach in designing novel therapies for this devastating disease. In this review, we summarize the current understanding of GBM signaling pathways with a focus on potential molecular targets for anti-signaling molecular therapies

  12. DISTINCT FUNCTIONS OF JNK AND C-JUN IN OXIDANT-INDUCED HEPATOCYTE DEATH

    Amir, Muhammad; Liu, Kun; Zhao, Enpeng; Czaja, Mark J.

    2013-01-01

    Overactivation of c-Jun N-terminal kinase (JNK)/c-Jun signaling is a central mechanism of hepatocyte injury and death including that from oxidative stress. However, the functions of JNK and c-Jun are still unclear, and this pathway also inhibits hepatocyte death. Previous studies of menadione-induced oxidant stress demonstrated that toxicity resulted from sustained JNK/c-Jun activation as death was blocked by the c-Jun dominant negative TAM67. To further delineate the function of JNK/c-Jun signaling in hepatocyte injury from oxidant stress, the effects of direct JNK inhibition on menadione-induced death were examined. In contrast to the inhibitory effect of TAM67, pharmacological JNK inhibition by SP600125 sensitized the rat hepatocyte cell line RALA255-10G to death from menadione. SP600125 similarly sensitized mouse primary hepatocytes to menadione toxicity. Death from SP600125/menadione was c-Jun dependent as it was blocked by TAM67, but independent of c-Jun phosphorylation. Death occurred by apoptosis and necrosis and activation of the mitochondrial death pathway. Short hairpin RNA knockdowns of total JNK or JNK2 sensitized to death from menadione, whereas a jnk1 knockdown was protective. Jnk2 null mouse primary hepatocytes were also sensitized to menadione death. JNK inhibition magnified decreases in cellular ATP content and β-oxidation induced by menadione. This effect mediated cell death as chemical inhibition of β-oxidation also sensitized cells to death from menadione, and supplementation with the β-oxidation substrate oleate blocked death. Components of the JNK/c-Jun signaling pathway have opposing functions in hepatocyte oxidant stress with JNK2 mediating resistance to cell death and c-Jun promoting death. PMID:22644775

  13. A novel missense mutation in CCDC88C activates the JNK pathway and causes a dominant form of spinocerebellar ataxia.

    Tsoi, Ho; Yu, Allen C S; Chen, Zhefan S; Ng, Nelson K N; Chan, Anne Y Y; Yuen, Liz Y P; Abrigo, Jill M; Tsang, Suk Ying; Tsui, Stephen K W; Tong, Tony M F; Lo, Ivan F M; Lam, Stephen T S; Mok, Vincent C T; Wong, Lawrence K S; Ngo, Jacky C K; Lau, Kwok-Fai; Chan, Ting-Fung; Chan, H Y Edwin

    2014-09-01

    Spinocerebellar ataxias (SCAs) are a group of clinically and genetically diverse and autosomal-dominant disorders characterised by neurological deficits in the cerebellum. At present, there is no cure for SCAs. Of the different distinct subtypes of autosomal-dominant SCAs identified to date, causative genes for only a fraction of them are currently known. In this study, we investigated the cause of an autosomal-dominant SCA phenotype in a family that exhibits cerebellar ataxia and pontocerebellar atrophy along with a global reduction in brain volume. Whole-exome analysis revealed a missense mutation c.G1391A (p.R464H) in the coding region of the coiled-coil domain containing 88C (CCDC88C) gene in all affected individuals. Functional studies showed that the mutant form of CCDC88C activates the c-Jun N-terminal kinase (JNK) pathway, induces caspase 3 cleavage and triggers apoptosis. This study expands our understanding of the cause of autosomal-dominant SCAs, a group of heterogeneous congenital neurological conditions in humans, and unveils a link between the JNK stress pathway and cerebellar atrophy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Neural Differentiation of Human Adipose Tissue-Derived Stem Cells Involves Activation of the Wnt5a/JNK Signalling

    Sujeong Jang

    2015-01-01

    Full Text Available Stem cells are a powerful resource for cell-based transplantation therapies, but understanding of stem cell differentiation at the molecular level is not clear yet. We hypothesized that the Wnt pathway controls stem cell maintenance and neural differentiation. We have characterized the transcriptional expression of Wnt during the neural differentiation of hADSCs. After neural induction, the expressions of Wnt2, Wnt4, and Wnt11 were decreased, but the expression of Wnt5a was increased compared with primary hADSCs in RT-PCR analysis. In addition, the expression levels of most Fzds and LRP5/6 ligand were decreased, but not Fzd3 and Fzd5. Furthermore, Dvl1 and RYK expression levels were downregulated in NI-hADSCs. There were no changes in the expression of ß-catenin and GSK3ß. Interestingly, Wnt5a expression was highly increased in NI-hADSCs by real time RT-PCR analysis and western blot. Wnt5a level was upregulated after neural differentiation and Wnt3, Dvl2, and Naked1 levels were downregulated. Finally, we found that the JNK expression was increased after neural induction and ERK level was decreased. Thus, this study shows for the first time how a single Wnt5a ligand can activate the neural differentiation pathway through the activation of Wnt5a/JNK pathway by binding Fzd3 and Fzd5 and directing Axin/GSK-3ß in hADSCs.

  15. Chrysin inhibits tumor promoter-induced MMP-9 expression by blocking AP-1 via suppression of ERK and JNK pathways in gastric cancer cells.

    Yong Xia

    Full Text Available Cell invasion is a crucial mechanism of cancer metastasis and malignancy. Matrix metalloproteinase-9 (MMP-9 is an important proteolytic enzyme involved in the cancer cell invasion process. High expression levels of MMP-9 in gastric cancer positively correlate with tumor aggressiveness and have a significant negative correlation with patients' survival times. Recently, mechanisms suppressing MMP-9 by phytochemicals have become increasingly investigated. Chrysin, a naturally occurring chemical in plants, has been reported to suppress tumor metastasis. However, the effects of chrysin on MMP-9 expression in gastric cancer have not been well studied. In the present study, we tested the effects of chrysin on MMP-9 expression in gastric cancer cells, and determined its underlying mechanism. We examined the effects of chrysin on MMP-9 expression and activity via RT-PCR, zymography, promoter study, and western blotting in human gastric cancer AGS cells. Chrysin inhibited phorbol-12-myristate 13-acetate (PMA-induced MMP-9 expression in a dose-dependent manner. Using AP-1 decoy oligodeoxynucleotides, we confirmed that AP-1 was the crucial transcriptional factor for MMP-9 expression. Chrysin blocked AP-1 via suppression of the phosphorylation of c-Jun and c-Fos through blocking the JNK1/2 and ERK1/2 pathways. Furthermore, AGS cells pretreated with PMA showed markedly enhanced invasiveness, which was partially abrogated by chrysin and MMP-9 antibody. Our results suggest that chrysin may exert at least part of its anticancer effect by controlling MMP-9 expression through suppression of AP-1 activity via a block of the JNK1/2 and ERK1/2 signaling pathways in gastric cancer AGS cells.

  16. The involvement of calcium and MAP kinase signaling pathways in the production of radiation-induced bystander effects.

    Lyng, F M

    2006-04-01

    Much evidence now exists regarding radiation-induced bystander effects, but the mechanisms involved in the transduction of the signal are still unclear. The mitogen-activated protein kinase (MAPK) pathways have been linked to growth factor-mediated regulation of cellular events such as proliferation, senescence, differentiation and apoptosis. Activation of multiple MAPK pathways such as the ERK, JNK and p38 pathways have been shown to occur after exposure of cells to radiation and a variety of other toxic stresses. Previous studies have shown oxidative stress and calcium signaling to be important in radiation-induced bystander effects. The aim of the present study was to investigate MAPK signaling pathways in bystander cells exposed to irradiated cell conditioned medium (ICCM) and the role of oxidative metabolism and calcium signaling in the induction of bystander responses. Human keratinocytes (HPV-G cell line) were irradiated (0.005-5 Gy) using a cobalt-60 teletherapy unit. The medium was harvested 1 h postirradiation and transferred to recipient HPV-G cells. Phosphorylated forms of p38, JNK and ERK were studied by immunofluorescence 30 min-24 h after exposure to ICCM. Inhibitors of the ERK pathway (PD98059 and U0126), the JNK pathway (SP600125), and the p38 pathway (SB203580) were used to investigate whether bystander-induced cell death could be blocked. Cells were also incubated with ICCM in the presence of superoxide dismutase, catalase, EGTA, verapamil, nifedipine and thapsigargin to investigate whether bystander effects could be inhibited because of the known effects on calcium homeostasis. Activated forms of JNK and ERK proteins were observed after exposure to ICCM. Inhibition of the ERK pathway appeared to increase bystander-induced apoptosis, while inhibition of the JNK pathway appeared to decrease apoptosis. In addition, reactive oxygen species, such as superoxide and hydrogen peroxide, and calcium signaling were found to be important modulators of

  17. Identification of ASK1, MKK4, JNK, c-Jun, and caspase-3 as a signaling cascade involved in cadmium-induced neuronal cell apoptosis

    Kim, Sun Don; Moon, Chang Kyu; Eun, Su-Yong; Ryu, Pan Dong; Jo, Sangmee Ahn

    2005-01-01

    Cd induces oxidative stress and apoptosis in various cells by activating mitogen-activated protein kinases (MAPKs), but the precise signaling components of the MAPK cascade and their role in neuronal apoptosis are still unclear. Here, we report that Cd treatment of SH-SY5Y cells caused apoptosis through sequential phosphorylation of the apoptosis signal regulating kinase 1, MAPK kinase 4, c-Jun N-terminal kinase (JNK), and c-Jun as determined by overexpression of dominant negative (DN) constructs of these genes or using a specific JNK inhibitor SP600125. Both Cd-induced JNK and c-Jun phosphorylation and apoptosis were inhibited dramatically by N-acetyl-L-cysteine, a free radical scavenger. In addition, caspase inhibitors, zDEVD and zVAD, reduced apoptosis but not JNK and c-Jun phosphorylation induced by Cd, while overexpression of DN JNK1 inhibited caspase-3 activity. Taken together, our data suggested that the JNK/c-Jun signaling cascade plays a crucial role in Cd-induced neuronal cell apoptosis and provides a molecular linkage between oxidative stress and neuronal apoptosis

  18. Cap-n-Collar Promotes Tissue Regeneration by Regulating ROS and JNK Signaling in the Drosophila melanogaster Wing Imaginal Disc.

    Brock, Amanda R; Seto, Mabel; Smith-Bolton, Rachel K

    2017-07-01

    Regeneration is a complex process that requires an organism to recognize and repair tissue damage, as well as grow and pattern new tissue. Here, we describe a genetic screen to identify novel regulators of regeneration. We ablated the Drosophila melanogaster larval wing primordium by inducing apoptosis in a spatially and temporally controlled manner and allowed the tissue to regenerate and repattern. To identify genes that regulate regeneration, we carried out a dominant-modifier screen by assessing the amount and quality of regeneration in adult wings heterozygous for isogenic deficiencies. We have identified 31 regions on the right arm of the third chromosome that modify the regenerative response. Interestingly, we observed several distinct phenotypes: mutants that regenerated poorly, mutants that regenerated faster or better than wild-type, and mutants that regenerated imperfectly and had patterning defects. We mapped one deficiency region to cap-n-collar ( cnc ), the Drosophila Nrf2 ortholog, which is required for regeneration. Cnc regulates reactive oxygen species levels in the regenerating epithelium, and affects c-Jun N-terminal protein kinase (JNK) signaling, growth, debris localization, and pupariation timing. Here, we present the results of our screen and propose a model wherein Cnc regulates regeneration by maintaining an optimal level of reactive oxygen species to promote JNK signaling. Copyright © 2017 by the Genetics Society of America.

  19. Iron overload may promote alteration of NK cells and hematopoietic stem/progenitor cells by JNK and P38 pathway in myelodysplastic syndromes.

    Hua, Yanni; Wang, Chaomeng; Jiang, Huijuan; Wang, Yihao; Liu, Chunyan; Li, Lijuan; Liu, Hui; Shao, Zonghong; Fu, Rong

    2017-08-01

    The objective of the study was to examine levels of intracellular iron, reactive oxygen species (ROS) and the expression of JNK and p38MAPK in NK cells and hematopoietic stem/progenitor cells (HSPCs) in MDS patients, and explore potential mechanisms by which iron overload (IOL) promotes MDS progression. Thirty-four cases of MDS and six cases of AML transformed from MDS (MDS/AML) were included. HSPCs and NK cells were isolated by magnetic absorption cell sorting. We used flow cytometry to detect the levels of ROS and intracellular JNK and P38 in NK cells and HSPCs. Total RNA and protein were extracted from NK cells and CD34 + cells to examine the expression of JNK and p38MAPK using RT-PCR and Western blotting. Intracellular iron concentration was detected. Data were analyzed by SPSS 21 statistical software. Intracellular iron concentration and ROS were increased in both NK cells and HSPCs in MDS patients with iron overload (P overload had higher JNK expression and lower p38 expression in NK cells, and higher p38 expression in HSPCs compared with non-iron overload group. IOL may cause alterations in NK cells and HSPCs through the JNK and p38 pathways, and play a role in the transformation to AML from MDS.

  20. CR3 and Dectin-1 Collaborate in Macrophage Cytokine Response through Association on Lipid Rafts and Activation of Syk-JNK-AP-1 Pathway.

    Juin-Hua Huang

    2015-07-01

    Full Text Available Collaboration between heterogeneous pattern recognition receptors (PRRs leading to synergistic coordination of immune response is important for the host to fight against invading pathogens. Although complement receptor 3 (CR3 and Dectin-1 are major PRRs to detect fungi, crosstalk between these two receptors in antifungal immunity is largely undefined. Here we took advantage of Histoplasma capsulatum which is known to interact with both CR3 and Dectin-1 and specific particulate ligands to study the collaboration of CR3 and Dectin-1 in macrophage cytokine response. By employing Micro-Western Array (MWA, genetic approach, and pharmacological inhibitors, we demonstrated that CR3 and Dectin-1 act collaboratively to trigger macrophage TNF and IL-6 response through signaling integration at Syk kinase, allowing subsequent enhanced activation of Syk-JNK-AP-1 pathway. Upon engagement, CR3 and Dectin-1 colocalize and form clusters on lipid raft microdomains which serve as a platform facilitating their cooperation in signaling activation and cytokine production. Furthermore, in vivo studies showed that CR3 and Dectin-1 cooperatively participate in host defense against disseminated histoplasmosis and instruct adaptive immune response. Taken together, our findings define the mechanism of receptor crosstalk between CR3 and Dectin-1 and demonstrate the importance of their collaboration in host defense against fungal infection.

  1. C-Jun N-terminal kinase signalling pathway in response to cisplatin.

    Yan, Dong; An, GuangYu; Kuo, Macus Tien

    2016-11-01

    Cisplatin (cis diamminedichloroplatinum II, cDDP) is one of the most effective cancer chemotherapeutic agents and is used in the treatment of many types of human malignancies. However, inherent tumour resistance is a major barrier to effective cisplatin therapy. So far, the mechanism of cDDP resistance has not been well defined. In general, cisplatin is considered to be a cytotoxic drug, for damaging DNA and inhibiting DNA synthesis, resulting in apoptosis via the mitochondrial death pathway or plasma membrane disruption. cDDP-induced DNA damage triggers signalling pathways that will eventually decide between cell life and death. As a member of the mitogen-activated protein kinases family, c-Jun N-terminal kinase (JNK) is a signalling pathway in response to extracellular stimuli, especially drug treatment, to modify the activity of numerous proteins locating in the mitochondria or the nucleus. Recent studies suggest that JNK signalling pathway plays a major role in deciding the fate of the cell and inducing resistance to cDDP-induced apoptosis in human tumours. c-Jun N-terminal kinase regulates several important cellular functions including cell proliferation, differentiation, survival and apoptosis while activating and inhibiting substrates for phosphorylation transcription factors (c-Jun, ATF2: Activating transcription factor 2, p53 and so on), which subsequently induce pro-apoptosis and pro-survival factors expression. Therefore, it is suggested that JNK signal pathway is a double-edged sword in cDDP treatment, simultaneously being a significant pro-apoptosis factor but also being associated with increased resistance to cisplatin-based chemotherapy. This review focuses on current knowledge concerning the role of JNK in cell response to cDDP, as well as their role in cisplatin resistance. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  2. KFC, a Ste20-like kinase with mitogenic potential and capability to activate the SAPK/JNK pathway.

    Yustein, J T; Li, D; Robinson, D; Kung, H J

    2000-02-03

    The Sterile-20 (Ste20) family of serine-threonine kinases has been implicated in the activation of the stress-activated protein kinase pathways. However, the physiological role has remained ambiguous for most of the investigated mammalian Ste20's. Here we report the cloning of a novel Ste20-like kinase, from chicken embryo fibroblast (CEF) cells, which we have named KFC, for Kinase From Chicken. The 898 amino acid full-length KFC protein contains an amino-terminal kinase domain, an adjacent downstream serine-rich region, and a C-terminal tail containing a coiled-coil domain. Here we show that the coiled-coil domain of KFC negatively regulates the intrinsic kinase activity. We have also identified a splice variant of KFC in which there is a 207 nucleotide in-frame deletion. This deletion of 69 amino acids encompasses the serine-rich region. These two isoforms, called KFCL, for full-length, and KFCS for spliced (or short) form, not only differ in structure, but also in biological properties. Stable CEF cells overexpressing KFCL, but not KFCS, have a significant increase in growth rate when compared to parental cells. This mitogenic effect is the first such reported for this family of kinases. Finally, we found that KFC, when activated by truncation of the regulatory C-terminus, has a specific activation of the stress-activated protein kinase (SAPK/JNK) pathway.

  3. Dietary influence on MAPK-signaling pathways and risk of colon and rectal cancer.

    Slattery, Martha L; Lundgreen, Abbie; Wolff, Roger K

    2013-01-01

    Mitogen-activated protein kinase (MAPK) pathways regulate cellular functions including cell proliferation, differentiation, migration, and apoptosis. Associations between genes in the DUSP, ERK1/2, JNK, and p38 MAPK-signaling pathways and dietary factors associated with growth factors, inflammation, and oxidative stress and risk of colon and rectal cancer were evaluated. Data include colon cases (n = 1555) and controls (n = 1956) and rectal cases (n = 754) and controls (n = 959). Statistically significant interactions were observed for the MAPK-signaling pathways after adjustment for multiple comparisons. DUSP genes interacted with carbohydrates, mutagen index, calories, calcium, vitamin D, lycopene, dietary fats, folic acid, and selenium. MAPK1, MAPK3, MAPK1, and RAF1 within the ERK1/2 MAPK-signaling pathway interacted with dietary fats and cruciferous vegetables. Within the JNK MAPK-signaling pathway, interactions between MAP3K7 and protein, vitamin C, iron, folic acid, carbohydrates, and cruciferous vegetables; MAP3K10 and folic acid; MAP3K9 and lutein/zeaxanthin; MAPK8 and calcium; MAP3K3 and calcium and lutein; MAP3K1 and cruciferous vegetables. Interaction within the p38-signaling pathway included MAPK14 with calories, carbohydrates saturated fat, selenium, vitamin C; MAP3K2 and carbohydrates, and folic acid. These data suggest that dietary factors involved in inflammation and oxidative stress interact with MAPK-signaling genes to alter risk of colorectal cancer.

  4. DMPD: Signal integration between IFNgamma and TLR signalling pathways in macrophages. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 16920490 Signal integration between IFNgamma and TLR signalling pathways in macroph...tml) (.csml) Show Signal integration between IFNgamma and TLR signalling pathways in macrophages. PubmedID 16920490 Title Signal inte...gration between IFNgamma and TLR signalling pathways in

  5. Eicosapentaenoic acid (EPA) induced apoptosis in HepG2 cells through ROS–Ca{sup 2+}–JNK mitochondrial pathways

    Zhang, Yuanyuan; Han, Lirong [Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457 (China); Qi, Wentao [Academy of State Administration of Grain, No.11 Baiwanzhuang Avenue, Xicheng District, Beijing, 100037 (China); Cheng, Dai; Ma, Xiaolei; Hou, Lihua [Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457 (China); Cao, Xiaohong, E-mail: caoxh@tust.edu.cn [Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457 (China); Wang, Chunling, E-mail: wangchunling@tust.edu.cn [Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457 (China)

    2015-01-24

    Highlights: • EPA evoked ROS formation, [Ca{sup 2+}]{sub c} accumulation, the opening of MPTP and the phosphorylation of JNK. • EPA-induced [Ca{sup 2+}]{sub c} elevation was depended on production of ROS. • EPA-induced ROS generation, [Ca{sup 2+}]{sub c} increase, and JNK activated caused MPTP opening. • The apoptosis induced by EPA was related to release of cytochrome C through the MPTP. • EPA induced HepG2 cells apoptosis through ROS–Ca{sup 2+}–JNK mitochondrial pathways. - Abstract: Eicosapentaenoic acid (EPA), a well-known dietary n−3 PUFAS, has been considered to inhibit proliferation of tumor cells. However, the molecular mechanism related to EPA-induced liver cancer cells apoptosis has not been reported. In this study, we investigated the effect of EPA on HepG2 cells proliferation and apoptosis mechanism through mitochondrial pathways. EPA inhibited proliferation of HepG2 cells in a dose-dependent manner and had no significant effect on the cell viability of humor normal liver L-02 cells. It was found that EPA initially evoked ROS formation, leading to [Ca{sup 2+}]{sub c} accumulation and the mitochondrial permeability transition pore (MPTP) opening; EPA-induced HepG2 cells apoptosis was inhibited by N-acetylcysteine (NAC, an inhibitor of ROS), 1,2-bis (2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA-AM, a chelator of calcium) and CsA (inhibitor of MPTP). The relationship between ROS production, the increase of cytoplasmic Ca and MPTP opening was detected. It seems that ROS may act as an upstream regulator of EPA-induced [Ca{sup 2+}]{sub c} generation, moreover, generation of ROS, overload of mitochondrial [Ca{sup 2+}]{sub c}, and JNK activated cause the opening of MPTP. Western blotting results showed that EPA elevated the phosphorylation status of JNK, processes associated with the ROS generation. Simultaneously, the apoptosis induced by EPA was related to release of cytochrome C from mitochondria to cytoplasm through the MPTP

  6. Cyr61/CCN1 induces CCL20 production by keratinocyte via activating p38 and JNK/AP-1 pathway in psoriasis.

    Li, Huidan; Li, Haichuan; Huo, Rongfen; Wu, Pinru; Shen, Zhengyu; Xu, Hui; Shen, Baihua; Li, Ningli

    2017-10-01

    Psoriasis is a common chronic skin disease characterized by epidermal hyperplasia and inflammation. Cysteine-rich angiogenic inducer 61 (Cyr61/CCN1) has recently been implicated in psoriasis pathogenesis by promoting keratinocyte activation. However, the mechanisms by which CCN1 enhances cutaneous inflammation are not fully understood. In this study, we investigated the role of CCN1 on the expression of CCL20 in human keratinocyte. By double-label immunofluorescence staining, we first identified that the expression of CCN1 colocalized well with CCL20 production in the epidermis of psoriasis skin lesion. Furthermore, in vivo, blocking or knockdown CCN1 expression ameliorated skin inflammation and reduced the expression of CCL20 in both imiquimod and IL-23-induced psoriasis-like mouse models, which indicated that CCN1 might be involved in the regulation of CCL20 production in psoriasis. Next, in vitro, we stimulated primary normal human epidermal keratinocyte (NHEK) with exogenous protein CCN1 and found that CCN1 directly upregulated CCL20 production independent of TNF-α, IL-22 and IL-17 pathway. Lastly, the signaling pathway study showed that CCN1 enhanced the binding of AP-1 to the CCL20 promoter via crosstalk with p38 and JNK. Our study demonstrates that CCN1 stimulates CCL20 production in vitro and in vivo, and thus supports the notion that overexpressed CCN1 in hyperproliferating keratinocyte is functionally involved in the recruitment of inflammatory cells to skin lesions affected by psoriasis. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  7. Andrographolide inhibits nuclear factor-κB activation through JNK-Akt-p65 signaling cascade in tumor necrosis factor-α-stimulated vascular smooth muscle cells.

    Chen, Yu-Ying; Hsu, Ming-Jen; Hsieh, Cheng-Ying; Lee, Lin-Wen; Chen, Zhih-Cherng; Sheu, Joen-Rong

    2014-01-01

    Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Andrographolide is the most active and critical constituent isolated from the leaves of Andrographis paniculata, a herbal medicine widely used for treating anti-inflammation in Asia. In this study, we investigated the mechanisms of the inhibitory effects of andrographolide in vascular smooth muscle cells (VSMCs) exposed to a proinflammatory stimulus, tumor necrosis factor-α (TNF-α). Treating TNF-α-stimulated VSMCs with andrographolide suppressed the expression of inducible nitric oxide synthase in a concentration-dependent manner. A reduction in TNF-α-induced c-Jun N-terminal kinase (JNK), Akt, and p65 phosphorylation was observed in andrographolide-treated VSMCs. However, andrographolide affected neither IκBα degradation nor p38 mitogen-activated protein kinase or extracellular signal-regulated kinase 1/2 phosphorylation under these conditions. Both treatment with LY294002, a phosphatidylinositol 3-kinase/Akt inhibitor, and treatment with SP600125, a JNK inhibitor, markedly reversed the andrographolide-mediated inhibition of p65 phosphorylation. In addition, LY294002 and SP600125 both diminished Akt phosphorylation, whereas LY294002 had no effects on JNK phosphorylation. These results collectively suggest that therapeutic interventions using andrographolide can benefit the treatment of vascular inflammatory diseases, and andrographolide-mediated inhibition of NF-κB activity in TNF-α-stimulated VSMCs occurs through the JNK-Akt-p65 signaling cascade, an IκBα-independent mechanism.

  8. Decoding resistant hypertension signalling pathways.

    Parreira, Ricardo Cambraia; Lacerda, Leandro Heleno Guimarães; Vasconcellos, Rebecca; Lima, Swiany Silveira; Santos, Anderson Kenedy; Fontana, Vanessa; Sandrim, Valéria Cristina; Resende, Rodrigo Ribeiro

    2017-12-01

    Resistant hypertension (RH) is a clinical condition in which the hypertensive patient has become resistant to drug therapy and is often associated with increased cardiovascular morbidity and mortality. Several signalling pathways have been studied and related to the development and progression of RH: modulation of sympathetic activity by leptin and aldosterone, primary aldosteronism, arterial stiffness, endothelial dysfunction and variations in the renin-angiotensin-aldosterone system (RAAS). miRNAs comprise a family of small non-coding RNAs that participate in the regulation of gene expression at post-transcriptional level. miRNAs are involved in the development of both cardiovascular damage and hypertension. Little is known of the molecular mechanisms that lead to development and progression of this condition. This review aims to cover the potential roles of miRNAs in the mechanisms associated with the development and consequences of RH, and explore the current state of the art of diagnostic and therapeutic tools based on miRNA approaches. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. Nucleolin and YB-1 are required for JNK-mediated interleukin-2 mRNA stabilization during T-cell activation

    Chen, C Y; Gherzi, R; Andersen, Jens S.

    2000-01-01

    Regulated mRNA turnover is a highly important process, but its mechanism is poorly understood. Using interleukin-2 (IL-2) mRNA as a model, we described a role for the JNK-signaling pathway in stabilization of IL-2 mRNA during T-cell activation, acting via a JNK response element (JRE) in the 5' un...

  10. Postprandial triglyceride-rich lipoproteins promote invasion of human coronary artery smooth muscle cells in a fatty-acid manner through PI3k-Rac1-JNK signaling.

    Varela, Lourdes M; Bermúdez, Beatriz; Ortega-Gómez, Almudena; López, Sergio; Sánchez, Rosario; Villar, Jose; Anguille, Christelle; Muriana, Francisco J G; Roux, Pierre; Abia, Rocío

    2014-06-01

    The aim was to investigate the effect of postprandial triglyceride-rich lipoproteins (TRLs) with different fatty acid compositions on human coronary artery smooth muscle cell (hCASMC) invasion and to identify the molecular pathways involved. TRLs were isolated from the plasma of healthy volunteers after the ingestion of single meals enriched in MUFAs, saturated fatty acids (SFAs), or PUFAs. hCASMC invasion was analyzed using transwell chambers with Matrigel. TRLs-SFAs provoked the highest invasion, followed by TRLs-MUFAs and TRLs-PUFAs. Inhibition studies with Orlistat showed that invasion was dependent on the fatty acid composition of the TRLs. Fatty acids incorporated into the cell membranes strongly associated with cell invasion. Pull-down assays showed that TRLs-SFAs were able to increase Rac1 activity via inhibition of RhoA-dependent signaling. Chemical inhibition and siRNA studies showed that Rac1, PI3k, JNK, and MMP2 regulates TRL-SFA-induced hCASMC invasion. We demonstrate for the first time that TRLs induce hCASMCs invasion in a fatty acid dependent manner. This effect in TRLs-SFAs is mediated by the PI3k-Rac1-JNK, RhoA, and Rac1-MMP2 pathways. The ingestion of MUFA, compared to other dietary fatty acids such as SFA, could be considered as a nutritional strategy to reduce the atherosclerotic plaque formation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. SCM-198 inhibits microglial overactivation and attenuates Aβ(1-40)-induced cognitive impairments in rats via JNK and NF-кB pathways.

    Hong, Zhen-Yi; Shi, Xue-Ru; Zhu, Kai; Wu, Ting-Ting; Zhu, Yi-Zhun

    2014-08-19

    Neuroinflammation mediated by overactivated microglia plays a key role in many neurodegenerative diseases, including Alzheimer's disease (AD). In this study, we investigated for the first time the anti-neuroinflammatory effects and possible mechanisms of SCM-198 (an alkaloid extracted from Herbaleonuri), which was previously found highly cardioprotective, both in vitro and in vivo. For in vitro experiments, lipopolysaccharide (LPS) or β-amyloid(1-40) (Aβ(1-40)) was applied to induce microglial overactivation. Proinflammatory mediators were measured and activations of NF-κB and mitogen-activated protein kinases' (MAPKs) pathways were investigated. Further protective effect of SCM-198 was evaluated in microglia-neuron co-culture assay and Sprague-Dawley (SD) rats intrahippocampally-injected with Aβ(1-40). SCM-198 reduced expressions of nitric oxide (NO), TNF-α, IL-1β and IL-6 possibly via, at least partially, inhibiting c-Jun N-terminal kinase (JNK) and NF-κB signaling pathways in microglia. Co-culture assay showed that activated microglia pretreated with SCM-198 led to less neuron loss and decreased phosphorylation of tau and extracellular signal-regulated kinase (ERK) in neurons. Besides, SCM-198 also directly protected against Aβ(1-40)-induced neuronal death and lactate dehydrogenase (LDH) release in primary cortical neurons. For in vivo studies, SCM-198 significantly enhanced cognitive performances of rats 12 days after intrahippocampal injections of aged Aβ(1-40) peptides in the Morris water maze (MWM), accompanied by less hippocampal microglial activation, decreased synaptophysin loss and phosphorylation of ERK and tau. Co-administration of donepezil and SCM-198 resulted in a slight cognitive improvement in SD rats 50 days after intrahippocampal injections of aged Aβ(1-40) peptides as compared to only donepezil or SCM-198 treated group. Our findings are the first to report that SCM-198 has considerable anti-neuroinflammatory effects on inhibiting

  12. Modularized Smad-regulated TGFβ signaling pathway.

    Li, Yongfeng; Wang, Minli; Carra, Claudio; Cucinotta, Francis A

    2012-12-01

    The transforming Growth Factor β (TGFβ) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. TGFβ signaling can be induced by several factors including ionizing radiation. The pathway is regulated in a negative feedback loop through promoting the nuclear import of the regulatory Smads and a subsequent expression of inhibitory Smad7, that forms ubiquitin ligase with Smurf2, targeting active TGFβ receptors for degradation. In this work, we proposed a mathematical model to study the Smad-regulated TGFβ signaling pathway. By modularization, we are able to analyze mathematically each component subsystem and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, in the TGFβ signaling pathway is discussed and supported as well by numerical simulation, indicating the robustness of the model. Published by Elsevier Inc.

  13. Dioscorin isolated from Dioscorea alata activates TLR4-signaling pathways and induces cytokine expression in macrophages.

    Fu, Shu-Ling; Hsu, Ya-Hui; Lee, Pei-Yeh; Hou, Wen-Chi; Hung, Ling-Chien; Lin, Chao-Hsiung; Chen, Chiu-Ming; Huang, Yu-Jing

    2006-01-06

    The Toll-like receptor 4 (TLR4)-signaling pathway is crucial for activating both innate and adaptive immunity. TLR4 is a promising molecular target for immune-modulating drugs, and TLR4 agonists are of therapeutic potential for treating immune diseases and cancers. Several medicinal herb-derived components have recently been reported to act via TLR4-dependent pathways, suggesting that medicinal plants are potential resources for identifying TLR4 activators. We have applied a screening procedure to systematically identify herbal constituents that activate TLR4. To exclude possible LPS contamination in these plant-derived components, a LPS inhibitor, polymyxin B, was added during screening. One of the plant components we identified from the screening was dioscorin, the glycoprotein isolated from Dioscorea alata. It induced TLR4-downstream cytokine expression in bone marrow cells isolated from TLR4-functional C3H/HeN mice but not from TLR4-defective C3H/HeJ mice. Dioscorin also stimulated multiple signaling molecules (NF-kappaB, ERK, JNK, and p38) and induced the expression of cytokines (TNF-alpha, IL-1beta, and IL-6) in murine RAW 264.7 macrophages. Furthermore, the ERK, p38, JNK, and NF-kappaB-mediated pathways are all involved in dioscorin-mediated TNF-alpha production. In summary, our results demonstrate that dioscorin is a novel TLR4 activator and induces macrophage activation via typical TLR4-signaling pathways.

  14. Caffeic Acid Phenethyl Ester (Propolis Extract) Ameliorates Insulin Resistance by Inhibiting JNK and NF-κB Inflammatory Pathways in Diabetic Mice and HepG2 Cell Models.

    Nie, Jiarui; Chang, Yaning; Li, Yujia; Zhou, Yingjun; Qin, Jiawen; Sun, Zhen; Li, Haibin

    2017-10-18

    Caffeic acid phenethyl ester (CAPE), extracted from propolis, was evaluated for the ameliorative effects on insulin resistance and the mechanisms were identified, using non-insulin-dependent diabetes mellitus (NIDDM) model mice and insulin resistance (IR) model cells. After 5 weeks of CAPE supplementation, insulin sensitivity, hyperlipidemia, and peroxisome proliferator-activated receptor-α (PPAR-α) levels were improved in mice. Proinflammatory cytokines in serum and the expressions of tumor necrosis factor-alpha (TNF-α) mRNA in tissues were markedly downregulated from CAPE-treated mice. In vitro, CAPE supplement significantly improved glucose consumption, glucose uptake, glycogen content, and oxidative stress and decreased expression of glucose-6-phosphatase (G6Pase) mRNA in cells. Both in vivo and in vitro, CAPE enhanced p-Akt (Ser473) and p-insulin receptor substrate (IRS)-1 (Tyr612), but inhibited p-JNK (Thr183/Tyr185), p-NF-κB p65 (Ser536), and nuclear translocation of p-NF-κB p65 (Ser536). In summary, CAPE can ameliorate insulin resistance through modulation of JNK and NF-κB signaling pathway in mice and HepG2 cells.

  15. Oral administration of curcumin suppresses production of matrix metalloproteinase (MMP)-1 and MMP-3 to ameliorate collagen-induced arthritis: inhibition of the PKCdelta/JNK/c-Jun pathway.

    Mun, Se Hwan; Kim, Hyuk Soon; Kim, Jie Wan; Ko, Na Young; Kim, Do Kyun; Lee, Beob Yi; Kim, Bokyung; Won, Hyung Sik; Shin, Hwa-Sup; Han, Jeung-Whan; Lee, Hoi Young; Kim, Young Mi; Choi, Wahn Soo

    2009-09-01

    We investigated whether oral administration of curcumin suppressed type II collagen-induced arthritis (CIA) in mice and its effect and mechanism on matrix metalloproteinase (MMP)-1 and MMP-3 production in CIA mice, RA fibroblast-like synoviocytes (FLS), and chondrocytes. CIA in mice was suppressed by oral administration of curcumin in a dose-dependent manner. Macroscopic observations were confirmed by histological examinations. Histological changes including infiltration of immune cells, synovial hyperplasia, cartilage destruction, and bone erosion in the hind paw sections were extensively suppressed by curcumin. The histological scores were consistent with clinical arthritis indexes. Production of MMP-1 and MMP-3 were inhibited by curcumin in CIA hind paw sections and tumor necrosis factor (TNF)-alpha-stimulated FLS and chondrocytes in a dose-dependent manner. As for the mechanism, curcumin inhibited activating phosphorylation of protein kinase Cdelta (PKCdelta) in CIA, FLS, and chondrocytes. Curcumin also suppressed the JNK and c-Jun activation in those cells. This study suggests that the suppression of MMP-1 and MMP-3 production by curcumin in CIA is mediated through the inhibition of PKCdelta and the JNK/c-Jun signaling pathway.

  16. Regulation of Schistosoma mansoni development and reproduction by the mitogen-activated protein kinase signaling pathway.

    Andrade, Luiza Freire de; Mourão, Marina de Moraes; Geraldo, Juliana Assis; Coelho, Fernanda Sales; Silva, Larissa Lopes; Neves, Renata Heisler; Volpini, Angela; Machado-Silva, José Roberto; Araujo, Neusa; Nacif-Pimenta, Rafael; Caffrey, Conor R; Oliveira, Guilherme

    2014-06-01

    Protein kinases are proven targets for drug development with an increasing number of eukaryotic Protein Kinase (ePK) inhibitors now approved as drugs. Mitogen-activated protein kinase (MAPK) family members connect cell-surface receptors to regulatory targets within cells and influence a number of tissue-specific biological activities such as cell proliferation, differentiation and survival. However, the contributions of members of the MAPK pathway to schistosome development and survival are unclear. We employed RNA interference (RNAi) to elucidate the functional roles of five S. mansoni genes (SmCaMK2, SmJNK, SmERK1, SmERK2 and SmRas) involved in MAPK signaling pathway. Mice were injected with post-infective larvae (schistosomula) subsequent to RNAi and the development of adult worms observed. The data demonstrate that SmJNK participates in parasite maturation and survival of the parasites, whereas SmERK are involved in egg production as infected mice had significantly lower egg burdens with female worms presenting underdeveloped ovaries. Furthermore, it was shown that the c-fos transcription factor was overexpressed in parasites submitted to RNAi of SmERK1, SmJNK and SmCaMK2 indicating its putative involvement in gene regulation in this parasite's MAPK signaling cascade. We conclude that MAPKs proteins play important roles in the parasite in vivo survival, being essential for normal development and successful survival and reproduction of the schistosome parasite. Moreover SmERK and SmJNK are potential targets for drug development.

  17. Puerarin reduces apoptosis in rat hippocampal neurons culturea in high glucose medium by modulating the p38 mitogen activated protein kinase and c-Jun N-terminal kinase signaling pathways.

    Xu, Xiaohan; Wang, Jingbo; Zhang, Hong; Tian, Guoqing; Liu, Yuqin

    2016-02-01

    To investigate the neuroprotective etfect of puerarin on rat hippocampal neurons cultured in high glucose medium, and to examine the role of the p38 mitogen activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK) signaling pathways in this effect. Primary cultures of hippocampal neurons were prepared from newborn Sprague Dawley rats. Neuron-specific enolase immunocytochemistry was used to identify neurons. The neurons were cultured with normal medium (control group) or with high-glucose medium (high-glucose group), and puerarin (puerarin group), a p38 MAPK inhibitor (SB239063; p38 MAPK inhibitor group) or a JNK inhibitor (SP600125; JNK inhibitor group) were added. After 72 h of treatment, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay was performed to detect apoptosis, and western blotting was used to assess protein levels of p-p38, p38, p-JNK and JNK. In the high-glucose group, the neuronal apoptosis rate and the p-p38/p38 and p-JNK/JNK ratios were higher than in the control group. The p38 MAPK and JNK inhibitors prevented this increase in the apoptosis rate. The apoptosis rates in the puerarin group, the p38 MAPK inhibitor group and the JNK inhibitor group were significantly decreased compared with the high-glucose group. Moreover, protein levels of p-p38 and p-JNK were significantly reduced, and the p-p38/p38 and p-JNK/JNK ratios were decreased in the puerarin group compared with the high-glucose group. In addition, compared with the high-glucose group, p-p38 levels and the p-p38/p38 ratio were reduced in the p38 MAPK inhibitor group, and p-JNK levels and the p-JNK/JNK ratio were decreased in the JNK inhibitor group. Puerarin attenuates neuronal apoptosis induced by high glucose by reducing the phosphorylation of p38 and JNK.

  18. Apoptosis induced by penta-acetyl geniposide in C6 glioma cells is associated with JNK activation and Fas ligand induction

    Peng, C.-H.; Tseng, T.-H.; Huang, C.-N.; Hsu, S.-P.; Wang, C.-J.

    2005-01-01

    In our previous study, penta-acetyl geniposide ((AC) 5 GP) is suggested to induce tumor cell apoptosis through the specific activation of PKCδ. However, the downstream signal pathway of PKCδ has not yet been investigated. It was shown that JNK may play an important role in the regulation of apoptosis and could be a possible downstream signal of PKCδ isoforms. In the present study, we investigate whether JNK is involved in (AC) 5 GP induced apoptosis. The result reveals that (AC) 5 GP induces JNK activation and c-Jun phosphorylation thus stimulating the expression of Fas-L and Fas. Using SP600125 to block JNK activation shows that (AC) 5 GP-mediated apoptosis and related proteins expression are attenuated. Furthermore, we find that the (AC) 5 GP induces apoptosis through the activation of JNK/Jun/Fas L/Fas/caspase 8/caspase 3, a mitochondria-independent pathway. The JNK pathway is suggested to be the downstream signal of PKCδ, since rottlerin impedes (AC) 5 GP-induced JNK activation. Therefore, (AC) 5 GP mediates cell death via activation of PKCδ/JNK/FasL cascade signaling

  19. Andrographolide Inhibits Nuclear Factor-κB Activation through JNK-Akt-p65 Signaling Cascade in Tumor Necrosis Factor-α-Stimulated Vascular Smooth Muscle Cells

    Yu-Ying Chen

    2014-01-01

    Full Text Available Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Andrographolide is the most active and critical constituent isolated from the leaves of Andrographis paniculata, a herbal medicine widely used for treating anti-inflammation in Asia. In this study, we investigated the mechanisms of the inhibitory effects of andrographolide in vascular smooth muscle cells (VSMCs exposed to a proinflammatory stimulus, tumor necrosis factor-α (TNF-α. Treating TNF-α-stimulated VSMCs with andrographolide suppressed the expression of inducible nitric oxide synthase in a concentration-dependent manner. A reduction in TNF-α-induced c-Jun N-terminal kinase (JNK, Akt, and p65 phosphorylation was observed in andrographolide-treated VSMCs. However, andrographolide affected neither IκBα degradation nor p38 mitogen-activated protein kinase or extracellular signal-regulated kinase 1/2 phosphorylation under these conditions. Both treatment with LY294002, a phosphatidylinositol 3-kinase/Akt inhibitor, and treatment with SP600125, a JNK inhibitor, markedly reversed the andrographolide-mediated inhibition of p65 phosphorylation. In addition, LY294002 and SP600125 both diminished Akt phosphorylation, whereas LY294002 had no effects on JNK phosphorylation. These results collectively suggest that therapeutic interventions using andrographolide can benefit the treatment of vascular inflammatory diseases, and andrographolide-mediated inhibition of NF-κB activity in TNF-α-stimulated VSMCs occurs through the JNK-Akt-p65 signaling cascade, an IκBα-independent mechanism.

  20. Interference of silibinin with IGF-1R signalling pathways protects human epidermoid carcinoma A431 cells from UVB-induced apoptosis

    Liu, Weiwei; Otkur, Wuxiyar; Li, Lingzhi; Wang, Qiong; He, Hao; Zang, Linghe; Hayashi, Toshihiko; Tashiro, Shin-ichi; Onodera, Satoshi; Xia, Mingyu; Ikejima, Takashi

    2013-01-01

    Highlights: ► Silibinin protects A431 cells from UVB irradiation-induced apoptosis. ► Up-regulation of the IGF-1R-JNK/ERK pathways by UVB induces cell apoptosis. ► Silibinin inhibits IGF-1R pathways to repress caspase-8-mediated apoptosis. -- Abstract: Ultraviolet B (UVB) from sunlight is a major cause of cutaneous lesion. Silibinin, a traditional hepatic protectant, elicits protective effects against UVB-induced cellular damage. In A431 cells, the insulin-like growth factor-1 receptor (IGF-1R) was markedly up-regulated by UVB irradiation. The activation of the IGF-1R signalling pathways contributed to apoptosis of the cells rather than rescuing the cells from death. Up-regulated IGF-1R stimulated downstream mitogen-activated protein kinases (MAPKs), such as c-Jun N-terminal kinases (JNK) and extracellular signal-regulated protein kinases 1/2 (ERK1/2). The subsequent activation of caspase-8 and caspase-3 led to apoptosis. The activation of IGF-1R signalling pathways is the cause of A431 cell death. The pharmacological inhibitors and the small interfering RNA (siRNA) targeting IGF-1R suppressed the downstream activation of JNK/ERK-caspases to help the survival of the UVB-irradiated A431 cells. Indeed, silibinin treatment suppressed the IGF-1R-JNK/ERK pathways and thus protected the cells from UVB-induced apoptosis

  1. Modularized TGFbeta-Smad Signaling Pathway

    Li, Yongfeng; Wang, M.; Carra, C.; Cucinotta, F. A.

    2011-01-01

    The Transforming Growth Factor beta (TGFbeta) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. It can be induced by several factors, including ionizing radiation. It is regulated by Smads in a negative feedback loop through promoting increases in the regulatory Smads in the cell nucleus, and subsequent expression of inhibitory Smad, Smad7 to form a ubiquitin ligase with Smurf targeting active TGF receptors for degradation. In this work, we proposed a mathematical model to study the radiation-induced Smad-regulated TGF signaling pathway. By modularization, we are able to analyze each module (subsystem) and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, along the TGF signaling pathway is discussed by mathematical analysis and numerical simulation.

  2. Chlorpromazine-induced hepatotoxicity during inflammation is mediated by TIRAP-dependent signaling pathway in mice

    Gandhi, Adarsh; Guo, Tao; Shah, Pranav; Moorthy, Bhagavatula; Ghose, Romi

    2013-01-01

    Inflammation is a major component of idiosyncratic adverse drug reactions (IADRs). To understand the molecular mechanism of inflammation-mediated IADRs, we determined the role of the Toll-like receptor (TLR) signaling pathway in idiosyncratic hepatotoxicity of the anti-psychotic drug, chlorpromazine (CPZ). Activation of TLRs recruits the first adaptor protein, Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) to the TIR domain of TLRs leading to the activation of the downstream kinase, c-Jun-N-terminal kinase (JNK). Prolonged activation of JNK leads to cell-death. We hypothesized that activation of TLR2 by lipoteichoic acid (LTA) or TLR4 by lipopolysaccharide (LPS) will augment the hepatotoxicity of CPZ by TIRAP-dependent mechanism involving prolonged activation of JNK. Adult male C57BL/6, TIRAP +/+ and TIRAP −/− mice were pretreated with saline, LPS (2 mg/kg) or LTA (6 mg/kg) for 30 min or 16 h followed by CPZ (5 mg/kg) or saline (vehicle) up to 24 h. We found that treatment of mice with CPZ in presence of LPS or LTA leads to ∼ 3–4 fold increase in serum ALT levels, a marked reduction in hepatic glycogen content, significant induction of serum tumor necrosis factor (TNF) α and prolonged JNK activation, compared to LPS or LTA alone. Similar results were observed in TIRAP +/+ mice, whereas the effects of LPS or LTA on CPZ-induced hepatotoxicity were attenuated in TIRAP −/− mice. For the first time, we show that inflammation-mediated hepatotoxicity of CPZ is dependent on TIRAP, and involves prolonged JNK activation in vivo. Thus, TIRAP-dependent pathways may be targeted to predict and prevent inflammation-mediated IADRs. -- Highlights: ► Inflammation augments the toxicity of an idiosyncratic hepatotoxin chlorpromazine. ► Activation of Toll-like receptors by LPS or LTA induces chlorpromazine toxicity. ► Sustained stress kinase (JNK) activation is associated with chlorpromazine toxicity. ► These studies provide novel mechanistic

  3. Chlorpromazine-induced hepatotoxicity during inflammation is mediated by TIRAP-dependent signaling pathway in mice

    Gandhi, Adarsh, E-mail: adarsh.gandhi@nih.gov [University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, 1441 Moursund Street, Room 517, Houston, TX 77030 (United States); Guo, Tao, E-mail: tguo4@jhu.edu [University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, 1441 Moursund Street, Room 517, Houston, TX 77030 (United States); Shah, Pranav [University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, 1441 Moursund Street, Room 517, Houston, TX 77030 (United States); Moorthy, Bhagavatula [Baylor College of Medicine, Department of Pediatrics, 1102 Bates Avenue, Suite 530, Houston, TX 77030 (United States); Ghose, Romi, E-mail: rghose@uh.edu [University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, 1441 Moursund Street, Room 517, Houston, TX 77030 (United States)

    2013-02-01

    Inflammation is a major component of idiosyncratic adverse drug reactions (IADRs). To understand the molecular mechanism of inflammation-mediated IADRs, we determined the role of the Toll-like receptor (TLR) signaling pathway in idiosyncratic hepatotoxicity of the anti-psychotic drug, chlorpromazine (CPZ). Activation of TLRs recruits the first adaptor protein, Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) to the TIR domain of TLRs leading to the activation of the downstream kinase, c-Jun-N-terminal kinase (JNK). Prolonged activation of JNK leads to cell-death. We hypothesized that activation of TLR2 by lipoteichoic acid (LTA) or TLR4 by lipopolysaccharide (LPS) will augment the hepatotoxicity of CPZ by TIRAP-dependent mechanism involving prolonged activation of JNK. Adult male C57BL/6, TIRAP{sup +/+} and TIRAP{sup −/−} mice were pretreated with saline, LPS (2 mg/kg) or LTA (6 mg/kg) for 30 min or 16 h followed by CPZ (5 mg/kg) or saline (vehicle) up to 24 h. We found that treatment of mice with CPZ in presence of LPS or LTA leads to ∼ 3–4 fold increase in serum ALT levels, a marked reduction in hepatic glycogen content, significant induction of serum tumor necrosis factor (TNF) α and prolonged JNK activation, compared to LPS or LTA alone. Similar results were observed in TIRAP{sup +/+} mice, whereas the effects of LPS or LTA on CPZ-induced hepatotoxicity were attenuated in TIRAP{sup −/−} mice. For the first time, we show that inflammation-mediated hepatotoxicity of CPZ is dependent on TIRAP, and involves prolonged JNK activation in vivo. Thus, TIRAP-dependent pathways may be targeted to predict and prevent inflammation-mediated IADRs. -- Highlights: ► Inflammation augments the toxicity of an idiosyncratic hepatotoxin chlorpromazine. ► Activation of Toll-like receptors by LPS or LTA induces chlorpromazine toxicity. ► Sustained stress kinase (JNK) activation is associated with chlorpromazine toxicity. ► These studies

  4. Signaling pathways regulating murine pancreatic development

    Serup, Palle

    2012-01-01

    The recent decades have seen a huge expansion in our knowledge about pancreatic development. Numerous lineage-restricted transcription factor genes have been identified and much has been learned about their function. Similarly, numerous signaling pathways important for pancreas development have...... been identified and the specific roles have been investigated by genetic and cell biological methods. The present review presents an overview of the principal signaling pathways involved in regulating murine pancreatic growth, morphogenesis, and cell differentiation....

  5. Heat shock instructs hESCs to exit from the self-renewal program through negative regulation of OCT4 by SAPK/JNK and HSF1 pathway.

    Byun, Kyunghee; Kim, Taek-Kyun; Oh, Jeehyun; Bayarsaikhan, Enkhjargal; Kim, Daesik; Lee, Min Young; Pack, Chan-Gi; Hwang, Daehee; Lee, Bonghee

    2013-11-01

    Environmental factors affect self-renewal of stem cells by modulating the components of self-renewal networks. Heat shock, an environmental factor, induces heat shock factors (HSFs), which up-regulate stress response-related genes. However, the link of heat shock to self-renewal of stem cells has not been elucidated yet. Here, we present the direct link of heat shock to a core stem cell regulator, OCT4, in the self-renewal network through SAPK/JNK and HSF1 pathway. We first showed that heat shock initiated differentiation of human embryonic stem cells (hESCs). Gene expression analysis revealed that heat shock increased the expression of many genes involved in cellular processes related to differentiation of stem cells. We then examined the effects of HSFs induced by heat shock on core self-renewal factors. Among HSFs, heat shock induced mainly HSF1 in hESCs. The HSF1 repressed the expression of OCT4, leading to the differentiation of hESCs and the above differentiation-related gene expression change. We further examined the effects of the upstream MAP (mitogen-activated protein) kinases of HSF1 on the repression of OCT4 expression by HSF1. Among the MAP kinases, SAPK/JNK controlled predominantly the repression of the OCT4 expression by HSF1. The direct link of heat shock to the core self-renewal regulator through SAPK/JNK and HSF1 provides a fundamental basis for understanding the effect of heat and other stresses involving activation of HSF1 on the self-renewal program and further controlling differentiation of hESCs in a broad spectrum of stem cell applications using these stresses. © 2013.

