WorldWideScience

Sample records for jc virus activity

  1. Could JC virus provoke metastasis in colon cancer?

    Science.gov (United States)

    Sinagra, Emanuele; Raimondo, Dario; Gallo, Elena; Stella, Mario; Cottone, Mario; Orlando, Ambrogio; Rossi, Francesca; Orlando, Emanuele; Messina, Marco; Tomasello, Giovanni; Lo Monte, Attilio Ignazio; La Rocca, Ennio; Rizzo, Aroldo Gabriele

    2014-01-01

    AIM: To evaluate the prevalence of John Cunningham virus (JC virus) in a small cohort of patients with colon cancer and to assess its presence in hepatic metastasis. METHODS: Nineteen consecutive patients with histologically diagnosed colon cancer were included in our study, together with ten subjects affected by histologically and serologically diagnosed hepatitis C virus infection. In the patients included in the colon cancer group, JC virus was searched for in the surgical specimen; in the control group, JC virus was searched for in the hepatic biopsy. The difference in the prevalence of JC virus in the hepatic biopsy between the two groups was assessed through the χ2 test. RESULTS: Four out of 19 patients with colon cancer had a positive polymerase chain reaction (PCR) test for JC virus, and four had liver metastasis. Among the patients with liver metastasis, three out of four had a positive PCR test for JC virus in the surgical specimen and in the liver biopsy; the only patient with liver metastasis with a negative test for JC virus also presented a negative test for JC virus in the surgical specimen. In the control group of patients with hepatitis C infection, none of the ten patients presented JC virus infection in the hepatic biopsy. The difference between the two groups regarding JC virus infection was statistically significant (χ2 = 9.55, P = 0.002). CONCLUSION: JC virus may play a broader role than previously thought, and may be mechanistically involved in the late stages of these tumors. PMID:25400458

  2. Anti-JC virus antibody prevalence in a multinational multiple sclerosis cohort

    DEFF Research Database (Denmark)

    Olsson, Tomas; Achiron, Anat; Alfredsson, Lars

    2013-01-01

    JC virus (JCV) is an opportunistic virus known to cause progressive multifocal leukoencephalopathy. Anti-JC virus (Anti-JCV) antibody prevalence in a large, geographically diverse, multi-national multiple sclerosis (MS) cohort was compared in a cross-sectional study. Overall, anti-JCV antibody...... prevalence was 57.6%. Anti-JCV antibody prevalence in MS patients ranged from approximately 47% to 68% across these countries: Norway, 47.4%; Denmark, 52.6%; Israel, 56.6%; France, 57.6%; Italy, 58.3%; Sweden, 59.0%; Germany, 59.1%; Austria, 66.7% and Turkey, 67.7%. Prevalence increased with age (from 49...

  3. JC virus chromogenic in situ hybridization in brain biopsies from patients with and without PML.

    Science.gov (United States)

    Procop, Gary W; Beck, Rose C; Pettay, James D; Kohn, Debra J; Tuohy, Marion J; Yen-Lieberman, Belinda; Prayson, Richard A; Tubbs, Raymond R

    2006-06-01

    Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system caused by the JC polyoma virus. Electron microscopy and immunohistochemistry are the traditional methods of confirming the presence of the virus in brain biopsies from these patients. We studied the brain biopsies from 7 patients with PML and 6 patients without PML with chromogenic in situ hybridization (CISH) for the JC polyoma virus using a commercially available probe. The biopsies from the patients with the PML cases were proven to contain the JC polyoma virus by traditional and molecular methods. The CISH findings were compared with the known state of infection. All (7/7) of the biopsies from patients with PML were positive for the presence of polyoma virus by CISH, whereas the biopsies from patients without PML were uniformly negative. CISH seems to be a useful tool for the detection of the JC virus in brain biopsies from patients with PML, and is more accessible because a commercial probe is available.

  4. Pharmacological cdk inhibitor R-Roscovitine suppresses JC virus proliferation

    International Nuclear Information System (INIS)

    Orba, Yasuko; Sunden, Yuji; Suzuki, Tadaki; Nagashima, Kazuo; Kimura, Takashi; Tanaka, Shinya; Sawa, Hirofumi

    2008-01-01

    The human Polyomavirus JC virus (JCV) utilizes cellular proteins for viral replication and transcription in the host cell nucleus. These cellular proteins represent potential targets for antiviral drugs against the JCV. In this study, we examined the antiviral effects of the pharmacological cyclin-dependent kinase (cdk) inhibitor R-Roscovitine, which has been shown to have antiviral activity against other viruses. We found that Roscovitine significantly inhibited the viral production and cytopathic effects of the JCV in a JCV-infected cell line. Roscovitine attenuated the transcriptional activity of JCV late genes, but not early genes, and also prevented viral replication via inhibiting phosphorylation of the viral early protein, large T antigen. These data suggest that the JCV requires cdks to transcribe late genes and to replicate its own DNA. That Roscovitine exhibited antiviral activity in JCV-infected cells suggests that Roscovitine might have therapeutic utility in the treatment of progressive multifocal leukoencephalopathy (PML)

  5. Increased p53 immunopositivity in anaplastic medulloblastoma and supratentorial PNET is not caused by JC virus

    International Nuclear Information System (INIS)

    Eberhart, Charles G; Chaudhry, Aneeka; Daniel, Richard W; Khaki, Leila; Shah, Keerti V; Gravitt, Patti E

    2005-01-01

    p53 mutations are relatively uncommon in medulloblastoma, but abnormalities in this cell cycle pathway have been associated with anaplasia and worse clinical outcomes. We correlated p53 protein expression with pathological subtype and clinical outcome in 75 embryonal brain tumors. The presence of JC virus, which results in p53 protein accumulation, was also examined. p53 protein levels were evaluated semi-quantitatively in 64 medulloblastomas, 3 atypical teratoid rhabdoid tumors (ATRT), and 8 supratentorial primitive neuroectodermal tumors (sPNET) using immunohistochemistry. JC viral sequences were analyzed in DNA extracted from 33 frozen medulloblastoma and PNET samples using quantitative polymerase chain reaction. p53 expression was detected in 18% of non-anaplastic medulloblastomas, 45% of anaplastic medulloblastomas, 67% of ATRT, and 88% of sPNET. The increased p53 immunoreactivity in anaplastic medulloblastoma, ATRT, and sPNET was statistically significant. Log rank analysis of clinical outcome revealed significantly shorter survival in patients with p53 immunopositive embryonal tumors. No JC virus was identified in the embryonal brain tumor samples, while an endogenous human retrovirus (ERV-3) was readily detected. Immunoreactivity for p53 protein is more common in anaplastic medulloblastomas, ATRT and sPNET than in non-anaplastic tumors, and is associated with worse clinical outcomes. However, JC virus infection is not responsible for increased levels of p53 protein

  6. Increased p53 immunopositivity in anaplastic medulloblastoma and supratentorial PNET is not caused by JC virus

    Directory of Open Access Journals (Sweden)

    Shah Keerti V

    2005-02-01

    Full Text Available Abstract Background p53 mutations are relatively uncommon in medulloblastoma, but abnormalities in this cell cycle pathway have been associated with anaplasia and worse clinical outcomes. We correlated p53 protein expression with pathological subtype and clinical outcome in 75 embryonal brain tumors. The presence of JC virus, which results in p53 protein accumulation, was also examined. Methods p53 protein levels were evaluated semi-quantitatively in 64 medulloblastomas, 3 atypical teratoid rhabdoid tumors (ATRT, and 8 supratentorial primitive neuroectodermal tumors (sPNET using immunohistochemistry. JC viral sequences were analyzed in DNA extracted from 33 frozen medulloblastoma and PNET samples using quantitative polymerase chain reaction. Results p53 expression was detected in 18% of non-anaplastic medulloblastomas, 45% of anaplastic medulloblastomas, 67% of ATRT, and 88% of sPNET. The increased p53 immunoreactivity in anaplastic medulloblastoma, ATRT, and sPNET was statistically significant. Log rank analysis of clinical outcome revealed significantly shorter survival in patients with p53 immunopositive embryonal tumors. No JC virus was identified in the embryonal brain tumor samples, while an endogenous human retrovirus (ERV-3 was readily detected. Conclusion Immunoreactivity for p53 protein is more common in anaplastic medulloblastomas, ATRT and sPNET than in non-anaplastic tumors, and is associated with worse clinical outcomes. However, JC virus infection is not responsible for increased levels of p53 protein.

  7. Increased p53 immunopositivity in anaplastic medulloblastoma and supratentorial PNET is not caused by JC virus

    Science.gov (United States)

    Eberhart, Charles G; Chaudhry, Aneeka; Daniel, Richard W; Khaki, Leila; Shah, Keerti V; Gravitt, Patti E

    2005-01-01

    Background p53 mutations are relatively uncommon in medulloblastoma, but abnormalities in this cell cycle pathway have been associated with anaplasia and worse clinical outcomes. We correlated p53 protein expression with pathological subtype and clinical outcome in 75 embryonal brain tumors. The presence of JC virus, which results in p53 protein accumulation, was also examined. Methods p53 protein levels were evaluated semi-quantitatively in 64 medulloblastomas, 3 atypical teratoid rhabdoid tumors (ATRT), and 8 supratentorial primitive neuroectodermal tumors (sPNET) using immunohistochemistry. JC viral sequences were analyzed in DNA extracted from 33 frozen medulloblastoma and PNET samples using quantitative polymerase chain reaction. Results p53 expression was detected in 18% of non-anaplastic medulloblastomas, 45% of anaplastic medulloblastomas, 67% of ATRT, and 88% of sPNET. The increased p53 immunoreactivity in anaplastic medulloblastoma, ATRT, and sPNET was statistically significant. Log rank analysis of clinical outcome revealed significantly shorter survival in patients with p53 immunopositive embryonal tumors. No JC virus was identified in the embryonal brain tumor samples, while an endogenous human retrovirus (ERV-3) was readily detected. Conclusion Immunoreactivity for p53 protein is more common in anaplastic medulloblastomas, ATRT and sPNET than in non-anaplastic tumors, and is associated with worse clinical outcomes. However, JC virus infection is not responsible for increased levels of p53 protein. PMID:15717928

  8. Trans-activation of the JC virus late promoter by the tat protein of type 1 human immunodeficiency virus in glial cells

    International Nuclear Information System (INIS)

    Tada, Hiroomi; Lashgari, M.; Amini, S.; Khalili, K.; Rappaport, J.; Wong-Staal, F.

    1990-01-01

    Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system caused by the JC virus (JCV), a human papovavirus. PML is a relatively rare disease seen predominantly in immunocompromised individuals and is a frequent complication observed in AIDS patients. The significantly higher incidence of PML in AIDS patients than in other immunosuppressive disorders has suggested that the presence of human immunodeficiency virus type 1 (HIV-1) in the brain may directly or indirectly contribute to the pathogenesis of this disease. In the present study the authors have examined the expression of the JCV genome in both glial and non-glial cells in the presence of HIV-1 regulatory proteins. They find that the HIV-1-encoded trans-regulatory protein tat increases the basal activity of the JCV late promoter, JCV L , in glial cells. They conclude that the presence of the HIV-1-encoded tat protein may positively affect the JCV lytic cycle in glial cells by stimulating JCV gene expression. The results suggest a mechanism for the relatively high incidence of PML in AIDS patients than in other immunosuppressive disorders. Furthermore, the findings indicate that the HIV-1 regulatory protein tat may stimulate other viral and perhaps cellular promoters, in addition to its own

  9. Isolation and characterization of an ubiquitin extension protein gene (JcUEP) promoter from Jatropha curcas.

    Science.gov (United States)

    Tao, Yan-Bin; He, Liang-Liang; Niu, Long-Jian; Xu, Zeng-Fu

    2015-04-01

    The JcUEP promoter is active constitutively in the bio-fuel plant Jatropha curcas , and is an alternative to the widely used CaMV35S promoter for driving constitutive overexpression of transgenes in Jatropha. Well-characterized promoters are required for transgenic breeding of Jatropha curcas, a biofuel feedstock with great potential for production of bio-diesel and bio-jet fuel. In this study, an ubiquitin extension protein gene from Jatropha, designated JcUEP, was identified to be ubiquitously expressed. Thus, we isolated a 1.2 kb fragment of the 5' flanking region of JcUEP and evaluated its activity as a constitutive promoter in Arabidopsis and Jatropha using the β-glucuronidase (GUS) reporter gene. As expected, histochemical GUS assay showed that the JcUEP promoter was active in all Arabidopsis and Jatropha tissues tested. We also compared the activity of the JcUEP promoter with that of the cauliflower mosaic virus 35S (CaMV35S) promoter, a well-characterized constitutive promoter conferring strong transgene expression in dicot species, in various tissues of Jatropha. In a fluorometric GUS assay, the two promoters showed similar activities in stems, mature leaves and female flowers; while the CaMV35S promoter was more effective than the JcUEP promoter in other tissues, especially young leaves and inflorescences. In addition, the JcUEP promoter retained its activity under stress conditions in low temperature, high salt, dehydration and exogenous ABA treatments. These results suggest that the plant-derived JcUEP promoter could be an alternative to the CaMV35S promoter for driving constitutive overexpression of transgenes in Jatropha and other plants.

  10. JC Virus Leuko-Encephalopathy in Reduced Intensity Conditioning Cord Blood Transplant Recipient with a Review of the Literature.

    Science.gov (United States)

    El-Cheikh, Jean; Fürst, Sabine; Casalonga, Francois; Crocchiolo, Roberto; Castagna, Luca; Granata, Angela; Oudin, Claire; Faucher, Catherine; Berger, Pierre; Sarran, Anthony; Blaise, Didier

    2012-01-01

    We report here the case of progressive multifocal leukoencephalopathy (PML) related to human polyomavirus JC (JCV) infection after an allogeneic transplantation with umbilical cord blood cells in 59-year-old woman with follicular Non Hodgkin lymphoma. She presented with dysphagia and weakness; magnetic resonance imaging demonstrated marked signal abnormality in the sub-cortical white matter of the left frontal lobe and in the posterior limb of the right internal capsule. Polymerase chain reaction (PCR) analysis of the cerebrospinal fluid (CSF) was positive for John Cunningham (JC) virus. JC viral DNA in the CSF was positive, establishing the diagnosis of PML. Brain biopsy was not done. Extensive investigations for other viral infections seen in immuno-compromised patients were negative. The patient's neurologic deficits rapidly increased throughout her hospital stay, and she died one month after the diagnosis. These findings could have practical implications and demonstrate that in patients presenting neurological symptoms and radiological signs after UCBT, the JCV encephalitis must be early suspected.

  11. Association between the JC polyomavirus infection and male infertility.

    Directory of Open Access Journals (Sweden)

    Manola Comar

    Full Text Available In recent years the incidence of male infertility has increased. Many risk factors have been taken into consideration, including viral infections. Investigations into viral agents and male infertility have mainly been focused on human papillomaviruses, while no reports have been published on polyomaviruses and male infertility. The aim of this study was to verify whether JC virus and BK virus are associated with male infertility. Matched semen and urine samples from 106 infertile males and 100 fertile males, as controls, were analyzed. Specific PCR analyses were carried out to detect and quantify large T (Tag coding sequences of JCV and BKV. DNA sequencing, carried out in Tag JCV-positive samples, was addressed to viral protein 1 (VP1 coding sequences. The prevalence of JCV Tag sequences in semen and urine samples from infertile males was 34% (72/212, whereas the BKV prevalence was 0.94% (2/212. Specifically, JCV Tag sequences were detected in 24.5% (26/106 of semen and 43.4% (46/106 of urine samples from infertile men. In semen and urine samples from controls the prevalence was 11% and 28%, respectively. A statistically significant difference (p<0.05 in JCV prevalence was disclosed in semen and urine samples of cases vs. controls. A higher JC viral DNA load was detected in samples from infertile males than in controls. In samples from infertile males the JC virus type 2 strain, subtype 2b, was more prevalent than ubiquitous type 1. JCV type 2 strain infection has been found to be associated with male infertility. These data suggest that the JC virus should be taken into consideration as an infectious agent which is responsible for male infertility.

  12. Association between hMLH1 hypermethylation and JC virus (JCV) infection in human colorectal cancer (CRC).

    Science.gov (United States)

    Vilkin, Alex; Niv, Yaron

    2011-04-01

    Incorporation of viral DNA may interfere with the normal sequence of human DNA bases on the genetic level or cause secondary epigenetic changes such as gene promoter methylation or histone acetylation. Colorectal cancer (CRC) is the second leading cause of cancer mortality in the USA. Chromosomal instability (CIN) was established as the key mechanism in cancer development. Later, it was found that CRC results not only from the progressive accumulation of genetic alterations but also from epigenetic changes. JC virus (JCV) is a candidate etiologic factor in sporadic CRC. It may act by stabilizing β-catenin, facilitating its entrance to the cell nucleus, initialing proliferation and cancer development. Diploid CRC cell lines transfected with JCV-containing plasmids developed CIN. This result provides direct experimental evidence for the ability of JCV T-Ag to induce CIN in the genome of colonic epithelial cells. The association of CRC hMLH1 methylation and tumor positivity for JCV was recently documented. JC virus T-Ag DNA sequences were found in 77% of CRCs and are associated with promoter methylation of multiple genes. hMLH1 was methylated in 25 out of 80 CRC patients positive for T-Ag (31%) in comparison with only one out of 11 T-Ag negative cases (9%). Thus, JCV can mediate both CIN and aberrant methylation in CRC. Like other viruses, chronic infection with JCV may induce CRC by different mechanisms which should be further investigated. Thus, gene promoter methylation induced by JCV may be an important process in CRC and the polyp-carcinoma sequence.

  13. Cloning and expression analysis of JcAACT, jcMDC and JcFPS, involved in terpenoid biosynthesis in jatropha curcas l

    International Nuclear Information System (INIS)

    Huang, Y.; Wen, J.

    2018-01-01

    To better understand the functions of key genes involved in terpenoid biosynthesis in Jatropha curcas, we cloned and characterized three genes, namely acetyl CoA acyltransferase (JcAACT), diphosphate mevalonate decarboxylase (JcMDC) and farnesyl pyrophosphate synthase (JcFPS). The opening reading frames (ORFs) of JcAACT, JcMDC and JcFPS were 1239 bp,1248 bp and 1029 bp, respectively, encoding a 412-amino acid, 415-amino acid and 342-amino acid polypeptide, respectively. Results of homology analysis showed that JcAACT, JcMDC and JcFPS encoded proteins that all had the highest identity and closest relationship with the corresponding genes in Hevea brasiliensis, with identities of 89%, 92% and 93%, respectively. JcAACT, JcMDC and JcFPS were expressed in all organs tested of J. curcas; the highest expression level for each gene occurred in seeds. In the early growth stage of seeds, the expression level of each of these three genes increased with time, with JcAACT and JcMDC expression level reaching a peak at the late stage of seed development (50 d), while JcFPS expression level reached a peak at the mid-late stage (40 d). Following the peak, the expression of each gene then declined. The expression level of JcAACT was the highest of the three genes, regardless of the organ or the stage of seed growth, indicating its important role in J. curcas. This study lays the foundation for a better understanding of the important role of the JcAACT, JcMDC and JcFPS genes in the terpenoid biosynthesis pathway of J. curcas. (author)

  14. Rhodiolae Kirliowii Radix et Rhizoma and Crataegus pinnatifida Fructus Extracts Effectively Inhibit BK Virus and JC Virus Infection of Host Cells

    Directory of Open Access Journals (Sweden)

    San-Yuan Chen

    2017-01-01

    Full Text Available The human polyomaviruses BK (BKPyV and JC (JCPyV are ubiquitous pathogens long associated with severe disease in immunocompromised individuals. BKPyV causes polyomavirus-associated nephropathy and hemorrhagic cystitis, whereas JCPyV is the causative agent of the fatal demyelinating disease progressive multifocal leukoencephalopathy. No effective therapies targeting these viruses are currently available. The goal of this study was to identify Chinese medicinal herbs with antiviral activity against BKPyV and JCPyV. We screened extracts of Chinese medicinal herbs for the ability to inhibit hemagglutination by BKPyV and JCPyV virus-like particles (VLPs and the ability to inhibit BKPyV and JCPyV binding and infection of host cells. Two of the 40 herbal extracts screened, Rhodiolae Kirliowii Radix et Rhizoma and Crataegus pinnatifida Fructus, had hemagglutination inhibition activity on BKPyV and JCPyV VLPs and further inhibited infection of the cells by BKPyV and JCPyV, as evidenced by reduced expression of viral proteins in BKPyV-infected and JCPyV-infected cells after treatment with Rhodiolae Kirliowii Radix et Rhizoma or Crataegus pinnatifida Fructus extract. The results in this work show that both Rhodiolae Kirliowii Radix et Rhizoma and Crataegus pinnatifida Fructus may be sources of potential antiviral compounds for treating BKPyV and JCPyV infections.

  15. Derivation of a JC virus-resistant human glial cell line: implications for the identification of host cell factors that determine viral tropism

    International Nuclear Information System (INIS)

    Gee, Gretchen V.; Manley, Kate; Atwood, Walter J.

    2003-01-01

    JC virus (JCV) is a common human polyomavirus that infects 70-80% of the population worldwide. In immunosuppressed individuals, JCV infects oligodendrocytes and causes a fatal demyelinating disease known as progressive multifocal leukoencephalopathy (PML). The tropism of JCV is restricted to oligodendrocytes, astrocytes, and B lymphocytes. Several mechanisms may contribute to the restricted tropism of JCV, including the presence or absence of cell-type-specific transcription and replication factors and the presence or absence of cell-type-specific receptors. We have established a system to investigate cellular factors that influence viral tropism by selecting JCV-resistant cells from a susceptible glial cell line (SVG-A). SVG-A cells were subjected to several rounds of viral infection using JC virus (M1/SVEΔ). A population of resistant cells emerged (SVGR2) that were refractory to infection with the Mad-4 strain of JCV, the hybrid virus M1/SVEΔ, as well as to the related polyomavirus SV40. SVGR2 cells were as susceptible as the SVG-A cells to infection with an unrelated amphotropic retrovirus. The stage at which these cells are resistant to infection was investigated and the block appears to be at early viral gene transcription. This system should ultimately allow us to identify glial specific factors that influence the tropism of JCV

  16. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    Science.gov (United States)

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A.

    2015-01-01

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. PMID:25155200

  17. JC virus induces altered patterns of cellular gene expression: Interferon-inducible genes as major transcriptional targets

    International Nuclear Information System (INIS)

    Verma, Saguna; Ziegler, Katja; Ananthula, Praveen; Co, Juliene K.G.; Frisque, Richard J.; Yanagihara, Richard; Nerurkar, Vivek R.

    2006-01-01

    Human polyomavirus JC (JCV) infects 80% of the population worldwide. Primary infection, typically occurring during childhood, is asymptomatic in immunocompetent individuals and results in lifelong latency and persistent infection. However, among the severely immunocompromised, JCV may cause a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Virus-host interactions influencing persistence and pathogenicity are not well understood, although significant regulation of JCV activity is thought to occur at the level of transcription. Regulation of the JCV early and late promoters during the lytic cycle is a complex event that requires participation of both viral and cellular factors. We have used cDNA microarray technology to analyze global alterations in gene expression in JCV-permissive primary human fetal glial cells (PHFG). Expression of more than 400 cellular genes was altered, including many that influence cell proliferation, cell communication and interferon (IFN)-mediated host defense responses. Genes in the latter category included signal transducer and activator of transcription 1 (STAT1), interferon stimulating gene 56 (ISG56), myxovirus resistance 1 (MxA), 2'5'-oligoadenylate synthetase (OAS), and cig5. The expression of these genes was further confirmed in JCV-infected PHFG cells and the human glioblastoma cell line U87MG to ensure the specificity of JCV in inducing this strong antiviral response. Results obtained by real-time RT-PCR and Western blot analyses supported the microarray data and provide temporal information related to virus-induced changes in the IFN response pathway. Our data indicate that the induction of an antiviral response may be one of the cellular factors regulating/controlling JCV replication in immunocompetent hosts and therefore constraining the development of PML

  18. JC virus antibody index in natalizumab-treated patients: correlations with John Cunningham virus DNA and C-reactive protein level

    Directory of Open Access Journals (Sweden)

    Lanzillo R

    2014-10-01

    Full Text Available Roberta Lanzillo,1 Raffaele Liuzzi,2 Luca Vallefuoco,3 Marcello Moccia,1 Luca Amato,1 Giovanni Vacca,1 Veria Vacchiano,1 Giuseppe Portella,3 Vincenzo Brescia Morra1 1Neurological Sciences Department, Federico II University, 2Institute of Biostructure and Bioimaging, National Research Council, 3Clinical Pathology Department, Federico II University, Naples, ItalyAbstract: Natalizumab-treated patients have a higher risk of developing progressive multifocal leukoencephalopathy. Exposure to John Cunningham virus (JCV is a prerequisite for PML (progressive multifocal leukoencephalopathy. To assess JCV exposure in multiple sclerosis patients, we performed a serological examination, obtained the antibody index, performed real-time polymerase chain reaction (PCR to detect JCV DNA in plasma and urine, and investigated the role of ultrasensitive C-reactive protein (usCRP as a possible biological marker of JCV reactivation. We retrospectively analyzed consecutive natalizumab-treated multiple sclerosis patients who underwent a JCV antibody test through a two-step enzyme-linked immunosorbent assay (STRATIFY test to the measure of serum usCRP levels, and to perform blood and urine JCV PCR. The studied cohort included 97 relapsing–remitting patients (60 women. Fifty-two patients (53.6% tested positive for anti-JCV antibodies. PCR showed JCV DNA in the urine of 30 out of 83 (36.1% patients and 28 out of 44 seropositive patients (63.6%, with a 6.7% false-negative rate for the STRATIFY test. Normalized optical density values were higher in urinary JCV DNA-positive patients (P<0.0001. Interestingly, the level of usCRP was higher in urinary JCV DNA-positive patients and correlated to the number of DNA copies in urine (P=0.028. As expected, patients' age correlated with JCV seropositivity and with JC viruria (P=0.02 and P=0.001, respectively. JC viruria was significantly correlated with a high JCV antibody index and high serum usCRP levels. We suggest that PCR and

  19. J.C. Christensen

    DEFF Research Database (Denmark)

    Duedahl, Poul

    I mange år var det en almindelig antagelse, at statsminister J.C. Christensens dagbøger var blevet brændt efter hans død. Nu er hans dagbøger fra årene 1900-09 imidlertid dukket op, og de giver et indblik i dansk politik i årene omkring Systemskiftet. Dagbøgerne dækker den periode, hvor J.C...... af justitsminister P.A. Albertis bedragerier og optakten til en rigsretssag. De tyve små dagbøger indeholder optegnelser om stort og småt fra perioden. De tjente som et sted, hvor den normalt tillukkede J.C. Christensen fik luft for private og ikke mindst politiske bekymringer, og mange af aktørerne...... i det politiske liv blev i dagbøgerne udsat for skarpe bemærkninger. J.C. Christensens dagbøger giver et enestående indblik i et stykke Danmarkshistorie set fra første række....

  20. JC Polyomavirus (JCV and Monoclonal Antibodies: Friends or Potential Foes?

    Directory of Open Access Journals (Sweden)

    Roberta Antonia Diotti

    2013-01-01

    Full Text Available Progressive multifocal leukoencephalopathy (PML is a demyelinating disease of the central nervous system (CNS, observed in immunodeficient patients and caused by JC virus ((JCV, also called JC polyomavirus (JCPyV. After the HIV pandemic and the introduction of immunomodulatory therapy, the PML incidence significantly increased. The correlation between the use of natalizumab, a drug used in multiple sclerosis (MS, and the PML development of particular relevance. The high incidence of PML in natalizumab-treated patients has highlighted the importance of two factors: the need of PML risk stratification among natalizumab-treated patients and the need of effective therapeutic options. In this review, we discuss these two needs under the light of the major viral models of PML etiopathogenesis.

  1. Efficient uptake of blood-borne BK and JC polyomavirus-like particles in endothelial cells of liver sinusoids and renal vasa recta.

    Directory of Open Access Journals (Sweden)

    Jaione Simon-Santamaria

    Full Text Available Liver sinusoidal endothelial cells (LSECs are specialized scavenger cells that mediate high-capacity clearance of soluble waste macromolecules and colloid material, including blood-borne adenovirus. To explore if LSECs function as a sink for other viruses in blood, we studied the fate of virus-like particles (VLPs of two ubiquitous human DNA viruses, BK and JC polyomavirus, in mice. Like complete virions, VLPs specifically bind to receptors and enter cells, but unlike complete virions, they cannot replicate. 125I-labeled VLPs were used to assess blood decay, organ-, and hepatocellular distribution of ligand, and non-labeled VLPs to examine cellular uptake by immunohisto- and -cytochemistry. BK- and JC-VLPs rapidly distributed to liver, with lesser uptake in kidney and spleen. Liver uptake was predominantly in LSECs. Blood half-life (∼1 min, and tissue distribution of JC-VLPs and two JC-VLP-mutants (L55F and S269F that lack sialic acid binding affinity, were similar, indicating involvement of non-sialic acid receptors in cellular uptake. Liver uptake was not mediated by scavenger receptors. In spleen, the VLPs localized to the red pulp marginal zone reticuloendothelium, and in kidney to the endothelial lining of vasa recta segments, and the transitional epithelium of renal pelvis. Most VLP-positive vessels in renal medulla did not express PV-1/Meca 32, suggesting location to the non-fenestrated part of vasa recta. The endothelial cells of these vessels also efficiently endocytosed a scavenger receptor ligand, formaldehyde-denatured albumin, suggesting high endocytic activity compared to other renal endothelia. We conclude that LSECs very effectively cleared a large fraction of blood-borne BK- and JC-VLPs, indicating a central role of these cells in early removal of polyomavirus from the circulation. In addition, we report the novel finding that a subpopulation of endothelial cells in kidney, the main organ of polyomavirus persistence, showed

  2. Infectious Entry and Neutralization of Pathogenic JC Polyomaviruses

    Directory of Open Access Journals (Sweden)

    Eileen M. Geoghegan

    2017-10-01

    Full Text Available Summary: Progressive multifocal leukoencephalopathy (PML is a lethal brain disease caused by uncontrolled replication of JC polyomavirus (JCV. JCV strains recovered from the brains of PML patients carry mutations that prevent the engagement of sialylated glycans, which are thought to serve as receptors for the infectious entry of wild-type JCV. In this report, we show that non-sialylated glycosaminoglycans (GAGs can serve as alternative attachment receptors for the infectious entry of both wild-type and PML mutant JCV strains. After GAG-mediated attachment, PML mutant strains engage non-sialylated non-GAG co-receptor glycans, such as asialo-GM1. JCV-neutralizing monoclonal antibodies isolated from patients who recovered from PML appear to block infection by preventing the docking of post-attachment co-receptor glycans in an apical pocket of the JCV major capsid protein. Identification of the GAG-dependent/sialylated glycan-independent alternative entry pathway should facilitate the development of infection inhibitors, including recombinant neutralizing antibodies. : Geoghegan et al. show that JC polyomavirus strains that cause brain disease infect cells via a pathway involving a heparin-like attachment receptor and a non-sialylated co-receptor. Candidate therapeutic human monoclonal antibodies neutralize by blocking co-receptor engagement. Keywords: polyomavirus, JC, BK, SV40, progressive multifocal leukoencephalopathy, PML, monoclonal antibody, mAb, virus entry, receptor

  3. Serologic evidence of Jamestown Canyon and Keystone virus infection in vertebrates of the DelMarVa Peninsula.

    Science.gov (United States)

    Watts, D M; LeDuc, J W; Bailey, C L; Dalrymple, J M; Gargan, T P

    1982-11-01

    Serological data accumulated during the past decade indicated that a variety of feral and domestic animals of the Delaware-Maryland-Virginia (DelMarVa) Peninsula were infected with Jamestown Canyon (JC) and/or Keystone (KEY) viruses (Bunyaviridae, California serogroup). Neutralizing (N) antibody to JC virus was most prevalent in white-tailed deer, sika deer, cottontail rabbits and horses. KEY virus N antibody was detected most frequently in gray squirrels and domestic goats. N antibody indicative of past infection by one or both viruses also was found in raccoons, horses and humans. JC and/or KEY virus N antibodies were not demonstrable in sera of several other species of small mammals and reptiles. Investigations were extended to evaluate the role of domestic goats as an amplifying host of JC and KEY viruses and to assess their potential as sentinels of virus transmission. Goats maintained in the Pocomoke Cypress Swamp during the summer season of 1978, acquired N antibodies to JC and KEY viruses. Following experimental inoculation with either JC or KEY virus, all goats developed N antibody despite the absence of a demonstrable viremia in most animals. Goats proved to be effective as sentinels for monitoring the transmission of JC and KEY viruses; however, the exceptionally low titers or absence of viremia following inoculation with these viruses would seem to preclude a potential virus-amplifying role for this species. Although findings implicated primarily gray squirrels and white-tailed deer as possible amplifying hosts of KEY and JC virus, respectively, further investigations will be required to clarify their role, particularly since both viruses may be maintained entirely by transovarial transmission.

  4. Susceptibility of Primary Human Choroid Plexus Epithelial Cells and Meningeal Cells to Infection by JC Virus.

    Science.gov (United States)

    O'Hara, Bethany A; Gee, Gretchen V; Atwood, Walter J; Haley, Sheila A

    2018-04-15

    JC polyomavirus (JCPyV) establishes a lifelong persistence in roughly half the human population worldwide. The cells and tissues that harbor persistent virus in vivo are not known, but renal tubules and other urogenital epithelial cells are likely candidates as virus is shed in the urine of healthy individuals. In an immunosuppressed host, JCPyV can become reactivated and cause progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the central nervous system. Recent observations indicate that JCPyV may productively interact with cells in the choroid plexus and leptomeninges. To further study JCPyV infection in these cells, primary human choroid plexus epithelial cells and meningeal cells were challenged with virus, and their susceptibility to infection was compared to the human glial cell line, SVG-A. We found that JCPyV productively infects both choroid plexus epithelial cells and meningeal cells in vitro Competition with the soluble receptor fragment LSTc reduced virus infection in these cells. Treatment of cells with neuraminidase also inhibited both viral infection and binding. Treatment with the serotonin receptor antagonist, ritanserin, reduced infection in SVG-A and meningeal cells. We also compared the ability of wild-type and sialic acid-binding mutant pseudoviruses to transduce these cells. Wild-type pseudovirus readily transduced all three cell types, but pseudoviruses harboring mutations in the sialic acid-binding pocket of the virus failed to transduce the cells. These data establish a novel role for choroid plexus and meninges in harboring virus that likely contributes not only to meningoencephalopathies but also to PML. IMPORTANCE JCPyV infects greater than half the human population worldwide and causes central nervous system disease in patients with weakened immune systems. Several recent reports have found JCPyV in the choroid plexus and leptomeninges of patients with encephalitis. Due to their role in forming the blood

  5. Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (FT) homologous gene from the biofuel plant Jatropha curcas.

    Science.gov (United States)

    Li, Chaoqiong; Luo, Li; Fu, Qiantang; Niu, Longjian; Xu, Zeng-Fu

    2014-05-08

    Physic nut (Jatropha curcas L.) is a potential feedstock for biofuel production because Jatropha oil is highly suitable for the production of the biodiesel and bio-jet fuels. However, Jatropha exhibits low seed yield as a result of unreliable and poor flowering. FLOWERING LOCUS T (FT) -like genes are important flowering regulators in higher plants. To date, the flowering genes in Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an FT homolog was isolated from Jatropha and designated as JcFT. Sequence analysis and phylogenetic relationship of JcFT revealed a high sequence similarity with the FT genes of Litchi chinensis, Populus nigra and other perennial plants. JcFT was expressed in all tissues of adult plants except young leaves, with the highest expression level in female flowers. Overexpression of JcFT in Arabidopsis and Jatropha using the constitutive promoter cauliflower mosaic virus 35S or the phloem-specific promoter Arabidopsis SUCROSE TRANSPORTER 2 promoter resulted in an extremely early flowering phenotype. Furthermore, several flowering genes downstream of JcFT were up-regulated in the JcFT-overexpression transgenic plant lines. JcFT may encode a florigen that acts as a key regulator in flowering pathway. This study is the first to functionally characterize a flowering gene, namely, JcFT, in the biofuel plant Jatropha.

  6. Amino acid sequences mediating vascular cell adhesion molecule 1 binding to integrin alpha 4: homologous DSP sequence found for JC polyoma VP1 coat protein

    Directory of Open Access Journals (Sweden)

    Michael Andrew Meyer

    2013-07-01

    Full Text Available The JC polyoma viral coat protein VP1 was analyzed for amino acid sequences homologies to the IDSP sequence which mediates binding of VLA-4 (integrin alpha 4 to vascular cell adhesion molecule 1. Although the full sequence was not found, a DSP sequence was located near the critical arginine residue linked to infectivity of the virus and binding to sialic acid containing molecules such as integrins (3. For the JC polyoma virus, a DSP sequence was found at residues 70, 71 and 72 with homology also noted for the mouse polyoma virus and SV40 virus. Three dimensional modeling of the VP1 molecule suggests that the DSP loop has an accessible site for interaction from the external side of the assembled viral capsid pentamer.

  7. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    International Nuclear Information System (INIS)

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A.

    2014-01-01

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. - Highlights: • Development of a high-throughput screening assay for JCV DNA replication using C33A cells. • Evidence that T-ag fails to accumulate in the nuclei of established glioma cell lines. • Evidence that NF-1 directly promotes JCV DNA replication in C33A cells. • Proof-of-concept that the HTS assay can be used to identify pharmacological inhibitor of JCV DNA replication

  8. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Gagnon, David [Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7 (Canada); Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec (Canada); Gjoerup, Ole [Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111 (United States); Archambault, Jacques [Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7 (Canada); Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec (Canada); Bullock, Peter A., E-mail: Peter.Bullock@tufts.edu [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States)

    2014-11-15

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. - Highlights: • Development of a high-throughput screening assay for JCV DNA replication using C33A cells. • Evidence that T-ag fails to accumulate in the nuclei of established glioma cell lines. • Evidence that NF-1 directly promotes JCV DNA replication in C33A cells. • Proof-of-concept that the HTS assay can be used to identify pharmacological inhibitor of JCV DNA replication.

  9. Ectopic expression of Jatropha curcas APETALA1 (JcAP1 caused early flowering in Arabidopsis, but not in Jatropha

    Directory of Open Access Journals (Sweden)

    Mingyong Tang

    2016-04-01

    Full Text Available Jatropha curcas is a promising feedstock for biofuel production because Jatropha oil is highly suitable for the production of biodiesel and bio-jet fuels. However, Jatropha exhibits a low seed yield as a result of unreliable and poor flowering. APETALA1 (AP1 is a floral meristem and organ identity gene in higher plants. The flower meristem identity genes of Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an AP1 homolog (JcAP1 was isolated from Jatropha. An amino acid sequence analysis of JcAP1 revealed a high similarity to the AP1 proteins of other perennial plants. JcAP1 was expressed in inflorescence buds, flower buds, sepals and petals. The highest expression level was observed during the early developmental stage of the flower buds. The overexpression of JcAP1 using the cauliflower mosaic virus (CaMV 35S promoter resulted in extremely early flowering and abnormal flowers in transgenic Arabidopsis plants. Several flowering genes downstream of AP1 were up-regulated in the JcAP1-overexpressing transgenic plant lines. Furthermore, JcAP1 overexpression rescued the phenotype caused by the Arabidopsis AP1 loss-of-function mutant ap1-11. Therefore, JcAP1 is an ortholog of AtAP1, which plays a similar role in the regulation of flowering in Arabidopsis. However, the overexpression of JcAP1 in Jatropha using the same promoter resulted in little variation in the flowering time and floral organs, indicating that JcAP1 may be insufficient to regulate flowering by itself in Jatropha. This study helps to elucidate the function of JcAP1 and contributes to the understanding of the molecular mechanisms of flower development in Jatropha.

  10. Ectopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha

    Science.gov (United States)

    Tang, Mingyong; Tao, Yan-Bin

    2016-01-01

    Jatropha curcas is a promising feedstock for biofuel production because Jatropha oil is highly suitable for the production of biodiesel and bio-jet fuels. However, Jatropha exhibits a low seed yield as a result of unreliable and poor flowering. APETALA1 (AP1) is a floral meristem and organ identity gene in higher plants. The flower meristem identity genes of Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an AP1 homolog (JcAP1) was isolated from Jatropha. An amino acid sequence analysis of JcAP1 revealed a high similarity to the AP1 proteins of other perennial plants. JcAP1 was expressed in inflorescence buds, flower buds, sepals and petals. The highest expression level was observed during the early developmental stage of the flower buds. The overexpression of JcAP1 using the cauliflower mosaic virus (CaMV) 35S promoter resulted in extremely early flowering and abnormal flowers in transgenic Arabidopsis plants. Several flowering genes downstream of AP1 were up-regulated in the JcAP1-overexpressing transgenic plant lines. Furthermore, JcAP1 overexpression rescued the phenotype caused by the Arabidopsis AP1 loss-of-function mutant ap1-11. Therefore, JcAP1 is an ortholog of AtAP1, which plays a similar role in the regulation of flowering in Arabidopsis. However, the overexpression of JcAP1 in Jatropha using the same promoter resulted in little variation in the flowering time and floral organs, indicating that JcAP1 may be insufficient to regulate flowering by itself in Jatropha. This study helps to elucidate the function of JcAP1 and contributes to the understanding of the molecular mechanisms of flower development in Jatropha. PMID:27168978

  11. Isolation and characterization of the Jatropha curcas APETALA1 (JcAP1) promoter conferring preferential expression in inflorescence buds.

    Science.gov (United States)

    Tao, Yan-Bin; He, Liang-Liang; Niu, Longjian; Xu, Zeng-Fu

    2016-08-01

    The 1.5 kb JcAP1 promoter from the biofuel plant Jatropha curcas is predominantly active in the inflorescence buds of transgenic plants, in which the -1313/-1057 region is essential for maintaining the activity. Arabidopsis thaliana APETALA1 (AP1) is a MADS-domain transcription factor gene that functions primarily in flower development. We isolated a homolog of AP1 from Jatropha curcas (designated JcAP1), which was shown to exhibit flower-specific expression in Jatropha. JcAP1 is first expressed in inflorescence buds and continues to be primarily expressed in the sepals. We isolated a 1.5 kb JcAP1 promoter and evaluated its activity in transgenic Arabidopsis and Jatropha using the β-glucuronidase (GUS) reporter gene. In transgenic Arabidopsis and Jatropha, the inflorescence buds exhibited notable GUS activity, whereas the sepals did not. Against expectations, the JcAP1 promoter was active in the anthers of Arabidopsis and Jatropha and was highly expressed in Jatropha seeds. An analysis of promoter deletions in transgenic Arabidopsis revealed that deletion of the -1313/-1057 region resulted in loss of JcAP1 promoter activity in the inflorescence buds and increased activity in the anthers. These results suggested that some regulatory sequences in the -1313/-1057 region are essential for maintaining promoter activity in inflorescence buds and can partly suppress activity in the anthers. Based on these findings, we hypothesized that other elements located upstream of the 1.5 kb JcAP1 promoter may be required for flower-specific activation. The JcAP1 promoter characterized in this study can be used to drive transgene expression in both the inflorescence buds and seeds of Jatropha.

  12. Gene therapy for human glioblastoma using neurotropic JC virus-like particles as a gene delivery vector.

    Science.gov (United States)

    Chao, Chun-Nun; Yang, Yu-Hsuan; Wu, Mu-Sheng; Chou, Ming-Chieh; Fang, Chiung-Yao; Lin, Mien-Chun; Tai, Chien-Kuo; Shen, Cheng-Huang; Chen, Pei-Lain; Chang, Deching; Wang, Meilin

    2018-02-02

    Glioblastoma multiforme (GBM), the most common malignant brain tumor, has a short period of survival even with recent multimodality treatment. The neurotropic JC polyomavirus (JCPyV) infects glial cells and oligodendrocytes and causes fatal progressive multifocal leukoencephalopathy in patients with AIDS. In this study, a possible gene therapy strategy for GBM using JCPyV virus-like particles (VLPs) as a gene delivery vector was investigated. We found that JCPyV VLPs were able to deliver the GFP reporter gene into tumor cells (U87-MG) for expression. In an orthotopic xenograft model, nude mice implanted with U87 cells expressing the near-infrared fluorescent protein and then treated by intratumoral injection of JCPyV VLPs carrying the thymidine kinase suicide gene, combined with ganciclovir administration, exhibited significantly prolonged survival and less tumor fluorescence during the experiment compared with controls. Furthermore, JCPyV VLPs were able to protect and deliver a suicide gene to distal subcutaneously implanted U87 cells in nude mice via blood circulation and inhibit tumor growth. These findings show that metastatic brain tumors can be targeted by JCPyV VLPs carrying a therapeutic gene, thus demonstrating the potential of JCPyV VLPs to serve as a gene therapy vector for the far highly treatment-refractory GBM.

