WorldWideScience

Sample records for jc virus t-antigen

  1. Could JC virus provoke metastasis in colon cancer?

    Science.gov (United States)

    Sinagra, Emanuele; Raimondo, Dario; Gallo, Elena; Stella, Mario; Cottone, Mario; Orlando, Ambrogio; Rossi, Francesca; Orlando, Emanuele; Messina, Marco; Tomasello, Giovanni; Lo Monte, Attilio Ignazio; La Rocca, Ennio; Rizzo, Aroldo Gabriele

    2014-01-01

    AIM: To evaluate the prevalence of John Cunningham virus (JC virus) in a small cohort of patients with colon cancer and to assess its presence in hepatic metastasis. METHODS: Nineteen consecutive patients with histologically diagnosed colon cancer were included in our study, together with ten subjects affected by histologically and serologically diagnosed hepatitis C virus infection. In the patients included in the colon cancer group, JC virus was searched for in the surgical specimen; in the control group, JC virus was searched for in the hepatic biopsy. The difference in the prevalence of JC virus in the hepatic biopsy between the two groups was assessed through the χ2 test. RESULTS: Four out of 19 patients with colon cancer had a positive polymerase chain reaction (PCR) test for JC virus, and four had liver metastasis. Among the patients with liver metastasis, three out of four had a positive PCR test for JC virus in the surgical specimen and in the liver biopsy; the only patient with liver metastasis with a negative test for JC virus also presented a negative test for JC virus in the surgical specimen. In the control group of patients with hepatitis C infection, none of the ten patients presented JC virus infection in the hepatic biopsy. The difference between the two groups regarding JC virus infection was statistically significant (χ2 = 9.55, P = 0.002). CONCLUSION: JC virus may play a broader role than previously thought, and may be mechanistically involved in the late stages of these tumors. PMID:25400458

  2. JC Virus T-Antigen in Colorectal Cancer Is Associated with p53 Expression and Chromosomal Instability, Independent of CpG Island Methylator Phenotype

    Directory of Open Access Journals (Sweden)

    Katsuhiko Nosho

    2009-01-01

    Full Text Available JC virus has a transforming gene encoding JC virus T-antigen (JCVT. JCVT may inactivate wild-type p53, cause chromosomal instability (CIN, and stabilize β-catenin. A link between JCVT and CpG island methylator phenotype (CIMP has been suggested. However, no large-scale study has examined the relations of JCVT with molecular alterations, clinical outcome, or prognosis in colon cancer. We detected JCVT expression (by immunohistochemistry in 271 (35% of 766 colorectal cancers. We quantified DNA methylation in eight CIMP-specific promoters (CACNA1G, CDKN2A, CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1 and eight other loci (CHFR, HIC1, IGFBP3, MGMT, MINT1, MINT31, p14, WRN by MethyLight. We examined loss of heterozygosity in 2p, 5q, 17q, and 18q. JCVT was significantly associated with p53 expression (P < .0001, p21 loss (P < .0001, CIN (≥2 chromosomal segments with LOH; P < .0001, nuclear β-catenin (P = .006, LINE-1 hypomethylation (P = .002, and inversely with CIMP-high (P = .0005 and microsatellite instability (MSI (P < .0001, but not with PIK3CA mutation. In multivariate logistic regression analysis, the associations of JCVT with p53 [adjusted odds ratio (OR, 8.45; P < .0001], CIN (adjusted OR, 2.53; P = .003, cyclin D1 (adjusted OR, 1.57; P = .02, LINE-1 hypomethylation (adjusted OR, 1.97 for a 30% decline as a unit; P = .03, BRAF mutation (adjusted OR, 2.20; P = .04, and family history of colorectal cancer (adjusted OR, 0.64; P = .04 remained statistically significant. However, JCVT was no longer significantly associated with CIMP, MSI, β-catenin, or cyclooxygenase-2 expression in multivariate analysis. JCVT was unrelated with patient survival. In conclusion, JCVT expression in colorectal cancer is independently associated with p53 expression and CIN, which may lead to uncontrolled cell proliferation.

  3. Pharmacological cdk inhibitor R-Roscovitine suppresses JC virus proliferation

    International Nuclear Information System (INIS)

    Orba, Yasuko; Sunden, Yuji; Suzuki, Tadaki; Nagashima, Kazuo; Kimura, Takashi; Tanaka, Shinya; Sawa, Hirofumi

    2008-01-01

    The human Polyomavirus JC virus (JCV) utilizes cellular proteins for viral replication and transcription in the host cell nucleus. These cellular proteins represent potential targets for antiviral drugs against the JCV. In this study, we examined the antiviral effects of the pharmacological cyclin-dependent kinase (cdk) inhibitor R-Roscovitine, which has been shown to have antiviral activity against other viruses. We found that Roscovitine significantly inhibited the viral production and cytopathic effects of the JCV in a JCV-infected cell line. Roscovitine attenuated the transcriptional activity of JCV late genes, but not early genes, and also prevented viral replication via inhibiting phosphorylation of the viral early protein, large T antigen. These data suggest that the JCV requires cdks to transcribe late genes and to replicate its own DNA. That Roscovitine exhibited antiviral activity in JCV-infected cells suggests that Roscovitine might have therapeutic utility in the treatment of progressive multifocal leukoencephalopathy (PML)

  4. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    Science.gov (United States)

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A.

    2015-01-01

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. PMID:25155200

  5. A monoclonal antibody against SV40 large T antigen (PAb416) does not label Merkel cell carcinoma.

    Science.gov (United States)

    Pelletier, Daniel J; Czeczok, Thomas W; Bellizzi, Andrew M

    2018-07-01

    Merkel cell carcinoma represents poorly differentiated neuroendocrine carcinoma of cutaneous origin. In most studies, the vast majority of Merkel cell carcinomas are Merkel cell polyomavirus (MCPyV)-associated. SV40 polyomavirus immunohistochemistry is typically used in the diagnosis of other polyomavirus-associated diseases, including tubulointerstitial nephritis and progressive multifocal leukoencephalopathy, given cross-reactivity with BK and JC polyomaviruses. MCPyV-specific immunohistochemistry is commercially available, but, if antibodies against SV40 also cross-reacted with MCPyV, that would be advantageous from a resource-utilisation perspective. Tissue microarrays were constructed from 39 Merkel cell carcinomas, 24 small-cell lung carcinomas, and 18 extrapulmonary visceral small-cell carcinomas. SV40 large T antigen immunohistochemistry (clone PAb416) was performed; MCPyV large T antigen immunohistochemistry (clone CM2B4) had been previously performed. UniProt was used to compare the amino acid sequences of the SV40, BK, JC and MCPyV large T antigens, focusing on areas recognised by the PAb416 and CM2B4 clones. SV40 immunohistochemistry was negative in all tumours; MCPyV immunohistochemistry was positive in 38% of Merkel cell carcinomas and in 0% of non-cutaneous poorly differentiated neuroendocrine carcinomas. UniProt analysis revealed a high degree of similarity between SV40, BK, and JC viruses in the region recognised by PAb416. There was less homology between SV40 and MCPyV in this region, which was also interrupted by two long stretches of amino acids unique to MCPyV. The CM2B4 clone recognises a unique epitope in one of these stretches. The PAb416 antibody against the SV40 large T antigen does not cross-react with MCPyV large T antigen, and thus does not label Merkel cell carcinoma. © 2018 John Wiley & Sons Ltd.

  6. JC polyomavirus infection is strongly controlled by human leucocyte antigen class II variants.

    Directory of Open Access Journals (Sweden)

    Emilie Sundqvist

    2014-04-01

    Full Text Available JC polyomavirus (JCV carriers with a compromised immune system, such as in HIV, or subjects on immune-modulating therapies, such as anti VLA-4 therapy may develop progressive multifocal leukoencephalopathy (PML which is a lytic infection of oligodendrocytes in the brain. Serum antibodies to JCV mark infection occur only in 50-60% of infected individuals, and high JCV-antibody titers seem to increase the risk of developing PML. We here investigated the role of human leukocyte antigen (HLA, instrumental in immune defense in JCV antibody response. Anti-JCV antibody status, as a surrogate for JCV infection, were compared to HLA class I and II alleles in 1621 Scandinavian persons with MS and 1064 population-based Swedish controls and associations were replicated in 718 German persons with MS. HLA-alleles were determined by SNP imputation, sequence specific (SSP kits and a reverse PCR sequence-specific oligonucleotide (PCR-SSO method. An initial GWAS screen displayed a strong HLA class II region signal. The HLA-DRB1*15 haplotype was strongly negatively associated to JCV sero-status in Scandinavian MS cases (OR = 0.42, p = 7×10(-15 and controls (OR = 0.53, p = 2×10(-5. In contrast, the DQB1*06:03 haplotype was positively associated with JCV sero-status, in Scandinavian MS cases (OR = 1.63, p = 0.006, and controls (OR = 2.69, p = 1×10(-5. The German dataset confirmed these findings (OR = 0.54, p = 1×10(-4 and OR = 1.58, p = 0.03 respectively for these haplotypes. HLA class II restricted immune responses, and hence CD4+ T cell immunity is pivotal for JCV infection control. Alleles within the HLA-DR1*15 haplotype are associated with a protective effect on JCV infection. Alleles within the DQB1*06:03 haplotype show an opposite association. These associations between JC virus antibody response and human leucocyte antigens supports the notion that CD4+ T cells are crucial in the immune defence to JCV and

  7. Two separable functional domains of simian virus 40 large T antigen: carboxyl-terminal region of simian virus 40 large T antigen is required for efficient capsid protein synthesis.

    Science.gov (United States)

    Tornow, J; Polvino-Bodnar, M; Santangelo, G; Cole, C N

    1985-01-01

    The carboxyl-terminal portion of simian virus 40 large T antigen is essential for productive infection of CV-1 and CV-1p green monkey kidney cells. Mutant dlA2459, lacking 14 base pairs at 0.193 map units, was positive for viral DNA replication, but unable to form plaques in CV-1p cells (J. Tornow and C.N. Cole, J. Virol. 47:487-494, 1983). In this report, the defect of dlA2459 is further defined. Simian virus 40 late mRNAs were transcribed, polyadenylated, spliced, and transported in dlA2459-infected cells, but the level of capsid proteins produced in infected CV-1 green monkey kidney cells was extremely low. dlA2459 large T antigen lacks those residues known to be required for adenovirus helper function, and the block to productive infection by dlA2459 occurs at the same stage of infection as the block to productive adenovirus infection of CV-1 cells. These results suggest that the adenovirus helper function is required for productive infection by simian virus 40. Mutant dlA2459 was able to grow on the Vero and BSC-1 lines of African green monkey kidney cells. Additional mutants affecting the carboxyl-terminal portion of large T were prepared. Mutant inv2408 contains an inversion of the DNA between the BamHI and BclI sites (0.144 to 0.189 map units). This inversion causes transposition of the carboxyl-terminal 26 amino acids of large T antigen and the carboxyl-terminal 18 amino acids of VP1. This mutant was viable, even though the essential information absent from dlA2459 large T antigen has been transferred to the carboxyl terminus of VP1 of inv2408. The VP1 polypeptide carrying this carboxyl-terminal portion of large T could overcome the defect of dlA2459. This indicates that the carboxyl terminus of large T antigen is a separate and separable functional domain. Images PMID:2982029

  8. Expression of the small T antigen of Lymphotropic Papovavirus is sufficient to transform primary mouse embryo fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Tushar; Robles, Maria Teresa Sáenz [Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Schowalter, Rachel M.; Buck, Christopher B. [Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4263 (United States); Pipas, James M., E-mail: pipas@pitt.edu [Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260 (United States)

    2016-01-15

    Polyomaviruses induce cell proliferation and transformation through different oncoproteins encoded within the early region (ER): large T antigen (LT), small T antigen (sT) and, in some cases, additional components. Each virus utilizes different mechanisms to achieve transformation. For instance, the LTs of Simian virus 40 (SV40), BK and/or JC virus can induce transformation; but Merkel Cell Polyomavirus (MCPyV) requires expression of sT. Lymphotropic Papovavirus (LPV) is closely related to Human Polyomavirus 9 (HuPyV9) and, under similar conditions, mice expressing LPV.ER exhibit higher rates of tumor formation than mice expressing SV40.ER. We have investigated the contributions of individual LPV.ER components to cell transformation. In contrast to SV40, LPV.ER transforms mouse embryonic fibroblasts (MEFs), but expression of LPV LT is insufficient to transform MEFs. Furthermore, LPV sT induces immortalization and transformation of MEFs. Thus, in the case of LPV, sT is the main mediator of oncogenesis. - Highlights: • Characterization of early region products from the Lymphotropic Polyomavirus (LPV). • On its own, sT immortalizes and transforms mouse primary cells, and is able to block p53 activation. • Combined LT and sT expression induces a greater rate of proliferation than either LT or sT alone.

  9. Anti-JC virus antibody prevalence in a multinational multiple sclerosis cohort

    DEFF Research Database (Denmark)

    Olsson, Tomas; Achiron, Anat; Alfredsson, Lars

    2013-01-01

    JC virus (JCV) is an opportunistic virus known to cause progressive multifocal leukoencephalopathy. Anti-JC virus (Anti-JCV) antibody prevalence in a large, geographically diverse, multi-national multiple sclerosis (MS) cohort was compared in a cross-sectional study. Overall, anti-JCV antibody...... prevalence was 57.6%. Anti-JCV antibody prevalence in MS patients ranged from approximately 47% to 68% across these countries: Norway, 47.4%; Denmark, 52.6%; Israel, 56.6%; France, 57.6%; Italy, 58.3%; Sweden, 59.0%; Germany, 59.1%; Austria, 66.7% and Turkey, 67.7%. Prevalence increased with age (from 49...

  10. JC virus chromogenic in situ hybridization in brain biopsies from patients with and without PML.

    Science.gov (United States)

    Procop, Gary W; Beck, Rose C; Pettay, James D; Kohn, Debra J; Tuohy, Marion J; Yen-Lieberman, Belinda; Prayson, Richard A; Tubbs, Raymond R

    2006-06-01

    Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system caused by the JC polyoma virus. Electron microscopy and immunohistochemistry are the traditional methods of confirming the presence of the virus in brain biopsies from these patients. We studied the brain biopsies from 7 patients with PML and 6 patients without PML with chromogenic in situ hybridization (CISH) for the JC polyoma virus using a commercially available probe. The biopsies from the patients with the PML cases were proven to contain the JC polyoma virus by traditional and molecular methods. The CISH findings were compared with the known state of infection. All (7/7) of the biopsies from patients with PML were positive for the presence of polyoma virus by CISH, whereas the biopsies from patients without PML were uniformly negative. CISH seems to be a useful tool for the detection of the JC virus in brain biopsies from patients with PML, and is more accessible because a commercial probe is available.

  11. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    International Nuclear Information System (INIS)

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A.

    2014-01-01

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. - Highlights: • Development of a high-throughput screening assay for JCV DNA replication using C33A cells. • Evidence that T-ag fails to accumulate in the nuclei of established glioma cell lines. • Evidence that NF-1 directly promotes JCV DNA replication in C33A cells. • Proof-of-concept that the HTS assay can be used to identify pharmacological inhibitor of JCV DNA replication

  12. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Gagnon, David [Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7 (Canada); Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec (Canada); Gjoerup, Ole [Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111 (United States); Archambault, Jacques [Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7 (Canada); Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec (Canada); Bullock, Peter A., E-mail: Peter.Bullock@tufts.edu [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States)

    2014-11-15

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. - Highlights: • Development of a high-throughput screening assay for JCV DNA replication using C33A cells. • Evidence that T-ag fails to accumulate in the nuclei of established glioma cell lines. • Evidence that NF-1 directly promotes JCV DNA replication in C33A cells. • Proof-of-concept that the HTS assay can be used to identify pharmacological inhibitor of JCV DNA replication.

  13. Neural Crest Cells Isolated from the Bone Marrow of Transgenic Mice Express JCV T-Antigen.

    Directory of Open Access Journals (Sweden)

    Jennifer Gordon

    Full Text Available JC virus (JCV, a common human polyomavirus, is the etiological agent of the demyelinating disease, progressive multifocal leukoencephalopathy (PML. In addition to its role in PML, studies have demonstrated the transforming ability of the JCV early protein, T-antigen, and its association with some human cancers. JCV infection occurs in childhood and latent virus is thought to be maintained within the bone marrow, which harbors cells of hematopoietic and non-hematopoietic lineages. Here we show that non-hematopoietic mesenchymal stem cells (MSCs isolated from the bone marrow of JCV T-antigen transgenic mice give rise to JCV T-antigen positive cells when cultured under neural conditions. JCV T-antigen positive cells exhibited neural crest characteristics and demonstrated p75, SOX-10 and nestin positivity. When cultured in conditions typical for mesenchymal cells, a population of T-antigen negative cells, which did not express neural crest markers arose from the MSCs. JCV T-antigen positive cells could be cultured long-term while maintaining their neural crest characteristics. When these cells were induced to differentiate into neural crest derivatives, JCV T-antigen was downregulated in cells differentiating into bone and maintained in glial cells expressing GFAP and S100. We conclude that JCV T-antigen can be stably expressed within a fraction of bone marrow cells differentiating along the neural crest/glial lineage when cultured in vitro. These findings identify a cell population within the bone marrow permissible for JCV early gene expression suggesting the possibility that these cells could support persistent viral infection and thus provide clues toward understanding the role of the bone marrow in JCV latency and reactivation. Further, our data provides an excellent experimental model system for studying the cell-type specificity of JCV T-antigen expression, the role of bone marrow-derived stem cells in the pathogenesis of JCV-related diseases

  14. Adult T-cell leukemia-associated antigen (ATLA): detection of a glycoprotein in cell- and virus-free supernatant.

    Science.gov (United States)

    Yamamoto, N; Schneider, J; Hinuma, Y; Hunsmann, G

    1982-01-01

    A glycoprotein of an apparent molecular mass of 46,000, gp 46, was enriched by affinity chromatography from the virus- and cell-free culture medium of adult T-cell leukemia virus (ATLV) infected cells. gp 46 was specifically precipitated with sera from patients with adult T-cell leukemia associated antigen (ATLA). Thus, gp 46 is a novel component of the ATLA antigen complex.

  15. Clonal analysis of T-cell responses to herpes simplex virus: isolation, characterization and antiviral properties of an antigen-specific helper T-cell clone.

    Science.gov (United States)

    Leung, K N; Nash, A A; Sia, D Y; Wildy, P

    1984-12-01

    A herpes simplex virus (HSV)-specific long-term T-cell clone has been established from the draining lymph node cells of BALB/c mice; the cells required repeated in vitro restimulation with UV-irradiated virus. The established T-cell clone expresses the Thy-1 and Lyt-1+2,3- surface antigens. For optimal proliferation of the cloned cells, both the presence of specific antigen and an exogenous source of T-cell growth factor are required. The proliferative response of the cloned T cells was found to be virus-specific but it did not distinguish between HSV-1 and HSV-2. Adoptive cell transfer of the cloned T cells helped primed B cells to produce anti-herpes antibodies: the response was antigen-specific and cell dose-dependent. The clone failed to produce a significant DTH reaction in vivo, but did produce high levels of macrophage-activating factor. Furthermore, the T-cell clone could protect from HSV infection, as measured by a reduction in local virus growth, and by enhanced survival following the challenge of mice with a lethal dose of virus. The mechanism(s) whereby this clone protects in vivo is discussed.

  16. A casein-kinase-2-related protein kinase is tightly associated with the large T antigen of simian virus 40

    DEFF Research Database (Denmark)

    Götz, C; Koenig, M G; Issinger, O G

    1995-01-01

    by the addition of protein kinase CK2 suggest that at least one of the T-antigen-associated protein kinases is CK2 or a protein-kinase-CK2-related enzyme. The association of recombinant CK2 with T antigen was strongly confirmed by in vitro binding studies. Experiments with temperature-sensitive SV40-transformed......The simian virus 40 (SV40) large T antigen is a multifunctional protein involved in SV40 cell transformation and lytic virus infection. Some of its activities are regulated by interaction with cellular proteins and/or by phosphorylation of T antigen by various protein kinases. In this study, we...... show that immuno-purified T antigen from SV40-transformed cells and from baculovirus-infected insect cells is tightly associated with a protein kinase that phosphorylates T antigen in vitro. In the presence of heparin or a peptide resembling a protein kinase CK2 recognition site, the phosphorylation...

  17. Association between hMLH1 hypermethylation and JC virus (JCV) infection in human colorectal cancer (CRC).

    Science.gov (United States)

    Vilkin, Alex; Niv, Yaron

    2011-04-01

    Incorporation of viral DNA may interfere with the normal sequence of human DNA bases on the genetic level or cause secondary epigenetic changes such as gene promoter methylation or histone acetylation. Colorectal cancer (CRC) is the second leading cause of cancer mortality in the USA. Chromosomal instability (CIN) was established as the key mechanism in cancer development. Later, it was found that CRC results not only from the progressive accumulation of genetic alterations but also from epigenetic changes. JC virus (JCV) is a candidate etiologic factor in sporadic CRC. It may act by stabilizing β-catenin, facilitating its entrance to the cell nucleus, initialing proliferation and cancer development. Diploid CRC cell lines transfected with JCV-containing plasmids developed CIN. This result provides direct experimental evidence for the ability of JCV T-Ag to induce CIN in the genome of colonic epithelial cells. The association of CRC hMLH1 methylation and tumor positivity for JCV was recently documented. JC virus T-Ag DNA sequences were found in 77% of CRCs and are associated with promoter methylation of multiple genes. hMLH1 was methylated in 25 out of 80 CRC patients positive for T-Ag (31%) in comparison with only one out of 11 T-Ag negative cases (9%). Thus, JCV can mediate both CIN and aberrant methylation in CRC. Like other viruses, chronic infection with JCV may induce CRC by different mechanisms which should be further investigated. Thus, gene promoter methylation induced by JCV may be an important process in CRC and the polyp-carcinoma sequence.

  18. Viral sequestration of antigen subverts cross presentation to CD8(+ T cells.

    Directory of Open Access Journals (Sweden)

    Eric F Tewalt

    2009-05-01

    Full Text Available Virus-specific CD8(+ T cells (T(CD8+ are initially triggered by peptide-MHC Class I complexes on the surface of professional antigen presenting cells (pAPC. Peptide-MHC complexes are produced by two spatially distinct pathways during virus infection. Endogenous antigens synthesized within virus-infected pAPC are presented via the direct-presentation pathway. Many viruses have developed strategies to subvert direct presentation. When direct presentation is blocked, the cross-presentation pathway, in which antigen is transferred from virus-infected cells to uninfected pAPC, is thought to compensate and allow the generation of effector T(CD8+. Direct presentation of vaccinia virus (VACV antigens driven by late promoters does not occur, as an abortive infection of pAPC prevents production of these late antigens. This lack of direct presentation results in a greatly diminished or ablated T(CD8+ response to late antigens. We demonstrate that late poxvirus antigens do not enter the cross-presentation pathway, even when identical antigens driven by early promoters access this pathway efficiently. The mechanism mediating this novel means of viral modulation of antigen presentation involves the sequestration of late antigens within virus factories. Early antigens and cellular antigens are cross-presented from virus-infected cells, as are late antigens that are targeted to compartments outside of the virus factories. This virus-mediated blockade specifically targets the cross-presentation pathway, since late antigen that is not cross-presented efficiently enters the MHC Class II presentation pathway. These data are the first to describe an evasion mechanism employed by pathogens to prevent entry into the cross-presentation pathway. In the absence of direct presentation, this evasion mechanism leads to a complete ablation of the T(CD8+ response and a potential replicative advantage for the virus. Such mechanisms of viral modulation of antigen presentation

  19. Reduced response to Epstein-Barr virus antigens by T-cells in systemic lupus erythematosus patients

    DEFF Research Database (Denmark)

    Draborg, Anette Holck; Jacobsen, Søren; Westergaard, Marie

    2014-01-01

    OBJECTIVE: Epstein-Barr virus (EBV) has for long been associated with systemic lupus erythematosus (SLE). In this study, we investigated the levels of latent and lytic antigen EBV-specific T-cells and antibodies in SLE patients. METHODS: T cells were analyzed by flow cytometry and antibodies were...

  20. Isolation and characterization of NIH 3T3 cells expressing polyomavirus small T antigen

    International Nuclear Information System (INIS)

    Noda, T.; Satake, M.; Robins, T.; Ito, Y.

    1986-01-01

    The polyomavirus small T-antigen gene, together with the polyomavirus promoter, was inserted into retrovirus vector pGV16 which contains the Moloney sarcoma virus long terminal repeat and neomycin resistance gene driven by the simian virus 40 promoter. This expression vector, pGVST, was packaged into retrovirus particles by transfection of PSI2 cells which harbor packaging-defective murine retrovirus genome. NIH 3T3 cells were infected by this replication-defective retrovirus containing pGVST. Of the 15 G418-resistant cell clones, 8 express small T antigen at various levels as revealed by immunoprecipitation. A cellular protein with an apparent molecular weight of about 32,000 coprecipitates with small T antigen. Immunofluorescent staining shows that small T antigen is mainly present in the nuclei. Morphologically, cells expressing small T antigen are indistinguishable from parental NIH 3T3 cells and have a microfilament pattern similar to that in parental NIH 3T3 cells. Cells expressing small T antigen form a flat monolayer but continue to grow beyond the saturation density observed for parental NIH 3T3 cells and eventually come off the culture plate as a result of overconfluency. There is some correlation between the level of expression of small T antigen and the growth rate of the cells. Small T-antigen-expressing cells form small colonies in soft agar. However, the proportion of cells which form these small colonies is rather small. A clone of these cells tested did not form tumors in nude mice within 3 months after inoculation of 10 6 cells per animal. Thus, present studies establish that the small T antigen of polyomavirus is a second nucleus-localized transforming gene product of the virus (the first one being large T antigen) and by itself has a function which is to stimulate the growth of NIH 3T3 cells beyond their saturation density in monolayer culture

  1. Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (FT) homologous gene from the biofuel plant Jatropha curcas.

    Science.gov (United States)

    Li, Chaoqiong; Luo, Li; Fu, Qiantang; Niu, Longjian; Xu, Zeng-Fu

    2014-05-08

    Physic nut (Jatropha curcas L.) is a potential feedstock for biofuel production because Jatropha oil is highly suitable for the production of the biodiesel and bio-jet fuels. However, Jatropha exhibits low seed yield as a result of unreliable and poor flowering. FLOWERING LOCUS T (FT) -like genes are important flowering regulators in higher plants. To date, the flowering genes in Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an FT homolog was isolated from Jatropha and designated as JcFT. Sequence analysis and phylogenetic relationship of JcFT revealed a high sequence similarity with the FT genes of Litchi chinensis, Populus nigra and other perennial plants. JcFT was expressed in all tissues of adult plants except young leaves, with the highest expression level in female flowers. Overexpression of JcFT in Arabidopsis and Jatropha using the constitutive promoter cauliflower mosaic virus 35S or the phloem-specific promoter Arabidopsis SUCROSE TRANSPORTER 2 promoter resulted in an extremely early flowering phenotype. Furthermore, several flowering genes downstream of JcFT were up-regulated in the JcFT-overexpression transgenic plant lines. JcFT may encode a florigen that acts as a key regulator in flowering pathway. This study is the first to functionally characterize a flowering gene, namely, JcFT, in the biofuel plant Jatropha.

  2. Reduced response to Epstein–Barr virus antigens by T-cells in systemic lupus erythematosus patients

    Science.gov (United States)

    Draborg, Anette Holck; Jacobsen, Søren; Westergaard, Marie; Mortensen, Shila; Larsen, Janni Lisander; Houen, Gunnar; Duus, Karen

    2014-01-01

    Objective Epstein–Barr virus (EBV) has for long been associated with systemic lupus erythematosus (SLE). In this study, we investigated the levels of latent and lytic antigen EBV-specific T-cells and antibodies in SLE patients. Methods T cells were analyzed by flow cytometry and antibodies were analyzed by enzyme-linked immunosorbent assay. Results SLE patients showed a significantly reduced number of activated (CD69) T-cells upon ex vivo stimulation with EBV nuclear antigen (EBNA) 1 or EBV early antigen diffuse (EBV-EA/D) in whole blood samples compared with healthy controls. Also, a reduced number of T-cells from SLE patients were found to produce interferon-γ upon stimulation with these antigens. Importantly, responses to a superantigen were normal in SLE patients. Compared with healthy controls, SLE patients had fewer EBV-specific T-cells but higher titres of antibodies against EBV. Furthermore, an inverse correlation was revealed between the number of lytic antigen EBV-specific T-cells and disease activity of the SLE patients, with high-activity SLE patients having fewer T-cells than low-activity SLE patients. Conclusions These results indicate a limited or a defective EBV-specific T-cell response in SLE patients, which may suggest poor control of EBV infection in SLE with an immune reaction shift towards a humoral response in an attempt to control viral reactivation. A role for decreased control of EBV as a contributing agent in the development or exacerbation of SLE is proposed. PMID:25396062

  3. Serum IgG antibodies from healthy subjects up to 100 years old react to JC polyomavirus.

    Science.gov (United States)

    Bononi, Ilaria; Mazzoni, Elisa; Pietrobon, Silvia; Manfrini, Marco; Torreggiani, Elena; Rossini, Marika; Lotito, Francesca; Guerra, Giovanni; Rizzo, Paola; Martini, Fernanda; Tognon, Mauro

    2018-08-01

    JC polyomavirus (JCPyV) was identified in 1971 in the brain tissue of a patient (J.C.) affected by the progressive multifocal leukoencephalopathy (PML). JCPyV encodes for the oncoproteins large T antigen (Tag) and small t-antigen (tag). These oncoproteins are responsible of the cell transformation and tumorigenesis in experimental animals. JCPyV is ubiquitous in human populations. After the primary infection, which is usually asymptomatic, JCPyV remains lifelong in the host in a latent phase. Its reactivation may occur in heathy subjects and immunocompromised patients. Upon reactivation, JCPyV could reach (i) the CNS inducing the PML, (ii) the kidney of transplant patients causing the organ rejection. Association between JCPyV, which is a small DNA tumor virus, and gliomas and colorectal carcinomas has been published. In the present investigation, we report on a new indirect ELISA with two specific synthetic peptides mimicking JCPyV VP1 immunogenic epitopes to detect specific serum IgG antibodies against JCPyV. Serum samples of healthy subjects (n = 355) ranging 2-100 years old, were analyzed by this new indirect ELISA. The linear peptides VP1 K and VP1 N resemble the natural JCPyV VP1 capsidic epitopes constituting a docking site for serum antibodies. Data from this innovative immunologic assay indicate that the overall prevalence of JCPyV-VP1 antibodies in healthy subjects is at 39%. The innovative indirect ELISA with JCPyV VP1 mimotopes seems to be a useful method to detect specific IgG antibodies against this virus, without cross-reactivity with the closely related SV40 and BKPyV polyomaviruses. © 2018 Wiley Periodicals, Inc.

  4. Increased p53 immunopositivity in anaplastic medulloblastoma and supratentorial PNET is not caused by JC virus

    International Nuclear Information System (INIS)

    Eberhart, Charles G; Chaudhry, Aneeka; Daniel, Richard W; Khaki, Leila; Shah, Keerti V; Gravitt, Patti E

    2005-01-01

    p53 mutations are relatively uncommon in medulloblastoma, but abnormalities in this cell cycle pathway have been associated with anaplasia and worse clinical outcomes. We correlated p53 protein expression with pathological subtype and clinical outcome in 75 embryonal brain tumors. The presence of JC virus, which results in p53 protein accumulation, was also examined. p53 protein levels were evaluated semi-quantitatively in 64 medulloblastomas, 3 atypical teratoid rhabdoid tumors (ATRT), and 8 supratentorial primitive neuroectodermal tumors (sPNET) using immunohistochemistry. JC viral sequences were analyzed in DNA extracted from 33 frozen medulloblastoma and PNET samples using quantitative polymerase chain reaction. p53 expression was detected in 18% of non-anaplastic medulloblastomas, 45% of anaplastic medulloblastomas, 67% of ATRT, and 88% of sPNET. The increased p53 immunoreactivity in anaplastic medulloblastoma, ATRT, and sPNET was statistically significant. Log rank analysis of clinical outcome revealed significantly shorter survival in patients with p53 immunopositive embryonal tumors. No JC virus was identified in the embryonal brain tumor samples, while an endogenous human retrovirus (ERV-3) was readily detected. Immunoreactivity for p53 protein is more common in anaplastic medulloblastomas, ATRT and sPNET than in non-anaplastic tumors, and is associated with worse clinical outcomes. However, JC virus infection is not responsible for increased levels of p53 protein

  5. Increased p53 immunopositivity in anaplastic medulloblastoma and supratentorial PNET is not caused by JC virus

    Directory of Open Access Journals (Sweden)

    Shah Keerti V

    2005-02-01

    Full Text Available Abstract Background p53 mutations are relatively uncommon in medulloblastoma, but abnormalities in this cell cycle pathway have been associated with anaplasia and worse clinical outcomes. We correlated p53 protein expression with pathological subtype and clinical outcome in 75 embryonal brain tumors. The presence of JC virus, which results in p53 protein accumulation, was also examined. Methods p53 protein levels were evaluated semi-quantitatively in 64 medulloblastomas, 3 atypical teratoid rhabdoid tumors (ATRT, and 8 supratentorial primitive neuroectodermal tumors (sPNET using immunohistochemistry. JC viral sequences were analyzed in DNA extracted from 33 frozen medulloblastoma and PNET samples using quantitative polymerase chain reaction. Results p53 expression was detected in 18% of non-anaplastic medulloblastomas, 45% of anaplastic medulloblastomas, 67% of ATRT, and 88% of sPNET. The increased p53 immunoreactivity in anaplastic medulloblastoma, ATRT, and sPNET was statistically significant. Log rank analysis of clinical outcome revealed significantly shorter survival in patients with p53 immunopositive embryonal tumors. No JC virus was identified in the embryonal brain tumor samples, while an endogenous human retrovirus (ERV-3 was readily detected. Conclusion Immunoreactivity for p53 protein is more common in anaplastic medulloblastomas, ATRT and sPNET than in non-anaplastic tumors, and is associated with worse clinical outcomes. However, JC virus infection is not responsible for increased levels of p53 protein.

  6. Increased p53 immunopositivity in anaplastic medulloblastoma and supratentorial PNET is not caused by JC virus

    Science.gov (United States)

    Eberhart, Charles G; Chaudhry, Aneeka; Daniel, Richard W; Khaki, Leila; Shah, Keerti V; Gravitt, Patti E

    2005-01-01

    Background p53 mutations are relatively uncommon in medulloblastoma, but abnormalities in this cell cycle pathway have been associated with anaplasia and worse clinical outcomes. We correlated p53 protein expression with pathological subtype and clinical outcome in 75 embryonal brain tumors. The presence of JC virus, which results in p53 protein accumulation, was also examined. Methods p53 protein levels were evaluated semi-quantitatively in 64 medulloblastomas, 3 atypical teratoid rhabdoid tumors (ATRT), and 8 supratentorial primitive neuroectodermal tumors (sPNET) using immunohistochemistry. JC viral sequences were analyzed in DNA extracted from 33 frozen medulloblastoma and PNET samples using quantitative polymerase chain reaction. Results p53 expression was detected in 18% of non-anaplastic medulloblastomas, 45% of anaplastic medulloblastomas, 67% of ATRT, and 88% of sPNET. The increased p53 immunoreactivity in anaplastic medulloblastoma, ATRT, and sPNET was statistically significant. Log rank analysis of clinical outcome revealed significantly shorter survival in patients with p53 immunopositive embryonal tumors. No JC virus was identified in the embryonal brain tumor samples, while an endogenous human retrovirus (ERV-3) was readily detected. Conclusion Immunoreactivity for p53 protein is more common in anaplastic medulloblastomas, ATRT and sPNET than in non-anaplastic tumors, and is associated with worse clinical outcomes. However, JC virus infection is not responsible for increased levels of p53 protein. PMID:15717928

  7. The Non-structural Protein 5 and Matrix Protein Are Antigenic Targets of T Cell Immunity to Genotype 1 Porcine Reproductive and Respiratory Syndrome Viruses

    DEFF Research Database (Denmark)

    Mokhtar, Helen; Pedrera, Miriam; Frossard, Jean-Pierre

    2016-01-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) is the cause of one of the most economically important diseases affecting swine worldwide. Efforts to develop a next-generation vaccine have largely focused on envelope glycoproteins to target virus-neutralizing antibody responses...... proposed that T cell-mediated immunity plays a key role. Therefore, we hypothesized that conserved T cell antigens represent prime candidates for the development a novel PRRS vaccine. Antigens were identified by screening a proteome-wide synthetic peptide library with T cells from cohorts of pigs rendered...... attractive vaccine candidate T cell antigens, which should be evaluated further in the context of PRRSV vaccine development....

  8. Cell surface antigens of radiation leukemia virus-induced BALB/c leukemias defined by syngeneic cytotoxic T lymphocytes

    International Nuclear Information System (INIS)

    Kaneko, Yukio; Oettgen, H.F.; Obata, Yuichi; Nakayama, Eiichi.

    1989-01-01

    Two cell surface antigens of mouse leukemias were defined by BALB/c cytotoxic T lymphocytes (CTL) generated against syngeneic radiation leukemia virus (RadLV)-induced leukemia, BALBRV1 or BALBRVD. Hyperimmunization of BALB/c mice with irradiated leukemias followed by in vitro sensitization of primed spleen cells resulted in the generation of CTL with high killing activity. The specificity of CTL was examined by direct cytotoxicity assays and competitive inhibition assays. A shared cell surface antigen, designated as BALBRV1 antigen, was detected by BALB/c anti-BALBRV1 CTL. BALBRV1 antigen was expressed not only on RadLV-induced BALB/c leukemias except for BALBRVD, but also on spontaneous or X-ray-induced BALB/c leukemias, chemically-induced leukemias with the H-2 d haplotype and some chemically-induced BALB/c sarcomas. In contrast, a unique cell surface antigen, designated as BALBRVD antigen, was detected by BALB/c anti-BALBRVD CTL. BALBRVD antigen was expressed only on BALBRVD, but not on thirty-nine normal lymphoid or tumor cells. These two antigens could be distinguished from those previously defined on Friend, Moloney, Rauscher or Gross murine leukemia virus (MuLV) leukemias, or MuLV-related antigens. Both cytotoxic responses were blocked by antisera against H-2K d , but not H-2D d . The relationship of BALBRV1 antigen and BALBRVD antigen to endogenous MuLV is discussed with regard to the antigenic distribution on tumor cell lines. (author)

  9. Replication-deficient mutant Herpes Simplex Virus-1 targets professional antigen presenting cells and induces efficient CD4+ T helper responses.

    Science.gov (United States)

    Fiorentini, Simona; Marconi, Peggy; Avolio, Manuela; Marini, Elena; Garrafa, Emirena; Caracciolo, Sonia; Rossi, Daniele; Bozac, Alexandra; Becker, Pablo D; Gentili, Francesca; Facchetti, Fabio; Guzman, Carlos A; Manservigi, Roberto; Caruso, Arnaldo

    2007-07-01

    Both neutralizing antibodies and cytotoxic T-cells are necessary to control a viral infection. However, vigorous T helper responses are essential for their elicitation and maintenance. Here we show that a recombinant replication-deficient Herpes Simplex Virus (HSV)-1 vector encoding the Human Immunodeficiency Virus (HIV)-1 matrix protein p17 (T0-p17) was capable of infecting professional antigen presenting cells (APCs) in vitro and in vivo. The injection of T0-p17 in the mouse dermis generated a strong p17-specific CD4+ T helper response preceding both p17-specific humoral and effector T cell responses. Moreover, we show that T0-p17 infection did not interfere with the endogenous processing of the transgene encoded antigen, since infected APCs were able to evoke a strong recall response in vitro. Our results demonstrate that replication-deficient HSV vectors can be appealing candidates for the development of vaccines able to trigger T helper responses.

  10. Replication-deficient mutant Herpes Simplex Virus-1 targets professional antigen presenting cells and induces efficient CD4+ T helper responses.

    OpenAIRE

    Fiorentini, Simona; Marconi, Peggy; Avolio, Manuela; Marini, Elena; Garrafa, Emirena; Caracciolo, Sonia; Rossi, Daniele; Bozac, Alexandra; Becker, Pablo D; Gentili, Francesca; Facchetti, Fabio; Guzman, Carlos A; Manservigi, Roberto; Caruso, Arnaldo

    2007-01-01

    Both neutralizing antibodies and cytotoxic T-cells are necessary to control a viral infection. However, vigorous T helper responses are essential for their elicitation and maintenance. Here we show that a recombinant replication-deficient Herpes Simplex Virus (HSV)-1 vector encoding the Human Immunodeficiency Virus (HIV)-1 matrix protein p17 (T0-p17) was capable of infecting professional antigen presenting cells (APCs) in vitro and in vivo. The injection of T0-p17 in the mouse dermis generate...

  11. Detection of polyomavirus simian virus 40 tumor antigen DNA in AIDS-related systemic non-Hodgkin lymphoma

    Science.gov (United States)

    Vilchez, Regis A.; Lednicky, John A.; Halvorson, Steven J.; White, Zoe S.; Kozinetz, Claudia A.; Butel, Janet S.

    2002-01-01

    Systemic non-Hodgkin lymphoma (S-NHL) is a common malignancy during HIV infection, and it is hypothesized that infectious agents may be involved in the etiology. Epstein-Barr virus DNA is found in <40% of patients with AIDS-related S-NHL, suggesting that other oncogenic viruses, such as polyomaviruses, may play a role in pathogenesis. We analyzed AIDS-related S-NHL samples, NHL samples from HIV-negative patients, peripheral blood leukocytes from HIV-infected and -uninfected patients without NHL, and lymph nodes without tumors from HIV-infected patients. Specimens were examined by polymerase chain reaction analysis with use of primers specific for an N-terminal region of the oncoprotein large tumor antigen ( T-ag ) gene conserved among all three polyomaviruses (simian virus 40 [SV40], JC virus, and BK virus). Polyomavirus T-ag DNA sequences, proven to be SV40-specific, were detected more frequently in AIDS-related S-NHL samples (6 of 26) than in peripheral blood leukocytes from HIV-infected patients (6 of 26 vs. 0 of 69; p =.0001), NHL samples from HIV-negative patients (6 of 26 vs. 0 of 10; p =.09), or lymph nodes (6 of 26 vs. 0 of 7; p =.16). Sequences of C-terminal T-ag DNA from SV40 were amplified from two AIDS-related S-NHL samples. Epstein-Barr virus DNA sequences were detected in 38% (10 of 26) AIDS-related S-NHL samples, 50% (5 of 10) HIV-negative S-NHL samples, and 57% (4 of 7) lymph nodes. None of the S-NHL samples were positive for both Epstein-Barr virus DNA and SV40 DNA. Further studies of the possible role of SV40 in the pathogenesis of S-NHL are warranted.

  12. Specific Antibodies Reacting with SV40 Large T Antigen Mimotopes in Serum Samples of Healthy Subjects.

    Directory of Open Access Journals (Sweden)

    Mauro Tognon

    Full Text Available Simian Virus 40, experimentally assayed in vitro in different animal and human cells and in vivo in rodents, was classified as a small DNA tumor virus. In previous studies, many groups identified Simian Virus 40 sequences in healthy individuals and cancer patients using PCR techniques, whereas others failed to detect the viral sequences in human specimens. These conflicting results prompted us to develop a novel indirect ELISA with synthetic peptides, mimicking Simian Virus 40 capsid viral protein antigens, named mimotopes. This immunologic assay allowed us to investigate the presence of serum antibodies against Simian Virus 40 and to verify whether Simian Virus 40 is circulating in humans. In this investigation two mimotopes from Simian Virus 40 large T antigen, the viral replication protein and oncoprotein, were employed to analyze for specific reactions to human sera antibodies. This indirect ELISA with synthetic peptides from Simian Virus 40 large T antigen was used to assay a new collection of serum samples from healthy subjects. This novel assay revealed that serum antibodies against Simian Virus 40 large T antigen mimotopes are detectable, at low titer, in healthy subjects aged from 18-65 years old. The overall prevalence of reactivity with the two Simian Virus 40 large T antigen peptides was 20%. This new ELISA with two mimotopes of the early viral regions is able to detect in a specific manner Simian Virus 40 large T antigen-antibody responses.

  13. Plasma membrane associated, virus-specific polypeptides required for the formation of target antigen complexes recognized by virus-specific cytotoxic T lymphocytes

    International Nuclear Information System (INIS)

    Domber, E.A.

    1986-01-01

    These studies were undertaken to define some of the poxvirus-specific target antigens which are synthesized in infected cells and recognized by vaccinia virus-specific CTLs (VV-CTLs). Since vaccinia virus infected, unmanipulated target cells express numerous virus-specific antigens on the plasma membrane, attempts were made to manipulate expression of the poxvirus genome after infection so that one or a few defined virus-specified antigens were expressed on the surface of infected cells. In vitro [ 51 Cr]-release assays determined that viral DNA synthesis and expression of late viral proteins were not necessary to form a target cell which was fully competent for lysis by VV-CTLs. Under the conditions employed in these experiments, 90-120 minutes of viral protein synthesis were necessary to produce a competent cell for lysis by VV-CTLs. In order to further inhibit the expression of early viral proteins in infected cells, partially UV-inactivated vaccinia virus was employed to infect target cells. It was determined that L-cells infected with virus preparations which had been UV-irradiated for 90 seconds were fully competent for lysis by VV-CTLs. Cells infected with 90 second UV-irr virus expressed 3 predominant, plasma membrane associated antigens of 36-37K, 27-28K, and 19-17K. These 3 viral antigens represent the predominant membrane-associated viral antigens available for interaction with class I, major histocompatibility antigens and hence are potential target antigens for VV-CTLs

  14. Mutational analysis of polyomavirus small-T-antigen functions in productive infection and in transformation.

    Science.gov (United States)

    Martens, I; Nilsson, S A; Linder, S; Magnusson, G

    1989-05-01

    The function of polyomavirus small T antigen in productive infection and in transformation was studied. Transfection of permissive mouse cells with mixtures of mutants that express only one type of T antigen showed that small T antigen increased large-T-antigen-dependent viral DNA synthesis approximately 10-fold. Under the same conditions, small T antigen was also essential for the formation of infectious virus particles. To analyze these activities of small T antigen, mutants producing protein with single amino acid replacements were constructed. Two mutants, bc1073 and bc1075, were characterized. Although both mutations led to the substitution of amino acid residues of more than one T antigen, the phenotype of both mutants was associated with alterations of the small T antigen. Both mutant proteins had lost their activity in the maturation of infectious virus particles. The bc1075 but not the bc1073 small T antigen had also lost its ability to stimulate viral DNA synthesis in mouse 3T6 cells. Finally, both mutants retained a third activity of small T antigen: to confer on rat cells also expressing middle T antigen the ability to grow efficiently in semisolid medium. The phenotypes of the mutants in these three assays suggest that small T antigen has at least three separate functions.

  15. Association between the JC polyomavirus infection and male infertility.

    Directory of Open Access Journals (Sweden)

    Manola Comar

    Full Text Available In recent years the incidence of male infertility has increased. Many risk factors have been taken into consideration, including viral infections. Investigations into viral agents and male infertility have mainly been focused on human papillomaviruses, while no reports have been published on polyomaviruses and male infertility. The aim of this study was to verify whether JC virus and BK virus are associated with male infertility. Matched semen and urine samples from 106 infertile males and 100 fertile males, as controls, were analyzed. Specific PCR analyses were carried out to detect and quantify large T (Tag coding sequences of JCV and BKV. DNA sequencing, carried out in Tag JCV-positive samples, was addressed to viral protein 1 (VP1 coding sequences. The prevalence of JCV Tag sequences in semen and urine samples from infertile males was 34% (72/212, whereas the BKV prevalence was 0.94% (2/212. Specifically, JCV Tag sequences were detected in 24.5% (26/106 of semen and 43.4% (46/106 of urine samples from infertile men. In semen and urine samples from controls the prevalence was 11% and 28%, respectively. A statistically significant difference (p<0.05 in JCV prevalence was disclosed in semen and urine samples of cases vs. controls. A higher JC viral DNA load was detected in samples from infertile males than in controls. In samples from infertile males the JC virus type 2 strain, subtype 2b, was more prevalent than ubiquitous type 1. JCV type 2 strain infection has been found to be associated with male infertility. These data suggest that the JC virus should be taken into consideration as an infectious agent which is responsible for male infertility.

  16. Selection of restriction specificities of virus-specific cytotoxic T cells in the thymus: no evidence for a crucial role of antigen-presenting cells

    International Nuclear Information System (INIS)

    Zinkernagel, R.M.

    1982-01-01

    The proposal was tested that (P1 X P2) F1 leads to P1 irradiation bone marrow chimeras expressed predominantly P1-restricted T cells because donor derived stem cells were exposed to recipient derived antigen-presenting cells in the thymus. Because P1 recipient-derived antigen-presenting cells are replaced only slowly after 6-8 wk by (P1 X P2) donor-derived antigen-presenting cells in the thymus and because replenished pools of mature T cells may by then prevent substantial numbers of P2-restricted T cells to be generated, a large portion of thymus cells and mature T cells were eliminated using the following treatments of 12-20-wk-old (P1 X P2) F1 leads to P1 irradiation bone marrow chimeras: (a) cortisone plus antilymphocyte serum, (b) Cytoxan, (c) three doses of sublethal irradiation (300 rad) 2d apart, and (d) lethal irradiation (850 rad) and reconstitution with T cell-depleted (P1 X P2) F1 stem cells. 12-20 wk after this second treatment, (P1 X P2) leads to P1 chimeras were infected with vaccinia-virus. Virus-specific cytotoxic T cell reactivity was expressed by chimeric T cells of (P1 X P[2) F1 origin and was restricted predominantly to P1. Virus-specific cytotoxic T cells, therefore, do not seem to be selected to measurable extent by the immigrating donor-derived antigen-presenting cells in the thymus; their selection depends apparently from the recipient-derived radioresistant thymus cells

  17. The non-structural protein 5 and matrix protein are antigenic targets of T cell immunity to genotype 1 porcine reproductive and respiratory syndrome viruses

    Directory of Open Access Journals (Sweden)

    Helen eMokhtar

    2016-02-01

    Full Text Available The porcine reproductive and respiratory syndrome virus (PRRSV is the cause of one of the most economically important diseases affecting swine worldwide. Efforts to develop a next-generation vaccine have largely focussed on envelope glycoproteins to target virus-neutralising antibody responses. However, these approaches have failed to demonstrate the necessary efficacy to progress towards market. T cells are crucial to the control of many viruses through cytolysis and cytokine secretion. Since control of PRRSV infection is not dependent on the development of neutralising antibodies, it has been proposed that T cell mediated immunity plays a key role. We therefore hypothesised that conserved T cell antigens represent prime candidates for the development a novel PRRS vaccine. Antigens were identified by screening a proteome-wide synthetic peptide library with T cells from cohorts of pigs rendered immune by experimental infections with a closely-related (subtype 1 or divergent (subtype 3 PRRSV-1 strain. Dominant T cell IFN-γ responses were directed against the non-structural protein 5 (NSP5, and to a lesser extent, the matrix (M protein. The majority of NSP5-specific CD8 T cells and M-specific CD4 T cells expressed a putative effector memory phenotype and were polyfunctional as assessed by co-expression of TNF-α and mobilisation of the cytotoxic degranulation marker CD107a. Both antigens were generally well conserved amongst strains of both PRRSV genotypes. Thus M and NSP5 represent attractive vaccine candidate T cell antigens which should be evaluated further in the context of PRRSV vaccine development.

  18. Differential T cell response against BK virus regulatory and structural antigens: A viral dynamics modelling approach.

    Directory of Open Access Journals (Sweden)

    Arturo Blazquez-Navarro

    2018-05-01

    Full Text Available BK virus (BKV associated nephropathy affects 1-10% of kidney transplant recipients, leading to graft failure in about 50% of cases. Immune responses against different BKV antigens have been shown to have a prognostic value for disease development. Data currently suggest that the structural antigens and regulatory antigens of BKV might each trigger a different mode of action of the immune response. To study the influence of different modes of action of the cellular immune response on BKV clearance dynamics, we have analysed the kinetics of BKV plasma load and anti-BKV T cell response (Elispot in six patients with BKV associated nephropathy using ODE modelling. The results show that only a small number of hypotheses on the mode of action are compatible with the empirical data. The hypothesis with the highest empirical support is that structural antigens trigger blocking of virus production from infected cells, whereas regulatory antigens trigger an acceleration of death of infected cells. These differential modes of action could be important for our understanding of BKV resolution, as according to the hypothesis, only regulatory antigens would trigger a fast and continuous clearance of the viral load. Other hypotheses showed a lower degree of empirical support, but could potentially explain the clearing mechanisms of individual patients. Our results highlight the heterogeneity of the dynamics, including the delay between immune response against structural versus regulatory antigens, and its relevance for BKV clearance. Our modelling approach is the first that studies the process of BKV clearance by bringing together viral and immune kinetics and can provide a framework for personalised hypotheses generation on the interrelations between cellular immunity and viral dynamics.

  19. Differential T cell response against BK virus regulatory and structural antigens: A viral dynamics modelling approach.

    Science.gov (United States)

    Blazquez-Navarro, Arturo; Schachtner, Thomas; Stervbo, Ulrik; Sefrin, Anett; Stein, Maik; Westhoff, Timm H; Reinke, Petra; Klipp, Edda; Babel, Nina; Neumann, Avidan U; Or-Guil, Michal

    2018-05-01

    BK virus (BKV) associated nephropathy affects 1-10% of kidney transplant recipients, leading to graft failure in about 50% of cases. Immune responses against different BKV antigens have been shown to have a prognostic value for disease development. Data currently suggest that the structural antigens and regulatory antigens of BKV might each trigger a different mode of action of the immune response. To study the influence of different modes of action of the cellular immune response on BKV clearance dynamics, we have analysed the kinetics of BKV plasma load and anti-BKV T cell response (Elispot) in six patients with BKV associated nephropathy using ODE modelling. The results show that only a small number of hypotheses on the mode of action are compatible with the empirical data. The hypothesis with the highest empirical support is that structural antigens trigger blocking of virus production from infected cells, whereas regulatory antigens trigger an acceleration of death of infected cells. These differential modes of action could be important for our understanding of BKV resolution, as according to the hypothesis, only regulatory antigens would trigger a fast and continuous clearance of the viral load. Other hypotheses showed a lower degree of empirical support, but could potentially explain the clearing mechanisms of individual patients. Our results highlight the heterogeneity of the dynamics, including the delay between immune response against structural versus regulatory antigens, and its relevance for BKV clearance. Our modelling approach is the first that studies the process of BKV clearance by bringing together viral and immune kinetics and can provide a framework for personalised hypotheses generation on the interrelations between cellular immunity and viral dynamics.

  20. Simian virus 40 small t antigen is not required for the maintenance of transformation but may act as a promoter (cocarcinogen) during establishment of transformation in resting rat cells.

    Science.gov (United States)

    Seif, R; Martin, R G

    1979-12-01

    Simian virus 40 deletion mutants affecting the 20,000-dalton (20K) t antigen and tsA mutants rendering the 90K T antigen temperature sensitive, as well as double mutants containing both mutations, induced host DNA synthesis in resting rat cells at the restrictive temperature. Nonetheless, the deletion mutants and double mutants did not induce transformation in resting cells even at the permissive temperature. On the other hand, the deletion mutants did induce full transformants when actively growing rat cells were infected; the transformants grew efficiently in agar and to high saturation densities on platic. The double mutants did not induce T-antigen-independent (temperature-insensitive) transformants which were shown previously to arise preferentially from resting cells. Thus, small t antigen was dispensable for the maintenance of the transformed phenotype in T-antigen-dependent rat transformants (transformants derived from growing cells) and may play a role in the establishment of T-antigen-independent transformants. We attempt to establish a parallel between transformation induced by chemical carcinogens and simian virus 40-induced transformation.

  1. ONCOLYTIC VIRUS-MEDIATED REVERSAL OF IMPAIRED TUMOR ANTIGEN PRESENTATION

    Directory of Open Access Journals (Sweden)

    Shashi Ashok Gujar

    2014-04-01

    Full Text Available Anti-tumor immunity can eliminate existing cancer cells and also maintain a constant surveillance against possible relapse. Such an antigen-specific adaptive response begins when tumor-specific T cells become activated. T cell activation requires two signals on antigen presenting cells (APCs: antigen presentation through MHC molecules and co-stimulation. In the absence of one or both of these signals, T cells remain inactivated or can even become tolerized. Cancer cells and their associated microenvironment strategically hinder the processing and presentation of tumor antigens and consequently prevent the development of anti-tumor immunity. Many studies, however, demonstrate that interventions that overturn tumor-associated immune evasion mechanisms can establish anti-tumor immune responses of therapeutic potential. One such intervention is oncolytic virus (OV-based anti-cancer therapy. Here we discuss how OV-induced immunological events override tumor-associated antigen presentation impairment and promote appropriate T cell:APC interaction. Detailed understanding of this phenomenon is pivotal for devising the strategies that will enhance the efficacy of OV-based anti-cancer therapy by complementing its inherent oncolytic

  2. Allopurinol reduces antigen-specific and polyclonal activation of human T cells

    Directory of Open Access Journals (Sweden)

    Damián ePérez-Mazliah

    2012-09-01

    Full Text Available Allopurinol is the most popular commercially available xanthine oxidase inhibitor and it is widely used for treatment of symptomatic hyperuricaemia, or gout. Although, several anti-inflammatory actions of allopurinol have been demonstrated in vivo and in vitro, there have been few studies on the action of allopurinol on T cells. In the current study, we have assessed the effect of allopurinol on antigen-specific and mitogen-driven activation and cytokine production in human T cells. Allopurinol markedly decreased the frequency of IFN-γ and IL-2-producing T cells, either after polyclonal or antigen-specific stimulation with Herpes Simplex virus 1, Influenza virus, tetanus toxoid and Trypanosoma cruzi-derived antigens. Allopurinol attenuated CD69 upregulation after CD3 and CD28 engagement and significantly reduced the levels of spontaneous and mitogen-induced intracellular reactive oxygen species in T cells. The diminished T cell activation and cytokine production in the presence of allopurinol support a direct action of allopurinol on human T cells, offering a potential pharmacological tool for the management of cell-mediated inflammatory diseases.

  3. Dissection and manipulation of antigen-specific T cell responses

    NARCIS (Netherlands)

    Schepers, Koen

    2006-01-01

    T cells recognize pathogen-derived antigens and are crucial for fighting pathogens such as viruses and bacteria. In addition, T cells are able to recognize and attack certain types of tumors, in particular virally induced tumors. In this thesis we aimed 1) to obtain more insight into

  4. Properties of the simian virus 40 (SV40) large T antigens encoded by SV40 mutants with deletions in gene A.

    Science.gov (United States)

    Cole, C N; Tornow, J; Clark, R; Tjian, R

    1986-01-01

    The biochemical properties of the large T antigens encoded by simian virus 40 (SV40) mutants with deletions at DdeI sites in the SV40 A gene were determined. Mutant large T antigens containing only the first 138 to 140 amino acids were unable to bind to the SV40 origin of DNA replication as were large T antigens containing at their COOH termini 96 or 97 amino acids encoded by the long open reading frame located between 0.22 and 0.165 map units (m.u.). All other mutant large T antigens were able to bind to the SV40 origin of replication. Mutants with in-phase deletions at 0.288 and 0.243 m.u. lacked ATPase activity, but ATPase activity was normal in mutants lacking origin-binding activity. The 627-amino acid large T antigen encoded by dlA2465, with a deletion at 0.219 m.u., was the smallest large T antigen displaying ATPase activity. Mutant large T antigens with the alternate 96- or 97-amino acid COOH terminus also lacked ATPase activity. All mutant large T antigens were found in the nuclei of infected cells; a small amount of large T with the alternate COOH terminus was also located in the cytoplasm. Mutant dlA2465 belonged to the same class of mutants as dlA2459. It was unable to form plaques on CV-1p cells at 37 or 32 degrees C but could form plaques on BSC-1 monolayers at 37 degrees C but not at 32 degrees C. It was positive for viral DNA replication and showed intracistronic complementation with any group A mutant whose large T antigen contained a normal carboxyl terminus. These findings and those of others suggest that both DNA binding and ATPase activity are required for the viral DNA replication function of large T antigen, that these two activities must be located on the same T antigen monomer, and that these two activities are performed by distinct domains of the polypeptide. These domains are distinct and separable from the domain affected by the mutation of dlA2465 and indicate that SV40 large T antigen is made up of at least three separate functional

  5. J.C. Christensen

    DEFF Research Database (Denmark)

    Duedahl, Poul

    I mange år var det en almindelig antagelse, at statsminister J.C. Christensens dagbøger var blevet brændt efter hans død. Nu er hans dagbøger fra årene 1900-09 imidlertid dukket op, og de giver et indblik i dansk politik i årene omkring Systemskiftet. Dagbøgerne dækker den periode, hvor J.C...... af justitsminister P.A. Albertis bedragerier og optakten til en rigsretssag. De tyve små dagbøger indeholder optegnelser om stort og småt fra perioden. De tjente som et sted, hvor den normalt tillukkede J.C. Christensen fik luft for private og ikke mindst politiske bekymringer, og mange af aktørerne...... i det politiske liv blev i dagbøgerne udsat for skarpe bemærkninger. J.C. Christensens dagbøger giver et enestående indblik i et stykke Danmarkshistorie set fra første række....

  6. Mucosal-Associated Invariant T Cells: New Insights into Antigen Recognition and Activation

    Directory of Open Access Journals (Sweden)

    Xingxing Xiao

    2017-11-01

    Full Text Available Mucosal-associated invariant T (MAIT cells, a novel subpopulation of innate-like T cells that express an invariant T cell receptor (TCRα chain and a diverse TCRβ chain, can recognize a distinct set of small molecules, vitamin B metabolites, derived from some bacteria, fungi but not viruses, in the context of an evolutionarily conserved major histocompatibility complex-related molecule 1 (MR1. This implies that MAIT cells may play unique and important roles in host immunity. Although viral antigens are not recognized by this limited TCR repertoire, MAIT cells are known to be activated in a TCR-independent mechanism during some viral infections, such as hepatitis C virus and influenza virus. In this article, we will review recent works in MAIT cell antigen recognition, activation and the role MAIT cells may play in the process of bacterial and viral infections and pathogenesis of non-infectious diseases.

  7. Chimeric immune receptors (CIRs) specific to JC virus for immunotherapy in progressive multifocal leukoencephalopathy (PML)

    NARCIS (Netherlands)

    W. Yang; E.L. Beaudoin; L. Lu; R.A. Du Pasquier (Renaud); M.J. Kuroda; R.A. Willemsen (Ralph); I.J. Koralnik; R.P. Junghans

    2007-01-01

    textabstractProgressive multifocal leukoencephalopathy (PML) is a deadly brain disease caused by the polyomavirus JC (JCV). The aim of this study is to develop 'designer T cells' armed with anti-JCV TCR-based chimeric immune receptors (CIRs) by gene modification for PML immunotherapy. Two T cell

  8. Original antigenic sin responses to influenza viruses.

    Science.gov (United States)

    Kim, Jin Hyang; Skountzou, Ioanna; Compans, Richard; Jacob, Joshy

    2009-09-01

    Most immune responses follow Burnet's rule in that Ag recruits specific lymphocytes from a large repertoire and induces them to proliferate and differentiate into effector cells. However, the phenomenon of "original antigenic sin" stands out as a paradox to Burnet's rule of B cell engagement. Humans, upon infection with a novel influenza strain, produce Abs against older viral strains at the expense of responses to novel, protective antigenic determinants. This exacerbates the severity of the current infection. This blind spot of the immune system and the redirection of responses to the "original Ag" rather than to novel epitopes were described fifty years ago. Recent reports have questioned the existence of this phenomenon. Hence, we revisited this issue to determine the extent to which original antigenic sin is induced by variant influenza viruses. Using two related strains of influenza A virus, we show that original antigenic sin leads to a significant decrease in development of protective immunity and recall responses to the second virus. In addition, we show that sequential infection of mice with two live influenza virus strains leads to almost exclusive Ab responses to the first viral strain, suggesting that original antigenic sin could be a potential strategy by which variant influenza viruses subvert the immune system.

  9. JC Virus Leuko-Encephalopathy in Reduced Intensity Conditioning Cord Blood Transplant Recipient with a Review of the Literature.

    Science.gov (United States)

    El-Cheikh, Jean; Fürst, Sabine; Casalonga, Francois; Crocchiolo, Roberto; Castagna, Luca; Granata, Angela; Oudin, Claire; Faucher, Catherine; Berger, Pierre; Sarran, Anthony; Blaise, Didier

    2012-01-01

    We report here the case of progressive multifocal leukoencephalopathy (PML) related to human polyomavirus JC (JCV) infection after an allogeneic transplantation with umbilical cord blood cells in 59-year-old woman with follicular Non Hodgkin lymphoma. She presented with dysphagia and weakness; magnetic resonance imaging demonstrated marked signal abnormality in the sub-cortical white matter of the left frontal lobe and in the posterior limb of the right internal capsule. Polymerase chain reaction (PCR) analysis of the cerebrospinal fluid (CSF) was positive for John Cunningham (JC) virus. JC viral DNA in the CSF was positive, establishing the diagnosis of PML. Brain biopsy was not done. Extensive investigations for other viral infections seen in immuno-compromised patients were negative. The patient's neurologic deficits rapidly increased throughout her hospital stay, and she died one month after the diagnosis. These findings could have practical implications and demonstrate that in patients presenting neurological symptoms and radiological signs after UCBT, the JCV encephalitis must be early suspected.

  10. Cell-surface antigens associated with dualtropic and thymotropic murine leukemia viruses inducing thymic and nonthymic lymphomas

    International Nuclear Information System (INIS)

    Haas, M.; Patch, V.

    1980-01-01

    Unique type-specific antigens were detected on cells infected with dualtropic and thymotropic viruses and x-ray-induced T cell- and B cell-malignant lymphomas of C57BL/6 mice. These findings support the contention that T cell lymphoma (TCL)-inducing and B cell lymphoma (BCL)-indcing viruses isolated from x-irradiated C57BL/6 mice are env gene recombinants in which ecotropic gene sequences have been substituted by xenotropic sequences. We found that unique antigenicities are associated with each TCL-inducing and BCL-inducing dualtropic virus, and that the thymotropic TCL-inducing virus isolates represent a separate serologic group. These virus mapping experiments indicated that many serologically different recombinant viruses can be isolated from C57BL/6 mice. It is suggested that many distinct recombinant viruses may exist in lymphomagenic C57BL/6 mice, some of which are associated with specific lyphoma induction

  11. Strategy for eliciting antigen-specific CD8+ T cell-mediated immune response against a cryptic CTL epitope of merkel cell polyomavirus large T antigen

    Directory of Open Access Journals (Sweden)

    Gomez Bianca P

    2012-10-01

    Full Text Available Abstract Background Merkel cell carcinoma (MCC is a relatively new addition to the expanding category of oncovirus-induced cancers. Although still comparably rare, the number of cases has risen dramatically in recent years. Further complicating this trend is that MCC is an extremely aggressive neoplasm with poor patient prognosis and limited treatment options for advanced disease. The causative agent of MCC has been identified as the merkel cell polyomavirus (MCPyV. The MCPyV-encoded large T (LT antigen is an oncoprotein that is theorized to be essential for virus-mediated tumorigenesis and is therefore, an excellent MCC antigen for the generation of antitumor immune responses. As a foreign antigen, the LT oncoprotein avoids the obstacle of immune tolerance, which normally impedes the development of antitumor immunity. Ergo, it is an excellent target for anti-MCC immunotherapy. Since tumor-specific CD8+ T cells lead to better prognosis for MCC and numerous other cancers, we have generated a DNA vaccine that is capable of eliciting LT-specific CD8+ T cells. The DNA vaccine (pcDNA3-CRT/LT encodes the LT antigen linked to a damage-associated molecular pattern, calreticulin (CRT, as it has been demonstrated that the linkage of CRT to antigens promotes the induction of antigen-specific CD8+ T cells. Results The present study shows that DNA vaccine-induced generation of LT-specific CD8+ T cells is augmented by linking CRT to the LT antigen. This is relevant since the therapeutic effects of the pcDNA3-CRT/LT DNA vaccine is mediated by LT-specific CD8+ T cells. Mice vaccinated with the DNA vaccine produced demonstrably more LT-specific CD8+ T cells. The DNA vaccine was also able to confer LT-specific CD8+ T cell-mediated protective and therapeutic effects to prolong the survival of mice with LT-expressing tumors. In the interest of determining the LT epitope which most MCC-specific CD8+ T cells recognize, we identified the amino acid sequence of the

  12. A competitive-inhibiton radioimmunoassay for influenza virus envelope antigens

    International Nuclear Information System (INIS)

    Russ, G.; Styk, B.; Vareckova, E.; Polakova, K.

    1976-01-01

    A double-antibody competitive-inhibition radioimmunoassay for influenza virus envelope antigens is described. A viral antigen preparation from influenza A virus recombinant MRC11 [antigenically identical to A/Port Chalmers/1/73 (H3N2)] consisting of haemagglutinin and neuraminidase was labelled with radioiodine. Rabbit antisera were allowed to react with the labelled antigen and the resultant antigen-antibody complexes were precipitated with the appropriate antiglobulin. The competitive-inhibition radioimmunoassay very sensitively elucidated differences even among closely related influenza virus strains. Attempts have been made to eliminate neuraminidase from radioimmunoprecipitation to obtain a competitive-inhibition radioimmunoassay system for haemagglutinin alone. (author)

  13. Equine infectious anemia virus-infected dendritic cells retain antigen presentation capability

    International Nuclear Information System (INIS)

    Rivera, Julie A.; McGuire, Travis C.

    2005-01-01

    To determine if equine monocyte-derived dendritic cells (DC) were susceptible to equine infectious anemia virus (EIAV) infection, ex vivo-generated DC were infected with virus in vitro. EIAV antigen was detected by immunofluorescence 3 days post-infection with maximum antigen being detected on day 4, whereas there was no antigen detected in DC incubated with the same amount of heat-inactivated EIAV. No cytolytic activity was observed after EIAV WSU5 infection of DC. These monocyte-derived DC were more effective than macrophages and B cells in stimulating allogenic T lymphocytes. Both infected macrophages and DC stimulated similar levels of memory CTL responses in mixtures of CD8+ and CD4+ cells as detected with 51 Cr-release assays indicating that EIAV infection of DC did not alter antigen presentation. However, EIAV-infected DC were more effective than infected macrophages when used to stimulate memory CTL in isolated CD8+ cells. The maintenance of antigen processing and presenting function by EIAV-infected DC in vitro suggests that this function is maintained during in vivo infection

  14. In vitro stimulation of rabbit T lymphocytes by cells expressing herpes simplex antigens.

    Science.gov (United States)

    Kapoor, A K; Ling, N R; Nash, A A; Bachan, A; Wildy, P

    1982-04-01

    Lymphocyte stimulation responses to herpes antigens were studied using virus-infected X-irradiated cells. Rabbits were immunized with herpes simplex virus type 1 (strain HFEM) grown in RK 13 cells. For in vitro stimulation assay BHK21 cells were X-irradiated (15 000 rad) and infected with a high m.o.i. of a temperature-sensitive (ts) mutant (N102) of HFEM strain at the non-permissive temperature (38.5 degrees C) of virus. Virus antigens were expressed on the infected cells and there was no leakage of infectious virus into the medium at 38.5 degrees C. T lymphocytes from rabbits immunized with herpes simplex virus were specifically activated by herpesvirus-infected X-irradiated cells; lymph node cells from rabbits immunized with RK13 cells and from non-immune rabbits showed no proliferative response.

  15. Improved protection conferred by vaccination with a recombinant vaccinia virus that incorporates a foreign antigen into the extracellular enveloped virion

    International Nuclear Information System (INIS)

    Kwak, Heesun; Mustafa, Waleed; Speirs, Kendra; Abdool, Asha J.; Paterson, Yvonne; Isaacs, Stuart N.

    2004-01-01

    Recombinant poxviruses have shown promise as vaccine vectors. We hypothesized that improved cellular immune responses could be developed to a foreign antigen by incorporating it as part of the extracellular enveloped virion (EEV). We therefore constructed a recombinant vaccinia virus that replaced the cytoplasmic domain of the B5R protein with a test antigen, HIV-1 Gag. Mice immunized with the virus expressing Gag fused to B5R had significantly better primary CD4 T-cell responses than recombinant virus expressing HIV-Gag from the TK-locus. The CD8 T-cell responses were less different between the two groups. Importantly, although we saw differences in the immune response to the test antigen, the vaccinia virus-specific immune responses were similar with both constructs. When groups of vaccinated mice were challenged 30 days later with a recombinant Listeria monocytogenes that expresses HIV-Gag, mice inoculated with the virus that expresses the B5R-Gag fusion protein had lower colony counts of Listeria in the liver and spleen than mice vaccinated with the standard recombinant. Thus, vaccinia virus expressing foreign antigen incorporated into EEV may be a better vaccine strategy than standard recombinant vaccinia virus

  16. Increased CD8+ T cell response to Epstein-Barr virus lytic antigens in the active phase of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Daniela F Angelini

    Full Text Available It has long been known that multiple sclerosis (MS is associated with an increased Epstein-Barr virus (EBV seroprevalence and high immune reactivity to EBV and that infectious mononucleosis increases MS risk. This evidence led to postulate that EBV infection plays a role in MS etiopathogenesis, although the mechanisms are debated. This study was designed to assess the prevalence and magnitude of CD8+ T-cell responses to EBV latent (EBNA-3A, LMP-2A and lytic (BZLF-1, BMLF-1 antigens in relapsing-remitting MS patients (n = 113 and healthy donors (HD (n = 43 and to investigate whether the EBV-specific CD8+ T cell response correlates with disease activity, as defined by clinical evaluation and gadolinium-enhanced magnetic resonance imaging. Using HLA class I pentamers, lytic antigen-specific CD8+ T cell responses were detected in fewer untreated inactive MS patients than in active MS patients and HD while the frequency of CD8+ T cells specific for EBV lytic and latent antigens was higher in active and inactive MS patients, respectively. In contrast, the CD8+ T cell response to cytomegalovirus did not differ between HD and MS patients, irrespective of the disease phase. Marked differences in the prevalence of EBV-specific CD8+ T cell responses were observed in patients treated with interferon-β and natalizumab, two licensed drugs for relapsing-remitting MS. Longitudinal studies revealed expansion of CD8+ T cells specific for EBV lytic antigens during active disease in untreated MS patients but not in relapse-free, natalizumab-treated patients. Analysis of post-mortem MS brain samples showed expression of the EBV lytic protein BZLF-1 and interactions between cytotoxic CD8+ T cells and EBV lytically infected plasma cells in inflammatory white matter lesions and meninges. We therefore propose that inability to control EBV infection during inactive MS could set the stage for intracerebral viral reactivation and disease relapse.

  17. Antigenic analysis of some Nigerian street rabies virus using ...

    African Journals Online (AJOL)

    The authors studied 12 street rabies virus isolates from 3 states of Nigeria using both the anti-nucleocapsid and anti-glycoprotein monoclonal antibodies and cross-protection tests. It was observed that all the viruses were rabies having divergent antigenic presentation. Also noticed was an antigenic shift when the viruses ...

  18. Cloning and expression analysis of JcAACT, jcMDC and JcFPS, involved in terpenoid biosynthesis in jatropha curcas l

    International Nuclear Information System (INIS)

    Huang, Y.; Wen, J.

    2018-01-01

    To better understand the functions of key genes involved in terpenoid biosynthesis in Jatropha curcas, we cloned and characterized three genes, namely acetyl CoA acyltransferase (JcAACT), diphosphate mevalonate decarboxylase (JcMDC) and farnesyl pyrophosphate synthase (JcFPS). The opening reading frames (ORFs) of JcAACT, JcMDC and JcFPS were 1239 bp,1248 bp and 1029 bp, respectively, encoding a 412-amino acid, 415-amino acid and 342-amino acid polypeptide, respectively. Results of homology analysis showed that JcAACT, JcMDC and JcFPS encoded proteins that all had the highest identity and closest relationship with the corresponding genes in Hevea brasiliensis, with identities of 89%, 92% and 93%, respectively. JcAACT, JcMDC and JcFPS were expressed in all organs tested of J. curcas; the highest expression level for each gene occurred in seeds. In the early growth stage of seeds, the expression level of each of these three genes increased with time, with JcAACT and JcMDC expression level reaching a peak at the late stage of seed development (50 d), while JcFPS expression level reached a peak at the mid-late stage (40 d). Following the peak, the expression of each gene then declined. The expression level of JcAACT was the highest of the three genes, regardless of the organ or the stage of seed growth, indicating its important role in J. curcas. This study lays the foundation for a better understanding of the important role of the JcAACT, JcMDC and JcFPS genes in the terpenoid biosynthesis pathway of J. curcas. (author)

  19. Efficient Capsid Antigen Presentation From Adeno-Associated Virus Empty Virions In Vivo.

    Science.gov (United States)

    Pei, Xiaolei; Earley, Lauriel Freya; He, Yi; Chen, Xiaojing; Hall, Nikita Elexa; Samulski, Richard Jude; Li, Chengwen

    2018-01-01

    Adeno-associated virus (AAV) vectors have been successfully applied in clinical trials for hemophilic patients. Although promising, the clinical results suggest that the capsid-specific CD8+T cell response has a negative effect on therapeutic success. In an in vitro analysis using an engineered AAV virus carrying immune-dominant SIINFEKL peptide in the capsid backbone, we have previously demonstrated that capsid antigen presentation from full (genome containing) AAV capsids requires endosome escape and is proteasome dependent and that no capsid antigen presentation is induced from empty virions. In the present study, we examined capsid antigen presentation from administration of empty virions in animal models. In wild-type mice, similar to AAV full particles, capsid antigen presentation from AAV empty virion infection was dose dependent, and the kinetics studies showed that antigen presentation was detected from 2 to 40 days after AAV empty virion administration. In the transporter associated with antigen processing 1 deficient (TAP-/-) mice, capsid antigen presentation was inhibited from both AAV full and empty virions, but higher inhibition was achieved from AAV full particle administration than that from empty virions. This indicates that the pathway of capsid antigen presentation from AAV transduction is dependent on proteasome-mediated degradation of AAV capsids (mainly for full particles) and that the endosomal pathway may also play a role in antigen presentation from empty particles but not full virions. The capsid antigen presentation efficiency from AAV preparations was positively correlated with the amount of empty virions contaminated with full particles. Collectively, the results indicate that contamination of AAV empty virions induces efficient antigen presentation in vivo and the mechanism of capsid antigen presentation from empty virions involves both endosomal and proteasomal pathways. The elucidation of capsid antigen presentation from AAV empty

  20. Routine detection of Epstein-Barr virus specific T-cells in the peripheral blood by flow cytometry

    Science.gov (United States)

    Crucian, B. E.; Stowe, R. P.; Pierson, D. L.; Sams, C. F.

    2001-01-01

    The ability to detect cytomegalovirus-specific T-cells (CD4(+)) in the peripheral blood by flow cytometry has been recently described by Picker et al. In this method, cells are incubated with viral antigen and responding (cytokine producing) T-cells are then identified by flow cytometry. To date, this technique has not been reliably used to detect Epstein-Barr virus (EBV)-specific T-cells primarily due to the superantigen/mitogenic properties of the virus which non-specifically activate T-cells. By modifying culture conditions under which the antigens are presented, we have overcome this limitation and developed an assay to detect and quantitate EBV-specific T-cells. The detection of cytokine producing T-cells by flow cytometry requires an extremely strong signal (such as culture in the presence of PMA and ionomycin). Our data indicate that in modified culture conditions (early removal of viral antigen) the non-specific activation of T-cells by EBV is reduced, but antigen presentation will continue uninhibited. Using this method, EBV-specific T-cells may be legitimately detected using flow cytometry. No reduction in the numbers of antigen-specific T-cells was observed by the early removal of target antigen when verified using cytomegalovirus antigen (a virus with no non-specific T-cell activation properties). In EBV-seropositive individuals, the phenotype of the EBV-specific cytokine producing T-cells was evaluated using four-color flow cytometry and found to be CD45(+), CD3(+), CD4(+), CD45RA(-), CD69(+), CD25(-). This phenotype indicates the stimulation of circulating previously unactivated memory T-cells. No cytokine production was observed in CD4(+) T-cells from EBV-seronegative individuals, confirming the specificity of this assay. In addition, the use of four color cytometry (CD45, CD3, CD69, IFNgamma/IL-2) allows the total quantitative assessment of EBV-specific T-cells while monitoring the interference of EBV non-specific mitogenic activity. This method may

  1. Antigenic determinants and functional domains in core antigen and e antigen from hepatitis B virus

    International Nuclear Information System (INIS)

    Salfeld, J.; Pfaff, E.; Noah, M.; Schaller, H.

    1989-01-01

    The precore/core gene of hepatitis B virus directs the synthesis of two polypeptides, the 21-kilodalton subunit (p21c) forming the viral nucleocapsid (serologically defined as core antigen [HBcAg]) and a secreted processed protein (p17e, serologically defined as HBe antigen [HBeAg]). Although most of their primary amino acid sequences are identical, HBcAg and HBeAg display different antigenic properties that are widely used in hepatitis B virus diagnosis. To locate and to characterize the corresponding determinants, segments of the core gene were expressed in Escherichia coli and probed with a panel of polyclonal or monoclonal antibodies in radioimmunoassays or enzyme-linked immunosorbent assays, Western blots, and competition assays. Three distinct major determinants were characterized. It is postulated that HBcAg and HBeAg share common basic three-dimensional structure exposing the common linear determinant HBe1 but that they differ in the presentation of two conformational determinants that are either introduced (HBc) or masked (HBe2) in the assembled core. The simultaneous presentation of HBe1 and HBc, two distinctly different antigenic determinants with overlapping amino acid sequences, is interpreted to indicate the presence of slightly differently folded, stable conformational states of p21c in the hepatitis virus nucleocapsid

  2. Thickness dependence of J_c (0) in MgB_2 films

    International Nuclear Information System (INIS)

    Chen, Yiling; Yang, Can; Jia, Chunyan; Feng, Qingrong; Gan, Zizhao

    2016-01-01

    Highlights: • A serial of MgB_2 superconducting films from 10 nm to 8 µm have been prepared. • T_c and J_c (5 K, 0 T) of films are high. • J_c (5 K, 0 T) reaches its maximum 2.3 × 10"8 A cm"−"2 for 100 nm films. • The relationship between thickness and J_c has been discussed in detail. - Abstract: MgB_2 superconducting films, whose thicknesses range from 10 nm to 8 µm, have been fabricated on SiC substrates by hybrid physical–chemical vapor deposition (HPCVD) method. It is the first time that the T_c and the J_c of MgB_2 films are studied on such a large scale. It is found that with the increasing of thickness, T_c elevates first and then keeps roughly stable except for some slight fluctuations, while J_c (5 K, 0 T) experiences a sharp increase followed by a relatively slow fall. The maximum J_c (5 K, 0 T) = 2.3 × 10"8 A cm"−"2 is obtained for 100 nm films, which is the experimental evidence for preparing high-quality MgB_2 films by HPCVD method. Thus, this work may provide guidance on choosing the suitable thickness for applications. Meanwhile, the films prepared by us cover ultrathin films, thin films and thick films, so the study on them will bring a comprehensive understanding of MgB_2 films.

  3. Arachidonic acid-and docosahexaenoic acid-enriched formulas modulate antigen-specific T cell responses to influenza virus in neonatal piglets.