  6. The effect of menadione on glutathione S-transferase A1 (GSTA1): c-Jun N-terminal kinase (JNK) complex dissociation in human colonic adenocarcinoma Caco-2 cells.

    Adnan, Humaira; Antenos, Monica; Kirby, Gordon M

    2012-10-02

    Glutathione S-transferases (GSTs) act as modulators of mitogen-activated protein kinase signal transduction pathways via a mechanism involving protein-protein interactions. We have demonstrated that GSTA1 forms complexes with JNK and modifies JNK activation during cellular stress, but the factors that influence complex association and dissociation are unknown. We hypothesized that menadione causes dissociation of GSTA1-JNK complexes, activates JNK, and the consequences of menadione exposure depend on GSTA1 expression. We demonstrate that menadione causes GSTA1-JNK dissociation and JNK activation in preconfluent Caco-2 cells, whereas postconfluent cells are resistant to this effect. Moreover, preconfluent cells are more sensitive than postconfluent cells to menadione-induced cytotoxicity. Activation of JNK is transient since removal of menadione causes GSTA1 to re-associate with JNK reducing cytotoxicity. Over-expression and knockdown of GSTA1 did not alter JNK activation by menadione or sensitivity to menadione-induced cytotoxicity. These results indicate that GSTA1-JNK complex integrity does not affect the ability of menadione to activate JNK. N-acetyl cysteine prevents GSH depletion and blocks menadione-induced complex dissociation, JNK activation and inhibits menadione-induced cytotoxicity. JNK activation and inhibits menadione-induced cytotoxicity. The data suggest that the mechanism of menadione-induced JNK activation involves the production of reactive oxygen species, likely superoxide anion, and intracellular GSH levels play an important role in preventing GSTA1-JNK complex dissociation, subsequent JNK activation and induction of cytotoxicity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Fibroblast Growth Factor 21 Mediates Glycemic Regulation by Hepatic JNK

    Santiago Vernia

    2016-03-01

    Full Text Available The cJun NH2-terminal kinase (JNK-signaling pathway is implicated in metabolic syndrome, including dysregulated blood glucose concentration and insulin resistance. Fibroblast growth factor 21 (FGF21 is a target of the hepatic JNK-signaling pathway and may contribute to the regulation of glycemia. To test the role of FGF21, we established mice with selective ablation of the Fgf21 gene in hepatocytes. FGF21 deficiency in the liver caused marked loss of FGF21 protein circulating in the blood. Moreover, the protective effects of hepatic JNK deficiency to suppress metabolic syndrome in high-fat diet-fed mice were not observed in mice with hepatocyte-specific FGF21 deficiency, including reduced blood glucose concentration and reduced intolerance to glucose and insulin. Furthermore, we show that JNK contributes to the regulation of hepatic FGF21 expression during fasting/feeding cycles. These data demonstrate that the hepatokine FGF21 is a key mediator of JNK-regulated metabolic syndrome.

  8. Targeting Apoptosis Signaling Pathways for Anticancer Therapy

    Fulda, Simone, E-mail: simone.fulda@kgu.de [Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt (Germany)

    2011-08-29

    Treatment approaches for cancer, for example chemotherapy, radiotherapy, or immunotherapy, primarily act by inducing cell death in cancer cells. Consequently, the inability to trigger cell death pathways or alternatively, evasion of cancer cells to the induction of cell death pathways can result in resistance of cancers to current treatment protocols. Therefore, in order to overcome treatment resistance a better understanding of the underlying mechanisms that regulate cell death and survival pathways in cancers and in response to cancer therapy is necessary to develop molecular-targeted therapies. This strategy should lead to more effective and individualized treatment strategies that selectively target deregulated signaling pathways in a tumor type- and patient-specific manner.

  9. Targeting Apoptosis Signaling Pathways for Anticancer Therapy

    Fulda, Simone

    2011-01-01

    Treatment approaches for cancer, for example chemotherapy, radiotherapy, or immunotherapy, primarily act by inducing cell death in cancer cells. Consequently, the inability to trigger cell death pathways or alternatively, evasion of cancer cells to the induction of cell death pathways can result in resistance of cancers to current treatment protocols. Therefore, in order to overcome treatment resistance a better understanding of the underlying mechanisms that regulate cell death and survival pathways in cancers and in response to cancer therapy is necessary to develop molecular-targeted therapies. This strategy should lead to more effective and individualized treatment strategies that selectively target deregulated signaling pathways in a tumor type- and patient-specific manner.

  10. Protective Effects of Green Tea Polyphenol Against Renal Injury Through ROS-Mediated JNK-MAPK Pathway in Lead Exposed Rats.

    Wang, Haidong; Li, Deyuan; Hu, Zhongze; Zhao, Siming; Zheng, Zhejun; Li, Wei

    2016-06-30

    To investigate the potential therapeutic effects of polyphenols in treating Pb induced renal dysfunction and intoxication and to explore the detailed underlying mechanisms. Wistar rats were divided into four groups: control groups (CT), Pb exposure groups (Pb), Pb plus Polyphenols groups (Pb+PP) and Polyphenols groups (PP). Animals were kept for 60 days and sacrificed for tests of urea, serum blood urea nitrogen (BUN) and creatinine. Histological evaluations were then performed. In vitro studies were performed using primary kidney mesangial cells to reveal detailed mechanisms. Cell counting kit-8 (CCK-8) was used to evaluate cell viability. Pb induced cell apoptosis was measured by flow cytometry. Reactive oxygen species (ROS) generation and scavenging were tested by DCFH-DA. Expression level of tumor necrosis factor-α (TNF-α), interleukin-1-β (IL-1-β) and IL-6 were assayed by ELISA. Western blot and qPCR were used to measure the expression of ERK1/2, JNK1/2 and p38. Polyphenols have obvious protective effects on Pb induced renal dysfunction and intoxication both in vivo and in vitro. Polyphenols reduced Pb concentration and accumulation in kidney. Polyphenols also protected kidney mesangial cells from Pb induced apoptosis. Polyphenols scavenged Pb induced ROS generation and suppressed ROS-mediated ERK/JNK/p38 pathway. Downstream pro-inflammatory cytokines were inhibited in consistency. Polyphenol is protective in Pb induced renal intoxication and inflammatory responses. The underlying mechanisms lie on the antioxidant activity and ROS scavenging activity of polyphenols.

  11. Lycium barbarum Polysaccharides Protect Rat Corneal Epithelial Cells against Ultraviolet B-Induced Apoptosis by Attenuating the Mitochondrial Pathway and Inhibiting JNK Phosphorylation

    Shaobo Du

    2017-01-01

    Full Text Available Lycium barbarum polysaccharides (LBPs have been shown to play a key role in protecting the eyes by reducing the apoptosis induced by certain types of damage. However, it is not known whether LBPs can protect damaged corneal cells from apoptosis. Moreover, no reports have focused on the role of LBPs in guarding against ultraviolet B- (UVB- induced apoptosis. The present study aimed to investigate the protective effect and underlying mechanism of LBPs against UVB-induced apoptosis in rat corneal epithelial (RCE cells. The results showed that LBPs significantly prevented the loss of cell viability and inhibited cell apoptosis induced by UVB in RCE cells. LBPs also inhibited UVB-induced loss of mitochondrial membrane potential, downregulation of Bcl-2, and upregulation of Bax and caspase-3. Finally, LBPs attenuated the phosphorylation of c-Jun NH2-terminal kinase (JNK triggered by UVB. In summary, LBPs protect RCE cells against UVB-induced damage and apoptosis, and the underlying mechanism involves the attenuation of the mitochondrial apoptosis pathway and the inhibition of JNK phosphorylation.

  12. Insulin stimulates the expression of the SHARP-1 gene via multiple signaling pathways.

    Takagi, K; Asano, K; Haneishi, A; Ono, M; Komatsu, Y; Yamamoto, T; Tanaka, T; Ueno, H; Ogawa, W; Tomita, K; Noguchi, T; Yamada, K

    2014-06-01

    The rat enhancer of split- and hairy-related protein-1 (SHARP-1) is a basic helix-loop-helix transcription factor. An issue of whether SHARP-1 is an insulin-inducible transcription factor was examined. Insulin rapidly increased the level of SHARP-1 mRNA both in vivo and in vitro. Then, signaling pathways involved with the increase of SHARP-1 mRNA by insulin were determined in H4IIE rat hepatoma cells. Pretreatments with LY294002, wortmannin, and staurosporine completely blocked the induction effect, suggesting the involvement of both phosphoinositide 3-kinase (PI 3-K) and protein kinase C (PKC) pathways. In fact, overexpression of a dominant negative form of atypical protein kinase C lambda (aPKCλ) significantly decreased the induction of the SHARP-1 mRNA. In addition, inhibitors for the small GTPase Rac or Jun N-terminal kinase (JNK) also blocked the induction of SHARP-1 mRNA by insulin. Overexpression of a dominant negative form of Rac1 prevented the activation by insulin. Furthermore, actinomycin D and cycloheximide completely blocked the induction of SHARP-1 mRNA by insulin. Finally, when a SHARP-1 expression plasmid was transiently transfected with various reporter plasmids into H4IIE cells, the promoter activity of PEPCK reporter plasmid was specifically decreased. Thus, we conclude that insulin induces the SHARP-1 gene expression at the transcription level via a both PI 3-K/aPKCλ/JNK- and a PI 3-K/Rac/JNK-signaling pathway; protein synthesis is required for this induction; and that SHARP-1 is a potential repressor of the PEPCK gene expression. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Genetic variants of JNK and p38α pathways and risk of non-small cell lung cancer in an Eastern Chinese population.

    Jia, Ming; Zhu, Meiling; Zhou, Fei; Wang, Mengyun; Sun, Menghong; Yang, Yajun; Wang, Xiaofeng; Wang, Jiucun; Jin, Li; Xiang, Jiaqing; Zhang, Yawei; Chang, Jianhua; Wei, Qingyi

    2017-02-15

    The JNK and p38α pathways play an important role in carcinogenesis. Therefore, we hypothesize that single nucleotide polymorphisms (SNPs) of genes involved in these pathways are associated with risk of lung cancer. We first selected and genotyped 11 independent SNPs of the JNK and p38α pathway-related genes in a discovery set of 1,002 non-small cell lung cancer (NSCLC) cases and 1,025 cancer-free controls of Eastern Chinese. Then, we validated those significant SNPs in a replication set of 1,333 NSCLC cases and 1,339 cancer-free controls of Eastern Chinese. Multifactor dimensionality reduction (MDR) and classification and regression tree (CART) analyses were used to identify interactions between significant SNPs and other covariates. In both discovery and replication as well as their pooled analysis, carriers of GADD45G rs8252T variant genotypes had a significantly lower risk of NSCLC (adjusted OR = 0.81 and 0.79, 95% CI = 0.72-0.92 and 0.64-0.99 and p = 0.001 and 0.040 for dominant and recessive genetic models, respectively) and carriers of MAP2K7 rs3679T variant genotypes had an increased risk of NSCLC (adjusted OR = 1.19 and 1.29, 95% CI = 1.05-1.34 and 1.09-1.54 and p = 0.005 and 0.004 for dominant and recessive genetic models, respectively). Furthermore, rs8252 variant CT/TT carriers showed significantly higher levels of GADD45G mRNA expression than CC carriers in the target tissues. We observed some evidence of interactions between rs8252 genotypes and sex in NSCLC risk. These results indicate that GADD45G rs8252 and MAP2K7 rs3679 SNPs may be susceptibility biomarkers for NSCLC in Eastern Chinese populations. © 2016 UICC.

  14. Insulin regulates multiple signaling pathways leading to monocyte/macrophage chemotaxis into the wound tissue

    Yan Liu

    2018-01-01

    Full Text Available Wound healing is a complex process that involves sequential phases that overlap in time and space and affect each other dynamically at the gene and protein levels. We previously showed that insulin accelerates wound healing by stimulating faster and regenerative healing. One of the processes that insulin stimulates is an increase in monocyte/macrophage chemotaxis. In this study, we performed experiments in vivo and in vitro to elucidate the signaling transduction pathways that are involved in insulin-induced monocyte/macrophage chemotaxis. We found that insulin stimulates THP-1 cell chemotaxis in a dose-dependent and insulin receptor-dependent manner. We also show that the kinases PI3K-Akt, SPAK/JNK, and p38 MAPK are key molecules in the insulin-induced signaling pathways that lead to chemoattraction of the THP-1 cell. Furthermore, both PI3K-Akt and SPAK/JNK signaling involve Rac1 activation, an important molecule in regulating cell motility. Indeed, topical application of Rac1 inhibitor at an early stage during the healing process caused delayed and impaired healing even in the presence of insulin. These results delineate cell and molecular mechanisms involved in insulin-induced chemotaxis of monocyte/macrophage, cells that are critical for proper healing.

  15. Loss of the HPV-infection resistance EVER2 protein impairs NF-κB signaling pathways in keratinocytes.

    Françoise Vuillier

    Full Text Available Homozygous mutations in EVER genes cause epidermodysplasia verruciformis (EV, characterized by an immune defect and the development of skin cancers associated with β-human papillomavirus (HPV infections. The effects of EVER protein loss on the keratinocyte immune response remain unknown. We show here that EVER2 plays a critical role in the interplay between the NF-κB and JNK/AP-1 signaling pathways. EVER2-deficient cells overproduce IL-6 following the upregulation of JNK activation. They respond poorly to phorbol ester and TNF via the NF-κB pathway. They have lower levels of IKKα subunit, potentially accounting for impairments of p100 processing and the alternative NF-κB pathway. The loss of EVER2 is associated with an unusual TRAF protein profile. We demonstrate that EVER2 deficiency sustains TRAF2 ubiquitination and decreases the pool of TRAF2 available in the detergent-soluble fraction of the cell. Finally, we demonstrate that EVER2 loss induces constitutive PKCα-dependent c-jun phosphorylation and facilitates activation of the HPV5 long control region through a JNK-dependent pathway. These findings indicate that defects of the EVER2 gene may create an environment conducive to HPV replication and the persistence of lesions with the potential to develop into skin cancer.

  16. Hedgehog signaling pathway in neuroblastoma differentiation.

    Souzaki, Ryota; Tajiri, Tatsuro; Souzaki, Masae; Kinoshita, Yoshiaki; Tanaka, Sakura; Kohashi, Kenichi; Oda, Yoshinao; Katano, Mitsuo; Taguchi, Tomoaki

    2010-12-01

    The hedgehog (Hh) signaling pathway is activated in some adult cancers. On the other hand, the Hh signaling pathway plays an important role in the development of the neural crest in embryos. The aim of this study is to show the activation of Hh signaling pathway in neuroblastoma (NB), a pediatric malignancy arising from neural crest cells, and to reveal the meaning of the Hh signaling pathway in NB development. This study analyzed the expression of Sonic hedgehog (Shh), GLI1, and Patched 1 (Ptch1), transactivators of Hh signaling pathway, by immunohistochemistry in 82 NB and 10 ganglioneuroblastoma cases. All 92 cases were evaluated for the status of MYCN amplification. Of the 92 cases, 67 (73%) were positive for Shh, 62 cases (67%) were positive for GLI1, and 73 cases (79%) were positive for Ptch1. Only 2 (10%) of the 20 cases with MYCN amplification were positive for Shh and GLI1, and 4 cases (20%) were positive for Ptch1 (MYCN amplification vs no MYCN amplification, P ≦ .01). The percentage of GLI1-positive cells in the cases with INSS stage 1 without MYCN amplification was significantly higher than that with INSS stage 4. Of 72 cases without MYCN amplification, 60 were GLI1-positive. Twelve cases were GLI1-negative, and the prognosis of the GLI1-positive cases was significantly better than that of the GLI1-negative cases (P = .015). Most of NBs without MYCN amplification were positive for Shh, GLI1, and Ptch1. In the cases without MYCN amplification, the high expression of GLI1 was significantly associated with early clinical stage and a good prognosis of the patients. In contrast to adult cancers, the activation of the Hh signaling pathway in NB may be associated with the differentiation of the NB. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Fluid shear promotes chondrosarcoma cell invasion by activating matrix metalloproteinase 12 via IGF-2 and VEGF signaling pathways

    Wang, P; Chen, S-H; Hung, W-C; Paul, C; Zhu, F; Guan, P-P; Huso, DL; Kontrogianni-Konstantopoulos, A; Konstantopoulos, K

    2015-01-01

    Interstitial fluid flow in and around the tumor tissue is a physiologically relevant mechanical signal that regulates intracellular signaling pathways throughout the tumor. Yet, the effects of interstitial flow and associated fluid shear stress on the tumor cell function have been largely overlooked. Using in vitro bioengineering models in conjunction with molecular cell biology tools, we found that fluid shear (2 dyn/cm2) markedly upregulates matrix metalloproteinase 12 (MMP-12) expression and its activity in human chondrosarcoma cells. MMP-12 expression is induced in human chondrocytes during malignant transformation. However, the signaling pathway regulating MMP-12 expression and its potential role in human chondrosarcoma cell invasion and metastasis have yet to be delineated. We discovered that fluid shear stress induces the synthesis of insulin growth factor-2 (IGF-2) and vascular endothelial growth factor (VEGF) B and D, which in turn transactivate MMP-12 via PI3-K, p38 and JNK signaling pathways. IGF-2-, VEGF-B- or VEGF-D-stimulated chondrosarcoma cells display markedly higher migratory and invasive potentials in vitro, which are blocked by inhibiting MMP-12, PI3-K, p38 or JNK activity. Moreover, recombinant human MMP-12 or MMP-12 overexpression can potentiate chondrosarcoma cell invasion in vitro and the lung colonization in vivo. By reconstructing and delineating the signaling pathway regulating MMP-12 activation, potential therapeutic strategies that interfere with chondrosarcoma cell invasion may be identified. PMID:25435370

  18. A Protein Scaffold Coordinates SRC-Mediated JNK Activation in Response to Metabolic Stress.

    Kant, Shashi; Standen, Claire L; Morel, Caroline; Jung, Dae Young; Kim, Jason K; Swat, Wojciech; Flavell, Richard A; Davis, Roger J

    2017-09-19

    Obesity is a major risk factor for the development of metabolic syndrome and type 2 diabetes. How obesity contributes to metabolic syndrome is unclear. Free fatty acid (FFA) activation of a non-receptor tyrosine kinase (SRC)-dependent cJun NH 2 -terminal kinase (JNK) signaling pathway is implicated in this process. However, the mechanism that mediates SRC-dependent JNK activation is unclear. Here, we identify a role for the scaffold protein JIP1 in SRC-dependent JNK activation. SRC phosphorylation of JIP1 creates phosphotyrosine interaction motifs that bind the SH2 domains of SRC and the guanine nucleotide exchange factor VAV. These interactions are required for SRC-induced activation of VAV and the subsequent engagement of a JIP1-tethered JNK signaling module. The JIP1 scaffold protein, therefore, plays a dual role in FFA signaling by coordinating upstream SRC functions together with downstream effector signaling by the JNK pathway. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. A Protein Scaffold Coordinates SRC-Mediated JNK Activation in Response to Metabolic Stress

    Shashi Kant

    2017-09-01

    Full Text Available Obesity is a major risk factor for the development of metabolic syndrome and type 2 diabetes. How obesity contributes to metabolic syndrome is unclear. Free fatty acid (FFA activation of a non-receptor tyrosine kinase (SRC-dependent cJun NH2-terminal kinase (JNK signaling pathway is implicated in this process. However, the mechanism that mediates SRC-dependent JNK activation is unclear. Here, we identify a role for the scaffold protein JIP1 in SRC-dependent JNK activation. SRC phosphorylation of JIP1 creates phosphotyrosine interaction motifs that bind the SH2 domains of SRC and the guanine nucleotide exchange factor VAV. These interactions are required for SRC-induced activation of VAV and the subsequent engagement of a JIP1-tethered JNK signaling module. The JIP1 scaffold protein, therefore, plays a dual role in FFA signaling by coordinating upstream SRC functions together with downstream effector signaling by the JNK pathway.

  20. Differential gene expressions of the MAPK signaling pathway in enterovirus 71-infected rhabdomyosarcoma cells

    Weifeng Shi

    Full Text Available BACKGROUND: Mitogen-activated protein kinase (MAPK signaling pathway plays an important role in response to viral infection. The aim of this study was to explore the function and mechanism of MAPK signaling pathway in enterovirus 71 (EV71 infection of human rhabdomyosarcoma (RD cells. METHODS: Apoptosis of RD cells was observed using annexin V-FITC/PI binding assay under a fluorescence microscope. Cellular RNA was extracted and transcribed to cDNA. The expressions of 56 genes of MAPK signaling pathway in EV71-infected RD cells at 8 h and 20 h after infection were analyzed by PCR array. The levels of IL-2, IL-4, IL-10, and TNF-α in the supernatant of RD cells infected with EV71 at different time points were measured by ELISA. RESULTS: The viability of RD cells decreased obviously within 48 h after EV71 infection. Compared with the control group, EV71 infection resulted in the significantly enhanced releases of IL-2, IL-4, IL-10 and TNF-α from infected RD cells (p < 0.05. At 8 h after infection, the expressions of c-Jun, c-Fos, IFN-i, MEKK1, MLK3 and NIK genes in EV71-infected RD cells were up-regulated by 2.08-6.12-fold, whereas other 19 genes (e.g. AKT1, AKT2, E2F1, IKK and NF-κB1 exhibited down-regulation. However, at 20 h after infection, those MAPK signaling molecules including MEKK1, ASK1, MLK2, MLK3, NIK, MEK1, MEK2, MEK4, MEK7, ERK1, JNK1 and JNK2 were up-regulated. In addition, the expressions of AKT2, ELK1, c-Jun, c-Fos, NF-κB p65, PI3K and STAT1 were also increased. CONCLUSION: EV71 infection induces the differential gene expressions of MAPK signaling pathway such as ERK, JNK and PI3K/AKT in RD cells, which may be associated with the secretions of inflammatory cytokines and host cell apoptosis.

  1. Histamine acting on H1 receptor promotes inhibition of proliferation via PLC, RAC, and JNK-dependent pathways

    Notcovich, Cintia; Diez, Federico; Tubio, Maria Rosario; Baldi, Alberto; Kazanietz, Marcelo G.; Davio, Carlos; Shayo, Carina

    2010-01-01

    It is well established that histamine modulates cell proliferation through the activation of the histamine H1 receptor (H1R), a G protein-coupled receptor (GPCR) that is known to couple to phospholipase C (PLC) activation via Gq. In the present study, we aimed to determine whether H1R activation modulates Rho GTPases, well-known effectors of Gq/G 11 -coupled receptors, and whether such modulation influences cell proliferation. Experiments were carried out in CHO cells stably expressing H1R (CHO-H1R). By using pull-down assays, we found that both histamine and a selective H1R agonist activated Rac and RhoA in a time- and dose-dependent manner without significant changes in the activation of Cdc42. Histamine response was abolished by the H1R antagonist mepyramine, RGS2 and the PLC inhibitor U73122, suggesting that Rac and RhoA activation is mediated by H1R via Gq coupling to PLC stimulation. Histamine caused a marked activation of serum response factor activity via the H1R, as determined with a serum-responsive element (SRE) luciferase reporter, and this response was inhibited by RhoA inactivation with C3 toxin. Histamine also caused a significant activation of JNK which was inhibited by expression of the Rac-GAP β2-chimaerin. On the other hand, H1R-induced ERK1/2 activation was inhibited by U73122 but not affected by C3 or β2-chimaerin, suggesting that ERK1/2 activation was dependent on PLC and independent of RhoA or Rac. [ 3 H]-Thymidine incorporation assays showed that both histamine and the H1R agonist inhibited cell proliferation in a dose-dependent manner and that the effect was independent of RhoA but partially dependent on JNK and Rac. Our results reveal that functional coupling of the H1R to Gq-PLC leads to the activation of RhoA and Rac small GTPases and suggest distinct roles for Rho GTPases in the control of cell proliferation by histamine.

  2. Outer Membrane Protein 25 of Brucella Activates Mitogen-Activated Protein Kinase Signal Pathway in Human Trophoblast Cells

    Jing Zhang

    2017-12-01

    Full Text Available Outer membrane protein 25 (OMP25, a virulence factor from Brucella, plays an important role in maintaining the structural stability of Brucella. Mitogen-activated protein kinase (MAPK signal pathway widely exists in eukaryotic cells. In this study, human trophoblast cell line HPT-8 and BALB/c mice were infected with Brucella abortus 2308 strain (S2308 and 2308ΔOmp25 mutant strain. The expression of cytokines and activation of MAPK signal pathway were detected. We found that the expressions of tumor necrosis factor-α, interleukin-1, and interleukin-10 (IL-10 were increased in HPT-8 cells infected with S2308 and 2308ΔOmp25 mutant. S2308 also activated p38 phosphorylation protein, extracellular-regulated protein kinases (ERK, and Jun-N-terminal kinase (JNK from MAPK signal pathway. 2308ΔOmp25 could not activate p38, ERK, and JNK branches. Immunohistochemistry experiments showed that S2308 was able to activate phosphorylation of p38 and ERK in BABL/c mice. However, 2308ΔOmp25 could weakly activate phosphorylation of p38 and ERK. These results suggest that Omp25 played an important role in the process of Brucella activation of the MAPK signal pathway.

  3. The Fog signaling pathway: Insights into signaling in morphogenesis

    Manning, Alyssa J.; Rogers, Stephen L.

    2014-01-01

    Epithelia form the building blocks of many tissue and organ types. Epithelial cells often form a contiguous 2-dimensional sheet that is held together by strong adhesions. The mechanical properties conferred by these adhesions allow the cells to undergo dramatic three-dimensional morphogenetic movements while maintaining cell–cell contacts during embryogenesis and post-embryonic development. The Drosophila Folded gastrulation pathway triggers epithelial cell shape changes that drive gastrulation and tissue folding and is one of the most extensively studied examples of epithelial morphogenesis. This pathway has yielded key insights into the signaling mechanisms and cellular machinery involved in epithelial remodeling. In this review, we discuss principles of morphogenesis and signaling that have been discovered through genetic and cell biological examination of this pathway. We also consider various regulatory mechanisms and the system's relevance to mammalian development. We propose future directions that will continue to broaden our knowledge of morphogenesis across taxa. PMID:25127992

  4. JNK Promotes Epithelial Cell Anoikis by Transcriptional and Post-translational Regulation of BH3-Only Proteins

    Nomeda Girnius

    2017-11-01

    Full Text Available Summary: Developmental morphogenesis, tissue injury, and oncogenic transformation can cause the detachment of epithelial cells. These cells are eliminated by a specialized form of apoptosis (anoikis. While the processes that contribute to this form of cell death have been studied, the underlying mechanisms remain unclear. Here, we tested the role of the cJUN NH2-terminal kinase (JNK signaling pathway using murine models with compound JNK deficiency in mammary and kidney epithelial cells. These studies demonstrated that JNK is required for efficient anoikis in vitro and in vivo. Moreover, JNK-promoted anoikis required pro-apoptotic members of the BCL2 family of proteins. We show that JNK acts through a BAK/BAX-dependent apoptotic pathway by increasing BIM expression and phosphorylating BMF, leading to death of detached epithelial cells. : Developmental morphogenesis, tissue injury, and oncogenic transformation can cause epithelial cell detachment. These cells are eliminated by a specialized form of apoptosis termed anoikis. Girnius and Davis show that anoikis is mediated by the cJUN NH2-terminal kinase (JNK, which increases BIM expression and phosphorylates BMF to engage BAK/BAX-dependent apoptosis. Keywords: apoptosis, anoikis, epithelial cell, mammary gland, JNK, BAX, BAK, BH3-only protein, BIM, BMF

  5. Signaling Pathways in Cardiac Myocyte Apoptosis

    Xia, Peng; Liu, Yuening

    2016-01-01

    Cardiovascular diseases, the number 1 cause of death worldwide, are frequently associated with apoptotic death of cardiac myocytes. Since cardiomyocyte apoptosis is a highly regulated process, pharmacological intervention of apoptosis pathways may represent a promising therapeutic strategy for a number of cardiovascular diseases and disorders including myocardial infarction, ischemia/reperfusion injury, chemotherapy cardiotoxicity, and end-stage heart failure. Despite rapid growth of our knowledge in apoptosis signaling pathways, a clinically applicable treatment targeting this cellular process is currently unavailable. To help identify potential innovative directions for future research, it is necessary to have a full understanding of the apoptotic pathways currently known to be functional in cardiac myocytes. Here, we summarize recent progress in the regulation of cardiomyocyte apoptosis by multiple signaling molecules and pathways, with a focus on the involvement of these pathways in the pathogenesis of heart disease. In addition, we provide an update regarding bench to bedside translation of this knowledge and discuss unanswered questions that need further investigation. PMID:28101515

  6. The Fanconi anemia pathway sensitizes to DNA alkylating agents by inducing JNK-p53-dependent mitochondrial apoptosis in breast cancer cells.

    Zhao, Lin; Li, Yanlin; He, Miao; Song, Zhiguo; Lin, Shu; Yu, Zhaojin; Bai, Xuefeng; Wang, Enhua; Wei, Minjie

    2014-07-01

    The Fanconi anemia/BRCA (FA/BRCA) DNA damage repair pathway plays a pivotal role in the cellular response to DNA alkylating agents and greatly influences drug response in cancer treatment. However, the molecular mechanisms underlying the FA/BRCA pathway reversed resistance have received limited attention. In the present study, we investigated the effect of Fanconi anemia complementation group F protein (FANCF), a critical factor of the FA/BRCA pathway, on cancer cell apoptosis induced by DNA alkylating agents such as mitomycin c (MMC). We found that FANCF shRNA potentiated MMC-induced cytotoxicity and apoptosis in MCF-7 and MDA-MB-231 breast cancer cells. At a mechanistic level, FANCF shRNA downregulated the anti-apoptotic protein Bcl-2 and upregulated the pro-apoptotic protein Bax, accompanied by release of cyt-c and smac into the cytosol in MMC-treated cells. Furthermore, activation of caspase-3 and -9, other than caspase-8, cleavage of poly(ADP ribose) polymerase (PARP), and a decrease of mitochondrial membrane potential (MMP) indicated that involvement of the mitochondrial apoptotic pathway in FANCF silencing of MMC-treated breast cancer cells. A decrease in IAP family proteins XIAP and survivin were also observed following FANCF silencing in MMC-treated breast cancer cells. Notably, FANCF shRNA was able to increase p53 levels through activation of the JNK pathway in MMC-treated breast cancer cells. Furthermore, p53 inhibition using pifithrin-α abolished the induction of caspase-3 and PARP by FANCF shRNA and MMC, indicating that MMC-induced apoptosis is substantially enhanced by FANCF shRNA via p53-dependent mechanisms. To our knowledge, we provide new evidence for the potential application of FANCF as a chemosensitizer in breast cancer therapy.

  7. Axon Regeneration Is Regulated by Ets-C/EBP Transcription Complexes Generated by Activation of the cAMP/Ca2+ Signaling Pathways.

    Chun Li

    2015-10-01

    Full Text Available The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. In Caenorhabditis elegans, the JNK and p38 MAPK pathways are important for axon regeneration. Axonal injury induces expression of the svh-2 gene encoding a receptor tyrosine kinase, stimulation of which by the SVH-1 growth factor leads to activation of the JNK pathway. Here, we identify ETS-4 and CEBP-1, related to mammalian Ets and C/EBP, respectively, as transcriptional activators of svh-2 expression following axon injury. ETS-4 and CEBP-1 function downstream of the cAMP and Ca2+-p38 MAPK pathways, respectively. We show that PKA-dependent phosphorylation of ETS-4 promotes its complex formation with CEBP-1. Furthermore, activation of both cAMP and Ca2+ signaling is required for activation of svh-2 expression. Thus, the cAMP/Ca2+ signaling pathways cooperatively activate the JNK pathway, which then promotes axon regeneration.

  8. Apelin-13 upregulates Egr-1 expression in rat vascular smooth muscle cells through the PI3K/Akt and PKC signaling pathways

    Liu, Qi-Feng [Department of Cardiology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China); Yu, Hong-Wei [Department of Cardiology, Jinzhou Central Hospital, Jinzhou 121001 (China); Sun, Li-Li [Department of Ophthalmology, The Third Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China); You, Lu; Tao, Gui-Zhou [Department of Cardiology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China); Qu, Bao-Ze, E-mail: qubaoze1971@hotmail.com [Department of Cardiology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China)

    2015-12-25

    Previous studies have shown that Apelin-13 upregulates early growth response factor-1 (Egr-1) via the extracellular signal-regulated protein kinase (ERK) signaling pathway. Apelin-13 induces proliferation and migration of vascular smooth muscle cells (VSMCs) as well as the upregulation of osteopontin (OPN) via the upregulation of Egr-1. This study was designed to further explore the activity of Apelin-13 in VSMCs by investigating members of the mitogen-activated protein kinase (MAPK) family, in particular Jun kinase (JNK) and p38 mitogen-activated protein kinase (P38). We also examined whether the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) and protein kinase C (PKC) signaling pathways were involved in the regulation of Egr-1 by Apelin-13. We treated rat aortic VSMCs with Apelin-13 and examined the expression of JNK, p-JNK, P38, and p-P38 to investigate whether Apelin-13-mediated increases in Egr-1 occurred through the JNK and P38 signaling pathways. We then pretreated VSMCs with the Gi protein inhibitor pertussis toxin (PTX) and the Gq inhibitor YM254890, added Apelin-13 and looked for changes in Egr-1 expression. Finally, we pretreated with the PI3K inhibitor LY294002 and the PKC inhibitor GF109203X, and treated with Apelin-13. Our results showed that JNK and P38 did not participate in Apelin-13-mediated increase in Egr-1. Instead, Apelin-13 upregulation of Egr-1 was mediated by a PTX-sensitive Gi protein. Apelin-13 did increase ERK phosphorylation through the PI3K/Akt and PKC signaling pathways, resulting in changes in Egr-1 expression. These data provide important targets for future studies to modulate vascular remodeling. - Highlights: • Apelin-13 mediates Egr-1 upregulation in vascular smooth muscle cells via ERK1/2. • The underlying mechanisms are unknown, but exclude Jnk or p38 pathway activation. • Apelin-13 binds to Gi, activating the PI3K/Akt and PKC signaling cascades. • Consequent ERK phosphorylation results in increased Egr-1

  9. Apelin-13 upregulates Egr-1 expression in rat vascular smooth muscle cells through the PI3K/Akt and PKC signaling pathways

    Liu, Qi-Feng; Yu, Hong-Wei; Sun, Li-Li; You, Lu; Tao, Gui-Zhou; Qu, Bao-Ze

    2015-01-01

    Previous studies have shown that Apelin-13 upregulates early growth response factor-1 (Egr-1) via the extracellular signal-regulated protein kinase (ERK) signaling pathway. Apelin-13 induces proliferation and migration of vascular smooth muscle cells (VSMCs) as well as the upregulation of osteopontin (OPN) via the upregulation of Egr-1. This study was designed to further explore the activity of Apelin-13 in VSMCs by investigating members of the mitogen-activated protein kinase (MAPK) family, in particular Jun kinase (JNK) and p38 mitogen-activated protein kinase (P38). We also examined whether the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) and protein kinase C (PKC) signaling pathways were involved in the regulation of Egr-1 by Apelin-13. We treated rat aortic VSMCs with Apelin-13 and examined the expression of JNK, p-JNK, P38, and p-P38 to investigate whether Apelin-13-mediated increases in Egr-1 occurred through the JNK and P38 signaling pathways. We then pretreated VSMCs with the Gi protein inhibitor pertussis toxin (PTX) and the Gq inhibitor YM254890, added Apelin-13 and looked for changes in Egr-1 expression. Finally, we pretreated with the PI3K inhibitor LY294002 and the PKC inhibitor GF109203X, and treated with Apelin-13. Our results showed that JNK and P38 did not participate in Apelin-13-mediated increase in Egr-1. Instead, Apelin-13 upregulation of Egr-1 was mediated by a PTX-sensitive Gi protein. Apelin-13 did increase ERK phosphorylation through the PI3K/Akt and PKC signaling pathways, resulting in changes in Egr-1 expression. These data provide important targets for future studies to modulate vascular remodeling. - Highlights: • Apelin-13 mediates Egr-1 upregulation in vascular smooth muscle cells via ERK1/2. • The underlying mechanisms are unknown, but exclude Jnk or p38 pathway activation. • Apelin-13 binds to Gi, activating the PI3K/Akt and PKC signaling cascades. • Consequent ERK phosphorylation results in increased Egr-1

  10. Purinergic signaling pathways in endocrine system.

    Bjelobaba, Ivana; Janjic, Marija M; Stojilkovic, Stanko S

    2015-09-01

    Adenosine-5'-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5'-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5'-triphosphate hydrolysis to adenosine-5'-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. Published by Elsevier B.V.

  11. Purinergic Signaling Pathways in Endocrine System

    Bjelobaba, Ivana; Janjic, Marija M.; Stojilkovic, Stanko S.

    2015-01-01

    Adenosine-5′-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5′-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5′-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5′-triphosphate hydrolysis to adenosine-5′-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. PMID:25960051

  12. Effect of LIPUS on inflammatory factors, cell apoptosis and integrin signaling pathway in osteoarthritis animal models

    Li-Cai Zhang

    2017-05-01

    Full Text Available Objective: To study the effect of low-intensity pulsed ultrasound (LIPUS on inflammatory factors, cell apoptosis and integrin signaling pathway in osteoarthritis animal models. Methods: Male New Zealand white rabbits were selected as the experimental animals and randomly divided into sham group, osteoarthritis model group (OA group and LIPUS intervention group (LIPUS group, animal models with osteoarthritis in hind limb knee joint were established and then given LIPUS intervention. 6 weeks after the intervention, the articular cartilage was separated to detect the expression of inflammatory factors, cell apoptosis molecules and integrin signaling pathway molecules. Results: OPN, NO, IL-1β, TNF-α, Fas, FasL, LC3-II, Beclin-1, Integrinβ1, FAK, ERK1/2, JNK, p38MAPK, MMP-1 and MMP-3 protein expression in articular cartilage of OA group were significantly higher than those of Sham group while Col-I and Col-II protein expression were significantly lower than those of Sham group; OPN, NO, IL-1β, TNF-α, Fas, FasL, LC3-II, Beclin-1, Integrinβ1, FAK, ERK1/2, JNK, p38MAPK, MMP-1 and MMP-3 protein expression in articular cartilage of LIPUS group were significantly lower than those of OA group while Col-I and Col-II protein expression were significantly higher than those of OA group. Conclusion: LIPUS has inhibiting effect on the inflammation, apoptosis and integrin signaling pathway in articular cartilage of osteoarthritis animal models, and it can promote the repair of articular cartilage.

  13. Kaempferol Attenuates Cardiac Hypertrophy via Regulation of ASK1/MAPK Signaling Pathway and Oxidative Stress.

    Feng, Hong; Cao, Jianlei; Zhang, Guangyu; Wang, Yanggan

    2017-07-01

    Kaempferol has been demonstrated to provide benefits for the treatment of atherosclerosis, coronary heart disease, hyperlipidemia, and diabetes through its antioxidant and anti-inflammatory properties. However, its role in cardiac hypertrophy remains to be elucidated. The aim of our study was to investigate the effects of kaempferol on cardiac hypertrophy and the underlying mechanism. Mice subjected to aorta banding were treated with or without kaempferol (100 mg/kg/d, p. o.) for 6 weeks. Echocardiography was performed to evaluate cardiac function. Mice hearts were collected for pathological observation and molecular mechanism investigation. H9c2 cardiomyocytes were stimulated with or without phenylephrine for in vitro study. Kaempferol significantly attenuated cardiac hypertrophy induced by aorta banding as evidenced by decreased cardiomyocyte areas and interstitial fibrosis, accompanied with improved cardiac functions and decreased apoptosis. The ASK1/MAPK signaling pathways (JNK1/2 and p38) were markedly activated in the aorta banding mouse heart but inhibited by kaempferol treatment. In in vitro experiments, kaempferol also inhibited the activity of ASK1/JNK1/2/p38 signaling pathway and the enlargement of H9c2 cardiomyocytes. Furthermore, our study revealed that kaempferol could protect the mouse heart and H9c2 cells from pathological oxidative stress. Our investigation indicated that treatment with kaempferol protects against cardiac hypertrophy, and its cardioprotection may be partially explained by the inhibition of the ASK1/MAPK signaling pathway and the regulation of oxidative stress. Georg Thieme Verlag KG Stuttgart · New York.

  14. Upregulation of endothelial heme oxygenase-1 expression through the activation of the JNK pathway by sublethal concentrations of acrolein.

    Wu, C C; Hsieh, C W; Lai, P H; Lin, J B; Liu, Y C; Wung, B S

    2006-08-01

    Acrolein is a highly electrophilic alpha,beta-unsaturated aldehyde that is present in cigarette smoke. Heme oxygenase-1 (HO-1) is a cytoprotective enzyme activated by various such electrophilic compounds. In this study, the regulatory effects of acrolein upon the expression of HO-1 were investigated in endothelial cells (ECs). We demonstrate that acrolein induces the elevation of HO-1 protein levels, and subsequent enzyme activity, at non-cytotoxic concentrations. An additional alpha,beta-unsaturated aldehyde, cinnamaldehyde, was also found to increase HO-1 expression and have less cytotoxicity than acrolein. Moreover, acrolein-mediated HO-1 induction is abrogated in the presence of actinomycin D and cycloheximide. Nrf2 is a transcription factor involved in the induction of HO-1 through an antioxidant response element (ARE) in the promoter region of the HO-1 gene. We show that acrolein induces Nrf2 translocation and ARE-luciferase reporter activity. Acrolein was also found to induce the production of both superoxide and H2O2 at levels greater than 100 microM. However, with the exception of NAC, no antioxidant generated any effect upon acrolein-dependent HO-1 expression in ECs. Our present findings suggest that reactive oxygen species (ROS) may not be a major modulator for HO-1 induction. Using buthionine sulfoximine to deplete the intracellular GSH levels further enhanced the effects of acrolein. We also found that cellular GSH level was rapidly reduced after both 10 and 100 microM acrolein treatment. However, after 6 h of exposure to ECs, only 10 microM acrolein treatment increases GSH level. In addition, only the JNK inhibitor SP600125 and tyrosine kinase inhibitor genistein had any significant inhibitory impact upon the upregulation of HO-1 by acrolein. Pretreatment with a range of other PI3 kinase inhibitors, including wortmannin and LY294002, showed no effects. Hence, we show in our current experiments that a sublethal concentration of acrolein is in fact a

  15. Upregulation of endothelial heme oxygenase-1 expression through the activation of the JNK pathway by sublethal concentrations of acrolein

    Wu, C.C.; Hsieh, C.W.; Lai, P.H.; Lin, J.B.; Liu, Y.C.; Wung, B.S.

    2006-01-01

    Acrolein is a highly electrophilic α,β-unsaturated aldehyde that is present in cigarette smoke. Heme oxygenase-1 (HO-1) is a cytoprotective enzyme activated by various such electrophilic compounds. In this study, the regulatory effects of acrolein upon the expression of HO-1 were investigated in endothelial cells (ECs). We demonstrate that acrolein induces the elevation of HO-1 protein levels, and subsequent enzyme activity, at non-cytotoxic concentrations. An additional α,β-unsaturated aldehyde, cinnamaldehyde, was also found to increase HO-1 expression and have less cytotoxicity than acrolein. Moreover, acrolein-mediated HO-1 induction is abrogated in the presence of actinomycin D and cycloheximide. Nrf2 is a transcription factor involved in the induction of HO-1 through an antioxidant response element (ARE) in the promoter region of the HO-1 gene. We show that acrolein induces Nrf2 translocation and ARE-luciferase reporter activity. Acrolein was also found to induce the production of both superoxide and H 2 O 2 at levels greater than 100 μM. However, with the exception of NAC, no antioxidant generated any effect upon acrolein-dependent HO-1 expression in ECs. Our present findings suggest that reactive oxygen species (ROS) may not be a major modulator for HO-1 induction. Using buthionine sulfoximine to deplete the intracellular GSH levels further enhanced the effects of acrolein. We also found that cellular GSH level was rapidly reduced after both 10 and 100 μM acrolein treatment. However, after 6 h of exposure to ECs, only 10 μM acrolein treatment increases GSH level. In addition, only the JNK inhibitor SP600125 and tyrosine kinase inhibitor genistein had any significant inhibitory impact upon the upregulation of HO-1 by acrolein. Pretreatment with a range of other PI3 kinase inhibitors, including wortmannin and LY294002, showed no effects. Hence, we show in our current experiments that a sublethal concentration of acrolein is in fact a novel HO-1 inducer

  16. MAPK Signal Transduction Pathway Regulation: A Novel Mechanism of Rat HSC-T6 Cell Apoptosis Induced by FUZHENGHUAYU Tablet

    Qi Wang

    2013-01-01

    Full Text Available FUZHENGHUAYU Tablets have been widely used in the treatment of liver fibrosis in China. Here, we investigate the apoptotic effect of FUZHENGHUAYU Tablet in rat liver stellate cell line HSC-T6. HSC-T6 cells were incubated with control serum or drug serum from rats fed with 0.9% NaCl or FUZHENGHUAYU Tablet, respectively. Cells exposed to drug serum showed higher proportions of early and late apoptotic cells than controls. The mRNA levels of collagens I and III, TGF-β1 and α-SMA were reduced by drug serum compared to control serum. Differentially expressed mRNAs and miRNAs were analyzed by microarray and sequencing, respectively. We identified 334 differentially expressed mRNAs and also 60 GOs and two pathways related to the mRNAs. Seventy-five differentially expressed miRNAs were down-regulated by drug serum and 1963 target genes were predicted. 134 GOs up-regulated in drug serum group were linked to miRNA targets, and drug serum also regulated 43 miRNA signal transduction pathways. Protein levels were evaluated by Western blot. Drug serum down-regulated (phospho-SAPK/JNK/(SAPK/JNK and up-regulated phospho-p38/p38 ratios. The study showed that FUZHENGHUAYU Tablet induced apoptosis in rat HSC-T6 cells possibly in part by activating p38 and inhibiting SAPK/JNK.

  17. Sodium Octanoate Modulates the Innate Immune Response of Bovine Mammary Epithelial Cells through the TLR2/P38/JNK/ERK1/2 Pathway: Implications during Staphylococcus aureus Internalization.

    Alva-Murillo, Nayeli; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2017-01-01

    Bovine mammary epithelial cells (bMECs) contribute to mammary gland defense against invading pathogens, such as Staphylococcus aureus (intracellular facultative), which is recognized by TLR2. In a previous report, we showed that sodium octanoate [NaO, a medium chain fatty acid (C8)] induces (0.25 mM) or inhibits (1 mM) S. aureus internalization into bMECs and differentially regulates the innate immune response (IIR). However, the molecular mechanisms have not been described, which was the aim of this study. The results showed that α5β1 integrin membrane abundance (MA) was increased in 0.25 mM NaO-treated cells, but TLR2 or CD36 MA was not modified. When these receptors were blocked individually, 0.25 mM NaO-increased S. aureus internalization was notably reduced. Interestingly, in this condition, the IIR of the bMECs was impaired because MAPK (p38, JNK, and ERK1/2) phosphorylation and the activation of transcription factors related to these pathways were decreased. In addition, the 1 mM NaO treatment induced TLR2 MA, but neither the integrin nor CD36 MA was modified. The reduction in S. aureus internalization induced by 1 mM NaO was increased further when TLR2 was blocked. In addition, the phosphorylation levels of the MAPKs increased, and 13 transcriptional factors related to the IIR were slightly activated (CBF, CDP, c-Myb, AP-1, Ets-1/Pea-3, FAST-1, GAS/ISRE, AP-2, NFAT-1, OCT-1, RAR/DR-5, RXR/DR-1, and Stat-3). Moreover, the 1 mM NaO treatment up-regulated gene expression of IL-8 and RANTES and secretion of IL-1β. Notably, when 1 mM NaO-treated bMECs were challenged with S. aureus , the gene expression of IL-8 and IL-10 increased, while IL-1β secretion was reduced. In conclusion, our results showed that α5β1 integrin, TLR2 and CD36 are involved in 0.25 mM NaO-increased S. aureus internalization in bMECs. In addition, 1 mM NaO activates bMECs via the TLR2 signaling pathways (p38, JNK, and ERK1/2), which improves IIR before S. aureus invasion. Additionally

  18. Insulin signaling pathways in lepidopteran steroidogenesis

    Wendy eSmith

    2014-02-01

    Full Text Available Molting and metamorphosis are stimulated by the secretion of ecdysteroid hormones from the prothoracic glands. Insulin-like hormones have been found to enhance prothoracic gland activity, providing a mechanism to link molting to nutritional state. In silk moths (Bombyx mori, the prothoracic glands are directly stimulated by insulin and the insulin-like hormone bombyxin. Further, in Bombyx , the neuropeptide prothoracicotropic hormone (PTTH appears to act at least in part through the insulin-signaling pathway. In the prothoracic glands of Manduca sexta, while insulin stimulates the phosphorylation of the insulin receptor and Akt, neither insulin nor bombyxin II stimulate ecdysone secretion. Involvement of the insulin-signaling pathway in Manduca prothoracic glands was explored using two inhibitors of phosphatidylinositol-3-kinase (PI3K, LY294002 and wortmannin. PI3K inhibitors block the phosphorylation of Akt and 4EBP but have no effect on ecdysone secretion, or on the phosphorylation of the MAPkinase, ERK. Inhibitors that block phosphorylation of ERK, including the MEK inhibitor U0126, and high doses of the RSK inhibitor SL0101, effectively inhibit ecdysone secretion. The results highlight differences between the two lepidopteran insects most commonly used to directly study ecdysteroid secretion. In Bombyx, the PTTH and insulin-signaling pathways intersect; both insulin and PTTH enhance the phosphorylation of Akt and stimulate ecdysteroid secretion, and inhibition of PI3K reduces ecdysteroid secretion. By contrast, in Manduca, the action of PTTH is distinct from insulin. The results highlight species differences in the roles of translational regulators such as 4EBP, and members of the MAPkinase pathway such as ERK and RSK, in the effects of nutritionally-sensitive hormones such as insulin on ecdysone secretion and molting.

  19. The anti-apoptotic and cardioprotective effects of salvianolic acid a on rat cardiomyocytes following ischemia/reperfusion by DUSP-mediated regulation of the ERK1/2/JNK pathway.

    Tongda Xu

    Full Text Available The purpose of this study was to observe the effects of salvianolic acid A (SAA pretreatment on the myocardium during ischemia/reperfusion (I/R and to illuminate the interrelationships among dual specificity protein phosphatase (DUSP 2/4/16, ERK1/2 and JNK pathways during myocardial I/R, with the ultimate goal of elucidating how SAA exerts cardioprotection against I/R injury (IRI. Wistar rats were divided into the following six groups: control group (CON, I/R group, SAA+I/R group, ERK1/2 inhibitor PD098059+I/R group (PD+I/R, PD+SAA+I/R group, and JNK inhibitor SP600125+I/R group (SP+I/R. The cardioprotective effects of SAA on the myocardium during I/R were investigated with a Langendorff device. Heart rate (HR, left ventricular systolic pressure (LVSP, left ventricular end-diastolic pressure (LVEDP, maximum rate of ventricular pressure rise and fall (±dp/dtmax, myocardial infarction areas (MIA, lactate dehydrogenase (LDH, and cardiomyocytes apoptosis were monitored. To determine the crosstalk betwee JNK and ERK1/2 via DUSP2/4/16 with SAA pretreatment, siRNA-DUSP2/4/16 were performed. The expression levels of Bcl-2, Bax, caspase 3, p-JNK, p-ERK1/2 and DUSP2/4/16 in cardiomyocytes were assayed by Western blot. Our results showed that LDH, MIA and cell apoptosis were decreased, and various parameters of heart function were improved by SAA pretreatment and SP application. In the I/R group, the expression levels of p-ERK1/2 and DUSP4/16 were not significantly different compared with the CON group, however, the protein expression levels of p-ERK1/2, Bcl-2 and DUSP4/16 were higher, while p-JNK, Bax, caspase 3 and DUSP2 levels were reduced among the SAA+I/R, PD+SAA+I/R and SP+I/R groups. The above indices were not significantly different between the SAA+I/R and SP+I/R groups. Compared with the SAA+I/R group, p-ERK1/2 was increased and p-JNK was decreased in the SAA+si-DUSP2+I/R, however, p-ERK was downregulated and p-JNK was upregulated in SAA+si-DUSP4

  20. Iodine-131 treatment of thyroid cancer cells leads to suppression of cell proliferation followed by induction of cell apoptosis and cell cycle arrest by regulation of B-cell translocation gene 2-mediated JNK/NF-κB pathways

    Zhao, L.M.; Pang, A.X., E-mail: zhaoliming515@126.com [Department of Nuclear Medicine, Linyi People' s Hospital, Linyi (China); Department of Urology, Linyi People' s Hospital, Linyi (China)

    2017-10-01

    Iodine-131 ({sup 131}I) is widely used for the treatment of thyroid-related diseases. This study aimed to investigate the expression of p53 and BTG2 genes following {sup 131}I therapy in thyroid cancer cell line SW579 and the possible underlying mechanism. SW579 human thyroid squamous carcinoma cells were cultured and treated with {sup 131}I. They were then assessed for {sup 131}I uptake, cell viability, apoptosis, cell cycle arrest, p53 expression, and BTG2 gene expression. SW579 cells were transfected with BTG2 siRNA, p53 siRNA and siNC and were then examined for the same aforementioned parameters. When treated with a JNK inhibitor of SP600125 and {sup 131}I or with a NF-kB inhibitor of BMS-345541 and {sup 131}I, non-transfected SW579 cells were assessed in JNK/NFkB pathways. It was observed that {sup 131}I significantly inhibited cell proliferation, promoted cell apoptosis and cell cycle arrest. Both BTG2 and p53 expression were enhanced in a dose-dependent manner. An increase in cell viability by up-regulation in Bcl2 gene, a decrease in apoptosis by enhanced CDK2 gene expression and a decrease in cell cycle arrest at G{sub 0}/G{sub 1} phase were also observed in SW579 cell lines transfected with silenced BTG2 gene. When treated with SP600125 and {sup 131}I, the non transfected SW579 cell lines significantly inhibited JNK pathway, NF-kB pathway and the expression of BTG2. However, when treated with BMS-345541 and {sup 131}I, only the NF-kB pathway was suppressed. {sup 131}I suppressed cell proliferation, induced cell apoptosis, and promoted cell cycle arrest of thyroid cancer cells by up-regulating B-cell translocation gene 2-mediated activation of JNK/NF--κB pathways. (author)

  1. NADPH oxidase 2-derived reactive oxygen species mediate FFAs-induced dysfunction and apoptosis of β-cells via JNK, p38 MAPK and p53 pathways.