  13. Chimeric immune receptors (CIRs) specific to JC virus for immunotherapy in progressive multifocal leukoencephalopathy (PML)

    NARCIS (Netherlands)

    W. Yang; E.L. Beaudoin; L. Lu; R.A. Du Pasquier (Renaud); M.J. Kuroda; R.A. Willemsen (Ralph); I.J. Koralnik; R.P. Junghans

    2007-01-01

    textabstractProgressive multifocal leukoencephalopathy (PML) is a deadly brain disease caused by the polyomavirus JC (JCV). The aim of this study is to develop 'designer T cells' armed with anti-JCV TCR-based chimeric immune receptors (CIRs) by gene modification for PML immunotherapy. Two T cell

  14. JC Virus T-Antigen in Colorectal Cancer Is Associated with p53 Expression and Chromosomal Instability, Independent of CpG Island Methylator Phenotype

    Directory of Open Access Journals (Sweden)

    Katsuhiko Nosho

    2009-01-01

    Full Text Available JC virus has a transforming gene encoding JC virus T-antigen (JCVT. JCVT may inactivate wild-type p53, cause chromosomal instability (CIN, and stabilize β-catenin. A link between JCVT and CpG island methylator phenotype (CIMP has been suggested. However, no large-scale study has examined the relations of JCVT with molecular alterations, clinical outcome, or prognosis in colon cancer. We detected JCVT expression (by immunohistochemistry in 271 (35% of 766 colorectal cancers. We quantified DNA methylation in eight CIMP-specific promoters (CACNA1G, CDKN2A, CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1 and eight other loci (CHFR, HIC1, IGFBP3, MGMT, MINT1, MINT31, p14, WRN by MethyLight. We examined loss of heterozygosity in 2p, 5q, 17q, and 18q. JCVT was significantly associated with p53 expression (P < .0001, p21 loss (P < .0001, CIN (≥2 chromosomal segments with LOH; P < .0001, nuclear β-catenin (P = .006, LINE-1 hypomethylation (P = .002, and inversely with CIMP-high (P = .0005 and microsatellite instability (MSI (P < .0001, but not with PIK3CA mutation. In multivariate logistic regression analysis, the associations of JCVT with p53 [adjusted odds ratio (OR, 8.45; P < .0001], CIN (adjusted OR, 2.53; P = .003, cyclin D1 (adjusted OR, 1.57; P = .02, LINE-1 hypomethylation (adjusted OR, 1.97 for a 30% decline as a unit; P = .03, BRAF mutation (adjusted OR, 2.20; P = .04, and family history of colorectal cancer (adjusted OR, 0.64; P = .04 remained statistically significant. However, JCVT was no longer significantly associated with CIMP, MSI, β-catenin, or cyclooxygenase-2 expression in multivariate analysis. JCVT was unrelated with patient survival. In conclusion, JCVT expression in colorectal cancer is independently associated with p53 expression and CIN, which may lead to uncontrolled cell proliferation.

  15. JcTI-I: a novel trypsin inhibitor from Jatropha curcas seed cake with potential for bacterial infection treatment.

    Science.gov (United States)

    Costa, Helen P S; Oliveira, Jose T A; Sousa, Daniele O B; Morais, Janne K S; Moreno, Frederico B; Monteiro-Moreira, Ana Cristina O; Viegas, Ricardo A; Vasconcelos, Ilka M

    2014-01-01

    Jatropha curcas seed cake is a low-value by-product resulting from biodiesel production. The seed cake is highly toxic, but it has great potential for biotechnology applications as it is a repository of biomolecules that could be important in agriculture, medicine, and industry. To explore this potential, a novel trypsin inhibitor called JcTI-I was purified by fractionation of the crude extract with trichloroacetic acid (2.5%, v/v) followed by affinity chromatography (Trypsin-Sepharose 4B) and molecular exclusion (Sephacryl S-200). Non-reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration showed that JcTI-I has approximately 20.0~kDa. Mass spectrometry analysis revealed that the intact molecular mass of JcTI-I is 10.252~kDa. Moreover, JcTI-I is a glycoprotein with 6.4% (m/m) carbohydrates, pI of 6.6, N-terminal sequence similarity around 60% to plant albumins and high stability to heat, pH, and salinity. JcTI-I presented antibacterial activity against the human pathogenic bacteria Salmonella enterica subspecies enterica serovar choleraesuis and Staphylococcus aureus, with minimum inhibitory concentration less than 5~μg/mL. Furthermore, JcTI-I did have inhibitory activity against the serine proteases from the tested bacteria. Otherwise, no hemolytic activity of human erythrocytes and signs of acute toxicity to mice were observed for JcTI-I. The results demonstrate the benefits of J. curcas seed cake as a source of trypsin inhibitor with potential for biotechnological application as a new antimicrobial agent against human pathogenic bacteria.

  16. JcTI-I, a novel trypsin inhibitor from Jatropha curcas seed cake with potential for bacterial infection treatment

    Directory of Open Access Journals (Sweden)

    Helen Paula S Costa

    2014-01-01

    Full Text Available Jatropha curcas seed cake is a low-value by-product resulting from biodiesel production. The seed cake is highly toxic, but it has great potential for biotechnology applications as it is a repository of biomolecules that could be important in agriculture, medicine and industry. To explore this potential, a novel trypsin inhibitor called JcTI-I was purified by fractionation of the crude extract with trichloroacetic acid (2.5%, v/v followed by affinity chromatography (Trypsin-Sepharose 4B and molecular exclusion (Sephacryl S-200. Non-reducing SDS-PAGE and gel filtration showed that JcTI-I has approximately 20.0 kDa. Mass spectrometry analysis revealed that the intact molecular mass of JcTI-I is 10.252 kDa. Moreover, JcTI-I is a glycoprotein with 6.4% (m/m carbohydrates, pI of 6.6, N-terminal sequence similarity around 60% to plant albumins and high stability to heat, pH and salinity. JcTI-I presented antibacterial activity against the human pathogenic bacteria Salmonella enterica subspecies enterica serovar choleraesuis and Staphylococcus aureus, with minimum inhibitory concentration (MIC less than 5 µg/mL. Furthermore, JcTI-I did have inhibitory activity against the serine proteases from the tested bacteria. Otherwise, no hemolytic activity of human erythrocytes and signs of acute toxicity to mice were observed for JcTI-I. The results demonstrate the benefits of J. curcas seed cake as a source of trypsin inhibitor with potential for biotechnological application as a new antimicrobial agent against human pathogenic bacteria.

  17. Comparative Inactivation of Murine Norovirus, Human Adenovirus, and Human JC Polyomavirus by Chlorine in Seawater

    Science.gov (United States)

    de Abreu Corrêa, Adriana; Carratala, Anna; Barardi, Celia Regina Monte; Calvo, Miquel; Bofill-Mas, Sílvia

    2012-01-01

    Viruses excreted by humans affect the commercial and recreational use of coastal water. Shellfish produced in contaminated waters have been linked to many episodes and outbreaks of viral gastroenteritis, as well as other food-borne diseases worldwide. The risk can be reduced by appropriate treatment following harvesting and by depuration. The kinetics of inactivation of murine norovirus 1 and human adenovirus 2 in natural and artificial seawater by free available chlorine was studied by quantifying genomic copies (GC) using quantitative PCR and infectious viral particles (PFU). Human JC polyomavirus Mad4 kinetics were evaluated by quantitative PCR. DNase or RNase were used to eliminate free genomes and assess potential viral infectivity when molecular detection was performed. At 30 min of assay, human adenovirus 2 showed 2.6- and 2.7-log10 GC reductions and a 2.3- and 2.4-log10 PFU reductions in natural and artificial seawater, respectively, and infectious viral particles were still observed at the end of the assay. When DNase was used prior to the nucleic acid extraction the kinetic of inactivation obtained by quantitative PCR was statistically equivalent to the one observed by infectivity assays. For murine norovirus 1, 2.5, and 3.5-log10 GC reductions were observed in natural and artificial seawater, respectively, while no viruses remained infectious after 30 min of contact with chlorine. Regarding JC polyomavirus Mad4, 1.5- and 1.1-log10 GC reductions were observed after 30 min of contact time. No infectivity assays were conducted for this virus. The results obtained provide data that might be applicable to seawater used in shellfish depuration. PMID:22773637

  18. Characterization of the Tetraspan Junctional Complex (4JC) superfamily.

    Science.gov (United States)

    Chou, Amy; Lee, Andre; Hendargo, Kevin J; Reddy, Vamsee S; Shlykov, Maksim A; Kuppusamykrishnan, Harikrishnan; Medrano-Soto, Arturo; Saier, Milton H

    2017-03-01

    Connexins or innexins form gap junctions, while claudins and occludins form tight junctions. In this study, statistical data, derived using novel software, indicate that these four junctional protein families and eleven other families of channel and channel auxiliary proteins are related by common descent and comprise the Tetraspan (4 TMS) Junctional Complex (4JC) Superfamily. These proteins all share similar 4 transmembrane α-helical (TMS) topologies. Evidence is presented that they arose via an intragenic duplication event, whereby a 2 TMS-encoding genetic element duplicated tandemly to give 4 TMS proteins. In cases where high resolution structural data were available, the conclusion of homology was supported by conducting structural comparisons. Phylogenetic trees reveal the probable relationships of these 15 families to each other. Long homologues containing fusions to other recognizable domains as well as internally duplicated or fused domains are reported. Large "fusion" proteins containing 4JC domains proved to fall predominantly into family-specific patterns as follows: (1) the 4JC domain was N-terminal; (2) the 4JC domain was C-terminal; (3) the 4JC domain was duplicated or occasionally triplicated and (4) mixed fusion types were present. Our observations provide insight into the evolutionary origins and subfunctions of these proteins as well as guides concerning their structural and functional relationships. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Excitability of jcBNST neurons is reduced in alcohol-dependent animals during protracted alcohol withdrawal.

    Directory of Open Access Journals (Sweden)

    Attila Szücs

    Full Text Available Alcohol dependence and withdrawal has been shown to cause neuroadaptive changes at multiple levels of the nervous system. At the neuron level, adaptations of synaptic connections have been extensively studied in a number of brain areas and accumulating evidence also shows the importance of alcohol dependence-related changes in the intrinsic cellular properties of neurons. At the same time, it is still largely unknown how such neural adaptations impact the firing and integrative properties of neurons. To address these problems, here, we analyze physiological properties of neurons in the bed nucleus of stria terminalis (jcBNST in animals with a history of alcohol dependence. As a comprehensive approach, first we measure passive and active membrane properties of neurons using conventional current clamp protocols and then analyze their firing responses under the action of simulated synaptic bombardment via dynamic clamp. We find that most physiological properties as measured by DC current injection are barely affected during protracted withdrawal. However, neuronal excitability as measured from firing responses under simulated synaptic inputs with the dynamic clamp is markedly reduced in all 3 types of jcBNST neurons. These results support the importance of studying the effects of alcohol and drugs of abuse on the firing properties of neurons with dynamic clamp protocols designed to bring the neurons into a high conductance state. Since the jcBNST integrates excitatory inputs from the basolateral amygdala (BLA and cortical inputs from the infralimbic and the insular cortices and in turn is believed to contribute to the inhibitory input to the central nucleus of the amygdala (CeA the reduced excitability of the jcBNST during protracted withdrawal in alcohol-dependent animals will likely affect ability of the jcBNST to shape the activity and output of the CeA.

  20. Thickness dependence of J_c (0) in MgB_2 films

    International Nuclear Information System (INIS)

    Chen, Yiling; Yang, Can; Jia, Chunyan; Feng, Qingrong; Gan, Zizhao

    2016-01-01

    Highlights: • A serial of MgB_2 superconducting films from 10 nm to 8 µm have been prepared. • T_c and J_c (5 K, 0 T) of films are high. • J_c (5 K, 0 T) reaches its maximum 2.3 × 10"8 A cm"−"2 for 100 nm films. • The relationship between thickness and J_c has been discussed in detail. - Abstract: MgB_2 superconducting films, whose thicknesses range from 10 nm to 8 µm, have been fabricated on SiC substrates by hybrid physical–chemical vapor deposition (HPCVD) method. It is the first time that the T_c and the J_c of MgB_2 films are studied on such a large scale. It is found that with the increasing of thickness, T_c elevates first and then keeps roughly stable except for some slight fluctuations, while J_c (5 K, 0 T) experiences a sharp increase followed by a relatively slow fall. The maximum J_c (5 K, 0 T) = 2.3 × 10"8 A cm"−"2 is obtained for 100 nm films, which is the experimental evidence for preparing high-quality MgB_2 films by HPCVD method. Thus, this work may provide guidance on choosing the suitable thickness for applications. Meanwhile, the films prepared by us cover ultrathin films, thin films and thick films, so the study on them will bring a comprehensive understanding of MgB_2 films.

  1. Serum IgG antibodies from healthy subjects up to 100 years old react to JC polyomavirus.

    Science.gov (United States)

    Bononi, Ilaria; Mazzoni, Elisa; Pietrobon, Silvia; Manfrini, Marco; Torreggiani, Elena; Rossini, Marika; Lotito, Francesca; Guerra, Giovanni; Rizzo, Paola; Martini, Fernanda; Tognon, Mauro

    2018-08-01

    JC polyomavirus (JCPyV) was identified in 1971 in the brain tissue of a patient (J.C.) affected by the progressive multifocal leukoencephalopathy (PML). JCPyV encodes for the oncoproteins large T antigen (Tag) and small t-antigen (tag). These oncoproteins are responsible of the cell transformation and tumorigenesis in experimental animals. JCPyV is ubiquitous in human populations. After the primary infection, which is usually asymptomatic, JCPyV remains lifelong in the host in a latent phase. Its reactivation may occur in heathy subjects and immunocompromised patients. Upon reactivation, JCPyV could reach (i) the CNS inducing the PML, (ii) the kidney of transplant patients causing the organ rejection. Association between JCPyV, which is a small DNA tumor virus, and gliomas and colorectal carcinomas has been published. In the present investigation, we report on a new indirect ELISA with two specific synthetic peptides mimicking JCPyV VP1 immunogenic epitopes to detect specific serum IgG antibodies against JCPyV. Serum samples of healthy subjects (n = 355) ranging 2-100 years old, were analyzed by this new indirect ELISA. The linear peptides VP1 K and VP1 N resemble the natural JCPyV VP1 capsidic epitopes constituting a docking site for serum antibodies. Data from this innovative immunologic assay indicate that the overall prevalence of JCPyV-VP1 antibodies in healthy subjects is at 39%. The innovative indirect ELISA with JCPyV VP1 mimotopes seems to be a useful method to detect specific IgG antibodies against this virus, without cross-reactivity with the closely related SV40 and BKPyV polyomaviruses. © 2018 Wiley Periodicals, Inc.

  2. Evaluation of virus removal efficiency of coagulation-sedimentation and rapid sand filtration processes in a drinking water treatment plant in Bangkok, Thailand.

    Science.gov (United States)

    Asami, Tatsuya; Katayama, Hiroyuki; Torrey, Jason Robert; Visvanathan, Chettiyappan; Furumai, Hiroaki

    2016-09-15

    In order to properly assess and manage the risk of infection by enteric viruses in tap water, virus removal efficiency should be evaluated quantitatively for individual processes in actual drinking water treatment plants (DWTPs); however, there have been only a few studies due to technical difficulties in quantifying low virus concentration in water samples. In this study, the removal efficiency of indigenous viruses was evaluated for coagulation-sedimentation (CS) and rapid sand filtration (RSF) processes in a DWTP in Bangkok, Thailand by measuring the concentration of viruses before and after treatment processes using real-time polymerase chain reaction (qPCR). Water samples were collected and concentrated from raw source water, after CS, and after RSF, and inhibitory substances in water samples were reduced by use of a hydrophobic resin (DAX-8). Pepper mild mottle virus (PMMoV) and JC polyomavirus (JC PyV) were found to be highly prevalent in raw waters, with concentrations of 10(2.88 ± 0.35) and 10(3.06 ± 0.42) copies/L (geometric mean ± S.D.), respectively. Step-wise removal efficiencies were calculated for individual processes, with some variation observed between wet and dry seasons. During the wet season, PMMoV was removed less by CS and more by RSF on average (0.40 log10 vs 1.26 log10, respectively), while the reverse was true for JC PyV (1.91 log10 vs 0.49 log10, respectively). Both viruses were removed similarly during the dry season, with CS removing the most virus (PMMoV, 1.61 log10 and 0.78 log10; JC PyV, 1.70 log10, and 0.59 log10; CS and RSF, respectively). These differences between seasons were potentially due to variations in raw water quality and the characteristics of the viruses themselves. These results suggest that PMMoV and JC PyV, which are more prevalent in environmental waters than the other enteric viruses evaluated in this study, could be useful in determining viral fate for the risk management of viruses in water treatment

  3. Det danske landskab. De danske malere på J.C. Dahls tid

    DEFF Research Database (Denmark)

    Monrad, Kasper

    Om værker af Jens Juel, C.W. Eckersberg, J.C. Dahl, Thomas Fearnley, Christen Købke, Johan Thomas Lundbye, Peter Christian Skovgaard, Dankvart Dreyer, Vilhelm Kyhn, Janus la Cour......Om værker af Jens Juel, C.W. Eckersberg, J.C. Dahl, Thomas Fearnley, Christen Købke, Johan Thomas Lundbye, Peter Christian Skovgaard, Dankvart Dreyer, Vilhelm Kyhn, Janus la Cour...

  4. A novel aldo-keto reductase from Jatropha curcas L. (JcAKR) plays a crucial role in the detoxification of methylglyoxal, a potent electrophile.

    Science.gov (United States)

    Mudalkar, Shalini; Sreeharsha, Rachapudi Venkata; Reddy, Attipalli Ramachandra

    2016-05-20

    Abiotic stress leads to the generation of reactive oxygen species (ROS) which further results in the production of reactive carbonyls (RCs) including methylglyoxal (MG). MG, an α, β-dicarbonyl aldehyde, is highly toxic to plants and the mechanism behind its detoxification is not well understood. Aldo-keto reductases (AKRs) play a role in detoxification of reactive aldehydes and ketones. In the present study, we cloned and characterised a putative AKR from Jatropha curcas (JcAKR). Phylogenetically, it forms a small clade with AKRs of Glycine max and Rauwolfia serpentina. JcAKR was heterologously expressed in Escherichia coli BL-21(DE3) cells and the identity of the purified protein was confirmed through MALDI-TOF analysis. The recombinant protein had high enzyme activity and catalytic efficiency in assays containing MG as the substrate. Protein modelling and docking studies revealed MG was efficiently bound to JcAKR. Under progressive drought and salinity stress, the enzyme and transcript levels of JcAKR were higher in leaves compared to roots. Further, the bacterial and yeast cells expressing JcAKR showed more tolerance towards PEG (5%), NaCl (200mM) and MG (5mM) treatments compared to controls. In conclusion, our results project JcAKR as a possible and potential target in crop improvement for abiotic stress tolerance. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Performance of Microbial Concrete Developed Using Bacillus Subtilus JC3

    Science.gov (United States)

    Rao, M. V. Seshagiri; Reddy, V. Srinivasa; Sasikala, Ch.

    2017-12-01

    Concrete is vulnerable to deterioration, corrosion, and cracks, and the consequent damage and loss of strength requires immensely expensive remediation and repair. So need for special concrete that they would respond to crack formation with an autonomous self-healing action lead to research and development of microbial concrete. The microbial concrete works on the principle of calcite mineral precipitation by a specific group of alkali-resistant spore-forming bacteria related to the genus Bacillus called Bacillus subtilis JC3, this phenomenon is called biomineralization or Microbiologically Induced Calcite Crystal Precipitation. Bacillus subtilis JC3, a common soil bacterium, has inherent ability to precipitate calcite crystals continuously which enhances the strength and durability performance of concrete enormously. This microbial concrete can be called as a "Self healing Bacterial Concrete" because it can remediate its cracks by itself without any human intervention and would make the concrete more durable and sustainable. This paper discuss the incorporation of microorganism Bacillus subtilis JC3 (developed at JNTU, India) into concrete and presents the results of experimental investigations carried out to study the improved durability and sustainability characteristics of microbial concrete.

  6. Quantification of human polyomavirus JC virus load in urine and blood samples of healthy tribal populations of North-Eastern part of West Bengal, India.

    Science.gov (United States)

    Chattaraj, S; Bera, N K; Dutta, C; Bhattacharjee, S

    2015-01-01

    Human polyomavirus JC (JCV) is a widespread human virus with profound pathogenic potential. A study was undertaken to quantify JCV load in urine and peripheral blood samples of immunocompetent, apparently healthy tribal individuals of North-Eastern part of West Bengal, India for the first time. One hundred and thirteen samples of urine or blood were collected from different tribal groups of this region. For the quantitative estimation of the viral load in each sample, real-time polymerase chain reaction method using the SYBR Green dye was employed. The viral load estimated was found in the range between 3.5 × 102 and 2.12 × 106 copies/ml of samples having a mean and median viral copy numbers of 8.67 × 105 and 9.19 × 105 copies/ml of sample respectively. The mean viral DNA load in urine samples of the studied immunocompetent population was found to be higher than that found in a study conducted in the USA, but lower than similar groups of Italy and healthy adult women in the USA. However when compared with median values of viral DNA loads in urine samples of immunocompetent human subjects of Kuwait, Portugal, and Switzerland the observed viral DNA load was found to be substantially higher.

  7. #GeriMedJC: The Twitter Complement to the Traditional-Format Geriatric Medicine Journal Club.

    Science.gov (United States)

    Gardhouse, Amanda I; Budd, Laura; Yang, Seu Y C; Wong, Camilla L

    2017-06-01

    Twitter is a public microblogging platform that overcomes physical limitations and allows unrestricted participation beyond academic silos, enabling interactive discussions. Twitter-based journal clubs have demonstrated growth, sustainability, and worldwide communication, using a hashtag (#) to follow participation. This article describes the first year of #GeriMedJC, a monthly 1-hour live, 23-hour asynchronous Twitter-based complement to the traditional-format geriatric medicine journal club. The Twitter moderator tweets from the handle @GeriMedJC; encourages use of #GeriMedJC; and invites content experts, study authors, and followers to participate in critical appraisal of medical literature. Using the hashtag #GeriMedJC, tweets were categorized according to thematic content, relevance to the journal club, and authorship. Third-party analytical tools Symplur and Twitter Analytics were used for growth and effect metrics (number of followers, participants, tweets, retweets, replies, impressions). Qualitative analysis of follower and participant profiles was used to establish country of origin and occupation. A semistructured interview of postgraduate trainees was conducted to ascertain qualitative aspects of the experience. In the first year, @GeriMedJC has grown to 541 followers on six continents. Most followers were physicians (43%), two-thirds of which were geriatricians. Growth metrics increased over 12 months, with a mean of 121 tweets, 25 participants, and 105,831 impressions per journal club. Tweets were most often related to the article being appraised (87.5%) and ranged in thematic content from clinical practice (29%) to critical appraisal (24%) to medical education (20%). #GeriMedJC is a feasible example of using social media platforms such as Twitter to encourage international and interprofessional appraisal of medical literature. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  8. Molecular characterization of the Jatropha curcas JcR1MYB1 gene encoding a putative R1-MYB transcription factor

    Directory of Open Access Journals (Sweden)

    Hui-Liang Li

    2014-09-01

    Full Text Available The cDNA encoding the R1-MYB transcription factor, designated as JcR1MYB1, was isolated from Jatropha curcas using rapid amplification of cDNA ends. JcR1MYB1 contains a 951 bp open reading frame that encodes 316 amino acids. The deduced JcR1MYB1 protein was predicted to possess the conserved, 56-amino acid-long DNA-binding domain, which consists of a single helix-turn-helix module and usually occurs in R1-MYBs. JcR1MYB1 is a member of the R1-MYB transcription factor subfamily. A subcellular localization study confirmed the nuclear localization of JcR1MYB1. Expression analysis showed that JcR1MYB1 transcripts accumulated in various examined tissues, with high expression levels in the root and low levels in the stem. JcR1MYB1 transcription was up-regulated by polyethylene glycol, NaCl, and cold treatments, as well as by abscisic acid, jasmonic acid, and ethylene treatment. Analysis of transgenic tobacco plants over-expressing JcR1MYB1 indicates an inportant function for this gene in salt stress.

  9. The effect of silver nanoparticle size on Jc of YBa2Cu3O7-x superconductor

    International Nuclear Information System (INIS)

    Farbod, M.; Batvandi, M.; Shoushtari, M. Z.

    2007-01-01

    Full text: Critical current density Jc is one of the most important superconducting parameters which is crucial in superconductor's applications. Introducing silver into the superconductors as intergrain filler has been a routine way to increase the Jc. In this work, YBa 2 Cu 3 O 7-x (YBCO), was doped by silver nanoparticles and their effect was studied on Jc as the flux pinning centers. Silver nanoparticles with sizes ranging from 30 to 1000 nm have been prepared using the reduction of silver in ethanol. The stoichiometric amounts of initial material of YBCO superconductor were added to the solution. After evaporation of ethanol, the obtained powder was used to fabricate YBCO samples. The total weight ratio of silver nanoparticles to superconductor was 1:100. The samples were characterized using SEM, EDX and XRD measurements. Jc was measured by a standard four probe technique. The results show by increasing silver nanoparticle size up to 700 nm, Jc increases then decreases by further increase in silver particle size. (authors)

  10. Draft Genome Sequence of Antimicrobial-Producing Clostridium sp. JC272, Isolated from Marine Sediment

    OpenAIRE

    Tushar, L.; Sasi Jyothsna, T. S.; Sasikala, C.; Ramana, C. V.

    2015-01-01

    We announce the draft genome sequence of Clostridium sp. JC272, isolated from a sediment sample collected from marine habitats of Gujarat, India. Clostridium sp. JC272 is an obligate anaerobe and has the ability to produce antimicrobial compounds. The genome sequence indicates the strain?s capability of producing small peptides (microcins), which are potential novel antibiotics.

  11. JcDREB2, a Physic Nut AP2/ERF Gene, Alters Plant Growth and Salinity Stress Responses in Transgenic Rice.

    Science.gov (United States)

    Tang, Yuehui; Liu, Kun; Zhang, Ju; Li, Xiaoli; Xu, Kedong; Zhang, Yi; Qi, Jing; Yu, Deshui; Wang, Jian; Li, Chengwei

    2017-01-01

    Transcription factors of the AP2/ERF family play important roles in plant growth, development, and responses to biotic and abiotic stresses. In this study, a physic nut AP2/ERF gene, JcDREB2 , was functionally characterized. Real-time PCR analysis revealed that JcDREB2 was expressed mainly in the leaf and could be induced by abscisic acid but suppressed by gibberellin (GA) and salt. Transient expression of a JcDREB2-YFP fusion protein in Arabidopsis protoplasts cells suggested that JcDREB2 is localized in the nucleus. Rice plants overexpressing JcDREB2 exhibited dwarf and GA-deficient phenotypes with shorter shoots and roots than those of wild-type plants. The dwarfism phenotype could be rescued by the application of exogenous GA 3 . The expression levels of GA biosynthetic genes including OsGA20ox1 , OsGA20ox2 , OsGA20ox4 , OsGA3ox2, OsCPS1 , OsKO2 , and OsKAO were significantly reduced in plants overexpressing JcDREB2 . Overexpression of JcDREB2 in rice increased sensitivity to salt stress. Increases in the expression levels of several salt-tolerance-related genes in response to salt stress were impaired in JcDREB2 -overexpressing plants. These results demonstrated not only that JcDREB2 influences GA metabolism, but also that it can participate in the regulation of the salt stress response in rice.

  12. J.C. Nalle Community School: A Study of a School Turnaround Effort. Publication #2015-14

    Science.gov (United States)

    Redd, Zakia; Princiotta, Daniel; Stratford, Brandon; Caal, Selma; Li, Weilin; Murphy, Kelly; Coffey, Amelia; Carrington, Nicholas; Carney, Rachel; Oster, Maryjo; Horton, Susannah

    2015-01-01

    J.C. Nalle is a Community School located in the Marshall Heights neighborhood of Ward 7 in Washington, D.C. The community in which J.C. Nalle is located, historically one of the more economically disadvantaged areas of the city, has experienced a number of changes in recent years. This report of evaluation findings begins with an introduction to…

  13. Whole transcriptome sequencing enables discovery and analysis of viruses in archived primary central nervous system lymphomas.

    Directory of Open Access Journals (Sweden)

    Christopher DeBoever

    Full Text Available Primary central nervous system lymphomas (PCNSL have a dramatically increased prevalence among persons living with AIDS and are known to be associated with human Epstein Barr virus (EBV infection. Previous work suggests that in some cases, co-infection with other viruses may be important for PCNSL pathogenesis. Viral transcription in tumor samples can be measured using next generation transcriptome sequencing. We demonstrate the ability of transcriptome sequencing to identify viruses, characterize viral expression, and identify viral variants by sequencing four archived AIDS-related PCNSL tissue samples and analyzing raw sequencing reads. EBV was detected in all four PCNSL samples and cytomegalovirus (CMV, JC polyomavirus (JCV, and HIV were also discovered, consistent with clinical diagnoses. CMV was found to express three long non-coding RNAs recently reported as expressed during active infection. Single nucleotide variants were observed in each of the viruses observed and three indels were found in CMV. No viruses were found in several control tumor types including 32 diffuse large B-cell lymphoma samples. This study demonstrates the ability of next generation transcriptome sequencing to accurately identify viruses, including DNA viruses, in solid human cancer tissue samples.

  14. JC2Sat-FF : An International Collaboration Nano-Sat Project Overview of the System Analyses and Design

    Science.gov (United States)

    Yoshihara, K.; van Mierlo, M.; Ng, A.; Shankar Kumar, B.; De Ruiter, A.; Komatsu, Y.; Horiguchi, H.; Hashimoto, H.

    2008-08-01

    This paper introduces the Japan Canada Joint Collaboration Satellites - Formation Flying (JC2Sat-FF) project. JC2Sat-FF is a joint project between the Canadian Space Agency (CSA) and the Japan Aerospace Exploration Agency (JAXA) with the end goal of building, launching and operating two 20kg- class nanosatellites for technical demonstration of formation flight (FF) using differential drag technique, relative navigation using commercial off-the-shelf (COTS) dual band GPS receivers and far infra-red radiance measurement. A unique aspect of this project is that the two JC2Sats are developed by a united small team consisting of engineers and researchers from both agencies. Technical exchange in this international team gives stimulation to the members and generates a synergistic effect for the project.

  15. Assessing Host-Virus Codivergence for Close Relatives of Merkel Cell Polyomavirus Infecting African Great Apes

    Czech Academy of Sciences Publication Activity Database

    Madinda, N. F.; Ehlers, B.; Wertheim, J. O.; Akoua-Koffi, C.; Bergl, R. A.; Boesch, C.; Akonkwa, D. B. M.; Eckardt, W.; Fruth, B.; Gillespie, T. R.; Gray, M.; Hohmann, G.; Karhemere, S.; Kujirakwinja, D.; Langergraber, K.; Muyembe, J.-J.; Nishuli, R.; Pauly, M.; Petrželková, Klára Judita; Robbins, M. M.; Todd, A.; Schubert, G.; Stoinski, T. S.; Wittig, R. M.; Zuberbühler, K.; Peeters, M.; Leendertz, F. H.; Calvignac-Spencer, S.

    2016-01-01

    Roč. 90, č. 19 (2016), s. 8531-8541 ISSN 0022-538X Institutional support: RVO:60077344 Keywords : JC virus * divergence times * evolution * phylogenies * selection * bats * coevolution * population * chimpanzee * diversity Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 4.663, year: 2016

  16. A New Experiment for the Measurement of nJ(C,P) Coupling Constants Including 3J(C4'i,Pi) and 3J(C4'i,Pi+1) in Oligonucleotides

    International Nuclear Information System (INIS)

    Richter, Christian; Reif, Bernd; Woerner, Karlheinz; Quant, Stefanie; Marino, John P.; Engels, Joachim W.; Griesinger, Christian; Schwalbe, Harald

    1998-01-01

    A new experiment for the measurement of nJ(C,P) coupling constants along the phosphodiester backbone in RNA and DNA based on a quantitative-J HCP experiment is presented. In addition to coupling constants, in which a carbon atom couples to only one phosphorus atom, both the intraresidual 3J(C4'i,Pi) and the sequential 3J(C4'i,Pi+1) for the C4' resonances that couple to two phosphorus atoms can be obtained. Coupling constants obtained by this new method are compared to values obtained from the P-FIDS experiment. Together with 3J(H,P) coupling constants measured using the P-FIDS experiment, the backbone angles β and element of can be determined

  17. Correlation of irradiation-induced transition temperature increases from C sub v and K sub Jc /K sub Ic data

    Energy Technology Data Exchange (ETDEWEB)

    Hiser, A.L. (Materials Engineering Associates, Inc., Lanham, MD (USA))

    1990-03-01

    Reactor pressure vessel (RPV) surveillance capsules contain Charpy-V (C{sub v}) specimens, but many do not contain fracture toughness specimens; accordingly, the radiation-induced shift (increase) in the brittle-to-ductile transition region ({Delta}T) is based upon the {Delta}T determined from notch ductility (C{sub v}) tests. Since the ASME K{sub Ic} and K{sub IR} reference fracture toughness curves are shifted by the {Delta}T from C{sub v}, assurance that this {Delta}T does not underestimate {Delta}T associated with the actual irradiated fracture toughness is required to provide confidence that safety margins do not fall below assumed levels. To assess this behavior, comparisons of {Delta}T's defined by elastic-plastic fracture toughness and C{sub v} tests have been made using data from RPV base and weld metals in which irradiations were made under test reactor conditions. Using as-measure'' fracture toughness values (K{sub Jc}), average comparisons between {Delta}T(C{sub v}) and {Delta}T(K{sub Jc}) are: (a) All data: {Delta}T(K{sub Jc} 100 MPa{radical}{bar m}) = {Delta}T(C{sub v} 41 J) +10{degree}C; (b) Plates only: {Delta}T(K{sub Jc} 100 MPa{radical}{bar m}) = {Delta}T(C{sub v} 41 J) +15{degree}C; and (c) Welds only: {Delta}T(K{sub Jc} 100 MPa{radical}{bar m}) = {Delta}T(C{sub v} 41 J) {minus}1{degree}C. Fluence rate is found to have no significant effect on the relationship between {Delta}T(C{sub v}) and {Delta}T(K{sub Jc}). 12 refs., 12 figs., 5 tabs.

  18. Type C virus activation in nontransformed mouse cells by uv-irradiated herpes simplex virus

    Energy Technology Data Exchange (ETDEWEB)

    Hampar, B. (National Institutes of Health, Bethesda, MD); Hatanaka, M.; Aulakh, G.; Derge, J.G.; Lee, L.; Showalter, S.

    1977-02-01

    Infection of nontransformed mouse cells with uv-irradiated herpes simplex virus (uv-HSV) resulted in the activation of an endogenous xenotropic (x-tropic) type C virus. Synthesis of type C virus persisted for only a few days, with most of the virus remaining cell associated. The levels of type C virus activated by uv-HSV varied depending on the multiplicity of infection (m.o.i.) and the uv dose. At low uv doses, where cell killing occurred, little or no type C virus synthesis was observed. Maximum levels of type C virus synthesis were observed with the minimum uv dose which eliminated cell killing by HSV. Synthesis of type C virus, albeit at lower levels, was still observed at uv doses beyond those required to prevent cell killing.

  19. Type C virus activation in nontransformed mouse cells by uv-irradiated herpes simplex virus

    International Nuclear Information System (INIS)

    Hampar, B.; Hatanaka, M.; Aulakh, G.; Derge, J.G.; Lee, L.; Showalter, S.

    1977-01-01

    Infection of nontransformed mouse cells with uv-irradiated herpes simplex virus (uv-HSV) resulted in the activation of an endogenous xenotropic (x-tropic) type C virus. Synthesis of type C virus persisted for only a few days, with most of the virus remaining cell associated. The levels of type C virus activated by uv-HSV varied depending on the multiplicity of infection (m.o.i.) and the uv dose. At low uv doses, where cell killing occurred, little or no type C virus synthesis was observed. Maximum levels of type C virus synthesis were observed with the minimum uv dose which eliminated cell killing by HSV. Synthesis of type C virus, albeit at lower levels, was still observed at uv doses beyond those required to prevent cell killing

  20. JC polyomavirus infection is strongly controlled by human leucocyte antigen class II variants.

    Directory of Open Access Journals (Sweden)

    Emilie Sundqvist

    2014-04-01

    Full Text Available JC polyomavirus (JCV carriers with a compromised immune system, such as in HIV, or subjects on immune-modulating therapies, such as anti VLA-4 therapy may develop progressive multifocal leukoencephalopathy (PML which is a lytic infection of oligodendrocytes in the brain. Serum antibodies to JCV mark infection occur only in 50-60% of infected individuals, and high JCV-antibody titers seem to increase the risk of developing PML. We here investigated the role of human leukocyte antigen (HLA, instrumental in immune defense in JCV antibody response. Anti-JCV antibody status, as a surrogate for JCV infection, were compared to HLA class I and II alleles in 1621 Scandinavian persons with MS and 1064 population-based Swedish controls and associations were replicated in 718 German persons with MS. HLA-alleles were determined by SNP imputation, sequence specific (SSP kits and a reverse PCR sequence-specific oligonucleotide (PCR-SSO method. An initial GWAS screen displayed a strong HLA class II region signal. The HLA-DRB1*15 haplotype was strongly negatively associated to JCV sero-status in Scandinavian MS cases (OR = 0.42, p = 7×10(-15 and controls (OR = 0.53, p = 2×10(-5. In contrast, the DQB1*06:03 haplotype was positively associated with JCV sero-status, in Scandinavian MS cases (OR = 1.63, p = 0.006, and controls (OR = 2.69, p = 1×10(-5. The German dataset confirmed these findings (OR = 0.54, p = 1×10(-4 and OR = 1.58, p = 0.03 respectively for these haplotypes. HLA class II restricted immune responses, and hence CD4+ T cell immunity is pivotal for JCV infection control. Alleles within the HLA-DR1*15 haplotype are associated with a protective effect on JCV infection. Alleles within the DQB1*06:03 haplotype show an opposite association. These associations between JC virus antibody response and human leucocyte antigens supports the notion that CD4+ T cells are crucial in the immune defence to JCV and

  1. Antiviral Activity of Sukomycin Against Potato Virus Y And Tomato Mosaic Virus

    Directory of Open Access Journals (Sweden)

    Nikolay Petrov

    2016-12-01

    Full Text Available Potato virus Y (PVY and Tomato mosaic virus (ToMV are one of the most important plant viruses that strongly influence the quality and quantity of vegetable production and cause substantial losses to farmers. The most convetional and common method of pest and disease control is trough the use of pesticides. Unfortunately, most of them are synthetic compounds without antiviral activities and possess inherent toxicities that endanger the health of the farm operators, consumers and the environment. In order to carry out a control of viral infections in plants and to reduce the loss of production it is necessary the search for alternative and environmentally friendly methods for control. Sukomycin is a complex of substances with antimicrobial and antiviral activities produced from Streptomyces hygroscopicus isolated from soil. This natural complex reduces significantly symptoms and DAS-ELISA values of Potato virus Y and Tomato mosaic virus in tobacco plants.

  2. Peel v Hamon J&C engineering (pty) ltd: Ignoring the result ...

    African Journals Online (AJOL)

    This case note provides a concise and understandable version of the confusing facts in Peel v Hamon J&C Engineering (Pty) Ltd, and deals with the remedy provided for in section 163 of the Companies Act (the oppression remedy). The importance of drawing a distinction between the application of this section and the ...

  3. Survival of Hepatitis C Virus in Syringes: Implication for Transmission among Injection Drug Users

    Science.gov (United States)

    Paintsil, Elijah; He, Huijie; Peters, Christopher; Lindenbach, Brett D.; Heimer, Robert

    2010-01-01

    Background We hypothesized that the high prevalence of HCV among injection drug users (IDUs) might be due to prolonged virus survival in contaminated syringes. Methods We developed a microculture assay to examine the viability of HCV. Syringes were loaded with blood spiked with HCV reporter virus (Jc1/GLuc2A) to simulate two scenarios of residual volumes; low (2 μl) void volume for 1-ml insulin syringes, and high (32 μl) void volume for 1-ml tuberculin syringes. Syringes were stored at 4°C, 22°C, and 37°C for up to 63 days before testing for HCV infectivity using luciferase activity. Results The virus decay rate was biphasic (t½ α = 0.4h and t½β = 28h). Insulin syringes failed to yield viable HCV beyond day one at all storage temperatures except for 4o in which 5% of syringes yielded viable virus on day 7. Tuberculin syringes yielded viable virus from 96%, 71%, and 52% of syringes following storage at 4o, 22° and 37o for 7 days, respectively, and yielded viable virus up to day 63. Conclusions The high prevalence of HCV among IDUs may be partly due to the resilience of the virus and the syringe type. Our findings may be used to guide prevention strategies. PMID:20726768

  4. Molecular structures of viruses from Raman optical activity

    DEFF Research Database (Denmark)

    Blanch, Ewan W.; Hecht, Lutz; Syme, Christopher D.

    2002-01-01

    A vibrational Raman optical activity (ROA) study of a range of different structural types of virus exemplified by filamentous bacteriophage fd, tobacco mosaic virus, satellite tobacco mosaic virus, bacteriophage MS2 and cowpea mosaic virus has revealed that, on account of its sensitivity to chira......A vibrational Raman optical activity (ROA) study of a range of different structural types of virus exemplified by filamentous bacteriophage fd, tobacco mosaic virus, satellite tobacco mosaic virus, bacteriophage MS2 and cowpea mosaic virus has revealed that, on account of its sensitivity...... (top component) of cowpea mosaic virus from those of the intact middle and bottom-upper components separated by means of a caesium chloride density gradient, the ROA spectrum of the viral RNA was obtained, which revealed that the RNA takes up an A-type single-stranded helical conformation...... and that the RNA conformations in the middle and bottom-upper components are very similar. This information is not available from the X-ray crystal structure of cowpea mosaic virus since no nucleic acid is visible....

  5. Activity of andrographolide against dengue virus.

    Science.gov (United States)

    Panraksa, Patcharee; Ramphan, Suwipa; Khongwichit, Sarawut; Smith, Duncan R

    2017-03-01

    Dengue is the most prevalent arthropod-transmitted viral illness of humans, with an estimated 100 million symptomatic infections occurring each year and more than 2.5 billion people living at risk of infection. There are no approved antiviral agents against dengue virus, and there is only limited introduction of a dengue vaccine in some countries. Andrographolide is derived from Andrographis paniculata, a medicinal plant traditionally used to treat a number of conditions including infections. The antiviral activity of andrographolide against dengue virus (DENV) serotype 2 was evaluated in two cell lines (HepG2 and HeLa) while the activity against DENV 4 was evaluated in one cell line (HepG2). Results showed that andrographolide had significant anti-DENV activity in both cell lines, reducing both the levels of cellular infection and virus output, with 50% effective concentrations (EC 50 ) for DENV 2 of 21.304 μM and 22.739 μM for HepG2 and HeLa respectively. Time of addition studies showed that the activity of andrographolide was confined to a post-infection stage. These results suggest that andrographolide has the potential for further development as an anti-viral agent for dengue virus infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Autophagic machinery activated by dengue virus enhances virus replication

    International Nuclear Information System (INIS)

    Lee, Y.-R.; Lei, H.-Y.; Liu, M.-T.; Wang, J.-R.; Chen, S.-H.; Jiang-Shieh, Y.-F.; Lin, Y.-S.; Yeh, T.-M.; Liu, C.-C.; Liu, H.-S.

    2008-01-01

    Autophagy is a cellular response against stresses which include the infection of viruses and bacteria. We unravel that Dengue virus-2 (DV2) can trigger autophagic process in various infected cell lines demonstrated by GFP-LC3 dot formation and increased LC3-II formation. Autophagosome formation was also observed under the transmission electron microscope. DV2-induced autophagy further enhances the titers of extracellular and intracellular viruses indicating that autophagy can promote viral replication in the infected cells. Moreover, our data show that ATG5 protein is required to execute DV2-induced autophagy. All together, we are the first to demonstrate that DV can activate autophagic machinery that is favorable for viral replication

  7. Solution structures of potato virus X and narcissus mosaic virus from Raman optical activity

    DEFF Research Database (Denmark)

    Blanch, Ewan W.; Robinson, David J.; Hecht, Lutz

    2002-01-01

    Potato virus X (PVX) and narcissus mosaic virus (NMV) were studied using vibrational Raman optical activity (ROA) in order to obtain new information on the structures of their coat protein subunits. The ROA spectra of the two intact virions are very similar to each other and similar to that of to......Potato virus X (PVX) and narcissus mosaic virus (NMV) were studied using vibrational Raman optical activity (ROA) in order to obtain new information on the structures of their coat protein subunits. The ROA spectra of the two intact virions are very similar to each other and similar...

  8. Assessing host-virus codivergence for close relatives of Merkel cell polyomavirus infecting African great apes

    Czech Academy of Sciences Publication Activity Database

    Madinda, N. F.; Ehlers, B.; Wertheim, J. O.; Akoua-Koffi, C.; Bergl, R. A.; Boesch, C.; Akonkwa, D. B. M.; Eckardt, W.; Fruth, B.; Gillespie, T. R.; Gray, M.; Hohmann, G.; Karhemere, S.; Kujirakwinja, D.; Langergraber, K.; Muyembe, J.-J.; Nishuli, R.; Pauly, M.; Petrželková, Klára Judita; Robbins, M. M.; Todd, A.; Schubert, G.; Stoinski, T. S.; Wittig, R. M.; Zuberbühler, K.; Peeters, M.; Leendertz, F. H.; Calvignac-Spencer, S.