    Science.gov (United States)

    Bassaganya-Riera, Josep; Guri, Amir J; Noble, Alexis M; Reynolds, Kathryn A; King, Jennifer; Wood, Cynthia M; Ashby, Michael; Rai, Deshanie; Hontecillas, Raquel

    2007-03-01

    Whereas the immunomodulatory effects of feeding either arachidonic acid (AA) or docosahexaenoic acid (DHA) separately have been previously investigated, little is known about the immunomodulatory efficacy of AA or DHA when they are fed in combination as infant formula ingredients. The objective of this study was to investigate the ability of AA- and DHA(AA/DHA)-enriched infant formula to modulate immune responses in the neonate in response to an inactivated influenza virus vaccine. Neonatal piglets (n = 48) were weaned on day 2 of age and distributed into 16 blocks of 3 littermate piglets each. Within each block, piglets were randomly assigned to a control formula, AA/DHA-enriched formula (0.63% AA and 0.34% DHA), or sow milk for 30 d. On day 9, 8 blocks of piglets were immunized with an inactivated influenza virus vaccine. On days 0, 9, 16, 23, and 30 after weaning, we measured influenza virus-specific T cell proliferation and phenotype of T subsets in peripheral blood. A delayed-type hypersensitivity reaction test was administered on day 28. Cytokine messenger RNA expression was determined by quantitative real time reverse transcriptase-polymerase chain reaction on day 30. The influenza virus-specific CD4(+) and CD8(+) T cell ex vivo lymphoproliferative responses were significantly lower on day 23 after immunization in piglets receiving dietary AA/DHA supplementation and sow milk than in those receiving the unsupplemented control formula. The immunomodulatory effects of AA/DHA-enriched formulas were consistent with up-regulation of interleukin 10 in peripheral blood mononuclear cells. Overall, it appears that the AA/DHA-enriched formula modulated antigen-specific T cell responses in part through an interleukin 10-dependent mechanism.

  4. Human leukocyte antigen-e alleles are associated with hepatitis c virus, torque teno virus, and toxoplasma co-infections but are not associated with hepatitis b virus, hepatitis d virus, and GB virus c co-infections in human immunodeficiency virus patients

    Directory of Open Access Journals (Sweden)

    Afiono Agung Prasetyo

    2016-01-01

    Full Text Available Context: Data regarding the distribution of Human Leukocyte Antigen (HLA-E alleles and their association with blood-borne pathogen infections/co-infections are limited for many populations, including Indonesia. Aims: The aim of this study was to analyze the association between HLA-E allelic variants and infection with blood-borne pathogens such as hepatitis B virus (HBV, hepatitis C virus (HCV, hepatitis D virus (HDV, torque teno virus (TTV, GB virus C (GBV-C, and Toxoplasma gondii (T. gondii in Indonesian Javanese human immunodeficiency virus (HIV patients. Settings and Design: A total of 320 anti-HIV-positive blood samples were analyzed for HBV, HCV, HDV, TTV, GBV-C, and T. gondii infection status and its association with HLA-E allelic variants. Materials and Methods: Nucleic acid was extracted from plasma samples and used for the molecular detection of HBV DNA, HCV RNA, HDV RNA, TTV DNA, and GBV-C RNA, whereas hepatitis B surface antigen, anti-HCV, immunoglobulin M and G (IgM and IgG anti-T. gondii were detected through serological testing. The blood samples were genotyped for HLA-E loci using a sequence-specific primer-polymerase chain reaction. Statistical Analysis Used: Either the Chi-square or Fisher′s exact test was performed to analyze the frequency of HLA-E alleles and blood-borne pathogen infections in the population. Odds ratios (ORs were calculated to measure the association between the antibodies found and the participants′ possible risk behaviors. A logistic regression analysis was used to assess the associations. Results: HLA-EFNx010101/0101 was associated with HCV/TTV co-infection (adjusted OR [aOR]: 3.5; 95% confidence interval [CI]: 1.156-10.734; P = 0.027 and IgM/IgG anti-Toxo positivity (aOR: 27.0; 95% CI: 3.626-200.472; P = 0.001. HLA-EFNx010103/0103 was associated with TTV co-infection (aOR: 2.7; 95% CI: 1.509-4.796; P = 0.001. Conclusions: HLA-E alleles in Indonesian Javanese HIV patients were found to be associated

  5. Early transduction produces highly functional chimeric antigen receptor-modified virus-specific T-cells with central memory markers: a Production Assistant for Cell Therapy (PACT) translational application

    OpenAIRE

    Sun, Jiali; Huye, Leslie E; Lapteva, Natalia; Mamonkin, Maksim; Hiregange, Manasa; Ballard, Brandon; Dakhova, Olga; Raghavan, Darshana; Durett, April G; Perna, Serena K; Omer, Bilal; Rollins, Lisa A; Leen, Ann M; Vera, Juan F; Dotti, Gianpietro

    2015-01-01

    Background Virus-specific T-cells (VSTs) proliferate exponentially after adoptive transfer into hematopoietic stem cell transplant (HSCT) recipients, eliminate virus infections, then persist and provide long-term protection from viral disease. If VSTs behaved similarly when modified with tumor-specific chimeric antigen receptors (CARs), they should have potent anti-tumor activity. This theory was evaluated by Cruz et al. in a previous clinical trial with CD19.CAR-modified VSTs, but there was ...

  6. The global antigenic diversity of swine influenza A viruses

    DEFF Research Database (Denmark)

    Lewis, Nicola S; Russell, Colin A; Langat, Pinky

    2016-01-01

    Swine influenza presents a substantial disease burden for pig populations worldwide and poses a potential pandemic threat to humans. There is considerable diversity in both H1 and H3 influenza viruses circulating in swine due to the frequent introductions of viruses from humans and birds coupled...... with geographic segregation of global swine populations. Much of this diversity is characterized genetically but the antigenic diversity of these viruses is poorly understood. Critically, the antigenic diversity shapes the risk profile of swine influenza viruses in terms of their epizootic and pandemic potential...

  7. The Role of B Cells for in Vivo T Cell Responses to a Friend Virus-Induced Leukemia

    Science.gov (United States)

    Schultz, Kirk R.; Klarnet, Jay P.; Gieni, Randall S.; Hayglass, Kent T.; Greenberg, Philip D.

    1990-08-01

    B cells can function as antigen-presenting cells and accessory cells for T cell responses. This study evaluated the role of B cells in the induction of protective T cell immunity to a Friend murine leukemia virus (F-MuLV)-induced leukemia (FBL). B cell-deficient mice exhibited significantly reduced tumor-specific CD4^+ helper and CD8^+ cytotoxic T cell responses after priming with FBL or a recombinant vaccinia virus containing F-MuLV antigens. Moreover, these mice had diminished T cell responses to the vaccinia viral antigens. Tumor-primed T cells transferred into B cell-deficient mice effectively eradicated disseminated FBL. Thus, B cells appear necessary for efficient priming but not expression of tumor and viral T cell immunity.

  8. Dengue NS1 Antigen - for Early Detection of Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Amol Hartalkar

    2015-08-01

    Full Text Available Objectives: To evaluate the efficacy of NS1 antigen assay for early diagnosis of dengue virus infection in a tertiary care hospital. Methods: This cross sectional study was carried out in department of Medicine from August to December 2013. Total 100 patients with dengue fever were included. Complete blood count, alanine aminotransferase (ALT, aspartate aminotransferase (AST, Dengue NS1 antigen and IgM and IgG antibodies of dengue virus were done in all cases. Results: Of the 100 sera tested, 75% were positive for dengue virus infection based on dengue NS1 antigen, IgM antibody and IgG antibody. Dengue NS1 antigen and IgM, IgG antibody were able to detect dengue virus infection between day 1 to day 8 in 92% of samples, 86.7% of samples and 82.6% of samples respectively. Sixty nine percent (69% were found positive for dengue NS1 antigen, 65% were IgM positive and 62% were IgG positive. Based on the dengue NS1 antigen and IgM antibody combination, 74% were positive for dengue virus infections. Sensitivity of Dengue NS1 antigen was 92.3% and specificity of 74.28% in comparison to IgM antibody. Detection rate increased to 75%, based on the antigen and IgG antibody combination. Sensitivity of dengue NS1 antigen was 90.3% and specificity of 65.8% in comparison to IgG antibody. Conclusion: Dengue NS1 antigen is a useful, sensitive and specific test for early diagnosis of dengue virus infection and it improves diagnostic efficiency in combination with antibody test. Key words: Dengue fever, NS1 antigen. Introduction: Dengue fever (DF is the most common arboviral illness in humans. Each year, an estimated 50-100 million cases of dengue fever and 500,000 cases of dengue hemorrhagic fever occur worldwide, with 30000 deaths (mainly in children. Globally 2.5-3 billion people in approximately 112 tropical and subtropical countries are at risk of dengue.of samples respectively. Sixty nine percent (69% were found positive for dengue NS1 antigen, 65% were Ig

  9. Virus-specific HLA-restricted lysis of herpes simplex virus-infected human monocytes and macrophages mediated by cytotoxic T lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Torpey, D.J. III

    1987-01-01

    Freshly-isolated peripheral blood human monocytes and 5 day in vitro cultured macrophages were infected with herpes simplex virus type 1 (HSV-1), labeled with /sup 51/Cr, and used as target cells in a 12-14 hour cell-mediated cytotoxicity assay. Mononuclear leukocytes (MNL) from HSV-1 non-immune individuals, whether unstimulated or stimulated with HSV-1 antigen, did not mediate significant lysis of either target cell. HSV-immune MNL, both freshly-isolated and cultured for 5 days without antigen, demonstrated only low levels of natural killer (NK) cell-mediate lysis. MNL from HSV-immune individuals incubated for 5 days in vitro with HSV-1 antigen mediated significant virus-specific lysis of both target cells. Mean virus-specific lysis of autologous monocytes was 8.5(/+-/2.0)% compared to a three-fold greater virus-specific lysis of autologous macrophages. Greater than 70% of this lytic activity was mediated by Leu-11-negative, T3-positive cytotoxic T lymphocytes (CTL). Allogeneic target cells lacking a common HLA determinant were not significantly lysed while T8-positive CTL mediated infrequent lysis of target cells sharing a common HLA-A and/or HLA-B determinant. T4-positive lymphocytes were demonstrated to be the predominant cell mediating lysis of autologous target cells and allogeneic target cells sharing both HLA-A and/or HLA-B plus HLA-DR determinants with the CTL; the T4-positive cell was the sole CTL mediator of lysis of allogeneic target cells having a common HLA-DR determinant.

  10. Virus-specific HLA-restricted lysis of herpes simplex virus-infected human monocytes and macrophages mediated by cytotoxic T lymphocytes

    International Nuclear Information System (INIS)

    Torpey, D.J. III.

    1987-01-01

    Freshly-isolated peripheral blood human monocytes and 5 day in vitro cultured macrophages were infected with herpes simplex virus type 1 (HSV-1), labeled with 51 Cr, and used as target cells in a 12-14 hour cell-mediated cytotoxicity assay. Mononuclear leukocytes (MNL) from HSV-1 non-immune individuals, whether unstimulated or stimulated with HSV-1 antigen, did not mediate significant lysis of either target cell. HSV-immune MNL, both freshly-isolated and cultured for 5 days without antigen, demonstrated only low levels of natural killer (NK) cell-mediate lysis. MNL from HSV-immune individuals incubated for 5 days in vitro with HSV-1 antigen mediated significant virus-specific lysis of both target cells. Mean virus-specific lysis of autologous monocytes was 8.5(/+-/2.0)% compared to a three-fold greater virus-specific lysis of autologous macrophages. Greater than 70% of this lytic activity was mediated by Leu-11-negative, T3-positive cytotoxic T lymphocytes (CTL). Allogeneic target cells lacking a common HLA determinant were not significantly lysed while T8-positive CTL mediated infrequent lysis of target cells sharing a common HLA-A and/or HLA-B determinant. T4-positive lymphocytes were demonstrated to be the predominant cell mediating lysis of autologous target cells and allogeneic target cells sharing both HLA-A and/or HLA-B plus HLA-DR determinants with the CTL; the T4-positive cell was the sole CTL mediator of lysis of allogeneic target cells having a common HLA-DR determinant

  11. Jatobal virus antigenic characterization by ELISA and neutralization test using EIA as indicator, on tissue culture

    Directory of Open Access Journals (Sweden)

    Luiz Tadeu M. Figueiredo

    1988-06-01

    Full Text Available A virus antigenic characterization methodology using an indirect method of antibody detection ELISA with virus-infected cultured cells as antigen and a micro virus neutralisation test using EIA (NT-EIA as an aid to reading were used for antigenic characterization of Jatobal (BeAn 423380. Jatobal virus was characterized as a Bunyaviridae, Bunyavirus genus, Simbu serogroup virus. ELISA using infected cultured cells as antigen is a sensitive and reliable method for identification of viruses and has many advantages over conventional antibody capture ELISA's and other tests: it eliminates solid phase coating with virus and laborious antigen preparation; it permits screening of large numbers of virus antisera faster and more easily than by CF, HAI, or plaque reduction NT. ELISA and NT using EIA as an aid to reading can be applicable to viruses which do not produce cytopathogenic effect. Both techniques are applicable to identification of viruses which grow in mosquito cells.A caracterização antigênica do vírus Jatobal (BeAn 423380 foi efetuada utilizando uma técnica de ELISA para deteccão de anticorpos que utiliza culturas celulares infectadas como antígeno e um micro teste de neutralização para vírus que utiliza o método imunoenzimático como auxiliar para a leitura dos resultados (NT-EIA. O vírus Jatobal foi caracterizado como um Bunyaviridae, gênero Bunyavirus, pertencente ao sorogrupo Simbu. A técnica de ELISA, utilizando culturas celulares infectadas como antígeno, trata-se de método sensível e confiável na identificação de agentes virais, possuindo muitas vantagens sobre ELISA convencionais e outros testes: elimina a preparação laboriosa de antígenos para o revestimento em fase sólida; permite que se teste de forma mais rápida e fácil que por CF, HAI e neutralização por redução de plaques um grande número de antisoros de vírus. ELISA e NT-EIA podem ser utilizados para a classificação de vírus que não produzem

  12. Accessory signals in T-T cell interactions between antigen- and alloantigen-specific, human memory T cells generated in vitro

    DEFF Research Database (Denmark)

    Odum, N; Ryder, L P; Georgsen, J

    1990-01-01

    The potential of activated HLA class II-positive T cells as antigen-/alloantigen-presenting cells remains controversial. In our model system we use in vitro-primed, HLA class II-specific T cells of the memory T-cell phenotype, CD4+, CD29+ (4B4+), and CD45RO+ (UCHL-1). We have previously shown......), or a calcium ionophore (A23187) enabled Ta to elicit alloantigen-specific memory T-cell responses and to present purified protein derivative (PPD) to PPD-specific T-cell lines. The addition of irradiated, Epstein-Barr virus-transformed B-cell lines (EBV-LCL) (but not their supernatants) had a similar but less...

  13. Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope.

    Science.gov (United States)

    Metz, Stefan W; Thomas, Ashlie; White, Laura; Stoops, Mark; Corten, Markus; Hannemann, Holger; de Silva, Aravinda M

    2018-04-02

    The 4 dengue serotypes (DENV) are mosquito-borne pathogens that are associated with severe hemorrhagic disease. DENV particles have a lipid bilayer envelope that anchors two membrane glycoproteins prM and E. Two E-protein monomers form head-to-tail homodimers and three E-dimers align to form "rafts" that cover the viral surface. Some human antibodies that strongly neutralize DENV bind to quaternary structure epitopes displayed on E protein dimers or higher order structures forming the infectious virus. Expression of prM and E in cell culture leads to the formation of DENV virus-like particles (VLPs) which are smaller than wildtype virus particles and replication defective due to the absence of a viral genome. There is no data available that describes the antigenic landscape on the surface of flavivirus VLPs in comparison to the better studied infectious virion. A large panel of well characterized antibodies that recognize epitope of ranging complexity were used in biochemical analytics to obtain a comparative antigenic surface view of VLPs in respect to virus particles. DENV patient serum depletions were performed the show the potential of VLPs in serological diagnostics. VLPs were confirmed to be heterogeneous in size morphology and maturation state. Yet, we show that many highly conformational and quaternary structure-dependent antibody epitopes found on virus particles are efficiently displayed on DENV1-4 VLP surfaces as well. Additionally, DENV VLPs can efficiently be used as antigens to deplete DENV patient sera from serotype specific antibody populations. This study aids in further understanding epitopic landscape of DENV VLPs and presents a comparative antigenic surface view of VLPs in respect to virus particles. We propose the use VLPs as a safe and practical alternative to infectious virus as a vaccine and diagnostic antigen.

  14. Derivation of a JC virus-resistant human glial cell line: implications for the identification of host cell factors that determine viral tropism

    International Nuclear Information System (INIS)

    Gee, Gretchen V.; Manley, Kate; Atwood, Walter J.

    2003-01-01

    JC virus (JCV) is a common human polyomavirus that infects 70-80% of the population worldwide. In immunosuppressed individuals, JCV infects oligodendrocytes and causes a fatal demyelinating disease known as progressive multifocal leukoencephalopathy (PML). The tropism of JCV is restricted to oligodendrocytes, astrocytes, and B lymphocytes. Several mechanisms may contribute to the restricted tropism of JCV, including the presence or absence of cell-type-specific transcription and replication factors and the presence or absence of cell-type-specific receptors. We have established a system to investigate cellular factors that influence viral tropism by selecting JCV-resistant cells from a susceptible glial cell line (SVG-A). SVG-A cells were subjected to several rounds of viral infection using JC virus (M1/SVEΔ). A population of resistant cells emerged (SVGR2) that were refractory to infection with the Mad-4 strain of JCV, the hybrid virus M1/SVEΔ, as well as to the related polyomavirus SV40. SVGR2 cells were as susceptible as the SVG-A cells to infection with an unrelated amphotropic retrovirus. The stage at which these cells are resistant to infection was investigated and the block appears to be at early viral gene transcription. This system should ultimately allow us to identify glial specific factors that influence the tropism of JCV

  15. The prevalence of hepatitis B virus E antigen among Ghanaian ...

    African Journals Online (AJOL)

    We studied the prevalence of hepatitis B virus 'e' antigen (HBeAg) among individuals determined to be hepatitis B virus (HBV) surface antigen- positive and analyzed the gender/age category associated with more active HBV infection and whether alteration in the levels of alanine aminotransferase could be associated with ...

  16. Induction of influenza-specific local CD8 T-cells in the respiratory tract after aerosol delivery of vaccine antigen or virus in the Babraham inbred pig

    Science.gov (United States)

    Morgan, Sophie B.; Attaf, Meriem; Szomolay, Barbara; Miles, John J.; Townsend, Alain; Bailey, Mick; Charleston, Bryan; Tchilian, Elma

    2018-01-01

    There is increasing evidence that induction of local immune responses is a key component of effective vaccines. For respiratory pathogens, for example tuberculosis and influenza, aerosol delivery is being actively explored as a method to administer vaccine antigens. Current animal models used to study respiratory pathogens suffer from anatomical disparity with humans. The pig is a natural and important host of influenza viruses and is physiologically more comparable to humans than other animal models in terms of size, respiratory tract biology and volume. It may also be an important vector in the birds to human infection cycle. A major drawback of the current pig model is the inability to analyze antigen-specific CD8+ T-cell responses, which are critical to respiratory immunity. Here we address this knowledge gap using an established in-bred pig model with a high degree of genetic identity between individuals, including the MHC (Swine Leukocyte Antigen (SLA)) locus. We developed a toolset that included long-term in vitro pig T-cell culture and cloning and identification of novel immunodominant influenza-derived T-cell epitopes. We also generated structures of the two SLA class I molecules found in these animals presenting the immunodominant epitopes. These structures allowed definition of the primary anchor points for epitopes in the SLA binding groove and established SLA binding motifs that were used to successfully predict other influenza-derived peptide sequences capable of stimulating T-cells. Peptide-SLA tetramers were constructed and used to track influenza-specific T-cells ex vivo in blood, the lungs and draining lymph nodes. Aerosol immunization with attenuated single cycle influenza viruses (S-FLU) induced large numbers of CD8+ T-cells specific for conserved NP peptides in the respiratory tract. Collectively, these data substantially increase the utility of pigs as an effective model for studying protective local cellular immunity against respiratory

  17. Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes

    DEFF Research Database (Denmark)

    Bentzen, Amalie Kai; Marquard, Andrea Marion; Lyngaa, Rikke Birgitte

    2016-01-01

    -major histocompatibility complex (MHC) multimers labeled with individual DNA barcodes to screen >1,000 peptide specificities in a single sample, and detect low-frequency CD8 T cells specific for virus- or cancer-restricted antigens. When analyzing T-cell recognition of shared melanoma antigens before and after adoptive...... cell therapy in melanoma patients, we observe a greater number of melanoma-specific T-cell populations compared with cytometry-based approaches. Furthermore, we detect neoepitope-specific T cells in tumor-infiltrating lymphocytes and peripheral blood from patients with non-small cell lung cancer...

  18. Antigenic variants of influenza A virus, PR8 strain. I. Their development during serial passage in the lungs of partially immune mice.

    Science.gov (United States)

    GERBER, P; LOOSLI, C G; HAMBRE, D

    1955-06-01

    Antigenically different strains of mouse-adapted PR8 influenza A virus have been produced by 17 serial passages of the virus in the lungs of mice immunized with the homologous agent. Comparative serological tests show that the variant strains share antigenic components with the parent strain but the dominant antigen is different. By means of antibody absorption it was shown that the "new" antigenic component of the variant was already present in minor amounts up to the eighth passage and thereafter gained prominence with continued passage in vaccinated mice. Groups of mice vaccinated with either the PR8-S or T(21) virus and having comparable antibody titers showed no growth of virus in the lungs following aid-borne challenge with homologous strains. On the other hand, following heterologous air-borne challenge no deaths occurred, but virus grew in the lungs of both groups of vaccinated mice. Almost unrestricted virus multiplication took place in the lungs of mice vaccinated with the parent strain and challenged with the PR8-T(21) virus which resulted in extensive consolidation. Less virus grew in the lungs of the mice vaccinated with the variant strains and challenged with the PR8-S virus. In these animals only microscopic evidence of changes due to virus growth in the lungs was observed. The successful serial passage of PR8 influenza A virus in immunized animals was dependent on the initial selection of mice with uniformly low H.I. antibody titers as determined on tail blood, and the intranasal instillation of sufficient virus to favor the survival of those virus particles least related to the antibodies present. The epidemiological implications of these observations are discussed briefly.

  19. SV40 T antigen alone drives karyotype instability that precedes neoplastic transformation of human diploid fibroblasts.

    Science.gov (United States)

    Ray, F A; Peabody, D S; Cooper, J L; Cram, L S; Kraemer, P M

    1990-01-01

    To define the role of SV40 large T antigen in the transformation and immortalization of human cells, we have constructed a plasmid lacking most of the unique coding sequences of small t antigen as well as the SV40 origin of replication. The promoter for T antigen, which lies within the origin of replication, was deleted and replaced by the Rous sarcoma virus promoter. This minimal construct was co-electroporated into normal human fibroblasts of neonatal origin along with a plasmid containing the neomycin resistance gene (neo). Three G418-resistant, T antigen-positive clones were expanded and compared to three T antigen-positive clones that received the pSV3neo plasmid (capable of expressing large and small T proteins and having two origins of replication). Autonomous replication of plasmid DNA was observed in all three clones that received pSV3neo but not in any of the three origin minus clones. Immediately after clonal expansion, several parameters of neoplastic transformation were assayed. Low percentages of cells in T antigen-positive populations were anchorage independent or capable of forming colonies in 1% fetal bovine serum. The T antigen-positive clones generally exhibited an extended lifespan in culture but rarely became immortalized. Large numbers of dead cells were continually generated in all T antigen-positive, pre-crisis populations. Ninety-nine percent of all T antigen-positive cells had numerical or structural chromosome aberrations. Control cells that received the neo gene did not have an extended life span, did not have noticeable numbers of dead cells, and did not exhibit karyotype instability. We suggest that the role of T antigen protein in the transformation process is to generate genetic hypervariability, leading to various consequences including neoplastic transformation and cell death.

  20. Antigen-specific cytotoxic T cell and antigen-specific proliferating T cell clones can be induced to cytolytic activity by monoclonal antibodies against T3

    NARCIS (Netherlands)

    Spits, H.; Yssel, H.; Leeuwenberg, J.; de Vries, J. E.

    1985-01-01

    T3 is a human differentiation antigen expressed exclusively on mature T cells. In this study it is shown that anti-T3 monoclonal antibodies, in addition to their capacity to induce T cells to proliferate, are able to induce antigen-specific cytotoxic T lymphocyte clones to mediate antigen

  1. Antigen specific T-cell responses against tumor antigens are controlled by regulatory T cells in patients with prostate cancer.

    Science.gov (United States)

    Hadaschik, Boris; Su, Yun; Huter, Eva; Ge, Yingzi; Hohenfellner, Markus; Beckhove, Philipp

    2012-04-01

    Immunotherapy is a promising approach in an effort to control castration resistant prostate cancer. We characterized tumor antigen reactive T cells in patients with prostate cancer and analyzed the suppression of antitumor responses by regulatory T cells. Peripheral blood samples were collected from 57 patients with histologically confirmed prostate cancer, 8 patients with benign prostatic hyperplasia and 16 healthy donors. Peripheral blood mononuclear cells were isolated and antigen specific interferon-γ secretion of isolated T cells was analyzed by enzyme-linked immunospot assay. T cells were functionally characterized and T-cell responses before and after regulatory T-cell depletion were compared. As test tumor antigens, a panel of 11 long synthetic peptides derived from a total of 8 tumor antigens was used, including prostate specific antigen and prostatic acid phosphatase. In patients with prostate cancer we noted a 74.5% effector T-cell response rate compared with only 25% in patients with benign prostatic hyperplasia and 31% in healthy donors. In most patients 2 or 3 tumor antigens were recognized. Comparing various disease stages there was a clear increase in the immune response against prostate specific antigens from intermediate to high risk tumors and castration resistant disease. Regulatory T-cell depletion led to a significant boost in effector T-cell responses against prostate specific antigen and prostatic acid phosphatase. Tumor specific effector T cells were detected in most patients with prostate cancer, especially those with castration resistant prostate cancer. Since effector T-cell responses against prostate specific antigens strongly increased after regulatory T-cell depletion, our results indicate that immunotherapy efficacy could be enhanced by decreasing regulatory T cells. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  2. Prevalence of hepatitis b virus surface antigens (HBsag) and ...

    African Journals Online (AJOL)

    The prevalences of hepatitis B virus surface antigen (HBsAg) and hepatitis C virus (HCV) antibodies were determined in 560 blood donors sera using ELISA kits (DIALAB., Austria). Forty eight (8.57%) of these were positive for hepatitis B virus infection, while 33(5.89%) were positive to hepatitis C virus antibodies. The sex ...

  3. Recurrent Plasmodium falciparum malaria infections in Kenyan children diminish T-cell immunity to Epstein Barr virus lytic but not latent antigens.

    Directory of Open Access Journals (Sweden)

    Cynthia J Snider

    Full Text Available Plasmodium falciparum malaria (Pf-malaria and Epstein Barr Virus (EBV infections coexist in children at risk for endemic Burkitt's lymphoma (eBL; yet studies have only glimpsed the cumulative effect of Pf-malaria on EBV-specific immunity. Using pooled EBV lytic and latent CD8+ T-cell epitope-peptides, IFN-γ ELISPOT responses were surveyed three times among children (10 months to 15 years in Kenya from 2002-2004. Prevalence ratios (PR and 95% confidence intervals (CI were estimated in association with Pf-malaria exposure, defined at the district-level (Kisumu: holoendemic; Nandi: hypoendemic and the individual-level. We observed a 46% decrease in positive EBV lytic antigen IFN-γ responses among 5-9 year olds residing in Kisumu compared to Nandi (PR: 0.54; 95% CI: 0.30-0.99. Individual-level analysis in Kisumu revealed further impairment of EBV lytic antigen responses among 5-9 year olds consistently infected with Pf-malaria compared to those never infected. There were no observed district- or individual-level differences between Pf-malaria exposure and EBV latent antigen IFN-γ response. The gradual decrease of EBV lytic antigen but not latent antigen IFN-γ responses after primary infection suggests a specific loss in immunological control over the lytic cycle in children residing in malaria holoendemic areas, further refining our understanding of eBL etiology.

  4. A mouse model for chronic lymphocytic leukemia based on expression of the SV40 large T antigen

    DEFF Research Database (Denmark)

    ter Brugge, Petra J; Ta, Van B T; de Bruijn, Marjolein J W

    2009-01-01

    The simian virus 40 (SV40) T antigen is a potent oncogene able to transform many cell types and has been implicated in leukemia and lymphoma. In this report, we have achieved sporadic SV40 T-antigen expression in mature B cells in mice, by insertion of a SV40 T antigen gene in opposite...... transcriptional orientation in the immunoglobulin (Ig) heavy (H) chain locus between the D and J(H) segments. SV40 T-antigen expression appeared to result from retention of the targeted germline allele and concomitant antisense transcription of SV40 large T in mature B cells, leading to chronic lymphocytic...... leukemia (CLL). Although B-cell development was unperturbed in young mice, aging mice showed accumulation of a monoclonal B-cell population in which the targeted IgH allele was in germline configuration and the wild-type IgH allele had a productive V(D)J recombination. These leukemic B cells were Ig...

  5. Identification of p53 unbound to T-antigen in human cells transformed by simian virus 40 T-antigen.

    Science.gov (United States)

    O'Neill, F J; Hu, Y; Chen, T; Carney, H

    1997-02-27

    In several clones of SV40-transformed human cells, we investigated the relative amounts of large T-Antigen (T-Ag) and p53 proteins, both unbound and associated within complexes, with the goal of identifying changes associated with transformation and immortalization. Cells were transformed by wild type (wt) T-Ag, a functionally temperature sensitive T-Ag (tsA58) and other T-Ag variants. Western analysis showed that while most of the T-Ag was ultimately bound by p53, most of the p53 remained unbound to T-Ag. Unbound p53 remained in the supernatant after a T-Ag immunoprecipitation and p53 was present in two to fourfold excess of T-Ag. In one transformant there was five to tenfold more p53 than T-Ag. p53 was present in transformants in amounts at least 200-fold greater than in untransformed human cells. In wt and variant T-Ag transformants, including those generated with tsA58 T-Ag, large amounts of unbound p53 were present in both pre-crisis and immortal cells and when the cells were grown at permissive or non-permissive temperatures. We also found that in transformants produced by tsA58, an SV40/JCV chimeric T-Ag and other variants, T-Ag appeared to form a complex with p53 slowly perhaps because one or both proteins matured slowly. The presence in transformed human cells of large amounts of unbound p53 and in excess of T-Ag suggests that sequestration of p53 by T-Ag, resulting from complex formation, is required neither for morphological transformation nor immortalization of human cells. Rather, these results support the proposal that high levels of p53, the T-Ag/p53 complexes, or other biochemical event(s), lead to transformation and immortalization of human cells by T-Ag.

  6. Role of CD28 co-stimulation in generation and maintenance of virus-specific T cells

    DEFF Research Database (Denmark)

    Christensen, Jeanette Erbo; Christensen, Jan P; Kristensen, Nanna N

    2002-01-01

    Efficient induction of T cell responses is normally assumed to require both TCR-mediated signaling and engagement of co-stimulatory molecules, in particular CD28. However, the importance of CD28 co-stimulation in induction and maintenance of antiviral T cell responses is not clearly established....... For this reason antiviral CD4(+) and CD8(+) T cell responses in CD28-deficient mice were studied using two different viruses [vesicular stomatitis virus and lymphocytic choriomeningitis virus (LCMV)]. Intracellular cytokine staining and/or MHC-peptide tetramers were used to enumerate antigen-specific T cells...

  7. Comparative analysis of rabbit hemorrhagic disease virus (RHDV) and new RHDV2 virus antigenicity, using specific virus-like particles.

    Science.gov (United States)

    Bárcena, Juan; Guerra, Beatriz; Angulo, Iván; González, Julia; Valcárcel, Félix; Mata, Carlos P; Castón, José R; Blanco, Esther; Alejo, Alí

    2015-09-24

    In 2010 a new Lagovirus related to rabbit haemorrhagic disease virus (RHDV) emerged in France and has since rapidly spread throughout domestic and wild rabbit populations of several European countries. The new virus, termed RHDV2, exhibits distinctive genetic, antigenic and pathogenic features. Notably, RHDV2 kills rabbits previously vaccinated with RHDV vaccines. Here we report for the first time the generation and characterization of RHDV2-specific virus-like particles (VLPs). Our results further confirmed the differential antigenic properties exhibited by RHDV and RHDV2, highlighting the need of using RHDV2-specific diagnostic assays to monitor the spread of this new virus.

  8. Antigenic differences between bovine viral diarrhea viruses and HoBi virus: Possible impacts on diagnosis and control

    Science.gov (United States)

    Compare antigenic differences between HoBi virus and BVDV strains that might impact on diagnostics and control. Eighteen non-cytopathic isolates of pestiviruses including the 5 genotypic groups (BVDV1a-c, BVDV2, BDV) and HoBi virus, were tested using antigen capture enzyme-linked immunosorbent assay...

  9. Anti-ATLA (antibody to adult T-cell leukemia virus-associated antigen), highly positive in OKT4-positive mature T-cell malignancies.

    Science.gov (United States)

    Tobinai, K; Nagai, M; Setoya, T; Shibata, T; Minato, K; Shimoyama, M

    1983-01-01

    Serum or plasma specimens from 252 patients with lymphoid malignancies were screened for reactivity with adult T-cell leukemia virus-associated antigen (ATLA), and the relationship between the immunologic phenotype of the tumor cells and ATLA reactivity was determined. Anti-ATLA antibodies were found in 24 (29.3%) of 82 patients with T-cell malignancy. In contrast, the antibodies were found in none of the 106 patients with B-cell malignancy and only rarely in patients with other lymphoid malignancies without blood transfusions. Among the patients with T-cell malignancy, anti-ATLA antibodies were found in 23 (45.1%) of the 51 patients with OKT4-positive mature T-cell (inducer/helper T-cell) malignancy, but in none of the patients with T-cell malignancy of pre-T, thymic T-cell or OKT8-positive mature T-cell (suppressor/cytotoxic T-cell) phenotype. Furthermore, among the OKT4-positive mature T-cell malignancies, the antibodies were found in 16 (84.2%) of 19 patients with ATL and in 5 (27.8%) of 18 patients with mature (peripheral) T-cell lymphoma, in none of four with typical T-chronic lymphocytic leukemia, in one of nine with mycosis fungoides and in the one patient with small-cell variant of Sézary's syndrome. These results suggest that anti-ATLA positive T-cell malignancies with OKT4-positive mature T-cell phenotype must be the same disease, because it is highly possible that they have the same etiology and the same cellular origin. In the atypical cases, it seems necessary to demonstrate monoclonal integration of proviral DNA of ATLV or HTLV into the tumor cells in order to establish the final diagnosis of ATL.

  10. Genetic and antigenic characterization of Bungowannah virus, a novel pestivirus.

    Science.gov (United States)

    Kirkland, P D; Frost, M J; King, K R; Finlaison, D S; Hornitzky, C L; Gu, X; Richter, M; Reimann, I; Dauber, M; Schirrmeier, H; Beer, M; Ridpath, J F

    2015-08-05

    Bungowannah virus, a possible new species within the genus Pestivirus, has been associated with a disease syndrome in pigs characterized by myocarditis with a high incidence of stillbirths. The current analysis of the whole-genome and antigenic properties of this virus confirms its unique identity, and further suggests that this virus is both genetically and antigenically remote from previously recognized pestiviruses. There was no evidence of reactivity with monoclonal antibodies (mAbs) that are generally considered to be pan-reactive with other viruses in the genus, and there was little cross reactivity with polyclonal sera. Subsequently, a set of novel mAbs has been generated which allow detection of Bungowannah virus. The combined data provide convincing evidence that Bungowannah virus is a member of the genus Pestivirus and should be officially recognized as a novel virus species. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  11. Characterization of Yellow Fever Virus Infection of Human and Non-human Primate Antigen Presenting Cells and Their Interaction with CD4+ T Cells.

    Directory of Open Access Journals (Sweden)

    Yu Cong

    2016-05-01

    Full Text Available Humans infected with yellow fever virus (YFV, a mosquito-borne flavivirus, can develop illness ranging from a mild febrile disease to hemorrhagic fever and death. The 17D vaccine strain of YFV was developed in the 1930s, has been used continuously since development and has proven very effective. Genetic differences between vaccine and wild-type viruses are few, yet viral or host mechanisms associated with protection or disease are not fully understood. Over the past 20 years, a number of cases of vaccine-associated disease have been identified following vaccination with 17D; these cases have been correlated with reduced immune status at the time of vaccination. Recently, several studies have evaluated T cell responses to vaccination in both humans and non-human primates, but none have evaluated the response to wild-type virus infection. In the studies described here, monocyte-derived macrophages (MDM and dendritic cells (MoDC from both humans and rhesus macaques were evaluated for their ability to support infection with either wild-type Asibi virus or the 17D vaccine strain and the host cytokine and chemokine response characterized. Human MoDC and MDM were also evaluated for their ability to stimulate CD4+ T cells. It was found that MoDC and MDM supported viral replication and that there were differential cytokine responses to infection with either wild-type or vaccine viruses. Additionally, MoDCs infected with live 17D virus were able to stimulate IFN-γ and IL-2 production in CD4+ T cells, while cells infected with Asibi virus were not. These data demonstrate that wild-type and vaccine YFV stimulate different responses in target antigen presenting cells and that wild-type YFV can inhibit MoDC activation of CD4+ T cells, a critical component in development of protective immunity. These data provide initial, but critical insight into regulatory capabilities of wild-type YFV in development of disease.

  12. Structure-based design of a disulfide-linked oligomeric form of the simian virus 40 (SV40) large T antigen DNA-binding domain

    International Nuclear Information System (INIS)

    Meinke, Gretchen; Phelan, Paul; Fradet-Turcotte, Amélie; Archambault, Jacques; Bullock, Peter A.

    2011-01-01

    With the aim of forming the ‘lock-washer’ conformation of the origin-binding domain of SV40 large T antigen in solution, using structure-based analysis an intermolecular disulfide bridge was engineered into the origin-binding domain to generate higher order oligomers in solution. The 1.7 Å resolution structure shows that the mutant forms a spiral in the crystal and has the de novo disulfide bond at the protein interface, although structural rearrangements at the interface are observed relative to the wild type. The modular multifunctional protein large T antigen (T-ag) from simian virus 40 orchestrates many of the events needed for replication of the viral double-stranded DNA genome. This protein assembles into single and double hexamers on specific DNA sequences located at the origin of replication. This complicated process begins when the origin-binding domain of large T antigen (T-ag ODB) binds the GAGGC sequences in the central region (site II) of the viral origin of replication. While many of the functions of purified T-ag OBD can be studied in isolation, it is primarily monomeric in solution and cannot assemble into hexamers. To overcome this limitation, the possibility of engineering intermolecular disulfide bonds in the origin-binding domain which could oligomerize in solution was investigated. A recent crystal structure of the wild-type T-ag OBD showed that this domain forms a left-handed spiral in the crystal with six subunits per turn. Therefore, we analyzed the protein interface of this structure and identified two residues that could potentially support an intermolecular disulfide bond if changed to cysteines. SDS–PAGE analysis established that the mutant T-ag OBD formed higher oligomeric products in a redox-dependent manner. In addition, the 1.7 Å resolution crystal structure of the engineered disulfide-linked T-ag OBD is reported, which establishes that oligomerization took place in the expected manner

  13. Rapid and sustained CD4(+) T-cell-independent immunity from adenovirus-encoded vaccine antigens

    DEFF Research Database (Denmark)

    Holst, Peter J; Bartholdy, Christina; Buus, Anette Stryhn

    2007-01-01

    -linked lymphocytic choriomeningitis virus (LCMV)-derived epitopes was long-lived and protective. Notably, in contrast to full-length protein, the response elicited with the beta(2)-microglobulin-linked LCMV-derived epitope was CD4(+) T-cell independent. Furthermore, virus-specific CD8(+) T cells primed...... in the absence of CD4(+) T-cell help were sustained in the long term and able to expand and control a secondary challenge with LCMV. Our results demonstrate that modifications to the antigen used in adenovirus vaccines may be used to improve the induced T-cell response. Such a strategy for CD4(+) T-cell...... to that elicited with an adenovirus-encoded minimal epitope covalently linked to beta(2)-microglobulin. We demonstrate that the beta(2)-microglobulin-linked epitope induced an accelerated and augmented CD8(+) T-cell response. Furthermore, the immunity conferred by vaccination with beta(2)-microglobulin...

  14. JC virus antibody index in natalizumab-treated patients: correlations with John Cunningham virus DNA and C-reactive protein level

    Directory of Open Access Journals (Sweden)

    Lanzillo R

    2014-10-01

    Full Text Available Roberta Lanzillo,1 Raffaele Liuzzi,2 Luca Vallefuoco,3 Marcello Moccia,1 Luca Amato,1 Giovanni Vacca,1 Veria Vacchiano,1 Giuseppe Portella,3 Vincenzo Brescia Morra1 1Neurological Sciences Department, Federico II University, 2Institute of Biostructure and Bioimaging, National Research Council, 3Clinical Pathology Department, Federico II University, Naples, ItalyAbstract: Natalizumab-treated patients have a higher risk of developing progressive multifocal leukoencephalopathy. Exposure to John Cunningham virus (JCV is a prerequisite for PML (progressive multifocal leukoencephalopathy. To assess JCV exposure in multiple sclerosis patients, we performed a serological examination, obtained the antibody index, performed real-time polymerase chain reaction (PCR to detect JCV DNA in plasma and urine, and investigated the role of ultrasensitive C-reactive protein (usCRP as a possible biological marker of JCV reactivation. We retrospectively analyzed consecutive natalizumab-treated multiple sclerosis patients who underwent a JCV antibody test through a two-step enzyme-linked immunosorbent assay (STRATIFY test to the measure of serum usCRP levels, and to perform blood and urine JCV PCR. The studied cohort included 97 relapsing–remitting patients (60 women. Fifty-two patients (53.6% tested positive for anti-JCV antibodies. PCR showed JCV DNA in the urine of 30 out of 83 (36.1% patients and 28 out of 44 seropositive patients (63.6%, with a 6.7% false-negative rate for the STRATIFY test. Normalized optical density values were higher in urinary JCV DNA-positive patients (P<0.0001. Interestingly, the level of usCRP was higher in urinary JCV DNA-positive patients and correlated to the number of DNA copies in urine (P=0.028. As expected, patients' age correlated with JCV seropositivity and with JC viruria (P=0.02 and P=0.001, respectively. JC viruria was significantly correlated with a high JCV antibody index and high serum usCRP levels. We suggest that PCR and

  15. Serological response to Epstein-Barr virus early antigen is ...

    African Journals Online (AJOL)

    Serological response to Epstein-Barr virus early antigen is associated with gastric cancer and human immunodeficiency virus infection in Zambian adults: a ... EBV exposure is common among Zambian adults and that EBV EA seropositivity is associated with gastric cancer and HIV infection, but not premalignant lesions.

  16. Advances in alfalfa mosaic virus-mediated expression of anthrax antigen in planta

    International Nuclear Information System (INIS)

    Brodzik, R.; Bandurska, K.; Deka, D.; Golovkin, M.; Koprowski, H.

    2005-01-01

    Plant viruses show great potential for production of pharmaceuticals in plants. Such viruses can harbor a small antigenic peptide(s) as a part of their coat proteins (CP) and elicit an antigen-specific immune response. Here, we report the high yield and consistency in production of recombinant alfalfa mosaic virus (AlMV) particles for specific presentation of the small loop 15 amino acid epitope from domain-4 of the Bacillus anthracis protective antigen (PA-D4s). The epitope was inserted immediately after the first 25 N-terminal amino acids of AlMV CP to retain genome activation and binding of CP to viral RNAs. Recombinant AlMV particles were efficiently produced in tobacco, easily purified for immunological analysis, and exhibited extended stability and systemic proliferation in planta. Intraperitional injections of mice with recombinant plant virus particles harboring the PA-D4s epitope elicited a distinct immune response. Western blotting and ELISA analysis showed that sera from immunized mice recognized both native PA antigen and the AlMV CP

  17. Antigen-specific T cell activation independently of the MHC: chimeric antigen receptor (CAR-redirected T cells.

    Directory of Open Access Journals (Sweden)

    Hinrich eAbken

    2013-11-01

    Full Text Available Adoptive T cell therapy has recently shown powerful in initiating a lasting anti-tumor response with spectacular therapeutic success in some cases. Specific T cell therapy, however, is limited since a number of cancer cells are not recognized by T cells due to various mechanisms including the limited availability of tumor-specific T cells and deficiencies in antigen processing or major histocompatibility complex (MHC expression of cancer cells. To make adoptive cell therapy applicable for the broad variety of cancer entities, patient's T cells are engineered ex vivo with pre-defined specificity by a recombinant chimeric antigen receptor (CAR which consists in the extracellular part of an antibody-derived domain for binding with a tumor-associated antigen and in the intracellular part of a TCR-derived signaling moiety for T cell activation. The specificity of CAR mediated T cell recognition is defined by the antibody domain, is independent of MHC presentation and can be extended to any target for which an antibody is available. We discuss the advantages and limitations of MHC-independent T cell targeting by an engineered CAR and review most significant progress recently made in early stage clinical trials to treat cancer.

  18. Acquired transcriptional programming in functional and exhausted virus-specific CD8 T cells.

    Science.gov (United States)

    Youngblood, Ben; Wherry, E John; Ahmed, Rafi

    2012-01-01

    Failure to control viral infections such as HIV results in T-cell receptor (TCR) and inhibitory receptor driven exhaustion of antigen-specific T cells. Persistent signaling by these receptors during chronic viral infection sculpts the transcriptional regulatory programs of virus-specific T cells. The resulting gene expression profile is tailored to temper the potentially damaging effector functions of cytotoxic T cells and adapt them to an antigen-rich and inflammation-rich environment. Here we review recent studies investigating mechanisms of transcriptional regulation of effector, functional memory, and exhausted T-cell functions during acute versus chronic infections. Patterns of gene expression in virus-specific CD8 T cells are a result of a combination of pro and inhibitory signals from antigen presentation (TCR-mediated) and co-inhibitory receptor ligation (PD-1, 2B4). Further, memory-specific transcriptional regulation of 2B4 expression and signaling impose a self-limiting secondary effector response to a prolonged viral infection. Additionally, differentiation of functional memory CD8 T cells is coupled with acquisition of a repressive epigenetic program for PD-1 expression. However, chronic infection provides a signal that blocks the acquisition of these epigenetic modifications reinforcing the suppression of cytotoxic lymphocyte (CTL) functions in exhausted cells. Current findings suggest that the mechanism(s) that delineate functional memory versus exhaustion are coupled with acquisition of transcriptional programs at the effector stage of differentiation, reinforced by cessation or persistence of TCR signaling.

  19. Live Imaging of Influenza Infection of the Trachea Reveals Dynamic Regulation of CD8+ T Cell Motility by Antigen.

    Science.gov (United States)

    Lambert Emo, Kris; Hyun, Young-Min; Reilly, Emma; Barilla, Christopher; Gerber, Scott; Fowell, Deborah; Kim, Minsoo; Topham, David J

    2016-09-01

    During a primary influenza infection, cytotoxic CD8+ T cells need to infiltrate the infected airways and engage virus-infected epithelial cells. The factors that regulate T cell motility in the infected airway tissue are not well known. To more precisely study T cell infiltration of the airways, we developed an experimental model system using the trachea as a site where live imaging can be performed. CD8+ T cell motility was dynamic with marked changes in motility on different days of the infection. In particular, significant changes in average cell velocity and confinement were evident on days 8-10 during which the T cells abruptly but transiently increase velocity on day 9. Experiments to distinguish whether infection itself or antigen affect motility revealed that it is antigen, not active infection per se that likely affects these changes as blockade of peptide/MHC resulted in increased velocity. These observations demonstrate that influenza tracheitis provides a robust experimental foundation to study molecular regulation of T cell motility during acute virus infection.

  20. Live Imaging of Influenza Infection of the Trachea Reveals Dynamic Regulation of CD8+ T Cell Motility by Antigen.

    Directory of Open Access Journals (Sweden)

    Kris Lambert Emo

    2016-09-01

    Full Text Available During a primary influenza infection, cytotoxic CD8+ T cells need to infiltrate the infected airways and engage virus-infected epithelial cells. The factors that regulate T cell motility in the infected airway tissue are not well known. To more precisely study T cell infiltration of the airways, we developed an experimental model system using the trachea as a site where live imaging can be performed. CD8+ T cell motility was dynamic with marked changes in motility on different days of the infection. In particular, significant changes in average cell velocity and confinement were evident on days 8-10 during which the T cells abruptly but transiently increase velocity on day 9. Experiments to distinguish whether infection itself or antigen affect motility revealed that it is antigen, not active infection per se that likely affects these changes as blockade of peptide/MHC resulted in increased velocity. These observations demonstrate that influenza tracheitis provides a robust experimental foundation to study molecular regulation of T cell motility during acute virus infection.

  1. Structural and antigenic variation among diverse clade 2 H5N1 viruses.

    Directory of Open Access Journals (Sweden)

    David A Shore

    Full Text Available Antigenic variation among circulating H5N1 highly pathogenic avian influenza A viruses mandates the continuous production of strain-specific pre-pandemic vaccine candidates and represents a significant challenge for pandemic preparedness. Here we assessed the structural, antigenic and receptor-binding properties of three H5N1 HPAI virus hemagglutinins, which were recently selected by the WHO as vaccine candidates [A/Egypt/N03072/2010 (Egypt10, clade 2.2.1, A/Hubei/1/2010 (Hubei10, clade 2.3.2.1 and A/Anhui/1/2005 (Anhui05, clade 2.3.4]. These analyses revealed that antigenic diversity among these three isolates was restricted to changes in the size and charge of amino acid side chains at a handful of positions, spatially equivalent to the antigenic sites identified in H1 subtype viruses circulating among humans. All three of the H5N1 viruses analyzed in this study were responsible for fatal human infections, with the most recently-isolated strains, Hubei10 and Egypt10, containing multiple residues in the receptor-binding site of the HA, which were suspected to enhance mammalian transmission. However, glycan-binding analyses demonstrated a lack of binding to human α2-6-linked sialic acid receptor analogs for all three HAs, reinforcing the notion that receptor-binding specificity contributes only partially to transmissibility and pathogenesis of HPAI viruses and suggesting that changes in host specificity must be interpreted in the context of the host and environmental factors, as well as the virus as a whole. Together, our data reveal structural linkages with phylogenetic and antigenic analyses of recently emerged H5N1 virus clades and should assist in interpreting the significance of future changes in antigenic and receptor-binding properties.

  2. Unpolarized release of vaccinia virus and HIV antigen by colchicine treatment enhances intranasal HIV antigen expression and mucosal humoral responses.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available The induction of a strong mucosal immune response is essential to building successful HIV vaccines. Highly attenuated recombinant HIV vaccinia virus can be administered mucosally, but even high doses of immunization have been found unable to induce strong mucosal antibody responses. In order to solve this problem, we studied the interactions of recombinant HIV vaccinia virus Tiantan strain (rVTT-gagpol in mucosal epithelial cells (specifically Caco-2 cell layers and in BALB/c mice. We evaluated the impact of this virus on HIV antigen delivery and specific immune responses. The results demonstrated that rVTT-gagpol was able to infect Caco-2 cell layers and both the nasal and lung epithelia in BALB/c mice. The progeny viruses and expressed p24 were released mainly from apical surfaces. In BALB/c mice, the infection was limited to the respiratory system and was not observed in the blood. This showed that polarized distribution limited antigen delivery into the whole body and thus limited immune response. To see if this could be improved upon, we stimulated unpolarized budding of the virus and HIV antigens by treating both Caco-2 cells and BALB/c mice with colchicine. We found that, in BALB/c mice, the degree of infection and antigen expression in the epithelia went up. As a result, specific immune responses increased correspondingly. Together, these data suggest that polarized budding limits antigen delivery and immune responses, but unpolarized distribution can increase antigen expression and delivery and thus enhance specific immune responses. This conclusion can be used to optimize mucosal HIV vaccine strategies.

  3. Tomato bushy stunt virus (TBSV), a versatile platform for polyvalent display of antigenic epitopes and vaccine design

    International Nuclear Information System (INIS)

    Kumar, Shantanu; Ochoa, Wendy; Singh, Pratik; Hsu, Catherine; Schneemann, Anette; Manchester, Marianne; Olson, Mark; Reddy, Vijay

    2009-01-01

    Viruses-like particles (VLPs) are frequently being used as platforms for polyvalent display of foreign epitopes of interest on their capsid surface to improve their presentation enhancing the antigenicity and host immune response. In the present study, we used the VLPs of Tomato bushy stunt virus (TBSV), an icosahedral plant virus, as a platform to display 180 copies of 16 amino acid epitopes of ricin toxin fused to the C-terminal end of a modified TBSV capsid protein (NΔ52). Expression of the chimeric recombinant protein in insect cells resulted in spontaneous assembly of VLPs displaying the ricin epitope. Cryo-electron microscopy and image reconstruction of the chimeric VLPs at 22 A resolution revealed the locations and orientation of the ricin epitope exposed on the TBSV capsid surface. Furthermore, injection of chimeric VLPs into mice generated antisera that detected the native ricin toxin. The ease of fusing of short peptides of 15-20 residues and their ability to form two kinds (T = 1, T = 3) of bio-nanoparticles that result in the display of 60 or 180 copies of less constrained and highly exposed antigenic epitopes makes TBSV an attractive and versatile display platform for vaccine design.

  4. Antigen-specific and non-specific CD4+ T cell recruitment and proliferation during influenza infection

    International Nuclear Information System (INIS)

    Chapman, Timothy J.; Castrucci, Maria R.; Padrick, Ryan C.; Bradley, Linda M.; Topham, David J.

    2005-01-01

    To track epitope-specific CD4 + T cells at a single-cell level during influenza infection, the MHC class II-restricted OVA 323-339 epitope was engineered into the neuraminidase stalk of influenza/A/WSN, creating a surrogate viral antigen. The recombinant virus, influenza A/WSN/OVA II , replicated well, was cleared normally, and stimulated both wild-type and DO11.10 or OT-II TCR transgenic OVA-specific CD4 + T cells. OVA-specific CD4 T cells proliferated during infection only when the OVA epitope was present. However, previously primed (but not naive) transgenic CD4 + T cells were recruited to the infected lung both in the presence and absence of the OVA 323-339 epitope. These data show that, when primed, CD4 + T cells may traffic to the lung in the absence of antigen, but do not proliferate. These results also document a useful tool for the study of CD4 T cells in influenza infection

  5. JC Polyomavirus (JCV and Monoclonal Antibodies: Friends or Potential Foes?

    Directory of Open Access Journals (Sweden)

    Roberta Antonia Diotti

    2013-01-01

    Full Text Available Progressive multifocal leukoencephalopathy (PML is a demyelinating disease of the central nervous system (CNS, observed in immunodeficient patients and caused by JC virus ((JCV, also called JC polyomavirus (JCPyV. After the HIV pandemic and the introduction of immunomodulatory therapy, the PML incidence significantly increased. The correlation between the use of natalizumab, a drug used in multiple sclerosis (MS, and the PML development of particular relevance. The high incidence of PML in natalizumab-treated patients has highlighted the importance of two factors: the need of PML risk stratification among natalizumab-treated patients and the need of effective therapeutic options. In this review, we discuss these two needs under the light of the major viral models of PML etiopathogenesis.

  6. Presentation of lipid antigens to T cells.

    Science.gov (United States)

    Mori, Lucia; De Libero, Gennaro

    2008-04-15

    T cells specific for lipid antigens participate in regulation of the immune response during infections, tumor immunosurveillance, allergy and autoimmune diseases. T cells recognize lipid antigens as complexes formed with CD1 antigen-presenting molecules, thus resembling recognition of MHC-peptide complexes. The biophysical properties of lipids impose unique mechanisms for their delivery, internalization into antigen-presenting cells, membrane trafficking, processing, and loading of CD1 molecules. Each of these steps is controlled at molecular and celular levels and determines lipid immunogenicity. Lipid antigens may derive from microbes and from the cellular metabolism, thus allowing the immune system to survey a large repertoire of immunogenic molecules. Recognition of lipid antigens facilitates the detection of infectious agents and the initiation of responses involved in immunoregulation and autoimmunity. This review focuses on the presentation mechanisms and specific recognition of self and bacterial lipid antigens and discusses the important open issues.

  7. Early transduction produces highly functional chimeric antigen receptor-modified virus-specific T-cells with central memory markers: a Production Assistant for Cell Therapy (PACT) translational application.

    Science.gov (United States)

    Sun, Jiali; Huye, Leslie E; Lapteva, Natalia; Mamonkin, Maksim; Hiregange, Manasa; Ballard, Brandon; Dakhova, Olga; Raghavan, Darshana; Durett, April G; Perna, Serena K; Omer, Bilal; Rollins, Lisa A; Leen, Ann M; Vera, Juan F; Dotti, Gianpietro; Gee, Adrian P; Brenner, Malcolm K; Myers, Douglas G; Rooney, Cliona M

    2015-01-01

    Virus-specific T-cells (VSTs) proliferate exponentially after adoptive transfer into hematopoietic stem cell transplant (HSCT) recipients, eliminate virus infections, then persist and provide long-term protection from viral disease. If VSTs behaved similarly when modified with tumor-specific chimeric antigen receptors (CARs), they should have potent anti-tumor activity. This theory was evaluated by Cruz et al. in a previous clinical trial with CD19.CAR-modified VSTs, but there was little apparent expansion of these cells in patients. In that study, VSTs were gene-modified on day 19 of culture and we hypothesized that by this time, sufficient T-cell differentiation may have occurred to limit the subsequent proliferative capacity of the transduced T-cells. To facilitate the clinical testing of this hypothesis in a project supported by the NHLBI-PACT mechanism, we developed and optimized a good manufacturing practices (GMP) compliant method for the early transduction of VSTs directed to Epstein-Barr virus (EBV), Adenovirus (AdV) and cytomegalovirus (CMV) using a CAR directed to the tumor-associated antigen disialoganglioside (GD2). Ad-CMVpp65-transduced EBV-LCLs effectively stimulated VSTs directed to all three viruses (triVSTs). Transduction efficiency on day three was increased in the presence of cytokines and high-speed centrifugation of retroviral supernatant onto retronectin-coated plates, so that under optimal conditions up to 88% of tetramer-positive VSTs expressed the GD2.CAR. The average transduction efficiency of early-and late transduced VSTs was 55 ± 4% and 22 ± 5% respectively, and early-transduced VSTs maintained higher frequencies of T cells with central memory or intermediate memory phenotypes. Early-transduced VSTs also had higher proliferative capacity and produced higher levels of TH1 cytokines IL-2, TNF-α, IFN-γ, MIP-1α, MIP-1β and other cytokines in vitro. We developed a rapid and GMP compliant method for the early transduction of

  8. Patterns of predicted T-cell epitopes associated with antigenic drift in influenza H3N2 hemagglutinin.

    Directory of Open Access Journals (Sweden)

    E Jane Homan

    Full Text Available Antigenic drift allowing escape from neutralizing antibodies is an important feature of transmission and survival of influenza viruses in host populations. Antigenic drift has been studied in particular detail for influenza A H3N2 and well defined antigenic clusters of this virus documented. We examine how host immunogenetics contributes to determination of the antibody spectrum, and hence the immune pressure bringing about antigenic drift. Using uTOPE™ bioinformatics analysis of predicted MHC binding, based on amino acid physical property principal components, we examined the binding affinity of all 9-mer and 15-mer peptides within the hemagglutinin 1 (HA1 of 447 H3N2 virus isolates to 35 MHC-I and 14 MHC-II alleles. We provide a comprehensive map of predicted MHC-I and MHC-II binding affinity for a broad array of HLA alleles for the H3N2 influenza HA1 protein. Each HLA allele exhibited a characteristic predicted binding pattern. Cluster analysis for each HLA allele shows that patterns based on predicted MHC binding mirror those described based on antibody binding. A single amino acid mutation or position displacement can result in a marked difference in MHC binding and hence potential T-helper function. We assessed the impact of individual amino acid changes in HA1 sequences between 10 virus isolates from 1968-2002, representative of antigenic clusters, to understand the changes in MHC binding over time. Gain and loss of predicted high affinity MHC-II binding sites with cluster transitions were documented. Predicted high affinity MHC-II binding sites were adjacent to antibody binding sites. We conclude that host MHC diversity may have a major determinant role in the antigenic drift of influenza A H3N2.

  9. Simian Immunodeficiency Virus (SIV-Specific Chimeric Antigen Receptor-T Cells Engineered to Target B Cell Follicles and Suppress SIV Replication

    Directory of Open Access Journals (Sweden)

    Kumudhini Preethi Haran

    2018-03-01

    Full Text Available There is a need to develop improved methods to treat and potentially cure HIV infection. During chronic HIV infection, replication is concentrated within T follicular helper cells (Tfh located within B cell follicles, where low levels of virus-specific CTL permit ongoing viral replication. We previously showed that elevated levels of simian immunodeficiency virus (SIV-specific CTL in B cell follicles are linked to both decreased levels of viral replication in follicles and decreased plasma viral loads. These findings provide the rationale to develop a strategy for targeting follicular viral-producing (Tfh cells using antiviral chimeric antigen receptor (CAR T cells co-expressing the follicular homing chemokine receptor CXCR5. We hypothesize that antiviral CAR/CXCR5-expressing T cells, when infused into an SIV-infected animal or an HIV-infected individual, will home to B cell follicles, suppress viral replication, and lead to long-term durable remission of SIV and HIV. To begin to test this hypothesis, we engineered gammaretroviral transduction vectors for co-expression of a bispecific anti-SIV CAR and rhesus macaque CXCR5. Viral suppression by CAR/CXCR5-transduced T cells was measured in vitro, and CXCR5-mediated migration was evaluated using both an in vitro transwell migration assay, as well as a novel ex vivo tissue migration assay. The functionality of the CAR/CXCR5 T cells was demonstrated through their potent suppression of SIVmac239 and SIVE660 replication in in vitro and migration to the ligand CXCL13 in vitro, and concentration in B cell follicles in tissues ex vivo. These novel antiviral immunotherapy products have the potential to provide long-term durable remission (functional cure of HIV and SIV infections.

  10. The antigenic property of the H5N1 avian influenza viruses isolated in central China

    Directory of Open Access Journals (Sweden)

    Zou Wei

    2012-08-01

    Full Text Available Abstract Background Three influenza pandemics outbroke in the last century accompanied the viral antigen shift and drift, resulting in the change of antigenic property and the low cross protective ability of the existed antibody to the newly emerged pandemic virus, and eventually the death of millions of people. The antigenic characterizations of the viruses isolated in central China in 2004 and 2006–2007 were investigated in the present study. Results Hemagglutinin inhibition assay and neutralization assay displayed differential antigenic characteristics of the viruses isolated in central China in two periods (2004 and 2006–2007. HA genes of the viruses mainly located in two branches in phylogeny analysis. 53 mutations of the deduced amino acids of the HA genes were divided into 4 patterns. Mutations in pattern 2 and 3 showed the main difference between viruses isolated in 2004 and 2006–2007. Meanwhile, most amino acids in pattern 2 and 3 located in the globular head of the HA protein, and some of the mutations evenly distributed at the epitope sites. Conclusions The study demonstrated that a major antigenic drift had occurred in the viruses isolated in central China. And monitoring the antigenic property should be the priority in preventing the potential pandemic of H5N1 avian influenza virus.

  11. Infectious Entry and Neutralization of Pathogenic JC Polyomaviruses

    Directory of Open Access Journals (Sweden)

    Eileen M. Geoghegan

    2017-10-01

    Full Text Available Summary: Progressive multifocal leukoencephalopathy (PML is a lethal brain disease caused by uncontrolled replication of JC polyomavirus (JCV. JCV strains recovered from the brains of PML patients carry mutations that prevent the engagement of sialylated glycans, which are thought to serve as receptors for the infectious entry of wild-type JCV. In this report, we show that non-sialylated glycosaminoglycans (GAGs can serve as alternative attachment receptors for the infectious entry of both wild-type and PML mutant JCV strains. After GAG-mediated attachment, PML mutant strains engage non-sialylated non-GAG co-receptor glycans, such as asialo-GM1. JCV-neutralizing monoclonal antibodies isolated from patients who recovered from PML appear to block infection by preventing the docking of post-attachment co-receptor glycans in an apical pocket of the JCV major capsid protein. Identification of the GAG-dependent/sialylated glycan-independent alternative entry pathway should facilitate the development of infection inhibitors, including recombinant neutralizing antibodies. : Geoghegan et al. show that JC polyomavirus strains that cause brain disease infect cells via a pathway involving a heparin-like attachment receptor and a non-sialylated co-receptor. Candidate therapeutic human monoclonal antibodies neutralize by blocking co-receptor engagement. Keywords: polyomavirus, JC, BK, SV40, progressive multifocal leukoencephalopathy, PML, monoclonal antibody, mAb, virus entry, receptor

  12. Anti-ATLA (antibody to adult T-cell leukemia-lymphoma virus-associated antigen)-negative adult T-cell leukemia-lymphoma.

    Science.gov (United States)

    Shimoyama, M; Minato, K; Tobinai, K; Nagai, M; Setoya, T; Watanabe, S; Hoshino, H; Miwa, M; Nagoshi, H; Ichiki, N; Fukushima, N; Sugiura, K; Funaki, N

    1983-01-01

    Five cases of adult T-cell leukemia-lymphoma (ATL) having typical clinicohematologic and morphologic features but negative for anti-ATLA [antibody to ATL virus (ATLV)-associated antigen (ATLA)] are presented. Some differences in immunologic, epidemiologic, and serologic data between anti-ATLA-positive and -negative ATLs are also described. Expression of ATLA in early primary cultured leukemic cells was found to be negative in three patients tested (Cases 1, 2 and 4), however, a long-term cultured cell line, ATL-6A, derived from peripheral blood leukemia cells from Case 1, was found to express ATLA. Mother of Case 1 and a daughter of Case 2 were anti-ATLA negative. These results indicate that ATLV was involved in certain anti-ATLA-negative ATL patients, at least in Case 1, and that the patient had no detectable immune response against ATLV and ATLA. However, in other cases in which no ATLA reactivity of serum and no ATLA expression in cultured leukemic cells were observed, another possibility such as activation of an unknown cellular oncogene specific for ATL without ATLV involvement may be considered. In order to prove these possibilities definitely, it is necessary to elucidate whether or not proviral DNA of ATLV is integrated into chromosomal DNA of ATL cells and to find a cellular oncogene specific for ATL in the future.

  13. Correlation of irradiation-induced transition temperature increases from C sub v and K sub Jc /K sub Ic data

    Energy Technology Data Exchange (ETDEWEB)

    Hiser, A.L. (Materials Engineering Associates, Inc., Lanham, MD (USA))

    1990-03-01

    Reactor pressure vessel (RPV) surveillance capsules contain Charpy-V (C{sub v}) specimens, but many do not contain fracture toughness specimens; accordingly, the radiation-induced shift (increase) in the brittle-to-ductile transition region ({Delta}T) is based upon the {Delta}T determined from notch ductility (C{sub v}) tests. Since the ASME K{sub Ic} and K{sub IR} reference fracture toughness curves are shifted by the {Delta}T from C{sub v}, assurance that this {Delta}T does not underestimate {Delta}T associated with the actual irradiated fracture toughness is required to provide confidence that safety margins do not fall below assumed levels. To assess this behavior, comparisons of {Delta}T's defined by elastic-plastic fracture toughness and C{sub v} tests have been made using data from RPV base and weld metals in which irradiations were made under test reactor conditions. Using as-measure'' fracture toughness values (K{sub Jc}), average comparisons between {Delta}T(C{sub v}) and {Delta}T(K{sub Jc}) are: (a) All data: {Delta}T(K{sub Jc} 100 MPa{radical}{bar m}) = {Delta}T(C{sub v} 41 J) +10{degree}C; (b) Plates only: {Delta}T(K{sub Jc} 100 MPa{radical}{bar m}) = {Delta}T(C{sub v} 41 J) +15{degree}C; and (c) Welds only: {Delta}T(K{sub Jc} 100 MPa{radical}{bar m}) = {Delta}T(C{sub v} 41 J) {minus}1{degree}C. Fluence rate is found to have no significant effect on the relationship between {Delta}T(C{sub v}) and {Delta}T(K{sub Jc}). 12 refs., 12 figs., 5 tabs.

  14. Trans-activation of the JC virus late promoter by the tat protein of type 1 human immunodeficiency virus in glial cells

    International Nuclear Information System (INIS)

    Tada, Hiroomi; Lashgari, M.; Amini, S.; Khalili, K.; Rappaport, J.; Wong-Staal, F.

    1990-01-01

    Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system caused by the JC virus (JCV), a human papovavirus. PML is a relatively rare disease seen predominantly in immunocompromised individuals and is a frequent complication observed in AIDS patients. The significantly higher incidence of PML in AIDS patients than in other immunosuppressive disorders has suggested that the presence of human immunodeficiency virus type 1 (HIV-1) in the brain may directly or indirectly contribute to the pathogenesis of this disease. In the present study the authors have examined the expression of the JCV genome in both glial and non-glial cells in the presence of HIV-1 regulatory proteins. They find that the HIV-1-encoded trans-regulatory protein tat increases the basal activity of the JCV late promoter, JCV L , in glial cells. They conclude that the presence of the HIV-1-encoded tat protein may positively affect the JCV lytic cycle in glial cells by stimulating JCV gene expression. The results suggest a mechanism for the relatively high incidence of PML in AIDS patients than in other immunosuppressive disorders. Furthermore, the findings indicate that the HIV-1 regulatory protein tat may stimulate other viral and perhaps cellular promoters, in addition to its own

  15. Demonstration of feline corona virus (FCV) antigen in organs of cats suspected of feline infectious peritonitis (FIP) disease.

    Science.gov (United States)

    Hök, K

    1990-07-01

    Cryosections of organs and smears from membrana nicitians from cats suspected of having spontaneous infection with feline infectious peritonitis virus (FIPV), were investigated using an indirect immunofluorescence assay (IIFA) in order to detect the presence of feline corona virus (FCV). In 113 cats, from each of which six organs were screened, virus antigen was found most often in membrana nicitians and lung. Out of these animals an additional six organs from a group of 30 cats were screened. In these cats membrana nicitians, parotid gland, thymus and apex of caecum had the highest incidence of virus antigen (90%). The lowest incidence of virus antigen was found in the spleen (60%). There was a clear demonstration of a higher incidence of antigen present in more than half of the total number of screened organs per cat (P less than 0.0005). No statistical difference was observed between sexes when comparing the incidence of virus antigen in different organs. Virus antigen was present in less organs in cats with no lesions suggestive of FIP disease compared to cats with such lesions (P less than 0.001). A similar distribution of the incidence of FCV antigen in the investigated organs was observed in these two groups.

  16. Characterization of a transcriptional promoter of human papillomavirus 18 and modulation of its expression by simian virus 40 and adenovirus early antigens

    International Nuclear Information System (INIS)

    Thierry, F.; Heard, J.M.; Dartmann, K.; Yaniv, M.

    1987-01-01

    RNA present in cells derived from cervical carcinoma that contained human papillomavirus 18 genomes was initiated in the 1.053-kilobase BamHI fragment that covered the complete noncoding region of this virus. When cloned upstream of the chloramphenicol acetyltransferase gene, this viral fragment directed the expression of the bacterial enzyme only in the sense orientation. Initiation sites were mapped around the ATG of open reading frame E6. This promoter was active in some human and simian cell lines, and its expression was modulated positively by simian virus 40 large T antigen and negatively by adenovirus type 5 E1a antigen

  17. Viral Escape Mutant Epitope Maintains TCR Affinity for Antigen yet Curtails CD8 T Cell Responses.

    Directory of Open Access Journals (Sweden)

    Shayla K Shorter

    Full Text Available T cells have the remarkable ability to recognize antigen with great specificity and in turn mount an appropriate and robust immune response. Critical to this process is the initial T cell antigen recognition and subsequent signal transduction events. This antigen recognition can be modulated at the site of TCR interaction with peptide:major histocompatibility (pMHC or peptide interaction with the MHC molecule. Both events could have a range of effects on T cell fate. Though responses to antigens that bind sub-optimally to TCR, known as altered peptide ligands (APL, have been studied extensively, the impact of disrupting antigen binding to MHC has been highlighted to a lesser extent and is usually considered to result in complete loss of epitope recognition. Here we present a model of viral evasion from CD8 T cell immuno-surveillance by a lymphocytic choriomeningitis virus (LCMV escape mutant with an epitope for which TCR affinity for pMHC remains high but where the antigenic peptide binds sub optimally to MHC. Despite high TCR affinity for variant epitope, levels of interferon regulatory factor-4 (IRF4 are not sustained in response to the variant indicating differences in perceived TCR signal strength. The CD8+ T cell response to the variant epitope is characterized by early proliferation and up-regulation of activation markers. Interestingly, this response is not maintained and is characterized by a lack in IL-2 and IFNγ production, increased apoptosis and an abrogated glycolytic response. We show that disrupting the stability of peptide in MHC can effectively disrupt TCR signal strength despite unchanged affinity for TCR and can significantly impact the CD8+ T cell response to a viral escape mutant.

  18. Identification of swine influenza virus epitopes and analysis of multiple specificities expressed by cytotoxic T cell subsets

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers; Breum, Solvej Østergaard; Riber, Ulla

    2014-01-01

    Background: Major histocompatibility complex (MHC) class I peptide binding and presentation are essential for antigen-specific activation of cytotoxic T lymphocytes (CTLs) and swine MHC class I molecules, also termed swine leukocyte antigens (SLA), thus play a crucial role in the process that leads...... to elimination of viruses such as swine influenza virus (SwIV). This study describes the identification of SLA-presented peptide epitopes that are targets for a swine CTL response, and further analyses multiple specificities expressed by SwIV activated CTL subsets. Findings: Four SwIV derived peptides were...

  19. Bag3-induced autophagy is associated with degradation of JCV oncoprotein, T-Ag.

    Directory of Open Access Journals (Sweden)

    Ilker Kudret Sariyer

    Full Text Available JC virus, JCV, is a human neurotropic polyomavirus whose replication in glial cells causes the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML. In addition, JCV possesses oncogenic activity and expression of its transforming protein, large T-antigen (T-Ag, in several experimental animals induces tumors of neural origin. Further, the presence of JCV DNA and T-Ag have been repeatedly observed in several human malignant tissues including primitive neuroectodermal tumors and glioblastomas. Earlier studies have demonstrated that Bag3, a member of the Bcl-2-associated athanogene (Bag family of proteins, which is implicated in autophagy and apoptosis, is downregulated upon JCV infection of glial cells and that JCV T-Ag is responsible for suppressing the activity of the BAG3 promoter. Here, we investigated the possible impact of Bag3 on T-Ag expression in JCV-infected human primary glial cells as well as in cells derived from T-Ag-induced medulloblastoma in transgenic animals. Results from these studies revealed that overexpression of Bag3 drastically decreases the level of T-Ag expression by inducing the autophagic degradation of the viral protein. Interestingly, this event leads to the inhibition of JCV infection of glial cells, suggesting that the reduced levels of T-antigen seen upon the overexpression of Bag3 has a biological impact on the viral lytic cycle. Results from protein-protein interaction studies showed that T-Ag and Bag3 physically interact with each other through the zinc-finger of T-Ag and the proline rich domains of Bag3, and this interaction is important for the autophagic degradation of T-Ag. Our observations open a new avenue of research for better understanding of virus-host interaction by investigating the interplay between T-Ag and Bag3, and their impact on the development of JCV-associated diseases.

  20. Bag3-induced autophagy is associated with degradation of JCV oncoprotein, T-Ag.

    Science.gov (United States)

    Sariyer, Ilker Kudret; Merabova, Nana; Patel, Prem Kumer; Knezevic, Tijana; Rosati, Alessandra; Turco, Maria C; Khalili, Kamel

    2012-01-01

    JC virus, JCV, is a human neurotropic polyomavirus whose replication in glial cells causes the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). In addition, JCV possesses oncogenic activity and expression of its transforming protein, large T-antigen (T-Ag), in several experimental animals induces tumors of neural origin. Further, the presence of JCV DNA and T-Ag have been repeatedly observed in several human malignant tissues including primitive neuroectodermal tumors and glioblastomas. Earlier studies have demonstrated that Bag3, a member of the Bcl-2-associated athanogene (Bag) family of proteins, which is implicated in autophagy and apoptosis, is downregulated upon JCV infection of glial cells and that JCV T-Ag is responsible for suppressing the activity of the BAG3 promoter. Here, we investigated the possible impact of Bag3 on T-Ag expression in JCV-infected human primary glial cells as well as in cells derived from T-Ag-induced medulloblastoma in transgenic animals. Results from these studies revealed that overexpression of Bag3 drastically decreases the level of T-Ag expression by inducing the autophagic degradation of the viral protein. Interestingly, this event leads to the inhibition of JCV infection of glial cells, suggesting that the reduced levels of T-antigen seen upon the overexpression of Bag3 has a biological impact on the viral lytic cycle. Results from protein-protein interaction studies showed that T-Ag and Bag3 physically interact with each other through the zinc-finger of T-Ag and the proline rich domains of Bag3, and this interaction is important for the autophagic degradation of T-Ag. Our observations open a new avenue of research for better understanding of virus-host interaction by investigating the interplay between T-Ag and Bag3, and their impact on the development of JCV-associated diseases.

  1. Immortalization of Human Fetal Hepatocyte by Ectopic Expression of Human Telomerase Reverse Transcriptase, Human Papilloma Virus (E7) and Simian Virus 40 Large T (SV40 T) Antigen Towards Bioartificial Liver Support.

    Science.gov (United States)

    Giri, Shibashish; Bader, Augustinus

    2014-09-01

    Generation of genetically stable and non-tumoric immortalization cell line from primary cells would be enormously useful for research and therapeutic purposes, but progress towards this goal has so far been limited. It is now universal acceptance that immortalization of human fetal hepatocytes based on recent advances of telomerase biology and oncogene, lead to unlimited population doubling could be the possible source for bioartificial liver device. Immortalization of human fetal hepatocytes cell line by ectopic expression of human telomerase reverse transcriptase (hTERT), human papilloma virus gene (E7) and simian virus 40 large T (SV40 T) antigens is main goal of present study. We used an inducible system containing human telomerase and E7, both of which are cloned into responder constructs controlled by doxycycline transactivator. We characterized the immortalized human fetal hepatocyte cells by analysis of green fluorescent cells (GFP) positive cells using flow cytometry (FACs) cell sorting and morphology, proliferative rate and antigen expression by immunohistochemical analysis. In addition to we analysized lactate formation, glucose consumption, albumin secretion and urea production of immortalized human fetal hepatocyte cells. After 25 attempts for transfection of adult primary hepatocytes by human telomerase and E7 to immortalize them, none of the transfection systems resulted in the production of a stable, proliferating cell line. Although the transfection efficiency was more than 70% on the first day, the vast majority of the transfected hepatocytes lost their signal within the first 5-7 days. The remaining transfected hepatocytes persisted for 2-4 weeks and divided one or two times without forming a clone. After 10 attempts of transfection human fetal hepatocytes using the same transfection system, we obtained one stable human fetal hepatocytes cell line which was able albumin secretion urea production and glucose consumption. We established a

  2. Natural and adoptive T-cell immunity against herpes family viruses after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Thomas, Simone; Herr, Wolfgang

    2011-06-01

    Reactivated infections with herpes family-related cytomegalovirus, Epstein-Barr virus and varicella zoster virus are serious and sometimes life-threatening complications for patients undergoing allogeneic hematopoietic stem cell transplantation. The pathogenesis of these infections critically involves the slow and inefficient recovery of antiviral T-cell immunity after transplantation. Although efficient drugs to decrease viral load during this vulnerable period have been developed, long-term control of herpes viruses and protection from associated diseases require the sufficient reconstitution of virus-specific memory T cells. To heal the deficiency by immunotherapeutic means, numerous research groups have developed antiviral vaccines and strategies based on the adoptive transfer of virus-specific T cells. This article summarizes the substantial progress made in this field during the past two decades and gives future perspectives about challenges that need to be addressed before antigen-specific immunotherapy against herpes family viruses can be implemented in general clinical practice.

  3. Lack of T cell dysfunction and programmed cell death in human immunodeficiency virus type 1-infected chimpanzees correlates with absence of monocytotropic variants

    NARCIS (Netherlands)

    Schuitemaker, H.; Meyaard, L.; Kootstra, N. A.; Dubbes, R.; Otto, S. A.; Tersmette, M.; Heeney, J. L.; Miedema, F.

    1993-01-01

    In asymptomatic human immunodeficiency virus (HIV) infection in humans, disturbed T cell functions such as anergy and programmed cell death, thought to result from inappropriate signaling by antigen-presenting cells due to HIV infection, precede increase in virus load, decline in CD4+ T cell

  4. Plasmodium knowlesi Sporozoite Antigen: Expression by Infectious Recombinant Vaccinia Virus

    Science.gov (United States)

    Smith, Geoffrey L.; Godson, G. Nigel; Nussenzweig, Victor; Nussenzweig, Ruth S.; Barnwell, John; Moss, Bernard

    1984-04-01

    The gene coding for the circumsporozoite antigen of the malaria parasite Plasmodium knowlesi was inserted into the vaccinia virus genome under the control of a defined vaccinia virus promoter. Cells infected with the recombinant virus synthesized polypeptides of 53,000 to 56,000 daltons that reacted with monoclonal antibody against the repeating epitope of the malaria protein. Furthermore, rabbits vaccinated with the recombinant virus produced antibodies that bound specifically to sporozoites. These data provide evidence for expression of a cloned malaria gene in mammalian cells and illustrate the potential of vaccinia virus recombinants as live malaria vaccines.

  5. Comparative analysis of rabbit hemorrhagic disease virus (RHDV) and new RHDV2 virus antigenicity, using specific virus-like particles

    OpenAIRE

    Bárcena, Juan; Guerra, Beatriz; Angulo, Iván; González, Julia; Valcárcel, Félix; Mata, Carlos P.; Castón, José R.; Blanco, Esther; Alejo, Alí

    2015-01-01

    International audience; In 2010 a new Lagovirus related to rabbit haemorrhagic disease virus (RHDV) emerged in France and has since rapidly spread throughout domestic and wild rabbit populations of several European countries. The new virus, termed RHDV2, exhibits distinctive genetic, antigenic and pathogenic features. Notably, RHDV2 kills rabbits previously vaccinated with RHDV vaccines. Here we report for the first time the generation and characterization of RHDV2-specific virus-like particl...

  6. Studies on antigenic and genomic properties of Brazilian rabies virus isolates

    NARCIS (Netherlands)

    Schaefer, R.; Batista, H.B.; Franco, A.C.; Rijsewijk, F.A.M.; Roehe, P.M.