    Huiping Yuan

    2010-12-01

    Full Text Available Dysfunction of β-cell is one of major characteristics in the pathogenesis of type 2 diabetes. The combination of obesity and type 2 diabetes, characterized as 'diabesity', is associated with elevated plasma free fatty acids (FFAs. Oxidative stress has been implicated in the pathogenesis of FFA-induced β-cell dysfunction. However, molecular mechanisms linking between reactive oxygen species (ROS and FFA-induced β-cell dysfunction and apoptosis are less clear. In the present study, we test the hypothesis that NOX2-derived ROS may play a critical role in dysfunction and apoptosis of β-cells induced by FFA. Our results show that palmitate and oleate (0.5 mmol/L, 48 h induced JNK activation and AKT inhibition which resulted in decreased phosphorylation of FOXO1 following nuclear localization and the nucleocytoplasmic translocation of PDX-1, leading to the reducing of insulin and ultimately dysfunction of pancreatic NIT-1 cells. We also found that palmitate and oleate stimulated apoptosis of NIT-1 cells through p38MAPK, p53 and NF-κB pathway. More interestingly, our data suggest that suppression of NOX2 may restore FFA-induced dysfunction and apoptosis of NIT-1 cells. Our findings provide a new insight of the NOX2 as a potential new therapeutic target for preservation of β-cell mass and function.

  2. Interleukin 4 signals through two related pathways.

    Pernis, A; Witthuhn, B; Keegan, A D; Nelms, K; Garfein, E; Ihle, J N; Paul, W E; Pierce, J H; Rothman, P

    1995-08-15

    The interleukin 4 (IL-4) signaling pathway involves activation, by tyrosine phosphorylation, of two distinct substrates, a signal-transducing factor (STF-IL4) and the IL-4-induced phosphotyrosine substrate (4PS). It is not known whether the IL-4-mediated activation of these substrates occurs via related or distinct signaling pathways. We report that 32D cells, an IL-3-dependent myeloid progenitor cell line in which no phosphorylated 4PS is found, activate high levels of STF-IL4 in response to IL-4. Consistent with the known requirement for 4PS or insulin receptor substrate 1 (IRS-1) in IL-4-mediated mitogenesis, activation of STF-IL4 in 32D cells is not sufficient for IL-4-inducible c-myc expression. In addition, we have examined the ability of 32D cells transfected with different truncation mutants of the human IL-4 receptor to activate Jak-3 kinase and STF-IL4 in response to human IL-4. As in the case of 4PS/IRS-1, we have found that activation of both Jak-3 and STF-IL4 requires the presence of the IL-4 receptor region comprising aa 437-557. The finding that the same region of the IL-4 receptor is required for the induction of both 4PS/IRS-1 and STF-IL4 suggests that the IL-4-stimulated activation of these two substrates might involve common factors.

  3. Signaling pathways in a Citrus EST database

    Angela Mehta

    2007-01-01

    Full Text Available Citrus spp. are economically important crops, which in Brazil are grown mainly in the State of São Paulo. Citrus cultures are attacked by several pathogens, causing severe yield losses. In order to better understand this culture, the Millenium Project (IAC Cordeirópolis was launched in order to sequence Citrus ESTs (expressed sequence tags from different tissues, including leaf, bark, fruit, root and flower. Plants were submitted to biotic and abiotic stresses and investigated under different development stages (adult vs. juvenile. Several cDNA libraries were constructed and the sequences obtained formed the Citrus ESTs database with almost 200,000 sequences. Searches were performed in the Citrus database to investigate the presence of different signaling pathway components. Several of the genes involved in the signaling of sugar, calcium, cytokinin, plant hormones, inositol phosphate, MAPKinase and COP9 were found in the citrus genome and are discussed in this paper. The results obtained may indicate that similar mechanisms described in other plants, such as Arabidopsis, occur in citrus. Further experimental studies must be conducted in order to understand the different signaling pathways present.

  4. Synergistic apoptosis of CML cells by buthionine sulfoximine and hydroxychavicol correlates with activation of AIF and GSH-ROS-JNK-ERK-iNOS pathway.

    Avik Acharya Chowdhury

    expression of inducible nitric oxide synthase (iNOS. iNOS- mediated production of NO was identified as an effector molecule causing apoptosis of CML cells. CONCLUSION/SIGNIFICANCE: BSO synergizes with HCH in inducing apoptosis of CML cells through the GSH-ROS-JNK-ERK-iNOS pathway.

  5. Non-Smad pathways in TGF-β signaling

    Zhang, Ying E

    2009-01-01

    Transforming growth factor-β utilizes a multitude of intracellular signaling pathways in addition to Smads to regulate a wide array of cellular functions. These non-canonical, non-Smad pathways are activated directly by ligand-occupied receptors to reinforce, attenuate, or otherwise modulate downstream cellular responses. These non-Smad pathways include various branches of MAP kinase pathways, Rho-like GTPase signaling pathways, and phosphatidylinositol-3-kinase/AKT pathways. This review focu...

  6. Overexpressed DNA polymerase iota regulated by JNK/c-Jun contributes to hypermutagenesis in bladder cancer.

    Yuan, Fang; Xu, Zhigang; Yang, Mingzhen; Wei, Quanfang; Zhang, Yi; Yu, Jin; Zhi, Yi; Liu, Yang; Chen, Zhiwen; Yang, Jin

    2013-01-01

    Human DNA polymerase iota (pol ι) possesses high error-prone DNA replication features and performs translesion DNA synthesis. It may be specialized and strictly regulated in normal mammalian cells. Dysregulation of pol ι may contribute to the acquisition of a mutator phenotype. However, there are few reports describing the transcription regulatory mechanism of pol ι, and there is controversy regarding its role in carcinogenesis. In this study, we performed the deletion and point-mutation experiment, EMSA, ChIP, RNA interference and western blot assay to prove that c-Jun activated by c-Jun N-terminal kinase (JNK) regulates the transcription of pol ι in normal and cancer cells. Xeroderma pigmentosum group C protein (XPC) and ataxia-telangiectasia mutated related protein (ATR) promote early JNK activation in response to DNA damage and consequently enhance the expression of pol ι, indicating that the novel role of JNK signal pathway is involved in DNA damage response. Furthermore, associated with elevated c-Jun activity, the overexpression of pol ι is positively correlated with the clinical tumor grade in 97 bladder cancer samples and may contribute to the hypermutagenesis. The overexpressed pol ι-involved mutagenesis is dependent on JNK/c-Jun pathway in bladder cancer cells identifying by the special mutation spectra. Our results support the conclusion that dysregulation of pol ι by JNK/c-Jun is involved in carcinogenesis and offer a novel understanding of the role of pol ι or c-Jun in mutagenesis.

  7. Agmatine modulates melanogenesis via MITF signaling pathway.

    Kwon, Eun-Jeong; Kim, Moon-Moo

    2017-01-01

    Agmatine contained in soybean is also found in Manaca, an anti-aging plant, inhabited in Amazon and induces vasodilation by the promotion of NO synthesis in blood vessel. However, the research of agmatine on melanin synthesis related to hair greying is lacking. The aim of this study was to investigate the melanogenic effect of agmatine via regulation of MITF signaling pathway in B16F1 cells. It was determined whether agmatine regulates melanin synthesis at cellular level in addition to the effect of agmatine on mushroom tyrosinase in vitro in the presence of different concentrations of agmatine. Furthermore, the effect of agmatine on the protein expressions of tyrosinase, TRP-1, TRP-2, BMP-4, BMP-6, C-KIT, p-p38, MITF and C-FOS were examined by western blot analysis. In addition, immunofluorescence staining was carried out to visualize the location of MITF expression in cell. Agmatine at 256μM or more increased melanin synthesis as well as tyrosinase activity. Moreover, whereas agmatine increased the expression levels of TRP-1, BMP-6, p-p38 and MITF, it reduced the expression level of BMP-4. It was also found that agmatine enhanced the expression level of MITF in nucleus. These results suggest that agmatine could induce melanin synthesis though the regulation of MITF transcription factor via BMP-6/p38 signaling pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. SP600125 Induces Src and Type I IGF Receptor Phosphorylation Independent of JNK

    Qingbin Kong

    2014-09-01

    Full Text Available c-Jun N-terminal kinases (JNK are members of the mitogen-activated protein kinase (MAPK family that have important roles in signal transduction. The small molecule SP600125 is widely used in biochemical studies as a JNK inhibitor. However, recent studies indicate that SP600125 may also act independent of JNK. Here, we report that SP600125 can induce Src, type I insulin-like growth factor receptor (IGF-IR, Akt and Erk1/2 phosphorylation. Notably, these effects are independent of its inhibition of JNK. Inhibition of Src abrogates the stimulation of IGF-IR, Akt and Erk1/2 phosphorylation. IGF-IR knockdown blunts the induction of both Akt and Erk1/2 phosphorylation by SP600125. Moreover, combination of SP600125 and the Src inhibitor saracatinib synergistically inhibits cell proliferation. We conclude that SP600125 can activate Src-IGF-IR-Akt/Erk1/2 signaling pathways independent of JNK.

  9. DMPD: When signaling pathways collide: positive and negative regulation of toll-likereceptor signal transduction. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 18631453 When signaling pathways collide: positive and negative regulation of toll-...uction. PubmedID 18631453 Title When signaling pathways collide: positive and neg...l) Show When signaling pathways collide: positive and negative regulation of toll-likereceptor signal transd...likereceptor signal transduction. O'Neill LA. Immunity. 2008 Jul 18;29(1):12-20. (.png) (.svg) (.html) (.csm

  10. Momordica charantia polysaccharides could protect against cerebral ischemia/reperfusion injury through inhibiting oxidative stress mediated c-Jun N-terminal kinase 3 signaling pathway.

    Gong, Juanjuan; Sun, Fumou; Li, Yihang; Zhou, Xiaoling; Duan, Zhenzhen; Duan, Fugang; Zhao, Lei; Chen, Hansen; Qi, Suhua; Shen, Jiangang

    2015-04-01

    Momordica charantia (MC) is a medicinal plant for stroke treatment in Traditional Chinese Medicine, but its active compounds and molecular targets are unknown yet. M. charantia polysaccharide (MCP) is one of the important bioactive components in MC. In the present study, we tested the hypothesis that MCP has neuroprotective effects against cerebral ischemia/reperfusion injury through scavenging superoxide (O2(-)), nitric oxide (NO) and peroxynitrite (ONOO(-)) and inhibiting c-Jun N-terminal protein kinase (JNK3) signaling cascades. We conducted experiments with in vivo global and focal cerebral ischemia/reperfusion rat models and in vitro oxygen glucose deprivation (OGD) neural cells. The effects of MCP on apoptotic cell death and infarction volume, the bioactivities of scavenging O2(-), NO and ONOO(-), inhibiting lipid peroxidation and modulating JNK3 signaling pathway were investigated. Major results are summarized as below: (1) MCP dose-dependently attenuated apoptotic cell death in neural cells under OGD condition in vitro and reduced infarction volume in ischemic brains in vivo; (2) MCP had directing scavenging effects on NO, O2(-) and ONOO(-) and inhibited lipid peroxidation; (3) MCP inhibited the activations of JNK3/c-Jun/Fas-L and JNK3/cytochrome C/caspases-3 signaling cascades in ischemic brains in vivo. Taken together, we conclude that MCP could be a promising neuroprotective ingredient of M. charantia and its mechanisms could be at least in part attributed to its antioxidant activities and inhibiting JNK3 signaling cascades during cerebral ischemia/reperfusion injury. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Schisantherin A suppresses osteoclast formation and wear particle-induced osteolysis via modulating RANKL signaling pathways

    He, Yi; Zhang, Qing; Shen, Yi; Chen, Xia; Zhou, Feng; Peng, Dan, E-mail: xyeypd@163.com

    2014-07-04

    Highlights: • Schisantherin A suppresses osteoclasts formation and function in vitro. • Schisantherin A impairs RANKL signaling pathway. • Schisantherin A suppresses osteolysis in vivo. • Schisantherin A may be used for treating osteoclast related diseases. - Abstract: Receptor activator of NF-κB ligand (RANKL) plays critical role in osteoclastogenesis. Targeting RANKL signaling pathways has been a promising strategy for treating osteoclast related bone diseases such as osteoporosis and aseptic prosthetic loosening. Schisantherin A (SA), a dibenzocyclooctadiene lignan isolated from the fruit of Schisandra sphenanthera, has been used as an antitussive, tonic, and sedative agent, but its effect on osteoclasts has been hitherto unknown. In the present study, SA was found to inhibit RANKL-induced osteoclast formation and bone resorption. The osteoclastic specific marker genes induced by RANKL including c-Src, SA inhibited OSCAR, cathepsin K and TRAP in a dose dependent manner. Further signal transduction studies revealed that SA down-regulate RANKL-induced nuclear factor-kappaB (NF-κB) signaling activation by suppressing the phosphorylation and degradation of IκBα, and subsequently preventing the NF-κB transcriptional activity. Moreover, SA also decreased the RANKL-induced MAPKs signaling pathway, including JNK and ERK1/2 posphorylation while had no obvious effects on p38 activation. Finally, SA suppressed the NF-κB and MAPKs subsequent gene expression of NFATc1 and c-Fos. In vivo studies, SA inhibited osteoclast function and exhibited bone protection effect in wear-particle-induced bone erosion model. Taken together, SA could attenuate osteoclast formation and wear particle-induced osteolysis by mediating RANKL signaling pathways. These data indicated that SA is a promising therapeutic natural compound for the treatment of osteoclast-related prosthesis loosening.

  12. Multiple Signaling Pathways Coordinately Regulate Forgetting of Olfactory Adaptation through Control of Sensory Responses in Caenorhabditis elegans.

    Kitazono, Tomohiro; Hara-Kuge, Sayuri; Matsuda, Osamu; Inoue, Akitoshi; Fujiwara, Manabi; Ishihara, Takeshi

    2017-10-18

    Forgetting memories is important for animals to properly respond to continuously changing environments. To elucidate the mechanisms of forgetting, we used one of the behavioral plasticities of Caenorhabditis elegans hermaphrodite, olfactory adaptation to an attractive odorant, diacetyl, as a simple model of learning. In C. elegans, the TIR-1/JNK-1 pathway accelerates forgetting of olfactory adaptation by facilitating neural secretion from AWC sensory neurons. In this study, to identify the downstream effectors of the TIR-1/JNK-1 pathway, we conducted a genetic screen for suppressors of the gain-of-function mutant of tir-1 ( ok1052 ), which shows excessive forgetting. Our screening showed that three proteins-a membrane protein, MACO-1; a receptor tyrosine kinase, SCD-2; and its putative ligand, HEN-1-regulated forgetting downstream of the TIR-1/JNK-1 pathway. We further demonstrated that MACO-1 and SCD-2/HEN-1 functioned in parallel genetic pathways, and only MACO-1 regulated forgetting of olfactory adaptation to isoamyl alcohol, which is an attractive odorant sensed by different types of sensory neurons. In olfactory adaptation, odor-evoked Ca 2+ responses in olfactory neurons are attenuated by conditioning and recovered thereafter. A Ca 2+ imaging study revealed that this attenuation is sustained longer in maco-1 and scd-2 mutant animals than in wild-type animals like the TIR-1/JNK-1 pathway mutants. Furthermore, temporal silencing by histamine-gated chloride channels revealed that the neuronal activity of AWC neurons after conditioning is important for proper forgetting. We propose that distinct signaling pathways, each of which has a specific function, may coordinately and temporally regulate forgetting by controlling sensory responses. SIGNIFICANCE STATEMENT Active forgetting is an important process to understand the whole mechanisms of memories. Recent papers have reported that the noncell autonomous regulations are required for proper forgetting in

  13. Cyclophilin B protects SH-SY5Y human neuroblastoma cells against MPP(+)-induced neurotoxicity via JNK pathway.

    Oh, Yoojung; Jeong, Kwon; Kim, Kiyoon; Lee, Young-Seok; Jeong, Suyun; Kim, Sung Soo; Yoon, Kyung-Sik; Ha, Joohun; Kang, Insug; Choe, Wonchae

    2016-09-23

    Parkinson's disease (PD) is the second most common neurodegenerative disorder of aging. PD involves a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyidine (MPTP) and its toxic metabolite 1-methyl-4-phenylpyridinium ion (MPP+) inhibit the complex I of the mitochondrial electron transport chain, and have been widely used to construct PD models. Cyclophilin B (CypB) is an endoplasmic reticulum protein that binds to cyclosporine A as a cyclophilin family member. CypB has peptidyl-prolyl cis-trans isomerase (PPIase) activity. We investigated the protective effects of overexpressed CypB on MPP+-induced neurocytotoxicity in SH-SY5Y human neuroblastoma cells. Overexpressed CypB decreased MPP(+)-induced oxidative stress through the modulation of antioxidant enzymes including manganese superoxide dismutase and catalase, and prevented neurocytotoxicity via mitogen-activated protein kinase, especially the c-Jun N-terminal kinase pathway. In addition, CypB inhibited the activation of MPP(+)-induced the pro-apoptotic molecules poly (ADP-ribose) polymerase, Bax, and Bcl-2, and attenuated MPP(+)-induced mitochondrial dysfunction. The data suggest that overexpressed CypB protects neuronal cells from MPP+-induced dopaminergic neuronal cell death. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Acquired tolerance in cadmium-adapted lung epithelial cells: Roles of the c-Jun N-terminal kinase signaling pathway and basal level of metallothionein

    Lau, Andy T.Y.; Zhang Jian; Chiu, J.-F.

    2006-01-01

    Cadmium-resistant cells were developed in our laboratory with rat lung epithelial cells (LECs) by stepwise exposure of LECs to cadmium chloride from 1 μM to 20 μM after 20 passages. To investigate the Cd-resistant phenotype in a long-term perspective, cadmium-resistant cells adapted to 20 μM cadmium (Cd R ) were then cultured in the absence of cadmium for various passages [Cd R (-n)]. All these adapted cells were significantly protected from cadmium toxicity as compared to parental cadmium-sensitive LECs (Cd S ). The cadmium-resistant phenotype of adapted cells was relatively stable in the absence of cadmium for as long as 40 passages. Basal mRNA level of metallothionein-1 (MT-1) was dramatically higher in Cd R than in Cd R (-), which may account for the higher Cd-resistance of Cd R than Cd R (-). MT-1 mRNA level decreased drastically in Cd R after cadmium removal, suggesting that the high basal level of MT-1 in Cd R may be only partially responsible for cadmium-resistance. Treatment of cells with high levels of cadmium resulted in decreased phosphorylation of c-Jun N-terminal kinase (JNK1/2) in adapted cells than in sensitive cells and this cadmium-induced JNK activity was blocked by JNK inhibitor II, SP600125. Ro318220, a strong activator of JNK, reverted cadmium-sensitive phenotype in adapted cells. Taken together, our results suggest that during cadmium adaptation, cells develop tolerance to cell death, generally due to perturbation of the JNK signaling pathway and the nonresponsiveness of JNK phosphorylation is critical for the Cd-tolerance in these cells

  15. DMPD: Regulation of mitochondrial antiviral signaling pathways. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 18549796 Regulation of mitochondrial antiviral signaling pathways. Moore CB, Ting J...P. Immunity. 2008 Jun;28(6):735-9. (.png) (.svg) (.html) (.csml) Show Regulation of mitochondrial antiviral ...signaling pathways. PubmedID 18549796 Title Regulation of mitochondrial antiviral signaling pathways. Author

  16. DMPD: Signaling pathways activated by microorganisms. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 17303405 Signaling pathways activated by microorganisms. Takeuchi O, Akira S. Curr ...Opin Cell Biol. 2007 Apr;19(2):185-91. Epub 2007 Feb 15. (.png) (.svg) (.html) (.csml) Show Signaling pathways activated by microorg...anisms. PubmedID 17303405 Title Signaling pathways activated by microorganisms. Auth

  17. Targeting embryonic signaling pathways in cancer therapy.

    Harris, Pamela Jo; Speranza, Giovanna; Dansky Ullmann, Claudio

    2012-01-01

    The embryonic signaling pathways (ESP), Hedgehog, Notch and Wnt, are critical for the regulation of normal stem cells and cellular development processes. They are also activated in the majority of cancers. ESP are operational in putative cancer stem cells (CSC), which drive initial tumorigenesis and sustain cancer progression and recurrence in non-CSC bulk subpopulations. ESP represent novel therapeutic targets. A variety of inhibitors and targeting strategies are being developed. This review discusses the rationale for targeting ESP for cancer treatment, as well as specific inhibitors under development; mainly focusing on those approaching clinical use and the challenges that lie ahead. The data sources utilized are several database search engines (PubMed, Google, Clinicaltrials.gov), and the authors' involvement in the field. CSC research is rapidly evolving. Expectations regarding their therapeutic targeting are rising quickly. Further definition of what constitutes a true CSC, proper validation of CSC markers, a better understanding of cross-talk among ESP and other pathways, and interactions with tumor non-CSC and the tumor microenvironment are needed. The appropriate patient population, the right clinical setting and combination strategies to test these therapies, as well as the proper pharmacodynamic markers to measure, need to be further established.

  18. JNK1 Controls Dendritic Field Size in L2/3 and L5 of the Motor Cortex, Constrains Soma Size and Influences Fine Motor Coordination

    Emilia eKomulainen

    2014-09-01

    Full Text Available Genetic anomalies on the JNK pathway confer susceptibility to autism spectrum disorders, schizophrenia and intellectual disability. The mechanism whereby a gain or loss of function in JNK signaling predisposes to these prevalent dendrite disorders, with associated motor dysfunction, remains unclear. Here we find that JNK1 regulates the dendritic field of L2/3 and L5 pyramidal neurons of the mouse motor cortex (M1, the main excitatory pathway controlling voluntary movement. In Jnk1-/- mice, basal dendrite branching of L5 pyramidal neurons is increased in M1, as is cell soma size, whereas in L2/3, dendritic arborization is decreased. We show that JNK1 phosphorylates rat HMW-MAP2 on T1619, T1622 and T1625 (Uniprot P15146 corresponding to mouse T1617, T1620, T1623, to create a binding motif, that is critical for MAP2 interaction with and stabilization of microtubules, and dendrite growth control. Targeted expression in M1 of GFP-HMW-MAP2 that is pseudo-phosphorylated on T1619, T1622 and T1625 increases dendrite complexity in L2/3 indicating that JNK1 phosphorylation of HMW-MAP2 regulates the dendritic field. Consistent with the morphological changes observed in L2/3 and L5, Jnk1-/- mice exhibit deficits in limb placement and motor coordination, while stride length is reduced in older animals. In summary, JNK1 phosphorylates HMW-MAP2 to increase its stabilization of microtubules while at the same time controlling dendritic fields in the main excitatory pathway of M1. Moreover, JNK1 contributes to normal functioning of fine motor coordination. We report for the first time, a quantitative sholl analysis of dendrite architecture, and of motor behavior in Jnk1-/- mice. Our results illustrate the molecular and behavioral consequences of interrupted JNK1 signaling and provide new ground for mechanistic understanding of those prevalent neuropyschiatric disorders where genetic disruption of the JNK pathway is central.

  19. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain.

    Gao, Yong-Jing; Zhang, Ling; Samad, Omar Abdel; Suter, Marc R; Yasuhiko, Kawasaki; Xu, Zhen-Zhong; Park, Jong-Yeon; Lind, Anne-Li; Ma, Qiufu; Ji, Ru-Rong

    2009-04-01

    Our previous study showed that activation of c-jun-N-terminal kinase (JNK) in spinal astrocytes plays an important role in neuropathic pain sensitization. We further investigated how JNK regulates neuropathic pain. In cultured astrocytes, tumor necrosis factor alpha (TNF-alpha) transiently activated JNK via TNF receptor-1. Cytokine array indicated that the chemokine CCL2/MCP-1 (monocyte chemoattractant protein-1) was strongly induced by the TNF-alpha/JNK pathway. MCP-1 upregulation by TNF-alpha was dose dependently inhibited by the JNK inhibitors SP600125 (anthra[1,9-cd]pyrazol-6(2H)-one) and D-JNKI-1. Spinal injection of TNF-alpha produced JNK-dependent pain hypersensitivity and MCP-1 upregulation in the spinal cord. Furthermore, spinal nerve ligation (SNL) induced persistent neuropathic pain and MCP-1 upregulation in the spinal cord, and both were suppressed by D-JNKI-1. Remarkably, MCP-1 was primarily induced in spinal cord astrocytes after SNL. Spinal administration of MCP-1 neutralizing antibody attenuated neuropathic pain. Conversely, spinal application of MCP-1 induced heat hyperalgesia and phosphorylation of extracellular signal-regulated kinase in superficial spinal cord dorsal horn neurons, indicative of central sensitization (hyperactivity of dorsal horn neurons). Patch-clamp recordings in lamina II neurons of isolated spinal cord slices showed that MCP-1 not only enhanced spontaneous EPSCs but also potentiated NMDA- and AMPA-induced currents. Finally, the MCP-1 receptor CCR2 was expressed in neurons and some non-neuronal cells in the spinal cord. Together, we have revealed a previously unknown mechanism of MCP-1 induction and action. MCP-1 induction in astrocytes after JNK activation contributes to central sensitization and neuropathic pain facilitation by enhancing excitatory synaptic transmission. Inhibition of the JNK/MCP-1 pathway may provide a new therapy for neuropathic pain management.

  20. Activation of non-canonical Wnt/JNK pathway by Wnt3a is associated with differentiation fate determination of human bone marrow stromal (mesenchymal) stem cells

    Qiu, Weimin; Chen, Li; Kassem, Moustapha

    2011-01-01

    The canonical Wnt signaling pathway can determine human bone marrow stromal (mesenchymal) stem cell (hMSC) differentiation fate into osteoblast or adipocyte lineages. However, its downstream targets in MSC are not well characterized. Thus, using DNA microarrays, we compared global gene expression...

  1. A non-redundant role for Drosophila Mkk4 and hemipterous/Mkk7 in TAK1-mediated activation of JNK.

    Peter Geuking

    Full Text Available BACKGROUND: The JNK pathway is a mitogen-activated protein (MAP kinase pathway involved in the regulation of numerous physiological processes during development and in response to environmental stress. JNK activity is controlled by two MAPK kinases (MAPKK, Mkk4 and Mkk7. Mkk7 plays a prominent role upon Tumor Necrosis Factor (TNF stimulation. Eiger, the unique TNF-superfamily ligand in Drosophila, potently activates JNK signaling through the activation of the MAPKKK Tak1. METHODOLOGY/PRINCIPAL FINDINGS: In a dominant suppressor screen for new components of the Eiger/JNK-pathway in Drosophila, we have identified an allelic series of the Mkk4 gene. Our genetic and biochemical results demonstrate that Mkk4 is dispensable for normal development and host resistance to systemic bacterial infection but plays a non-redundant role as a MAPKK acting in parallel to Hemipterous/Mkk7 in dTAK1-mediated JNK activation upon Eiger and Imd pathway activation. CONCLUSIONS/SIGNIFICANCE: In contrast to mammals, it seems that in Drosophila both MAPKKs, Hep/Mkk7 and Mkk4, are required to induce JNK upon TNF or pro-inflammatory stimulation.

  2. A novel berbamine derivative inhibits cell viability and induces apoptosis in cancer stem-like cells of human glioblastoma, via up-regulation of miRNA-4284 and JNK/AP-1 signaling.

    Fan Yang

    Full Text Available Glioblastoma (GBM is the most common primary brain tumor, accounting for approximately 40% of all central nervous system malignancies. Despite standard treatment consisting of surgical resection, radiotherapy and/or chemotherapy, the prognosis for GBM is poor; with a median survival of 14.6 months. The cancer stem cell or cancer-initiating cell model has provided a new paradigm for understanding development and recurrence of GBM following treatment. Berbamine (BBM is a natural compound derived from the Berberis amurensis plant, and along with its derivatives, has been shown to exhibit antitumor activity in several cancers. Here, we reported that a novel synthetic Berbamine derivative, BBMD3, inhibits cell viability and induces apoptosis of cancer stem-like cells (CSCs in a time- and dose-dependent manner when the CSCs from four GBM patients (PBT003, PBT008, PBT022, and PBT030 were cultured. These CSCs grew in neurospheres and expressed CD133 and nestin as markers. Treatment with BBMD3 destroyed the neurosphere morphology, and led to the induction of apoptosis in the CSCs. Induction of apoptosis in these CSCs is dependent upon activation of caspase-3 and cleavage of poly (ADP-ribose polymerase (PARP. MicroRNA-4284 (miR-4284 was shown to be over-expressed about 4-fold in the CSCs following BBMD3 treatment. Furthermore, transfection of synthetic anti-sense oligonucleotide against human miR-4284 partially blocked the anticancer effects of BBMD3 on the GBM derived CSCs. BBMD3 also increased phosphorylation of the c-Jun N-terminal kinase (JNK/stress-activated protein kinase (SAPK, resulting in an increase expression of phosphorylated c-Jun and total c-Fos; the major components of transcriptional factor AP-1. The JNK-c-Jun/AP-1 signaling pathway plays an important role in the induction of apoptosis in response to UV irradiation and some drug treatments. Targeting glioblastoma stem-like cells with BBMD3 is therefore novel, and may have promise as an

  3. Gene Expression Profile Reveals Abnormalities of Multiple Signaling Pathways in Mesenchymal Stem Cell Derived from Patients with Systemic Lupus Erythematosus

    Yu Tang

    2012-01-01

    Full Text Available We aimed to compare bone-marrow-derived mesenchymal stem cells (BMMSCs between systemic lupus erythematosus (SLE and normal controls by means of cDNA microarray, immunohistochemistry, immunofluorescence, and immunoblotting. Our results showed there were a total of 1, 905 genes which were differentially expressed by BMMSCs derived from SLE patients, of which, 652 genes were upregulated and 1, 253 were downregulated. Gene ontology (GO analysis showed that the majority of these genes were related to cell cycle and protein binding. Pathway analysis exhibited that differentially regulated signal pathways involved actin cytoskeleton, focal adhesion, tight junction, and TGF-β pathway. The high protein level of BMP-5 and low expression of Id-1 indicated that there might be dysregulation in BMP/TGF-β signaling pathway. The expression of Id-1 in SLE BMMSCs was reversely correlated with serum TNF-α levels. The protein level of cyclin E decreased in the cell cycling regulation pathway. Moreover, the MAPK signaling pathway was activated in BMMSCs from SLE patients via phosphorylation of ERK1/2 and SAPK/JNK. The actin distribution pattern of BMMSCs from SLE patients was also found disordered. Our results suggested that there were distinguished differences of BMMSCs between SLE patients and normal controls.

  4. Signal transduction of p53-independent apoptotic pathway induced by hexavalent chromium in U937 cells

    Hayashi, Yoko; Kondo, Takashi; Zhao Qingli; Ogawa Ryohei; Cui Zhengguo; Feril, Loreto B.; Teranishi, Hidetoyo; Kasuya, Minoru

    2004-01-01

    It has been reported that the hexavalent chromium compound (Cr(VI)) can induce both p53-dependent and p53-independent apoptosis. While a considerable amount of information is available on the p53-dependent pathway, only little is known about the p53-independent pathway. To elucidate the p53-independent mechanism, the roles of the Ca 2+ -calpain- and mitochondria-caspase-dependent pathways in apoptosis induced by Cr(VI) were investigated. When human lymphoma U937 cells, p53 mutated cells, were treated with 20 μM Cr(VI) for 24 h, nuclear morphological changes and DNA fragmentation were observed. Production of hydroxyl radicals revealed by electron paramagnetic resonance (EPR)-spin trapping, and increase of intracellular calcium ion concentration monitored by digital imaging were also observed in Cr(VI)-treated cells. An intracellular Ca 2+ chelator, BAPTA-AM, and calpain inhibitors suppressed the Cr(VI)-induced DNA fragmentation. The number of cells showing low mitochondrial membrane potential (MMP), high level of superoxide anion radicals (O 2 - ), and high activity of caspase-3, which are indicators of mitochondria-caspase-dependent pathway, increased significantly in Cr(VI)-treated cells. An antioxidant, N-acetyl-L-cysteine (NAC), decreased DNA fragmentation and inhibited the changes in MMP, O 2 - formation, and activation of caspase-3 induced by Cr(VI). No increase of the expressions of Fas and phosphorylated JNK was observed after Cr(VI) treatment. Cell cycle analysis revealed that the fraction of G2/M phase tended to increase after 24 h of treatment, suggesting that Cr(VI)-induced apoptosis is related to the G2 block. These results indicate that Ca 2+ -calpain- and mitochondria-caspase-dependent pathways play significant roles in the Cr(VI)-induced apoptosis via the G2 block, which are independent of JNK and Fas activation. The inhibition of apoptosis and all its signal transductions by NAC suggests that intracellular reactive oxygen species (ROS) are

  5. Cerebral insulin, insulin signaling pathway, and brain angiogenesis.

    Zeng, Yi; Zhang, Le; Hu, Zhiping

    2016-01-01

    Insulin performs unique non-metabolic functions within the brain. Broadly speaking, two major areas of these functions are those related to brain endothelial cells and the blood-brain barrier (BBB) function, and those related to behavioral effects, like cognition in disease states (Alzheimer's disease, AD) and in health. Recent studies showed that both these functions are associated with brain angiogenesis. These findings raise interesting questions such as how they are linked to each other and whether modifying brain angiogenesis by targeting certain insulin signaling pathways could be an effective strategy to treat dementia as in AD, or even to help secure healthy longevity. The two canonical downstream pathways involved in mediating the insulin signaling pathway, the phosphoinositide-3 kinase (PI3K), and mitogen-activated protein kinase (MAPK) cascades, in the brain are supposed to be similar to those in the periphery. PI3K and MAPK pathways play important roles in angiogenesis. Both are involved in stimulating hypoxia inducible factor (HIF) in angiogenesis and could be activated by the insulin signaling pathway. This suggests that PI3K and MAPK pathways might act as cross-talk between the insulin signaling pathway and the angiogenesis pathway in brain. But the cerebral insulin, insulin signaling pathway, and the detailed mechanism in the connection of insulin signaling pathway, brain angiogenesis pathway, and healthy aging or dementias are still mostly not clear and need further studies.

  6. DMPD: Signalling pathways mediating type I interferon gene expression. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 17904888 Signalling pathways mediating type I interferon gene expression. Edwards M...hways mediating type I interferon gene expression. PubmedID 17904888 Title Signalling pathways...R, Slater L, Johnston SL. Microbes Infect. 2007 Sep;9(11):1245-51. Epub 2007 Jul 1. (.png) (.svg) (.html) (.csml) Show Signalling pat

  7. Antagonism between Hedgehog and Wnt signaling pathways regulates tumorigenicity.

    Ding, Mei; Wang, Xin

    2017-12-01

    The crosstalk of multiple cellular signaling pathways is crucial in animal development and tissue homeostasis, and its dysregulation may result in tumor formation and metastasis. The Hedgehog (Hh) and Wnt signaling pathways are both considered to be essential regulators of cell proliferation, differentiation and oncogenesis. Recent studies have indicated that the Hh and Wnt signaling pathways are closely associated and involved in regulating embryogenesis and cellular differentiation. Hh signaling acts upstream of the Wnt signaling pathway, and negative regulates Wnt activity via secreted frizzled-related protein 1 (SFRP1), and the Wnt/β-catenin pathway downregulates Hh activity through glioma-associated oncogene homolog 3 transcriptional regulation. This evidence suggests that the imbalance of Hh and Wnt regulation serves a crucial role in cancer-associated processes. The activation of SFRP1, which inhibits Wnt, has been demonstrated to be an important cross-point between the two signaling pathways. The present study reviews the complex interaction between the Hh and Wnt signaling pathways in embryogenesis and tumorigenicity, and the role of SFRP1 as an important mediator associated with the dysregulation of the Hh and Wnt signaling pathways.

  8. Ethanol negatively regulates hepatic differentiation of hESC by inhibition of the MAPK/ERK signaling pathway in vitro.

    Wei Gao

    Full Text Available Alcohol insult triggers complex events in the liver, promoting fibrogenic/inflammatory signals and in more advanced cases, aberrant matrix deposition. It is well accepted that the regenerative capacity of the adult liver is impaired during alcohol injury. The liver progenitor/stem cells have been shown to play an important role in liver regeneration -in response to various chronic injuries; however, the effects of alcohol on stem cell differentiation in the liver are not well understood.We employed hepatic progenitor cells derived from hESCs to study the impact of ethanol on hepatocyte differentiation by exposure of these progenitor cells to ethanol during hepatocyte differentiation.We found that ethanol negatively regulated hepatic differentiation of hESC-derived hepatic progenitor cells in a dose-dependent manner. There was also a moderate cell cycle arrest at G1/S checkpoint in the ethanol treated cells, which is associated with a reduced level of cyclin D1 in these cells. Ethanol treatment specifically inhibited the activation of the ERK but not JNK nor the p38 MAP signaling pathway. At the same time, the WNT signaling pathway was also reduced in the cells exposed to ethanol. Upon evaluating the effects of the inhibitors of these two signaling pathways, we determined that the Erk inhibitor replicated the effects of ethanol on the hepatocyte differentiation and attenuated the WNT/β-catenin signaling, however, inhibitors of WNT only partially replicated the effects of ethanol on the hepatocyte differentiation.Our results demonstrated that ethanol negatively regulated hepatic differentiation of hESC-derived hepatic progenitors through inhibiting the MAPK/ERK signaling pathway, and subsequently attenuating the WNT signaling pathway. Thus, our finding provides a novel insight into the mechanism by which alcohol regulates cell fate selection of hESC-derived hepatic progenitor cells, and the identified pathways may provide therapeutic targets

  9. Research advances in Hedgehog signaling pathway in hepatocellular carcinoma

    LIU Jia

    2015-02-01

    Full Text Available Hedgehog (Hh signaling pathway is present in many animals and plays an important role in regulating embryonic development and differentiation. Aberrant activation of Hh signaling contributes to the pathogenesis of many malignancies. Recent studies have shown that dysregulated Hh signaling pathway participates in the tumorigenesis, tumor invasion, and metastasis of hepatocellular carcinoma (HCC. Investigation of the relationship between Hh signaling pathway and HCC will help elucidate the molecular mechanism of pathogenesis of HCC and provide a new insight into the development of novel anticancer therapy and therapeutic target.

  10. JNK and NADPH Oxidase Involved in Fluoride-Induced Oxidative Stress in BV-2 Microglia Cells

    Ling Yan

    2013-01-01

    Full Text Available Excessive fluoride may cause central nervous system (CNS dysfunction, and oxidative stress is a recognized mode of action of fluoride toxicity. In CNS, activated microglial cells can release more reactive oxygen species (ROS, and NADPH oxidase (NOX is the major enzyme for the production of extracellular superoxide in microglia. ROS have been characterized as an important secondary messenger and modulator for various mammalian intracellular signaling pathways, including the MAPK pathways. In this study we examined ROS production and TNF-α, IL-1β inflammatory cytokines releasing, and the expression of MAPKs in BV-2 microglia cells treated with fluoride. We found that fluoride increased JNK phosphorylation level of BV-2 cells and pretreatment with JNK inhibitor SP600125 markedly reduced the levels of intracellular and NO. NOX inhibitor apocynin and iNOS inhibitor SMT dramatically decreased NaF-induced ROS and NO generations, respectively. Antioxidant melatonin (MEL resulted in a reduction in JNK phosphorylation in fluoride-stimulated BV-2 microglia. The results confirmed that NOX and iNOS played an important role in fluoride inducing oxidative stress and NO production and JNK took part in the oxidative stress induced by fluoride and meanwhile also could be activated by ROS in fluoride-treated BV-2 cells.

  11. JNK and NADPH Oxidase Involved in Fluoride-Induced Oxidative Stress in BV-2 Microglia Cells

    Yan, Ling; Liu, Shengnan; Wang, Chen; Wang, Fei; Song, Yingli; Yan, Nan; Xi, Shuhua; Liu, Ziyou; Sun, Guifan

    2013-01-01

    Excessive fluoride may cause central nervous system (CNS) dysfunction, and oxidative stress is a recognized mode of action of fluoride toxicity. In CNS, activated microglial cells can release more reactive oxygen species (ROS), and NADPH oxidase (NOX) is the major enzyme for the production of extracellular superoxide in microglia. ROS have been characterized as an important secondary messenger and modulator for various mammalian intracellular signaling pathways, including the MAPK pathways. In this study we examined ROS production and TNF-α, IL-1β inflammatory cytokines releasing, and the expression of MAPKs in BV-2 microglia cells treated with fluoride. We found that fluoride increased JNK phosphorylation level of BV-2 cells and pretreatment with JNK inhibitor SP600125 markedly reduced the levels of intracellular O2 ·− and NO. NOX inhibitor apocynin and iNOS inhibitor SMT dramatically decreased NaF-induced ROS and NO generations, respectively. Antioxidant melatonin (MEL) resulted in a reduction in JNK phosphorylation in fluoride-stimulated BV-2 microglia. The results confirmed that NOX and iNOS played an important role in fluoride inducing oxidative stress and NO production and JNK took part in the oxidative stress induced by fluoride and meanwhile also could be activated by ROS in fluoride-treated BV-2 cells. PMID:24072958

  12. Radioresistance-related signaling pathways in nasopharyngeal carcinoma cells

    Guo Ya; Zhu Xiaodong; Qu Song; Su Fang; Wang Qi; Zhang Wei

    2011-01-01

    Objective: To study the difference of gene expression profile between the radioresistant human nasopharyngeal carcinoma cell line CNE-2R and CNE-2, and to screen the signaling pathway associated with radioresistance of nasopharyngeal carcinoma. Methods: The radioresistant nasopharyngeal carcinoma cell line CNE-2R was constructed from the original cell line CNE-2. CNE-2R and CNE-2 cells were cultured and administered with 60 Co γ-ray irradiation at the dose of 400 cGy for 15 times. Human-6v 3.0 whole genome expression profile was used to screen the differentially expressed genes. Bioinformatic analysis was used to identify the pathways related to radioresistance. Results: The number of the differentially expressed genes that were found in these 2 experiments was 374. The Kegg pathway and Biocarta pathway analysis of the differentially expressed genes showed the biological importance of Toll-like receptor signaling pathway and IL-1 R-mediated signal transduction pathway to the radioresistance of the CNE-2R cells and the significant differences of 13 genes in these 2 pathways,including JUN, MYD88, CCL5, CXCL10, STAT1, LY96, FOS, CCL3, IL-6, IL-8, IL-1α, IL-1β, and IRAK2 (t=13.47-66.57, P<0.05). Conclusions: Toll-like receptor signaling pathway and IL-1R-mediated signal transduction pathway might be related to the occurrence of radioresistance. (authors)

  13. Anti-influenza A virus activity of rhein through regulating oxidative stress, TLR4, Akt, MAPK, and NF-κB signal pathways.

    Qian-Wen Wang

    Full Text Available Rhein, an anthraquinone compound existing in many traditional herbal medicines, has anti-inflammatory, antioxidant, antitumor, antiviral, hepatoprotective, and nephroprotective activities, but its anti-influenza A virus (IAV activity is ambiguous. In the present study, through plaque inhibition assay, time-of-addition assay, antioxidant assay, qRT-PCR, ELISA, and western blotting assays, we investigated the anti-IAV effect and mechanism of action of rhein in vitro and in vivo. The results showed that rhein could significantly inhibit IAV adsorption and replication, decrease IAV-induced oxidative stress, activations of TLR4, Akt, p38, JNK MAPK, and NF-κB pathways, and production of inflammatory cytokines and matrix metalloproteinases in vitro. Oxidant H2O2 and agonists of TLR4, Akt, p38/JNK and IKK/NF-κB could significantly antagonize the inhibitory effects of rhein on IAV-induced cytopathic effect (CPE and IAV replication. Through an in vivo test in mice, we also found that rhein could significantly improve the survival rate, lung index, pulmonary cytokines, and pulmonary histopathological changes. Rhein also significantly decreased pulmonary viral load at a high dose. In conclusion, rhein can inhibit IAV adsorption and replication, and the mechanism of action to inhibit IAV replication may be due to its ability to suppress IAV-induced oxidative stress and activations of TLR4, Akt, p38, JNK MAPK, and NF-κB signal pathways.

  14. Evolutionary conservation of plant gibberellin signalling pathway components

    Reski Ralf

    2007-11-01

    Full Text Available Abstract Background: Gibberellins (GA are plant hormones that can regulate germination, elongation growth, and sex determination. They ubiquitously occur in seed plants. The discovery of gibberellin receptors, together with advances in understanding the function of key components of GA signalling in Arabidopsis and rice, reveal a fairly short GA signal transduction route. The pathway essentially consists of GID1 gibberellin receptors that interact with F-box proteins, which in turn regulate degradation of downstream DELLA proteins, suppressors of GA-controlled responses. Results: Arabidopsis sequences of the gibberellin signalling compounds were used to screen databases from a variety of plants, including protists, for homologues, providing indications for the degree of conservation of the pathway. The pathway as such appears completely absent in protists, the moss Physcomitrella patens shares only a limited homology with the Arabidopsis proteins, thus lacking essential characteristics of the classical GA signalling pathway, while the lycophyte Selaginella moellendorffii contains a possible ortholog for each component. The occurrence of classical GA responses can as yet not be linked with the presence of homologues of the signalling pathway. Alignments and display in neighbour joining trees of the GA signalling components confirm the close relationship of gymnosperms, monocotyledonous and dicotyledonous plants, as suggested from previous studies. Conclusion: Homologues of the GA-signalling pathway were mainly found in vascular plants. The GA signalling system may have its evolutionary molecular onset in Physcomitrella patens, where GAs at higher concentrations affect gravitropism and elongation growth.

  15. Oxygen-Glucose-Deprivation/Reoxygenation-Induced Autophagic Cell Death Depends on JNK-Mediated Phosphorylation of Bcl-2

    Jin Fan

    2016-03-01

    Full Text Available Background/Aims: The purpose of this study was to investigate the role of autophagy in oxygen-glucose-deprivation/reoxygenation (OGD/R injury in rat neurons. Methods and results: Cortical neurons were isolated from Sprague-Dawley rats and identified by immunofluorescence. The cortical neurons were randomly assigned to one of four groups: control group (I, experimental group (OGD/R group, II, JNK inhibitor pretreatment group (III and JNK inhibitor pretreatment + OGD/R group (IV. Neuronal cell viability significantly decreased after 6h and 12h of reoxygenation in Group IV (P P Conclusion: The regulation of the JNK/Bcl-2/Beclin-1 signaling pathway may be one of the mechanisms underlying the OGD/R-induced autophagic cell death of neurons.

  16. Intricacies of hedgehog signaling pathways: A perspective in tumorigenesis

    Kar, Swayamsiddha; Deb, Moonmoon; Sengupta, Dipta; Shilpi, Arunima; Bhutia, Sujit Kumar; Patra, Samir Kumar

    2012-01-01

    The hedgehog (HH) signaling pathway is a crucial negotiator of developmental proceedings in the embryo governing a diverse array of processes including cell proliferation, differentiation, and tissue patterning. The overall activity of the pathway is significantly curtailed after embryogenesis as well as in adults, yet it retains many of its functional capacities. However, aberration in HH signaling mediates the initiation, proliferation and continued sustenance of malignancy in different tissues to varying degrees through different mechanisms. In this review, we provide an overview of the role of constitutively active aberrant HH signaling pathway in different types of human cancer and the underlying molecular and genetic mechanisms that drive tumorigenesis in that particular tissue. An insight into the various modes of anomalous HH signaling in different organs will provide a comprehensive knowledge of the pathway in these tissues and open a window for individually tailored, tissue-specific therapeutic interventions. The synergistic cross talking of HH pathway with many other regulatory molecules and developmentally inclined signaling pathways may offer many avenues for pharmacological advances. Understanding the molecular basis of abnormal HH signaling in cancer will provide an opportunity to inhibit the deregulated pathway in many aggressive and therapeutically challenging cancers where promising options are not available.

  17. Intricacies of hedgehog signaling pathways: A perspective in tumorigenesis

    Kar, Swayamsiddha; Deb, Moonmoon; Sengupta, Dipta; Shilpi, Arunima; Bhutia, Sujit Kumar [Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 (India); Patra, Samir Kumar, E-mail: samirp@nitrkl.ac.in [Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 (India)

    2012-10-01

    The hedgehog (HH) signaling pathway is a crucial negotiator of developmental proceedings in the embryo governing a diverse array of processes including cell proliferation, differentiation, and tissue patterning. The overall activity of the pathway is significantly curtailed after embryogenesis as well as in adults, yet it retains many of its functional capacities. However, aberration in HH signaling mediates the initiation, proliferation and continued sustenance of malignancy in different tissues to varying degrees through different mechanisms. In this review, we provide an overview of the role of constitutively active aberrant HH signaling pathway in different types of human cancer and the underlying molecular and genetic mechanisms that drive tumorigenesis in that particular tissue. An insight into the various modes of anomalous HH signaling in different organs will provide a comprehensive knowledge of the pathway in these tissues and open a window for individually tailored, tissue-specific therapeutic interventions. The synergistic cross talking of HH pathway with many other regulatory molecules and developmentally inclined signaling pathways may offer many avenues for pharmacological advances. Understanding the molecular basis of abnormal HH signaling in cancer will provide an opportunity to inhibit the deregulated pathway in many aggressive and therapeutically challenging cancers where promising options are not available.

  18. Resveratrol Ameliorates Palmitate-Induced Inflammation in Skeletal Muscle Cells by Attenuating Oxidative Stress and JNK/NF-κB Pathway in a SIRT1-Independent Mechanism.

    Sadeghi, Asie; Seyyed Ebrahimi, Shadi Sadat; Golestani, Abolfazl; Meshkani, Reza

    2017-09-01

    Resveratrol has been shown to exert anti-inflammatory and anti-oxidant effects in a variety of cell types, however, its role in prevention of inflammatory responses mediated by palmitate in skeletal muscle cells remains unexplored. In the present study, we investigated the effects of resveratrol on palmitate-induced inflammation and elucidated the underlying mechanisms in skeletal muscle cells. The results showed that palmitate significantly enhanced TNF-α and IL-6 mRNA expression and protein secretion from C2C12 cells at 12, 24, and 36 h treatments. Increased expression of cytokines was accompanied by an enhanced phosphorylation of JNK, P38, ERK1/2, and IKKα/IKKβ. In addition, JNK and P38 inhibitors could significantly attenuate palmitate-induced mRNA expression of TNF-α and IL-6, respectively, whereas NF-κB inhibitor reduced the expression of both cytokines in palmitate-treated cells. Resveratrol pretreatment significantly prevented palmitate-induced TNF-α and IL-6 mRNA expression and protein secretion in C2C12 cells. Importantly, pre-treatment of the cells with resveratrol completely abrogated the phosphorylation of ERK1/2, JNK, and IKKα/IKKβ in palmitate treated cells. The protection from palmitate-induced inflammation by resveratrol was accompanied by a decrease in the generation of reactive oxygen species (ROS). N-acetyl cysteine (NAC), a known scavenger of ROS, could protect palmitate-induced expression of TNF-α and IL-6. Furthermore, inhibition of SIRT1 by shRNA or sirtinol demonstrated that the anti-inflammatory effect of resveratrol in muscle cells is mediated through a SIRT1-independent mechanism. Taken together, these findings suggest that resveratrol may represent a promising therapy for prevention of inflammation in skeletal muscle cells. J. Cell. Biochem. 118: 2654-2663, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Tanreqing Injection Attenuates Lipopolysaccharide-Induced Airway Inflammation through MAPK/NF-κB Signaling Pathways in Rats Model

    Liu, Wei; Jiang, Hong-li; Cai, Lin-li; Yan, Min; Dong, Shou-jin; Mao, Bing

    2016-01-01

    Background. Tanreqing injection (TRQ) is a commonly used herbal patent medicine for treating inflammatory airway diseases in view of its outstanding anti-inflammatory properties. In this study, we explored the signaling pathways involved in contributions of TRQ to LPS-induced airway inflammation in rats. Methods/Design. Adult male Sprague Dawley (SD) rats randomly divided into different groups received intratracheal instillation of LPS and/or intraperitoneal injection of TRQ. Bronchoalveolar Lavage Fluid (BALF) and lung samples were collected at 24 h, 48 h, and 96 h after TRQ administration. Protein and mRNA levels of tumor necrosis factor- (TNF-) α, Interleukin- (IL-) 1β, IL-6, and IL-8 in BALF and lung homogenate were observed by ELISA and real-time PCR, respectively. Lung sections were stained for p38 MAPK and NF-κB detection by immunohistochemistry. Phospho-p38 MAPK, phosphor-extracellular signal-regulated kinases ERK1/2, phospho-SAPK/JNK, phospho-NF-κB p65, phospho-IKKα/β, and phospho-IκB-α were measured by western blot analysis. Results. The results showed that TRQ significantly counteracted LPS-stimulated release of TNF-α, IL-1β, IL-6, and IL-8, attenuated cells influx in BALF, mitigated mucus hypersecretion, suppressed phosphorylation of NF-κB p65, IκB-α, ΙKKα/β, ERK1/2, JNK, and p38 MAPK, and inhibited p38 MAPK and NF-κB p65 expression in rat lungs. Conclusions. Results of the current research indicate that TRQ possesses potent exhibitory effects in LPS-induced airway inflammation by, at least partially, suppressing the MAPKs and NF-κB signaling pathways, in a general dose-dependent manner. PMID:27366191

  20. Cordyceps militaris Fraction induces apoptosis and G2/M Arrest via c-Jun N-Terminal kinase signaling pathway in oral squamous carcinoma KB Cells.