    2016-01-01

    Roč. 90, č. 19 (2016), s. 8531-8541 ISSN 0022-538X R&D Projects: GA ČR GA206/09/0927 Institutional support: RVO:68081766 Keywords : JC virus * divergence times * evolution * phylogenies * selection * bats * coevolution * population * chimpanzee * diversity Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 4.663, year: 2016

  9. Virucidal activity of two Iodophors to salmonid viruses

    Science.gov (United States)

    Amend, Donald F.; Pietsch, John P.

    1972-01-01

    Wescodyne® and Betadine®, organic iodine complexes, were compared in vitro for virucidal activity against infectious hematopoietic necrosis (IHN), infectious pancreatic necrosis (IPN), and viral hemorrhagic septicemia (VHS) viruses. Both iodophors were about equally effective on all three viruses. Each iodophor completely destroyed IHN virus within 30 sec at 12 ppm iodine, and was not affected by water hardness. Virucidal activity, however, was reduced at pH levels above 8.0 and in the presence of organic matter. Wescodyne was also compared with seven disinfectants commonly used in fish hatcheries, for virucidal properties against IHN virus. Wescodyne and chlorine were the only disinfectants to completely destroy the virus. Either Wescodyne or Betadine would effectively destroy the salmonid viruses at less than 25 ppm iodine within 5 min in solutions near neutrality.

  10. Gene Therapy for Human Lung Adenocarcinoma Using a Suicide Gene Driven by a Lung-Specific Promoter Delivered by JC Virus-Like Particles.

    Directory of Open Access Journals (Sweden)

    Chun-Nun Chao

    Full Text Available Lung adenocarcinoma, the most commonly diagnosed type of lung cancer, has a poor prognosis even with combined surgery, chemotherapy, or molecular targeted therapies. Most patients are diagnosed with an in-operable advanced or metastatic disease, both pointing to the necessity of developing effective therapies for lung adenocarcinoma. Surfactant protein B (SP-B has been found to be overexpressed in lung adenocarcinoma. In addition, it has also been demonstrated that human lung adenocarcinoma cells are susceptible to the JC polyomavirus (JCPyV infection. Therefore, we designed that the JCPyV virus-like particle (VLP packaged with an SP-B promoter-driven thymidine kinase suicide gene (pSPB-tk for possible gene therapy of human lung adenocarcinoma. Plasmids expressing the GFP (pSPB-gfp or thymidine kinase gene (pSPB-tk under the control of the human SP-B promoter were constructed. The promoter's tissue specificity was tested by transfection of pSPB-gfp into A549, CH27, and H460 human lung carcinoma cells and non-lung cells. The JCPyV VLP's gene transfer efficiency and the selective cytotoxicity of pSPB-tk combined with ganciclovir (GCV were tested in vitro and in a xenograft mouse model. In the current study, we found that SP-B promoter-driven GFP was specifically expressed in human lung adenocarcinoma (A549 and large cell carcinoma (H460 cells. JCPyV VLPs were able to deliver a GFP reporter gene into A549 cells for expression. Selective cytotoxicity was observed in A549 but not non-lung cells that were transfected with pSPB-tk or infected with pSPB-tk-carrying JCPyV VLPs. In mice injected with pSPB-tk-carrying JCPyV VLPs through the tail vein and treated with ganciclovir (GCV, a potent 80% inhibition of growth of human lung adenocarcinoma nodules resulted. The JCPyV VLPs combined with the use of SP-B promoter demonstrates effectiveness as a potential gene therapy against human lung adenocarcinoma.

  11. Gene Therapy for Human Lung Adenocarcinoma Using a Suicide Gene Driven by a Lung-Specific Promoter Delivered by JC Virus-Like Particles.

    Science.gov (United States)

    Chao, Chun-Nun; Lin, Mien-Chun; Fang, Chiung-Yao; Chen, Pei-Lain; Chang, Deching; Shen, Cheng-Huang; Wang, Meilin

    2016-01-01

    Lung adenocarcinoma, the most commonly diagnosed type of lung cancer, has a poor prognosis even with combined surgery, chemotherapy, or molecular targeted therapies. Most patients are diagnosed with an in-operable advanced or metastatic disease, both pointing to the necessity of developing effective therapies for lung adenocarcinoma. Surfactant protein B (SP-B) has been found to be overexpressed in lung adenocarcinoma. In addition, it has also been demonstrated that human lung adenocarcinoma cells are susceptible to the JC polyomavirus (JCPyV) infection. Therefore, we designed that the JCPyV virus-like particle (VLP) packaged with an SP-B promoter-driven thymidine kinase suicide gene (pSPB-tk) for possible gene therapy of human lung adenocarcinoma. Plasmids expressing the GFP (pSPB-gfp) or thymidine kinase gene (pSPB-tk) under the control of the human SP-B promoter were constructed. The promoter's tissue specificity was tested by transfection of pSPB-gfp into A549, CH27, and H460 human lung carcinoma cells and non-lung cells. The JCPyV VLP's gene transfer efficiency and the selective cytotoxicity of pSPB-tk combined with ganciclovir (GCV) were tested in vitro and in a xenograft mouse model. In the current study, we found that SP-B promoter-driven GFP was specifically expressed in human lung adenocarcinoma (A549) and large cell carcinoma (H460) cells. JCPyV VLPs were able to deliver a GFP reporter gene into A549 cells for expression. Selective cytotoxicity was observed in A549 but not non-lung cells that were transfected with pSPB-tk or infected with pSPB-tk-carrying JCPyV VLPs. In mice injected with pSPB-tk-carrying JCPyV VLPs through the tail vein and treated with ganciclovir (GCV), a potent 80% inhibition of growth of human lung adenocarcinoma nodules resulted. The JCPyV VLPs combined with the use of SP-B promoter demonstrates effectiveness as a potential gene therapy against human lung adenocarcinoma.

  12. DNA-A of a highly pathogenic Indian cassava mosaic virus isolated from Jatropha curcas causes symptoms in Nicotiana benthamiana.

    Science.gov (United States)

    Wang, Gang; Sun, Yanwei; Xu, Ruirui; Qu, Jing; Tee, Chuansia; Jiang, Xiyuan; Ye, Jian

    2014-04-01

    Jatropha curcas mosaic disease (JcMD) is a newly emerging disease that has been reported in Africa and India. Here, we report the complete nucleotide sequence of a new Indian cassava mosaic virus isolate (ICMV-SG) from Singapore. Infection of ICMV-SG showed more severe JcMD in Jatropha curcas and Nicotiana benthamiana than the other ICMV isolates reported previously, though ICMV-SG shares high sequence identity with the other ICMV isolates. Agroinfectious DNA-A alone sufficiently induced systemic symptoms in N. benthamiana, but not in J. curcas. Results from agroinfection assays showed that systemic infection of ICMV-SG in J. curcas required both DNA-A and DNA-B components.

  13. Spendere meno, spendere meglio: una proposta panottica di J.-C. Guédon

    Directory of Open Access Journals (Sweden)

    Maria Chiara Pievatolo

    2013-06-01

    Full Text Available J.-C. Guédon ha commentato la nostra campagna di crowdsourcing in merito alle spese delle biblioteche sulla mailing list Nexa. Offriamo, qui di seguito, la versione italiana delle sue osservazioni – che presuppongono un mondo accademico molto diverso da quello impostoci...

  14. Investigation of Jc-Suppressing Factors in Flat-Rolled Sr0.6K0.4Fe2As2Fe Tapes Via Microstructure Analysis

    KAUST Repository

    Zhang, Xianping; Wang, Qingxiao; Li, Kun; Cai, Yao; Jiang, Fuguo; Wang, Zhen; Li, Jianqi; Yao, Chao; Lin, He; Zhang, Qianjun; Dong, Chiheng; Wang, Dongliang; Zhang, Xixiang; Ma, Yanwei

    2015-01-01

    Pnictide superconductors will be very promising for applications if wires with high critical current density Jc can allow reel-to-reel large-scale fabrication at low costs. To understand the mechanism(s) that limited Jc in flat-rolled Sr0.6K0.4Fe2As

  15. Efficient production of infectious viruses requires enzymatic activity of Epstein-Barr virus protein kinase.

    Science.gov (United States)

    Murata, Takayuki; Isomura, Hiroki; Yamashita, Yoriko; Toyama, Shigenori; Sato, Yoshitaka; Nakayama, Sanae; Kudoh, Ayumi; Iwahori, Satoko; Kanda, Teru; Tsurumi, Tatsuya

    2009-06-20

    The Epstein-Barr virus (EBV) BGLF4 gene product is the only protein kinase encoded by the virus genome. In order to elucidate its physiological roles in viral productive replication, we here established a BGLF4-knockout mutant and a revertant virus. While the levels of viral DNA replication of the deficient mutant were equivalent to those of the wild-type and the revertant, virus production was significantly impaired. Expression of the BGLF4 protein in trans fully complemented the low yield of the mutant virus, while expression of a kinase-dead (K102I) form of the protein failed to restore the virus titer. These results demonstrate that BGLF4 plays a significant role in production of infectious viruses and that the kinase activity is crucial.

  16. Human Ebola virus infection results in substantial immune activation.

    Science.gov (United States)

    McElroy, Anita K; Akondy, Rama S; Davis, Carl W; Ellebedy, Ali H; Mehta, Aneesh K; Kraft, Colleen S; Lyon, G Marshall; Ribner, Bruce S; Varkey, Jay; Sidney, John; Sette, Alessandro; Campbell, Shelley; Ströher, Ute; Damon, Inger; Nichol, Stuart T; Spiropoulou, Christina F; Ahmed, Rafi

    2015-04-14

    Four Ebola patients received care at Emory University Hospital, presenting a unique opportunity to examine the cellular immune responses during acute Ebola virus infection. We found striking activation of both B and T cells in all four patients. Plasmablast frequencies were 10-50% of B cells, compared with less than 1% in healthy individuals. Many of these proliferating plasmablasts were IgG-positive, and this finding coincided with the presence of Ebola virus-specific IgG in the serum. Activated CD4 T cells ranged from 5 to 30%, compared with 1-2% in healthy controls. The most pronounced responses were seen in CD8 T cells, with over 50% of the CD8 T cells expressing markers of activation and proliferation. Taken together, these results suggest that all four patients developed robust immune responses during the acute phase of Ebola virus infection, a finding that would not have been predicted based on our current assumptions about the highly immunosuppressive nature of Ebola virus. Also, quite surprisingly, we found sustained immune activation after the virus was cleared from the plasma, observed most strikingly in the persistence of activated CD8 T cells, even 1 mo after the patients' discharge from the hospital. These results suggest continued antigen stimulation after resolution of the disease. From these convalescent time points, we identified CD4 and CD8 T-cell responses to several Ebola virus proteins, most notably the viral nucleoprotein. Knowledge of the viral proteins targeted by T cells during natural infection should be useful in designing vaccines against Ebola virus.

  17. Overexpression of Jatropha Gibberellin 2-oxidase 6 (JcGA2ox6 Induces Dwarfism and Smaller Leaves, Flowers and Fruits in Arabidopsis and Jatropha

    Directory of Open Access Journals (Sweden)

    Ying-Xiong Hu

    2017-12-01

    Full Text Available Gibberellins (GAs are plant hormones that play fundamental roles in plant growth and development. Gibberellin 2-oxidase (GA2ox plays a direct role in determining the levels of bioactive GAs by catalyzing bioactive GAs or their immediate precursors to inactive forms. In this study, a GA2ox gene, designated JcGA2ox6, was isolated from Jatropha curcas. JcGA2ox6 is expressed in all tissues of adult Jatropha, with the highest expression level in male flowers and the lowest expression level in young leaves. Overexpression of JcGA2ox6 in Arabidopsis resulted in a typical dwarf phenotype, along with late flowering, smaller leaves and flowers, shorter siliques and smaller seeds. Similarly, when JcGA2ox6 was overexpressed in Jatropha, the transgenic plants exhibited a dwarf phenotype with dark-green leaves and smaller inflorescences, flowers, fruits and seeds. However, the flowering time of Jatropha was not affected by overexpression of JcGA2ox6, unlike that in the transgenic Arabidopsis. Moreover, the number of flowers per inflorescence, the weight of 10 seeds and the seed oil content were significantly decreased in transgenic Jatropha. The results indicated that overexpression of JcGA2ox6 had a great impact on the vegetative and reproductive growth of transgenic Jatropha. Furthermore, we found that the dwarf phenotype of transgenic Jatropha was caused by a decrease in endogenous bioactive GA4, which was correlated with the degree of dwarfism.

  18. Ectopic Expression of JcWRKY Confers Enhanced Resistance in Transgenic Tobacco Against Macrophomina phaseolina.

    Science.gov (United States)

    Agarwal, Parinita; Patel, Khantika; Agarwal, Pradeep K

    2018-04-01

    Plants possess an innate immune system comprising of a complex network of closely regulated defense responses involving differential gene expression mediated by transcription factors (TFs). The WRKYs comprise of an important plant-specific TF family, which is involved in regulation of biotic and abiotic defenses. The overexpression of JcWRKY resulted in improved resistance in transgenic tobacco against Macrophomina phaseolina. The production of reactive oxygen species (ROS) and its detoxification through antioxidative system in the transgenics facilitates defense against Macrophomina. The enhanced catalase activity on Macrophomina infection limits the spread of infection. The transcript expression of antioxidative enzymes gene (CAT and SOD) and salicylic acid (SA) biosynthetic gene ICS1 showed upregulation during Macrophomina infection and combinatorial stress. The enhanced transcript of pathogenesis-related genes PR-1 indicates the accumulation of SA during different stresses. The PR-2 and PR-5 highlight the activation of defense responses comprising of activation of hydrolytic cleavage of glucanases and thaumatin-like proteins causing disruption of fungal cells. The ROS homeostasis in coordination with signaling molecules regulate the defense responses and inhibit fungal growth.

  19. [Streptomycin--an activator of persisting tick-borne encephalitis virus].

    Science.gov (United States)

    Malenko, G V; Pogodina, V V; Karmysheva, V Ia

    1984-01-01

    The effect of streptomycin (C) on persistence of tick-borne encephalitis (TBE) virus in Syrian hamsters infected with 3 strains of the virus (41/65, Aina/1448, Vasilchenko ) intracerebrally or subcutaneously was studied. In the animals not given C the infectious virus could be detected in the brain for 8-14 days but not later although their organs (mostly brains and spleens) contained the hemagglutinating antigen and viral antigen detectable by immunofluorescence. Intramuscularly C was given twice daily for 13-35 days in a daily dose of 200 mg/kg. The C-treated hamsters yielded 7 virulent TBE virus strains: 3 from the brain, 3 from the spleen, and one from the blood. No virus could be isolated from the liver, kidneys, or lungs despite the use of various methods for isolation including tissue explantation. The activating effect of C was observed against the background of 4-fold decrease in the titre of complement-fixing and antihemagglutinating antibodies. C exerted its activating effect both at early (70 days) and late (9 months) stages of TBE virus persistence. The activating effect of C appears to be due to its immunosuppressive properties and neurotoxic action on the CNS.

  20. Field, temperature, and angle dependent critical current density Jc(H,T, ) in coated conductors obtained via contact-free methods

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, James R [ORNL; Sinclair IV, John W [ORNL; Christen, David K [ORNL; Zhang, Yifei [ORNL; Zuev, Yuri L [ORNL; Cantoni, Claudia [ORNL; Chen, Y [SuperPower Incorporated, Schenectady, New York; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York

    2010-01-01

    Applications of coated conductors based on high-Tc superconductors often require detailed knowledge of their critical current density Jc as a function of magnetic field orientation as well as field strength and temperature. This work demonstrates experimental methods to obtain the angularly dependent Jc using contact-free magnetic measurements, and qualifies those methods using several well defined conditions. The studies complement traditional transport techniques and are readily extended to conditions of field and temperature where the current density is very large and transport methods become difficult. Results on representative materials are presented.

  1. Invasive pneumococcal and meningococcal disease : association with influenza virus and respiratory syncytial virus activity?

    NARCIS (Netherlands)

    Jansen, A G S C; Sanders, E A M; VAN DER Ende, A; VAN Loon, A M; Hoes, A W; Hak, E

    2008-01-01

    Few studies have examined the relationship between viral activity and bacterial invasive disease, considering both influenza virus and respiratory syncytial virus (RSV). This study aimed to assess the potential relationship between invasive pneumococcal disease (IPD), meningococcal disease (MD), and

  2. Enzymes and Enzyme Activity Encoded by Nonenveloped Viruses.

    Science.gov (United States)

    Azad, Kimi; Banerjee, Manidipa; Johnson, John E

    2017-09-29

    Viruses are obligate intracellular parasites that rely on host cell machineries for their replication and survival. Although viruses tend to make optimal use of the host cell protein repertoire, they need to encode essential enzymatic or effector functions that may not be available or accessible in the host cellular milieu. The enzymes encoded by nonenveloped viruses-a group of viruses that lack any lipid coating or envelope-play vital roles in all the stages of the viral life cycle. This review summarizes the structural, biochemical, and mechanistic information available for several classes of enzymes and autocatalytic activity encoded by nonenveloped viruses. Advances in research and development of antiviral inhibitors targeting specific viral enzymes are also highlighted.

  3. Investigation of Jc-Suppressing Factors in Flat-Rolled Sr0.6K0.4Fe2As2Fe Tapes Via Microstructure Analysis

    KAUST Repository

    Zhang, Xianping

    2015-01-13

    Pnictide superconductors will be very promising for applications if wires with high critical current density Jc can allow reel-to-reel large-scale fabrication at low costs. To understand the mechanism(s) that limited Jc in flat-rolled Sr0.6K0.4Fe2As2(Sr122) tapes, microstructure analysis has been considered the most direct and efficient way. Here, we report on high-resolution microstructure imaging and analysis on Fe-sheathed flat-rolled Sr122 tapes, which have a Jc as high as 2.3 × 104 A/cm2 at 10 T and 4.2 K. The overlapping nature of the Sr122 plates was clearly observed. Transmission electron microscopy/scanning transmission electron microscopy analysis showed that, besides the cracks formed during the fabrication process, the SrO2 phase and cavities caused by the inhomogeneously dispersed Sr and K are the other important factors suppressing Jc. The wetting phase FeAs at the grain boundaries can be partially substituted by Sn in Sn-added samples. Our findings provide insights that pave the way to further enhance the critical current of the rolled 122 tapes up to the practical level.

  4. Mutations that abrogate transactivational activity of the feline leukemia virus long terminal repeat do not affect virus replication

    International Nuclear Information System (INIS)

    Abujamra, Ana L.; Faller, Douglas V.; Ghosh, Sajal K.

    2003-01-01

    The U3 region of the LTR of oncogenic Moloney murine leukemia virus (Mo-MuLV) and feline leukemia viruses (FeLV) have been previously reported to activate expression of specific cellular genes in trans, such as MHC class I, collagenase IV, and MCP-1, in an integration-independent manner. It has been suggested that transactivation of these specific cellular genes by leukemia virus U3-LTR may contribute to the multistage process of leukemogenesis. The U3-LTR region, necessary for gene transactivational activity, also contains multiple transcription factor-binding sites that are essential for normal virus replication. To dissect the promoter activity and the gene transactivational activity of the U3-LTR, we conducted mutational analysis of the U3-LTR region of FeLV-A molecular clone 61E. We identified minimal nucleotide substitution mutants on the U3 LTR that did not disturb transcription factor-binding sites but abrogated its ability to transactivate the collagenase gene promoter. To determine if these mutations actually have altered any uncharacterized important transcription factor-binding site, we introduced these U3-LTR mutations into the full-length infectious molecular clone 61E. We demonstrate that the mutant virus was replication competent but could not transactivate cellular gene expression. These results thus suggest that the gene transactivational activity is a distinct property of the LTR and possibly not related to its promoter activity. The cellular gene transactivational activity-deficient mutant FeLV generated in this study may also serve as a valuable reagent for testing the biological significance of LTR-mediated cellular gene activation in the tumorigenesis caused by leukemia viruses

  5. Can vaccinia virus be replaced by MVA virus for testing virucidal activity of chemical disinfectants?

    Directory of Open Access Journals (Sweden)

    Rapp Ingrid

    2010-06-01

    Full Text Available Abstract Background Vaccinia virus strain Lister Elstree (VACV is a test virus in the DVV/RKI guidelines as representative of the stable enveloped viruses. Since the potential risk of laboratory-acquired infections with VACV persists and since the adverse effects of vaccination with VACV are described, the replacement of VACV by the modified vaccinia Ankara strain (MVA was studied by testing the activity of different chemical biocides in three German laboratories. Methods The inactivating properties of different chemical biocides (peracetic acid, aldehydes and alcohols were tested in a quantitative suspension test according to the DVV/RKI guideline. All tests were performed with a protein load of 10% fetal calf serum with both viruses in parallel using different concentrations and contact times. Residual virus was determined by endpoint dilution method. Results The chemical biocides exhibited similar virucidal activity against VACV and MVA. In three cases intra-laboratory differences were determined between VACV and MVA - 40% (v/v ethanol and 30% (v/v isopropanol are more active against MVA, whereas MVA seems more stable than VACV when testing with 0.05% glutardialdehyde. Test accuracy across the three participating laboratories was high. Remarkably inter-laboratory differences in the reduction factor were only observed in two cases. Conclusions Our data provide valuable information for the replacement of VACV by MVA for testing chemical biocides and disinfectants. Because MVA does not replicate in humans this would eliminate the potential risk of inadvertent inoculation with vaccinia virus and disease in non-vaccinated laboratory workers.

  6. High prevalence of human polyomavirus JC VP1 gene sequences in pediatric malignancies.

    Science.gov (United States)

    Shiramizu, B; Hu, N; Frisque, R J; Nerurkar, V R

    2007-05-15

    The oncogenic potential of human polyomavirus JC (JCV), a ubiquitous virus that establishes infection during early childhood in approximately 70% of the human population, is unclear. As a neurotropic virus, JCV has been implicated in pediatric central nervous system tumors and has been suggested to be a pathogenic agent in pediatric acute lymphoblastic leukemia. Recent studies have demonstrated JCV gene sequences in pediatric medulloblastomas and among patients with colorectal cancer. JCV early protein T-antigen (TAg) can form complexes with cellular regulatory proteins and thus may play a role in tumorigenesis. Since JCV is detected in B-lymphocytes, a retrospective analysis of pediatric B-cell and non-B-cell malignancies as well as other HIV-associated pediatric malignancies was conducted for the presence of JCV gene sequences. DNA was extracted from 49 pediatric malignancies, including Hodgkin disease, non-Hodgkin lymphoma, large cell lymphoma and sarcoma. Polymerase chain reaction (PCR) was conducted using JCV specific nested primer sets for the transcriptional control region (TCR), TAg, and viral capsid protein 1 (VP1) genes. Southern blot analysis and DNA sequencing were used to confirm specificity of the amplicons. A 215-bp region of the JCV VP1 gene was amplified from 26 (53%) pediatric tumor tissues. The JCV TCR and two JCV gene regions were amplified from a leiomyosarcoma specimen from an HIV-infected patient. The leiomyosarcoma specimen from the cecum harbored the archetype strain of JCV. Including the leiomyosarcoma specimen, three of five specimens sequenced were typed as JCV genotype 2. The failure to amplify JCV TCR, and TAg gene sequences in the presence of JCV VP1 gene sequence is surprising. Even though JCV TAg gene, which is similar to the SV40 TAg gene, is oncogenic in animal models, the presence of JCV gene sequences in pediatric malignancies does not prove causality. In light of the available data on the presence of JCV in normal and cancerous

  7. Genome-Wide Analysis of the AP2/ERF Gene Family in Physic Nut and Overexpression of the JcERF011 Gene in Rice Increased Its Sensitivity to Salinity Stress.

    Science.gov (United States)

    Tang, Yuehui; Qin, Shanshan; Guo, Yali; Chen, Yanbo; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2016-01-01

    The AP2/ERF transcription factors play crucial roles in plant growth, development and responses to biotic and abiotic stresses. A total of 119 AP2/ERF genes (JcAP2/ERFs) have been identified in the physic nut genome; they include 16 AP2, 4 RAV, 1 Soloist, and 98 ERF genes. Phylogenetic analysis indicated that physic nut AP2 genes could be divided into 3 subgroups, while ERF genes could be classed into 11 groups or 43 subgroups. The AP2/ERF genes are non-randomly distributed across the 11 linkage groups of the physic nut genome and retain many duplicates which arose from ancient duplication events. The expression patterns of several JcAP2/ERF duplicates in the physic nut showed differences among four tissues (root, stem, leaf, and seed), and 38 JcAP2/ERF genes responded to at least one abiotic stressor (drought, salinity, phosphate starvation, and nitrogen starvation) in leaves and/or roots according to analysis of digital gene expression tag data. The expression of JcERF011 was downregulated by salinity stress in physic nut roots. Overexpression of the JcERF011 gene in rice plants increased its sensitivity to salinity stress. The increased expression levels of several salt tolerance-related genes were impaired in the JcERF011-overexpressing plants under salinity stress.

  8. Reconstitution of the fusogenic activity of vesicular stomatitis virus

    NARCIS (Netherlands)

    Metsikkö, K.; van Meer, G.; Simons, K.

    1986-01-01

    Enveloped virus glycoproteins exhibit membrane fusion activity. We have analysed whether the G protein of vesicular stomatitis virus, reconstituted into liposomes, is able to fuse nucleated cells in a pH-dependent fashion. Proteoliposomes produced by octylglucoside dialysis did not exhibit cell

  9. Use of Cellular Decapping Activators by Positive-Strand RNA Viruses

    Directory of Open Access Journals (Sweden)

    Jennifer Jungfleisch

    2016-12-01

    Full Text Available Positive-strand RNA viruses have evolved multiple strategies to not only circumvent the hostile decay machinery but to trick it into being a priceless collaborator supporting viral RNA translation and replication. In this review, we describe the versatile interaction of positive-strand RNA viruses and the 5′-3′ mRNA decay machinery with a focus on the viral subversion of decapping activators. This highly conserved viral trickery is exemplified with the plant Brome mosaic virus, the animal Flock house virus and the human hepatitis C virus.

  10. Neutralizing activities of human immunoglobulin derived from donors in Japan against mosquito-borne flaviviruses, Japanese encephalitis virus, West Nile virus, and dengue virus

    Directory of Open Access Journals (Sweden)

    Yunoki M

    2016-07-01

    Full Text Available Mikihiro Yunoki,1-3 Takeshi Kurosu,2 Ritsuko Kubota Koketsu,2,4 Kazuo Takahashi,5 Yoshinobu Okuno,4 Kazuyoshi Ikuta2,4 1Research and Development Division, Japan Blood Products Organization, Tokyo, 2Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 3Pathogenic Risk Evaluation, Graduate School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, 4Research and Development Division, The Research Foundation for Microbial Diseases of Osaka University, Kagawa, 5Osaka Prefectural Institute of Public Health, Osaka, Japan Abstract: Japanese encephalitis virus (JEV, West Nile virus (WNV, and dengue virus (DenV are causal agents of Japanese encephalitis, West Nile fever, and dengue fever, respectively. JEV is considered to be indigenized and widespread in Japan, whereas WNV and DenV are not indigenized in Japan. Globulin products seem to reflect the status of the donor population according to antivirus neutralization activity. However, the anti-JEV, -WNV, and -DenV neutralization activities of globulin products derived from donors in Japan have not been clarified. Furthermore, potential candidates for the development of an effective immunotherapeutic drug for encephalitis caused by JEV, WNV, or DenV have also not been identified. Therefore, the aim of this study was to determine the overall status of the donor population in Japan based on globulin products by evaluating anti-JEV, -WNV, and -DenV neutralizing activities of intravenous immunoglobulin. Overall, intravenous immunoglobulin products showed stable neutralizing activity against JEV but showed no or only weak activity against WNV or DenV. These results suggest that the epidemiological level against WNV and DenV in the donor population of Japan is still low, suggesting that these viruses are not yet indigenized. In addition, JEV vaccinations and/or infections in the donor population do not induce a cross-reactive antibody against WNV. Keywords

  11. Hepatitis A virus: a test method for virucidal activity.

    Science.gov (United States)

    Wolff, M H; Schmitt, J; Rahaus, M; König, A

    2001-08-01

    Hepatitis A virus (HAV) is closely related to the genus enterovirus. HAV is very stable and resistant to acid pH and elevated temperature, as well as to chemicals and environmental influences. Human poliovirus is still one of the model viruses for testing disinfectants but there are discussions about changing to hepatitis A virus. The purpose of this study was to develop a method for using adapted hepatitis A virus to test hand disinfectants. Using HAV strains HM175/24a and FRhK-4 cytopathic effects were visible rarely, and not before 14 days. To verify virus growth in cells a RT-PCR was developed. Two disinfectants tested did not show the required virucidal activity to satisfy current German guidelines.

  12. A Cerebellar Tremor in a Patient with Human Immunodeficiency Virus-1 Associated with Progressive Multifocal Leukoencephalopathy

    Directory of Open Access Journals (Sweden)

    Hee-Jin Kim

    2009-10-01

    Full Text Available Progressive multifocal leukoencephalopathy (PML is a demyelinating disease of the central nervous system (CNS caused by JC virus infection in oligodendrocytes, especially in patients with acquired immunodeficiency syndrome (AIDS. Movement disorders associated with PML are very rare. Here, we report a case of PML in an AIDS patient who presented with a cerebellar tremor, caused by lesions in the cerebellar outflow tract. A cerebellar tremor can be a rare clinical manifestation in patients with PML.

  13. A Cerebellar Tremor in a Patient with Human Immunodeficiency Virus-1 Associated with Progressive Multifocal Leukoencephalopathy

    Science.gov (United States)

    Kim, Hee-Jin; Lee, Jae-Jung; Lee, Phil Hyu

    2009-01-01

    Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system (CNS) caused by JC virus infection in oligodendrocytes, especially in patients with acquired immunodeficiency syndrome (AIDS). Movement disorders associated with PML are very rare. Here, we report a case of PML in an AIDS patient who presented with a cerebellar tremor, caused by lesions in the cerebellar outflow tract. A cerebellar tremor can be a rare clinical manifestation in patients with PML. PMID:24868366

  14. Inactivated ORF virus shows antifibrotic activity and inhibits human hepatitis B virus (HBV) and hepatitis C virus (HCV) replication in preclinical models.

    Science.gov (United States)

    Paulsen, Daniela; Urban, Andreas; Knorr, Andreas; Hirth-Dietrich, Claudia; Siegling, Angela; Volk, Hans-Dieter; Mercer, Andrew A; Limmer, Andreas; Schumak, Beatrix; Knolle, Percy; Ruebsamen-Schaeff, Helga; Weber, Olaf

    2013-01-01

    Inactivated orf virus (iORFV), strain D1701, is a potent immune modulator in various animal species. We recently demonstrated that iORFV induces strong antiviral activity in animal models of acute and chronic viral infections. In addition, we found D1701-mediated antifibrotic effects in different rat models of liver fibrosis. In the present study, we compare iORFV derived from two different strains of ORFV, D1701 and NZ2, respectively, with respect to their antifibrotic potential as well as their potential to induce an antiviral response controlling infections with the hepatotropic pathogens hepatitis C virus (HCV) and hepatitis B virus (HBV). Both strains of ORFV showed anti-viral activity against HCV in vitro and against HBV in a transgenic mouse model without signs of necro-inflammation in vivo. Our experiments suggest that the absence of liver damage is potentially mediated by iORFV-induced downregulation of antigen cross-presentation in liver sinus endothelial cells. Furthermore, both strains showed significant anti-fibrotic activity in rat models of liver fibrosis. iORFV strain NZ2 appeared more potent compared to strain D1701 with respect to both its antiviral and antifibrotic activity on the basis of dosages estimated by titration of active virus. These results show a potential therapeutic approach against two important human liver pathogens HBV and HCV that independently addresses concomitant liver fibrosis. Further studies are required to characterize the details of the mechanisms involved in this novel therapeutic principle.

  15. Inactivated ORF virus shows antifibrotic activity and inhibits human hepatitis B virus (HBV and hepatitis C virus (HCV replication in preclinical models.

    Directory of Open Access Journals (Sweden)

    Daniela Paulsen

    Full Text Available Inactivated orf virus (iORFV, strain D1701, is a potent immune modulator in various animal species. We recently demonstrated that iORFV induces strong antiviral activity in animal models of acute and chronic viral infections. In addition, we found D1701-mediated antifibrotic effects in different rat models of liver fibrosis. In the present study, we compare iORFV derived from two different strains of ORFV, D1701 and NZ2, respectively, with respect to their antifibrotic potential as well as their potential to induce an antiviral response controlling infections with the hepatotropic pathogens hepatitis C virus (HCV and hepatitis B virus (HBV. Both strains of ORFV showed anti-viral activity against HCV in vitro and against HBV in a transgenic mouse model without signs of necro-inflammation in vivo. Our experiments suggest that the absence of liver damage is potentially mediated by iORFV-induced downregulation of antigen cross-presentation in liver sinus endothelial cells. Furthermore, both strains showed significant anti-fibrotic activity in rat models of liver fibrosis. iORFV strain NZ2 appeared more potent compared to strain D1701 with respect to both its antiviral and antifibrotic activity on the basis of dosages estimated by titration of active virus. These results show a potential therapeutic approach against two important human liver pathogens HBV and HCV that independently addresses concomitant liver fibrosis. Further studies are required to characterize the details of the mechanisms involved in this novel therapeutic principle.

  16. Jc enhancement by La-Al-O doping in Y-Ba-Cu-O films both in self-field and under magnetic field

    DEFF Research Database (Denmark)

    Xu, Yan; Suo, Hong-Li; Yue, Zhao

    2016-01-01

    a good epitaxial growth relationship with LAO. Compared with a pure YBCO film, the Jc value of a 5.0% LAO-doped sample is enhanced more than three times in self-field 77 K and seven times at 77 K and 1.5 T, respectively. These results indicate that LAO doping can effectively enhance the Jc of YBCO films...... toward YBCO. A series of YBCO films with different LAO doping contents was fabricated on LAO single-crystal substrates by metal organic deposition. We observed by X-ray diffractometer measurements and scanning electron microscopy observations that although a large amount of LAO is added, YBCO still keeps...

  17. [Exploration on mechanism of anti-influenza virus activity of genus Paeonia based on network pharmacology].

    Science.gov (United States)

    Cai, Ya-Qi; Bao, Ya-Ting; Wang, Hong-Jin; Ren, Xiao-Dong; Huang, Lin-Fang; He, Jie; Liu, Tian-Tian; Zeng, Rui

    2018-04-01

    This paper aimed to investigate the anti-influenza virus activity of the genus Paeonia, screen potential anti-influenza virus compounds and predict targets of anti-influenza virus to explore the mechanism of anti-influenza virus activity. First of all, a total of 301 compounds of the genus Paeonia were summarized from the literatures in recent ten years. The candidate active ingredients from the genus Paeonia were identified by database such as PubChem and Chemical Book. The ligands were constructed by ChemDraw, Avogadro and Discovery Studio Visualizer. Secondly, 23 potential anti-influenza virus targets were developed by combining the target database and the literatures. Uniprot database was used to find the anti-influenza virus targets, and RCSB was used to identify targets associated with anti-influenza virus activity as docked receptor proteins. QuickVina 2.0 software was used for molecular docking. Finally, the Cytoscape 3.5.1 software was used to map the potential activity compounds of the genus Paeonia against influenza virus and the anti-influenza virus target network. Uniprot online database was used to analyze the target GO enrichment and KEGG metabolic pathways. The results showed that 74 compounds of the genus Paeonia had anti-influenza virus effect and 18 potential anti-influenza virus targets were screened. GO analysis concluded that the mechanism of the genus Paeonia anti-influenza virus is consistent with the mechanism of NA anti-influenza virus in order to stop the sprouting, dispersion and diffusion of virus and reduce the ability of virus to infect, so that the infection can be restricted so as to achieve the anti-influenza virus effect. Copyright© by the Chinese Pharmaceutical Association.

  18. Cell division requirement for activation of murine leukemia virus in cell culture by irradiation

    International Nuclear Information System (INIS)

    Otten, J.A.; Quarles, J.M.; Tennant, R.W.

    1976-01-01

    Actively dividing cultures of AKR mouse cells were exposed to relatively low dose-rates of γ radiation and tested for activation of endogenous leukemia viruses. Efficient and reproducible induction of virus was obtained with actively dividing cells, but cultures deprived of serum to inhibit cell division before and during γ irradiation were not activated, even when medium with serum was added immediately after irradiation. These results show that cell division was required for virus induction but that a stable intermediate similar to the state induced by halogenated pyrimidines was not formed. In actively dividing AKR cell cultures, virus activation appeared to be proportional to the dose of γ radiation; the estimated frequency of activation was 1-8 x 10 - 5 per exposed cell and the efficiency of activation was approximately 0.012 inductions per cell per rad. Other normal primary and established mouse cell cultures tested were not activated by γ radiation. The requirement of cell division for radiation and chemical activation may reflect some common mechanism for initiation of virus expression

  19. Difference between ²JC2H3 and ²JC3H2 spin-spin couplings in heterocyclic five- and six-membered rings as a probe for studying σ-ring currents: a quantum chemical analysis.

    Science.gov (United States)

    Contreras, Rubén H; dos Santos, Francisco P; Ducati, Lucas C; Tormena, Cláudio F

    2010-12-01

    Adequate analyses of canonical molecular orbitals (CMOs) can provide rather detailed information on the importance of different σ-Fermi contact (FC) coupling pathways (FC term transmitted through the σ-skeleton). Knowledge of the spatial distribution of CMOs is obtained by expanding them in terms of natural bond orbitals (NBOs). Their relative importance for transmitting the σ-FC contribution to a given spin-spin coupling constants (SSCCs) is estimated by resorting to the expression of the FC term given by the polarisation propagator formalism. In this way, it is possible to classify the effects affecting such couplings in two different ways: delocalisation interactions taking place in the neighbourhood of the coupling nuclei and 'round the ring' effects. The latter, associated with σ-ring currents, are observed to yield significant differences between the FC terms of (2)J(C2H3) and (2)J(C3H2) SSCCs which, consequently, are taken as probes to gauge the differences in σ-ring currents for the five-membered rings (furan, thiophene, selenophene and pyrrol) and also for the six-membered rings (benzene, pyridine, protonated pyridine and N-oxide pyridine) used in the present study. Copyright © 2010 John Wiley & Sons, Ltd.

  20. The metabolic activator FOXO1 binds hepatitis B virus DNA and activates its transcription

    International Nuclear Information System (INIS)

    Shlomai, Amir; Shaul, Yosef

    2009-01-01

    Hepatitis B virus (HBV) is a small DNA virus that targets the liver and infects humans worldwide. Recently we have shown that the metabolic regulator PGC-1α coactivates HBV transcription thereby rendering the virus susceptible to fluctuations in the nutritional status of the liver. PGC-1α coactivation of HBV is mediated through the liver-enriched nuclear receptor HNF4α and through another yet unknown transcription factor(s). Here we show that the forkhead transcription factor FOXO1, a known target for PGC-1α coactivation and a central mediator of glucose metabolism in the liver, binds HBV core promoter and activates its transcription. This activation is further enhanced in the presence of PGC-1α, implying that FOXO1 is a target for PGC-1α coactivation of HBV transcription. Thus, our results identify another key metabolic regulator as an activator of HBV transcription, thereby supporting the principle that HBV gene expression is regulated in a similar way to key hepatic metabolic genes.

  1. Epstein-Barr virus immediate-early gene product trans-activates gene expression from the human immunodeficiency virus long terminal repeat

    International Nuclear Information System (INIS)

    Kenney, S.; Kamine, J.; Markovitz, D.; Fenrick, R.; Pagano, J.

    1988-01-01

    Acquired immunodeficiency syndrome patients are frequently coinfected with Epstein-Barr virus (EBV). In this report, the authors demonstrate that an EBV immediate-early gene product, BamHI MLF1, stimulates expression of the bacterial chloramphenicol acetyltransferase (CAT) gene linked to the human immunodeficiency virus (HIV) promoter. The HIV promoter sequences necessary for trans-activation by EBV do not include the tat-responsive sequences. In addition, in contrast to the other herpesvirus trans-activators previously studied, the EBV BamHI MLF1 gene product appears to function in part by a posttranscriptional mechanism, since it increases pHIV-CAT protein activity more than it increases HIV-CAT mRNA. This ability of an EBV gene product to activate HIV gene expression may have biologic consequences in persons coinfected with both viruses

  2. Antiviral Activity of Novel Quinoline Derivatives against Dengue Virus Serotype 2

    Directory of Open Access Journals (Sweden)

    Carolina de la Guardia

    2018-03-01

    Full Text Available Dengue virus causes dengue fever, a debilitating disease with an increasing incidence in many tropical and subtropical territories. So far, there are no effective antivirals licensed to treat this virus. Here we describe the synthesis and antiviral activity evaluation of two compounds based on the quinoline scaffold, which has shown potential for the development of molecules with various biological activities. Two of the tested compounds showed dose-dependent inhibition of dengue virus serotype 2 in the low and sub micromolar range. The compounds 1 and 2 were also able to impair the accumulation of the viral envelope glycoprotein in infected cells, while showing no sign of direct virucidal activity and acting possibly through a mechanism involving the early stages of the infection. The results are congruent with previously reported data showing the potential of quinoline derivatives as a promising scaffold for the development of new antivirals against this important virus.

  3. Muscle Activity during Unilateral Vs. Bilateral Battle Rope Exercises

    DEFF Research Database (Denmark)

    Calatayud, J.; Martin, F.; Colado, J. C.

    2015-01-01

    Calatayud, J, Martin, F, Colado, JC, Benitez, JC, Jakobsen, MD, and Andersen, LL. Muscle activity during unilateral vs. bilateral battle rope exercises. J Strength Cond Res 29(10): 2854-2859, 2015High training intensity is important for efficient strength gains. Although battle rope training is m...

  4. Mapping the active site of vaccinia virus RNA triphosphatase

    International Nuclear Information System (INIS)

    Gong Chunling; Shuman, Stewart

    2003-01-01

    The RNA triphosphatase component of vaccinia virus mRNA capping enzyme (the product of the viral D1 gene) belongs to a family of metal-dependent phosphohydrolases that includes the RNA triphosphatases of fungi, protozoa, Chlorella virus, and baculoviruses. The family is defined by two glutamate-containing motifs (A and C) that form the metal-binding site. Most of the family members resemble the fungal and Chlorella virus enzymes, which have a complex active site located within the hydrophilic interior of a topologically closed eight-stranded β barrel (the so-called ''triphosphate tunnel''). Here we queried whether vaccinia virus capping enzyme is a member of the tunnel subfamily, via mutational mapping of amino acids required for vaccinia triphosphatase activity. We identified four new essential side chains in vaccinia D1 via alanine scanning and illuminated structure-activity relationships by conservative substitutions. Our results, together with previous mutational data, highlight a constellation of six acidic and three basic amino acids that likely compose the vaccinia triphosphatase active site (Glu37, Glu39, Arg77, Lys107, Glu126, Asp159, Lys161, Glu192, and Glu194). These nine essential residues are conserved in all vertebrate and invertebrate poxvirus RNA capping enzymes. We discerned no pattern of clustering of the catalytic residues of the poxvirus triphosphatase that would suggest structural similarity to the tunnel proteins (exclusive of motifs A and C). We infer that the poxvirus triphosphatases are a distinct lineage within the metal-dependent RNA triphosphatase family. Their unique active site, which is completely different from that of the host cell's capping enzyme, recommends the poxvirus RNA triphosphatase as a molecular target for antipoxviral drug discovery

  5. Controlled immobilisation of active enzymes on the cowpea mosaic virus capsid

    Science.gov (United States)

    Aljabali, Alaa A. A.; Barclay, J. Elaine; Steinmetz, Nicole F.; Lomonossoff, George P.; Evans, David J.

    2012-08-01

    Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors.Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors. Electronic supplementary information (ESI) available: Alternative conjugation strategies, agarose gel electrophoresis of CPMV and CPMV-HRP conjugates, UV-vis spectrum of HRP-ADHCPMV, agarose gel electrophoresis of GOX-ADHCPMV particles and corresponding TEM image, calibration curves for HRP-ADHCPMV and GOX-ADHCPMV, DLS data for GOX-ADHCPMV are made available. See DOI: 10.1039/c2nr31485a

  6. Virucidal activities of medium- and long-chain fatty alcohols and lipids against respiratory syncytial virus and parainfluenza virus type 2: comparison at different pH levels.