    2005-01-01

    Despite the recognized stability of rabies virus, differences among isolates from different species have been found. This work was carried out with the aim to identify antigenic and genomic differences in Brazilian rabies virus isolates and to verify whether such alterations would bear any

  7. Isolation and characterization of an ubiquitin extension protein gene (JcUEP) promoter from Jatropha curcas.

    Science.gov (United States)

    Tao, Yan-Bin; He, Liang-Liang; Niu, Long-Jian; Xu, Zeng-Fu

    2015-04-01

    The JcUEP promoter is active constitutively in the bio-fuel plant Jatropha curcas , and is an alternative to the widely used CaMV35S promoter for driving constitutive overexpression of transgenes in Jatropha. Well-characterized promoters are required for transgenic breeding of Jatropha curcas, a biofuel feedstock with great potential for production of bio-diesel and bio-jet fuel. In this study, an ubiquitin extension protein gene from Jatropha, designated JcUEP, was identified to be ubiquitously expressed. Thus, we isolated a 1.2 kb fragment of the 5' flanking region of JcUEP and evaluated its activity as a constitutive promoter in Arabidopsis and Jatropha using the β-glucuronidase (GUS) reporter gene. As expected, histochemical GUS assay showed that the JcUEP promoter was active in all Arabidopsis and Jatropha tissues tested. We also compared the activity of the JcUEP promoter with that of the cauliflower mosaic virus 35S (CaMV35S) promoter, a well-characterized constitutive promoter conferring strong transgene expression in dicot species, in various tissues of Jatropha. In a fluorometric GUS assay, the two promoters showed similar activities in stems, mature leaves and female flowers; while the CaMV35S promoter was more effective than the JcUEP promoter in other tissues, especially young leaves and inflorescences. In addition, the JcUEP promoter retained its activity under stress conditions in low temperature, high salt, dehydration and exogenous ABA treatments. These results suggest that the plant-derived JcUEP promoter could be an alternative to the CaMV35S promoter for driving constitutive overexpression of transgenes in Jatropha and other plants.

  8. Pelacakan Secara Imunohistokimiawi Antigen Virus pada Ayam yang Diinfeksi dengan Virus Penyakit Tetelo (IMMUNOHISTOCHEMICAL DETECTION OF VIRAL ANTIGEN IN TISSUE OF CHICKENS EXPERIMENTALLY INFECTED WITH NEWCASTLE DISEASE VIRUS

    Directory of Open Access Journals (Sweden)

    Anak Agung Ayu Mirah Adi

    2013-07-01

    Full Text Available In order to study the distribution of Newcastle disease virus (NDV following infection, chickenswere experimentally infected with visceretropic velogenic NDV isolate. Monoclonal antibodies (mAbsagainst the NDV LaSota vaccine strain were then produced to detect viral antigen in the infectedorgans. The mAbs were firstly tested for their specificity by enzyme linked immunosorbent assay(ELISA using NDV and normal allantoic fluids as antigens. Eight mAbs specific against NDVwere isolated and two mAbs were used for immunodetection of NDV antigen in chicken’s tissues.By immunohistochemistry labeled streptavidin-biotin (LSAB staining NDV–antigen was detectedin paraffin embedded tissues of NDV-infected chickens. NDV antigen was not detected in noninfected chickens. In the infected chickens, high intensity of NDV antigen was detected in thelymphoid tissues, lung and intestine. The NDV antigen with a lesser intensity was detected in thebrain, trachea, liver and myocardium. This study shows that although viscerotropic velogenicNDV isolate can infect almost all organs, the main target of infection are lung, intestine andlymphoids tissues

  9. Antigenic characterization of small, round-structured viruses by immune electron microscopy.

    OpenAIRE

    Okada, S; Sekine, S; Ando, T; Hayashi, Y; Murao, M; Yabuuchi, K; Miki, T; Ohashi, M

    1990-01-01

    Small, round-structured viruses (SRSVs) detected from nonbacterial gastroenteritis outbreaks in Tokyo and Saitama Prefecture, Japan, during the period from 1977 to 1988 were tentatively classified into nine antigenic patterns from SRSV-1 (S-1) to SRSV-9 (S-9) by cross-immune electron microscopy (IEM). S-1 and S-2 appeared pattern specific, while S-3 to S-9, distinguishable from each other in their reactivity, appeared somewhat antigenically related. Their antigenic relatedness to the Norwal, ...

  10. Activation of ATPase activity of simian virus 40 large T antigen by the covalent affinity analog of ATP, fluorosulfonylbenzoyl 5'-adenosine.

    Science.gov (United States)

    Bradley, M K

    1990-01-01

    Fluorosulfonylbenzoyl 5'-adenosine (FSBA) bound to one site in simian virus 40 large T antigen (T) and covalently modified greater than 95% of the molecules in a complete reaction. This analog for ATP specifically cross-links to the Mg-phosphate pocket in ATP-binding sites. Cyanogen bromide cleavage and tryptic digestion of [14C]FSBA-labeled protein, paired with T-specific monoclonal antibody analyses, were used to map the site in T to a tryptic peptide just C terminal to the PAb204 epitope. The location of the FSBA linkage was consistent with the predicted tertiary structure of the ATP-binding region in T described previously (M. K. Bradley, T. F. Smith, R. H. Lathrop, D. M. Livingston, and T. A. Webster, Proc. Natl. Acad. Sci. USA 84:4026-4030, 1987). Binding of FSBA to T was cooperative, implying an interaction between two binding sites. This could occur if the protein formed a dimer, and it is known that the ATPase activity is associated with a dimeric T. Most interesting was the activation of the ATPase when up to 50% of T was bound by the analog. The effect was also produced by preincubation with millimolar concentrations of ATP or the nonhydrolyzable analog gamma beta-methylene 5'-adenosine diphosphate at elevated temperatures. When greater than 50% of T was modified by FSBA, the ATPase was inhibited as the analog cross-linked to the second, previously activated, binding site. These data support a dual function for the one ATP-binding site in T as both regulatory and catalytic. Images PMID:1697910

  11. Rhodiolae Kirliowii Radix et Rhizoma and Crataegus pinnatifida Fructus Extracts Effectively Inhibit BK Virus and JC Virus Infection of Host Cells

    Directory of Open Access Journals (Sweden)

    San-Yuan Chen

    2017-01-01

    Full Text Available The human polyomaviruses BK (BKPyV and JC (JCPyV are ubiquitous pathogens long associated with severe disease in immunocompromised individuals. BKPyV causes polyomavirus-associated nephropathy and hemorrhagic cystitis, whereas JCPyV is the causative agent of the fatal demyelinating disease progressive multifocal leukoencephalopathy. No effective therapies targeting these viruses are currently available. The goal of this study was to identify Chinese medicinal herbs with antiviral activity against BKPyV and JCPyV. We screened extracts of Chinese medicinal herbs for the ability to inhibit hemagglutination by BKPyV and JCPyV virus-like particles (VLPs and the ability to inhibit BKPyV and JCPyV binding and infection of host cells. Two of the 40 herbal extracts screened, Rhodiolae Kirliowii Radix et Rhizoma and Crataegus pinnatifida Fructus, had hemagglutination inhibition activity on BKPyV and JCPyV VLPs and further inhibited infection of the cells by BKPyV and JCPyV, as evidenced by reduced expression of viral proteins in BKPyV-infected and JCPyV-infected cells after treatment with Rhodiolae Kirliowii Radix et Rhizoma or Crataegus pinnatifida Fructus extract. The results in this work show that both Rhodiolae Kirliowii Radix et Rhizoma and Crataegus pinnatifida Fructus may be sources of potential antiviral compounds for treating BKPyV and JCPyV infections.

  12. CXCR3 Directs Antigen-Specific Effector CD4+ T Cell Migration to the Lung During Parainfluenza Virus Infection

    DEFF Research Database (Denmark)

    Kohlmeier, Jacob E; Cookenham, Tres; Miller, Shannon C

    2009-01-01

    effector CD4(+) T cell migration to the lungs. To assess the role of CCR5 and CXCR3 in vivo, we directly compared the migration of Ag-specific wild-type and chemokine receptor-deficient effector T cells in mixed bone marrow chimeric mice during a parainfluenza virus infection. CXCR3-deficient effector CD4......(+) T cells were 5- to 10-fold less efficient at migrating to the lung compared with wild-type cells, whereas CCR5-deficient effector T cells were not impaired in their migration to the lung. In contrast to its role in trafficking, CXCR3 had no impact on effector CD4(+) T cell proliferation, phenotype......, or function in any of the tissues examined. These findings demonstrate that CXCR3 controls virus-specific effector CD4(+) T cell migration in vivo, and suggest that blocking CXCR3-mediated recruitment may limit T cell-induced immunopathology during respiratory virus infections....

  13. Antigenic structure of the capsid protein of rabbit haemorrhagic disease virus

    DEFF Research Database (Denmark)

    Martinez-Torrecuadrada, Jorge L.; Cortes, Elena; Vela, Carmen

    1998-01-01

    Rabbit haemorrhagic disease virus (RHDV) causes an important disease in rabbits. The virus capsid is composed of a single 60 kDa protein. The capsid protein gene was cloned in Escherichia coli using the pET3 system, and the antigenic structure of RHDV VP60 was dissected using 11 monoclonal...

  14. Antigenic Characterization of H3 Subtypes of Avian Influenza A Viruses from North America.

    Science.gov (United States)

    Bailey, Elizabeth; Long, Li-Ping; Zhao, Nan; Hall, Jeffrey S; Baroch, John A; Nolting, Jacqueline; Senter, Lucy; Cunningham, Frederick L; Pharr, G Todd; Hanson, Larry; Slemons, Richard; DeLiberto, Thomas J; Wan, Xiu-Feng

    2016-05-01

    Besides humans, H3 subtypes of influenza A viruses (IAVs) can infect various animal hosts, including avian, swine, equine, canine, and sea mammal species. These H3 viruses are both antigenically and genetically diverse. Here, we characterized the antigenic diversity of contemporary H3 avian IAVs recovered from migratory birds in North America. Hemagglutination inhibition (HI) assays were performed on 37 H3 isolates of avian IAVs recovered from 2007 to 2011 using generated reference chicken sera. These isolates were recovered from samples taken in the Atlantic, Mississippi, Central, and Pacific waterfowl migration flyways. Antisera to all the tested H3 isolates cross-reacted with each other and, to a lesser extent, with those to H3 canine and H3 equine IAVs. Antigenic cartography showed that the largest antigenic distance among the 37 avian IAVs is about four units, and each unit corresponds to a 2 log 2 difference in the HI titer. However, none of the tested H3 IAVs cross-reacted with ferret sera derived from contemporary swine and human IAVs. Our results showed that the H3 avian IAVs we tested lacked significant antigenic diversity, and these viruses were antigenically different from those circulating in swine and human populations. This suggests that H3 avian IAVs in North American waterfowl are antigenically relatively stable.

  15. Computational Identification of Antigenicity-Associated Sites in the Hemagglutinin Protein of A/H1N1 Seasonal Influenza Virus.

    Directory of Open Access Journals (Sweden)

    Xiaowei Ren

    Full Text Available The antigenic variability of influenza viruses has always made influenza vaccine development challenging. The punctuated nature of antigenic drift of influenza virus suggests that a relatively small number of genetic changes or combinations of genetic changes may drive changes in antigenic phenotype. The present study aimed to identify antigenicity-associated sites in the hemagglutinin protein of A/H1N1 seasonal influenza virus using computational approaches. Random Forest Regression (RFR and Support Vector Regression based on Recursive Feature Elimination (SVR-RFE were applied to H1N1 seasonal influenza viruses and used to analyze the associations between amino acid changes in the HA1 polypeptide and antigenic variation based on hemagglutination-inhibition (HI assay data. Twenty-three and twenty antigenicity-associated sites were identified by RFR and SVR-RFE, respectively, by considering the joint effects of amino acid residues on antigenic drift. Our proposed approaches were further validated with the H3N2 dataset. The prediction models developed in this study can quantitatively predict antigenic differences with high prediction accuracy based only on HA1 sequences. Application of the study results can increase understanding of H1N1 seasonal influenza virus antigenic evolution and accelerate the selection of vaccine strains.

  16. Can resting B cells present antigen to T cells

    International Nuclear Information System (INIS)

    Ashwell, J.D.; DeFranco, A.L.; Paul, W.E.; Schwartz, R.H.

    1985-01-01

    Antigen stimulation of T lymphocytes can occur only in the presence of an antigen-presenting cell (APC). An ever-increasing number of cell types have been found to act as APCs; these include macrophages, splenic and lymph node dendritic cells, and Langerhans cells of the skin. Although activated B lymphocytes and B cell lymphomas are known to serve as APCs, it has been generally believed that resting B cells cannot perform this function. However, in recent studies the authors have found that resting B cells can indeed present soluble antigen to T cell clones as well as to antigen-primed T cells. The previous difficulty in demonstrating this activity can be explained by the finding that, in contrast to macrophages and dendritic cells, the antigen-presenting ability of resting B cells is very radiosensitive. Macrophages are usually irradiated with 2000-3300 rads to prevent them from incorporating [ 3 H]thymidine in the T cell proliferation assay. Resting B cells, however, begin to lose presenting function at 1500 rads and have completely lost this activity at 3300 rads. It was also possible to distinguish two distinct T cell clonal phenotypes when resting B cells were used as APCs on the basis of two different assays (T cell proliferation, and B cell proliferation resulting from T cell activation). The majority of T cell clones tested were capable of both proliferating themselves and inducing the proliferation of B cells. Some T cells clones, however, could not proliferate in the presence of antigen and B cell APCs, although they were very good at inducing the proliferation of B cells

  17. Co-delivery of antigen and IL-12 by Venezuelan equine encephalitis virus replicon particles enhances antigen-specific immune responses and anti-tumor effects

    Science.gov (United States)

    Osada, Takuya; Berglund, Peter; Morse, Michael A.; Hubby, Bolyn; Lewis, Whitney; Niedzwiecki, Donna; Hobeika, Amy; Burnett, Bruce; Devi, Gayathri R.; Clay, Timothy M.; Smith, Jonathan; Lyerly, H. Kim

    2013-01-01

    We recently demonstrated that Venezuelan equine encephalitis (VEE) virus-based replicon particles (VRP) encoding tumor antigens could break tolerance in the immunomodulatory environment of advanced cancer. We hypothesized that local injection of VRP expressing Interleukin-12 (IL-12) at the site of injections of VRP-based cancer vaccines would enhance the tumor-antigen-specific T cell and antibody responses and anti-tumor efficacy. Mice were immunized with VRP encoding the human tumor-associated antigen, carcinoembryonic antigen (CEA) (VRP-CEA(6D)) and VRP-IL-12 was also administered at the same site or at a distant location. CEA-specific T cell and antibody responses were measured. To determine antitumor activity, mice were implanted with MC38-CEA-2 cells and immunized with VRP-CEA with and without VRP-IL-12 and tumor growth and mouse survival were measured. VRP-IL-12 greatly enhanced CEA-specific T cell and antibody responses when combined with VRP-CEA(6D) vaccination. VRP IL-12 was superior to IL-12 protein at enhancing immune responses. Vaccination with VRP-CEA(6D) plus VRP-IL-12 was superior to VRP-CEA(6D) or VRP-IL-12 alone in inducing anti-tumor activity and prolonging survival in tumor-bearing mice. Importantly, local injection of VRP-IL-12 at the VRP-CEA(6D) injection site provided more potent activation of CEA-specific immune responses than VRP-IL-12 injected at a distant site from the VRP-CEA injections. Together, this study shows that VRP-IL-12 enhances vaccination with VRP-CEA(6D) and was more effective at activating CEA-specific T cell responses when locally expressed at the vaccine site. Clinical trials evaluating the adjuvant effect of VRP-IL-12 at enhancing the immunogenicity of cancer vaccines are warranted. PMID:22488274

  18. HTLV-1-infected thymic epithelial cells convey the virus to CD4+ T lymphocytes.

    Science.gov (United States)

    Carvalho Barros, Luciana Rodrigues; Linhares-Lacerda, Leandra; Moreira-Ramos, Klaysa; Ribeiro-Alves, Marcelo; Machado Motta, Maria Cristina; Bou-Habib, Dumith Chequer; Savino, Wilson

    2017-12-01

    The human T-lymphotropic virus type-1 (HTLV-1) is the causative agent of adult T cell leukemia/lymphoma (ATL) and HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). CD4 + T cells are the main target of HTLV-1, but other cell types are known to be infected, including immature lymphocytes. Developing T cells undergo differentiation in the thymus, through migration and interaction with the thymic microenvironment, in particular with thymic epithelial cells (TEC) the major component of this three dimensional meshwork of non-lymphoid cells. Herein, we show that TEC express the receptors for HTLV-1 and can be infected by this virus through cell-cell contact and by cell-free virus suspensions. The expression of anti-apoptosis, chemokine and adhesion molecules genes are altered in HTLV-1-infected TEC, although gene expression of antigen presentation molecules remained unchanged. Furthermore, HTLV-1-infected TEC transmitted the virus to a CD4 + T cell line and to CD4 + T cells from healthy donors, during in vitro cellular co-cultures. Altogether, our data point to the possibility that the human thymic epithelial cells play a role in the establishment and progression of HTLV-1 infection, functioning as a reservoir and transmitting the virus to maturing CD4 + T lymphocytes, which in turn will cause disease in the periphery. Copyright © 2017. Published by Elsevier GmbH.

  19. Differential presentation of endogenous and exogenous hepatitis B surface antigens influences priming of CD8(+) T cells in an epitope-specific manner.

    Science.gov (United States)

    Riedl, Petra; Reiser, Michael; Stifter, Katja; Krieger, Jana; Schirmbeck, Reinhold

    2014-07-01

    Little is known about whether presentation of endogenous and exogenous hepatitis B virus (HBV) surface antigens on APCs targeted by vaccination and/or virus-harboring hepatocytes influences de novo priming of CD8(+) T cells. We showed that surface antigen-expressing transfectants exclusively display a K(b) /S190 epitope, whereas cells pulsed with recombinant surface particles (rSPs) exclusively present a K(b) /S208 epitope to CD8(+) T cells. The differential presentation of these epitopes largely reflects the selective, but not exclusive, priming of K(b) /S190- and K(b) /S208-specific T cells in C57BL/6 mice by endogenous/DNA- or exogenous/protein-based vaccines, respectively. Silencing the K(b) /S190 epitope (K(b) /S190V194F ) in antigen-expressing vectors rescued the presentation of the K(b) /S208 epitope in stable transfectants and significantly enhanced priming of K(b) /S208-specific T cells in C57BL/6 mice. A K(b) /S190-mediated immunodominance operating in surface antigen-expressing cells, but not in rSP-pulsed cells, led to an efficient suppression in the presentation of the K(b) /S208 epitope and a consequent decrease in the priming of K(b) /S208-specific T cells. This K(b) /S190-mediated immunodominance also operated in 1.4HBV-S(mut) transgenic (tg) hepatocytes selectively expressing endogenous surface antigens and allowed priming of K(b) /S208- but not K(b) /S190-specific T cells in 1.4HBV-S(mut) tg mice. However, IFN-γ(+) K(b) /S208-specific T cells could not inhibit HBV replication in the liver of 1.4HBV-S(mut) tg mice. These results have practical implications for the design of T-cell-stimulating therapeutic vaccines. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Antibodies to the human T-cell lymphoma/leukemia virus type I in Dutch haemophiliacs

    NARCIS (Netherlands)

    Goudsmit, J.; Miedema, F.; Breederveld, C.; Terpstra, F.; Roos, M.; Schellekens, P.; Melief, C.

    1986-01-01

    95 Dutch haemophiliacs were tested for antibodies to membrane antigens on cells infected with human T-cell leukemia virus type I (HTLV-I-MA) by indirect immunofluorescence and to purified HTLV-I by enzyme-linked immunosorbent assay. Antibodies to HTLV-I-MA were present in 8 of 95 (8%) haemophiliacs,

  1. Therapeutic targeting of regulatory T cells enhances tumor-specific CD8+ T cell responses in Epstein–Barr virus associated nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Fogg, Mark; Murphy, John R.; Lorch, Jochen; Posner, Marshall; Wang, Fred

    2013-01-01

    Epstein–Barr virus (EBV) is associated with multiple malignancies including nasopharyngeal carcinoma (NPC). In nasopharynx cancer, CD8+ T cells specific for EBV Nuclear Antigen-1 (EBNA-1) and Latent Membrane Protein 2 (LMP2) are important components of anti-tumor immunity since both are consistently expressed in NPC. We have previously shown that EBNA-1-specific CD8+ T cell responses were suppressed in NPC patients compared to healthy controls. We now find that CD8+ T cell responses specific for LMP2 are also abnormal in NPC patients, and both EBNA-1- and LMP2-specific responses are suppressed by regulatory T cells (Treg). EBNA-1 and LMP2-specific CD8+ T cell responses, as well as immune control of EBV-infected cells in vitro, could be restored by the depletion of Tregs and by use of a clinically approved drug targeting Tregs. Thus, in vivo modulation of Tregs may be an effective means of enhancing these anti-tumor immune responses in NPC patients. - Highlights: • Viral proteins are tumor antigens in Epstein–Barr virus associated Nasopharyngeal Carcinoma. • CD8+ T cell responses against EBV proteins EBNA-1 and LMP2 are suppressed in NPC patients. • T regulatory cells are responsible for suppressing EBV immunity in NPC patients. • Depletion of Tregs with Ontak can rescue EBV-specific CD8+ T cell responses in NPC patients. • This clinically approved drug may be effective for enhancing anti-tumor immunity in NPC patients

  2. Therapeutic targeting of regulatory T cells enhances tumor-specific CD8+ T cell responses in Epstein–Barr virus associated nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Fogg, Mark [Department of Medicine, Brigham and Women' s Hospital (United States); Murphy, John R. [Departments of Medicine and Microbiology, Boston University School of Medicine, Boston, MA 02118 (United States); Lorch, Jochen; Posner, Marshall [Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115 (United States); Wang, Fred, E-mail: fwang@research.bwh.harvard.edu [Department of Medicine, Brigham and Women' s Hospital (United States); Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115 (United States)

    2013-07-05

    Epstein–Barr virus (EBV) is associated with multiple malignancies including nasopharyngeal carcinoma (NPC). In nasopharynx cancer, CD8+ T cells specific for EBV Nuclear Antigen-1 (EBNA-1) and Latent Membrane Protein 2 (LMP2) are important components of anti-tumor immunity since both are consistently expressed in NPC. We have previously shown that EBNA-1-specific CD8+ T cell responses were suppressed in NPC patients compared to healthy controls. We now find that CD8+ T cell responses specific for LMP2 are also abnormal in NPC patients, and both EBNA-1- and LMP2-specific responses are suppressed by regulatory T cells (Treg). EBNA-1 and LMP2-specific CD8+ T cell responses, as well as immune control of EBV-infected cells in vitro, could be restored by the depletion of Tregs and by use of a clinically approved drug targeting Tregs. Thus, in vivo modulation of Tregs may be an effective means of enhancing these anti-tumor immune responses in NPC patients. - Highlights: • Viral proteins are tumor antigens in Epstein–Barr virus associated Nasopharyngeal Carcinoma. • CD8+ T cell responses against EBV proteins EBNA-1 and LMP2 are suppressed in NPC patients. • T regulatory cells are responsible for suppressing EBV immunity in NPC patients. • Depletion of Tregs with Ontak can rescue EBV-specific CD8+ T cell responses in NPC patients. • This clinically approved drug may be effective for enhancing anti-tumor immunity in NPC patients.

  3. Serologic evidence of Jamestown Canyon and Keystone virus infection in vertebrates of the DelMarVa Peninsula.

    Science.gov (United States)

    Watts, D M; LeDuc, J W; Bailey, C L; Dalrymple, J M; Gargan, T P

    1982-11-01

    Serological data accumulated during the past decade indicated that a variety of feral and domestic animals of the Delaware-Maryland-Virginia (DelMarVa) Peninsula were infected with Jamestown Canyon (JC) and/or Keystone (KEY) viruses (Bunyaviridae, California serogroup). Neutralizing (N) antibody to JC virus was most prevalent in white-tailed deer, sika deer, cottontail rabbits and horses. KEY virus N antibody was detected most frequently in gray squirrels and domestic goats. N antibody indicative of past infection by one or both viruses also was found in raccoons, horses and humans. JC and/or KEY virus N antibodies were not demonstrable in sera of several other species of small mammals and reptiles. Investigations were extended to evaluate the role of domestic goats as an amplifying host of JC and KEY viruses and to assess their potential as sentinels of virus transmission. Goats maintained in the Pocomoke Cypress Swamp during the summer season of 1978, acquired N antibodies to JC and KEY viruses. Following experimental inoculation with either JC or KEY virus, all goats developed N antibody despite the absence of a demonstrable viremia in most animals. Goats proved to be effective as sentinels for monitoring the transmission of JC and KEY viruses; however, the exceptionally low titers or absence of viremia following inoculation with these viruses would seem to preclude a potential virus-amplifying role for this species. Although findings implicated primarily gray squirrels and white-tailed deer as possible amplifying hosts of KEY and JC virus, respectively, further investigations will be required to clarify their role, particularly since both viruses may be maintained entirely by transovarial transmission.

  4. Targeting of non-dominant antigens as a vaccine strategy to broaden T-cell responses during chronic viral infection

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Jensen, Benjamin Anderschou Holbech; Ragonnaud, Emeline

    2015-01-01

    In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes facilita......In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes...... was lost over time in T cells specific for the dominant T cell epitopes, and these cells were fully capable of expanding in response to a new viral challenge. Overall, our data suggests a potential for broadening of the antiviral CD8+ T-cell response by selecting non-dominant antigens to be targeted...

  5. Identification of Low- and High-Impact Hemagglutinin Amino Acid Substitutions That Drive Antigenic Drift of Influenza A(H1N1 Viruses.

    Directory of Open Access Journals (Sweden)

    William T Harvey

    2016-04-01

    Full Text Available Determining phenotype from genetic data is a fundamental challenge. Identification of emerging antigenic variants among circulating influenza viruses is critical to the vaccine virus selection process, with vaccine effectiveness maximized when constituents are antigenically similar to circulating viruses. Hemagglutination inhibition (HI assay data are commonly used to assess influenza antigenicity. Here, sequence and 3-D structural information of hemagglutinin (HA glycoproteins were analyzed together with corresponding HI assay data for former seasonal influenza A(H1N1 virus isolates (1997-2009 and reference viruses. The models developed identify and quantify the impact of eighteen amino acid substitutions on the antigenicity of HA, two of which were responsible for major transitions in antigenic phenotype. We used reverse genetics to demonstrate the causal effect on antigenicity for a subset of these substitutions. Information on the impact of substitutions allowed us to predict antigenic phenotypes of emerging viruses directly from HA gene sequence data and accuracy was doubled by including all substitutions causing antigenic changes over a model incorporating only the substitutions with the largest impact. The ability to quantify the phenotypic impact of specific amino acid substitutions should help refine emerging techniques that predict the evolution of virus populations from one year to the next, leading to stronger theoretical foundations for selection of candidate vaccine viruses. These techniques have great potential to be extended to other antigenically variable pathogens.

  6. Identification of Low- and High-Impact Hemagglutinin Amino Acid Substitutions That Drive Antigenic Drift of Influenza A(H1N1) Viruses

    Science.gov (United States)

    Harvey, William T.; Benton, Donald J.; Gregory, Victoria; Hall, James P. J.; Daniels, Rodney S.; Bedford, Trevor; Haydon, Daniel T.; Hay, Alan J.; McCauley, John W.; Reeve, Richard

    2016-01-01

    Determining phenotype from genetic data is a fundamental challenge. Identification of emerging antigenic variants among circulating influenza viruses is critical to the vaccine virus selection process, with vaccine effectiveness maximized when constituents are antigenically similar to circulating viruses. Hemagglutination inhibition (HI) assay data are commonly used to assess influenza antigenicity. Here, sequence and 3-D structural information of hemagglutinin (HA) glycoproteins were analyzed together with corresponding HI assay data for former seasonal influenza A(H1N1) virus isolates (1997–2009) and reference viruses. The models developed identify and quantify the impact of eighteen amino acid substitutions on the antigenicity of HA, two of which were responsible for major transitions in antigenic phenotype. We used reverse genetics to demonstrate the causal effect on antigenicity for a subset of these substitutions. Information on the impact of substitutions allowed us to predict antigenic phenotypes of emerging viruses directly from HA gene sequence data and accuracy was doubled by including all substitutions causing antigenic changes over a model incorporating only the substitutions with the largest impact. The ability to quantify the phenotypic impact of specific amino acid substitutions should help refine emerging techniques that predict the evolution of virus populations from one year to the next, leading to stronger theoretical foundations for selection of candidate vaccine viruses. These techniques have great potential to be extended to other antigenically variable pathogens. PMID:27057693

  7. Effector CD4+ T cells recognize intravascular antigen presented by patrolling monocytes.

    Science.gov (United States)

    Westhorpe, Clare L V; Norman, M Ursula; Hall, Pam; Snelgrove, Sarah L; Finsterbusch, Michaela; Li, Anqi; Lo, Camden; Tan, Zhe Hao; Li, Songhui; Nilsson, Susan K; Kitching, A Richard; Hickey, Michael J

    2018-02-21

    Although effector CD4 + T cells readily respond to antigen outside the vasculature, how they respond to intravascular antigens is unknown. Here we show the process of intravascular antigen recognition using intravital multiphoton microscopy of glomeruli. CD4 + T cells undergo intravascular migration within uninflamed glomeruli. Similarly, while MHCII is not expressed by intrinsic glomerular cells, intravascular MHCII-expressing immune cells patrol glomerular capillaries, interacting with CD4 + T cells. Following intravascular deposition of antigen in glomeruli, effector CD4 + T-cell responses, including NFAT1 nuclear translocation and decreased migration, are consistent with antigen recognition. Of the MHCII + immune cells adherent in glomerular capillaries, only monocytes are retained for prolonged durations. These cells can also induce T-cell proliferation in vitro. Moreover, monocyte depletion reduces CD4 + T-cell-dependent glomerular inflammation. These findings indicate that MHCII + monocytes patrolling the glomerular microvasculature can present intravascular antigen to CD4 + T cells within glomerular capillaries, leading to antigen-dependent inflammation.

  8. Susceptibility of Primary Human Choroid Plexus Epithelial Cells and Meningeal Cells to Infection by JC Virus.

    Science.gov (United States)

    O'Hara, Bethany A; Gee, Gretchen V; Atwood, Walter J; Haley, Sheila A

    2018-04-15

    JC polyomavirus (JCPyV) establishes a lifelong persistence in roughly half the human population worldwide. The cells and tissues that harbor persistent virus in vivo are not known, but renal tubules and other urogenital epithelial cells are likely candidates as virus is shed in the urine of healthy individuals. In an immunosuppressed host, JCPyV can become reactivated and cause progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the central nervous system. Recent observations indicate that JCPyV may productively interact with cells in the choroid plexus and leptomeninges. To further study JCPyV infection in these cells, primary human choroid plexus epithelial cells and meningeal cells were challenged with virus, and their susceptibility to infection was compared to the human glial cell line, SVG-A. We found that JCPyV productively infects both choroid plexus epithelial cells and meningeal cells in vitro Competition with the soluble receptor fragment LSTc reduced virus infection in these cells. Treatment of cells with neuraminidase also inhibited both viral infection and binding. Treatment with the serotonin receptor antagonist, ritanserin, reduced infection in SVG-A and meningeal cells. We also compared the ability of wild-type and sialic acid-binding mutant pseudoviruses to transduce these cells. Wild-type pseudovirus readily transduced all three cell types, but pseudoviruses harboring mutations in the sialic acid-binding pocket of the virus failed to transduce the cells. These data establish a novel role for choroid plexus and meninges in harboring virus that likely contributes not only to meningoencephalopathies but also to PML. IMPORTANCE JCPyV infects greater than half the human population worldwide and causes central nervous system disease in patients with weakened immune systems. Several recent reports have found JCPyV in the choroid plexus and leptomeninges of patients with encephalitis. Due to their role in forming the blood

  9. The Antigenic Structure of Zika Virus and Its Relation to Other Flaviviruses: Implications for Infection and Immunoprophylaxis

    Science.gov (United States)

    Stiasny, Karin

    2017-01-01

    SUMMARY Zika virus was discovered ∼70 years ago in Uganda and maintained a low profile as a human disease agent in Africa and Asia. Only recently has it caused explosive outbreaks in previously unaffected regions, first in Oceania and then in the Americas since 2015. Of special concern is the newly identified link between congenital malformations (especially microcephaly) and Zika virus infections during pregnancy. At present, it is unclear whether Zika virus changed its pathogenicity or whether the huge number of infections allowed the recognition of a previously cryptic pathogenic property. The purpose of this review is to discuss recent data on the molecular antigenic structure of Zika virus in the context of antibody-mediated neutralization and antibody-dependent enhancement (ADE) of infection, a phenomenon that has been implicated in the development of severe disease caused by the related dengue viruses. Emphasis is given to epitopes of antibodies that potently neutralize Zika virus and also to epitopes that provide antigenic links to other important human-pathogenic flaviviruses such as dengue, yellow fever, West Nile, Japanese encephalitis, and tick-borne encephalitis viruses. The antigenic cross talk between Zika and dengue viruses appears to be of special importance, since they cocirculate in many regions of endemicity and sequential infections are likely to occur frequently. New insights into the molecular antigenic structure of Zika virus and flaviviruses in general have provided the foundation for great progress made in developing Zika virus vaccines and antibodies for passive immunization. PMID:28179396

  10. Immunogenetic analysis of cellular interactions governing the recruitment of T lymphocytes and monocytes in lymphocytic choriomeningitis virus-induced immunopathology

    International Nuclear Information System (INIS)

    Doherty, P.C.; Ceredig, R.; Allan, J.E.

    1988-01-01

    The Lyt2+ class I major histocompatibility complex (MHC)-restricted virus-immune T cells that induce murine lymphocytic choriomeningitis (LCM) are targeted onto radiation-resistant cells in the central nervous system of virus-infected mice. The use of appropriate bone marrow radiation chimeras as LCM virus-infected, (immunosuppressed recipients for immune T-cell transfer has established that, though bone marrow-derived cells can stimulate virus-specific cytotoxic T lymphocytes (CTL) in spleen, they do not reconstitute the barrier to T-cell recruitment from blood to cerebrospinal fluid. This is true for chimeras made up to 8 months previously, even though the inflammatory monocytes and macrophages in such chimeras are all of donor bone marrow origin. Radiation-resistant cells in the spleens of these chimeras are also still able to further stimulate virus-immune CTL. There is no requirement for H-2 compatibility between virus-immune T lymphocytes and secondarily recruited monocytes, or T cells of an inappropriate specificity. The key event in LCM immunopathology may thus be localization of T cells to the antigen-presenting endothelium in brain, leading to the secretion of mediators that promote the nonspecific recruitment of monocytes and other T cells

  11. Antigenic and Molecular Characterization of Avian Influenza A(H9N2) Viruses, Bangladesh

    Science.gov (United States)

    Shanmuganatham, Karthik; Feeroz, Mohammed M.; Jones-Engel, Lisa; Smith, Gavin J.D.; Fourment, Mathieu; Walker, David; McClenaghan, Laura; Alam, S.M. Rabiul; Hasan, M. Kamrul; Seiler, Patrick; Franks, John; Danner, Angie; Barman, Subrata; McKenzie, Pamela; Krauss, Scott; Webby, Richard J.

    2013-01-01

    Human infection with avian influenza A(H9N2) virus was identified in Bangladesh in 2011. Surveillance for influenza viruses in apparently healthy poultry in live-bird markets in Bangladesh during 2008–2011 showed that subtype H9N2 viruses are isolated year-round, whereas highly pathogenic subtype H5N1 viruses are co-isolated with subtype H9N2 primarily during the winter months. Phylogenetic analysis of the subtype H9N2 viruses showed that they are reassortants possessing 3 gene segments related to subtype H7N3; the remaining gene segments were from the subtype H9N2 G1 clade. We detected no reassortment with subtype H5N1 viruses. Serologic analyses of subtype H9N2 viruses from chickens revealed antigenic conservation, whereas analyses of viruses from quail showed antigenic drift. Molecular analysis showed that multiple mammalian-specific mutations have become fixed in the subtype H9N2 viruses, including changes in the hemagglutinin, matrix, and polymerase proteins. Our results indicate that these viruses could mutate to be transmissible from birds to mammals, including humans. PMID:23968540

  12. THE ANTIGENIC POTENCY OF EPIDEMIC INFLUENZA VIRUS FOLLOWING INACTIVATION BY ULTRAVIOLET RADIATION

    Science.gov (United States)

    Salk, Jonas E.; Lavin, G. I.; Francis, Thomas

    1940-01-01

    A study of the antigenic potency of influenza virus inactivated by ultraviolet radiation has been made. Virus so inactivated is still capable of functioning as an immunizing agent when given to mice by the intraperitoneal route. In high concentrations inactivated virus appears to be nearly as effective as active virus but when quantitative comparisons of the immunity induced by different dilutions are made, it is seen that a hundredfold loss in immunizing capacity occurs during inactivation. Virus in suspensions prepared from the lungs of infected mice is inactivated more rapidly than virus in tissue culture medium. A standard for the comparison of vaccines of epidemic influenza virus is proposed. PMID:19871057

  13. Antigenic and genetic evolution of contemporary swine H1 influenza viruses in the United States.

    Science.gov (United States)

    Rajao, Daniela S; Anderson, Tavis K; Kitikoon, Pravina; Stratton, Jered; Lewis, Nicola S; Vincent, Amy L

    2018-05-01

    Several lineages of influenza A viruses (IAV) currently circulate in North American pigs. Genetic diversity is further increased by transmission of IAV between swine and humans and subsequent evolution. Here, we characterized the genetic and antigenic evolution of contemporary swine H1N1 and H1N2 viruses representing clusters H1-α (1A.1), H1-β (1A.2), H1pdm (1A.3.3.2), H1-γ (1A.3.3.3), H1-δ1 (1B.2.2), and H1-δ2 (1B.2.1) currently circulating in pigs in the United States. The δ1-viruses diversified into two new genetic clades, H1-δ1a (1B.2.2.1) and H1-δ1b (1B.2.2.2), which were also antigenically distinct from the earlier H1-δ1-viruses. Further characterization revealed that a few key amino acid changes were associated with antigenic divergence in these groups. The continued genetic and antigenic evolution of contemporary H1 viruses might lead to loss of vaccine cross-protection that could lead to significant economic impact to the swine industry, and represents a challenge to public health initiatives that attempt to minimize swine-to-human IAV transmission. Published by Elsevier Inc.

  14. Molecular Epidemiology and Antigenic Characterization of Seasonal Influenza Viruses Circulating in Nepal.

    Science.gov (United States)

    Upadhyay, B P; Ghimire, P; Tashiro, M; Banjara, M R

    2017-01-01

    Influenza is one of the public health burdens in Nepal and its epidemiology is not clearly understood. The objective of this study was to explore the molecular epidemiology and the antigenic characteristics of the circulating influenza viruses in Nepal. A total of 1495 throat swab specimens were collected from January to December, 2014. Real time PCR assay was used for identification of influenza virus types and subtypes. Ten percent of the positive specimens were randomly selected and inoculated onto Madin-Darby Canine Kidney Epithelial cells (MDCK) for influenza virus isolation. All viruses were characterized by the hemagglutination inhibition (HI) assay. Influenza viruses were detected in 421/1495 (28.2%) specimens. Among positive cases, influenza A virus was detected in 301/421 (71.5%); of which 120 (39.9%) were influenza A/H1N1 pdm09 and 181 (60.1%) were influenza A/H3 subtype. Influenza B viruses were detected in 119/421 (28.3%) specimens. Influenza A/H1N1 pdm09, A/H3 and B viruses isolated in Nepal were antigenically similar to the vaccine strain influenza A/California/07/2009(H1N1pdm09), A/Texas/50/2012(H3N2), A/New York/39/2012(H3N2) and B/Massachusetts/2/2012, respectively. Influenza viruses were reported year-round in different geographical regions of Nepal which was similar to other tropical countries. The circulating influenza virus type and subtypes of Nepal were similar to vaccine candidate virus which could be prevented by currently used influenza vaccine.

  15. A Simple Proteomics-Based Approach to Identification of Immunodominant Antigens from a Complex Pathogen: Application to the CD4 T Cell Response against Human Herpesvirus 6B.

    Directory of Open Access Journals (Sweden)

    Aniuska Becerra-Artiles

    Full Text Available Most of humanity is chronically infected with human herpesvirus 6 (HHV-6, with viral replication controlled at least in part by a poorly characterized CD4 T cell response. Identification of viral epitopes recognized by CD4 T cells is complicated by the large size of the herpesvirus genome and a low frequency of circulating T cells responding to the virus. Here, we present an alternative to classical epitope mapping approaches used to identify major targets of the T cell response to a complex pathogen like HHV-6B. In the approach presented here, extracellular virus preparations or virus-infected cells are fractionated by SDS-PAGE, and eluted fractions are used as source of antigens to study cytokine responses in direct ex vivo T cell activation studies. Fractions inducing significant cytokine responses are analyzed by mass spectrometry to identify viral proteins, and a subset of peptides from these proteins corresponding to predicted HLA-DR binders is tested for IFN-γ production in seropositive donors with diverse HLA haplotypes. Ten HHV-6B viral proteins were identified as immunodominant antigens. The epitope-specific response to HHV-6B virus was complex and variable between individuals. We identified 107 peptides, each recognized by at least one donor, with each donor having a distinctive footprint. Fourteen peptides showed responses in the majority of donors. Responses to these epitopes were validated using in vitro expanded cells and naturally expressed viral proteins. Predicted peptide binding affinities for the eight HLA-DRB1 alleles investigated here correlated only modestly with the observed CD4 T cell responses. Overall, the response to the virus was dominated by peptides from the major capsid protein U57 and major antigenic protein U11, but responses to other proteins including glycoprotein H (U48 and tegument proteins U54 and U14 also were observed. These results provide a means to follow and potentially modulate the CD4 T-cell immune

  16. Comparison of antigen-specific T-cell responses of tuberculosis patients using complex or single antigens of Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Mustafa, A S; Amoudy, H A; Wiker, H G

    1998-01-01

    GroES, rPstS, rGroEL and rDnaK) antigens of Mycobacterium tuberculosis. The responses of PBMC to these defined antigens were compared with the corresponding results obtained with complex antigens, such as whole-cell M. tuberculosis, M. tuberculosis culture filtrate (MT-CF) and cell wall antigens, as well...... as the vaccine strain, Mycobacterium bovis bacillus Calmette-Guerin (BCG). In addition, M. tuberculosis and MT-CF-induced T-cell lines were tested in the same assays against the panel of purified and complex antigens. The compiled data from PBMC and T-cell lines tested for antigen-induced proliferation and IFN...

  17. Effect on HBs antigen clearance of addition of pegylated interferon alfa-2a to nucleos(t)ide analogue therapy versus nucleos(t)ide analogue therapy alone in patients with HBe antigen-negative chronic hepatitis B and sustained undetectable plasma hepatitis B virus DNA: a randomised, controlled, open-label trial.

    Science.gov (United States)

    Bourlière, Marc; Rabiega, Pascaline; Ganne-Carrie, Nathalie; Serfaty, Lawrence; Marcellin, Patrick; Barthe, Yoann; Thabut, Dominique; Guyader, Dominique; Hezode, Christophe; Picon, Magali; Causse, Xavier; Leroy, Vincent; Bronowicki, Jean Pierre; Carrieri, Patrizia; Riachi, Ghassan; Rosa, Isabelle; Attali, Pierre; Molina, Jean Michel; Bacq, Yannick; Tran, Albert; Grangé, Jean Didier; Zoulim, Fabien; Fontaine, Hélène; Alric, Laurent; Bertucci, Inga; Bouvier-Alias, Magali; Carrat, Fabrice

    2017-03-01

    Findings from uncontrolled studies suggest that addition of pegylated interferon in patients with HBe antigen (HBeAg)-negative chronic hepatitis B receiving nucleos(t)ide analogues with undetectable plasma hepatitis B virus (HBV) DNA might increase HBs antigen (HBsAg) clearance. We aimed to assess this strategy. In this randomised, controlled, open-label trial, we enrolled patients aged 18-75 years with HBeAg-negative chronic hepatitis B and documented negative HBV DNA while on stable nucleos(t)ide analogue regimens for at least 1 year from 30 hepatology tertiary care wards in France. Patients had to have an alanine aminotransferase concentration of less than or equal to five times the upper normal range, no hepatocellular carcinoma, and a serum α fetoprotein concentration of less than 50 ng/mL, normal dilated fundus oculi examination, and a negative pregnancy test in women. Patients with contraindications to pegylated interferon were not eligible. A centralised randomisation used computer-generated lists of random permuted blocks of four with stratification by HBsAg titres (sida et les hépatites virales (France Recherche Nord&sud Sida-vih Hepatites). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Vaccination and the TAP-independent antigen processing pathways.

    Science.gov (United States)

    López, Daniel; Lorente, Elena; Barriga, Alejandro; Johnstone, Carolina; Mir, Carmen

    2013-09-01

    The cytotoxic CD8(+) T lymphocyte-mediated cellular response is important for the elimination of virus-infected cells and requires the prior recognition of short viral peptide antigens previously translocated to the endoplasmic reticulum by the transporter associated with antigen processing (TAP). However, individuals with nonfunctional TAP complexes or infected cells with TAP molecules blocked by specific viral proteins, such as the cowpoxvirus, a component of the first source of early empirical vaccination against smallpox, are still able to present several HLA class I ligands generated by the TAP-independent antigen processing pathways to specific cytotoxic CD8(+) T lymphocytes. Currently, bioterrorism and emerging infectious diseases have renewed interest in poxviruses. Recent works that have identified HLA class I ligands and epitopes in virus-infected TAP-deficient cells have implications for the study of both the effectiveness of early empirical vaccination and the analysis of HLA class I antigen processing in TAP-deficient subjects.

  19. Amino acid sequences mediating vascular cell adhesion molecule 1 binding to integrin alpha 4: homologous DSP sequence found for JC polyoma VP1 coat protein

    Directory of Open Access Journals (Sweden)

    Michael Andrew Meyer

    2013-07-01

    Full Text Available The JC polyoma viral coat protein VP1 was analyzed for amino acid sequences homologies to the IDSP sequence which mediates binding of VLA-4 (integrin alpha 4 to vascular cell adhesion molecule 1. Although the full sequence was not found, a DSP sequence was located near the critical arginine residue linked to infectivity of the virus and binding to sialic acid containing molecules such as integrins (3. For the JC polyoma virus, a DSP sequence was found at residues 70, 71 and 72 with homology also noted for the mouse polyoma virus and SV40 virus. Three dimensional modeling of the VP1 molecule suggests that the DSP loop has an accessible site for interaction from the external side of the assembled viral capsid pentamer.

  20. Human immunodeficiency virus long terminal repeat responds to T-cell activation signals

    International Nuclear Information System (INIS)

    Tong-Starksen, S.E.; Luciw, P.A.; Peterlin, B.M.

    1987-01-01

    Human immunodeficiency virus (HIV), the causative agent of AIDS, infects and kills lymphoid cells bearing the CD4 antigen. In an infected cell, a number of cellular as well as HIV-encoded gene products determine the levels of viral gene expression and HIV replication. Efficient HIV replication occurs in activated T cells. Utilizing transient expression assays, the authors show that gene expression directed by the HIV long terminal repeat (LTR) increases in response to T-cell activation signals. The effects of T-cell activation and of the HIV-encoded trans-activator (TAT) are multiplicative. Analysis of mutations and deletions in the HIV LTR reveals that the region responding to T-cell activation signals is located at positions -105 to -80. These sequences are composed of two direct repeats, which are homologous to the core transcriptional enhancer elements in the simian virus 40 genome. The studies reveal that these elements function as the HIV enhancer. By acting directly on the HIV LTR, T-cell activation may play an important role in HIV gene expression and in the activation of latent HIV

  1. Development of a Novel, Ultra-rapid Biosensor for the Qualitative Detection of Hepatitis B Virus-associated Antigens and Anti-HBV, Based on “Membrane-engineered” Fibroblast Cells with Virus-Specific Antibodies and Antigens

    Directory of Open Access Journals (Sweden)

    Antonios Perdikaris

    2009-03-01

    Full Text Available A novel miniature cell biosensor detection system for the detection of Hepatis B virus (HBV-associated antigens and anti-HBV is described. The biosensor is based on “membrane-engineered” Vero fibroblast cells immobilized in an alginate matrix. The membrane-engineering process involved the electroinsertion of anti-HBV specific antibodies (anti-HBs, anti-HBe or antigens (HBsAg in the membranes of the Vero cells. The attachment of a homologous antigen to the electroinserted antibody (or, respectively, of the antibody to the electroinserted antigen triggered specific changes to the cell membrane potential that were measured by appropriate microelectrodes, according to the principle of the Bioelectric Recognition Assay (BERA. The sensor was used for screening 133 clinical blood serum samples according to a double-blind protocol. Considerably higher sensor responses were observed against HBV-positive samples, compared with responses against negative samples or samples positive for heterologous hepatitis viruses such as Hepatitis C (HCV virus. Detection of anti-HBs antibodies was made possible by using a biosensor based on immobilized Vero cells bearing the respective antigen (HBsAg. The observed response was rapid (45 sec and quite reproducible. Fluorescence microscopy observations showed that attachment of HBV particles to cells membrane-engineered with anti-HBs was associated with a decrease of [Ca2+]cyt. The perspectives for using the novel biosensor as a qualitative, rapid screening, high throughput assay for HBV antigens and anti-HBs in clinical samples is discussed.

  2. Ectopic expression of Jatropha curcas APETALA1 (JcAP1 caused early flowering in Arabidopsis, but not in Jatropha

    Directory of Open Access Journals (Sweden)

    Mingyong Tang

    2016-04-01

    Full Text Available Jatropha curcas is a promising feedstock for biofuel production because Jatropha oil is highly suitable for the production of biodiesel and bio-jet fuels. However, Jatropha exhibits a low seed yield as a result of unreliable and poor flowering. APETALA1 (AP1 is a floral meristem and organ identity gene in higher plants. The flower meristem identity genes of Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an AP1 homolog (JcAP1 was isolated from Jatropha. An amino acid sequence analysis of JcAP1 revealed a high similarity to the AP1 proteins of other perennial plants. JcAP1 was expressed in inflorescence buds, flower buds, sepals and petals. The highest expression level was observed during the early developmental stage of the flower buds. The overexpression of JcAP1 using the cauliflower mosaic virus (CaMV 35S promoter resulted in extremely early flowering and abnormal flowers in transgenic Arabidopsis plants. Several flowering genes downstream of AP1 were up-regulated in the JcAP1-overexpressing transgenic plant lines. Furthermore, JcAP1 overexpression rescued the phenotype caused by the Arabidopsis AP1 loss-of-function mutant ap1-11. Therefore, JcAP1 is an ortholog of AtAP1, which plays a similar role in the regulation of flowering in Arabidopsis. However, the overexpression of JcAP1 in Jatropha using the same promoter resulted in little variation in the flowering time and floral organs, indicating that JcAP1 may be insufficient to regulate flowering by itself in Jatropha. This study helps to elucidate the function of JcAP1 and contributes to the understanding of the molecular mechanisms of flower development in Jatropha.

  3. Ectopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha

    Science.gov (United States)

    Tang, Mingyong; Tao, Yan-Bin

    2016-01-01

    Jatropha curcas is a promising feedstock for biofuel production because Jatropha oil is highly suitable for the production of biodiesel and bio-jet fuels. However, Jatropha exhibits a low seed yield as a result of unreliable and poor flowering. APETALA1 (AP1) is a floral meristem and organ identity gene in higher plants. The flower meristem identity genes of Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an AP1 homolog (JcAP1) was isolated from Jatropha. An amino acid sequence analysis of JcAP1 revealed a high similarity to the AP1 proteins of other perennial plants. JcAP1 was expressed in inflorescence buds, flower buds, sepals and petals. The highest expression level was observed during the early developmental stage of the flower buds. The overexpression of JcAP1 using the cauliflower mosaic virus (CaMV) 35S promoter resulted in extremely early flowering and abnormal flowers in transgenic Arabidopsis plants. Several flowering genes downstream of AP1 were up-regulated in the JcAP1-overexpressing transgenic plant lines. Furthermore, JcAP1 overexpression rescued the phenotype caused by the Arabidopsis AP1 loss-of-function mutant ap1-11. Therefore, JcAP1 is an ortholog of AtAP1, which plays a similar role in the regulation of flowering in Arabidopsis. However, the overexpression of JcAP1 in Jatropha using the same promoter resulted in little variation in the flowering time and floral organs, indicating that JcAP1 may be insufficient to regulate flowering by itself in Jatropha. This study helps to elucidate the function of JcAP1 and contributes to the understanding of the molecular mechanisms of flower development in Jatropha. PMID:27168978

  4. Perforin and IFN-gamma do not significantly regulate the virus-specific CD8+ T cell response in the absence of antiviral effector activity

    DEFF Research Database (Denmark)

    Christensen, Jeanette Erbo; Wodarz, Dominik; Christensen, Jan P

    2004-01-01

    Using gene-targeted mice we have investigated whether perforin and/or interferon-gamma exert a direct regulatory effect on the expansion and contraction of antigen-specific CD8(+) T cells following infection with a virus (vesicular stomatitis virus) which is not controlled through these molecular...

  5. Immune regulation in Chandipura virus infection: characterization of CD4+ T regulatory cells from infected mice

    Directory of Open Access Journals (Sweden)

    Shahir Prajakta

    2011-05-01

    Full Text Available Abstract Back ground Chandipura virus produces acute infection in mice. During infection drastic reduction of CD4+, CD8+ and CD19 + cell was noticed. Depletion of lymphocytes also noticed in spleen. The reduction may be due to the regulatory mechanism of immune system to prevent the bystander host tissue injury. There are several mechanisms like generation of regulatory cells, activation induced cell death (ACID etc were indicated to control the activation and maintain cellular homeostasis. Role of regulatory cells in homeostasis has been described in several viral diseases. This study was undertaken to characterize CD4+T regulatory cells from the infected mice. Method In this study we purified the CD4+ T cells from Chandipura virus infected susceptible Balb/c mice. CD4+ T regulatory cells were identified by expression of cell surface markers CD25, CD127 and CTLA-4 and intracellular markers Foxp3, IL-10 and TGF-beta. Antigen specificity and ability to suppress the proliferation of other lymphocytes were studied in vitro by purified CD4+CD25+T regulatory cells from infected mice. The proliferation was calculated by proliferation module of Flow Jo software. Expression of death receptors on regulatory cells were studied by flowcytometer. Results The CD4+ T cells isolated from infected mice expressed characteristic markers of regulatory phenotype at all post infective hours tested. The CD4+ T regulatory cells were proliferated when stimulated with Chandipura virus antigen. The regulatory cells did not suppress the proliferation of splenocytes stimulated with anti CD3 antibody when co cultured with them. Interesting observation was, while purification of CD4+ T cells by negative selection, the population of cells negative for CD4 also co purified along with CD4+ T cell. Flow cytometry analysis and light microscopy revealed that CD4 negative cells were of different size and shape (atypical compared to the normal lymphocytes. Greater percentage of

  6. Stable cytotoxic T cell escape mutation in hepatitis C virus is linked to maintenance of viral fitness.

    Directory of Open Access Journals (Sweden)

    Luke Uebelhoer

    2008-09-01

    Full Text Available Mechanisms by which hepatitis C virus (HCV evades cellular immunity to establish persistence in chronically infected individuals are not clear. Mutations in human leukocyte antigen (HLA class I-restricted epitopes targeted by CD8(+ T cells are associated with persistence, but the extent to which these mutations affect viral fitness is not fully understood. Previous work showed that the HCV quasispecies in a persistently infected chimpanzee accumulated multiple mutations in numerous class I epitopes over a period of 7 years. During the acute phase of infection, one representative epitope in the C-terminal region of the NS3/4A helicase, NS3(1629-1637, displayed multiple serial amino acid substitutions in major histocompatibility complex (MHC anchor and T cell receptor (TCR contact residues. Only one of these amino acid substitutions at position 9 (P9 of the epitope was stable in the quasispecies. We therefore assessed the effect of each mutation observed during in vivo infection on viral fitness and T cell responses using an HCV subgenomic replicon system and a recently developed in vitro infectious virus cell culture model. Mutation of a position 7 (P7 TCR-contact residue, I1635T, expectedly ablated the T cell response without affecting viral RNA replication or virion production. In contrast, two mutations at the P9 MHC-anchor residue abrogated antigen-specific T cell responses, but additionally decreased viral RNA replication and virion production. The first escape mutation, L1637P, detected in vivo only transiently at 3 mo after infection, decreased viral production, and reverted to the parental sequence in vitro. The second P9 variant, L1637S, which was stable in vivo through 7 years of follow-up, evaded the antigen-specific T cell response and did not revert in vitro despite being less optimal in virion production compared to the parental virus. These studies suggest that HCV escape mutants emerging early in infection are not necessarily

  7. Measuring the diaspora for virus-specific CD8+ T cells

    Science.gov (United States)

    Marshall, Dana R.; Turner, Stephen J.; Belz, Gabrielle T.; Wingo, Suzette; Andreansky, Samita; Sangster, Mark Y.; Riberdy, Janice M.; Liu, Tiebin; Tan, Ming; Doherty, Peter C.

    2001-01-01

    The CD8+ T cell diaspora has been analyzed after secondary challenge with an influenza A virus that replicates only in the respiratory tract. Numbers of DbNP366- and DbPA224-specific CD8+ T cells were measured by tetramer staining at the end of the recall response, then followed sequentially in the lung, lymph nodes, spleen, blood, and other organs. The extent of clonal expansion did not reflect the sizes of the preexisting memory T cell pools. Although the high-frequency CD8+ tetramer+ populations in the pneumonic lung and mediastinal lymph nodes fell rapidly from peak values, the “whole mouse” virus-specific CD8+ T cell counts decreased only 2-fold over the 4 weeks after infection, then subsided at a fairly steady rate to reach a plateau at about 2 months. The largest numbers were found throughout in the spleen, then the bone marrow. The CD8+DbNP366+ and CD8+DbPA224+ sets remained significantly enlarged for at least 4 months, declining at equivalent rates while retaining the nucleoprotein > acid polymerase immunodominance hierarchy characteristic of the earlier antigen-driven phase. Lowest levels of the CD69 “activation marker” were detected consistently on virus-specific CD8+ T cells in the blood, then the spleen. Those in the bone marrow and liver were intermediate, and CD69hi T cells were very prominent in the regional lymph nodes and the nasal-associated lymphoid tissue. Any population of “resting” CD8+ memory T cells is thus phenotypically heterogeneous, widely dispersed, and subject to broad homeostatic and local environmental effects irrespective of epitope specificity or magnitude. PMID:11344265

  8. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia.

    Science.gov (United States)

    Grupp, Stephan A; Kalos, Michael; Barrett, David; Aplenc, Richard; Porter, David L; Rheingold, Susan R; Teachey, David T; Chew, Anne; Hauck, Bernd; Wright, J Fraser; Milone, Michael C; Levine, Bruce L; June, Carl H

    2013-04-18

    Chimeric antigen receptor-modified T cells with specificity for CD19 have shown promise in the treatment of chronic lymphocytic leukemia (CLL). It remains to be established whether chimeric antigen receptor T cells have clinical activity in acute lymphoblastic leukemia (ALL). Two children with relapsed and refractory pre-B-cell ALL received infusions of T cells transduced with anti-CD19 antibody and a T-cell signaling molecule (CTL019 chimeric antigen receptor T cells), at a dose of 1.4×10(6) to 1.2×10(7) CTL019 cells per kilogram of body weight. In both patients, CTL019 T cells expanded to a level that was more than 1000 times as high as the initial engraftment level, and the cells were identified in bone marrow. In addition, the chimeric antigen receptor T cells were observed in the cerebrospinal fluid (CSF), where they persisted at high levels for at least 6 months. Eight grade 3 or 4 adverse events were noted. The cytokine-release syndrome and B-cell aplasia developed in both patients. In one child, the cytokine-release syndrome was severe; cytokine blockade with etanercept and tocilizumab was effective in reversing the syndrome and did not prevent expansion of chimeric antigen receptor T cells or reduce antileukemic efficacy. Complete remission was observed in both patients and is ongoing in one patient at 11 months after treatment. The other patient had a relapse, with blast cells that no longer expressed CD19, approximately 2 months after treatment. Chimeric antigen receptor-modified T cells are capable of killing even aggressive, treatment-refractory acute leukemia cells in vivo. The emergence of tumor cells that no longer express the target indicates a need to target other molecules in addition to CD19 in some patients with ALL.

  9. Dynamics of antigen presentation to transgene product-specific CD4+ T cells and of Treg induction upon hepatic AAV gene transfer

    Directory of Open Access Journals (Sweden)

    George Q Perrin

    2016-01-01

    Full Text Available The tolerogenic hepatic microenvironment impedes clearance of viral infections but is an advantage in viral vector gene transfer, which often results in immune tolerance induction to transgene products. Although the underlying tolerance mechanism has been extensively studied, our understanding of antigen presentation to transgene product-specific CD4+ T cells remains limited. To address this, we administered hepatotropic adeno-associated virus (AAV8 vector expressing cytoplasmic ovalbumin (OVA into wt mice followed by adoptive transfer of transgenic OVA-specific T cells. We find that that the liver-draining lymph nodes (celiac and portal are the major sites of MHC II presentation of the virally encoded antigen, as judged by in vivo proliferation of DO11.10 CD4+ T cells (requiring professional antigen-presenting cells, e.g., macrophages and CD4+CD25+FoxP3+ Treg induction. Antigen presentation in the liver itself contributes to activation of CD4+ T cells egressing from the liver. Hepatic-induced Treg rapidly disseminate through the systemic circulation. By contrast, a secreted OVA transgene product is presented in multiple organs, and OVA-specific Treg emerge in both the thymus and periphery. In summary, liver draining lymph nodes play an integral role in hepatic antigen presentation and peripheral Treg induction, which results in systemic regulation of the response to viral gene products.

  10. Enhanced vaccine-induced CD8+ T cell responses to malaria antigen ME-TRAP by fusion to MHC class ii invariant chain.

    Directory of Open Access Journals (Sweden)

    Alexandra J Spencer

    Full Text Available The orthodox role of the invariant chain (CD74; Ii is in antigen presentation to CD4+ T cells, but enhanced CD8+ T cells responses have been reported after vaccination with vectored viral vaccines encoding a fusion of Ii to the antigen of interest. In this study we assessed whether fusion of the malarial antigen, ME-TRAP, to Ii could increase the vaccine-induced CD8+ T cell response. Following single or heterologous prime-boost vaccination of mice with a recombinant chimpanzee adenovirus vector, ChAd63, or recombinant modified vaccinia virus Ankara (MVA, higher frequencies of antigen-specific CD4+ and CD8+ T cells were observed, with the largest increases observed following a ChAd63-MVA heterologous prime-boost regimen. Studies in non-human primates confirmed the ability of Ii-fusion to augment the T cell response, where a 4-fold increase was maintained up to 11 weeks after the MVA boost. Of the numerous different approaches explored to increase vectored vaccine induced immunogenicity over the years, fusion to the invariant chain showed a consistent enhancement in CD8+ T cell responses across different animal species and may therefore find application in the development of vaccines against human malaria and other diseases where high levels of cell-mediated immunity are required.

  11. Abundant tax protein expression in CD4+ T cells infected with human T-cell lymphotropic virus type I (HTLV-I) is prevented by cytotoxic T lymphocytes.

    Science.gov (United States)

    Hanon, E; Hall, S; Taylor, G P; Saito, M; Davis, R; Tanaka, Y; Usuku, K; Osame, M; Weber, J N; Bangham, C R

    2000-02-15

    The role of the cellular immune response in human T-cell leukemia virus type I (HTLV-I) infection is not fully understood. A persistently activated cytotoxic T lymphocyte (CTL) response to HTLV-I is found in the majority of infected individuals. However, it remains unclear whether this CTL response is protective or causes tissue damage. In addition, several observations paradoxically suggest that HTLV-I is transcriptionally silent in most infected cells and, therefore, not detectable by virus-specific CTLs. With the use of a new flow cytometric procedure, we show here that a high proportion of naturally infected CD4+ peripheral blood mononuclear cells (PBMC) (between 10% and 80%) are capable of expressing Tax, the immunodominant target antigen recognized by virus-specific CTLs. Furthermore, we provide direct evidence that autologous CD8+ T cells rapidly kill CD4+ cells naturally infected with HTLV-I and expressing Tax in vitro by a perforin-dependent mechanism. Consistent with these observations, we observed a significant negative correlation between the frequency of Tax(11-19)-specific CD8+ T cells and the percentage of CD4+ T cells in peripheral blood of patients infected with HTLV-I. Those results are in accordance with the view that virus-specific CTLs participate in a highly efficient immune surveillance mechanism that persistently destroys Tax-expressing HTLV-I-infected CD4+ T cells in vivo. (Blood. 2000;95:1386-1392)

  12. Carbohydrates as T-cell antigens with implications in health and disease.

    Science.gov (United States)

    Sun, Lina; Middleton, Dustin R; Wantuch, Paeton L; Ozdilek, Ahmet; Avci, Fikri Y

    2016-10-01

    Glycosylation is arguably the most ubiquitous post-translational modification on proteins in microbial and mammalian cells. During the past few years, there has been intensive research demonstrating that carbohydrates, either in pure forms or in conjunction with proteins or lipids, evoke and modulate adaptive immune responses. We now know that carbohydrates can be directly recognized by T cells or participate in T-cell stimulation as components of T-cell epitopes. T-cell recognition of carbohydrate antigens takes place via their presentation by major histocompatibility complex pathways on antigen-presenting cells. In this review, we summarize studies on carbohydrates as T-cell antigens modulating adaptive immune responses. Through discussion of glycan-containing antigens, such as glycoproteins, glycolipids, zwitterionic polysaccharides and carbohydrate-based glycoconjugate vaccines, we will illustrate the key molecular and cellular interactions between carbohydrate antigens and T cells and the implications of these interactions in health and disease. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Antigenic Variation in H5N1 clade 2.1 Viruses in Indonesia from 2005 to 2011

    Directory of Open Access Journals (Sweden)

    Vivi Setiawaty

    2013-01-01

    Full Text Available Influenza A (H5N1 virus, has spread to several countries in the world and has a high mortality rate. Meanwhile, the virus has evolved into several clades. The human influenza A (H5N1 virus circulating in Indonesia is a member of clade 2.1, which is different in antigenicity from other clades of influenza A (H5N1. An analysis of the antigenic variation in the H5 hemagglutinin gene (HA of the influenza A (H5N1 virus strains circulating in Indonesia has been undertaken. Several position of amino acid mutations, including mutations at positions 35, 53, 141, 145, 163, 174, 183, 184, 189, and 231, have been identified. The mutation Val-174-Iso appears to play an important role in immunogenicity and cross-reactivity with rabbit antisera. This study shows that the evolution of the H5HA antigenic variation of the influenza A (H5N1 virus circulating in Indonesia from 2005 to 2011 may affect the immunogenicity of the virus.

  14. Chimeric antigen receptor T-cell therapy for solid tumors

    Directory of Open Access Journals (Sweden)

    Kheng Newick

    2016-01-01

    Full Text Available Chimeric antigen receptor (CAR T cells are engineered constructs composed of synthetic receptors that direct T cells to surface antigens for subsequent elimination. Many CAR constructs are also manufactured with elements that augment T-cell persistence and activity. To date, CAR T cells have demonstrated tremendous success in eradicating hematological malignancies (e.g., CD19 CARs in leukemias. This success is not yet extrapolated to solid tumors, and the reasons for this are being actively investigated. Here in this mini-review, we discuss some of the key hurdles encountered by CAR T cells in the solid tumor microenvironment.

  15. Limited Antigenic Diversity in Contemporary H7 Avian-Origin Influenza A Viruses from North America

    Science.gov (United States)

    Xu, Yifei; Bailey, Elizabeth; Spackman, Erica; Li, Tao; Wang, Hui; Long, Li-Ping; Baroch, John A.; Cunningham, Fred L.; Lin, Xiaoxu; Jarman, Richard G.; DeLiberto, Thomas J.; Wan, Xiu-Feng

    2016-01-01

    Subtype H7 avian–origin influenza A viruses (AIVs) have caused at least 500 confirmed human infections since 2003 and culling of >75 million birds in recent years. Here we antigenically and genetically characterized 93 AIV isolates from North America (85 from migratory waterfowl [1976–2010], 7 from domestic poultry [1971–2012], and 1 from a seal [1980]). The hemagglutinin gene of these H7 viruses are separated from those from Eurasia. Gradual accumulation of nucleotide and amino acid substitutions was observed in the hemagglutinin of H7 AIVs from waterfowl and domestic poultry. Genotype characterization suggested that H7 AIVs in wild birds form diverse and transient internal gene constellations. Serologic analyses showed that the 93 isolates cross-reacted with each other to different extents. Antigenic cartography showed that the average antigenic distance among them was 1.14 units (standard deviation [SD], 0.57 unit) and that antigenic diversity among the H7 isolates we tested was limited. Our results suggest that the continuous genetic evolution has not led to significant antigenic diversity for H7 AIVs from North America. These findings add to our understanding of the natural history of IAVs and will inform public health decision-making regarding the threat these viruses pose to humans and poultry. PMID:26858078

  16. Virus-Specific T Cells for the Immunocompromised Patient

    Directory of Open Access Journals (Sweden)

    Amy Houghtelin

    2017-10-01

    Full Text Available While progress has been made in the treatment of both hematologic cancers and solid tumors, chemorefractory or relapsed disease often portends a dismal prognosis, and salvage chemotherapy or radiation expose patients to intolerable toxicities and may not be effective. Hematopoietic stem cell transplant offers the promise of cure for many patients, and while mismatched, unrelated or haploidentical donors are increasingly available, the recipients are at higher risk of severe immunosuppression and immune dysregulation due to graft versus host disease. Viral infections remain a primary cause of severe morbidity and mortality in this patient population. Again, many therapeutic options for viral disease are toxic, may be ineffective or generate resistance, or fail to convey long-term protection. Adoptive cell therapy with virus-specific T cells (VSTs is a targeted therapy that is efficacious and has minimal toxicity in immunocompromised patients with CMV and EBV infections in particular. Products have since been generated specific for multiple viral antigens (multi-VST, which are not only effective but also confer protection in 70–90% of recipients when used as prophylaxis. Notably, these products can be generated from either virus-naive or virus-experienced autologous or allogeneic sources, including partially matched HLA-matched third-party donors. Obstacles to effective VST treatment are donor availability and product generation time. Banking of third-party VST is an attractive way to overcome these constraints and provide products on an as-needed basis. Other developments include epitope discovery to broaden the number of viral antigens targets in a single product, the optimization of VST generation from naive donor sources, and the modification of VSTs to enhance persistence and efficacy in vivo.

  17. Virus-Specific T Cells for the Immunocompromised Patient.

    Science.gov (United States)

    Houghtelin, Amy; Bollard, Catherine M

    2017-01-01

    While progress has been made in the treatment of both hematologic cancers and solid tumors, chemorefractory or relapsed disease often portends a dismal prognosis, and salvage chemotherapy or radiation expose patients to intolerable toxicities and may not be effective. Hematopoietic stem cell transplant offers the promise of cure for many patients, and while mismatched, unrelated or haploidentical donors are increasingly available, the recipients are at higher risk of severe immunosuppression and immune dysregulation due to graft versus host disease. Viral infections remain a primary cause of severe morbidity and mortality in this patient population. Again, many therapeutic options for viral disease are toxic, may be ineffective or generate resistance, or fail to convey long-term protection. Adoptive cell therapy with virus-specific T cells (VSTs) is a targeted therapy that is efficacious and has minimal toxicity in immunocompromised patients with CMV and EBV infections in particular. Products have since been generated specific for multiple viral antigens (multi-VST), which are not only effective but also confer protection in 70-90% of recipients when used as prophylaxis. Notably, these products can be generated from either virus-naive or virus-experienced autologous or allogeneic sources, including partially matched HLA-matched third-party donors. Obstacles to effective VST treatment are donor availability and product generation time. Banking of third-party VST is an attractive way to overcome these constraints and provide products on an as-needed basis. Other developments include epitope discovery to broaden the number of viral antigens targets in a single product, the optimization of VST generation from naive donor sources, and the modification of VSTs to enhance persistence and efficacy in vivo .

  18. HER2-Specific Chimeric Antigen Receptor-Modified Virus-Specific T Cells for Progressive Glioblastoma: A Phase 1 Dose-Escalation Trial.

    Science.gov (United States)

    Ahmed, Nabil; Brawley, Vita; Hegde, Meenakshi; Bielamowicz, Kevin; Kalra, Mamta; Landi, Daniel; Robertson, Catherine; Gray, Tara L; Diouf, Oumar; Wakefield, Amanda; Ghazi, Alexia; Gerken, Claudia; Yi, Zhongzhen; Ashoori, Aidin; Wu, Meng-Fen; Liu, Hao; Rooney, Cliona; Dotti, Gianpietro; Gee, Adrian; Su, Jack; Kew, Yvonne; Baskin, David; Zhang, Yi Jonathan; New, Pamela; Grilley, Bambi; Stojakovic, Milica; Hicks, John; Powell, Suzanne Z; Brenner, Malcolm K; Heslop, Helen E; Grossman, Robert; Wels, Winfried S; Gottschalk, Stephen

    2017-08-01

    Glioblastoma is an incurable tumor, and the therapeutic options for patients are limited. To determine whether the systemic administration of HER2-specific chimeric antigen receptor (CAR)-modified virus-specific T cells (VSTs) is safe and whether these cells have antiglioblastoma activity. In this open-label phase 1 dose-escalation study conducted at Baylor College of Medicine, Houston Methodist Hospital, and Texas Children's Hospital, patients with progressive HER2-positive glioblastoma were enrolled between July 25, 2011, and April 21, 2014. The duration of follow-up was 10 weeks to 29 months (median, 8 months). Monotherapy with autologous VSTs specific for cytomegalovirus, Epstein-Barr virus, or adenovirus and genetically modified to express HER2-CARs with a CD28.ζ-signaling endodomain (HER2-CAR VSTs). Primary end points were feasibility and safety. The key secondary end points were T-cell persistence and their antiglioblastoma activity. A total of 17 patients (8 females and 9 males; 10 patients ≥18 years [median age, 60 years; range, 30-69 years] and 7 patients VSTs (1 × 106/m2 to 1 × 108/m2) without prior lymphodepletion. Infusions were well tolerated, with no dose-limiting toxic effects. HER2-CAR VSTs were detected in the peripheral blood for up to 12 months after the infusion by quantitative real-time polymerase chain reaction. Of 16 evaluable patients (9 adults and 7 children), 1 had a partial response for more than 9 months, 7 had stable disease for 8 weeks to 29 months, and 8 progressed after T-cell infusion. Three patients with stable disease are alive without any evidence of progression during 24 to 29 months of follow-up. For the entire study cohort, median overall survival was 11.1 months (95% CI, 4.1-27.2 months) from the first T-cell infusion and 24.5 months (95% CI, 17.2-34.6 months) from diagnosis. Infusion of autologous HER2-CAR VSTs is safe and can be associated with clinical benefit for patients with progressive glioblastoma

  19. Conventional CD4+ T cells present bacterial antigens to induce cytotoxic and memory CD8+ T cell responses.

    Science.gov (United States)

    Cruz-Adalia, Aránzazu; Ramirez-Santiago, Guillermo; Osuna-Pérez, Jesús; Torres-Torresano, Mónica; Zorita, Virgina; Martínez-Riaño, Ana; Boccasavia, Viola; Borroto, Aldo; Martínez Del Hoyo, Gloria; González-Granado, José María; Alarcón, Balbino; Sánchez-Madrid, Francisco; Veiga, Esteban

    2017-11-17

    Bacterial phagocytosis and antigen cross-presentation to activate CD8 + T cells are principal functions of professional antigen presenting cells. However, conventional CD4 + T cells also capture and kill bacteria from infected dendritic cells in a process termed transphagocytosis (also known as transinfection). Here, we show that transphagocytic T cells present bacterial antigens to naive CD8 + T cells, which proliferate and become cytotoxic in response. CD4 + T-cell-mediated antigen presentation also occurs in vivo in the course of infection, and induces the generation of central memory CD8 + T cells with low PD-1 expression. Moreover, transphagocytic CD4 + T cells induce protective anti-tumour immune responses by priming CD8 + T cells, highlighting the potential of CD4 + T cells as a tool for cancer immunotherapy.

  20. Antigenically Diverse Swine Origin H1N1 Variant Influenza Viruses Exhibit Differential Ferret Pathogenesis and Transmission Phenotypes.

    Science.gov (United States)

    Pulit-Penaloza, Joanna A; Jones, Joyce; Sun, Xiangjie; Jang, Yunho; Thor, Sharmi; Belser, Jessica A; Zanders, Natosha; Creager, Hannah M; Ridenour, Callie; Wang, Li; Stark, Thomas J; Garten, Rebecca; Chen, Li-Mei; Barnes, John; Tumpey, Terrence M; Wentworth, David E; Maines, Taronna R; Davis, C Todd

    2018-06-01

    Influenza A(H1) viruses circulating in swine represent an emerging virus threat, as zoonotic infections occur sporadically following exposure to swine. A fatal infection caused by an H1N1 variant (H1N1v) virus was detected in a patient with reported exposure to swine and who presented with pneumonia, respiratory failure, and cardiac arrest. To understand the genetic and phenotypic characteristics of the virus, genome sequence analysis, antigenic characterization, and ferret pathogenesis and transmissibility experiments were performed. Antigenic analysis of the virus isolated from the fatal case, A/Ohio/09/2015, demonstrated significant antigenic drift away from the classical swine H1N1 variant viruses and H1N1 pandemic 2009 viruses. A substitution in the H1 hemagglutinin (G155E) was identified that likely impacted antigenicity, and reverse genetics was employed to understand the molecular mechanism of antibody escape. Reversion of the substitution to 155G, in a reverse genetics A/Ohio/09/2015 virus, showed that this residue was central to the loss of hemagglutination inhibition by ferret antisera raised against a prototypical H1N1 pandemic 2009 virus (A/California/07/2009), as well as gamma lineage classical swine H1N1 viruses, demonstrating the importance of this residue for antibody recognition of this H1 lineage. When analyzed in the ferret model, A/Ohio/09/2015 and another H1N1v virus, A/Iowa/39/2015, as well as A/California/07/2009, replicated efficiently in the respiratory tract of ferrets. The two H1N1v viruses transmitted efficiently among cohoused ferrets, but respiratory droplet transmission studies showed that A/California/07/2009 transmitted through the air more efficiently. Preexisting immunity to A/California/07/2009 did not fully protect ferrets from challenge with A/Ohio/09/2015. IMPORTANCE Human infections with classical swine influenza A(H1N1) viruses that circulate in pigs continue to occur in the United States following exposure to swine. To

  1. Efficient uptake of blood-borne BK and JC polyomavirus-like particles in endothelial cells of liver sinusoids and renal vasa recta.

    Directory of Open Access Journals (Sweden)

    Jaione Simon-Santamaria

    Full Text Available Liver sinusoidal endothelial cells (LSECs are specialized scavenger cells that mediate high-capacity clearance of soluble waste macromolecules and colloid material, including blood-borne adenovirus. To explore if LSECs function as a sink for other viruses in blood, we studied the fate of virus-like particles (VLPs of two ubiquitous human DNA viruses, BK and JC polyomavirus, in mice. Like complete virions, VLPs specifically bind to receptors and enter cells, but unlike complete virions, they cannot replicate. 125I-labeled VLPs were used to assess blood decay, organ-, and hepatocellular distribution of ligand, and non-labeled VLPs to examine cellular uptake by immunohisto- and -cytochemistry. BK- and JC-VLPs rapidly distributed to liver, with lesser uptake in kidney and spleen. Liver uptake was predominantly in LSECs. Blood half-life (∼1 min, and tissue distribution of JC-VLPs and two JC-VLP-mutants (L55F and S269F that lack sialic acid binding affinity, were similar, indicating involvement of non-sialic acid receptors in cellular uptake. Liver uptake was not mediated by scavenger receptors. In spleen, the VLPs localized to the red pulp marginal zone reticuloendothelium, and in kidney to the endothelial lining of vasa recta segments, and the transitional epithelium of renal pelvis. Most VLP-positive vessels in renal medulla did not express PV-1/Meca 32, suggesting location to the non-fenestrated part of vasa recta. The endothelial cells of these vessels also efficiently endocytosed a scavenger receptor ligand, formaldehyde-denatured albumin, suggesting high endocytic activity compared to other renal endothelia. We conclude that LSECs very effectively cleared a large fraction of blood-borne BK- and JC-VLPs, indicating a central role of these cells in early removal of polyomavirus from the circulation. In addition, we report the novel finding that a subpopulation of endothelial cells in kidney, the main organ of polyomavirus persistence, showed

  2. Cooperation between Epstein-Barr Virus Immune Evasion Proteins Spreads Protection from CD8+ T Cell Recognition across All Three Phases of the Lytic Cycle

    Science.gov (United States)

    Quinn, Laura L.; Zuo, Jianmin; Abbott, Rachel J. M.; Shannon-Lowe, Claire; Tierney, Rosemary J.; Hislop, Andrew D.; Rowe, Martin

    2014-01-01

    CD8+ T cell responses to Epstein-Barr virus (EBV) lytic cycle expressed antigens display a hierarchy of immunodominance, in which responses to epitopes of immediate-early (IE) and some early (E) antigens are more frequently observed than responses to epitopes of late (L) expressed antigens. It has been proposed that this hierarchy, which correlates with the phase-specific efficiency of antigen presentation, may be due to the influence of viral immune-evasion genes. At least three EBV-encoded genes, BNLF2a, BGLF5 and BILF1, have the potential to inhibit processing and presentation of CD8+ T cell epitopes. Here we examined the relative contribution of these genes to modulation of CD8+ T cell recognition of EBV lytic antigens expressed at different phases of the replication cycle in EBV-transformed B-cells (LCLs) which spontaneously reactivate lytic cycle. Selective shRNA-mediated knockdown of BNLF2a expression led to more efficient recognition of immediate-early (IE)- and early (E)-derived epitopes by CD8+ T cells, while knock down of BILF1 increased recognition of epitopes from E and late (L)-expressed antigens. Contrary to what might have been predicted from previous ectopic expression studies in EBV-negative model cell lines, the shRNA-mediated inhibition of BGLF5 expression in LCLs showed only modest, if any, increase in recognition of epitopes expressed in any phase of lytic cycle. These data indicate that whilst BNLF2a interferes with antigen presentation with diminishing efficiency as lytic cycle progresses (IE>E>>L), interference by BILF1 increases with progression through lytic cycle (IEevasion functions are actually relevant in the context of lytic virus replication, and secondly identify lytic-cycle phase-specific effects that provide mechanistic insight into the immunodominance pattern seen for CD8+ T cell responses to EBV lytic antigens. PMID:25144360

  3. T-CELL RESPONSES TO SYNTHETIC PEPTIDES OF HERPES-SIMPLEX VIRUS TYPE-1 GLYCOPROTEIN-D IN NATURALLY INFECTED INDIVIDUALS

    NARCIS (Netherlands)

    DAMHOF, RA; DRIJFHOUT, JW; SCHEFFER, AJ; WILTERDINK, JB; WELLING, GW; WELLINGWESTER, S

    1993-01-01

    To locate T cell determinants of glycoprotein D (gD) of herpes simplex virus type 1 (HSV-1), proliferation assays of lymphocytes obtained from 10 healthy HSV-seropositive individuals were performed using 34 overlapping gD peptides as antigens. Despite large differences between individual responses

  4. Epstein-Barr virus early antigen diffuse (EBV-EA/D)-directed immunoglobulin A antibodies in systemic lupus erythematosus patients

    DEFF Research Database (Denmark)

    Draborg, A H; Jørgensen, J M; Müller, H

    2012-01-01

    We sought to determine whether the serological response towards lytic cycle antigens of Epstein-Barr virus (EBV) is altered in systemic lupus erythematosus (SLE) patients.......We sought to determine whether the serological response towards lytic cycle antigens of Epstein-Barr virus (EBV) is altered in systemic lupus erythematosus (SLE) patients....