    Xie, Wangshi; Zhang, Zhang; Song, Liyan; Huang, Chunhua; Guo, Zhongyi; Hu, Xianjing; Bi, Sixue; Yu, Rongmin

    2018-01-01

    Cordyceps militaris fraction (CMF) has been shown to possess in vitro antitumor activity against human chronic myeloid leukemia K562 cells in our previous research. The in vitro inhibitory activities of CMF on the growth of KB cells were evaluated by viability assay. The apoptotic and cell cycle influences of CMF were detected by 4',6-diamidino-2-phenylindole staining and flow cytometry assay. The expression of different apoptosis-associated proteins and cell cycle regulatory proteins was examined by Western blot assay. The nuclear localization of c-Jun was observed by fluorescence staining. The objective of this study was to investigate the antiproliferative effect of CMF as well as the mechanism underlying the apoptosis and cell cycle arrest it induces in KB cells. CMF suppressed KB cells' proliferation in a dose- and time-dependent manner. Flow cytometric analysis indicated that CMF induced G2/M cell cycle arrest and apoptosis. Western blot analysis revealed that CMF induced caspase-3, caspase-9, and PARP cleavages, and increased the Bax/Bcl-2 ratio. CMF also led to increased expression of p21, decreased expression of cyclin B1, mitotic phosphatase cdc25c, and mitotic kinase cdc2, as well as unchanged expression of p53. In addition, CMF stimulated c-Jun N-terminal kinases (JNK) protein phosphorylations, resulting in upregulated expression of c-Jun and nuclear localization of c-Jun. Pretreatment with JNK inhibitor SP600125 suppressed CMF-induced apoptosis and G2/M arrest. CMF is capable of modulating c-Jun caspase and Bcl-2 family proteins through JNK-dependent apoptosis, which results in G2/M phase arrest in KB cells. CMF could be developed as a promising candidate for the new antitumor agents. CMF exhibited strong anticancer activity against oral squamous carcinoma KB cellsCMF inhibited KB cells' proliferation via induction of apoptosis and G2/M cell cycle arrestCMF activated JNK signaling pathway and promoted the nuclear localization of c-JunCMF regulated the

  1. Dissection of the insulin signaling pathway via quantitative phosphoproteomics

    Krüger, Marcus; Kratchmarova, Irina; Blagoev, Blagoy

    2008-01-01

    spectrum of the tyrosine phosphorylation cascade, we have defined the tyrosine-phosphoproteome of the insulin signaling pathway, using high resolution mass spectrometry in combination with phosphotyrosine immunoprecipitation and stable isotope labeling by amino acids in cell culture (SILAC......The insulin signaling pathway is of pivotal importance in metabolic diseases, such as diabetes, and in cellular processes, such as aging. Insulin activates a tyrosine phosphorylation cascade that branches to create a complex network affecting multiple biological processes. To understand the full...

  2. Signaling Pathways in Pathogenesis of Diamond Blackfan Anemia

    2015-12-01

    AWARD NUMBER: W81XWH-12-1-0590 TITLE: SIGNALING PATHWAYS IN PATHOGENESIS OF DIAMOND BLACKFAN ANEMIA PRINCIPAL INVESTIGATOR: KATHLEEN M...SUBTITLE 5a. CONTRACT NUMBER W81XWH-12-1-0590 SIGNALING PATHWAYS IN PATHOGENESIS OF DIAMOND BLACKFAN ANEMIA 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Unlimited 13. SUPPLEMENTARY NOTES None 14. ABSTRACT: Diamond Blackfan Anemia (DBA) is a disorder that results in pure red cell aplasia, congenital

  3. Modelling and Analysis of Biochemical Signalling Pathway Cross-talk

    Robin Donaldson

    2010-02-01

    Full Text Available Signalling pathways are abstractions that help life scientists structure the coordination of cellular activity. Cross-talk between pathways accounts for many of the complex behaviours exhibited by signalling pathways and is often critical in producing the correct signal-response relationship. Formal models of signalling pathways and cross-talk in particular can aid understanding and drive experimentation. We define an approach to modelling based on the concept that a pathway is the (synchronising parallel composition of instances of generic modules (with internal and external labels. Pathways are then composed by (synchronising parallel composition and renaming; different types of cross-talk result from different combinations of synchronisation and renaming. We define a number of generic modules in PRISM and five types of cross-talk: signal flow, substrate availability, receptor function, gene expression and intracellular communication. We show that Continuous Stochastic Logic properties can both detect and distinguish the types of cross-talk. The approach is illustrated with small examples and an analysis of the cross-talk between the TGF-b/BMP, WNT and MAPK pathways.

  4. Oncogenic Signaling Pathways in The Cancer Genome Atlas

    Sanchez-Vega, Francisco; Mina, Marco; Armenia, Joshua; Chatila, Walid K.; Luna, Augustin; La, Konnor C.; Dimitriadoy, Sofia; Liu, David L.; Kantheti, Havish S.; Saghafinia, Sadegh; Chakravarty, Debyani; Daian, Foysal; Gao, Qingsong; Bailey, Matthew H.; Liang, Wen Wei; Foltz, Steven M.; Shmulevich, Ilya; Ding, Li; Heins, Zachary J.; Ochoa, Angelica; Gross, Benjamin E.; Gao, Jianjiong; Zhang, Hongxin; Kundra, Ritika; Kandoth, Cyriac; Bahceci, Istemi; Dervishi, Leonard; Dogrusoz, Ugur; Zhou, Wanding; Shen, Hui; Laird, Peter W.; Way, Gregory P.; Greene, Casey S.; Liang, Han; Xiao, Yonghong; Wang, Chen; Iavarone, Antonio; Berger, Alice H.; Bivona, Trever G.; Lazar, Alexander J.; Hammer, Gary D.; Giordano, Thomas; Kwong, Lawrence N.; McArthur, Grant; Huang, Chenfei; Tward, Aaron D.; Frederick, Mitchell J.; McCormick, Frank; Meyerson, Matthew; Caesar-Johnson, Samantha J.; Demchok, John A.; Felau, Ina; Kasapi, Melpomeni; Ferguson, Martin L.; Hutter, Carolyn M.; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Cho, Juok; DeFreitas, Timothy; Frazer, Scott; Gehlenborg, Nils; Getz, Gad; Heiman, David I.; Kim, Jaegil; Lawrence, Michael S.; Lin, Pei; Meier, Sam; Noble, Michael S.; Saksena, Gordon; Voet, Doug; Zhang, Hailei; Bernard, Brady; Chambwe, Nyasha; Dhankani, Varsha; Knijnenburg, Theo; Kramer, Roger; Leinonen, Kalle; Liu, Yuexin; Miller, Michael; Reynolds, Sheila; Shmulevich, Ilya; Thorsson, Vesteinn; Zhang, Wei; Akbani, Rehan; Broom, Bradley M.; Hegde, Apurva M.; Ju, Zhenlin; Kanchi, Rupa S.; Korkut, Anil; Li, Jun; Liang, Han; Ling, Shiyun; Liu, Wenbin; Lu, Yiling; Mills, Gordon B.; Ng, Kwok Shing; Rao, Arvind; Ryan, Michael; Wang, Jing; Weinstein, John N.; Zhang, Jiexin; Abeshouse, Adam; Armenia, Joshua; Chakravarty, Debyani; Chatila, Walid K.; de Bruijn, Ino; Gao, Jianjiong; Gross, Benjamin E.; Heins, Zachary J.; Kundra, Ritika; La, Konnor; Ladanyi, Marc; Luna, Augustin; Nissan, Moriah G.; Ochoa, Angelica; Phillips, Sarah M.; Reznik, Ed; Sanchez-Vega, Francisco; Sander, Chris; Schultz, Nikolaus; Sheridan, Robert; Sumer, S. Onur; Sun, Yichao; Taylor, Barry S.; Wang, Jioajiao; Zhang, Hongxin; Anur, Pavana; Peto, Myron; Spellman, Paul; Benz, Christopher; Stuart, Joshua M.; Wong, Christopher K.; Yau, Christina; Hayes, D. Neil; Parker, Joel S.; Wilkerson, Matthew D.; Ally, Adrian; Balasundaram, Miruna; Bowlby, Reanne; Brooks, Denise; Carlsen, Rebecca; Chuah, Eric; Dhalla, Noreen; Holt, Robert; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen; Robertson, A. Gordon; Sadeghi, Sara; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Tse, Kane; Wong, Tina; Berger, Ashton C.; Beroukhim, Rameen; Cherniack, Andrew D.; Cibulskis, Carrie; Gabriel, Stacey B.; Gao, Galen F.; Ha, Gavin; Meyerson, Matthew; Schumacher, Steven E.; Shih, Juliann; Kucherlapati, Melanie H.; Kucherlapati, Raju S.; Baylin, Stephen; Cope, Leslie; Danilova, Ludmila; Bootwalla, Moiz S.; Lai, Phillip H.; Maglinte, Dennis T.; Van Den Berg, David J.; Weisenberger, Daniel J.; Auman, J. Todd; Balu, Saianand; Bodenheimer, Tom; Fan, Cheng; Hoadley, Katherine A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Corbin D.; Meng, Shaowu; Mieczkowski, Piotr A.; Mose, Lisle E.; Perou, Amy H.; Perou, Charles M.; Roach, Jeffrey; Shi, Yan; Simons, Janae V.; Skelly, Tara; Soloway, Matthew G.; Tan, Donghui; Veluvolu, Umadevi; Fan, Huihui; Hinoue, Toshinori; Laird, Peter W.; Shen, Hui; Zhou, Wanding; Bellair, Michelle; Chang, Kyle; Covington, Kyle; Creighton, Chad J.; Dinh, Huyen; Doddapaneni, Harsha Vardhan; Donehower, Lawrence A.; Drummond, Jennifer; Gibbs, Richard A.; Glenn, Robert; Hale, Walker; Han, Yi; Hu, Jianhong; Korchina, Viktoriya; Lee, Sandra; Lewis, Lora; Li, Wei; Liu, Xiuping; Morgan, Margaret; Morton, Donna; Muzny, Donna; Santibanez, Jireh; Sheth, Margi; Shinbrot, Eve; Wang, Linghua; Wang, Min; Wheeler, David A.; Xi, Liu; Zhao, Fengmei; Hess, Julian; Appelbaum, Elizabeth L.; Bailey, Matthew; Cordes, Matthew G.; Ding, Li; Fronick, Catrina C.; Fulton, Lucinda A.; Fulton, Robert S.; Kandoth, Cyriac; Mardis, Elaine R.; McLellan, Michael D.; Miller, Christopher A.; Schmidt, Heather K.; Wilson, Richard K.; Crain, Daniel; Curley, Erin; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Candace; Shelton, Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Wise, Lisa; Zmuda, Erik; Corcoran, Niall; Costello, Tony; Hovens, Christopher; Carvalho, Andre L.; de Carvalho, Ana C.; Fregnani, José H.; Longatto-Filho, Adhemar; Reis, Rui M.; Scapulatempo-Neto, Cristovam; Silveira, Henrique C.S.; Vidal, Daniel O.; Burnette, Andrew; Eschbacher, Jennifer; Hermes, Beth; Noss, Ardene; Singh, Rosy; Anderson, Matthew L.; Castro, Patricia D.; Ittmann, Michael; Huntsman, David; Kohl, Bernard; Le, Xuan; Thorp, Richard; Andry, Chris; Duffy, Elizabeth R.; Lyadov, Vladimir; Paklina, Oxana; Setdikova, Galiya; Shabunin, Alexey; Tavobilov, Mikhail; McPherson, Christopher; Warnick, Ronald; Berkowitz, Ross; Cramer, Daniel; Feltmate, Colleen; Horowitz, Neil; Kibel, Adam; Muto, Michael; Raut, Chandrajit P.; Malykh, Andrei; Barnholtz-Sloan, Jill S.; Barrett, Wendi; Devine, Karen; Fulop, Jordonna; Ostrom, Quinn T.; Shimmel, Kristen; Wolinsky, Yingli; Sloan, Andrew E.; De Rose, Agostino; Giuliante, Felice; Goodman, Marc; Karlan, Beth Y.; Hagedorn, Curt H.; Eckman, John; Harr, Jodi; Myers, Jerome; Tucker, Kelinda; Zach, Leigh Anne; Deyarmin, Brenda; Hu, Hai; Kvecher, Leonid; Larson, Caroline; Mural, Richard J.; Somiari, Stella; Vicha, Ales; Zelinka, Tomas; Bennett, Joseph; Iacocca, Mary; Rabeno, Brenda; Swanson, Patricia; Latour, Mathieu; Lacombe, Louis; Têtu, Bernard; Bergeron, Alain; McGraw, Mary; Staugaitis, Susan M.; Chabot, John; Hibshoosh, Hanina; Sepulveda, Antonia; Su, Tao; Wang, Timothy; Potapova, Olga; Voronina, Olga; Desjardins, Laurence; Mariani, Odette; Roman-Roman, Sergio; Sastre, Xavier; Stern, Marc Henri; Cheng, Feixiong; Signoretti, Sabina; Berchuck, Andrew; Bigner, Darell; Lipp, Eric; Marks, Jeffrey; McCall, Shannon; McLendon, Roger; Secord, Angeles; Sharp, Alexis; Behera, Madhusmita; Brat, Daniel J.; Chen, Amy; Delman, Keith; Force, Seth; Khuri, Fadlo; Magliocca, Kelly; Maithel, Shishir; Olson, Jeffrey J.; Owonikoko, Taofeek; Pickens, Alan; Ramalingam, Suresh; Shin, Dong M.; Sica, Gabriel; Van Meir, Erwin G.; Zhang, Hongzheng; Eijckenboom, Wil; Gillis, Ad; Korpershoek, Esther; Looijenga, Leendert; Oosterhuis, Wolter; Stoop, Hans; van Kessel, Kim E.; Zwarthoff, Ellen C.; Calatozzolo, Chiara; Cuppini, Lucia; Cuzzubbo, Stefania; DiMeco, Francesco; Finocchiaro, Gaetano; Mattei, Luca; Perin, Alessandro; Pollo, Bianca; Chen, Chu; Houck, John; Lohavanichbutr, Pawadee; Hartmann, Arndt; Stoehr, Christine; Stoehr, Robert; Taubert, Helge; Wach, Sven; Wullich, Bernd; Kycler, Witold; Murawa, Dawid; Wiznerowicz, Maciej; Chung, Ki; Edenfield, W. Jeffrey; Martin, Julie; Baudin, Eric; Bubley, Glenn; Bueno, Raphael; De Rienzo, Assunta; Richards, William G.; Kalkanis, Steven; Mikkelsen, Tom; Noushmehr, Houtan; Scarpace, Lisa; Girard, Nicolas; Aymerich, Marta; Campo, Elias; Giné, Eva; Guillermo, Armando López; Van Bang, Nguyen; Hanh, Phan Thi; Phu, Bui Duc; Tang, Yufang; Colman, Howard; Evason, Kimberley; Dottino, Peter R.; Martignetti, John A.; Gabra, Hani; Juhl, Hartmut; Akeredolu, Teniola; Stepa, Serghei; Hoon, Dave; Ahn, Keunsoo; Kang, Koo Jeong; Beuschlein, Felix; Breggia, Anne; Birrer, Michael; Bell, Debra; Borad, Mitesh; Bryce, Alan H.; Castle, Erik; Chandan, Vishal; Cheville, John; Copland, John A.; Farnell, Michael; Flotte, Thomas; Giama, Nasra; Ho, Thai; Kendrick, Michael; Kocher, Jean Pierre; Kopp, Karla; Moser, Catherine; Nagorney, David; O'Brien, Daniel; O'Neill, Brian Patrick; Patel, Tushar; Petersen, Gloria; Que, Florencia; Rivera, Michael; Roberts, Lewis; Smallridge, Robert; Smyrk, Thomas; Stanton, Melissa; Thompson, R. Houston; Torbenson, Michael; Yang, Ju Dong; Zhang, Lizhi; Brimo, Fadi; Ajani, Jaffer A.; Gonzalez, Ana Maria Angulo; Behrens, Carmen; Bondaruk, Jolanta; Broaddus, Russell; Czerniak, Bogdan; Esmaeli, Bita; Fujimoto, Junya; Gershenwald, Jeffrey; Guo, Charles; Lazar, Alexander J.; Logothetis, Christopher; Meric-Bernstam, Funda; Moran, Cesar; Ramondetta, Lois; Rice, David; Sood, Anil; Tamboli, Pheroze; Thompson, Timothy; Troncoso, Patricia; Tsao, Anne; Wistuba, Ignacio; Carter, Candace; Haydu, Lauren; Hersey, Peter; Jakrot, Valerie; Kakavand, Hojabr; Kefford, Richard; Lee, Kenneth; Long, Georgina; Mann, Graham; Quinn, Michael; Saw, Robyn; Scolyer, Richard; Shannon, Kerwin; Spillane, Andrew; Stretch, Jonathan; Synott, Maria; Thompson, John; Wilmott, James; Al-Ahmadie, Hikmat; Chan, Timothy A.; Ghossein, Ronald; Gopalan, Anuradha; Levine, Douglas A.; Reuter, Victor; Singer, Samuel; Singh, Bhuvanesh; Tien, Nguyen Viet; Broudy, Thomas; Mirsaidi, Cyrus; Nair, Praveen; Drwiega, Paul; Miller, Judy; Smith, Jennifer; Zaren, Howard; Park, Joong Won; Hung, Nguyen Phi; Kebebew, Electron; Linehan, W. Marston; Metwalli, Adam R.; Pacak, Karel; Pinto, Peter A.; Schiffman, Mark; Schmidt, Laura S.; Vocke, Cathy D.; Wentzensen, Nicolas; Worrell, Robert; Yang, Hannah; Moncrieff, Marc; Goparaju, Chandra; Melamed, Jonathan; Pass, Harvey; Botnariuc, Natalia; Caraman, Irina; Cernat, Mircea; Chemencedji, Inga; Clipca, Adrian; Doruc, Serghei; Gorincioi, Ghenadie; Mura, Sergiu; Pirtac, Maria; Stancul, Irina; Tcaciuc, Diana; Albert, Monique; Alexopoulou, Iakovina; Arnaout, Angel; Bartlett, John; Engel, Jay; Gilbert, Sebastien; Parfitt, Jeremy; Sekhon, Harman; Thomas, George; Rassl, Doris M.; Rintoul, Robert C.; Bifulco, Carlo; Tamakawa, Raina; Urba, Walter; Hayward, Nicholas; Timmers, Henri; Antenucci, Anna; Facciolo, Francesco; Grazi, Gianluca; Marino, Mirella; Merola, Roberta; de Krijger, Ronald; Gimenez-Roqueplo, Anne Paule; Piché, Alain; Chevalier, Simone; McKercher, Ginette; Birsoy, Kivanc; Barnett, Gene; Brewer, Cathy; Farver, Carol; Naska, Theresa; Pennell, Nathan A.; Raymond, Daniel; Schilero, Cathy; Smolenski, Kathy; Williams, Felicia; Morrison, Carl; Borgia, Jeffrey A.; Liptay, Michael J.; Pool, Mark; Seder, Christopher W.; Junker, Kerstin; Omberg, Larsson; Dinkin, Mikhail; Manikhas, George; Alvaro, Domenico; Bragazzi, Maria Consiglia; Cardinale, Vincenzo; Carpino, Guido; Gaudio, Eugenio; Chesla, David; Cottingham, Sandra; Dubina, Michael; Moiseenko, Fedor; Dhanasekaran, Renumathy; Becker, Karl Friedrich; Janssen, Klaus Peter; Slotta-Huspenina, Julia; Abdel-Rahman, Mohamed H.; Aziz, Dina; Bell, Sue; Cebulla, Colleen M.; Davis, Amy; Duell, Rebecca; Elder, J. Bradley; Hilty, Joe; Kumar, Bahavna; Lang, James; Lehman, Norman L.; Mandt, Randy; Nguyen, Phuong; Pilarski, Robert; Rai, Karan; Schoenfield, Lynn; Senecal, Kelly; Wakely, Paul; Hansen, Paul; Lechan, Ronald; Powers, James; Tischler, Arthur; Grizzle, William E.; Sexton, Katherine C.; Kastl, Alison; Henderson, Joel; Porten, Sima; Waldmann, Jens; Fassnacht, Martin; Asa, Sylvia L.; Schadendorf, Dirk; Couce, Marta; Graefen, Markus; Huland, Hartwig; Sauter, Guido; Schlomm, Thorsten; Simon, Ronald; Tennstedt, Pierre; Olabode, Oluwole; Nelson, Mark; Bathe, Oliver; Carroll, Peter R.; Chan, June M.; Disaia, Philip; Glenn, Pat; Kelley, Robin K.; Landen, Charles N.; Phillips, Joanna; Prados, Michael; Simko, Jeffry; Smith-McCune, Karen; VandenBerg, Scott; Roggin, Kevin; Fehrenbach, Ashley; Kendler, Ady; Sifri, Suzanne; Steele, Ruth; Jimeno, Antonio; Carey, Francis; Forgie, Ian; Mannelli, Massimo; Carney, Michael; Hernandez, Brenda; Campos, Benito; Herold-Mende, Christel; Jungk, Christin; Unterberg, Andreas; von Deimling, Andreas; Bossler, Aaron; Galbraith, Joseph; Jacobus, Laura; Knudson, Michael; Knutson, Tina; Ma, Deqin; Milhem, Mohammed; Sigmund, Rita; Godwin, Andrew K.; Madan, Rashna; Rosenthal, Howard G.; Adebamowo, Clement; Adebamowo, Sally N.; Boussioutas, Alex; Beer, David; Giordano, Thomas; Mes-Masson, Anne Marie; Saad, Fred; Bocklage, Therese; Landrum, Lisa; Mannel, Robert; Moore, Kathleen; Moxley, Katherine; Postier, Russel; Walker, Joan; Zuna, Rosemary; Feldman, Michael; Valdivieso, Federico; Dhir, Rajiv; Luketich, James; Pinero, Edna M.Mora; Quintero-Aguilo, Mario; Carlotti, Carlos Gilberto; Dos Santos, Jose Sebastião; Kemp, Rafael; Sankarankuty, Ajith; Tirapelli, Daniela; Catto, James; Agnew, Kathy; Swisher, Elizabeth; Creaney, Jenette; Robinson, Bruce; Shelley, Carl Simon; Godwin, Eryn M.; Kendall, Sara; Shipman, Cassaundra; Bradford, Carol; Carey, Thomas; Haddad, Andrea; Moyer, Jeffey; Peterson, Lisa; Prince, Mark; Rozek, Laura; Wolf, Gregory; Bowman, Rayleen; Fong, Kwun M.; Yang, Ian; Korst, Robert; Rathmell, W. Kimryn; Fantacone-Campbell, J. Leigh; Hooke, Jeffrey A.; Kovatich, Albert J.; Shriver, Craig D.; DiPersio, John; Drake, Bettina; Govindan, Ramaswamy; Heath, Sharon; Ley, Timothy; Van Tine, Brian; Westervelt, Peter; Rubin, Mark A.; Lee, Jung Il; Aredes, Natália D.; Mariamidze, Armaz; Van Allen, Eliezer M.; Cherniack, Andrew D.; Ciriello, Giovanni; Sander, Chris; Schultz, Nikolaus

    2018-01-01

    Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number

  5. Cell volume homeostatic mechanisms: effectors and signalling pathways

    Hoffmann, E K; Pedersen, Stine Helene Falsig

    2011-01-01

    . Later work addressed the mechanisms through which cellular signalling pathways regulate the volume regulatory effectors or flux pathways. These studies were facilitated by the molecular identification of most of the relevant channels and transporters, and more recently also by the increased...

  6. Review of Signaling Pathways Governing MSC Osteogenic and Adipogenic Differentiation

    Aaron W. James

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSC are multipotent cells, functioning as precursors to a variety of cell types including adipocytes, osteoblasts, and chondrocytes. Between osteogenic and adipogenic lineage commitment and differentiation, a theoretical inverse relationship exists, such that differentiation towards an osteoblast phenotype occurs at the expense of an adipocytic phenotype. This balance is regulated by numerous, intersecting signaling pathways that converge on the regulation of two main transcription factors: peroxisome proliferator-activated receptor-γ (PPARγ and Runt-related transcription factor 2 (Runx2. These two transcription factors, PPARγ and Runx2, are generally regarded as the master regulators of adipogenesis and osteogenesis. This review will summarize signaling pathways that govern MSC fate towards osteogenic or adipocytic differentiation. A number of signaling pathways follow the inverse balance between osteogenic and adipogenic differentiation and are generally proosteogenic/antiadipogenic stimuli. These include β-catenin dependent Wnt signaling, Hedgehog signaling, and NELL-1 signaling. However, other signaling pathways exhibit more context-dependent effects on adipogenic and osteogenic differentiation. These include bone morphogenic protein (BMP signaling and insulin growth factor (IGF signaling, which display both proosteogenic and proadipogenic effects. In summary, understanding those factors that govern osteogenic versus adipogenic MSC differentiation has significant implications in diverse areas of human health, from obesity to osteoporosis to regenerative medicine.

  7. Anchoring Proteins as Regulators of Signaling Pathways

    Perino, Alessia; Ghigo, Alessandra; Scott, John D.; Hirsch, Emilio

    2012-01-01

    Spatial and temporal organization of signal transduction is coordinated through the segregation of signaling enzymes in selected cellular compartments. This highly evolved regulatory mechanism ensures the activation of selected enzymes only in the vicinity of their target proteins. In this context, cAMP-responsive triggering of protein kinase A is modulated by a family of scaffold proteins referred to as A-kinase anchoring proteins. A-kinase anchoring proteins form the core of multiprotein complexes and enable simultaneous but segregated cAMP signaling events to occur in defined cellular compartments. In this review we will focus on the description of A-kinase anchoring protein function in the regulation of cardiac physiopathology. PMID:22859670

  8. The polyphenol fisetin protects bone by repressing NF-κB and MKP-1-dependent signaling pathways in osteoclasts.

    Laurent Léotoing

    Full Text Available Osteoporosis is a bone pathology leading to increase fractures risk and challenging quality of life. Since current treatments could exhibit deleterious side effects, the use of food compounds derived from plants represents a promising innovative alternative due to their potential therapeutic and preventive activities against human diseases. In this study, we investigated the ability of the polyphenol fisetin to counter osteoporosis and analyzed the cellular and molecular mechanisms involved. In vivo, fisetin consumption significantly prevented bone loss in estrogen deficiency and inflammation mice osteoporosis models. Indeed, bone mineral density, micro-architecture parameters and bone markers were positively modulated by fisetin. Consistent with in vivo results, we showed that fisetin represses RANKL-induced osteoclast differentiation and activity as demonstrated by an inhibition of multinucleated cells formation, TRAP activity and differentiation genes expression. The signaling pathways NF-κB, p38 MAPK, JNK and the key transcription factors c-Fos and NFATc1 expressions induced by RANKL, were negatively regulated by fisetin. We further showed that fisetin inhibits the constitutive proteasomal degradation of MKP-1, the phosphatase that deactivates p38 and JNK. Consistently, using shRNA stable cell lines, we demonstrated that impairment of MKP-1 decreases fisetin potency. Taken together, these results strongly support that fisetin should be further considered as a bone protective agent.

  9. The Polyphenol Fisetin Protects Bone by Repressing NF-κB and MKP-1-Dependent Signaling Pathways in Osteoclasts

    Léotoing, Laurent; Wauquier, Fabien; Guicheux, Jérôme; Miot-Noirault, Elisabeth; Wittrant, Yohann; Coxam, Véronique

    2013-01-01

    Osteoporosis is a bone pathology leading to increase fractures risk and challenging quality of life. Since current treatments could exhibit deleterious side effects, the use of food compounds derived from plants represents a promising innovative alternative due to their potential therapeutic and preventive activities against human diseases. In this study, we investigated the ability of the polyphenol fisetin to counter osteoporosis and analyzed the cellular and molecular mechanisms involved. In vivo, fisetin consumption significantly prevented bone loss in estrogen deficiency and inflammation mice osteoporosis models. Indeed, bone mineral density, micro-architecture parameters and bone markers were positively modulated by fisetin. Consistent with in vivo results, we showed that fisetin represses RANKL-induced osteoclast differentiation and activity as demonstrated by an inhibition of multinucleated cells formation, TRAP activity and differentiation genes expression. The signaling pathways NF-κB, p38 MAPK, JNK and the key transcription factors c-Fos and NFATc1 expressions induced by RANKL, were negatively regulated by fisetin. We further showed that fisetin inhibits the constitutive proteasomal degradation of MKP-1, the phosphatase that deactivates p38 and JNK. Consistently, using shRNA stable cell lines, we demonstrated that impairment of MKP-1 decreases fisetin potency. Taken together, these results strongly support that fisetin should be further considered as a bone protective agent. PMID:23861901

  10. Genetic Correction of SOD1 Mutant iPSCs Reveals ERK and JNK Activated AP1 as a Driver of Neurodegeneration in Amyotrophic Lateral Sclerosis

    Akshay Bhinge

    2017-04-01

    Full Text Available Summary: Although mutations in several genes with diverse functions have been known to cause amyotrophic lateral sclerosis (ALS, it is unknown to what extent causal mutations impinge on common pathways that drive motor neuron (MN-specific neurodegeneration. In this study, we combined induced pluripotent stem cells-based disease modeling with genome engineering and deep RNA sequencing to identify pathways dysregulated by mutant SOD1 in human MNs. Gene expression profiling and pathway analysis followed by pharmacological screening identified activated ERK and JNK signaling as key drivers of neurodegeneration in mutant SOD1 MNs. The AP1 complex member JUN, an ERK/JNK downstream target, was observed to be highly expressed in MNs compared with non-MNs, providing a mechanistic insight into the specific degeneration of MNs. Importantly, investigations of mutant FUS MNs identified activated p38 and ERK, indicating that network perturbations induced by ALS-causing mutations converge partly on a few specific pathways that are drug responsive and provide immense therapeutic potential. : In this article, Bhinge, Stanton, and colleagues use genome editing of patient-derived iPSCs to model ALS phenotypic defects in vitro. Transcriptomic analysis of disease MNs reveals activation of MAPK, AP1, WNT, cell-cycle, and p53 signaling in ALS MNs. Pharmacological screening uncovers activated ERK and JNK signaling as therapeutic targets in ALS. Keywords: ALS, SOD1, FUS, CRISPR-Cas9, p38, ERK, JNK, WNT, TP53, JUN

  11. Autophagy Stimulus Promotes Early HuR Protein Activation and p62/SQSTM1 Protein Synthesis in ARPE-19 Cells by Triggering Erk1/2, p38MAPK, and JNK Kinase Pathways

    Nicoletta Marchesi

    2018-01-01

    Full Text Available RNA-binding protein dysregulation and altered expression of proteins involved in the autophagy/proteasome pathway play a role in many neurodegenerative disease onset/progression, including age-related macular degeneration (AMD. HuR/ELAVL1 is a master regulator of gene expression in human physiopathology. In ARPE-19 cells exposed to the proteasomal inhibitor MG132, HuR positively affects at posttranscriptional level p62 expression, a stress response gene involved in protein aggregate clearance with a role in AMD. Here, we studied the early effects of the proautophagy AICAR + MG132 cotreatment on the HuR-p62 pathway. We treated ARPE-19 cells with Erk1/2, AMPK, p38MAPK, PKC, and JNK kinase inhibitors in the presence of AICAR + MG132 and evaluated HuR localization/phosphorylation and p62 expression. Two-hour AICAR + MG132 induces both HuR cytoplasmic translocation and threonine phosphorylation via the Erk1/2 pathway. In these conditions, p62 mRNA is loaded on polysomes and its translation in de novo protein is favored. Additionally, for the first time, we report that JNK can phosphorylate HuR, however, without modulating its localization. Our study supports HuR’s role as an upstream regulator of p62 expression in ARPE-19 cells, helps to understand better the early events in response to a proautophagy stimulus, and suggests that modulation of the autophagy-regulating kinases as potential therapeutic targets for AMD may be relevant.

  12. Linking proteins to signaling pathways for experiment design and evaluation.

    Illés J Farkas

    Full Text Available Biomedical experimental work often focuses on altering the functions of selected proteins. These changes can hit signaling pathways, and can therefore unexpectedly and non-specifically affect cellular processes. We propose PathwayLinker, an online tool that can provide a first estimate of the possible signaling effects of such changes, e.g., drug or microRNA treatments. PathwayLinker minimizes the users' efforts by integrating protein-protein interaction and signaling pathway data from several sources with statistical significance tests and clear visualization. We demonstrate through three case studies that the developed tool can point out unexpected signaling bias in normal laboratory experiments and identify likely novel signaling proteins among the interactors of known drug targets. In our first case study we show that knockdown of the Caenorhabditis elegans gene cdc-25.1 (meant to avoid progeny may globally affect the signaling system and unexpectedly bias experiments. In the second case study we evaluate the loss-of-function phenotypes of a less known C. elegans gene to predict its function. In the third case study we analyze GJA1, an anti-cancer drug target protein in human, and predict for this protein novel signaling pathway memberships, which may be sources of side effects. Compared to similar services, a major advantage of PathwayLinker is that it drastically reduces the necessary amount of manual literature searches and can be used without a computational background. PathwayLinker is available at http://PathwayLinker.org. Detailed documentation and source code are available at the website.

  13. Central melanin-concentrating hormone influences liver and adipose metabolism via specific hypothalamic nuclei and efferent autonomic/JNK1 pathways.

    Imbernon, Monica; Beiroa, Daniel; Vázquez, María J; Morgan, Donald A; Veyrat-Durebex, Christelle; Porteiro, Begoña; Díaz-Arteaga, Adenis; Senra, Ana; Busquets, Silvia; Velásquez, Douglas A; Al-Massadi, Omar; Varela, Luis; Gándara, Marina; López-Soriano, Francisco-Javier; Gallego, Rosalía; Seoane, Luisa M; Argiles, Josep M; López, Miguel; Davis, Roger J; Sabio, Guadalupe; Rohner-Jeanrenaud, Françoise; Rahmouni, Kamal; Dieguez, Carlos; Nogueiras, Ruben

    2013-03-01

    Specific neuronal circuits modulate autonomic outflow to liver and white adipose tissue. Melanin-concentrating hormone (MCH)-deficient mice are hypophagic, lean, and do not develop hepatosteatosis when fed a high-fat diet. Herein, we sought to investigate the role of MCH, an orexigenic neuropeptide specifically expressed in the lateral hypothalamic area, on hepatic and adipocyte metabolism. Chronic central administration of MCH and adenoviral vectors increasing MCH signaling were performed in rats and mice. Vagal denervation was performed to assess its effect on liver metabolism. The peripheral effects on lipid metabolism were assessed by real-time polymerase chain reaction and Western blot. We showed that the activation of MCH receptors promotes nonalcoholic fatty liver disease through the parasympathetic nervous system, whereas it increases fat deposition in white adipose tissue via the suppression of sympathetic traffic. These metabolic actions are independent of parallel changes in food intake and energy expenditure. In the liver, MCH triggers lipid accumulation and lipid uptake, with c-Jun N-terminal kinase being an essential player, whereas in adipocytes MCH induces metabolic pathways that promote lipid storage and decreases lipid mobilization. Genetic activation of MCH receptors or infusion of MCH specifically in the lateral hypothalamic area modulated hepatic lipid metabolism, whereas the specific activation of this receptor in the arcuate nucleus affected adipocyte metabolism. Our findings show that central MCH directly controls hepatic and adipocyte metabolism through different pathways. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  14. Evaluation of Notch and Hypoxia Signaling Pathways in Chemically ...

    Hepatocellular carcinoma (HCC) is a common worldwide malignancy. Notch signaling pathway contributes to the genesis of diverse cancers, however, its role in HCC is unclear. Hypoxia is a common feature of HCC. Signal integration between Notch and hypoxia may be involved in HCC. The aim of this study was to ...

  15. DMPD: TLR signaling. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 2007 Feb 1. (.png) (.svg) (.html) (.csml) Show TLR signaling. PubmedID 17275323 Title TLR signaling. Author...s Kawai T, Akira S. Publication Semin Immunol. 2007 Feb;19(1):24-32. Epub 2007 Feb 1. Pathway - PNG File (.png) SVG File (.svg) HTML... File (.html) CSML File (.csml) Open .csml file with CIOP

  16. Signal Transduction Pathways that Regulate CAB Gene Expression

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  17. Signal Transduction Pathways that Regulate CAB Gene Expression

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  18. Signaling pathway networks mined from human pituitary adenoma proteomics data

    Zhan Xianquan

    2010-04-01

    Full Text Available Abstract Background We obtained a series of pituitary adenoma proteomic expression data, including protein-mapping data (111 proteins, comparative proteomic data (56 differentially expressed proteins, and nitroproteomic data (17 nitroproteins. There is a pressing need to clarify the significant signaling pathway networks that derive from those proteins in order to clarify and to better understand the molecular basis of pituitary adenoma pathogenesis and to discover biomarkers. Here, we describe the significant signaling pathway networks that were mined from human pituitary adenoma proteomic data with the Ingenuity pathway analysis system. Methods The Ingenuity pathway analysis system was used to analyze signal pathway networks and canonical pathways from protein-mapping data, comparative proteomic data, adenoma nitroproteomic data, and control nitroproteomic data. A Fisher's exact test was used to test the statistical significance with a significance level of 0.05. Statistical significant results were rationalized within the pituitary adenoma biological system with literature-based bioinformatics analyses. Results For the protein-mapping data, the top pathway networks were related to cancer, cell death, and lipid metabolism; the top canonical toxicity pathways included acute-phase response, oxidative-stress response, oxidative stress, and cell-cycle G2/M transition regulation. For the comparative proteomic data, top pathway networks were related to cancer, endocrine system development and function, and lipid metabolism; the top canonical toxicity pathways included mitochondrial dysfunction, oxidative phosphorylation, oxidative-stress response, and ERK/MAPK signaling. The nitroproteomic data from a pituitary adenoma were related to cancer, cell death, lipid metabolism, and reproductive system disease, and the top canonical toxicity pathways mainly related to p38 MAPK signaling and cell-cycle G2/M transition regulation. Nitroproteins from a

  19. Epilepsy and the Wnt Signaling Pathway

    2015-06-01

    forebrain development. The primary target is Wnt 8b, which is elevated in this period 4. Fox G1 is also genetically associated with infantile spasms 8...the Warburg effect’s role in non- cancerous tissues is largely unexplored. Second, in other diseases such as diabetes , Wnt signaling has emerged as...epilepsy and infantile spasms, we found that both mechanisms appeared to contribute. Two of the three genes came from our observation that several genes

  20. CCR7 signaling pathway and retinal neovascularization

    Lin-Hui Yuan

    2015-11-01

    Full Text Available Retinal neovascularization diseases are the major causes of blindness. C-C chemokine receptor type 7(CCR7can promote the expression of vascular endothelial growth factor(VEGFthrough the extracellular signal regulated kinase(ERKpathway, leading to vascular leakage, proliferation of vascular endothelial cell, neovascularization and etc. The detection of CCR7 can guide the diagnosis and treatments of retinal neovascularization diseases.

  1. TSLP signaling pathway map: a platform for analysis of TSLP-mediated signaling.

    Zhong, Jun; Sharma, Jyoti; Raju, Rajesh; Palapetta, Shyam Mohan; Prasad, T S Keshava; Huang, Tai-Chung; Yoda, Akinori; Tyner, Jeffrey W; van Bodegom, Diederik; Weinstock, David M; Ziegler, Steven F; Pandey, Akhilesh

    2014-01-01

    Thymic stromal lymphopoietin (TSLP) is a four-helix bundle cytokine that plays a critical role in the regulation of immune responses and in the differentiation of hematopoietic cells. TSLP signals through a heterodimeric receptor complex consisting of an interleukin-7 receptor α chain and a unique TSLP receptor (TSLPR) [also known as cytokine receptor-like factor 2 (CRLF2)]. Cellular targets of TSLP include dendritic cells, B cells, mast cells, regulatory T (Treg) cells and CD4+ and CD8+ T cells. The TSLP/TSLPR axis can activate multiple signaling transduction pathways including the JAK/STAT pathway and the PI-3 kinase pathway. Aberrant TSLP/TSLPR signaling has been associated with a variety of human diseases including asthma, atopic dermatitis, nasal polyposis, inflammatory bowel disease, eosinophilic eosophagitis and, most recently, acute lymphoblastic leukemia. A centralized resource of the TSLP signaling pathway cataloging signaling events is not yet available. In this study, we present a literature-annotated resource of reactions in the TSLP signaling pathway. This pathway map is publicly available through NetPath (http://www.netpath.org/), an open access signal transduction pathway resource developed previously by our group. This map includes 236 molecules and 252 reactions that are involved in TSLP/TSLPR signaling pathway. We expect that the TSLP signaling pathway map will provide a rich resource to study the biology of this important cytokine as well as to identify novel therapeutic targets for diseases associated with dysregulated TSLP/TSLPR signaling. Database URL: http://www.netpath.org/pathways?path_id=NetPath_24.

  2. Oscillatory Dynamics of the Extracellular Signal-regulated Kinase Pathway

    Shankaran, Harish; Wiley, H. S.

    2010-12-01

    The extracellular signal-regulated kinase (ERK) pathway is a central signaling pathway in development and disease and is regulated by multiple negative and positive feedback loops. Recent studies have shown negative feedback from ERK to upstream regulators can give rise to biochemical oscillations with a periodicity of between 15-30 minutes. Feedback due to the stimulated transcription of negative regulators of the ERK pathway can also give rise to transcriptional oscillations with a periodicity of 1-2h. The biological significance of these oscillations is not clear, but recent evidence suggests that transcriptional oscillations participate in developmental processes, such as somite formation. Biochemical oscillations are more enigmatic, but could provide a mechanism for encoding different types of inputs into a common signaling pathway.

  3. Microenvironment Dependent Photobiomodulation on Function-Specific Signal Transduction Pathways

    Timon Cheng-Yi Liu

    2014-01-01

    Full Text Available Cellular photobiomodulation on a cellular function has been shown to be homeostatic. Its function-specific pathway mechanism would be further discussed in this paper. The signal transduction pathways maintaining a normal function in its function-specific homeostasis (FSH, resisting the activation of many other irrelative signal transduction pathways, are so sparse that it can be supposed that there may be normal function-specific signal transduction pathways (NSPs. A low level laser irradiation or monochromatic light may promote the activation of partially activated NSP and/or its redundant NSP so that it may induce the second-order phase transition of a function from its dysfunctional one far from its FSH to its normal one in a function-specific microenvironment and may also induce the first-order functional phase transition of the normal function from low level to high level.

  4. Targeting Signaling Pathways in Epithelial Ovarian Cancer

    Johannes Haybaeck

    2013-05-01

    Full Text Available Ovarian carcinoma (OC is the most lethal gynecological malignancy. Response to platinum-based chemotherapy is poor in some patients and, thus, current research is focusing on new therapy options. The various histological types of OC are characterized by distinctive molecular genetic alterations that are relevant for ovarian tumorigenesis. The understanding of these molecular pathways is essential for the development of novel therapeutic strategies. Purpose: We want to give an overview on the molecular genetic changes of the histopathological types of OC and their role as putative therapeutic targets. In Depth Review of Existing Data: In 2012, the vascular endothelial growth factor (VEGF inhibitor, bevacizumab, was approved for OC treatment. Bevacizumab has shown promising results as single agent and in combination with conventional chemotherapy, but its target is not distinctive when analyzed before treatment. At present, mammalian target of rapamycin (mTOR inhibitors, poly-ADP-ribose polymerase (PARP inhibitors and components of the EGFR pathway are in the focus of clinical research. Interestingly, some phytochemical substances show good synergistic effects when used in combination with chemotherapy. Conclusion: Ongoing studies of targeted agents in conjunction with chemotherapy will show whether there are alternative options to bevacizumab available for OC patients. Novel targets which can be assessed before therapy to predict efficacy are needed. The assessment of therapeutic targets is continuously improved by molecular pathological analyses on tumor tissue. A careful selection of patients for personalized treatment will help to reduce putative side effects and toxicity.

  5. Wound healing, calcium signaling, and other novel pathways are associated with the formation of butterfly eyespots.

    Özsu, Nesibe; Monteiro, Antónia

    2017-10-16

    One hypothesis surrounding the origin of novel traits is that they originate from the co-option of pre-existing genes or larger gene regulatory networks into novel developmental contexts. Insights into a trait's evolutionary origins can, thus, be gained via identification of the genes underlying trait development, and exploring whether those genes also function in other developmental contexts. Here we investigate the set of genes associated with the development of eyespot color patterns, a trait that originated once within the Nymphalid family of butterflies. Although several genes associated with eyespot development have been identified, the eyespot gene regulatory network remains largely unknown. In this study, next-generation sequencing and transcriptome analyses were used to identify a large set of genes associated with eyespot development of Bicyclus anynana butterflies, at 3-6 h after pupation, prior to the differentiation of the color rings. Eyespot-associated genes were identified by comparing the transcriptomes of homologous micro-dissected wing tissues that either develop or do not develop eyespots in wild-type and a mutant line of butterflies, Spotty, with extra eyespots. Overall, 186 genes were significantly up and down-regulated in wing tissues that develop eyespots compared to wing tissues that do not. Many of the differentially expressed genes have yet to be annotated. New signaling pathways, including the Toll, Fibroblast Growth Factor (FGF), extracellular signal-regulated kinase (ERK) and/or Jun N-terminal kinase (JNK) signaling pathways are associated for the first time with eyespot development. In addition, several genes involved in wound healing and calcium signaling were also found to be associated with eyespots. Overall, this study provides the identity of many new genes and signaling pathways associated with eyespots, and suggests that the ancient wound healing gene regulatory network may have been co-opted to cells at the center of the

  6. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    Yin, Xinhua [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China); Wang, Xiaoyuan [Department of Nephrology, Xi An Honghui Hospital, Xi an (China); Hu, Xiongke; Chen, Yong; Zeng, Kefeng [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China); Zhang, Hongqi, E-mail: zhq9699@126.com [Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha (China)

    2015-07-01

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expression were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression.

  7. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    Yin, Xinhua; Wang, Xiaoyuan; Hu, Xiongke; Chen, Yong; Zeng, Kefeng; Zhang, Hongqi

    2015-01-01

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expression were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression

  8. PDK2 promotes chondrogenic differentiation of mesenchymal stem cells by upregulation of Sox6 and activation of JNK/MAPK/ERK pathway

    H. Wang

    Full Text Available This study was undertaken to clarify the role and mechanism of pyruvate dehydrogenase kinase isoform 2 (PDK2 in chondrogenic differentiation of mesenchymal stem cells (MSCs. MSCs were isolated from femurs and tibias of Sprague-Dawley rats, weighing 300-400 g (5 females and 5 males. Overexpression and knockdown of PDK2 were transfected into MSCs and then cell viability, adhesion and migration were assessed. Additionally, the roles of aberrant PDK2 in chondrogenesis markers SRY-related high mobility group-box 6 (Sox6, type ΙΙ procollagen gene (COL2A1, cartilage oligomeric matrix protein (COMP, aggrecan (AGC1, type ΙX procollagen gene (COL9A2 and collagen type 1 alpha 1 (COL1A1 were measured by quantitative reverse-transcription polymerase chain reaction (qRT-PCR. The expressions of c-Jun N-terminal kinase (JNK, p38 mitogen-activated protein kinase (MAPK and extracellular regulated protein kinase (ERK were measured. Overexpressing PDK2 promoted cell viability, adhesion and inhibited cell migration in MSCs (all P<0.05. qRT-PCR assay showed a potent increase in the mRNA expressions of all chondrogenesis markers in response to overexpressing PDK2 (P<0.01 or P<0.05. PDK2 overexpression also induced a significant accumulation in mRNA and protein expressions of JNK, p38MAPK and ERK in MSCs compared to the control (P<0.01 or P<0.05. Meanwhile, silencing PDK2 exerted the opposite effects on MSCs. This study shows a preliminary positive role and potential mechanisms of PDK2 in chondrogenic differentiation of MSCs. It lays the theoretical groundwork for uncovering the functions of PDK2 and provides a promising basis for repairing cartilage lesions in osteoarthritis.

  9. Autophagy and the nutritional signaling pathway

    Long HE,Shabnam ESLAMFAM,Xi MA,Defa LI

    2016-09-01

    Full Text Available During their growth and development, animals adapt to tremendous changes in order to survive. These include responses to both environmental and physiological changes and autophagy is one of most important adaptive and regulatory mechanisms. Autophagy is defined as an autolytic process to clear damaged cellular organelles and recycle the nutrients via lysosomic degradation. The process of autophagy responds to special conditions such as nutrient withdrawal. Once autophagy is induced, phagophores form and then elongate and curve to form autophagosomes. Autophagosomes then engulf cargo, fuse with endosomes, and finally fuse with lysosomes for maturation. During the initiation process, the ATG1/ULK1 (unc-51-like kinase 1 and VPS34 (which encodes a class III phosphatidylinositol (PtdIns 3-kinase complexes are critical in recruitment and assembly of other complexes required for autophagy. The process of autophagy is regulated by autophagy related genes (ATGs. Amino acid and energy starvation mediate autophagy by activating mTORC1 (mammalian target of rapamycin and AMP-activated protein kinase (AMPK. AMPK is the energy status sensor, the core nutrient signaling component and the metabolic kinase of cells. This review mainly focuses on the mechanism of autophagy regulated by nutrient signaling especially for the two important complexes, ULK1 and VPS34.

  10. Andrographolide suppresses epithelial mesenchymal transition by inhibition of MAPK signalling pathway in lens epithelial cells.

    Kayastha, Forum; Johar, Kaid; Gajjar, Devarshi; Arora, Anshul; Madhu, Hardik; Ganatra, Darshini; Vasavada, Abhay

    2015-06-01

    Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) may contribute to the development of posterior capsular opacification (PCO), which leads to visual impairment. Andrographolide has been shown to have therapeutic potential against various cancers. However, its effect on human LECs is still unknown. The purpose of this study is to evaluate the effect of andrographolide on EMT induced by growth factors in the fetal human lens epithelial cell line (FHL 124). Initially the LECs were treated with growth factors (TGF-beta 2 and bFGF) to induce EMT. Subsequently these EMT-induced cells were treated with andrographolide at 100 and 500 nM concentrations for 24 h. Our results showed that FHL 124 cells treated with growth factors had a significant decrease in protein and m-RNA levels of epithelial markers pax6 and E-Cadherin. After administering andrographolide, these levels significantly increased. It was noticed that EMT markers alpha-SMA, fibronectin and collagen IV significantly decreased after treatment with andrographolide when compared to the other group. Treatment with andrographolide significantly inhibited phosphorylation of ERK and JNK. Cell cycle analysis showed that andrographolide did not arrest cells at G0/G1 or G2/M at tested concentrations. Our findings suggest that andrographolide helps sustain epithelial characteristics by modulating EMT markers and inhibiting the mitogen-activated protein kinase (MAPK) signalling pathway in LECs. Hence it can prove to be useful in curbing EMT-mediated PCO.

  11. Enterococcus faecalis from healthy infants modulates inflammation through MAPK signaling pathways.

    Shugui Wang

    Full Text Available Colonizing commensal bacteria after birth are required for the proper development of the gastrointestinal tract. It is believed that bacterial colonization pattern in neonatal gut affects gut barrier function and immune system maturation. Studies on the development of faecal microbiota in infants showed that the neonatal gut was first colonized with enterococci followed by other microbiota such as Bifidobacterium. Other studies showed that babies who developed allergy were less often colonized with Enterococcus during the first month of life as compared to healthy infants. Many studies have been conducted to elucidate how bifidobacteria or lactobacilli, some of which are considered probiotic, regulate infant gut immunity. However, fewer studies have been focused on enterococi. In our study, we demonstrate that E. faecalis, isolated from healthy newborns, suppress inflammatory responses activated in vivo and in vitro. We found E. faecalis attenuates proinflammatory cytokine secretions, especially IL-8, through JNK and p38 signaling pathways. This finding shed light on how the first colonizer, E.faecalis, regulates inflammatory responses in the host.