    Science.gov (United States)

    Hilmarsson, H; Traustason, B S; Kristmundsdóttir, T; Thormar, H

    2007-01-01

    Recent studies have shown that some lipids and fatty alcohols have microbicidal activities against a broad variety of pathogens. In this study, virucidal activities of fatty acids, monoglycerides and fatty alcohols were tested against respiratory syncytial virus (RSV) and human parainfluenza virus type 2 (HPIV2) at different concentrations, times and pH levels. The most active compounds were mixed with milk products and fruit juices and the mixtures tested for virucidal effects. The aim was to determine which compounds are the most active against these respiratory viruses and could possibly be used in pharmaceutical formulations or as additives to milk products or juice. Several compounds caused a significant inactivation of virus, and there was generally a good agreement between the activities against RSV and parainfluenza virus. By changing the pH from 7 to 4.2, the virucidal activities of some of the compounds were greatly increased, i.e., they inactivated virus in a shorter time and at lower concentrations. The most active compound tested was 1-monoglyceride of capric acid, monocaprin, which also showed activity against influenza A virus and significant virucidal activities after addition to milk products and fruit juices, even at a concentration as low as 0.06-0.12%. The significant virucidal activities of fatty alcohols and lipids on RSV and parainfluenza virus demonstrated in this in vitro study raise the question of the feasibility of using such compounds as ingredients in pharmaceutical dosage forms against respiratory infections caused by these viruses, and possibly other paramyxo- and myxoviruses.

  7. Development of a model describing virus removal process in an activated sludge basin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.; Shiragami, N. Unno, H. [Tokyo Institute of Technology, Tokyo (Japan)

    1995-06-20

    The virus removal process from the liquid phase in an activated sludge basin possibly consists of physicochemical processes, such as adsorption onto sludge flocs, biological processes such as microbial predating and inactivation by virucidal components excreted by microbes. To describe properly the virus behavior in an activated sludge basin, a simple model is proposed based on the experimental data obtained using a poliovirus type 1. A three-compartments model, which include the virus in the liquid phase and in the peripheral and inner regions of sludge flocs is employed. By using the model, the Virus removal process was successfully simulated to highlight the implication of its distribution in the activated sludge basin. 17 refs., 8 figs.

  8. Antiviral activity of maca (Lepidium meyenii) against human influenza virus

    OpenAIRE

    Del Valle Mendoza, Juana; Pumarola, Tomas; Alzamora Gonzales, Libertad; Valle Mendoza, Luis Javier del

    2014-01-01

    Objective To investigate antiviral activity of maca to reduce viral load in Madin-Darby canine kidney (MDCK) cells infected with influenza type A and B viruses (Flu-A and Flu-B, respectively). Methods Maca were extracted with methanol (1:2, v/v). The cell viability and toxicity of the extracts were evaluated on MDCK cells using method MTT assay. Antiviral activity of compounds against Flu-A and Flu-B viruses was assayed using a test for determining the inhibition of the cytopathic ...

  9. Concentration of enteric virus indicator from seawater using granular activated carbon.

    Science.gov (United States)

    Cormier, Jiemin; Gutierrez, Miguel; Goodridge, Lawrence; Janes, Marlene

    2014-02-01

    Fecal contamination of shellfish growing seawater with enteric viruses is often associated with human outbreaks of gastroenteritis. Male specific bacteriophage MS2 is correlated with those of enteric viruses in a wide range of water environments and has been used widely as a surrogate for pathogenic waterborne viruses. Since viruses in contaminated water are usually at low levels, the development of methods to concentrate viruses from water is crucial for detection purposes. In the present study, granular activated carbon was evaluated for concentration of MS2 from artificial seawater, and different parameters of the seawater were also compared. Recovery of MS2 from warm seawater (37°C) was found to be significantly greater than from cold seawater (4 and 20°C), and even greater than from fresh water (4, 20 and 37°C); the difference between seawater and fresh water became less profound when the temperatures of both were below 37°C. Although not of statistical significance, recovery of MS2 from low salinity seawater (10 and 20 parts per thousand, ppt) was greater than from high salinity seawater (30 and 40ppt). One gram of granular activated carbon was able to extract 6-log plaque forming units (PFU) of MS2 from 500ml seawater at 37°C. This study demonstrated that granular activated carbon can concentrate an enteric virus indicator from shellfish growing seawater effectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Mouse Saliva Inhibits Transit of Influenza Virus to the Lower Respiratory Tract by Efficiently Blocking Influenza Virus Neuraminidase Activity.

    Science.gov (United States)

    Gilbertson, Brad; Ng, Wy Ching; Crawford, Simon; McKimm-Breschkin, Jenny L; Brown, Lorena E

    2017-07-15

    We previously identified a novel inhibitor of influenza virus in mouse saliva that halts the progression of susceptible viruses from the upper to the lower respiratory tract of mice in vivo and neutralizes viral infectivity in MDCK cells. Here, we investigated the viral target of the salivary inhibitor by using reverse genetics to create hybrid viruses with some surface proteins derived from an inhibitor-sensitive strain and others from an inhibitor-resistant strain. These viruses demonstrated that the origin of the viral neuraminidase (NA), but not the hemagglutinin or matrix protein, was the determinant of susceptibility to the inhibitor. Comparison of the NA sequences of a panel of H3N2 viruses with differing sensitivities to the salivary inhibitor revealed that surface residues 368 to 370 (N2 numbering) outside the active site played a key role in resistance. Resistant viruses contained an EDS motif at this location, and mutation to either EES or KDS, found in highly susceptible strains, significantly increased in vitro susceptibility to the inhibitor and reduced the ability of the virus to progress to the lungs when the viral inoculum was initially confined to the upper respiratory tract. In the presence of saliva, viral strains with a susceptible NA could not be efficiently released from the surfaces of infected MDCK cells and had reduced enzymatic activity based on their ability to cleave substrate in vitro This work indicates that the mouse has evolved an innate inhibitor similar in function, though not in mechanism, to what humans have created synthetically as an antiviral drug for influenza virus. IMPORTANCE Despite widespread use of experimental pulmonary infection of the laboratory mouse to study influenza virus infection and pathogenesis, to our knowledge, mice do not naturally succumb to influenza. Here, we show that mice produce their own natural form of neuraminidase inhibitor in saliva that stops the virus from reaching the lungs, providing a

  11. Antiviral Activity of Peanut (Arachis hypogaea L.) Skin Extract Against Human Influenza Viruses.

    Science.gov (United States)

    Makau, Juliann Nzembi; Watanabe, Ken; Mohammed, Magdy M D; Nishida, Noriyuki

    2018-05-30

    The high propensity of influenza viruses to develop resistance to antiviral drugs necessitates the continuing search for new therapeutics. Peanut skins, which are low-value byproducts of the peanut industry, are known to contain high levels of polyphenols. In this study, we investigated the antiviral activity of ethanol extracts of peanut skins against various influenza viruses using cell-based assays. Extracts with a higher polyphenol content exhibited higher antiviral activities, suggesting that the active components are the polyphenols. An extract prepared from roasted peanut skins effectively inhibited the replication of influenza virus A/WSN/33 with a half maximal inhibitory concentration of 1.3 μg/mL. Plaque assay results suggested that the extract inhibits the early replication stages of the influenza virus. It demonstrated activity against both influenza type A and type B viruses. Notably, the extract exhibited a potent activity against a clinical isolate of the 2009 H1N1 pandemic, which had reduced sensitivity to oseltamivir. Moreover, a combination of peanut skin extract with the anti-influenza drugs, oseltamivir and amantadine, synergistically increased their antiviral activity. These data demonstrate the potential application of peanut skin extract in the development of new therapeutic options for influenza management.

  12. Carbon-coated boron using low-cost naphthalene for substantial enhancement of Jc in MgB2 superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Ranot, Mahipal; Shinde, K. P.; Oh, Y. S.; Kang, S. H.; Jang, S. H.; Hwang, D. Y.; Chung, K. C. [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2017-09-15

    Carbon coating approach is used to prepare carbon-doped MgB{sub 2} bulk samples using low-cost naphthalene (C{sub 10}H{sub 8}) as a carbon source. The coating of carbon (C) on boron (B) powders was achieved by direct pyrolysis of naphthalene at 120 degrees C and then the C-coated B powders were mixed well with appropriate amount of Mg by solid state reaction method. X-ray diffraction analysis revealed that there is a noticeable shift in (100) and (110) Bragg reflections towards higher angles, while no shift was observed in (002) reflections for MgB2 doped with carbon. As compared to un-doped MgB{sub 2}, a systematic enhancement in Jc(H) properties with increasing carbon doping level was observed for naphthalene-derived C-doped MgB{sub 2} samples. The substantial enhancement in Jc is most likely due to the incorporation of C into MgB{sub 2} lattice and the reduction in crystallite size, as evidenced by the increase in the FWHM values for doped samples.

  13. Identification of active pocket and protein druggability within envelope glycoprotein GP2 from Ebola virus

    Directory of Open Access Journals (Sweden)

    Beuy Joob

    2014-12-01

    Full Text Available The drug searching for combating the present outbreak of Ebola virus infection is the urgent activity at present. Finding the new effective drug at present must base on the molecular analysis of the pathogenic virus. The in-depth analysis of the viral protein to find the binding site, active pocket is needed. Here, the authors analyzed the envelope glycoprotein GP2 from Ebola virus. Identification of active pocket and protein druggability within envelope glycoprotein GP2 from Ebola virus was done. According to this assessment, 7 active pockets with varied druggability could be identified.

  14. Chronic Active Epstein–Barr Virus Infection

    Directory of Open Access Journals (Sweden)

    Li Jun

    2012-06-01

    Full Text Available Chronic active Epstein-Barr virus (CAEBV infection is a systemic Epstein-Barr virus (EBV positive lymphoprolifetative disease characterized by fever, lymphadenopathy, splenomegaly, unusual pattern of anti- EBV antibodies, and/or increased EBV genomes in affected tissues. Most cases are from Asia. So far, there is hardly any adult case reported from mainland of China. We herein presented a 33-year-old man with fever, facial erythema and rash, lymphadenopathy, lower limbs weakness, splenomegaly and liver lesion. EBV VCA, EA and EBNA were all positive. EBV DNA could be found in serum and PBMC. In situ hybridization of EBV encoded RNA in skin and liver biopsy was positive. Viral load in serum decreased under interferon alpha therapy. To our knowledge, it’s the first adult case reported from mainland of China.

  15. Are the Polyomaviruses BK and JC Associated with Opportunistic Infections, Graft-versus-Host Disease, or Worse Outcomes in Adult Patients Receiving Their First Allogeneic Stem Cell Transplantation with Low-Dose Alemtuzumab?

    Science.gov (United States)

    Schneidewind, Laila; Neumann, Thomas; Knoll, Florian; Zimmermann, Kathrin; Smola, Sigrun; Schmidt, Christian Andreas; Krüger, William

    2017-01-01

    The association of polyomaviruses BK and JC with other opportunistic infections and graft-versus-host disease (GvHD) in allogeneic stem cell transplantation is controversially discussed. We conducted a retrospective study of 64 adult patients who received their first allogeneic stem cell transplantation between March 2010 and December 2014; the follow-up time was 2 years. Acute leukemia was the most frequent underlying disease (45.3%), and conditioning included myeloablative (67.2%) and nonmyeloablative protocols (32.8%). All patients received 10 mg of alemtuzumab on day -2 (20 mg in case of mismatch) as GvHD prophylaxis. Twenty-seven patients (41.5%) developed cytomegalovirus (CMV) reactivation. BKPyV-associated hemorrhagic cystitis was diagnosed in 10 patients (15.6%). Other opportunistic infections caused by viruses or protozoa occurred rarely (reactivation, Epstein-Barr virus reactivation, human herpes virus 6, or parvovirus B19 infection requiring treatment. There was a significant correlation of BKPyV-associated hemorrhagic cystitis with toxoplasmosis (p = 0.013). Additionally, there was a significant link of simultaneous BKPyV and JCPyV viruria with toxoplasmosis (p = 0.047). BKPyV and JCPyV were not associated with GvHD, relapse, or death. We found no association of BKPyV or JCPyV with viral infections or GvHD. Only the correlation of both polyomaviruses with toxoplasmosis was significant. This is a novel and interesting finding. © 2017 S. Karger AG, Basel.

  16. Antiviral activities of streptomycetes against tobacco mosaic virus ...

    African Journals Online (AJOL)

    Mahera Shinwari

    2012-01-26

    Jan 26, 2012 ... Key words: Antiviral activity, tobacco mosaic virus, actinomycetes, Streptomyces, Datura metel ... have received less attention than those caused by fungal .... leaves were divided in to three partitions each containing triplicates.

  17. Enhanced Jc's of YBa2Cu3O7-x-Ag ex situ annealed coevaporated films on LaAlO3 (100) substrates

    DEFF Research Database (Denmark)

    Clausen, Thomas; Ejrnæs, Mikkel; Olesen, Michael Wiinberg

    1995-01-01

    A 5x increase of the critical current density (J(c)) at 77 K was obtained by coating a coevaporated 500 nm thick Y, BaF2, Cu film with 50 nm Ag prior to the ex situ annealing. J(c) increased from 0.2 for uncoated samples to 1 MA/cm(2) for the Ag-coated sample without severely affecting the zero...... resistance transition temperature (T-c0). Scanning electron microscopy showed that the surface morphology was improved and that the normally observed trellislike structure was greatly reduced. By combining electron microscopy and sputter assisted Auger analysis it was found that the Ag nucleated in droplets...

  18. Antiviral activity of Petiveria alliacea against the bovine viral diarrhea virus.

    Science.gov (United States)

    Ruffa, M J; Perusina, M; Alfonso, V; Wagner, M L; Suriano, M; Vicente, C; Campos, R; Cavallaro, L

    2002-07-01

    Natural products are a relevant source of antiviral drugs. Five medicinal plants used in Argentina have been assayed to detect inhibition of viral growth. Antiviral activity of the infusions and methanolic extracts of Aristolochia macroura, Celtis spinosa, Plantago major, Schinus areira, Petiveria alliacea and four extracts obtained from the leaves and stems of the last plant were evaluated by the plaque assay. P. alliacea, unlike A. macroura, C. spinosa, P. major and S. areira, inhibited bovine viral diarrhea virus (BVDV) replication. Neither P. alliacea nor the assays of the other plants were active against herpes simplex virus type 1, poliovirus type 1, adenovirus serotype 7 and vesicular stomatitis virus type 1. Four extracts of P. alliacea were assayed to detect anti-BVDV activity. Ethyl acetate (EC(50) of 25 microg/ml) and dichloromethane (EC(50) of 43 microg/ml) extracts were active; moreover, promising SI (IC(50)/EC(50)) values were obtained. BVDV is highly prevalent in the cattle population, there are no antiviral compounds available; additionally, it is a viral model of the hepatitis C virus. For these reasons and in view of the results obtained, the isolation and characterization of the antiviral components present in the P. alliacea extracts is worth carrying out in the future. Copyright 2002 S. Karger AG, Basel

  19. Activity of andrographolide against chikungunya virus infection.

    Science.gov (United States)

    Wintachai, Phitchayapak; Kaur, Parveen; Lee, Regina Ching Hua; Ramphan, Suwipa; Kuadkitkan, Atichat; Wikan, Nitwara; Ubol, Sukathida; Roytrakul, Sittiruk; Chu, Justin Jang Hann; Smith, Duncan R

    2015-09-18

    Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus that has recently engendered large epidemics around the world. There is no specific antiviral for treatment of patients infected with CHIKV, and development of compounds with significant anti-CHIKV activity that can be further developed to a practical therapy is urgently required. Andrographolide is derived from Andrographis paniculata, a herb traditionally used to treat a number of conditions including infections. This study sought to determine the potential of andrographolide as an inhibitor of CHIKV infection. Andrographolide showed good inhibition of CHIKV infection and reduced virus production by approximately 3log10 with a 50% effective concentration (EC50) of 77 μM without cytotoxicity. Time-of-addition and RNA transfection studies showed that andrographolide affected CHIKV replication and the activity of andrographolide was shown to be cell type independent. This study suggests that andrographolide has the potential to be developed further as an anti-CHIKV therapeutic agent.

  20. Cytoplasmic ATR Activation Promotes Vaccinia Virus Genome Replication

    Directory of Open Access Journals (Sweden)

    Antonio Postigo

    2017-05-01

    Full Text Available In contrast to most DNA viruses, poxviruses replicate their genomes in the cytoplasm without host involvement. We find that vaccinia virus induces cytoplasmic activation of ATR early during infection, before genome uncoating, which is unexpected because ATR plays a fundamental nuclear role in maintaining host genome integrity. ATR, RPA, INTS7, and Chk1 are recruited to cytoplasmic DNA viral factories, suggesting canonical ATR pathway activation. Consistent with this, pharmacological and RNAi-mediated inhibition of canonical ATR signaling suppresses genome replication. RPA and the sliding clamp PCNA interact with the viral polymerase E9 and are required for DNA replication. Moreover, the ATR activator TOPBP1 promotes genome replication and associates with the viral replisome component H5. Our study suggests that, in contrast to long-held beliefs, vaccinia recruits conserved components of the eukaryote DNA replication and repair machinery to amplify its genome in the host cytoplasm.

  1. Lambda Interferon (IFN-gamma), a Type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo

    DEFF Research Database (Denmark)

    Ank, Nina; West, Hans; Bartholdy, C.

    2006-01-01

    Type III interferons (IFNs) (interleukin-28/29 or lambda interferon [IFN-lambda]) are cytokines with IFN-like activities. Here we show that several classes of viruses induce expression of IFN-lambda1 and -lambda2/3 in similar patterns. The IFN-lambdas were-unlike alpha/beta interferon (IFN......-alpha/beta)-induced directly by stimulation with IFN-alpha or -lambda, thus identifying type III IFNs as IFN-stimulated genes. In vitro assays revealed that IFN-lambdas have appreciable antiviral activity against encephalomyocarditis virus (EMCV) but limited activity against herpes simplex virus type 2 (HSV-2), whereas IFN......-alpha potently restricted both viruses. Using three murine models for generalized virus infections, we found that while recombinant IFN-alpha reduced the viral load after infection with EMCV, lymphocytic choriomeningitis virus (LCMV), and HSV-2, treatment with recombinant IFN-lambda in vivo did not affect viral...

  2. Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo

    DEFF Research Database (Denmark)

    Ank, Nina; West, Hans; Bartholdy, Christina

    2006-01-01

    Type III interferons (IFNs) (interleukin-28/29 or lambda interferon [IFN-lambda]) are cytokines with IFN-like activities. Here we show that several classes of viruses induce expression of IFN-lambda1 and -lambda2/3 in similar patterns. The IFN-lambdas were-unlike alpha/beta interferon (IFN......-alpha/beta)-induced directly by stimulation with IFN-alpha or -lambda, thus identifying type III IFNs as IFN-stimulated genes. In vitro assays revealed that IFN-lambdas have appreciable antiviral activity against encephalomyocarditis virus (EMCV) but limited activity against herpes simplex virus type 2 (HSV-2), whereas IFN......-alpha potently restricted both viruses. Using three murine models for generalized virus infections, we found that while recombinant IFN-alpha reduced the viral load after infection with EMCV, lymphocytic choriomeningitis virus (LCMV), and HSV-2, treatment with recombinant IFN-lambda in vivo did not affect viral...

  3. Activation of human immunodeficiency virus by radiation

    International Nuclear Information System (INIS)

    Beer, J.Z.; Zmudzka, B.Z.

    1991-01-01

    It was recently demonstrated that ultraviolet radiation (UVR) can induce the HIV promoter as well as activate the complete virus in cultured cells (Valerie et al., 1988). This and subsequent observations, reviewed in this article, suggest a possibility that radiation exposure may accelerate development of AIDS in HIV-infected individuals. They also indicate that studies on HIV activation by stressors, including radiation, may advance our understanding of some phenomena that follow HIV infection. (author)

  4. Chronic Active Epstein-Barr Virus Disease.

    Science.gov (United States)

    Kimura, Hiroshi; Cohen, Jeffrey I

    2017-01-01

    Chronic active Epstein-Barr virus (CAEBV) disease is a rare disorder in which persons are unable to control infection with the virus. The disease is progressive with markedly elevated levels of EBV DNA in the blood and infiltration of organs by EBV-positive lymphocytes. Patients often present with fever, lymphadenopathy, splenomegaly, EBV hepatitis, or pancytopenia. Over time, these patients develop progressive immunodeficiency and if not treated, succumb to opportunistic infections, hemophagocytosis, multiorgan failure, or EBV-positive lymphomas. Patients with CAEBV in the United States most often present with disease involving B or T cells, while in Asia, the disease usually involves T or NK cells. The only proven effective treatment for the disease is hematopoietic stem cell transplantation. Current studies to find a cause of this disease focus on immune defects and genetic abnormalities associated with the disease.

  5. Chronic Active Epstein–Barr Virus Disease

    Directory of Open Access Journals (Sweden)

    Hiroshi Kimura

    2017-12-01

    Full Text Available Chronic active Epstein–Barr virus (CAEBV disease is a rare disorder in which persons are unable to control infection with the virus. The disease is progressive with markedly elevated levels of EBV DNA in the blood and infiltration of organs by EBV-positive lymphocytes. Patients often present with fever, lymphadenopathy, splenomegaly, EBV hepatitis, or pancytopenia. Over time, these patients develop progressive immunodeficiency and if not treated, succumb to opportunistic infections, hemophagocytosis, multiorgan failure, or EBV-positive lymphomas. Patients with CAEBV in the United States most often present with disease involving B or T cells, while in Asia, the disease usually involves T or NK cells. The only proven effective treatment for the disease is hematopoietic stem cell transplantation. Current studies to find a cause of this disease focus on immune defects and genetic abnormalities associated with the disease.

  6. Development of a broad-spectrum antiviral with activity against Ebola virus.

    Science.gov (United States)

    Aman, M Javad; Kinch, Michael S; Warfield, Kelly; Warren, Travis; Yunus, Abdul; Enterlein, Sven; Stavale, Eric; Wang, Peifang; Chang, Shaojing; Tang, Qingsong; Porter, Kevin; Goldblatt, Michael; Bavari, Sina

    2009-09-01

    We report herein the identification of a small molecule therapeutic, FGI-106, which displays potent and broad-spectrum inhibition of lethal viral hemorrhagic fevers pathogens, including Ebola, Rift Valley and Dengue Fever viruses, in cell-based assays. Using mouse models of Ebola virus, we further demonstrate that FGI-106 can protect animals from an otherwise lethal infection when used either in a prophylactic or therapeutic setting. A single treatment, administered 1 day after infection, is sufficient to protect animals from lethal Ebola virus challenge. Cell-based assays also identified inhibitory activity against divergent virus families, which supports a hypothesis that FGI-106 interferes with a common pathway utilized by different viruses. These findings suggest FGI-106 may provide an opportunity for targeting viral diseases.

  7. Ribonuclease activity of buckwheat plant (Fagopyrum esculentum cultivars with different sensitivities to buckwheat burn virus

    Directory of Open Access Journals (Sweden)

    Y. R. Sindarovska

    2014-06-01

    Full Text Available Ribonucleases (RNases are present in base-level amounts in intact plants, but this level is able to increase greatly under stress conditions. The possible cause for such an increase is protection against plant RNA-virus attack. Buckwheat burn virus (BBV is a highly virulent pathogen that belongs to Rhabdoviridae family. In our study, we have analyzed the correlation between RNase activity and resistance of different buckwheat cultivars to BBV infection. Two cultivars, Kara-Dag and Roksolana, with different sensitivities to BBV have been used. Kara-Dag is a cultivar with medium sensitivity to virus and Roksolana is a tolerant cultivar. It has been shown that the base level of RNase activity in Roksolana cultivar was in most cases higher than the corresponding parameter in Kara-Dag cultivar. Both infected and uninfected plants of Roksolana cultivar demonstrated high RNase activity during two weeks. Whereas infected plants of Kara-Dag cultivar demonstrated unstable levels of RNase activity. Significant decline in RNase activity was detected on the 7th day post infection with subsequent gradual increase in RNase activity. Decline of the RNase activity during the first week could promote the virus replication and therefore more successful infection of upper leaves of plants. Unstable levels of RNase activity in infected buckwheat plants may be explained by insufficiency of virus-resistant mechanisms that determines the medium sensitivity of the cultivar to BBV. Thus, plants of buckwheat cultivar having less sensitivity to virus, displayed in general higher RNase activity.

  8. Herpes simplex virus triggers activation of calcium-signaling pathways

    Science.gov (United States)

    Cheshenko, Natalia; Del Rosario, Brian; Woda, Craig; Marcellino, Daniel; Satlin, Lisa M.; Herold, Betsy C.

    2003-01-01

    The cellular pathways required for herpes simplex virus (HSV) invasion have not been defined. To test the hypothesis that HSV entry triggers activation of Ca2+-signaling pathways, the effects on intracellular calcium concentration ([Ca2+]i) after exposure of cells to HSV were examined. Exposure to virus results in a rapid and transient increase in [Ca2+]i. Pretreatment of cells with pharmacological agents that block release of inositol 1,4,5-triphosphate (IP3)–sensitive endoplasmic reticulum stores abrogates the response. Moreover, treatment of cells with these pharmacological agents inhibits HSV infection and prevents focal adhesion kinase (FAK) phosphorylation, which occurs within 5 min after viral infection. Viruses deleted in glycoprotein L or glycoprotein D, which bind but do not penetrate, fail to induce a [Ca2+]i response or trigger FAK phosphorylation. Together, these results support a model for HSV infection that requires activation of IP3-responsive Ca2+-signaling pathways and that is associated with FAK phosphorylation. Defining the pathway of viral invasion may lead to new targets for anti-viral therapy. PMID:14568989

  9. [Antiviral activity of different drugs in vitro against viruses of bovine infectious rhinotracheitis and bovine diarrhea].

    Science.gov (United States)

    Glotov, A G; Glotova, T I; Sergeev, A A; Belkina, T V; Sergeev, A N

    2004-01-01

    In vitro experiments studied the antiviral activity of 11 different drugs against viruses of bovine infective rhinotracheitis (BIRT) and bovine viral diarrhea (BVD). The 50% inhibiting concentrations of the test agents were determined in the monolayers of MDBK and KCT cell cultures. Only did phosprenyl show a virucidal activity against BIRT virus. All the tested drugs significantly inhibited the reproduction of BIRT virus in the sensitive MDBK cell cultures. Thus, bromuridin, acyclovir, ribavirin and methisazonum inhibited the virus by > or = 100,000 times; liposomal ribavirin, gossypolum, anandinum, polyprenolum, phosprenyl, by 1000-10,000 times; eracond and argovit, by 100 times. In experiments on BVD virus, the cultured KCT cells displayed the antiviral activity of bromuridin, phosprenil, polyprenolum, methisazonum, acyclovir, gossypolum, argovit, and ribavirin (in two variants), which caused a statistically significant (100-10,000-fold) decrease in the productive activity of this virus. Eracond and anandid proved to be ineffective.

  10. Antiviral activity of A771726, the active metabolite of leflunomide, against Junín virus.

    Science.gov (United States)

    Sepúlveda, Claudia S; García, Cybele C; Damonte, Elsa B

    2018-05-01

    The aim of this study was to investigate the effect of A771726, the active metabolite of leflunomide, (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad against the infection with Junín virus (JUNV), agent of Argentine hemorrhagic fever (AHF). The treatment with non-cytotoxic concentrations of A771726 of Vero and A549 cells infected with JUNV inhibited virus replication in a dose-dependent manner, as determined by virus yield reduction assay. The antiviral effectiveness of A771726 was not importantly affected by the multiplicity of infection and the virus strain. Moreover, the combination of A771726 and ribavirin had a significantly more potent antiviral activity than each single drug treatment. Mechanistic studies showed that the main action of A771726 is exerted before 6 h of JUNV infection. Accordingly, inhibition of viral RNA synthesis was detected in treated infected cells by real time RT-PCR. The exogenous addition of uridine or orotic acid produced a partial reversal of the inhibitory effect of A771726 on infective virus production whereas a total reversion was detected on JUNV RNA synthesis, probably by restoration of the enzymatic activity of dihydroorotate dehydrogenase (DHODH) and the intracellular pyrimidine pools. In conclusion, these results suggest that the antiviral target would be viral RNA synthesis through pyrimidine depletion, but any other effect of the compound on JUNV infection cannot be excluded. This study opens the possibility of the therapeutic application of a wide spectrum host-targeted compound alone or in combination with ribavirin to combat AHF as well as other human pathogenic arenaviruses. © 2018 Wiley Periodicals, Inc.

  11. Effect of compounds with antibacterial activities in human milk on respiratory syncytial virus and cytomegalovirus in vitro.

    Science.gov (United States)

    Portelli, J; Gordon, A; May, J T

    1998-11-01

    The effect of some antibacterial compounds present in human milk were tested for antiviral activity against respiratory syncytial virus, Semliki Forest virus and cytomegalovirus. These included the gangliosides GM1, GM2 and GM3, sialyl-lactose, lactoferrin and chondroitin sulphate A, B and C, which were all tested for their ability to inhibit the viruses in cell culture. Of the compounds tested, only the ganglioside GM2, chondroitin sulphate B and lactoferrin inhibited the absorption and growth of respiratory syncytial virus in cell culture, and none inhibited the growth of Semliki Forest virus, indicating that lipid antiviral activity was not associated with any of the gangliosides. While the concentrations of these two compounds required to inhibit respiratory syncytial virus were in excess of those present in human milk, sialyl-lactose concentrations similar to those present in human milk increased the growth of cytomegalovirus. Lactoferrin was confirmed as inhibiting both respiratory syncytial virus and cytomegalovirus growth in culture even when used at lower concentrations than those present in human milk. The antiviral activities of GM2, chondroitin sulphate B and lactoferrin were tested when added to an infant formula. Lactoferrin continued to have antiviral activity against cytomegalovirus, but a lower activity against respiratory syncytial virus; ganglioside GM2 and chondroitin sulphate B still maintained antiviral activity against respiratory syncytial virus.

  12. Quantification of Human and Animal Viruses to Differentiate the Origin of the Fecal Contamination Present in Environmental Samples

    Directory of Open Access Journals (Sweden)

    Sílvia Bofill-Mas

    2013-01-01

    Full Text Available Many different viruses are excreted by humans and animals and are frequently detected in fecal contaminated waters causing public health concerns. Classical bacterial indicator such as E. coli and enterococci could fail to predict the risk for waterborne pathogens such as viruses. Moreover, the presence and levels of bacterial indicators do not always correlate with the presence and concentration of viruses, especially when these indicators are present in low concentrations. Our research group has proposed new viral indicators and methodologies for determining the presence of fecal pollution in environmental samples as well as for tracing the origin of this fecal contamination (microbial source tracking. In this paper, we examine to what extent have these indicators been applied by the scientific community. Recently, quantitative assays for quantification of poultry and ovine viruses have also been described. Overall, quantification by qPCR of human adenoviruses and human polyomavirus JC, porcine adenoviruses, bovine polyomaviruses, chicken/turkey parvoviruses, and ovine polyomaviruses is suggested as a toolbox for the identification of human, porcine, bovine, poultry, and ovine fecal pollution in environmental samples.

  13. A novel, polymer-coated oncolytic measles virus overcomes immune suppression and induces robust antitumor activity

    Directory of Open Access Journals (Sweden)

    Kaname Nosaki

    2016-01-01

    Full Text Available Although various therapies are available to treat cancers, including surgery, chemotherapy, and radiotherapy, cancer has been the leading cause of death in Japan for the last 30 years, and new therapeutic modalities are urgently needed. As a new modality, there has recently been great interest in oncolytic virotherapy, with measles virus being a candidate virus expected to show strong antitumor effects. The efficacy of virotherapy, however, was strongly limited by the host immune response in previous clinical trials. To enhance and prolong the antitumor activity of virotherapy, we combined the use of two newly developed tools: the genetically engineered measles virus (MV-NPL and the multilayer virus-coating method of layer-by-layer deposition of ionic polymers. We compared the oncolytic effects of this polymer-coated MV-NPL with the naked MV-NPL, both in vitro and in vivo. In the presence of anti-MV neutralizing antibodies, the polymer-coated virus showed more enhanced oncolytic activity than did the naked MV-NPL in vitro. We also examined antitumor activities in virus-treated mice. Complement-dependent cytotoxicity and antitumor activities were higher in mice treated with polymer-coated MV-NPL than in mice treated with the naked virus. This novel, polymer-coated MV-NPL is promising for clinical cancer therapy in the future.

  14. Incidence, clinical presentation, and outcome of progressive multifocal leukoencephalopathy in HIV-infected patients during the highly active antiretroviral therapy era: a nationwide cohort study

    DEFF Research Database (Denmark)

    Engsig, Frederik Neess; Hansen, Ann-Brit Eg; Omland, Lars Haukali

    2009-01-01

    BACKGROUND: Human immunodeficiency virus (HIV) infection predisposes to progressive multifocal leukoencephalopathy (PML). Here, we describe the incidence, presentation, and prognosis of PML in HIV-1-infected patients during the period before highly active antiretroviral therapy (HAART) (1995...... at presentation and follow-up. RESULTS: Among 4,649 patients, we identified 47 patients with PML. The incidence rates were 3.3, 1.8, and 1.3 cases per 1000 person-years at risk in 1995-1996, 1997-1999, and 2000-2006, respectively. The risk of PML was significantly associated with low CD4(+) cell count, and 47......% of cases were diagnosed by means of brain biopsy or polymerase chain reaction analysis for JC virus. The predominant neurological symptoms at presentation were coordination disturbance, cognitive defects, and limb paresis. Thirty-five patients died; the median survival time was 0.4 years (95% confidence...

  15. Late relapse of progressive multifocal leucoencephalopathy postallogenic transplant in a young patient with CLL.

    Science.gov (United States)

    Sanchez-Quintana, Ana; Breña-Atienza, Joaquín; Marrero-Santos, Carmen; Alvarez-Acosta, Luis

    2013-08-05

    We describe a case of progressive multifocal leucoencephalopathy (PML) in a 39-year-old patient diagnosed with chronic lymphocytic leukaemia (CLL) who underwent two allogenic matched-sibling stem cell transplantations. PML was confirmed just after the first transplantation with cerebral MRI and by PCR in the cerebrospinal fluid. After immunosuppression withdrawal and cidofovir treatment, he achieved a reversal of clinical symptoms, John Cunningham (JC) virus positivity and MRI lesions regression. He remained asymptomatic for 5 years with no signs of infection activity, even though he received three new chemotherapy regimens due to a CLL relapse. However, after the second stem cell transplantation, new neurological symptoms began and a reactivation of the JC virus infection was detected. This time, treatment with mefloquine was started, but he experienced a progressive neurological deterioration and died 1 month after the symptoms began.

  16. Antiviral activity of four types of bioflavonoid against dengue virus type-2

    Directory of Open Access Journals (Sweden)

    Zandi Keivan

    2011-12-01

    Full Text Available Abstract Background Dengue is a major mosquito-borne disease currently with no effective antiviral or vaccine available. Effort to find antivirals for it has focused on bioflavonoids, a plant-derived polyphenolic compounds with many potential health benefits. In the present study, antiviral activity of four types of bioflavonoid against dengue virus type -2 (DENV-2 in Vero cell was evaluated. Anti-dengue activity of these compounds was determined at different stages of DENV-2 infection and replication cycle. DENV replication was measured by Foci Forming Unit Reduction Assay (FFURA and quantitative RT-PCR. Selectivity Index value (SI was determined as the ratio of cytotoxic concentration 50 (CC50 to inhibitory concentration 50 (IC50 for each compound. Results The half maximal inhibitory concentration (IC50 of quercetin against dengue virus was 35.7 μg mL-1 when it was used after virus adsorption to the cells. The IC50 decreased to 28.9 μg mL-1 when the cells were treated continuously for 5 h before virus infection and up to 4 days post-infection. The SI values for quercetin were 7.07 and 8.74 μg mL-1, respectively, the highest compared to all bioflavonoids studied. Naringin only exhibited anti-adsorption effects against DENV-2 with IC50 = 168.2 μg mL-1 and its related SI was 1.3. Daidzein showed a weak anti-dengue activity with IC50 = 142.6 μg mL-1 when the DENV-2 infected cells were treated after virus adsorption. The SI value for this compound was 1.03. Hesperetin did not exhibit any antiviral activity against DENV-2. The findings obtained from Foci Forming Unit Reduction Assay (FFURA were corroborated by findings of the qRT-PCR assays. Quercetin and daidzein (50 μg mL-1 reduced DENV-2 RNA levels by 67% and 25%, respectively. There was no significant inhibition of DENV-2 RNA levels with naringin and hesperetin. Conclusion Results from the study suggest that only quercetin demonstrated significant anti-DENV-2 inhibitory activities. Other

  17. Antiviral activity of maca (Lepidium meyenii) against human influenza virus.

    Science.gov (United States)

    Del Valle Mendoza, Juana; Pumarola, Tomàs; Gonzales, Libertad Alzamora; Del Valle, Luis J

    2014-09-01

    To investigate antiviral activity of maca to reduce viral load in Madin-Darby canine kidney (MDCK) cells infected with influenza type A and B viruses (Flu-A and Flu-B, respectively). Maca were extracted with methanol (1:2, v/v). The cell viability and toxicity of the extracts were evaluated on MDCK cells using method MTT assay. Antiviral activity of compounds against Flu-A and Flu-B viruses was assayed using a test for determining the inhibition of the cytopathic effect on cell culture and multiplex RT-PCR. The methanol extract of maca showed low cytotoxicity and inhibited influenza-induced cytopathic effect significantly, while viral load was reduced via inhibition of viral growth in MDCK infected cells. Maca contains potent inhibitors of Flu-A and Flu-B with a selectivity index [cytotoxic concentration 50%/IC50] of 157.4 and 110.5, respectively. In vitro assays demonstrated that maca has antiviral activity not only against Flu-A (like most antiviral agents) but also Flu-B viruses, providing remarkable therapeutic benefits. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  18. Enhanced Production of Androst-1,4-Diene-3,17-Dione by Mycobacterium neoaurum JC-12 Using Three-Stage Fermentation Strategy

    Science.gov (United States)

    Shao, Minglong; Zhang, Xian; Rao, Zhiming; Xu, Meijuan; Yang, Taowei; Li, Hui; Xu, Zhenghong

    2015-01-01

    To improve the androst-1,4-diene-3,17-dione (ADD) production from phytosterol by Mycobacterium neoaurum JC-12, fructose was firstly found favorable as the initial carbon source to increase the biomass and eliminate the lag phase of M. neoaurum JC-12 in the phytosterol transformation process. Based on this phenomenon, two-stage fermentation by using fructose as the initial carbon source and feeding glucose to maintain strain metabolism was designed. By applying this strategy, the fermentation duration was decreased from 168 h to 120 h with the ADD productivity increased from 0.071 g/(L·h) to 0.108 g/(L·h). Further, three-stage fermentation by adding phytosterol to improve ADD production at the end of the two-stage fermentation was carried out and the final ADD production reached 18.6 g/L, which is the highest reported ADD production using phytosterol as substrate. Thus, this strategy provides a possible way in enhancing the ADD production in pharmaceutical industry. PMID:26352898

  19. Enhanced Production of Androst-1,4-Diene-3,17-Dione by Mycobacterium neoaurum JC-12 Using Three-Stage Fermentation Strategy.

    Directory of Open Access Journals (Sweden)

    Minglong Shao

    Full Text Available To improve the androst-1,4-diene-3,17-dione (ADD production from phytosterol by Mycobacterium neoaurum JC-12, fructose was firstly found favorable as the initial carbon source to increase the biomass and eliminate the lag phase of M. neoaurum JC-12 in the phytosterol transformation process. Based on this phenomenon, two-stage fermentation by using fructose as the initial carbon source and feeding glucose to maintain strain metabolism was designed. By applying this strategy, the fermentation duration was decreased from 168 h to 120 h with the ADD productivity increased from 0.071 g/(L·h to 0.108 g/(L·h. Further, three-stage fermentation by adding phytosterol to improve ADD production at the end of the two-stage fermentation was carried out and the final ADD production reached 18.6 g/L, which is the highest reported ADD production using phytosterol as substrate. Thus, this strategy provides a possible way in enhancing the ADD production in pharmaceutical industry.

  20. La chronologie du royaume de Qatabân du Ier siècle avant J.-C. au Ier siècle après J.-C.

    Directory of Open Access Journals (Sweden)

    Mounir Arbach

    2002-04-01

    Full Text Available Les nouvelles découvertes archéologiques et épigraphiques de ces dernières années, effectuées au cours des fouilles franco-italiennes à Tamna`, l'ancienne capitale du royaume de Qatabân, permettent d'établir une nouvelle chronologie des souverains de Qatabân entre le Ier siècle avant J.-C. et le Ier siècle après J.- C.The chronology of the kingdom of Qatabân, from the 1st century BC to the 1st century AD. Archaeological and epigraphical discoveries made in recent years by the Franco-Italian excavations at Tamna`, the ancient capital of the kingdom of Qatabân, allows us to establish a new chronology for the kings of Qatabân during the 1st century BC and the 1st century AD.

  1. Small molecule inhibitors of ER α-glucosidases are active against multiple hemorrhagic fever viruses.

    Science.gov (United States)

    Chang, Jinhong; Warren, Travis K; Zhao, Xuesen; Gill, Tina; Guo, Fang; Wang, Lijuan; Comunale, Mary Ann; Du, Yanming; Alonzi, Dominic S; Yu, Wenquan; Ye, Hong; Liu, Fei; Guo, Ju-Tao; Mehta, Anand; Cuconati, Andrea; Butters, Terry D; Bavari, Sina; Xu, Xiaodong; Block, Timothy M

    2013-06-01

    Host cellular endoplasmic reticulum α-glucosidases I and II are essential for the maturation of viral glycosylated envelope proteins that use the calnexin mediated folding pathway. Inhibition of these glycan processing enzymes leads to the misfolding and degradation of these viral glycoproteins and subsequent reduction in virion secretion. We previously reported that, CM-10-18, an imino sugar α-glucosidase inhibitor, efficiently protected the lethality of dengue virus infection of mice. In the current study, through an extensive structure-activity relationship study, we have identified three CM-10-18 derivatives that demonstrated superior in vitro antiviral activity against representative viruses from four viral families causing hemorrhagic fever. Moreover, the three novel imino sugars significantly reduced the mortality of two of the most pathogenic hemorrhagic fever viruses, Marburg virus and Ebola virus, in mice. Our study thus proves the concept that imino sugars are promising drug candidates for the management of viral hemorrhagic fever caused by variety of viruses. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A mini-review of anti-hepatitis B virus activity of medicinal plants

    Directory of Open Access Journals (Sweden)

    Manzer H. Siddiqui

    2017-01-01

    Full Text Available Medicinal plants are of undoubted value, as they have been used for centuries to treat various diseases and health disorders in almost every part of the world. In several studies, the use of medicinal plants was found effective in treatment of infectious and non-infectious diseases. The World Health Organization has been working for many years to identify all surviving medicinal plants on the earth. An important step has also been taken by the Natural Health Product Regulation of Canada for promotion and usages of natural products. At present, the rapidly growing population of the world is facing many challenges from various infectious diseases that are associated with hepatitis A, B and C virus, human immunodeficiency virus, influenza virus, dengue virus and new emerging viruses. Hepatitis B virus causes a severe and frequently transmittable disease of the liver. Millions of people worldwide suffer from hepatitis B virus (HBV infection. The drugs available on the market for the treatment of hepatitis B are not sufficient and also cause side effects in patients suffering from HBV infection. The pharmaceutical companies are searching for suitable alternative and natural inhibitors of HBV. Therefore, it is important to explore and use plants as a source of new medicines to treat this infectious disease, because single plants contain a priceless pool of active ingredients which could help in the production of pharmaceutical-grade peptides or proteins. However, the knowledge of the antiviral activity of medicinal plants is still limited.

  3. Molecular Epidemiology of Human Polyomavirus JC in the Biaka Pygmies and Bantu of Central Africa

    Directory of Open Access Journals (Sweden)

    Sylvester C Chima

    1998-09-01

    Full Text Available Polyomavirus JC (JCV is ubiquitous in humans and causes a chronic demyelinating disease of the central nervous system , progressive multifocal leukoencephalopathy which is common in AIDS. JCV is excreted in urine of 30-70% of adults worldwide. Based on sequence analysis of JCV complete genomes or fragments thereof, JCV can be classified into geographically derived genotypes. Types 1 and 2 are of European and Asian origin respectively while Types 3 and 6 are African in origin. Type 4, a possible recombinant of European and African genotypes (1 and 3 is common in the USA. To delineate the JCV genotypes in an aboriginal African population, random urine samples were collected from the Biaka Pygmies and Bantu from the Central African Republic. There were 43 males and 25 females aged 4-55 years, with an average age of 26 years. After PCR amplification of JCV in urine, products were directly cycle sequenced. Five of 23 Pygmy adults (22% and four of 20 Bantu adults (20% were positive for JC viruria. DNA sequence analysis revealed JCV Type 3 (two, Type 6 (two and one Type 1 variant in Biaka Pygmies. All the Bantu strains were Type 6. Type 3 and 6 strains of JCV are the predominant strains in central Africa. The presence of multiple subtypes of JCV in Biaka Pygmies may be a result of extensive interactions of Pygmies with their African tribal neighbors during their itinerant movements in the equatorial forest.