  5. High prevalence of human polyomavirus JC VP1 gene sequences in pediatric malignancies.

    Science.gov (United States)

    Shiramizu, B; Hu, N; Frisque, R J; Nerurkar, V R

    2007-05-15

    The oncogenic potential of human polyomavirus JC (JCV), a ubiquitous virus that establishes infection during early childhood in approximately 70% of the human population, is unclear. As a neurotropic virus, JCV has been implicated in pediatric central nervous system tumors and has been suggested to be a pathogenic agent in pediatric acute lymphoblastic leukemia. Recent studies have demonstrated JCV gene sequences in pediatric medulloblastomas and among patients with colorectal cancer. JCV early protein T-antigen (TAg) can form complexes with cellular regulatory proteins and thus may play a role in tumorigenesis. Since JCV is detected in B-lymphocytes, a retrospective analysis of pediatric B-cell and non-B-cell malignancies as well as other HIV-associated pediatric malignancies was conducted for the presence of JCV gene sequences. DNA was extracted from 49 pediatric malignancies, including Hodgkin disease, non-Hodgkin lymphoma, large cell lymphoma and sarcoma. Polymerase chain reaction (PCR) was conducted using JCV specific nested primer sets for the transcriptional control region (TCR), TAg, and viral capsid protein 1 (VP1) genes. Southern blot analysis and DNA sequencing were used to confirm specificity of the amplicons. A 215-bp region of the JCV VP1 gene was amplified from 26 (53%) pediatric tumor tissues. The JCV TCR and two JCV gene regions were amplified from a leiomyosarcoma specimen from an HIV-infected patient. The leiomyosarcoma specimen from the cecum harbored the archetype strain of JCV. Including the leiomyosarcoma specimen, three of five specimens sequenced were typed as JCV genotype 2. The failure to amplify JCV TCR, and TAg gene sequences in the presence of JCV VP1 gene sequence is surprising. Even though JCV TAg gene, which is similar to the SV40 TAg gene, is oncogenic in animal models, the presence of JCV gene sequences in pediatric malignancies does not prove causality. In light of the available data on the presence of JCV in normal and cancerous

  6. Antigen presentation by resting B cells. Radiosensitivity of the antigen-presentation function and two distinct pathways of T cell activation

    International Nuclear Information System (INIS)

    Ashwell, J.D.; DeFranco, A.L.; Paul, W.E.; Schwartz, R.H.

    1984-01-01

    In this report we have examined the ability of small resting B cells to act as antigen-presenting cells (APC) to antigen-specific MHC-restricted T cells as assessed by either T cell proliferation or T cell-dependent B cell stimulation. We found that 10 of 14 in vitro antigen-specific MHC-restricted T cell clones and lines and three of four T cell hybridomas could be induced to either proliferate or secrete IL-2 in the presence of lightly irradiated (1,000 rads) purified B cells and the appropriate foreign antigen. All T cell lines and hybridomas were stimulated to proliferate or make IL-2 by macrophage- and dendritic cell-enriched populations and all T cells tested except one hybridoma caused B cell activation when stimulated with B cells as APC. Furthermore, lightly irradiated, highly purified syngeneic B cells were as potent a source of APC for inducing B cell activation as were low density dendritic and macrophage-enriched cells. Lymph node T cells freshly taken from antigen-primed animals were also found to proliferate when cultured with purified B cells and the appropriate antigen. This APC function was easily measured when the cells were irradiated with 1,000 rads, but was greatly diminished or absent when they were irradiated with 3,300 rads. In addition, this radiosensitivity allowed us to easily distinguish B cell antigen presentation from presentation by the dendritic cell and macrophage, as the latter was resistant to 3,300 rads. Finally, one T cell clone that failed to proliferate when B cells were used as APC was able to recruit allogeneic B cells to proliferate in the presence of syngeneic B cells and the appropriate antigen. This result suggests that there are at least two distinct pathways of activation in T cells, one that leads to T cell proliferation and one that leads to the secretion of B cell recruitment factor(s)

  7. Papaya ringspot virus coat protein gene for antigen presentation Escherichia coli

    Czech Academy of Sciences Publication Activity Database

    Chatchen, S.; Juříček, Miloslav; Rueda, P.; Kertbundit, Sunee

    2006-01-01

    Roč. 39, č. 1 (2006), s. 16-21 ISSN 1225-8687 Grant - others:Thai Research Fund(TH) BT-B-06-PG-14-4503 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : antigen presentation * canine parvo virus * epitope * papaya ringspot virus Subject RIV: EF - Botanics Impact factor: 1.465, year: 2006 http://www.jbmb.or.kr/view_article.php3?cont=jbmb&kid=174&mid=3&pid=3

  8. Transmitted/Founder Viruses Rapidly Escape from CD8+ T Cell Responses in Acute Hepatitis C Virus Infection.

    Science.gov (United States)

    Bull, Rowena A; Leung, Preston; Gaudieri, Silvana; Deshpande, Pooja; Cameron, Barbara; Walker, Melanie; Chopra, Abha; Lloyd, Andrew R; Luciani, Fabio

    2015-05-01

    The interaction between hepatitis C virus (HCV) and cellular immune responses during very early infection is critical for disease outcome. To date, the impact of antigen-specific cellular immune responses on the evolution of the viral population establishing infection and on potential escape has not been studied. Understanding these early host-virus dynamics is important for the development of a preventative vaccine. Three subjects who were followed longitudinally from the detection of viremia preseroconversion until disease outcome were analyzed. The evolution of transmitted/founder (T/F) viruses was undertaken using deep sequencing. CD8(+) T cell responses were measured via enzyme-linked immunosorbent spot (ELISpot) assay using HLA class I-restricted T/F epitopes. T/F viruses were rapidly extinguished in all subjects associated with either viral clearance (n = 1) or replacement with viral variants leading to establishment of chronic infection (n = 2). CD8(+) T cell responses against 11 T/F epitopes were detectable by 33 to 44 days postinfection, and 5 of these epitopes had not previously been reported. These responses declined rapidly in those who became chronically infected and were maintained in the subject who cleared infection. Higher-magnitude CD8(+) T cell responses were associated with rapid development of immune escape variants at a rate of up to 0.1 per day. Rapid escape from CD8(+) T cell responses has been quantified for the first time in the early phase of primary HCV infection. These rapid escape dynamics were associated with higher-magnitude CD8(+) T cell responses. These findings raise questions regarding optimal selection of immunogens for HCV vaccine development and suggest that detailed analysis of individual epitopes may be required. A major limitation in our detailed understanding of the role of immune response in HCV clearance has been the lack of data on very early primary infection when the transmitted viral variants successfully establish

  9. The Viral Transcription Group Determines the HLA Class I Cellular Immune Response Against Human Respiratory Syncytial Virus*

    Science.gov (United States)

    Johnstone, Carolina; Lorente, Elena; Barriga, Alejandro; Barnea, Eilon; Infantes, Susana; Lemonnier, François A.; David, Chella S.; Admon, Arie; López, Daniel

    2015-01-01

    The cytotoxic T-lymphocyte-mediated killing of virus-infected cells requires previous recognition of short viral antigenic peptides bound to human leukocyte antigen class I molecules that are exposed on the surface of infected cells. The cytotoxic T-lymphocyte response is critical for the clearance of human respiratory syncytial virus infection. In this study, naturally processed viral human leukocyte antigen class I ligands were identified with mass spectrometry analysis of complex human leukocyte antigen-bound peptide pools isolated from large amounts of human respiratory syncytial virus-infected cells. Acute antiviral T-cell response characterization showed that viral transcription determines both the immunoprevalence and immunodominance of the human leukocyte antigen class I response to human respiratory syncytial virus. These findings have clear implications for antiviral vaccine design. PMID:25635267

  10. Local CD4 and CD8 T-cell reactivity to HSV-1 antigens documents broad viral protein expression and immune competence in latently infected human trigeminal ganglia.

    Directory of Open Access Journals (Sweden)

    Monique van Velzen

    2013-08-01

    Full Text Available Herpes simplex virus type 1 (HSV-1 infection results in lifelong chronic infection of trigeminal ganglion (TG neurons, also referred to as neuronal HSV-1 latency, with periodic reactivation leading to recrudescent herpetic disease in some persons. HSV-1 proteins are expressed in a temporally coordinated fashion during lytic infection, but their expression pattern during latent infection is largely unknown. Selective retention of HSV-1 reactive T-cells in human TG suggests their role in controlling reactivation by recognizing locally expressed HSV-1 proteins. We characterized the HSV-1 proteins recognized by virus-specific CD4 and CD8 T-cells recovered from human HSV-1-infected TG. T-cell clusters, consisting of both CD4 and CD8 T-cells, surrounded neurons and expressed mRNAs and proteins consistent with in situ antigen recognition and antiviral function. HSV-1 proteome-wide scans revealed that intra-TG T-cell responses included both CD4 and CD8 T-cells directed to one to three HSV-1 proteins per person. HSV-1 protein ICP6 was targeted by CD8 T-cells in 4 of 8 HLA-discordant donors. In situ tetramer staining demonstrated HSV-1-specific CD8 T-cells juxtaposed to TG neurons. Intra-TG retention of virus-specific CD4 T-cells, validated to the HSV-1 peptide level, implies trafficking of viral proteins from neurons to HLA class II-expressing non-neuronal cells for antigen presentation. The diversity of viral proteins targeted by TG T-cells across all kinetic and functional classes of viral proteins suggests broad HSV-1 protein expression, and viral antigen processing and presentation, in latently infected human TG. Collectively, the human TG represents an immunocompetent environment for both CD4 and CD8 T-cell recognition of HSV-1 proteins expressed during latent infection. HSV-1 proteins recognized by TG-resident T-cells, particularly ICP6 and VP16, are potential HSV-1 vaccine candidates.

  11. Chimeric antigen receptor T cell (CAR-T) immunotherapy for solid tumors: lessons learned and strategies for moving forward.

    Science.gov (United States)

    Li, Jian; Li, Wenwen; Huang, Kejia; Zhang, Yang; Kupfer, Gary; Zhao, Qi

    2018-02-13

    Recently, the US Food and Drug Administration (FDA) approved the first chimeric antigen receptor T cell (CAR-T) therapy for the treatment CD19-positive B cell acute lymphoblastic leukemia. While CAR-T has achieved remarkable success in the treatment of hematopoietic malignancies, whether it can benefit solid tumor patients to the same extent is still uncertain. Even though hundreds of clinical trials are undergoing exploring a variety of tumor-associated antigens (TAA), no such antigen with comparable properties like CD19 has yet been identified regarding solid tumors CAR-T immunotherapy. Inefficient T cell trafficking, immunosuppressive tumor microenvironment, suboptimal antigen recognition specificity, and lack of safety control are currently considered as the main obstacles in solid tumor CAR-T therapy. Here, we reviewed the solid tumor CAR-T clinical trials, emphasizing the studies with published results. We further discussed the challenges that CAR-T is facing for solid tumor treatment and proposed potential strategies to improve the efficacy of CAR-T as promising immunotherapy.

  12. Detection of Avian Antigen-Specific T Cells Induced by Viral Vaccines

    DEFF Research Database (Denmark)

    Dalgaard, Tina Sørensen; Norup, Liselotte Rothmann; Juul-Madsen, Helle Risdahl

    2016-01-01

    Live attenuated viral vaccines are widely used in commercial poultry production, but the development of new effective inactivated/subunit vaccines is needed. Studies of avian antigen-specific T cells are primarily based on analyses ex vivo after activating the cells with recall antigen. There is ......Live attenuated viral vaccines are widely used in commercial poultry production, but the development of new effective inactivated/subunit vaccines is needed. Studies of avian antigen-specific T cells are primarily based on analyses ex vivo after activating the cells with recall antigen...

  13. Functional and phenotypic evidence for a selective loss of memory T cells in asymptomatic human immunodeficiency virus-infected men

    NARCIS (Netherlands)

    van Noesel, C. J.; Gruters, R. A.; Terpstra, F. G.; Schellekens, P. T.; van Lier, R. A.; Miedema, F.

    1990-01-01

    In addition to a well-documented depletion of CD4+ T helper cells in later stages of human immunodeficiency virus (HIV) infection, evidence has been provided for a specific unresponsiveness to triggering either by specific antigen in the context of autologous major histocompatibility molecules (self

  14. Genetic and antigenic analysis of the G attachment protein of bovine respiratory syncytial virus strains

    DEFF Research Database (Denmark)

    Elvander, M.; Vilcek, S.; Baule, C.

    1998-01-01

    Antigenic and genetic studies of bovine respiratory syncytial virus (BRSV) were made on isolates obtained from three continents over 27 years. Antigenic variation between eight isolates was initially determined using protein G-specific monoclonal antibodies. Four distinct reaction patterns were...... of a 731 nucleotide fragment in the G protein gene. Nine of the BRSV strains were analysed by direct sequencing of RT-PCR amplicons whereas sequences of 18 BRSV and three human respiratory syncytial virus (HRSV) strains were obtained from GenBank. The analysis revealed similarities of 88-100% among BRSV...

  15. Cooperation between Epstein-Barr virus immune evasion proteins spreads protection from CD8+ T cell recognition across all three phases of the lytic cycle.

    Directory of Open Access Journals (Sweden)

    Laura L Quinn

    2014-08-01

    Full Text Available CD8+ T cell responses to Epstein-Barr virus (EBV lytic cycle expressed antigens display a hierarchy of immunodominance, in which responses to epitopes of immediate-early (IE and some early (E antigens are more frequently observed than responses to epitopes of late (L expressed antigens. It has been proposed that this hierarchy, which correlates with the phase-specific efficiency of antigen presentation, may be due to the influence of viral immune-evasion genes. At least three EBV-encoded genes, BNLF2a, BGLF5 and BILF1, have the potential to inhibit processing and presentation of CD8+ T cell epitopes. Here we examined the relative contribution of these genes to modulation of CD8+ T cell recognition of EBV lytic antigens expressed at different phases of the replication cycle in EBV-transformed B-cells (LCLs which spontaneously reactivate lytic cycle. Selective shRNA-mediated knockdown of BNLF2a expression led to more efficient recognition of immediate-early (IE- and early (E-derived epitopes by CD8+ T cells, while knock down of BILF1 increased recognition of epitopes from E and late (L-expressed antigens. Contrary to what might have been predicted from previous ectopic expression studies in EBV-negative model cell lines, the shRNA-mediated inhibition of BGLF5 expression in LCLs showed only modest, if any, increase in recognition of epitopes expressed in any phase of lytic cycle. These data indicate that whilst BNLF2a interferes with antigen presentation with diminishing efficiency as lytic cycle progresses (IE>E>>L, interference by BILF1 increases with progression through lytic cycle (IEantigen presentation of L epitopes. Together, these data firstly indicate which potential immune-evasion functions are actually relevant in the context of lytic virus replication, and secondly identify lytic-cycle phase-specific effects that provide mechanistic

  16. Analysis of nuclear accumulation of influenza NP antigen in von Magnus virus-infected cells.

    Science.gov (United States)

    Maeno, K; Aoki, H; Hamaguchi, M; Iinuma, M; Nagai, Y; Matsumoto, T; Takeura, S; Shibata, M

    1981-01-01

    When 1-5C-4 cells were infected with von Magnus virus derived from influenza A/RI/5+ virus by successive undiluted passages in chick embryos, virus-specific proteins were synthesized but production of infectious virus was inhibited. In these cells the synthesis of viral RNA was suppressed and the nucleoprotein (NP) antigen was found predominantly in the nucleus in contrast to standard virus-infected cells in which the antigen was distributed throughout the whole cell. The intracellular location and migration of NP were determined by isotope labeling and sucrose gradient centrifugation of subcellular fractions. In standard virus-infected cell NP polypeptide was present predominantly in the cytoplasm in the form of viral ribonucleoprotein (RNP) and intranuclear RNP was detected in reduced amounts. In contrast, in von Magnus virus-infected cells NP polypeptide was present predominantly in the nucleus in a nonassembled, soluble from and the amount of cytoplasmic RNP was considerably reduced. After short-pulse labeling NP was detected exclusively in the cytoplasm in a soluble form and after a chase a large proportion of such soluble NP was seen in the nucleus. It is suggested that a large proportion of the NP synthesized in von Magnus virus-infected cells in not assembled into cytoplasmic RNP because of the lack of available RNA and the NP migrated into the nucleus and remained there.

  17. Chimeric Antigen Receptor-Engineered T Cells in Tumor Immunotherapy: From Bench to Beside

    Directory of Open Access Journals (Sweden)

    Peng WANG

    2017-06-01

    Full Text Available Chimeric antigen receptor-engineered T cells (CAR-T cells, a classification of cultured T cells after modification of gene engineering technology, can recognize specific tumor antigens in a major histocompatibility complex (MHC-independent manner, consequently leading to the activation of antitumor function. The recent studies have confirmed that a variety of tumor-associated antigens (TAAs can act as target antigens for CAR-T cells. Nowadays, CAR T-cell therapy, one of the most potential tumor immunotherapies, has made great breakthroughs in hematological malignancies and promising outcomes in solid tumors. In this article, the biological characteristics and antitumor mechanism of CAR-T cells, and their application in tumor treatment were mainly reviewed.

  18. A modern approach for epitope prediction: identification of foot-and-mouth disease virus peptides binding bovine leukocyte antigen (BoLA) class I molecules

    DEFF Research Database (Denmark)

    Pandya, Mital; Rasmussen, Michael; Hansen, Andreas

    2015-01-01

    Major histocompatibility complex (MHC) class I molecules regulate adaptive immune responses through the presentation of antigenic peptides to CD8+ T cells. Polymorphisms in the peptide binding region of class I molecules determine peptide binding affinity and stability during antigen presentation......, and different antigen peptide motifs are associated with specific genetic sequences of class I molecules. Understanding bovine leukocyte antigen (BoLA), peptide-MHC class I binding specificities may facilitate development of vaccines or reagents for quantifying the adaptive immune response to intracellular...... pathogens, such as foot-and-mouth disease virus (FMDV). Six synthetic BoLA class I (BoLA-I) molecules were produced, and the peptide binding motif was generated for five of the six molecules using a combined approach of positional scanning combinatorial peptide libraries (PSCPLs) and neural network...

  19. The viral transcription group determines the HLA class I cellular immune response against human respiratory syncytial virus.

    Science.gov (United States)

    Johnstone, Carolina; Lorente, Elena; Barriga, Alejandro; Barnea, Eilon; Infantes, Susana; Lemonnier, François A; David, Chella S; Admon, Arie; López, Daniel

    2015-04-01

    The cytotoxic T-lymphocyte-mediated killing of virus-infected cells requires previous recognition of short viral antigenic peptides bound to human leukocyte antigen class I molecules that are exposed on the surface of infected cells. The cytotoxic T-lymphocyte response is critical for the clearance of human respiratory syncytial virus infection. In this study, naturally processed viral human leukocyte antigen class I ligands were identified with mass spectrometry analysis of complex human leukocyte antigen-bound peptide pools isolated from large amounts of human respiratory syncytial virus-infected cells. Acute antiviral T-cell response characterization showed that viral transcription determines both the immunoprevalence and immunodominance of the human leukocyte antigen class I response to human respiratory syncytial virus. These findings have clear implications for antiviral vaccine design. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Virus-Like Particles of Chimeric Recombinant Porcine Circovirus Type 2 as Antigen Vehicle Carrying Foreign Epitopes

    Directory of Open Access Journals (Sweden)

    Huawei Zhang

    2014-12-01

    Full Text Available Virus-like particles (VLPs of chimeric porcine circovirus type 2 (PCV2 were generated by replacing the nuclear localization signal (NLS; at 1–39 aa of PCV2 capsid protein (Cap with classical swine fever virus (CSFV T-cell epitope (1446–1460 aa, CSFV B-cell epitope (693–716 aa and CSFV T-cell epitope conjugated with B-cell epitope. The recombinant proteins were expressed using the baculovirus expression system and detected by immunoblotting and indirect immunofluorescence assay. The abilities to form PCV2 VLPs were confirmed by transmission electron microscopy. Immunogenicities of the three recombinant proteins were evaluated in mice. Our Results indicated that Cap protein NLS deletion or substitution with CSFV epitopes did not affect the VLPs assembly. Three chimeric Cap proteins could form VLPs and induce efficient humoral and cellular immunity against PCV2 and CSFV in mice. Results show that PCV2 VLPs can be used as an efficient antigen carrier for delivery of foreign epitopes, and a potential novel vaccine.

  1. Humans and ferrets with prior H1N1 influenza virus infections do not exhibit evidence of original antigenic sin after infection or vaccination with the 2009 pandemic H1N1 influenza virus.

    Science.gov (United States)

    O'Donnell, Christopher D; Wright, Amber; Vogel, Leatrice; Boonnak, Kobporn; Treanor, John J; Subbarao, Kanta

    2014-05-01

    The hypothesis of original antigenic sin (OAS) states that the imprint established by an individual's first influenza virus infection governs the antibody response thereafter. Subsequent influenza virus infection results in an antibody response against the original infecting virus and an impaired immune response against the newer influenza virus. The purpose of our study was to seek evidence of OAS after infection or vaccination with the 2009 pandemic H1N1 (2009 pH1N1) virus in ferrets and humans previously infected with H1N1 viruses with various antigenic distances from the 2009 pH1N1 virus, including viruses from 1935 through 1999. In ferrets, seasonal H1N1 priming did not diminish the antibody response to infection or vaccination with the 2009 pH1N1 virus, nor did it diminish the T-cell response, indicating the absence of OAS in seasonal H1N1 virus-primed ferrets. Analysis of paired samples of human serum taken before and after vaccination with a monovalent inactivated 2009 pH1N1 vaccine showed a significantly greater-fold rise in the titer of antibody against the 2009 pH1N1 virus than against H1N1 viruses that circulated during the childhood of each subject. Thus, prior experience with H1N1 viruses did not result in an impairment of the antibody response against the 2009 pH1N1 vaccine. Our data from ferrets and humans suggest that prior exposure to H1N1 viruses did not impair the immune response against the 2009 pH1N1 virus.

  2. Biological and immunological characterization of recombinant Yellow Fever 17D Viruses expressing a Trypanosoma cruzi Amastigote Surface Protein-2 CD8+ T cell epitope at two distinct regions of the genome

    Directory of Open Access Journals (Sweden)

    Bonaldo Myrna C

    2011-03-01

    Full Text Available Abstract Background The attenuated Yellow fever (YF 17D vaccine virus is one of the safest and most effective viral vaccines administered to humans, in which it elicits a polyvalent immune response. Herein, we used the YF 17D backbone to express a Trypanosoma cruzi CD8+ T cell epitope from the Amastigote Surface Protein 2 (ASP-2 to provide further evidence for the potential of this virus to express foreign epitopes. The TEWETGQI CD8+ T cell epitope was cloned and expressed based on two different genomic insertion sites: in the fg loop of the viral Envelope protein and the protease cleavage site between the NS2B and NS3. We investigated whether the site of expression had any influence on immunogenicity of this model epitope. Results Recombinant viruses replicated similarly to vaccine virus YF 17D in cell culture and remained genetically stable after several serial passages in Vero cells. Immunogenicity studies revealed that both recombinant viruses elicited neutralizing antibodies to the YF virus as well as generated an antigen-specific gamma interferon mediated T-cell response in immunized mice. The recombinant viruses displayed a more attenuated phenotype than the YF 17DD vaccine counterpart in mice. Vaccination of a mouse lineage highly susceptible to infection by T. cruzi with a homologous prime-boost regimen of recombinant YF viruses elicited TEWETGQI specific CD8+ T cells which might be correlated with a delay in mouse mortality after a challenge with a lethal dose of T. cruzi. Conclusions We conclude that the YF 17D platform is useful to express T. cruzi (Protozoan antigens at different functional regions of its genome with minimal reduction of vector fitness. In addition, the model T. cruzi epitope expressed at different regions of the YF 17D genome elicited a similar T cell-based immune response, suggesting that both expression sites are useful. However, the epitope as such is not protective and it remains to be seen whether expression

  3. JC virus induces altered patterns of cellular gene expression: Interferon-inducible genes as major transcriptional targets

    International Nuclear Information System (INIS)

    Verma, Saguna; Ziegler, Katja; Ananthula, Praveen; Co, Juliene K.G.; Frisque, Richard J.; Yanagihara, Richard; Nerurkar, Vivek R.

    2006-01-01

    Human polyomavirus JC (JCV) infects 80% of the population worldwide. Primary infection, typically occurring during childhood, is asymptomatic in immunocompetent individuals and results in lifelong latency and persistent infection. However, among the severely immunocompromised, JCV may cause a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Virus-host interactions influencing persistence and pathogenicity are not well understood, although significant regulation of JCV activity is thought to occur at the level of transcription. Regulation of the JCV early and late promoters during the lytic cycle is a complex event that requires participation of both viral and cellular factors. We have used cDNA microarray technology to analyze global alterations in gene expression in JCV-permissive primary human fetal glial cells (PHFG). Expression of more than 400 cellular genes was altered, including many that influence cell proliferation, cell communication and interferon (IFN)-mediated host defense responses. Genes in the latter category included signal transducer and activator of transcription 1 (STAT1), interferon stimulating gene 56 (ISG56), myxovirus resistance 1 (MxA), 2'5'-oligoadenylate synthetase (OAS), and cig5. The expression of these genes was further confirmed in JCV-infected PHFG cells and the human glioblastoma cell line U87MG to ensure the specificity of JCV in inducing this strong antiviral response. Results obtained by real-time RT-PCR and Western blot analyses supported the microarray data and provide temporal information related to virus-induced changes in the IFN response pathway. Our data indicate that the induction of an antiviral response may be one of the cellular factors regulating/controlling JCV replication in immunocompetent hosts and therefore constraining the development of PML

  4. Multigenic DNA vaccine induces protective cross-reactive T cell responses against heterologous influenza virus in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Merika T Koday

    Full Text Available Recent avian and swine-origin influenza virus outbreaks illustrate the ongoing threat of influenza pandemics. We investigated immunogenicity and protective efficacy of a multi-antigen (MA universal influenza DNA vaccine consisting of HA, M2, and NP antigens in cynomolgus macaques. Following challenge with a heterologous pandemic H1N1 strain, vaccinated animals exhibited significantly lower viral loads and more rapid viral clearance when compared to unvaccinated controls. The MA DNA vaccine induced robust serum and mucosal antibody responses but these high antibody titers were not broadly neutralizing. In contrast, the vaccine induced broadly-reactive NP specific T cell responses that cross-reacted with the challenge virus and inversely correlated with lower viral loads and inflammation. These results demonstrate that a MA DNA vaccine that induces strong cross-reactive T cell responses can, independent of neutralizing antibody, mediate significant cross-protection in a nonhuman primate model and further supports development as an effective approach to induce broad protection against circulating and emerging influenza strains.

  5. Immune-mediated neuropathy with Epstein-Barr virus-positive T-cell lymphoproliferative disease.

    Science.gov (United States)

    Hattori, Takaaki; Arai, Ayako; Yokota, Takanori; Imadome, Ken-Ichi; Tomimitsu, Hiroyuki; Miura, Osamu; Mizusawa, Hidehiro

    2015-01-01

    A 47-year-old man with Epstein-Barr virus (EBV)-positive T/NK- cell lymphoproliferative disease (EBV-T/NK-LPD) developed acute-onset weakness. A nerve conduction study showed a conduction block in both the proximal and most distal segments. Although the patient's neuropathy transiently responded to intravenous immunoglobulin, it was progressive for at least 25 days until the start of prednisolone (PSL) administration, after which it remarkably improved. The neuropathy further improved after allogeneic bone marrow transplantation (BMT). The present patient's clinical course is not consistent with that of typical Guillain-Barré syndrome. This case suggests that EBV-T/NK-LPD can cause progressive immune-mediated neuropathy as a result of chronic EBV antigen presentation and can be treated with PSL and BMT.

  6. Investigation of the antigenic evolution of field isolates using the reverse genetics system of infectious bursal disease virus (IBDV).

    Science.gov (United States)

    Durairaj, Vijay; Sellers, Holly S; Linnemann, Erich G; Icard, Alan H; Mundt, Egbert

    2011-10-01

    The antigenic profiles of over 300 infectious bursal disease virus (IBDV) isolates were analyzed using a panel of monoclonal antibodies in a reverse genetics system. In addition, the sequences of a large portion of the neutralizing-antibody-inducing VP2 of IBDV were determined. Phylogenetic analysis of nucleotide and amino acid sequences in combination with the antigenic profiles obtained using the monoclonal antibody panel, revealed a lack of correlation between antigenicity and isolate's placement within the phylogenetic tree. In-depth analysis of amino acid exchanges revealed that changes within a certain region of the VP2 molecule resulted in differences in the antigenicity of the virus. This comprehensive analysis of VP2 sequences indicated a high selective pressure in the field that was likely due to vaccination programs, which increase the rate of evolution of the virus.

  7. Human Leukocyte Antigen (HLA) Class I Restricted Epitope Discovery in Yellow Fewer and Dengue Viruses: Importance of HLA Binding Strength

    DEFF Research Database (Denmark)

    Lund, Ole; Nascimento, Eduardo J. M.; Maciel, Milton, Jr

    2011-01-01

    Epitopes from all available full-length sequences of yellow fever virus (YFV) and dengue fever virus (DENV) restricted by Human Leukocyte Antigen class I (HLA-I) alleles covering 12 HLA-I supertypes were predicted using the NetCTL algorithm. A subset of 179 predicted YFV and 158 predicted DENV...... inoculated twice with the 17DD YFV vaccine strain. Three of the YFV A*02:01 restricted peptides activated T-cells from the infected mice in vitro. All three peptides that elicited responses had an HLA binding affinity of 2 nM or less. The results indicate the importance of the strength of HLA binding...

  8. A negative feedback modulator of antigen processing evolved from a frameshift in the cowpox virus genome.

    Directory of Open Access Journals (Sweden)

    Jiacheng Lin

    2014-12-01

    Full Text Available Coevolution of viruses and their hosts represents a dynamic molecular battle between the immune system and viral factors that mediate immune evasion. After the abandonment of smallpox vaccination, cowpox virus infections are an emerging zoonotic health threat, especially for immunocompromised patients. Here we delineate the mechanistic basis of how cowpox viral CPXV012 interferes with MHC class I antigen processing. This type II membrane protein inhibits the coreTAP complex at the step after peptide binding and peptide-induced conformational change, in blocking ATP binding and hydrolysis. Distinct from other immune evasion mechanisms, TAP inhibition is mediated by a short ER-lumenal fragment of CPXV012, which results from a frameshift in the cowpox virus genome. Tethered to the ER membrane, this fragment mimics a high ER-lumenal peptide concentration, thus provoking a trans-inhibition of antigen translocation as supply for MHC I loading. These findings illuminate the evolution of viral immune modulators and the basis of a fine-balanced regulation of antigen processing.

  9. Association between simian virus 40 and non-Hodgkin lymphoma

    Science.gov (United States)

    Vilchez, Regis A.; Madden, Charles R.; Kozinetz, Claudia A.; Halvorson, Steven J.; White, Zoe S.; Jorgensen, Jeffrey L.; Finch, Chris J.; Butel, Janet S.

    2002-01-01

    BACKGROUND: Non-Hodgkin lymphoma has increased in frequency over the past 30 years, and is a common cancer in HIV-1-infected patients. Although no definite risk factors have emerged, a viral cause has been postulated. Polyomaviruses are known to infect human beings and to induce tumours in laboratory animals. We aimed to identify which one of the three polyomaviruses able to infect human beings (simian virus 40 [SV40], JC virus, and BK virus) was associated with non-Hodgkin lymphoma. METHODS: We analysed systemic non-Hodgkin lymphoma from 76 HIV-1-infected and 78 HIV-1-uninfected patients, and non-malignant lymphoid samples from 79 HIV-1-positive and 107 HIV-1-negative patients without tumours; 54 colon and breast carcinoma samples served as cancer controls. We used PCR followed by Southern blot hybridisation and DNA sequence analysis to detect DNAs of polyomaviruses and herpesviruses. FINDINGS: Polyomavirus T antigen sequences, all of which were SV40-specific, were detected in 64 (42%) of 154 non-Hodgkin lymphomas, none of 186 non-malignant lymphoid samples, and none of 54 control cancers. This difference was similar for HIV-1-infected patients and HIV-1-uninfected patients alike. Few tumours were positive for both SV40 and Epstein-Barr virus. Human herpesvirus type 8 was not detected. SV40 sequences were found most frequently in diffuse large B-cell and follicular-type lymphomas. INTERPRETATION: SV40 is significantly associated with some types of non-Hodgkin lymphoma. These results add lymphomas to the types of human cancers associated with SV40.

  10. Chimeric antigen receptor T cells: a novel therapy for solid tumors

    Directory of Open Access Journals (Sweden)

    Shengnan Yu

    2017-03-01

    Full Text Available Abstract The chimeric antigen receptor T (CAR-T cell therapy is a newly developed adoptive antitumor treatment. Theoretically, CAR-T cells can specifically localize and eliminate tumor cells by interacting with the tumor-associated antigens (TAAs expressing on tumor cell surface. Current studies demonstrated that various TAAs could act as target antigens for CAR-T cells, for instance, the type III variant epidermal growth factor receptor (EGFRvIII was considered as an ideal target for its aberrant expression on the cell surface of several tumor types. CAR-T cell therapy has achieved gratifying breakthrough in hematological malignancies and promising outcome in solid tumor as showed in various clinical trials. The third generation of CAR-T demonstrates increased antitumor cytotoxicity and persistence through modification of CAR structure. In this review, we summarized the preclinical and clinical progress of CAR-T cells targeting EGFR, human epidermal growth factor receptor 2 (HER2, and mesothelin (MSLN, as well as the challenges for CAR-T cell therapy.

  11. Comparison of antigen-specific T-cell responses of tuberculosis patients using complex or single antigens of Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Mustafa, A S; Amoudy, H A; Wiker, H G

    1998-01-01

    We have screened peripheral blood mononuclear cells (PBMC) from tuberculosis (TB) patients for proliferative reactivity and interferon-gamma (IFN-gamma) secretion against a panel of purified recombinant (r) and natural (n) culture filtrate (rESAT-6, nMPT59, nMPT64 and nMPB70) and somatic-derived (r......GroES, rPstS, rGroEL and rDnaK) antigens of Mycobacterium tuberculosis. The responses of PBMC to these defined antigens were compared with the corresponding results obtained with complex antigens, such as whole-cell M. tuberculosis, M. tuberculosis culture filtrate (MT-CF) and cell wall antigens, as well...... as the vaccine strain, Mycobacterium bovis bacillus Calmette-Guerin (BCG). In addition, M. tuberculosis and MT-CF-induced T-cell lines were tested in the same assays against the panel of purified and complex antigens. The compiled data from PBMC and T-cell lines tested for antigen-induced proliferation and IFN...

  12. Surface antigen-negative hepatitis B virus infection in Dutch blood donors

    NARCIS (Netherlands)

    Lieshout-Krikke, R. W.; Molenaar-de Backer, M. W. A.; van Swieten, P.; Zaaijer, H. L.

    2014-01-01

    Hepatitis B virus (HBV) surface antigen (HBsAg) is a reliable marker for HBV infection, but HBsAg-negative forms of HBV infection occur. The introduction of HBV DNA screening of Dutch blood donors, which were not preselected for absence of HBV core antibodies, enabled the characterization of

  13. Induction of Foot-and-Mouth Disease Virus-Specific Cytotoxic T Cell Killing by Vaccination

    DEFF Research Database (Denmark)

    Patch, J.R.; Pedersen, Lasse Eggers; Toka, F.N.

    2011-01-01

    Foot-and-mouth disease (FMD) continues to be a significant threat to the health and economic value of livestock species. This acute infection is caused by the highly contagious FMD virus (FMDV), which infects cloven-hoofed animals including large and small ruminants and swine. Current vaccine...... cytopathic virus. Here, we have used recombinant human adenovirus vectors as a means of delivering FMDV antigens in a T cell-directed vaccine in pigs. We tested the hypothesis that impaired processing of the FMDV capsid would enhance cytolytic activity, presumably by targeting all proteins for degradation...... and effectively increasing the class I MHC/FMDV peptide concentration for stimulation of a CTL response. We compared such a T cell targeting vaccine with the parental vaccine, previously shown to effectively induce a neutralizing antibody response. Our results show induction of FMDV-specific CD8(+) CTL killing...

  14. Cross–dressers turn on T cells

    OpenAIRE

    YEWDELL, JONATHAN W.; DOLAN, BRIAN P.

    2011-01-01

    Memory T cells remember viruses from previous infections, providing immunity by facilitating the killing of infected cells. For this, they exploit cross-dressing, the transfer of antigens between antigen-presenting cells.

  15. Quantification of an Epstein-Barr virus-associated membrane antigen component

    International Nuclear Information System (INIS)

    North, J.R.; Morgan, A.J.; Thompson, J.L.; Epstein, M.A.

    1982-01-01

    A method is described for the preparation of a 125 I-labelled membrane antigen (MA) component (gp340) from B95-8 cell membranes using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Good yields of antigenic material were obtained when renaturation of the [ 125 I]gp340 was carried out by removal of SDS in the presence of urea and subsequent removal of the urea. The availability of purified, radiolabelled gp340 has provided the essential basis for the development of a radioimmunoassay which, for the first time, permits quantification of this antigen. The assay has been used to demonstrate that cell membrane MA is a better source of gp340 for large-scale work than is the Epstein-Barr virus envelope and to measure the increase in expression of gp340 following treatment of cells with 12-O-tetradecanoyl-phorbol-13-acetate (TPA). (Auth.)

  16. Concanavalin A-mediated in vitro activation of a secondary cytotoxic T-cell response in virus-primed splenocytes

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Jensen, B L

    1980-01-01

    In a recent report it was shown that what appeared to be secondary cytotoxic T cells could be obtained from lymphocytic choriomeningitis virus (LCMV)-primed splenocytes after stimulation in vitro with the non-specific T cell mitogen concanavalin A (Con A). The present experiments attempt to chara......In a recent report it was shown that what appeared to be secondary cytotoxic T cells could be obtained from lymphocytic choriomeningitis virus (LCMV)-primed splenocytes after stimulation in vitro with the non-specific T cell mitogen concanavalin A (Con A). The present experiments attempt...... to characterize further these effector cells and, in particular, to establish whether the Con A-activated cytotoxic effectors are qualitatively different from the secondary cytotoxic T cells induced by restimulation with the homologous antigen. It was found that: (1) in vitro activation with Con A could......, since no evidence was found to indicate a role for other cell types or soluble (cytotoxic or arming) factors; (4) cytotoxicity was specific with regard to both virus and 'self'. By comparison with previous data on LCMV-induced cytotoxic T cells, it is concluded that Con A induces the generation...

  17. Challenges and prospects of chimeric antigen receptor T cell therapy in solid tumors.

    Science.gov (United States)

    Jindal, Vishal; Arora, Ena; Gupta, Sorab

    2018-05-05

    Chimeric antigen receptor (CAR) T cell therapy is a novel and innovative immunotherapy. CAR-T cells are genetically engineered T cells, carrying MHC independent specific antigen receptor and co-stimulatory molecule which can activate an immune response to a cancer specific antigen. This therapy showed great results in hematological malignancies but were unable to prove their worth in solid tumors. Likely reasons for their failure are lack of antigens, poor trafficking, and hostile tumor microenvironment. Excessive amount of research is going on to improve the efficacy of CAR T cell therapy in solid tumors. In this article, we will discuss the challenges faced in improving the outcome of CAR T cell therapy in solid tumors and various strategies adopted to curb them.

  18. Virus-specific regulatory T cells ameliorate encephalitis by repressing effector T cell functions from priming to effector stages.

    Directory of Open Access Journals (Sweden)

    Jingxian Zhao

    2014-08-01

    Full Text Available Several studies have demonstrated the presence of pathogen-specific Foxp3+ CD4 regulatory T cells (Treg in infected animals, but little is known about where and how these cells affect the effector T cell responses and whether they are more suppressive than bulk Treg populations. We recently showed the presence of both epitope M133-specific Tregs (M133 Treg and conventional CD4 T cells (M133 Tconv in the brains of mice with coronavirus-induced encephalitis. Here, we provide new insights into the interactions between pathogenic Tconv and Tregs responding to the same epitope. M133 Tregs inhibited the proliferation but not initial activation of M133 Tconv in draining lymph nodes (DLN. Further, M133 Tregs inhibited migration of M133 Tconv from the DLN. In addition, M133 Tregs diminished microglia activation and decreased the number and function of Tconv in the infected brain. Thus, virus-specific Tregs inhibited pathogenic CD4 T cell responses during priming and effector stages, particularly those recognizing cognate antigen, and decreased mortality and morbidity without affecting virus clearance. These cells are more suppressive than bulk Tregs and provide a targeted approach to ameliorating immunopathological disease in infectious settings.

  19. Human Immunodeficiency Virus Proteins Mimic Human T Cell Receptors Inducing Cross-Reactive Antibodies

    Directory of Open Access Journals (Sweden)

    Robert Root-Bernstein

    2017-10-01

    Full Text Available Human immunodeficiency virus (HIV hides from the immune system in part by mimicking host antigens, including human leukocyte antigens. It is demonstrated here that HIV also mimics the V-β-D-J-β of approximately seventy percent of about 600 randomly selected human T cell receptors (TCR. This degree of mimicry is greater than any other human pathogen, commensal or symbiotic organism studied. These data suggest that HIV may be evolving into a commensal organism just as simian immunodeficiency virus has done in some types of monkeys. The gp120 envelope protein, Nef protein and Pol protein are particularly similar to host TCR, camouflaging HIV from the immune system and creating serious barriers to the development of safe HIV vaccines. One consequence of HIV mimicry of host TCR is that antibodies against HIV proteins have a significant probability of recognizing the corresponding TCR as antigenic targets, explaining the widespread observation of lymphocytotoxic autoantibodies in acquired immunodeficiency syndrome (AIDS. Quantitative enzyme-linked immunoadsorption assays (ELISA demonstrated that every HIV antibody tested recognized at least one of twelve TCR, and as many as seven, with a binding constant in the 10−8 to 10−9 m range. HIV immunity also affects microbiome tolerance in ways that correlate with susceptibility to specific opportunistic infections.

  20. PENGAMATAN SERO—VIROLOGI BEBERAPA JENIS ANTIGEN VIRUS PADA SERUM TALIPUSAT BAYI DI RS. CIPTO MANGUNKUSUMO, JAKARTA

    Directory of Open Access Journals (Sweden)

    Djoko Yuwono

    2012-09-01

    Full Text Available Perinatal infection due to viral agents from mother to neonate is still a major cause of viral transmis­sion in developing countries. Several type of viruses which are known to be transmitted vertieally or perinatally from mother to neonates are: Hepatitis B virus, Herpes simplex, Rubella and Cytomegalovi­rus. In attempt to estimate the real problem of viral diseases which are vertically or perinatally transmis­sible among infants, a survey on sero-virology of several type viral antigens among neonates who were borned in Dr. Cipto Mangunkusumo hospital, was carried out. A total of 227 blood samples of umbillical cord were examined for the presence of their viral anti­gens such as: Hepatitis B surface antigen (HBsAg, Herpes simplex type 1 and type 2, and anti-rubella IgM as an indicator of early infection due to rubella virus in the fetus. The detection of antigens and anti-rubella IgM in the serum.were done by ELISA methode using reagents which are commercially available. The result of the study indicated that there was a possibility of perinatal infection due to related viruses, i.e.: 2.2%; 1.9% and 14.3% due to HBsAg; Herpes simplex type 1 and type 2 respectivelly, however none of the serum indicated seropositive IgM against rubella virus: infection.

  1. Nasal-associated lymphoid tissues (NALTs) support the recall but not priming of influenza virus-specific cytotoxic T cells.

    Science.gov (United States)

    Pizzolla, Angela; Wang, Zhongfang; Groom, Joanna R; Kedzierska, Katherine; Brooks, Andrew G; Reading, Patrick C; Wakim, Linda M

    2017-05-16

    The lymphoid tissue that drains the upper respiratory tract represents an important induction site for cytotoxic T lymphocyte (CTL) immunity to airborne pathogens and intranasal vaccines. Here, we investigated the role of the nasal-associated lymphoid tissues (NALTs), which are mucosal-associated lymphoid organs embedded in the submucosa of the nasal passage, in the initial priming and recall expansion of CD8 + T cells following an upper respiratory tract infection with a pathogenic influenza virus and immunization with a live attenuated influenza virus vaccine. Whereas NALTs served as the induction site for the recall expansion of memory CD8 + T cells following influenza virus infection or vaccination, they failed to support activation of naïve CD8 + T cells. Strikingly, NALTs, unlike other lymphoid tissues, were not routinely surveyed during the steady state by circulating T cells. The selective recruitment of memory T cells into these lymphoid structures occurred in response to infection-induced elevation of the chemokine CXCL10, which attracted CXCR3 + memory CD8 + T cells. These results have significant implications for intranasal vaccines, which deliver antigen to mucosal-associated lymphoid tissue and aim to elicit protective CTL-mediated immunity.

  2. Transgene Expression and Repression in Transgenic Rats Bearing the Phosphoenolpyruvate Carboxykinase-Simian Virus 40 T Antigen or the Phosphoenolpyruvate Carboxykinase-Transforming Growth Factor-α Constructs

    Science.gov (United States)

    Haas, Michael J.; Dragan, Yvonne P.; Hikita, Hiroshi; Shimel, Randee; Takimoto, Koichi; Heath, Susan; Vaughan, Jennifer; Pitot, Henry C.

    1999-01-01

    Transgenic Sprague-Dawley rats expressing either human transforming growth factor-α (TGFα) or simian virus 40 large and small T antigen (TAg), each under the control of the phosphoenolpyruvate carboxykinase (PEPCK) promoter, were developed as an approach to the study of the promotion of hepatocarcinogenesis in the presence of a transgene regulatable by diet and/or hormones. Five lines of PEPCK-TGFα transgenic rats were established, each genetic line containing from one to several copies of the transgene per haploid genome. Two PEPCK-TAg transgenic founder rats were obtained, each with multiple copies of the transgene. Expression of the transgene was undetectable in the TGFα transgenic rats and could not be induced when the animals were placed on a high-protein, low-carbohydrate diet. The transgene was found to be highly methylated in all of these lines. No pathological alterations in the liver and intestine were observed at any time (up to 2 years) during the lives of these rats. One line of transgenic rats expressing the PEPCK-TAg transgene developed pancreatic islet cell hyperplasias and carcinomas, with few normal islets evident in the pancreas. This transgene is integrated as a hypomethylated tandem array of 10 to 12 copies on chromosome 8q11. Expression of large T antigen is highest in pancreatic neoplasms, but is also detectable in the normal brain, kidney, and liver. Mortality is most rapid in males, starting at 5 months of age and reaching 100% by 8 months. Morphologically, islet cell differentiation in the tumors ranges from poor to well differentiated, with regions of necrosis and fibrosis. Spontaneous metastasis of TAg-positive tumor cells to regional lymph nodes was observed. These studies indicate the importance of DNA methylation in the repression of specific transgenes in the rat. However, the expression of the PEPCK-TAg induces neoplastic transformation in islet cells, probably late in neuroendocrine cell differentiation. T antigen expression

  3. Gene therapy for human glioblastoma using neurotropic JC virus-like particles as a gene delivery vector.

    Science.gov (United States)

    Chao, Chun-Nun; Yang, Yu-Hsuan; Wu, Mu-Sheng; Chou, Ming-Chieh; Fang, Chiung-Yao; Lin, Mien-Chun; Tai, Chien-Kuo; Shen, Cheng-Huang; Chen, Pei-Lain; Chang, Deching; Wang, Meilin

    2018-02-02

    Glioblastoma multiforme (GBM), the most common malignant brain tumor, has a short period of survival even with recent multimodality treatment. The neurotropic JC polyomavirus (JCPyV) infects glial cells and oligodendrocytes and causes fatal progressive multifocal leukoencephalopathy in patients with AIDS. In this study, a possible gene therapy strategy for GBM using JCPyV virus-like particles (VLPs) as a gene delivery vector was investigated. We found that JCPyV VLPs were able to deliver the GFP reporter gene into tumor cells (U87-MG) for expression. In an orthotopic xenograft model, nude mice implanted with U87 cells expressing the near-infrared fluorescent protein and then treated by intratumoral injection of JCPyV VLPs carrying the thymidine kinase suicide gene, combined with ganciclovir administration, exhibited significantly prolonged survival and less tumor fluorescence during the experiment compared with controls. Furthermore, JCPyV VLPs were able to protect and deliver a suicide gene to distal subcutaneously implanted U87 cells in nude mice via blood circulation and inhibit tumor growth. These findings show that metastatic brain tumors can be targeted by JCPyV VLPs carrying a therapeutic gene, thus demonstrating the potential of JCPyV VLPs to serve as a gene therapy vector for the far highly treatment-refractory GBM.

  4. Activation of nickel-specific CD4+ T lymphocytes in the absence of professional antigen-presenting cells.

    Science.gov (United States)

    Nasorri, Francesca; Sebastiani, Silvia; Mariani, Valentina; De Pità, Ornella; Puddu, Pietro; Girolomoni, Giampiero; Cavani, Andrea

    2002-01-01

    Allergic contact dermatitis ensues from exaggerated T cell responses to haptens. Dendritic cells are required for the initiation of hapten sensitization, but they may not be necessary for disease expression. Here we investigated the antigen-presenting cell requirement of nickel-specific CD4+ lymphocytes isolated from the blood of six allergic individuals. A significant proportion (42 out of 121; 35%) of the T cell clones proliferated in vitro to nickel also in the absence of professional antigen-presenting cells, suggesting a direct T-T hapten presentation. Antigen-presenting-cell-independent T cells showed a predominant T helper 1 phenotype. Nickel recognition by these T cells was major histocompatibility complex class II restricted, not influenced by CD28 triggering, independent from their state of activation, and did not require processing. The capacity of this T cell subset to be directly stimulated by nickel was not due to unique antigen-presenting properties, as both antigen-presenting-cell-dependent and antigen-presenting-cell-independent clones displayed comparable levels of HLA-DR, CD80, and CD86, and were equally capable of presenting nickel to antigen-presenting-cell-independent clones. In contrast, neither T cell types activated antigen-presenting-cell-dependent T lymphocytes. T-T presentation induced T cell receptor downregulation, CD25, CD80, CD86, and HLA-DR upregulation, and interferon-gamma release, although to a lesser extent compared to those induced by dendritic cell-T presentation. Following T-T presentation, the clones did not undergo unresponsiveness and maintained the capacity to respond to dendritic cells pulsed with antigen. In aggregate, our data suggest that antigen-presenting-cell-independent T cell activation can effectively amplify hapten- specific immune responses.

  5. Hepatitis B virus surface antigen impairs myeloid dendritic cell function: a possible immune escape mechanism of hepatitis B virus

    Science.gov (United States)

    Op den Brouw, Marjoleine L; Binda, Rekha S; van Roosmalen, Mark H; Protzer, Ulrike; Janssen, Harry L A; van der Molen, Renate G; Woltman, Andrea M

    2009-01-01

    Chronic hepatitis B virus (HBV) infection is the result of an inadequate immune response towards the virus. Myeloid dendritic cells (mDC) of patients with chronic HBV are impaired in their maturation and function, resulting in more tolerogenic rather than immunogenic responses, which may contribute to viral persistence. The mechanism responsible for altered mDC function remains unclear. The HBV-infected patients display large amounts of HBV particles and viral proteins in their circulation, especially the surface antigen HBsAg, which allows multiple interactions between the virus, its viral proteins and DC. To assess whether HBV directly influences mDC function, the effects of HBV and HBsAg on human mDC maturation and function were investigated in vitro. As already described for internalization of HBV by DC, the present study shows that peripheral blood-derived mDC of healthy controls also actively take up HBsAg in a time-dependent manner. Cytokine-induced maturation in the presence of HBV or HBsAg resulted in a significantly more tolerogenic mDC phenotype as demonstrated by a diminished up-regulation of costimulatory molecules and a decreased T-cell stimulatory capacity, as assessed by T-cell proliferation and interferon-γ production. In addition, the presence of HBV significantly reduced interleukin-12 production by mDC. These results show that both HBV particles and purified HBsAg have an immune modulatory capacity and may directly contribute to the dysfunction of mDC in patients with chronic HBV. The direct immune regulatory effect of HBV and circulating HBsAg particles on the function of DC can be considered as part of the mechanism by which HBV escapes immunity. PMID:18624732

  6. Rabies virus glycoprotein as a carrier for anthrax protective antigen

    International Nuclear Information System (INIS)

    Smith, Mary Ellen; Koser, Martin; Xiao Sa; Siler, Catherine; McGettigan, James P.; Calkins, Catherine; Pomerantz, Roger J.; Dietzschold, Bernhard; Schnell, Matthias J.

    2006-01-01

    Live viral vectors expressing foreign antigens have shown great promise as vaccines against viral diseases. However, safety concerns remain a major problem regarding the use of even highly attenuated viral vectors. Using the rabies virus (RV) envelope protein as a carrier molecule, we show here that inactivated RV particles can be utilized to present Bacillus anthracis protective antigen (PA) domain-4 in the viral membrane. In addition to the RV glycoprotein (G) transmembrane and cytoplasmic domains, a portion of the RV G ectodomain was required to express the chimeric RV G anthrax PA on the cell surface. The novel antigen was also efficiently incorporated into RV virions. Mice immunized with the inactivated recombinant RV virions exhibited seroconversion against both RV G and anthrax PA, and a second inoculation greatly increased these responses. These data demonstrate that a viral envelope protein can carry a bacterial protein and that a viral carrier can display whole polypeptides compared to the limited epitope presentation of previous viral systems

  7. Temporary CD8(+) T-cell depletion in pigs does not exacerbate infection with porcine reproductive and respiratory syndrome virus (PRRSV)

    DEFF Research Database (Denmark)

    Lohse, Louise; Nielsen, Jens; Eriksen, Lis

    2004-01-01

    Several studies have demonstrated a consistent increase in the CD8(+) T-cell subset of pigs following infection with porcine reproductive and respiratory virus (PRRSV). Consequently, it has been suggested that CD8(+) T-cells may play an important role in protection against this infection. In order...... increased disease nor influenced the ability to clear virus in the treated pigs......., confirmed the depletion effect of specific mAb therapy. Almost complete depletion of cell subsets expressing the CD8(+) antigen was obtained on day 2 and 5 post infection (PI) with nadir less than 1 % of peripheral blood mononuclear cells (PBMC). One week PI, an increase in T-cell subsets was observed...

  8. Merkel cell polyomavirus in Merkel cell carcinogenesis: small T antigen-mediates c-Jun phosphorylation.

    Science.gov (United States)

    Wu, Julie H; Simonette, Rebecca A; Nguyen, Harrison P; Rady, Peter L; Tyring, Stephen K

    2016-06-01

    Merkel cell carcinoma (MCC) is a highly aggressive neuroendocrine skin cancer associated with the Merkel cell polyomavirus (MCPyV). The MCPyV genome, which is clonally integrated in the majority of MCCs, encodes the regulatory small T (sT) antigen. Previously, reports have established MCPyV sT antigen as a potent oncogene capable of inducing cell transformation. In the current study, we demonstrate a distinct role for c-Jun hyperactivation in MCPyV sT antigen pathogenesis. As MCPyV sT antigen's association with aggressive cancer growth has been previously established, this finding may represent a potential therapeutic target for the treatment of MCCs.

  9. Monitoring antigenic variations of enterovirus 71: implications for virus surveillance and vaccine development.

    Directory of Open Access Journals (Sweden)

    Min-Yuan Chia

    2014-07-01

    Full Text Available Enterovirus 71 (EV71 causes life-threatening epidemics in Asia and can be phylogenetically classified into three major genogroups (A ∼ C including 11 genotypes (A, B1 ∼ B5, and C1 ∼ C5. Recently, EV71 epidemics occurred cyclically in Taiwan with different genotypes. In recent years, human studies using post-infection sera obtained from children have detected antigenic variations among different EV71 strains. Therefore, surveillance of enterovirus 71 should include phylogenetic and antigenic analysis. Due to limitation of sera available from children with EV71 primary infection, suitable animal models should be developed to generate a panel of antisera for monitoring EV71 antigenic variations. Twelve reference strains representing the 11 EV71 genotypes were grown in rhabdomyosarcoma cells. Infectious EV71 particles were purified and collected to immunize rabbits. The rabbit antisera were then employed to measure neutralizing antibody titers against the 12 reference strains and 5 recent strains. Rabbits immunized with genogroup B and C viruses consistently have a lower neutralizing antibody titers against genogroup A (≧ 8-fold difference and antigenic variations between genogroup B and C viruses can be detected but did not have a clear pattern, which are consistent with previous human studies. Comparison between human and rabbit neutralizing antibody profiles, the results showed that ≧ 8-fold difference in rabbit cross-reactive antibody ratios could be used to screen EV71 isolates for identifying potential antigenic variants. In conclusion, a rabbit model was developed to monitor antigenic variations of EV71, which are critical to select vaccine strains and predict epidemics.

  10. Studies on immune responses to Epstein-Barr virus among A-bomb survivors

    International Nuclear Information System (INIS)

    Kusunoki, Y.; Kyoizumi, S.; Ozaki, K.; Cologne, J.B.; Akiyama, M.

    1992-01-01

    Previous studies revealed that reactivity of T-lymphocytes to phytohemag-glutinin and allo-antigens as well as the number of mature CD5 + T cells are decreased among atomic bomb survivors. Possible radiation effects were suggested for impairment of antibody production to certain type A influenza viruses and for an increased prevalence rate of hepatitis B virus surface antigen in sera among survivors. These findings lead to research of effects of A-bomb radiation on immune responses to certain ubiquitous viruses such as Epstein-Barr Virus. Reactivation of EBV induced by depression of immune competence might be reflected by changes in serum titers of these antibodies. Significant increases in titers of antiviral capsed antigen IgC or anti-early antigen (EA) IgC and frequent absence o.r low levels of anti- EBV-associated nuclear antigen antibodies were observed in immunologically compromised individuals. Without regard to diseases, occurrence of significant titers of anti-EA IgC in healthy sero-positive individuals has been ascribed to reactivation of the viral carrier stage. This study examines serum titers of these anti-EBV antibodies to investigate whether any alteration of immune competence to the virus was detectable in relation to the previous A-bomb radiation exposure. Also, an attempt was made to evaluated T-cell responses to EBV in A-bomb survivors for the purpose of understanding involvement of T-cell function in reactivation of the virus, using the precursor frequency analysis of cytotoxic lymphocytes against autologous B cell transformed in vitro with EBV. (author). 13 refs., 2 figs., 1 tab

  11. Antigen-Specificity of T Cell Infiltrates in Biopsies With T Cell-Mediated Rejection and BK Polyomavirus Viremia: Analysis by Next Generation Sequencing.

    Science.gov (United States)

    Zeng, G; Huang, Y; Huang, Y; Lyu, Z; Lesniak, D; Randhawa, P

    2016-11-01

    This study interrogates the antigen-specificity of inflammatory infiltrates in renal biopsies with BK polyomavirus (BKPyV) viremia (BKPyVM) with or without allograft nephropathy (BKPyVN). Peripheral blood mononuclear cells (PBMC) from five healthy HLA-A0101 subjects were stimulated by peptides derived from the BKPYV proteome or polymorphic regions of HLA. Next generation sequencing of the T cell-receptor complementary DNA was performed on peptide-stimulated PBMC and 23 biopsies with T cell-mediated rejection (TCMR) or BKPyVN. Biopsies from patients with BKPyVM or BKVPyVN contained 7.7732 times more alloreactive than virus-reactive clones. Biopsies with TCMR also contained BKPyV-specific clones, presumably a manifestation of heterologous immunity. The mean cumulative T cell clonal frequency was 0.1378 for alloreactive clones and 0.0375 for BKPyV-reactive clones. Samples with BKPyVN and TCMR clustered separately in dendrograms of V-family and J-gene utilization patterns. Dendrograms also revealed that V-gene, J-gene, and D-gene usage patterns were a function of HLA type. In conclusion, biopsies with BKPyVN contain abundant allospecific clones that exceed the number of virus-reactive clones. The T cell component of tissue injury in viral nephropathy appears to be mediated primarily by an "innocent bystander" mechanism in which the principal element is secondary T cell influx triggered by both antiviral and anti-HLA immunity. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  12. Persistent infection with ebola virus under conditions of partial immunity.

    Science.gov (United States)

    Gupta, Manisha; Mahanty, Siddhartha; Greer, Patricia; Towner, Jonathan S; Shieh, Wun-Ju; Zaki, Sherif R; Ahmed, Rafi; Rollin, Pierre E

    2004-01-01

    Ebola hemorrhagic fever in humans is associated with high mortality; however, some infected hosts clear the virus and recover. The mechanisms by which this occurs and the correlates of protective immunity are not well defined. Using a mouse model, we determined the role of the immune system in clearance of and protection against Ebola virus. All CD8 T-cell-deficient mice succumbed to subcutaneous infection and had high viral antigen titers in tissues, whereas mice deficient in B cells or CD4 T cells cleared infection and survived, suggesting that CD8 T cells, independent of CD4 T cells and antibodies, are critical to protection against subcutaneous Ebola virus infection. B-cell-deficient mice that survived the primary subcutaneous infection (vaccinated mice) transiently depleted or not depleted of CD4 T cells also survived lethal intraperitoneal rechallenge for >/==" BORDER="0">25 days. However, all vaccinated B-cell-deficient mice depleted of CD8 T cells had high viral antigen titers in tissues following intraperitoneal rechallenge and died within 6 days, suggesting that memory CD8 T cells by themselves can protect mice from early death. Surprisingly, vaccinated B-cell-deficient mice, after initially clearing the infection, were found to have viral antigens in tissues later (day 120 to 150 post-intraperitoneal infection). Furthermore, following intraperitoneal rechallenge, vaccinated B-cell-deficient mice that were transiently depleted of CD4 T cells had high levels of viral antigen in tissues earlier (days 50 to 70) than vaccinated undepleted mice. This demonstrates that under certain immunodeficiency conditions, Ebola virus can persist and that loss of primed CD4 T cells accelerates the course of persistent infections. These data show that CD8 T cells play an important role in protection against acute disease, while both CD4 T cells and antibodies are required for long-term protection, and they provide evidence of persistent infection by Ebola virus suggesting

  13. Comparison of vaccine efficacy for different antigen delivery systems for infectious pancreatic necrosis virus vaccines in Atlantic salmon (Salmo salar L.) in a cohabitation challenge model.

    Science.gov (United States)

    Munang'andu, Hetron M; Fredriksen, Børge N; Mutoloki, Stephen; Brudeseth, Bjørn; Kuo, Tsun-Yung; Marjara, Inderjit S; Dalmo, Roy A; Evensen, Øystein

    2012-06-08

    Two strains of IPNV made by reverse genetics on the Norwegian Sp strain NVI-015 (GenBank AY379740) backbone encoding the virulent (T(217)A(221)) and avirulent (P(217)T(221)) motifs were used to prepare inactivated whole virus (IWV), nanoparticle vaccines with whole virus, Escherichia coli subunit encoding truncated VP2-TA and VP2-PT, VP2-TA and VP2-PT fusion antigens with putative translocating domains of Pseudomonas aeruginosa exotoxin, and plasmid DNA encoding segment A of the TA strain. Post challenge survival percentages (PCSP) showed that IWV vaccines conferred highest protection (PCSP=42-53) while nanoparticle, sub-unit recombinant and DNA vaccines fell short of the IWV vaccines in Atlantic salmon (Salmo salar L.) postsmolts challenged with the highly virulent Sp strain NVI-015 (TA strain) of IPNV after 560 degree days post vaccination. Antibody levels induced by these vaccines did not show antigenic differences between the virulent and avirulent motifs for vaccines made with the same antigen dose and delivery system after 8 weeks post vaccination. Our findings show that fish vaccinated with less potent vaccines comprising of nanoparticle, DNA and recombinant vaccines got infected much earlier and yielded to higher infection rates than fish vaccinated with IWV vaccines that were highly potent. Ability of the virulent (T(217)A(221)) and avirulent (P(217)T(221)) motifs to limit establishment of infection showed equal protection for vaccines made of the same antigen dose and delivery systems. Prevention of tissue damage linked to viral infection was eminent in the more potent vaccines than the less protective ones. Hence, there still remains the challenge of developing highly efficacious vaccines with the ability to eliminate the post challenge carrier state in IPNV vaccinology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Screening for simian foamy virus infection by using a combined antigen Western blot assay: evidence for a wide distribution among Old World primates and identification of four new divergent viruses

    International Nuclear Information System (INIS)

    Hussain, Althaf I.; Shanmugam, Vedapuri; Bhullar, Vinod B.; Beer, Brigitte E.; Vallet, Dominique; Gautier-Hion, Annie; Wolfe, Nathan D.; Karesh, William B.; Kilbourn, Annelisa M.; Tooze, Zeena; Heneine, Walid; Switzer, William M.

    2003-01-01

    Simian foamy viruses (SFVs) belong to a genetically and antigenically diverse class of retroviruses that naturally infect a wide range of nonhuman primates (NHPs) and can also be transmitted to humans occupationally exposed to NHPs. Current serologic detection of SFV infection requires separate Western blot (WB) testing by using two different SFV antigens [SFV AGM (African green monkey) and SFV CPZ (chimpanzee)]. However, this method is labor intensive and validation is limited to only small numbers of NHPs. To facilitate serologic SFV testing, we developed a WB assay that combines antigens from both SFV AGM and SFV CPZ . The combined-antigen WB (CA-WB) assay was validated with 145 serum samples from 129 NHPs (32 African and Asian species) and 16 humans, all with known SFV infection status determined by PCR. Concordant CA-WB results were obtained for all 145 PCR-positive or -negative primate and human specimens, giving the assay a 100% sensitivity and specificity. In addition, no reactivity was observed in sera from persons positive for human immunodeficiency virus or human T cell lymphotropic virus (HIV/HTLV) (n = 25) or HIV/HTLV-negative U.S. blood donors (n = 100). Using the CA-WB assay, we screened 360 sera from 43 Old World primate species and found an SFV prevalence of about 68% in both African and Asian primates. We also isolated SFV from the blood of four seropositive primates (Allenopithecus nigroviridis, Trachypithecus francoisi, Hylobates pileatus, and H. leucogenys) not previously known to be infected with SFV. Phylogenetic analysis of integrase sequences from these isolates confirmed that all four SFVs represent new, distinct, and highly divergent lineages. These results demonstrate the ability of the CA-WB assay to detect infection in a large number of NHP species, including previously uncharacterized infections with divergent SFVs

  15. Rabies virus-specific human T cell clones provide help for an in vitro antibody response against neutralizing antibody-inducing determinants of the viral glycoprotein.

    NARCIS (Netherlands)

    H. Bunschoten; R.J. Klapmuts; I.J.Th.M. Claassen (Ivo); S.D. Reijneveld; A.D.M.E. Osterhaus (Albert); F.G.C.M. Uytdehaag (Fons)

    1989-01-01

    textabstractHuman T cell clones were prepared from peripheral blood mononuclear cells from a vaccinated human donor and kept in culture in the presence of rabies virus antigen and growth factors. Phenotypic analysis of the T cell clones revealed expression of the CD3 and CD4 cell surface markers,

  16. Application of Adoptive T-Cell Therapy Using Tumor Antigen-Specific T-Cell Receptor Gene Transfer for the Treatment of Human Leukemia

    Directory of Open Access Journals (Sweden)

    Toshiki Ochi

    2010-01-01

    Full Text Available The last decade has seen great strides in the field of cancer immunotherapy, especially the treatment of melanoma. Beginning with the identification of cancer antigens, followed by the clinical application of anti-cancer peptide vaccination, it has now been proven that adoptive T-cell therapy (ACT using cancer antigen-specific T cells is the most effective option. Despite the apparent clinical efficacy of ACT, the timely preparation of a sufficient number of cancer antigen-specific T cells for each patient has been recognized as its biggest limitation. Currently, therefore, attention is being focused on ACT with engineered T cells produced using cancer antigen-specific T-cell receptor (TCR gene transfer. With regard to human leukemia, ACT using engineered T cells bearing the leukemia antigen-specific TCR gene still remains in its infancy. However, several reports have provided preclinical data on TCR gene transfer using Wilms' tumor gene product 1 (WT1, and also preclinical and clinical data on TCR gene transfer involving minor histocompatibility antigen, both of which have been suggested to provide additional clinical benefit. In this review, we examine the current status of anti-leukemia ACT with engineered T cells carrying the leukemia antigen-specific TCR gene, and discuss the existing barriers to progress in this area.

  17. Antibodies to adult T-cell leukemia-virus-associated antigen (ATLA) in sera from patients with ATL and controls in Japan: a nation-wide sero-epidemiologic study.

    Science.gov (United States)

    Hinuma, Y; Komoda, H; Chosa, T; Kondo, T; Kohakura, M; Takenaka, T; Kikuchi, M; Ichimaru, M; Yunoki, K; Sato, I; Matsuo, R; Takiuchi, Y; Uchino, H; Hanaoka, M

    1982-06-15

    A nation-wide sero-epidemiologic survey of adult T-cell leukemia virus (ATLV), detected es anti-ATLA (ATLV-associated antigen), was made in Japan. Sera from adult donors in 15 different locations were screened for anti-ATLA. High incidences (6 to 37%) of antibody-positive donors were found in seven regions, one in northern Japan, and the others in southwestern regions. These areas are ATLV-endemic areas corresponding to ATL-endemic areas. Examination of sera from healthy donors aged 6 to 80 years in ATL-endemic areas showed an age-dependent increase of seropositive donors with a maximum of about 30% at 40 years of age. Anti-ATLA was found in all but two of 142 patients with ATL. Anti-ATLA-positive patients with ATL were mainly found in ATLV-endemic areas, and only a few in ATL-nonendemic areas. Six patients with cutaneous T-cell lymphoma in ATLV-nonendemic areas gave a negative reaction for anti-ATLA. The geometric mean titer of anti-ATLA of patients with ATL was higher than that of healthy donors.

  18. Genetic and antigenic relationship of foot-and-mouth disease virus serotype O isolates with the vaccine strain O1/BFS.

    Science.gov (United States)

    Xu, Wanhong; Zhang, Zhidong; Nfon, Charles; Yang, Ming

    2018-05-15

    Foot-and-mouth disease serotype O viruses (FMDV/O) are responsible for the most outbreaks in FMD endemic countries. O1/BFS is one of the recommended FMD/O vaccine strains by World Reference Laboratory for FMD. In the current study, FMDV/O1 BFS vaccine strain and serotype O field isolates (45) were analyzed phylogenetically and antigenically to gain more insight into the genetic and antigenic characteristics of the vaccine strain and field isolates. O1/BFS showed similarity with 89% of the field isolates using a virus neutralization test (VNT). The P1 region encoding the FMDV capsid was sequenced and analysed for 46 strains of FMDV/O. Phylogenetic analysis showed these viruses originated from five continents and covered eight of 11 reported topotypes. Five isolates that demonstrated low antigenic similarities with O1/BFS were analyzed for their antigenic variation at the known neutralizing antigenic sites. Three of the five isolates demonstrated unique amino acid substitutions at various antigenic sites. No unique amino acid substitutions were observed for the other two unmatched isolates. Positively selected residues were identified on the surface of the FMD virus capsid supporting that it is important to continuously monitor field isolates for their antigenic and phenotypic changes. In conclusion, the vaccine strain O1/BFS is likely to confer protection against 89% of the 45 FMDV/O isolates based on VNT. Thus O1/BFS vaccine strain is still suitable for use in global FMD serotype O outbreak control. Combining data from phylogenetic, molecular and antigenic analysis can provide improvements in the process of vaccine selection. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  19. Complex antigen presentation pathway for an HLA-A*0201-restricted epitope from Chikungunya 6K protein.

    Science.gov (United States)

    Lorente, Elena; Barriga, Alejandro; García-Arriaza, Juan; Lemonnier, François A; Esteban, Mariano; López, Daniel

    2017-10-01

    The adaptive cytotoxic T lymphocyte (CTL)-mediated immune response is critical for clearance of many viral infections. These CTL recognize naturally processed short viral antigenic peptides bound to human leukocyte antigen (HLA) class I molecules on the surface of infected cells. This specific recognition allows the killing of virus-infected cells. The T cell immune T cell response to Chikungunya virus (CHIKV), a mosquito-borne Alphavirus of the Togaviridae family responsible for severe musculoskeletal disorders, has not been fully defined; nonetheless, the importance of HLA class I-restricted immune response in this virus has been hypothesized. By infection of HLA-A*0201-transgenic mice with a recombinant vaccinia virus that encodes the CHIKV structural polyprotein (rVACV-CHIKV), we identified the first human T cell epitopes from CHIKV. These three novel 6K transmembrane protein-derived epitopes are presented by the common HLA class I molecule, HLA-A*0201. One of these epitopes is processed and presented via a complex pathway that involves proteases from different subcellular locations. Specific chemical inhibitors blocked these events in rVACV-CHIKV-infected cells. Our data have implications not only for the identification of novel Alphavirus and Togaviridae antiviral CTL responses, but also for analyzing presentation of antigen from viruses of different families and orders that use host proteinases to generate their mature envelope proteins.

  20. Expression of endogenous ALV antigens and susceptibility to subgroup E ALV in three strains of chickens (Endogenous avian C. type virus)

    International Nuclear Information System (INIS)

    Robinson, H.L.; Lamoreux, W.F.

    1976-01-01

    Cells from three strains of Kimber Farms chickens, K16, K18, and K28, have been characterized for the expression of endogenous avian C-type virus (ALV) antigens and for susceptibility to subgroup E ALV. In K16 the coordinate dominant expression of chick helper factor (chf ), the type specific antigen of endogenous subgroup E ALV, and the group specific (gs) antigen of ALV was observed. The expression of chf and gs antigen in K16 chf + gs + cells was similar to that observed in SPAFAS and H and N gs + cells. In K18 chf but not gs antigen was expressed. The expression of chf in K18 chf + gs + cells was distinct from that observed for the chf + gs + pedigrees but similar to that found in SPAFAS chf + gs - helper extremely high (h/sub E/) cells. Cells from K16 and K18 chickens were uniformly resistant to subgroup E ALV. In cells from K28 chickens, susceptibility to subgroup B virus correlated with susceptibility to subgroup E virus. The efficiency of plating of subgroup E virus on susceptible K28 cells with 10 3 --10 4 -fold lower on chf + cells than on chf - cells

  1. Reduction of T-Helper Cell Responses to Recall Antigen Mediated by Codelivery with Peptidoglycan via the Intestinal Nanomineral-Antigen Pathway.

    Science.gov (United States)

    Hewitt, Rachel E; Robertson, Jack; Haas, Carolin T; Pele, Laetitia C; Powell, Jonathan J

    2017-01-01

    Naturally occurring intestinal nanomineral particles constituently form in the mammalian gut and trap luminal protein and microbial components. These cargo loaded nanominerals are actively scavenged by M cells of intestinal immune follicles, such as Peyer's patches and are passed to antigen-presenting cells. Using peripheral blood mononuclear cell populations as an in vitro model of nanomineral uptake and antigen presentation, we show that monocytes avidly phagocytose nanomineral particles bearing antigen and peptidoglycan (PGN), and that the presence of PGN within particles downregulates their cell surface MHC class II and upregulates programmed death receptor ligand 1. Nanomineral delivery of antigen suppresses antigen-specific CD4 + T cell responses, an effect that is enhanced in the presence of PGN. Blocking the interleukin-10 receptor restores CD4 + T cell responses to antigen codelivered with PGN in nanomineral form. Using human intestinal specimens, we have shown that the in vivo nanomineral pathway operates in an interleukin-10 rich environment. Consequently, the delivery of a dual antigen-PGN cargo by endogenous nanomineral in vivo is likely to be important in the establishment of intestinal tolerance, while their synthetic mimetics present a potential delivery system for therapeutic applications targeting the modulation of Peyer's patch T cell responses.

  2. T-cell epitopes from viral and tumor associated antigens: induction and analysis of antigen-specific T cells

    OpenAIRE

    Nastke, Maria-Dorothea

    2005-01-01

    T cells are important effectors in the defense of human pathogens entering the organism. CD8+ T cells recognize peptides which are presented by MHC class I molecules and lyse cells which are infected by virus or intracellular pathogens. Moreover, they are able to destroy cancer cells. CD4+ T cells recognize peptides from exogenous proteins acquired by endocytosis or from internalized plasma membrane proteins which are presented on MHC class II. CD4+ T cells play an important role in the defen...

  3. Rapid antigen detection test for respiratory syncytial virus diagnosis as a diagnostic tool.

    Science.gov (United States)

    Mesquita, Flávio da Silva; Oliveira, Danielle Bruna Leal de; Crema, Daniela; Pinez, Célia Miranda Nunes; Colmanetti, Thaís Cristina; Thomazelli, Luciano Matsumia; Gilio, Alfredo Elias; Vieira, Sandra Elisabeth; Martinez, Marina Baquerizo; Botosso, Viviane Fongaro; Durigon, Edison Luiz

    The aim of this study was to evaluate the QuickVue ® RSV Test Kit (QUIDEL Corp, CA, USA) as a screening tool for respiratory syncytial virus in children with acute respiratory disease in comparison with the indirect immunofluorescence assay as gold standard. In Brazil, rapid antigen detection tests for respiratory syncytial virus are not routinely utilized as a diagnostic tool, except for the diagnosis of dengue and influenza. The authors retrospectively analyzed 486 nasopharyngeal aspirate samples from children under age 5 with acute respiratory infection, between December 2013 and August 2014, the samples were analyzed by indirect immunofluorescence assay and QuickVue ® RSV Test kit. Samples with discordant results were analyzed by real time PCR and nucleotide sequencing. From 313 positive samples by immunofluorescence assays, 282 (90%) were also positive by the rapid antigen detection test, two were positive only by rapid antigen detection test, 33 were positive only by immunofluorescence assays, and 171 were positive by both methods. The 35 samples with discordant results were analyzed by real time PCR; the two samples positive only by rapid antigen detection test and the five positive only by immunofluorescence assays were also positive by real time PCR. There was no relation between the negativity by QuickVue ® RSV Test and viral load or specific strain. The QuickVue ® RSV Test showed sensitivity of 90%, specificity of 98.8%, predictive positive value of 99.3%, and negative predictive value of 94.6%, with accuracy of 93.2% and agreement κ index of 0.85 in comparison to immunofluorescence assay. This study demonstrated that the QuickVue ® RSV Test Kit can be effective in early detection of Respiratory syncytial virus in nasopharyngeal aspirate and is reliable for use as a diagnostic tool in pediatrics. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  4. Rapid antigen detection test for respiratory syncytial virus diagnosis as a diagnostic tool,

    Directory of Open Access Journals (Sweden)

    Flávio da Silva Mesquita

    Full Text Available Abstract Objective: The aim of this study was to evaluate the QuickVue® RSV Test Kit (QUIDEL Corp, CA, USA as a screening tool for respiratory syncytial virus in children with acute respiratory disease in comparison with the indirect immunofluorescence assay as gold standard. In Brazil, rapid antigen detection tests for respiratory syncytial virus are not routinely utilized as a diagnostic tool, except for the diagnosis of dengue and influenza. Methods: The authors retrospectively analyzed 486 nasopharyngeal aspirate samples from children under age 5 with acute respiratory infection, between December 2013 and August 2014, the samples were analyzed by indirect immunofluorescence assay and QuickVue® RSV Test kit. Samples with discordant results were analyzed by real time PCR and nucleotide sequencing. Results: From 313 positive samples by immunofluorescence assays, 282 (90% were also positive by the rapid antigen detection test, two were positive only by rapid antigen detection test, 33 were positive only by immunofluorescence assays, and 171 were positive by both methods. The 35 samples with discordant results were analyzed by real time PCR; the two samples positive only by rapid antigen detection test and the five positive only by immunofluorescence assays were also positive by real time PCR. There was no relation between the negativity by QuickVue® RSV Test and viral load or specific strain. The QuickVue® RSV Test showed sensitivity of 90%, specificity of 98.8%, predictive positive value of 99.3%, and negative predictive value of 94.6%, with accuracy of 93.2% and agreement κ index of 0.85 in comparison to immunofluorescence assay. Conclusions: This study demonstrated that the QuickVue® RSV Test Kit can be effective in early detection of Respiratory syncytial virus in nasopharyngeal aspirate and is reliable for use as a diagnostic tool in pediatrics.

  5. Effective Respiratory CD8 T-Cell Immunity to Influenza Virus Induced by Intranasal Carbomer-Lecithin-Adjuvanted Non-replicating Vaccines

    Science.gov (United States)

    Gasper, David J.; Neldner, Brandon; Plisch, Erin H.; Rustom, Hani; Imai, Hirotaka; Kawaoka, Yoshihiro; Suresh, M.

    2016-01-01

    CD8+ cytotoxic T lymphocytes (CTLs) are critical for clearing many viral infections, and protective CTL memory can be induced by vaccination with attenuated viruses and vectors. Non-replicating vaccines are typically potentiated by the addition of adjuvants that enhance humoral responses, however few are capable of generating CTL responses. Adjuplex is a carbomer-lecithin-based adjuvant demonstrated to elicit robust humoral immunity to non-replicating antigens. We report that mice immunized with non-replicating Adjuplex-adjuvanted vaccines generated robust antigen-specific CTL responses. Vaccination by the subcutaneous or the intranasal route stimulated systemic and mucosal CTL memory respectively. However, only CTL memory induced by intranasal vaccination was protective against influenza viral challenge, and correlated with an enhancement of memory CTLs in the airways and CD103+ CD69+ CXCR3+ resident memory-like CTLs in the lungs. Mechanistically, Myd88-deficient mice mounted primary CTL responses to Adjuplex vaccines that were similar in magnitude to wild-type mice, but exhibited altered differentiation of effector cell subsets. Immune potentiating effects of Adjuplex entailed alterations in the frequency of antigen-presenting-cell subsets in vaccine draining lymph nodes, and in the lungs and airways following intranasal vaccination. Further, Adjuplex enhanced the ability of dendritic cells to promote antigen-induced proliferation of naïve CD8 T cells by modulating antigen uptake, its intracellular localization, and rate of processing. Taken together, we have identified an adjuvant that elicits both systemic and mucosal CTL memory to non-replicating antigens, and engenders protective CTL-based heterosubtypic immunity to influenza A virus in the respiratory tract. Further, findings presented in this manuscript have provided key insights into the mechanisms and factors that govern the induction and programming of systemic and protective memory CTLs in the

  6. Germline bias dictates cross-serotype reactivity in a common dengue-virus-specific CD8+ T cell response.

    Science.gov (United States)

    Culshaw, Abigail; Ladell, Kristin; Gras, Stephanie; McLaren, James E; Miners, Kelly L; Farenc, Carine; van den Heuvel, Heleen; Gostick, Emma; Dejnirattisai, Wanwisa; Wangteeraprasert, Apirath; Duangchinda, Thaneeya; Chotiyarnwong, Pojchong; Limpitikul, Wannee; Vasanawathana, Sirijitt; Malasit, Prida; Dong, Tao; Rossjohn, Jamie; Mongkolsapaya, Juthathip; Price, David A; Screaton, Gavin R

    2017-11-01

    Adaptive immune responses protect against infection with dengue virus (DENV), yet cross-reactivity with distinct serotypes can precipitate life-threatening clinical disease. We found that clonotypes expressing the T cell antigen receptor (TCR) β-chain variable region 11 (TRBV11-2) were 'preferentially' activated and mobilized within immunodominant human-leukocyte-antigen-(HLA)-A*11:01-restricted CD8 + T cell populations specific for variants of the nonstructural protein epitope NS3 133 that characterize the serotypes DENV1, DENV3 and DENV4. In contrast, the NS3 133 -DENV2-specific repertoire was largely devoid of such TCRs. Structural analysis of a representative TRBV11-2 + TCR demonstrated that cross-serotype reactivity was governed by unique interplay between the variable antigenic determinant and germline-encoded residues in the second β-chain complementarity-determining region (CDR2β). Extensive mutagenesis studies of three distinct TRBV11-2 + TCRs further confirmed that antigen recognition was dependent on key contacts between the serotype-defined peptide and discrete residues in the CDR2β loop. Collectively, these data reveal an innate-like mode of epitope recognition with potential implications for the outcome of sequential exposure to heterologous DENVs.