  12. Polysaccharide of Dendrobium huoshanense activates macrophages via toll-like receptor 4-mediated signaling pathways.

    Xie, Song-Zi; Hao, Ran; Zha, Xue-Qiang; Pan, Li-Hua; Liu, Jian; Luo, Jian-Ping

    2016-08-01

    The present work aimed at investigating the pattern recognition receptor (PRR) and immunostimulatory mechanism of a purified Dendrobium huoshanense polysaccharide (DHP). We found that DHP could bind to the surface of macrophages and stimulate macrophages to secrete NO, TNF-α and IL-1β. To unravel the mechanism for the binding of DHP to macrophages, flow cytometry, confocal laser-scanning microscopy, affinity electrophoresis, SDS-PAGE and western blotting were employed to verify the type of PRR responsible for the recognition of DHP by RAW264.7 macrophages and peritoneal macrophages of C3H/HeN and C3H/HeJ macrophages. Results showed that toll-like receptor 4 (TLR4) was an essential receptor for macrophages to directly bind DHP. Further, the phosphorylation of ERK, JNK, Akt and p38 were observed to be time-dependently promoted by DHP, as well as the nuclear translocation of NF-κB p65. These results suggest that DHP activates macrophages via its direct binding to TLR4 to trigger TLR4 signaling pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Lemur Tyrosine Kinase-3 Suppresses Growth of Prostate Cancer Via the AKT and MAPK Signaling Pathways

    Pengcheng Sun

    2017-08-01

    Full Text Available Background/Aims: Lemur tyrosine kinase (LMTK-3 is a member of the receptor tyrosine kinase (RTK family. Abnormal expression of LMTK-3 exists in various types of cancers, especially in endocrine-resistant breast cancers; however, the precise level of expression and the biological function in prostate cancer are poorly understood. Methods: In the present study, we determined the expression of LMTK-3 in prostate cancer using immunohistochemistry and Western blotting. We infected PC3 and LNCaP cells with lentivirus-LMTK-3 and observed the biologic characteristics of the PC3 and LNCaP cells in vitro with TUNEL, and migration and invasion assays, respectively. We also established a transplant tumor model of human prostate cancer with infected cells in 15 BALB/c-nu/nu nude mice. Results: LMTK-3 was expressed in prostate epithelial cells. There was a significant decline in the level of LMTK-3 expression in prostate cancers compared to normal tissues. LMTK-3 inhibited PC3 and LNCaP cell growth, migration, and invasion, and induced cell apoptosis in vitro. We also observed that LMTK-3 induced PC3 cell apoptosis in vivo. Further study showed that LMTK-3 inhibited phosphorylation of AKT and ERK, and promoted phosphorylation and activation of p38 kinase and Jun kinase (JNK. Conclusion: Recombinant lentivirus with enhanced expression of LMTK-3 inhibited prostate cancer cell growth and induced apoptosis in vitro and in vivo. AKT and MAPK signaling pathways may contribute to the process.

  14. Leflunomide or A77 1726 protect from acetaminophen-induced cell injury through inhibition of JNK-mediated mitochondrial permeability transition in immortalized human hepatocytes

    Latchoumycandane, Calivarathan; Seah, Quee Ming; Tan, Rachel C.H.; Sattabongkot, Jetsumon; Beerheide, Walter; Boelsterli, Urs A.

    2006-01-01

    Leflunomide, a disease-modifying anti-rheumatic drug, protects against T-cell-mediated liver injury by poorly understood mechanisms. The active metabolite of leflunomide, A77 1726 (teriflunomide) has been shown to inhibit stress-activated protein kinases (JNK pathway), which are key regulators of mitochondria-mediated cell death. Therefore, we hypothesized that leflunomide may protect from drugs that induce the mitochondrial permeability transition (mPT) by blocking the JNK signaling pathway. To this end, we exposed cultured immortalized human hepatocytes (HC-04) to the standard protoxicant drug acetaminophen (APAP), which induces CsA-sensitive mPT-mediated cell death. We determined the effects of leflunomide on the extent of APAP-induced hepatocyte injury and the upstream JNK-mediated mitochondrial signaling pathways. We found that leflunomide or A77 1726 concentration-dependently protected hepatocytes from APAP (1 mM)-induced mitochondrial permeabilization and lethal cell injury. This was not due to proximal inhibition of CYP-catalyzed APAP bioactivation to its thiol-reactive metabolite. Instead, we demonstrate that leflunomide (20 μM) inhibited the APAP-induced early (3 h) activation (phosphorylation) of JNK1/2, thus inhibiting phosphorylation of the anti-apoptotic protein Bcl-2 and preventing P-Bcl-2-mediated induction of the mPT. This greatly attenuated mitochondrial cytochrome c release, which we used as a marker for mitochondrial permeabilization. The specific JNK2 inhibitor SP600125 similarly protected from APAP-induced cell death. In conclusion, these findings are consistent with our hypothesis that leflunomide protects from protoxicant-induced hepatocyte injury by inhibiting JNK signaling and preventing mPT induction

  15. Interaction of TGFβ and BMP signaling pathways during chondrogenesis.

    Bettina Keller

    2011-01-01

    Full Text Available TGFβ and BMP signaling pathways exhibit antagonistic activities during the development of many tissues. Although the crosstalk between BMP and TGFβ signaling pathways is well established in bone development, the relationship between these two pathways is less well defined during cartilage development and postnatal homeostasis. We generated hypomorphic mouse models of cartilage-specific loss of BMP and TGFβ signaling to assess the interaction of these pathways in postnatal growth plate homeostasis. We further used the chondrogenic ATDC5 cell line to test effects of BMP and TGFβ signaling on each other's downstream targets. We found that conditional deletion of Smad1 in chondrocytes resulted in a shortening of the growth plate. The addition of Smad5 haploinsufficiency led to a more severe phenotype with shorter prehypertrophic and hypertrophic zones and decreased chondrocyte proliferation. The opposite growth plate phenotype was observed in a transgenic mouse model of decreased chondrocytic TGFβ signaling that was generated by expressing a dominant negative form of the TGFβ receptor I (ΔTβRI in cartilage. Histological analysis demonstrated elongated growth plates with enhanced Ihh expression, as well as an increased proliferation rate with altered production of extracellular matrix components. In contrast, in chondrogenic ATDC5 cells, TGFβ was able to enhance BMP signaling, while BMP2 significantly reduces levels of TGF signaling. In summary, our data demonstrate that during endochondral ossification, BMP and TGFβ signaling can have antagonistic effects on chondrocyte proliferation and differentiation in vivo. We also found evidence of direct interaction between the two signaling pathways in a cell model of chondrogenesis in vitro.

  16. JWA gene regulates PANC-1 pancreatic cancer cell behaviors through MEK-ERK1/2 of the MAPK signaling pathway.

    Wu, Yuan-Yuan; Ma, Tie-Liang; Ge, Zhi-Jun; Lin, Jie; Ding, Wei-Liang; Feng, Jia-Ke; Zhou, Su-Jun; Chen, Guo-Chang; Tan, Yong-Fei; Cui, Guo-Xing

    2014-10-01

    The present study aimed to investigate the role of JWA gene in the proliferation, apoptosis, invasion and migration of PANC-1 pancreatic cancer cells and the effect on the MAPK signaling pathway. Human PANC-1 pancreatic cancer cells were cultured in vitro , and small interfering RNA (siRNA) was designed for the JWA gene. The siRNA was transfected into PANC-1 cells. Subsequently, the cell proliferation was measured by MTT assay; cell apoptosis was detected by analyzing BAX and Bcl-2 protein expression; cell migration and invasion were measured using Transwell ® chambers; and the protein expression of JWA and ERK1/2, JNK and p38 and their phosphorylated forms were measured by western blotting. By utilizing the MTT assay, the results showed that when JWA protein expression was inhibited, the proliferation of PANC-1 cells was enhanced. In addition, the expression of apoptosis-associated protein (AAP) BAX was substantially decreased, while the expression of the apoptosis inhibitor gene, Bcl-2 , was significantly enhanced. Using Transwell chambers, it was found that the number of penetrating PANC-1 cells was significantly increased after transfection with JWA siRNA, suggesting that the migration and invasion of the cells was substantially increased. By studying the association between JWA and the MAPK pathway in PANC-1 cells, it was found that the expression of p-ERK1/2 of the MAPK pathway was significantly downregulated following JWA siRNA transfection. However, the expression levels of ERK1/2, JNK, p38, p-JNK and p-p38 showed no significant differences. In conclusion, it was shown that JWA affects the proliferation, apoptosis, invasion and migration of PANC-1 pancreatic cancer cells which could be attributed to effects on the expression of ERK1/2 in the MAPK pathway.

  17. c-Jun controls the efficiency of MAP kinase signaling by transcriptional repression of MAP kinase phosphatases

    Sprowles, Amy; Robinson, Dan; Wu Yimi; Kung, H.-J.; Wisdom, Ron

    2005-01-01

    The mammalian JNK signaling pathway regulates the transcriptional response of cells to environmental stress, including UV irradiation. This signaling pathway is composed of a classical MAP kinase cascade; activation results in phosphorylation of the transcription factor substrates c-Jun and ATF2, and leads to changes in gene expression. The defining components of this pathway are conserved in the fission yeast S. pombe, where the genetic studies have shown that the ability of the JNK homolog Spc1 to be activated in response to UV irradiation is dependent on the presence of the transcription factor substrate Atf1. We have used genetic analysis to define the role of c-Jun in activation of the mammalian JNK signaling pathway. Our results show that optimal activation of JNK requires the presence of its transcription factor substrate c-Jun. Mutational analysis shows that the ability of c-Jun to support efficient activation of JNK requires the ability of Jun to bind DNA, suggesting a transcriptional mechanism. Consistent with this, we show that c-Jun represses the expression of several MAP kinase phosphatases. In the absence of c-Jun, the increased expression of MAP kinase phosphatases leads to impaired activation of the ERK, JNK, and p38 MAP kinases after pathway activation. The results show that one function of c-Jun is to regulate the efficiency of signaling by the ERK, p38, and JNK MAP kinases, a function that is likely to affect cellular responses to many different stimuli

  18. Signaling flux redistribution at toll-like receptor pathway junctions.

    Kumar Selvarajoo

    Full Text Available Various receptors on cell surface recognize specific extracellular molecules and trigger signal transduction altering gene expression in the nucleus. Gain or loss-of-function mutations of one molecule have shown to affect alternative signaling pathways with a poorly understood mechanism. In Toll-like receptor (TLR 4 signaling, which branches into MyD88- and TRAM-dependent pathways upon lipopolysaccharide (LPS stimulation, we investigated the gain or loss-of-function mutations of MyD88. We predict, using a computational model built on the perturbation-response approach and the law of mass conservation, that removal and addition of MyD88 in TLR4 activation, enhances and impairs, respectively, the alternative TRAM-dependent pathway through signaling flux redistribution (SFR at pathway branches. To verify SFR, we treated MyD88-deficient macrophages with LPS and observed enhancement of TRAM-dependent pathway based on increased IRF3 phosphorylation and induction of Cxcl10 and Ifit2. Furthermore, increasing the amount of MyD88 in cultured cells showed decreased TRAM binding to TLR4. Investigating another TLR4 pathway junction, from TRIF to TRAF6, RIP1 and TBK1, the removal of MyD88-dependent TRAF6 increased expression of TRAM-dependent Cxcl10 and Ifit2. Thus, we demonstrate that SFR is a novel mechanism for enhanced activation of alternative pathways when molecules at pathway junctions are removed. Our data suggest that SFR may enlighten hitherto unexplainable intracellular signaling alterations in genetic diseases where gain or loss-of-function mutations are observed.

  19. Using Proteomics To Elucidate Critical Signaling Pathways

    Ahmed, Heba

    2012-11-01

    Despite important advances in the therapy of acute myeloid leukemia (AML) the majority of patients will die from their disease (Appelbaum, Rowe, Radich, & Dick, 2001). Characterization of the aberrant molecular pathways responsible for this malignancy provides a platform to discover alternative treatments to help alter the fate of patients. AML is characterized by a blockage in the differentiation of myeloid cells resulting in the accumulation of highly proliferating immature hematopoietic cells. Since treatments such as chemotherapy rarely destroy the leukemic cells entirely, differentiation induction therapy has become a very attractive treatment option. Interestingly, previous experiments have shown that ligation of CD44, a cell surface glycoprotein strongly expressed on all AML cells, with anti-CD44 monoclonal antibodies (mAbs) could reverse this block in differentiation of leukemic blasts regardless of the AML subtype. To expand the understanding of the cellular regulation and circuitry involved, we aim to apply quantitative phosphoproteomics to monitor dynamic changes in phosphorylation state in response to anti-CD44 treatment. Protein phosphorylation and dephosphorylation is a highly controlled biochemical process that responds to various intracellular and extracellular stimuli. As phosphorylation is a dynamic process, quantification of these phosphorylation events would be vastly insightful. The main objective of this project is to determine the differentiation-dependent phosphoproteome of AML cells upon treatment of cells with the anti-CD44 mAb.In these experiments, optimization of protein extraction, phosphopeptide enrichment and data processing and analysis has been achieved. The primary results show successful phosphoproteome extraction complemented with efficient phosphopeptide enrichment and informative data processing. Further quantification with stable isotope labeling techniques is anticipated to provide candidates for targeted therapy.

  20. Computational identification of signalling pathways in Plasmodium falciparum.

    Oyelade, Jelili; Ewejobi, Itunu; Brors, Benedikt; Eils, Roland; Adebiyi, Ezekiel

    2011-06-01

    Malaria is one of the world's most common and serious diseases causing death of about 3 million people each year. Its most severe occurrence is caused by the protozoan Plasmodium falciparum. Reports have shown that the resistance of the parasite to existing drugs is increasing. Therefore, there is a huge and urgent need to discover and validate new drug or vaccine targets to enable the development of new treatments for malaria. The ability to discover these drug or vaccine targets can only be enhanced from our deep understanding of the detailed biology of the parasite, for example how cells function and how proteins organize into modules such as metabolic, regulatory and signal transduction pathways. It has been noted that the knowledge of signalling transduction pathways in Plasmodium is fundamental to aid the design of new strategies against malaria. This work uses a linear-time algorithm for finding paths in a network under modified biologically motivated constraints. We predicted several important signalling transduction pathways in Plasmodium falciparum. We have predicted a viable signalling pathway characterized in terms of the genes responsible that may be the PfPKB pathway recently elucidated in Plasmodium falciparum. We obtained from the FIKK family, a signal transduction pathway that ends up on a chloroquine resistance marker protein, which indicates that interference with FIKK proteins might reverse Plasmodium falciparum from resistant to sensitive phenotype. We also proposed a hypothesis that showed the FIKK proteins in this pathway as enabling the resistance parasite to have a mechanism for releasing chloroquine (via an efflux process). Furthermore, we also predicted a signalling pathway that may have been responsible for signalling the start of the invasion process of Red Blood Cell (RBC) by the merozoites. It has been noted that the understanding of this pathway will give insight into the parasite virulence and will facilitate rational vaccine design

  1. SPV: a JavaScript Signaling Pathway Visualizer.

    Calderone, Alberto; Cesareni, Gianni

    2018-03-24

    The visualization of molecular interactions annotated in web resources is useful to offer to users such information in a clear intuitive layout. These interactions are frequently represented as binary interactions that are laid out in free space where, different entities, cellular compartments and interaction types are hardly distinguishable. SPV (Signaling Pathway Visualizer) is a free open source JavaScript library which offers a series of pre-defined elements, compartments and interaction types meant to facilitate the representation of signaling pathways consisting of causal interactions without neglecting simple protein-protein interaction networks. freely available under Apache version 2 license; Source code: https://github.com/Sinnefa/SPV_Signaling_Pathway_Visualizer_v1.0. Language: JavaScript; Web technology: Scalable Vector Graphics; Libraries: D3.js. sinnefa@gmail.com.

  2. POSTRANSLATIONAL MODIFICATIONS OF P53: UPSTREAM SIGNALING PATHWAYS.

    ANDERSON,C.W.APPELLA,E.

    2003-10-23

    The p53 tumor suppressor is a tetrameric transcription factor that is posttranslational modified at >20 different sites by phosphorylation, acetylation, or sumoylation in response to various cellular stress conditions. Specific posttranslational modifications, or groups of modifications, that result from the activation of different stress-induced signaling pathways are thought to modulate p53 activity to regulate cell fate by inducing cell cycle arrest, apoptosis, or cellular senescence. Here we review recent progress in characterizing the upstream signaling pathways whose activation in response to various genotoxic and non-genotoxic stresses result in p53 posttranslational modifications.

  3. Clinical Implications of Hedgehog Pathway Signaling in Prostate Cancer

    Daniel L. Suzman

    2015-09-01

    Full Text Available Activity in the Hedgehog pathway, which regulates GLI-mediated transcription, is important in organogenesis and stem cell regulation in self-renewing organs, but is pathologically elevated in many human malignancies. Mutations leading to constitutive activation of the pathway have been implicated in medulloblastoma and basal cell carcinoma, and inhibition of the pathway has demonstrated clinical responses leading to the approval of the Smoothened inhibitor, vismodegib, for the treatment of advanced basal cell carcinoma. Aberrant Hedgehog pathway signaling has also been noted in prostate cancer with evidence suggesting that it may render prostate epithelial cells tumorigenic, drive the epithelial-to-mesenchymal transition, and contribute towards the development of castration-resistance through autocrine and paracrine signaling within the tumor microenvironment and cross-talk with the androgen pathway. In addition, there are emerging clinical data suggesting that inhibition of the Hedgehog pathway may be effective in the treatment of recurrent and metastatic prostate cancer. Here we will review these data and highlight areas of active clinical research as they relate to Hedgehog pathway inhibition in prostate cancer.

  4. Phylogenetic diversity of stress signalling pathways in fungi

    Stansfield Ian

    2009-02-01

    Full Text Available Abstract Background Microbes must sense environmental stresses, transduce these signals and mount protective responses to survive in hostile environments. In this study we have tested the hypothesis that fungal stress signalling pathways have evolved rapidly in a niche-specific fashion that is independent of phylogeny. To test this hypothesis we have compared the conservation of stress signalling molecules in diverse fungal species with their stress resistance. These fungi, which include ascomycetes, basidiomycetes and microsporidia, occupy highly divergent niches from saline environments to plant or mammalian hosts. Results The fungi displayed significant variation in their resistance to osmotic (NaCl and sorbitol, oxidative (H2O2 and menadione and cell wall stresses (Calcofluor White and Congo Red. There was no strict correlation between fungal phylogeny and stress resistance. Rather, the human pathogens tended to be more resistant to all three types of stress, an exception being the sensitivity of Candida albicans to the cell wall stress, Calcofluor White. In contrast, the plant pathogens were relatively sensitive to oxidative stress. The degree of conservation of osmotic, oxidative and cell wall stress signalling pathways amongst the eighteen fungal species was examined. Putative orthologues of functionally defined signalling components in Saccharomyces cerevisiae were identified by performing reciprocal BLASTP searches, and the percent amino acid identities of these orthologues recorded. This revealed that in general, central components of the osmotic, oxidative and cell wall stress signalling pathways are relatively well conserved, whereas the sensors lying upstream and transcriptional regulators lying downstream of these modules have diverged significantly. There was no obvious correlation between the degree of conservation of stress signalling pathways and the resistance of a particular fungus to the corresponding stress. Conclusion Our

  5. BDE-47 induces oxidative stress, activates MAPK signaling pathway, and elevates de novo lipogenesis in the copepod Paracyclopina nana.

    Lee, Min-Chul; Puthumana, Jayesh; Lee, Seung-Hwi; Kang, Hye-Min; Park, Jun Chul; Jeong, Chang-Bum; Han, Jeonghoon; Hwang, Dae-Sik; Seo, Jung Soo; Park, Heum Gi; Om, Ae-Son; Lee, Jae-Seong

    2016-12-01

    Brominated flame retardant, 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47), has received grave concerns as a persistent organic pollutant, which is toxic to marine organisms, and a suspected link to endocrine abnormalities. Despite the wide distribution in the marine ecosystem, very little is known about the toxic impairments on marine organisms, particularly on invertebrates. Thus, we examined the adverse effects of BDE-47 on life history trait (development), oxidative markers, fatty acid composition, and lipid accumulation in response to BDE-47-induced stress in the marine copepod Paracyclopina nana. Also, activation level of mitogen-activated protein kinase (MAPK) signaling pathways along with the gene expression profile of de novo lipogenesis (DNL) pathways were addressed. As a result, BDE-47 induced oxidative stress (e.g. reactive oxygen species, ROS) mediated activation of extracellular signal-regulated kinase (ERK) and c-Jun-N-terminal kinase (JNK) signaling cascades in MAPK pathways. Activated MAPK pathways, in turn, induced signal molecules that bind to the transcription factors (TFs) responsible for lipogenesis to EcR, SREBP, ChREBP promoters. Also, the stress stimulated the conversion of saturated fatty acids (SFAs) to polyunsaturated fatty acids (PUFAs), a preparedness of the organism to adapt the observed stress, which could be correlated with the elongase and desaturase gene (e.g. ELO3, Δ5-DES, Δ9-DES) expressions, and then extended to the delayed early post-embryonic development and increased accumulation of lipid droplets in P. nana. This study will provide a better understanding of how BDE-47 effects on marine invertebrates particularly on the copepods, an important link in the marine food chain. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Andrographolide Inhibits Inflammatory Cytokines Secretion in LPS-Stimulated RAW264.7 Cells through Suppression of NF-κB/MAPK Signaling Pathway.

    Li, Yu; He, Shengnan; Tang, Jishun; Ding, Nana; Chu, Xiaoyan; Cheng, Lianping; Ding, Xuedong; Liang, Ting; Feng, Shibin; Rahman, Sajid Ur; Wang, Xichun; Wu, Jinjie

    2017-01-01

    Andrographolide, the main active component extracted from Andrographis paniculata (Burm.f.) Wall. ex Nees, exerts anti-inflammatory effects; however, the principal molecular mechanisms remain unclear. The objective of this study was to investigate the molecular mechanisms of Andrographolide in modifying lipopolysaccharide- (LPS-) induced signaling pathway in RAW264.7 cells. An in vitro model of inflammation was induced by LPS in mouse RAW264.7 cells in the presence of Andrographolide. The concentration and expression levels of proinflammatory cytokines were determined by an enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. The nuclear level of NF- κ B was measured by an electrophoretic mobility shift assay (EMSA). The expression levels of NF- κ B, p38, ERK, and JNK were determined by western blot. Andrographolide dose-dependently inhibited the release and mRNA expression of TNF- α , IL-6, and IL-1 β in LPS-stimulated RAW264.7 cells. The nuclear level of p65 protein was decreased in Andrographolide treatment group. Western blot analysis showed that Andrographolide suppressed LPS-induced NF- κ B activation and the phosphorylation of IkBa, ERK1/2, JNK, and p38. These results suggest that Andrographolide exerts an anti-inflammatory effect by inhibiting the activation of NF- κ B/MAPK signaling pathway and the induction of proinflammatory cytokines.

  7. Andrographolide Inhibits Inflammatory Cytokines Secretion in LPS-Stimulated RAW264.7 Cells through Suppression of NF-κB/MAPK Signaling Pathway

    Yu Li

    2017-01-01

    Full Text Available Andrographolide, the main active component extracted from Andrographis paniculata (Burm.f. Wall. ex Nees, exerts anti-inflammatory effects; however, the principal molecular mechanisms remain unclear. The objective of this study was to investigate the molecular mechanisms of Andrographolide in modifying lipopolysaccharide- (LPS- induced signaling pathway in RAW264.7 cells. An in vitro model of inflammation was induced by LPS in mouse RAW264.7 cells in the presence of Andrographolide. The concentration and expression levels of proinflammatory cytokines were determined by an enzyme-linked immunosorbent assay (ELISA and quantitative real-time polymerase chain reaction (qRT-PCR, respectively. The nuclear level of NF-κB was measured by an electrophoretic mobility shift assay (EMSA. The expression levels of NF-κB, p38, ERK, and JNK were determined by western blot. Andrographolide dose-dependently inhibited the release and mRNA expression of TNF-α, IL-6, and IL-1β in LPS-stimulated RAW264.7 cells. The nuclear level of p65 protein was decreased in Andrographolide treatment group. Western blot analysis showed that Andrographolide suppressed LPS-induced NF-κB activation and the phosphorylation of IkBa, ERK1/2, JNK, and p38. These results suggest that Andrographolide exerts an anti-inflammatory effect by inhibiting the activation of NF-κB/MAPK signaling pathway and the induction of proinflammatory cytokines.

  8. Wnt pathway in Dupuytren disease: connecting profibrotic signals.

    van Beuge, Marike M; Ten Dam, Evert-Jan P M; Werker, Paul M N; Bank, Ruud A

    2015-12-01

    A role of Wnt signaling in Dupuytren disease, a fibroproliferative disease of the hand and fingers, has not been fully elucidated. We examined a large set of Wnt pathway components and signaling targets and found significant dysregulation of 41 Wnt-related genes in tissue from the Dupuytren nodules compared with patient-matched control tissue. A large proportion of genes coding for Wnt proteins themselves was downregulated. However, both canonical Wnt targets and components of the noncanonical signaling pathway were upregulated. Immunohistochemical analysis revealed that protein expression of Wnt1-inducible secreted protein 1 (WISP1), a known Wnt target, was increased in nodules compared with control tissue, but knockdown of WISP1 using small interfering RNA (siRNA) in the Dupuytren myofibroblasts did not confirm a functional role. The protein expression of noncanonical pathway components Wnt5A and VANGL2 as well as noncanonical coreceptors Ror2 and Ryk was increased in nodules. On the contrary, the strongest downregulated genes in this study were 4 antagonists of Wnt signaling (DKK1, FRZB, SFRP1, and WIF1). Downregulation of these genes in the Dupuytren tissue was mimicked in vitro by treating normal fibroblasts with transforming growth factor β1 (TGF-β1), suggesting cross talk between different profibrotic pathways. Furthermore, siRNA-mediated knockdown of these antagonists in normal fibroblasts led to increased nuclear translocation of Wnt target β-catenin in response to TGF-β1 treatment. In conclusion, we have shown extensive dysregulation of Wnt signaling in affected tissue from Dupuytren disease patients. Components of both the canonical and the noncanonical pathways are upregulated, whereas endogenous antagonists are downregulated, possibly via interaction with other profibrotic pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    Lin, Yi-Ting; Ding, Jing-Ya; Li, Ming-Yang; Yeh, Tien-Shun; Wang, Tsu-Wei; Yu, Jenn-Yah

    2012-01-01

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: ► YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. ► YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. ► Knockdown of Gli2 rescues the Yap-overexpression phenotype in P19 cells. ► Knockdown of Gli2 rescues the Yap

  10. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    Lin, Yi-Ting; Ding, Jing-Ya [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Li, Ming-Yang [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yeh, Tien-Shun [Department of Anatomy and Cell Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Wang, Tsu-Wei [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yu, Jenn-Yah [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Brain Research Center, National Yang-Ming University, Taipei 112, Taiwan (China)

    2012-09-10

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. Black-Right-Pointing-Pointer YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap

  11. DMPD: Multiple signaling pathways leading to the activation of interferon regulatoryfactor 3. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 12213596 Multiple signaling pathways leading to the activation of interferon regula...(.html) (.csml) Show Multiple signaling pathways leading to the activation of interferon regulatoryfactor 3.... PubmedID 12213596 Title Multiple signaling pathways leading to the activation of

  12. Signaling Pathways in Leiomyoma: Understanding Pathobiology and Implications for Therapy

    Borahay, Mostafa A; Al-Hendy, Ayman; Kilic, Gokhan S; Boehning, Darren

    2015-01-01

    Uterine leiomyomas are the most common tumors of the female genital tract, affecting 50% to 70% of females by the age of 50. Despite their prevalence and enormous medical and economic impact, no effective medical treatment is currently available. This is, in part, due to the poor understanding of their underlying pathobiology. Although they are thought to start as a clonal proliferation of a single myometrial smooth muscle cell, these early cytogenetic alterations are considered insufficient for tumor development and additional complex signaling pathway alterations are crucial. These include steroids, growth factors, transforming growth factor-beta (TGF-β)/Smad; wingless-type (Wnt)/β-catenin, retinoic acid, vitamin D, and peroxisome proliferator-activated receptor γ (PPARγ). An important finding is that several of these pathways converge in a summative way. For example, mitogen-activated protein kinase (MAPK) and Akt pathways seem to act as signal integrators, incorporating input from several signaling pathways, including growth factors, estrogen and vitamin D. This underlines the multifactorial origin and complex nature of these tumors. In this review, we aim to dissect these pathways and discuss their interconnections, aberrations and role in leiomyoma pathobiology. We also aim to identify potential targets for development of novel therapeutics. PMID:25879625

  13. Network features and pathway analyses of a signal transduction cascade

    Ryoji Yanashima

    2009-05-01

    Full Text Available The scale-free and small-world network models reflect the functional units of networks. However, when we investigated the network properties of a signaling pathway using these models, no significant differences were found between the original undirected graphs and the graphs in which inactive proteins were eliminated from the gene expression data. We analyzed signaling networks by focusing on those pathways that best reflected cellular function. Therefore, our analysis of pathways started from the ligands and progressed to transcription factors and cytoskeletal proteins. We employed the Python module to assess the target network. This involved comparing the original and restricted signaling cascades as a directed graph using microarray gene expression profiles of late onset Alzheimer's disease. The most commonly used method of shortest-path analysis neglects to consider the influences of alternative pathways that can affect the activation of transcription factors or cytoskeletal proteins. We therefore introduced included k-shortest paths and k-cycles in our network analysis using the Python modules, which allowed us to attain a reasonable computational time and identify k-shortest paths. This technique reflected results found in vivo and identified pathways not found when shortest path or degree analysis was applied. Our module enabled us to comprehensively analyse the characteristics of biomolecular networks and also enabled analysis of the effects of diseases considering the feedback loop and feedforward loop control structures as an alternative path.

  14. Interaction Dynamics Determine Signaling and Output Pathway Responses

    Klement Stojanovski

    2017-04-01

    Full Text Available The understanding of interaction dynamics in signaling pathways can shed light on pathway architecture and provide insights into targets for intervention. Here, we explored the relevance of kinetic rate constants of a key upstream osmosensor in the yeast high-osmolarity glycerol-mitogen-activated protein kinase (HOG-MAPK pathway to signaling output responses. We created mutant pairs of the Sln1-Ypd1 complex interface that caused major compensating changes in the association (kon and dissociation (koff rate constants (kinetic perturbations but only moderate changes in the overall complex affinity (Kd. Yeast cells carrying a Sln1-Ypd1 mutant pair with moderate increases in kon and koff displayed a lower threshold of HOG pathway activation than wild-type cells. Mutants with higher kon and koff rates gave rise to higher basal signaling and gene expression but impaired osmoadaptation. Thus, the kon and koff rates of the components in the Sln1 osmosensor determine proper signaling dynamics and osmoadaptation.

  15. DMPD: TLR signaling. [Dynamic Macrophage Pathway CSML Database

    Full Text Available kira S. Publication Cell Death Differ. 2006 May;13(5):816-25. Pathway - PNG File (.png) SVG File (.svg) HTML File (.html...16410796 TLR signaling. Kawai T, Akira S. Cell Death Differ. 2006 May;13(5):816-25. (.png) (.svg) (.html

  16. JNK2 promotes endothelial cell alignment under flow.

    Cornelia Hahn

    Full Text Available Endothelial cells in straight, unbranched segments of arteries elongate and align in the direction of flow, a feature which is highly correlated with reduced atherosclerosis in these regions. The mitogen-activated protein kinase c-Jun N-terminal kinase (JNK is activated by flow and is linked to inflammatory gene expression and apoptosis. We previously showed that JNK activation by flow is mediated by integrins and is observed in cells plated on fibronectin but not on collagen or basement membrane proteins. We now show thatJNK2 activation in response to laminar shear stress is biphasic, with an early peak and a later peak. Activated JNK localizes to focal adhesions at the ends of actin stress fibers, correlates with integrin activation and requires integrin binding to the extracellular matrix. Reducing JNK2 activation by siRNA inhibits alignment in response to shear stress. Cells on collagen, where JNK activity is low, align slowly. These data show that an inflammatory pathway facilitates adaptation to laminar flow, thereby revealing an unexpected connection between adaptation and inflammatory pathways.

  17. Regulation of insect behavior via the insulin-signaling pathway

    Renske eErion

    2013-12-01

    Full Text Available The insulin/insulin-like growth factor signaling (IIS pathway is well established as a critical regulator of growth and metabolic homeostasis across the animal kingdom. Insulin-like peptides (ILPs, the functional analogs of mammalian insulin, were initially discovered in the silkmoth Bombyx mori and subsequently identified in many other insect species. Initial research focused on the role of insulin signaling in metabolism, cell proliferation, development, reproduction and aging. More recently however, increasing attention has been given to the role of insulin in the regulation of neuronal function and behavior. Here we review the role of insulin signaling in two specific insect behaviors: feeding and locomotion.

  18. Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway

    Luo Xianghang; Guo Lijuan; Yuan Lingqing; Xie Hui; Zhou Houde; Wu Xianping; Liao Eryuan

    2005-01-01

    Adipocytes can highly and specifically express adiponectin, and the adiponectin receptor (AdipoR) has been detected in bone-forming cells. The present study was undertaken to investigate the action of adiponectin on osteoblast proliferation and differentiation. AdipoR1 protein was detected in human osteoblasts. Adiponectin promoted osteoblast proliferation and resulted in a dose- and time-dependent increase in alkaline phosphatase (ALP) activity, osteocalcin and type I collagen production, and an increase in mineralized matrix. Suppression of AdipoR1 with small-interfering RNA (siRNA) abolished the adiponectin-induced cell proliferation and ALP expression. Adiponectin induces activation of p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal Kinase (JNK), but not ERK1/2 in osteoblasts, and these effects were blocked by suppression of AdipoR1 with siRNA. Furthermore, pretreatment of osteoblasts with the JNK inhibitor SP600125 abolished the adiponectin-induced cell proliferation. p38 inhibitor SB203580 blocked the adiponectin-induced ALP activity. These data indicate that adiponectin induces human osteoblast proliferation and differentiation, and the proliferation response is mediated by the AdipoR/JNK pathway, while the differentiation response is mediated via the AdipoR/p38 pathway. These findings suggest that osteoblasts are the direct targets of adiponectin

  19. Role of Notch signalling pathway in cancer and its association with ...

    The Notch signalling pathway is an evolutionarily conserved cell signalling pathway involved in the development of organ- ... Abnormal Notch signalling is seen in many cancers like T-cell acute ...... Morgan T. H. 1917 The theory of the gene.

  20. Activation of c-Raf-1 kinase signal transduction pathway in alpha(7) integrin-deficient mice.

    Saher, G; Hildt, E

    1999-09-24

    Integrin alpha(7)-deficient mice develop a novel form of muscular dystrophy. Here we report that deficiency of alpha(7) integrin causes an activation of the c-Raf-1/mitogen-activated protein (MAP) 2 kinase signal transduction pathway in muscle cells. The observed activation of c-Raf-1/MAP2 kinases is a specific effect, because the alpha(7) integrin deficiency does not cause unspecific stress as determined by measurement of the Hsp72/73 level and activity of the JNK2 kinase. Because an increased level of activated FAK was found in muscle of alpha(7) integrin-deficient mice, the activation of c-Raf-1 kinase is triggered most likely by an integrin-dependent pathway. In accordance with this, in the integrin alpha(7)-deficient mice, part of the integrin beta(1D) variant in muscle is replaced by the beta(1A) variant, which permits the FAK activation. A recent report describes that integrin activity can be down-modulated by the c-Raf-1/MAP2 kinase pathway. Specific activation of the c-Raf-1/MAP2 kinases by cell-permeable peptides in skeletal muscle of rabbits causes degeneration of muscle fibers. Therefore, we conclude that in alpha(7) integrin-deficient mice, the continuous activation of c-Raf-1 kinase causes a permanent reduction of integrin activity diminishing integrin-dependent cell-matrix interactions and thereby contributing to the development of the dystrophic phenotype.

  1. Activation of Extracellular Signal-Regulated Kinase but Not of p38 Mitogen-Activated Protein Kinase Pathways in Lymphocytes Requires Allosteric Activation of SOS

    Jun, Jesse E.; Yang, Ming; Chen, Hang; Chakraborty, Arup K.

    2013-01-01

    Thymocytes convert graded T cell receptor (TCR) signals into positive selection or deletion, and activation of extracellular signal-related kinase (ERK), p38, and Jun N-terminal protein kinase (JNK) mitogen-activated protein kinases (MAPKs) has been postulated to play a discriminatory role. Two families of Ras guanine nucleotide exchange factors (RasGEFs), SOS and RasGRP, activate Ras and the downstream RAF-MEK-ERK pathway. The pathways leading to lymphocyte p38 and JNK activation are less well defined. We previously described how RasGRP alone induces analog Ras-ERK activation while SOS and RasGRP cooperate to establish bimodal ERK activation. Here we employed computational modeling and biochemical experiments with model cell lines and thymocytes to show that TCR-induced ERK activation grows exponentially in thymocytes and that a W729E allosteric pocket mutant, SOS1, can only reconstitute analog ERK signaling. In agreement with RasGRP allosterically priming SOS, exponential ERK activation is severely decreased by pharmacological or genetic perturbation of the phospholipase Cγ (PLCγ)-diacylglycerol-RasGRP1 pathway. In contrast, p38 activation is not sharply thresholded and requires high-level TCR signal input. Rac and p38 activation depends on SOS1 expression but not allosteric activation. Based on computational predictions and experiments exploring whether SOS functions as a RacGEF or adaptor in Rac-p38 activation, we established that the presence of SOS1, but not its enzymatic activity, is critical for p38 activation. PMID:23589333

  2. Adverse effects of MWCNTs on life parameters, antioxidant systems, and activation of MAPK signaling pathways in the copepod Paracyclopina nana.

    Kim, Duck-Hyun; Puthumana, Jayesh; Kang, Hye-Min; Lee, Min-Chul; Jeong, Chang-Bum; Han, Jeonghoon; Hwang, Dae-Sik; Kim, Il-Chan; Lee, Jin Wuk; Lee, Jae-Seong

    2016-10-01

    Engineered multi-walled carbon nanotubes (MWCNTs) have received widespread applications in a broad variety of commercial products due to low production cost. Despite their significant commercial applications, CNTs are being discharged to aquatic ecosystem, leading a threat to aquatic life. Thus, we investigated the adverse effect of CNTs on the marine copepod Paracyclopina nana. Additional to the study on the uptake of CNTs and acute toxicity, adverse effects on life parameters (e.g. growth, fecundity, and size) were analyzed in response to various concentrations of CNTs. Also, as a measurement of cellular damage, oxidative stress-related markers were examined in a time-dependent manner. Moreover, activation of redox-sensitive mitogen-activated protein kinase (MAPK) signaling pathways along with the phosphorylation pattern of extracellular signal-regulated kinase (ERK), p38, and c-Jun-N-terminal kinases (JNK) were analyzed to obtain a better understanding of molecular mechanism of oxidative stress-induced toxicity in the copepod P. nana. As a result, significant inhibition on life parameters and evoked antioxidant systems were observed without ROS induction. In addition, CNTs activated MAPK signaling pathway via ERK, suggesting that phosphorylated ERK (p-ERK)-mediated adverse effects are the primary cause of in vitro and in vivo endpoints in response to CNTs exposure. Moreover, ROS-independent activation of MAPK signaling pathway was observed. These findings will provide a better understanding of the mode of action of CNTs on the copepod P. nana at cellular and molecular level and insight on possible ecotoxicological implications in the marine environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. NK cell activation: distinct stimulatory pathways counterbalancing inhibitory signals.

    Bakker, A B; Wu, J; Phillips, J H; Lanier, L L

    2000-01-01

    A delicate balance between positive and negative signals regulates NK cell effector function. Activation of NK cells may be initiated by the triggering of multiple adhesion or costimulatory molecules, and can be counterbalanced by inhibitory signals induced by receptors for MHC class I. A common pathway of inhibitory signaling is provided by immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in the cytoplasmic domains of these receptors which mediate the recruitment of SH2 domain-bearing tyrosine phosphate-1 (SHP-1). In contrast to the extensive progress that has been made regarding the negative regulation of NK cell function, our knowledge of the signals that activate NK cells is still poor. Recent studies of the activating receptor complexes have shed new light on the induction of NK cell effector function. Several NK receptors using novel adaptors with immunoreceptor tyrosine-based activation motifs (ITAMs) and with PI 3-kinase recruiting motifs have been implicated in NK cell stimulation.

  4. Data on the phosphorylation of p38MAPK and JNK induced by chlorpyrifos in Drosophila melanogaster

    J.E.S. Batista

    2016-12-01

    Full Text Available Exposure to organophosphate compounds, such as chlorpyrifos, has been linked to disturbances on cell signaling pathways. Mitogen activated protein kinases (MAPK are a family of protein kinases involved in a range of cellular processes, including stress response, apoptosis and survival. Therefore, changes in the activation state of these kinases may characterize key mechanisms of toxicity elicited by xenobiotics. Here we report data on the phosphorylation of p38MAPK and JNK, members of the MAPK family, in Drosophila melanogaster exposed to chlorpyrifos, as characterized by western blotting assays.

  5. The Spalt transcription factors regulate cell proliferation, survival and epithelial integrity downstream of the Decapentaplegic signalling pathway

    María F. Organista

    2012-10-01

    The expression of the spalt genes is regulated by the Decapentaplegic signalling pathway in the Drosophila wing. These genes participate in the patterning of the longitudinal wing veins by regulating the expression of vein-specific genes, and in the establishment of cellular affinities in the central region of the wing blade epithelium. The Spalt proteins act as transcription factors, most likely regulating gene expression by repression, but the identity of their target genes in the wing is still unknown. As a preliminary step to unravel the genetic hierarchy controlled by the Spalt proteins, we have analysed their requirements during wing development, and addressed to what extent they mediate all the functions of the Decapentaplegic pathway in this developmental system. We identify additional functions for Spalt in cell division, survival, and maintenance of epithelial integrity. Thus, Spalt activity is required to promote cell proliferation, acting in the G2/M transition of the cell cycle. The contribution of Spalt to cell division is limited to the central region of the wing blade, as they do not mediate the extra growth triggered by Decapentaplegic signalling in the peripheral regions of the wing disc. In addition, Spalt function is required to maintain cell viability in cells exposed to high levels of Decapentaplegic signalling. This aspect of Spalt function is related to the repression of JNK signalling in the spalt domain of expression. Finally, we further characterise the requirements of Spalt to maintain epithelial integrity by regulating cellular affinities between cells located in the central wing region. Our results indicate that Spalt function mediates most of the requirements identified for Decapentaplegic signalling, contributing to establish the cellular qualities that differentiate central versus peripheral territories in the wing blade.

  6. Tamarind Seed Xyloglucans Promote Proliferation and Migration of Human Skin Cells through Internalization via Stimulation of Proproliferative Signal Transduction Pathways

    W. Nie

    2013-01-01

    Full Text Available Xyloglucans (XGs of Tamarindus indica L. Fabaceae are used as drug vehicles or as ingredients of cosmetics. Two xyloglucans were extracted from T. indica seed with cold water (TSw and copper complex precipitation (TSc. Both were analyzed in regard to composition and influence on cell viability, proliferation, cell cycle progression, migration, MAPK phosphorylation, and gene expression of human skin keratinocytes (NHEK and HaCaT and fibroblasts (NHDF in vitro. TSw and TSc differed in molecular weight, rhamnose content, and ratios of xylose, arabinose, galactose, and glucose. Both XGs improved keratinocytes and fibroblast proliferation, promoted the cell cycle, and stimulated migration and intracellular enzyme activity of NHDF after endosomal uptake. Only TSw significantly enhanced HaCaT migration and extracellular enzyme activity of NHDF and HaCaT. TSw and TSc predominantly enhanced the phosphorylation of molecules that referred to Erk signaling in NHEK. In NHDF parts of the integrin signaling and SAPK/JNK pathway were affected. Independent of cell type TSw marginally regulated the expression of genes, which referred to membrane proteins, cytoskeleton, cytokine signaling, and ECM as well as to processes of metabolism and transcription. Results show that T. indica xyloglucans promote skin regeneration by a direct influence on cell proliferation and migration.

  7. Wnts enhance neurotrophin-induced neuronal differentiation in adult bone-marrow-derived mesenchymal stem cells via canonical and noncanonical signaling pathways.

    Hung-Li Tsai

    Full Text Available Wnts were previously shown to regulate the neurogenesis of neural stem or progenitor cells. Here, we explored the underlying molecular mechanisms through which Wnt signaling regulates neurotrophins (NTs in the NT-induced neuronal differentiation of human mesenchymal stem cells (hMSCs. NTs can increase the expression of Wnt1 and Wnt7a in hMSCs. However, only Wnt7a enables the expression of synapsin-1, a synaptic marker in mature neurons, to be induced and triggers the formation of cholinergic and dopaminergic neurons. Human recombinant (hrWnt7a and general neuron makers were positively correlated in a dose- and time-dependent manner. In addition, the expression of synaptic markers and neurites was induced by Wnt7a and lithium, a glycogen synthase kinase-3β inhibitor, in the NT-induced hMSCs via the canonical/β-catenin pathway, but was inhibited by Wnt inhibitors and frizzled-5 (Frz5 blocking antibodies. In addition, hrWnt7a triggered the formation of cholinergic and dopaminergic neurons via the non-canonical/c-jun N-terminal kinase (JNK pathway, and the formation of these neurons was inhibited by a JNK inhibitor and Frz9 blocking antibodies. In conclusion, hrWnt7a enhances the synthesis of synapse and facilitates neuronal differentiation in hMSCS through various Frz receptors. These mechanisms may be employed widely in the transdifferentiation of other adult stem cells.

  8. Chronic intermittent hypoxia induces liver fibrosis in mice with diet-induced obesity via TLR4/MyD88/MAPK/NF-kB signaling pathways.

    Kang, Hyeon Hui; Kim, In Kyoung; Lee, Hye In; Joo, Hyonsoo; Lim, Jeong Uk; Lee, Jongmin; Lee, Sang Haak; Moon, Hwa Sik

    2017-08-19

    Obstructive sleep apnea (OSA) is associated with nonalcoholic fatty liver disease (NAFLD), and causes chronic intermittent hypoxia (CIH) during sleep. Inflammation is associated with the development of metabolic complications induced by CIH. Research suggests that innate immune mechanisms are involved in the pro-inflammatory pathways of liver fibrosis. The purpose of this study was to investigate whether innate immune responses induce liver fibrosis, and to evaluate mechanisms underlying hepatic inflammation related to CIH in a murine diet-induced obesity (DIO) model. Inflammatory and oxidative stress markers, TLR4, MyD88, Toll/interleukin-1-receptor-domain-containing adaptor-inducing interferon-β (TRIF), I-κB, NF-κB, p38 MAPK, c-JNK, and ERK activation, were measured in the serum and liver. As a result, α1(I)-collagen mRNA was significantly higher in DIO mice exposed to CIH than in the control groups. CIH mice exhibited liver fibrosis and significantly higher protein expression of TLR4, MyD88, phosphorylated (phospho-) I-κB, and phospho-ERK1/2 activation in the liver, and higher expression of NF-κB than that in the controls. TRIF, p38 MAPK, and JNK activation did not differ significantly between groups. We conclude that CIH in DIO mice leads to liver fibrosis via TLR4/MyD88/MAPK/NF-kB signaling pathways. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Signal transduction pathways involved in mechanotransduction in bone cells

    Liedert, Astrid; Kaspar, Daniela; Blakytny, Robert; Claes, Lutz; Ignatius, Anita

    2006-01-01

    Several in vivo and in vitro studies with different loading regimens showed that mechanical stimuli have an influence on proliferation and differentiation of bone cells. Prerequisite for this influence is the transduction of mechanical signals into the cell, a phenomenon that is termed mechanotransduction, which is essential for the maintenance of skeletal homeostasis in adults. Mechanoreceptors, such as the integrins, cadherins, and stretch-activated Ca 2+ channels, together with various signal transduction pathways, are involved in the mechanotransduction process that ultimately regulates gene expression in the nucleus. Mechanotransduction itself is considered to be regulated by hormones, the extracellular matrix of the osteoblastic cells and the mode of the mechanical stimulus

  10. Signaling transduction pathways involved in basophil adhesion and histamine release

    Sha, Quan; Poulsen, Lars K.; Gerwien, Jens

    2006-01-01

    Little is known about basophil with respect to the different signaling transduction pathways involved in spontaneous, cytokine or anti-IgE induced adhesion and how this compares to IgE-dependent and IgE-independent mediator secretion. The purpose of the present study was to investigate the roles...... of beta1 and beta2 integrins in basophil adhesion as well as hosphatidylinositol 3-kinase (PI3K), src-kinases and extracellular signal regulated kinase (ERK) 1/2 in basophil adhesion and histamine release (HR)....

  11. Probing the canonicity of the Wnt/Wingless signaling pathway.

    Alexandra Franz

    2017-04-01

    Full Text Available The hallmark of canonical Wnt signaling is the transcriptional induction of Wnt target genes by the beta-catenin/TCF complex. Several studies have proposed alternative interaction partners for beta-catenin or TCF, but the relevance of potential bifurcations in the distal Wnt pathway remains unclear. Here we study on a genome-wide scale the requirement for Armadillo (Arm, Drosophila beta-catenin and Pangolin (Pan, Drosophila TCF in the Wnt/Wingless(Wg-induced transcriptional response of Drosophila Kc cells. Using somatic genetics, we demonstrate that both Arm and Pan are absolutely required for mediating activation and repression of target genes. Furthermore, by means of STARR-sequencing we identified Wnt/Wg-responsive enhancer elements and found that all responsive enhancers depend on Pan. Together, our results confirm the dogma of canonical Wnt/Wg signaling and argue against the existence of distal pathway branches in this system.

  12. Aberrant Signaling Pathways in T-Cell Acute Lymphoblastic Leukemia

    Bongiovanni, Deborah; Saccomani, Valentina

    2017-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease caused by the malignant transformation of immature progenitors primed towards T-cell development. Clinically, T-ALL patients present with diffuse infiltration of the bone marrow by immature T-cell blasts high blood cell counts, mediastinal involvement, and diffusion to the central nervous system. In the past decade, the genomic landscape of T-ALL has been the target of intense research. The identification of specific genomic alterations has contributed to identify strong oncogenic drivers and signaling pathways regulating leukemia growth. Notwithstanding, T-ALL patients are still treated with high-dose multiagent chemotherapy, potentially exposing these patients to considerable acute and long-term side effects. This review summarizes recent advances in our understanding of the signaling pathways relevant for the pathogenesis of T-ALL and the opportunities offered for targeted therapy. PMID:28872614

  13. GAS6/TAM Pathway Signaling in Hemostasis and Thrombosis.

    Law, Luke A; Graham, Douglas K; Di Paola, Jorge; Branchford, Brian R

    2018-01-01

    The GAS6/TYRO3-AXL-MERTK (TAM) signaling pathway is essential for full and sustained platelet activation, as well as thrombus stabilization. Inhibition of this pathway decreases platelet aggregation, shape change, clot retraction, aggregate formation under flow conditions, and surface expression of activation markers. Transgenic mice deficient in GAS6, or any of the TAM family of receptors that engage this ligand, exhibit in vivo protection against arterial and venous thrombosis but do not demonstrate either spontaneous or prolonged bleeding compared to their wild-type counterparts. Comparable results are observed in wild-type mice treated with pharmacological inhibitors of the GAS6-TAM pathway. Thus, GAS6/TAM inhibition offers an attractive novel therapeutic option that may allow for a moderate reduction in platelet activation and decreased thrombosis while still permitting the primary hemostatic function of platelet plug formation.

  14. PKI 166 induced redox signalling and apoptosis through activation of p53, MAP kinase and caspase pathway in epidermoid carcinoma.

    Das, Subhasis; Dey, Kaushik Kumar; Bharti, Rashmi; MaitiChoudhury, Sujata; Maiti, Sukumar; Mandal, Mahitosh

    2012-01-01

    Cellular redox changes have emerged as a pivotal and proximal event in cancer. PKI 166 is used to determine the effects of redox sensitive inhibition of EGFR, metastasis and apoptosis in epidermoid carcinoma. Cytotoxicity study of PKI 166 (IC50 1.0 microM) treated A431 cells were performed by MTT assay for 48 and 72 hrs. Morphological analysis of PKI 166 treated A431 cells for 48 hrs. revealed the cell shrinkage, loss of filopodia and lamellipodia by phase contrast and SEM images in dose dependent manner. It has cytotoxic effects through inhibiting cellular proliferation, leads to the induction of apoptosis, as increased fraction of sub-G1 phase of the cell cycle, chromatin condensation and DNA ladder. It inhibited cyclin-D1 and cyclin-E expression and induced p53, p21 expression in dose dependent manner. Consequently, an imbalance of Bax/Bcl-2 ratio triggered caspase cascade and subsequent cleavage of PARP, thereby shifting the balance in favour of apoptosis. PKI 166 treatment actively stimulated reactive oxygen species (ROS) and mitochondrial membrane depolarization. It inhibited some metastatic properties of A431 cells supressing colony formation by soft agar assay and inhibition of MMP 9 activity by gelatin zymography and western blot analysis. PKI 166 inhibited growth factor induced phosphorylation of EGFR, Akt, MAPK, JNK and colony formation in A431 cells. Thus the inhibition of proliferation was associated with redox regulation of the caspase cascade, EGFR, Akt/PI3K, MAPK/ ERK and JNK pathway. On the other hand, increased antioxidant activity leads to decreased ROS generation inhibit the anti-proliferative and apoptotic properties of PKI 166 in A431 cells. These observations indicated PKI 166 induced redox signalling dependent inhibition of cell proliferation, metastatic properties and induction of apoptotic potential in epidermoid carcinoma.