  4. The pathogenesis of progressive multifocal leukoencephalopathy.

    Science.gov (United States)

    Berger, Joseph R; Khalili, Kamel

    2011-12-01

    Interest in pathogenesis of progressive multifocal leukoencephalopathy (PML) followed the observation of the high risk for the disease in HIV infection and the recent observation of an association with a variety of newer therapeutic modalities, e.g., natalizumab, an α4β1 integrin inhibitor, and efalizumab, an anti-CD11a monoclonal antibody. Any hypothesis of PML pathogenesis must account for a number of facts. Firstly, the causative agent JC virus is ubiquitously present, yet only a vanishingly small number of infected persons develop the disease. Secondly, disorders of cell-mediated immunity increase the risk of the disease, particularly HIV infection. Impaired innate immunity is not a risk for PML, and antibodies against JC virus are not protective. Thirdly, a latent period of several months appears necessary following the administration of natalizumab and efalizumab before PML develops. Fourthly, restoration of the immune system can arrest the PML. It is possible that infection with JC virus occurs with a form of the virus shed in the urine of as many as 40% of all adults and present in sewage worldwide. Once acquired, perhaps through an oropharyngeal route, it may replicate and disseminate. A neurotropic form of JC virus that replicates in glial tissues causes PML when immunosurveillance is impaired. There are many unanswered questions with respect to PML pathogenesis. How is virus acquired? What tissues are infected? What is the origin of the neurotropic form? When does virus enter brain? What is the role of central nervous system immunosurveillance? The lack of an animal model has made answering these questions challenging. © Discovery Medicine

  5. Antiviral activity of an N-allyl acridone against dengue virus

    OpenAIRE

    Mazzucco, María Belén; Talarico, Laura Beatriz; Vatansever, Sezen; Carro, Ana Clara; Fascio, Mirta Liliana; D'Accorso, Norma Beatriz; Garcia, Cybele; Damonte, Elsa Beatriz

    2016-01-01

    Dengue virus (DENV), a member of the family Flaviviridae, is at present the most widespread causative agent of a human viral disease transmitted by mosquitoes. Despite the increasing incidence of this pathogen, there are no antiviral drugs or vaccines currently available for treatment or prevention. In a previous screening assay, we identified a group of N-allyl acridones as effective virus inhibitors. Here, the antiviral activity and mode of action targeted to viral RNA replication of one of...

  6. Virus reactivations after autologous hematopoietic stem cell transplantation detected by multiplex PCR assay.

    Science.gov (United States)

    Inazawa, Natsuko; Hori, Tsukasa; Nojima, Masanori; Saito, Makoto; Igarashi, Keita; Yamamoto, Masaki; Shimizu, Norio; Yoto, Yuko; Tsutsumi, Hiroyuki

    2017-02-01

    Several studies have indicated that viral reactivations following allogeneic hematopoietic stem cell transplantation (allo-HSCT) are frequent, but viral reactivations after autologous HSCT (auto-HSCT) have not been investigated in detail. We performed multiplex polymerase chain reaction (PCR) assay to examine multiple viral reactivations simultaneously in 24 patients undergoing auto-HSCT between September 2010 and December 2012. Weekly whole blood samples were collected from pre- to 42 days post-HSCT, and tested for the following 13 viruses; herpes simplex virus 1 (HSV-1), HSV-2, varicella-zoster virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), human herpesvirus 6 (HHV-6), HHV-7, HHV-8, adeno virus (ADV), BK virus (BKV), JC virus (JCV), parvovirus B19 (B19V), and hepatitis B virus (HBV).  Fifteen (63%) patients had at least one type of viral reactivation. HHV6 (n = 10; 41.7%) was most frequently detected followed by EBV (n = 7; 29.2%). HHV-6 peaked on day 21 after HSCT and promptly declined. In addition, HBV, CMV, HHV7, and B19V were each detected in one patient. HHV6 reactivation was detected in almost half the auto-HSCT patients, which was similar to the incidence in allo-HSCT patients. The incidence of EBV was unexpectedly high. Viral infections in patients undergoing auto-HSCT were higher than previously reported in other studies. Although there were no particular complications of viral infection, we should pay attention to possible viral reactivations in auto-HSCT patients. J. Med. Virol. 89:358-362, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Human immunodeficiency virus-induced pathology favored by cellular transmission and activation

    International Nuclear Information System (INIS)

    Lewis, D.E.; Yoffe, B.; Bosworth, C.G.; Hollinger, F.B.; Rich, R.R.

    1988-01-01

    Epidemiological data suggest that transmission of human immunodeficiency virus (HIV) occurs primarily by transference of virally infected cells. However, the efficiency of lytic productive infection induced by HIV after transmission of cell-associated virus vs. free virus is difficult to assess. The present studies compare the extent of depletion of CD4+ (helper/inducer) T cells after mixing uninfected cells with either free HIV or irradiated HIV-infected allogeneic or autologous cells in vitro. Rapid CD4+ cellular depletion occurred only in cultures containing allogeneic infected cells or after addition of a nonspecific T cell activation signal to cultures with autologous infected cells. These in vitro observations strongly support the epidemiological implication that interactions between infected and uninfected cells are the most efficient means of transmission and HIV-induced cytopathology in vivo. They also provide direct support for the concept that immunological stimulation by foreign cells infected with HIV dramatically increases the likelihood of transmission. These in vitro observations suggest a model for the acquisition of HIV in vivo and the role of cellular activation in dissemination of the virus to uninfected cells in an infected individual

  8. The 3'-to-5' exonuclease activity of vaccinia virus DNA polymerase is essential and plays a role in promoting virus genetic recombination.

    Science.gov (United States)

    Gammon, Don B; Evans, David H

    2009-05-01

    Poxviruses are subjected to extraordinarily high levels of genetic recombination during infection, although the enzymes catalyzing these reactions have never been identified. However, it is clear that virus-encoded DNA polymerases play some unknown yet critical role in virus recombination. Using a novel, antiviral-drug-based strategy to dissect recombination and replication reactions, we now show that the 3'-to-5' proofreading exonuclease activity of the viral DNA polymerase plays a key role in promoting recombination reactions. Linear DNA substrates were prepared containing the dCMP analog cidofovir (CDV) incorporated into the 3' ends of the molecules. The drug blocked the formation of concatemeric recombinant molecules in vitro in a process that was catalyzed by the proofreading activity of vaccinia virus DNA polymerase. Recombinant formation was also blocked when CDV-containing recombination substrates were transfected into cells infected with wild-type vaccinia virus. These inhibitory effects could be overcome if CDV-containing substrates were transfected into cells infected with CDV-resistant (CDV(r)) viruses, but only when resistance was linked to an A314T substitution mutation mapping within the 3'-to-5' exonuclease domain of the viral polymerase. Viruses encoding a CDV(r) mutation in the polymerase domain still exhibited a CDV-induced recombination deficiency. The A314T substitution also enhanced the enzyme's capacity to excise CDV molecules from the 3' ends of duplex DNA and to recombine these DNAs in vitro, as judged from experiments using purified mutant DNA polymerase. The 3'-to-5' exonuclease activity appears to be an essential virus function, and our results suggest that this might be because poxviruses use it to promote genetic exchange.

  9. Activation of human immunodeficiency virus by ultraviolet radiation

    International Nuclear Information System (INIS)

    Zmudzka, B.Z.; Beer, J.Z.

    1990-01-01

    This article reviews the current status of knowledge about UV-induced HIV activation. A brief description of HIV structure and, in particular, its gene promoter is given. The effects of UVR exposure of cells on HIV activation and HIV promoter induction will be reviewed. Some events that follow production of DNA damage and lead, via activation of an oncogene, to HIV promoter induction will be discussed. Possible consequences of promoter induction and HIV activation for the cell and the virus are mentioned. The review concludes with a discussion of practical aspects and perspectives in this research area. (author)

  10. Inhibition of herpes simplex virus multiplication by activated macrophages: a role for arginase?

    Science.gov (United States)

    Wildy, P; Gell, P G; Rhodes, J; Newton, A

    1982-07-01

    Proteose-peptone-activated mouse macrophages can prevent productive infection by herpes simplex virus in neighboring cells in vitro whether or not those cells belong to the same animal species. The effect does not require contact between the macrophages and the infected cells, may be prevented by adding extra arginine to the medium, and may be reversed when extra arginine is added 24 h after the macrophages. Arginase activity was found both intracellularly and released from the macrophages. The extracellular enzyme is quite stable; 64% activity was found after 48 h of incubation at 37 degrees C in tissue culture medium. No evidence was found that the inefficiency of virus replication in macrophages was due to self-starvation by arginase. As might be predicted macrophages can, by the same mechanism, limit productive infection by vaccinia virus.

  11. MALT1 Controls Attenuated Rabies Virus by Inducing Early Inflammation and T Cell Activation in the Brain.

    Science.gov (United States)

    Kip, E; Staal, J; Verstrepen, L; Tima, H G; Terryn, S; Romano, M; Lemeire, K; Suin, V; Hamouda, A; Kalai, M; Beyaert, R; Van Gucht, S

    2018-04-15

    MALT1 is involved in the activation of immune responses, as well as in the proliferation and survival of certain cancer cells. MALT1 acts as a scaffold protein for NF-κB signaling and a cysteine protease that cleaves substrates, further promoting the expression of immunoregulatory genes. Deregulated MALT1 activity has been associated with autoimmunity and cancer, implicating MALT1 as a new therapeutic target. Although MALT1 deficiency has been shown to protect against experimental autoimmune encephalomyelitis, nothing is known about the impact of MALT1 on virus infection in the central nervous system. Here, we studied infection with an attenuated rabies virus, Evelyn-Rotnycki-Abelseth (ERA) virus, and observed increased susceptibility with ERA virus in MALT1 -/- mice. Indeed, after intranasal infection with ERA virus, wild-type mice developed mild transient clinical signs with recovery at 35 days postinoculation (dpi). Interestingly, MALT1 -/- mice developed severe disease requiring euthanasia at around 17 dpi. A decreased induction of inflammatory gene expression and cell infiltration and activation was observed in MALT1 -/- mice at 10 dpi compared to MALT1 +/+ infected mice. At 17 dpi, however, the level of inflammatory cell activation was comparable to that observed in MALT1 +/+ mice. Moreover, MALT1 -/- mice failed to produce virus-neutralizing antibodies. Similar results were obtained with specific inactivation of MALT1 in T cells. Finally, treatment of wild-type mice with mepazine, a MALT1 protease inhibitor, also led to mortality upon ERA virus infection. These data emphasize the importance of early inflammation and activation of T cells through MALT1 for controlling the virulence of an attenuated rabies virus in the brain. IMPORTANCE Rabies virus is a neurotropic virus which can infect any mammal. Annually, 59,000 people die from rabies. Effective therapy is lacking and hampered by gaps in the understanding of virus pathogenicity. MALT1 is an intracellular

  12. Screening Bioactives Reveals Nanchangmycin as a Broad Spectrum Antiviral Active against Zika Virus

    Directory of Open Access Journals (Sweden)

    Keiko Rausch

    2017-01-01

    Full Text Available Zika virus is an emerging arthropod-borne flavivirus for which there are no vaccines or specific therapeutics. We screened a library of 2,000 bioactive compounds for their ability to block Zika virus infection in three distinct cell types with two different strains of Zika virus. Using a microscopy-based assay, we validated 38 drugs that inhibited Zika virus infection, including FDA-approved nucleoside analogs. Cells expressing high levels of the attachment factor AXL can be protected from infection with receptor tyrosine kinase inhibitors, while placental-derived cells that lack AXL expression are insensitive to this inhibition. Importantly, we identified nanchangmycin as a potent inhibitor of Zika virus entry across all cell types tested, including physiologically relevant primary cells. Nanchangmycin also was active against other medically relevant viruses, including West Nile, dengue, and chikungunya viruses that use a similar route of entry. This study provides a resource of small molecules to study Zika virus pathogenesis.

  13. Antiviral Activities of Several Oral Traditional Chinese Medicines against Influenza Viruses.

    Science.gov (United States)

    Ma, Lin-Lin; Ge, Miao; Wang, Hui-Qiang; Yin, Jin-Qiu; Jiang, Jian-Dong; Li, Yu-Huan

    2015-01-01

    Influenza is still a serious threat to human health with significant morbidity and mortality. The emergence of drug-resistant influenza viruses poses a great challenge to existing antiviral drugs. Traditional Chinese medicines (TCMs) may be an alternative to overcome the challenge. Here, 10 oral proprietary Chinese medicines were selected to evaluate their anti-influenza activities. These drugs exhibit potent inhibitory effects against influenza A H1N1, influenza A H3N2, and influenza B virus. Importantly, they demonstrate potent antiviral activities against drug-resistant strains. In the study of mechanisms, we found that Xiaoqinglong mixture could increase antiviral interferon production by activating p38 MAPK, JNK/SAPK pathway, and relative nuclear transcription factors. Lastly, our studies also indicate that some of these medicines show inhibitory activities against EV71 and CVB strains. In conclusion, the 10 traditional Chinese medicines, as kind of compound combination medicines, show broad-spectrum antiviral activities, possibly also including inhibitory activities against strains resistant to available antiviral drugs.

  14. Antidiarrheal activity of extracts from Maytenus gonoclada and inhibition of Dengue virus by lupeol

    Directory of Open Access Journals (Sweden)

    FERNANDO C. SILVA

    Full Text Available ABSTRACT Diarrhea is an infectious disease caused by bacterial, virus, or protozoan, and dengue is caused by virus, included among the neglected diseases in several underdeveloped and developing countries, with an urgent demand for new drugs. Considering the antidiarrheal potential of species of Maytenus genus, a phytochemical investigation followed by antibacterial activity test with extracts of branches and heartwood and bark of roots from Maytenus gonoclada were conducted. Moreover, due the frequency of isolation of lupeol from Maytenus genus the antiviral activity against Dengue virus and cytotoxicity of lupeol and its complex with β-cyclodextrins were also tested. The results indicated the bioactivity of ethyl acetate extract from branches and ethanol extract from heartwood of roots of M. gonoclada against diarrheagenic bacteria. The lupeol showed potent activity against Dengue virus and low cytotoxicity in LLC-MK2 cells, but its complex with β-cyclodextrin was inactive. Considering the importance of novel and selective antiviral drug candidates the results seem to be promising.

  15. Association between simian virus 40 and non-Hodgkin lymphoma

    Science.gov (United States)

    Vilchez, Regis A.; Madden, Charles R.; Kozinetz, Claudia A.; Halvorson, Steven J.; White, Zoe S.; Jorgensen, Jeffrey L.; Finch, Chris J.; Butel, Janet S.

    2002-01-01

    BACKGROUND: Non-Hodgkin lymphoma has increased in frequency over the past 30 years, and is a common cancer in HIV-1-infected patients. Although no definite risk factors have emerged, a viral cause has been postulated. Polyomaviruses are known to infect human beings and to induce tumours in laboratory animals. We aimed to identify which one of the three polyomaviruses able to infect human beings (simian virus 40 [SV40], JC virus, and BK virus) was associated with non-Hodgkin lymphoma. METHODS: We analysed systemic non-Hodgkin lymphoma from 76 HIV-1-infected and 78 HIV-1-uninfected patients, and non-malignant lymphoid samples from 79 HIV-1-positive and 107 HIV-1-negative patients without tumours; 54 colon and breast carcinoma samples served as cancer controls. We used PCR followed by Southern blot hybridisation and DNA sequence analysis to detect DNAs of polyomaviruses and herpesviruses. FINDINGS: Polyomavirus T antigen sequences, all of which were SV40-specific, were detected in 64 (42%) of 154 non-Hodgkin lymphomas, none of 186 non-malignant lymphoid samples, and none of 54 control cancers. This difference was similar for HIV-1-infected patients and HIV-1-uninfected patients alike. Few tumours were positive for both SV40 and Epstein-Barr virus. Human herpesvirus type 8 was not detected. SV40 sequences were found most frequently in diffuse large B-cell and follicular-type lymphomas. INTERPRETATION: SV40 is significantly associated with some types of non-Hodgkin lymphoma. These results add lymphomas to the types of human cancers associated with SV40.

  16. Human glial chimeric mice reveal astrocytic dependence of JC virus infection

    DEFF Research Database (Denmark)

    Kondo, Yoichi; Windrem, Martha S; Zou, Lisa

    2014-01-01

    with humanized white matter by engrafting human glial progenitor cells (GPCs) into neonatal immunodeficient and myelin-deficient mice. Intracerebral delivery of JCV resulted in infection and subsequent demyelination of these chimeric mice. Human GPCs and astrocytes were infected more readily than...... that was chimeric for human astrocytes and GPCs. JCV effectively propagated in these mice, which indicates that astroglial infection is sufficient for JCV spread. Sequencing revealed progressive mutation of the JCV capsid protein VP1 after infection, suggesting that PML may evolve with active infection...

  17. Demonstration of helicase activity in the nonstructural protein, NSs, of the negative-sense RNA virus, groundnut bud necrosis virus.

    Science.gov (United States)

    Bhushan, Lokesh; Abraham, Ambily; Choudhury, Nirupam Roy; Rana, Vipin Singh; Mukherjee, Sunil Kumar; Savithri, Handanahal Subbarao

    2015-04-01

    The nonstructural protein NSs, encoded by the S RNA of groundnut bud necrosis virus (GBNV) (genus Tospovirus, family Bunyaviridae) has earlier been shown to possess nucleic-acid-stimulated NTPase and 5' α phosphatase activity. ATP hydrolysis is an essential function of a true helicase. Therefore, NSs was tested for DNA helicase activity. The results demonstrated that GBNV NSs possesses bidirectional DNA helicase activity. An alanine mutation in the Walker A motif (K189A rNSs) decreased DNA helicase activity substantially, whereas a mutation in the Walker B motif resulted in a marginal decrease in this activity. The parallel loss of the helicase and ATPase activity in the K189A mutant confirms that NSs acts as a non-canonical DNA helicase. Furthermore, both the wild-type and K189A NSs could function as RNA silencing suppressors, demonstrating that the suppressor activity of NSs is independent of its helicase or ATPase activity. This is the first report of a true helicase from a negative-sense RNA virus.

  18. Human and Mouse Eosinophils Have Antiviral Activity against Parainfluenza Virus.

    Science.gov (United States)

    Drake, Matthew G; Bivins-Smith, Elizabeth R; Proskocil, Becky J; Nie, Zhenying; Scott, Gregory D; Lee, James J; Lee, Nancy A; Fryer, Allison D; Jacoby, David B

    2016-09-01

    Respiratory viruses cause asthma exacerbations. Because eosinophils are the prominent leukocytes in the airways of 60-70% of patients with asthma, we evaluated the effects of eosinophils on a common respiratory virus, parainfluenza 1, in the lung. Eosinophils recruited to the airways of wild-type mice after ovalbumin sensitization and challenge significantly decreased parainfluenza virus RNA in the lungs 4 days after infection compared with nonsensitized animals. This antiviral effect was also seen in IL-5 transgenic mice with an abundance of airway eosinophils (NJ.1726) but was lost in transgenic eosinophil-deficient mice (PHIL) and in IL-5 transgenic mice crossed with eosinophil-deficient mice (NJ.1726-PHIL). Loss of the eosinophil granule protein eosinophil peroxidase, using eosinophil peroxidase-deficient transgenic mice, did not reduce eosinophils' antiviral effect. Eosinophil antiviral mechanisms were also explored in vitro. Isolated human eosinophils significantly reduced parainfluenza virus titers. This effect did not involve degradation of viral RNA by eosinophil granule RNases. However, eosinophils treated with a nitric oxide synthase inhibitor lost their antiviral activity, suggesting eosinophils attenuate viral infectivity through production of nitric oxide. Consequently, eosinophil nitric oxide production was measured with an intracellular fluorescent probe. Eosinophils produced nitric oxide in response to virus and to a synthetic agonist of the virus-sensing innate immune receptor, Toll-like receptor (TLR) 7. IFNγ increased expression of eosinophil TLR7 and potentiated TLR7-induced nitric oxide production. These results suggest that eosinophils promote viral clearance in the lung and contribute to innate immune responses against respiratory virus infections in humans.

  19. Different virucidal activities of hyperbranched quaternary ammonium coatings on poliovirus and influenza virus

    NARCIS (Netherlands)

    Tuladhar, E.; Koning, de M.C.; Fundeanu, I.; Beumer, R.R.; Duizer, E.

    2012-01-01

    Virucidal activity of immobilized quaternary ammonium compounds (IQACs) coated onto glass and plastic surfaces was tested against enveloped influenza A (H1N1) virus and nonenveloped poliovirus Sabin1. The IQACs tested were virucidal against the influenza virus within 2 min, but no virucidal effect

  20. The susceptibility of circulating human influenza viruses to tizoxanide, the active metabolite of nitazoxanide.

    Science.gov (United States)

    Tilmanis, Danielle; van Baalen, Carel; Oh, Ding Yuan; Rossignol, Jean-Francois; Hurt, Aeron C

    2017-11-01

    Nitazoxanide is a thiazolide compound that was originally developed as an anti-parasitic agent, but has recently been repurposed for the treatment of influenza virus infections. Thought to exert its anti-influenza activity via the inhibition of hemagglutinin maturation and intracellular trafficking in infected cells, the effectiveness of nitazoxanide in treating patients with non-complicated influenza is currently being assessed in phase III clinical trials. Here, we describe the susceptibility of 210 seasonal influenza viruses to tizoxanide, the active circulating metabolite of nitazoxanide. An optimised cell culture-based focus reduction assay was used to determine the susceptibility of A(H1N1)pdm09, A(H3N2), and influenza B viruses circulating in the southern hemisphere from the period March 2014 to August 2016. Tizoxanide showed potent in vitro antiviral activity against all influenza viruses tested, including neuraminidase inhibitor-resistant viruses, allowing the establishment of a baseline level of susceptibility for each subtype. Median EC 50 values (±IQR) of 0.48 μM (0.33-0.71), 0.62 μM (0.56-0.75), 0.66 μM (0.62-0.69), and 0.60 μM (0.51-0.67) were obtained for A(H1N1)pdm09, A(H3N2), B(Victoria lineage), and B(Yamagata lineage) influenza viruses respectively. There was no significant difference in the median baseline tizoxanide susceptibility for each influenza subtype tested. This is the first report on the susceptibility of circulating viruses to tizoxanide. The focus reduction assay format described is sensitive, robust, and less laborious than traditional cell based antiviral assays, making it highly suitable for the surveillance of tizoxanide susceptibility in circulating seasonal influenza viruses. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Eastern equine encephalomyelitis virus and Culiseta melanura activity at the Patuxent Wildlife Research Center, 1985-90.

    Science.gov (United States)

    Pagac, B B; Turell, M J; Olsen, G H

    1992-09-01

    Mosquito population densities, virus isolations and seroconversion in sentinel quail were used to monitor eastern equine encephalomyelitis virus (EEE) activity at the Patuxent Wildlife Research Center, Laurel, Maryland, from 1985 through 1990. A dramatic increase in the number of Culiseta melanura collected in 1989, as compared with the 3 previous years, was associated with virus isolations from this species (5/75 pools; n = 542 mosquitoes) and with seroconversion in sentinel quail (4/22 birds positive). This was the first detection of EEE virus activity in this area since a 1984 EEE outbreak killed 7 whooping cranes.

  2. Human antibodies to the dengue virus E-dimer epitope have therapeutic activity against Zika virus infection.

    Science.gov (United States)

    Fernandez, Estefania; Dejnirattisai, Wanwisa; Cao, Bin; Scheaffer, Suzanne M; Supasa, Piyada; Wongwiwat, Wiyada; Esakky, Prabagaran; Drury, Andrea; Mongkolsapaya, Juthathip; Moley, Kelle H; Mysorekar, Indira U; Screaton, Gavin R; Diamond, Michael S

    2017-11-01

    The Zika virus (ZIKV) epidemic has resulted in congenital abnormalities in fetuses and neonates. Although some cross-reactive dengue virus (DENV)-specific antibodies can enhance ZIKV infection in mice, those recognizing the DENV E-dimer epitope (EDE) can neutralize ZIKV infection in cell culture. We evaluated the therapeutic activity of human monoclonal antibodies to DENV EDE for their ability to control ZIKV infection in the brains, testes, placentas, and fetuses of mice. A single dose of the EDE1-B10 antibody given 3 d after ZIKV infection protected against lethality, reduced ZIKV levels in brains and testes, and preserved sperm counts. In pregnant mice, wild-type or engineered LALA variants of EDE1-B10, which cannot engage Fcg receptors, diminished ZIKV burden in maternal and fetal tissues, and protected against fetal demise. Because neutralizing antibodies to EDE have therapeutic potential against ZIKV, in addition to their established inhibitory effects against DENV, it may be possible to develop therapies that control disease caused by both viruses.

  3. Acid-activated structural reorganization of the Rift Valley fever virus Gc fusion protein

    NARCIS (Netherlands)

    Boer, de S.M.; Kortekaas, J.A.; Spel, L.; Rottier, P.J.M.; Moormann, R.J.M.; Bosch, B.J.

    2012-01-01

    Entry of the enveloped Rift Valley fever virus (RVFV) into its host cell is mediated by the viral glycoproteins Gn and Gc. We investigated the RVFV entry process and its pH-dependent activation mechanism in particular using our recently developed nonspreading RVFV particle system. Entry of the virus

  4. Activity of andrographolide against chikungunya virus infection

    OpenAIRE

    Phitchayapak Wintachai; Parveen Kaur; Regina Ching Hua Lee; Suwipa Ramphan; Atichat Kuadkitkan; Nitwara Wikan; Sukathida Ubol; Sittiruk Roytrakul; Justin Jang Hann Chu; Duncan R. Smith

    2015-01-01

    Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus that has recently engendered large epidemics around the world. There is no specific antiviral for treatment of patients infected with CHIKV, and development of compounds with significant anti-CHIKV activity that can be further developed to a practical therapy is urgently required. Andrographolide is derived from Andrographis paniculata, a herb traditionally used to treat a number of conditions including infections. This stud...

  5. Imaging manifestations of progressive multifocal leukoencephalopathy

    International Nuclear Information System (INIS)

    Shah, R.; Bag, A.K.; Chapman, P.R.; Cure, J.K.

    2010-01-01

    Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease caused by reactivation of JC virus in immunosuppressed patients. The diagnosis is usually suggested on imaging and confirmed by cerebrospinal fluid polymerase chain reaction (PCR) for JC virus DNA. In this article, we review the imaging manifestations of PML on computed tomography (CT), magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), MR spectroscopy, single photon-emission computed tomography (SPECT) and positron-emission tomography (PET), and outline the role of imaging in follow-up and prognostication.

  6. Powassan Virus: Persistence of Virus Activity During 1966

    Science.gov (United States)

    McLean, Donald M.; Cobb, Cathron; Gooderham, Susan E.; Smart, Carol A.; Wilson, A. G.; Wilson, W. E.

    1967-01-01

    Powassan virus isolations were achieved from three of 60 pools of Ixodes cookei ticks removed from 286 groundhogs (Marmota monax) which were collected some 200 miles north of Toronto between May 5 and September 5, 1966. Virus yields per pool of one to 11 ticks ranged from 102.5 to 106.0 TCD50 for primary swine kidney tissue cultures, and positive pools were collected on June 24, July 15 and August 10. Powassan neutralizing antibodies were detected by mouse inoculation tests in 143 of 362 animals including 127 of 286 groundhogs, 14 of 45 red squirrels (Tamiasciurus hudsonicus) and two of 31 other forest mammals. The monthly prevalence of antibody in the current season's groundhogs increased from 0 to 25% with the progression of summer, but in older animals the incidence remained between 38 and 62% throughout the season. These results substantiate earlier findings which pointed towards the maintenance of Powassan virus in nature by a cycle involving groundhogs and squirrels as reservoirs, with ticks as vectors, from which human infections occurred tangentially. PMID:6019677

  7. [Activating effect of adrenaline, prednisolone and vincristine in the late periods of tick-borne encephalitis virus persistence].

    Science.gov (United States)

    Frolova, T V; Pogodina, V V

    1984-01-01

    The activating effect of adrenalin (A), prednisolone (P), and vincristine (V) on persistent infection caused by subcutaneous inoculation of Syrian hamsters with the Vasilchenko and B-383 strains of tick-borne encephalitis virus (TBE) was studied. The drugs were administered once, twice, or three times 250-270 days after virus inoculation. Complement-fixing antigen was found in the organs of the infected animals given no A, P, or V; in the organ explants synthesis of hemagglutinin was observed but no infectious virus could be isolated. After treatment of the infected hamsters with A, P, or V organ explants yielded TBE virus strains which showed either high or low virulence for white mice. The activated TBE virus strains were obtained from explants of hamster brains and spleens but not liver. V produced the most marked activating effect, A the least.

  8. MAIT cells are activated in acute Dengue virus infection and after in vitro Zika virus infection.

    Directory of Open Access Journals (Sweden)

    Dominic Paquin-Proulx

    2018-01-01

    Full Text Available Dengue virus (DENV and Zika virus (ZIKV are members of the Flaviviridae and are predominantly transmitted via mosquito bites. Both viruses are responsible for a growing number of infections in tropical and subtropical regions. DENV infection can cause lethargy with severe morbidity and dengue shock syndrome leading to death in some cases. ZIKV is now linked with Guillain-Barré syndrome and fetal malformations including microcephaly and developmental disorders (congenital Zika syndrome. The protective and pathogenic roles played by the immune response in these infections is unknown. Mucosal-associated invariant T (MAIT cells are a population of innate T cells with potent anti-bacterial activity. MAIT cells have also been postulated to play a role in the immune response to viral infections. In this study, we evaluated MAIT cell frequency, phenotype, and function in samples from subjects with acute and convalescent DENV infection. We found that in acute DENV infection, MAIT cells had elevated co-expression of the activation markers CD38 and HLA-DR and had a poor IFNγ response following bacterial stimulation. Furthermore, we found that MAIT cells can produce IFNγ in response to in vitro infection with ZIKV. This MAIT cell response was independent of MR1, but dependent on IL-12 and IL-18. Our results suggest that MAIT cells may play an important role in the immune response to Flavivirus infections.

  9. A Role for Protein Phosphatase 2A in Regulating p38 Mitogen Activated Protein Kinase Activation and Tumor Necrosis Factor-Alpha Expression during Influenza Virus Infection

    Directory of Open Access Journals (Sweden)

    Anna H. Y. Law

    2013-04-01

    Full Text Available Influenza viruses of avian origin continue to pose pandemic threats to human health. Some of the H5N1 and H9N2 virus subtypes induce markedly elevated cytokine levels when compared with the seasonal H1N1 virus. We previously showed that H5N1/97 hyperinduces tumor necrosis factor (TNF-alpha through p38 mitogen activated protein kinase (MAPK. However, the detailed mechanisms of p38MAPK activation and TNF-alpha hyperinduction following influenza virus infections are not known. Negative feedback regulations of cytokine expression play important roles in avoiding overwhelming production of proinflammatory cytokines. Here we hypothesize that protein phosphatases are involved in the regulation of cytokine expressions during influenza virus infection. We investigated the roles of protein phosphatases including MAPK phosphatase-1 (MKP-1 and protein phosphatase type 2A (PP2A in modulating p38MAPK activation and downstream TNF-alpha expressions in primary human monocyte-derived macrophages (PBMac infected with H9N2/G1 or H1N1 influenza virus. We demonstrate that H9N2/G1 virus activated p38MAPK and hyperinduced TNF-alpha production in PBMac when compared with H1N1 virus. H9N2/G1 induced PP2A activity in PBMac and, with the treatment of a PP2A inhibitor, p38MAPK phosphorylation and TNF-alpha production were further increased in the virus-infected macrophages. However, H9N2/G1 did not induce the expression of PP2A indicating that the activation of PP2A is not mediated by p38MAPK in virus-infected PBMac. On the other hand, PP2A may not be the targets of H9N2/G1 in the upstream of p38MAPK signaling pathways since H1N1 also induced PP2A activation in primary macrophages. Our results may provide new insights into the control of cytokine dysregulation.

  10. Pyrazole compound BPR1P0034 with potent and selective anti-influenza virus activity

    Directory of Open Access Journals (Sweden)

    Yeh Jiann-Yih

    2010-02-01

    Full Text Available Abstract Background Influenza viruses are a major cause of morbidity and mortality around the world. More recently, a swine-origin influenza A (H1N1 virus that is spreading via human-to-human transmission has become a serious public concern. Although vaccination is the primary strategy for preventing infections, influenza antiviral drugs play an important role in a comprehensive approach to controlling illness and transmission. In addition, a search for influenza-inhibiting drugs is particularly important in the face of high rate of emergence of influenza strains resistant to several existing influenza antivirals. Methods We searched for novel anti-influenza inhibitors using a cell-based neutralization (inhibition of virus-induced cytopathic effect assay. After screening 20,800 randomly selected compounds from a library from ChemDiv, Inc., we found that BPR1P0034 has sub-micromolar antiviral activity. The compound was resynthesized in five steps by conventional chemical techniques. Lead optimization and a structure-activity analysis were used to improve potency. Time-of-addition assay was performed to target an event in the virus life cycle. Results The 50% effective inhibitory concentration (IC50 of BPR1P0034 was 0.42 ± 0.11 μM, when measured with a plaque reduction assay. Viral protein and RNA synthesis of A/WSN/33 (H1N1 was inhibited by BPR1P0034 and the virus-induced cytopathic effects were thus significantly reduced. BPR1P0034 exhibited broad inhibition spectrum for influenza viruses but showed no antiviral effect for enteroviruses and echovirus 9. In a time-of-addition assay, in which the compound was added at different stages along the viral replication cycle (such as at adsorption or after adsorption, its antiviral activity was more efficient in cells treated with the test compound between 0 and 2 h, right after viral infection, implying that an early step of viral replication might be the target of the compound. These results suggest

  11. Definition of herpes simplex virus type 1 helper activities for adeno-associated virus early replication events.

    Directory of Open Access Journals (Sweden)

    Nathalie Alazard-Dany

    2009-03-01

    Full Text Available The human parvovirus Adeno-Associated Virus (AAV type 2 can only replicate in cells co-infected with a helper virus, such as Adenovirus or Herpes Simplex Virus type 1 (HSV-1; whereas, in the absence of a helper virus, it establishes a latent infection. Previous studies demonstrated that the ternary HSV-1 helicase/primase (HP complex (UL5/8/52 and the single-stranded DNA-Binding Protein (ICP8 were sufficient to induce AAV-2 replication in transfected cells. We independently showed that, in the context of a latent AAV-2 infection, the HSV-1 ICP0 protein was able to activate rep gene expression. The present study was conducted to integrate these observations and to further explore the requirement of other HSV-1 proteins during early AAV replication steps, i.e. rep gene expression and AAV DNA replication. Using a cellular model that mimics AAV latency and composite constructs coding for various sets of HSV-1 genes, we first confirmed the role of ICP0 for rep gene expression and demonstrated a synergistic effect of ICP4 and, to a lesser extent, ICP22. Conversely, ICP27 displayed an inhibitory effect. Second, our analyses showed that the effect of ICP0, ICP4, and ICP22 on rep gene expression was essential for the onset of AAV DNA replication in conjunction with the HP complex and ICP8. Third, and most importantly, we demonstrated that the HSV-1 DNA polymerase complex (UL30/UL42 was critical to enhance AAV DNA replication to a significant level in transfected cells and that its catalytic activity was involved in this process. Altogether, this work represents the first comprehensive study recapitulating the series of early events taking place during HSV-1-induced AAV replication.

  12. High content image-based screening of a protease inhibitor library reveals compounds broadly active against Rift Valley fever virus and other highly pathogenic RNA viruses.

    Directory of Open Access Journals (Sweden)

    Rajini Mudhasani

    2014-08-01

    Full Text Available High content image-based screening was developed as an approach to test a protease inhibitor small molecule library for antiviral activity against Rift Valley fever virus (RVFV and to determine their mechanism of action. RVFV is the causative agent of severe disease of humans and animals throughout Africa and the Arabian Peninsula. Of the 849 compounds screened, 34 compounds exhibited ≥ 50% inhibition against RVFV. All of the hit compounds could be classified into 4 distinct groups based on their unique chemical backbone. Some of the compounds also showed broad antiviral activity against several highly pathogenic RNA viruses including Ebola, Marburg, Venezuela equine encephalitis, and Lassa viruses. Four hit compounds (C795-0925, D011-2120, F694-1532 and G202-0362, which were most active against RVFV and showed broad-spectrum antiviral activity, were selected for further evaluation for their cytotoxicity, dose response profile, and mode of action using classical virological methods and high-content imaging analysis. Time-of-addition assays in RVFV infections suggested that D011-2120 and G202-0362 targeted virus egress, while C795-0925 and F694-1532 inhibited virus replication. We showed that D011-2120 exhibited its antiviral effects by blocking microtubule polymerization, thereby disrupting the Golgi complex and inhibiting viral trafficking to the plasma membrane during virus egress. While G202-0362 also affected virus egress, it appears to do so by a different mechanism, namely by blocking virus budding from the trans Golgi. F694-1532 inhibited viral replication, but also appeared to inhibit overall cellular gene expression. However, G202-0362 and C795-0925 did not alter any of the morphological features that we examined and thus may prove to be good candidates for antiviral drug development. Overall this work demonstrates that high-content image analysis can be used to screen chemical libraries for new antivirals and to determine their

  13. Entecavir Exhibits Inhibitory Activity against Human Immunodeficiency Virus under Conditions of Reduced Viral Challenge▿

    Science.gov (United States)

    Lin, Pin-Fang; Nowicka-Sans, Beata; Terry, Brian; Zhang, Sharon; Wang, Chunfu; Fan, Li; Dicker, Ira; Gali, Volodymyr; Higley, Helen; Parkin, Neil; Tenney, Daniel; Krystal, Mark; Colonno, Richard

    2008-01-01

    Entecavir (ETV) was developed for the treatment of chronic hepatitis B virus (HBV) infection and is globally approved for that indication. Initial preclinical studies indicated that ETV had no significant activity against human immunodeficiency virus type 1 (HIV-1) in cultured cell lines at physiologically relevant ETV concentrations, using traditional anti-HIV assays. In response to recent clinical observations of anti-HIV activity of ETV in HIV/HBV-coinfected patients not receiving highly active antiretroviral therapy (HAART), additional investigative studies were conducted to expand upon earlier results. An extended panel of HIV-1 laboratory and clinical strains and cell types was tested against ETV, along with a comparison of assay methodologies and resistance profiling. These latest studies confirmed that ETV has only weak activity against HIV, using established assay systems. However, a >100-fold enhancement of antiviral activity (equivalent to the antiviral activity of lamivudine) could be obtained when assay conditions were modified to reduce the initial viral challenge. Also, the selection of a M184I virus variant during the passage of HIV-1 at high concentrations of ETV confirmed that ETV can exert inhibitory pressure on the virus. These findings may have a significant impact on how future assays are performed with compounds to be used in patients infected with HIV. These results support the recommendation that ETV therapy should be administered in concert with HAART for HIV/HBV-coinfected patients. PMID:18316521

  14. A NEW METHOD FOR NON DESTRUCTIVE ESTIMATION OF Jc IN YBaCuO CERAMIC SAMPLES

    Directory of Open Access Journals (Sweden)

    Giancarlo Cordeiro Costa

    2014-12-01

    Full Text Available This work presents a new method for estimation of Jc as a bulk characteristic of YBCO blocks. The experimental magnetic interaction force between a SmCo permanent magnet and a YBCO block was compared to finite element method (FEM simulations results, allowing us to search a best fitting value to the critical current of the superconducting sample. As FEM simulations were based on Bean model , the critical current density was taken as an unknown parameter. This is a non destructive estimation method. since there is no need of breaking even a little piece of the sample for analysis.

  15. Epstein-Barr virus-derived EBNA2 regulates STAT3 activation

    International Nuclear Information System (INIS)

    Muromoto, Ryuta; Ikeda, Osamu; Okabe, Kanako; Togi, Sumihito; Kamitani, Shinya; Fujimuro, Masahiro; Harada, Shizuko; Oritani, Kenji; Matsuda, Tadashi

    2009-01-01

    The Epstein-Barr virus (EBV)-encoded latency protein EBNA2 is a nuclear transcriptional activator that is essential for EBV-induced cellular transformation. Here, we show that EBNA2 interacts with STAT3, a signal transducer for an interleukin-6 family cytokine, and enhances the transcriptional activity of STAT3 by influencing its DNA-binding activity. Furthermore, EBNA2 cooperatively acts on STAT3 activation with LMP1. These data demonstrate that EBNA2 acts as a transcriptional coactivator of STAT3.

  16. Circulating intercellular adhesion molecule-1 (ICAM-1) as an early and sensitive marker for virus-induced T cell activation

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Johansen, J; Marker, O

    1995-01-01

    mice, clearly demonstrating that T cells were mandatory. Analysis of MHC class I and MHC class II-deficient mice revealed that either CD4+ or CD8+ T cells alone are sufficient, despite a markedly reduced inflammatory exudate in the former animals. These results indicate that virus-activated T cells......The effect of systemic virus infection on the level of circulating ICAM-1 (cICAM-1) in serum, and the role of virus-activated T cells in this context, were studied using the murine lymphocytic choriomeningitis virus infection as primary model system. A marked virus-induced elevation in cICAM-1...... in serum was revealed, the presence of which coincided with the phase of virus-induced T cell activation. However, high levels of cICAM-1 in serum were observed well before maximal T cell activation could be demonstrated. No increase in cICAM-1 was observed in the serum of infected T cell-deficient nude...

  17. Antiviral activity of gliotoxin, gentian violet and brilliant green against Nipah and Hendra virus in vitro

    Directory of Open Access Journals (Sweden)

    Meyer Adam G

    2009-11-01

    Full Text Available Abstract Background Using a recently described monolayer assay amenable to high throughput screening format for the identification of potential Nipah virus and Hendra virus antivirals, we have partially screened a low molecular weight compound library (>8,000 compounds directly against live virus infection and identified twenty eight promising lead molecules. Initial single blind screens were conducted with 10 μM compound in triplicate with a minimum efficacy of 90% required for lead selection. Lead compounds were then further characterised to determine the median efficacy (IC50, cytotoxicity (CC50 and the in vitro therapeutic index in live virus and pseudotype assay formats. Results While a number of leads were identified, the current work describes three commercially available compounds: brilliant green, gentian violet and gliotoxin, identified as having potent antiviral activity against Nipah and Hendra virus. Similar efficacy was observed against pseudotyped Nipah and Hendra virus, vesicular stomatitis virus and human parainfluenza virus type 3 while only gliotoxin inhibited an influenza A virus suggesting a non-specific, broad spectrum activity for this compound. Conclusion All three of these compounds have been used previously for various aspects of anti-bacterial and anti-fungal therapy and the current results suggest that while unsuitable for internal administration, they may be amenable to topical antiviral applications, or as disinfectants and provide excellent positive controls for future studies.

  18. Human immunodeficiency virus long terminal repeat responds to T-cell activation signals

    International Nuclear Information System (INIS)

    Tong-Starksen, S.E.; Luciw, P.A.; Peterlin, B.M.

    1987-01-01

    Human immunodeficiency virus (HIV), the causative agent of AIDS, infects and kills lymphoid cells bearing the CD4 antigen. In an infected cell, a number of cellular as well as HIV-encoded gene products determine the levels of viral gene expression and HIV replication. Efficient HIV replication occurs in activated T cells. Utilizing transient expression assays, the authors show that gene expression directed by the HIV long terminal repeat (LTR) increases in response to T-cell activation signals. The effects of T-cell activation and of the HIV-encoded trans-activator (TAT) are multiplicative. Analysis of mutations and deletions in the HIV LTR reveals that the region responding to T-cell activation signals is located at positions -105 to -80. These sequences are composed of two direct repeats, which are homologous to the core transcriptional enhancer elements in the simian virus 40 genome. The studies reveal that these elements function as the HIV enhancer. By acting directly on the HIV LTR, T-cell activation may play an important role in HIV gene expression and in the activation of latent HIV

  19. PKR Activation Favors Infectious Pancreatic Necrosis Virus Replication in Infected Cells

    Directory of Open Access Journals (Sweden)

    Amr A.A. Gamil

    2016-06-01

    Full Text Available The double-stranded RNA-activated protein kinase R (PKR is a Type I interferon (IFN stimulated gene that has important biological and immunological functions. In viral infections, in general, PKR inhibits or promotes viral replication, but PKR-IPNV interaction has not been previously studied. We investigated the involvement of PKR during infectious pancreatic necrosis virus (IPNV infection using a custom-made rabbit antiserum and the PKR inhibitor C16. Reactivity of the antiserum to PKR in CHSE-214 cells was confirmed after IFNα treatment giving an increased protein level. IPNV infection alone did not give increased PKR levels by Western blot, while pre-treatment with PKR inhibitor before IPNV infection gave decreased eukaryotic initiation factor 2-alpha (eIF2α phosphorylation. This suggests that PKR, despite not being upregulated, is involved in eIF2α phosphorylation during IPNV infection. PKR inhibitor pre-treatment resulted in decreased virus titers, extra- and intracellularly, concomitant with reduction of cells with compromised membranes in IPNV-permissive cell lines. These findings suggest that IPNV uses PKR activation to promote virus replication in infected cells.