  7. Antigenic variation of H1N1, H1N2 and H3N2 swine influenza viruses in Japan and Vietnam.

    Science.gov (United States)

    Takemae, Nobuhiro; Nguyen, Tung; Ngo, Long Thanh; Hiromoto, Yasuaki; Uchida, Yuko; Pham, Vu Phong; Kageyama, Tsutomu; Kasuo, Shizuko; Shimada, Shinichi; Yamashita, Yasutaka; Goto, Kaoru; Kubo, Hideyuki; Le, Vu Tri; Van Vo, Hung; Do, Hoa Thi; Nguyen, Dang Hoang; Hayashi, Tsuyoshi; Matsuu, Aya; Saito, Takehiko

    2013-04-01

    The antigenicity of the influenza A virus hemagglutinin is responsible for vaccine efficacy in protecting pigs against swine influenza virus (SIV) infection. However, the antigenicity of SIV strains currently circulating in Japan and Vietnam has not been well characterized. We examined the antigenicity of classical H1 SIVs, pandemic A(H1N1)2009 (A(H1N1)pdm09) viruses, and seasonal human-lineage SIVs isolated in Japan and Vietnam. A hemagglutination inhibition (HI) assay was used to determine antigenic differences that differentiate the recent Japanese H1N2 and H3N2 SIVs from the H1N1 and H3N2 domestic vaccine strains. Minor antigenic variation between pig A(H1N1)pdm09 viruses was evident by HI assay using 13 mAbs raised against homologous virus. A Vietnamese H1N2 SIV, whose H1 gene originated from a human strain in the mid-2000s, reacted poorly with post-infection ferret serum against human vaccine strains from 2000-2010. These results provide useful information for selection of optimal strains for SIV vaccine production.

  8. Naive T lymphocytes traffic to inflamed central nervous system, but require antigen recognition for activation

    DEFF Research Database (Denmark)

    Krakowski, M L; Owens, T

    2000-01-01

    Organ-specific autoimmune diseases may be induced by infiltration of the target tissue by CD4(+) T cells with specificity for self antigen(s). As disease progresses, T cells of other specificities appear in the tissue. Traffic of naive, antigen-inexperienced T cells to target tissues has not been...

  9. Prevalence of antibody to adult T-cell leukemia virus-associated antigens (ATLA) in Japanese monkeys and other non-human primates.

    Science.gov (United States)

    Hayami, M; Komuro, A; Nozawa, K; Shotake, T; Ishikawa, K; Yamamoto, K; Ishida, T; Honjo, S; Hinuma, Y

    1984-02-15

    The prevalence of adult T-cell-leukemia virus (ATLV) infection was examined in Japanese monkeys living naturally in various parts of Japan and in other species of non-human primates imported into and kept in Japan. Sera of 2,650 Japanese monkeys from 41 troops throughout Japan were tested. High incidences of anti-ATLV-associated antigen (ATLA)-positive monkeys were found in most troops, not only in the endemic area of human ATL(Southwestern Japan), but also in non-endemic areas. The incidence of sero-positive individuals increased gradually with age, reaching a maximum when the animals became adult, indicating age dependency, like that found by epidemiological studies on humans. Anti-ATLA antibodies were also detected in 90 of 815 sera of imported non-human primates of 33 species other than Japanese monkeys. All the anti-ATLA sero-positive monkeys were Catarrhines (Old World monkeys), mainly macaques of Asian origin. Some sero-positive monkeys were also found among animals of African origin, but no antibody was detected in Prosimians and Platyrrhines (New World monkeys). The clear-cut difference between the geographical distribution of sero-positive simians and that of humans indicates the improbability of direct transmission of ATLV from simians to humans.

  10. Expression and the antigenicity of recombinant coat proteins of tungro viruses expressed in Escherichia coli.

    Science.gov (United States)

    Yee, Siew Fung; Chu, Chia Huay; Poili, Evenni; Sum, Magdline Sia Henry

    2017-02-01

    Rice tungro disease (RTD) is a recurring disease affecting rice farming especially in the South and Southeast Asia. The disease is commonly diagnosed by visual observation of the symptoms on diseased plants in paddy fields and by polymerase chain reaction (PCR). However, visual observation is unreliable and PCR can be costly. High-throughput as well as relatively cheap detection methods are important for RTD management for screening large number of samples. Due to this, detection by serological assays such as immunoblotting assays and enzyme-linked immunosorbent assay are preferred. However, these serological assays are limited by lack of continuous supply of antibodies as reagents due to the difficulty in preparing sufficient purified virions as antigens. This study aimed to generate and evaluate the reactivity of the recombinant coat proteins of Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV) as alternative antigens to generate antibodies. The genes encoding the coat proteins of both viruses, RTBV (CP), and RTSV (CP1, CP2 and CP3) were cloned and expressed as recombinant fusion proteins in Escherichia coli. All of the recombinant fusion proteins, with the exception of the recombinant fusion protein of the CP2 of RTSV, were reactive against our in-house anti-tungro rabbit serum. In conclusion, our study showed the potential use of the recombinant fusion coat proteins of the tungro viruses as alternative antigens for production of antibodies for diagnostic purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. T T virus in chronic hepatitis B, C patients

    International Nuclear Information System (INIS)

    Abd Rabo, L.A.

    2007-01-01

    In 1997, in Japan, a non-enveloped single stranded circular DNA virus was recovered from a patient. Who developed post transfusion hepatitis not related to any of the know hepatitis viruses . The virus owes its name (T T) virus to the initials of the patient in whom the virus was first identified . Although this acronym might also stand for transfusion - transmitted virus, however, this name would emphasize only one, and certainly not the most frequent mode of this virus transmission. The taxonomy of the virus is uncertain but it is believed now that it may belong to a new family called paracircoviridae. TTDNA has been detected in liver, bone marrow, lung, spleen, pancreas, kidney, lymph nodes, skeletal muscles and thyroid gland as well as in saliva, tear, stool, bile, throat swabs, breast milk and semen while could not be detected in urine and sweat. TTV infection is transmitted parenterally by feco-oral or droplet routes, or sexual intercourse. These properties of virus influence its high prevalence in general population whether intrauterine transmission of virus is possible remains uncertain. The aim of this work is viewing the prevalence of TTV infection, mode of transmission, pathogenicity, diagnosis and management among chronic hepatitis B and C patients and control group

  12. Healthy human T-Cell Responses to Aspergillus fumigatus antigens.

    Directory of Open Access Journals (Sweden)

    Neelkamal Chaudhary

    2010-02-01

    Full Text Available Aspergillus fumigatus is associated with both invasive and allergic pulmonary diseases, in different hosts. The organism is inhaled as a spore, which, if not cleared from the airway, germinates into hyphal morphotypes that are responsible for tissue invasion and resultant inflammation. Hyphae secrete multiple products that function as antigens, evoking both a protective (T(H1-T(H17 and destructive allergic (T(H2 immunity. How Aspergillus allergens (Asp f proteins participate in the development of allergic sensitization is unknown.To determine whether Asp f proteins are strictly associated with T(H2 responses, or represent soluble hyphal products recognized by healthy hosts, human T cell responses to crude and recombinant products were characterized by ELISPOT. While responses (number of spots producing IFN-gamma, IL-4 or IL-17 to crude hyphal antigen preparations were weak, responses to recombinant Asp f proteins were higher. Recombinant allergens stimulated cells to produce IFN-gamma more so than IL-4 or IL-17. Volunteers exhibited a diverse CD4+ and CD8+ T cell antigen recognition profile, with prominent CD4 T(H1-responses to Asp f3 (a putative peroxismal membrane protein, Asp f9/16 (cell wall glucanase, Asp f11 (cyclophilin type peptidyl-prolyl isomerase and Asp f22 (enolase. Strong IFN-gamma responses were reproduced in most subjects tested over 6 month intervals.Products secreted after conidial germination into hyphae are differentially recognized by protective T cells in healthy, non-atopic individuals. Defining the specificity of the human T cell repertoire, and identifying factors that govern early responses may allow for development of novel diagnostics and therapeutics for both invasive and allergic Aspergillus diseases.

  13. Hepatitis B virus e antigen induces activation of rat hepatic stellate cells

    International Nuclear Information System (INIS)

    Zan, Yanlu; Zhang, Yuxia; Tien, Po

    2013-01-01

    Highlights: •HBeAg expression in HSCs induced production of ECM protein and liver fibrotic markers. •The activation and proliferation of HSCs were mediated by TGF-β. •HBeAg protein purified from cell medium directly activated HSCs. -- Abstract: Chronic hepatitis B virus infection is a major cause of hepatic fibrosis, leading to liver cirrhosis and hepatocellular carcinoma. Hepatitis B virus e antigen (HBeAg) is an accessory protein of HBV, not required for viral replication but important for natural infection in vivo. Hepatic stellate cells (HSCs) are the major producers of excessive extracellular matrix during liver fibrogenesis. Therefore, we examined the influence of HBeAg on HSCs. The rat HSC line HSC-T6 was transfected with HBeAg plasmids, and expression of α-smooth muscle actin, collagen I, transforming growth factor-β1 (TGF-β), and tissue inhibitors of metalloproteinase 1 (TIMP-1) was investigated by quantitative real-time PCR. The proliferation of HSCs was determined by MTS analysis. HBeAg transduction induced up-regulation of these fibrogenic genes and proliferation of HSCs. We found that HBeAg induced TGF-β secretion in HSCs, and the activation of HSCs was prevented by a neutralizing anti-TGF-β antibody. Depletion and addition of HBeAg protein in conditioned medium from HSC-T6 cells transduced with HBeAg indicated that HBeAg directly induced the activation and proliferation of rat primary HSCs. Taken together, HBeAg induces the activation and proliferation of HSCs, mainly mediated by TGF-β, and HBeAg protein purified from cell medium can directly activate HSCs

  14. Hepatitis B virus e antigen induces activation of rat hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Zan, Yanlu [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Yuxia, E-mail: yzhang@wehi.edu.au [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); Tien, Po, E-mail: tienpo@sun.im.ac.cn [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China)

    2013-06-07

    Highlights: •HBeAg expression in HSCs induced production of ECM protein and liver fibrotic markers. •The activation and proliferation of HSCs were mediated by TGF-β. •HBeAg protein purified from cell medium directly activated HSCs. -- Abstract: Chronic hepatitis B virus infection is a major cause of hepatic fibrosis, leading to liver cirrhosis and hepatocellular carcinoma. Hepatitis B virus e antigen (HBeAg) is an accessory protein of HBV, not required for viral replication but important for natural infection in vivo. Hepatic stellate cells (HSCs) are the major producers of excessive extracellular matrix during liver fibrogenesis. Therefore, we examined the influence of HBeAg on HSCs. The rat HSC line HSC-T6 was transfected with HBeAg plasmids, and expression of α-smooth muscle actin, collagen I, transforming growth factor-β1 (TGF-β), and tissue inhibitors of metalloproteinase 1 (TIMP-1) was investigated by quantitative real-time PCR. The proliferation of HSCs was determined by MTS analysis. HBeAg transduction induced up-regulation of these fibrogenic genes and proliferation of HSCs. We found that HBeAg induced TGF-β secretion in HSCs, and the activation of HSCs was prevented by a neutralizing anti-TGF-β antibody. Depletion and addition of HBeAg protein in conditioned medium from HSC-T6 cells transduced with HBeAg indicated that HBeAg directly induced the activation and proliferation of rat primary HSCs. Taken together, HBeAg induces the activation and proliferation of HSCs, mainly mediated by TGF-β, and HBeAg protein purified from cell medium can directly activate HSCs.

  15. Nuclear localization of Merkel cell polyomavirus large T antigen in Merkel cell carcinoma

    International Nuclear Information System (INIS)

    Nakamura, Tomoyuki; Sato, Yuko; Watanabe, Daisuke; Ito, Hideki; Shimonohara, Nozomi; Tsuji, Takahiro; Nakajima, Noriko; Suzuki, Yoshio; Matsuo, Koma; Nakagawa, Hidemi; Sata, Tetsutaro; Katano, Harutaka

    2010-01-01

    To clarify whether mutations in the large T gene encoded by Merkel cell polyomavirus affect the expression and function of large T antigen in Merkel cell carcinoma cases, we investigated the expression of large T antigen in vitro and in vivo. Immunohistochemistry using a rabbit polyclonal antibody revealed that large T antigen was expressed in the nuclei of Merkel cell carcinoma cells with Merkel cell polyomavirus infection. Deletion mutant analyses identified an Arg-Lys-Arg-Lys sequence (amino acids 277-280) as a nuclear localization signal in large T antigen. Sequence analyses revealed that there were no mutations in the nuclear localization signal in any of the eleven Merkel cell polyomavirus strains examined. Furthermore, stop codons were not observed in the upstream of the nuclear localization signal in any of the Merkel cell carcinoma cases examined. These data suggest that the nuclear localization signal is highly conserved and functional in Merkel cell carcinoma cases.

  16. Detecting West Nile virus in owls and raptors by an antigen-capture assay.

    Science.gov (United States)

    Gancz, Ady Y; Campbell, Douglas G; Barker, Ian K; Lindsay, Robbin; Hunter, Bruce

    2004-12-01

    We evaluated a rapid antigen-capture assay (VecTest) for detection of West Nile virus in oropharyngeal and cloacal swabs, collected at necropsy from owls (N = 93) and raptors (N = 27). Sensitivity was 93.5%-95.2% for northern owl species but raptors.

  17. Impaired Cytokine Responses to Epstein-Barr Virus Antigens in Systemic Lupus Erythematosus Patients

    DEFF Research Database (Denmark)

    Draborg, Anette Holck; Sandhu, Noreen; Larsen, Nanna

    2016-01-01

    We analyzed cytokine responses against latent and lytic Epstein-Barr virus (EBV) antigens in systemic lupus erythematosus (SLE) patients and healthy controls (HCs) to obtain an overview of the distinctive immune regulatory response in SLE patients and to expand the previously determined impaired...

  18. Detecting West Nile Virus in Owls and Raptors by an Antigen-capture Assay

    OpenAIRE

    Gancz, Ady Y.; Campbell, Douglas G.; Barker, Ian K.; Lindsay, Robbin; Hunter, Bruce

    2004-01-01

    We evaluated a rapid antigen-capture assay (VecTest) for detection of West Nile virus in oropharyngeal and cloacal swabs, collected at necropsy from owls (N = 93) and raptors (N = 27). Sensitivity was 93.5%–95.2% for northern owl species but

  19. A Lipid Based Antigen Delivery System Efficiently Facilitates MHC Class-I Antigen Presentation in Dendritic Cells to Stimulate CD8+ T Cells

    Science.gov (United States)

    Maji, Mithun; Mazumder, Saumyabrata; Bhattacharya, Souparno; Choudhury, Somsubhra Thakur; Sabur, Abdus; Shadab, Md.; Bhattacharya, Pradyot; Ali, Nahid

    2016-06-01

    The most effective strategy for protection against intracellular infections such as Leishmania is vaccination with live parasites. Use of recombinant proteins avoids the risks associated with live vaccines. However, due to low immunogenicity, they fail to trigger T cell responses particularly of CD8+ cells requisite for persistent immunity. Previously we showed the importance of protein entrapment in cationic liposomes and MPL as adjuvant for elicitation of CD4+ and CD8+ T cell responses for long-term protection. In this study we investigated the role of cationic liposomes on maturation and antigen presentation capacity of dendritic cells (DCs). We observed that cationic liposomes were taken up very efficiently by DCs and transported to different cellular sites. DCs activated with liposomal rgp63 led to efficient presentation of antigen to specific CD4+ and CD8+ T cells. Furthermore, lymphoid CD8+ T cells from liposomal rgp63 immunized mice demonstrated better proliferative ability when co-cultured ex vivo with stimulated DCs. Addition of MPL to vaccine enhanced the antigen presentation by DCs and induced more efficient antigen specific CD8+ T cell responses when compared to free and liposomal antigen. These liposomal formulations presented to CD8+ T cells through TAP-dependent MHC-I pathway offer new possibilities for a safe subunit vaccine.

  20. Reduction of T-Helper Cell Responses to Recall Antigen Mediated by Codelivery with Peptidoglycan via the Intestinal Nanomineral–Antigen Pathway

    Science.gov (United States)

    Hewitt, Rachel E.; Robertson, Jack; Haas, Carolin T.; Pele, Laetitia C.; Powell, Jonathan J.

    2017-01-01

    Naturally occurring intestinal nanomineral particles constituently form in the mammalian gut and trap luminal protein and microbial components. These cargo loaded nanominerals are actively scavenged by M cells of intestinal immune follicles, such as Peyer’s patches and are passed to antigen-presenting cells. Using peripheral blood mononuclear cell populations as an in vitro model of nanomineral uptake and antigen presentation, we show that monocytes avidly phagocytose nanomineral particles bearing antigen and peptidoglycan (PGN), and that the presence of PGN within particles downregulates their cell surface MHC class II and upregulates programmed death receptor ligand 1. Nanomineral delivery of antigen suppresses antigen-specific CD4+ T cell responses, an effect that is enhanced in the presence of PGN. Blocking the interleukin-10 receptor restores CD4+ T cell responses to antigen codelivered with PGN in nanomineral form. Using human intestinal specimens, we have shown that the in vivo nanomineral pathway operates in an interleukin-10 rich environment. Consequently, the delivery of a dual antigen–PGN cargo by endogenous nanomineral in vivo is likely to be important in the establishment of intestinal tolerance, while their synthetic mimetics present a potential delivery system for therapeutic applications targeting the modulation of Peyer’s patch T cell responses. PMID:28367148

  1. Effects of egg-adaptation on receptor-binding and antigenic properties of recent influenza A (H3N2) vaccine viruses.

    Science.gov (United States)

    Parker, Lauren; Wharton, Stephen A; Martin, Stephen R; Cross, Karen; Lin, Yipu; Liu, Yan; Feizi, Ten; Daniels, Rodney S; McCauley, John W

    2016-06-01

    Influenza A virus (subtype H3N2) causes seasonal human influenza and is included as a component of influenza vaccines. The majority of vaccine viruses are isolated and propagated in eggs, which commonly results in amino acid substitutions in the haemagglutinin (HA) glycoprotein. These substitutions can affect virus receptor-binding and alter virus antigenicity, thereby, obfuscating the choice of egg-propagated viruses for development into candidate vaccine viruses. To evaluate the effects of egg-adaptive substitutions seen in H3N2 vaccine viruses on sialic acid receptor-binding, we carried out quantitative measurement of virus receptor-binding using surface biolayer interferometry with haemagglutination inhibition (HI) assays to correlate changes in receptor avidity with antigenic properties. Included in these studies was a panel of H3N2 viruses generated by reverse genetics containing substitutions seen in recent egg-propagated vaccine viruses and corresponding cell culture-propagated wild-type viruses. These assays provide a quantitative approach to investigating the importance of individual amino acid substitutions in influenza receptor-binding. Results show that viruses with egg-adaptive HA substitutions R156Q, S219Y, and I226N, have increased binding avidity to α2,3-linked receptor-analogues and decreased binding avidity to α2,6-linked receptor-analogues. No measurable binding was detected for the viruses with amino acid substitution combination 156Q+219Y and receptor-binding increased in viruses where egg-adaptation mutations were introduced into cell culture-propagated virus. Substitutions at positions 156 and 190 appeared to be primarily responsible for low reactivity in HI assays with post-infection ferret antisera raised against 2012-2013 season H3N2 viruses. Egg-adaptive substitutions at position 186 caused substantial differences in binding avidity with an insignificant effect on antigenicity.

  2. Highly efficient gene transfer using a retroviral vector into murine T cells for preclinical chimeric antigen receptor-expressing T cell therapy

    International Nuclear Information System (INIS)

    Kusabuka, Hotaka; Fujiwara, Kento; Tokunaga, Yusuke; Hirobe, Sachiko; Nakagawa, Shinsaku; Okada, Naoki

    2016-01-01

    Adoptive immunotherapy using chimeric antigen receptor-expressing T (CAR-T) cells has attracted attention as an efficacious strategy for cancer treatment. To prove the efficacy and safety of CAR-T cell therapy, the elucidation of immunological mechanisms underlying it in mice is required. Although a retroviral vector (Rv) is mainly used for the introduction of CAR to murine T cells, gene transduction efficiency is generally less than 50%. The low transduction efficiency causes poor precision in the functional analysis of CAR-T cells. We attempted to improve the Rv gene transduction protocol to more efficiently generate functional CAR-T cells by optimizing the period of pre-cultivation and antibody stimulation. In the improved protocol, gene transduction efficiency to murine T cells was more than 90%. In addition, almost all of the prepared murine T cells expressed CAR after puromycin selection. These CAR-T cells had antigen-specific cytotoxic activity and secreted multiple cytokines by antigen stimulation. We believe that our optimized gene transduction protocol for murine T cells contributes to the advancement of T cell biology and development of immunotherapy using genetically engineered T cells. - Highlights: • We established highly efficient gene transduction protocols for murine T cells. • CD8"+ CAR-T cells had antigen-specific cytotoxic activity. • CD4"+ CAR-T cells secreted multiple cytokines by antigen stimulation. • This finding can contribute to the development of T-cell biology and immunotherapy.

  3. Highly efficient gene transfer using a retroviral vector into murine T cells for preclinical chimeric antigen receptor-expressing T cell therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kusabuka, Hotaka; Fujiwara, Kento; Tokunaga, Yusuke; Hirobe, Sachiko; Nakagawa, Shinsaku, E-mail: nakagawa@phs.osaka-u.ac.jp; Okada, Naoki, E-mail: okada@phs.osaka-u.ac.jp

    2016-04-22

    Adoptive immunotherapy using chimeric antigen receptor-expressing T (CAR-T) cells has attracted attention as an efficacious strategy for cancer treatment. To prove the efficacy and safety of CAR-T cell therapy, the elucidation of immunological mechanisms underlying it in mice is required. Although a retroviral vector (Rv) is mainly used for the introduction of CAR to murine T cells, gene transduction efficiency is generally less than 50%. The low transduction efficiency causes poor precision in the functional analysis of CAR-T cells. We attempted to improve the Rv gene transduction protocol to more efficiently generate functional CAR-T cells by optimizing the period of pre-cultivation and antibody stimulation. In the improved protocol, gene transduction efficiency to murine T cells was more than 90%. In addition, almost all of the prepared murine T cells expressed CAR after puromycin selection. These CAR-T cells had antigen-specific cytotoxic activity and secreted multiple cytokines by antigen stimulation. We believe that our optimized gene transduction protocol for murine T cells contributes to the advancement of T cell biology and development of immunotherapy using genetically engineered T cells. - Highlights: • We established highly efficient gene transduction protocols for murine T cells. • CD8{sup +} CAR-T cells had antigen-specific cytotoxic activity. • CD4{sup +} CAR-T cells secreted multiple cytokines by antigen stimulation. • This finding can contribute to the development of T-cell biology and immunotherapy.

  4. Detection of intracellular canine distemper virus antigen in mink inoculated with an attenuated or a virulent strain of canine distemper virus.

    Science.gov (United States)

    Blixenkrone-Møller, M

    1989-09-01

    Using an indirect immunofluorescence technique, the distribution of viral antigen in various tissues and blood mononuclear leukocytes was studied in wild mink, either vaccinated with an attenuated vaccine strain of canine distemper virus (CDV) or experimentally inoculated with the virulent Snyder-Hill strain of CDV. Viral antigen was detected in cells of the lymphoid system 6 to 12 days after vaccination. From 2 to 3 days after inoculation with the virulent strain, CDV antigen was demonstrated in cells of the lymphoid system and, during the incubation period, the antigen had spread to the epithelia and brain at days 6 and 12, respectively. In clinical cases of acute fatal canine distemper, the viral antigen was detected in a wide variety of tissues, including the cells of the lymphoid system, epithelial cells of skin, mucous membranes, lung, kidney, and cells of the CNS. The diagnostic importance of CDV antigen detection is discussed on the basis of these findings.

  5. Chimeric Antigen Receptor-Engineered T Cells for Immunotherapy of Cancer

    Directory of Open Access Journals (Sweden)

    Marc Cartellieri

    2010-01-01

    Full Text Available CD4+ and CD8+ T lymphocytes are powerful components of adaptive immunity, which essentially contribute to the elimination of tumors. Due to their cytotoxic capacity, T cells emerged as attractive candidates for specific immunotherapy of cancer. A promising approach is the genetic modification of T cells with chimeric antigen receptors (CARs. First generation CARs consist of a binding moiety specifically recognizing a tumor cell surface antigen and a lymphocyte activating signaling chain. The CAR-mediated recognition induces cytokine production and tumor-directed cytotoxicity of T cells. Second and third generation CARs include signal sequences from various costimulatory molecules resulting in enhanced T-cell persistence and sustained antitumor reaction. Clinical trials revealed that the adoptive transfer of T cells engineered with first generation CARs represents a feasible concept for the induction of clinical responses in some tumor patients. However, further improvement is required, which may be achieved by second or third generation CAR-engrafted T cells.

  6. Humoral markers of active Epstein-Barr virus infection associate with anti-extractable nuclear antigen autoantibodies and plasma galectin-3 binding protein in systemic lupus erythematosus.

    Science.gov (United States)

    Rasmussen, N S; Nielsen, C T; Houen, G; Jacobsen, S

    2016-12-01

    We investigated if signs of active Epstein-Barr virus and cytomegalovirus infections associate with certain autoantibodies and a marker of type I interferon activity in patients with systemic lupus erythematosus. IgM and IgG plasma levels against Epstein-Barr virus early antigen diffuse and cytomegalovirus pp52 were applied as humoral markers of ongoing/recently active Epstein-Barr virus and cytomegalovirus infections, respectively. Plasma galectin-3 binding protein served as a surrogate marker of type I interferon activity. The measurements were conducted in 57 systemic lupus erythematosus patients and 29 healthy controls using ELISAs. Regression analyses and univariate comparisons were performed for associative evaluation between virus serology, plasma galectin-3 binding protein and autoantibodies, along with other clinical and demographic parameters. Plasma galectin-3 binding protein concentrations were significantly higher in systemic lupus erythematosus patients (P = 0.009) and associated positively with Epstein-Barr virus early antigen diffuse-directed antibodies and the presence of autoantibodies against extractable nuclear antigens in adjusted linear regressions (B = 2.02 and 2.02, P = 0.02 and P = 0.002, respectively). Furthermore, systemic lupus erythematosus patients with anti-extractable nuclear antigens had significantly higher antibody levels against Epstein-Barr virus early antigen diffuse (P = 0.02). Our study supports a link between active Epstein-Barr virus infections, positivity for anti-extractable nuclear antigens and increased plasma galectin-3 binding protein concentrations/type I interferon activity in systemic lupus erythematosus patients. © The Author(s) 2016.

  7. Construction, expression, purification and biotin labeling of a single recombinant multi-epitope antigen for double-antigen sandwich ELISA to detect hepatitis C virus antibody.

    Science.gov (United States)

    He, Jing; Xiu, Bingshui; Wang, Guohua; Chen, Kun; Feng, Xiaoyan; Song, Xiaoguo; Zhu, Cuixia; Yang, Xiqin; Bai, Guanzhong; Ling, Shigan; Zhang, Heqiu

    2011-08-01

    Based on B cell epitope predictions, a recombinant antigen with multiple epitopes from four Hepatitis C Virus fragments (C, NS3, NS4 and NS5) were engineered. The recombinant gene was then highly expressed in E. coli. The non-modified and C-terminal-modified recombinant proteins were used for coating and biotin labeling, respectively, to establish the double-antigen sandwich ELISA. Ten positive reference samples confirmed by the CHIRON RIBA HCV 3.0 SIA kit were detected positive, Forty one plasma samples were positive among samples from 441 volunteers, which indicated that the recombinant antigen could readily react well with plasma HCV antibody. As critical reagents of double-antigen sandwich ELISA, the recombinant multi-epitope antigen and the C-terminal-modified and biotin-conjugated antigen show good antigenicity. In this study, we provide a simple approach to produce multiple epitopes within one recombinant protein in order to avoid the costly expression of less-effective pools of multiple proteins, which is the conventional strategy of diagnostic antigen production for HCV antibody detection.

  8. Use of monoclonal antibodies against Hendra and Nipah viruses in an antigen capture ELISA

    Directory of Open Access Journals (Sweden)

    Spiropoulou Christina F

    2010-06-01

    Full Text Available Abstract Background Outbreaks of Hendra (HeV and Nipah (NiV viruses have been reported starting in 1994 and 1998, respectively. Both viruses are capable of causing fatal disease in humans and effecting great economical loss in the livestock industry. Results Through screening of hybridomas derived from mice immunized with γ-irradiated Nipah virus, we identified two secreted antibodies; one reactive with the nucleocapsid (N protein and the other, the phosphoprotein (P of henipaviruses. Epitope mapping and protein sequence alignments between NiV and HeV suggest the last 14 amino acids of the carboxyl terminus of the N protein is the target of the anti-N antibody. The anti-P antibody recognizes an epitope in the amino-terminal half of P protein. These monoclonal antibodies were used to develop two antigen capture ELISAs, one for virus detection and the other for differentiation between NiV and HeV. The lower limit of detection of the capture assay with both monoclonal antibodies was 400 pfu. The anti-N antibody was used to successfully detect NiV in a lung tissue suspension from an infected pig. Conclusion The antigen capture ELISA developed is potentially affordable tool to provide rapid detection and differentiation between the henipaviruses.

  9. Detection of Hepatitis B Virus Antigens in Paraffin-embedded Liver Specimens from the Amazon Region, Brazil

    Directory of Open Access Journals (Sweden)

    Simonetti SRR

    2002-01-01

    Full Text Available Hepatic viscerotomy of paraffin-preserved old specimens, collected in the period from 1934 to 1967, were analyzed by immunohistochemical assays to detect hepatitis B, hepatitis D, dengue and yellow fever virus antigens. The material belongs to the Yellow Fever Collection, Department of Pathology, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil and the cases were diagnosed at that time according to clinical aspects and histopathological findings reporting viral hepatitis, yellow fever, focal necrosis and hepatic atrophy. From the 79 specimens, 69 were collected at the Labrea Region and the other 10 in different other localities in the Amazon Region. The five micra thick histological slices were analyzed for the presence of hepatitis B surface antigen (HBsAg and hepatitis B core antigen (HBcAg by immunoperoxidase technique. An immunofluorescence assay was applied to the detection of hepatitis D, yellow fever and dengue virus antigens. Nine (11.4% histological samples were HBsAg reactive and 5 (6.3% were HBcAg reactive. The oldest reactive sample was from 1934. Viral antigens related to the other pathologies were not detected in this study. Our results confirm that the methodology described may be used to elucidate the aetiology of hepatitis diseases even after a long time of conservation of the specimens.

  10. Influence of virus strain and antigen mass on efficacy of H5 avian influenza inactivated vaccines.

    Science.gov (United States)

    Swayne, D E; Beck, J R; Garcia, M; Stone, H D

    1999-06-01

    The influence of vaccine strain and antigen mass on the ability of inactivated avian influenza (AI) viruses to protect chicks from a lethal, highly pathogenic (HP) AI virus challenge was studied. Groups of 4-week-old chickens were immunized with inactivated vaccines containing one of 10 haemagglutinin subtype H5 AI viruses, one heterologous H7 AI virus or normal allantoic fluid (sham), and challenged 3 weeks later by intra-nasal inoculation with a HP H5 chicken-origin AI virus. All 10 H5 vaccines provided good protection from clinical signs and death, and produced positive serological reactions on agar gel immunodiffusion and haemagglutination inhibition tests. In experiment 1, challenge virus was recovered from the oropharynx of 80% of chickens in the H5 vaccine group. In five H5 vaccine groups, challenge virus was not recovered from the cloaca of chickens. In the other five H5 vaccine groups, the number of chickens with detection of challenge virus from the cloaca was lower than in the sham group (P turkey/Wisconsin/68 (H5N9) was the best vaccine candidate of the H5 strains tested (PD50= 0.006 μg AI antigen). These data demonstrate that chickens vaccinated with inactivated H5 whole virus AI vaccines were protected from clinical signs and death, but usage of vaccine generally did not prevent infection by the challenge virus, as indicated by recovery of virus from the oropharynx. Vaccine use reduced cloacal detection rates, and quantity of virus shed from the cloaca and oropharynx in some vaccine groups, which would potentially reduce environmental contamination and disease transmission in the field.

  11. Small-angle neutron scattering study of recombinant yeast-derived human hepatitis B virus surface antigen vaccine particle

    Science.gov (United States)

    Sato, M.; Ito, Y.; Kameyama, K.; Imai, M.; Ishikawa, N.; Takagi, T.

    1995-02-01

    The overall and internal structure of recombinant yeast-derived human hepatitis B virus surface antigen vaccine particles was investigated by small-angle neutron scattering using the contrast variation method. The vaccine is a nearly spherical particle, and its contrast-matching point was determined to be at about 24% D 2O content, indicating that a large part of the vaccine particle is occupied by lipids and carbohydrates from the yeast. The Stuhrmann plot suggests that the surface antigens exist predominantly in the peripheral region of the particle, which is favorable to the induction of anti-virus antibodies.

  12. Radioimmunoassays of hidden viral antigens

    International Nuclear Information System (INIS)

    Neurath, A.R.; Strick, N.; Baker, L.; Krugman, S.

    1982-01-01

    Antigens corresponding to infectious agents may be present in biological specimens only in a cryptic form bound to antibodies and, thus, may elude detection. We describe a solid-phase technique for separation of antigens from antibodies. Immune complexes are precipitated from serum by polyethylene glycol, dissociated with NaSCN, and adsorbed onto nitrocellulose or polystyrene supports. Antigens remain topographically separated from antibodies after removal of NaSCN and can be detected with radiolabeled antibodies. Genomes from viruses immobilized on nitrocellulose can be identified by nucleic acid hybridization. Nanogram quantities of sequestered hepatitis B surface and core antigens and picogram amounts of hepatitis B virus DNA were detected. Antibody-bound adenovirus, herpesvirus, and measles virus antigens were discerned by the procedure

  13. A sub-population of circulating porcine gammadelta T cells can act as professional antigen presenting cells.

    Science.gov (United States)

    Takamatsu, H-H; Denyer, M S; Wileman, T E

    2002-09-10

    A sub-population of circulating porcine gammadelta T cells express cell surface antigens associated with antigen presenting cells (APCs), and are able to take up soluble antigen very effectively. Functional antigen presentation by gammadelta T cells to memory helper T cells was studied by inbred pig lymphocytes immunised with ovalbumin (OVA). After removing all conventional APCs from the peripheral blood of immunised pigs, the remaining lymphocytes still proliferated when stimulated with OVA. When gammadelta T cells were further depleted, OVA specific proliferation was abolished, but reconstitution with gammadelta T cells restored proliferation. The proliferation was blocked by monoclonal antibodies (mAb) against MHC class II or CD4, and by pre-treatment of gammadelta T cells with chloroquine. These results indicate that a sub-population of circulating porcine gammadelta T cells act as APCs and present antigen via MHC class II.

  14. Field, temperature, and angle dependent critical current density Jc(H,T, ) in coated conductors obtained via contact-free methods

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, James R [ORNL; Sinclair IV, John W [ORNL; Christen, David K [ORNL; Zhang, Yifei [ORNL; Zuev, Yuri L [ORNL; Cantoni, Claudia [ORNL; Chen, Y [SuperPower Incorporated, Schenectady, New York; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York

    2010-01-01

    Applications of coated conductors based on high-Tc superconductors often require detailed knowledge of their critical current density Jc as a function of magnetic field orientation as well as field strength and temperature. This work demonstrates experimental methods to obtain the angularly dependent Jc using contact-free magnetic measurements, and qualifies those methods using several well defined conditions. The studies complement traditional transport techniques and are readily extended to conditions of field and temperature where the current density is very large and transport methods become difficult. Results on representative materials are presented.

  15. Antigenic characterization of small, round-structured viruses by immune electron microscopy.

    Science.gov (United States)

    Okada, S; Sekine, S; Ando, T; Hayashi, Y; Murao, M; Yabuuchi, K; Miki, T; Ohashi, M

    1990-06-01

    Small, round-structured viruses (SRSVs) detected from nonbacterial gastroenteritis outbreaks in Tokyo and Saitama Prefecture, Japan, during the period from 1977 to 1988 were tentatively classified into nine antigenic patterns from SRSV-1 (S-1) to SRSV-9 (S-9) by cross-immune electron microscopy (IEM). S-1 and S-2 appeared pattern specific, while S-3 to S-9, distinguishable from each other in their reactivity, appeared somewhat antigenically related. Their antigenic relatedness to the Norwal, Hawaii, and Otofuke agents was also examined by IEM by using antisera to these agents. S-3 appeared most closely related to the Norwalk agent. S-4 and S-5 were related to the Norwalk agent and, presumably, were distantly related to the Hawaii and Otofuke agents. S-6 and S-7 were related to the Hawaii and Otofuke agents. S-8 and S-9 were related to the Otofuke agent and, presumably, were distantly related to the Hawaii agent. The prevalence of each antigenic pattern in 38 outbreaks was examined: S-8 was implicated in 24% of the outbreaks S-5 in 16%, S-4 in 13%, S-9 in 13%, S-6 in 11%, and others in 5%.

  16. An approach to the unification of suppressor T cell circuits: a simplified assay for the induction of suppression by T cell-derived, antigen-binding molecules (T-ABM).

    Science.gov (United States)

    Chue, B; Ferguson, T A; Beaman, K D; Rosenman, S J; Cone, R E; Flood, P M; Green, D R

    1989-01-01

    A system is presented in which the in vitro response to sheep red blood cells (SRBC) can be regulated using antigenic determinants coupled to SRBC and T cell-derived antigen-binding molecules (T-ABM) directed against the coupled determinants. T suppressor-inducer factors (TsiF's) are composed of two molecules, one of which is a T-ABM and one which bears I-J determinants (I-J+ molecule). Using two purified T-ABM which have not previously been shown to have in vitro activity, we produced antigen-specific TsiF's which were capable of inducing the suppression of the anti-SRBC response. Suppression was found to require both the T-ABM and the I-J+ molecule, SRBC conjugated with the antigen for which the T-ABM was specific, and a population of Ly-2+ T cells in the culture. Two monoclonal TsiF (or TsF1) were demonstrated to induce suppression of the anti-SRBC response in this system, provided the relevant antigen was coupled to the SRBC in culture. The results are discussed in terms of the general functions of T-ABM in the immune system. This model will be useful in direct, experimental comparisons of the function of T-ABM and suppressor T cell factors under study in different systems and laboratories.

  17. I-125 input into antibodies molecules specific to australian antigen

    International Nuclear Information System (INIS)

    Abdukayumov, A. M.; Chistyakov, P.G.; Garajshina, G. R.

    1999-01-01

    There are experimental data on I-125 input into antibodies molecules specific to superficial antigen of hepatitis B virus (australian antigen). Three ways of input are submitted: with the help of T chloramine usage, Bolton-Hunter Reagent and with the help of iodogen. There are also comparative characteristics of iodized products obtained: molar radioactivity, radiochemical frequency, immuno - reactivity. The report also discusses advantages and disadvantages of the used methods for inputting I-125 into antibodies to australian antigen in order to study the possibility of creating radio immunological test system for detecting superficial antigen of B hepatitis

  18. A Herpes Simplex Virus Type 2 Deleted for Glycoprotein D Enables Dendritic Cells to Activate CD4+ and CD8+ T Cells

    Science.gov (United States)

    Retamal-Díaz, Angello R.; Kalergis, Alexis M.; Bueno, Susan M.; González, Pablo A.

    2017-01-01

    Herpes simplex virus type 2 (HSV-2) is highly prevalent in the human population producing significant morbidity, mainly because of the generation of genital ulcers and neonatal encephalitis. Additionally, HSV-2 infection significantly increases the susceptibility of the host to acquire HIV and promotes the shedding of the latter in the coinfected. Despite numerous efforts to create a vaccine against HSV-2, no licensed vaccines are currently available. A long-standing strategy, based on few viral glycoproteins combined with adjuvants, recently displayed poor results in a Phase III clinical study fueling exploration on the development of mutant HSV viruses that are attenuated in vivo and elicit protective adaptive immune components, such as antiviral antibodies and T cells. Importantly, such specialized antiviral immune components are likely induced and modulated by dendritic cells, professional antigen presenting cells that process viral antigens and present them to T cells. However, HSV interferes with several functions of DCs and ultimately induces their death. Here, we propose that for an attenuated mutant virus to confer protective immunity against HSV in vivo based on adaptive immune components, such virus should also be attenuated in dendritic cells to promote a robust and effective antiviral response. We provide a background framework for this idea, considerations, as well as the means to assess this hypothesis. Addressing this hypothesis may provide valuable insights for the development of novel, safe, and effective vaccines against herpes simplex viruses. PMID:28848543

  19. A Herpes Simplex Virus Type 2 Deleted for Glycoprotein D Enables Dendritic Cells to Activate CD4+ and CD8+ T Cells

    Directory of Open Access Journals (Sweden)

    Angello R. Retamal-Díaz

    2017-08-01

    Full Text Available Herpes simplex virus type 2 (HSV-2 is highly prevalent in the human population producing significant morbidity, mainly because of the generation of genital ulcers and neonatal encephalitis. Additionally, HSV-2 infection significantly increases the susceptibility of the host to acquire HIV and promotes the shedding of the latter in the coinfected. Despite numerous efforts to create a vaccine against HSV-2, no licensed vaccines are currently available. A long-standing strategy, based on few viral glycoproteins combined with adjuvants, recently displayed poor results in a Phase III clinical study fueling exploration on the development of mutant HSV viruses that are attenuated in vivo and elicit protective adaptive immune components, such as antiviral antibodies and T cells. Importantly, such specialized antiviral immune components are likely induced and modulated by dendritic cells, professional antigen presenting cells that process viral antigens and present them to T cells. However, HSV interferes with several functions of DCs and ultimately induces their death. Here, we propose that for an attenuated mutant virus to confer protective immunity against HSV in vivo based on adaptive immune components, such virus should also be attenuated in dendritic cells to promote a robust and effective antiviral response. We provide a background framework for this idea, considerations, as well as the means to assess this hypothesis. Addressing this hypothesis may provide valuable insights for the development of novel, safe, and effective vaccines against herpes simplex viruses.

  20. Evaluation of recombinant influenza virus-simian immunodeficiency virus vaccines in macaques.

    Science.gov (United States)

    Sexton, Amy; De Rose, Robert; Reece, Jeanette C; Alcantara, Sheilajen; Loh, Liyen; Moffat, Jessica M; Laurie, Karen; Hurt, Aeron; Doherty, Peter C; Turner, Stephen J; Kent, Stephen J; Stambas, John

    2009-08-01

    There is an urgent need for human immunodeficiency virus (HIV) vaccines that induce robust mucosal immunity. Influenza A viruses (both H1N1 and H3N2) were engineered to express simian immunodeficiency virus (SIV) CD8 T-cell epitopes and evaluated following administration to the respiratory tracts of 11 pigtail macaques. Influenza virus was readily detected from respiratory tract secretions, although the infections were asymptomatic. Animals seroconverted to influenza virus and generated CD8 and CD4 T-cell responses to influenza virus proteins. SIV-specific CD8 T-cell responses bearing the mucosal homing marker beta7 integrin were induced by vaccination of naïve animals. Further, SIV-specific CD8 T-cell responses could be boosted by recombinant influenza virus-SIV vaccination of animals with already-established SIV infection. Sequential vaccination with influenza virus-SIV recombinants of different subtypes (H1N1 followed by H3N2 or vice versa) produced only a limited boost in immunity, probably reflecting T-cell immunity to conserved internal proteins of influenza A virus. SIV challenge of macaques vaccinated with an influenza virus expressing a single SIV CD8 T cell resulted in a large anamnestic recall CD8 T-cell response, but immune escape rapidly ensued and there was no impact on chronic SIV viremia. Although our results suggest that influenza virus-HIV vaccines hold promise for the induction of mucosal immunity to HIV, broader antigen cover will be needed to limit cytotoxic T-lymphocyte escape.

  1. Comparative Inactivation of Murine Norovirus, Human Adenovirus, and Human JC Polyomavirus by Chlorine in Seawater

    Science.gov (United States)

    de Abreu Corrêa, Adriana; Carratala, Anna; Barardi, Celia Regina Monte; Calvo, Miquel; Bofill-Mas, Sílvia

    2012-01-01

    Viruses excreted by humans affect the commercial and recreational use of coastal water. Shellfish produced in contaminated waters have been linked to many episodes and outbreaks of viral gastroenteritis, as well as other food-borne diseases worldwide. The risk can be reduced by appropriate treatment following harvesting and by depuration. The kinetics of inactivation of murine norovirus 1 and human adenovirus 2 in natural and artificial seawater by free available chlorine was studied by quantifying genomic copies (GC) using quantitative PCR and infectious viral particles (PFU). Human JC polyomavirus Mad4 kinetics were evaluated by quantitative PCR. DNase or RNase were used to eliminate free genomes and assess potential viral infectivity when molecular detection was performed. At 30 min of assay, human adenovirus 2 showed 2.6- and 2.7-log10 GC reductions and a 2.3- and 2.4-log10 PFU reductions in natural and artificial seawater, respectively, and infectious viral particles were still observed at the end of the assay. When DNase was used prior to the nucleic acid extraction the kinetic of inactivation obtained by quantitative PCR was statistically equivalent to the one observed by infectivity assays. For murine norovirus 1, 2.5, and 3.5-log10 GC reductions were observed in natural and artificial seawater, respectively, while no viruses remained infectious after 30 min of contact with chlorine. Regarding JC polyomavirus Mad4, 1.5- and 1.1-log10 GC reductions were observed after 30 min of contact time. No infectivity assays were conducted for this virus. The results obtained provide data that might be applicable to seawater used in shellfish depuration. PMID:22773637

  2. Programmed Death-1 expression on Epstein Barr virus specific CD8+ T cells varies by stage of infection, epitope specificity, and T-cell receptor usage.

    Directory of Open Access Journals (Sweden)

    Thomas C Greenough

    Full Text Available BACKGROUND: Programmed Death-1 (PD-1 is an inhibitory member of the CD28 family of molecules expressed on CD8+ T cells in response to antigenic stimulation. To better understand the role of PD-1 in antiviral immunity we examined the expression of PD-1 on Epstein-Barr virus (EBV epitope-specific CD8+ T cells during acute infectious mononucleosis (AIM and convalescence. METHODOLOGY/PRINCIPAL FINDINGS: Using flow cytometry, we observed higher frequencies of EBV-specific CD8+ T cells and higher intensity of PD-1 expression on EBV-specific CD8+ T cells during AIM than during convalescence. PD-1 expression during AIM directly correlated with viral load and with the subsequent degree of CD8+ T cell contraction in convalescence. Consistent differences in PD-1 expression were observed between CD8+ T cells with specificity for two different EBV lytic antigen epitopes. Similar differences were observed in the degree to which PD-1 was upregulated on these epitope-specific CD8+ T cells following peptide stimulation in vitro. EBV epitope-specific CD8+ T cell proliferative responses to peptide stimulation were diminished during AIM regardless of PD-1 expression and were unaffected by blocking PD-1 interactions with PD-L1. Significant variability in PD-1 expression was observed on EBV epitope-specific CD8+ T cell subsets defined by V-beta usage. CONCLUSIONS/SIGNIFICANCE: These observations suggest that PD-1 expression is not only dependent on the degree of antigen presentation, but also on undefined characteristics of the responding cell that segregate with epitope specificity and V-beta usage.

  3. Late radiation effects of low doses from occupational exposure. Antibodies to cytomegalovirus, Epstein-Barr virus and human T cell lymphotropic virus type 1 in radiological technologists

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Etsuko; Tanoue, Shozo (Kumamoto Univ. (Japan). Coll. of Medical Science); Sawada, Shozo

    1989-05-01

    To elucidate the effects of long-term exposure to low dose irradiation, serostatus of antibodies to cytomegalovirus (CMV), Epstein-Barr virus (EBV) and human T cell lymphotropic virus type 1 (HTLV-1) was determined in 99 radiological technologists and 96 healthy volunteers. Abnormal seropositivity rate for CMV was significantly higher in technologists working for 15 years or more than in those working for less than 15 years. For the same age group, however, there was no significant difference between technologists and controls. Seropositivity rates for EBV-viral capsid antigen (VSA)/IgG and early antigen (EA)/IgG were significantly higher in technologists working for 15 years or more than in the age-matched control group. In the group of technologists exposed to 0.3 Sv or more, seropositivity rates of these antibodies were significantly higher than in those exposed to less than 0.3 Sv. However, there was no correlation between exposure doses and both EBV-associated nuclear antigen antibody and HTLV-1 antibody. Few technologists seronegative for CMV antibody had seropositive antibodies of EBV-VCA/IgG and EA/IgG. For technologists seropositive for CMV antibody, 31% and 54% were seropositive for EBV-VCA/IgG and EA/IgG antibodies, respectively. (Namekawa, K).

  4. Mimicry of the immunodominant conformation-dependent antigenic site of hepatitis A virus by motifs selected from synthetic peptide libraries.

    Science.gov (United States)

    Mattioli, S; Imberti, L; Stellini, R; Primi, D

    1995-09-01

    Hepatitis A virus (HAV) is a positive-strand RNA virus with a genome length of approximately 7,480 nucleotides. Although HAV morphogenesis is thought to be similar to that of poliovirus, the prototype picornavirus, the complete characterization of the antigenic structure of this virus remains elusive. All the available evidences, however, support the existence, on HAV virions and empty capsids, of an immunodominant neutralization antigenic site which is conformation dependent and whose structure involves residues of both VP1 and VP3 capsid proteins. This particular feature and the difficulty of obtaining high virus yield in tissue cultures make HAV an ideal target for developing synthetic peptides that simulate the structure of its main antigenic determinant. To this end we utilized, in the present work, the divide-couple-recombine approach to generate a random library composed of millions of different hexapeptides. This vast library was screened with a well-characterized anti-HAV monoclonal antibody. By this strategy we identified a peptide that reacted specifically with monoclonal and polyclonal anti-HAV antibodies and, in mice, induced a specific anti-virus immune response. Furthermore, the peptide could also be used in an enzyme-linked immunosorbent assay for revealing a primary immunoglobulin M immune response in sera of acutely infected human patients. Interestingly, no sequence homology was found between the identified peptide and the HAV capsid proteins VP1 and VP3. Collectively, these data represent an additional important paradigm of a mimotope capable of mimicking an antigenic determinant with unknown tertiary structure.

  5. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy

    Science.gov (United States)

    Hollyman, Daniel; Stefanski, Jolanta; Przybylowski, Mark; Bartido, Shirley; Borquez-Ojeda, Oriana; Taylor, Clare; Yeh, Raymond; Capacio, Vanessa; Olszewska, Malgorzata; Hosey, James; Sadelain, Michel; Brentjens, Renier J.; Rivière, Isabelle

    2009-01-01

    Summary Based on promising pre-clinical data demonstrating the eradication of systemic B cell malignancies by CD19-targeted T lymphocytes in vivo in SCID beige mouse models, we are launching Phase 1 clinical trials in patients with chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL). We present here the validation of the bioprocess we developed for the production and expansion of clinical grade autologous T cells derived from patients with CLL. We demonstrate that T cells genetically modified with a replication-defective gammaretroviral vector derived from the Moloney murine leukemia virus encoding a chimeric antigen receptor (CAR) targeted to CD19 (1928z) can be expanded with Dynabeads® CD3/CD28. This bioprocess allows us to generate clinical doses of 1928z+ T cells in approximately 2 to 3 weeks in a large-scale semi-closed culture system using the Wave bioreactor. These 1928z+ T cells remain biologically functional not only in vitro but also in SCID beige mice bearing disseminated tumors. The validation requirements in terms of T cell expansion, T cell transduction with the 1928z CAR, biological activity, quality control testing and release criteria were met for all four validation runs using apheresis products from patients with CLL. Additionally, following expansion of the T cells, the diversity of the skewed Vβ T cell receptor repertoire was significantly restored. This validated process will be used in phase I clinical trials in patients with chemo-refractory CLL and in patients with relapsed ALL. It can also be adapted for other clinical trials involving the expansion and transduction of patient or donor T cells using any chimeric antigen receptor or T cell receptor. PMID:19238016

  6. Entrapment of H1N1 Influenza Virus Derived Conserved Peptides in PLGA Nanoparticles Enhances T Cell Response and Vaccine Efficacy in Pigs.

    Science.gov (United States)

    Hiremath, Jagadish; Kang, Kyung-il; Xia, Ming; Elaish, Mohamed; Binjawadagi, Basavaraj; Ouyang, Kang; Dhakal, Santosh; Arcos, Jesus; Torrelles, Jordi B; Jiang, X; Lee, Chang Won; Renukaradhya, Gourapura J

    2016-01-01

    Pigs are believed to be one of the important sources of emerging human and swine influenza viruses (SwIV). Influenza virus conserved peptides have the potential to elicit cross-protective immune response, but without the help of potent adjuvant and delivery system they are poorly immunogenic. Biodegradable polylactic-co-glycolic acid (PLGA) nanoparticle (PLGA-NP) based vaccine delivery system enhances cross-presentation of antigens by the professional antigen presenting cells. In this study, Norovirus P particle containing SwIV M2e (extracellular domain of the matrix protein 2) chimera and highly conserved two each of H1N1 peptides of pandemic 2009 and classical human influenza viruses were entrapped in PLGA-NPs. Influenza antibody-free pigs were vaccinated with PLGA-NPs peptides cocktail vaccine twice with or without an adjuvant, Mycobacterium vaccae whole cell lysate, intranasally as mist. Vaccinated pigs were challenged with a virulent heterologous zoonotic SwIV H1N1, and one week later euthanized and the lung samples were analyzed for the specific immune response and viral load. Clinically, pigs vaccinated with PLGA-NP peptides vaccine had no fever and flu symptoms, and the replicating challenged SwIV was undetectable in the bronchoalveolar lavage fluid. Immunologically, PLGA-NP peptides vaccination (without adjuvant) significantly increased the frequency of antigen-specific IFNγ secreting CD4 and CD8 T cells response in the lung lymphocytes, despite not boosting the antibody response both at pre- and post-challenge. In summary, our data indicated that nanoparticle-mediated delivery of conserved H1N1 influenza peptides induced the virus specific T cell response in the lungs and reduced the challenged heterologous virus load in the airways of pigs.

  7. Entrapment of H1N1 Influenza Virus Derived Conserved Peptides in PLGA Nanoparticles Enhances T Cell Response and Vaccine Efficacy in Pigs.

    Directory of Open Access Journals (Sweden)

    Jagadish Hiremath

    Full Text Available Pigs are believed to be one of the important sources of emerging human and swine influenza viruses (SwIV. Influenza virus conserved peptides have the potential to elicit cross-protective immune response, but without the help of potent adjuvant and delivery system they are poorly immunogenic. Biodegradable polylactic-co-glycolic acid (PLGA nanoparticle (PLGA-NP based vaccine delivery system enhances cross-presentation of antigens by the professional antigen presenting cells. In this study, Norovirus P particle containing SwIV M2e (extracellular domain of the matrix protein 2 chimera and highly conserved two each of H1N1 peptides of pandemic 2009 and classical human influenza viruses were entrapped in PLGA-NPs. Influenza antibody-free pigs were vaccinated with PLGA-NPs peptides cocktail vaccine twice with or without an adjuvant, Mycobacterium vaccae whole cell lysate, intranasally as mist. Vaccinated pigs were challenged with a virulent heterologous zoonotic SwIV H1N1, and one week later euthanized and the lung samples were analyzed for the specific immune response and viral load. Clinically, pigs vaccinated with PLGA-NP peptides vaccine had no fever and flu symptoms, and the replicating challenged SwIV was undetectable in the bronchoalveolar lavage fluid. Immunologically, PLGA-NP peptides vaccination (without adjuvant significantly increased the frequency of antigen-specific IFNγ secreting CD4 and CD8 T cells response in the lung lymphocytes, despite not boosting the antibody response both at pre- and post-challenge. In summary, our data indicated that nanoparticle-mediated delivery of conserved H1N1 influenza peptides induced the virus specific T cell response in the lungs and reduced the challenged heterologous virus load in the airways of pigs.

  8. Porcine reproductive and respiratory syndrome virus: antigenic and molecular diversity of British isolates and implications for diagnosis.

    Science.gov (United States)

    Frossard, Jean-Pierre; Fearnley, Catherine; Naidu, Brindha; Errington, Jane; Westcott, David G; Drew, Trevor W

    2012-08-17

    Porcine reproductive and respiratory syndrome (PRRS) is an endemic disease of pigs, caused by PRRS virus, a member of the Arteriviridae family. First seen in Britain in 1991, the disease continues to be a significant economic and welfare problem for pig producers. To date, only PRRSV genotype 1 has been found in Britain. At the genetic level, a considerable increase has been reported in the diversity of PRRS viruses isolated in Britain between 2003 and 2007, versus the early 1990 s. In this study, the diversity has been shown to extend to the antigenic level too, with potential consequences for diagnostic methods. Antigenic diversity was assessed using a panel of twelve monoclonal antibodies, only one of which reacted with all isolates tested. Nine diverse viruses were compared as potential antigens in immunoperoxidase monolayer assays, where each one produced quite different results for a common panel of sera. As a single virus is used in each diagnostic assay, results must therefore be interpreted cautiously. For a real-time RT-PCR assay, published oligonucleotide primer and probe sequences were evaluated against available genetic sequences of British and European viruses, and were re-designed where considerable mismatches were found. The multiplex assay incorporating these modified primers to detect genotype 1 and 2 PRRS viruses was then validated for use with diagnostic sera and tissues. As the increasing degree of diversity exhibited by British strains is mirrored in other countries, PRRSV will continue to provide an ongoing challenge to diagnosis at a global, as well as national level. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  9. Stimulation of HIV-1-specific cytolytic T-lymphocytes facilitates elimination of latent viral reservoir after virus reactivation

    Science.gov (United States)

    Shan, Liang; Deng, Kai; Shroff, Neeta S.; Durand, Christine; Rabi, S. Alireza.; Yang, Hung-Chih; Zhang, Hao; Margolick, Joseph B.; Blankson, Joel N.; Siliciano, Robert F.

    2012-01-01

    Summary Highly active antiretroviral therapy (HAART) suppresses HIV-1 replication but cannot eliminate the virus because HIV-1 establishes latent infection. Interruption of HAART leads to a rapid rebound of viremia. Life-long treatment is therefore required. Efforts to purge the latent reservoir have focused on reactivating latent proviruses without inducing global T-cell activation. However, the killing of the infected cells after virus reactivation, which is essential for elimination of the reservoir, has not been assessed. Here we show that after reversal of latency in an in vitro model, infected resting CD4+ T cells survived despite viral cytopathic effects, even in the presence of autologous cytolytic T-lymphocytes (CTL) from most patients on HAART. Antigen-specific stimulation of patient CTLs led to efficient killing of infected cells. These results demonstrate that stimulating HIV-1-specific CTLs prior to reactivating latent HIV-1 may be essential for successful eradication efforts and should be considered in future clinical trials. PMID:22406268

  10. T Lymphocyte-Endothelial Interactions: Emerging Understanding of Trafficking and Antigen-Specific Immunity

    Directory of Open Access Journals (Sweden)

    Christopher Vincent Carman

    2015-11-01

    Full Text Available Antigen-specific immunity requires regulated trafficking of T cells in and out of diverse tissues in order to orchestrate lymphocyte development, immune surveillance, responses and memory. The endothelium serves as a unique barrier, as well as a sentinel, between the blood and the tissues and as such it plays an essential locally tuned role in regulating T cell migration and information exchange. While it is well established that chemoattractants and adhesion molecules are major determinants of T cell trafficking, emerging studies have now enumerated a large number of molecular players as well as a range of discrete cellular remodeling activities (e.g. transmigratory cups and invadosome-like protrusions, IPLs that participate in directed migration and pathfinding by T cells. In addition to providing trafficking cues, intimate cell-cell interaction between lymphocytes and endothelial cells provide instruction to T cells that influence their activation and differentiation states. Perhaps the most intriguing and underappreciated of these ‘sentinel’ roles is the ability of the endothelium to act as a non-hematopoietic ‘semi-professional’ antigen-presenting cell. Close contacts between circulating T cells and antigen-presenting endothelium may play unique non-redundant roles in shaping adaptive immune responses within the periphery. A better understanding of the mechanisms directing T cell trafficking and the antigen-presenting role of the endothelium may not only increase our knowledge of the adaptive immune response but also empower the utility of emerging immunomodulatory therapeutics.

  11. Antigenic analysis of the major structural protein of the Mason-Pfizer monkey virus

    International Nuclear Information System (INIS)

    Schochetman, G.; Boehm-Truitt, M.; Schlom, J.

    1976-01-01

    The major internal protein, p27 (m.w. 27,000 daltons) of the Mason-Pfizer monkey virus (MPMV) was purified by gel filtration and ion-exchange chromatography and then used to develop a radioimmunoassay (RIA). This RIA was specific for MPMV because no immunologic cross-reactivity was observed between p27 of MPMV and 13 different RNA tumor viruses of mammalian and avian origin. However, the p27 of MPMV grown in three different primate cells exhibited identical antigenic cross-reactivity. In addition, significant levels of p27 were found only in MPMV-infected cells. These results indicate that synthesis of p27 is induced after virus infection and that p27 represents a viral-coded protein

  12. Antigenic and genomic characterization of human influenza A and B viruses circulating in Argentina after the introduction of influenza A(H1N1)pdm09.

    Science.gov (United States)

    Russo, Mara L; Pontoriero, Andrea V; Benedetti, Estefania; Czech, Andrea; Avaro, Martin; Periolo, Natalia; Campos, Ana M; Savy, Vilma L; Baumeister, Elsa G

    2014-12-01

    This study was conducted as part of the Argentinean Influenza and other Respiratory Viruses Surveillance Network, in the context of the Global Influenza Surveillance carried out by the World Health Organization (WHO). The objective was to study the activity and the antigenic and genomic characteristics of circulating viruses for three consecutive seasons (2010, 2011 and 2012) in order to investigate the emergence of influenza viral variants. During the study period, influenza virus circulation was detected from January to December. Influenza A and B, and all current subtypes of human influenza viruses, were present each year. Throughout the 2010 post-pandemic season, influenza A(H1N1)pdm09, unexpectedly, almost disappeared. The haemagglutinin (HA) of the A(H1N1)pdm09 viruses studied were segregated in a different genetic group to those identified during the 2009 pandemic, although they were still antigenically closely related to the vaccine strain A/California/07/2009. Influenza A(H3N2) viruses were the predominant strains circulating during the 2011 season, accounting for nearly 76 % of influenza viruses identified. That year, all HA sequences of the A(H3N2) viruses tested fell into the A/Victoria/208/2009 genetic clade, but remained antigenically related to A/Perth/16/2009 (reference vaccine recommended for this three-year period). A(H3N2) viruses isolated in 2012 were antigenically closely related to A/Victoria/361/2011, recommended by the WHO as the H3 component for the 2013 Southern Hemisphere formulation. B viruses belonging to the B/Victoria lineage circulated in 2010. A mixed circulation of viral variants of both B/Victoria and B/Yamagata lineages was detected in 2012, with the former being predominant. A(H1N1)pdm09 viruses remained antigenically closely related to the vaccine virus A/California/7/2009; A(H3N2) viruses continually evolved into new antigenic clusters and both B lineages, B/Victoria/2/87-like and B/Yamagata/16/88-like viruses, were observed

  13. Antigen-specific murine T cell clones produce soluble interleukin 2 receptor on stimulation with specific antigens

    International Nuclear Information System (INIS)

    Wagner, D.K.; York-Jolley, J.; Malek, T.R.; Berzofsky, J.A.; Nelson, D.L.

    1986-01-01

    In this study, monoclonal antibodies were used to the murine IL 2 receptor (IL 2R) termed 3C7 and 7D4, which bind to different epitopes on the murine IL 2R, to develop an ELISA to measure soluble murine IL 2R. Surprisingly, stimulated murine spleen cells not only expressed cell-associated IL 2R, but also produced a considerable level of cellfree IL 2R in the culture supernatant fluid. To assess the fine specificity of this response, myoglobin-immune murine T cell clones were stimulated with appropriate or inappropriate antigen and syngeneic or allogeneic presenting cells. Proliferation, measured by [ 3 H] thymidine incorporation, and levels of soluble IL 2R were determined at day 4. The production of soluble IL2R displayed the same epitope fine specificity, genetic restriction, and antigen dose-response as the proliferative response. Indeed, in some cases there was sharper discrimination of epitope specificity and genetic restriction with the soluble IL 2R levels. There was also reproducible clone-to-clone variation in the amount of soluble receptor produced in response to antigen among 12 T cell clones and lines tested. In time course experiments, proliferation was greatest at day 3, whereas soluble IL 2R levels continued to rise in subsequent days. To the authors' knowledge, this is the first demonstration of release of secretion of soluble IL 2R by murine T cells, and the first demonstration of the fine specificity and genetic restriction of the induction of soluble IL 2R by specific antigen

  14. Robust and Accurate Discrimination of Self/Non-Self Antigen Presentations by Regulatory T Cell Suppression.

    Directory of Open Access Journals (Sweden)

    Chikara Furusawa

    Full Text Available The immune response by T cells usually discriminates self and non-self antigens, even though the negative selection of self-reactive T cells is imperfect and a certain fraction of T cells can respond to self-antigens. In this study, we construct a simple mathematical model of T cell populations to analyze how such self/non-self discrimination is possible. The results demonstrate that the control of the immune response by regulatory T cells enables a robust and accurate discrimination of self and non-self antigens, even when there is a significant overlap between the affinity distribution of T cells to self and non-self antigens. Here, the number of regulatory T cells in the system acts as a global variable controlling the T cell population dynamics. The present study provides a basis for the development of a quantitative theory for self and non-self discrimination in the immune system and a possible strategy for its experimental verification.

  15. Robust and Accurate Discrimination of Self/Non-Self Antigen Presentations by Regulatory T Cell Suppression.

    Science.gov (United States)

    Furusawa, Chikara; Yamaguchi, Tomoyuki

    The immune response by T cells usually discriminates self and non-self antigens, even though the negative selection of self-reactive T cells is imperfect and a certain fraction of T cells can respond to self-antigens. In this study, we construct a simple mathematical model of T cell populations to analyze how such self/non-self discrimination is possible. The results demonstrate that the control of the immune response by regulatory T cells enables a robust and accurate discrimination of self and non-self antigens, even when there is a significant overlap between the affinity distribution of T cells to self and non-self antigens. Here, the number of regulatory T cells in the system acts as a global variable controlling the T cell population dynamics. The present study provides a basis for the development of a quantitative theory for self and non-self discrimination in the immune system and a possible strategy for its experimental verification.

  16. Correlation between the e-antigen, Pre-S2 antigen and DNA of hepatitis B virus

    International Nuclear Information System (INIS)

    Cai Changhui; Liang Jinsheng

    2006-01-01

    Objective: To study the relationship between the hepatitis B e-antigen (HBeAg), Pre-S1 antigen (Pre-S1), Pre-S2 antigen (Pre-S2) and DNA of hepatitis B virus (HBV). Methods: The blood samples of 268 cases of viral B hepatitis were collected. The HBV DNA of all samples were tested by fluorescent-quantitating PCR method, and HBeAg were assayed by time-resolved fluoro-immunoassay method, and their Pre-S1 and Pre-S2 were assayed by enzyme linked immunosorbentassay method. Results: The positive rates of HBeAg, Pre-S1 and Pre-S2 in HBV DNA positive group were 48.2%, 76.4% and 100% respectively, and 1.6%, 36.3% and 32.3% respectively in HBV DNA negative group. There was significantly difference between the HBeAg, Pre-S1 and Pre-S2 positive rates of the two groups (Chi-square test, P<0.01). Conclusions: There was positive relationship between the HBeAg, Pre-S1, Pre-S2 and DNA which all were indicators of HBV reproduction. Comparing to HBV DNA, Pre-S2 was the most, Pre-S1 the second, and HBeAg the third sensitive indicator for evaluating HBV reproduction. Pre-S1 and Pre-S2 could be used as the supplementary indicator for the reproduction of HBV. (authors)

  17. Cytotoxic T-Lymphocyte Antigen-2 alpha participates in axial ...

    African Journals Online (AJOL)

    Cytotoxic T-lymphocyte antigen-2 alpha (CTLA-2α) has been discovered and expressed in mouse activated T-cells and mast cells. Structurally, it is homologous to the proregion of mouse cathepsin L, a lysosomal cystein proteinase. Expressed recombinant CTLA-2α is shown to exhibit selective inhibition to cathepsin L and ...

  18. Antigenic heterogeneity of capsid protein VP1 in foot-and-mouth disease virus (FMDV serotype Asia1

    Directory of Open Access Journals (Sweden)

    Alam SM

    2013-08-01

    Full Text Available SM Sabbir Alam,1 Ruhul Amin,1 Mohammed Ziaur Rahman,2 M Anwar Hossain,1 Munawar Sultana11Department of Microbiology, University of Dhaka, Dhaka, Bangladesh; 2International Centre for Diarrhoeal Disease Research, Dhaka, BangladeshAbstract: Foot and mouth disease virus (FMDV, with its seven serotypes, is a highly contagious virus infecting mainly cloven-hoofed animals. The serotype Asia1 occurs mainly in Asian regions. An in-silico approach was taken to reveal the antigenic heterogeneities within the capsid protein VP1 of Asia1. A total of 47 VP1 sequences of Asia1 isolates from different countries of South Asian regions were selected, retrieved from database, and were aligned. The structure of VP1 protein was modeled using a homology modeling approach. Several antigenic sites were identified and mapped onto the three-dimensional protein structure. Variations at these antigenic sites were analyzed by calculating the protein variability index and finding mutation combinations. The data suggested that vaccine escape mutants have derived from only few mutations at several antigenic sites. Five antigenic peptides have been identified as the least variable epitopes, with just fewer amino acid substitutions. Only a limited number of serotype Asia1 antigenic variants were found to be circulated within the South Asian region. This emphasizes a possibility of formulating synthetic vaccines for controlling foot-and-mouth disease by Asia1 serotypes.Keywords: protein modeling, antigenic sites, sequence variation

  19. The Thomsen-Friedenreich (T) simple mucin-type carbohydrate antigen in salivary gland carcinomas

    DEFF Research Database (Denmark)

    Therkildsen, M H; Mandel, U; Christensen, M

    1995-01-01

    acinic cell carcinomas and CinPA. A antigen was expressed in all tumour types from blood group A patients, except in CinPA. The expression of T, sialosyl-T, H and A antigens in relation to differentiation grade varied with tumour type in poorly differentiated areas. High and moderate differentiated areas...

  20. The role of CD4 in antigen-independent activation of isolated single T lymphocytes

    DEFF Research Database (Denmark)

    Kelso, A; Owens, T

    1988-01-01

    The membrane molecule CD4 (L3T4) is thought to facilitate activation of Class II H-2-restricted T cells by binding to Ia determinants on antigen-presenting cells. Recent reports suggest that CD4 can also contribute to antigen-independent activation by anti-T cell receptor (TCR) antibodies. An ass...

  1. Naturally processed measles virus peptide eluted from class II HLA-DRB1*03 recognized by T lymphocytes from human blood

    International Nuclear Information System (INIS)

    Ovsyannikova, Inna G.; Johnson, Kenneth L.; Naylor, Stephen; Muddiman, David C.; Poland, Gregory A.

    2003-01-01

    This is the first report of the direct identification of a HLA-DRB1*03 measles-derived peptide from measles virus infected EBV-transformed B cells. We purified HLA-DR3-peptide complexes from EBV-B cells infected with measles virus (Edmonston strain) and sequenced the HLA-DR3-peptides by mass spectrometry. A class II peptide, derived from a measles phosphoprotein, ASDVETAEGGEIHELLRLQ (P1, residues 179-197), exhibited the capacity to stimulate peripheral blood mononuclear cells to proliferate. Our data provides direct evidence that the antigenic peptide of measles virus was processed by antigen-presenting cells, presented in the context of HLA class II molecules, and was recognized by peripheral blood T cells from healthy individuals previously immunized with measles vaccine. The approach described herein provides a useful methodology for the future identification of HLA-presented pathogen-derived epitopes using mass spectrometry. The study of cell-mediated immune responses to the measles-derived peptide in immune persons should provide significant insight into the design and development of new vaccines

  2. Use of retroviral-mediated gene transfer to deliver and test function of chimeric antigen receptors in human T-cells

    Directory of Open Access Journals (Sweden)

    Ana C. Parente-Pereira

    2014-07-01

    Full Text Available Chimeric antigen receptors (CARs are genetically delivered fusion molecules that elicit T-cell activation upon binding of a native cell surface molecule. These molecules can be used to generate a large number of memory and effector T-cells that are capable of recognizing and attacking tumor cells. Most commonly, stable CAR expression is achieved in T-cells using retroviral vectors. In the method described here, retroviral vectors are packaged in a two-step procedure. First, H29D human retroviral packaging cells (a derivative of 293 cells are transfected with the vector of interest, which is packaged transiently in vesicular stomatitis virus (VSV G pseudotyped particles. These particles are used to deliver the vector to PG13 cells, which achieve stable packaging of gibbon ape leukaemia virus (GALV-pseudotyped particles that are suitable for infection of human T-cells. The key advantage of the method reported here is that it robustly generates polyclonal PG13 cells that are 100% positive for the vector of interest. This means that efficient gene transfer may be repeatedly achieved without the need to clone individual PG13 cells for experimental pre-clinical testing. To achieve T-cell transduction, cells must first be activated using a non-specific mitogen. Phytohemagglutinin (PHA provides an economic and robust stimulus to achieve this. After 48-72 h, activated T-cells and virus-conditioned medium are mixed in RetroNectin-coated plasticware, which enhances transduction efficiency. Transduced cells are analyzed for gene transfer efficiency by flow cytometry 48 h following transduction and may then be tested in several assays to evaluate CAR function, including target-dependent cytotoxicity, cytokine production and proliferation.

  3. Radioimmunoassay and enzyme-linked immunoassay of antibodies to the core protein (P24) of human T-lymphotropic virus (HTLV III). [Acquired immunodeficiency syndrome (AIDS)

    Energy Technology Data Exchange (ETDEWEB)

    Neurath, A R; Strick, N; Sproul, P

    1985-05-01

    Human T-cell lymphotropic viruses designated HTLV III or LAV are considered to represent the causative agents of the acquired immunodeficiency syndrome (AIDS). Therefore a simple direct RIA or ELISA method for antibodies to distinct epitopes of HTLV III/LAV structural components would be of great value. The authors describe RIA and ELISA assays which obviate the need for purified virus or virus proteins, do not utilize infected cells and thus do not diminish the source for continuous production of viral antigens and are specific for a major core protein of HTLV III/LAV.

  4. Regional Delivery of Chimeric Antigen Receptor (CAR) T-Cells for Cancer Therapy.

    Science.gov (United States)

    Sridhar, Praveen; Petrocca, Fabio

    2017-07-18

    Chimeric Antigen Receptor (CAR) T-cells are T-cells with recombinant receptors targeted to tumor antigens. CAR-T cell therapy has emerged as a mode of immunotherapy and is now being extensively explored in hematologic cancer. In contrast, CAR-T cell use in solid tumors has been hampered by multiple obstacles. Several approaches have been taken to circumvent these obstacles, including the regional delivery of CAR-T cells. Regional CAR-T cell delivery can theoretically compensate for poor T-cell trafficking and tumor antigen specificity while avoiding systemic toxicity associated with intravenous delivery. We reviewed completed clinical trials for the treatment of glioblastoma and metastatic colorectal cancer and examined the data in these studies for safety, efficacy, and potential advantages that regional delivery may confer over systemic delivery. Our appraisal of the available literature revealed that regional delivery of CAR-T cells in both glioblastoma and hepatic colorectal metastases was generally well tolerated and efficacious in select instances. We propose that the regional delivery of CAR-T cells is an area of potential growth in the solid tumor immunotherapy, and look towards future clinical trials in head and neck cancer, mesothelioma, and peritoneal carcinomatosis as the use of this technique expands.

  5. Regional Delivery of Chimeric Antigen Receptor (CAR T-Cells for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Praveen Sridhar

    2017-07-01

    Full Text Available Chimeric Antigen Receptor (CAR T-cells are T-cells with recombinant receptors targeted to tumor antigens. CAR-T cell therapy has emerged as a mode of immunotherapy and is now being extensively explored in hematologic cancer. In contrast, CAR-T cell use in solid tumors has been hampered by multiple obstacles. Several approaches have been taken to circumvent these obstacles, including the regional delivery of CAR-T cells. Regional CAR-T cell delivery can theoretically compensate for poor T-cell trafficking and tumor antigen specificity while avoiding systemic toxicity associated with intravenous delivery. We reviewed completed clinical trials for the treatment of glioblastoma and metastatic colorectal cancer and examined the data in these studies for safety, efficacy, and potential advantages that regional delivery may confer over systemic delivery. Our appraisal of the available literature revealed that regional delivery of CAR-T cells in both glioblastoma and hepatic colorectal metastases was generally well tolerated and efficacious in select instances. We propose that the regional delivery of CAR-T cells is an area of potential growth in the solid tumor immunotherapy, and look towards future clinical trials in head and neck cancer, mesothelioma, and peritoneal carcinomatosis as the use of this technique expands.

  6. Identification of immediate early gene products of bovine herpes virus 1 (BHV-1) as dominant antigens recognized by CD8 T cells in immune cattle

    DEFF Research Database (Denmark)

    Hart, Jane; MacHugh, Niall D.; Sheldrake, Tara

    2017-01-01

    candidate viral gene products with CD8 T-cell lines from 3 BHV-1-immune cattle of defined MHC genotypes identified 4 antigens, including 3 immediate early (IE) gene products (ICP4, ICP22 and Circ) and a tegument protein (UL49). Identification of the MHC restriction specificities revealed that the antigens...... cases refined, the identity of the epitopes. Analyses of the epitope specificity of the CD8 T-cell lines showed that a large component of the response is directed against these IE epitopes. The results indicate that these IE gene products are dominant targets of the CD8 T-cell response in BHV...

  7. Using multiple linear regression and physicochemical changes of amino acid mutations to predict antigenic variants of influenza A/H3N2 viruses.

    Science.gov (United States)

    Cui, Haibo; Wei, Xiaomei; Huang, Yu; Hu, Bin; Fang, Yaping; Wang, Jia

    2014-01-01

    Among human influenza viruses, strain A/H3N2 accounts for over a quarter of a million deaths annually. Antigenic variants of these viruses often render current vaccinations ineffective and lead to repeated infections. In this study, a computational model was developed to predict antigenic variants of the A/H3N2 strain. First, 18 critical antigenic amino acids in the hemagglutinin (HA) protein were recognized using a scoring method combining phi (ϕ) coefficient and information entropy. Next, a prediction model was developed by integrating multiple linear regression method with eight types of physicochemical changes in critical amino acid positions. When compared to other three known models, our prediction model achieved the best performance not only on the training dataset but also on the commonly-used testing dataset composed of 31878 antigenic relationships of the H3N2 influenza virus.

  8. Production of a Recombinant Dengue Virus 2 NS5 Protein and Potential Use as a Vaccine Antigen.

    Science.gov (United States)

    Alves, Rúbens Prince Dos Santos; Pereira, Lennon Ramos; Fabris, Denicar Lina Nascimento; Salvador, Felipe Scassi; Santos, Robert Andreata; Zanotto, Paolo Marinho de Andrade; Romano, Camila Malta; Amorim, Jaime Henrique; Ferreira, Luís Carlos de Souza

    2016-06-01

    Dengue fever is caused by any of the four known dengue virus serotypes (DENV1 to DENV4) that affect millions of people worldwide, causing a significant number of deaths. There are vaccines based on chimeric viruses, but they still are not in clinical use. Anti-DENV vaccine strategies based on nonstructural proteins are promising alternatives to those based on whole virus or structural proteins. The DENV nonstructural protein 5 (NS5) is the main target of anti-DENV T cell-based immune responses in humans. In this study, we purified a soluble recombinant form of DENV2 NS5 expressed in Escherichia coli at large amounts and high purity after optimization of expression conditions and purification steps. The purified DENV2 NS5 was recognized by serum from DENV1-, DENV2-, DENV3-, or DENV4-infected patients in an epitope-conformation-dependent manner. In addition, immunization of BALB/c mice with NS5 induced high levels of NS5-specific antibodies and expansion of gamma interferon- and tumor necrosis factor alpha-producing T cells. Moreover, mice immunized with purified NS5 were partially protected from lethal challenges with the DENV2 NGC strain and with a clinical isolate (JHA1). These results indicate that the recombinant NS5 protein preserves immunological determinants of the native protein and is a promising vaccine antigen capable of inducing protective immune responses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Immunization against Rabies with Plant-Derived Antigen

    Science.gov (United States)

    Modelska, Anna; Dietzschold, Bernard; Sleysh, N.; Fu, Zhen Fang; Steplewski, Klaudia; Hooper, D. Craig; Koprowski, Hilary; Yusibov, Vidadi

    1998-03-01

    We previously demonstrated that recombinant plant virus particles containing a chimeric peptide representing two rabies virus epitopes stimulate virus neutralizing antibody synthesis in immunized mice. We show here that mice immunized intraperitoneally or orally (by gastric intubation or by feeding on virus-infected spinach leaves) with engineered plant virus particles containing rabies antigen mount a local and systemic immune response. After the third dose of antigen, given intraperitoneally, 40% of the mice were protected against challenge infection with a lethal dose of rabies virus. Oral administration of the antigen stimulated serum IgG and IgA synthesis and ameliorated the clinical signs caused by intranasal infection with an attenuated rabies virus strain.

  10. Prevalence of human immunodeficiency virus type 1 p24 antigen in U.S. blood donors--an assessment of the efficacy of testing in donor screening. The HIV-Antigen Study Group.

    Science.gov (United States)

    Alter, H J; Epstein, J S; Swenson, S G; VanRaden, M J; Ward, J W; Kaslow, R A; Menitove, J E; Klein, H G; Sandler, S G; Sayers, M H

    1990-11-08

    We performed a multicenter study in 1989 to determine whether screening whole-blood donors for human immunodeficiency virus type 1 (HIV-1) p24 antigen would improve transfusion safety by identifying carriers of the virus who are seronegative for HIV-1 antibody. More than 500,000 donations were tested at 13 U.S. blood centers with test kits from two manufacturers. Units found repeatedly reactive were retested in a central laboratory; if the results were positive, they were confirmed by a neutralization assay. A subgroup of units was also tested for HIV-1 by the polymerase chain reaction. Selected donors confirmed or not confirmed as having p24 antigen were contacted for follow-up interviews to identify risk factors and undergo retesting for HIV-1 markers. Positive tests for p24 antigen were confirmed by neutralization in five donors (0.001 percent of all donations tested), all of whom were also positive for HIV-1 antibody and HIV-1 by polymerase chain reaction. Three of the antigen-positive donors had other markers of infectious disease that would have resulted in the exclusion of their blood; two had risk factors for HIV-1 that should have led to self-exclusion. Of 220 blood units with repeatedly reactive p24 antigen whose presence could not be confirmed by neutralization (0.04 percent of the donations studied), none were positive for HIV-1 antibody, HIV-1 by polymerase chain reaction (120 units tested), or virus culture (76 units tested)--attesting to the specificity of confirmatory neutralization. The finding that no donation studied was positive for p24 antigen and negative for HIV-1 antibody suggests that screening donors for p24 antigen with tests of the current level of sensitivity would not add substantially to the safety of the U.S. blood supply.