  15. Curcumin Modulates Macrophage Polarization Through the Inhibition of the Toll-Like Receptor 4 Expression and its Signaling Pathways

    Yaoyao Zhou

    2015-05-01

    Full Text Available Background: Curcumin, the active ingredient in curcuma rhizomes, has a wide range of therapeutic effects. However, its atheroprotective activity in human acute monocytic leukemia THP-1 cells remains unclear. We investigated the activity and molecular mechanism of action of curcumin in polarized macrophages. Methods: Phorbol myristate acetate (PMA-treated THP-1 cells were differentiated to macrophages, which were further polarized to M1 cells by lipopolysaccharide (LPS; 1 µg/ml and interferon (IFN-γ (20 ng/ml and treated with varying curcumin concentrations. [3H]thymidine (3H-TdR incorporation assays were utilized to measure curcumin-induced growth inhibition. The expression of tumor necrosis factor-a (TNF-a, interleukin (IL-6, and IL-12B (p40 were measured by quantitative real-time polymerase chain reaction (PCR and enzyme-linked immunosorbent assay (ELISA. Macrophage polarization and its mechanism were evaluated by flow cytometry and western blot. Additionally, toll-like receptor 4 (TLR4 small interfering RNA and mitogen-activated protein kinase (MAPK inhibitors were used to further confirm the molecular mechanism of curcumin on macrophage polarization. Results: Curcumin dose-dependently inhibited M1 macrophage polarization and the production of TNF-a, IL-6, and IL-12B (p40. It also decreased TLR4 expression, which regulates M1 macrophage polarization. Furthermore, curcumin significantly inhibited the phosphorylation of ERK, JNK, p38, and nuclear factor (NF-γB. In contrast, SiTLR4 in combination with p-JNK, p-ERK, and p-p38 inhibition reduced the effect of curcumin on polarization. Conclusions: Curcumin can modulate macrophage polarization through TLR4-mediated signaling pathway inhibition, indicating that its effect on macrophage polarization is related to its anti-inflammatory and atheroprotective effects. Our data suggest that curcumin could be used as a therapeutic agent in atherosclerosis.

  16. Inflammation Activates the Interferon Signaling Pathways in Taste Bud Cells

    Wang, Hong; Zhou, Minliang; Brand, Joseph; Huang, Liquan

    2007-01-01

    Patients with viral and bacterial infections or other inflammatory illnesses often experience taste dysfunctions. The agents responsible for these taste disorders are thought to be related to infection-induced inflammation, but the mechanisms are not known. As a first step in characterizing the possible role of inflammation in taste disorders, we report here evidence for the presence of interferon (IFN)-mediated signaling pathways in taste bud cells. IFN receptors, particularly the IFN-γ rece...

  17. Herpes simplex virus triggers activation of calcium-signaling pathways

    Cheshenko, Natalia; Del Rosario, Brian; Woda, Craig; Marcellino, Daniel; Satlin, Lisa M.; Herold, Betsy C.

    2003-01-01

    The cellular pathways required for herpes simplex virus (HSV) invasion have not been defined. To test the hypothesis that HSV entry triggers activation of Ca2+-signaling pathways, the effects on intracellular calcium concentration ([Ca2+]i) after exposure of cells to HSV were examined. Exposure to virus results in a rapid and transient increase in [Ca2+]i. Pretreatment of cells with pharmacological agents that block release of inositol 1,4,5-triphosphate (IP3)–sensitive endoplasmic reticulum stores abrogates the response. Moreover, treatment of cells with these pharmacological agents inhibits HSV infection and prevents focal adhesion kinase (FAK) phosphorylation, which occurs within 5 min after viral infection. Viruses deleted in glycoprotein L or glycoprotein D, which bind but do not penetrate, fail to induce a [Ca2+]i response or trigger FAK phosphorylation. Together, these results support a model for HSV infection that requires activation of IP3-responsive Ca2+-signaling pathways and that is associated with FAK phosphorylation. Defining the pathway of viral invasion may lead to new targets for anti-viral therapy. PMID:14568989

  18. Reverse-phase phosphoproteome analysis of signaling pathways induced by Rift valley fever virus in human small airway epithelial cells.

    Taissia G Popova

    Full Text Available Rift valley fever virus (RVFV infection is an emerging zoonotic disease endemic in many countries of sub-Saharan Africa and in Egypt. In this study we show that human small airway epithelial cells are highly susceptible to RVFV virulent strain ZH-501 and the attenuated strain MP-12. We used the reverse-phase protein arrays technology to identify phosphoprotein signaling pathways modulated during infection of cultured airway epithelium. ZH-501 infection induced activation of MAP kinases (p38, JNK and ERK and downstream transcriptional factors [STAT1 (Y701, ATF2 (T69/71, MSK1 (S360 and CREB (S133]. NF-κB phosphorylation was also increased. Activation of p53 (S15, S46 correlated with the increased levels of cleaved effector caspase-3, -6 and -7, indicating activation of the extrinsic apoptotic pathway. RVFV infection downregulated phosphorylation of a major anti-apoptotic regulator of survival pathways, AKT (S473, along with phosphorylation of FOX 01/03 (T24/31 which controls cell cycle arrest downstream from AKT. Consistent with this, the level of apoptosis inhibitor XIAP was decreased. However, the intrinsic apoptotic pathway marker, caspase-9, demonstrated only a marginal activation accompanied by an increased level of the inhibitor of apoptosome formation, HSP27. Concentration of the autophagy marker, LC3B, which often accompanies the pro-survival signaling, was decreased. Cumulatively, our analysis of RVFV infection in lung epithelium indicated a viral strategy directed toward the control of cell apoptosis through a number of transcriptional factors. Analyses of MP-12 titers in challenged cells in the presence of MAPK inhibitors indicated that activation of p38 represents a protective cell response while ERK activation controls viral replication.

  19. [The effect of edaravone on MAPKs signal pathway associated with Abeta(25-35) treatment in PC12 cells].

    Zhang, Gui-lian; Guo, Ying-ying; Zhang, Lei; Li, Ting-ting; Du, Yun; Yao, Li; Zhang, Wang-gang; Wu, Hai-qin; Ma, Zhu-lin

    2015-03-01

    To explore whether edaravone protects cells damage via mitogen-activated protein kinases (MAPKs) signal pathway, and which procedure of p38 be affected so as to add theories for AD pathogenesis and treatments. According to different drugs treated, PC12 cells in vitro were divided into four groups. Negative control group: cells were treated with media alone. AD model group: cells were treated with 30 pmol/L Abeta(25-35). Inhibitor control group: cells were treated with 10 micromol/L SB203580 Cp38 mitogen-activated protein kinase (p38) inhibitor], 10 micromol/L SP600125 [c-Jun NH2 terminal kinase (JNK) inhibitor], or 10 micromol/L PD98059 extracelular signal regulated kinase (ERK) inhibitor]. Low-dose, middle-dose and high-dose edaravone group: cells plated for 24 hours treated with 30 micromol/L Abeta(25-35) and co-treated with 20, 40, 80 micromol/L edaravone 3 hours, respectively. The morphology of the treated cells were observed, the p-p38, p-JNK and p-ERK proteins in each group were tested by the Western blot. The p38 mRNA were tested in each group above (only add SB203580 10 micromol/L in third group) by the real time PCR. (1) The p-p38 protein was significantly increased in model control group compared with that in negative control group (Pedaravone groups was decreased significantly (Pedaravone groups compared with that in inhibiter control group (Pedaravone group was decreased compared with that in low-dose edaravone group (Pedaravone. Compared with three edaravone groups, the p-p38 protein was lower than it in high-dose edaravone & inhibiter group (P0.05 each). (4) Compared with negative control group, the p38 mRNA in model control group was significantly increased, and it was significantly decreased in inhibitor control group (Pedaravone groups, the p38 mRNA was significantly decreased compared with that in model control group, and it still was decreased compared with that in inhibitor control group (Pedaravone group was the lowest among three edaravone

  20. Interleukins and their signaling pathways in the Reactome biological pathway database.

    Jupe, Steve; Ray, Keith; Roca, Corina Duenas; Varusai, Thawfeek; Shamovsky, Veronica; Stein, Lincoln; D'Eustachio, Peter; Hermjakob, Henning

    2018-04-01

    much molecular detail as possible and are linked to literature citations that contain supporting experimental details. All newly created events undergo a peer-review process before they are added to the database and made available on the associated Web site. New content is added quarterly. The 63rd release of Reactome in December 2017 contains 10,996 human proteins participating in 11,426 events in 2,179 pathways. In addition, analytic tools allow data set submission for the identification and visualization of pathway enrichment and representation of expression profiles as an overlay on Reactome pathways. Protein-protein and compound-protein interactions from several sources, including custom user data sets, can be added to extend pathways. Pathway diagrams and analytic result displays can be downloaded as editable images, human-readable reports, and files in several standard formats that are suitable for computational reuse. Reactome content is available programmatically through a REpresentational State Transfer (REST)-based content service and as a Neo4J graph database. Signaling pathways for IL-1 to IL-38 are hierarchically classified within the pathway "signaling by interleukins." The classification used is largely derived from Akdis et al. The addition to Reactome of a complete set of the known human interleukins, their receptors, and established signaling pathways linked to annotations of relevant aspects of immune function provides a significant computationally accessible resource of information about this important family. This information can be extended easily as new discoveries become accepted as the consensus in the field. A key aim for the future is to increase coverage of gene expression changes induced by interleukin signaling. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Nasopharyngeal Carcinoma Signaling Pathway: An Update on Molecular Biomarkers

    Warut Tulalamba

    2012-01-01

    Full Text Available Nasopharyngeal carcinoma (NPC is an uncommon cancer, which has a distinctive ethnic and geographic distribution. Etiology of NPC is considered to be related with a complex interaction of environmental and genetic factors as well as Epstein-Barr virus infection. Since NPC is located in the silent painless area, the disease is usually therefore diagnosed at the advanced stages; hence early detection of NPC is difficult. Furthermore, understanding in molecular pathogenesis is still lacking, pondering the identification of effective prognostic and diagnostic biomarkers. Dysregulation of signaling molecules in intracellular signal transduction, which regulate cell proliferation, apoptosis, and adhesion, underlines the basis of NPC pathogenesis. In this paper, the molecular signaling pathways in the NPC are discussed for the holistic view of NPC development and progression. The important insights toward NPC pathogenesis may offer strategies for identification of novel biomarkers for diagnosis and prognosis.

  2. Pentagone internalises glypicans to fine-tune multiple signalling pathways

    Norman, Mark; Vuilleumier, Robin; Springhorn, Alexander; Gawlik, Jennifer; Pyrowolakis, George

    2016-01-01

    Tight regulation of signalling activity is crucial for proper tissue patterning and growth. Here we investigate the function of Pentagone (Pent), a secreted protein that acts in a regulatory feedback during establishment and maintenance of BMP/Dpp morphogen signalling during Drosophila wing development. We show that Pent internalises the Dpp co-receptors, the glypicans Dally and Dally-like protein (Dlp), and propose that this internalisation is important in the establishment of a long range Dpp gradient. Pent-induced endocytosis and degradation of glypicans requires dynamin- and Rab5, but not clathrin or active BMP signalling. Thus, Pent modifies the ability of cells to trap and transduce BMP by fine-tuning the levels of the BMP reception system at the plasma membrane. In addition, and in accordance with the role of glypicans in multiple signalling pathways, we establish a requirement of Pent for Wg signalling. Our data propose a novel mechanism by which morphogen signalling is regulated. DOI: http://dx.doi.org/10.7554/eLife.13301.001 PMID:27269283

  3. Signal Transduction Pathways of TNAP: Molecular Network Analyses.

    Négyessy, László; Györffy, Balázs; Hanics, János; Bányai, Mihály; Fonta, Caroline; Bazsó, Fülöp

    2015-01-01

    Despite the growing body of evidence pointing on the involvement of tissue non-specific alkaline phosphatase (TNAP) in brain function and diseases like epilepsy and Alzheimer's disease, our understanding about the role of TNAP in the regulation of neurotransmission is severely limited. The aim of our study was to integrate the fragmented knowledge into a comprehensive view regarding neuronal functions of TNAP using objective tools. As a model we used the signal transduction molecular network of a pyramidal neuron after complementing with TNAP related data and performed the analysis using graph theoretic tools. The analyses show that TNAP is in the crossroad of numerous pathways and therefore is one of the key players of the neuronal signal transduction network. Through many of its connections, most notably with molecules of the purinergic system, TNAP serves as a controller by funnelling signal flow towards a subset of molecules. TNAP also appears as the source of signal to be spread via interactions with molecules involved among others in neurodegeneration. Cluster analyses identified TNAP as part of the second messenger signalling cascade. However, TNAP also forms connections with other functional groups involved in neuronal signal transduction. The results indicate the distinct ways of involvement of TNAP in multiple neuronal functions and diseases.

  4. UVC-induced apoptosis in Dubca cells is independent of JNK activation and p53Ser-15 phosphorylation

    Chathoth, Shahanas; Thayyullathil, Faisal; Hago, Abdulkader; Shahin, Allen; Patel, Mahendra; Galadari, Sehamuddin

    2009-01-01

    Ultraviolet C (UVC) irradiation in mammalian cell lines activates a complex signaling network that leads to apoptosis. By using Dubca cells as a model system, we report the presence of a UVC-induced apoptotic pathway that is independent of c-Jun N-terminal kinases (JNKs) activation and p53 phosphorylation at Ser 15 . Irradiation of Dubca cells with UVC results in a rapid JNK activation and phosphorylation of its downstream target c-Jun, as well as, phosphorylation of activating transcription factor 2 (ATF2). Pre-treatment with JNK inhibitor, SP600125, inhibited UVC-induced c-Jun phosphorylation without preventing UVC-induced apoptosis. Similarly, inhibition of UVC-induced p53 phosphorylation did not prevent Dubca cell apoptosis, suggesting that p53 Ser-15 phosphorylation is not associated with UVC-induced apoptosis signaling. The pan-caspase inhibitor z-VAD-fmk inhibited UVC-induced PARP cleavage, DNA fragmentation, and ultimately apoptosis of Dubca cells. Altogether, our study clearly indicates that UVC-induced apoptosis is independent of JNK and p53 activation in Dubca cells, rather, it is mediated through a caspase dependent pathway. Our findings are not in line with the ascribed critical role for JNKs activation, and downstream phosphorylation of targets such as c-Jun and ATF2 in UVC-induced apoptosis.

  5. Allergen-Removed Rhus verniciflua Extract Induces Ovarian Cancer Cell Death via JNK Activation.

    Kang, Se-Hui; Hwang, In-Hu; Son, Eunju; Cho, Chong-Kwan; Choi, Jong-Soon; Park, Soo-Jung; Jang, Byeong-Churl; Lee, Kyung-Bok; Lee, Zee-Won; Lee, Jong Hoon; Yoo, Hwa-Seung; Jang, Ik-Soon

    2016-01-01

    Nuclear factor-[Formula: see text]B (NF-[Formula: see text]B)/Rel transcription factors are best known for their central roles in promoting cell survival in cancer. NF-[Formula: see text]B antagonizes tumor necrosis factor (TNF)-[Formula: see text]-induced apoptosis through a process involving attenuation of the c-Jun-N-terminal kinase (JNK). However, the role of JNK activation in apoptosis induced by negative regulation of NF-[Formula: see text]B is not completely understood. We found that allergen-removed Rhus verniciflua Stokes (aRVS) extract-mediated NF-[Formula: see text]B inhibition induces apoptosis in SKOV-3 ovarian cancer cells via the serial activation of caspases and SKOV-3 cells are most specifically suppressed by aRVS. Here, we show that in addition to activating caspases, aRVS extract negatively modulates the TNF-[Formula: see text]-mediated I[Formula: see text]B/NF-[Formula: see text]B pathway to promote JNK activation, which results in apoptosis. When the cytokine TNF-[Formula: see text] binds to the TNF receptor, I[Formula: see text]B dissociates from NF-[Formula: see text]B. As a result, the active NF-[Formula: see text]B translocates to the nucleus. aRVS extract (0.5[Formula: see text]mg/ml) clearly prevented NF-[Formula: see text]B from mobilizing to the nucleus, resulting in the upregulation of JNK phosphorylation. This subsequently increased Bax activation, leading to marked aRVS-induced apoptosis, whereas the JNK inhibitor SP600125 in aRVS extract treated SKOV-3 cells strongly inhibited Bax. Bax subfamily proteins induced apoptosis through caspase-3. Thus, these results indicate that aRVS extract contains components that inhibit NF-[Formula: see text]B signaling to upregulate JNK activation in ovarian cancer cells and support the potential of aRVS as a therapeutic agent for ovarian cancer.

  6. Romidepsin targets multiple survival signaling pathways in malignant T cells

    Valdez, B C; Brammer, J E; Li, Y; Murray, D; Liu, Y; Hosing, C; Nieto, Y; Champlin, R E; Andersson, B S

    2015-01-01

    Romidepsin is a cyclic molecule that inhibits histone deacetylases. It is Food and Drug Administration-approved for treatment of cutaneous and peripheral T-cell lymphoma, but its precise mechanism of action against malignant T cells is unknown. To better understand the biological effects of romidepsin in these cells, we exposed PEER and SUPT1 T-cell lines, and a primary sample from T-cell lymphoma patient (Patient J) to romidepsin. We then examined the consequences in some key oncogenic signaling pathways. Romidepsin displayed IC 50 values of 10.8, 7.9 and 7.0 nm in PEER, SUPT1 and Patient J cells, respectively. Strong inhibition of histone deacetylases and demethylases, increased production of reactive oxygen species and decreased mitochondrial membrane potential were observed, which may contribute to the observed DNA-damage response and apoptosis. The stress-activated protein kinase/c-Jun N-terminal kinase signaling pathway and unfolded protein response in the endoplasmic reticulum were activated, whereas the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) and β-catenin pro-survival pathways were inhibited. The decreased level of β-catenin correlated with the upregulation of its inhibitor SFRP1 through romidepsin-mediated hypomethylation of its gene promoter. Our results provide new insights into how romidepsin invokes malignant T-cell killing, show evidence of its associated DNA hypomethylating activity and offer a rationale for the development of romidepsin-containing combination therapies

  7. Prevotella intermedia induces prostaglandin E2 via multiple signaling pathways.

    Guan, S-M; Fu, S-M; He, J-J; Zhang, M

    2011-01-01

    Prostaglandin E(2) (PGE(2)) plays important roles in the bone resorption of inflammatory diseases such as rheumatoid arthritis and periodontitis via specific prostaglandin receptors (i.e., EP1-EP4). In this study, the authors examined whether Prevotella intermedia regulates PGE(2) production and EP expression in human periodontal ligament fibroblasts (hPDLs); they also explored the potential signaling pathways involved in PGE(2) production. P. intermedia induced PGE(2) production and cyclooxygenase-2 (COX-2) expression in a dose- and time-dependent manner. Indomethacin and NS-398 completely abrogated the P. intermedia-induced PGE(2) production without modulating COX-2 expression. Specific inhibitors of extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38, phosphatidylinositol 3-kinase, and protein kinase C--but not c-AMP and protein kinase A--significantly attenuated the P. intermedia-induced COX-2 and PGE(2) expression. P. intermedia reduced EP1 expression in a concentration- and time-dependent manner. The results indicate that the COX-2-dependent induction of PGE(2) by P. intermedia in hPDLs is mediated by multiple signaling pathways.

  8. Calcium-Dependent Protein Kinases in Phytohormone Signaling Pathways

    Wuwu Xu

    2017-11-01

    Full Text Available Calcium-dependent protein kinases (CPKs/CDPKs are Ca2+-sensors that decode Ca2+ signals into specific physiological responses. Research has reported that CDPKs constitute a large multigene family in various plant species, and play diverse roles in plant growth, development, and stress responses. Although numerous CDPKs have been exhaustively studied, and many of them have been found to be involved in plant hormone biosynthesis and response mechanisms, a comprehensive overview of the manner in which CDPKs participate in phytohormone signaling pathways, regulating nearly all aspects of plant growth, has not yet been undertaken. In this article, we reviewed the structure of CDPKs and the mechanism of their subcellular localization. Some CDPKs were elucidated to influence the intracellular localization of their substrates. Since little work has been done on the interaction between CDPKs and cytokinin signaling pathways, or on newly defined phytohormones such as brassinosteroids, strigolactones and salicylic acid, this paper mainly focused on discussing the integral associations between CDPKs and five plant hormones: auxins, gibberellins, ethylene, jasmonates, and abscisic acid. A perspective on future work is provided at the end.

  9. Notch pathway signaling in the skin antagonizes Merkel cell development.

    Logan, Gregory J; Wright, Margaret C; Kubicki, Adam C; Maricich, Stephen M

    2018-02-15

    Merkel cells are mechanosensitive skin cells derived from the epidermal lineage whose development requires expression of the basic helix-loop-helix transcription factor Atoh1. The genes and pathways involved in regulating Merkel cell development during embryogenesis are poorly understood. Notch pathway signaling antagonizes Atoh1 expression in many developing body regions, so we hypothesized that Notch signaling might inhibit Merkel cell development. We found that conditional, constitutive overexpression of the Notch intracellular domain (NICD) in mouse epidermis significantly decreased Merkel cell numbers in whisker follicles and touch domes of hairy skin. Conversely, conditional deletion of the obligate NICD binding partner RBPj in the epidermis significantly increased Merkel cell numbers in whisker follicles, led to the development of ectopic Merkel cells outside of touch domes in hairy skin epidermis, and altered the distribution of Merkel cells in touch domes. Deletion of the downstream Notch effector gene Hes1 also significantly increased Merkel cell numbers in whisker follicles. Together, these data demonstrate that Notch signaling regulates Merkel cell production and patterning. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Radiation-induced adaptive response and intracellular signal transduction pathways

    Tachibana, Akira

    2009-01-01

    As an essential biological function, cells can sense the radiation even at low dose and respond to it, and which is one of bases of the radiation-induced adaptive response (AR) where effects caused by high dose radiation are reduced by prior exposure to low dose radiation (LDR). Here described are studies of AR in well established m5S cells on the intracellular signal transduction that involves sensing of LDR and transmitting of its signal within the cell network. The first signal for AR yielded by LDR on the cell membrane is exactly unknown though hydrogen peroxide and phorbol ester (PMA) can reportedly cause AR. As PMA activates protein kinase C (PKC) and its inhibitors suppress AR, participation of PKC in AR has been suggested and supported by studies showing PKCα activation by LDR. In addition, p38 mitogen-activated protein kinase (MAPK) is shown to participate in AR by those facts that the enzyme is activated by LDR, a p38 MAPK inhibitor suppresses AR, and PKC inhibitors suppress the enzyme activation, which also suggesting that the signaling from PKC to p38 MAPK can become operative by LDR. However, the possible reverse signaling is also suggested, and thus the activation of positive feedback mechanism is postulated in PKC/p38 MAPK/phospholipase δ1/ PKC pathway. Cells introduced with siRNA against Prkca gene (coding PKCs) produce reduced amount of the enzyme, particularly, of PKCα. In those cells, AR by 5 Gy X-ray is not observed and thereby PKCα is involved in AR. The signaling in AR is only partly elucidated at present as above, and more detailed studies including identification of more PKC subtypes and signaling to DNA repair system are considered necessary. (K.T.)

  11. TRAF1 Coordinates Polyubiquitin Signaling to Enhance Epstein-Barr Virus LMP1-Mediated Growth and Survival Pathway Activation.

    Hannah Greenfeld

    2015-05-01

    Full Text Available The Epstein-Barr virus (EBV encoded oncoprotein Latent Membrane Protein 1 (LMP1 signals through two C-terminal tail domains to drive cell growth, survival and transformation. The LMP1 membrane-proximal TES1/CTAR1 domain recruits TRAFs to activate MAP kinase, non-canonical and canonical NF-kB pathways, and is critical for EBV-mediated B-cell transformation. TRAF1 is amongst the most highly TES1-induced target genes and is abundantly expressed in EBV-associated lymphoproliferative disorders. We found that TRAF1 expression enhanced LMP1 TES1 domain-mediated activation of the p38, JNK, ERK and canonical NF-kB pathways, but not non-canonical NF-kB pathway activity. To gain insights into how TRAF1 amplifies LMP1 TES1 MAP kinase and canonical NF-kB pathways, we performed proteomic analysis of TRAF1 complexes immuno-purified from cells uninduced or induced for LMP1 TES1 signaling. Unexpectedly, we found that LMP1 TES1 domain signaling induced an association between TRAF1 and the linear ubiquitin chain assembly complex (LUBAC, and stimulated linear (M1-linked polyubiquitin chain attachment to TRAF1 complexes. LMP1 or TRAF1 complexes isolated from EBV-transformed lymphoblastoid B cell lines (LCLs were highly modified by M1-linked polyubiqutin chains. The M1-ubiquitin binding proteins IKK-gamma/NEMO, A20 and ABIN1 each associate with TRAF1 in cells that express LMP1. TRAF2, but not the cIAP1 or cIAP2 ubiquitin ligases, plays a key role in LUBAC recruitment and M1-chain attachment to TRAF1 complexes, implicating the TRAF1:TRAF2 heterotrimer in LMP1 TES1-dependent LUBAC activation. Depletion of either TRAF1, or the LUBAC ubiquitin E3 ligase subunit HOIP, markedly impaired LCL growth. Likewise, LMP1 or TRAF1 complexes purified from LCLs were decorated by lysine 63 (K63-linked polyubiqutin chains. LMP1 TES1 signaling induced K63-polyubiquitin chain attachment to TRAF1 complexes, and TRAF2 was identified as K63-Ub chain target. Co-localization of M1- and K63

  12. Prevotella intermedia stimulates tissue-type plasminogen activator and plasminogen activator inhibitor-2 expression via multiple signaling pathways in human periodontal ligament cells.

    Guan, Su-Min; He, Jian-Jun; Zhang, Ming; Shu, Lei

    2011-06-01

    Prevotella intermedia is an important periodontal pathogen that induces various inflammatory and immune responses. In this study, we investigated the effects of P. intermedia on the plasminogen system in human periodontal ligament (hPDL) cells and explored the signaling pathways involved. Using semi-quantitative reverse transcription (RT)-PCR and quantitative real-time RT-qPCR, we demonstrated that P. intermedia challenge increased tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor (PAI)-2 expression in a concentration- and time-dependent manner, but exerted no influence on urokinase-type plasminogen activator and PAI-1mRNA expression in hPDL cells. Prevotella intermedia stimulation also enhanced tPA protein secretion as confirmed by enzyme-linked immunosorbent assay. Western blot results revealed that P. intermedia treatment increased phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 kinase (p38). ERK, JNK and protein kinase C inhibitors significantly attenuated the P. intermedia-induced tPA and PAI-2 expression. Furthermore, p38 and phosphatidylinositol 3-kinase inhibitors markedly decreased PAI-2 expression, whereas they showed no or little inhibition on tPA expression. In contrast, inhibition of protein kinase A greatly enhanced the upregulatory effect of P. intermedia on tPA and PAI-2 expression. Our results suggest that P. intermedia may contribute to periodontal tissue destruction by upregulating tPA and PAI-2 expression in hPDL cells via multiple signaling pathways. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Dietary Lycium barbarum Polysaccharide Induces Nrf2/ARE Pathway and Ameliorates Insulin Resistance Induced by High-Fat via Activation of PI3K/AKT Signaling

    Yi Yang

    2014-01-01

    Full Text Available Lycium barbarum polysaccharide (LBP, an antioxidant from wolfberry, displays the antioxidative and anti-inflammatory effects on experimental models of insulin resistance in vivo. However, the effective mechanism of LBP on high-fat diet-induced insulin resistance is still unknown. The objective of the study was to investigate the mechanism involved in LBP-mediated phosphatidylinositol 3-kinase (PI3K/AKT/Nrf2 axis against high-fat-induced insulin resistance. HepG2 cells were incubated with LBP for 12 hrs in the presence of palmitate. C57BL/6J mice were fed a high-fat diet supplemented with LBP for 24 weeks. We analyzed the expression of nuclear factor-E2-related factor 2 (Nrf2, Jun N-terminal kinases (JNK, and glycogen synthase kinase 3β (GSK3β involved in insulin signaling pathway in vivo and in vitro. First, LBP significantly induced phosphorylation of Nrf2 through PI3K/AKT signaling. Second, LBP obviously increased detoxification and antioxidant enzymes expression and reduced reactive oxygen species (ROS levels via PI3K/AKT/Nrf2 axis. Third, LBP also regulated phosphorylation levels of GSK3β and JNK through PI3K/AKT signaling. Finally, LBP significantly reversed glycolytic and gluconeogenic genes expression via the activation of Nrf2-mediated cytoprotective effects. In summary, LBP is novel antioxidant against insulin resistance induced by high-fat diet via activation of PI3K/AKT/Nrf2 pathway.

  14. Interleukin-2 signaling pathway analysis by quantitative phosphoproteomics

    Osinalde, Nerea; Moss, Helle; Arrizabalaga, Onetsine

    2011-01-01

    among which 79 were found with increased abundance in the tyrosine-phosphorylated complexes, including several previously not reported IL-2 downstream effectors. Combinatorial site-specific phosphoproteomic analysis resulted in identification of 99 phosphorylated sites mapping to the identified proteins...... with increased abundance in the tyrosine-phosphorylated complexes, of which 34 were not previously described. In addition, chemical inhibition of the identified IL-2-mediated JAK, PI3K and MAPK signaling pathways, resulted in distinct alteration on the IL-2 dependent proliferation....

  15. Understanding Resolvin Signaling Pathways to Improve Oral Health

    Laura De Oleo

    2013-03-01

    Full Text Available The discovery of resolvins has been a major breakthrough for understanding the processes involved in resolution of inflammation. Resolvins belong to a family of novel lipid mediators that possess dual anti-inflammatory and pro-resolution actions. Specifically, they protect healthy tissue during immune-inflammatory responses to infection or injury, thereby aiding inflammation resolution and promoting tissue healing. One of the major concerns in modern medicine is the management and treatment of oral diseases, as they are related to systemic outcomes impacting the quality of life of many patients. This review summarizes known signaling pathways utilized by resolvins to regulate inflammatory responses associated with the oral cavity.

  16. Modulation of iridovirus-induced apoptosis by endocytosis, early expression, JNK, and apical caspase

    Chitnis, Nilesh S.; D'Costa, Susan M.; Paul, Eric R.; Bilimoria, Shaen L.

    2008-01-01

    Chilo iridescent virus (CIV) is the type species for the family Iridoviridae, which are large, isometric, cytoplasmic dsDNA viruses. We examined the mechanism of apoptosis induction by CIV. High CIV doses (CIV XS ; 400 μg/ml), UV-irradiated virus (CIV UV ; 10 μg/ml) and CVPE (CIV protein extract; 10 μg/ml) induced apoptosis in 60% of treated Choristoneura fumiferana (IPRI-CF-124T) cells. Normal doses of infectious CIV (10 μg/ml) induced apoptosis in only 10% of C. fumiferana (CF) cells. Apoptosis was inhibited by Z-IETD-FMK, an apical caspase inhibitor, indicating that CIV-induced apoptosis requires caspase activity. The putative caspase in CF cells was designated Cf-caspase-i. CIV UV or CVPE enhanced Cf-caspase-i activity by 80% at 24 h relative to mock-treated cells. Since the MAP kinase pathway induces or inhibits apoptosis depending on the context, we used JNK inhibitor SP600125 and demonstrated drastic suppression of CVPE-induced apoptosis. Thus, the JNK signaling pathway is significant for apoptosis in this system. Virus interaction with the cell surface was not sufficient for apoptosis since CIV UV particles bound to polysterene beads failed to induce apoptosis. Endocytosis inhibitors (bafilomycin or ammonium chloride) negated apoptosis induction by CIV UV , CIV XS or CVPE indicating that entry through this mode is required. Given the weak apoptotic response to infectious CIV, we postulated that viral gene expression inhibited apoptosis. CIV infection of cells pretreated with cycloheximide induced apoptosis in 69% of the cells compared to 10% in normal infections. Furthermore, blocking viral DNA replication with aphidicolin or phosphonoacetic acid suppressed apoptosis and Cf-caspase-i activity, indicating that early viral expression is necessary for inhibition of apoptosis, and de novo synthesis of viral proteins is not required for induction. We show for the first time that, in a member of the family Iridoviridae, apoptosis: (i) requires entry and

  17. Characterization of early events involved in human dendritic cell maturation induced by sensitizers: Cross talk between MAPK signalling pathways

    Trompezinski, Sandra; Migdal, Camille; Tailhardat, Magalie; Le Varlet, Beatrice; Courtellemont, Pascal; Haftek, Marek; Serres, Mireille

    2008-01-01

    Dendritic cells (DCs), efficient-antigen presenting cells play an important role in initiating and regulating immune responses. DC maturation following exposure to nickel or DNCB induced an up-regulation of phenotypic markers and inflammatory cytokine secretion. Early intracellular mechanisms involved in DC maturation required to be precise. To address this purpose, DCs derived from human monocytes were treated with sensitizers (nickel, DNCB or thimerosal) in comparison with an irritant (SDS). Our data confirming the up-regulation of CD86, CD54 and cytokine secretion (IL-8 and TNFα) induced by sensitizers but not by SDS, signalling transduction involved in DC maturation was investigated using these chemicals. Kinase activity measurement was assessed using two new sensitive procedures (Face TM and CBA) requiring few cells. SDS did not induce changes in signalling pathways whereas NiSO 4 , DNCB and thimerosal markedly activated p38 MAPK and JNK, in contrast Erk1/2 phosphorylation was completely inhibited by DNCB or thimerosal and only activated by nickel. A pre-treatment with p38 MAPK inhibitor (SB203580) suppressed Erk1/2 inhibition induced by DNCB or thimerosal demonstrating a direct interaction between p38 MAPK and Erk1/2. A pre-treatment with an antioxidant, N-acetyl-L-cysteine (NAC) markedly reduced Erk1/2 inhibition and p38 MAPK phosphorylation induced by DNCB and thimerosal, suggesting a direct activation of p38 MAPK via an oxidative stress and a regulation of MAPK signalling pathways depending on chemicals. Because of a high sensitivity of kinase activity measurements, these procedures will be suitable for weak or moderate sensitizer screening

  18. Periodontitis contributes to adipose tissue inflammation through the NF-B, JNK and ERK pathways to promote insulin resistance in a rat model.

    Huang, Yanli; Zeng, Jin; Chen, Guoqing; Xie, Xudong; Guo, Weihua; Tian, Weidong

    2016-12-01

    This study aimed to investigate the mechanism by which periodontitis affects the inflammatory response and systemic insulin resistance in the white adipose and liver tissues in an obese rat model. The obese model was generated by feeding rats a high fat diet. The periodontitis model was induced by ligatures and injection of "red complex", which consisted of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, for two weeks. When compared with rats without periodontitis, fasting glucose levels and homeostasis model assessment index were significantly increased in rats with periodontitis, suggesting that periodontitis promotes the development of insulin resistance in obese rats. Gene and protein expression analysis in white adipose and liver tissue revealed that experimental periodontitis stimulated the expression of inflammatory cytokines, such as tumor necrosis factors-alpha, interleukin-1 beta, toll-like receptor 2 and toll-like receptor 4. Signals associated with inflammation and insulin resistance, including nuclear factor- B, c-Jun amino-terminal kinase and extracellular-signal regulated kinase were significantly activated in the white adipose tissue from obese rats with periodontitis compared to obese rats without periodontitis. Taken together, these findings suggest that periodontitis plays an important role in aggravating the development of local white adipose inflammation and systemic insulin resistance in rat models. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. Inflammation activates the interferon signaling pathways in taste bud cells.

    Wang, Hong; Zhou, Minliang; Brand, Joseph; Huang, Liquan

    2007-10-03

    Patients with viral and bacterial infections or other inflammatory illnesses often experience taste dysfunctions. The agents responsible for these taste disorders are thought to be related to infection-induced inflammation, but the mechanisms are not known. As a first step in characterizing the possible role of inflammation in taste disorders, we report here evidence for the presence of interferon (IFN)-mediated signaling pathways in taste bud cells. IFN receptors, particularly the IFN-gamma receptor IFNGR1, are coexpressed with the taste cell-type markers neuronal cell adhesion molecule and alpha-gustducin, suggesting that both the taste receptor cells and synapse-forming cells in the taste bud can be stimulated by IFN. Incubation of taste bud-containing lingual epithelia with recombinant IFN-alpha and IFN-gamma triggered the IFN-mediated signaling cascades, resulting in the phosphorylation of the downstream STAT1 (signal transducer and activator of transcription protein 1) transcription factor. Intraperitoneal injection of lipopolysaccharide or polyinosinic:polycytidylic acid into mice, mimicking bacterial and viral infections, respectively, altered gene expression patterns in taste bud cells. Furthermore, the systemic administration of either IFN-alpha or IFN-gamma significantly increased the number of taste bud cells undergoing programmed cell death. These findings suggest that bacterial and viral infection-induced IFNs can act directly on taste bud cells, affecting their cellular function in taste transduction, and that IFN-induced apoptosis in taste buds may cause abnormal cell turnover and skew the representation of different taste bud cell types, leading to the development of taste disorders. To our knowledge, this is the first study providing direct evidence that inflammation can affect taste buds through cytokine signaling pathways.

  20. Autonomous rexinoid death signaling is suppressed by converging signaling pathways in immature leukemia cells.

    Benoit, G R; Flexor, M; Besançon, F; Altucci, L; Rossin, A; Hillion, J; Balajthy, Z; Legres, L; Ségal-Bendirdjian, E; Gronemeyer, H; Lanotte, M

    2001-07-01

    On their own, retinoid X receptor (RXR)-selective ligands (rexinoids) are silent in retinoic acid receptor (RAR)-RXR heterodimers, and no selective rexinoid program has been described as yet in cellular systems. We report here on the rexinoid signaling capacity that triggers apoptosis of immature promyelocytic NB4 cells as a default pathway in the absence of survival factors. Rexinoid-induced apoptosis displays all features of bona fide programmed cell death and is inhibited by RXR, but not RAR antagonists. Several types of survival signals block rexinoid-induced apoptosis. RARalpha agonists switch the cellular response toward differentiation and induce the expression of antiapoptosis factors. Activation of the protein kinase A pathway in the presence of rexinoid agonists induces maturation and blocks immature cell apoptosis. Addition of nonretinoid serum factors also blocks cell death but does not induce cell differentiation. Rexinoid-induced apoptosis is linked to neither the presence nor stability of the promyelocytic leukemia-RARalpha fusion protein and operates also in non-acute promyelocytic leukemia cells. Together our results support a model according to which rexinoids activate in certain leukemia cells a default death pathway onto which several other signaling paradigms converge. This pathway is entirely distinct from that triggered by RAR agonists, which control cell maturation and postmaturation apoptosis.

  1. Theobromine inhibits differentiation of 3T3-L1 cells during the early stage of adipogenesis via AMPK and MAPK signaling pathways.

    Jang, Yeon Jeong; Koo, Hyun Jung; Sohn, Eun-Hwa; Kang, Se Chan; Rhee, Dong-Kwon; Pyo, Suhkneung

    2015-07-01

    Obesity is characterized by hypertrophy and/or by the differentiation or adipogenesis of pre-existing adipocytes. In this study, we investigated the inhibitory effects of theobromine, a type of alkaloid in cocoa, on adipocyte differentiation of 3T3-L1 preadipocytes and its mechanisms of action. Theobromine inhibited the accumulation of lipid droplets, the expression of PPARγ and C/EBPα, and the mRNA expression of aP2 and leptin. The inhibition of adipogenic differentiation by theobromine occurred primarily in the early stages of differentiation. In addition, theobromine arrested the cell cycle at the G0/G1 phase and regulated the expressions of CDK2, p27, and p21. Theobromine treatment increased AMPK phosphorylation and knockdown of AMPKα1/α2 prevented the ability of theobromine to inhibit PPARγ expression in the differentiating 3T3-L1 cells. Theobromine reduced the phosphorylation of ERK and JNK. Moreover, the secretion and the mRNA level of TNF-α and IL-6 were inhibited by theobromine treatment. These data suggest that theobromine inhibits adipocyte differentiation during the early stages of adipogenesis by regulating the expression of PPARγ and C/EBPα through the AMPK and ERK/JNK signaling pathways in 3T3-L1 preadipocytes.

  2. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways.

    Kunnumakkara, Ajaikumar B; Bordoloi, Devivasha; Harsha, Choudhary; Banik, Kishore; Gupta, Subash C; Aggarwal, Bharat B

    2017-08-01

    Curcumin, a component of a spice native to India, was first isolated in 1815 by Vogel and Pelletier from the rhizomes of Curcuma longa (turmeric) and, subsequently, the chemical structure of curcumin as diferuloylmethane was reported by Milobedzka et al. [(1910) 43., 2163-2170]. Since then, this polyphenol has been shown to exhibit antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antifungal activities. The current review primarily focuses on the anticancer potential of curcumin through the modulation of multiple cell signaling pathways. Curcumin modulates diverse transcription factors, inflammatory cytokines, enzymes, kinases, growth factors, receptors, and various other proteins with an affinity ranging from the pM to the mM range. Furthermore, curcumin effectively regulates tumor cell growth via modulation of numerous cell signaling pathways and potentiates the effect of chemotherapeutic agents and radiation against cancer. Curcumin can interact with most of the targets that are modulated by FDA-approved drugs for cancer therapy. The focus of this review is to discuss the molecular basis for the anticancer activities of curcumin based on preclinical and clinical findings. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  3. The chromatin remodeler SPLAYED regulates specific stress signaling pathways.

    Justin W Walley

    2008-12-01

    Full Text Available Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism's survival is the ability to mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase SPLAYED (SYD is required for the expression of selected genes downstream of the jasmonate (JA and ethylene (ET signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling networks.

  4. A SNP uncoupling Mina expression from the TGFβ signaling pathway.

    Lian, Shang L; Mihi, Belgacem; Koyanagi, Madoka; Nakayama, Toshinori; Bix, Mark

    2018-03-01

    Mina is a JmjC family 2-oxoglutarate oxygenase with pleiotropic roles in cell proliferation, cancer, T cell differentiation, pulmonary inflammation, and intestinal parasite expulsion. Although Mina expression varies according to cell-type, developmental stage and activation state, its transcriptional regulation is poorly understood. Across inbred mouse strains, Mina protein level exhibits a bimodal distribution, correlating with inheritance of a biallelic haplotype block comprising 21 promoter/intron 1-region SNPs. We previously showed that heritable differences in Mina protein level are transcriptionally regulated. Accordingly, we decided to test the hypothesis that at least one of the promoter/intron 1-region SNPs perturbs a Mina cis-regulatory element (CRE). Here, we have comprehensively scanned for CREs across a Mina locus-spanning 26-kilobase genomic interval. We discovered 8 potential CREs and functionally validated 4 of these, the strongest of which (E2), residing in intron 1, contained a SNP whose BALB/c-but not C57Bl/6 allele-abolished both Smad3 binding and transforming growth factor beta (TGFβ) responsiveness. Our results demonstrate the TGFβ signaling pathway plays a critical role in regulating Mina expression and SNP rs4191790 controls heritable variation in Mina expression level, raising important questions regarding the evolution of an allele that uncouples Mina expression from the TGFβ signaling pathway. © 2017 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.

  5. Aberrant signaling pathways in medulloblastomas: a stem cell connection

    Carolina Oliveira Rodini

    2010-12-01

    Full Text Available Medulloblastoma is a highly malignant primary tumor of the central nervous system. It represents the most frequent type of solid tumor and the leading cause of death related to cancer in early childhood. Current treatment includes surgery, chemotherapy and radiotherapy which may lead to severe cognitive impairment and secondary brain tumors. New perspectives for therapeutic development have emerged with the identification of stem-like cells displaying high tumorigenic potential and increased radio- and chemo-resistance in gliomas. Under the cancer stem cell hypothesis, transformation of neural stem cells and/or granular neuron progenitors of the cerebellum are though to be involved in medulloblastoma development. Dissecting the genetic and molecular alterations associated with this process should significantly impact both basic and applied cancer research. Based on cumulative evidences in the fields of genetics and molecular biology of medulloblastomas, we discuss the possible involvement of developmental signaling pathways as critical biochemical switches determining normal neurogenesis or tumorigenesis. From the clinical viewpoint, modulation of signaling pathways such as TGFβ, regulating neural stem cell proliferation and tumor development, might be attempted as an alternative strategy for future drug development aiming at more efficient therapies and improved clinical outcome of patients with pediatric brain cancers.

  6. Modulation of neurotrophic signaling pathways by polyphenols

    Moosavi F

    2015-12-01

    Full Text Available Fatemeh Moosavi,1,2 Razieh Hosseini,1,2 Luciano Saso,3 Omidreza Firuzi1 1Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; 2Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran; 3Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy Abstract: Polyphenols are an important class of phytochemicals, and several lines of evidence have demonstrated their beneficial effects in the context of a number of pathologies including neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. In this report, we review the studies on the effects of polyphenols on neuronal survival, growth, proliferation and differentiation, and the signaling pathways involved in these neurotrophic actions. Several polyphenols including flavonoids such as baicalein, daidzein, luteolin, and nobiletin as well as nonflavonoid polyphenols such as auraptene, carnosic acid, curcuminoids, and hydroxycinnamic acid derivatives including caffeic acid phentyl ester enhance neuronal survival and promote neurite outgrowth in vitro, a hallmark of neuronal differentiation. Assessment of underlying mechanisms, especially in PC12 neuronal-like cells, reveals that direct agonistic effect on tropomyosin receptor kinase (Trk receptors, the main receptors of neurotrophic factors including nerve growth factor (NGF and brain-derived neurotrophic factor (BDNF explains the action of few polyphenols such as 7,8-dihydroxyflavone. However, several other polyphenolic compounds activate extracellular signal-regulated kinase (ERK and phosphoinositide 3-kinase (PI3K/Akt pathways. Increased expression of neurotrophic factors in vitro and in vivo is the mechanism of neurotrophic action of flavonoids such as scutellarin, daidzein, genistein, and fisetin, while compounds like apigenin and ferulic acid increase cyclic adenosine monophosphate

  7. Signaling Pathways Involved in Lunar Dust Induced Cytotoxicity

    Zhang, Ye; Lam, Chiu-Wing; Scully, Robert R.; Williams, Kyle; Zalesak, Selina; Wu, Honglu; James, John T.

    2014-01-01

    The Moon's surface is covered by a layer of fine, reactive dust. Lunar dust contain about 1-2% of very fine dust (pathways involved in lunar dust-induced toxicity. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.1, 21, and 61 mg/m(exp 3) of lunar dust. Five rats per group were euthanized 1 day, 1 week, 1 month, and 3 months after the last inhalation exposure. The total RNAs were isolated from the blood or lung tissue after being lavaged, using the Qigen RNeasy kit. The Rat Fibrosis RT2 Profile PCR Array was used to profile the expression of 84 genes relevant to fibrosis. The genes with significant expression changes are identified and the gene expression data were further analyzed using IPA pathway analysis tool to determine the signaling pathways with significant changes.

  8. MicroRNA-gene signaling pathways in pancreatic cancer

    Alexandra Drakaki

    2013-10-01

    Full Text Available Pancreatic cancer is the fourth most frequent cause of cancer-related deaths and is characterized by early metastasis and pronounced resistance to chemotherapy and radiation therapy. Despite extensive esearch efforts, there is not any substantial progress regarding the identification of novel drugs against pancreatic cancer. Although the introduction of the chemotherapeutic agent gemcitabine improved clinical response, the prognosis of these patients remained extremely poor with a 5-year survival rate of 3-5%. Thus, the identification of the novel molecular pathways involved in pancreatic oncogenesis and the development of new and potent therapeutic options are highly desirable. Here, we describe how microRNAs control signaling pathways that are frequently deregulated during pancreatic oncogenesis. In addition, we provide evidence that microRNAs could be potentially used as novel pancreatic cancer therapeutics through reversal of chemotherapy and radiotherapy resistance or regulation of essential molecular pathways. Further studies should integrate the deregulated genes and microRNAs into molecular networks in order to identify the central regulators of pancreatic oncogenesis. Targeting these central regulators could lead to the development of novel targeted therapeutic approaches for pancreatic cancer patients.

  9. Signaling Pathways Regulating Redox Balance in Cancer Metabolism.

    De Santis, Maria Chiara; Porporato, Paolo Ettore; Martini, Miriam; Morandi, Andrea

    2018-01-01

    The interplay between rewiring tumor metabolism and oncogenic driver mutations is only beginning to be appreciated. Metabolic deregulation has been described for decades as a bystander effect of genomic aberrations. However, for the biology of malignant cells, metabolic reprogramming is essential to tackle a harsh environment, including nutrient deprivation, reactive oxygen species production, and oxygen withdrawal. Besides the well-investigated glycolytic metabolism, it is emerging that several other metabolic fluxes are relevant for tumorigenesis in supporting redox balance, most notably pentose phosphate pathway, folate, and mitochondrial metabolism. The relationship between metabolic rewiring and mutant genes is still unclear and, therefore, we will discuss how metabolic needs and oncogene mutations influence each other to satisfy cancer cells' demands. Mutations in oncogenes, i.e., PI3K/AKT/mTOR, RAS pathway, and MYC, and tumor suppressors, i.e., p53 and liver kinase B1, result in metabolic flexibility and may influence response to therapy. Since metabolic rewiring is shaped by oncogenic driver mutations, understanding how specific alterations in signaling pathways affect different metabolic fluxes will be instrumental for the development of novel targeted therapies. In the era of personalized medicine, the combination of driver mutations, metabolite levels, and tissue of origins will pave the way to innovative therapeutic interventions.

  10. Effects of Extremely Low Frequency Electromagnetic Fields on Melanogenesis through p-ERK and p-SAPK/JNK Pathways in Human Melanocytes

    Yu-Mi Kim

    2017-10-01

    Full Text Available This study evaluated frequency-dependent effects of extremely low frequency electromagnetic fields (ELF-EMFs on melanogenesis by melanocytes in vitro. Melanocytes were exposed to 2 mT EMFs at 30–75 Hz for 3 days before melanogenesis was examined. Exposure to ELF-EMFs at 50 and 60 Hz induced melanogenic maturation without cell damage, without changing cell proliferation and mitochondrial activity. Melanin content and tyrosinase activity of cells exposed to 50 Hz were higher than in controls, and mRNA expression of tyrosinase-related protein-2 was elevated relative to controls at 50 Hz. Phosphorylated cyclic adenosine monophosphate response element-binding protein (p-CREB levels were higher than controls in cells exposed to ELF-EMFs at 50–75 Hz. Immunohistochemical staining showed that melanocyte-specific markers (HMB45, Melan-A were strongly expressed in cells exposed to EMFs at 50 and 60 Hz compared to controls. Thus, exposure to ELF-EMFs at 50 Hz could stimulate melanogenesis in melanocytes, through activation of p-CREB and p-p38 and inhibition of phosphorylated extracellular signal-regulated protein kinase and phosphorylated stress-activated protein kinase/c-Jun N-terminal kinase. The results may form the basis of an appropriate anti-gray hair treatment or be applied in a therapeutic device for inducing repigmentation in the skin of vitiligo patients.

  11. An algorithm for modularization of MAPK and calcium signaling pathways: comparative analysis among different species.

    Nayak, Losiana; De, Rajat K

    2007-12-01

    Signaling pathways are large complex biochemical networks. It is difficult to analyze the underlying mechanism of such networks as a whole. In the present article, we have proposed an algorithm for modularization of signal transduction pathways. Unlike studying a signaling pathway as a whole, this enables one to study the individual modules (less complex smaller units) easily and hence to study the entire pathway better. A comparative study of modules belonging to different species (for the same signaling pathway) has been made, which gives an overall idea about development of the signaling pathways over the taken set of species of calcium and MAPK signaling pathways. The superior performance, in terms of biological significance, of the proposed algorithm over an existing community finding algorithm of Newman [Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci USA 2006;103(23):8577-82] has been demonstrated using the aforesaid pathways of H. sapiens.

  12. PSFC: a Pathway Signal Flow Calculator App for Cytoscape [version 2; referees: 2 approved

    Lilit Nersisyan

    2017-04-01

    Full Text Available Cell signaling pathways are sequences of biochemical reactions that propagate an input signal, such as a hormone binding to a cell-surface receptor, into the cell to trigger a reactive process. Assessment of pathway activities is crucial for determining which pathways play roles in disease versus normal conditions. To date various pathway flow/perturbation assessment tools are available, however they are constrained to specific algorithms and specific data types. There are no accepted standards for evaluation of pathway activities or simulation of flow propagation events in pathways, and the results of different software are difficult to compare. Here we present Pathway Signal Flow Calculator (PSFC, a Cytoscape app for calculation of a pathway signal flow based on the pathway topology and node input data. The app provides a rich framework for customization of different signal flow algorithms to allow users to apply various approaches within a single computational framework.

  13. Oxidative stress damage-associated molecular signaling pathways differentiate spontaneous preterm birth and preterm premature rupture of the membranes.