  20. The Best of All Possible Worlds: Applying the Model Driven Architecture Approach to a JC3IEDM OWL Ontology Modeled in UML

    Science.gov (United States)

    2014-06-01

    from the ODM standard. Leveraging SPARX EA’s Java application programming interface (API), the team built a tool called OWL2EA that can ingest an OWL...server MySQL creates the physical schema that enables a user to store and retrieve data conforming to the vocabulary of the JC3IEDM. 6. GENERATING AN

  1. Peroxisome Proliferator-Activated Receptors and Hepatitis C Virus-Induced Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Francesco Negro

    2009-01-01

    Full Text Available Insulin resistance and type 2 diabetes are associated with hepatitis C virus infection. A wealth of clinical and experimental data suggests that the virus is directly interfering with the insulin signalling in hepatocytes. In the case of at least one viral genotype (the type 3a, insulin resistance seems to be directly mediated by the downregulation of the peroxisome proliferator-activated receptor γ. Whether and how this interaction may be manipulated pharmacologically, in order to improve the responsiveness to antivirals of insulin resistant chronic hepatitis C, patients remain to be fully explored.

  2. Dextrans produced by lactic acid bacteria exhibit antiviral and immunomodulatory activity against salmonid viruses.

    Science.gov (United States)

    Nácher-Vázquez, Montserrat; Ballesteros, Natalia; Canales, Ángeles; Rodríguez Saint-Jean, Sylvia; Pérez-Prieto, Sara Isabel; Prieto, Alicia; Aznar, Rosa; López, Paloma

    2015-06-25

    Viral infections in the aquaculture of salmonids can lead to high mortality and substantial economic losses. Thus, there is industrial interest in new molecules active against these viruses. Here we describe the production, purification, and the physicochemical and structural characterization of high molecular weight dextrans synthesized by Lactobacillus sakei MN1 and Leuconostoc mesenteroides RTF10. The purified dextrans, and commercial dextrans with molecular weights ranging from 10 to 2000kDa, were assayed in infected BF-2 and EPC fish cell-line monolayers for antiviral activity. Only T2000 and dextrans from MN1 and RTF10 had significant antiviral activity. This was similar to results obtained against infectious pancreatic necrosis virus. However the dextran from MN1 showed ten-fold higher activity against hematopoietic necrosis virus than T2000. In vivo assays using the MN1 polymer confirmed the in vitro results and revealed immunomodulatory activity. These results together with the high levels of dextran production (2gL(-1)) by Lb. sakei MN1, indicate the compounds potential utility as an antiviral agent in aquaculture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Tumor Necrosis Factor-Mediated Survival of CD169+ Cells Promotes Immune Activation during Vesicular Stomatitis Virus Infection

    DEFF Research Database (Denmark)

    Shinde, Prashant V; Xu, Haifeng C; Maney, Sathish Kumar

    2018-01-01

    Innate immune activation is essential to mount an effective antiviral response and to prime adaptive immunity. Although a crucial role of CD169(+) cells during vesicular stomatitis virus (VSV) infections is increasingly recognized, factors regulating CD169(+) cells during viral infections remain...... stomatitis virus infection, phagocytes produce tumor necrosis factor (TNF) which signals via TNFR1 and promote "enforced virus replication" in CD169(+) macrophages. Consequently, lack of TNF or TNFR1 resulted in defective immune activation and VSV clearance....

  4. Mefloquine improved progressive multifocal leukoencephalopathy in a patient with systemic lupus erythematosus.

    Science.gov (United States)

    Beppu, Minako; Kawamoto, Michi; Nukuzuma, Souichi; Kohara, Nobuo

    2012-01-01

    We describe a case of a 67-year-old man with systemic lupus erythematosus who presented with progressive left hemiplegia. Although the cerebral spinal fluid (CSF) polymerase chain reaction (PCR) for the JC virus was negative, a brain biopsy confirmed the diagnosis of progressive multifocal leukoencephalopathy (PML). The tapering of prednisone and the use of cidofovir could not arrest the disease progression. Administration of mefloquine stopped the extension of the lesion, and resulted in obvious clinical improvement. The CSF nested PCR for the JC virus also became negative. This widely used drug should be tried for the treatment of non-HIV PML.

  5. [Activating effect of cyclophosphane at late stages of persistence of the tick-borne encephalitis virus].

    Science.gov (United States)

    Frolova, T V; Pogodina, V V; Larina, G I; Frolova, M P; Karmysheva, V Ia

    1982-01-01

    Conditions of activation of persistent infection caused by subcutaneous inoculation of Syrian hamsters with the B-383 and Vasilchenko strains of tick-borne encephalitis virus (TBE) were studied. After 2 administrations of cyclophosphane (CP) on day 170 of infection clinically manifest disease developed in some animals with increasingly severe pathomorphological lesions in the CNS. Several variants of activated TBE virus were isolated from brains and spleens of CP-treated hamsters. The activation of persistent infection was observed in the presence of marked decreased of humoral immunity level, weight of the thymus, and values of spontaneous rosette-formation.

  6. Non-MHC genes influence virus clearance through regulation of the antiviral T-cell response: correlation between virus clearance and Tc and Td activity in segregating backcross progeny

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Marker, O; Thomsen, Allan Randrup

    1994-01-01

    ) was followed by measurement of footpad swelling. Ten days after virus inoculation, the animals were sacrificed and spleen virus titer together with splenic Tc activity was measured. With regard to all three parameters a continuous distribution was observed in this backcross population. However, using cutoff...... values based on parental and F1 animals tested in parallel, 11/30 animals were assigned Tc responders, 23/30 DTH responders and 10/30 cleared virus with maximal efficiency. Comparison of responder status with regard to the different parameters revealed a strong correlation between Tc responsiveness...... and the ability to clear virus. Amongst Tc low responders a correlation between DTH reactivity and virus clearance was observed. Taken together, these results indicate that non-MHC genes affect virus clearance through regulation of the antiviral T-cell response, especially the virus-specific Tc response. However...

  7. Effect of mixed pinning landscapes produced by 6 MeV oxygen irradiation on the resulting critical current densities Jc in 1.3 μm thick GdBa2Cu3O7-d coated conductors grown by co-evaporation

    Science.gov (United States)

    Haberkorn, N.; Suárez, S.; Pérez, P. D.; Troiani, H.; Granell, P.; Golmar, F.; Lee, Jae-Hun; Moon, S. H.

    2017-11-01

    We report the influence of crystalline defects introduced by 6 MeV 16O3+ irradiation on the critical current densities Jc and flux creep rates in 1.3 μm thick GdBa2Cu3O7-δ coated conductor produced by co-evaporation. Pristine films with pinning produced mainly by random nanoparticles with diameter close to 50 nm were irradiated with doses between 2 × 1013 cm-2 and 4 × 1014 cm-2. The irradiations were performed with the ion beam perpendicular to the surface of the samples. The Jc and the flux creep rates were analyzed for two magnetic field configurations: magnetic field applied parallel (H║c) and at 45° (H║45°) to the c-axis. The results show that at temperatures below 40 K the in-field Jc dependences can be significantly improved by irradiation. For doses of 1 × 1014 cm-2 the Jc values at μ0H = 5 T are doubled without affecting significantly the Jc at small fields. Analyzing the flux creep rates as function of the temperature in both magnetic field configurations, it can be observed that the irradiation suppresses the peak associated with double-kink relaxation and increases the flux creep rates at intermediate and high temperatures. Under 0.5 T, the flux relaxation for H‖c and H||45° in pristine films presents characteristic glassy exponents μ = 1.63 and μ = 1.45, respectively. For samples irradiated with 1 × 1014 cm-2, these values drop to μ = 1.45 and μ = 1.24, respectively

  8. Efectos sobre la salud de la contaminación de agua y alimentos por virus emergentes humanos

    Directory of Open Access Journals (Sweden)

    Sílvia Bofill-Mas

    2005-01-01

    Full Text Available El desarrollo de tecnologías moleculares aplicadas a estudios ambientales ha permitido constatar que incluso en países altamente industrializados existe una alta prevalencia de virus en el medio ambiente, lo que causa un importante impacto en la salud pública e importantes pérdidas económicas, principalmente a través de la transmisión de virus por agua y alimentos. Concentraciones significativas de virus son detectadas en las aguas vertidas al ambiente y en los biosólidos generados en plantas de tratamiento de agua residual. En este trabajo se describen las características generales de la contaminaci ón ambiental por virus, principalmente por virus emergentes, analizándose con mayor profundidad los virus de la hepatitis E (VHE y los poliomavirus humanos como los virus contaminantes ambientales de más reciente identificación en países industrializados. Se ha demostrado que existe una elevada prevalencia de los poliomavirus humanos, BK y JC, en agua residual en todos los paí- ses estudiados, lo que implica la potencial transmisión de los virus y de genes potencialmente cancerígenos por vía oral. Estudios recientes demuestran que el patrón epidemiológico de la infección por VHE en países industrializados es complejo y que una gran diversidad de cepas del VHE infecta simultáneamente a la población. El control de la contaminación viral del medio ambiente requiere la estandarización de técnicas moleculares y el desarrollo de un programa de vigilancia que permita valorar parámetros víricos y reducir la diseminación de las enfermedades establecidas y de las infecciones víricas emergentes.

  9. Influenza B viruses with mutation in the neuraminidase active site, North Carolina, USA, 2010-11.

    Science.gov (United States)

    Sleeman, Katrina; Sheu, Tiffany G; Moore, Zack; Kilpatrick, Susan; Garg, Shikha; Fry, Alicia M; Gubareva, Larisa V

    2011-11-01

    Oseltamivir is 1 of 2 antiviral medications available for the treatment of influenza B virus infections. We describe and characterize a cluster of influenza B viruses circulating in North Carolina with a mutation in the neuraminidase active site that may reduce susceptibility to oseltamivir and the investigational drug peramivir but not to zanamivir.

  10. Multiple oncogenic viruses identified in Ocular surface squamous neoplasia in HIV-1 patients

    Directory of Open Access Journals (Sweden)

    Bisson Gregory

    2010-03-01

    Full Text Available Abstract Background Ocular surface squamous neoplasia (OSSN is a rare cancer that has increased in incidence with the HIV pandemic in Africa. The underlying cause of this cancer in HIV-infected patients from Botswana is not well defined. Results Tissues were obtained from 28 OSSN and 8 pterygia patients. The tissues analyzed from OSSN patients were 83% positive for EBV, 75% were HPV positive, 70% were KSHV positive, 75% were HSV-1/2 positive, and 61% were CMV positive by PCR. Tissues from pterygium patients were 88% positive for EBV, 75% were HPV positive, 50% were KSHV positive, and 60% were CMV positive. None of the patients were JC or BK positive. In situ hybridization and immunohistochemistry analyses further identified HPV, EBV, and KSHV in a subset of the tissue samples. Conclusion We identified the known oncogenic viruses HPV, KSHV, and EBV in OSSN and pterygia tissues. The presence of these tumor viruses in OSSN suggests that they may contribute to the development of this malignancy in the HIV population. Further studies are necessary to characterize the molecular mechanisms associated with viral antigens and their potential role in the development of OSSN.

  11. Discovery of drugs that possess activity against feline leukemia virus.

    Science.gov (United States)

    Greggs, Willie M; Clouser, Christine L; Patterson, Steven E; Mansky, Louis M

    2012-04-01

    Feline leukemia virus (FeLV) is a gammaretrovirus that is a significant cause of neoplastic-related disorders affecting cats worldwide. Treatment options for FeLV are limited, associated with serious side effects, and can be cost-prohibitive. The development of drugs used to treat a related retrovirus, human immunodeficiency virus type 1 (HIV-1), has been rapid, leading to the approval of five drug classes. Although structural differences affect the susceptibility of gammaretroviruses to anti-HIV drugs, the similarities in mechanism of replication suggest that some anti-HIV-1 drugs may also inhibit FeLV. This study demonstrates the anti-FeLV activity of four drugs approved by the US FDA (Food and Drug Administration) at non-toxic concentrations. Of these, tenofovir and raltegravir are anti-HIV-1 drugs, while decitabine and gemcitabine are approved to treat myelodysplastic syndromes and pancreatic cancer, respectively, but also have anti-HIV-1 activity in cell culture. Our results indicate that these drugs may be useful for FeLV treatment and should be investigated for mechanism of action and suitability for veterinary use.

  12. Morfologia da flor, fruto e plântula de Victoria amazonica (Poepp. J.C. Sowerby (Nymphaeaceae Morphology of flower, fruit and seedling of Victoria amazonica (Poepp. J.C. Sowerby (Nymphaeaceae

    Directory of Open Access Journals (Sweden)

    Sônia Maciel da Rosa-Osman

    2011-03-01

    Full Text Available Victoria amazonica (Poepp. J.C. Sowerby é uma hidrófita que ocorre nas várzeas de águas brancas e igapós da Bacia Amazônica e na Bacia do rio Paraguai. A morfologia da flor, fruto e plântula/"tirodendro" é objeto do presente trabalho. O material botânico foi coletado em Parintins e Manaus, estado do Amazonas, Brasil. A análise morfológica foi feita em material fresco e fixado em FAA 50. O desenvolvimento das plântulas foi realizado no escuro em frascos com água com teor reduzido de oxigênio. As flores possuem pedicelo longo e são hemicíclicas, diclamídeas, monoclinas e com antese vespertina. Os frutos são carnosos, indeiscentes, com pseudossincarpia. As sementes apresentam arilo que atua na dispersão pela água. As plântulas se desenvolvem em condições de hipoxia e apresentam um cotilédone exposto acicular. O "tirodendro" apresenta eofilos com heterofilia. As flores apresentam caracteres morfológicos básicos da família, a definição do tipo de fruto exige estudo ontogenético e a heterofilia é um caráter típico de plântulas/"tirodendros"de Nymphaeaceae.Victoria amazonica (Poepp. J.C. Sowerby is a hydrophyte that occurs in the white water leas and igapos of the Amazonian and Paraguay Basin. The flower, fruit and seedling/"tirodendro" morphology is the object of the present work. The botanical material was collected at Parintins and Manaus, Amazonian state, Brazil. The morphological analysis was made in both fresh and fixed material. The seedling development was accomplished in flasks with water containing little oxygen and maintained in the darkness. Flowers present long pedicel and they are hemicyclic, dichlamydeous, bisexual with vespertine anthesis. Fruits are fleshy, indehiscent with pseudo-syncarpy. Seeds present aril that acts in the water dispersion. Seedlings grow in hypoxy conditions and they present an acicular and exposed cotyledon. The "tirodendro" stage presents eophylls with heterophylly. Flowers

  13. Preparation and characterization of high-specific activity radiolabeled 50 S measles virus RNA

    International Nuclear Information System (INIS)

    Spruance, S.L.; Ashton, B.N.; Smith, C.B.

    1980-01-01

    A method is described to radiolabeled measles virus RNA for hybridization studies. Tritiated nucleosides were added to the media of measles virus infected Vero cells and negative-strand (genome) RNA with a specific activity of 6X10 5 c.p.m./μg was purified from viral nucleocapsids. 50 S RNA was the sole RNA present in nucleocapsids and self-annealed to 50% due to the presence of 25% 50 S plus-strands (anti-genomes). (Auth.)

  14. Detection of polyomavirus simian virus 40 tumor antigen DNA in AIDS-related systemic non-Hodgkin lymphoma

    Science.gov (United States)

    Vilchez, Regis A.; Lednicky, John A.; Halvorson, Steven J.; White, Zoe S.; Kozinetz, Claudia A.; Butel, Janet S.

    2002-01-01

    Systemic non-Hodgkin lymphoma (S-NHL) is a common malignancy during HIV infection, and it is hypothesized that infectious agents may be involved in the etiology. Epstein-Barr virus DNA is found in <40% of patients with AIDS-related S-NHL, suggesting that other oncogenic viruses, such as polyomaviruses, may play a role in pathogenesis. We analyzed AIDS-related S-NHL samples, NHL samples from HIV-negative patients, peripheral blood leukocytes from HIV-infected and -uninfected patients without NHL, and lymph nodes without tumors from HIV-infected patients. Specimens were examined by polymerase chain reaction analysis with use of primers specific for an N-terminal region of the oncoprotein large tumor antigen ( T-ag ) gene conserved among all three polyomaviruses (simian virus 40 [SV40], JC virus, and BK virus). Polyomavirus T-ag DNA sequences, proven to be SV40-specific, were detected more frequently in AIDS-related S-NHL samples (6 of 26) than in peripheral blood leukocytes from HIV-infected patients (6 of 26 vs. 0 of 69; p =.0001), NHL samples from HIV-negative patients (6 of 26 vs. 0 of 10; p =.09), or lymph nodes (6 of 26 vs. 0 of 7; p =.16). Sequences of C-terminal T-ag DNA from SV40 were amplified from two AIDS-related S-NHL samples. Epstein-Barr virus DNA sequences were detected in 38% (10 of 26) AIDS-related S-NHL samples, 50% (5 of 10) HIV-negative S-NHL samples, and 57% (4 of 7) lymph nodes. None of the S-NHL samples were positive for both Epstein-Barr virus DNA and SV40 DNA. Further studies of the possible role of SV40 in the pathogenesis of S-NHL are warranted.

  15. Antiviral activity of Aloe vera against herpes simplex virus type 2: An ...

    African Journals Online (AJOL)

    SERVER

    2007-08-06

    Aug 6, 2007 ... In this study we tested the antiviral activity of a crude hot glycerine extract of Aloe vera gel which was grown in Bushehr (Southwest of Iran) against HSV-2 replication in Vero cell line. The extract showed antiviral activity against HSV-2 not only before attachment and entry of virus to the Vero cells but also.

  16. Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors.

    Science.gov (United States)

    Bhattacharyya, Suchita; Zagórska, Anna; Lew, Erin D; Shrestha, Bimmi; Rothlin, Carla V; Naughton, John; Diamond, Michael S; Lemke, Greg; Young, John A T

    2013-08-14

    Upon activation by the ligands Gas6 and Protein S, Tyro3/Axl/Mer (TAM) receptor tyrosine kinases promote phagocytic clearance of apoptotic cells and downregulate immune responses initiated by Toll-like receptors and type I interferons (IFNs). Many enveloped viruses display the phospholipid phosphatidylserine on their membranes, through which they bind Gas6 and Protein S and engage TAM receptors. We find that ligand-coated viruses activate TAM receptors on dendritic cells (DCs), dampen type I IFN signaling, and thereby evade host immunity and promote infection. Upon virus challenge, TAM-deficient DCs display type I IFN responses that are elevated in comparison to wild-type cells. As a consequence, TAM-deficient DCs are relatively resistant to infection by flaviviruses and pseudotyped retroviruses, but infection can be restored with neutralizing type I IFN antibodies. Correspondingly, a TAM kinase inhibitor antagonizes the infection of wild-type DCs. Thus, TAM receptors are engaged by viruses in order to attenuate type I IFN signaling and represent potential therapeutic targets. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Stochastic acidification, activation of hemagglutinin and escape of influenza viruses from an endosome

    Science.gov (United States)

    Lagache, Thibault; Sieben, Christian; Meyer, Tim; Herrmann, Andreas; Holcman, David

    2017-06-01

    Influenza viruses enter the cell inside an endosome. During the endosomal journey, acidification triggers a conformational change of the virus spike protein hemagglutinin (HA) that results in escape of the viral genome from the endosome into the cytoplasm. It is still unclear how the interplay between acidification and HA conformation changes affects the kinetics of the viral endosomal escape. We develop here a stochastic model to estimate the change of conformation of HAs inside the endosome nanodomain. Using a Markov process, we model the arrival of protons to HA binding sites and compute the kinetics of their accumulation. We compute the Mean First Passage Time (MFPT) of the number of HA bound sites to a threshold, which is used to estimate the HA activation rate for a given pH concentration. The present analysis reveals that HA proton binding sites possess a high chemical barrier, ensuring a stability of the spike protein at sub-acidic pH. We predict that activating more than 3 adjacent HAs is necessary to trigger endosomal fusion and this configuration prevents premature release of viruses from early endosomes

  18. Increased Prevalence of Human Polyomavirus JC Viruria in Chronic Inflammatory Rheumatic Diseases Patients in Treatment with Anti-TNF α: A 18 Month Follow-Up Study.

    Science.gov (United States)

    Rodio, Donatella Maria; Anzivino, Elena; Mischitelli, Monica; Bellizzi, Anna; Scrivo, Rossana; Scribano, Daniela; Conte, Gianlorenzo; Prezioso, Carla; Trancassini, Maria; Valesini, Guido; Palamara, Anna Teresa; Pietropaolo, Valeria

    2016-01-01

    Chronic inflammatory rheumatic diseases (CIRDs) are immune-mediated pathologies involving joints. To date, TNFα-blocking agents administration is the most promising therapy, although these treatments are associated with an increased Polyomavirus JC (JCPyV) reactivation, the etiological agent of the Progressive Multifocal Leukoencephalopathy (PML). The aim of this study was the recruitment and the analysis of a CIRDs cohort in order to investigate a possible correlation between JCPyV presence and the influence of anti-TNF-α agents on viral loads. Blood and urine samples were collected from 34 CIRDs subjects prior the first anti-TNF-α infusion (T0) and after 3 (T3), 6 (T6), 12 (T12), and 18 (T18) months. Results showed persistent JC viruria significantly higher than JC viremia throughout the 18 month follow-up study (p = 0.002). In JCPyV positive samples, the non-coding control region (NCCR) was analyzed. Results evidenced archetypal structures (type II-S) in all isolates with the exception of a sequence isolated from a plasma sample, that corresponds to the type II-R found in PML subjects. Finally, the viral protein 1 (VP1) genotyping was performed and results showed the prevalence of the European genotypes 1A, 1B, and 4. Since only few studies have been carried out to understand whether there is a PML risk in CIRDs population infected by JCPyV, this study contributes to enrich literature insight on JCPyV biology in this cluster. Further investigations are necessary in order to recognize the real impact of biologics on JCPyV life cycle and to identify possible and specific viral variants related to increased virulence in CIRDs patients.

  19. Poor outcomes of chronic active Epstein-Barr virus infection and hemophagocytic lymphohistiocytosis in non-Japanese adult patients

    NARCIS (Netherlands)

    Sonke, Gabe S.; Ludwig, Inge; van Oosten, Hannah; Baars, Joke W.; Meijer, Ellen; Kater, Arnon P.; de Jong, Daphne

    2008-01-01

    Chronic active Epstein-Barr virus infection manifests as a combination of persistent infectious mononucleosis-like symptoms and high viral load in apparently immunocompetent patients. It is closely related to Epstein-Barr virus associated hemophagocytic lymphohistiocytosis. These 2 abnormal

  20. Poor outcomes of chronic active Epstein-Barr virus infection and hemophagocytic lymphohistiocytosis in non-Japanese adult patients

    NARCIS (Netherlands)

    G.S. Sonke (Gabe); I. Ludwig (Inge); H. van Oosten (Hannah); J.W. Baars (Joke); E. Meijer (Ellen); A.P. Kater (Arnon); D. de Jong (Daphne)

    2008-01-01

    textabstractChronic active Epstein-Barr virus infection manifests as a combination of persistent infectious mononucleosis-like symptoms and high viral load in apparently immunocompetent patients. It is closely related to Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis. These 2

  1. Influenza virus inactivated by artificial ribonucleases as a prospective killed virus vaccine.

    Science.gov (United States)

    Fedorova, Antonina A; Goncharova, Elena P; Kovpak, Mikhail P; Vlassov, Valentin V; Zenkova, Marina A

    2012-04-19

    The inactivation of viral particles with agents causing minimal damage to the structure of surface epitopes is a well-established approach for the production of killed virus vaccines. Here, we describe new agents for the inactivation of influenza virus, artificial ribonucleases (aRNases), which are chemical compounds capable of cleaving RNA molecules. Several aRNases were identified, exhibiting significant virucidal activity against the influenza A virus and causing a minimal effect on the affinity of monoclonal antibodies for the inactivated virus. Using a murine model of the influenza virus infection, a high protective activity of the aRNase-inactivated virus as a vaccine was demonstrated. The results of the experiments demonstrate the efficacy of novel chemical agents in the preparation of vaccines against influenza and, perhaps, against other infections caused by RNA viruses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Two proteins with reverse transcriptase activities associated with hepatitis B virus-like particles

    International Nuclear Information System (INIS)

    Bavand, M.R.; Laub, O.

    1988-01-01

    Recent studies suggest that hepatitis B virus (HBV), despite being a DNA virus, replicates via an RNA intermediate. The HBV life cycle is therefore a permuted version of the RNA retroviral life cycle. Sequence homology between retroviral reverse transcriptase and the putative HBV polymerase gene product suggests the presence of an HBV reverse transcriptase. As yet, there has been no direct evidence that reverse transcriptase activity is present in the viral particle. The authors used activity gel analysis to detect the in situ catalytic activities of DNA polymerases after sodium dodecyl sulfate-polyacrylamide gel electrophorsis. These studies demonstrated that HBV-like particles secreted by a differentiated human hepatoma cell line tranfected with genomic HBV DNA contain two major polymerase activities which migrate as ∼90- and ∼70-kilodalton (kDa) proteins. This demonstrated, for the first time, that HBV-like particles contain a novel DNA polymerase-reverse transcriptase activity. Furthermore, they propose that the 70-kDa reverse transcriptase may be produced by proteolytic self-cleavage of the 90-kDa precursor protein

  3. Zika Virus

    Science.gov (United States)

    ... Funding CDC Activities For Healthcare Providers Clinical Evaluation & Disease Sexual Transmission HIV Infection & Zika Virus Testing for Zika Test Specimens – At Time of Birth Diagnostic Tests Understanding Zika Virus Test Results ...

  4. NFκB-mediated activation of the cellular FUT3, 5 and 6 gene cluster by herpes simplex virus type 1.

    Science.gov (United States)

    Nordén, Rickard; Samuelsson, Ebba; Nyström, Kristina

    2017-11-01

    Herpes simplex virus type 1 has the ability to induce expression of a human gene cluster located on chromosome 19 upon infection. This gene cluster contains three fucosyltransferases (encoded by FUT3, FUT5 and FUT6) with the ability to add a fucose to an N-acetylglucosamine residue. Little is known regarding the transcriptional activation of these three genes in human cells. Intriguingly, herpes simplex virus type 1 activates all three genes simultaneously during infection, a situation not observed in uninfected tissue, pointing towards a virus specific mechanism for transcriptional activation. The aim of this study was to define the underlying mechanism for the herpes simplex virus type 1 activation of FUT3, FUT5 and FUT6 transcription. The transcriptional activation of the FUT-gene cluster on chromosome 19 in fibroblasts was specific, not involving adjacent genes. Moreover, inhibition of NFκB signaling through panepoxydone treatment significantly decreased the induction of FUT3, FUT5 and FUT6 transcriptional activation, as did siRNA targeting of p65, in herpes simplex virus type 1 infected fibroblasts. NFκB and p65 signaling appears to play an important role in the regulation of FUT3, FUT5 and FUT6 transcriptional activation by herpes simplex virus type 1 although additional, unidentified, viral factors might account for part of the mechanism as direct interferon mediated stimulation of NFκB was not sufficient to induce the fucosyltransferase encoding gene cluster in uninfected cells. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Anti-herpes simplex virus activity of extracts from the culinary herbs ...

    African Journals Online (AJOL)

    This study demonstrates anti-herpes simplex virus activity of dichloromethane and methanol extracts of Ocimum sanctum L., Ocimum basilicum L. and Ocimum americanum L. Green monkey kidney cells were protected from HSV-2 infection by the dichloromethane extract of O. americanum L. and the methanol extract of O.

  6. Zika Virus Infects, Activates, and Crosses Brain Microvascular Endothelial Cells, without Barrier Disruption

    Science.gov (United States)

    Papa, Michelle P.; Meuren, Lana M.; Coelho, Sharton V. A.; Lucas, Carolina G. de Oliveira; Mustafá, Yasmin M.; Lemos Matassoli, Flavio; Silveira, Paola P.; Frost, Paula S.; Pezzuto, Paula; Ribeiro, Milene R.; Tanuri, Amilcar; Nogueira, Mauricio L.; Campanati, Loraine; Bozza, Marcelo T.; Paula Neto, Heitor A.; Pimentel-Coelho, Pedro M.; Figueiredo, Claudia P.; de Aguiar, Renato S.; de Arruda, Luciana B.

    2017-01-01

    Zika virus (ZIKV) has been associated to central nervous system (CNS) harm, and virus was detected in the brain and cerebrospinal fluids of microcephaly and meningoencephalitis cases. However, the mechanism by which the virus reaches the CNS is unclear. Here, we addressed the effects of ZIKV replication in human brain microvascular endothelial cells (HBMECs), as an in vitro model of blood brain barrier (BBB), and evaluated virus extravasation and BBB integrity in an in vivo mouse experimental model. HBMECs were productively infected by African and Brazilian ZIKV strains (ZIKVMR766 and ZIKVPE243), which induce increased production of type I and type III IFN, inflammatory cytokines and chemokines. Infection with ZIKVMR766 promoted earlier cellular death, in comparison to ZIKVPE243, but infection with either strain did not result in enhanced endothelial permeability. Despite the maintenance of endothelial integrity, infectious virus particles crossed the monolayer by endocytosis/exocytosis-dependent replication pathway or by transcytosis. Remarkably, both viruses' strains infected IFNAR deficient mice, with high viral load being detected in the brains, without BBB disruption, which was only detected at later time points after infection. These data suggest that ZIKV infects and activates endothelial cells, and might reach the CNS through basolateral release, transcytosis or transinfection processes. These findings further improve the current knowledge regarding ZIKV dissemination pathways. PMID:29312238

  7. A protein extract and a cysteine protease inhibitor enriched fraction from Jatropha curcas seed cake have in vitro anti-Toxoplasma gondii activity.

    Science.gov (United States)

    Soares, A M S; Carvalho, L P; Melo, E J T; Costa, H P S; Vasconcelos, I M; Oliveira, J T A

    2015-06-01

    Toxoplasma gondii is a parasite of great medical and veterinary importance that has worldwide distribution and causes toxoplasmosis. There are few treatments available for toxoplasmosis and the search for plant extracts and compounds with anti-Toxoplasma activity is of utmost importance for the discovery of new active drugs. The objective of this study was to investigate the action of a protein extract and a protease inhibitor enriched fraction from J. curcas seed cake on developing tachyzoites of T. gondii-infected Vero cells. The protein extract (JcCE) was obtained after solubilization of the J. curcas seed cake with 100 mM sodium borate buffer, pH 10, centrifugation and dialysis of the resulting supernatant with the extracting buffer. JcCE was used for the in vitro assays of anti-Toxoplasma activity at 0.01, 0.1, 0.5, 1.5, 3.0 and 5.0 mg/ml concentration for 24 h. The results showed that JcCE reduced the percentage of infection and the number of intracellular parasites, but had no effect on the morphology of Vero cells up to 3.0 mg/mL. The cysteine protease inhibitor enriched fraction, which was obtained after chromatography of JcCE on Sephadex G-75 and presented a unique protein band following SDS-PAGE, reduced both the number of T. gondii infected cells and intracellular parasites. These results suggest that both JcCE and the cysteine protease inhibitor enriched fraction interfere with the intracellular growth of T. gondii. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Quercetin and quercetin 3-O-glycosides from Bauhinia longifolia (Bong.) Steud. show anti-Mayaro virus activity.

    Science.gov (United States)

    dos Santos, Alda E; Kuster, Ricardo M; Yamamoto, Kristie A; Salles, Tiago S; Campos, Renata; de Meneses, Marcelo D F; Soares, Márcia R; Ferreira, Davis

    2014-03-28

    The arthropod-borne Mayaro virus (MAYV) causes 'Mayaro fever', a disease of medical significance, primarily affecting individuals in permanent contact with forested areas in tropical South America. Recently, MAYV has attracted attention due to its likely urbanization. Currently, there are no licensed drugs against most mosquito-transmitted viruses. Here, we investigated the in vitro anti-MAYV activity of the flavonoids quercetin and its derivatives from the Brazilian shrub Bauhinia longifolia (Bong.) Steud. Flavonoids were purified by chromatographic fractionation from leaf extracts of B. longifolia and chemically identified as quercetin and quercetin glycosides using spectroscopic techniques. Cytotoxicity of purified flavonoids and of EtOAc- and n-BuOH-containing flavonoid mixtures was measured by the dye-uptake assay while their antiviral activity was evaluated by a virus yield inhibition assay. The following flavonoids were purified from B. longifolia leaves: non-glycosylated quercetin and its glycosides guaijaverin, quercitrin, isoquercitrin, and hyperin. EtOAc and n-BuOH fractions containing these flavonoids demonstrated the highest antiviral activity of all tested substances, while quercetin had the highest antiviral activity amongst purified flavonoids. Quercetin, EtOAc, or n-BuOH fractions inhibited MAYV production by more than 90% at 25 μg/mL, displaying a stronger antiviral effect than the licensed antiviral ribavirin. A mixture of the isomers isoquercitrin and hyperin had a modest antiviral effect (IC90 = 104.9), while guaijaverin and quercitrin did not show significant antiviral activity. B. longifolia is a good source of flavonoids with anti-Mayaro virus activity. This is the first report of the activity of quercetin and its derivatives against an alphavirus.

  9. Molecular characterization of influenza viruses circulating in Northern Italy during two seasons (2005/2006 and 2006/2007) of low influenza activity.

    Science.gov (United States)

    Pariani, Elena; Amendola, Antonella; Zappa, Alessandra; Bianchi, Silvia; Colzani, Daniela; Anselmi, Giovanni; Zanetti, Alessandro; Tanzi, Elisabetta

    2008-11-01

    The influenza activity and circulation of influenza viruses in Lombardy (the most populous Italian region) were observed during two consecutive seasons (2005/2006 and 2006/2007) characterized by low influenza activity by the Italian Influenza Surveillance Network. The molecular characteristics of circulating viruses were analyzed to evaluate the introduction of new variants and emergence of vaccine-escape viruses. In both seasons, the epidemic in Lombardy was sustained almost exclusively by influenza A viruses, accounting for 80.5% and 93.6% of total detections, respectively, and the co-circulation of A/H3 viruses belonging to distinct phylogenetic groups was observed. The A/H1N1 viruses isolated during the 2005/2006 season were closely related to A/New Caledonia/20/99, while the hemagglutinin (HA) sequences of the A/H1N1 viruses from the 2006/2007 season exhibited a greater diversity. These viruses were A/Solomon Islands/3/2006-like and showed several variants. All B isolates were similar to B/Malaysia/2506/2004 belonging to the B/Victoria/2/87-lineage. Influenza B virus was the dominant virus in Europe in the 2005/2006 season and accounted for the 20% of total detections in Lombardy. Overall, the viruses studied presented heterogeneity in their HA sequences suggesting the circulation of a miscellaneous set of variants during the two seasons notwithstanding the medium-low activity of influenza. The importance of virological surveillance of influenza viruses is recognized widely and the molecular characterization of the viruses, especially in vaccinated subjects, is of particular importance to evaluate the introduction and circulation of new variants. 2008 Wiley-Liss, Inc.

  10. Enzymatic activities of the GB virus-B RNA-dependent RNA polymerase

    International Nuclear Information System (INIS)

    Ranjith-Kumar, C.T.; Santos, Jan Lee; Gutshall, Lester L.; Johnston, Victor K.; Juili, L.-G.; Kim, M.-J.; Porter, David J.; Maley, Derrick; Greenwood, Cathy; Earnshaw, David L.; Baker, Audrey; Gu Baohua; Silverman, Carol; Sarisky, Robert T.; Kao Cheng

    2003-01-01

    The GB virus-B (GBV-B) nonstructural protein 5B (NS5B) encodes an RNA-dependent RNA polymerase (RdRp) with greater than 50% sequence similarity to the hepatitis C virus (HCV) NS5B. Recombinant GBV-B NS5B was reported to possess RdRp activity (W. Zhong et al., 2000, J. Viral Hepat. 7, 335-342). In this study, the GBV-B RdRp was examined more thoroughly for different RNA synthesis activities, including primer-extension, de novo initiation, template switch, terminal nucleotide addition, and template specificity. The results can be compared with previous characterizations of the HCV RdRp. The two RdRps share similarities in terms of metal ion and template preference, the abilities to add nontemplated nucleotides, perform both de novo initiation and extension from a primer, and switch templates. However, several differences in RNA synthesis between the GBV-B and HCV RdRps were observed, including (i) optimal temperatures for activity, (ii) ranges of Mn 2+ concentration tolerated for activity, and (iii) cation requirements for de novo RNA synthesis and terminal transferase activity. To assess whether the recombinant GBV-B RdRp may represent a relevant surrogate system for testing HCV antiviral agents, two compounds demonstrated to be active at nanomolar concentrations against HCV NS5B were tested on the GBV RdRp. A chain terminating nucleotide analog could prevent RNA synthesis, while a nonnucleoside HCV inhibitor was unable to affect RNA synthesis by the GBV RdRp

  11. Poor outcomes of chronic active Epstein-Barr virus infection and hemophagocytic lymphohistiocytosis in non-Japanese adult patients

    OpenAIRE

    Sonke, Gabe; Ludwig, Inge; Oosten, Hannah; Baars, Joke; Meijer, Ellen; Kater, Arnon; Jong, Daphne

    2008-01-01

    textabstractChronic active Epstein-Barr virus infection manifests as a combination of persistent infectious mononucleosis-like symptoms and high viral load in apparently immunocompetent patients. It is closely related to Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis. These 2 abnormal Epstein-Barr virus-associated diseases are seldom reported in individuals other than Japanese children and adolescents. We report a series of 2 adult non-Japanese patients with fatal chronic ac...

  12. Virus-specific cytotoxic T cells in chronic active Epstein-Barr virus infection.

    Science.gov (United States)

    Shibayama, Haruna; Imadome, Ken-Ichi; Onozawa, Erika; Tsuzura, Akiho; Miura, Osamu; Koyama, Takatoshi; Arai, Ayako

    2017-01-01

    Chronic active Epstein-Barr virus infection (CAEBV) is a disease characterized by clonally proliferating and activated EBV-infected T or NK cells accompanied by chronic inflammation and T- or NK-cell neoplasms. However, the mechanism for developing CAEBV has not been clarified to date. Because the decreased number or inactivation of EBV-specific cytotoxic T lymphocytes (CTLs) resulted in the development of EBV-positive B-cell neoplasms, we investigated the number of CTLs in CAEBV patients using the tetrameric complexes of HLA-restricted EBV-specific peptides. Among the seven patients examined, EBV-specific CTLs were detected in the peripheral blood mononuclear cells (PBMCs) of four cases but were not detected in three cases. The ratio of EBV-specific CTLs in PBMCs tended to be higher in the patients with active disease than in those with inactive disease. In two patients in whom EBV-specific CTLs had not been detected, CTLs appeared after the eradication of EBV-infected T cells by allogeneic bone marrow transplantation. These results suggested that the failure of CTLs had a role in developing CAEBV, although the induction number and function of EBV-specific CTLs might vary in each patient.

  13. Yeast for virus research

    Science.gov (United States)

    Zhao, Richard Yuqi

    2017-01-01

    Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented. PMID:29082230

  14. Activity of Pure Streptovaricins and Fractionated Streptovaricin Complex Against Friend Virus

    Science.gov (United States)

    Horoszewicz, Julius S.; Rinehart, Kenneth L.; Leong, Susan S.; Carter, William A.

    1975-01-01

    Chromatographic fractionation of streptovaricin complex yields two stable components enriched (4- to 16-fold) in activity directed against the polycythemic strain of Friend virus; both components apparently contain no streptovaricins. When compared with their unfractionated parent streptovaricin complex, eight individual intact streptovaricins (A through G and J) show at least a 30-fold reduction in antiviral activity. These results further support the conclusion that the diversified biological properties of streptovaricin complex probably reside in different molecular structures. PMID:237470

  15. Inhibition of IRF-3 activation by VP35 is critical for the high level of virulence of ebola virus.

    Science.gov (United States)

    Hartman, Amy L; Bird, Brian H; Towner, Jonathan S; Antoniadou, Zoi-Anna; Zaki, Sherif R; Nichol, Stuart T

    2008-03-01

    Zaire ebolavirus causes a rapidly progressing hemorrhagic disease with high mortality. Identification of the viral virulence factors that contribute to the severity of disease induced by Ebola virus is critical for the design of therapeutics and vaccines against the disease. Given the rapidity of disease progression, virus interaction with the innate immune system early in the course of infection likely plays an important role in determining the outcome of the disease. The Ebola virus VP35 protein inhibits the activation of IRF-3, a critical transcription factor for the induction of early antiviral immunity. Previous studies revealed that a single amino acid change (R312A) in VP35 renders the protein unable to inhibit IRF-3 activation. A reverse-genetics-generated, mouse-adapted, recombinant Ebola virus that encodes the R312A mutation in VP35 was produced. We found that relative to the case for wild-type virus containing the authentic VP35 sequence, this single amino acid change in VP35 renders the virus completely attenuated in mice. Given that these viruses differ by only a single amino acid in the IRF-3 inhibitory domain of VP35, the level of alteration of virulence is remarkable and highlights the importance of VP35 for the pathogenesis of Ebola virus.

  16. Hepatitis C virus core protein potentiates proangiogenic activity of hepatocellular carcinoma cells.

    Science.gov (United States)

    Shao, Yu-Yun; Hsieh, Min-Shu; Wang, Han-Yu; Li, Yong-Shi; Lin, Hang; Hsu, Hung-Wei; Huang, Chung-Yi; Hsu, Chih-Hung; Cheng, Ann-Lii

    2017-10-17

    Increased angiogenic activity has been demonstrated in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC), but the mechanism was unclear. To study the role of HCV core protein, we used tube formation and Matrigel plug assays to assess the proangiogenic activity of an HCC cell line, HuH7, and 2 of its stable clones-HuH7-core-high and HuH7-core-low, with high and low HCV core protein expression, respectively. In both assays, HuH7-core-high and HuH7-core-low cells dose-dependently induced stronger angiogenesis than control cells. HuH7 cells with HCV core protein expression showed increased mRNA and protein expression of vascular endothelial growth factor (VEGF). VEGF inhibition by bevacizumab reduced the proangiogenic activity of HuH7-core-high cells. The promotor region of VEGF contains the binding site of activator protein-1 (AP-1). Compared with controls, HuH7-core-high cells had an increased AP-1 activity and nuclear localization of phospho-c-jun. AP-1 inhibition using either RNA knockdown or AP-1 inhibitors reduced the VEGF mRNA expression and the proangiogenic activity of HuH7-core-high cells. Among 131 tissue samples from HCC patients, HCV-related HCC revealed stronger VEGF expression than did hepatitis B virus-related HCC. In conclusion, increased VEGF expression through AP-1 activation is a crucial mechanism underlying the proangiogenic activity of the HCV core protein in HCC cells.

  17. Sequential activation of CD8+ T cells in the draining lymph nodes in response to pulmonary virus infection.

    Science.gov (United States)

    Yoon, Heesik; Legge, Kevin L; Sung, Sun-sang J; Braciale, Thomas J

    2007-07-01

    We have used a TCR-transgenic CD8+ T cell adoptive transfer model to examine the tempo of T cell activation and proliferation in the draining lymph nodes (DLN) in response to respiratory virus infection. The T cell response in the DLN differed for mice infected with different type A influenza strains with the onset of T cell activation/proliferation to the A/JAPAN virus infection preceding the A/PR8 response by 12-24 h. This difference in T cell activation/proliferation correlated with the tempo of accelerated respiratory DC (RDC) migration from the infected lungs to the DLN in response to influenza virus infection, with the migrant RDC responding to the A/JAPAN infection exhibiting a more rapid accumulation in the lymph nodes (i.e., peak migration for A/JAPAN at 18 h, A/PR8 at 24-36 h). Furthermore, in vivo administration of blocking anti-CD62L Ab at various time points before/after infection revealed that the virus-specific CD8+ T cells entered the DLN and activated in a sequential "conveyor belt"-like fashion. These results indicate that the tempo of CD8+ T cell activation/proliferation after viral infection is dependent on the tempo of RDC migration to the DLN and that T cell activation occurs in an ordered sequential fashion.

  18. Innate Defense against Influenza A Virus: Activity of Human Neutrophil Defensins and Interactions of Defensins with Surfactant Protein D

    DEFF Research Database (Denmark)

    Hartshorn, Kevan L.; White, Mitchell R.; Tecle, Tesfaldet

    2006-01-01

    Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection, in part by modifying interactions with neutrophils. Human neutrophil defensins (HNPs) inhibit infectivity of enveloped viruses, including IAV. Our goal in this study was to characte......Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection, in part by modifying interactions with neutrophils. Human neutrophil defensins (HNPs) inhibit infectivity of enveloped viruses, including IAV. Our goal in this study...... was to characterize antiviral interactions between SP-D and HNPs. Recombinant and/or natural forms of SP-D and related collectins and HNPs were tested for antiviral activity against two different strains of IAV. HNPs 1 and 2 did not inhibit viral hemagglutination activity, but they interfered...... with the hemagglutination-inhibiting activity of SP-D. HNPs had significant viral neutralizing activity against divergent IAV strains. However, the HNPs generally had competitive effects when combined with SP-D in assays using an SP-D-sensitive IAV strain. In contrast, cooperative antiviral effects were noted in some...