  11. Intranasal delivery of cholera toxin induces th17-dominated T-cell response to bystander antigens.

    Directory of Open Access Journals (Sweden)

    Jee-Boong Lee

    Full Text Available Cholera toxin (CT is a potent vaccine adjuvant, which promotes mucosal immunity to protein antigen given by nasal route. It has been suggested that CT promotes T helper type 2 (Th2 response and suppresses Th1 response. We here report the induction of Th17-dominated responses in mice by intranasal delivery of CT. This dramatic Th17-driving effect of CT, which was dependent on the B subunit, was observed even in Th1 or Th2-favored conditions of respiratory virus infection. These dominating Th17 responses resulted in the significant neutrophil accumulation in the lungs of mice given CT. Both in vitro and in vivo treatment of CT induced strongly augmented IL-6 production, and Th17-driving ability of CT was completely abolished in IL-6 knockout mice, indicating a role of this cytokine in the Th17-dominated T-cell responses by CT. These data demonstrate a novel Th17-driving activity of CT, and help understand the mechanisms of CT adjuvanticity to demarcate T helper responses.

  12. A recombinant modified vaccinia ankara vaccine encoding Epstein-Barr Virus (EBV) target antigens: a phase I trial in UK patients with EBV-positive cancer.

    Science.gov (United States)

    Taylor, Graham S; Jia, Hui; Harrington, Kevin; Lee, Lip Wai; Turner, James; Ladell, Kristin; Price, David A; Tanday, Manjit; Matthews, Jen; Roberts, Claudia; Edwards, Ceri; McGuigan, Lesley; Hartley, Andrew; Wilson, Steve; Hui, Edwin P; Chan, Anthony T C; Rickinson, Alan B; Steven, Neil M

    2014-10-01

    Epstein-Barr virus (EBV) is associated with several cancers in which the tumor cells express EBV antigens EBNA1 and LMP2. A therapeutic vaccine comprising a recombinant vaccinia virus, MVA-EL, was designed to boost immunity to these tumor antigens. A phase I trial was conducted to demonstrate the safety and immunogenicity of MVA-EL across a range of doses. Sixteen patients in the United Kingdom (UK) with EBV-positive nasopharyngeal carcinoma (NPC) received three intradermal vaccinations of MVA-EL at 3-weekly intervals at dose levels between 5 × 10(7) and 5 × 10(8) plaque-forming units (pfu). Blood samples were taken at screening, after each vaccine cycle, and during the post-vaccination period. T-cell responses were measured using IFNγ ELISpot assays with overlapping EBNA1/LMP2 peptide mixes or HLA-matched epitope peptides. Polychromatic flow cytometry was used to characterize functionally responsive T-cell populations. Vaccination was generally well tolerated. Immunity increased after vaccination to at least one antigen in 8 of 14 patients (7/14, EBNA1; 6/14, LMP2), including recognition of epitopes that vary between EBV strains associated with different ethnic groups. Immunophenotypic analysis revealed that vaccination induced differentiation and functional diversification of responsive T-cell populations specific for EBNA1 and LMP2 within the CD4 and CD8 compartments, respectively. MVA-EL is safe and immunogenic across diverse ethnicities and thus suitable for use in trials against different EBV-positive cancers globally as well as in South-East Asia where NPC is most common. The highest dose (5 × 10(8) pfu) is recommended for investigation in current phase IB and II trials. ©2014 American Association for Cancer Research.

  13. T cell Receptor Alpha Variable 12-2 bias in the immunodominant response to Yellow fever virus

    OpenAIRE

    Bovay, Amandine; Zoete, Vincent; Dolton, Garry; Bulek, Anna M.; Cole, David K.; Rizkallah, Pierre J.; Fuller, Anna; Beck, Konrad; Michielin, Olivier; Speiser, Daniel E.; Sewell, Andrew K.; Fuertes Marraco, Silvia A.

    2018-01-01

    The repertoire of human αβ T-cell receptors (TCRs) is generated via somatic recombination of germline gene segments. Despite this enormous variation, certain epitopes can be immunodominant, associated with high frequencies of antigen-specific T cells and/or exhibit bias toward a TCR gene segment. Here, we studied the TCR repertoire of the HLA-A*0201-restricted epitope LLWNGPMAV (hereafter, A2/LLW) from Yellow Fever virus, which generates an immunodominant CD8 javax.xml.bind.JAXBElement@714aac...

  14. Characterization of the Tetraspan Junctional Complex (4JC) superfamily.

    Science.gov (United States)

    Chou, Amy; Lee, Andre; Hendargo, Kevin J; Reddy, Vamsee S; Shlykov, Maksim A; Kuppusamykrishnan, Harikrishnan; Medrano-Soto, Arturo; Saier, Milton H

    2017-03-01

    Connexins or innexins form gap junctions, while claudins and occludins form tight junctions. In this study, statistical data, derived using novel software, indicate that these four junctional protein families and eleven other families of channel and channel auxiliary proteins are related by common descent and comprise the Tetraspan (4 TMS) Junctional Complex (4JC) Superfamily. These proteins all share similar 4 transmembrane α-helical (TMS) topologies. Evidence is presented that they arose via an intragenic duplication event, whereby a 2 TMS-encoding genetic element duplicated tandemly to give 4 TMS proteins. In cases where high resolution structural data were available, the conclusion of homology was supported by conducting structural comparisons. Phylogenetic trees reveal the probable relationships of these 15 families to each other. Long homologues containing fusions to other recognizable domains as well as internally duplicated or fused domains are reported. Large "fusion" proteins containing 4JC domains proved to fall predominantly into family-specific patterns as follows: (1) the 4JC domain was N-terminal; (2) the 4JC domain was C-terminal; (3) the 4JC domain was duplicated or occasionally triplicated and (4) mixed fusion types were present. Our observations provide insight into the evolutionary origins and subfunctions of these proteins as well as guides concerning their structural and functional relationships. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Genetic and antigenic relatedness of bovine herpesvirus-1 and pseudorabies virus

    International Nuclear Information System (INIS)

    Bush, C.E.

    1985-01-01

    The DNA sequence homology between the genomes of bovine herpesvirus-1 (BHV-1) and pseudorabies virus (PRV) was examined. Reciprocal cross hybridization of viral DNA labeled by nick translation to Southern blots of Kpnl, BamH1, EcoR1, and HindIII restriction endonuclease digested DNA, detected homologous sequences dispersed throughout the genomes of the two viruses. The DNA-DNA hybrids were found to be stable under high stringency wash conditions. Sequences of a 32 P-labeled PRV DNA A fragment probe were found to hybridize only to the BHV-1 HindIII G fragment. This indicated that the sequence homology detected between these two viruses was not simply due to fortuitous hybridization of guanine plus cytosine rich sequences. The homology between BHV-1 and PRV was determined by liquid reassociation. It was found that the hybridization rates between 32 P-labeled PRV DNA and unlabeled BHV-1 DNA and 32 P-labeled BHV-1 DNA and unlabeled PRV DNA corresponded to approximately 8% reassociation. The antigenic relatedness between BHV-1 and PRV was also examined. Eighty percent plaque reduction serum neutralization tests showed that BHV-1 rabbit hyperimmune antiserum neutralized BHV-1 virus at a serum neutralization titer (SNT) of 1:256 and PRV virus at an (SNT) of 1:8. PRV rabbit hyperimmune antiserum neutralized PRV virus at an SNT of 1:4 and BHV-1 virus at an SNT of 1:2

  16. An in-depth analysis of original antigenic sin in dengue virus infection.

    Science.gov (United States)

    Midgley, Claire M; Bajwa-Joseph, Martha; Vasanawathana, Sirijitt; Limpitikul, Wannee; Wills, Bridget; Flanagan, Aleksandra; Waiyaiya, Emily; Tran, Hai Bac; Cowper, Alison E; Chotiyarnwong, Pojchong; Chotiyarnwon, Pojchong; Grimes, Jonathan M; Yoksan, Sutee; Malasit, Prida; Simmons, Cameron P; Mongkolsapaya, Juthathip; Screaton, Gavin R

    2011-01-01

    The evolution of dengue viruses has resulted in four antigenically similar yet distinct serotypes. Infection with one serotype likely elicits lifelong immunity to that serotype, but generally not against the other three. Secondary or sequential infections are common, as multiple viral serotypes frequently cocirculate. Dengue infection, although frequently mild, can lead to dengue hemorrhagic fever (DHF) which can be life threatening. DHF is more common in secondary dengue infections, implying a role for the adaptive immune response in the disease. There is currently much effort toward the design and implementation of a dengue vaccine but these efforts are made more difficult by the challenge of inducing durable neutralizing immunity to all four viruses. Domain 3 of the dengue virus envelope protein (ED3) has been suggested as one such candidate because it contains neutralizing epitopes and it was originally thought that relatively few cross-reactive antibodies are directed to this domain. In this study, we performed a detailed analysis of the anti-ED3 response in a cohort of patients suffering either primary or secondary dengue infections. The results show dramatic evidence of original antigenic sin in secondary infections both in terms of binding and enhancement activity. This has important implications for dengue vaccine design because heterologous boosting is likely to maintain the immunological footprint of the first vaccination. On the basis of these findings, we propose a simple in vitro enzyme-linked immunosorbent assay (ELISA) to diagnose the original dengue infection in secondary dengue cases.

  17. Detection of H5 Avian Influenza Viruses by Antigen-Capture Enzyme-Linked Immunosorbent Assay Using H5-Specific Monoclonal Antibody▿

    OpenAIRE

    He, Qigai; Velumani, Sumathy; Du, Qingyun; Lim, Chee Wee; Ng, Fook Kheong; Donis, Ruben; Kwang, Jimmy

    2007-01-01

    The unprecedented spread of highly pathogenic avian influenza virus subtype H5N1 in Asia and Europe is threatening animals and public health systems. Effective diagnosis and control management are needed to control the disease. To this end, we developed a panel of monoclonal antibodies (MAbs) against the H5N1 avian influenza virus (AIV) and implemented an antigen-capture enzyme-linked immunosorbent assay (AC-ELISA) to detect the H5 viral antigen. Mice immunized with denatured hemagglutinin (H...

  18. 77 FR 3482 - Prospective Grant of Exclusive License: Development of T Cell Receptors and Chimeric Antigen...

    Science.gov (United States)

    2012-01-24

    ... Exclusive License: Development of T Cell Receptors and Chimeric Antigen Receptors Into Therapeutics for.... 61/473,409 entitled ``Anti-epidermal growth factor receptor variant III chimeric antigen receptors... EGFRvIII chimeric antigen (CARs) and methods of using these engineered T cells to treat and/or prevent...

  19. Modification of T-cell antigenic properties of tetanus toxoid by SDS-PAGE separation. Implications for T-cell blotting

    DEFF Research Database (Denmark)

    Christensen, C B; Theander, T G

    1997-01-01

    Using Tetanus Toxoid (TT) as a model antigen the T-cell Blotting method was evaluated. Peripheral blood mononuclear cell (PBMC) cultures were stimulated by blotted nitrocellulose-bound TT or soluble TT. SDS-Poly-Acrylamide-Gel-Electrophoresis separated TT only induced proliferation in 20% of the ......Using Tetanus Toxoid (TT) as a model antigen the T-cell Blotting method was evaluated. Peripheral blood mononuclear cell (PBMC) cultures were stimulated by blotted nitrocellulose-bound TT or soluble TT. SDS-Poly-Acrylamide-Gel-Electrophoresis separated TT only induced proliferation in 20......% of the PBMC cultures whereas proliferation was induced in 79% of the same cultures offered similar treated TT (except for the PAGE separation). When T-cell blotting was performed with TT separated in a SDS-agarose matrix, proliferation was induced in 80% of donors responding to soluble TT. The results show...... that SDS-PAGE alters the ability of TT to induce T-cell proliferation, possibly due to unpolymerized acrylamide binding to proteins during SDS-PAGE. The use of SDS-PAGE T-cell blotting in the screening for T-cell antigens must therefore be reconsidered. We suggest the use of SDS-Agarose Gel Electrophoresis...

  20. Native IgG2a(b) is barely antigenic to major histocompatibility complex class II-restricted T cells owing to inefficient internalization by professional antigen-presenting cells.

    Science.gov (United States)

    Bartnes, K; Hannestad, K

    2000-04-01

    Peptide epitopes derived from immunoglobulin variable regions represent tumour-specific antigens on B-cell neoplasms and can be recognized by syngeneic, major histocompatibility complex (MHC) class II-restricted T cells. Immunoglobulin peptide/MHC class II complexes may also be involved in autoimmunity and CD4+ T-cell-mediated B-cell regulation. Thus, the IgG2a(b) H-chain allopeptide gamma2a(b) 435-451 presented on I-Ad mimics the epitope implicated in herpes simplex virus-induced autoimmune stromal keratitis and is the target of T helper 1 (Th1) clones that suppress IgG2a(b) production in vivo. We here report that spleen and thymus cells constitutively present the autologous gamma2a(b) epitope to a gamma2a(b) 435-451/I-A(d) reactive T-cell hybridoma as a function of the animal housing conditions (specific pathogen-free or not) and the serum levels of IgG2a(b). Constitutive presentation in the spleen was predominantly performed by dendritic cells. Whereas spleen cells poorly presented native IgG2a(b) to a gamma2a(b) 435-451/I-A(d) reactive T-cell hybridoma, IgG2a(b) in the form of immune complexes were presented > 200-fold more efficiently owing to internalization via low-affinity FcgammaR on macrophages. The antigenicity could also be improved by homotypic aggregation and by targeting IgG2a(b) to complement receptors on the A20 B-cell lymphoma. Mice without detectable IgG2a(b)-containing immune complexes typically exhibited minimal constitutive presentation. Nevertheless, native IgG2a(b) can sensitize antigen-presenting cells in vivo, as mice that were devoid of immune complexes and carried an IgG2a(b)-producing tumour did present constitutively, even at physiological IgG2a(b) serum levels. Whereas the amounts of IgG released from most B-cell lymphomas may be too low to allow spontaneous priming of tumour-specific MHC class II-restricted T cells, administration of tumour immunoglobulin in aggregated form might improve the efficacy of idiotype vaccination.

  1. Impaired quality of the hepatitis B virus (HBV)-specific T-cell response in human immunodeficiency virus type 1-HBV coinfection.

    Science.gov (United States)

    Chang, J Judy; Sirivichayakul, Sunee; Avihingsanon, Anchalee; Thompson, Alex J V; Revill, Peter; Iser, David; Slavin, John; Buranapraditkun, Supranee; Marks, Pip; Matthews, Gail; Cooper, David A; Kent, Stephen J; Cameron, Paul U; Sasadeusz, Joe; Desmond, Paul; Locarnini, Stephen; Dore, Gregory J; Ruxrungtham, Kiat; Lewin, Sharon R

    2009-08-01

    Hepatitis B virus (HBV)-specific T cells play a key role both in the control of HBV replication and in the pathogenesis of liver disease. Human immunodeficiency virus type 1 (HIV-1) coinfection and the presence or absence of HBV e (precore) antigen (HBeAg) significantly alter the natural history of chronic HBV infection. We examined the HBV-specific T-cell responses in treatment-naïve HBeAg-positive and HBeAg-negative HIV-1-HBV-coinfected (n = 24) and HBV-monoinfected (n = 39) Asian patients. Peripheral blood was stimulated with an overlapping peptide library for the whole HBV genome, and tumor necrosis factor alpha and gamma interferon cytokine expression in CD8+ T cells was measured by intracellular cytokine staining and flow cytometry. There was no difference in the overall magnitude of the HBV-specific T-cell responses, but the quality of the response was significantly impaired in HIV-1-HBV-coinfected patients compared with monoinfected patients. In coinfected patients, HBV-specific T cells rarely produced more than one cytokine and responded to fewer HBV proteins than in monoinfected patients. Overall, the frequency and quality of the HBV-specific T-cell responses increased with a higher CD4+ T-cell count (P = 0.018 and 0.032, respectively). There was no relationship between circulating HBV-specific T cells and liver damage as measured by activity and fibrosis scores, and the HBV-specific T-cell responses were not significantly different in patients with either HBeAg-positive or HBeAg-negative disease. The quality of the HBV-specific T-cell response is impaired in the setting of HIV-1-HBV coinfection and is related to the CD4+ T-cell count.

  2. Adsorption of multimeric T cell antigens on carbon nanotubes

    DEFF Research Database (Denmark)

    Fadel, Tarek R; Li, Nan; Shah, Smith

    2013-01-01

    Antigen-specific activation of cytotoxic T cells can be enhanced up to three-fold more than soluble controls when using functionalized bundled carbon nanotube substrates ((b) CNTs). To overcome the denaturing effects of direct adsorption on (b) CNTs, a simple but robust method is demonstrated...... to stabilize the T cell stimulus on carbon nanotube substrates through non-covalent attachment of the linker neutravidin....

  3. Structure, Receptor Binding, and Antigenicity of Influenza Virus Hemagglutinins from the 1957 H2N2 Pandemic

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Rui; McBride, Ryan; Paulson, James C.; Basler, Christopher F.; Wilson, Ian A. (Sinai); (Scripps)

    2010-03-04

    The hemagglutinin (HA) envelope protein of influenza viruses mediates essential viral functions, including receptor binding and membrane fusion, and is the major viral antigen for antibody neutralization. The 1957 H2N2 subtype (Asian flu) was one of the three great influenza pandemics of the last century and caused 1 million deaths globally from 1957 to 1968. Three crystal structures of 1957 H2 HAs have been determined at 1.60 to 1.75 {angstrom} resolutions to investigate the structural basis for their antigenicity and evolution from avian to human binding specificity that contributed to its introduction into the human population. These structures, which represent the highest resolutions yet recorded for a complete ectodomain of a glycosylated viral surface antigen, along with the results of glycan microarray binding analysis, suggest that a hydrophobicity switch at residue 226 and elongation of receptor-binding sites were both critical for avian H2 HA to acquire human receptor specificity. H2 influenza viruses continue to circulate in birds and pigs and, therefore, remain a substantial threat for transmission to humans. The H2 HA structure also reveals a highly conserved epitope that could be harnessed in the design of a broader and more universal influenza A virus vaccine.

  4. Glycosylphosphatidylinositol-anchored CD4 supports human immunodeficiency virus type 1 replication, but not cytopathic effect, in T-cell transfectants.

    OpenAIRE

    Marshall, W L; Mittler, E S; Avery, P; Lawrence, J P; Finberg, R W

    1994-01-01

    Despite equivalent p24 antigen production, HSB-2 T cells expressing glycosylphosphatidylinositol (GPi)-linked CD4 were productively infected without cell death or syncytium formation, unlike HSB-2 transfectants expressing wild-type CD4 (wtCD4). HSB-2 transfectants dually expressing wtCD4 and GPi-linked CD4 formed syncytia and died. Thus, wtCD4 expression is critical for human immunodeficiency virus cytopathic effect in HSB-2 transfectants.

  5. Memory vs memory-like: The different facets of CD8+ T-cell memory in HCV infection.

    Science.gov (United States)

    Hofmann, Maike; Wieland, Dominik; Pircher, Hanspeter; Thimme, Robert

    2018-05-01

    Memory CD8 + T cells are essential in orchestrating protection from re-infection. Hallmarks of virus-specific memory CD8 + T cells are the capacity to mount recall responses with rapid induction of effector cell function and antigen-independent survival. Growing evidence reveals that even chronic infection does not preclude virus-specific CD8 + T-cell memory formation. However, whether this kind of CD8 + T-cell memory that is established during chronic infection is indeed functional and provides protection from re-infection is still unclear. Human chronic hepatitis C virus infection represents a unique model system to study virus-specific CD8 + T-cell memory formation during and after cessation of persisting antigen stimulation. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Effect of priming with H1N1 influenza viruses of variable antigenic distances on challenge with 2009 pandemic H1N1 virus.

    Science.gov (United States)

    O'Donnell, Christopher D; Wright, Amber; Vogel, Leatrice N; Wei, Chih-Jen; Nabel, Gary J; Subbarao, Kanta

    2012-08-01

    Compared to seasonal influenza viruses, the 2009 pandemic H1N1 (pH1N1) virus caused greater morbidity and mortality in children and young adults. People over 60 years of age showed a higher prevalence of cross-reactive pH1N1 antibodies, suggesting that they were previously exposed to an influenza virus or vaccine that was antigenically related to the pH1N1 virus. To define the basis for this cross-reactivity, ferrets were infected with H1N1 viruses of variable antigenic distance that circulated during different decades from the 1930s (Alaska/35), 1940s (Fort Monmouth/47), 1950s (Fort Warren/50), and 1990s (New Caledonia/99) and challenged with 2009 pH1N1 virus 6 weeks later. Ferrets primed with the homologous CA/09 or New Jersey/76 (NJ/76) virus served as a positive control, while the negative control was an influenza B virus that should not cross-protect against influenza A virus infection. Significant protection against challenge virus replication in the respiratory tract was observed in ferrets primed with AK/35, FM/47, and NJ/76; FW/50-primed ferrets showed reduced protection, and NC/99-primed ferrets were not protected. The hemagglutinins (HAs) of AK/35, FM/47, and FW/50 differ in the presence of glycosylation sites. We found that the loss of protective efficacy observed with FW/50 was associated with the presence of a specific glycosylation site. Our results suggest that changes in the HA occurred between 1947 and 1950, such that prior infection could no longer protect against 2009 pH1N1 infection. This provides a mechanistic understanding of the nature of serological cross-protection observed in people over 60 years of age during the 2009 H1N1 pandemic.

  7. Antigenic relationship of foot-and-mouth disease viruses field outbreak in Thailand

    International Nuclear Information System (INIS)

    Linchongsubongkoch, W.; Romlumdoan, S.; Kamolsiripichaiporn, S.; Janukit, T.

    2000-01-01

    The antibody titre against FMD type O, A and Asia I was measured in 125 serum samples submitted to the laboratory. The antibody titre was estimated by a duplicate well two-fold dilution series using the liquid phase (LPB) ELISA systems from the World Reference Laboratory (WRL), Pirbright, United Kingdom (supplied by FAO/IAEA) and Pakchong, FMD Center, Thailand. The titres expressed as log to base compared by linear regression. The linear regression equation coefficient (R) between the antibody titre from IAEA and Pakchong systems were R=0.80 for type O, R=0.73 for type A and R=0.80 for type Asia I respectively. In addition the antigenic relationship to the current vaccine strains of type O, A and Asia I FMD field viruses isolated during 1994-1998 was investigated by duplicate well two-fold dilution series LPB ELISA method using Pakchong reagents. The serological relationship (r-value) of 111 field isolate viruses, type O = 74 samples, type A = 2 samples and type Asia I = 35 samples have been studied and described. Most of the field isolates type O showed r-value greater 0.40 = 97.30%, r-value range 0.2-0.39 = 2.70%, and r-value <0.19 = 0%, indicating that vaccine strain O/Udornthani/87 should be protected the field virus strains as well as the r-value of type Asia I field isolates were greater 0.40 = 97.14% and r-value range 0.20-0.39 = 2.86 which indicated that the recent vaccine strains Asia I/Petchburi/85 could protect against all field strains. While the r-value of type A field isolate virus in 1997 showed the antigenic diverge from A/Nakornpatom/87 recent vaccine strain, r-value = 0.125. (author)

  8. Protein antigenic structures recognized by T cells: potential applications to vaccine design.

    Science.gov (United States)

    Berzofsky, J A; Cease, K B; Cornette, J L; Spouge, J L; Margalit, H; Berkower, I J; Good, M F; Miller, L H; DeLisi, C

    1987-08-01

    In summary, our results using the model protein antigen myoglobin indicated, in concordance with others, that helper T lymphocytes recognize a limited number of immunodominant antigenic sites of any given protein. Such immunodominant sites are the focus of a polyclonal response of a number of different T cells specific for distinct but overlapping epitopes. Therefore, the immunodominance does not depend on the fine specificity of any given clone of T cells, but rather on other factors, either intrinsic or extrinsic to the structure of the antigen. A major extrinsic factor is the MHC of the responding individual, probably due to a requirement for the immunodominant peptides to bind to the MHC of presenting cells in that individual. In looking for intrinsic factors, we noted that both immunodominant sites of myoglobin were amphipathic helices, i.e., helices having hydrophilic and hydrophobic residues on opposite sides. Studies with synthetic peptides indicated that residues on the hydrophilic side were necessary for T-cell recognition. However, unfolding of the native protein was shown to be the apparent goal of processing of antigen, presumably to expose something not already exposed on the native molecule, such as the hydrophobic sides of these helices. We propose that such exposure is necessary to interact with something on the presenting cell, such as MHC or membrane, where we have demonstrated the presence of antigenic peptides by blocking of presentation of biotinylated peptide with avidin. The membrane may serve as a short-term memory of peptides from antigens encountered by the presenting cell, for dynamic sampling by MHC molecules to be available for presentation to T cells. These ideas, together with the knowledge that T-cell recognition required only short peptides and therefore had to be based only on primary or secondary structure, not tertiary folding of the native protein, led us to propose that T-cell immunodominant epitopes may tend to be amphipathic

  9. Expression of antigens coded in murine leukemia viruses on thymocytes of allogeneic donor origin in AKR mice following syngeneic or allogeneic bone marrow transplantation

    International Nuclear Information System (INIS)

    Wustrow, T.P.; Good, R.A.

    1985-01-01

    Removal of T-lymphocytes from marrow inoculum with monoclonal antibody plus complement permitted establishment of long-lived allogeneic chimeras between C57BL/6 and AKR/J mice. Development of leukemia was prevented for 15 mo. Protection from leukemia occurred with both young (4 wk) and older (4 mo) recipients. AKR mice reconstituted with syngeneic marrow or control AKR mice all developed leukemia-lymphoma before 1 yr of age. During spontaneous lymphomagenesis in AKR mice, amplified expression of gag or env gene-coded virus antigens on the surface of thymocytes preceded leukemia development and evidence for amplification of other virus genes. These changes generally appeared before 6 mo. Similar viral gene expression and viral gene amplification occurred in the thymus and spleen cells of leukemia-resistant chimeric mice. Using monoclonal antibodies to Mr 70,000 glycoprotein epitopes characteristic of ecotropic, xenotropic, or dualtropic viruses, antigens marking each virus form were found on thymocytes of allogeneic 4-wk and 4-mo chimeras as well as on the cells of AKR mice and of AKR mice reconstituted with syngeneic marrow. Flow cytometric analysis showed amplification of the virus genes in mice protected from leukemia-lymphoma by allogeneic bone marrow transplantation from leukemia-resistant mice. Allogeneic chimeras and syngeneically transplanted mice both showed evidence of accelerated viremia and of recombinant virus formation. The findings suggest that an event essential to leukemogenesis which occurs within the AKR lymphoid cells or their environment is lacking in the allogeneic chimeras. The nature of this influence of a resistance gene or genes introduced into AKR mice by allogeneic bone marrow transplantation deserves further study

  10. How to train your T cell: genetically engineered chimeric antigen receptor T cells versus bispecific T-cell engagers to target CD19 in B acute lymphoblastic leukemia.

    Science.gov (United States)

    Ruella, Marco; Gill, Saar

    2015-06-01

    Antigen-specific T cell-based immunotherapy is getting its day in the sun. The contemporaneous development of two potent CD19-specific immunotherapeutic modalities for the treatment of B-cell malignancies provides exciting opportunities for patients, physicians and scientists alike. Patients with relapsed, refractory or poor-risk B-cell acute lymphoblastic leukemia (ALL) previously had few therapeutic options and now have two potential new lifelines. Physicians will have the choice between two powerful modalities and indeed could potentially enroll some patients on trials exploring both modalities if needed. For scientists interested in tumor immunology, the advent of chimeric antigen receptor T-cell therapy and of bispecific T-cell engagers (BiTEs) provides unprecedented opportunities to explore the promise and limitations of antigen-specific T-cell therapy in the context of human leukemia. In this article, we compare chimeric antigen receptor T cells and BiTEs targeting CD19 in B-cell ALL in the setting of the available clinical literature.

  11. Evidence of feline immunodeficiency virus, feline leukemia virus, and Toxoplasma gondii in feral cats on Mauna Kea, Hawaii.

    Science.gov (United States)

    Danner, Raymond M; Goltz, Daniel M; Hess, Steven C; Banko, Paul C

    2007-04-01

    We determined prevalence to feline immunodeficiency virus (FIV) antibodies, feline leukemia virus (FeLV) antigen, and Toxoplasma gondii antibodies in feral cats (Felis catus) on Mauna Kea Hawaii from April 2002 to May 2004. Six of 68 (8.8%) and 11 of 68 (16.2%) cats were antibody positive to FIV and antigen positive for FeLV, respectively; 25 of 67 (37.3%) cats were seropositive to T. gondii. Antibodies to FeLV and T. gondii occurred in all age and sex classes, but FIV occurred only in adult males. Evidence of current or previous infections with two of these infectious agents was detected in eight of 64 cats (12.5%). Despite exposure to these infectious agents, feral cats remain abundant throughout the Hawaiian Islands.

  12. Use of antigens labelled with radioisotopes in serological epidemiology. Part of a coordinated programme

    International Nuclear Information System (INIS)

    Felsenfeld, O.

    1976-01-01

    A brief status report of intended cooperative projects is presented. Some sera were available for testing diptheria, tetanus, smallpox and typhoid antibody formation. Some very preliminary work was carried out on the diagnosis of staphyloenterotoxicosis. A preliminary report on radioisotope-labelled cercarial antigens has been published elsewhere. Lipopolysaccharide complexes were labelled with 14 C-sodium acetate for studying sera in diseases caused by gram-negative cocci (meningococci and gonococci). Leptospiral antigens were studied using 14 C-glucose. Of the other Trepanomataceae, borreliae and the cultivable syphilis T. pallidum were tested, using 14 C-amino acid mixture. The study of trypanosomes was continued. Labelling with 125 I proved effective but the antigens could also be labelled with 14 C (borohydrate- 14 C-formaldehyde). In schistosomiasis, defatted cercariae were used as antigen. Malarial diagnosis with the aid of Plasmodium knowlesi and Pl. gallinarum as antigens for human Plasmodia proved inconclusive. Pseudomonas aeruginosa toxin was successfully labelled with 125 I. Progress was achieved in viral diagnosis by using the inhibition test (influenza A virus and vaccinia virus being used as models for RNA and DNA viruses, respectively)

  13. Radioimmunoassay and characterization of woodchuck hepatitis virus core antigen and antibody

    Energy Technology Data Exchange (ETDEWEB)

    Ponzetto, A; Cote, P J; Ford, E C; Engle, R; Gerin, J L; Cicmanec, J; Shapiro, M; Purcell, R H

    1985-06-01

    Solid-phase radioimmunoassays for woodchuck hepatitis virus core antigen (WHcAg) and antibody (anti-WHc) were developed. WHcAg in woodchuck liver homogenates was characterized by ultracentrifugation in CsCl gradients; both heavy and light cores were obtained from the liver of an animal during acute WHV infection, which is consistent with observations in hepatitis B virus infection in man. Endpoint titers of anti-WHc were higher in chronic WHV carriers than in animals recovered from acute infections. Both IgM and IgG anti-WHc antibodies were produced by infected woodchucks. A survey of colony woodchucks demonstrated that 88/89 animals having one or more markers of past or ongoing WHV infection were positive for anti-WHc. Thus, serum anti-WHc appears to be a sensitive marker of WHV infection.

  14. MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape

    Energy Technology Data Exchange (ETDEWEB)

    Menachery, Vineet D.; Schafer, Alexandra; Burnum-Johnson, Kristin E.; Mitchell, Hugh D.; Eisfeld-Fenney, Amie J.; Walters, Kevin B.; Nicora, Carrie D.; Purvine, Samuel O.; Casey, Cameron P.; Monroe, Matthew E.; Weitz, Karl K.; Stratton, Kelly G.; Webb-Robertson, Bobbie-Jo M.; Gralinski, Lisa; Metz, Thomas O.; Smith, Richard D.; Waters, Katrina M.; Sims, Amy C.; Kawaoka, Yoshihiro; Baric, Ralph

    2018-01-16

    Convergent evolution dictates that diverse groups of viruses will target both similar and distinct host pathways in order to manipulate the immune response and improve infection. In this study, we sought to leverage this uneven viral antagonism to identify critical host factors that govern disease outcome. Utilizing a systems based approach, we examined differential regulation of IFNγ dependent genes following infection with highly pathogenic viruses including influenza (H5N1-VN1203, H1N1-CA04) and coronaviruses (SARS-CoV, MERS-CoV). Categorizing by function, we observed down regulation of genes associated with antigen presentation following both H5N1-VN1203 and MERS-CoV infection. Further examination revealed global down regulation of antigen presentation genes and was confirmed by proteomics for both H5N1-VN1203 and MERS-CoV infection. Importantly, epigenetic analysis suggested that DNA methylation rather than histone modification plays a crucial role in MERS-CoV mediated antagonism of antigen presentation genes; in contrast, H5N1-VN1203 likely utilizes a combination of epigenetic mechanisms to target antigen presentation. Together, the results indicate a common approach utilized by H5N1-VN1203 and MERS-CoV to modulate antigen presentation and the host adaptive immune response.

  15. Phosphorylation of the Epstein-Barr virus nuclear antigen 2

    DEFF Research Database (Denmark)

    Grässer, F A; Göttel, S; Haiss, P

    1992-01-01

    A major in vivo phosphorylation site of the Epstein-Barr virus nuclear antigen 2 (EBNA-2) was found to be localized at the C-terminus of the protein. In vitro phosphorylation studies using casein kinase 1 (CK-1) and casein kinase 2 (CK-2) revealed that EBNA-2 is a substrate for CK-2, but not for CK......-1. The CK-2 specific phosphorylation site was localized in the 140 C-terminal amino acids using a recombinant trpE-C-terminal fusion protein. In a similar experiment, the 58 N-terminal amino acids expressed as a recombinant trpE-fusion protein were not phosphorylated. Phosphorylation of a synthetic...

  16. Localization of the rabies virus antigen in Merkel cells in the follicle-sinus complexes of muzzle skins of rabid dogs.

    Science.gov (United States)

    Shimatsu, Taichi; Shinozaki, Harumi; Kimitsuki, Kazunori; Shiwa, Nozomi; Manalo, Daria L; Perez, Rodolfo C; Dilig, Joselito E; Yamada, Kentaro; Boonsriroj, Hassadin; Inoue, Satoshi; Park, Chun-Ho

    2016-11-01

    The direct fluorescent antibody test (dFAT) on fresh brain tissues is the gold standard for rabies virus antigen detection in dogs. However, this method is laborious and holds a high risk of virus exposure for the experimenter. Skin biopsies are useful for the diagnosis of humans and animals. In mammals, the tactile hair, known as the follicle-sinus complex (FSC), is a specialized touch organ that is abundant in the muzzle skin. Each tactile hair is equipped with more than 2,000 sensory nerve endings. Therefore, this organ is expected to serve as an alternative postmortem diagnostic material. However, the target cells and localization of rabies virus antigen in the FSCs remain to be defined. In the present study, muzzle skins were obtained from 60 rabid dogs diagnosed with rabies by dFAT at the Research Institute of Tropical Medicine in the Philippines. In all dogs, virus antigen was clearly detected in a part of the outer root sheath at the level of the ring sinus of the FSCs, and the majority of cells were positive for the Merkel cell (MC) markers cytokeratin 20 and CAM5.2. Our results suggest that MCs in the FSCs of the muzzle skin are a target for virus replication and could serve as a useful alternative specimen source for diagnosis of rabies. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Humoral markers of active Epstein-Barr virus infection associate with anti-extractable nuclear antigen autoantibodies and plasma galectin-3 binding protein in systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Rasmussen, N S; Nielsen, C T; Houen, G

    2016-01-01

    We investigated if signs of active Epstein-Barr virus and cytomegalovirus infections associate with certain autoantibodies and a marker of type I interferon activity in patients with systemic lupus erythematosus. IgM and IgG plasma levels against Epstein-Barr virus early antigen diffuse...... and cytomegalovirus pp52 were applied as humoral markers of ongoing/recently active Epstein-Barr virus and cytomegalovirus infections, respectively. Plasma galectin-3 binding protein served as a surrogate marker of type I interferon activity. The measurements were conducted in 57 systemic lupus erythematosus patients...... concentrations were significantly higher in systemic lupus erythematosus patients (P = 0.009) and associated positively with Epstein-Barr virus early antigen diffuse-directed antibodies and the presence of autoantibodies against extractable nuclear antigens in adjusted linear regressions (B = 2.02 and 2.02, P...

  18. Enhanced Expression of Anti-CD19 Chimeric Antigen Receptor in piggyBac Transposon-Engineered T Cells

    Directory of Open Access Journals (Sweden)

    Daisuke Morita

    2018-03-01

    Full Text Available Adoptive T cell therapy using chimeric antigen receptor (CAR-modified T cells is a promising cancer immunotherapy. We previously developed a non-viral method of gene transfer into T cells using a piggyBac transposon system to improve the cost-effectiveness of CAR-T cell therapy. Here, we have further improved our technology by a novel culture strategy to increase the transfection efficiency and to reduce the time of T cell manufacturing. Using a CH2CH3-free CD19-specific CAR transposon vector and combining irradiated activated T cells (ATCs as feeder cells and virus-specific T cell receptor (TCR stimulation, we achieved 51.4% ± 14% CAR+ T cells and 2.8-fold expansion after 14 culture days. Expanded CD19.CAR-T cells maintained a significant fraction of CD45RA+CCR7+ T cells and demonstrated potent antitumor activity against CD19+ leukemic cells both in vitro and in vivo. Therefore, piggyBac-based gene transfer may provide an alternative to viral gene transfer for CAR-T cell therapy.

  19. Early T Cell Recognition of B Cells following Epstein-Barr Virus Infection: Identifying Potential Targets for Prophylactic Vaccination.

    Directory of Open Access Journals (Sweden)

    Jill M Brooks

    2016-04-01

    Full Text Available Epstein-Barr virus, a B-lymphotropic herpesvirus, is the cause of infectious mononucleosis, has strong aetiologic links with several malignancies and has been implicated in certain autoimmune diseases. Efforts to develop a prophylactic vaccine to prevent or reduce EBV-associated disease have, to date, focused on the induction of neutralising antibody responses. However, such vaccines might be further improved by inducing T cell responses capable of recognising and killing recently-infected B cells. In that context, EBNA2, EBNA-LP and BHRF1 are the first viral antigens expressed during the initial stage of B cell growth transformation, yet have been poorly characterised as CD8+ T cell targets. Here we describe CD8+ T cell responses against each of these three "first wave" proteins, identifying target epitopes and HLA restricting alleles. While EBNA-LP and BHRF1 each contained one strong CD8 epitope, epitopes within EBNA2 induced immunodominant responses through several less common HLA class I alleles (e.g. B*3801 and B*5501, as well as subdominant responses through common class I alleles (e.g. B7 and C*0304. Importantly, such EBNA2-specific CD8+ T cells recognised B cells within the first day post-infection, prior to CD8+ T cells against well-characterised latent target antigens such as EBNA3B or LMP2, and effectively inhibited outgrowth of EBV-transformed B cell lines. We infer that "first wave" antigens of the growth-transforming infection, especially EBNA2, constitute potential CD8+ T cell immunogens for inclusion in prophylactic EBV vaccine design.

  20. Immune responses to epstein-barr virus in atomic bomb survivors: Study of precursor frequency of cytotoxic lymphocytes and titer levels of anti-Epstein-Barr virus-related antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Kusunoki, Yoichiro; Kyoizumi, Seishi; Saito, Mayumi; Ozaki, Kyoko; Hirai, Yuko; Akiyama, Mitoshi (Radiation Effects Research Foundation, Hiroshima (Japan)); Fukuda, Yasuko (Radiation Effects Research Foundation, Hiroshima (Japan) Children' s Hospital Medical Center of Northern California, Oakland, CA (United States)); Huang, Hua (Radiation Effects Research Foundation, Hiroshima (Japan) Univ. of Wisconsin, Madison, WI (United States))

    1994-04-01

    Precursor frequencies of cytotoxic lymphocytes to autologous Epstein-Barr virus-transformed B cells and serum titers of anti-Epstein-Barr virus-related antibodies were measured in 68 atomic bomb survivors to clarify the immune mechanism controlling Epstein-Barr virus infection. The precursor frequency was negatively correlated with the titer of anti-early antigen lgG, which is probably produced at the stage of viral reactivation. A positive correlation between the precursor frequency and titer of anti-Epstein-Barr virus-associated nuclear antigen antibody was also observed, indicating that the precursor frequency reflects the degree of in vivo destruction by T cells of the virus-infected cells. These results suggest that T-cell memory specific to Epstein-Barr virus keeps the virus under control and that the precursor frequency assay is useful for the evaluation of immune responses to Epstein-Barr virus. However, no significant effect of atomic bomb radiation on the precursor frequency was observed in the present study, probably due to the limited number of participants. 24 refs., 4 figs., 2 tabs.

  1. Immune responses to epstein-barr virus in atomic bomb survivors: Study of precursor frequency of cytotoxic lymphocytes and titer levels of anti-Epstein-Barr virus-related antibodies

    International Nuclear Information System (INIS)

    Kusunoki, Yoichiro; Kyoizumi, Seishi; Saito, Mayumi; Ozaki, Kyoko; Hirai, Yuko; Akiyama, Mitoshi; Fukuda, Yasuko; Huang, Hua

    1994-01-01

    Precursor frequencies of cytotoxic lymphocytes to autologous Epstein-Barr virus-transformed B cells and serum titers of anti-Epstein-Barr virus-related antibodies were measured in 68 atomic bomb survivors to clarify the immune mechanism controlling Epstein-Barr virus infection. The precursor frequency was negatively correlated with the titer of anti-early antigen lgG, which is probably produced at the stage of viral reactivation. A positive correlation between the precursor frequency and titer of anti-Epstein-Barr virus-associated nuclear antigen antibody was also observed, indicating that the precursor frequency reflects the degree of in vivo destruction by T cells of the virus-infected cells. These results suggest that T-cell memory specific to Epstein-Barr virus keeps the virus under control and that the precursor frequency assay is useful for the evaluation of immune responses to Epstein-Barr virus. However, no significant effect of atomic bomb radiation on the precursor frequency was observed in the present study, probably due to the limited number of participants. 24 refs., 4 figs., 2 tabs

  2. Role of dendritic cells infected with human herpesvirus 6 in virus transmission to CD4+ T cells

    International Nuclear Information System (INIS)

    Takemoto, Masaya; Imasawa, Takayoshi; Yamanishi, Koichi; Mori, Yasuko

    2009-01-01

    Human herpesvirus 6 (HHV-6) is a ubiquitous betaherpesvirus that predominantly infects and replicates in CD4 + T lymphocytes. However, the mechanism of HHV-6 transmission to T cells from the peripheral mucosa is unknown. Here we found that dendritic cells (DCs) can transmit HHV-6 to T cells, resulting in productive infection. In immature monocyte-derived DCs (MDDCs) infected with HHV-6, viral early and late antigens were expressed, and nucleocapsids containing a DNA core were observed, although few virions were detected in the cytoplasm by electron microscopy, indicating that the maturation of HHV-6 virions may be incomplete in MDDCs. However, HHV-6 transmission from MDDCs to stimulated CD4 + T cells occurred efficiently in coculture of these cells, but not from MDDCs culture supernatants. This transmission was partially inhibited by treating the DCs with a viral DNA synthesis blocker, indicating that viral replication in MDDCs is required for this transmission. Furthermore, myeloid DCs and plasmacytoid DCs infected with HHV-6 could also transmit the virus to stimulated T cells. Thus, DCs may be the first cell population targeted by HHV-6 and could play an important role in the virus' transmission to T cells for their further propagation

  3. Transmission of hepatitis-B virus through salivary blood group antigens in saliva

    International Nuclear Information System (INIS)

    Meo, S.A.; Abdo, A.A.; Baksh, N.D.; Sanie, F.M.

    2010-01-01

    To determine an association between transmission of hepatitis B virus and secretor and non-secretor status of salivary blood group antigens. Study Design: Cross-sectional, analytical study. Place and Duration of Study: The Department of Physiology and Division of Hepatology, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Kingdom of Saudi Arabia, from 2007 to 2009. Methodology: Eighty eight known patients, who were positive for Hepatitis B Surface Antigen [HBsAg] were recruited. Saliva was collected for investigating the secretor and non-secretor status by using blood typing kit number Kemtec Educational Science USA. Hepatitis B Surface antigen test was performed on Enzyme Linked Immunosorbent Assay technique. Polymerase chain reaction [PCR] on saliva was also carried out in High Performance Thermal Cycler-Palm- Cycler [Corbett Life Science, Sydney, Australia] and enzymatic amplification of extracted viral DNA was performed using primers covering the promoter of the core region of HBV. Results: Out of the 88 subjects, 61 belong to blood group O, 20 to A and 7 subjects to blood group B. Fifty subjects were secretors [salivary blood group antigens positive] and 38 subjects were non-secretors [salivary blood group antigens negative]. Among core gene positive 25 (69.4%) were secretors and 11 (30.6%) were non-secretors. However, in core gene negative 25 (48.1%) were secretors and 27 (51.9%) were non-secretors. Conclusion: The result shows an association [p=0.047] between secretor and non-secretors status of the salivary blood group antigens with core gene positive and core gene negative. (author)

  4. Antigenic profile of African horse sickness virus serotype 4 VP5 and identification of a neutralizing epitope shared with bluetongue virus and epizootic hemorrhagic disease virus

    DEFF Research Database (Denmark)

    Martinez-Torrecuadrada, J.L.; Langeveld, J.P.M.; Venteo, A.

    1999-01-01

    African horse sickness virus (AHSV) causes a fatal disease in horses. The virus capsid is composed of a double protein layer, the outermost of which is formed by two proteins: VP2 and VP5. VP2 is known to determine the serotype of the virus and to contain the neutralizing epitopes. The biological...... in a plaque reduction assay were generated. To dissect the antigenic structure of AHSV VP5, the protein was cloned in Escherichia coil using the pET3 system. The immunoreactivity of both MAbs, and horse and rabbit polyclonal antisera, with 17 overlapping fragments from VP5 was analyzed. The most....... Neutralizing epitopes were defined at positions 85-92 (PDPLSPGE) for MAb 10AE12 and at 179-185 (EEDLRTR) for MAb 10AC6. Epitope 10AE12 is highly conserved between the different orbiviruses. MAb 10AE12 was able to recognize bluetongue virus VP5 and epizootic hemorrhagic disease virus VP5 by several techniques...

  5. Detection of immune-complex-dissociated nonstructural-1 antigen in patients with acute dengue virus infections

    NARCIS (Netherlands)

    P. Koraka (Penelope); C.P. Burghoorn-Maas; A. Falconar; T.E. Setiati (Tatty); K. Djamiatun; J. Groen (Jan); A.D.M.E. Osterhaus (Albert)

    2003-01-01

    textabstractAccurate and timely diagnosis of dengue virus (DEN) infections is essential for the differential diagnosis of patients with febrile illness and hemorrhagic fever. In the present study, the diagnostic value of a newly developed immune-complex dissociated nonstructural-1 (NS-1) antigen dot

  6. Detection of immune-complex-dissociated nonstructural-1 antigen in patients with acute dengue virus infections.

    NARCIS (Netherlands)

    Koraka, P.; Burghoorn-Maas, C.P.; Falconar, A.; Setiati, T.E.; Djamiatun, K.; Groen, J.; Osterhaus, A.D.

    2003-01-01

    Accurate and timely diagnosis of dengue virus (DEN) infections is essential for the differential diagnosis of patients with febrile illness and hemorrhagic fever. In the present study, the diagnostic value of a newly developed immune-complex dissociated nonstructural-1 (NS-1) antigen dot blot

  7. Multiple surface antigen mutations in five blood donors with occult hepatitis B virus infection

    NARCIS (Netherlands)

    Zaaijer, H. L.; Torres, P.; Ontañón, A.; Ponte, L. González; Koppelman, M. H. G. M.; Lelie, P. N.; Hemert, F. J. van; Boot, H. J.

    2008-01-01

    Occult hepatitis B virus (HBV) infection is characterized by the presence of HBV DNA while the HBV surface antigen (HBsAg) remains undetectable. The HBV genomes in five asymptomatic blood donors with occult HBV infection and low viremia ( <10 to 1,000 HBV DNA copies/mL, genotype D) were studied. An

  8. Elutriated lymphocytes for manufacturing chimeric antigen receptor T cells

    OpenAIRE

    Stroncek, David F.; Lee, Daniel W.; Ren, Jiaqiang; Sabatino, Marianna; Highfill, Steven; Khuu, Hanh; Shah, Nirali N.; Kaplan, Rosandra N.; Fry, Terry J.; Mackall, Crystal L.

    2017-01-01

    Background Clinical trials of Chimeric Antigen Receptor (CAR) T cells manufactured from autologous peripheral blood mononuclear cell (PBMC) concentrates for the treatment of hematologic malignancies have been promising, but CAR T cell yields have been variable. This variability is due in part to the contamination of the PBMC concentrates with monocytes and granulocytes. Methods Counter-flow elutriation allows for the closed system separation of lymphocytes from monocytes and granulocytes. We ...

  9. Chimeric Antigen Receptor T Cell (Car T Cell Therapy In Hematology

    Directory of Open Access Journals (Sweden)

    Pinar Ataca

    2015-12-01

    Full Text Available It is well demonstrated that immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation (HSCT. Adoptive T cell transfer has been improved to be more specific and potent and cause less off-target toxicities. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR and chimeric antigen receptor (CAR modified T cells. On July 1, 2014, the United States Food and Drug Administration granted ‘breakthrough therapy’ designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the beneficiaries of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical-clinical studies, effectiveness and drawbacks of this strategy.

  10. Natural micropolymorphism in human leukocyte antigens provides a basis for genetic control of antigen recognition

    Energy Technology Data Exchange (ETDEWEB)

    Archbold, Julia K.; Macdonald, Whitney A.; Gras, Stephanie; Ely, Lauren K.; Miles, John J.; Bell, Melissa J.; Brennan, Rebekah M.; Beddoe, Travis; Wilce, Matthew C.J.; Clements, Craig S.; Purcell, Anthony W.; McCluskey, James; Burrows, Scott R.; Rossjohn, Jamie; (Monash); (Queensland Inst. of Med. Rsrch.); (Melbourne)

    2009-07-10

    Human leukocyte antigen (HLA) gene polymorphism plays a critical role in protective immunity, disease susceptibility, autoimmunity, and drug hypersensitivity, yet the basis of how HLA polymorphism influences T cell receptor (TCR) recognition is unclear. We examined how a natural micropolymorphism in HLA-B44, an important and large HLA allelic family, affected antigen recognition. T cell-mediated immunity to an Epstein-Barr virus determinant (EENLLDFVRF) is enhanced when HLA-B*4405 was the presenting allotype compared with HLA-B*4402 or HLA-B*4403, each of which differ by just one amino acid. The micropolymorphism in these HLA-B44 allotypes altered the mode of binding and dynamics of the bound viral epitope. The structure of the TCR-HLA-B*4405EENLLDFVRF complex revealed that peptide flexibility was a critical parameter in enabling preferential engagement with HLA-B*4405 in comparison to HLA-B*4402/03. Accordingly, major histocompatibility complex (MHC) polymorphism can alter the dynamics of the peptide-MHC landscape, resulting in fine-tuning of T cell responses between closely related allotypes.

  11. Adoptive cancer immunotherapy using DNA-demethylated T helper cells as antigen-presenting cells

    DEFF Research Database (Denmark)

    Kirkin, Alexei F.; Dzhandzhugazyan, Karine N.; Guldberg, Per

    2018-01-01

    In cancer cells, cancer/testis (CT) antigens become epigenetically derepressed through DNA demethylation and constitute attractive targets for cancer immunotherapy. Here we report that activated CD4+ T helper cells treated with a DNA-demethylating agent express a broad repertoire of endogenous CT...... antigens and can be used as antigen-presenting cells to generate autologous cytotoxic T lymphocytes (CTLs) and natural killer cells. In vitro, activated CTLs induce HLA-restricted lysis of tumor cells of different histological types, as well as cells expressing single CT antigens. In a phase 1 trial of 25...... patients with recurrent glioblastoma multiforme, cytotoxic lymphocytes homed to the tumor, with tumor regression ongoing in three patients for 14, 22, and 27 months, respectively. No treatment-related adverse effects were observed. This proof-of-principle study shows that tumor-reactive effector cells can...

  12. A population dynamics analysis of the interaction between adaptive regulatory T cells and antigen presenting cells.

    Directory of Open Access Journals (Sweden)

    David Fouchet

    Full Text Available BACKGROUND: Regulatory T cells are central actors in the maintenance of tolerance of self-antigens or allergens and in the regulation of the intensity of the immune response during infections by pathogens. An understanding of the network of the interaction between regulatory T cells, antigen presenting cells and effector T cells is starting to emerge. Dynamical systems analysis can help to understand the dynamical properties of an interaction network and can shed light on the different tasks that can be accomplished by a network. METHODOLOGY AND PRINCIPAL FINDINGS: We used a mathematical model to describe a interaction network of adaptive regulatory T cells, in which mature precursor T cells may differentiate into either adaptive regulatory T cells or effector T cells, depending on the activation state of the cell by which the antigen was presented. Using an equilibrium analysis of the mathematical model we show that, for some parameters, the network has two stable equilibrium states: one in which effector T cells are strongly regulated by regulatory T cells and another in which effector T cells are not regulated because the regulatory T cell population is vanishingly small. We then simulate different types of perturbations, such as the introduction of an antigen into a virgin system, and look at the state into which the system falls. We find that whether or not the interaction network switches from the regulated (tolerant state to the unregulated state depends on the strength of the antigenic stimulus and the state from which the network has been perturbed. CONCLUSION/SIGNIFICANCE: Our findings suggest that the interaction network studied in this paper plays an essential part in generating and maintaining tolerance against allergens and self-antigens.

  13. T cell recognition of breast cancer antigens

    DEFF Research Database (Denmark)

    Petersen, Nadia Viborg; Andersen, Sofie Ramskov; Andersen, Rikke Sick

    Recent studies are encouraging research of breast cancer immunogenicity to evaluate the applicability ofimmunotherapy as a treatment strategy. The epitope landscape in breast cancer is minimally described, thus it is necessary to identify T cell targets to develop immune mediated therapies.......This project investigates four proteins commonly upregulated in breast cancer and thus probable tumor associated antigens (TAAs). Aromatase, prolactin, NEK3, and PIAS3 contribute to increase growth, survival, and motility of malignant cells. Aspiring to uncover novel epitopes for cytotoxic T cells, a reverse...... recognition utilizing DNA barcode labeled MHC multimers to screen peripheral blood lymphocytes from breast cancer patients and healthy donor samples. Signif-icantly more TAA specific T cell responses were detected in breast cancer patients than healthy donors for both HLA-A*0201 (P

  14. Alanine scanning of the rabies virus glycoprotein antigenic site III using recombinant rabies virus: implication for post-exposure treatment.

    Science.gov (United States)

    Papaneri, Amy B; Wirblich, Christoph; Marissen, Wilfred E; Schnell, Matthias J

    2013-12-02

    The safety and availability of the human polyclonal sera that is currently utilized for post-exposure treatment (PET) of rabies virus (RABV) infection remain a concern. Recombinant monoclonal antibodies have been postulated as suitable alternatives by WHO. To this extent, CL184, the RABV human antibody combination comprising monoclonal antibodies (mAbs) CR57 and CR4098, has been developed and has delivered promising clinical data to support its use for RABV PET. For this fully human IgG1 cocktail, mAbs CR57 and CR4098 are produced in the PER.C6 human cell line and combined in equal amounts in the final product. During preclinical evaluation, CR57 was shown to bind to antigenic site I whereas CR4098 neutralization was influenced by a mutation of position 336 (N336) located within antigenic site III. Here, alanine scanning was used to analyze the influence of mutations within the potential binding site for CR4098, antigenic site III, in order to evaluate the possibility of mutated rabies viruses escaping neutralization. For this approach, twenty flanking amino acids (10 upstream and 10 downstream) of the RABV glycoprotein (G) asparagine (N336) were exchanged to alanine (or serine, if already alanine) by site-directed mutagenesis. Analysis of G expression revealed four of the twenty mutant Gs to be non-functional, as shown by their lack of cell surface expression, which is a requirement for the production of infectious RABV. Therefore, these mutants were excluded from further study. The remaining sixteen mutants were introduced in an infectious clone of RABV, and recombinant RABVs (rRABVs) were recovered and utilized for in vitro neutralization assays. All of the viruses were effectively neutralized by CR4098 as well as by CR57, indicating that single amino acid exchanges in this region does not affect the broad neutralizing capability of the CL184 mAb combination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Genomic Analysis of Hepatitis B Virus Reveals Antigen State and Genotype as Sources of Evolutionary Rate Variation

    Science.gov (United States)

    Harrison, Abby; Lemey, Philippe; Hurles, Matthew; Moyes, Chris; Horn, Susanne; Pryor, Jan; Malani, Joji; Supuri, Mathias; Masta, Andrew; Teriboriki, Burentau; Toatu, Tebuka; Penny, David; Rambaut, Andrew; Shapiro, Beth

    2011-01-01

    Hepatitis B virus (HBV) genomes are small, semi-double-stranded DNA circular genomes that contain alternating overlapping reading frames and replicate through an RNA intermediary phase. This complex biology has presented a challenge to estimating an evolutionary rate for HBV, leading to difficulties resolving the evolutionary and epidemiological history of the virus. Here, we re-examine rates of HBV evolution using a novel data set of 112 within-host, transmission history (pedigree) and among-host genomes isolated over 20 years from the indigenous peoples of the South Pacific, combined with 313 previously published HBV genomes. We employ Bayesian phylogenetic approaches to examine several potential causes and consequences of evolutionary rate variation in HBV. Our results reveal rate variation both between genotypes and across the genome, as well as strikingly slower rates when genomes are sampled in the Hepatitis B e antigen positive state, compared to the e antigen negative state. This Hepatitis B e antigen rate variation was found to be largely attributable to changes during the course of infection in the preCore and Core genes and their regulatory elements. PMID:21765983

  16. Robust and Accurate Discrimination of Self/Non-Self Antigen Presentations by Regulatory T Cell Suppression

    OpenAIRE

    Furusawa, Chikara; Yamaguchi, Tomoyuki

    2016-01-01

    The immune response by T cells usually discriminates self and non-self antigens, even though the negative selection of self-reactive T cells is imperfect and a certain fraction of T cells can respond to self-antigens. In this study, we construct a simple mathematical model of T cell populations to analyze how such self/non-self discrimination is possible. The results demonstrate that the control of the immune response by regulatory T cells enables a robust and accurate discrimination of self ...

  17. Antigenic characterisation of lyssaviruses in South Africa

    Directory of Open Access Journals (Sweden)

    Ernest Ngoepe

    2014-09-01

    Full Text Available There are at least six Lyssavirus species that have been isolated in Africa, which include classical rabies virus, Lagos bat virus, Mokola virus, Duvenhage virus, Shimoni bat virus and Ikoma lyssavirus. In this retrospective study, an analysis of the antigenic reactivity patterns of lyssaviruses in South Africa against a panel of 15 anti-nucleoprotein monoclonal antibodies was undertaken. A total of 624 brain specimens, collected between 2005 and 2009, confirmed as containing lyssavirus antigen by direct fluorescent antibody test, were subjected to antigenic differentiation. The lyssaviruses were differentiated into two species, namely rabies virus (99.5% and Mokola virus (0.5%. Furthermore, rabies virus was further delineated into two common rabies biotypes in South Africa: canid and mongoose. Initially, it was found that the canid rabies biotype had two reactivity patterns; differential staining was observed with just one monoclonal antibody. This difference was likely to have been an artefact related to sample quality, as passage in cell culture restored staining. Mongoose rabies viruses were more heterogeneous, with seven antigenic reactivity patterns detected. Although Mokola viruses were identified in this study, prevalence and reservoir host species are yet to be established. These data demonstrate the usefulness of monoclonal antibody typing panels in lyssavirus surveillance with reference to emergence of new species or spread of rabies biotypes to new geographic zones.

  18. Immunological tolerance to lymphocytic choriomeningitis virus in neonatally infected virus carrier mice: evidence supporting a clonal inactivation mechanism

    International Nuclear Information System (INIS)

    Cihak, J.; Lehmann-Grube, F.

    1978-01-01

    Experiments are described aimed at analysing the mechanism responsible for the absence of cell-mediated immunity against LCM virus-infected cells in neonatally established LCM virus carrier mice. Virus-specific cell-mediated immunity was assessed by 51 Cr release and target cell reduction assays. Attempts to demonstrate cells in spleens of CBA/J carrier mice able to suppress in syngeneic recipients the induction or the effector phase of the cytotoxic T-cell response against LCM virus-infected cells were unsuccessful. Also, no factors were detected in CBA/J and C57BL/6J carrier mice, either spleen cell-associated or free in the circulation, which would block the activity of cytotoxic T-lymphocytes against LCM virus-infected syngeneic target cells. The results indicate that inability of LCM virus carrier mice to act immunologically against virus-infected target cells is due to deletion or irreversible inactivation of T lymphocytes carrying receptors for virally altered cell membrane antigens. (author)

  19. The CD8 T Cell Response to Respiratory Virus Infections.

    Science.gov (United States)

    Schmidt, Megan E; Varga, Steven M

    2018-01-01

    Humans are highly susceptible to infection with respiratory viruses including respiratory syncytial virus (RSV), influenza virus, human metapneumovirus, rhinovirus, coronavirus, and parainfluenza virus. While some viruses simply cause symptoms of the common cold, many respiratory viruses induce severe bronchiolitis, pneumonia, and even death following infection. Despite the immense clinical burden, the majority of the most common pulmonary viruses lack long-lasting efficacious vaccines. Nearly all current vaccination strategies are designed to elicit broadly neutralizing antibodies, which prevent severe disease following a subsequent infection. However, the mucosal antibody response to many respiratory viruses is not long-lasting and declines with age. CD8 T cells are critical for mediating clearance following many acute viral infections in the lung. In addition, memory CD8 T cells are capable of providing protection against secondary infections. Therefore, the combined induction of virus-specific CD8 T cells and antibodies may provide optimal protective immunity. Herein, we review the current literature on CD8 T cell responses induced by respiratory virus infections. Additionally, we explore how this knowledge could be utilized in the development of future vaccines against respiratory viruses, with a special emphasis on RSV vaccination.

  20. TANTIGEN: a comprehensive database of tumor T cell antigens

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Tongchusak, Songsak; Lin, Honghuang

    2017-01-01

    Tumor T cell antigens are both diagnostically and therapeutically valuable molecules. A large number of new peptides are examined as potential tumor epitopes each year, yet there is no infrastructure for storing and accessing the results of these experiments. We have retroactively cataloged more ...

  1. Suicide Gene Therapy to Increase the Safety of Chimeric Antigen Receptor-Redirected T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Monica Casucci, Attilio Bondanza

    2011-01-01

    Full Text Available Chimeric antigen receptors (CARs are generated by fusing the antigen-binding motif of a monoclonal antibody (mAb with the signal transduction machinery of the T-cell receptor (TCR. The genetic modification of T lymphocytes with chimeric receptors specific for tumor-associated antigens (TAAs allows for the redirection towards tumor cells. Clinical experience with CAR-redirected T cells suggests that antitumor efficacy associates with some degree of toxicity, especially when TAA expression is shared with healthy tissues. This situation closely resembles the case of allogeneic hematopoietic stem cell transplantation (HSCT, wherein allorecognition causes both the graft-versus-leukemia (GVL effect and graft-versus-host disease (GVHD. Suicide gene therapy, i.e. the genetic induction of a conditional suicide phenotype into donor T cells, enables dissociating the GVL effect from GVHD. Applying suicide gene modification to CAR-redirected T cells may therefore greatly increase their safety profile and facilitate their clinical development.

  2. Evidence of feline immunodeficiency virus, feline leukemia virus, and Toxoplasma gondii in feral cats on Mauna Kea, Hawaii

    Science.gov (United States)

    Danner, R.M.; Goltz, Dan M.; Hess, S.C.; Banko, P.C.

    2007-01-01

    We determined prevalence to feline immunodeficiency virus (FIV) antibodies, feline leukemia virus (FeLV) antigen, and Toxoplasma gondii antibodies in feral cats (Felis catus) on Mauna Kea Hawaii from April 2002 to May 2004. Six of 68 (8.8%) and 11 of 68 (16.2%) cats were antibody positive to FIV and antigen positive for FeLV, respectively; 25 of 67 (37.3%) cats were seropositive to T. gondii. Antibodies to FeLV and T. gondii occurred in all age and sex classes, but FIV occurred only in adult males. Evidence of current or previous infections with two of these infectious agents was detected in eight of 64 cats (12.5%). Despite exposure to these infectious agents, feral cats remain abundant throughout the Hawaiian Islands. ?? Wildlife Disease Association 2007.

  3. Visualization of antigen-specific human cytotoxic T lymphocytes labeled with superparamagnetic iron-oxide particles

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Ambros J. [Technical University of Munich (TUM), Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany); Holzapfel, Konstantin; Settles, Marcus; Rummeny, Ernst J. [Technical University of Munich, Department of Radiology, Klinikum rechts der Isar, Munich (Germany); Neudorfer, Juliana; Kroenig, Holger; Peschel, Christian; Bernhard, Helga [TUM, Munich, Department of Hematology/Oncology, Klinikum rechts der Isar, Munich (Germany); Piontek, Guido; Schlegel, Juergen [TUM, Munich, Division of Neuropathology, Institute of Pathology, Klinikum rechts der Isar, Munich (Germany)

    2008-06-15

    New technologies are needed to characterize the migration and survival of antigen-specific T cells in vivo. In this study, we developed a novel technique for the labeling of human cytotoxic T lymphocytes with superparamagnetic iron-oxide particles and the subsequent depiction with a conventional 1.5-T magnetic resonance scanner. Antigen-specific CD8{sup +} T lymphocytes were labeled with ferucarbotran by lipofection. The uptake of ferucarbotran was confirmed by immunofluorescence microscopy using a dextran-specific antibody, and the intracellular enrichment of iron was measured by atomic absorption spectrometry. The imaging of T cells was performed by magnetic resonance on day 0, 2, 7 and 14 after the labeling procedure. On day 0 and 2 post labeling, a pronounced shortening of T2*-relaxation times was observed, which diminished after 7 days and was not detectable anymore after 14 days, probably due to the retained mitotic activity of the labeled T cells. Of importance, the antigen-specific cytolytic activity of the T cells was preserved following ferucarbotran labeling. Efficient ferucarbotran labeling of functionally active T lymphocytes and their detection by magnetic resonance imaging allows the in vivo monitoring of T cells and, subsequently, will impact the further development of T cell-based therapies. (orig.)

  4. Visualization of antigen-specific human cytotoxic T lymphocytes labeled with superparamagnetic iron-oxide particles

    International Nuclear Information System (INIS)

    Beer, Ambros J.; Holzapfel, Konstantin; Settles, Marcus; Rummeny, Ernst J.; Neudorfer, Juliana; Kroenig, Holger; Peschel, Christian; Bernhard, Helga; Piontek, Guido; Schlegel, Juergen

    2008-01-01

    New technologies are needed to characterize the migration and survival of antigen-specific T cells in vivo. In this study, we developed a novel technique for the labeling of human cytotoxic T lymphocytes with superparamagnetic iron-oxide particles and the subsequent depiction with a conventional 1.5-T magnetic resonance scanner. Antigen-specific CD8 + T lymphocytes were labeled with ferucarbotran by lipofection. The uptake of ferucarbotran was confirmed by immunofluorescence microscopy using a dextran-specific antibody, and the intracellular enrichment of iron was measured by atomic absorption spectrometry. The imaging of T cells was performed by magnetic resonance on day 0, 2, 7 and 14 after the labeling procedure. On day 0 and 2 post labeling, a pronounced shortening of T2*-relaxation times was observed, which diminished after 7 days and was not detectable anymore after 14 days, probably due to the retained mitotic activity of the labeled T cells. Of importance, the antigen-specific cytolytic activity of the T cells was preserved following ferucarbotran labeling. Efficient ferucarbotran labeling of functionally active T lymphocytes and their detection by magnetic resonance imaging allows the in vivo monitoring of T cells and, subsequently, will impact the further development of T cell-based therapies. (orig.)

  5. The activation of the adaptive immune system: cross-talk between antigen-presenting cells, T cells and B cells.

    Science.gov (United States)

    den Haan, Joke M M; Arens, Ramon; van Zelm, Menno C

    2014-12-01

    The adaptive immune system consists of T and B cells that express clonally distributed antigen receptors. To achieve functional adaptive immune responses, antigen-specific T cell populations are stimulated by professional antigen-presenting cells like dendritic cells (DCs), which provide crucial stimulatory signals for efficient expansion and development of effector functions. Antigen-specific B cells receive costimulatory signals from helper T cells to stimulate affinity maturation and isotype switching. Here we elaborate on the interactions between DCs, T cells and B cells, and on the important signals for efficient induction of adaptive immune responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. ELISA for detection of variant rabbit haemorrhagic disease virus RHDV2 antigen in liver extracts.

    Science.gov (United States)

    Dalton, K P; Podadera, A; Granda, V; Nicieza, I; Del Llano, D; González, R; de Los Toyos, J R; García Ocaña, M; Vázquez, F; Martín Alonso, J M; Prieto, J M; Parra, F; Casais, R

    2018-01-01

    The emergence and rapid spread of variant of the rabbit hemorrhagic disease virus (RHDV2) require new diagnostic tools to ensure that efficient control measures are adopted. In the present study, a specific sandwich enzyme-linked immunosorbent assay (ELISA) for detection of RHDV2 antigens in rabbit liver homogenates, based on the use of an RHDV2-specific monoclonal antibody (Mab) 2D9 for antigen capture and an anti-RHDV2 goat polyclonal antibody (Pab), was developed. This ELISA was able to successfully detect RHDV2 and RHDV2 recombinant virions with high sensitivity (100%) and specificity (97.22%). No cross-reactions were detected with RHDV G1 viruses while low cross-reactivity was detected with one of the RHDVa samples analyzed. The ELISA afforded good repeatability and had high analytical sensitivity as it was able to detect a dilution 1:163,640 (6.10ng/mL) of purified RHDV-N11 VLPs, which contained approximately 3.4×10 8 molecules/mL particles. The reliable discrimination between closely related viruses is crucial to understand the epidemiology and the interaction of co-existing pathogens. In the work described here we design and validate an ELISA for laboratory based, specific, sensitive and reliable detection of RHDVb/RHDV2. This ELISA is a valuable, specific virological tool for monitoring virus circulation, which will permit a better control of this disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Glycan bioengineering in immunogen design for tumor T antigen immunotargeting

    DEFF Research Database (Denmark)

    Sendra, Victor G; Zlocowski, Natacha; Ditamo, Yanina

    2009-01-01

    MM2 energy function showed that pentalysine (Lys5) linker and benzyl (Bzl) residue enhance TFD rigidity of the glycosidic bond. Antibodies raised against BzlalphaTFD-Lys5 immunogen recognize tumor T antigen. Competitive assays confirm that TFD-related structures are the main glycan epitope...... to the bioengineered glycoconjugate inhibited CT26 tumor cell proliferation and reduced tumor growth in an in vivo mouse model. These results show that TFD bioengineering is a useful immunogenic strategy with potential application in cancer therapy. The same approach can be extended to other glycan immunogens......Bioengineering of Galbeta3GalNAcalpha, known as Thomsen-Friedenreich disaccharide (TFD), is studied to promote glycan immunogenicity and immunotargeting to tumor T antigen (Galbeta3GalNAcalpha-O-Ser/Thr). Theoretical studies on disaccharide conformations by energy minimization of structures using...

  8. Heterosubtypic protection against pathogenic human and avian influenza viruses via in vivo electroporation of synthetic consensus DNA antigens.

    Directory of Open Access Journals (Sweden)

    Dominick J Laddy

    Full Text Available BACKGROUND: The persistent evolution of highly pathogenic avian influenza (HPAI highlights the need for novel vaccination techniques that can quickly and effectively respond to emerging viral threats. We evaluated the use of optimized consensus influenza antigens to provide broad protection against divergent strains of H5N1 influenza in three animal models of mice, ferrets, and non-human primates. We also evaluated the use of in vivo electroporation to deliver these vaccines to overcome the immunogenicity barrier encountered in larger animal models of vaccination. METHODS AND FINDINGS: Mice, ferrets and non-human primates were immunized with consensus plasmids expressing H5 hemagglutinin (pH5HA, N1 neuraminidase (pN1NA, and nucleoprotein antigen (pNP. Dramatic IFN-gamma-based cellular immune responses to both H5 and NP, largely dependent upon CD8+ T cells were seen in mice. Hemaggutination inhibition titers classically associated with protection (>1:40 were seen in all species. Responses in both ferrets and macaques demonstrate the ability of synthetic consensus antigens to induce antibodies capable of inhibiting divergent strains of the H5N1 subtype, and studies in the mouse and ferret demonstrate the ability of synthetic consensus vaccines to induce protection even in the absence of such neutralizing antibodies. After challenge, protection from morbidity and mortality was seen in mice and ferrets, with significant reductions in viral shedding and disease progression seen in vaccinated animals. CONCLUSIONS: By combining several consensus influenza antigens with in vivo electroporation, we demonstrate that these antigens induce both protective cellular and humoral immune responses in mice, ferrets and non-human primates. We also demonstrate the ability of these antigens to protect from both morbidity and mortality in a ferret model of HPAI, in both the presence and absence of neutralizing antibody, which will be critical in responding to the

  9. [Neoretinal antigen expression: a comparison of anatomical and clinical features of a murine uveoretinitis model].

    Science.gov (United States)

    Terrada, C; Pâques, M; Fisson, S; De Kozak, Y; Klatzmann, D; Salomon, B; LeHoang, P; Bodaghi, B

    2008-02-01

    Uveitis is an inflammation involving the retina. The antigens targeted by the experimental models are located in the pigmentary epithelium-photoreceptor complex. To gain insights into the variations in topographic expression of the antigen in the retina, we studied a new mouse model. and methods: Stable retinal expression of the influenza virus hemagglutinin (HA) was obtained after intravitreal or subretinal injection of recombinant adeno-associated virus carrying HA (AAV-HA). One month later, we transferred HA-specific T cells, followed by a subcutaneous immunization of the cognate antigen emulsified in CFA. The animals were clinically examined with a slit lamp biomicroscope. Infiltration of donor cells was detected by immunostaining on retina flatmounts with anti-Thy-1.1 antibody, and infiltrating cells were studied using FACS analysis. Whatever the location of the HA expression, intraocular inflammation was clinically and histologically detected in all animals, between 10 and 15 days after immunization with HA. Lesions were identified with histopathological analysis. The ocular infiltrate was mostly composed of macrophages and HA-specific T cells in different proportions. The topographic variations of targeted ocular antigens do not seem to modify the development of inflammatory reactions in our model. By targeting different antigen-presenting cells, ocular infiltrating cells are different.

  10. Antigen storage compartments in mature dendritic cells facilitate prolonged cytotoxic T lymphocyte cross-priming capacity.

    Science.gov (United States)

    van Montfoort, Nadine; Camps, Marcel G; Khan, Selina; Filippov, Dmitri V; Weterings, Jimmy J; Griffith, Janice M; Geuze, Hans J; van Hall, Thorbald; Verbeek, J Sjef; Melief, Cornelis J; Ossendorp, Ferry

    2009-04-21

    Dendritic cells (DCs) are crucial for priming of naive CD8(+) T lymphocytes to exogenous antigens, so-called "cross-priming." We report that exogenous protein antigen can be conserved for several days in mature DCs, coinciding with strong cytotoxic T lymphocyte cross-priming potency in vivo. After MHC class I peptide elution, protein antigen-derived peptide presentation is efficiently restored, indicating the presence of an intracellular antigen depot. We characterized this depot as a lysosome-like organelle, distinct from MHC class II compartments and recently described early endosomal compartments that allow acute antigen presentation in MHC class I. The storage compartments we report here facilitate continuous supply of MHC class I ligands. This mechanism ensures sustained cross-presentation by DCs, despite the short-lived expression of MHC class I-peptide complexes at the cell surface.

  11. Ebola Virus Binding to Tim-1 on T Lymphocytes Induces a Cytokine Storm.

    Science.gov (United States)

    Younan, Patrick; Iampietro, Mathieu; Nishida, Andrew; Ramanathan, Palaniappan; Santos, Rodrigo I; Dutta, Mukta; Lubaki, Ndongala Michel; Koup, Richard A; Katze, Michael G; Bukreyev, Alexander

    2017-09-26

    Ebola virus (EBOV) disease (EVD) results from an exacerbated immunological response that is highlighted by a burst in the production of inflammatory mediators known as a "cytokine storm." Previous reports have suggested that nonspecific activation of T lymphocytes may play a central role in this phenomenon. T-cell immunoglobulin and mucin domain-containing protein 1 (Tim-1) has recently been shown to interact with virion-associated phosphatidylserine to promote infection. Here, we demonstrate the central role of Tim-1 in EBOV pathogenesis, as Tim-1 -/- mice exhibited increased survival rates and reduced disease severity; surprisingly, only a limited decrease in viremia was detected. Tim-1 -/- mice exhibited a modified inflammatory response as evidenced by changes in serum cytokines and activation of T helper subsets. A series of in vitro assays based on the Tim-1 expression profile on T cells demonstrated that despite the apparent absence of detectable viral replication in T lymphocytes, EBOV directly binds to isolated T lymphocytes in a phosphatidylserine-Tim-1-dependent manner. Exposure to EBOV resulted in the rapid development of a CD4 Hi CD3 Low population, non-antigen-specific activation, and cytokine production. Transcriptome and Western blot analysis of EBOV-stimulated CD4 + T cells confirmed the induction of the Tim-1 signaling pathway. Furthermore, comparative analysis of transcriptome data and cytokine/chemokine analysis of supernatants highlight the similarities associated with EBOV-stimulated T cells and the onset of a cytokine storm. Flow cytometry revealed virtually exclusive binding and activation of central memory CD4 + T cells. These findings provide evidence for the role of Tim-1 in the induction of a cytokine storm phenomenon and the pathogenesis of EVD. IMPORTANCE Ebola virus infection is characterized by a massive release of inflammatory mediators, which has come to be known as a cytokine storm. The severity of the cytokine storm is

  12. TCR stimulation strength is inversely associated with establishment of functional brain-resident memory CD8 T cells during persistent viral infection.

    Science.gov (United States)

    Maru, Saumya; Jin, Ge; Schell, Todd D; Lukacher, Aron E

    2017-04-01

    Establishing functional tissue-resident memory (TRM) cells at sites of infection is a newfound objective of T cell vaccine design. To directly assess the impact of antigen stimulation strength on memory CD8 T cell formation and function during a persistent viral infection, we created a library of mouse polyomavirus (MuPyV) variants with substitutions in a subdominant CD8 T cell epitope that exhibit a broad range of efficiency in stimulating TCR transgenic CD8 T cells. By altering a subdominant epitope in a nonstructural viral protein and monitoring memory differentiation of donor monoclonal CD8 T cells in immunocompetent mice, we circumvented potentially confounding changes in viral infection levels, virus-associated inflammation, size of the immunodominant virus-specific CD8 T cell response, and shifts in TCR affinity that may accompany temporal recruitment of endogenous polyclonal cells. Using this strategy, we found that antigen stimulation strength was inversely associated with the function of memory CD8 T cells during a persistent viral infection. We further show that CD8 TRM cells recruited to the brain following systemic infection with viruses expressing epitopes with suboptimal stimulation strength respond more efficiently to challenge CNS infection with virus expressing cognate antigen. These data demonstrate that the strength of antigenic stimulation during recruitment of CD8 T cells influences the functional integrity of TRM cells in a persistent viral infection.

  13. Dissection of T-cell antigen specificity in human melanoma

    DEFF Research Database (Denmark)

    Andersen, Rikke Sick; Albæk Thrue, Charlotte; Junker, Niels

    2012-01-01

    Tumor-infiltrating lymphocytes (TIL) isolated from melanoma patients and expanded in vitro by interleukin (IL)-2 treatment can elicit therapeutic response after adoptive transfer, but the antigen specificities of the T cells transferred have not been determined. By compiling all known melanoma-as...... from different fragments of resected melanoma lesions. In summary, our findings provide an initial definition of T-cell populations contributing to tumor recognition in TILs although the specificity of many tumor-reactive TILs remains undefined....

  14. A novel dendritic cell-based direct ex vivo assay for detection and enumeration of circulating antigen-specific human T cells.

    Science.gov (United States)

    Carrio, Roberto; Zhang, Ge; Drake, Donald R; Schanen, Brian C

    2018-05-07

    Although a variety of assays have been used to examine T cell responses in vitro, standardized ex vivo detection of antigen-specific CD4 + T cells from human circulatory PBMCs remains constrained by low-dimensional characterization outputs and the need for polyclonal, mitogen-induced expansion methods to generate detectable response signals. To overcome these limitations, we developed a novel methodology utilizing antigen-pulsed autologous human dendritic target cells in a rapid and sensitive assay to accurately enumerate antigen-specific CD4 + T cell precursor frequency by multiparametric flow cytometry. With this approach, we demonstrate the ability to reproducibly quantitate poly-functional T cell responses following both primary and recall antigenic stimulation. Furthermore, this approach enables more comprehensive phenotypic profiling of circulating antigen-specific CD4 + T cells, providing valuable insights into the pre-existing polarization of antigen-specific T cells in humans. Combined, this approach permits sensitive and detailed ex vivo detection of antigen-specific CD4 + T cells delivering an important tool for advancing vaccine, immune-oncology and other therapeutic studies.

  15. Evaluation of the ability of N-terminal fragment of lethal factor of Bacillus anthracis for delivery of Mycobacterium T cell antigen ESAT-6 into cytosol of antigen presenting cells to elicit effective cytotoxic T lymphocyte response

    International Nuclear Information System (INIS)

    Chandra, Subhash; Kaur, Manpreet; Midha, Shuchi; Bhatnagar, Rakesh; Banerjee-Bhatnagar, Nirupama

    2006-01-01

    We report the ability of N-terminal fragment of lethal factor of Bacillus anthracis to deliver genetically fused ESAT-6 (early secretory antigen target), a potent T cell antigen of Mycobacterium tuberculosis, into cytosol to elicit Cytotoxic T lymphocyte (CTL) response. In vitro Th1 cytokines data and CTL assay proved that efficient delivery of LFn.ESAT-6 occurs in cytosol, in the presence of protective antigen (PA), and leads to generation of effective CTL response. Since CTL response is essential for protection against intracellular pathogens and, it is well known that only single T cell epitope or single antigenic protein is not sufficient to elicit protective CTL response due to variation or polymorphism in MHC-I alleles among the individuals, we suggest that as a fusion protein LFn can be used to deliver multiepitopes of T cells or multiproteins which can generate effective CTLs against intracellular pathogens like M. tuberculosis. It can be used to enhance the protective efficacy of BCG vaccine

  16. Immunogenicity and T cell recognition in swine of foot-and-mouth disease virus polymerase 3D

    International Nuclear Information System (INIS)

    Garcia-Briones, Maria M.; Blanco, Esther; Chiva, Cristina; Andreu, David; Ley, Victoria; Sobrino, Francisco

    2004-01-01

    Immunization of domestic pigs with a vaccinia virus (VV) recombinant expressing foot-and-mouth disease virus (FMDV) 3D protein conferred partial protection against challenge with infectious virus. The severity reduction of the clinical symptoms developed by the challenged animals occurred in the absence of significant levels of anti-3D circulating antibodies. This observation suggested that the partial protection observed was mediated by the induction of a 3D-specific cellular immune response. To gain information on the T cell recognition of FMDV 3D protein, we conducted in vitro proliferative assays using lymphocytes from outbred pigs experimentally infected with FMDV and 90 overlapping peptides spanning the complete 3D sequence. The use of pools of two to three peptides allowed the identification of T cell epitopes that were efficiently recognized by lymphocytes from at least four of the five animals analyzed. This recognition was heterotypic because anti-peptide responses increased upon reinfection of animals with a FMDV isolate from a different serotype. The results obtained with individual peptides confirmed the antigenicity observed with peptide pools. Detection of cytokine mRNAs by RT-PCR in lymphocytes stimulated in vitro by individual 3D peptides revealed that IFN-γ mRNA was the most consistently induced, suggesting that the activated T cells belong to the Th 1 subset. These results indicate that 3D protein contains epitopes that can be efficiently recognized by porcine T lymphocytes from different infected animals, both upon primary and secondary (heterotypic) FMDV infection. These epitopes can extend the repertoire of viral T cell epitopes to be included in subunit and synthetic FMD vaccines

  17. Distribution of bovine viral diarrhoea virus antigen in persistently infected white-tailed deer (Odocoileus virginianus).