    Dutta, Eryn H; Behnia, Faranak; Boldogh, Istvan; Saade, George R; Taylor, Brandie D; Kacerovský, Marian; Menon, Ramkumar

    2016-02-01

    In women with preterm premature rupture of the membranes (PPROM), increased oxidative stress may accelerate premature cellular senescence, senescence-associated inflammation and proteolysis, which may predispose them to rupture. We demonstrate mechanistic differences between preterm birth (PTB) and PPROM by revealing differences in fetal membrane redox status, oxidative stress-induced damage, distinct signaling pathways and senescence activation. Oxidative stress-associated fetal membrane damage and cell cycle arrest determine adverse pregnancy outcomes, such as spontaneous PTB and PPROM. Fetal membranes and amniotic fluid samples were collected from women with PTB and PPROM. Molecular, biochemical and histologic markers were used to document differences in oxidative stress and antioxidant enzyme status, DNA damage, secondary signaling activation by Ras-GTPase and mitogen-activated protein kinases, and activation of senescence between membranes from the two groups. Oxidative stress was higher and antioxidant enzymes were lower in PPROM compared with PTB. PTB membranes had minimal DNA damage and showed activation of Ras-GTPase and ERK/JNK signaling pathway with minimal signs of senescence. PPROM had higher numbers of cells with DNA damage, prosenescence stress kinase (p38 MAPK) activation and signs of senescence. Samples were obtained retrospectively after delivery. The markers of senescence that we tested are specific but are not sufficient to confirm senescence as the pathology in PPROM. Oxidative stress-induced DNA damage and senescence are characteristics of fetal membranes from PPROM, compared with PTB with intact membranes. PTB and PPROM arise from distinct pathophysiologic pathways. Oxidative stress and oxidative stress-induced cellular damages are likely determinants of the mechanistic signaling pathways and phenotypic outcome. This study is supported by developmental funds to Dr R. Menon from the Department of Obstetrics and Gynecology at The University of

  14. Efavirenz and 8-hydroxyefavirenz induce cell death via a JNK- and BimEL-dependent mechanism in primary human hepatocytes

    Bumpus, Namandje N., E-mail: nbumpus1@jhmi.edu

    2011-12-15

    Chronic use of efavirenz (EFV) has been linked to incidences of hepatotoxicity in patients receiving EFV to treat HIV-1. While recent studies have demonstrated that EFV stimulates hepatic cell death a role for the metabolites of efavirenz in this process has yet to be examined. In the present study, incubation of primary human hepatocytes with synthetic 8-hydroxyEFV (8-OHEFV), which is the primary metabolite of EFV, resulted in cell death, caspase-3 activation and reactive oxygen species formation. The metabolite exerted these effects at earlier time points and using lower concentrations than were required for the parent compound. In addition, pharmacological inhibition of cytochrome P450-dependent metabolism of EFV using 1-aminobenzotriazole markedly decreased reactive oxygen species formation and cell death. Treatment of primary human hepatocytes with EFV and 8-OHEFV also stimulated phosphorylation of c-Jun N-terminal kinase (JNK) as well as phosphorylation of the JNK substrate c-Jun. Further, the mRNA and protein expression of an isoform of Bim (Bcl-2 interacting mediator of cell death) denoted as BimEL, which is proapoptotic and has been shown to be modulated by JNK, was increased. Inhibition of JNK using SP600125 prevented the EFV- and 8-OHEFV-mediated cell death. Silencing of Bim using siRNA transfected into hepatocytes also prevented cell death resulting from 8-OHEFV-treatment. These data suggest that the oxidative metabolite 8-OHEFV is a more potent inducer of hepatic cell death than the parent compound EFV. Further, activation of the JNK signaling pathway and BimEL mRNA expression appear to be required for EFV- and 8-OHEFV-mediated hepatocyte death. -- Highlights: Black-Right-Pointing-Pointer 8-Hydroxyefavirenz is a more potent stimulator of cell death than efavirenz. Black-Right-Pointing-Pointer Efavirenz and 8-hydroxyefavirenz increase JNK activity and BimEL mRNA expression. Black-Right-Pointing-Pointer JNK and Bim are required for efavirenz- and 8

  15. Yeast signaling pathways in the oxidative stress response

    Ikner, Aminah [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States); Shiozaki, Kazuhiro [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States)]. E-mail: kshiozaki@ucdavis.edu

    2005-01-06

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed.

  16. Yeast signaling pathways in the oxidative stress response

    Ikner, Aminah; Shiozaki, Kazuhiro

    2005-01-01

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed

  17. Hydrogen sulfide protects against chemical hypoxia-induced injury by inhibiting ROS-activated ERK1/2 and p38MAPK signaling pathways in PC12 cells.

    Aiping Lan

    Full Text Available Hydrogen sulfide (H(2S has been proposed as a novel neuromodulator and neuroprotective agent. Cobalt chloride (CoCl(2 is a well-known hypoxia mimetic agent. We have demonstrated that H(2S protects against CoCl(2-induced injuries in PC12 cells. However, whether the members of mitogen-activated protein kinases (MAPK, in particular, extracellular signal-regulated kinase1/2(ERK1/2 and p38MAPK are involved in the neuroprotection of H(2S against chemical hypoxia-induced injuries of PC12 cells is not understood. We observed that CoCl(2 induced expression of transcriptional factor hypoxia-inducible factor-1 alpha (HIF-1α, decreased cystathionine-β synthase (CBS, a synthase of H(2S expression, and increased generation of reactive oxygen species (ROS, leading to injuries of the cells, evidenced by decrease in cell viability, dissipation of mitochondrial membrane potential (MMP , caspase-3 activation and apoptosis, which were attenuated by pretreatment with NaHS (a donor of H(2S or N-acetyl-L cystein (NAC, a ROS scavenger. CoCl(2 rapidly activated ERK1/2, p38MAPK and C-Jun N-terminal kinase (JNK. Inhibition of ERK1/2 or p38MAPK or JNK with kinase inhibitors (U0126 or SB203580 or SP600125, respectively or genetic silencing of ERK1/2 or p38MAPK by RNAi (Si-ERK1/2 or Si-p38MAPK significantly prevented CoCl(2-induced injuries. Pretreatment with NaHS or NAC inhibited not only CoCl(2-induced ROS production, but also phosphorylation of ERK1/2 and p38MAPK. Thus, we demonstrated that a concurrent activation of ERK1/2, p38MAPK and JNK participates in CoCl(2-induced injuries and that H(2S protects PC12 cells against chemical hypoxia-induced injuries by inhibition of ROS-activated ERK1/2 and p38MAPK pathways. Our results suggest that inhibitors of ERK1/2, p38MAPK and JNK or antioxidants may be useful for preventing and treating hypoxia-induced neuronal injury.

  18. TNF{alpha} and IL-1{beta} are mediated by both TLR4 and Nod1 pathways in the cultured HAPI cells stimulated by LPS

    Zheng, Wenwen; Zheng, Xuexing [College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province (China); Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136 (United States); Liu, Shue [Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136 (United States); Ouyang, Hongsheng [College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province (China); Levitt, Roy C.; Candiotti, Keith A. [Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136 (United States); Hao, Shuanglin, E-mail: shao@med.miami.edu [Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136 (United States)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer LPS induces proinflammatory cytokine release in HAPI cells. Black-Right-Pointing-Pointer JNK pathway is dependent on TLR4 signaling to release cytokines. Black-Right-Pointing-Pointer NF-{kappa}B pathway is dependent on Nod1 signaling to release cytokines. -- Abstract: A growing body of evidence recently suggests that glial cell activation plays an important role in several neurodegenerative diseases and neuropathic pain. Microglia in the central nervous system express toll-like receptor 4 (TLR4) that is traditionally accepted as the primary receptor of lipopolysaccharide (LPS). LPS activates TLR4 signaling pathways to induce the production of proinflammatory molecules. In the present studies, we verified the LPS signaling pathways using cultured highly aggressively proliferating immortalized (HAPI) microglial cells. We found that HAPI cells treated with LPS upregulated the expression of TLR4, phospho-JNK (pJNK) and phospho-NF-{kappa}B (pNF-{kappa}B), TNF{alpha} and IL-1{beta}. Silencing TLR4 with siRNA reduced the expression of pJNK, TNF{alpha} and IL-1{beta}, but not pNF-{kappa}B in the cells. Inhibition of JNK with SP600125 (a JNK inhibitor) decreased the expression of TNF{alpha} and IL-1{beta}. Unexpectedly, we found that inhibition of Nod1 with ML130 significantly reduced the expression of pNF-{kappa}B. Inhibition of NF-{kappa}B also reduced the expression of TNF{alpha} and IL-1{beta}. Nod1 ligand, DAP induced the upregulation of pNF-{kappa}B which was blocked by Nod1 inhibitor. These data indicate that LPS-induced pJNK is TLR4-dependent, and that pNF-{kappa}B is Nod1-dependent in HAPI cells treated with LPS. Either TLR4-JNK or Nod1-NF-{kappa}B pathways is involved in the expression of TNF{alpha} and IL-1{beta}.

  19. Induction of cyclooxygenase-2 in macrophages by catalase: role of NF-kappaB and PI3K signaling pathways.

    Jang, Byeong-Churl; Kim, Do-Hyun; Park, Jong-Wook; Kwon, Taeg Kyu; Kim, Sang-Pyo; Song, Dae-Kyu; Park, Jong-Gu; Bae, Jae-Hoon; Mun, Kyo-Chul; Baek, Won-Ki; Suh, Min-Ho; Hla, Timothy; Suh, Seong-Il

    2004-04-02

    Induction of COX-2 by catalase in smooth muscle cells, endothelial cells, and neuronal cells has been previously reported. However, the mechanism by which catalase up-regulates COX-2 remains poorly understood. In this study, we investigated the effect of catalase on induction of COX-2 in macrophages. The addition of catalase into Raw 264.7 macrophages induced COX-2 expression that was correlated with increased COX-2 transcription and mRNA stability. Catalase also induced activation of NF-kappaB, PI3K, ERKs, p38s, or JNKs. Catalase-induced COX-2 expression was abrogated by treatment of MG-132 (a NF-kappaB inhibitor) or LY294002 (a PI3K inhibitor), but not by treatment of PD98059 (an ERK inhibitor), SB203580 (a p38 inhibitor), or SP600125 (a JNK inhibitor). Moreover, inhibition of PI3K by LY294002 caused partial decrease of catalase-induced COX-2 transcription and steady-state COX-2 transcript levels, but not COX-2 mRNA stability. Together, these results suggest that catalase induces the expression of COX-2 in Raw 264.7 macrophages, and the induction is related with activation of NF-kappaB transcription factor and PI3K signaling pathway.

  20. SmShb, the SH2-Containing Adaptor Protein B of Schistosoma mansoni Regulates Venus Kinase Receptor Signaling Pathways.

    Marion Morel

    Full Text Available Venus kinase receptors (VKRs are invertebrate receptor tyrosine kinases (RTKs formed by an extracellular Venus Fly Trap (VFT ligand binding domain associated via a transmembrane domain with an intracellular tyrosine kinase (TK domain. Schistosoma mansoni VKRs, SmVKR1 and SmVKR2, are both implicated in reproductive activities of the parasite. In this work, we show that the SH2 domain-containing protein SmShb is a partner of the phosphorylated form of SmVKR1. Expression of these proteins in Xenopus oocytes allowed us to demonstrate that the SH2 domain of SmShb interacts with the phosphotyrosine residue (pY979 located in the juxtamembrane region of SmVKR1. This interaction leads to phosphorylation of SmShb on tyrosines and promotes SmVKR1 signaling towards the JNK pathway. SmShb transcripts are expressed in all parasite stages and they were found in ovary and testes of adult worms, suggesting a possible colocalization of SmShb and SmVKR1 proteins. Silencing of SmShb in adult S. mansoni resulted in an accumulation of mature sperm in testes, indicating a possible role of SmShb in gametogenesis.

  1. SmShb, the SH2-Containing Adaptor Protein B of Schistosoma mansoni Regulates Venus Kinase Receptor Signaling Pathways.

    Morel, Marion; Vanderstraete, Mathieu; Cailliau, Katia; Hahnel, Steffen; Grevelding, Christoph G; Dissous, Colette

    2016-01-01

    Venus kinase receptors (VKRs) are invertebrate receptor tyrosine kinases (RTKs) formed by an extracellular Venus Fly Trap (VFT) ligand binding domain associated via a transmembrane domain with an intracellular tyrosine kinase (TK) domain. Schistosoma mansoni VKRs, SmVKR1 and SmVKR2, are both implicated in reproductive activities of the parasite. In this work, we show that the SH2 domain-containing protein SmShb is a partner of the phosphorylated form of SmVKR1. Expression of these proteins in Xenopus oocytes allowed us to demonstrate that the SH2 domain of SmShb interacts with the phosphotyrosine residue (pY979) located in the juxtamembrane region of SmVKR1. This interaction leads to phosphorylation of SmShb on tyrosines and promotes SmVKR1 signaling towards the JNK pathway. SmShb transcripts are expressed in all parasite stages and they were found in ovary and testes of adult worms, suggesting a possible colocalization of SmShb and SmVKR1 proteins. Silencing of SmShb in adult S. mansoni resulted in an accumulation of mature sperm in testes, indicating a possible role of SmShb in gametogenesis.

  2. The c-Jun N-terminal kinase pathway is critical for cell transformation by the latent membrane protein 1 of Epstein-Barr virus

    Kutz, Helmut; Reisbach, Gilbert; Schultheiss, Ute; Kieser, Arnd

    2008-01-01

    The latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) transforms cells activating signal transduction pathways such as NF-κB, PI3-kinase, or c-Jun N-terminal kinase (JNK). Here, we investigated the functional role of the LMP1-induced JNK pathway in cell transformation. Expression of a novel dominant-negative JNK1 allele caused a block of proliferation in LMP1-transformed Rat1 fibroblasts. The JNK-specific inhibitor SP600125 reproduced this effect in Rat1-LMP1 cells and efficiently interfered with proliferation of EBV-transformed lymphoblastoid cells (LCLs). Inhibition of the LMP1-induced JNK pathway in LCLs caused the downregulation of c-Jun and Cdc2, the essential G2/M cell cycle kinase, which was accompanied by a cell cycle arrest of LCLs at G2/M phase transition. Moreover, SP600125 retarded tumor growth of LCLs in a xenograft model in SCID mice. Our data support a critical role of the LMP1-induced JNK pathway for proliferation of LMP1-transformed cells and characterize JNK as a potential target for intervention against EBV-induced malignancies

  3. In vitro reconstitution of an abscisic acid signalling pathway

    Fujii, Hiroaki; Chinnusamy, Viswanathan; Rodrigues, Americo; Rubio, Silvia; Antoni, Regina; Park, Sang-Youl; Cutler, Sean R.; Sheen, Jen; Rodriguez, Pedro L.; Zhu, Jian-Kang

    2009-01-01

    The phytohormone abscisic acid (ABA) regulates the expression of many genes in plants; it has critical functions in stress resistance and in growth and development. Several proteins have been reported to function as ABA receptors, and many more are known to be involved in ABA signalling. However, the identities of ABA receptors remain controversial and the mechanism of signalling from perception to downstream gene expression is unclear. Here we show that by combining the recently identified ABA receptor PYR1 with the type 2C protein phosphatase (PP2C) ABI1, the serine/threonine protein kinase SnRK2.6/OST1 and the transcription factor ABF2/AREB1, we can reconstitute ABA-triggered phosphorylation of the transcription factor in vitro. Introduction of these four components into plant protoplasts results in ABA-responsive gene expression. Protoplast and test-tube reconstitution assays were used to test the function of various members of the receptor, protein phosphatase and kinase families. Our results suggest that the default state of the SnRK2 kinases is an autophosphorylated, active state and that the SnRK2 kinases are kept inactive by the PP2Cs through physical interaction and dephosphorylation. We found that in the presence of ABA, the PYR/PYL (pyrabactin resistance 1/PYR1-like) receptor proteins can disrupt the interaction between the SnRK2s and PP2Cs, thus preventing the PP2C-mediated dephosphorylation of the SnRK2s and resulting in the activation of the SnRK2 kinases. Our results reveal new insights into ABA signalling mechanisms and define a minimal set of core components of a complete major ABA signalling pathway. © 2009 Macmillan Publishers Limited. All rights reserved.

  4. In vitro reconstitution of an abscisic acid signalling pathway

    Fujii, Hiroaki

    2009-11-18

    The phytohormone abscisic acid (ABA) regulates the expression of many genes in plants; it has critical functions in stress resistance and in growth and development. Several proteins have been reported to function as ABA receptors, and many more are known to be involved in ABA signalling. However, the identities of ABA receptors remain controversial and the mechanism of signalling from perception to downstream gene expression is unclear. Here we show that by combining the recently identified ABA receptor PYR1 with the type 2C protein phosphatase (PP2C) ABI1, the serine/threonine protein kinase SnRK2.6/OST1 and the transcription factor ABF2/AREB1, we can reconstitute ABA-triggered phosphorylation of the transcription factor in vitro. Introduction of these four components into plant protoplasts results in ABA-responsive gene expression. Protoplast and test-tube reconstitution assays were used to test the function of various members of the receptor, protein phosphatase and kinase families. Our results suggest that the default state of the SnRK2 kinases is an autophosphorylated, active state and that the SnRK2 kinases are kept inactive by the PP2Cs through physical interaction and dephosphorylation. We found that in the presence of ABA, the PYR/PYL (pyrabactin resistance 1/PYR1-like) receptor proteins can disrupt the interaction between the SnRK2s and PP2Cs, thus preventing the PP2C-mediated dephosphorylation of the SnRK2s and resulting in the activation of the SnRK2 kinases. Our results reveal new insights into ABA signalling mechanisms and define a minimal set of core components of a complete major ABA signalling pathway. © 2009 Macmillan Publishers Limited. All rights reserved.

  5. Ionizing radiation induces PI3K-dependent JNK activation for amplifying mitochondrial dysfunction in human cervical cancer cells

    Kim, Min Jung; Choi, Soon Young; Bae, Sang Woo; Kang, Chang Mo; Lee, Yun Sil; Lee, Su Jae

    2005-01-01

    Ionizing radiation is one of the most commonly used treatments for a wide variety of tumors. Exposure of cells to ionizing radiation results in the simultaneous activation or down regulation of multiple signaling pathways, which play critical role in controlling cell death and cell survival after irradiation in a cell type specific manner. The molecular mechanism by which apoptotic cell death occurs in response to ionizing radiation has been widely explored but not precisely deciphered. Therefore an improved understanding of the mechanisms involved in radiation-induced apoptosis may ultimately provide novel strategies of intervention in specific signal transduction pathways to favorably alter the therapeutic ratio in the treatment of human malignancies. The aim of our investigation was to elucidate molecular mechanisms of the mitochondrial dysfunction mediated apoptotic cell death triggered by ionizing radiation in human cervical cancer cells. We demonstrated that ionizing radiation utilizes PI3K-JNK signaling pathway for amplifying mitochondrial dysfunction and susequent apoptotic cell death: We showed that PI3K-dependent JNK activation leads to transcriptional upregulation of Fas and the phosphorylation/inactivation of Bcl-2, resulting in mitochondrial dysfunction-mediated apoptotic cell death in response to ionizing radiation

  6. Interconnection between thyroid hormone signalling pathways and parvovirus cytotoxic functions.

    Vanacker, J M; Laudet, V; Adelmant, G; Stéhelin, D; Rommelaere, J

    1993-01-01

    Nonstructural (NS) proteins of autonomous parvoviruses can repress expression driven by heterologous promoters, an activity which thus far has not been separated from their cytotoxic effects. It is shown here that, in transient transfection assays, the NS-1 protein of the parvovirus minute virus of mice (MVMp) activates the promoter of the human c-erbA1 gene, encoding the thyroid hormone (T3) receptor alpha. The endogenous c-erbA1 promoter is also a target for induction upon MVMp infection. Moreover, T3 was found to up-modulate the level of cell sensitivity to parvovirus attack. These data suggest an interconnection between T3 signalling and NS cytotoxic pathways. Images PMID:8230488

  7. Use of glycolytic pathways for inhibiting or measuring oncogenic signaling

    Onodera, Yasuhito; Bissell, Mina

    2017-06-27

    Disclosed are methods in which glucose metabolism is correlated to oncogenesis through certain specific pathways; inhibition of certain enzymes is shown to interfere with oncogenic signaling, and measurement of certain enzyme levels is correlated with patient survival. The present methods comprise measuring level of expression of at least one of the enzymes involved in glucose uptake or metabolism, wherein increased expression of the at least one of the enzymes relative to expression in a normal cell correlates with poor prognosis of disease in a patient. Preferably the genes whose expression level is measured include GLUT3, PFKP, GAPDH, ALDOC, LDHA and GFPT2. Also disclosed are embodiments directed towards downregulating the expression of some genes in glucose uptake and metabolism.

  8. Current Views of Toll-Like Receptor Signaling Pathways

    Masahiro Yamamoto

    2010-01-01

    Full Text Available On microbial invasion, the host immediately evokes innate immune responses. Recent studies have demonstrated that Toll-like receptors (TLRs play crucial roles in innate responses that lead not only to the clearance of pathogens but also to the efficient establishment of acquired immunity by directly detecting molecules from microbes. In terms of intracellular TLR-mediated signaling pathways, cytoplasmic adaptor molecules containing Toll/IL-1R (TIR domains play important roles in inflammatory immune responses through the production of proinflammatory cytokines, nitric oxide, and type I interferon, and upregulation of costimulatory molecules. In this paper, we will describe our current understanding of the relationship between TLRs and their ligands derived from pathogens such as viruses, bacteria, fungi, and parasites. Moreover, we will review the historical and current literature to describe the mechanisms behind TLR-mediated activation of innate immune responses.

  9. Effects of sodium fluoride on MAPKs signaling pathway in the gills of a freshwater teleost, Cyprinus carpio.

    Cao, Jinling; Chen, Jianjie; Wang, Jundong; Klerks, Paul; Xie, Lingtian

    2014-07-01

    Exposure to elevated levels of fluoride can cause a variety of adverse effects in fish. Previously we showed that fluoride causes injuries and apoptosis in the gills of Cyprinus carpio. In this study, the effects of fluoride on caspase-3 activity and on accumulation of proteins in the MAPKs pathways were evaluated using Western blotting and immunohistochemistry methods in vivo and in vitro. In vivo experiments showed that the caspase-3 activity increased with fluoride exposure level in a dose-dependent pattern Western blotting and immunohistochemistry results indicated that ERK relative activation tended to decrease as a function of fluoride exposure concentration. In contrast, relative activation of JNK increased with fluoride exposure level. Fluoride exposure did not appear to affect p38 activation. Furthermore, pretreatment of branchial cells with MAPK-specific inhibitors effectively prevented JNK induction and ERK inhibition, respectively, as well as reversed caspase-3 activity in fluoride-treated branchial cells. Our results indicate that activation of JNK and inactivation of ERK were caused by increased ROS and decreased antioxidant capacity in the gills of chronically exposed C. carpio described previously, which eventually caused the observed apoptosis in the fluoride-exposed gills and cells in C. carpio. JNK activation and ERK inactivation mechanism play a crucial role in gill impairment induced by chronic fluorosis. These findings contribute to a better understanding of the initial molecular and cellular events in the gill of fish chronically exposed to fluoride. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Signal transduction in mitogenesis: Further evidence for multiple pathways

    Rozengurt, E.; Erusalimsky, J.; Mehmet, H.; Morris, C.; Nanberg, E.; Sinnett-Smith, J.

    1988-01-01

    Growth factors are implicated in a wide variety of physiological and pathological processes, including embryogenesis, hematopoiesis, would healing, immune responses, atherosclerosis, and neoplasia. An important link between growth factors and their receptors and oncogene products has also been established. Thus, the elucidation of the mechanism of action of growth factors has emerged as one of the fundamental problems in biology and may prove crucial for understanding the unrestrained proliferation of cancer cells. A new and intriguing development is the discovery that neuropeptides localized in neural and neuroendocrine cells of mammalian tissue can also act as growth factors for cells in culture. Furthermore, indirect evidence is accumulating that the mitogenic effects of neuropeptides may be relevant for a variety of long-term biological processes, including development and oncogenesis. In this context, the peptides of the bombesin family are of particular significance. These peptides are potent mitogens for Swiss 3T3 cells and may act as autocrine growth factors for small cell lung cancer. Here, the authors summarize their recent studies using bombesin-like peptides for elucidating the signal transduction pathways leading to mitogenesis and compare these pathways with those elicited by other growth factors

  11. Celecoxib Ameliorates Non-Alcoholic Steatohepatitis in Type 2 Diabetic Rats via Suppression of the Non-Canonical Wnt Signaling Pathway Expression

    Tian, Feng; Zhang, Ya Jie; Li, Yu; Xie, Ying

    2014-01-01

    Our aim was to test whether pharmacological inhibition of cycloxygenase-2 (COX-2) reverses non-alcoholic steatohepatitis (NASH) in type 2 diabetes mellitus (T2DM) rats via suppression of the non-canonical Wnt signaling pathway expression. Twenty-four male Sprague-Dawley rats were randomly distributed to two groups and were fed with a high fat and sucrose (HF-HS) diet or a normal chow diet, respectively. After four weeks, rats fed with a HF-HS diet were made diabetic with low-dose streptozotocin. At the 9th week the diabetic rats fed with a HF-HS diet or the non-diabetic rats fed with a normal chow diet were further divided into two subgroups treated with vehicle or celecoxib (a selective COX-2 inhibitor, 10 mg/Kg/day, gavage) for the last 4 weeks, respectively. At the end of the 12th week, rats were anesthetized. NASH was assessed by histology. Related cytokine expression was measured at both the protein and gene levels through immunohistochemistry (IHC), Western blot and real-time PCR. T2DM rats fed with a HF-HS diet developed steatohepatitis and insulin resistance associated with elevated serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), insulin levels and the non-alcoholic fatty liver disease (NAFLD) activity score (NAS). The expression of Wnt5a, JNK1, NF-κB p65, and COX-2 were all significantly increased in the T2DM-NASH group compared with the control and control-cele group. Hepatic injury was improved by celecoxib in T2DM-NASH-Cele group indicated by reduced serum ALT and AST levels and hepatic inflammation was reduced by celecoxib showed by histology and the NAFLD activity score (NAS). Serum related metabolic parameters, HOMA-IR and insulin sensitivity index were all improved by celecoxib. The expression of Wnt5a, JNK1, NF-κB p65, and COX-2 expression were all suppressed by celecoxib in T2DM-NASH-Cele group. The results of the present study indicated that celecoxib ameliorated NASH in T2DM rats via suppression of the non-canonical Wnt

  12. TGF-beta induces connexin43 gene expression in normal murine mammary gland epithelial cells via activation of p38 and PI3K/AKT signaling pathways.

    Tacheau, Charlotte; Fontaine, Juliette; Loy, Jennifer; Mauviel, Alain; Verrecchia, Franck

    2008-12-01

    One of the shared physiological roles between TGF-beta and connexin family members is to inhibit epithelial cell cycle progression and consequently, to provide protection against malignant transformation. Herein, we demonstrated that TGF-beta1 induces the expression of connexin43 (Cx43) in normal murine mammary gland (NMuMG) cell lines at the protein and mRNA levels, and transcriptionally. Using overexpression of a truncated dominant-negative form of Cx43, we determined that the modulation of gap junctional communication by TGF-beta1 plays a key role in the control of NMuMG cells proliferation by TGF-beta1. In addition, using overexpression of truncated dominant-negative forms of either Smad2 or Smad3, and MDA-MB-468 human breast carcinoma cells deficient for Smad4, we determined that the Smad cascade is not implicated in TGF-beta1 effect on Cx43 expression. Using specific pharmacologic inhibitors for JNK, ERK, p38, and PI3K/AKT signaling pathways, we demonstrated the cooperative role of p38 and PI3K/AKT signaling in TGF-beta1-induced Cx43 expression and gap junctional communication. Furthermore, transfection of a c-jun antisense expression vector significantly prevented TGF-beta1-induced Cx43 gene expression demonstrating the involvement of c-Jun/AP-1 pathway together with p38 and PI3K/AKT pathways in mediating TGF-beta1-induced Cx43 gene expression.

  13. The Spectrin cytoskeleton regulates the Hippo signalling pathway.

    Fletcher, Georgina C; Elbediwy, Ahmed; Khanal, Ichha; Ribeiro, Paulo S; Tapon, Nic; Thompson, Barry J

    2015-04-01

    The Spectrin cytoskeleton is known to be polarised in epithelial cells, yet its role remains poorly understood. Here, we show that the Spectrin cytoskeleton controls Hippo signalling. In the developing Drosophila wing and eye, loss of apical Spectrins (alpha/beta-heavy dimers) produces tissue overgrowth and mis-regulation of Hippo target genes, similar to loss of Crumbs (Crb) or the FERM-domain protein Expanded (Ex). Apical beta-heavy Spectrin binds to Ex and co-localises with it at the apical membrane to antagonise Yki activity. Interestingly, in both the ovarian follicular epithelium and intestinal epithelium of Drosophila, apical Spectrins and Crb are dispensable for repression of Yki, while basolateral Spectrins (alpha/beta dimers) are essential. Finally, the Spectrin cytoskeleton is required to regulate the localisation of the Hippo pathway effector YAP in response to cell density human epithelial cells. Our findings identify both apical and basolateral Spectrins as regulators of Hippo signalling and suggest Spectrins as potential mechanosensors. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Functions and Signaling Pathways of Amino Acids in Intestinal Inflammation

    Fang He

    2018-01-01

    Full Text Available Intestine is always exposed to external environment and intestinal microorganism; thus it is more sensitive to dysfunction and dysbiosis, leading to intestinal inflammation, such as inflammatory bowel disease (IBD, irritable bowel syndrome (IBS, and diarrhea. An increasing number of studies indicate that dietary amino acids play significant roles in preventing and treating intestinal inflammation. The review aims to summarize the functions and signaling mechanisms of amino acids in intestinal inflammation. Amino acids, including essential amino acids (EAAs, conditionally essential amino acids (CEAAs, and nonessential amino acids (NEAAs, improve the functions of intestinal barrier and expressions of anti-inflammatory cytokines and tight junction proteins but decrease oxidative stress and the apoptosis of enterocytes as well as the expressions of proinflammatory cytokines in the intestinal inflammation. The functions of amino acids are associated with various signaling pathways, including mechanistic target of rapamycin (mTOR, inducible nitric oxide synthase (iNOS, calcium-sensing receptor (CaSR, nuclear factor-kappa-B (NF-κB, mitogen-activated protein kinase (MAPK, nuclear erythroid-related factor 2 (Nrf2, general controlled nonrepressed kinase 2 (GCN2, and angiotensin-converting enzyme 2 (ACE2.

  15. The Transcriptional Landscape of p53 Signalling Pathway

    Chizu Tanikawa

    2017-06-01

    Full Text Available Although recent cancer genomics studies have identified a large number of genes that were mutated in human cancers, p53 remains as the most frequently mutated gene. To further elucidate the p53-signalling network, we performed transcriptome analysis on 24 tissues in p53+/+ or p53−/− mice after whole-body X-ray irradiation. Here we found transactivation of a total of 3551 genes in one or more of the 24 tissues only in p53+/+ mice, while 2576 genes were downregulated. p53 mRNA expression level in each tissue was significantly associated with the number of genes upregulated by irradiation. Annotation using TCGA (The Cancer Genome Atlas database revealed that p53 negatively regulated mRNA expression of several cancer therapeutic targets or pathways such as BTK, SYK, and CTLA4 in breast cancer tissues. In addition, stomach exhibited the induction of Krt6, Krt16, and Krt17 as well as loricrin, an epidermal differentiation marker, after the X-ray irradiation only in p53+/+ mice, implying a mechanism to protect damaged tissues by rapid induction of differentiation. Our comprehensive transcriptome analysis elucidated tissue specific roles of p53 and its signalling networks in DNA-damage response that will enhance our understanding of cancer biology.

  16. Tofacitinib Represses the Janus Kinase-Signal Transducer and Activators of Transcription Signalling Pathway in Keratinocytes.

    Srivastava, Ankit; Ståhle, Mona; Pivarcsi, Andor; Sonkoly, Enikö

    2018-05-08

    Tofacitinib is a Janus kinase (JAK) inhibitor, which has shown efficacy in treating psoriasis. The mode of action of tofacitinib is not completely understood but it has been thought to be mediated by the inhibition of CD4+ T-cell activation. Here, we investigated whether the molecular targets of tofacitinib are expressed in keratinocytes, and whether tofacitinib can modulate the activity of the JAK/Signal Transducer and Activators of Transcription (STAT)-pathway in keratinocytes. Transcriptomic profiling of human keratinocytes treated with IL-22 in combination with tofacitinib revealed that tofacitinib could prevent the majority of IL-22-mediated gene expression changes. Pathway analysis of tofacitinib-regulated genes in keratinocytes revealed enrichment of genes involved in the JAK/STAT signalling pathway. Quantitative real-time-PCR confirmed the upregulation of S100A7 and downregulation of EGR1 expression by IL-22, which was prevented by tofacitinib pre-treatment. These results indicate a direct effect of tofacinitib on keratinocytes, which can have relevance for systemic as well as for topical treatment of psoriasis with tofacitinib.

  17. Systems Biomedicine of Rabies Delineates the Affected Signaling pathways

    Sayed Hamid Reza Mozhgani

    2016-11-01

    Full Text Available The prototypical neurotropic virus, rabies, is a member of the Rhabdoviridae family that causes lethal encephalomyelitis. Although there have been a plethora of studies investigating the etiological mechanism of the rabies virus and many precautionary methods have been implemented to avert the disease outbreak over the last century, the disease has surprisingly no definite remedy at its late stages. The psychological symptoms and the underlying etiology, as well as the rare survival rate from rabies encephalitis, has still remained a mystery. We, therefore, undertook a systems biomedicine approach to identify the network of gene products implicated in rabies. This was done by meta-analyzing whole-transcriptome microarray datasets of the CNS infected by strain CVS-11, and integrating them with interactome data using computational and statistical methods. We first determined the differentially expressed genes (DEGs in each study and horizontally integrated the results at the mRNA and microRNA levels separately. A total of 61 seed genes involved in signal propagation system were obtained by means of unifying mRNA and microRNA detected integrated DEGs. We then reconstructed a refined protein-protein interaction network (PPIN of infected cells to elucidate the rabies-implicated signal transduction network (RISN. To validate our findings, we confirmed differential expression of randomly selected genes in the network using Real-time PCR. In conclusion, the identification of seed genes and their network neighborhood within the refined PPIN can be useful for demonstrating signaling pathways including interferon circumvent, toward proliferation and survival, and neuropathological clue, explaining the intricate underlying molecular neuropathology of rabies infection and thus rendered a molecular framework for predicting potential drug targets.

  18. Systems Biomedicine of Rabies Delineates the Affected Signaling Pathways

    Azimzadeh Jamalkandi, Sadegh; Mozhgani, Sayed-Hamidreza; Gholami Pourbadie, Hamid; Mirzaie, Mehdi; Noorbakhsh, Farshid; Vaziri, Behrouz; Gholami, Alireza; Ansari-Pour, Naser; Jafari, Mohieddin

    2016-01-01

    The prototypical neurotropic virus, rabies, is a member of the Rhabdoviridae family that causes lethal encephalomyelitis. Although there have been a plethora of studies investigating the etiological mechanism of the rabies virus and many precautionary methods have been implemented to avert the disease outbreak over the last century, the disease has surprisingly no definite remedy at its late stages. The psychological symptoms and the underlying etiology, as well as the rare survival rate from rabies encephalitis, has still remained a mystery. We, therefore, undertook a systems biomedicine approach to identify the network of gene products implicated in rabies. This was done by meta-analyzing whole-transcriptome microarray datasets of the CNS infected by strain CVS-11, and integrating them with interactome data using computational and statistical methods. We first determined the differentially expressed genes (DEGs) in each study and horizontally integrated the results at the mRNA and microRNA levels separately. A total of 61 seed genes involved in signal propagation system were obtained by means of unifying mRNA and microRNA detected integrated DEGs. We then reconstructed a refined protein–protein interaction network (PPIN) of infected cells to elucidate the rabies-implicated signal transduction network (RISN). To validate our findings, we confirmed differential expression of randomly selected genes in the network using Real-time PCR. In conclusion, the identification of seed genes and their network neighborhood within the refined PPIN can be useful for demonstrating signaling pathways including interferon circumvent, toward proliferation and survival, and neuropathological clue, explaining the intricate underlying molecular neuropathology of rabies infection and thus rendered a molecular framework for predicting potential drug targets. PMID:27872612

  19. Systems Biomedicine of Rabies Delineates the Affected Signaling Pathways.

    Azimzadeh Jamalkandi, Sadegh; Mozhgani, Sayed-Hamidreza; Gholami Pourbadie, Hamid; Mirzaie, Mehdi; Noorbakhsh, Farshid; Vaziri, Behrouz; Gholami, Alireza; Ansari-Pour, Naser; Jafari, Mohieddin

    2016-01-01

    The prototypical neurotropic virus, rabies, is a member of the Rhabdoviridae family that causes lethal encephalomyelitis. Although there have been a plethora of studies investigating the etiological mechanism of the rabies virus and many precautionary methods have been implemented to avert the disease outbreak over the last century, the disease has surprisingly no definite remedy at its late stages. The psychological symptoms and the underlying etiology, as well as the rare survival rate from rabies encephalitis, has still remained a mystery. We, therefore, undertook a systems biomedicine approach to identify the network of gene products implicated in rabies. This was done by meta-analyzing whole-transcriptome microarray datasets of the CNS infected by strain CVS-11, and integrating them with interactome data using computational and statistical methods. We first determined the differentially expressed genes (DEGs) in each study and horizontally integrated the results at the mRNA and microRNA levels separately. A total of 61 seed genes involved in signal propagation system were obtained by means of unifying mRNA and microRNA detected integrated DEGs. We then reconstructed a refined protein-protein interaction network (PPIN) of infected cells to elucidate the rabies-implicated signal transduction network (RISN). To validate our findings, we confirmed differential expression of randomly selected genes in the network using Real-time PCR. In conclusion, the identification of seed genes and their network neighborhood within the refined PPIN can be useful for demonstrating signaling pathways including interferon circumvent, toward proliferation and survival, and neuropathological clue, explaining the intricate underlying molecular neuropathology of rabies infection and thus rendered a molecular framework for predicting potential drug targets.

  20. B7-H4 Treatment of T Cells Inhibits ERK, JNK, p38, and AKT Activation.

    Xiaojie Wang

    Full Text Available B7-H4 is a newly identified B7 homolog that plays an important role in maintaining T-cell homeostasis by inhibiting T-cell proliferation and lymphokine-secretion. In this study, we investigated the signal transduction pathways inhibited by B7-H4 engagement in mouse T cells. We found that treatment of CD3(+ T cells with a B7-H4.Ig fusion protein inhibits anti-CD3 elicited T-cell receptor (TCR/CD28 signaling events, including phosphorylation of the MAP kinases, ERK, p38, and JNK. B7-H4.Ig treatment also inhibited the phosphorylation of AKT kinase and impaired its kinase activity as assessed by the phosphorylation of its endogenous substrate GSK-3. Expression of IL-2 is also reduced by B7-H4. In contrast, the phosphorylation state of the TCR proximal tyrosine kinases ZAP70 and lymphocyte-specific protein tyrosine kinase (LCK are not affected by B7-H4 ligation. These results indicate that B7-H4 inhibits T-cell proliferation and IL-2 production through interfering with activation of ERK, JNK, and AKT, but not of ZAP70 or LCK.

  1. Magnolol Affects Cellular Proliferation, Polyamine Biosynthesis and Catabolism-Linked Protein Expression and Associated Cellular Signaling Pathways in Human Prostate Cancer Cells in vitro

    Brendan T. McKeown

    2015-01-01

    Full Text Available Background: Prostate cancer is the most commonly diagnosed form of cancer in men in Canada and the United States. Both genetic and environmental factors contribute to the development and progression of many cancers, including prostate cancer. Context and purpose of this study: This study investigated the effects of magnolol, a compound found in the roots and bark of the magnolia tree Magnolia officinalis, on cellular proliferation and proliferation-linked activities of PC3 human prostate cancer cells in vitro. Results: PC3 cells exposed to magnolol at a concentration of 80 μM for 6 hours exhibited decreased protein expression of ornithine decarboxylase, a key regulator in polyamine biosynthesis, as well as affecting the expression of other proteins involved in polyamine biosynthesis and catabolism. Furthermore, protein expression of the R2 subunit of ribonucleotide reductase, a key regulatory protein associated with DNA synthesis, was significantly decreased. Finally, the MAPK (mitogen-activated protein kinase, PI3K (phosphatidylinositol 3-kinase, NFκB (nuclear factor of kappa-light-chain-enhancer of activated B cells and AP-1 (activator protein 1 cellular signaling pathways were assayed to determine which, if any, of these pathways magnolol exposure would alter. Protein expressions of p-JNK-1 and c-jun were significantly increased while p-p38, JNK-1/2, PI3Kp85, p-PI3Kp85, p-Akt, NFκBp65, p-IκBα and IκBα protein expressions were significantly decreased. Conclusions: These alterations further support the anti-proliferative effects of magnolol on PC3 human prostate cancer cells in vitro and suggest that magnolol may have potential as a novel anti-prostate cancer agent.

  2. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    Becnel, Lauren B; Darlington, Yolanda F; Ochsner, Scott A; Easton-Marks, Jeremy R; Watkins, Christopher M; McOwiti, Apollo; Kankanamge, Wasula H; Wise, Michael W; DeHart, Michael; Margolis, Ronald N; McKenna, Neil J

    2015-01-01

    Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field.

  3. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    Lauren B Becnel

    Full Text Available Signaling pathways involving nuclear receptors (NRs, their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA is a Consortium focused around a Hub website (www.nursa.org that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs. These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field.

  4. In Vivo Characterization of Intracellular Signaling Pathways Activated by the Nerve Agent Sarin

    Shih, Tsung-Ming A; Snyder, Gretchen L; Hendrick, Joseph P; Fienberg, Allen A; McDonough, John H

    2004-01-01

    ..., an excessive stimulation of nicotinic and muscarinic receptors. Preliminary evidence using diverse OPs indicates that the DARPP-32/PP-1 signaling pathway is activated by nicotinic receptor stimulation...

  5. Molecular Signaling Pathways Mediating Osteoclastogenesis Induced by Prostate Cancer Cells

    Rafiei, Shahrzad; Komarova, Svetlana V

    2013-01-01

    Advanced prostate cancer commonly metastasizes to bone leading to osteoblastic and osteolytic lesions. Although an osteolytic component governed by activation of bone resorbing osteoclasts is prominent in prostate cancer metastasis, the molecular mechanisms of prostate cancer-induced osteoclastogenesis are not well-understood. We studied the effect of soluble mediators released from human prostate carcinoma cells on osteoclast formation from mouse bone marrow and RAW 264.7 monocytes. Soluble factors released from human prostate carcinoma cells significantly increased viability of naïve bone marrow monocytes, as well as osteoclastogenesis from precursors primed with receptor activator of nuclear factor κ-B ligand (RANKL). The prostate cancer-induced osteoclastogenesis was not mediated by RANKL as it was not inhibited by osteoprotegerin (OPG). However inhibition of TGFβ receptor I (TβRI), or macrophage-colony stimulating factor (MCSF) resulted in attenuation of prostate cancer-induced osteoclastogenesis. We characterized the signaling pathways induced in osteoclast precursors by soluble mediators released from human prostate carcinoma cells. Prostate cancer factors increased basal calcium levels and calcium fluctuations, induced nuclear localization of nuclear factor of activated t-cells (NFAT)c1, and activated prolonged phosphorylation of ERK1/2 in RANKL-primed osteoclast precursors. Inhibition of calcium signaling, NFATc1 activation, and ERK1/2 phosphorylation significantly reduced the ability of prostate cancer mediators to stimulate osteoclastogenesis. This study reveals the molecular mechanisms underlying the direct osteoclastogenic effect of prostate cancer derived factors, which may be beneficial in developing novel osteoclast-targeting therapeutic approaches

  6. Signal Transduction Pathways (MAPKs, NF-κB, and C/EBP) Regulating COX-2 Expression in Nasal Fibroblasts from Asthma Patients with Aspirin Intolerance

    Garcia-Garcia, Francesc Josep; Mullol, Joaquim; Perez-Gonzalez, Maria; Pujols, Laura; Alobid, Isam

    2012-01-01

    Background Recent studies have revealed that cyclooxygenase-2 (COX-2) expression is down-regulated in aspirin-induced asthma (AIA). Various signal pathways (MAPKs, NF-κB and C/EBP) are involved in COX-2 regulation. Objective To investigate the regulation of COX-2 expression through MAP-kinase pathway activation and nuclear factor translocation in aspirin-induced asthma (AIA). Methods Fibroblasts were isolated from specimens of nasal mucosa (NM, N = 5) and nasal polyps (NP, N = 5). After IL-1β (1 ng/ml) incubation, COX-2 and phosphorylated forms of ERK, JNK and p38 MAPK were measured by Western blot. MAPK’s role in IL-1β-induced COX-2 expression was assessed by treating cells with ERK (PD98059), JNK (SP600125) and p38 MAPK (SB203580) inhibitors (0.1–10 µM) prior to IL-1β exposure. NF-κB and C/EBP nuclear translocation was measured by Western blot and TransAM® after IL-1β (10 ng/ml) exposure. Results No differences were observed in the MAPK phosphorylation time-course between NM and NP-AIA fibroblasts. The p38 MAPK inhibitor at 10 µM significantly reduced IL-1β-induced COX-2 expression in NM fibroblasts (85%). In NP-AIA fibroblasts the COX-2 inhibition (65%) at 1 and 10 µM was not statistically significant compared to non-treated cells. ERK and JNK inhibitors had no significant effect in either the NM or NP-AIA cultures. The effect of IL-1β on NF-κB and C/EBP subunits’ nuclear translocation was similar between NM and NP-AIA fibroblasts. Conclusions These results suggest that p38 MAPK is the only MAPK involved in IL-1β-induced COX-2 expression. NM and NP-AIA fibroblasts have similar MAPK phosphorylation dynamics and nuclear factor translocation (NF-κB and C/EBP). COX-2 downregulation observed in AIA patients appears not to be caused by differences in MAPK dynamics or transcription factor translocation. PMID:23240010

  7. Recombinant Human Endostatin Suppresses Mouse Osteoclast Formation by Inhibiting the NF-κB and MAPKs Signaling Pathways

    Non eChen

    2016-06-01

    Full Text Available Rheumatoid arthritis is an autoimmune disease characterized by synovial hyperplasia and progressive joint destruction. As reported previously, recombinant human endostatin (rhEndostatin is associated with inhibition of joint bone destruction present in rat adjuvant-induced arthritis; however, the effect of rhEndostatin on bone destruction is not known. This study was designed to assess the inhibitory effect and mechanisms of rhEndostatin on formation and function of osteoclasts in vitro, and to gain insight into the mechanism underlying the inhibitory effect of bone destruction. Bone marrow-derived macrophages isolated from BALB/c mice were stimulated with receptor activator of NF-κB ligand (RANKL and macrophage colony-stimulating factor to establish osteoclast formation. Osteoclast formation was determined by TRAP staining. Cell viability of BMMs affected by rhEndostatin was determined using a MTT assay. Bone resorption was examined with a bone resorption pits assay. The expression of osteoclast-specific markers was analyzed using quantitative real-time PCR. The related signaling pathways were examined using a Luciferase reporter assay and western blot analysis. Indeed, rhEndostatin showed a significant reduction in the number of osteoclast-like cells and early-stage bone resorption. Moreover, molecular analysis demonstrated that rhEndostatin attenuated RANKL-induced NF-κB signaling by inhibiting the phosphorylation of IκBα and NF-κB p65 nuclear translocation. Furthermore, rhEndostatin significantly inhibited the activation of RANKL-dependent mitogen-activated protein kinases (MAPKs, such as ERK1/2, JNK, and p38. Hence, we demonstrated for the first time that preventing the formation and function of osteoclasts is an important anti-bone destruction mechanism of rhEndostatin, which might be useful in the prevention and treatment of bone destruction in RA.

  8. ent-Steroids: novel tools for studies of signaling pathways.

    Covey, Douglas F

    2009-07-01

    Membrane receptors are often modulated by steroids and it is necessary to distinguish the effects of steroids at these receptors from effects occurring at nuclear receptors. Additionally, it may also be mechanistically important to distinguish between direct effects caused by binding of steroids to membrane receptors and indirect effects on membrane receptor function caused by steroid perturbation of the membrane containing the receptor. In this regard, ent-steroids, the mirror images of naturally occurring steroids, are novel tools for distinguishing between these various actions of steroids. The review provides a background for understanding the different actions that can be expected of steroids and ent-steroids in biological systems, references for the preparation of ent-steroids, a short discussion about relevant forms of stereoisomerism and the requirements that need to be fulfilled for the interaction between two molecules to be enantioselective. The review then summarizes results of biophysical, biochemical and pharmacological studies published since 1992 in which ent-steroids have been used to investigate the actions of steroids in membranes and/or receptor-mediated signaling pathways.

  9. Functional comparison of innate immune signaling pathways in primates.

    Luis B Barreiro

    2010-12-01

    Full Text Available Humans respond differently than other primates to a large number of infections. Differences in susceptibility to infectious agents between humans and other primates are probably due to inter-species differences in immune response to infection. Consistent with that notion, genes involved in immunity-related processes are strongly enriched among recent targets of positive selection in primates, suggesting that immune responses evolve rapidly, yet providing only indirect evidence for possible inter-species functional differences. To directly compare immune responses among primates, we stimulated primary monocytes from humans, chimpanzees, and rhesus macaques with lipopolysaccharide (LPS and studied the ensuing time-course regulatory responses. We find that, while the universal Toll-like receptor response is mostly conserved across primates, the regulatory response associated with viral infections is often lineage-specific, probably reflecting rapid host-virus mutual adaptation cycles. Additionally, human-specific immune responses are enriched for genes involved in apoptosis, as well as for genes associated with cancer and with susceptibility to infectious diseases or immune-related disorders. Finally, we find that chimpanzee-specific immune signaling pathways are enriched for HIV-interacting genes. Put together, our observations lend strong support to the notion that lineage-specific immune responses may help explain known inter-species differences in susceptibility to infectious diseases.

  10. Erythrocyte signal transduction pathways, their oxygenation dependence and functional significance.

    Barvitenko, Nadezhda N; Adragna, Norma C; Weber, Roy E

    2005-01-01

    Erythrocytes play a key role in human and vertebrate metabolism. Tissue O2 supply is regulated by both hemoglobin (Hb)-O2 affinity and erythrocyte rheology, a key determinant of tissue perfusion. Oxygenation-deoxygenation transitions of Hb may lead to re-organization of the cytoskeleton and signalling pathways activation/deactivation in an O2-dependent manner. Deoxygenated Hb binds to the cytoplasmic domain of the anion exchanger band 3, which is anchored to the cytoskeleton, and is considered a major mechanism underlying the oxygenation-dependence of several erythrocyte functions. This work discusses the multiple modes of Hb-cytoskeleton interactions. In addition, it reviews the effects of Mg2+, 2,3-diphosphoglycerate, NO, shear stress and Ca2+, all factors accompanying the oxygenation-deoxygenation cycle in circulating red cells. Due to the extensive literature on the subject, the data discussed here, pertain mainly to human erythrocytes whose O2 affinity is modulated by 2,3-diphosphoglycerate, ectothermic vertebrate erythrocytes that use ATP, and to bird erythrocytes that use inositol pentaphosphate. Copyright 2005 S. Karger AG, Basel.

  11. The Wnt signaling pathway in familial exudative vitreoretinopathy and Norrie disease.

    Warden, Scott M; Andreoli, Christopher M; Mukai, Shizuo

    2007-01-01

    The Wnt signaling pathway is highly conserved among species and has an important role in many cell biological processes throughout the body. This signaling cascade is involved in regulating ocular growth and development, and recent findings indicate that this is particularly true in the retina. Mutations involving different aspects of the Wnt signaling pathway are being linked to several diseases of retinal development. The aim of this article is to first review the Wnt signaling pathway. We will then describe two conditions, familial exudative vitreoretinopathy (FEVR) and Norrie disease (ND), which have been shown to be caused in part by defects in the Wnt signaling cascade.

  12. Urotensin II inhibits skeletal muscle glucose transport signaling pathways via the NADPH oxidase pathway.

    Hong-Xia Wang

    Full Text Available Our previous studies have demonstrated that the urotensin (UII and its receptor are up-regulated in the skeletal muscle of mice with type II diabetes mellitus (T2DM, but the significance of UII in skeletal muscle insulin resistance remains unknown. The purpose of this study was to investigate the effect of UII on NADPH oxidase and glucose transport signaling pathways in the skeletal muscle of mice with T2DM and in C2C12 mouse myotube cells. KK/upj-AY/J mice (KK mice were divided into the following groups: KK group, with saline treatment for 2 weeks; KK+ urantide group, with daily 30 µg/kg body weight injections over the same time period of urantide, a potent urotensin II antagonist peptide; Non-diabetic C57BL/6J mice were used as normal controls. After urantide treatment, mice were subjected to an intraperitoneal glucose tolerance test, in addition to measurements of the levels of ROS, NADPH oxidase and the phosphorylated AKT, PKC and ERK. C2C12 cells were incubated with serum-free DMEM for 24 hours before conducting the experiments, and then administrated with 100 nM UII for 2 hours or 24 hours. Urantide treatment improved glucose tolerance, decreased the translocation of the NADPH subunits p40-phox and p47-phox, and increased levels of the phosphorylated PKC, AKT and ERK. In contrast, UII treatment increased ROS production and p47-phox and p67-phox translocation, and decreased the phosphorylated AKT, ERK1/2 and p38MAPK; Apocynin abrogated this effect. In conclusion, UII increased ROS production by NADPH oxidase, leading to the inhibition of signaling pathways involving glucose transport, such as AKT/PKC/ERK. Our data imply a role for UII at the molecular level in glucose homeostasis, and possibly in skeletal muscle insulin resistance in T2DM.

  13. Testosterone induces molecular changes in dopamine signaling pathway molecules in the adolescent male rat nigrostriatal pathway.