  19. Anti-equine arteritis virus activity of ethanolic extract and compounds from Origanum vulgare

    Directory of Open Access Journals (Sweden)

    Daiane Einhardt Blank

    2017-05-01

    Full Text Available The equine arteritis virus (EAV is responsible by an important respiratory and reproductive disease in equine populations and there is no specific antiviral treatment available. The objective of this study was to investigate the activity of an ethanolic crude extract of Origanum vulgare (EEO and of isolated compound caffeic acid, p-coumaric acid, rosmarinic acid, quercetin, luteolin, carnosol, carnosic acid, kaempferol and apigenin against EAV. The assays were performed using non-cytotoxic concentrations. The antiviral activity was monitored initially by cytopathic effect inhibition (CPE assay in RK13 cells in the presence or absence of EEO. Pre-incubated cells with EEO were also examined to show prophylactic effect. Direct viral inactivation by EEO and isolated compounds was evaluated by incubation at 37°C or 20°C. After the incubation period, the infectivity was immediately determined by virus titrations on cell cultures and expressed as 50% tissue culture infective dose (TCID50/100 µL. There was significant virucidal activity of EEO and of the compounds caffeic acid, p-coumaric acid, quercetin, carnosic acid and kaempferol. When EEO was added after infection, EEO inhibited the virus growth in infected cells, as evidenced by significant reduction of the viral titre. The results provide evidence that the EEO exhibit an inhibitory effect anti-EAV. Among the main compounds evaluated, caffeic acid, p-coumaric acid, carnosic acid, kaempferol and mainly quercetin, contributed to the activity of EEO. EEO may represent a good prototype for the development of a new antiviral agent, presenting promising for combating arteriviruses infections.

  20. Actinobacteria from Termite Mounds Show Antiviral Activity against Bovine Viral Diarrhea Virus, a Surrogate Model for Hepatitis C Virus

    Directory of Open Access Journals (Sweden)

    Marina Aiello Padilla

    2015-01-01

    Full Text Available Extracts from termite-associated bacteria were evaluated for in vitro antiviral activity against bovine viral diarrhea virus (BVDV. Two bacterial strains were identified as active, with percentages of inhibition (IP equal to 98%. Both strains were subjected to functional analysis via the addition of virus and extract at different time points in cell culture; the results showed that they were effective as posttreatments. Moreover, we performed MTT colorimetric assays to identify the CC50, IC50, and SI values of these strains, and strain CDPA27 was considered the most promising. In parallel, the isolates were identified as Streptomyces through 16S rRNA gene sequencing analysis. Specifically, CDPA27 was identified as S. chartreusis. The CDPA27 extract was fractionated on a C18-E SPE cartridge, and the fractions were reevaluated. A 100% methanol fraction was identified to contain the compound(s responsible for antiviral activity, which had an SI of 262.41. GC-MS analysis showed that this activity was likely associated with the compound(s that had a peak retention time of 5 min. Taken together, the results of the present study provide new information for antiviral research using natural sources, demonstrate the antiviral potential of Streptomyces chartreusis compounds isolated from termite mounds against BVDV, and lay the foundation for further studies on the treatment of HCV infection.

  1. Influence of the water molecules near surface of viral protein on virus activation process

    Energy Technology Data Exchange (ETDEWEB)

    O, Shepelenko S; S, Salnikov A; V, Rak S; P, Goncharova E; B, Ryzhikov A, E-mail: shep@vector.nsc.r, E-mail: shep@ngs.r [Federal State Research Institution State Research Center of Virology and Biotechnology VECTOR of the Federal Service for Surveillance in Consumer Rights Protection and Human Well-being (FSRI SRC VB VECTOR) Koltsovo, Novosibirsk Region (Russian Federation)

    2009-06-01

    The infection of a cell with influenza virus comprises the stages of receptor binding to the cell membrane, endocytosis of virus particle, and fusion of the virus envelope and cell endosome membrane, which is determined by the conformational changes in hemagglutinin, a virus envelope protein, caused by pH decrease within the endosome. The pH value that induces conformation rearrangements of hemagglutinin molecule considerably varies for different influenza virus strains, first and foremost, due to the differences in amino acid structure of the corresponding proteins. The main goal of this study was to construct a model making it possible to assess the critical pH value characterizing the fusogenic activity of influenza virus hemagglutinin from the data on hemagglutinin structure and experimental verification of this model. Under this model, we assume that when the electrostatic force between interacting hemagglutinin molecules in the virus envelop exceeds a certain value, the hemagglutinin HA1 subunits are arranged so that they form a cavity sufficient for penetration of water molecules. This event leads to an irreversible hydration of the inner fragments of hemagglutinin molecule in a trimer and to the completion of conformational changes. The geometry of electrostatic field in hemagglutinin trimer was calculated taking into account the polarization effects near the interface of two dielectrics, aqueous medium and protein macromolecule. The critical pH values for the conformational changes in hemagglutinin were measured by the erythrocyte hemolysis induced by influenza virus particles when decreasing pH. The critical pH value conditionally separating the pH range into the regions with and without the conformational changes was calculated for several influenza virus H1N1 and H3N2 strains based on the data on the amino acid structure of the corresponding hemagglutinin molecules. Comparison of the theoretical and experimental values of critical pH values for

  2. Phase I decontamination of the J.C. Haynes site, Newark, Ohio. Final report

    International Nuclear Information System (INIS)

    Emswiler, T.R.

    1985-11-01

    Phase I consisted of the primary decontamination, packaging, and shipment of all 241 Am-contaminated gloveboxes, vent system, and miscellaneous waste items located in the laboratory restricted area in the J.C. Haynes house. The primary goals of Phase I were to locate and account for a major quantity of 241 Am which was unaccounted for and to remove all radioactive materials and contamination posing an imminent hazard to public health and safety. All Phase I operations were conducted under a Quality Assurance (QA) Program Plan and QA procedures written specifically for this program. In addition, certain generic Battelle QA procedures were used for routine tasks. All operations were conducted under strict health physics supervision and procedures. Cognizant ORAU and US Nuclear Regulatory Commission (NRC) personnel were on site during the entire Phase I operation and provided support and approval in the daily operations. All staff members had participated in previous decontamination and decommissioning programs involving transuranic waste and completed Phase I in a well controlled, timely, and safe manner

  3. Telomerase Activity Impacts on Epstein-Barr Virus Infection of AGS Cells

    Science.gov (United States)

    Rac, Jürgen; Haas, Florian; Schumacher, Andrina; Middeldorp, Jaap M.; Delecluse, Henri-Jacques; Speck, Roberto F.

    2015-01-01

    The Epstein-Barr virus (EBV) is transmitted from host-to-host via saliva and is associated with epithelial malignancies including nasopharyngeal carcinoma (NPC) and some forms of gastric carcinoma (GC). Nevertheless, EBV does not transform epithelial cells in vitro where it is rapidly lost from infected primary epithelial cells or epithelial tumor cells. Long-term infection by EBV, however, can be established in hTERT-immortalized nasopharyngeal epithelial cells. Here, we hypothesized that increased telomerase activity in epithelial cells enhances their susceptibility to infection by EBV. Using HONE-1, AGS and HEK293 cells we generated epithelial model cell lines with increased or suppressed telomerase activity by stable ectopic expression of hTERT or of a catalytically inactive, dominant negative hTERT mutant. Infection experiments with recombinant prototypic EBV (rB95.8), recombinant NPC EBV (rM81) with increased epithelial cell tropism compared to B95.8, or recombinant B95.8 EBV with BZLF1-knockout that is not able to undergo lytic replication, revealed that infection frequencies positively correlate with telomerase activity in AGS cells but also partly depend on the cellular background. AGS cells with increased telomerase activity showed increased expression mainly of latent EBV genes, suggesting that increased telomerase activity directly acts on the EBV infection of epithelial cells by facilitating latent EBV gene expression early upon virus inoculation. Thus, our results indicate that infection of epithelial cells by EBV is a very selective process involving, among others, telomerase activity and cellular background to allow for optimized host-to-host transmission via saliva. PMID:25856387

  4. Detection of polyoma virus in brain tissue of patients with progressive multifocal leukoencephalopathy by real-time PCR and pyrosequencing.

    Science.gov (United States)

    Beck, Rose C; Kohn, Debra J; Tuohy, Marion J; Prayson, Richard A; Yen-Lieberman, Belinda; Procop, Gary W

    2004-03-01

    We evaluated 2 methods, a LightCycler PCR assay and pyrosequencing for the detection of the JC polyoma virus (JCV) in fixed brain tissue of 10 patients with and 3 control patients without progressive multifocal leukoencephalopathy (PML). Nucleic acid extraction was performed after deparaffinization and proteinase K digestion. The LightCycler assay differentiates the BK virus (BKV), JCV, and SV40 using melt curve analysis. Conventional PCR was used with the same primers to generate products for pyrosequencing. Two sequencing primers were used that differentiate the polyoma viruses. Seven of 11 biopsies (1 patient had 2 biopsies) with PML were positive for JCV by real-time PCR and/or PCR/pyrosequencing. Three of 4 remaining biopsies were positive by real-time PCR but had melting points between JCV and SV40. The 4 specimens that were negative or atypical by LightCycler PCR were positive by traditional PCR, but 1 had an amplicon of lower molecular weight by gel electrophoresis. These were shown to represent JCV by at least 1 of the 2 pyrosequencing primers. The biopsies from patients without PML were PCR negative. Both the LightCycler and pyrosequencing assays are useful for confirming JCV in brain biopsies from patients with PML, but variant JCVs may require supplementary methods to confirm JCV infection.

  5. Immune Activation in the Pathogenesis of Dengue Virus Infection

    NARCIS (Netherlands)

    C.A.M. van de Weg (Cornelia A.M.)

    2014-01-01

    markdownabstract__Abstract__ Dengue virus (DENV) is a positive-stranded RNA virus and belongs to the Flaviviridae family. The virus is transmitted by the bite of an infected Aedes-mosquito and circulates in tropical and subtropical areas around the world. The incidence of dengue has risen

  6. Activation of peripheral blood mononuclear cells by dengue virus infection depotentiates balapiravir.

    Science.gov (United States)

    Chen, Yen-Liang; Abdul Ghafar, Nahdiyah; Karuna, Ratna; Fu, Yilong; Lim, Siew Pheng; Schul, Wouter; Gu, Feng; Herve, Maxime; Yokohama, Fumiaki; Wang, Gang; Cerny, Daniela; Fink, Katja; Blasco, Francesca; Shi, Pei-Yong

    2014-02-01

    In a recent clinical trial, balapiravir, a prodrug of a cytidine analog (R1479), failed to achieve efficacy (reducing viremia after treatment) in dengue patients, although the plasma trough concentration of R1479 remained above the 50% effective concentration (EC(50)). Here, we report experimental evidence to explain the discrepancy between the in vitro and in vivo results and its implication for drug development. R1479 lost its potency by 125-fold when balapiravir was used to treat primary human peripheral blood mononuclear cells (PBMCs; one of the major cells targeted for viral replication) that were preinfected with dengue virus. The elevated EC(50) was greater than the plasma trough concentration of R1479 observed in dengue patients treated with balapiravir and could possibly explain the efficacy failure. Mechanistically, dengue virus infection triggered PBMCs to generate cytokines, which decreased their efficiency of conversion of R1479 to its triphosphate form (the active antiviral ingredient), resulting in decreased antiviral potency. In contrast to the cytidine-based compound R1479, the potency of an adenosine-based inhibitor of dengue virus (NITD008) was much less affected. Taken together, our results demonstrate that viral infection in patients before treatment could significantly affect the conversion of the prodrug to its active form; such an effect should be calculated when estimating the dose efficacious for humans.

  7. Antiviral activity of Dianthus superbusn L. against hepatitis B virus in ...

    African Journals Online (AJOL)

    Background: Hepatitis is a viral infection of hepatitis B virus (HBV). Limitations of drug used in the management of it opens the interest related to alternative medicine. The given study deals with the antiviral activity of Dianthus superbusn L. (DSL) against HBV in vitro & in vivo. Material and Methods: In vitro study liver cell line ...

  8. Progressive multifocal leukoencephalopathy limited to the brain stem

    Energy Technology Data Exchange (ETDEWEB)

    Kastrup, O.; Maschke, M.; Diener, H.C. [Neurologische Universitaetsklinik, University of Essen (Germany); Wanke, I. [Department of Neuroradiology, University of Essen (Germany)

    2002-03-01

    Progressive multifocal leukoencephalopathy (PML) is a subacute demyelinating slow-virus encephalitis caused by the JC polyomavirus in 2-5% of patients with AIDS. MRI typically shows multiple lesions in the cerebral hemispheres. We present a rare case of rapidly evolving and lethal PML with a severe bulbar syndrome and spastic tetraparesis in a patient with AIDS. MRI showed high-signal lesions on T2-weighted images confined to the brain stem, extending from the medulla oblongata to the midbrain. JC virus polymerase chain reaction in cerebrospinal fluid was positive, and neuropathology showed the findings of PML. This case was also notable because of the rapid progression despite improved immune status with antiretroviral therapy. (orig.)

  9. Activation of type I and III interferon signalling pathways occurs in lung epithelial cells infected with low pathogenic avian influenza viruses.

    Directory of Open Access Journals (Sweden)

    Richard Sutejo

    Full Text Available The host response to the low pathogenic avian influenza (LPAI H5N2, H5N3 and H9N2 viruses were examined in A549, MDCK, and CEF cells using a systems-based approach. The H5N2 and H5N3 viruses replicated efficiently in A549 and MDCK cells, while the H9N2 virus replicated least efficiently in these cell types. However, all LPAI viruses exhibited similar and higher replication efficiencies in CEF cells. A comparison of the host responses of these viruses and the H1N1/WSN virus and low passage pH1N1 clinical isolates was performed in A549 cells. The H9N2 and H5N2 virus subtypes exhibited a robust induction of Type I and Type III interferon (IFN expression, sustained STAT1 activation from between 3 and 6 hpi, which correlated with large increases in IFN-stimulated gene (ISG expression by 10 hpi. In contrast, cells infected with the pH1N1 or H1N1/WSN virus showed only small increases in Type III IFN signalling, low levels of ISG expression, and down-regulated expression of the IFN type I receptor. JNK activation and increased expression of the pro-apoptotic XAF1 protein was observed in A549 cells infected with all viruses except the H1N1/WSN virus, while MAPK p38 activation was only observed in cells infected with the pH1N1 and the H5 virus subtypes. No IFN expression and low ISG expression levels were generally observed in CEF cells infected with either AIV, while increased IFN and ISG expression was observed in response to the H1N1/WSN infection. These data suggest differences in the replication characteristics and antivirus signalling responses both among the different LPAI viruses, and between these viruses and the H1N1 viruses examined. These virus-specific differences in host cell signalling highlight the importance of examining the host response to avian influenza viruses that have not been extensively adapted to mammalian tissue culture.

  10. Activity, specificity, and probe design for the smallpox virus protease K7L.

    Science.gov (United States)

    Aleshin, Alexander E; Drag, Marcin; Gombosuren, Naran; Wei, Ge; Mikolajczyk, Jowita; Satterthwait, Arnold C; Strongin, Alex Y; Liddington, Robert C; Salvesen, Guy S

    2012-11-16

    The K7L gene product of the smallpox virus is a protease implicated in the maturation of viral proteins. K7L belongs to protease Clan CE, which includes distantly related cysteine proteases from eukaryotes, pathogenic bacteria, and viruses. Here, we describe its recombinant high level expression, biochemical mechanism, substrate preference, and regulation. Earlier studies inferred that the orthologous I7L vaccinia protease cleaves at an AG-X motif in six viral proteins. Our data for K7L suggest that the AG-X motif is necessary but not sufficient for optimal cleavage activity. Thus, K7L requires peptides extended into the P7 and P8 positions for efficient substrate cleavage. Catalytic activity of K7L is substantially enhanced by homodimerization, by the substrate protein P25K as well as by glycerol. RNA and DNA also enhance cleavage of the P25K protein but not of synthetic peptides, suggesting that nucleic acids augment the interaction of K7L with its protein substrate. Library-based peptide preference analyses enabled us to design an activity-based probe that covalently and selectively labels K7L in lysates of transfected and infected cells. Our study thus provides proof-of-concept for the design of inhibitors and probes that may contribute both to a better understanding of the role of K7L in the virus life cycle and the design of novel anti-virals.

  11. Antiviral activity of glycyrrhizin against hepatitis C virus in vitro.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Matsumoto

    Full Text Available Glycyrrhizin (GL has been used in Japan to treat patients with chronic viral hepatitis, as an anti-inflammatory drug to reduce serum alanine aminotransferase levels. GL is also known to exhibit various biological activities, including anti-viral effects, but the anti-hepatitis C virus (HCV effect of GL remains to be clarified. In this study, we demonstrated that GL treatment of HCV-infected Huh7 cells caused a reduction of infectious HCV production using cell culture-produced HCV (HCVcc. To determine the target step in the HCV lifecycle of GL, we used HCV pseudoparticles (HCVpp, replicon, and HCVcc systems. Significant suppressions of viral entry and replication steps were not observed. Interestingly, extracellular infectivity was decreased, and intracellular infectivity was increased. By immunofluorescence and electron microscopic analysis of GL treated cells, HCV core antigens and electron-dense particles had accumulated on endoplasmic reticulum attached to lipid droplet (LD, respectively, which is thought to act as platforms for HCV assembly. Furthermore, the amount of HCV core antigen in LD fraction increased. Taken together, these results suggest that GL inhibits release of infectious HCV particles. GL is known to have an inhibitory effect on phospholipase A2 (PLA2. We found that group 1B PLA2 (PLA2G1B inhibitor also decreased HCV release, suggesting that suppression of virus release by GL treatment may be due to its inhibitory effect on PLA2G1B. Finally, we demonstrated that combination treatment with GL augmented IFN-induced reduction of virus in the HCVcc system. GL is identified as a novel anti-HCV agent that targets infectious virus particle release.

  12. buffer Layer Growth, the Thickness Dependence of Jc in Coated Conductors, Local Identification of Current Limiting Mechanisms and Participation in the Wire Development Group

    Energy Technology Data Exchange (ETDEWEB)

    Larbalestier, David; Hellstron, Eric; Abraimov, Dmytro

    2011-12-17

    The primary thrusts of our work were to provide critical understanding of how best to enhance the current-carrying capacity of coated conductors. These include the deconstruction of Jc as a function of fim thickness, the growth of in situ films incorporating strong pinning centers and the use of a suite of position-sensitive tools that enable location and analysis of key areas where current-limiting occurs.

  13. Identification of a novel multiple kinase inhibitor with potent antiviral activity against influenza virus by reducing viral polymerase activity

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Yutaka; Kakisaka, Michinori; Chutiwitoonchai, Nopporn [Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tajima, Shigeru [Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640 (Japan); Hikono, Hirokazu; Saito, Takehiko [Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan); Aida, Yoko, E-mail: aida@riken.jp [Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-07-18

    Highlights: • Screening of 50,000 compounds and subsequent lead optimization identified WV970. • WV970 has antiviral effects against influenza A, B and highly pathogenic viral strains. • WV970 inhibits viral genome replication and transcription. • A target database search suggests that WV970 may bind to a number of kinases. • KINOMEscan screening revealed that WV970 has inhibitory effects on 15 kinases. - Abstract: Neuraminidase inhibitors are the only currently available influenza treatment, although resistant viruses to these drugs have already been reported. Thus, new antiviral drugs with novel mechanisms of action are urgently required. In this study, we identified a novel antiviral compound, WV970, through cell-based screening of a 50,000 compound library and subsequent lead optimization. This compound exhibited potent antiviral activity with nanomolar IC{sub 50} values against both influenza A and B viruses but not non-influenza RNA viruses. Time-of-addition and indirect immunofluorescence assays indicated that WV970 acted at an early stage of the influenza life cycle, but likely after nuclear entry of viral ribonucleoprotein (vRNP). Further analyses of viral RNA expression and viral polymerase activity indicated that WV970 inhibited vRNP-mediated viral genome replication and transcription. Finally, structure-based virtual screening and comprehensive human kinome screening were used to demonstrate that WV970 acts as a multiple kinase inhibitor, many of which are associated with influenza virus replication. Collectively, these results strongly suggest that WV970 is a promising anti-influenza drug candidate and that several kinases associated with viral replication are promising drug targets.

  14. Identification of a novel multiple kinase inhibitor with potent antiviral activity against influenza virus by reducing viral polymerase activity

    International Nuclear Information System (INIS)

    Sasaki, Yutaka; Kakisaka, Michinori; Chutiwitoonchai, Nopporn; Tajima, Shigeru; Hikono, Hirokazu; Saito, Takehiko; Aida, Yoko

    2014-01-01

    Highlights: • Screening of 50,000 compounds and subsequent lead optimization identified WV970. • WV970 has antiviral effects against influenza A, B and highly pathogenic viral strains. • WV970 inhibits viral genome replication and transcription. • A target database search suggests that WV970 may bind to a number of kinases. • KINOMEscan screening revealed that WV970 has inhibitory effects on 15 kinases. - Abstract: Neuraminidase inhibitors are the only currently available influenza treatment, although resistant viruses to these drugs have already been reported. Thus, new antiviral drugs with novel mechanisms of action are urgently required. In this study, we identified a novel antiviral compound, WV970, through cell-based screening of a 50,000 compound library and subsequent lead optimization. This compound exhibited potent antiviral activity with nanomolar IC 50 values against both influenza A and B viruses but not non-influenza RNA viruses. Time-of-addition and indirect immunofluorescence assays indicated that WV970 acted at an early stage of the influenza life cycle, but likely after nuclear entry of viral ribonucleoprotein (vRNP). Further analyses of viral RNA expression and viral polymerase activity indicated that WV970 inhibited vRNP-mediated viral genome replication and transcription. Finally, structure-based virtual screening and comprehensive human kinome screening were used to demonstrate that WV970 acts as a multiple kinase inhibitor, many of which are associated with influenza virus replication. Collectively, these results strongly suggest that WV970 is a promising anti-influenza drug candidate and that several kinases associated with viral replication are promising drug targets

  15. Nucleic Acid Polymers Are Active against Hepatitis Delta Virus Infection In Vitro.

    Science.gov (United States)

    Beilstein, Frauke; Blanchet, Matthieu; Vaillant, Andrew; Sureau, Camille

    2018-02-15

    In this study, an in vitro infection model for the hepatitis delta virus (HDV) was used to evaluate the antiviral effects of phosphorothioate nucleic acid polymers (NAPs) and investigate their mechanism of action. The results show that NAPs inhibit HDV infection at concentrations less than 4 μM in cultures of differentiated human hepatoma cells. NAPs were shown to be active at viral entry but inactive postentry on HDV RNA replication. Inhibition was independent of the NAP nucleotide sequence but dependent on both size and amphipathicity of the polymer. NAP antiviral activity was effective against HDV virions bearing the main hepatitis B virus (HBV) immune escape substitutions (D144A and G145R) and was pangenomic with regard to HBV envelope proteins. Furthermore, similar to immobilized heparin, immobilized NAPs could bind HDV particles, suggesting that entry inhibition was due, at least in part, to preventing attachment of the virus to cell surface glycosaminoglycans. The results document NAPs as a novel class of antiviral compounds that can prevent HDV propagation. IMPORTANCE HDV infection causes the most severe form of viral hepatitis in humans and one of the most difficult to cure. Currently, treatments are limited to long-term administration of interferon at high doses, which provide only partial efficacy. There is thus an urgent need for innovative approaches to identify new antiviral against HDV. The significance of our study is in demonstrating that nucleic acid polymers (NAPs) are active against HDV by targeting the envelope of HDV virions. In an in vitro infection assay, NAP activity was recorded at concentrations less than 4 μM in the absence of cell toxicity. Furthermore, the fact that NAPs could block HDV at viral entry suggests their potential to control the spread of HDV in a chronically HBV-infected liver. In addition, NAP anti-HDV activity was pangenomic with regard to HBV envelope proteins and not circumvented by HBsAg substitutions associated

  16. Regulation of trichome development in tobacco by JcZFP8, a C2H2 zinc finger protein gene from Jatropha curcas L.

    Science.gov (United States)

    Shi, Xiaodong; Gu, Yuxi; Dai, Tingwei; Wu, Yang; Wu, Peng; Xu, Ying; Chen, Fang

    2018-06-05

    Trichomes are epidermal outgrowths of plant tissues that can secrete or store large quantities of secondary metabolites, which contribute to plant defense responses against stress. The use of bioengineering methods for regulating the development of trichomes and metabolism is a widely researched topic. In the present study, we demonstrate that JcZFP8, a C2H2 zinc finger protein gene from Jatropha curcas L., can regulate trichome development in transgenic tobacco. To understand the underlying mechanisms, we performed transcriptome profiling of overexpression JcZFP8 transgenic plants and wild-type tobacco. Based on the analysis of differentially expressed genes, we determined that genes of the plant hormone signal transduction pathway was significantly enriched, suggesting that these pathways were modulated in the transgenic plants. In addition, the transcript levels of the known trichome-related genes in Arabidopsis were not significantly changed, whereas CycB2 and MYB genes were differentially expressed in the transgenic plants. Despite tobacco and Arabidopsis have different types of trichomes, all the pathways were associated with C2H2 zinc finger protein genes. Our findings help us to understand the regulation of multicellular trichome formation and suggest a new metabolic engineering method for the improvement of plants. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Aryl Hydrocarbon Receptor Activation Reduces Dendritic Cell Function during Influenza Virus Infection

    Science.gov (United States)

    Jin, Guang-Bi; Moore, Amanda J.; Head, Jennifer L.; Neumiller, Joshua J.; Lawrence, B. Paige

    2010-01-01

    It has long been known that activation of the aryl hydrocarbon receptor (AhR) by ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) suppresses T cell–dependent immune responses; however, the underlying cellular targets and mechanism remain unclear. We have previously shown that AhR activation by TCDD reduces the proliferation and differentiation of influenza virus–specific CD8+ T cells through an indirect mechanism; suggesting that accessory cells are critical AhR targets during infection. Respiratory dendritic cells (DCs) capture antigen, migrate to lymph nodes, and play a key role in activating naive CD8+ T cells during respiratory virus infection. Herein, we report an examination of how AhR activation alters DCs in the lung and affects their trafficking to and function in the mediastinal lymph nodes (MLN) during infection with influenza virus. We show that AhR activation impairs lung DC migration and reduces the ability of DCs isolated from the MLN to activate naive CD8+ T cells. Using novel AhR mutant mice, in which the AhR protein lacks its DNA-binding domain, we show that the suppressive effects of TCDD require that the activated AhR complex binds to DNA. These new findings suggest that AhR activation by chemicals from our environment impacts DC function to stimulate naive CD8+ T cells and that immunoregulatory genes within DCs are critical targets of AhR. Moreover, our results reinforce the idea that environmental signals and AhR ligands may contribute to differential susceptibilities and responses to respiratory infection. PMID:20498003

  18. Temporal relationship between antibiotic use and respiratory virus activities in the Republic of Korea: a time-series analysis.

    Science.gov (United States)

    Ryu, Sukhyun; Kim, Sojung; Kim, Bryan I; Klein, Eili Y; Yoon, Young Kyung; Chun, Byung Chul

    2018-01-01

    Inappropriate use of antibiotics increases resistance and reduces their effectiveness. Despite evidence-based guidelines, antibiotics are still commonly used to treat infections likely caused by respiratory viruses. In this study, we examined the temporal relationships between antibiotic usage and respiratory infections in the Republic of Korea. The number of monthly antibiotic prescriptions and the incidence of acute respiratory tract infections between 2010 and 2015 at all primary care clinics were obtained from the Korean Health Insurance Review and Assessment Service. The monthly detection rates of respiratory viruses, including adenovirus, respiratory syncytial virus, influenza virus, human coronavirus, and human rhinovirus, were collected from Korea Centers for Disease Control and Prevention. Cross-correlation analysis was conducted to quantify the temporal relationship between antibiotic use and respiratory virus activities as well as respiratory infections in primary clinics. The monthly use of different classes of antibiotic, including penicillins, other beta-lactam antibacterials, macrolides and quinolones, was significantly correlated with influenza virus activity. These correlations peaked at the 0-month lag with cross-correlation coefficients of 0.45 ( p  < 0.01), 0.46 ( p  < 0.01), 0.40 ( p  < 0.01), and 0.35 (< 0.01), respectively. Furthermore, a significant correlation was found between acute bronchitis and antibiotics, including penicillin (0.73, p  < 0.01), macrolides (0.74, p  < 0.01), and quinolones (0.45, p  < 0.01), at the 0-month lag. Our findings suggest that there is a significant temporal relationship between influenza virus activity and antibiotic use in primary clinics. This relationship indicates that interventions aimed at reducing influenza cases in addition to effort to discourage the prescription of antibiotics by physicians may help to decrease unnecessary antibiotic consumption.

  19. Matrix Metalloproteinase Activity in Infections by an Encephalitic Virus, Mouse Adenovirus Type 1

    Science.gov (United States)

    Ashley, Shanna L.; Pretto, Carla D.; Stier, Matthew T.; Kadiyala, Padma; Castro-Jorge, Luiza; Hsu, Tien-Huei; Doherty, Robert; Carnahan, Kelly E.; Castro, Maria G.; Lowenstein, Pedro R.

    2017-01-01

    ABSTRACT Mouse adenovirus type 1 (MAV-1) infection causes encephalitis in susceptible strains of mice and alters the permeability of infected brains to small molecules, which indicates disruption of the blood-brain barrier (BBB). Under pathological conditions, matrix metalloproteinases (MMPs) can disrupt the BBB through their proteolytic activity on basement membrane and tight junction proteins. We examined whether MAV-1 infection alters MMP activity in vivo and in vitro. Infected MAV-1-susceptible SJL mice had higher MMP2 and MMP9 activity in brains, measured by gelatin zymography, than mock-infected mice. Infected MAV-1-resistant BALB/c mice had MMP activity levels equivalent to those in mock infection. Primary SJL mouse brain endothelial cells (a target of MAV-1 in vivo) infected ex vivo with MAV-1 had no difference in activities of secreted MMP2 and MMP9 from mock cells. We show for the first time that astrocytes and microglia are also infected in vivo by MAV-1. Infected mixed primary cultures of astrocytes and microglia had higher levels of MMP2 and MMP9 activity than mock-infected cells. These results indicate that increased MMP activity in the brains of MAV-1-infected susceptible mice may be due to MMP activity produced by endothelial cells, astrocytes, and microglia, which in turn may contribute to BBB disruption and encephalitis in susceptible mice. IMPORTANCE RNA and DNA viruses can cause encephalitis; in some cases, this is accompanied by MMP-mediated disruption of the BBB. Activated MMPs degrade extracellular matrix and cleave tight-junction proteins and cytokines, modulating their functions. MAV-1 infection of susceptible mice is a tractable small-animal model for encephalitis, and the virus causes disruption of the BBB. We showed that MAV-1 infection increases enzymatic activity of two key MMPs known to be secreted and activated in neuroinflammation, MMP2 and MMP9, in brains of susceptible mice. MAV-1 infects endothelial cells, astrocytes, and

  20. Characterization of hemagglutination activity of emerging Newcastle disease virus in Bangladesh

    Directory of Open Access Journals (Sweden)

    Helal Uddin

    2017-06-01

    Full Text Available Aim: Newcastle disease (ND is an important viral disease for poultry caused by avian paramyxovirus which can be identified by its nature of agglutination activity with red blood cell (RBC of different species. The study was aimed to characterize the hemagglutinating (HA activity of ND virus (NDV at three different temperatures using RBC of five avian species, six mammalian species, and eight different human blood groups. Materials and Methods: The study was conducted from January to December 2014 at Chittagong Veterinary and Animal Sciences University. Five avian and six different mammalian species were selected for the study. In each species, two blood samples were collected aseptically. Eight different blood groups (A+, A−, B+, B−, AB+, AB−, O+, and O− were studied in human. HA test was performed using two virus strains ND lasota and field isolate of very virulent NDV (VVNDV with mentioned species of RBC at chilling (4°C, incubating (37°C, and room temperature (24°C. Results: Avian RBC requires less time for agglutination than mammalian RBC. Incubation temperature (37°C requires lowest time and chilling temperature requires highest time for agglutination of RBC. Duck RBC requires lowest time (17.81 min while chicken RBC needs highest (57.5 min time for HA at incubation temperature and at chilling temperature, respectively, against ND lasota virus and with field strain. Goat RBC requires significantly higher time for HA (184.68 min at chilling temperature than other mammalian species. Human RBC requires almost similar time but O+ and O− blood group do not show any HA activity. Significant variation (p<0.05 found in quail RBC at incubation temperature. In mammalian species, a significant difference (p<0.05 has been observed in goat and horse RBC at chilling; horse and dog RBC at incubation; goat, horse, buffalo, and dog RBC at room temperature. In human, significant variation (p<0.05 has been found in A+, A− and B− blood group

  1. Antiviral activity of a Bacillus sp: P34 peptide against pathogenic viruses of domestic animals

    Directory of Open Access Journals (Sweden)

    Débora Scopel e Silva

    2014-09-01

    Full Text Available P34 is an antimicrobial peptide produced by a Bacillus sp. strain isolated from the intestinal contents of a fish in the Brazilian Amazon basin with reported antibacterial activity. The aim of this work was to evaluate the peptide P34 for its in vitro antiviral properties against canine adenovirus type 2 (CAV-2, canine coronavirus (CCoV, canine distemper virus (CDV, canine parvovirus type 2 (CPV-2, equine arteritis virus (EAV, equine influenza virus (EIV, feline calicivirus (FCV and feline herpesvirus type 1 (FHV-1. The results showed that the peptide P34 exhibited antiviral activity against EAV and FHV-1. The peptide P34 inhibited the replication of EAV by 99.9% and FHV-1 by 94.4%. Virucidal activity was detected only against EAV. When P34 and EAV were incubated for 6 h at 37 °C the viral titer reduced from 10(4.5 TCID50 to 10(2.75 TCID50, showing a percent of inhibition of 98.6%. In conclusion, our results demonstrated that P34 inhibited EAV and FHV-1 replication in infected cell cultures and it showed virucidal activity against EAV. Since there is documented resistance to the current drugs used against herpesviruses and there is no treatment for equine viral arteritis, it is advisable to search for new antiviral compounds to overcome these infections.

  2. Application of speckle image correlation for real-time assessment of metabolic activity in herpes virus-infected cells

    Science.gov (United States)

    Vladimirov, A. P.; Malygin, A. S.; Mikhailova, J. A.; Borodin, E. M.; Bakharev, A. A.; Poryvayeva, A. P.

    2014-09-01

    Earlier we reported developing a speckle interferometry technique and a device designed to assess the metabolic activity of a cell monolayer cultivated on a glass substrate. This paper aimed at upgrading the technique and studying its potential for real-time assessment of herpes virus development process. Speckle dynamics was recorded in the image plane of intact and virus-infected cell monolayer. HLE-3, L-41 and Vero cells were chosen as research targets. Herpes simplex virus-1-(HSV-1)- infected cell cultures were studied. For 24 h we recorded the digital value of optical signal I in one pixel and parameter η characterizing change in the distribution of the optical signal on 10 × 10-pixel areas. The coefficient of multiple determination calculated by η time dependences for three intact cell cultures equals 0.94. It was demonstrated that the activity parameters are significantly different for intact and virus-infected cells. The difference of η value for intact and HSV-1-infected cells is detectable 10 minutes from the experiment start.

  3. Application of speckle image correlation for real-time assessment of metabolic activity in herpes virus-infected cells

    International Nuclear Information System (INIS)

    Vladimirov, A P; Malygin, A S; Mikhailova, J A; Borodin, E M; Bakharev, A A; Poryvayeva, A P

    2014-01-01

    Earlier we reported developing a speckle interferometry technique and a device designed to assess the metabolic activity of a cell monolayer cultivated on a glass substrate. This paper aimed at upgrading the technique and studying its potential for real-time assessment of herpes virus development process. Speckle dynamics was recorded in the image plane of intact and virus-infected cell monolayer. HLE-3, L-41 and Vero cells were chosen as research targets. Herpes simplex virus-1-(HSV-1)- infected cell cultures were studied. For 24 h we recorded the digital value of optical signal I in one pixel and parameter η characterizing change in the distribution of the optical signal on 10 × 10-pixel areas. The coefficient of multiple determination calculated by η time dependences for three intact cell cultures equals 0.94. It was demonstrated that the activity parameters are significantly different for intact and virus-infected cells. The difference of η value for intact and HSV-1-infected cells is detectable 10 minutes from the experiment start.

  4. Fluorescent dye labeled influenza virus mainly infects innate immune cells and activated lymphocytes and can be used in cell-mediated immune response assay

    OpenAIRE

    Xie, Dongxu

    2009-01-01

    Early results have recognized that influenza virus infects the innate and adaptive immune cells. The data presented in this paper demonstrated that influenza virus labeled with fluorescent dye not only retained the ability to infect and replicate in host cells, but also stimulated a similar human immune response as did unlabeled virus. Influenza virus largely infected the innate and activated adaptive immune cells. Influenza B type virus was different from that of A type virus. B type virus w...

  5. Inactivated Orf virus (Parapoxvirus ovis) elicits antifibrotic activity in models of liver fibrosis.

    Science.gov (United States)

    Nowatzky, Janina; Knorr, Andreas; Hirth-Dietrich, Claudia; Siegling, Angela; Volk, Hans-Dieter; Limmer, Andreas; Knolle, Percy; Weber, Olaf

    2013-05-01

    Inactivated Orf virus (ORFV, Parapoxvirus ovis) demonstrates strong antiviral activity in animal models including a human hepatitis B virus (HBV)-transgenic mouse. In addition, expression of interferon (IFN)-γ and interleukin-10 (IL-10) was induced after administration of inactivated ORFV in these mice. IFN-γ and IL-10 are known to elicit antifibrotic activity. We therefore aimed to study antifibrotic activity of inactivated ORFV in models of liver fibrosis. We characterized ORFV-induced hepatic cytokine expression in rats. We then studied ORFV in two models of liver fibrosis in rats, pig serum-induced liver fibrosis and carbon tetrachloride (CCL4 )-induced liver fibrosis. ORFV induced hepatic expression of IFN-γ and IL-10 in rats. ORFV mediated antifibrotic activity when administrated concomitantly with the fibrosis-inducing agents in both models of liver fibrosis. Importantly, when CCL4 -induced liver fibrosis was already established, ORFV application still showed significant antifibrotic activity. In addition, we were able to demonstrate a direct antifibrotic effect of ORFV on stellate cells. These results establish a potential novel antifibrotic therapeutic approach that not only prevents but also resolves established liver fibrosis. Further studies are required to unravel the details of the mechanisms involved. © 2012 The Japan Society of Hepatology.

  6. Hepatitis C virus core protein regulates p300/CBP co-activation function. Possible role in the regulation of NF-AT1 transcriptional activity

    International Nuclear Information System (INIS)

    Gomez-Gonzalo, Marta; Benedicto, Ignacio; Carretero, Marta; Lara-Pezzi, Enrique; Maldonado-Rodriguez, Alejandra; Moreno-Otero, Ricardo; Lai, Michael M.C.; Lopez-Cabrera, Manuel

    2004-01-01

    Hepatitis C virus (HCV) core is a viral structural protein; it also participates in some cellular processes, including transcriptional regulation. However, the mechanisms of core-mediated transcriptional regulation remain poorly understood. Oncogenic virus proteins often target p300/CBP, a known co-activator of a wide variety of transcription factors, to regulate the expression of cellular and viral genes. Here we demonstrate, for the first time, that HCV core protein interacts with p300/CBP and enhances both its acetyl-transferase and transcriptional activities. In addition, we demonstrate that nuclear core protein activates the NH 2 -terminal transcription activation domain (TAD) of NF-AT1 in a p300/CBP-dependent manner. We propose a model in which core protein regulates the co-activation function of p300/CBP and activates NF-AT1, and probably other p300/CBP-regulated transcription factors, by a novel mechanism involving the regulation of the acetylation state of histones and/or components of the transcriptional machinery

  7. Antiviral activity of an extract of Cordia salicifolia on herpes simplex virus type 1.

    Science.gov (United States)

    Hayashi, K; Hayashi, T; Morita, N; Niwayama, S

    1990-10-01

    A partially purified extract (COL 1-6) from whole plant of Cordia salicifolia showed an inhibitory effect on herpes simplex virus type 1 (HSV-1). The activity of COL 1-6 on different steps of HSV-1 replication in HeLa cells was investigated. Under single-cycle replication conditions, COL 1-6 exerted a greater than 99.9% inhibition in virus yield when added to the cells 3 h or 1.5 h before infection, and even when added 8 h after infection the extract still caused a greater than 99% inhibition. The extract has been shown to have a direct virucidal activity. And also, analysis of early events following infection showed that COL 1-6 affected viral penetration in HeLa cells but did not interfere with adsorption to the cells.

  8. A trans-activator function is generated by integration of hepatitis B virus preS/S sequences in human hepatocellular carcinoma DNA

    International Nuclear Information System (INIS)

    Caselmann, W.H.; Meyer, M.; Kekule, A.S.; Lauer, U.; Hofschneider, P.H.; Koshy, R.

    1990-01-01

    The X gene of wild-type hepatitis B virus or integrated DNA has recently been shown to stimulate transcription of a variety of enhancers and promoters. To further delineate the viral sequences responsible for trans-activation in hepatomas, the authors cloned the single hepatitis B virus insert from human hepatocellular carcinoma DNA M1. The plasmid pM1 contains 2004 base of hepatitis B virus DNA subtype adr, including truncated preS/S sequences and the enhancer element. The X promoter and 422 nucleotides of the X coding region are present. The entire preC/C gene is deleted. In transient cotransfection assays using Chang liver cells (CCL 13), pM1 DNA exerts a 6- to 10-fold trans-activating effect on the expression of the pSV2CAT reporter plasmid. The transactivation occurs by stimulation of transcription and is dependent on the simian virus 40 enhancer in the reporter plasmid. Deletion analysis of pM1 subclones reveals that the transactivator is encoded by preS/S and not by X sequences. A frameshift mutation within the preS2 open reading frame shows that this portion is indispensable for the trans-activating function. Initiation of transcription has been mapped to the S1 promoter. A comparable trans-activating effect is also observed with cloned wild-type hepatitis B virus sequences similarly truncated. These results show that a transcriptional trans-activator function not present in the intact gene is generated by 3' truncation of integrated hepatitis B virus DNA preS/S sequences

  9. The low-pH stability discovered in neuraminidase of 1918 pandemic influenza A virus enhances virus replication.

    Directory of Open Access Journals (Sweden)

    Tadanobu Takahashi

    Full Text Available The "Spanish" pandemic influenza A virus, which killed more than 20 million worldwide in 1918-19, is one of the serious pathogens in recorded history. Characterization of the 1918 pandemic virus reconstructed by reverse genetics showed that PB1, hemagglutinin (HA, and neuraminidase (NA genes contributed to the viral replication and virulence of the 1918 pandemic influenza virus. However, the function of the NA gene has remained unknown. Here we show that the avian-like low-pH stability of sialidase activity discovered in the 1918 pandemic virus NA contributes to the viral replication efficiency. We found that deletion of Thr at position 435 or deletion of Gly at position 455 in the 1918 pandemic virus NA was related to the low-pH stability of the sialidase activity in the 1918 pandemic virus NA by comparison with the sequences of other human N1 NAs and sialidase activity of chimeric constructs. Both amino acids were located in or near the amino acid resides that were important for stabilization of the native tetramer structure in a low-pH condition like the N2 NAs of pandemic viruses that emerged in 1957 and 1968. Two reverse-genetic viruses were generated from a genetic background of A/WSN/33 (H1N1 that included low-pH-unstable N1 NA from A/USSR/92/77 (H1N1 and its counterpart N1 NA in which sialidase activity was converted to a low-pH-stable property by a deletion and substitutions of two amino acid residues at position 435 and 455 related to the low-pH stability of the sialidase activity in 1918 NA. The mutant virus that included "Spanish Flu"-like low-pH-stable NA showed remarkable replication in comparison with the mutant virus that included low-pH-unstable N1 NA. Our results suggest that the avian-like low-pH stability of sialidase activity in the 1918 pandemic virus NA contributes to the viral replication efficiency.

  10. Peptide-activated gold nanoparticles for selective visual sensing of virus

    Energy Technology Data Exchange (ETDEWEB)

    Sajjanar, Basavaraj; Kakodia, Bhuvna; Bisht, Deepika; Saxena, Shikha; Singh, Arvind Kumar [Indian Veterinary Research Institute, Division of Veterinary Biotechnology (India); Joshi, Vinay [Lala Lajpat Rai University of Veterinary & Animal Sciences, Department of Animal Biotechnology (India); Tiwari, Ashok Kumar; Kumar, Satish, E-mail: drsatishkumar-ivri@yahoo.co.in [Indian Veterinary Research Institute, Division of Veterinary Biotechnology (India)

    2015-05-15

    In this study, we report peptide–gold nanoparticles (AuNP)-based visual sensor for viruses. Citrate-stabilized AuNP (20 ± 1.9 nm) were functionalized with strong sulfur–gold interface using cysteinylated virus-specific peptide. Peptide–Cys–AuNP formed complexes with the viruses which made them to aggregate. The aggregation can be observed with naked eye and also with UV–Vis spectrophotometer as a color change from bright red to purple. The test allows for fast and selective detection of specific viruses. Spectroscopic measurements showed high linear correlation (R{sup 2} = 0.995) between the changes in optical density ratio (OD{sub 610}/OD{sub 520}) with the different concentrations of virus. The new method was compared with the hemagglutinating (HA) test for Newcastle disease virus (NDV). The results indicated that peptide–Cys–AuNP was more sensitive and can visually detect minimum number of virus particles present in the biological samples. The limit of detection for the NDV was 0.125 HA units of the virus. The method allows for selective detection and quantification of the NDV, and requires no isolation of viral RNA and PCR experiments. This strategy may be utilized for detection of other important human and animal viral pathogens.