    Science.gov (United States)

    Passler, T; Walz, H L; Ditchkoff, S S; van Santen, E; Brock, K V; Walz, P H

    2012-11-01

    Infection with bovine viral diarrhoea virus (BVDV), analogous to that occurring in cattle, is reported rarely in white-tailed deer (Odocoileus virginianus). This study evaluated the distribution of BVDV antigen in persistently infected (PI) white-tailed deer and compared the findings with those from PI cattle. Six PI fawns (four live-born and two stillborn) from does exposed experimentally to either BVDV-1 or BVDV-2 were evaluated. Distribution and intensity of antigen expression in tissues was evaluated by immunohistochemistry. Data were analyzed in binary fashion with a proportional odds model. Viral antigen was distributed widely and was present in all 11 organ systems. Hepatobiliary, integumentary and reproductive systems were respectively 11.8, 15.4 and 21.6 times more likely to have higher antigen scores than the musculoskeletal system. Pronounced labelling occurred in epithelial tissues, which were 1.9-3.0 times likelier than other tissues to contain BVDV antigen. Antigen was present in >90% of samples of liver and skin, suggesting that skin biopsy samples are appropriate for BVDV diagnosis. Moderate to severe lymphoid depletion was detected and may hamper reliable detection of BVDV in lymphoid organs. Muscle tissue contained little antigen, except for in the cardiovascular system. Antigen was present infrequently in connective tissues. In nervous tissues, antigen expression frequency was 0.3-0.67. In the central nervous system (CNS), antigen was present in neurons and non-neuronal cells, including microglia, emphasizing that the CNS is a primary target for fetal BVDV infection. BVDV antigen distribution in PI white-tailed deer is similar to that in PI cattle. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer.

    Science.gov (United States)

    Priceman, Saul J; Gerdts, Ethan A; Tilakawardane, Dileshni; Kennewick, Kelly T; Murad, John P; Park, Anthony K; Jeang, Brook; Yamaguchi, Yukiko; Yang, Xin; Urak, Ryan; Weng, Lihong; Chang, Wen-Chung; Wright, Sarah; Pal, Sumanta; Reiter, Robert E; Wu, Anna M; Brown, Christine E; Forman, Stephen J

    2018-01-01

    Advancing chimeric antigen receptor (CAR)-engineered adoptive T cells for the treatment of solid cancers is a major focus in the field of immunotherapy, given impressive recent clinical responses in hematological malignancies. Prostate cancer may be amenable to T cell-based immunotherapy since several tumor antigens, including prostate stem-cell antigen (PSCA), are widely over-expressed in metastatic disease. While antigen selectivity of CARs for solid cancers is crucial, it is problematic due to the absence of truly restricted tumor antigen expression and potential safety concerns with "on-target off-tumor" activity. Here, we show that the intracellular co-stimulatory signaling domain can determine a CAR's sensitivity for tumor antigen expression. A 4-1BB intracellular co-stimulatory signaling domain in PSCA-CARs confers improved selectivity for higher tumor antigen density, reduced T cell exhaustion phenotype, and equivalent tumor killing ability compared to PSCA-CARs containing the CD28 co-stimulatory signaling domain. PSCA-CARs exhibit robust in vivo anti-tumor activity in patient-derived bone-metastatic prostate cancer xenograft models, and 4-1BB-containing CARs show superior T cell persistence and control of disease compared with CD28-containing CARs. Our study demonstrates the importance of co-stimulation in defining an optimal CAR T cell, and also highlights the significance of clinically relevant models in developing solid cancer CAR T cell therapies.

  19. Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer

    Science.gov (United States)

    Priceman, Saul J.; Gerdts, Ethan A.; Tilakawardane, Dileshni; Kennewick, Kelly T.; Murad, John P.; Park, Anthony K.; Jeang, Brook; Yamaguchi, Yukiko; Urak, Ryan; Weng, Lihong; Chang, Wen-Chung; Wright, Sarah; Pal, Sumanta; Reiter, Robert E.; Brown, Christine E.; Forman, Stephen J.

    2018-01-01

    ABSTRACT Advancing chimeric antigen receptor (CAR)-engineered adoptive T cells for the treatment of solid cancers is a major focus in the field of immunotherapy, given impressive recent clinical responses in hematological malignancies. Prostate cancer may be amenable to T cell-based immunotherapy since several tumor antigens, including prostate stem-cell antigen (PSCA), are widely over-expressed in metastatic disease. While antigen selectivity of CARs for solid cancers is crucial, it is problematic due to the absence of truly restricted tumor antigen expression and potential safety concerns with “on-target off-tumor” activity. Here, we show that the intracellular co-stimulatory signaling domain can determine a CAR's sensitivity for tumor antigen expression. A 4-1BB intracellular co-stimulatory signaling domain in PSCA-CARs confers improved selectivity for higher tumor antigen density, reduced T cell exhaustion phenotype, and equivalent tumor killing ability compared to PSCA-CARs containing the CD28 co-stimulatory signaling domain. PSCA-CARs exhibit robust in vivo anti-tumor activity in patient-derived bone-metastatic prostate cancer xenograft models, and 4-1BB-containing CARs show superior T cell persistence and control of disease compared with CD28-containing CARs. Our study demonstrates the importance of co-stimulation in defining an optimal CAR T cell, and also highlights the significance of clinically relevant models in developing solid cancer CAR T cell therapies. PMID:29308300

  20. Genetic and antigenic analysis of foot-and-mouth disease virus serotype O responsible for outbreaks in India during 2013.

    Science.gov (United States)

    Subramaniam, Saravanan; Mohapatra, Jajati K; Das, Biswajit; Sanyal, Aniket; Pattnaik, Bramhadev

    2015-03-01

    In recent times, majority of the foot-and-mouth disease (FMD) outbreaks in India are caused by serotype O Ind2001 lineage. The lineage has diverged into four sub-lineages (Ind2001a, b, c and d). We report here the genetic and antigenic analyses of nine Ind2001d isolates that caused outbreaks during April 2013-March 2014 in India. The length of the genomes of outbreak viruses varied between 8153 and 8181 nucleotides without any insertion or deletion in the coding region. Of the nine isolates analyzed antigenically against the currently used Indian vaccine strain INDR2/1975, eight showed good cross serological match (>0.3) indicating optimal antigenic coverage by the vaccine strain. An unprecedented deletion of 22 nucleotides between position 57 and 78 was observed in the 3' untranslated region of one of the isolates without compromising the virus viability, which imply that partial distortion in SL2 of 3'UTR may not have influence on virus viability at least under in-vitro conditions. Recently the Ind2001 lineage has been reported from several countries including Libya and spread of this lineage across a wide geographical area needs to be monitored carefully to avoid any future pandemic. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Emergence of CD4+ and CD8+ Polyfunctional T Cell Responses Against Immunodominant Lytic and Latent EBV Antigens in Children With Primary EBV Infection

    Directory of Open Access Journals (Sweden)

    Janice K. P. Lam

    2018-03-01

    Full Text Available Long term carriers were shown to generate robust polyfunctional T cell (PFC responses against lytic and latent antigens of Epstein-Barr virus (EBV. However, the time of emergence of PFC responses against EBV antigens, pattern of immunodominance and difference between CD4+ and CD8+ T cell responses during various stages of EBV infection are not clearly understood. A longitudinal study was performed to assess the development of antigen-specific PFC responses in children diagnosed to have primary symptomatic (infectious mononucleosis [IM] and asymptomatic (AS EBV infection. Evaluation of IFN-γ secreting CD8+ T cell responses upon stimulation by HLA class I-specific peptides of EBV lytic and latent proteins by ELISPOT assay followed by assessment of CD4+ and CD8+ PFC responses upon stimulation by a panel of overlapping EBV peptides for co-expression of IFN-γ, TNF-α, IL-2, perforin and CD107a by flow cytometry were performed. Cytotoxicity of T cells against autologous lymphoblastoid cell lines (LCLs as well as EBV loads in PBMC and plasma were also determined. Both IM and AS patients had elevated PBMC and plasma viral loads which declined steadily during a 12-month period from the time of diagnosis whilst decrease in the magnitude of CD8+ T cell responses toward EBV lytic peptides in contrast to increase toward latent peptides was shown with no significant difference between those of IM and AS patients. Both lytic and latent antigen-specific CD4+ and CD8+ T cells demonstrated polyfunctionality (defined as greater or equal to three functions concurrent with enhanced cytotoxicity against autologous LCLs and steady decrease in plasma and PBMC viral loads over time. Immunodominant peptides derived from BZLF1, BRLF1, BMLF1 and EBNA3A-C proteins induced the highest proportion of CD8+ as well as CD4+ PFC responses. Diverse functional subtypes of both CD4+ and CD8+ PFCs were shown to emerge at 6–12 months. In conclusion, EBV antigen-specific CD4+ and CD

  2. Antigen-specific T8+ human clone of cells with a nonspecific augmenting function on the T4 cell-B cell helper interaction

    International Nuclear Information System (INIS)

    Brines, R.D.; Sia, D.Y.; Lehner, T.

    1987-01-01

    The authors isolated a T8 + T3 + Ia + clone of cells from the peripheral blood mononuclear cells of a healthy subject. The clone was expanded and maintained with autologous feed cells, interleukin 2, and a streptococcal antigen. The T8 + clone of cells responded specifically to the streptococcal antigen, in the absence of accessory cells,and released a soluble factor. Both the cloned cells and the corresponding soluble factor expressed augmenting helper but not suppressor activity. The augmenting helper activity for B cell antibody synthesis was demonstrable only in the presence of autologous T 4 cells. Radioimmunoassay was used to measure antibodies. Although stimulation of the T8 + cloned cells was antigen-specific, the resulting soluble factor elicited nonspecific antibody synthesis in the presence of T4 and B cells. The T8 + cloned cell-derived factor was adsorbed by B cells but not by T4 cells. Preliminary studies suggest that the factor has the properties of a B cell growth factor. They suggest that the T8 + population consists of functionally heterogeneous cell subsets, some that have suppressor function and others that augment the T4 + helper-inducer activity in B cell antibody synthesis

  3. Adoptive Immunotherapy for Hematological Malignancies Using T Cells Gene-Modified to Express Tumor Antigen-Specific Receptors

    Directory of Open Access Journals (Sweden)

    Hiroshi Fujiwara

    2014-12-01

    Full Text Available Accumulating clinical evidence suggests that adoptive T-cell immunotherapy could be a promising option for control of cancer; evident examples include the graft-vs-leukemia effect mediated by donor lymphocyte infusion (DLI and therapeutic infusion of ex vivo-expanded tumor-infiltrating lymphocytes (TIL for melanoma. Currently, along with advances in synthetic immunology, gene-modified T cells retargeted to defined tumor antigens have been introduced as “cellular drugs”. As the functional properties of the adoptive immune response mediated by T lymphocytes are decisively regulated by their T-cell receptors (TCRs, transfer of genes encoding target antigen-specific receptors should enable polyclonal T cells to be uniformly redirected toward cancer cells. Clinically, anticancer adoptive immunotherapy using genetically engineered T cells has an impressive track record. Notable examples include the dramatic benefit of chimeric antigen receptor (CAR gene-modified T cells redirected towards CD19 in patients with B-cell malignancy, and the encouraging results obtained with TCR gene-modified T cells redirected towards NY-ESO-1, a cancer-testis antigen, in patients with advanced melanoma and synovial cell sarcoma. This article overviews the current status of this treatment option, and discusses challenging issues that still restrain the full effectiveness of this strategy, especially in the context of hematological malignancy.

  4. Virological surveillance and preliminary antigenic characterization of influenza viruses in pigs in five European countries from 2006 to 2008.

    Science.gov (United States)

    Kyriakis, C S; Brown, I H; Foni, E; Kuntz-Simon, G; Maldonado, J; Madec, F; Essen, S C; Chiapponi, C; Van Reeth, K

    2011-03-01

    This study presents the results of the virological surveillance for swine influenza viruses (SIVs) in Belgium, UK, Italy, France and Spain from 2006 to 2008. Our major aims were to clarify the occurrence of the three SIV subtypes - H1N1, H3N2 and H1N2 - at regional levels, to identify novel reassortant viruses and to antigenically compare SIVs with human H1N1 and H3N2 influenza viruses. Lung tissue and/or nasal swabs from outbreaks of acute respiratory disease in pigs were investigated by virus isolation. The hemagglutinin (HA) and neuraminidase (NA) subtypes were determined using standard methods. Of the total 169 viruses, 81 were classified as 'avian-like' H1N1, 36 as human-like H3N2 and 47 as human-like H1N2. Only five novel reassortant viruses were identified: two H1N1 viruses had a human-like HA and three H1N2 viruses an avian-like HA. All three SIV subtypes were detected in Belgium, Italy and Spain, while only H1N1 and H1N2 viruses were found in UK and Northwestern France. Cross-hemagglutination inhibition (HI) tests with hyperimmune sera against selected older and recent human influenza viruses showed a strong antigenic relationship between human H1N1 and H3N2 viruses from the 1980s and H1N2 and H3N2 human-like SIVs, confirming their common origin. However, antisera against human viruses isolated during the last decade did not react with currently circulating H1 or H3 SIVs, suggesting that especially young people may be, to some degree, susceptible to SIV infections. © 2009 Blackwell Verlag GmbH.

  5. Epstein-Barr virus-containing T-cell lymphoma presents with hemophagocytic syndrome mimicking malignant histiocytosis.

    Science.gov (United States)

    Su, I J; Hsu, Y H; Lin, M T; Cheng, A L; Wang, C H; Weiss, L M

    1993-09-15

    The previously designated malignant histiocytosis (MH) may include lymphoid neoplasms of T-cell lineage as well as patients with benign virus-associated hemophagocytic syndrome (VAHS). In this study, the association of Epstein-Barr virus (EBV) with T cell lymphomas which present with clinicopathologic features indistinguishable from malignant histiocytosis (MH) was investigated further. Four adult patients, three women and one man, were admitted because of fever, cutaneous lesions, hepatosplenomegaly, and jaundice. Laboratory examinations revealed pancytopenia, abnormal liver functions and coagulopathy. All patients ran a fulminant course terminating in a hemophagocytic syndrome within 1 month. Immunophenotypic study, Southern blot analysis, and in situ hybridization were performed on the specimens obtained from the four patients. The biopsy-necropsy specimens from skin, liver, spleen, and bone marrow showed infiltration of atypical large cells with reactive histiocytosis and florid hemophagocytosis activity. Based on the clinical and histologic findings, these cases would have been designated as MH by previous criteria. Immunophenotypic, Southern blot, and in situ hybridization studies, however, showed clonotypic proliferation of EBV genomes in the nuclei of the large atypical cells that expressed T-cell antigens. Therefore, these patients should be diagnosed as a recently described EBV-associated peripheral T-cell lymphoma (EBV-PTCL). EBV-PTCL may present with a fulminant hemophagocytic syndrome indistinguishable from the previously designated MH. This finding represents a step forward in our changing concept regarding MH, some of which only recently has been suggested to be of T-cell lymphoma origin. Differentiation from benign VAHS is clinically important. Features useful in this distinction are tabulated and discussed.

  6. A comparison of labelled antibody methods for the detection of virus antigens in cell monolayers

    International Nuclear Information System (INIS)

    Oram, J.D.; Crooks, A.J.

    1979-01-01

    A number of labelled antibody methods have been applied to the detection of Semliki Forest virus antigens after replication of the virus in monolayers of host cells in multi-well polystyrene plates. The importance of several reaction variables has been investigated and the sensitivity of the methods compared for different periods of virus replication. Direct assays with radio-labelled antibody (RLA) and indirect assays peroxidase-antiperoxidase complexes (PAP) were equally sensitive. Direct and indirect assays using enzyme-linked antibodies (ELA) were slightly less sensitive than the direct RLA and PAP methods but were more sensitive than the indirect RLA or fluorescent antibody (FLA) methods. Direct assays using ELA were more rapid and easier to perform than the other assay methods. (Auth.)

  7. Vorinostat Renders the Replication-Competent Latent Reservoir of Human Immunodeficiency Virus (HIV Vulnerable to Clearance by CD8 T Cells

    Directory of Open Access Journals (Sweden)

    Julia A. Sung

    2017-09-01

    Full Text Available Latently human immunodeficiency virus (HIV-infected cells are transcriptionally quiescent and invisible to clearance by the immune system. To demonstrate that the latency reversing agent vorinostat (VOR induces a window of vulnerability in the latent HIV reservoir, defined as the triggering of viral antigen production sufficient in quantity and duration to allow for recognition and clearance of persisting infection, we developed a latency clearance assay (LCA. The LCA is a quantitative viral outgrowth assay (QVOA that includes the addition of immune effectors capable of clearing cells expressing viral antigen. Here we show a reduction in the recovery of replication-competent virus from VOR exposed resting CD4 T cells following addition of immune effectors for a discrete period. Take home message: VOR exposure leads to sufficient production of viral protein on the cell surface, creating a window of vulnerability within this latent reservoir in antiretroviral therapy (ART-suppressed HIV-infected individuals that allows the clearance of latently infected cells by an array of effector mechanisms.

  8. Structure-guided evolution of antigenically distinct adeno-associated virus variants for immune evasion.

    Science.gov (United States)

    Tse, Longping Victor; Klinc, Kelli A; Madigan, Victoria J; Castellanos Rivera, Ruth M; Wells, Lindsey F; Havlik, L Patrick; Smith, J Kennon; Agbandje-McKenna, Mavis; Asokan, Aravind

    2017-06-13

    Preexisting neutralizing antibodies (NAbs) against adeno-associated viruses (AAVs) pose a major, unresolved challenge that restricts patient enrollment in gene therapy clinical trials using recombinant AAV vectors. Structural studies suggest that despite a high degree of sequence variability, antibody recognition sites or antigenic hotspots on AAVs and other related parvoviruses might be evolutionarily conserved. To test this hypothesis, we developed a structure-guided evolution approach that does not require selective pressure exerted by NAbs. This strategy yielded highly divergent antigenic footprints that do not exist in natural AAV isolates. Specifically, synthetic variants obtained by evolving murine antigenic epitopes on an AAV serotype 1 capsid template can evade NAbs without compromising titer, transduction efficiency, or tissue tropism. One lead AAV variant generated by combining multiple evolved antigenic sites effectively evades polyclonal anti-AAV1 neutralizing sera from immunized mice and rhesus macaques. Furthermore, this variant displays robust immune evasion in nonhuman primate and human serum samples at dilution factors as high as 1:5, currently mandated by several clinical trials. Our results provide evidence that antibody recognition of AAV capsids is conserved across species. This approach can be applied to any AAV strain to evade NAbs in prospective patients for human gene therapy.

  9. Effective antigen presentation to helper T cells by human eosinophils.

    Science.gov (United States)

    Farhan, Ruhaifah K; Vickers, Mark A; Ghaemmaghami, Amir M; Hall, Andrew M; Barker, Robert N; Walsh, Garry M

    2016-12-01

    Although eosinophils are inflammatory cells, there is increasing attention on their immunomodulatory roles. For example, murine eosinophils can present antigen to CD4 + T helper (Th) cells, but it remains unclear whether human eosinophils also have this ability. This study determined whether human eosinophils present a range of antigens, including allergens, to activate Th cells, and characterized their expression of MHC class II and co-stimulatory molecules required for effective presentation. Human peripheral blood eosinophils purified from non-allergic donors were pulsed with the antigens house dust mite extract (HDM), Timothy Grass extract (TG) or Mycobacterium tuberculosis purified protein derivative (PPD), before co-culture with autologous CD4 + Th cells. Proliferative and cytokine responses were measured, with eosinophil expression of HLA-DR/DP/DQ and the co-stimulatory molecules CD40, CD80 and CD86 determined by flow cytometry. Eosinophils pulsed with HDM, TG or PPD drove Th cell proliferation, with the response strength dependent on antigen concentration. The cytokine responses varied with donor and antigen, and were not biased towards any particular Th subset, often including combinations of pro- and anti-inflammatory cytokines. Eosinophils up-regulated surface expression of HLA-DR/DP/DQ, CD80, CD86 and CD40 in culture, increases that were sustained over 5 days when incubated with antigens, including HDM, or the major allergens it contains, Der p I or Der p II. Human eosinophils can, therefore, act as effective antigen-presenting cells to stimulate varied Th cell responses against a panel of antigens including HDM, TG or PPD, an ability that may help to determine the development of allergic disease. © 2016 John Wiley & Sons Ltd.

  10. CNS recruitment of CD8+ T lymphocytes specific for a peripheral virus infection triggers neuropathogenesis during polymicrobial challenge.

    Directory of Open Access Journals (Sweden)

    Christine M Matullo

    2011-12-01

    Full Text Available Although viruses have been implicated in central nervous system (CNS diseases of unknown etiology, including multiple sclerosis and amyotrophic lateral sclerosis, the reproducible identification of viral triggers in such diseases has been largely unsuccessful. Here, we explore the hypothesis that viruses need not replicate in the tissue in which they cause disease; specifically, that a peripheral infection might trigger CNS pathology. To test this idea, we utilized a transgenic mouse model in which we found that immune cells responding to a peripheral infection are recruited to the CNS, where they trigger neurological damage. In this model, mice are infected with both CNS-restricted measles virus (MV and peripherally restricted lymphocytic choriomeningitis virus (LCMV. While infection with either virus alone resulted in no illness, infection with both viruses caused disease in all mice, with ∼50% dying following seizures. Co-infection resulted in a 12-fold increase in the number of CD8+ T cells in the brain as compared to MV infection alone. Tetramer analysis revealed that a substantial proportion (>35% of these infiltrating CD8+ lymphocytes were LCMV-specific, despite no detectable LCMV in CNS tissues. Mechanistically, CNS disease was due to edema, induced in a CD8-dependent but perforin-independent manner, and brain herniation, similar to that observed in mice challenged intracerebrally with LCMV. These results indicate that T cell trafficking can be influenced by other ongoing immune challenges, and that CD8+ T cell recruitment to the brain can trigger CNS disease in the apparent absence of cognate antigen. By extrapolation, human CNS diseases of unknown etiology need not be associated with infection with any particular agent; rather, a condition that compromises and activates the blood-brain barrier and adjacent brain parenchyma can render the CNS susceptible to pathogen-independent immune attack.

  11. A simplified radioimmunoassay for triiodothyronine (T3) using pre-incubated labelled antigen and antibody

    International Nuclear Information System (INIS)

    Pillai, M.R.A.; Nagvekar, U.H.; Desai, C.N.; Mani, R.S.

    1986-01-01

    The development of a simplified radioimmunoassay for triiodothyronine (T 3 ) using pre-incubated labelled T 3 and antibody is described. The assay is carried out by adding 50 μl of standard or sample to 0.4 ml of pre-incubated reagent dispensed in assay tubes. The reaction was allowed to proceed for about four hours and the antigen-antibody complex precipitated by the addition of 1 cm 3 of 22% polyethylene glycol solution. Due to the high dissociation constant of T 3 -antibody complex at 37 deg C, the labelled antigen-antibody complex dissociates and thereby the unlabelled antigen binds with the antibody. The sensitivity of this assay is comparable to an assay done by the equilibrium method using the same antibody. Sixty serum samples were analyzed using this method and were compared with the equilibrium assay. (author)

  12. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated ras oncogene and SV40 T-antigen.

    Science.gov (United States)

    Su, L N; Little, J B

    1992-08-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. Cells transfected with EJ ras alone showed no morphological alterations nor significant changes in radiosensitivity. Cell clones expressing ras and/or SV40 T-antigen showed a reduced requirement for serum supplements, an increase in aneuploidy and chromosomal aberrations, and enhanced growth in soft agar as an early cellular response to SV40 T-antigen expression. The sequential order of transfection with SV40 T-antigen and ras influenced radio-sensitivity but not the induction of morphological changes. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself.

  13. Improving CART-Cell Therapy of Solid Tumors with Oncolytic Virus-Driven Production of a Bispecific T-cell Engager.

    Science.gov (United States)

    Wing, Anna; Fajardo, Carlos Alberto; Posey, Avery D; Shaw, Carolyn; Da, Tong; Young, Regina M; Alemany, Ramon; June, Carl H; Guedan, Sonia

    2018-05-01

    T cells expressing chimeric antigen receptors (CART) have shown significant promise in clinical trials to treat hematologic malignancies, but their efficacy in solid tumors has been limited. Oncolytic viruses have the potential to act in synergy with immunotherapies due to their immunogenic oncolytic properties and the opportunity of incorporating therapeutic transgenes in their genomes. Here, we hypothesized that an oncolytic adenovirus armed with an EGFR-targeting, bispecific T-cell engager (OAd-BiTE) would improve the outcome of CART-cell therapy in solid tumors. We report that CART cells targeting the folate receptor alpha (FR-α) successfully infiltrated preestablished xenograft tumors but failed to induce complete responses, presumably due to the presence of antigen-negative cancer cells. We demonstrated that OAd-BiTE-mediated oncolysis significantly improved CART-cell activation and proliferation, while increasing cytokine production and cytotoxicity, and showed an in vitro favorable safety profile compared with EGFR-targeting CARTs. BiTEs secreted from infected cells redirected CART cells toward EGFR in the absence of FR-α, thereby addressing tumor heterogeneity. BiTE secretion also redirected CAR-negative, nonspecific T cells found in CART-cell preparations toward tumor cells. The combinatorial approach improved antitumor efficacy and prolonged survival in mouse models of cancer when compared with the monotherapies, and this was the result of an increased BiTE-mediated T-cell activation in tumors. Overall, these results demonstrated that the combination of a BiTE-expressing oncolytic virus with adoptive CART-cell therapy overcomes key limitations of CART cells and BiTEs as monotherapies in solid tumors and encourage its further evaluation in human trials. Cancer Immunol Res; 6(5); 605-16. ©2018 AACR . ©2018 American Association for Cancer Research.

  14. Chimeric Antigen Receptors T Cell Therapy in Solid Tumor: Challenges and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Hamid R. Mirzaei

    2017-12-01

    Full Text Available Adoptive cellular immunotherapy (ACT employing engineered T lymphocytes expressing chimeric antigen receptors (CARs has demonstrated promising antitumor effects in advanced hematologic cancers, such as relapsed or refractory acute lymphoblastic leukemia, chronic lymphocytic leukemia, and non-Hodgkin lymphoma, supporting the translation of ACT to non-hematological malignancies. Although CAR T cell therapy has made remarkable strides in the treatment of patients with certain hematological cancers, in solid tumors success has been limited likely due to heterogeneous antigen expression, immunosuppressive networks in the tumor microenvironment limiting CAR T cell function and persistence, and suboptimal trafficking to solid tumors. Here, we outline specific approaches to overcome barriers to CAR T cell effectiveness in the context of the tumor microenvironment and offer our perspective on how expanding the use of CAR T cells in solid tumors may require modifications in CAR T cell design. We anticipate these modifications will further expand CAR T cell therapy in clinical practice.

  15. Rational design of nanoparticles towards targeting antigen-presenting cells and improved T cell priming.

    Science.gov (United States)

    Zupančič, Eva; Curato, Caterina; Paisana, Maria; Rodrigues, Catarina; Porat, Ziv; Viana, Ana S; Afonso, Carlos A M; Pinto, João; Gaspar, Rogério; Moreira, João N; Satchi-Fainaro, Ronit; Jung, Steffen; Florindo, Helena F

    2017-07-28

    Vaccination is a promising strategy to trigger and boost immune responses against cancer or infectious disease. We have designed, synthesized and characterized aliphatic-polyester (poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) to investigate how the nature of protein association (adsorbed versus entrapped) and polymer/surfactant concentrations impact on the generation and modulation of antigen-specific immune responses. The ability of the NP formulations to target dendritic cells (DC), be internalized and activate the T cells was characterized and optimized in vitro and in vivo using markers of DC activation and co-stimulatory molecules. Ovalbumin (OVA) was used as a model antigen in combination with the engraftment of CD4 + and CD8 + T cells, carrying a transgenic OVA-responding T cell receptor (TCR), to trace and characterize the activation of antigen-specific CD4 + and CD8 + lymph node T cells upon NP vaccination. Accordingly, the phenotype and frequency of immune cell stimulation induced by the NP loaded with OVA, isolated or in combination with synthetic unmethylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotide (ODN) motifs, were characterized. DC-NP interactions increased with incubation time, presenting internalization values between 50 and 60% and 30-40%, in vitro and in vivo, respectively. Interestingly, animal immunization with antigen-adsorbed NP up-regulated major histocompatibility complex (MHC) class II (MHCII), while NP entrapping the antigen up-regulated MHCI, suggesting a more efficient cross-presentation. On the other hand, rather surprisingly, the surfactant used in the NP formulation had a major impact on the activation of antigen presenting cells (APC). In fact, DC collected from lymph nodes of animals immunized with NP prepared using poly(vinil alcohol) (PVA), as a surfactant, expressed significantly higher levels of CD86, MHCI and MHCII. In addition, those NP prepared with PVA and co-entrapping OVA and the toll

  16. Purification and refolding of anti-T-antigen single chain antibodies (scFvs) expressed in Escherichia coli as inclusion bodies.

    Science.gov (United States)

    Yuasa, Noriyuki; Koyama, Tsubasa; Fujita-Yamaguchi, Yoko

    2014-02-01

    T-antigen (Galβ1-3GalNAcα-1-Ser/Thr) is an oncofetal antigen that is commonly expressed as a carbohydrate determinant in many adenocarcinomas. Since it is associated with tumor progression and metastasis, production of recombinant antibodies specific for T-antigen could lead to the development of cancer diagnostics and therapeutics. Previously, we isolated and characterized 11 anti-T-antigen phage clones from a phage library displaying human single-chain antibodies (scFvs) and purified one scFv protein, 1G11. More recently, we purified and characterized 1E8 scFv protein using a Drosophila S2 expression system. In the current study, four anti-T-antigen scFv genes belonging to Groups 1-4 were purified from inclusion bodies expressed in Escherichia coli cells. Inclusion bodies isolated from E. coli cells were denatured in 3.5 M Gdn-HCl. Solubilized His-tagged scFv proteins were purified using Ni(2+)-Sepharose column chromatography in the presence of 3.5 M Gdn-HCl. Purified scFv proteins were refolded according to a previously published method of step-wise dialysis. Two anti-T-antigen scFv proteins, 1E6 and 1E8 that belong to Groups 1 and 2, respectively, were produced in sufficient amounts, thus allowing further characterization of their binding activity with T-antigen. Specificity and affinity constants determined using enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR), respectively, provided evidence that both 1E8 and 1E6 scFv proteins are T-antigen specific and suggested that 1E8 scFv protein has a higher affinity for T-antigen than 1E6 scFv protein.

  17. Lym-1 Chimeric Antigen Receptor T Cells Exhibit Potent Anti-Tumor Effects against B-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Long Zheng

    2017-12-01

    Full Text Available T cells expressing chimeric antigen receptors (CARs recognizing CD19 epitopes have produced remarkable anti-tumor effects in patients with B-cell malignancies. However, cancer cells lacking recognized epitopes can emerge, leading to relapse and death. Thus, CAR T cells targeting different epitopes on different antigens could improve immunotherapy. The Lym-1 antibody targets a conformational epitope of Human Leukocyte Antigen-antigen D Related (HLA-DR on the surface of human B-cell lymphomas. Lym-1 CAR T cells were thus generated for evaluation of cytotoxic activity towards lymphoma cells in vitro and in vivo. Human T cells from healthy donors were transduced to express a Lym-1 CAR, and assessed for epitope-driven function in culture and towards Raji xenografts in NOD-scidIL2Rgammanull (NSG mice. Lym-1 CAR T cells exhibited epitope-driven activation and lytic function against human B-cell lymphoma cell lines in culture and mediated complete regression of Raji/Luciferase-Green fluorescent protein (Raji/Luc-GFP in NSG mice with similar or better reactivity than CD19 CAR T cells. Lym-1 CAR transduction of T cells is a promising immunotherapy for patients with Lym-1 epitope positive B-cell malignancies.

  18. High-affinity human leucocyte antigen class I binding variola-derived peptides induce CD4(+) T cell responses more than 30 years post-vaccinia virus vaccination

    DEFF Research Database (Denmark)

    Wang, M.; Tang, Sheila Tuyet; Lund, Ole

    2009-01-01

    Interferon-gamma secreting T lymphocytes against pox virus-derived synthetic 9-mer peptides were tested by enzyme-linked immunospot in peripheral blood of individuals vaccinated with vaccinia virus more than 30 years ago. The peptides were characterized biochemically as high-affinity human leucoc...

  19. Recognition of Leishmania antigens by T lymphocytes from nonexposed individuals

    DEFF Research Database (Denmark)

    Kemp, M; Hansen, M B; Theander, T G

    1992-01-01

    Crude antigen preparations of Leishmania promastigote sonicates were found to induce in vitro proliferation and gamma interferon production in peripheral blood mononuclear cells (PBMC) from individuals without known exposure to the parasite. The proliferating cells were mainly CD2-positive T cell...

  20. Chimeric antigen receptor T cell therapy in pancreatic cancer: from research to practice.

    Science.gov (United States)

    Jindal, Vishal; Arora, Ena; Masab, Muhammad; Gupta, Sorab

    2018-05-04

    Chimeric antigen receptor (CAR) T cell therapy is genetically engineered tumor antigen-specific anticancer immunotherapy, which after showing great success in hematological malignancies is currently being tried in advanced solid tumors like pancreatic cancer. Immunosuppressive tumor microenvironment and dense fibrous stroma are some of the limitation in the success of this novel therapy. However, genetic modifications and combination therapy is the topic of the research to improve its efficacy. In this article, we summarize the current state of knowledge, limitations, and future prospects for CAR T cell therapy in pancreatic cancer.

  1. Recombinant Kunjin virus replicon vaccines induce protective T-cell immunity against human papillomavirus 16 E7-expressing tumour

    International Nuclear Information System (INIS)

    Herd, Karen A.; Harvey, Tracey; Khromykh, Alexander A.; Tindle, Robert W.

    2004-01-01

    The persistence of the E7 oncoprotein in transformed cells in human papillomavirus (HPV)-associated cervical cancer provides a tumour-specific antigen to which immunotherapeutic strategies may be directed. Self-replicating RNA (replicon) vaccine vectors derived from the flavivirus Kunjin (KUN) have recently been reported to induce T-cell immunity. Here, we report that inclusion of a CTL epitope of HPV16 E7 protein into a polyepitope encoded by a KUN vector induced E7-directed T-cell responses and protected mice against challenge with an E7-expressing epithelial tumour. We found replicon RNA packaged into virus-like particles to be more effective than naked replicon RNA or plasmid DNA constructed to allow replicon RNA transcription in vivo. Protective immunity was induced although the E7 CTL epitope was subdominant in the context of other CTL epitopes in the polyepitope. The results demonstrate the efficacy of the KUN replicon vector system for inducing protective immunity directed towards a virally encoded human tumour-specific antigen, and for inducing multi-epitopic CTL responses

  2. Estradiol-induced vaginal mucus inhibits antigen penetration and CD8(+) T cell priming in response to intravaginal immunization.

    Science.gov (United States)

    Seavey, Matthew M; Mosmann, Tim R

    2009-04-14

    Although vaginal immunization has been explored as a strategy to induce mucosal immunity in the female reproductive tract, this site displays unique immunological features that probably evolved to inhibit anti-paternal T cell responses after insemination to allow successful pregnancy. We previously demonstrated that estradiol, which induces an estrus-like state, prevented CD8(+) T cell priming during intravaginal immunization of mice. We now show that estradiol prevented antigen loading of vaginal antigen presenting cells (APCs) after intravaginal immunization. Histological examination confirmed that estradiol prevented penetration of peptide antigen into the vaginal wall. Removal of the estradiol-induced mucus barrier by mucinase partially restored antigen loading of vaginal APC and CD8(+) T cell proliferation in vivo. The estradiol-induced mucus barrier may thus prevent exposure to antigens delivered intravaginally, supplementing additional estradiol-dependent mechanism(s) that inhibit CD8(+) T cell priming after insemination or vaginal vaccination.

  3. Estradiol-induced vaginal mucus inhibits antigen penetration and CD8+ T cell priming in response to intravaginal immunization

    Science.gov (United States)

    Seavey, Matthew M.; Mosmann, Tim R.

    2010-01-01

    Although vaginal immunization has been explored as a strategy to induce mucosal immunity in the female reproductive tract, this site displays unique immunological features that probably evolved to inhibit anti-paternal T cell responses after insemination to allow successful pregnancy. We previously demonstrated that estradiol, which induces an estrus-like state, prevented CD8+ T cell priming during intravaginal immunization of mice. We now show that estradiol prevented antigen loading of vaginal antigen presenting cells (APC) after intravaginal immunization. Histological examination confirmed that estradiol prevented penetration of peptide antigen into the vaginal wall. Removal of the estradiol-induced mucus barrier by mucinase partially restored antigen loading of vaginal APC and CD8+ T cell proliferation in vivo. The estradiol-induced mucus barrier may thus prevent exposure to antigens delivered intravaginally, supplementing additional estradiol-dependent mechanism(s) that inhibit CD8+ T cell priming after insemination or vaginal vaccination. PMID:19428849

  4. Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: challenges and opportunities.

    Science.gov (United States)

    Xia, An-Liang; Wang, Xiao-Chen; Lu, Yi-Jun; Lu, Xiao-Jie; Sun, Beicheng

    2017-10-27

    Chimeric antigen receptor (CAR)-engineered T cells (CAR-T cells) have been shown to have unprecedented efficacy in B cell malignancies, most notably in B cell acute lymphoblastic leukemia (B-ALL) with up to a 90% complete remission rate using anti-CD19 CAR-T cells. However, CAR T-cell therapy for solid tumors currently is faced with numerous challenges such as physical barriers, the immunosuppressive tumor microenvironment and the specificity and safety. The clinical results in solid tumors have been much less encouraging, with multiple cases of toxicity and a lack of therapeutic response. In this review, we will discuss the current stats and challenges of CAR-T cell therapy for solid tumors, and propose possibl e solutions and future perspectives.

  5. Enhancement of Human Antigen-Specific Memory T-Cell Responses by Interleukin-7 May Improve Accuracy in Diagnosing Tuberculosis▿ †

    Science.gov (United States)

    Feske, Marsha; Nudelman, Rodolfo J.; Medina, Miguel; Lew, Justin; Singh, Manisha; Couturier, Jacob; Graviss, Edward A.; Lewis, Dorothy E.

    2008-01-01

    Children and immunocompromised adults are at an increased risk of tuberculosis (TB), but diagnosis is more challenging. Recently developed gamma interferon (IFN-γ) release assays provide increased sensitivity and specificity for diagnosis of latent TB, but their use is not FDA approved in immunocompromised or pediatric populations. Both populations have reduced numbers of T cells, which are major producers of IFN-γ. Interleukin 7 (IL-7), a survival cytokine, stabilizes IFN-γ message and increases protein production. IL-7 was added to antigen-stimulated lymphocytes to improve IFN-γ responses as measured by enzyme-linked immunosorbent assay (ELISA) and enzyme-linked immunospot (ELISPOT) assay. Antigens used were tetanus toxoid (n = 10), p24 (from human immunodeficiency virus [HIV], n = 9), and TB peptides (n = 15). Keyhole limpet hemocyanin was used as a negative control, and phytohemagglutinin was the positive control. IL-7 improved antigen-specific responses to all antigens tested including tetanus toxoid, HIV type 1 p24, and TB peptides (ESAT-6 and CFP-10) with up to a 14-fold increase (mean = 3.8), as measured by ELISA. Increased IFN-γ responses from controls, HIV-positive patients, and TB patients were statistically significant, with P values of <0.05, 0.01, and 0.05, respectively. ELISPOT assay results confirmed ELISA findings (P values of <0.01, 0.02, and 0.03, respectively), with a strong correlation between the two tests (R2 = 0.82 to 0.99). Based on average background levels, IL-7 increased detection of IFN-γ by 39% compared to the level with antigen alone. Increased production of IFN-γ induced by IL-7 improves sensitivity of ELISA and ELISPOT assays for all antigens tested. Further enhancement of IFN-γ-based assays might improve TB diagnosis in those populations at highest risk for TB. PMID:18753334

  6. CARbodies: Human Antibodies Against Cell Surface Tumor Antigens Selected From Repertoires Displayed on T Cell Chimeric Antigen Receptors

    Directory of Open Access Journals (Sweden)

    Vanesa Alonso-Camino

    2013-01-01

    Full Text Available A human single-chain variable fragment (scFv antibody library was expressed on the surface of human T cells after transduction with lentiviral vectors (LVs. The repertoire was fused to a first-generation T cell receptor ζ (TCRζ-based chimeric antigen receptor (CAR. We used this library to isolate antibodies termed CARbodies that recognize antigens expressed on the tumor cell surface in a proof-of-principle system. After three rounds of activation-selection there was a clear repertoire restriction, with the emergence dominant clones. The CARbodies were purified from bacterial cultures as soluble and active proteins. Furthermore, to validate its potential application for adoptive cell therapy, human T cells were transduced with a LV encoding a second-generation costimulatory CAR (CARv2 bearing the selected CARbodies. Transduced human primary T cells expressed significant levels of the CARbodies-based CARv2 fusion protein on the cell surface, and importantly could be specifically activated, after stimulation with tumor cells. This approach is a promising tool for the generation of antibodies fully adapted to the display format (CAR and the selection context (cell synapse, which could extend the scope of current adoptive cell therapy strategies with CAR-redirected T cells.

  7. Bone marrow-derived thymic antigen-presenting cells determine self-recognition of Ia-restricted T lymphocytes

    International Nuclear Information System (INIS)

    Longo, D.L.; Kruisbeek, A.M.; Davis, M.L.; Matis, L.A.

    1985-01-01

    The authors previously have demonstrated that in radiation-induced bone marrow chimeras, T-cell self-Ia restriction specificity appeared to correlate with the phenotype of the bone marrow-derived antigen-presenting (or dendritic) cell in the thymus during T-cell development. However, these correlations were necessarily indirect because of the difficulty in assaying thymic function directly by adult thymus transplant, which has in the past been uniformly unsuccessful. They now report success in obtaining functional T cells from nude mice grafted with adult thymuses reduced in size by treatment of the thymus donor with anti-thymocyte globulin and cortisone. When (B10 Scn X B10.D2)F1 nude mice (I-Ab,d) are given parental B10.D2 (I-Ad) thymus grafts subcutaneously, their T cells are restricted to antigen recognition in association with I-Ad gene products but not I-Ab gene products. Furthermore, thymuses from (B10 X B10.D2)F1 (I-Ab,d)----B10 (I-Ab) chimeras transplanted 6 months or longer after radiation (a time at which antigen-presenting cell function is of donor bone marrow phenotype) into (B10 X B10.D2)F1 nude mice generate T cells restricted to antigen recognition in association with both I-Ad and I-Ab gene products. Thymuses from totally allogeneic bone marrow chimeras appear to generate T cells of bone marrow donor and thymic host restriction specificity. Thus, when thymus donors are radiation-induced bone marrow chimeras, the T-cell I-region restriction of the nude mice recipients is determined at least in part by the phenotype of the bone marrow-derived thymic antigen presenting cells or dendritic cells in the chimeric thymus

  8. Prolonged antigen presentation is required for optimal CD8+ T cell responses against malaria liver stage parasites.

    Directory of Open Access Journals (Sweden)

    Ian A Cockburn

    2010-05-01

    Full Text Available Immunization with irradiated sporozoites is currently the most effective vaccination strategy against liver stages of malaria parasites, yet the mechanisms underpinning the success of this approach are unknown. Here we show that the complete development of protective CD8+ T cell responses requires prolonged antigen presentation. Using TCR transgenic cells specific for the malaria circumsporozoite protein, a leading vaccine candidate, we found that sporozoite antigen persists for over 8 weeks after immunization--a remarkable finding since irradiated sporozoites are incapable of replication and do not differentiate beyond early liver stages. Persisting antigen was detected in lymphoid organs and depends on the presence of CD11c+ cells. Prolonged antigen presentation enhanced the magnitude of the CD8+ T cell response in a number of ways. Firstly, reducing the time primed CD8+ T cells were exposed to antigen in vivo severely reduced the final size of the developing memory population. Secondly, fully developed memory cells expanded in previously immunized mice but not when transferred to naïve animals. Finally, persisting antigen was able to prime naïve cells, including recent thymic emigrants, to become functional effector cells capable of eliminating parasites in the liver. Together these data show that the optimal development of protective CD8+ T cell immunity against malaria liver stages is dependent upon the prolonged presentation of sporozoite-derived antigen.

  9. ANTIGENIC RELATEDNESS OF SELECTED FLAVIVIRUSES: STUDY WITH HOMOLOGOUS AND HETEROLOGOUS IMMUNE MOUSE ASCITIC FLUIDS

    Directory of Open Access Journals (Sweden)

    S.S. BABA

    1998-11-01

    Full Text Available The antigenic relationship of 9 flaviviruses, Yellow fever (YF , Wesselsbron (WSL , Uganda S (UGS , Potiskum (POT, West Nile (WN , Banzi (BAN , Zika (ZK , Dengue type 1 (DEN-1 and Dengue type 2 (DEN-2, was assessed by cross-haemagglutination-inhibition (Cross-HI and cross-complement fixation (Cross-CF reactions between each of the viruses and their homologous immune mouse ascitic fluids. Titre ratios were calculated using the heterologous and homologous titres. Cross-CF reactions revealed wider antigenic variations among viruses than Cross-HI reactions. There was no significant antigenic variation between WSL, POT and YF viruses using either of those methods. However, definite differences in antigenicity were observed between them and UGS, BAN and ZK viruses. There were no significant differences between UGS, BAN and ZK or between DEN-1 and DEN-2. The serological relationship among flaviviruses is important in establishing diagnosis and epidemiology of these infections in Africa.A relação antigênica de 9 Flavivirus, Febre amarela (YF, Wesselsbron (WSL, Uganda S (UGS, Potiskum (POT, West Nile (WN, Banzi (BAN, Zika (ZK, Dengue tipo 1 (DEN-1 e Dengue tipo2 (DEN-2, foi avaliada por reação de inibição da hemaglutinação cruzada (cross-HI e reação de fixação do complemento cruzada (Cross-CF entre cada um dos virus e seu fluido ascítico homólogo em camundongos. Médias de títulos foram calculadas usando os títulos heterólogos e homólogos. Reações cruzadas CF revelaram maiores variações antigênicas entre virus do que reações cruzadas HI. Não houve variação antigênica significativa entre virus WSL, POT e YF usando cada um dos métodos. Todavia, diferenças definidas da antigenicidade foram observadas entre eles e os vírus UGS, BAN e ZK. Não existiram diferenças significativas entre UGS, BAN e ZK ou entre DEN-1 e DEN-2. A relação sorológica entre Flavivirus é importante para se estabelecer o diagnóstico e a

  10. TCR stimulation strength is inversely associated with establishment of functional brain-resident memory CD8 T cells during persistent viral infection.

    Directory of Open Access Journals (Sweden)

    Saumya Maru

    2017-04-01

    Full Text Available Establishing functional tissue-resident memory (TRM cells at sites of infection is a newfound objective of T cell vaccine design. To directly assess the impact of antigen stimulation strength on memory CD8 T cell formation and function during a persistent viral infection, we created a library of mouse polyomavirus (MuPyV variants with substitutions in a subdominant CD8 T cell epitope that exhibit a broad range of efficiency in stimulating TCR transgenic CD8 T cells. By altering a subdominant epitope in a nonstructural viral protein and monitoring memory differentiation of donor monoclonal CD8 T cells in immunocompetent mice, we circumvented potentially confounding changes in viral infection levels, virus-associated inflammation, size of the immunodominant virus-specific CD8 T cell response, and shifts in TCR affinity that may accompany temporal recruitment of endogenous polyclonal cells. Using this strategy, we found that antigen stimulation strength was inversely associated with the function of memory CD8 T cells during a persistent viral infection. We further show that CD8 TRM cells recruited to the brain following systemic infection with viruses expressing epitopes with suboptimal stimulation strength respond more efficiently to challenge CNS infection with virus expressing cognate antigen. These data demonstrate that the strength of antigenic stimulation during recruitment of CD8 T cells influences the functional integrity of TRM cells in a persistent viral infection.

  11. CD4+ T-cell epitope prediction using antigen processing constraints.

    Science.gov (United States)

    Mettu, Ramgopal R; Charles, Tysheena; Landry, Samuel J

    2016-05-01

    T-cell CD4+ epitopes are important targets of immunity against infectious diseases and cancer. State-of-the-art methods for MHC class II epitope prediction rely on supervised learning methods in which an implicit or explicit model of sequence specificity is constructed using a training set of peptides with experimentally tested MHC class II binding affinity. In this paper we present a novel method for CD4+ T-cell eptitope prediction based on modeling antigen-processing constraints. Previous work indicates that dominant CD4+ T-cell epitopes tend to occur adjacent to sites of initial proteolytic cleavage. Given an antigen with known three-dimensional structure, our algorithm first aggregates four types of conformational stability data in order to construct a profile of stability that allows us to identify regions of the protein that are most accessible to proteolysis. Using this profile, we then construct a profile of epitope likelihood based on the pattern of transitions from unstable to stable regions. We validate our method using 35 datasets of experimentally measured CD4+ T cell responses of mice bearing I-Ab or HLA-DR4 alleles as well as of human subjects. Overall, our results show that antigen processing constraints provide a significant source of predictive power. For epitope prediction in single-allele systems, our approach can be combined with sequence-based methods, or used in instances where little or no training data is available. In multiple-allele systems, sequence-based methods can only be used if the allele distribution of a population is known. In contrast, our approach does not make use of MHC binding prediction, and is thus agnostic to MHC class II genotypes. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Rapid antigen detection test for respiratory syncytial virus diagnosis as a diagnostic tool

    Directory of Open Access Journals (Sweden)

    Flávio da Silva Mesquita

    2017-05-01

    Full Text Available Objective: The aim of this study was to evaluate the QuickVue® RSV Test Kit (QUIDEL Corp, CA, USA as a screening tool for respiratory syncytial virus in children with acute respiratory disease in comparison with the indirect immunofluorescence assay as gold standard. In Brazil, rapid antigen detection tests for respiratory syncytial virus are not routinely utilized as a diagnostic tool, except for the diagnosis of dengue and influenza. Methods: The authors retrospectively analyzed 486 nasopharyngeal aspirate samples from children under age 5 with acute respiratory infection, between December 2013 and August 2014, the samples were analyzed by indirect immunofluorescence assay and QuickVue® RSV Test kit. Samples with discordant results were analyzed by real time PCR and nucleotide sequencing. Results: From 313 positive samples by immunofluorescence assays, 282 (90% were also positive by the rapid antigen detection test, two were positive only by rapid antigen detection test, 33 were positive only by immunofluorescence assays, and 171 were positive by both methods. The 35 samples with discordant results were analyzed by real time PCR; the two samples positive only by rapid antigen detection test and the five positive only by immunofluorescence assays were also positive by real time PCR. There was no relation between the negativity by QuickVue® RSV Test and viral load or specific strain. The QuickVue® RSV Test showed sensitivity of 90%, specificity of 98.8%, predictive positive value of 99.3%, and negative predictive value of 94.6%, with accuracy of 93.2% and agreement κ index of 0.85 in comparison to immunofluorescence assay. Conclusions: This study demonstrated that the QuickVue® RSV Test Kit can be effective in early detection of Respiratory syncytial virus in nasopharyngeal aspirate and is reliable for use as a diagnostic tool in pediatrics. Resumo: Objetivo: Avaliar o teste QuickVue® RSV Test Kit (QUIDEL Corp, CA, EUA para o diagn

  13. An inducible transgenic mouse model for immune mediated hepatitis showing clearance of antigen expressing hepatocytes by CD8+ T cells.

    Directory of Open Access Journals (Sweden)

    Marcin Cebula

    Full Text Available The liver has the ability to prime immune responses against neo antigens provided upon infections. However, T cell immunity in liver is uniquely modulated by the complex tolerogenic property of this organ that has to also cope with foreign agents such as endotoxins or food antigens. In this respect, the nature of intrahepatic T cell responses remains to be fully characterized. To gain deeper insight into the mechanisms that regulate the CD8+ T cell responses in the liver, we established a novel OVA_X_CreER(T2 mouse model. Upon tamoxifen administration OVA antigen expression is observed in a fraction of hepatocytes, resulting in a mosaic expression pattern. To elucidate the cross-talk of CD8+ T cells with antigen-expressing hepatocytes, we adoptively transferred K(b/OVA257-264-specific OT-I T cells to OVA_X_CreER(T2 mice or generated triple transgenic OVA_X CreER(T2_X_OT-I mice. OT-I T cells become activated in OVA_X_CreER(T2 mice and induce an acute and transient hepatitis accompanied by liver damage. In OVA_X_CreER(T2_X_OT-I mice, OVA induction triggers an OT-I T cell mediated, fulminant hepatitis resulting in 50% mortality. Surviving mice manifest a long lasting hepatitis, and recover after 9 weeks. In these experimental settings, recovery from hepatitis correlates with a complete loss of OVA expression indicating efficient clearance of the antigen-expressing hepatocytes. Moreover, a relapse of hepatitis can be induced upon re-induction of cured OVA_X_CreER(T2_X_OT-I mice indicating absence of tolerogenic mechanisms. This pathogen-free, conditional mouse model has the advantage of tamoxifen inducible tissue specific antigen expression that reflects the heterogeneity of viral antigen expression and enables the study of intrahepatic immune responses to both de novo and persistent antigen. It allows following the course of intrahepatic immune responses: initiation, the acute phase and antigen clearance.

  14. Association Between PAI-1 Activity Levels and t-PA Antigen with Glycemic Status in Prediabetic Population

    Directory of Open Access Journals (Sweden)

    Andi Fachruddin Benyamin

    2016-11-01

    Full Text Available Aim: to evaluate an association between fibrinolysis defect and glycemic status in prediabetic population by assessing the levels of t-PA antigen and PAI-1 activity. Methods: it was an observational study with cross-sectional approach. There were 72 subjects aged 30-50 years who had met the inclusion criteria. The diagnosis of diabetes mellitus (DM and glycemic index were determined based on the American Diabetes Association (ADA criteria. The PAI-1 and t-PA antigen levels were measured quantitatively using enzyme-linked immunosorbent assay (ELISA. Analysis between the levels of t-PA antigen and PAI-1 activity was performed using ANOVA. Results: the t-PA antigen level was significantly higher in subjects with impaired glucose tolerance (IGT and impaired fasting blood glucose (IFBG as well as subject with impaired fasting blood glucose (IFBG than those with normal glucose tolerance (NGT (p=0.047. The PAI-1 activity was significantly higher in subjects with IGT, IFBG and subjects with IFBG than NGT (p=0.024. There was a significant association between glycemic status in prediabetic subjects and PAI-1 activity (p=0.04. Conclusion: the level of t-PA antigen and PAI-1 activity were significantly higher in prediabetic subjects than those with NGT; and there was a significant association between glycemic status in prediabetic subjects and PAI-1 activity.

  15. Human gamma interferon production by cytotoxic T lymphocytes sensitized during hepatitis A virus infection

    International Nuclear Information System (INIS)

    Maier, K.; Gabriel, P.; Koscielniak, E.; Stierhof, Y.D.; Wiedmann, K.H.; Flehmig, B.; Vallbracht, A.

    1988-01-01

    The production of interferon (IFN) during a chromium-51 release assay with hepatitis A virus (HAV)-infected fibroblasts and autologous peripheral blood lymphocytes from patients with acute HAV infection was studied to determine whether IFN plays a role in immunopathogenesis of hepatitis A infection in humans. Skin fibroblasts of eight patients after acute HAV infection and from two control persons without history of current of past HAV infection were infected with HAV. Peripheral blood lymphocytes were collected at different times after the onset of icterus and tested in a chromium-51 release assay against autologous HAV-infected skin fibroblasts for their cytolytic and IFN-producing activity. The IFN produced during the assay was characterized and found to have the properties of human gamma IFN. Cytotoxicity and gamma IFN release were virus specific. The cell types responsible for both functions were characterized and found to be in the HLA-dependent T8 + lymphocyte subset. Considering that gamma IFN has an antiviral effect on persistent HAV infection in vitro and that it probably accounts for stimulation of HLA class I antigen expression on hepatocytes, these experimental results presented here demonstrate that human gamma IFN produced by HAV-specific T cells may participate in pathogenesis of hepatitis A infection in humans

  16. Kinetics of T cell-activation molecules in response to Mycobacterium tuberculosis antigens

    Directory of Open Access Journals (Sweden)

    Antas Paulo RZ

    2002-01-01

    Full Text Available The phenotypic features acquired subsequent to antigen-specific stimulation in vitro were evaluated by means of the kinetic expressions of CD69 and CD25 activation molecules on T lymphocytes and assayed by flow cytometry in response to PPD, Ag85B, and ferritin in PPD-positive healthy control individuals. In response to PHA, CD69 staining on both CD4+ and CD8+ T cells became initially marked after 4 h, peaked at 24 h, and quickly decreased after 120 h. For CD25, a latter expression was detected around 8 h, having increased after 96 h. As expected, the response rate to the mycobacterial antigens was much lower than that to the mitogen. Positive staining was high after 96 h for CD25 and after 24 h for CD69. CD69 expression was significantly enhanced (p < 0.05 on CD8+ as compared to CD4+ T cells. High levels were also found between 96-120 h. Regarding Ag85B, CD25+ cells were mostly CD4+ instead of CD8+ T cells. Moreover, in response to ferritin, a lower CD25 expression was noted. The present data will allow further characterization of the immune response to new mycobacterial-specific antigens and their evaluation for possible inclusion in developing new diagnostic techniques for tuberculosis as well in a new vaccine to prevent the disease.

  17. Adoptive transfer of EBV specific CD8+ T cell clones can transiently control EBV infection in humanized mice.

    Directory of Open Access Journals (Sweden)

    Olga Antsiferova

    2014-08-01

    Full Text Available Epstein Barr virus (EBV infection expands CD8+ T cells specific for lytic antigens to high frequencies during symptomatic primary infection, and maintains these at significant numbers during persistence. Despite this, the protective function of these lytic EBV antigen-specific cytotoxic CD8+ T cells remains unclear. Here we demonstrate that lytic EBV replication does not significantly contribute to virus-induced B cell proliferation in vitro and in vivo in a mouse model with reconstituted human immune system components (huNSG mice. However, we report a trend to reduction of EBV-induced lymphoproliferation outside of lymphoid organs upon diminished lytic replication. Moreover, we could demonstrate that CD8+ T cells against the lytic EBV antigen BMLF1 can eliminate lytically replicating EBV-transformed B cells from lymphoblastoid cell lines (LCLs and in vivo, thereby transiently controlling high viremia after adoptive transfer into EBV infected huNSG mice. These findings suggest a protective function for lytic EBV antigen-specific CD8+ T cells against EBV infection and against virus-associated tumors in extra-lymphoid organs. These specificities should be explored for EBV-specific vaccine development.

  18. Genetic and antigenic evolution of H9N2 subtype avian influenza virus in domestic chickens in southwestern China, 2013-2016.

    Directory of Open Access Journals (Sweden)

    Jing Xia

    Full Text Available H9N2 avian influenza virus (AIV has caused significant losses in chicken flocks throughout china in recent years. There is a limited understanding of the genetic and antigenic characteristics of the H9N2 virus isolated in chickens in southwestern China. In this study a total of 12 field strains were isolated from tissue samples from diseased chickens between 2013 and 2016. Phylogenetic analysis of the Hemagglutinin (HA and Neuraminidase (NA nucleotide sequences from the 12 field isolates and other reference strains showed that most of the isolates in the past four years could be clustered into a major branch (HA-branch A and NA-branch I in the Clade h9.4.2 lineages. These sequences are accompanied by nine and seven new amino acids mutations in the HA and NA proteins, respectively, when compared with those previous to 2013. In addition, four new isolates were grouped into a minor branch (HA-branch B in the Clade h9.4.2 lineages and two potential N-glycosylation sites were observed due to amino acid mutations in the HA protein. Three antigenic groups (1-3, which had low antigenic relatedness with two commonly used vaccines in China, were identified among the 12 isolates by antigenMap analysis. Immunoprotection testing showed that those two vaccines could efficiently prevent the shedding of branch A viruses but not branch B viruses. In conclusion, these results indicate the genotype of branch B may become epidemic in the next few years and that a new vaccine should be developed for the prevention of H9N2 AIV.

  19. A new insight in chimeric antigen receptor-engineered T cells for cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Erhao Zhang

    2017-01-01

    Full Text Available Abstract Adoptive cell therapy using chimeric antigen receptor (CAR-engineered T cells has emerged as a very promising approach to combating cancer. Despite its ability to eliminate tumors shown in some clinical trials, CAR-T cell therapy involves some significant safety challenges, such as cytokine release syndrome (CRS and “on-target, off-tumor” toxicity, which is related to poor control of the dose, location, and timing of T cell activity. In the past few years, some strategies to avoid the side effects of CAR-T cell therapy have been reported, including suicide gene, inhibitory CAR, dual-antigen receptor, and the use of exogenous molecules as switches to control the CAR-T cell functions. Because of the advances of the CAR paradigm and other forms of cancer immunotherapy, the most effective means of defeating the cancer has become the integration therapy with the combinatorial control system of switchable dual-receptor CAR-T cell and immune checkpoint blockade.

  20. Antigen entrapped in the escheriosomes leads to the generation of CD4(+) helper and CD8(+) cytotoxic T cell response.

    Science.gov (United States)

    Syed, Faisal M; Khan, Masood A; Nasti, Tahseen H; Ahmad, Nadeem; Mohammad, Owais

    2003-06-02

    In previous study, we demonstrated the potential of Escherichia coli (E. coli) lipid liposomes (escheriosomes) to undergo membrane-membrane fusion with cytoplasmic membrane of the target cells including professional antigen presenting cells. Our present study demonstrates that antigen encapsulated in escheriosomes could be successfully delivered simultaneously to the cytosolic as well as endosomal processing pathways of antigen presenting cells, leading to the generation of both CD4(+) T-helper and CD8(+) cytotoxic T cell response. In contrast, encapsulation of same antigen in egg phosphatidyl-choline (egg PC) liposomes, just like antigen-incomplete Freund's adjuvant (IFA) complex, has inefficient access to the cytosolic pathway of MHC I-dependent antigen presentation and failed to generate antigen-specific CD8(+) cytotoxic T cell response. However, both egg PC liposomes as well as escheriosomes-encapsulated antigen elicited strong humoral immune response in immunized animals but antibody titre was significantly higher in the group of animals immunized with escheriosomes-encapsulated antigen. These results imply usage of liposome-based adjuvant as potential candidate vaccine capable of eliciting both cell-mediated as well as humoral immune responses. Furthermore, antigen entrapped in escheriosomes stimulates antigen-specific CD4(+) T cell proliferation and also enhances the level of IL-2, IFN-gamma and IL-4 in the immunized animals.

  1. Strong and multi-antigen specific immunity by hepatitis B core antigen (HBcAg)-based vaccines in a murine model of chronic hepatitis B: HBcAg is a candidate for a therapeutic vaccine against hepatitis B virus.

    Science.gov (United States)

    Akbar, Sheikh Mohammad Fazle; Chen, Shiyi; Al-Mahtab, Mamun; Abe, Masanori; Hiasa, Yoichi; Onji, Morikazu

    2012-10-01

    Experimental evidence suggests that hepatitis B core antigen (HBcAg)-specific cytotoxic T lymphocytes (CTL) are essential for the control of hepatitis B virus (HBV) replication and prevention of liver damage in patients with chronic hepatitis B (CHB). However, most immune therapeutic approaches in CHB patients have been accomplished with hepatitis B surface antigen (HBsAg)-based prophylactic vaccines with unsatisfactory clinical outcomes. In this study, we prepared HBsAg-pulsed dendritic cells (DC) and HBcAg-pulsed DC by culturing spleen DC from HBV transgenic mice (HBV TM) and evaluated the immunomodulatory capabilities of these antigens, which may serve as a better therapy for CHB. The kinetics of HBsAg, antibody levels against HBsAg (anti-HBs), proliferation of HBsAg- and HBcAg-specific lymphocytes, production of antigen-specific CTL, and activation of endogenous DC were compared between HBV TM vaccinated with either HBsAg- or HBcAg-pulsed DC. Vaccination with HBsAg-pulsed DC induced HBsAg-specific immunity, but failed to induce HBcAg-specific immunity in HBV TM. However, immunization of HBV TM with HBcAg-pulsed DC resulted in: (1) HBsAg negativity, (2) production of anti-HBs, and (3) development of HBsAg- and HBcAg-specific T cells and CTL in the spleen and the liver. Additionally, significantly higher levels of activated endogenous DC were detected in HBV TM immunized with HBcAg-pulsed DC compared to HBsAg-pulsed DC (pdamage suggests that HBcAg should be an integral component of the therapeutic vaccine against CHB. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Hepatitis B Core Antigen in Hepatocytes of Chronic Hepatitis B: Comparison between Indirect Immunofluorescence and Immunoperoxidase Method

    Science.gov (United States)

    Tabassum, Shahina; Al-Mahtab, Mamun; Nessa, Afzalun; Jahan, Munira; Shamim Kabir, Chowdhury Mohammad; Kamal, Mohammad; Cesar Aguilar, Julio

    2015-01-01

    Background Hepatitis B virus (HBV) infection has many faces. Precore and core promoter mutants resemble inactive carrier status. The identification of hepatitis B core antigen (HBcAg) in hepatocytes may have variable clinical significance. The present study was undertaken to detect HBcAg in chronic hepatitis B (CHB) patients and to assess the efficacy of detection system by indirect immunofluorescence (IIF) and indirect immunoperoxidase (IIP). Materials and methods The study was done in 70 chronic HBV-infected patients. Out of 70 patients, eight (11.4%) were hepatitis B e antigen (HBeAg) positive and 62 (88.57%) were HBeAg negative. Hepatitis B core antigen was detected by indirect immunofluorescence (IIF) and indirect immunoperoxidase (IIP) methods in liver tissue. Results All HBeAg positive patients expressed HBcAg by both IIF and IIP methods. Out of 62 patients with HBeAg-negative CHB, HBcAg was detected by IIF in 55 (88.7%) patients and by IIP in 51 (82.26%) patients. A positive relation among viral load and HBcAg detection was also found. This was more evident in the case of HBeAg negative patients and showed a positive relation with HBV DNA levels. Conclusion Hepatitis B core antigen can be detected using the IIF from formalin fixed paraffin block preparation and also by IIP method. This seems to reflect the magnitudes of HBV replication in CHB. How to cite this article Raihan R, Tabassum S, Al-Mahtab M, Nessa A, Jahan M, Kabir CMS, Kamal M, Aguilar JC. Hepatitis B Core Antigen in Hepatocytes of Chronic Hepatitis B: Comparison between Indirect Immunofluorescence and Immunoperoxidase Method. Euroasian J Hepato-Gastroenterol 2015;5(1):7-10. PMID:29201677

  3. Immunogenicity of Recombinant Classic Swine Fever Virus CD8+ T Lymphocyte Epitope and Porcine Parvovirus VP2 Antigen Coexpressed by Lactobacillus casei in Swine via Oral Vaccination ▿

    Science.gov (United States)

    Xu, Yigang; Cui, Lichun; Tian, Changyong; Zhang, Guocai; Huo, Guicheng; Tang, Lijie; Li, Yijing

    2011-01-01

    Classical swine fever virus (CSFV) and porcine parvovirus (PPV) are highly contagious pathogens, resulting in enormous economic losses in pig industries worldwide. Because vaccines play an important role in disease control, researchers are seeking improved vaccines that could induce antiviral immune responses against CSFV and PPV at the mucosal and systemic levels simultaneously. In this study, a genetically engineered Lactobacillus strain coexpressing the CSFV-specific cytotoxic T lymphocyte (CTL) epitope 290 and the VP2 antigen of PPV was developed, and its immunopotentiating capacity as an oral vaccine in pigs was analyzed. The data demonstrated that in the absence of any adjuvant, the recombinant Lactobacillus strain can efficiently stimulate mucosal and systemic CSFV-specific CD8+ CTL responses to protect pigs against CSFV challenge. Moreover, anti-PPV-VP2 serum IgG and mucosal IgA were induced in pigs immunized orally with the recombinant Lactobacillus strain, showing a neutralizing effect on PPV infection. The results suggest that the recombinant Lactobacillus microecological agent may be a valuable component of a strategy for development of a vaccine against CSFV and PPV. PMID:21940406

  4. TCR Down-Regulation Controls Virus-Specific CD8+ T Cell Responses

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte Menné; Haks, Mariëlle; Nielsen, Bodil

    2008-01-01

    The CD3gamma di-leucine-based motif plays a central role in TCR down-regulation. However, little is understood about the role of the CD3gamma di-leucine-based motif in physiological T cell responses. In this study, we show that the expansion in numbers of virus-specific CD8(+) T cells is impaired...... in mice with a mutated CD3gamma di-leucine-based motif. The CD3gamma mutation did not impair early TCR signaling, nor did it compromise recruitment or proliferation of virus-specific T cells, but it increased the apoptosis rate of the activated T cells by increasing down-regulation of the antiapoptotic...... molecule Bcl-2. This resulted in a 2-fold reduction in the clonal expansion of virus-specific CD8(+) T cells during the acute phase of vesicular stomatitis virus and lymphocytic choriomeningitis virus infections. These results identify an important role of CD3gamma-mediated TCR down-regulation in virus...

  5. Hepatitis B virus surface antigen and anti-hepatitis C virus rapid tests underestimate hepatitis prevalence among HIV-infected patients.

    Science.gov (United States)

    Hønge, Bl; Jespersen, S; Medina, C; Té, Ds; da Silva, Zj; Ostergaard, L; Laursen, Al; Wejse, C; Krarup, H; Erikstrup, C

    2014-10-01

    In the case of coinfection with HIV and hepatitis B virus (HBV) and/or hepatitis C virus (HCV), hepatic disease progression is often accelerated, with higher rates of liver cirrhosis and liver-related mortality. We aimed to evaluate the performance of the rapid tests used routinely to detect HBV surface antigen (HBsAg) and anti-HCV among HIV-infected patients in Guinea-Bissau. Blood samples from HIV-infected patients in Guinea-Bissau were stored after testing for HBsAg and anti-HCV with rapid tests. Samples were subsequently re-tested for HBsAg and anti-HCV in Denmark. Two rapid tests were used in Guinea-Bissau: HBsAg Strip Ref 2034 (VEDA.LAB, Alençon, France; sensitivity 62.3%; specificity 99.2%) and HEPA-SCAN (Bhat Bio-Tech, Bangalore, India; sensitivity 57.1%; specificity 99.7%). In the two tests the ability to obtain the correct outcome depended on the antigen and antibody concentrations, respectively. Sex, age, CD4 cell count and antiretroviral therapy status did not differ between false negative and true positive samples in either of the tests. The study is limited by a low number of anti-HCV positive samples. New diagnostic rapid tests should always be evaluated in the setting in which they will be used before implementation. © 2014 British HIV Association.

  6. Redirecting T cells to eradicate B-cell acute lymphoblastic leukemia: bispecific T-cell engagers and chimeric antigen receptors.

    Science.gov (United States)

    Aldoss, I; Bargou, R C; Nagorsen, D; Friberg, G R; Baeuerle, P A; Forman, S J

    2017-04-01

    Recent advances in antibody technology to harness T cells for cancer immunotherapy, particularly in the difficult-to-treat setting of relapsed/refractory acute lymphoblastic leukemia (r/r ALL), have led to innovative methods for directing cytotoxic T cells to specific surface antigens on cancer cells. One approach involves administration of soluble bispecific (or dual-affinity) antibody-based constructs that temporarily bridge T cells and cancer cells. Another approach infuses ex vivo-engineered T cells that express a surface plasma membrane-inserted antibody construct called a chimeric antigen receptor (CAR). Both bispecific antibodies and CARs circumvent natural target cell recognition by creating a physical connection between cytotoxic T cells and target cancer cells to activate a cytolysis signaling pathway; this connection allows essentially all cytotoxic T cells in a patient to be engaged because typical tumor cell resistance mechanisms (such as T-cell receptor specificity, antigen processing and presentation, and major histocompatibility complex context) are bypassed. Both the bispecific T-cell engager (BiTE) antibody construct blinatumomab and CD19-CARs are immunotherapies that have yielded encouraging remission rates in CD19-positive r/r ALL, suggesting that they might serve as definitive treatments or bridging therapies to allogeneic hematopoietic cell transplantation. With the introduction of these immunotherapies, new challenges arise related to unique toxicities and distinctive pathways of resistance. An increasing body of knowledge is being accumulated on how to predict, prevent, and manage such toxicities, which will help to better stratify patient risk and tailor treatments to minimize severe adverse events. A deeper understanding of the precise mechanisms of action and immune resistance, interaction with other novel agents in potential combinations, and optimization in the manufacturing process will help to advance immunotherapy outcomes in the r

  7. Detection of Immune-Complex Dissociated Nonstructural-1 (NS-1) Antigen in Patients with Acute Dengue Virus Infections

    NARCIS (Netherlands)

    P. Koraka (Penelope); C.P. Burghoorn-Maas; A. Falconar; T.E. Setiati (Tatty); K. Djamiatun; J. Groen (Jan); A.D.M.E. Osterhaus (Albert)

    2003-01-01

    textabstractAccurate and timely diagnosis of dengue virus (DEN) infections is essential for the differential diagnosis of patients with febrile illness and hemorrhagic fever. In the present study, the diagnostic value of a newly developed immune-complex dissociated nonstructural-1 (NS-1) antigen dot

  8. Development and Evaluation of a Rapid Antigen Detection and Serotyping Lateral Flow Antigen Detection System for Foot-and-Mouth Disease Virus.

    Directory of Open Access Journals (Sweden)

    Kazuki Morioka

    Full Text Available We developed a lateral flow strip using monoclonal antibodies (MAbs which allows for rapid antigen detection and serotyping of foot-and-mouth disease virus (FMDV. This FMDV serotyping strip was able to detect all 7 serotypes and distinguish serotypes O, A, C and Asia1. Its sensitivities ranged from 10(3 to 10(4 of a 50% tissue culture infectious dose of each FMDV stain; this is equal to those of the commercial product Svanodip (Boehringer Ingelheim Svanova, Uppsala, Sweden, which can detect all seven serotypes of FMDV, but does not distinguish them. Our evaluation of the FMDV serotyping strip using a total of 118 clinical samples (vesicular fluids, vesicular epithelial emulsions and oral and/or nasal swabs showed highly sensitive antigen detection and accuracy in serotyping in accordance with ELISA or RT-PCR. To the best of our knowledge, this is the first report on any FMDV serotyping strip that provides both rapid antigen detection and serotyping of FMDV at the same time on one strip without extra devices. This method will be useful in both FMD-free countries and FMD-infected countries, especially where laboratory diagnosis cannot be carried out.

  9. Increased expression of the regulatory T cell-associated marker CTLA-4 in bovine leukemia virus infection.

    Science.gov (United States)

    Suzuki, Saori; Konnai, Satoru; Okagawa, Tomohiro; Ikebuchi, Ryoyo; Nishimori, Asami; Kohara, Junko; Mingala, Claro N; Murata, Shiro; Ohashi, Kazuhiko

    2015-02-15

    Regulatory T cells (Tregs) play a critical role in the maintenance of the host's immune system. Tregs, particularly CD4(+)CD25(+)Foxp3(+) T cells, have been reported to be involved in the immune evasion mechanism of tumors and several pathogens that cause chronic infections. Recent studies showed that a Treg-associated marker, cytotoxic T-lymphocyte antigen 4 (CTLA-4), is closely associated with the progression of several diseases. We recently reported that the proportion of Foxp3(+)CD4(+) cells was positively correlated with the number of lymphocytes, virus titer, and virus load but inversely correlated with IFN-γ expression in cattle infected with bovine leukemia virus (BLV), which causes chronic infection and lymphoma in its host. Here the kinetics of CTLA-4(+) cells were analyzed in BLV-infected cattle. CTLA-4 mRNA was predominantly expressed in CD4(+) T cells in BLV-infected cattle, and the expression was positively correlated with Foxp3 mRNA expression. To test for differences in the protein expression level of CTLA-4, we measured the proportion of CTLA-4-expressing cells by flow cytometry. In cattle with persistent lymphocytosis (PL), mean fluorescence intensities (MFIs) of CTLA-4 on CD4(+) and CD25(+) T cells were significantly increased compared with that in control and aleukemic (AL) cattle. The percentage of CTLA-4(+) cells in the CD4(+) T cell subpopulation was positively correlated with TGF-β mRNA expression, suggesting that CD4(+)CTLA-4(+) T cells have a potentially immunosuppressive function in BLV infection. In the limited number of cattle that were tested, the anti-CTLA-4 antibody enhanced the expression of CD69, IL-2, and IFN-γ mRNA in anti-programmed death ligand 1 (PD-L1) antibody-treated peripheral blood mononuclear cells from BLV-infected cattle. Together with previous findings, the present results indicate that Tregs may be involved in the inhibition of T cell function during BLV infection. Copyright © 2014 Elsevier B.V. All rights

  10. Limited transplantation of antigen-expressing hematopoietic stem cells induces long-lasting cytotoxic T cell responses.

    Directory of Open Access Journals (Sweden)

    Warren L Denning

    2011-02-01

    Full Text Available Harnessing the ability of cytotoxic T lymphocytes (CTLs to recognize and eradicate tumor or pathogen-infected cells is a critical goal of modern immune-based therapies. Although multiple immunization strategies efficiently induce high levels of antigen-specific CTLs, the initial increase is typically followed by a rapid contraction phase resulting in a sharp decline in the frequency of functional CTLs. We describe a novel approach to immunotherapy based on a transplantation of low numbers of antigen-expressing hematopoietic stem cells (HSCs following nonmyeloablative or partially myeloablative conditioning. Continuous antigen presentation by a limited number of differentiated transgenic hematopoietic cells results in an induction and prolonged maintenance of fully functional effector T cell responses in a mouse model. Recipient animals display high levels of antigen-specific CTLs four months following transplantation in contrast to dendritic cell-immunized animals in which the response typically declines at 4-6 weeks post-immunization. Majority of HSC-induced antigen-specific CD8+ T cells display central memory phenotype, efficiently kill target cells in vivo, and protect recipients against tumor growth in a preventive setting. Furthermore, we confirm previously published observation that high level engraftment of antigen-expressing HSCs following myeloablative conditioning results in tolerance and an absence of specific cytotoxic activity in vivo. In conclusion, the data presented here supports potential application of immunization by limited transplantation of antigen-expressing HSCs for the prevention and treatment of cancer and therapeutic immunization of chronic infectious diseases such as HIV-1/AIDS.

  11. Molecular and antigenic characteristics of Newcastle disease virus isolates from domestic ducks in China.

    Science.gov (United States)

    Wu, Wei; Liu, Huairan; Zhang, Tingting; Han, Zongxi; Jiang, Yanyu; Xu, Qianqian; Shao, Yuhao; Li, Huixin; Kong, Xiangang; Chen, Hongyan; Liu, Shengwang

    2015-06-01

    Newcastle disease (ND) is one of the most devastating diseases to the poultry industry. The causative agents of ND are virulent strains of Newcastle disease virus (NDV), which are members of the genus Avulavirus within the family Paramyxoviridae. Waterfowl, such as ducks and geese, are generally considered potential reservoirs of NDV and may show few or no clinical signs when infected with viruses that are obviously virulent in chickens. However, ND outbreaks in domestic waterfowl have been frequently reported in many countries in the past decade. In this study, 18 NDV strains isolated from domestic ducks in southern and eastern China, between 2005 and 2013, were genetically and phylogenetically characterized. The complete genomes of these strains were sequenced, and they exhibited genome sizes of 15,186 nucleotides (nt), 15,192 nt, and 15,198 nt, which follow the "rule of six" that is required for the replication of NDV strains. Based on the cleavage site of the F protein and pathogenicity tests in chickens, 17 of our NDV isolates were categorized as lentogenic viruses, and one was characterized as a velogenic virus. Phylogenetic analysis based on the partial sequences of the F gene and the complete genome sequences showed that there are at least four genotypes of NDV circulating in domestic ducks; GD1, AH224, and AH209 belong to genotypes VIId, Ib, and II of class II NDVs, respectively, and the remaining 15 isolates belong to genotype 1b of class I NDVs. Cross-reactive hemagglutination inhibition tests demonstrated that the antigenic relatedness between NDV strains may be associated with their genotypes, rather than their hosts. These results suggest that though those NDV isolates were from duck, they still don't form a phylogenetic group because they came from the same species; however, they may play an important role in promoting the evolution of NDVs. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Friend and Moloney murine leukemia viruses specifically recombine with different endogenous retroviral sequences to generate mink cell focus-forming viruses.

    Science.gov (United States)

    Evans, L H; Cloyd, M W

    1985-01-01

    A group of mink cell focus-forming (MCF) viruses was derived by inoculation of NFS/N mice with Moloney murine leukemia virus (Mo-MuLV 1387) and was compared to a similarly derived group of MCF viruses from mice inoculated with Friend MuLV (Fr-MuLV 57). Antigenic analyses using monoclonal antibodies specific for MCF virus and xenotropic MuLV envelope proteins and genomic structural analyses by RNase T1-resistant oligonucleotide finger-printing indicated that the Moloney and Friend MCF viruses arose by recombination of the respective ecotropic MuLVs with different endogenous retrovirus sequences of NFS mice.

  13. Long-term persistence and function of hematopoietic stem cell-derived chimeric antigen receptor T cells in a nonhuman primate model of HIV/AIDS.

    Directory of Open Access Journals (Sweden)

    Anjie Zhen

    2017-12-01

    Full Text Available Chimeric Antigen Receptor (CAR T-cells have emerged as a powerful immunotherapy for various forms of cancer and show promise in treating HIV-1 infection. However, significant limitations are persistence and whether peripheral T cell-based products can respond to malignant or infected cells that may reappear months or years after treatment remains unclear. Hematopoietic Stem/Progenitor Cells (HSPCs are capable of long-term engraftment and have the potential to overcome these limitations. Here, we report the use of a protective CD4 chimeric antigen receptor (C46CD4CAR to redirect HSPC-derived T-cells against simian/human immunodeficiency virus (SHIV infection in pigtail macaques. CAR-containing cells persisted for more than 2 years without any measurable toxicity and were capable of multilineage engraftment. Combination antiretroviral therapy (cART treatment followed by cART withdrawal resulted in lower viral rebound in CAR animals relative to controls, and demonstrated an immune memory-like response. We found CAR-expressing cells in multiple lymphoid tissues, decreased tissue-associated SHIV RNA levels, and substantially higher CD4/CD8 ratios in the gut as compared to controls. These results show that HSPC-derived CAR T-cells are capable of long-term engraftment and immune surveillance. This study demonstrates for the first time the safety and feasibility of HSPC-based CAR therapy in a large animal preclinical model.