    Tertia D Purves-Tyson

    Full Text Available Adolescent males have an increased risk of developing schizophrenia, implicating testosterone in the precipitation of dopamine-related psychopathology. Evidence from adult rodent brain indicates that testosterone can modulate nigrostriatal dopamine. However, studies are required to understand the role testosterone plays in maturation of dopamine pathways during adolescence and to elucidate the molecular mechanism(s by which testosterone exerts its effects. We hypothesized that molecular indices of dopamine neurotransmission [synthesis (tyrosine hydroxylase, breakdown (catechol-O-methyl transferase; monoamine oxygenase, transport [vesicular monoamine transporter (VMAT, dopamine transporter (DAT] and receptors (DRD1-D5] would be changed by testosterone or its metabolites, dihydrotestosterone and 17β-estradiol, in the nigrostriatal pathway of adolescent male rats. We found that testosterone and dihydrotestosterone increased DAT and VMAT mRNAs in the substantia nigra and that testosterone increased DAT protein at the region of the cell bodies, but not in target regions in the striatum. Dopamine receptor D2 mRNA was increased and D3 mRNA was decreased in substantia nigra and/or striatum by androgens. These data suggest that increased testosterone at adolescence may change dopamine responsivity of the nigrostriatal pathway by modulating, at a molecular level, the capacity of neurons to transport and respond to dopamine. Further, dopamine turnover was increased in the dorsal striatum following gonadectomy and this was prevented by testosterone replacement. Gene expression changes in the dopaminergic cell body region may serve to modulate both dendritic dopamine feedback inhibition and reuptake in the dopaminergic somatodendritic field as well as dopamine release and re-uptake dynamics at the presynaptic terminals in the striatum. These testosterone-induced changes of molecular indices of dopamine neurotransmission in males are primarily androgen

  14. Stathmin Mediates Hepatocyte Resistance to Death from Oxidative Stress by down Regulating JNK

    Zhao, Enpeng; Amir, Muhammad; Lin, Yu; Czaja, Mark J.

    2014-01-01

    Stathmin 1 performs a critical function in cell proliferation by regulating microtubule polymerization. This proliferative function is thought to explain the frequent overexpression of stathmin in human cancer and its correlation with a bad prognosis. Whether stathmin also functions in cell death pathways is unclear. Stathmin regulates microtubules in part by binding free tubulin, a process inhibited by stathmin phosphorylation from kinases including c-Jun N-terminal kinase (JNK). The involvement of JNK activation both in stathmin phosphorylation, and in hepatocellular resistance to oxidative stress, led to an examination of the role of stathmin/JNK crosstalk in oxidant-induced hepatocyte death. Oxidative stress from menadione-generated superoxide induced JNK-dependent stathmin phosphorylation at Ser-16, Ser-25 and Ser-38 in hepatocytes. A stathmin knockdown sensitized hepatocytes to both apoptotic and necrotic cell death from menadione without altering levels of oxidant generation. The absence of stathmin during oxidative stress led to JNK overactivation that was the mechanism of cell death as a concomitant knockdown of JNK1 or JNK2 blocked death. Hepatocyte death from JNK overactivation was mediated by the effects of JNK on mitochondria. Mitochondrial outer membrane permeabilization occurred in stathmin knockdown cells at low concentrations of menadione that triggered apoptosis, whereas mitochondrial β-oxidation and ATP homeostasis were compromised at higher, necrotic menadione concentrations. Stathmin therefore mediates hepatocyte resistance to death from oxidative stress by down regulating JNK and maintaining mitochondrial integrity. These findings demonstrate a new mechanism by which stathmin promotes cell survival and potentially tumor growth. PMID:25285524

  15. Stathmin mediates hepatocyte resistance to death from oxidative stress by down regulating JNK.

    Enpeng Zhao

    Full Text Available Stathmin 1 performs a critical function in cell proliferation by regulating microtubule polymerization. This proliferative function is thought to explain the frequent overexpression of stathmin in human cancer and its correlation with a bad prognosis. Whether stathmin also functions in cell death pathways is unclear. Stathmin regulates microtubules in part by binding free tubulin, a process inhibited by stathmin phosphorylation from kinases including c-Jun N-terminal kinase (JNK. The involvement of JNK activation both in stathmin phosphorylation, and in hepatocellular resistance to oxidative stress, led to an examination of the role of stathmin/JNK crosstalk in oxidant-induced hepatocyte death. Oxidative stress from menadione-generated superoxide induced JNK-dependent stathmin phosphorylation at Ser-16, Ser-25 and Ser-38 in hepatocytes. A stathmin knockdown sensitized hepatocytes to both apoptotic and necrotic cell death from menadione without altering levels of oxidant generation. The absence of stathmin during oxidative stress led to JNK overactivation that was the mechanism of cell death as a concomitant knockdown of JNK1 or JNK2 blocked death. Hepatocyte death from JNK overactivation was mediated by the effects of JNK on mitochondria. Mitochondrial outer membrane permeabilization occurred in stathmin knockdown cells at low concentrations of menadione that triggered apoptosis, whereas mitochondrial β-oxidation and ATP homeostasis were compromised at higher, necrotic menadione concentrations. Stathmin therefore mediates hepatocyte resistance to death from oxidative stress by down regulating JNK and maintaining mitochondrial integrity. These findings demonstrate a new mechanism by which stathmin promotes cell survival and potentially tumor growth.

  16. LPS-Induced Low-Grade Inflammation Increases Hypothalamic JNK Expression and Causes Central Insulin Resistance Irrespective of Body Weight Changes.

    Rorato, Rodrigo; Borges, Beatriz de Carvalho; Uchoa, Ernane Torres; Antunes-Rodrigues, José; Elias, Carol Fuzeti; Elias, Lucila Leico Kagohara

    2017-07-04

    Metabolic endotoxemia contributes to low-grade inflammation in obesity, which causes insulin resistance due to the activation of intracellular proinflammatory pathways, such as the c-Jun N-terminal Kinase (JNK) cascade in the hypothalamus and other tissues. However, it remains unclear whether the proinflammatory process precedes insulin resistance or it appears because of the development of obesity. Hypothalamic low-grade inflammation was induced by prolonged lipopolysaccharide (LPS) exposure to investigate if central insulin resistance is induced by an inflammatory stimulus regardless of obesity. Male Wistar rats were treated with single (1 LPS) or repeated injections (6 LPS) of LPS (100 μg/kg, IP) to evaluate the phosphorylation of the insulin receptor substrate-1 (IRS1), Protein kinase B (AKT), and JNK in the hypothalamus. Single LPS increased the expression of pIRS1, pAKT, and pJNK, whereas the repeated LPS treatment failed to recruit pIRS1 and pAKT. The 6 LPS treated rats showed increased total JNK and pJNK. The 6 LPS rats became unresponsive to the hypophagic effect induced by central insulin administration (12 μM/5 μL, ICV). Prolonged exposure to LPS (24 h) impaired the insulin-induced AKT phosphorylation and the translocation of the transcription factor forkhead box protein O1 (FoxO1) from the nucleus to the cytoplasm of the cultured hypothalamic GT1-7 cells. Central administration of the JNK inhibitor (20 μM/5 μL, ICV) restored the ability of insulin to phosphorylate IRS1 and AKT in 6 LPS rats. The present data suggest that an increased JNK activity in the hypothalamus underlies the development of insulin resistance during prolonged exposure to endotoxins. Our study reveals that weight gain is not mandatory for the development of hypothalamic insulin resistance and the blockade of proinflammatory pathways could be useful for restoring the insulin signaling during prolonged low-grade inflammation as seen in obesity.

  17. Fisetin induces apoptosis and endoplasmic reticulum stress in human non-small cell lung cancer through inhibition of the MAPK signaling pathway.

    Kang, Kyoung Ah; Piao, Mei Jing; Madduma Hewage, Susara Ruwan Kumara; Ryu, Yea Seong; Oh, Min Chang; Kwon, Taeg Kyu; Chae, Sungwook; Hyun, Jin Won

    2016-07-01

    Fisetin (3,3',4',7-tetrahydroxyflavone), a dietary flavonoid compound, is currently being investigated for its anticancer effect in various cancer models, including lung cancer. Recent studies show that fisetin induces cell growth inhibition and apoptosis in the human non-small cell lung cancer line NCI-H460. In this study, we investigated whether fisetin can induce endoplasmic reticulum (ER) stress-mediated apoptosis in NCI-H460 cells. Fisetin induced mitochondrial reactive oxygen species (ROS) and characteristic signs of ER stress: ER staining; mitochondrial Ca(2+) overload; expression of ER stress-related proteins; glucose-regulated protein (GRP)-78, phosphorylation of protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK) and phosphorylation of eukaryotic initiation factor-2 α subunit; cleavage of activating transcription factor-6; phosphorylation of inositol-requiring kinase-1 and splicing of X-box transcription factor-1; induction of C/EBP homologous protein and cleaved caspase-12. siRNA-mediated knockdown of CHOP and ATF-6 attenuated fisetin-induced apoptotic cell death. In addition, fisetin induced phosphorylation of ERK, JNK, and p38 MAPK. Moreover, silencing of the MAPK signaling pathway prevented apoptotic cell death. In summary, our results indicate that, in NCI-H460 cells, fisetin induces apoptosis and ER stress that is mediated by induction of the MAPK signaling pathway.

  18. Targeting Wnt signaling in colorectal cancer. A Review in the Theme: Cell Signaling: Proteins, Pathways and Mechanisms

    Novellasdemunt, Laura; Antas, Pedro

    2015-01-01

    The evolutionarily conserved Wnt signaling pathway plays essential roles during embryonic development and tissue homeostasis. Notably, comprehensive genetic studies in Drosophila and mice in the past decades have demonstrated the crucial role of Wnt signaling in intestinal stem cell maintenance by regulating proliferation, differentiation, and cell-fate decisions. Wnt signaling has also been implicated in a variety of cancers and other diseases. Loss of the Wnt pathway negative regulator adenomatous polyposis coli (APC) is the hallmark of human colorectal cancers (CRC). Recent advances in high-throughput sequencing further reveal many novel recurrent Wnt pathway mutations in addition to the well-characterized APC and β-catenin mutations in CRC. Despite attractive strategies to develop drugs for Wnt signaling, major hurdles in therapeutic intervention of the pathway persist. Here we discuss the Wnt-activating mechanisms in CRC and review the current advances and challenges in drug discovery. PMID:26289750

  19. Lasiodin inhibits proliferation of human nasopharyngeal carcinoma cells by simultaneous modulation of the Apaf-1/caspase, AKT/MAPK and COX-2/NF-κB signaling pathways.

    Lianzhu Lin

    Full Text Available Rabdosia serra has been widely used for the treatment of the various human diseases. However, the antiproliferative effects and underlying mechanisms of the compounds in this herb remain largely unknown. In this study, an antiproliferative compound against human nasopharyngeal carcinoma (NPC cells from Rabdosia serra was purified and identified as lasiodin (a diterpenoid. The treatment with lasiodin inhibited cell viability and migration. Lasiodin also mediated the cell morphology change and induced apoptosis in NPC cells. The treatment with lasiodin induced the Apaf-1 expression, triggered the cytochrome-C release, and stimulated the PARP, caspase-3 and caspase-9 cleavages, thereby activating the apoptotic pathways. The treatment with lasiodin also significantly inhibited the phosphorylations of the AKT, ERK1/2, p38 and JNK proteins. The pretreatment with the AKT or MAPK-selective inhibitors considerably blocked the lasiodin-mediated inhibition of cell proliferation. Moreover, the treatment with lasiodin inhibited the COX-2 expression, abrogated NF-κB binding to the COX-2 promoter, and promoted the NF-κB translocation from cell nuclei to cytosol. The pretreatment with a COX-2-selective inhibitor abrogated the lasiodin-induced inhibition of cell proliferation. These results indicated that lasiodin simultaneously activated the Apaf-1/caspase-dependent apoptotic pathways and suppressed the AKT/MAPK and COX-2/NF-κB signaling pathways. This study also suggested that lasiodin could be a promising natural compound for the prevention and treatment of NPC.

  20. Involvement of HDAC1 and the PI3K/PKC signaling pathways in NF-κB activation by the HDAC inhibitor apicidin

    Kim, Yong Kee; Seo, Dong-Wan; Kang, Dong-Won; Lee, Hoi Young; Han, Jeung-Whan; Kim, Su-Nam

    2006-01-01

    Histone deacetylase (HDAC) inhibitors are appreciated as one of promising anticancer drugs, but they exert differential responses depending on the cell type. We recently reported the critical role of NF-κB as a modulator in determining cell fate for apoptosis in response to an HDAC inhibitor. In this study, we investigate a possible signaling pathway required for NF-κB activation in response to the HDAC inhibitor apicidin. Treatment of HeLa cells with apicidin leads to an increase in transcriptional activity of NF-κB and the expression of its target genes, IL-8 and TNF-α. TNF-α expression by apicidin is induced at earlier time points than NF-κB activation or IL-8 expression. In addition, our data show that the early expression of TNF-α does not lead to activation of NF-κB, because disruption of TNF-α activity by a neutralizing antibody does not affect nuclear translocation of NF-κB, IκBα degradation or reporter gene activation by apicidin. However, this activation of NF-κB requires the PI3K and PKC signaling pathways, but not ERK or JNK. Furthermore, apicidin activation of NF-κB seems to result from HDAC1 inhibition, as evidenced by the observation that overexpression of HDAC1, but not HDAC2, 3 or 4, dramatically inhibits NF-κB reporter gene activity. Collectively, our results suggest that activation of NF-κB signaling by apicidin requires both the PI3K/PKC signaling pathways and HDAC1, and functions as a critical modulator in determining the cellular effect of apicidin

  1. Wnt and the Wnt signaling pathway in bone development and disease

    Wang, Yiping; Li, Yi-Ping; Paulson, Christie; Shao, Jian-Zhong; Zhang, Xiaoling; Wu, Mengrui; Chen, Wei

    2014-01-01

    Wnt signaling affects both bone modeling, which occurs during development, and bone remodeling, which is a lifelong process involving tissue renewal. Wnt signals are especially known to affect the differentiation of osteoblasts. In this review, we summarize recent advances in understanding the mechanisms of Wnt signaling, which is divided into two major branches: the canonical pathway and the noncanonical pathway. The canonical pathway is also called the Wnt/β-catenin pathway. There are two major noncanonical pathways: the Wnt-planar cell polarity pathway (Wnt-PCP pathway) and the Wnt-calcium pathway (Wnt-Ca2+ pathway). This review also discusses how Wnt ligands, receptors, intracellular effectors, transcription factors, and antagonists affect both the bone modeling and bone remodeling processes. We also review the role of Wnt ligands, receptors, intracellular effectors, transcription factors, and antagonists in bone as demonstrated in mouse models. Disrupted Wnt signaling is linked to several bone diseases, including osteoporosis, van Buchem disease, and sclerosteosis. Studying the mechanism of Wnt signaling and its interactions with other signaling pathways in bone will provide potential therapeutic targets to treat these bone diseases. PMID:24389191

  2. Thrombopoietin stimulates migration and activates multiple signaling pathways in hepatoblastoma cells

    Romanelli, Roberto G; Petrai, Ilaria; Robino, Gaia

    2005-01-01

    Thrombopoietin (TPO), a cytokine that participates in the differentiation and maturation of megakaryocytes, is produced in the liver, but only limited information is available on the biological response of liver-derived cells to TPO. In this study, we investigated whether HepG2 cells express c-Mpl......, the receptor for TPO, and whether TPO elicits biological responses and intracellular signaling in this cell type. Specific transcripts for c-Mpl were detected in HepG2 cells by RT-PCR, and expression of the protein was demonstrated by Western blot analysis and immunofluorescence. Exposure of HepG2 cells to TPO...... members of the MAPK family, including ERK and JNK, as assessed using phosphorylation-specific antibodies and immune complex kinase assays. TPO also activated phosphatidylinositol 3-kinase (PI3K) and the downstream kinase Akt in a time-dependent manner. Finally, activation of c-Mpl was associated...

  3. BLM promotes the activation of Fanconi Anemia signaling pathway.

    Panneerselvam, Jayabal; Wang, Hong; Zhang, Jun; Che, Raymond; Yu, Herbert; Fei, Peiwen

    2016-05-31

    Mutations in the human RecQ helicase, BLM, causes Bloom Syndrome, which is a rare autosomal recessive disorder and characterized by genomic instability and an increased risk of cancer. Fanconi Anemia (FA), resulting from mutations in any of the 19 known FA genes and those yet to be known, is also characterized by chromosomal instability and a high incidence of cancer. BLM helicase and FA proteins, therefore, may work in a common tumor-suppressor signaling pathway. To date, it remains largely unclear as to how BLM and FA proteins work concurrently in the maintenance of genome stability. Here we report that BLM is involved in the early activation of FA group D2 protein (FANCD2). We found that FANCD2 activation is substantially delayed and attenuated in crosslinking agent-treated cells harboring deficient Blm compared to similarly treated control cells with sufficient BLM. We also identified that the domain VI of BLM plays an essential role in promoting FANCD2 activation in cells treated with DNA crosslinking agents, especially ultraviolet B. The similar biological effects performed by ΔVI-BLM and inactivated FANCD2 further confirm the relationship between BLM and FANCD2. Mutations within the domain VI of BLM detected in human cancer samples demonstrate the functional importance of this domain, suggesting human tumorigenicity resulting from mtBLM may be at least partly attributed to mitigated FANCD2 activation. Collectively, our data show a previously unknown regulatory liaison in advancing our understanding of how the cancer susceptibility gene products act in concert to maintain genome stability.

  4. Rac1 promotes chondrogenesis by regulating STAT3 signaling pathway.

    Kim, Hyoin; Sonn, Jong Kyung

    2016-09-01

    The small GTPase protein Rac1 is involved in a wide range of biological processes including cell differentiation. Previously, Rac1 was shown to promote chondrogenesis in micromass cultures of limb mesenchyme. However, the pathways mediating Rac1's role in chondrogenesis are not fully understood. This study aimed to explore the molecular mechanisms by which Rac1 regulates chondrogenic differentiation. Phosphorylation of signal transducer and activator of transcription 3 (STAT3) was increased as chondrogenesis proceeded in micromass cultures of chick wing bud mesenchyme. Inhibition of Rac1 with NSC23766, janus kinase 2 (JAK2) with AG490, or STAT3 with stattic inhibited chondrogenesis and reduced phosphorylation of STAT3. Conversely, overexpression of constitutively active Rac1 (Rac L61) increased phosphorylation of STAT3. Rac L61 expression resulted in increased expression of interleukin 6 (IL-6), and treatment with IL-6 increased phosphorylation of STAT3. NSC23766, AG490, and stattic prohibited cell aggregation, whereas expression of Rac L61 increased cell aggregation, which was reduced by stattic treatment. Our studies indicate that Rac1 induces STAT3 activation through expression and action of IL-6. Overexpression of Rac L61 increased expression of bone morphogenic protein 4 (BMP4). BMP4 promoted chondrogenesis, which was inhibited by K02288, an activin receptor-like kinase-2 inhibitor, and increased phosphorylation of p38 MAP kinase. Overexpression of Rac L61 also increased phosphorylation of p38 MAPK, which was reduced by K02288. These results suggest that Rac1 activates STAT3 by expression of IL-6, which in turn increases expression and activity of BMP4, leading to the promotion of chondrogenesis. © 2016 International Federation for Cell Biology.

  5. Oncogenic signalling pathways in benign odontogenic cysts and tumours.

    Diniz, Marina Gonçalves; Gomes, Carolina Cavalieri; de Sousa, Sílvia Ferreira; Xavier, Guilherme Machado; Gomez, Ricardo Santiago

    2017-09-01

    The first step towards the prevention of cancer is to develop an in-depth understanding of tumourigenesis and the molecular basis of malignant transformation. What drives tumour initiation? Why do most benign tumours fail to metastasize? Oncogenic mutations, previously considered to be the hallmark drivers of cancers, are reported in benign cysts and tumours, including those that have an odontogenic origin. Despite the presence of such alterations, the vast majority of odontogenic lesions are benign and never progress to the stage of malignant transformation. As these lesions are likely to develop due to developmental defects, it is possible that they harbour quiet genomes. Now the question arises - do they result from DNA replication errors? Specific candidate genes have been sequenced in odontogenic lesions, revealing recurrent BRAF mutation in the case of ameloblastoma, KRAS mutation in adenomatoid odontogenic tumours, PTCH1 mutation in odontogenic keratocysts, and CTNNB1 (Beta-catenin) mutation in calcifying odontogenic cysts. Studies on these benign and rare entities might reveal important information about the tumorigenic process and the mechanisms that hinder/halt neoplastic progression. This is because the role of relatively common oncogenic mutations seems to be context dependent. In this review, each mutation signature of the odontogenic lesion and the affected signalling pathways are discussed in the context of tooth development and tumorigenesis. Furthermore, behavioural differences between different types of odontogenic lesions are explored and discussed based on the molecular alteration described. This review also includes the employment of molecular results for guiding therapeutic approaches towards odontogenic lesions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. From tyrosine to melanin: Signaling pathways and factors regulating melanogenesis

    Zuzanna Rzepka

    2016-06-01

    Full Text Available Melanins are natural pigments of skin, hair and eyes and can be classified into two main types: brown to black eumelanin and yellow to reddish-brown pheomelanin. Biosynthesis of melanins takes place in melanosomes, which are specialized cytoplasmic organelles of melanocytes - dendritic cells located in the basal layer of the epidermis, uveal tract of the eye, hair follicles, as well as in the inner ear, central nervous system and heart. Melanogenesis is a multistep process and begins with the conversion of amino acid L-tyrosine to DOPAquinone. The addition of cysteine or glutathione to DOPAquinone leads to the intermediates formation, followed by subsequent transformations and polymerization to the final product, pheomelanin. In the absence of thiol compounds DOPAquinone undergoes an intramolecular cyclization and oxidation to form DOPAchrome, which is then converted to 5,6-dihydroksyindole (DHI or 5,6-dihydroxyindole-2-carboxylic acid (DHICA. Eumelanin is formed by polymerization of DHI and DHICA and their quinones. Regulation of melanogenesis is achieved by physical and biochemical factors. The article presents the intracellular signaling pathways: cAMP/PKA/CREB/MITF cascade, MAP kinases cascade, PLC/DAG/PKCβ cascade and NO/cGMP/PKG cascade, which are involved in the regulation of expression and activity of the melanogenesis-related proteins by ultraviolet radiation and endogenous agents (cytokines, hormones. Activity of the key melanogenic enzyme, tyrosinase, is also affected by pH and temperature. Many pharmacologically active substances are able to inhibit or stimulate melanin biosynthesis, as evidenced by in vitro studies on cultured pigment cells.

  7. Mast cell chemotaxis – Chemoattractants and signaling pathways

    Ivana eHalova

    2012-05-01

    Full Text Available Migration of mast cells is essential for their recruitment within target tissues where they play an important role in innate and adaptive immune responses. These processes rely on the ability of mast cells to recognize appropriate chemotactic stimuli and react to them by a chemotactic response. Another level of intercellular communication is attained by production of chemoattractants by activated mast cells, which results in accumulation of mast cells and other hematopoietic cells at the sites of inflammation. Mast cells express numerous surface receptors for various ligands with properties of potent chemoattractants. They include the stem cell factor recognized by c-Kit, antigen, which binds to immunoglobulin E (IgE anchored to the high affinity IgE receptor (FcRI, highly cytokinergic IgE recognized by FcRI, lipid mediator sphingosine-1-phosphate (S1P, which binds to G-protein-coupled receptors (GPCRs. Other large groups of chemoattractants are eicosanoids [prostaglandin E2 and D2, leukotriene (LT B4, LTD4 and LTC4, and others] and chemokines (CC, CXC, C and CX3X, which also bind to various GPCRs. Further noteworthy chemoattractants are isoforms of transforming growth factor (TGF , which are sensitively recognized by TGF- serine/threonine type I and II  receptors, adenosine, C1q, C3a, and C5a components of the complement, 5-hydroxytryptamine, neuroendocrine peptide catestatin, interleukin-6, tumor necrosis factor- and others. Here we discuss the major types of chemoattractants recognized by mast cells, their target receptors, as well as signaling pathways they utilize. We also briefly deal with methods used for studies of mast cell chemotaxis and with ways of how these studies profited from the results obtained in other cellular systems.

  8. Porcine Circovirus-Like Virus P1 Inhibits Wnt Signaling Pathway in Vivo and in Vitro.

    Zhu, Xuejiao; Wen, Libin; Sheng, Shaoyang; Wang, Wei; Xiao, Qi; Qu, Meng; Hu, Yiyi; Liu, Chuanmin; He, Kongwang

    2018-01-01

    Porcine circovirus-like virus P1 is an important pathogen of the current pig industry, the infection mechanism is not entirely clear. Wnt signaling pathway plays an important role in the growth of young animals and infection of some viruses. This study was designed to demonstrate the effects of P1 infection on the Wnt signaling pathway. In vivo experiments, we demonstrated the down-regulatory effects of P1 infection in piglets and mice on the downstream components expression levels of Wnt signaling pathway, and the effects of Wnt signaling pathway activation on the pathogenesis of P1. In vitro studies, we found P1 infection down-regulated protein level of β-catenin and mRNA level of mmp2, prevented the β-catenin from entering into nucleus, abolished the TCF/LEF promoter activity, proved that P1 could inhibit the activation of Wnt signaling pathway in vitro . Finally, we found that VP1 of P1 virus also had the inhibitory effects on Wnt signaling pathway in vitro , elucidated the mechanism of P1's inhibitory effects on the Wnt signaling pathway and offered the possibility that the suppression of Wnt signaling pathway was involved in the post-weaning multisystemic wasting syndrome (PMWS), laying a foundation for elucidating the pathogenesis of P1.

  9. Porcine Circovirus-Like Virus P1 Inhibits Wnt Signaling Pathway in Vivo and in Vitro

    Xuejiao Zhu

    2018-03-01

    Full Text Available Porcine circovirus-like virus P1 is an important pathogen of the current pig industry, the infection mechanism is not entirely clear. Wnt signaling pathway plays an important role in the growth of young animals and infection of some viruses. This study was designed to demonstrate the effects of P1 infection on the Wnt signaling pathway. In vivo experiments, we demonstrated the down-regulatory effects of P1 infection in piglets and mice on the downstream components expression levels of Wnt signaling pathway, and the effects of Wnt signaling pathway activation on the pathogenesis of P1. In vitro studies, we found P1 infection down-regulated protein level of β-catenin and mRNA level of mmp2, prevented the β-catenin from entering into nucleus, abolished the TCF/LEF promoter activity, proved that P1 could inhibit the activation of Wnt signaling pathway in vitro. Finally, we found that VP1 of P1 virus also had the inhibitory effects on Wnt signaling pathway in vitro, elucidated the mechanism of P1’s inhibitory effects on the Wnt signaling pathway and offered the possibility that the suppression of Wnt signaling pathway was involved in the post-weaning multisystemic wasting syndrome (PMWS, laying a foundation for elucidating the pathogenesis of P1.

  10. TGFβ activated kinase 1 (TAK1 at the crossroad of B cell receptor and Toll-like receptor 9 signaling pathways in human B cells.

    Dániel Szili

    Full Text Available B cell development and activation are regulated by combined signals mediated by the B cell receptor (BCR, receptors for the B-cell activating factor of the tumor necrosis factor family (BAFF-R and the innate receptor, Toll-like receptor 9 (TLR9. However, the underlying mechanisms by which these signals cooperate in human B cells remain unclear. Our aim was to elucidate the key signaling molecules at the crossroads of BCR, BAFF-R and TLR9 mediated pathways and to follow the functional consequences of costimulation.Therefore we stimulated purified human B cells by combinations of anti-Ig, B-cell activating factor of the tumor necrosis factor family (BAFF and the TLR9 agonist, CpG oligodeoxynucleotide. Phosphorylation status of various signaling molecules, B cell proliferation, cytokine secretion, plasma blast generation and the frequency of IgG producing cells were investigated. We have found that BCR induced signals cooperate with BAFF-R- and TLR9-mediated signals at different levels of cell activation. BCR and BAFF- as well as TLR9 and BAFF-mediated signals cooperate at NFκB activation, while BCR and TLR9 synergistically costimulate mitogen activated protein kinases (MAPKs, ERK, JNK and p38. We show here for the first time that the MAP3K7 (TGF beta activated kinase, TAK1 is responsible for the synergistic costimulation of B cells by BCR and TLR9, resulting in an enhanced cell proliferation, plasma blast generation, cytokine and antibody production. Specific inhibitor of TAK1 as well as knocking down TAK1 by siRNA abrogates the synergistic signals. We conclude that TAK1 is a key regulator of receptor crosstalk between BCR and TLR9, thus plays a critical role in B cell development and activation.

  11. TNF-α decreases VEGF secretion in highly polarized RPE cells but increases it in non-polarized RPE cells related to crosstalk between JNK and NF-κB pathways.

    Hiroto Terasaki

    Full Text Available Asymmetrical secretion of vascular endothelial growth factor (VEGF by retinal pigment epithelial (RPE cells in situ is critical for maintaining the homeostasis of the retina and choroid. VEGF is also involved in the development and progression of age-related macular degeneration (AMD. We studied the effect of tumor necrosis factor-α (TNF-α on the secretion of VEGF in polarized and non-polarized RPE cells (P-RPE cells and N-RPE cells, respectively in culture and in situ in rats. A subretinal injection of TNF-α caused a decrease in VEGF expression and choroidal atrophy. Porcine RPE cells were seeded on Transwell™ filters, and their maturation and polarization were confirmed by the asymmetrical VEGF secretion and trans electrical resistance. Exposure to TNF-α decreased the VEGF secretion in P-RPE cells but increased it in N-RPE cells in culture. TNF-α inactivated JNK in P-RPE cells but activated it in N-RPE cells, and TNF-α activated NF-κB in P-RPE cells but not in N-RPE cells. Inhibition of NF-κB activated JNK in both types of RPE cells indicating crosstalk between JNK and NF-κB. TNF-α induced the inhibitory effects of NF-κB on JNK in P-RPE cells because NF-κB is continuously inactivated. In N-RPE cells, however, it was not evident because NF-κB was already activated. The basic activation pattern of JNK and NF-κB and their crosstalk led to opposing responses of RPE cells to TNF-α. These results suggest that VEGF secretion under inflammatory conditions depends on cellular polarization, and the TNF-α-induced VEGF down-regulation may result in choroidal atrophy in polarized physiological RPE cells. TNF-α-induced VEGF up-regulation may cause neovascularization by non-polarized or non-physiological RPE cells.

  12. Inhibition of the adrenomedullin/nitric oxide signaling pathway in early diabetic retinopathy.

    Blom, Jan J; Giove, Thomas J; Favazza, Tara L; Akula, James D; Eldred, William D

    2011-06-01

    The nitric oxide (NO) signaling pathway is integrally involved in visual processing and changes in the NO pathway are measurable in eyes of diabetic patients. The small peptide adrenomedullin (ADM) can activate a signaling pathway to increase the enzyme activity of neuronal nitric oxide synthase (nNOS). ADM levels are elevated in eyes of diabetic patients and therefore, ADM may play a role in the pathology of diabetic retinopathy. The goal of this research was to test the effects of inhibiting the ADM/NO signaling pathway in early diabetic retinopathy. Inhibition of this pathway decreased NO production in high-glucose retinal cultures. Treating diabetic mice with the PKC β inhibitor ruboxistaurin for 5 weeks lowered ADM mRNA levels and ADM-like immunoreactivity and preserved retinal function as assessed by electroretinography. The results of this study indicate that inhibiting the ADM/NO signaling pathway prevents neuronal pathology and functional losses in early diabetic retinopathy.

  13. Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line - Pathways that are shared with and distinct from IL-10

    Lejeune, D; Dumoutier, L; Constantinescu, S; Kruijer, W; Schuringa, JJ; Renauld, JC

    2002-01-01

    IL (interleukin)-22 is an IL-10-related cytokine; its main biological activity known thus far is the induction of acute phase reactants in liver and pancreas. IL-22 signals through a receptor that is composed of two chains from the class II cytokine receptor family: IL-22R (also called

  14. Atorvastatin attenuates contrast-induced nephropathy by modulating inflammatory responses through the regulation of JNK/p38/Hsp27 expression

    Xuyu He

    2016-05-01

    Our study demonstrates that high-dosage atorvastatin treatment attenuates both the inflammatory processes and apoptosis in contrast-induced acute kidney injury, and that the JNK/p38 MAPK pathway participates in the contrast-induced apoptosis of renal tubular cells. Finally, atorvastatin reduces CIN by suppression of apoptosis, which may be through inhibition of JNK/p38 MAPK pathways.

  15. The role of the Hedgehog signaling pathway in cancer: A comprehensive review

    Ana Marija Skoda

    2018-02-01

    Full Text Available The Hedgehog (Hh signaling pathway was first identified in the common fruit fly. It is a highly conserved evolutionary pathway of signal transmission from the cell membrane to the nucleus. The Hh signaling pathway plays an important role in the embryonic development. It exerts its biological effects through a signaling cascade that culminates in a change of balance between activator and repressor forms of glioma-associated oncogene (Gli transcription factors. The components of the Hh signaling pathway involved in the signaling transfer to the Gli transcription factors include Hedgehog ligands (Sonic Hh [SHh], Indian Hh [IHh], and Desert Hh [DHh], Patched receptor (Ptch1, Ptch2, Smoothened receptor (Smo, Suppressor of fused homolog (Sufu, kinesin protein Kif7, protein kinase A (PKA, and cyclic adenosine monophosphate (cAMP. The activator form of Gli travels to the nucleus and stimulates the transcription of the target genes by binding to their promoters. The main target genes of the Hh signaling pathway are PTCH1, PTCH2, and GLI1. Deregulation of the Hh signaling pathway is associated with developmental anomalies and cancer, including Gorlin syndrome, and sporadic cancers, such as basal cell carcinoma, medulloblastoma, pancreatic, breast, colon, ovarian, and small-cell lung carcinomas. The aberrant activation of the Hh signaling pathway is caused by mutations in the related genes (ligand-independent signaling or by the excessive expression of the Hh signaling molecules (ligand-dependent signaling – autocrine or paracrine. Several Hh signaling pathway inhibitors, such as vismodegib and sonidegib, have been developed for cancer treatment. These drugs are regarded as promising cancer therapies, especially for patients with refractory/advanced cancers.

  16. Signaling pathways activation profiles make better markers of cancer than expression of individual genes

    Borisov, Nikolay M.; Terekhanova, Nadezhda V.; Aliper, Alexander M.; Venkova, Larisa S.; Smirnov, Philip Yu; Roumiantsev, Sergey; Korzinkin, Mikhail B.; Zhavoronkov, Alex A.; Buzdin, Anton A.

    2014-01-01

    Identification of reliable and accurate molecular markers remains one of the major challenges of contemporary biomedicine. We developed a new bioinformatic technique termed OncoFinder that for the first time enables to quantatively measure activation of intracellular signaling pathways basing on transcriptomic data. Signaling pathways regulate all major cellular events in health and disease. Here, we showed that the Pathway Activation Strength (PAS) value itself may serve as the biomarker for...

  17. DMPD: Signal transduction pathways mediated by the interaction of CpG DNA withToll-like receptor 9. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 14751759 Signal transduction pathways mediated by the interaction of CpG DNA withTo...;16(1):17-22. (.png) (.svg) (.html) (.csml) Show Signal transduction pathways mediated by the interaction of... CpG DNA withToll-like receptor 9. PubmedID 14751759 Title Signal transduction pathways media

  18. Cross-regulation of signaling pathways: An example of nuclear hormone receptors and the canonical Wnt pathway

    Beildeck, Marcy E. [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States); Gelmann, Edward P. [Columbia University, Department of Medicine, New York, NY (United States); Byers, Stephen W., E-mail: byerss@georgetown.edu [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States)

    2010-07-01

    Predicting the potential physiological outcome(s) of any given molecular pathway is complex because of cross-talk with other pathways. This is particularly evident in the case of the nuclear hormone receptor and canonical Wnt pathways, which regulate cell growth and proliferation, differentiation, apoptosis, and metastatic potential in numerous tissues. These pathways are known to intersect at many levels: in the intracellular space, at the membrane, in the cytoplasm, and within the nucleus. The outcomes of these interactions are important in the control of stem cell differentiation and maintenance, feedback loops, and regulating oncogenic potential. The aim of this review is to demonstrate the importance of considering pathway cross-talk when predicting functional outcomes of signaling, using nuclear hormone receptor/canonical Wnt pathway cross-talk as an example.

  19. Cross-regulation of signaling pathways: An example of nuclear hormone receptors and the canonical Wnt pathway

    Beildeck, Marcy E.; Gelmann, Edward P.; Byers, Stephen W.

    2010-01-01

    Predicting the potential physiological outcome(s) of any given molecular pathway is complex because of cross-talk with other pathways. This is particularly evident in the case of the nuclear hormone receptor and canonical Wnt pathways, which regulate cell growth and proliferation, differentiation, apoptosis, and metastatic potential in numerous tissues. These pathways are known to intersect at many levels: in the intracellular space, at the membrane, in the cytoplasm, and within the nucleus. The outcomes of these interactions are important in the control of stem cell differentiation and maintenance, feedback loops, and regulating oncogenic potential. The aim of this review is to demonstrate the importance of considering pathway cross-talk when predicting functional outcomes of signaling, using nuclear hormone receptor/canonical Wnt pathway cross-talk as an example.

  20. Friedelane-type triterpenoids as selective anti-inflammatory agents by regulation of differential signaling pathways in LPS-stimulated macrophages

    Villar-Lorenzo, Andrea, E-mail: avillar@iib.uam.es [Instituto de Investigaciones Biomédicas Alberto Sols (IIBm) (CSIC/UAM), C/ Arturo Duperier 4, 28029 Madrid (Spain); Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, 28029 Madrid (Spain); Ardiles, Alejandro E., E-mail: ale_csic@gmail.com [Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife (Spain); Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1110939 (Chile); Arroba, Ana I., E-mail: aarroba@iib.uam.es [Instituto de Investigaciones Biomédicas Alberto Sols (IIBm) (CSIC/UAM), C/ Arturo Duperier 4, 28029 Madrid (Spain); Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, 28029 Madrid (Spain); Hernández-Jiménez, Enrique, E-mail: enheji@gmail.com [Tumor Immunology Laboratory (IdiPAZ), 28029 Madrid (Spain); Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERres), ISCIII, 28029 Madrid (Spain); and others

    2016-12-15

    A series of 31 pentacyclic triterpenoids isolated from the root barks of Celastrus vulcanicola and Maytenus jelskii were tested for cytotoxicity and inhibitory activity against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophages. Compounds 18 (C18) and 25 (C25) exhibited significant inhibition of LPS-induced NO release at 50 and 25 μM concentrations, respectively, and decreased mRNAs of pro-inflammatory cytokines. At the molecular level, C18 neither inhibited LPS-mediated phosphorylation of mitogen activated protein kinases (MAPKs) nor nuclear translocation of nuclear factor kappa beta (NFκB). Instead, C18 enhanced and prolonged nuclear translocation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and increased the expression of its target genes including hemeoxigenase 1 (HO1). C25 efficiently inhibited LPS-mediated phosphorylation of JNK, p38 and ERK, without affecting NFκB or Nrf2 signaling pathways. Both compounds reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β (IL1β) proform, reflecting their ability to target the inflammasome. C25 also counteracted LPS effects on iNOS expression and pro-inflammatory cytokines mRNA levels in Bv-2 microglial cells. The anti-inflammatory effect of both compounds was also assessed in human macrophages. Our results suggest that triterpenoids C18 and C25 possess anti-inflammatory effects, which may be therapeutically relevant for diseases linked to inflammation. - Highlights: • Compounds 18 (C18) and 25 (C25) exert anti-inflammatory effects in macrophages. • C18 enhanced nuclear translocation of Nrf2 and increased HO1 expression. • C25 inhibited the phosphorylation of JNK, p38 and ERK, members of the MAPKs family. • C25 reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β. • C18 and C25 may be therapeutic agents for diseases linked to inflammation.

  1. Friedelane-type triterpenoids as selective anti-inflammatory agents by regulation of differential signaling pathways in LPS-stimulated macrophages

    Villar-Lorenzo, Andrea; Ardiles, Alejandro E.; Arroba, Ana I.; Hernández-Jiménez, Enrique

    2016-01-01

    A series of 31 pentacyclic triterpenoids isolated from the root barks of Celastrus vulcanicola and Maytenus jelskii were tested for cytotoxicity and inhibitory activity against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophages. Compounds 18 (C18) and 25 (C25) exhibited significant inhibition of LPS-induced NO release at 50 and 25 μM concentrations, respectively, and decreased mRNAs of pro-inflammatory cytokines. At the molecular level, C18 neither inhibited LPS-mediated phosphorylation of mitogen activated protein kinases (MAPKs) nor nuclear translocation of nuclear factor kappa beta (NFκB). Instead, C18 enhanced and prolonged nuclear translocation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and increased the expression of its target genes including hemeoxigenase 1 (HO1). C25 efficiently inhibited LPS-mediated phosphorylation of JNK, p38 and ERK, without affecting NFκB or Nrf2 signaling pathways. Both compounds reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β (IL1β) proform, reflecting their ability to target the inflammasome. C25 also counteracted LPS effects on iNOS expression and pro-inflammatory cytokines mRNA levels in Bv-2 microglial cells. The anti-inflammatory effect of both compounds was also assessed in human macrophages. Our results suggest that triterpenoids C18 and C25 possess anti-inflammatory effects, which may be therapeutically relevant for diseases linked to inflammation. - Highlights: • Compounds 18 (C18) and 25 (C25) exert anti-inflammatory effects in macrophages. • C18 enhanced nuclear translocation of Nrf2 and increased HO1 expression. • C25 inhibited the phosphorylation of JNK, p38 and ERK, members of the MAPKs family. • C25 reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β. • C18 and C25 may be therapeutic agents for diseases linked to inflammation.

  2. Identification of a novel Gnao-mediated alternate olfactory signaling pathway in murine OSNs

    Paul eScholz

    2016-03-01

    Full Text Available It is generally agreed that in olfactory sensory neurons (OSNs, the binding of odorant molecules to their specific olfactory receptor (OR triggers a cAMP-dependent signaling cascade, activating cyclic-nucleotide gated (CNG channels. However, considerable controversy dating back more than 20 years has surrounded the question of whether alternate signaling plays a role in mammalian olfactory transduction. In this study, we demonstrate a specific alternate signaling pathway in Olfr73-expressing OSNs. Methylisoeugenol (MIEG and at least one other known weak Olfr73 agonist (Raspberry Ketone trigger a signaling cascade independent from the canonical pathway, leading to the depolarization of the cell. Interestingly, this pathway is mediated by Gnao activation, leading to Cl- efflux; however, the activation of adenylyl cyclase III (ACIII, the recruitment of Ca2+ from extra-or intracellular stores, and phosphatidylinositol 3-kinase-dependent signaling (PI signaling are not involved. Furthermore, we demonstrated that our newly identified pathway coexists with the canonical olfactory cAMP pathway in the same OSN and can be triggered by the same OR in a ligand-selective manner. We suggest that this pathway might reflect a mechanism for odor recognition predominantly used in early developmental stages before olfactory cAMP signaling is fully developed. Taken together, our findings support the existence of at least one odor-induced alternate signal transduction pathway in native OSNs mediated by Olfr73 in a ligand-selective manner.

  3. Terbinafine stimulates the pro-inflammatory responses in human monocytic THP-1 cells through an ERK signaling pathway.

    Mizuno, Katsuhiko; Fukami, Tatsuki; Toyoda, Yasuyuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2010-10-23

    Oral antifungal terbinafine has been reported to cause liver injury with inflammatory responses in a small percentage of patients. However the underlying mechanism remains unknown. To examine the inflammatory reactions, we investigated whether terbinafine and other antifungal drugs increase the release of pro-inflammatory cytokines using human monocytic cells. Dose- and time-dependent changes in the mRNA expression levels and the release of interleukin (IL)-8 and tumor necrosis factor (TNF)α from human monocytic THP-1 and HL-60 cells with antifungal drugs were measured. Effects of terbinafine on the phosphorylation of extracellular signal-regulated kinase (ERK)1/2, p38 mitogen-activated protein (MAP) kinase and c-Jun N-terminal kinase (JNK)1/2 were investigated. The release of IL-8 and TNFα from THP-1 and HL-60 cells was significantly increased by treatment with terbinafine but not by fluconazole, suggesting that terbinafine can stimulate monocytes and increase the pro-inflammatory cytokine release. Terbinafine also significantly increased the phosphorylation of ERK1/2 and p38 MAP kinase in THP-1 cells. Pretreatment with a MAP kinase/ERK kinase (MEK)1/2 inhibitor U0126 significantly suppressed the increase of IL-8 and TNFα levels by terbinafine treatment in THP-1 cells, but p38 MAPK inhibitor SB203580 did not. These results suggested that an ERK1/2 pathway plays an important role in the release of IL-8 and TNFα in THP-1 cells treated with terbinafine. The release of inflammatory mediators by terbinafine might be one of the mechanisms underlying immune-mediated liver injury. This in vitro method may be useful to predict adverse inflammatory reactions that lead to drug-induced liver injury. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Interactions among oscillatory pathways in NF-kappa B signaling

    White Michael RH

    2011-02-01

    Full Text Available Abstract Background Sustained stimulation with tumour necrosis factor alpha (TNF-alpha induces substantial oscillations—observed at both the single cell and population levels—in the nuclear factor kappa B (NF-kappa B system. Although the mechanism has not yet been elucidated fully, a core system has been identified consisting of a negative feedback loop involving NF-kappa B (RelA:p50 hetero-dimer and its inhibitor I-kappa B-alpha. Many authors have suggested that this core oscillator should couple to other oscillatory pathways. Results First we analyse single-cell data from experiments in which the NF-kappa B system is forced by short trains of strong pulses of TNF-alpha. Power spectra of the ratio of nuclear-to-cytoplasmic concentration of NF-kappa B suggest that the cells' responses are entrained by the pulsing frequency. Using a recent model of the NF-kappa B system due to Caroline Horton, we carried out extensive numerical simulations to analyze the response frequencies induced by trains of pulses of TNF-alpha stimulation having a wide range of frequencies and amplitudes. These studies suggest that for sufficiently weak stimulation, various nonlinear resonances should be observable. To explore further the possibility of probing alternative feedback mechanisms, we also coupled the model to sinusoidal signals with a wide range of strengths and frequencies. Our results show that, at least in simulation, frequencies other than those of the forcing and the main NF-kappa B oscillator can be excited via sub- and superharmonic resonance, producing quasiperiodic and even chaotic dynamics. Conclusions Our numerical results suggest that the entrainment phenomena observed in pulse-stimulated experiments is a consequence of the high intensity of the stimulation. Computational studies based on current models suggest that resonant interactions between periodic pulsatile forcing and the system's natural frequencies may become evident for sufficiently

  5. Lung cancer, intracellular signaling pathways, and preclinical models

    Mordant, P.

    2012-01-01

    Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide. Activation of phosphatidylinositol-3-kinase (PI3K)-AKT and Kirsten rat sarcoma viral oncogene homologue (KRAS) can induce cellular immortalization, proliferation, and resistance to anticancer therapeutics such as epidermal growth factor receptor inhibitors or chemotherapy. This study assessed the consequences of inhibiting these two pathways in tumor cells with activation of KRAS, PI3K-AKT, or both. We investigated whether the combination of a novel RAF/vascular endothelial growth factor receptor inhibitor, RAF265, with a mammalian target of rapamycin (mTOR) inhibitor, RAD001 (everolimus), could lead to enhanced anti-tumoral effects in vitro and in vivo. To address this question, we used cell lines with different status regarding KRAS, PIK3CA, and BRAF mutations, using immunoblotting to evaluate the inhibitors, and MTT and clonogenic assays for effects on cell viability and proliferation. Subcutaneous xenografts were used to assess the activity of the combination in vivo. RAD001 inhibited mTOR downstream signaling in all cell lines, whereas RAF265 inhibited RAF downstream signaling only in BRAF mutant cells. In vitro, addition of RAF265 to RAD001 led to decreased AKT, S6, and Eukaryotic translation initiation factor 4E binding protein 1 phosphorylation in HCT116 cells. In vitro and in vivo, RAD001 addition enhanced the anti-tumoral effect of RAF265 in HCT116 and H460 cells (both KRAS mut, PIK3CA mut); in contrast, the combination of RAF265 and RAD001 yielded no additional activity in A549 and MDAMB231 cells. The combination of RAF and mTOR inhibitors is effective for enhancing anti-tumoral effects in cells with deregulation of both RAS-RAF and PI3K, possibly through the cross-inhibition of 4E binding protein 1 and S6 protein. We then focus on animal models. Preclinical models of NSCLC require better clinical relevance to study disease mechanisms and innovative

  6. Aberrant Wnt signaling pathway in medial temporal lobe structures of Alzheimer's disease

    Riise, Jesper; Plath, Niels; Pakkenberg, Bente

    2015-01-01

    alterations of the intracellular Wnt pathway signaling components β-catenin, Gsk3β and Tcf7l1/Tcf3 and the phosphorylation state of β-catenin and Gsk3β in the hippocampus suggestive of a link between AD and aberrant canonical activity. Alterations in Gsk3β co-appeared with hippocampal kinase...... on isolated Wnt pathway components. Here, we provide the first comprehensive pathway-focused evaluation of the Wnt pathway in the entorhinal cortex and hippocampus of AD brains. Our data demonstrate altered Wnt pathway gene expression at all levels of the pathway in both medial temporal lobe regions...

  7. The node-weighted Steiner tree approach to identify elements of cancer-related signaling pathways.

    Sun, Yahui; Ma, Chenkai; Halgamuge, Saman

    2017-12-28

    Cancer constitutes a momentous health burden in our society. Critical information on cancer may be hidden in its signaling pathways. However, even though a large amount of money has been spent on cancer research, some critical information on cancer-related signaling pathways still remains elusive. Hence, new works towards a complete understanding of cancer-related signaling pathways will greatly benefit the prevention, diagnosis, and treatment of cancer. We propose the node-weighted Steiner tree approach to identify important elements of cancer-related signaling pathways at the level of proteins. This new approach has advantages over previous approaches since it is fast in processing large protein-protein interaction networks. We apply this new approach to identify important elements of two well-known cancer-related signaling pathways: PI3K/Akt and MAPK. First, we generate a node-weighted protein-protein interaction network using protein and signaling pathway data. Second, we modify and use two preprocessing techniques and a state-of-the-art Steiner tree algorithm to identify a subnetwork in the generated network. Third, we propose two new metrics to select important elements from this subnetwork. On a commonly used personal computer, this new approach takes less than 2 s to identify the important elements of PI3K/Akt and MAPK signaling pathways in a large node-weighted protein-protein interaction network with 16,843 vertices and 1,736,922 edges. We further analyze and demonstrate the significance of these identified elements to cancer signal transduction by exploring previously reported experimental evidences. Our node-weighted Steiner tree approach is shown to be both fast and effective to identify important elements of cancer-related signaling pathways. Furthermore, it may provide new perspectives into the identification of signaling pathways for other human diseases.

  8. Comparison of growth factor signalling pathway utilisation in cultured normal melanocytes and melanoma cell lines

    Kim, Ji Eun; Stones, Clare; Joseph, Wayne R; Leung, Euphemia; Finlay, Graeme J; Shelling, Andrew N; Phillips, Wayne A; Shepherd, Peter R; Baguley, Bruce C

    2012-01-01

    The phosphatidylinositol-3-kinase (PI3K-PKB), mitogen activated protein kinase (MEK-ERK) and the mammalian target of rapamycin (mTOR- p70S6K), are thought to regulate many aspects of tumour cell proliferation and survival. We have examined the utilisation of these three signalling pathways in a number of cell lines derived from patients with metastatic malignant melanoma of known PIK3CA, PTEN, NRAS and BRAF mutational status. Western blotting was used to compare the phosphorylation status of components of the PI3K-PKB, MEK-ERK and mTOR-p70S6K signalling pathways, as indices of pathway utilisation. Normal melanocytes could not be distinguished from melanoma cells on the basis of pathway utilisation when grown in the presence of serum, but could be distinguished upon serum starvation, where signalling protein phosphorylation was generally abrogated. Surprisingly, the differential utilisation of individual pathways was not consistently associated with the presence of an oncogenic or tumour suppressor mutation of genes in these pathways. Utilisation of the PI3K-PKB, MEK-ERK and mTOR-p70S6K signalling pathways in melanoma, as determined by phosphorylation of signalling components, varies widely across a series of cell lines, and does not directly reflect mutation of genes coding these components. The main difference between cultured normal melanocytes and melanoma cells is not the pathway utilisation itself, but rather in the serum dependence of pathway utilisation

  9. Optimal structural inference of signaling pathways from unordered and overlapping gene sets.

    Acharya, Lipi R; Judeh, Thair; Wang, Guangdi; Zhu, Dongxiao

    2012-02-15

    A plethora of bioinformatics analysis has led to the discovery of numerous gene sets, which can be interpreted as discrete measurements emitted from latent signaling pathways. Their potential to infer signaling pathway structures, however, has not been sufficiently exploited. Existing methods accommodating discrete data do not explicitly consider signal cascading mechanisms that characterize a signaling pathway. Novel computational methods are thus needed to fully utilize gene sets and broaden the scope from focusing only on pairwise interactions to the more general cascading events in the inference of signaling pathway structures. We propose a gene set based simulated annealing (SA) algorithm for the reconstruction of signaling pathway structures. A signaling pathway structure is a directed graph containing up to a few hundred nodes and many overlapping signal cascades, where each cascade represents a chain of molecular interactions from the cell surface to the nucleus. Gene sets in our context refer to discrete sets of genes participating in signal cascades, the basic building blocks of a signaling pathway, with no prior information about gene orderings in the cascades. From a compendium of gene sets related to a pathway, SA aims to search for signal cascades that characterize the optimal signaling pathway structure. In the search process, the extent of overlap among signal cascades is used to measure the optimality of a structure. Throughout, we treat gene sets as random samples from a first-order Markov chain model. We evaluated the performance of SA in three case studies. In the first study conducted on 83 KEGG pathways, SA demonstrated a significantly better performance than Bayesian network methods. Since both SA and Bayesian network methods accommodate discrete data, use a 'search and score' network learning strategy and output a directed network, they can be compared in terms of performance and computational time. In the second study, we compared SA and

  10. Sensitivity analysis of intracellular signaling pathway kin