  14. Perinatal hepatitis B virus detection by hepatitis B virus-DNA analysis.

    OpenAIRE

    De Virgiliis, S; Frau, F; Sanna, G; Turco, M P; Figus, A L; Cornacchia, G; Cao, A

    1985-01-01

    Maternal transmission of hepatitis B virus infection in relation to the hepatitis B e antigen/antibody system and serum hepatitis B virus-DNA were evaluated. Results indicate that hepatitis B virus-DNA analysis can identify hepatitis B serum antigen positive mothers who may transmit infection to their offspring.

  15. A canine distemper model of virus-induced anergy.

    Science.gov (United States)

    Mangi, R J; Munyer, T P; Krakowka, S; Jacoby, R O; Kantor, F S

    1976-05-01

    For development of an animal model of virus-induced anergy, the effect of canine distemper virus (CDV) upon cell-mediated immunity in dogs was investigated. First, canine cutaneous reactions and in vitro lymphocyte responses to soluble protein antigens were characterized. Dogs immunized with picryl guinea pig albumin and with keyhole limpet hemocyanin (both in complete Freund's adjuvant) responded reproducibly to intracutaneous challenge with these antigens. Reactivity peaked in 20-40 days (maximal induration, 6-50 mm). Lymphocytes from these animals responded in vitro to stimulation with keyhole limpet hemocyanin or purified protein derivative. This stimulation was antigen-specific and was maximal on day 6 of culture. Infection with CDV depressed cutaneous reactivity and lymphocyte response in vitro to antigens and mitogens. This effect was transient in animals previously vaccinated with attenuated CDV; however, gnotobiotic puppies (susceptible to CDV) had prolonged depression of cell-mediated immunity and lymphopenia. Some of these animals developed neurologic symptoms and died. The findings indicate that CDV infection is a potentially useful model for study of virus-induced depression of T (thymus)-cell responses and support the hypothesis that there is more than one mechanism responsible for this phenomenon.

  16. Seroprevalence of Toxoplasma gondii and concurrent Bartonella spp., feline immunodeficiency virus, feline leukemia virus, and Dirofilaria immitis infections in Egyptian cats.

    Science.gov (United States)

    Al-Kappany, Y M; Lappin, M R; Kwok, O C H; Abu-Elwafa, S A; Hilali, M; Dubey, J P

    2011-04-01

    Toxoplasma gondii and Bartonella spp. are zoonotic pathogens of cats. Feline immunodeficiency virus (FIV) and feline leukemia virus (FeLv) are related to human immunodeficiency virus and human leukemia virus, respectively, and these viruses are immunosuppressive. In the present study, the prevalence of antibodies to T. gondii , Bartonella spp., FIV, as well as FeLv and Dirofilaria immitis antigens was determined in sera from feral cats (Felis catus) from Cairo, Egypt. Using a modified agglutination test, antibodies to T. gondii were found in 172 (95.5%) of the 180 cats with titers of 1∶5 in 9, 1∶10 in 9, 1∶20 in 3, 1∶40 in 5, 1∶80 in 5, 1∶160 in 15, 1∶320 in 22, and 1∶640 or higher in 104. Thus, 57.4% had high T. gondii titers. Antibodies to Bartonella spp. were found in 105 (59.6%) of 178, with titers of 1∶64 in 45, 1∶128 in 39, 1∶256 in 13, 1∶512 in 3, 1∶1,024 in 4, and 1∶2,048 in 1 cat. Antibodies to FIV were detected in 59 (33.9%) of 174 cats. Of 174 cats tested, antigens to FeLv, and D. immitis were detected in 8 (4.6%) and 6 (3.4%) cats, respectively. The results indicate a high prevalence of T. gondii, Bartonella spp., and FIV infections in cats from Cairo, Egypt. This is the first report of Bartonella spp., and D. immitis infection in cats in Egypt.

  17. T cell epitopes on the 36K and 65K Mycobacterium leprae antigens defined by human T cell clones

    NARCIS (Netherlands)

    van Schooten, W. C.; Ottenhoff, T. H.; Klatser, P. R.; Thole, J.; de Vries, R. R.; Kolk, A. H.

    1988-01-01

    To identify the molecular localization and specificity of Mycobacterium leprae antigenic determinants inducing T cell activation, we studied the reactivity of M. leprae-reactive T cell clones from two tuberculoid leprosy patients towards a battery of different mycobacterial strains and purified

  18. Novel Functions for Glycosyltransferases Jhp0562 and GalT in Lewis Antigen Synthesis and Variation in Helicobacter pylori

    OpenAIRE

    Pohl, Mary Ann; Kienesberger, Sabine; Blaser, Martin J.

    2012-01-01

    Lewis (Le) antigens are fucosylated oligosaccharides present in the Helicobacter pylori lipopolysaccharide. Expression of these antigens is believed to be important for H. pylori colonization, since Le antigens also are expressed on the gastric epithelia in humans. A galactosyltransferase encoded by β-(1,3)galT is essential for production of type 1 (Lea and Leb) antigens. The upstream gene jhp0562, which is present in many but not all H. pylori strains, is homologous to β-(1,3)galT but is of ...

  19. Evaluation of twenty rapid antigen tests for the detection of human influenza A H5N1, H3N2, H1N1, and B viruses.

    Science.gov (United States)

    Taylor, Janette; McPhie, Kenneth; Druce, Julian; Birch, Chris; Dwyer, Dominic E

    2009-11-01

    Twenty rapid antigen assays were compared for their ability to detect influenza using dilutions of virus culture supernatants from human isolates of influenza A H5N1 (clade 1 and 2 strains), H3N2 and H1N1 viruses, and influenza B. There was variation amongst the rapid antigen assays in their ability to detect different influenza viruses. Six of the 12 assays labeled as distinguishing between influenza A and B had comparable analytical sensitivities for detecting both influenza A H5N1 strains, although their ability to detect influenza A H3N2 and H1N1 strains varied. The two assays claiming H5 specificity did not detect either influenza A H5N1 strains, and the two avian influenza-specific assays detected influenza A H5N1, but missed some influenza A H3N2 virus supernatants. Clinical trials of rapid antigen tests for influenza A H5N1 are limited. For use in a pandemic where novel influenza strains are circulating (such as the current novel influenza A H1N1 09 virus), rapid antigen tests should ideally have comparable sensitivity and specificity for the new strains as for co-circulating seasonal influenza strains.

  20. Breadth of T cell responses after immunization with adenovirus vectors encoding ancestral antigens or polyvalent papillomavirus antigens

    DEFF Research Database (Denmark)

    Ragonnaud, Emeline; Pedersen, Anders Gorm; Holst, Peter Johannes

    2017-01-01

    to the other PV proteins. The PV sequences were fused to a T cell adjuvant, the murine invariant chain and encoded in a recombinant adenoviral vector which was administered to naïve outbred mice. By measuring T cell responses induced by these different vaccines and towards peptide pools representing 3...... circulating strains and a putative ancestor of oncogenic HPVs, we showed that the ancestral vaccine antigen has to be approximately 90% identical to the circulating PVs before a marked drop of ~90% mean CD8+ T cell responses ensues. Interestingly, the combination of two or three type-specific PV vaccines did...

  1. Virus-induced asthma attack: The importance of allergic inflammation in response to viral antigen in an animal model of asthma.

    Science.gov (United States)

    Skappak, Christopher; Ilarraza, Ramses; Wu, Ying-Qi; Drake, Matthew G; Adamko, Darryl J

    2017-01-01

    Asthma exacerbation can be a life-threatening condition, and is most often triggered by common respiratory viruses. Poor asthma control and worsening of respiratory function is associated with increased airway inflammation, including eosinophilia. Prevention of asthma exacerbation relies on treatment with corticosteroids, which preferentially inhibit allergic inflammation like eosinophils. Human studies demonstrate that inactivated virus can trigger eosinophil activation in vitro through antigen presentation and memory CD4+ lymphocytes. We hypothesized that animals with immunologic memory to a respiratory virus would also develop airway hyperresponsiveness in response to a UV-inactivated form of the virus if they have pre-existing allergic airway inflammation. Guinea pigs were ovalbumin-sensitized, infected with live parainfluenza virus (PIV), aerosol-challenged with ovalbumin, and then re-inoculated 60 days later with live or UV-inactivated PIV. Some animals were either treated with dexamethasone prior to the second viral exposure. Lymphocytes were isolated from parabronchial lymph nodes to confirm immunologic memory to the virus. Airway reactivity was measured and inflammation was assessed using bronchoalveolar lavage and lung histology. The induction of viral immunologic memory was confirmed in infected animals. Allergen sensitized and challenged animals developed airway hyperreactivity with eosinophilic airway inflammation when re-exposed to UV-inactivated PIV, while non-sensitized animals did not. Airway hyperreactivity in the sensitized animals was inhibited by pre-treatment with dexamethasone. We suggest that the response of allergic inflammation to virus antigen is a significant factor causing asthma exacerbation. We propose that this is one mechanism explaining how corticosteroids prevent virus-induced asthma attack.

  2. Evaluation of virus removal efficiency of coagulation-sedimentation and rapid sand filtration processes in a drinking water treatment plant in Bangkok, Thailand.

    Science.gov (United States)

    Asami, Tatsuya; Katayama, Hiroyuki; Torrey, Jason Robert; Visvanathan, Chettiyappan; Furumai, Hiroaki

    2016-09-15

    In order to properly assess and manage the risk of infection by enteric viruses in tap water, virus removal efficiency should be evaluated quantitatively for individual processes in actual drinking water treatment plants (DWTPs); however, there have been only a few studies due to technical difficulties in quantifying low virus concentration in water samples. In this study, the removal efficiency of indigenous viruses was evaluated for coagulation-sedimentation (CS) and rapid sand filtration (RSF) processes in a DWTP in Bangkok, Thailand by measuring the concentration of viruses before and after treatment processes using real-time polymerase chain reaction (qPCR). Water samples were collected and concentrated from raw source water, after CS, and after RSF, and inhibitory substances in water samples were reduced by use of a hydrophobic resin (DAX-8). Pepper mild mottle virus (PMMoV) and JC polyomavirus (JC PyV) were found to be highly prevalent in raw waters, with concentrations of 10(2.88 ± 0.35) and 10(3.06 ± 0.42) copies/L (geometric mean ± S.D.), respectively. Step-wise removal efficiencies were calculated for individual processes, with some variation observed between wet and dry seasons. During the wet season, PMMoV was removed less by CS and more by RSF on average (0.40 log10 vs 1.26 log10, respectively), while the reverse was true for JC PyV (1.91 log10 vs 0.49 log10, respectively). Both viruses were removed similarly during the dry season, with CS removing the most virus (PMMoV, 1.61 log10 and 0.78 log10; JC PyV, 1.70 log10, and 0.59 log10; CS and RSF, respectively). These differences between seasons were potentially due to variations in raw water quality and the characteristics of the viruses themselves. These results suggest that PMMoV and JC PyV, which are more prevalent in environmental waters than the other enteric viruses evaluated in this study, could be useful in determining viral fate for the risk management of viruses in water treatment

  3. T cells expressing VHH-directed oligoclonal chimeric HER2 antigen receptors

    DEFF Research Database (Denmark)

    Jamnani, Fatemeh Rahimi; Rahbarizadeh, Fatemeh; Shokrgozar, Mohammad Ali

    2014-01-01

    Adoptive cell therapy with engineered T cells expressing chimeric antigen receptors (CARs) originated from antibodies is a promising strategy in cancer immunotherapy. Several unsuccessful trials, however, highlight the need for alternative conventional binding domains and the better combination...

  4. Isolation and characterization of antigen-Ia complexes involved in T cell recognition

    DEFF Research Database (Denmark)

    Buus, S; Sette, A; Colon, S M

    1986-01-01

    Using equilibrium dialysis, it has been previously demonstrated that immunogenic peptides bind specifically to the Ia molecules serving as restriction elements in the immune response to these antigens. Using gel filtration to study the formation of ovalbumin (OVA) peptide-I-Ad complexes, it is he......Using equilibrium dialysis, it has been previously demonstrated that immunogenic peptides bind specifically to the Ia molecules serving as restriction elements in the immune response to these antigens. Using gel filtration to study the formation of ovalbumin (OVA) peptide-I-Ad complexes...... with glutaraldehyde revealed that the ovalbumin peptide was cross-linked solely to the alpha chain of I-Ad. Planar membranes containing I-Ad-OVA complexes stimulated a T cell response with 2 X 10(4) less antigen than required when uncomplexed antigen was used, thus demonstrating the biologic importance...

  5. ImmunoChip study implicates antigen presentation to T cells in narcolepsy.

    Directory of Open Access Journals (Sweden)

    Juliette Faraco

    Full Text Available Recent advances in the identification of susceptibility genes and environmental exposures provide broad support for a post-infectious autoimmune basis for narcolepsy/hypocretin (orexin deficiency. We genotyped loci associated with other autoimmune and inflammatory diseases in 1,886 individuals with hypocretin-deficient narcolepsy and 10,421 controls, all of European ancestry, using a custom genotyping array (ImmunoChip. Three loci located outside the Human Leukocyte Antigen (HLA region on chromosome 6 were significantly associated with disease risk. In addition to a strong signal in the T cell receptor alpha (TRA@, variants in two additional narcolepsy loci, Cathepsin H (CTSH and Tumor necrosis factor (ligand superfamily member 4 (TNFSF4, also called OX40L, attained genome-wide significance. These findings underline the importance of antigen presentation by HLA Class II to T cells in the pathophysiology of this autoimmune disease.

  6. Early Increases in Superantigen-Specific Foxp3+ Regulatory T Cells during Mouse Mammary Tumor Virus Infection▿ †

    Science.gov (United States)

    Cabrera, Gabriel; Burzyn, Dalia; Mundiñano, Juliana; Courreges, M. Cecilia; Camicia, Gabriela; Lorenzo, Daniela; Costa, Héctor; Ross, Susan R.; Nepomnaschy, Irene; Piazzon, Isabel

    2008-01-01

    Mouse mammary tumor virus (MMTV) is a milk-borne betaretrovirus that has developed strategies to exploit and subvert the host immune system. Here, we show in a natural model of MMTV infection that the virus causes early and progressive increases in superantigen (SAg)-specific Foxp3+ regulatory T cells (Treg) in Peyer's patches (PP). These increases were shown to be dependent on the presence of dendritic cells. CD4+ CD25+ T cells from the PP of infected mice preferentially suppress the proliferative response of T cells to SAg-expressing antigen-presenting cells ex vivo. We investigated the influence of the depletion of CD25+ cells at different stages of the infection. When CD25+ cells were depleted before MMTV infection, an increase in the number of PP SAg-cognate Foxp3− T cells was found at day 6 of infection. Since the SAg response is associated with viral amplification, the possibility exists that Treg cells attenuate the increase in viral load at the beginning of the infection. In contrast, depletion of CD25+ cells once the initial SAg response has developed caused a lower viral load, suggesting that at later stages Treg cells may favor viral persistence. Thus, our results indicated that Treg cells play an important and complex role during MMTV infection. PMID:18495774

  7. Identifying antigenicity-associated sites in highly pathogenic H5N1 influenza virus hemagglutinin by using sparse learning.

    OpenAIRE

    Cai, Zhipeng; Yang, Jialiang; Zhang, Tong; Long, Li-Ping; Boon, Adrianus C; Webby, Richard J; Wan, Xiu-Feng

    2012-01-01

    Since the isolation of A/goose/Guangdong/1/1996 (H5N1) in farmed geese in southern China, highly pathogenic H5N1 avian influenza viruses have posed a continuous threat to both public and animal health. The non-synonymous mutation of the H5 hemagglutinin (HA) gene has resulted in antigenic drift, leading to difficulties in both clinical diagnosis and vaccine strain selection. Characterizing H5N1's antigenic profiles would help resolve these problems. In this study, a novel sparse learning meth...

  8. Asymmetric Arginine dimethylation of Epstein-Barr virus nuclear antigen 2 promotes DNA targeting

    International Nuclear Information System (INIS)

    Gross, Henrik; Barth, Stephanie; Palermo, Richard D.; Mamiani, Alfredo; Hennard, Christine; Zimber-Strobl, Ursula; West, Michelle J.; Kremmer, Elisabeth; Graesser, Friedrich A.

    2010-01-01

    The Epstein-Barr virus (EBV) growth-transforms B-lymphocytes. The virus-encoded nuclear antigen 2 (EBNA2) is essential for transformation and activates gene expression by association with DNA-bound transcription factors such as RBPJκ (CSL/CBF1). We have previously shown that EBNA2 contains symmetrically dimethylated Arginine (sDMA) residues. Deletion of the RG-repeat results in a reduced ability of the virus to immortalise B-cells. We now show that the RG repeat also contains asymmetrically dimethylated Arginines (aDMA) but neither non-methylated (NMA) Arginines nor citrulline residues. We demonstrate that only aDMA-containing EBNA2 is found in a complex with DNA-bound RBPJκ in vitro and preferentially associates with the EBNA2-responsive EBV C, LMP1 and LMP2A promoters in vivo. Inhibition of methylation in EBV-infected cells results in reduced expression of the EBNA2-regulated viral gene LMP1, providing additional evidence that methylation is a prerequisite for DNA-binding by EBNA2 via association with the transcription factor RBPJκ.

  9. Dynamic imaging of experimental Leishmania donovani-induced hepatic granulomas detects Kupffer cell-restricted antigen presentation to antigen-specific CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Lynette Beattie

    2010-03-01

    Full Text Available Kupffer cells (KCs represent the major phagocytic population within the liver and provide an intracellular niche for the survival of a number of important human pathogens. Although KCs have been extensively studied in vitro, little is known of their in vivo response to infection and their capacity to directly interact with antigen-specific CD8(+ T cells. Here, using a combination of approaches including whole mount and thin section confocal microscopy, adoptive cell transfer and intra-vital 2-photon microscopy, we demonstrate that KCs represent the only detectable population of mononuclear phagocytes within granulomas induced by Leishmania donovani infection that are capable of presenting parasite-derived peptide to effector CD8(+ T cells. This restriction of antigen presentation to KCs within the Leishmania granuloma has important implications for the identification of new candidate vaccine antigens and for the design of novel immuno-therapeutic interventions.

  10. Antigen recognition by cloned cytotoxic T lymphocytes follows rules predicted by the altered-self hypothesis

    International Nuclear Information System (INIS)

    Huenig, T.R.; Bevan, M.J.

    1982-01-01

    Radiation chimeras prepared by injecting H-2 heterozygous F1 stem cells into lethally irradiated parental hosts show a marked, but not absolute, preference for host-type H-2 antigens in the H-2-restricted cytotoxic T lymphocyte (CTL) response to minor histocompatibility (minor H) antigens. We have selected for the anti-minor HCTL that are restricted to the parental H-2 type absent from the chimeric host and found that in two out of eight cases, such CTL lysed target cells of either parental H-2 type. From one of these CTL populations that lysed H-2d and H-2k target cells expressing BALB minor H antigens, clones were derived and further analyzed. The results showed that: (a) lysis of both H-2d and H-2k target cells was H-2 restricted; (b) H-2d restriction mapped to Dd, and H-2k restriction mapped to Kk; (c) testing against various H-2d and H-2k strains of different and partially overlapping minor H backgrounds as well as against the appropriate F1 crosses revealed that in Dd- and Kk-restricted killing, different minor H antigens were recognized. In a second system, a CTL population was selected from normal (H-2d x H-2k)F1 mice that was specific for H-2d plus minor H antigens and for H-2k plus trinitrophenylated bovine serum albumin. We interpret these findings in terms of the altered-self hypothesis: The association of one H-2 antigen with one conventional antigen X may be recognized by the same T cell receptor specific for the complex formed by a different H-2 antigen in association with a second conventional antigen Y. The implications of these observations for the influence of self H-2 on the generation of the T cell receptor repertoire are discussed

  11. T cell receptor-transgenic primary T cells as a tool for discovery of leukaemia-associated antigens

    NARCIS (Netherlands)

    Ivanov, R.; Hol, S.; Aarts, T. I.; Hagenbeek, A.; Ebeling, S. B.

    2006-01-01

    Identification of a broad array of leukaemia-associated antigens is a crucial step towards immunotherapy of haematological malignancies. However, it is frequently hampered by the decrease of proliferative potential and functional activity of T cell clones used for screening procedures. Transfer of

  12. Benefit of Hepatitis C Virus Core Antigen Assay in Prediction of Therapeutic Response to Interferon and Ribavirin Combination Therapy

    OpenAIRE

    Takahashi, Masahiko; Saito, Hidetsugu; Higashimoto, Makiko; Atsukawa, Kazuhiro; Ishii, Hiromasa

    2005-01-01

    A highly sensitive second-generation hepatitis C virus (HCV) core antigen assay has recently been developed. We compared viral disappearance and first-phase kinetics between commercially available core antigen (Ag) assays, Lumipulse Ortho HCV Ag (Lumipulse-Ag), and a quantitative HCV RNA PCR assay, Cobas Amplicor HCV Monitor test, version 2 (Amplicor M), to estimate the predictive benefit of a sustained viral response (SVR) and non-SVR in 44 genotype 1b patients treated with interferon (IFN) ...

  13. Combined local and systemic immunization is essential for durable T-cell mediated heterosubtypic immunity against influenza A virus

    DEFF Research Database (Denmark)

    Uddbäck, Ida Elin Maria; Pedersen, Line M I; Pedersen, Sara R

    2016-01-01

    nucleoprotein have previously been found to induce short-term protection in mice. In this study we confirm that systemic (subcutaneous (s.c.) immunization rapidly induced heterosubtypic protection predominantly mediated by CD8 T cells, but within three months clinical protection completely disappeared. Local......The threat from unpredictable influenza virus pandemics necessitates the development of a new type of influenza vaccine. Since the internal proteins are highly conserved, induction of T cells targeting these antigens may provide the solution. Indeed, adenoviral (Ad) vectors expressing flu...... (intranasal (i.n.)) immunization elicited delayed, but more lasting protection despite relatively inefficient immunization. However, by far, the most robust protection was induced by simultaneous, combined (i.n. + s.c.) vaccination, and, notably, in this case clinical protection lasted at least 8 months...

  14. Vitamin D controls T cell antigen receptor signaling and activation of human T cells

    DEFF Research Database (Denmark)

    von Essen, Marina Rode; Kongsbak-Wismann, Martin; Schjerling, Peter

    2010-01-01

    Phospholipase C (PLC) isozymes are key signaling proteins downstream of many extracellular stimuli. Here we show that naive human T cells had very low expression of PLC-gamma1 and that this correlated with low T cell antigen receptor (TCR) responsiveness in naive T cells. However, TCR triggering...... led to an upregulation of approximately 75-fold in PLC-gamma1 expression, which correlated with greater TCR responsiveness. Induction of PLC-gamma1 was dependent on vitamin D and expression of the vitamin D receptor (VDR). Naive T cells did not express VDR, but VDR expression was induced by TCR...... signaling via the alternative mitogen-activated protein kinase p38 pathway. Thus, initial TCR signaling via p38 leads to successive induction of VDR and PLC-gamma1, which are required for subsequent classical TCR signaling and T cell activation....

  15. Evaluation of five hepatitis delta virus marker assays for detection of antigen and antibody.

    OpenAIRE

    Bezeaud, A; Rosenswajg, M; Guillin, M C

    1989-01-01

    Five commercially available assays for hepatitis delta (HD) virus markers were compared for sensitivity, specificity, and reproducibility: three assays for antibody (anti-HD), provided by Diagnostics Pasteur, Organon Teknika, and Abbott Laboratories, and two assays for antigen (HD Ag), from Pasteur and Organon Teknika. The assay from Organon Teknika is the less sensitive assay for anti-HD detection. Although the sensitivities of the Pasteur and Abbott assays for anti-HD detection are similar,...

  16. Analysis of the T Cell Response to Zika Virus and Identification of a Novel CD8+ T Cell Epitope in Immunocompetent Mice.

    Directory of Open Access Journals (Sweden)

    Ryan D Pardy

    2017-02-01

    Full Text Available Zika virus (ZIKV is an emerging arbovirus of the Flaviviridae family. Although ZIKV infection is typically mild and self-limiting in healthy adults, infection has been associated with neurological symptoms such as Guillain-Barré syndrome, and a causal link has been established between fetal microcephaly and ZIKV infection during pregnancy. These risks, and the magnitude of the ongoing ZIKV pandemic, have created an urgent need for the development of animal models to study the immune response to ZIKV infection. Previous animal models have primarily focused on pathogenesis in immunocompromised mice. In this study, we provide a model of ZIKV infection in wild-type immunocompetent C57BL/6 mice, and have provided an analysis of the immune response to infection. We evaluated the activation of several innate immune cell types, and studied the kinetics, phenotype, and functionality of T cell responses to ZIKV infection. Our results demonstrate that ZIKV infection is mild in wild-type immunocompetent C57BL/6 mice, resulting in minimal morbidity. Our data establish that at the peak of the adaptive response, antigen-experienced CD4+ T cells polarize to a Th1 phenotype, and antigen-experienced CD8+ T cells exhibit an activated effector phenotype, producing both effector cytokines and cytolytic molecules. Furthermore, we have identified a novel ZIKV CD8+ T cell epitope in the envelope protein that is recognized by the majority of responding cells. Our model provides an important reference point that will help dissect the impact of polymorphisms in the circulating ZIKV strains on the immune response and ZIKV pathogenesis. In addition, the identification of a ZIKV epitope will allow for the design of tetramers to study epitope-specific T cell responses, and will have important implications for the design and development of ZIKV vaccine strategies.

  17. Antigenic, genetic, and pathogenic characterization of H5N1 highly pathogenic avian influenza viruses isolated from dead whooper swans (Cygnus cygnus) found in northern Japan in 2008.

    Science.gov (United States)

    Okamatsu, Masatoshi; Tanaka, Tomohisa; Yamamoto, Naoki; Sakoda, Yoshihiro; Sasaki, Takashi; Tsuda, Yoshimi; Isoda, Norikazu; Kokumai, Norihide; Takada, Ayato; Umemura, Takashi; Kida, Hiroshi

    2010-12-01

    In April and May 2008, whooper swans (Cygnus cygnus) were found dead in Hokkaido in Japan. In this study, an adult whooper swan found dead beside Lake Saroma was pathologically examined and the identified H5N1 influenza virus isolates were genetically and antigenically analyzed. Pathological findings indicate that the swan died of severe congestive edema in the lungs. Phylogenetic analysis of the HA genes of the isolates revealed that they are the progeny viruses of isolates from poultry and wild birds in China, Russia, Korea, and Hong Kong. Antigenic analyses indicated that the viruses are distinguished from the H5N1 viruses isolated from wild birds and poultry before 2007. The chickens vaccinated with A/duck/Hokkaido/Vac-1/2004 (H5N1) survived for 14 days after challenge with A/whooper swan/Hokkaido/1/2008 (H5N1), although a small amount of the challenge virus was recovered from the tissues of the birds. These findings indicate that H5N1 highly pathogenic avian influenza viruses are circulating in wild birds in addition to domestic poultry in Asia and exhibit antigenic variation that may be due to vaccination.

  18. Inhibition of MHC class I is a virulence factor in herpes simplex virus infection of mice.

    Directory of Open Access Journals (Sweden)

    Mark T Orr

    2005-09-01

    Full Text Available Herpes simplex virus (HSV has a number of genes devoted to immune evasion. One such gene, ICP47, binds to the transporter associated with antigen presentation (TAP 1/2 thereby preventing transport of viral peptides into the endoplasmic reticulum, loading of peptides onto nascent major histocompatibility complex (MHC class I molecules, and presentation of peptides to CD8 T cells. However, ICP47 binds poorly to murine TAP1/2 and so inhibits antigen presentation by MHC class I in mice much less efficiently than in humans, limiting the utility of murine models to address the importance of MHC class I inhibition in HSV immunopathogenesis. To address this limitation, we generated recombinant HSVs that efficiently inhibit antigen presentation by murine MHC class I. These recombinant viruses prevented cytotoxic T lymphocyte killing of infected cells in vitro, replicated to higher titers in the central nervous system, and induced paralysis more frequently than control HSV. This increase in virulence was due to inhibition of antigen presentation to CD8 T cells, since these differences were not evident in MHC class I-deficient mice or in mice in which CD8 T cells were depleted. Inhibition of MHC class I by the recombinant viruses did not impair the induction of the HSV-specific CD8 T-cell response, indicating that cross-presentation is the principal mechanism by which HSV-specific CD8 T cells are induced. This inhibition in turn facilitates greater viral entry, replication, and/or survival in the central nervous system, leading to an increased incidence of paralysis.

  19. Adoptitive immunotherapy with genetically engineered T lymphocytes modified to express chimeric antigen receptors

    Directory of Open Access Journals (Sweden)

    A. А. Pavlova

    2017-01-01

    Full Text Available Significant mortality due to oncological diseases as a whole, and oncohematological diseases in particular, motivates scientific and medical community to develop new treatment methods. One of the newest methods is adoptive cell therapy using patient’s own T-cells modified to express chimeric antigen receptors (CAR to tumor-specific antigens. Despite high cost and side effects of treatment, promising clinical trials even in patients with advanced disease allow to anticipate successful use of this method in clinical practice.The article includes a review of the main principles of this technique, published results of clinical studies of CAR T-cells with a focus on CD19 gene targeting, complications of this therapy, mechanisms of tumor resistance to CAR T-cells, and potential ways to overcome it.

  20. Immunohistochemical detection of VHS virus in paraffin-embedded specimens of rainbow trout (Oncorhynchus mykiss); The influence of primary antibody, fixative, and antigen unmasking on method sensitivity

    DEFF Research Database (Denmark)

    Evensen, O.; Olesen, Niels Jørgen

    1997-01-01

    performed on parallel specimens, and the virus titer (TCID50/ml) was determined. Purified nucleocapsid protein (N-protein) of the virus was incorporated in an artificial antigen substrate (polymerized bovine serum albumin), fixed as described above, and embedded in paraffin wax. Microwave unmasking...... was performed an formalin-, PLP-, and Bouin's fluid-fixed specimens. The presence of virus peptides in situ or N-protein in the artificial antigen substrates was Visualized using an immunohistochemical method based on alkaline phosphatase or peroxidase and one polyclonal and five monoclonal polypeptide......-specific antibodies. VHS virus was identified in situ in specimens with high virus titers (10(7-8) TCID50/ml) regardless of the fixative and without the need of an unmasking procedure. A pronounced masking effect was observed for the cross-linking formalin and PLP fixatives. Regardless of the primary antibodies used...

  1. How much of Virus-Specific CD8 T Cell Reactivity is Detected with a Peptide Pool when Compared to Individual Peptides?

    Directory of Open Access Journals (Sweden)

    Ramu A. Subbramanian

    2012-10-01

    Full Text Available Immune monitoring of T cell responses increasingly relies on the use of peptide pools. Peptides, when restricted by the same HLA allele, and presented from within the same peptide pool, can compete for HLA binding sites. What impact such competition has on functional T cell stimulation, however, is not clear. Using a model peptide pool that is comprised of 32 well-defined viral epitopes from Cytomegalovirus, Epstein-Barr virus, and Influenza viruses (CEF peptide pool, we assessed peptide competition in PBMC from 42 human subjects. The magnitude of the peptide pool-elicited CD8 T cell responses was a mean 79% and a median 77% of the sum of the CD8 T cell responses elicited by the individual peptides. Therefore, while the effect of peptide competition was evident, it was of a relatively minor magnitude. By studying the dose-response curves for individual CEF peptides, we show that several of these peptides are present in the CEF-pool at concentrations that are orders of magnitude in excess of what is needed for the activation threshold of the CD8 T cells. The presence of such T cells with very high functional avidity for the viral antigens can explain why the effect of peptide competition is relatively minor within the CEF-pool.

  2. Cis-acting pathways selectively enforce the non-immunogenicity of shed placental antigen for maternal CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Chin-Siean Tay

    Full Text Available Maternal immune tolerance towards the fetus and placenta is thought to be established in part by pathways that attenuate T cell priming to antigens released from the placenta into maternal blood. These pathways remain largely undefined and their existence, at face value, seems incompatible with a mother's need to maintain a functional immune system during pregnancy. A particular conundrum is evident if we consider that maternal antigen presenting cells, activated in order to prime T cells to pathogen-derived antigens, would also have the capacity to prime T cells to co-ingested placental antigens. Here, we address this paradox using a transgenic system in which placental membranes are tagged with a strong surrogate antigen (ovalbumin. We find that although a remarkably large quantity of acellular ovalbumin-containing placental material is released into maternal blood, splenic CD8 T cells in pregnant mice bearing unmanipulated T cell repertoires are not primed to ovalbumin even if the mice are intravenously injected with adjuvants. This failure was largely independent of regulatory T cells, and instead was linked to the intrinsic characteristics of the released material that rendered it selectively non-immunogenic, potentially by sequestering it from CD8α(+ dendritic cells. The release of ovalbumin-containing placental material into maternal blood thus had no discernable impact on CD8 T cell priming to soluble ovalbumin injected intravenously during pregnancy, nor did it induce long-term tolerance to ovalbumin. Together, these results outline a major pathway governing the maternal immune response to the placenta, and suggest how tolerance to placental antigens can be maintained systemically without being detrimental to host defense.

  3. Cis-Acting Pathways Selectively Enforce the Non-Immunogenicity of Shed Placental Antigen for Maternal CD8 T Cells

    Science.gov (United States)

    Tay, Chin-Siean; Tagliani, Elisa; Collins, Mary K.; Erlebacher, Adrian

    2013-01-01

    Maternal immune tolerance towards the fetus and placenta is thought to be established in part by pathways that attenuate T cell priming to antigens released from the placenta into maternal blood. These pathways remain largely undefined and their existence, at face value, seems incompatible with a mother's need to maintain a functional immune system during pregnancy. A particular conundrum is evident if we consider that maternal antigen presenting cells, activated in order to prime T cells to pathogen-derived antigens, would also have the capacity to prime T cells to co-ingested placental antigens. Here, we address this paradox using a transgenic system in which placental membranes are tagged with a strong surrogate antigen (ovalbumin). We find that although a remarkably large quantity of acellular ovalbumin-containing placental material is released into maternal blood, splenic CD8 T cells in pregnant mice bearing unmanipulated T cell repertoires are not primed to ovalbumin even if the mice are intravenously injected with adjuvants. This failure was largely independent of regulatory T cells, and instead was linked to the intrinsic characteristics of the released material that rendered it selectively non-immunogenic, potentially by sequestering it from CD8α+ dendritic cells. The release of ovalbumin-containing placental material into maternal blood thus had no discernable impact on CD8 T cell priming to soluble ovalbumin injected intravenously during pregnancy, nor did it induce long-term tolerance to ovalbumin. Together, these results outline a major pathway governing the maternal immune response to the placenta, and suggest how tolerance to placental antigens can be maintained systemically without being detrimental to host defense. PMID:24391885

  4. Preclinical evaluation of multi antigenic HCV DNA vaccine for the prevention of Hepatitis C virus infection.

    Science.gov (United States)

    Lee, Hyojin; Jeong, Moonsup; Oh, Jooyeon; Cho, Youngran; Shen, Xuefei; Stone, John; Yan, Jian; Rothkopf, Zachary; Khan, Amir S; Cho, Byung Mun; Park, Young K; Weiner, David B; Son, Woo-Chan; Maslow, Joel N

    2017-03-07

    Direct-acting antiviral treatment for hepatitis C virus (HCV) infection is costly and does not protect from re-infection. For human and chimpanzees, recovery from acute HCV infection correlates with host CD4+ and CD8+ T cell responses. DNA plasmids targeting the HCV non-structural antigens NS3, NS4, and NS5, were previously reported to induce robust and sustained T cell responses in mice and primates. These plasmids were combined with a plasmid encoding cytokine IL-28B, together named as VGX-6150. The dose-dependent T cell response and safety of VGX-6150 administered intramuscularly and followed by electroporation was assessed in mice. Immune responses plateaued at 20 μg/dose with IL-28B demonstrating significant immunoadjuvant activity. Mice administered VGX-6150 at 40, 400, and 800 μg given either as a single injection or as 14 injections given bi-weekly over 26 weeks showed no vaccine related changes in any clinical parameter compared to placebo recipients. There was no evidence of VGX-6150 accumulation at the injection site or in any organ 1 month following the 14 th vaccination. Based on these studies, the approximate lethal dose (ALD) exceeds 800 μg/dose and the NOAEL was 800 μg/dose in mouse. In conclusion, VGX-6150 appears safe and a promising preventive vaccine candidate for HCV infection.

  5. Identifying antigenicity associated sites in highly pathogenic H5N1 influenza virus hemagglutinin by using sparse learning

    OpenAIRE

    Cai, Zhipeng; Ducatez, Mariette F.; Yang, Jialiang; Zhang, Tong; Long, Li-Ping; Boon, Adrianus C.; Webby, Richard J.; Wan, Xiu-Feng

    2012-01-01

    Since the isolation of A/goose/Guangdong/1/1996 (H5N1) in farmed geese in southern China, highly pathogenic H5N1 avian influenza viruses have posed a continuous threat to both public and animal health. The non-synonymous mutation of the H5 hemagglutinin gene has resulted in antigenic drift, leading to difficulties in both clinical diagnosis and vaccine strain selection. Characterizing H5N1’s antigenic profiles would help resolve these problems. In this study, a novel sparse learning method wa...

  6. Cytotoxic T cells in chronic idiopathic neutropenia express restricted antigen receptors.

    Science.gov (United States)

    Mastrodemou, Semeli; Stalika, Evangelia; Vardi, Anna; Gemenetzi, Katerina; Spanoudakis, Michalis; Karypidou, Maria; Mavroudi, Irene; Hadzidimitriou, Anastasia; Stavropoulos-Giokas, Catherine; Papadaki, Helen A; Stamatopoulos, Kostas

    2017-12-01

    Chronic idiopathic neutropenia (CIN) is an acquired disorder of granulopoiesis characterized by female predominance and mostly uncomplicated course. Crucial to CIN pathophysiology is the presence of activated T lymphocytes with myelosuppressive properties in both peripheral blood (PB) and bone marrow (BM). We systematically profiled the T cell receptor beta chain (TRB) gene repertoire in CD8 + cells of 34 CIN patients through subcloning/Sanger sequencing analysis of TRBV-TRBD-TRBJ gene rearrangements. Remarkable repertoire skewing and oligoclonality were observed, along with shared clonotypes between different patients, alluding to antigen selection. Cross-comparison of our sequence dataset with public TRB sequence databases revealed that CIN may rarely share common immunogenetic features with other entities, however, the CIN TRB repertoire is largely disease-biased. Overall, these findings suggest that CIN may be driven by long-term exposure to a restricted set of specific CIN-associated antigens.

  7. Functional, Antigen-Specific Stem Cell Memory (TSCM CD4+ T Cells Are Induced by Human Mycobacterium tuberculosis Infection

    Directory of Open Access Journals (Sweden)

    Cheleka A. M. Mpande

    2018-03-01

    Full Text Available BackgroundMaintenance of long-lasting immunity is thought to depend on stem cell memory T cells (TSCM, which have superior self-renewing capacity, longevity and proliferative potential compared with central memory (TCM or effector (TEFF T cells. Our knowledge of TSCM derives primarily from studies of virus-specific CD8+ TSCM. We aimed to determine if infection with Mycobacterium tuberculosis (M. tb, the etiological agent of tuberculosis, generates antigen-specific CD4+ TSCM and to characterize their functional ontology.MethodsWe studied T cell responses to natural M. tb infection in a longitudinal adolescent cohort of recent QuantiFERON-TB Gold (QFT converters and three cross-sectional QFT+ adult cohorts; and to bacillus Calmette–Guerin (BCG vaccination in infants. M. tb and/or BCG-specific CD4 T cells were detected by flow cytometry using major histocompatibility complex class II tetramers bearing Ag85, CFP-10, or ESAT-6 peptides, or by intracellular cytokine staining. Transcriptomic analyses of M. tb-specific tetramer+ CD4+ TSCM (CD45RA+ CCR7+ CD27+ were performed by microfluidic qRT-PCR, and functional and phenotypic characteristics were confirmed by measuring expression of chemokine receptors, cytotoxic molecules and cytokines using flow cytometry.ResultsM. tb-specific TSCM were not detected in QFT-negative persons. After QFT conversion frequencies of TSCM increased to measurable levels and remained detectable thereafter, suggesting that primary M. tb infection induces TSCM cells. Gene expression (GE profiling of tetramer+ TSCM showed that these cells were distinct from bulk CD4+ naïve T cells (TN and shared features of bulk TSCM and M. tb-specific tetramer+ TCM and TEFF cells. These TSCM were predominantly CD95+ and CXCR3+, markers typical of CD8+ TSCM. Tetramer+ TSCM expressed significantly higher protein levels of CCR5, CCR6, CXCR3, granzyme A, granzyme K, and granulysin than bulk TN and TSCM cells. M. tb-specific TSCM were also

  8. Direct evidence for a chronic CD8+-T-cell-mediated immune reaction to tax within the muscle of a human T-cell leukemia/lymphoma virus type 1-infected patient with sporadic inclusion body myositis.

    Science.gov (United States)

    Ozden, Simona; Cochet, Madeleine; Mikol, Jacqueline; Teixeira, Antonio; Gessain, Antoine; Pique, Claudine

    2004-10-01

    Human T-cell leukemia/lymphoma virus type 1 (HTLV-1) infection can lead to the development of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), concomitantly with or without other inflammatory disorders such as myositis. These pathologies are considered immune-mediated diseases, and it is assumed that migration within tissues of both HTLV-1-infected CD4(+) T cells and anti-HTLV-1 cytotoxic T cells represents a pivotal event. However, although HTLV-1-infected T cells were found in inflamed lesions, the antigenic specificity of coinfiltrated CD8(+) T cells remains to be determined. In this study, we performed both ex vivo and in situ analyses using muscle biopsies obtained from an HTLV-1-infected patient with HAM/TSP and sporadic inclusion body myositis. We found that both HTLV-1-infected CD4(+) T cells and CD8(+) T cells directed to the dominant Tax antigen can be amplified from muscle cell cultures. Moreover, we were able to detect in two successive muscle biopsies both tax mRNA-positive mononuclear cells and T cells recognized by the Tax11-19/HLA-A*02 tetramer and positive for perforin. These findings provide the first direct demonstration that anti-Tax cytotoxic T cells are chronically recruited within inflamed tissues of an HTLV-1 infected patient, which validates the cytotoxic immune reaction model for the pathogenesis of HTLV-1-associated inflammatory disease.

  9. Diverse Epitope Specificity, Immunodominance Hierarchy, and Functional Avidity of Effector CD4 T Cells Established During Priming Is Maintained in Lung After Influenza A Virus Infection.

    Science.gov (United States)

    Richards, Katherine A; DiPiazza, Anthony T; Rattan, Ajitanuj; Knowlden, Zackery A G; Yang, Hongmei; Sant, Andrea J

    2018-01-01

    One of the major contributions to protective immunity to influenza viruses that is provided by virus-specific CD4 T cells is delivery of effector function to the infected lung. However, there is little known about the selection and breadth of viral epitope-specific CD4 T cells that home to the lung after their initial priming. In this study, using a mouse model of influenza A infection and an unbiased method of epitope identification, the viral epitope-specific CD4 T cells elicited after infection were identified and quantified. We found that a very diverse specificity of CD4 T cells is primed by infection, including epitopes from hemagglutinin, neuraminidase, matrix protein, nucleoprotein, and non-structural protein-1. Using peptide-specific cytokine EliSpots, the diversity and immunodominance hierarchies established in the lung-draining lymph node were compared with specificities of CD4 T cells that home to the lung. Our studies revealed that CD4 T cells of all epitope specificities identified in peripheral lymphoid tissue home back to the lung and that most of these lung-homing cells are localized within the tissue rather than the pulmonary vasculature. There is a striking shift of CD4 T cell functionality that enriches for IFN-γ production as cells are primed in the lymph node, enter the lung vasculature, and finally establish residency in the tissue, but with no apparent shifts in their functional avidity. We conclude that CD4 T cells of broad viral epitope specificity are recruited into the lung after influenza infection, where they then have the opportunity to encounter infected or antigen-bearing antigen-presenting cells.

  10. Protective Role of Cross-Reactive CD8 T Cells Against Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Annie Elong Ngono

    2016-11-01

    Full Text Available Infection with one of the four dengue virus serotypes (DENV1-4 presumably leads to lifelong immunity against the infecting serotype but not against heterotypic reinfection, resulting in a greater risk of developing Dengue Hemorrhagic Fever/Dengue Shock Syndrome (DHF/DSS during secondary infection. Both antibodies and T cell responses have been implicated in DHF/DSS pathogenesis. According to the T cell-based hypothesis termed “original antigenic sin,” secondary DENV infection is dominated by non-protective, cross-reactive T cells that elicit an aberrant immune response. The goal of our study was to compare the roles of serotype-specific and cross-reactive T cells in protection vs. pathogenesis during DENV infection in vivo. Specifically, we utilized IFN-α/βR−/− HLA*B0702 transgenic mice in the context of peptide vaccination with relevant human CD8 T cell epitopes. IFN-α/βR−/− HLA*B0702 transgenic mice were immunized with DENV serotype 2 (DENV2-specific epitopes or variants found in any of the other three serotypes (DENV1, DENV3 or DENV4, followed by challenge with DENV. Although cross-reactive T cell responses were lower than responses elicited by serotype-specific T cells, immunization with either serotype-specific or variant peptide epitopes enhanced viral clearance, demonstrating that both serotype-specific and cross-reactive T cells can contribute to protection in vivo against DENV infection.

  11. [Herpes simplex virus and malignancies of female genital organs].

    Science.gov (United States)

    Cokić-Damjanović, J; Horvat, E; Balog, A

    2001-01-01

    Primary herpes simplex virus (HSV) infections of female genital tract usually end with remission, while the virus remains in the organism--almost in the sacral ganglion in a latent form, protected from humoral and cellular immunity. Stress induces the virus and the result is recurrent genital infection. Frequent exacerbations damage some parts of vital cellular structures without cytolysis, but stimulate malignant transformations. Vulvar (portio vaginalis uteri) and endometrial tumor tissue samples were analyzed for HSV by direct and indirect fluorescent antibody technique (FAT). Pre and postoperative sera samples were analyzed for presence of anti-HSV antibodies--IgM and IgG by Elisa-Enzygnost method. Acellular filtrates obtained by ultrasonic destruction of malignant tissues were used as inoculum for rabbit corneal scarification. Out of 63 tissue samples, 42 were positive for HSV antigen i.e. 67.3%. According to location 50% of vulvar, 76% PVU and 65% of endometrial tissues were positive. This antigen induces production of virus specific antibodies. Two types of antigens are known: the so-called T-antigen persisting in the cell nucleus and cell-surface antigen--product of the viral genome and can be evidenced by immunofluorescence method. Anti HSV antibodies were present in 63 preoperative serum samples and belonged to IgG group, but not one to IgM, implying a long and chronic course of infection excluding acute primary. Out of 38 postoperative serums the titer of antibodies decreased in 36 evidently, but in two samples remained unchanged. Two samples of endometrial and one from PVU origin contained HSV antigen type one. In the remaining 16 samples HSV 2 antigen was present. Rabbit corneal scarification was the proof of complete infectious virus in malignant tissues. Acellular filtrate of malignant tissues served as inoculum. Corneas of examined rabbits showed a mild inflammation after 24 hours which disappeared in the next 24 hours. We could not isolate the

  12. Cancer Patient T Cells Genetically Targeted to Prostate-Specific Membrane Antigen Specifically Lyse Prostate Cancer Cells and Release Cytokines in Response to Prostate-Specific Membrane Antigen

    Directory of Open Access Journals (Sweden)

    Michael C. Gong

    1999-06-01

    Full Text Available The expression of immunoglobulin-based artificial receptors in normal T lymphocytes provides a means to target lymphocytes to cell surface antigens independently of major histocompatibility complex restriction. Such artificial receptors have been previously shown to confer antigen-specific tumoricidal properties in murine T cells. We constructed a novel ζ chain fusion receptor specific for prostate-specific membrane antigen (PSMA termed Pz-1. PSMA is a cell-surface glycoprotein expressed on prostate cancer cells and the neovascular endothelium of multiple carcinomas. We show that primary T cells harvested from five of five patients with different stages of prostate cancer and transduced with the Pz-1 receptor readily lyse prostate cancer cells. Having established a culture system using fibroblasts that express PSMA, we next show that T cells expressing the Pz-1 receptor release cytokines in response to cell-bound PSMA. Furthermore, we show that the cytokine release is greatly augmented by B7.1-mediated costimulation. Thus, our findings support the feasibility of adoptive cell therapy by using genetically engineered T cells in prostate cancer patients and suggest that both CD4+ and CD8+ T lymphocyte functions can be synergistically targeted against tumor cells.

  13. Monoclonal antibodies against plant viruses

    International Nuclear Information System (INIS)

    Sandler, E.; Dietzgen, R.G.

    1984-01-01

    Ever since antigenic properties of plant viruses were discovered antisera have been raised and used for plant virus diagnosis and for the analysis of virus structure as well. From the early qualitative diagnosis method of precipitating the virus in clarified sap of an infected plant and the first quantitative application of the precipitin test vast progress has been made with regard to the development of highly sensitive and highly quantitative methods for virus detection. Of equal importance was the improvement of methods for separating virus from host cell components since the specificity of antisera raised against a virus could be increased by using an antigen for immunization highly concentrated and largely freed from contaminating host substances. The introduction of the enzyme-linked immunosorbent assay (ELISA) into plant virology allows detection of virus in nanogram quantities. Still, the conventionally raised antisera, no matter how pure an antigen was used for immunization, are polyclonal. They contain products of thousands of different antibody-secreting plasma cell clones which can be directed against all antigenic determinants (epitopes) of the virus, but also against antigens of the host plant that may not have been entirely separated from the immunizing virus during the purification procedure. Even after cross adsorption of polyclonal antisera some residual heterogeneity can be expected to remain. Within these boundaries the information gained with polyclonal antisera on virus structure and on virus diagnosis has to be interpreted

  14. Jc enhancement by La-Al-O doping in Y-Ba-Cu-O films both in self-field and under magnetic field

    DEFF Research Database (Denmark)

    Xu, Yan; Suo, Hong-Li; Yue, Zhao

    2016-01-01

    a good epitaxial growth relationship with LAO. Compared with a pure YBCO film, the Jc value of a 5.0% LAO-doped sample is enhanced more than three times in self-field 77 K and seven times at 77 K and 1.5 T, respectively. These results indicate that LAO doping can effectively enhance the Jc of YBCO films...... toward YBCO. A series of YBCO films with different LAO doping contents was fabricated on LAO single-crystal substrates by metal organic deposition. We observed by X-ray diffractometer measurements and scanning electron microscopy observations that although a large amount of LAO is added, YBCO still keeps...

  15. Unusual antigen presentation offers new insight into HIV vaccine design.

    Science.gov (United States)

    McMichael, Andrew J; Picker, Louis J

    2017-06-01

    Recent findings with a rhesus monkey cytomegalovirus based simian immunodeficiency virus vaccine have identified strong CD8+ T cell responses that are restricted by MHC-E. Also mycobacteria specific CD8+ T cells, that are MHC-E restricted, have been identified. MHC-E therefore can present a wide range of epitope peptides to CD8+ T cells, alongside its well defined role in presenting a conserved MHC-class I signal peptide to the NKG2A/C-CD94 receptor on natural killer cells. Here we explore the antigen processing pathways involved in these atypical T cell responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Role of antigen in migration patterns of T cell subsets arising from gut-associated lymphoid tissue

    International Nuclear Information System (INIS)

    Dunkley, M.L.; Husband, A.J.

    1989-01-01

    Studies of the migration of antigen-specific regulatory T cell subsets responding to gut immunization were undertaken to clarify their migratory potential and the role of antigen in their localization. In initial experiments, lymphocytes collected from the thoracic duct of rats after immunization of Peyer's patches (PP) with keyhole limpet hemocyanin (KLH), were enriched for T helper (Th) cells and labelled with the fluorochrome H33342. In other experiments, a higher frequency of antigen-specific T cells was achieved by short-term culture of the enriched Th cells in the presence of KLH and the blast cells labelled with 3H-thymidine. The distribution of both populations was determined after injection into immunized and unimmunized syngeneic recipients. Whereas the uncultured population (predominantly small Th cells) localized almost exclusively in follicular lymphoid tissues, the cells expanded by secondary culture (predominantly Th blasts) appeared in the gut lamina propria (LP) initially, then in PP and mesenteric lymph nodes. The Th blasts in the LP were almost always seen in close proximity to the gut epithelium. However, the migration of neither population appeared to be influenced significantly by antigen, in contrast to previous findings with regard to IgA-committed B cells. The initial subepithelial location of Th blasts in the gut LP and their subsequent appearance in PP may provide a mechanism by which antigen presented by epithelial cells could influence B cell differentiation in PP through modulation of signals expressed by these T cells

  17. Role of antigen in migration patterns of T cell subsets arising from gut-associated lymphoid tissue

    Energy Technology Data Exchange (ETDEWEB)

    Dunkley, M.L.; Husband, A.J. (Univ. of Newcastle, N.S.W. (Australia))

    1989-07-01

    Studies of the migration of antigen-specific regulatory T cell subsets responding to gut immunization were undertaken to clarify their migratory potential and the role of antigen in their localization. In initial experiments, lymphocytes collected from the thoracic duct of rats after immunization of Peyer's patches (PP) with keyhole limpet hemocyanin (KLH), were enriched for T helper (Th) cells and labelled with the fluorochrome H33342. In other experiments, a higher frequency of antigen-specific T cells was achieved by short-term culture of the enriched Th cells in the presence of KLH and the blast cells labelled with 3H-thymidine. The distribution of both populations was determined after injection into immunized and unimmunized syngeneic recipients. Whereas the uncultured population (predominantly small Th cells) localized almost exclusively in follicular lymphoid tissues, the cells expanded by secondary culture (predominantly Th blasts) appeared in the gut lamina propria (LP) initially, then in PP and mesenteric lymph nodes. The Th blasts in the LP were almost always seen in close proximity to the gut epithelium. However, the migration of neither population appeared to be influenced significantly by antigen, in contrast to previous findings with regard to IgA-committed B cells. The initial subepithelial location of Th blasts in the gut LP and their subsequent appearance in PP may provide a mechanism by which antigen presented by epithelial cells could influence B cell differentiation in PP through modulation of signals expressed by these T cells.

  18. The molecular bases of δ/αβ T cell-mediated antigen recognition.

    Science.gov (United States)

    Pellicci, Daniel G; Uldrich, Adam P; Le Nours, Jérôme; Ross, Fiona; Chabrol, Eric; Eckle, Sidonia B G; de Boer, Renate; Lim, Ricky T; McPherson, Kirsty; Besra, Gurdyal; Howell, Amy R; Moretta, Lorenzo; McCluskey, James; Heemskerk, Mirjam H M; Gras, Stephanie; Rossjohn, Jamie; Godfrey, Dale I

    2014-12-15

    αβ and γδ T cells are disparate T cell lineages that can respond to distinct antigens (Ags) via the use of the αβ and γδ T cell Ag receptors (TCRs), respectively. Here we characterize a population of human T cells, which we term δ/αβ T cells, expressing TCRs comprised of a TCR-δ variable gene (Vδ1) fused to joining α and constant α domains, paired with an array of TCR-β chains. We demonstrate that these cells, which represent ∼50% of all Vδ1(+) human T cells, can recognize peptide- and lipid-based Ags presented by human leukocyte antigen (HLA) and CD1d, respectively. Similar to type I natural killer T (NKT) cells, CD1d-lipid Ag-reactive δ/αβ T cells recognized α-galactosylceramide (α-GalCer); however, their fine specificity for other lipid Ags presented by CD1d, such as α-glucosylceramide, was distinct from type I NKT cells. Thus, δ/αβTCRs contribute new patterns of Ag specificity to the human immune system. Furthermore, we provide the molecular bases of how δ/αβTCRs bind to their targets, with the Vδ1-encoded region providing a major contribution to δ/αβTCR binding. Our findings highlight how components from αβ and γδTCR gene loci can recombine to confer Ag specificity, thus expanding our understanding of T cell biology and TCR diversity. © 2014 Pellicci et al.

  19. The molecular bases of δ/αβ T cell–mediated antigen recognition

    Science.gov (United States)

    Pellicci, Daniel G.; Uldrich, Adam P.; Le Nours, Jérôme; Ross, Fiona; Chabrol, Eric; Eckle, Sidonia B.G.; de Boer, Renate; Lim, Ricky T.; McPherson, Kirsty; Besra, Gurdyal; Howell, Amy R.; Moretta, Lorenzo; McCluskey, James; Heemskerk, Mirjam H.M.; Gras, Stephanie

    2014-01-01

    αβ and γδ T cells are disparate T cell lineages that can respond to distinct antigens (Ags) via the use of the αβ and γδ T cell Ag receptors (TCRs), respectively. Here we characterize a population of human T cells, which we term δ/αβ T cells, expressing TCRs comprised of a TCR-δ variable gene (Vδ1) fused to joining α and constant α domains, paired with an array of TCR-β chains. We demonstrate that these cells, which represent ∼50% of all Vδ1+ human T cells, can recognize peptide- and lipid-based Ags presented by human leukocyte antigen (HLA) and CD1d, respectively. Similar to type I natural killer T (NKT) cells, CD1d-lipid Ag-reactive δ/αβ T cells recognized α-galactosylceramide (α-GalCer); however, their fine specificity for other lipid Ags presented by CD1d, such as α-glucosylceramide, was distinct from type I NKT cells. Thus, δ/αβTCRs contribute new patterns of Ag specificity to the human immune system. Furthermore, we provide the molecular bases of how δ/αβTCRs bind to their targets, with the Vδ1-encoded region providing a major contribution to δ/αβTCR binding. Our findings highlight how components from αβ and γδTCR gene loci can recombine to confer Ag specificity, thus expanding our understanding of T cell biology and TCR diversity. PMID:25452463

  20. Epstein-Barr virus nuclear antigen 3C targets p53 and modulates its transcriptional and apoptotic activities

    International Nuclear Information System (INIS)

    Yi Fuming; Saha, Abhik; Murakami, Masanao; Kumar, Pankaj; Knight, Jason S.; Cai Qiliang; Choudhuri, Tathagata; Robertson, Erle S.

    2009-01-01

    The p53 tumor suppressor gene is one of the most commonly mutated genes in human cancers and the corresponding encoded protein induces apoptosis or cell-cycle arrest at the G1/S checkpoint in response to DNA damage. To date, previous studies have shown that antigens encoded by human tumor viruses such as SV40 large T antigen, adenovirus E1A and HPV E6 interact with p53 and disrupt its functional activity. In a similar fashion, we now show that EBNA3C, one of the EBV latent antigens essential for the B-cell immortalization in vitro, interacts directly with p53. Additionally, we mapped the interaction of EBNA3C with p53 to the C-terminal DNA-binding and the tetramerization domain of p53, and the region of EBNA3C responsible for binding to p53 was mapped to the N-terminal domain of EBNA3C (residues 130-190), previously shown to interact with a number of important cell-cycle components, specifically SCF Skp2 , cyclin A, and cMyc. Furthermore, we demonstrate that EBNA3C substantially represses the transcriptional activity of p53 in luciferase based reporter assays, and rescues apoptosis induced by ectopic p53 expression in SAOS-2 (p53 -/- ) cells. Interestingly, we also show that the DNA-binding ability of p53 is diminished in the presence of EBNA3C. Thus, the interaction between the p53 and EBNA3C provides new insights into the mechanism(s) by which the EBNA3C oncoprotein can alter cellular gene expression in EBV associated human cancers.

  1. Effects of immunosuppression on circulating adeno-associated virus capsid-specific T cells in humans.

    Science.gov (United States)

    Parzych, Elizabeth M; Li, Hua; Yin, Xiangfan; Liu, Qin; Wu, Te-Lang; Podsakoff, Gregory M; High, Katherine A; Levine, Matthew H; Ertl, Hildegund C J

    2013-04-01

    In humans adeno-associated virus (AAV)-mediated gene transfer is followed by expansion of AAV capsid-specific T cells, evidence of cell damage, and loss of transgene product expression, implicating immunological rejection of vector-transduced cells, which may be prevented by immunosuppressive drugs. We undertook this study to assess the effect of immunosuppression (IS) used for organ transplantation on immune responses to AAV capsid antigens. Recipients of liver or kidney transplants were tested before and 4 weeks after induction of IS in comparison with matched samples from healthy human adults and an additional cohort with comorbid conditions similar to those of the transplant patients. Our data show that transplant patients and comorbid control subjects have markedly higher frequencies of circulating AAV capsid-specific T cells compared with healthy adults. On average, IS resulted in a reduction of AAV-specific CD4⁺ T cells, whereas numbers of circulating CD8⁺ effector and central memory T cells tended to increase. Independent of the type of transplant or the IS regimens, the trend of AAV capsid-specific T cell responses after drug treatment varied; in some patients responses were unaffected whereas others showed decreases or even pronounced increases, casting doubt on the usefulness of prophylactic IS for AAV vector recipients.

  2. Inactivation and purification of cowpea mosaic virus-like particles displaying peptide antigens from Bacillus anthracis

    OpenAIRE

    Phelps, Jamie P.; Dang, Nghiep; Rasochova, Lada

    2007-01-01

    Chimeric cowpea mosaic virus (CPMV) particles displaying foreign peptide antigens on the particle surface are suitable for development of peptide-based vaccines. However, commonly used PEG precipitation-based purification methods are not sufficient for production of high quality vaccine candidates because they do not allow for separation of chimeric particles from cleaved contaminating species. Moreover, the purified particles remain infectious to plants. To advance the CPMV technology furthe...

  3. Detection and localization of rabbit hepatitis e virus and antigen in systemic tissues from experimentally intraperitoneally infected rabbits.

    Directory of Open Access Journals (Sweden)

    Jingjing Mao

    Full Text Available Rabbit hepatitis E virus (HEV is a novel genotype of HEV, and is considered to pose a risk of zoonotic transmission. Research into the systemic distribution of rabbit HEV in rabbits during different periods of infection has rarely been reported. To better understand this virus, we infected rabbits with second-passage rabbit HEV via an intraperitoneal route. After inoculation, the infection showed two types, temporary and constant infection. The detection of HEV RNA in the feces varied with time, and serum antigen correlated with fecal HEV RNA. Viremia only appeared 72 days after inoculation. The rabbits remained antibody negative throughout the experimental period. When HEV was localized, several organs besides the liver were HEV RNA positive. Tissue antigen was observed immunohistochemically in the different cells of various organs, especially in parts of the small intestine and the characteristic rabbit gut-associated lymphoid tissue. These data provide valuable information for future research into the pathogenesis of HEV.

  4. Felix Hoppe-Seyler Lecture 1997. Protective antibody responses against viruses.

    Science.gov (United States)

    Zinkernagel, R M

    1997-08-01

    Neutralizing antibody responses against the acute cytopathic vesicular stomatitis virus (VSV) have been studied in mice to evaluate their general characteristics including specificity, self-/non-self discrimination and memory. IgM responses are generated very early, by day 3 to 4, in a T helper cell-independent fashion and without VSV having polyclonal activating capacities. The order of the glycoprotein tips on the virus envelope (multiple, 8-10 nm distance, paracrystalline) exhibiting the neutralizing determinants are key to this prompt response. These paracrystalline identical multimeric antigens are characteristic of infectious agents and are always reacted against by B cells. Self-antigens that are accessible to B cells in the intact host are either monomeric in serum or mobile multimers on cell surfaces; these configurations need contact dependent or contact independent T help, respectively. Because T help is tolerant against self-antigens, no anti-self B cell responses are usually induced against monomeric self-antigens. If collagen or DNA (rigid multimeric self-antigens) become accessible, however, they may become targets of auto-antibody responses. The antibody repertoire against VSV is partially contained in the germline and partially is generated by somatic mutation; they seem not to undergo affinity-maturation. In any case protection against lethal infection is dependent upon strictly T helper cell dependent IgG generated by day 6 to 7 and reaches a protective level of about 1-10 micrograms/ml. Interesting affinity/avidity and onrate above a minimal threshold are of no apparent advantage for protection in vivo. Maintenance of these antibody levels by antigen depots, and not the presence of memory B cells alone, is key to providing protective immunological memory. Collectively these data suggest that studying biologically important protective antibody responses may modify some of the parameters that have been defined by studying hapten specific antibody

  5. Impact of Leukocyte Function-Associated Antigen-1 Blockade on Endogenous Allospecific T Cells to Multiple Minor Histocompatibility Antigen Mismatched Cardiac Allograft.

    Science.gov (United States)

    Kwun, Jean; Farris, Alton B; Song, Hyunjin; Mahle, William T; Burlingham, William J; Knechtle, Stuart J

    2015-12-01

    Blocking leukocyte function-associated antigen (LFA)-1 in organ transplant recipients prolongs allograft survival. However, the precise mechanisms underlying the therapeutic potential of LFA-1 blockade in preventing chronic rejection are not fully elucidated. Cardiac allograft vasculopathy (CAV) is the preeminent cause of late cardiac allograft failure characterized histologically by concentric intimal hyperplasia. Anti-LFA-1 monoclonal antibody was used in a multiple minor antigen-mismatched, BALB.B (H-2B) to C57BL/6 (H-2B), cardiac allograft model. Endogenous donor-specific CD8 T cells were tracked down using major histocompatibility complex multimers against the immunodominant H4, H7, H13, H28, and H60 minor Ags. The LFA-1 blockade prevented acute rejection and preserved palpable beating quality with reduced CD8 T-cell graft infiltration. Interestingly, less CD8 T cell infiltration was secondary to reduction of T-cell expansion rather than less trafficking. The LFA-1 blockade significantly suppressed the clonal expansion of minor histocompatibility antigen-specific CD8 T cells during the expansion and contraction phase. The CAV development was evaluated with morphometric analysis at postoperation day 100. The LFA-1 blockade profoundly attenuated neointimal hyperplasia (61.6 vs 23.8%; P < 0.05), CAV-affected vessel number (55.3 vs 15.9%; P < 0.05), and myocardial fibrosis (grade 3.29 vs 1.8; P < 0.05). Finally, short-term LFA-1 blockade promoted long-term donor-specific regulation, which resulted in attenuated transplant arteriosclerosis. Taken together, LFA-1 blockade inhibits initial endogenous alloreactive T-cell expansion and induces more regulation. Such a mechanism supports a pulse tolerance induction strategy with anti-LFA-1 rather than long-term treatment.

  6. Antigenic evidence of bluetongue virus from small ruminant population of two different geographical regions of Odisha, India

    Directory of Open Access Journals (Sweden)

    Shaswati Subhadarsini Pany

    2016-03-01

    Full Text Available Aim: The aim of the present study was to carry out antigenic detection of bluetongue virus (BTV among the small ruminant population of two different geographical regions of Odisha (coastal and central using recombinant VP7 (r-VP-7 based sandwich enzyme-linked immunosorbent assay (s-ELISA. Materials and Methods: Blood samples (n=274 were collected from two different geographical pockets of Odisha, which covered mostly the coastal and central regions. Of the total samples under study 185 were from goat and 89 were from sheep. The blood samples were tested for the presence of BTV antigen by r-VP7 based s-ELISA. Results: r-VP-7 s-ELISA detected BTV antigen in 52.43% and 44.94% of the goat and sheep population under study, respectively. This study highlights the antigenic persistence of BTV in the state for the 1st time. Conclusion: This high antigenic presence in both sheep and goat population suggests an alarming BTV infection in field conditions which warrants more systematic study directed toward isolation and characterization studies as well as the implementation of control strategy for BT in Odisha.

  7. Det danske landskab. De danske malere på J.C. Dahls tid

    DEFF Research Database (Denmark)

    Monrad, Kasper

    Om værker af Jens Juel, C.W. Eckersberg, J.C. Dahl, Thomas Fearnley, Christen Købke, Johan Thomas Lundbye, Peter Christian Skovgaard, Dankvart Dreyer, Vilhelm Kyhn, Janus la Cour......Om værker af Jens Juel, C.W. Eckersberg, J.C. Dahl, Thomas Fearnley, Christen Købke, Johan Thomas Lundbye, Peter Christian Skovgaard, Dankvart Dreyer, Vilhelm Kyhn, Janus la Cour...

  8. A novel method for producing target cells and assessing cytotoxic T lymphocyte activity in outbred hosts

    Directory of Open Access Journals (Sweden)

    Bendinelli Mauro

    2009-03-01

    Full Text Available Abstract Background Cytotoxic T lymphocytes play a crucial role in the immunological control of microbial infections and in the design of vaccines and immunotherapies. Measurement of cytotoxic T lymphocyte activity requires that the test antigen is presented by target cells having the same or compatible class I major hystocompatibility complex antigens as the effector cells. Conventional assays use target cells labeled with 51chromium and infer cytotoxic T lymphocyte activity by measuring the isotope released by the target cells lysed following incubation with antigen-specific cytotoxic T lymphocytes. This assay is sensitive but needs manipulation and disposal of hazardous radioactive reagents and provides a bulk estimate of the reporter released, which may be influenced by spontaneous release of the label and other poorly controllable variables. Here we describe a novel method for producing target in outbred hosts and assessing cytotoxic T lymphocyte activity by flow cytometry. Results The method consists of culturing skin fibroblasts, immortalizing them with a replication defective clone of simian virus 40, and finally transducing them with a bicistronic vector encoding the target antigen and the reporter green fluorescent protein. When used in a flow cytometry-based assay, the target cells obtained with this method proved valuable for assessing the viral envelope protein specific cytotoxic T lymphocyte activity in domestic cats acutely or chronically infected with feline immunodeficiency virus, a lentivirus similar to human immunodeficiency virus and used as animal model for AIDS studies. Conclusion Given the versatility of the bicistronic vector used, its ability to deliver multiple and large transgenes in target cells, and its extremely wide cell specificity when pseudotyped with the vesicular stomatitis virus envelope protein, the method is potentially exploitable in many animal species.

  9. Investigation of Jc-Suppressing Factors in Flat-Rolled Sr0.6K0.4Fe2As2Fe Tapes Via Microstructure Analysis

    KAUST Repository

    Zhang, Xianping

    2015-01-13

    Pnictide superconductors will be very promising for applications if wires with high critical current density Jc can allow reel-to-reel large-scale fabrication at low costs. To understand the mechanism(s) that limited Jc in flat-rolled Sr0.6K0.4Fe2As2(Sr122) tapes, microstructure analysis has been considered the most direct and efficient way. Here, we report on high-resolution microstructure imaging and analysis on Fe-sheathed flat-rolled Sr122 tapes, which have a Jc as high as 2.3 × 104 A/cm2 at 10 T and 4.2 K. The overlapping nature of the Sr122 plates was clearly observed. Transmission electron microscopy/scanning transmission electron microscopy analysis showed that, besides the cracks formed during the fabrication process, the SrO2 phase and cavities caused by the inhomogeneously dispersed Sr and K are the other important factors suppressing Jc. The wetting phase FeAs at the grain boundaries can be partially substituted by Sn in Sn-added samples. Our findings provide insights that pave the way to further enhance the critical current of the rolled 122 tapes up to the practical level.

  10. Development of an epitope panel for consistent identification of antigen-specific T-cells in humans

    DEFF Research Database (Denmark)

    Fløe, Andreas; Løppke, Caroline; Hilberg, Ole

    2017-01-01

    Objective We aimed to establish a panel of MHC-peptide multimers suitable as a positive control in detection of HLA A*0201 restricted antigen specific T-cells (ASTC) by flow cytometry. Materials and methods MHC Dextramers were loaded with HLA A*0201 binding peptides from viral antigens and melano...

  11. Survival of Hepatitis C Virus in Syringes: Implication for Transmission among Injection Drug Users

    Science.gov (United States)

    Paintsil, Elijah; He, Huijie; Peters, Christopher; Lindenbach, Brett D.; Heimer, Robert

    2010-01-01

    Background We hypothesized that the high prevalence of HCV among injection drug users (IDUs) might be due to prolonged virus survival in contaminated syringes. Methods We developed a microculture assay to examine the viability of HCV. Syringes were loaded with blood spiked with HCV reporter virus (Jc1/GLuc2A) to simulate two scenarios of residual volumes; low (2 μl) void volume for 1-ml insulin syringes, and high (32 μl) void volume for 1-ml tuberculin syringes. Syringes were stored at 4°C, 22°C, and 37°C for up to 63 days before testing for HCV infectivity using luciferase activity. Results The virus decay rate was biphasic (t½ α = 0.4h and t½β = 28h). Insulin syringes failed to yield viable HCV beyond day one at all storage temperatures except for 4o in which 5% of syringes yielded viable virus on day 7. Tuberculin syringes yielded viable virus from 96%, 71%, and 52% of syringes following storage at 4o, 22° and 37o for 7 days, respectively, and yielded viable virus up to day 63. Conclusions The high prevalence of HCV among IDUs may be partly due to the resilience of the virus and the syringe type. Our findings may be used to guide prevention strategies. PMID:20726768

  12. Antigenic typing Polish isolates of canine parvovirus

    Energy Technology Data Exchange (ETDEWEB)

    Mizak, B. [National Veterinary Research Institute, Pulawy (Poland); Plucienniczak, A. [Polish Academy ofd Sciences. Microbiology and Virology Center, Lodz (Poland)

    1995-12-31

    Polish strains of canine parvovirus isolated between 1982 and 1993 were examined to determine the extent to which the virus has evolved antigenically and genetically over eleven years. Two CPV isolates obtained in Warsaw in 1982 and Pulawy in 1993, were examined using monoclonal antibody typing, restriction analysis and sequencing VP-2 protein gene. Five other isolates from Warsaw and Pulawy were tested with the panel of monoclonal antibodies specific to CPV-2, CPV-2a and common for canine parvovirus, feline panleukopenia virus and milk enteritis virus. Results of the studies demonstrated that all isolates tested represented CPV-2a antigenic type. Rapid antigenic strain replacement recorded by Parrish and Senda in the U.S.A and Japan was not confirmed in Poland. (author). 30 refs, 2 tabs.

  13. Antigenic typing Polish isolates of canine parvovirus

    International Nuclear Information System (INIS)

    Mizak, B.; Plucienniczak, A.

    1995-01-01

    Polish strains of canine parvovirus isolated between 1982 and 1993 were examined to determine the extent to which the virus has evolved antigenically and genetically over eleven years. Two CPV isolates obtained in Warsaw in 1982 and Pulawy in 1993, were examined using monoclonal antibody typing, restriction analysis and sequencing VP-2 protein gene. Five other isolates from Warsaw and Pulawy were tested with the panel of monoclonal antibodies specific to CPV-2, CPV-2a and common for canine parvovirus, feline panleukopenia virus and milk enteritis virus. Results of the studies demonstrated that all isolates tested represented CPV-2a antigenic type. Rapid antigenic strain replacement recorded by Parrish and Senda in the U.S.A and Japan was not confirmed in Poland. (author). 30 refs, 2 tabs

  14. Regulation of T cell response to leishmania antigens by determinants of histocompatibility leukocyte class I and II molecules

    Directory of Open Access Journals (Sweden)

    Bacellar O.

    1998-01-01

    Full Text Available It has been shown that HLA class I molecules play a significant role in the regulation of the proliferation of T cells activated by mitogens and antigens. We evaluated the ability of mAb to a framework determinant of HLA class I molecules to regulate T cell proliferation and interferon gamma (IFN-g production against leishmania, PPD, C. albicans and tetanus toxoid antigens in patients with tegumentary leishmaniasis and healthy subjects. The anti-major histocompatibility complex (MHC mAb (W6/32 suppressed lymphocyte proliferation by 90% in cultures stimulated with aCD3, but the suppression was variable in cultures stimulated with leishmania antigen. This suppression ranged from 30-67% and was observed only in 5 of 11 patients. IFN-g production against leishmania antigen was also suppressed by anti-HLA class I mAb. In 3 patients IFN-g levels were suppressed by more than 60%, while in the other 2 cultures IFN-g levels were 36 and 10% lower than controls. The suppression by HLA class I mAb to the proliferative response in leishmaniasis patients and in healthy controls varied with the antigens and the patients or donors tested. To determine whether the suppression is directed at antigen presenting cells (APCs or at the responding T cells, experiments with antigen-primed non-adherent cells, separately incubated with W6/32, were performed. Suppression of proliferation was only observed when the W6/32 mAb was added in the presence of T cells. These data provide evidence that a mAb directed at HLA class I framework determinants can suppress proliferation and cytokine secretion in response to several antigens.

  15. Production of a Dendritic Cell-Based Vaccine Containing Inactivated Autologous Virus for Therapy of Patients with Chronic Human Immunodeficiency Virus Type 1 Infection▿

    OpenAIRE

    Whiteside, Theresa L.; Piazza, Paolo; Reiter, Amanda; Stanson, Joanna; Connolly, Nancy C.; Rinaldo, Charles R.; Riddler, Sharon A.

    2008-01-01

    In preparation for a pilot clinical trial in patients with chronic human immunodeficiency virus type 1 (HIV-1) infection, a novel dendritic cell (DC)-based vaccine is being manufactured. The trial will test the hypothesis that isolated endogenous virus presented by DCs serves as a potent immunogen for activation of CD8+ and CD4+ T cells specific for a broad range of autologous HIV-1 antigens. Production of the vaccine under good manufacture practice conditions involves (i) autologous virus is...

  16. Spontaneous loss and alteration of antigen receptor expression in mature CD4+ T cells

    International Nuclear Information System (INIS)

    Kyoizumi, Seishi; Akiyama, Mitoshi; Hirai, Yuko; Kusunoki; Yoichiro; Tanabe, Kazumi; Umeki, Shigeko; Nakamura, Nori; Yamakido, Michio; Hamamoto, Kazuko.

    1990-04-01

    The T-cell receptor CD3 (TCR/CD3) complex plays a central role in antigen recognition and activation of mature T cells, and therefore abnormalities in the expression of the complex should induce unresponsiveness of T cells to antigen stimulus. Using flow cytometry, we detected and enumerated variant cells with loss or alteration of surface TCR/CD3 expression among human mature CD4 + T cells. The presence of variant CD4 + T cells was demonstrated by isolating and cloning them from peripheral blood, and their abnormalities can be accounted for by alterations in TCR expression such as defects of protein expression and partial protein deletion. The variant frequency in peripheral blood increased with aging in normal donors and was highly elevated in patients with ataxia telangiectasia, an autosomal recessive inherited disease with defective DNA repair and variable T-cell immunodeficiency. These findings suggest that such alterations in TCR expression are induced by somatic mutagenesis of TCR genes and can be important factors related to age-dependent and genetic disease-associated T-cell dysfunction. (author)

  17. Transgenic Expression of IL15 Improves Antiglioma Activity of IL13Rα2-CAR T Cells but Results in Antigen Loss Variants.

    Science.gov (United States)

    Krenciute, Giedre; Prinzing, Brooke L; Yi, Zhongzhen; Wu, Meng-Fen; Liu, Hao; Dotti, Gianpietro; Balyasnikova, Irina V; Gottschalk, Stephen

    2017-07-01

    Glioblastoma (GBM) is the most aggressive primary brain tumor in adults and is virtually incurable with conventional therapies. Immunotherapy with T cells expressing GBM-specific chimeric antigen receptors (CAR) is an attractive approach to improve outcomes. Although CAR T cells targeting GBM antigens, such as IL13 receptor subunit α2 (IL13Rα2), HER2, and EGFR variant III (EGFRvIII), have had antitumor activity in preclinical models, early-phase clinical testing has demonstrated limited antiglioma activity. Transgenic expression of IL15 is an appealing strategy to enhance CAR T-cell effector function. We tested this approach in our IL13Rα2-positive glioma model in which limited IL13Rα2-CAR T-cell persistence results in recurrence of antigen-positive gliomas. T cells were genetically modified with retroviral vectors encoding IL13Rα2-CARs or IL15 (IL13Rα2-CAR.IL15 T cells). IL13Rα2-CAR.IL15 T cells recognized glioma cells in an antigen-dependent fashion, had greater proliferative capacity, and produced more cytokines after repeated stimulations in comparison with IL13Rα2-CAR T cells. No autonomous IL13Rα2-CAR.IL15 T-cell proliferation was observed; however, IL15 expression increased IL13Rα2-CAR T-cell viability in the absence of exogenous cytokines or antigen. In vivo , IL13Rα2-CAR.IL15 T cells persisted longer and had greater antiglioma activity than IL13Rα2-CAR T cells, resulting in a survival advantage. Gliomas recurring after 40 days after T-cell injection had downregulated IL13Rα2 expression, indicating that antigen loss variants occur in the setting of improved T-cell persistence. Thus, CAR T cells for GBM should not only be genetically modified to improve their proliferation and persistence, but also to target multiple antigens. Summary: Glioblastoma responds imperfectly to immunotherapy. Transgenic expression of IL15 in T cells expressing CARs improved their proliferative capacity, persistence, and cytokine production. The emergence of antigen

  18. Blocking herpes simplex virus 2 glycoprotein E immune evasion as an approach to enhance efficacy of a trivalent subunit antigen vaccine for genital herpes.

    Science.gov (United States)

    Awasthi, Sita; Huang, Jialing; Shaw, Carolyn; Friedman, Harvey M

    2014-08-01

    Herpes simplex virus 2 (HSV-2) subunit antigen vaccines targeting virus entry molecules have failed to prevent genital herpes in human trials. Our approach is to include a virus entry molecule and add antigens that block HSV-2 immune evasion. HSV-2 glycoprotein C (gC2) is an immune evasion molecule that inhibits complement. We previously reported that adding gC2 to gD2 improved vaccine efficacy compared to the efficacy of either antigen alone in mice and guinea pigs. Here we demonstrate that HSV-2 glycoprotein E (gE2) functions as an immune evasion molecule by binding the IgG Fc domain. HSV-2 gE2 is synergistic with gC2 in protecting the virus from antibody and complement neutralization. Antibodies produced by immunization with gE2 blocked gE2-mediated IgG Fc binding and cell-to-cell spread. Mice immunized with gE2 were only partially protected against HSV-2 vaginal challenge in mice; however, when gE2 was added to gC2/gD2 to form a trivalent vaccine, neutralizing antibody titers with and without complement were significantly higher than those produced by gD2 alone. Importantly, the trivalent vaccine protected the dorsal root ganglia (DRG) of 32/33 (97%) mice between days 2 and 7 postchallenge, compared with 27/33 (82%) in the gD2 group. The HSV-2 DNA copy number was significantly lower in mice immunized with the trivalent vaccine than in those immunized with gD2 alone. The extent of DRG protection using the trivalent vaccine was better than what we previously reported for gC2/gD2 immunization. Therefore, gE2 is a candidate antigen for inclusion in a multivalent subunit vaccine that attempts to block HSV-2 immune evasion. Herpes simplex virus is the most common cause of genital ulcer disease worldwide. Infection results in emotional distress for infected individuals and their partners, is life threatening for infants exposed to herpes during childbirth, and greatly increases the risk of individuals acquiring and transmitting HIV infection. A vaccine that prevents

  19. MHC-based detection of antigen-specific CD8(+) T cell responses

    DEFF Research Database (Denmark)

    Hadrup, Sine Reker; Schumacher, Nana Maria Pii

    2010-01-01

    The hallmark of adaptive immunity is its ability to recognise a wide range of antigens and technologies that capture this diversity are therefore of substantial interest. New methods have recently been developed that allow the parallel analysis of T cell reactivity against vast numbers of different...

  20. ImmunoChip Study Implicates Antigen Presentation to T Cells in Narcolepsy

    DEFF Research Database (Denmark)

    Faraco, Juliette; Lin, Ling; Kornum, Birgitte Rahbek

    2013-01-01

    receptor alpha (TRA@), variants in two additional narcolepsy loci, Cathepsin H (CTSH) and Tumor necrosis factor (ligand) superfamily member 4 (TNFSF4, also called OX40L), attained genome-wide significance. These findings underline the importance of antigen presentation by HLA Class II to T cells...