  11. Hepatitis B virus e antigen induces activation of rat hepatic stellate cells

    International Nuclear Information System (INIS)

    Zan, Yanlu; Zhang, Yuxia; Tien, Po

    2013-01-01

    Highlights: •HBeAg expression in HSCs induced production of ECM protein and liver fibrotic markers. •The activation and proliferation of HSCs were mediated by TGF-β. •HBeAg protein purified from cell medium directly activated HSCs. -- Abstract: Chronic hepatitis B virus infection is a major cause of hepatic fibrosis, leading to liver cirrhosis and hepatocellular carcinoma. Hepatitis B virus e antigen (HBeAg) is an accessory protein of HBV, not required for viral replication but important for natural infection in vivo. Hepatic stellate cells (HSCs) are the major producers of excessive extracellular matrix during liver fibrogenesis. Therefore, we examined the influence of HBeAg on HSCs. The rat HSC line HSC-T6 was transfected with HBeAg plasmids, and expression of α-smooth muscle actin, collagen I, transforming growth factor-β1 (TGF-β), and tissue inhibitors of metalloproteinase 1 (TIMP-1) was investigated by quantitative real-time PCR. The proliferation of HSCs was determined by MTS analysis. HBeAg transduction induced up-regulation of these fibrogenic genes and proliferation of HSCs. We found that HBeAg induced TGF-β secretion in HSCs, and the activation of HSCs was prevented by a neutralizing anti-TGF-β antibody. Depletion and addition of HBeAg protein in conditioned medium from HSC-T6 cells transduced with HBeAg indicated that HBeAg directly induced the activation and proliferation of rat primary HSCs. Taken together, HBeAg induces the activation and proliferation of HSCs, mainly mediated by TGF-β, and HBeAg protein purified from cell medium can directly activate HSCs

  12. Hepatitis B virus e antigen induces activation of rat hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Zan, Yanlu [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Yuxia, E-mail: yzhang@wehi.edu.au [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); Tien, Po, E-mail: tienpo@sun.im.ac.cn [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China)

    2013-06-07

    Highlights: •HBeAg expression in HSCs induced production of ECM protein and liver fibrotic markers. •The activation and proliferation of HSCs were mediated by TGF-β. •HBeAg protein purified from cell medium directly activated HSCs. -- Abstract: Chronic hepatitis B virus infection is a major cause of hepatic fibrosis, leading to liver cirrhosis and hepatocellular carcinoma. Hepatitis B virus e antigen (HBeAg) is an accessory protein of HBV, not required for viral replication but important for natural infection in vivo. Hepatic stellate cells (HSCs) are the major producers of excessive extracellular matrix during liver fibrogenesis. Therefore, we examined the influence of HBeAg on HSCs. The rat HSC line HSC-T6 was transfected with HBeAg plasmids, and expression of α-smooth muscle actin, collagen I, transforming growth factor-β1 (TGF-β), and tissue inhibitors of metalloproteinase 1 (TIMP-1) was investigated by quantitative real-time PCR. The proliferation of HSCs was determined by MTS analysis. HBeAg transduction induced up-regulation of these fibrogenic genes and proliferation of HSCs. We found that HBeAg induced TGF-β secretion in HSCs, and the activation of HSCs was prevented by a neutralizing anti-TGF-β antibody. Depletion and addition of HBeAg protein in conditioned medium from HSC-T6 cells transduced with HBeAg indicated that HBeAg directly induced the activation and proliferation of rat primary HSCs. Taken together, HBeAg induces the activation and proliferation of HSCs, mainly mediated by TGF-β, and HBeAg protein purified from cell medium can directly activate HSCs.

  13. Intergovernmental organisation activities

    International Nuclear Information System (INIS)

    2015-01-01

    This section treats of the following Intergovernmental organisation activities: 1 - European Atomic Energy Community: Non-legally binding instruments; International relations; 2 - International Atomic Energy Agency: Convention on Nuclear Safety (CNS); Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (JC); The Convention on Supplementary Compensation for Nuclear Damage (CSC); International Expert Group on Nuclear Liability (INLEX); Legislative assistance activities; 3 - OECD Nuclear Energy Agency (NEA): GIF Framework Agreement extended for ten years; Technology Road-map: Nuclear Energy; Steering Committee Policy Debate: Health Effects of Low-dose Radiation

  14. The influence of macrophage growth factors on Theiler's Murine Encephalomyelitis Virus (TMEV) infection and activation of macrophages.

    Science.gov (United States)

    Schneider, Karin M; Watson, Neva B; Minchenberg, Scott B; Massa, Paul T

    2018-02-01

    Macrophages are common targets for infection and innate immune activation by many pathogenic viruses including the neurotropic Theiler's Murine Encephalomyelitis Virus (TMEV). As both infection and innate activation of macrophages are key determinants of viral pathogenesis especially in the central nervous system (CNS), an analysis of macrophage growth factors on these events was performed. C3H mouse bone-marrow cells were differentiated in culture using either recombinant macrophage colony stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF), inoculated with TMEV (BeAn) and analyzed at various times thereafter. Cytokine RNA and protein analysis, virus titers, and flow cytometry were performed to characterize virological parameters under these culture conditions. GM-CSF-differentiated macrophages showed higher levels of TMEV viral RNA and proinflammatory molecules compared to infected M-CSF-differentiated cells. Thus, GM-CSF increases both TMEV infection and TMEV-induced activation of macrophages compared to that seen with M-CSF. Moreover, while infectious viral particles decreased from a peak at 12h to undetectable levels at 48h post infection, TMEV viral RNA remained higher in GM-CSF- compared to M-CSF-differentiated macrophages in concert with increased proinflammatory gene expression. Analysis of a possible basis for these differences determined that glycolytic rates contributed to heightened virus replication and proinflammatory cytokine secretion in GM-CSF compared to M-CSF-differentiated macrophages. In conclusion, we provide evidence implicating a role for GM-CSF in promoting virus replication and proinflammatory cytokine expression in macrophages, indicating that GM-CSF may be a key factor for TMEV infection and the induction of chronic TMEV-induced immunopathogenesis in the CNS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses

    Directory of Open Access Journals (Sweden)

    Domann Eugen

    2011-02-01

    Full Text Available Abstract Background Black elderberries (Sambucus nigra L. are well known as supportive agents against common cold and influenza. It is further known that bacterial super-infection during an influenza virus (IV infection can lead to severe pneumonia. We have analyzed a standardized elderberry extract (Rubini, BerryPharma AG for its antimicrobial and antiviral activity using the microtitre broth micro-dilution assay against three Gram-positive bacteria and one Gram-negative bacteria responsible for infections of the upper respiratory tract, as well as cell culture experiments for two different strains of influenza virus. Methods The antimicrobial activity of the elderberry extract was determined by bacterial growth experiments in liquid cultures using the extract at concentrations of 5%, 10%, 15% and 20%. The inhibitory effects were determined by plating the bacteria on agar plates. In addition, the inhibitory potential of the extract on the propagation of human pathogenic H5N1-type influenza A virus isolated from a patient and an influenza B virus strain was investigated using MTT and focus assays. Results For the first time, it was shown that a standardized elderberry liquid extract possesses antimicrobial activity against both Gram-positive bacteria of Streptococcus pyogenes and group C and G Streptococci, and the Gram-negative bacterium Branhamella catarrhalis in liquid cultures. The liquid extract also displays an inhibitory effect on the propagation of human pathogenic influenza viruses. Conclusion Rubini elderberry liquid extract is active against human pathogenic bacteria as well as influenza viruses. The activities shown suggest that additional and alternative approaches to combat infections might be provided by this natural product.

  16. The respiratory syncytial virus polymerase has multiple RNA synthesis activities at the promoter.

    Directory of Open Access Journals (Sweden)

    Sarah L Noton

    Full Text Available Respiratory syncytial virus (RSV is an RNA virus in the Family Paramyxoviridae. Here, the activities performed by the RSV polymerase when it encounters the viral antigenomic promoter were examined. RSV RNA synthesis was reconstituted in vitro using recombinant, isolated polymerase and an RNA oligonucleotide template representing nucleotides 1-25 of the trailer complement (TrC promoter. The RSV polymerase was found to have two RNA synthesis activities, initiating RNA synthesis from the +3 site on the promoter, and adding a specific sequence of nucleotides to the 3' end of the TrC RNA using a back-priming mechanism. Examination of viral RNA isolated from RSV infected cells identified RNAs initiated at the +3 site on the TrC promoter, in addition to the expected +1 site, and showed that a significant proportion of antigenome RNAs contained specific nucleotide additions at the 3' end, demonstrating that the observations made in vitro reflected events that occur during RSV infection. Analysis of the impact of the 3' terminal extension on promoter activity indicated that it can inhibit RNA synthesis initiation. These findings indicate that RSV polymerase-promoter interactions are more complex than previously thought and suggest that there might be sophisticated mechanisms for regulating promoter activity during infection.

  17. Lipopolysaccharide, immune activation, and liver abnormalities in HIV/hepatitis B virus (HBV)-coinfected individuals receiving HBV-active combination antiretroviral therapy.

    Science.gov (United States)

    Crane, Megan; Avihingsanon, Anchalee; Rajasuriar, Reena; Velayudham, Pushparaj; Iser, David; Solomon, Ajantha; Sebolao, Baotuti; Tran, Andrew; Spelman, Tim; Matthews, Gail; Cameron, Paul; Tangkijvanich, Pisit; Dore, Gregory J; Ruxrungtham, Kiat; Lewin, Sharon R

    2014-09-01

    We investigated the relationship between microbial translocation, immune activation, and liver disease in human immunodeficiency virus (HIV)/hepatitis B virus (HBV) coinfection. Lipopolysaccharide (LPS), soluble CD14, CXCL10, and CCL-2 levels were elevated in patients with HIV/HBV coinfection. Levels of LPS, soluble CD14, and CCL-2 declined following receipt of HBV-active combination antiretroviral therapy (cART), but the CXCL10 level remained elevated. No markers were associated with liver disease severity on liver biopsy (n = 96), but CXCL10, interleukin 6 (IL-6), interleukin 10 (IL-10), tumor necrosis factor α, and interferon γ (IFN-γ) were all associated with elevated liver enzyme levels during receipt of HBV-active cART. Stimulation of hepatocyte cell lines in vitro with IFN-γ and LPS induced a profound synergistic increase in the production of CXCL10. LPS may contribute to liver disease via stimulating persistent production of CXCL10. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Humoral markers of active Epstein-Barr virus infection associate with anti-extractable nuclear antigen autoantibodies and plasma galectin-3 binding protein in systemic lupus erythematosus.

    Science.gov (United States)

    Rasmussen, N S; Nielsen, C T; Houen, G; Jacobsen, S

    2016-12-01

    We investigated if signs of active Epstein-Barr virus and cytomegalovirus infections associate with certain autoantibodies and a marker of type I interferon activity in patients with systemic lupus erythematosus. IgM and IgG plasma levels against Epstein-Barr virus early antigen diffuse and cytomegalovirus pp52 were applied as humoral markers of ongoing/recently active Epstein-Barr virus and cytomegalovirus infections, respectively. Plasma galectin-3 binding protein served as a surrogate marker of type I interferon activity. The measurements were conducted in 57 systemic lupus erythematosus patients and 29 healthy controls using ELISAs. Regression analyses and univariate comparisons were performed for associative evaluation between virus serology, plasma galectin-3 binding protein and autoantibodies, along with other clinical and demographic parameters. Plasma galectin-3 binding protein concentrations were significantly higher in systemic lupus erythematosus patients (P = 0.009) and associated positively with Epstein-Barr virus early antigen diffuse-directed antibodies and the presence of autoantibodies against extractable nuclear antigens in adjusted linear regressions (B = 2.02 and 2.02, P = 0.02 and P = 0.002, respectively). Furthermore, systemic lupus erythematosus patients with anti-extractable nuclear antigens had significantly higher antibody levels against Epstein-Barr virus early antigen diffuse (P = 0.02). Our study supports a link between active Epstein-Barr virus infections, positivity for anti-extractable nuclear antigens and increased plasma galectin-3 binding protein concentrations/type I interferon activity in systemic lupus erythematosus patients. © The Author(s) 2016.

  19. [A case with chronic active EB virus infection accompanied with pulmonary candidiasis].

    Science.gov (United States)

    Karino, T; Nakamura, J; Fujita, K; Kobashi, Y; Yano, T; Okimoto, N; Soejima, R

    1998-12-01

    A 44-year-old woman with a history of intermittent fever for several years was admitted because of burn on her leg. On admission, she had hepatosplenomegaly and fever. Antibiotic therapy was started for bacterial infection of the burn. She lost her appetite and IVH was started. During the treatment, high fever appeared and chest X-ray films showed multiple nodular infiltrates throughout both lung fields. Candida albicans was isolated from IVH catheter culture and pulmonary candidiasis was suspected. Her fever and lung involvements were successfully treated with fluconazole. During the course, serum anti-EB-VCA-IgG antibody persisted at a high titer and anti-EBNA antibody remained negative. EB virus DNA was detected in the peripheral blood and bone marrow. Thus, she was diagnosed as chronic active EB virus infection.

  20. In vitro and in vivo activity of ribavirin against Andes virus infection.

    Directory of Open Access Journals (Sweden)

    David Safronetz

    Full Text Available Pathogenic hantaviruses are a closely related group of rodent-borne viruses which are responsible for two distinct diseases in humans, hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome (HPS, otherwise known as hantavirus cardiopulmonary syndrome, HCPS. The antiviral effect of ribavirin against Old World hantaviruses, most notably Hantaan virus, is well documented; however, only a few studies have addressed its inhibitory effect on New World hantaviruses. In the present study, we demonstrate that ribavirin is highly active against Andes virus (ANDV, an important etiological agent of HPS, both in vitro and in vivo using a lethal hamster model of HPS. Treatment of ANDV infected Vero E6 cells with ribavirin resulted in dose-dependent reductions in viral RNA and protein as well as virus yields with a half maximal inhibitory concentration between 5 and 12.5 µg ml(-1. In hamsters, treatment with as little as 5 mg kg(-1 day(-1 was 100% effective at preventing lethal HPS disease when therapy was administered by intraperitoneal injection from day 1 through day 10 post-infection. Significant reductions were observed in ANDV RNA and antigen positive cells in lung and liver tissues. Ribavirin remained completely protective when administered by intraperitoneal injections up to three days post-infection. In addition, we show that daily oral ribavirin therapy initiated 1 day post-infection and continuing for ten days is also protective against lethal ANDV disease, even at doses of 5 mg kg(-1 day(-1. Our results suggest ribavirin treatment is beneficial for postexposure prophylaxis against HPS-causing hantaviruses and should be considered in scenarios where exposure to the virus is probable. The similarities between the results obtained in this study and those from previous clinical evaluations of ribavirin against HPS, further validate the hamster model of lethal HPS and demonstrate its usefulness in screening antiviral agents against

  1. Impact of Hepatitis C Virus Coinfection on Response to Highly Active Antiretroviral Therapy and Outcome in HIV-Infected Individuals: A Nationwide Cohort Study

    DEFF Research Database (Denmark)

    Weis, Nina Margrethe; Lindhardt, Bjarne Ø.; Kronborg, Gitte

    2006-01-01

    BACKGROUND: Coinfection with hepatitis C virus (HCV) in human immunodeficiency virus (HIV) type 1-infected patients may decrease the effectiveness of highly active antiretroviral therapy. We determined the impact of HCV infection on response to highly active antiretroviral therapy and outcome among...

  2. Impact of hepatitis C virus coinfection on response to highly active antiretroviral therapy and outcome in HIV-infected individuals: a nationwide cohort study

    DEFF Research Database (Denmark)

    Weis, Nina Margrethe; Lindhardt, Bjarne Ø.; Kronborg, Gitte

    2006-01-01

    BACKGROUND: Coinfection with hepatitis C virus (HCV) in human immunodeficiency virus (HIV) type 1-infected patients may decrease the effectiveness of highly active antiretroviral therapy. We determined the impact of HCV infection on response to highly active antiretroviral therapy and outcome among...

  3. Dimerization Efficiency of Canine Distemper Virus Matrix Protein Regulates Membrane-Budding Activity.

    Science.gov (United States)

    Bringolf, Fanny; Herren, Michael; Wyss, Marianne; Vidondo, Beatriz; Langedijk, Johannes P; Zurbriggen, Andreas; Plattet, Philippe

    2017-08-15

    Paramyxoviruses rely on the matrix (M) protein to orchestrate viral assembly and budding at the plasma membrane. Although the mechanistic details remain largely unknown, structural data suggested that M dimers and/or higher-order oligomers may facilitate membrane budding. To gain functional insights, we employed a structure-guided mutagenesis approach to investigate the role of canine distemper virus (CDV) M protein self-assembly in membrane-budding activity. Three six-alanine-block (6A-block) mutants with mutations located at strategic oligomeric positions were initially designed. While the first one includes residues potentially residing at the protomer-protomer interface, the other two display amino acids located within two distal surface-exposed α-helices proposed to be involved in dimer-dimer contacts. We further focused on the core of the dimeric interface by mutating asparagine 138 (N138) to several nonconservative amino acids. Cellular localization combined with dimerization and coimmunopurification assays, performed under various denaturing conditions, revealed that all 6A-block mutants were impaired in self-assembly and cell periphery accumulation. These phenotypes correlated with deficiencies in relocating CDV nucleocapsid proteins to the cell periphery and in virus-like particle (VLP) production. Conversely, all M-N138 mutants remained capable of self-assembly, though to various extents, which correlated with proper accumulation and redistribution of nucleocapsid proteins at the plasma membrane. However, membrane deformation and VLP assays indicated that the M-N138 variants exhibiting the most reduced dimerization propensity were also defective in triggering membrane remodeling and budding, despite proper plasma membrane accumulation. Overall, our data provide mechanistic evidence that the efficiency of CDV M dimerization/oligomerization governs both cell periphery localization and membrane-budding activity. IMPORTANCE Despite the availability of

  4. Antiviral Activity of Crude Hydroethanolic Extract from Schinus terebinthifolia against Herpes simplex Virus Type 1.

    Science.gov (United States)

    Nocchi, Samara Requena; Companhoni, Mychelle Vianna Pereira; de Mello, João Carlos Palazzo; Dias Filho, Benedito Prado; Nakamura, Celso Vataru; Carollo, Carlos Alexandre; Silva, Denise Brentan; Ueda-Nakamura, Tânia

    2017-04-01

    Herpes simplex virus infections persist throughout the lifetime of the host and affect more than 80 % of the humans worldwide. The intensive use of available therapeutic drugs has led to undesirable effects, such as drug-resistant strains, prompting the search for new antiherpetic agents. Although diverse bioactivities have been identified in Schinus terebinthifolia , its antiviral activity has not attracted much attention. The present study evaluated the antiherpetic effects of a crude hydroethanolic extract from the stem bark of S. terebinthifolia against Herpes simplex virus type 1 in vitro and in vivo as well as its genotoxicity in bone marrow in mammals and established the chemical composition of the crude hydroethanolic extract based on liquid chromatography-diode array detector-mass spectrometry and MS/MS. The crude hydroethanolic extract inhibited all of the tested Herpes simplex virus type 1 strains in vitro and was effective in the attachment and penetration stages, and showed virucidal activity, which was confirmed by transmission electron microscopy. The micronucleus test showed that the crude hydroethanolic extract had no genotoxic effect at the concentrations tested. The crude hydroethanolic extract afforded protection against lesions that were caused by Herpes simplex virus type 1 in vivo . Liquid chromatography-diode array detector-mass spectrometry and MS/MS identified 25 substances, which are condensed tannins mainly produced by a B-type linkage and prodelphinidin and procyanidin units. Georg Thieme Verlag KG Stuttgart · New York.

  5. Mx Is Not Responsible for the Antiviral Activity of Interferon-α against Japanese Encephalitis Virus

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2017-01-01

    Full Text Available Mx proteins are interferon (IFN-induced dynamin-like GTPases that are present in all vertebrates and inhibit the replication of myriad viruses. However, the role Mx proteins play in IFN-mediated suppression of Japanese encephalitis virus (JEV infection is unknown. In this study, we set out to investigate the effects of Mx1 and Mx2 expression on the interferon-α (IFNα restriction of JEV replication. To evaluate whether the inhibitory activity of IFNα on JEV is dependent on Mx1 or Mx2, we knocked down Mx1 or Mx2 with siRNA in IFNα-treated PK-15 cells and BHK-21 cells, then challenged them with JEV; the production of progeny virus was assessed by plaque assay, RT-qPCR, and Western blotting. Our results demonstrated that depletion of Mx1 or Mx2 did not affect JEV restriction imposed by IFNα, although these two proteins were knocked down 66% and 79%, respectively. Accordingly, expression of exogenous Mx1 or Mx2 did not change the inhibitory activity of IFNα to JEV. In addition, even though virus-induced membranes were damaged by Brefeldin A (BFA, overexpressing porcine Mx1 or Mx2 did not inhibit JEV proliferation. We found that BFA inhibited JEV replication, not maturation, suggesting that BFA could be developed into a novel antiviral reagent. Collectively, our findings demonstrate that IFNα inhibits JEV infection by Mx-independent pathways.

  6. Measles virus C protein suppresses gamma-activated factor formation and virus-induced cell growth arrest

    International Nuclear Information System (INIS)

    Yokota, Shin-ichi; Okabayashi, Tamaki; Fujii, Nobuhiro

    2011-01-01

    Measles virus (MeV) produces two accessory proteins, V and C, from the P gene. These accessory proteins have been reported to contribute to efficient virus proliferation through the modulation of host cell events. Our previous paper described that Vero cell-adapted strains of MeV led host cells to growth arrest through the upregulation of interferon regulatory factor 1 (IRF-1), and wild strains did not. In the present study, we found that C protein expression levels varied among MeV strains in infected SiHa cells. C protein levels were inversely correlated with IRF-1 expression levels and with cell growth arrest. Forced expression of C protein released cells from growth arrest. C-deficient recombinant virus efficiently upregulated IRF-1 and caused growth arrest more efficiently than the wild-type virus. C protein preferentially bound to phosphorylated STAT1 and suppressed STAT1 dimer formation. We conclude that MeV C protein suppresses IFN-γ signaling pathway via inhibition of phosphorylated STAT1 dimerization.

  7. Immunological responses against human papilloma virus and human papilloma virus induced laryngeal cancer.

    Science.gov (United States)

    Chitose, Shun-ichi; Sakazaki, T; Ono, T; Kurita, T; Mihashi, H; Nakashima, T

    2010-06-01

    This study aimed to clarify the local immune status in the larynx in the presence of infection or carcinogenesis associated with human papilloma virus. Cytological samples (for human papilloma virus detection) and laryngeal secretions (for immunoglobulin assessment) were obtained from 31 patients with laryngeal disease, during microscopic laryngeal surgery. On histological examination, 12 patients had squamous cell carcinoma, four had laryngeal papilloma and 15 had other benign laryngeal disease. Cytological samples were tested for human papilloma virus DNA using the Hybrid Capture 2 assay. High risk human papilloma virus DNA was detected in 25 per cent of patients (three of 12) with laryngeal cancer. Low risk human papilloma virus DNA was detected only in three laryngeal papilloma patients. The mean laryngeal secretion concentrations of immunoglobulins M, G and A and secretory immunoglobulin A in human papilloma virus DNA positive patients were more than twice those in human papilloma virus DNA negative patients. A statistically significant difference was observed between the secretory immunoglobulin A concentrations in the two groups. Patients with laryngeal cancer had higher laryngeal secretion concentrations of each immunoglobulin type, compared with patients with benign laryngeal disease. The study assessed the mean laryngeal secretion concentrations of each immunoglobulin type in the 12 laryngeal cancer patients, comparing human papilloma virus DNA positive patients (n = 3) and human papilloma virus DNA negative patients (n = 9); the mean concentrations of immunoglobulins M, G and A and secretory immunoglobulin A tended to be greater in human papilloma virus DNA positive cancer patients, compared with human papilloma virus DNA negative cancer patients. These results suggest that the local laryngeal immune response is activated by infection or carcinogenesis due to human papilloma virus. The findings strongly suggest that secretory IgA has inhibitory activity

  8. Synthesis and Early Development of Hexadecyloxypropyl-cidofovir: An Oral Antipoxvirus Nucleoside Phosphonate

    Directory of Open Access Journals (Sweden)

    Karl Y. Hostetler

    2010-09-01

    Full Text Available Hexadecyloxypropyl-cidofovir (HDP-CDV is a novel ether lipid conjugate of (S-1-(3-hydroxy-2-phosphonoylmethoxypropyl-cytosine (CDV which exhibits a remarkable increase in antiviral activity against orthopoxviruses compared with CDV. In contrast to CDV, HDP-CDV is orally active and lacks the nephrotoxicity of CDV itself. Increased oral bioavailability and increased cellular uptake is facilitated by the lipid portion of the molecule which is responsible for the improved activity profile. The lipid portion of HDP-CDV is cleaved in the cell, releasing CDV which is converted to CDV diphosphate, the active metabolite. HDP-CDV is a highly effective agent against a variety of orthopoxvirus infections in animal models of disease including vaccinia, cowpox, rabbitpox and ectromelia. Its activity was recently demonstrated in a case of human disseminated vaccinia infection after it was added to a multiple drug regimen. In addition to the activity against orthopoxviruses, HDP-CDV (CMX001 is active against all double stranded DNA viruses including CMV, HSV-1, HSV-2, EBV, adenovirus, BK virus, orf, JC, and papilloma viruses, and is under clinical evaluation as a treatment for human infections with these agents.

  9. Ring structure amino acids affect the suppressor activity of melon aphid-borne yellows virus P0 protein.

    Science.gov (United States)

    Han, Yan-Hong; Xiang, Hai-Ying; Wang, Qian; Li, Yuan-Yuan; Wu, Wen-Qi; Han, Cheng-Gui; Li, Da-Wei; Yu, Jia-Lin

    2010-10-10

    Melon aphid-borne yellows virus (MABYV) is a newly identified polerovirus occurring in China. Here, we demonstrate that the MABYV encoded P0 (P0(MA)) protein is a strong suppressor of post-transcriptional gene silencing (PTGS) with activity comparable to tobacco etch virus (TEV) HC-Pro. In addition we have shown that the LP F-box motif present at the N-terminus of P0(MA) is required for suppressor activity. Detailed mutational analyses on P0(MA) revealed that changing the conserved Trp 212 with non-ring structured amino acids altered silencing suppressor functions. Ala substitutions at positions 12 and 211 for Phe had no effect on P0 suppression-activity, whereas Arg and Glu substitutions had greatly decreased suppressor activity. Furthermore, substitutions targeting Phe at position 30 also resulted in reduced P0 suppression-activity. Altogether, these results suggest that ring structured Trp/Phe residues in P0 have important roles in suppressor activity. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Comparative analysis of disease activity in patients of chronic hepatitis B virus, with and without super infection with hepatitis D virus; an experience at tertiary care centre

    International Nuclear Information System (INIS)

    Hassan, K.D.; Mahmood, T.; Farooq, M.U.

    2008-01-01

    The hepatitis D virus super-infection contributes significantly to the morbidity and mortality of hepatitis B virus infection. The objectives were to describe the incidence of Hepatitis D virus and comparative analysis of disease activity in patients of chronic hepatitis B virus, with and without super-infection of hepatitis D virus. This Cross-sectional comparative study was conducted at Department of Medicine and Gastroenterology Clinic Jinnah Postgraduate Medical Centre, Karachi, Pakistan from February 2007 to July 2007. HBsAg positive patients who attended our Gastroenterology clinic were selected for the study. After screening for Anti-HDV these patients were segregated in to Anti-HDV positive and negative groups. Data was analyzed on SPSS 12. Eighty-four patients were selected. Seventy-three patients who fulfilled the inclusion criteria were enrolled in to the study. Anti-HDV was positive in 23 (31.5%) patients. Among these 23 anti-HDV positive, HDV-RNA was detected in 15 (75%) patients. The differences of age, gender, marital status and area of residence whether rural or urban were not significant between the two groups. HBV-DNA was significantly suppressed in majority of anti- HDV positive patients (p=0.019). Mean serum ALT levels were significantly higher in patients who had HDV infection (p=0.014). HDV infection was common in this series of patients with a frequency of 31.5%. All patients of chronic HBV should be screened for HDV whether they are asymptomatic HBV carriers or have chronic active hepatitis particularly when they have raised serum ALT. (author)

  11. Antiviral activity of the dichloromethane extracts from Artocarpus heterophyllus leaves against hepatitis C virus

    OpenAIRE

    Achmad Fuad Hafid; Chie Aoki-Utsubo; Adita Ayu Permanasari; Myrna Adianti; Lydia Tumewu; Aty Widyawaruyanti; Sri Puji Astuti Wahyuningsih; Tutik Sri Wahyuni; Maria Inge Lusida; Soetjipto; Hak Hotta

    2017-01-01

    Objective: To determine anti-viral activities of three Artocarpus species: Artocarpus altilis, Artocarpus camansi, and Artocarpus heterophyllus (A. heterophyllus) against Hepatitis C Virus (HCV). Methods: Antiviral activities of the crude extracts were examined by cell culture method using Huh7it-1 cells and HCV genotype 2a strain JFH1. The mode of action for anti-HCV activities was determined by time-of-addition experiments. The effect on HCV RNA replication and HCV accumulation in cells ...

  12. Long-term use of first-line highly active antiretroviral therapy is not associated with carotid artery stiffness in human immunodeficiency virus-positive patients

    Directory of Open Access Journals (Sweden)

    Haohui Zhu

    2014-09-01

    Conclusion: The first-line highly active antiretroviral therapy currently used in China is not associated with carotid artery stiffness in human immunodeficiency virus-positive patients with good highly active antiretroviral therapy compliance. Human immunodeficiency virus may play a role in the development of atherosclerosis.

  13. Cloning of the first human anti-JCPyV/vp1 neutralizing monoclonal antibody: Epitope definition and implications in risk stratification of patients under natalizumab therapy

    Czech Academy of Sciences Publication Activity Database

    Diotti, R.A.; Mancini, N.; Clementi, N.; Sautto, G.; Moreno, G.J.; Criscuolo, E.; Cappalletti, F.; Man, Petr; Forest, E.; Remy, L.; Giannecchini, S.; Clementi, M.; Burioni, R.

    2014-01-01

    Roč. 108, č. 2 (2014), s. 94-103 ISSN 0166-3542 Institutional support: RVO:61388971 Keywords : natalizumab * JC virus * multiple sclerosis Subject RIV: EE - Microbiology, Virology Impact factor: 3.938, year: 2014

  14. Human immunodeficiency virus-like particles activate multiple types of immune cells

    International Nuclear Information System (INIS)

    Sailaja, Gangadhara; Skountzou, Ioanna; Quan, Fu-Shi; Compans, Richard W.; Kang, Sang-Moo

    2007-01-01

    The rapid spread of human immunodeficiency virus (HIV) worldwide makes it a high priority to develop an effective vaccine. Since live attenuated or inactivated HIV is not likely to be approved as a vaccine due to safety concerns, HIV virus like particles (VLPs) offer an attractive alternative because they are safe due to the lack of a viral genome. Although HIV VLPs have been shown to induce humoral and cellular immune responses, it is important to understand the mechanisms by which they induce such responses and to improve their immunogenicity. We generated HIV VLPs, and VLPs containing Flt3 ligand (FL), a dendritic cell growth factor, to target VLPs to dendritic cells, and investigated the roles of these VLPs in the initiation of adaptive immune responses in vitro and in vivo. We found that HIV-1 VLPs induced maturation of dendritic cells and monocyte/macrophage populations in vitro and in vivo, with enhanced expression of maturation markers and cytokines. Dendritic cells pulsed with VLPs induced activation of splenocytes resulting in increased production of cytokines. VLPs containing FL were found to increase dendritic cells and monocyte/macrophage populations in the spleen when administered to mice. Administration of VLPs induced acute activation of multiple types of cells including T and B cells as indicated by enhanced expression of the early activation marker CD69 and down-regulation of the homing receptor CD62L. VLPs containing FL were an effective form of antigen in activating immune cells via dendritic cells, and immunization with HIV VLPs containing FL resulted in enhanced T helper type 2-like immune responses

  15. Preventive Activity against Influenza (H1N1 Virus by Intranasally Delivered RNA-Hydrolyzing Antibody in Respiratory Epithelial Cells of Mice

    Directory of Open Access Journals (Sweden)

    Seungchan Cho

    2015-09-01

    Full Text Available The antiviral effect of a catalytic RNA-hydrolyzing antibody, 3D8 scFv, for intranasal administration against avian influenza virus (H1N1 was described. The recombinant 3D8 scFv protein prevented BALB/c mice against H1N1 influenza virus infection by degradation of the viral RNA genome through its intrinsic RNA-hydrolyzing activity. Intranasal administration of 3D8 scFv (50 μg/day for five days prior to infection demonstrated an antiviral activity (70% survival against H1N1 infection. The antiviral ability of 3D8 scFv to penetrate into epithelial cells from bronchial cavity via the respiratory mucosal layer was confirmed by immunohistochemistry, qRT-PCR, and histopathological examination. The antiviral activity of 3D8 scFv against H1N1 virus infection was not due to host immune cytokines or chemokines, but rather to direct antiviral RNA-hydrolyzing activity of 3D8 scFv against the viral RNA genome. Taken together, our results suggest that the RNase activity of 3D8 scFv, coupled with its ability to penetrate epithelial cells through the respiratory mucosal layer, directly prevents H1N1 virus infection in a mouse model system.

  16. No activation of new initiation points for deoxyribonucleic acid replication in BALB/c 3T3 cells transformed by Kirsten sarcoma virus

    International Nuclear Information System (INIS)

    Oppenheim, A.; Horowitz, A.T.

    1981-01-01

    BALB/c 3T3 cells were transformed by Kirsten sarcoma virus, and five clones were isolated in soft agar. Average replicon sizes of the transformed cell lines were stimated by the method of fiber-autoradiography and found to be the same size as the nontransformed 3T3 cells, analyzed in parallel. The results indicate that, unlike simian virus 40 and Epstein-Barr virus, Kirsten sarcoma virus does not activate new initiation points for cellular deoxyribonucleic acid replication in murine sarcome virus-transformed BALB/c 3T3 cells

  17. Astrocytes play a key role in activation of microglia by persistent Borna disease virus infection

    Directory of Open Access Journals (Sweden)

    Sauder Christian

    2008-11-01

    Full Text Available Abstract Neonatal Borna disease virus (BDV infection of the rat brain is associated with microglial activation and damage to certain neuronal populations. Since persistent BDV infection of neurons is nonlytic in vitro, activated microglia have been suggested to be responsible for neuronal cell death in vivo. However, the mechanisms of activation of microglia in neonatally BDV-infected rat brains remain unclear. Our previous studies have shown that activation of microglia by BDV in culture requires the presence of astrocytes as neither the virus nor BDV-infected neurons alone activate microglia. Here, we evaluated the mechanisms whereby astrocytes can contribute to activation of microglia in neuron-glia-microglia mixed cultures. We found that persistent infection of neuronal cells leads to activation of uninfected astrocytes as measured by elevated expression of RANTES. Activation of astrocytes then produces activation of microglia as evidenced by increased formation of round-shaped, MHCI-, MHCII- and IL-6-positive microglia cells. Our analysis of possible molecular mechanisms of activation of astrocytes and/or microglia in culture indicates that the mediators of activation may be soluble heat-resistant, low molecular weight factors. The findings indicate that astrocytes may mediate activation of microglia by BDV-infected neurons. The data are consistent with the hypothesis that microglia activation in the absence of neuronal damage may represent initial steps in the gradual neurodegeneration observed in brains of neonatally BDV-infected rats.

  18. Inhibition of Interferon Induction and Action by the Nairovirus Nairobi Sheep Disease Virus/Ganjam Virus

    OpenAIRE

    Holzer, Barbara; Bakshi, Siddharth; Bridgen, Anne; Baron, Michael D.

    2011-01-01

    The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic fever virus) and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV)). NSDV is found in large parts of East Africa and the Indian subcontinent (where it is known as Ganjam virus). We have investigated the ability of NSDV to antagonise the induction and actions of interferon. Both pathogenic and apathogenic isolates could actively inhibit the induction of type ...

  19. Rigid amphipathic fusion inhibitors demonstrate antiviral activity against African swine fever virus.

    Science.gov (United States)

    Hakobyan, Astghik; Galindo, Inmaculada; Nañez, Almudena; Arabyan, Erik; Karalyan, Zaven; Chistov, Alexey A; Streshnev, Philipp P; Korshun, Vladimir A; Alonso, Covadonga; Zakaryan, Hovakim

    2018-01-01

    Rigid amphipathic fusion inhibitors (RAFIs) are a family of nucleoside derivatives that inhibit the infectivity of several enveloped viruses by interacting with virion envelope lipids and inhibiting fusion between viral and cellular membranes. Here we tested the antiviral activity of two RAFIs, 5-(Perylen-3-ylethynyl)-arabino-uridine (aUY11) and 5-(Perylen-3-ylethynyl)uracil-1-acetic acid (cm1UY11) against African swine fever virus (ASFV), for which no effective vaccine is available. Both compounds displayed a potent, dose-dependent inhibitory effect on ASFV infection in Vero cells. The major antiviral effect was observed when aUY11 and cm1UY11 were added at early stages of infection and maintained during the complete viral cycle. Furthermore, virucidal assay revealed a significant extracellular anti-ASFV activity for both compounds. We also found decrease in the synthesis of early and late viral proteins in Vero cells treated with cm1UY11. Finally, the inhibitory effect of aUY11 and cm1UY11 on ASFV infection in porcine alveolar macrophages was confirmed. Overall, our study has identified novel anti-ASFV compounds with potential for future therapeutic developments.

  20. Human-like PB2 627K influenza virus polymerase activity is regulated by importin-α1 and -α7.

    Directory of Open Access Journals (Sweden)

    Ben Hudjetz

    2012-01-01

    Full Text Available Influenza A viruses may cross species barriers and transmit to humans with the potential to cause pandemics. Interplay of human- (PB2 627K and avian-like (PB2 627E influenza polymerase complexes with unknown host factors have been postulated to play a key role in interspecies transmission. Here, we have identified human importin-α isoforms (α1 and α7 as positive regulators of human- but not avian-like polymerase activity. Human-like polymerase activity correlated with efficient recruitment of α1 and α7 to viral ribonucleoprotein complexes (vRNPs without affecting subcellular localization. We also observed that human-like influenza virus growth was impaired in α1 and α7 downregulated human lung cells. Mice lacking α7 were less susceptible to human- but not avian-like influenza virus infection. Thus, α1 and α7 are positive regulators of human-like polymerase activity and pathogenicity beyond their role in nuclear transport.

  1. Tunable protease-activatable virus nanonodes.

    Science.gov (United States)

    Judd, Justin; Ho, Michelle L; Tiwari, Abhinav; Gomez, Eric J; Dempsey, Christopher; Van Vliet, Kim; Igoshin, Oleg A; Silberg, Jonathan J; Agbandje-McKenna, Mavis; Suh, Junghae

    2014-05-27

    We explored the unique signal integration properties of the self-assembling 60-mer protein capsid of adeno-associated virus (AAV), a clinically proven human gene therapy vector, by engineering proteolytic regulation of virus-receptor interactions such that processing of the capsid by proteases is required for infection. We find the transfer function of our engineered protease-activatable viruses (PAVs), relating the degree of proteolysis (input) to PAV activity (output), is highly nonlinear, likely due to increased polyvalency. By exploiting this dynamic polyvalency, in combination with the self-assembly properties of the virus capsid, we show that mosaic PAVs can be constructed that operate under a digital AND gate regime, where two different protease inputs are required for virus activation. These results show viruses can be engineered as signal-integrating nanoscale nodes whose functional properties are regulated by multiple proteolytic signals with easily tunable and predictable response surfaces, a promising development toward advanced control of gene delivery.

  2. Immunomodulatory Activity of Red Ginseng against Influenza A Virus Infection

    Directory of Open Access Journals (Sweden)

    Jong Seok Lee

    2014-01-01

    Full Text Available Ginseng herbal medicine has been known to have beneficial effects on improving human health. We investigated whether red ginseng extract (RGE has preventive effects on influenza A virus infection in vivo and in vitro. RGE was found to improve survival of human lung epithelial cells upon influenza virus infection. Also, RGE treatment reduced the expression of pro-inflammatory genes (IL-6, IL-8 probably in part through interference with the formation of reactive oxygen species by influenza A virus infection. Long-term oral administration of mice with RGE showed multiple immunomodulatory effects such as stimulating antiviral cytokine IFN-γ production after influenza A virus infection. In addition, RGE administration in mice inhibited the infiltration of inflammatory cells into the bronchial lumens. Therefore, RGE might have the potential beneficial effects on preventing influenza A virus infections via its multiple immunomodulatory functions.

  3. Humoral markers of active Epstein-Barr virus infection associate with anti-extractable nuclear antigen autoantibodies and plasma galectin-3 binding protein in systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Rasmussen, N S; Nielsen, C T; Houen, G

    2016-01-01

    We investigated if signs of active Epstein-Barr virus and cytomegalovirus infections associate with certain autoantibodies and a marker of type I interferon activity in patients with systemic lupus erythematosus. IgM and IgG plasma levels against Epstein-Barr virus early antigen diffuse...... and cytomegalovirus pp52 were applied as humoral markers of ongoing/recently active Epstein-Barr virus and cytomegalovirus infections, respectively. Plasma galectin-3 binding protein served as a surrogate marker of type I interferon activity. The measurements were conducted in 57 systemic lupus erythematosus patients...... concentrations were significantly higher in systemic lupus erythematosus patients (P = 0.009) and associated positively with Epstein-Barr virus early antigen diffuse-directed antibodies and the presence of autoantibodies against extractable nuclear antigens in adjusted linear regressions (B = 2.02 and 2.02, P...

  4. Hemin potentiates the anti-hepatitis C virus activity of the antimalarial drug artemisinin

    International Nuclear Information System (INIS)

    Paeshuyse, Jan; Coelmont, Lotte; Vliegen, Inge; Hemel, Johan van; Vandenkerckhove, Jan; Peys, Eric; Sas, Benedikt; Clercq, Erik De; Neyts, Johan

    2006-01-01

    We report that the antimalarial drug artemisinin inhibits hepatitis C virus (HCV) replicon replication in a dose-dependent manner in two replicon constructs at concentrations that have no effect on the proliferation of the exponentially growing host cells. The 50% effective concentration (EC 5 ) for inhibition of HCV subgenomic replicon replication in Huh 5-2 cells (luciferase assay) by artemisinin was 78 ± 21 μM. Hemin, an iron donor, was recently reported to inhibit HCV replicon replication [mediated by inhibition of the viral polymerase (C. Fillebeen, A.M. Rivas-Estilla, M. Bisaillon, P. Ponka, M. Muckenthaler, M.W. Hentze, A.E. Koromilas, K. Pantopoulos, Iron inactivates the RNA polymerase NS5B and suppresses subgenomic replication of hepatitis C virus, J. Biol. Chem. 280 (2005) 9049-9057.)] at a concentration that had no adverse effect on the host cells. When combined, artemisinin and hemin resulted, over a broad concentration range, in a pronounced synergistic antiviral activity. Also at a concentration (2 μM) that alone had no effect on HCV replication, hemin still potentiated the anti-HCV activity of artemisinin

  5. Hemin potentiates the anti-hepatitis C virus activity of the antimalarial drug artemisinin

    Energy Technology Data Exchange (ETDEWEB)

    Paeshuyse, Jan [Rega Institute for Medical Research, Minderbroedersstraat 10, KULeuven, B-3000 Leuven (Belgium); Coelmont, Lotte [Rega Institute for Medical Research, Minderbroedersstraat 10, KULeuven, B-3000 Leuven (Belgium); Vliegen, Inge [Rega Institute for Medical Research, Minderbroedersstraat 10, KULeuven, B-3000 Leuven (Belgium); Hemel, Johan van [Kemin Pharma, Atealaan 4H, B-2200 Herentals (Belgium); Vandenkerckhove, Jan [Kemin Pharma, Atealaan 4H, B-2200 Herentals (Belgium); Peys, Eric [Kemin Pharma, Atealaan 4H, B-2200 Herentals (Belgium); Sas, Benedikt [Kemin Pharma, Atealaan 4H, B-2200 Herentals (Belgium); Clercq, Erik De [Rega Institute for Medical Research, Minderbroedersstraat 10, KULeuven, B-3000 Leuven (Belgium); Neyts, Johan [Rega Institute for Medical Research, Minderbroedersstraat 10, KULeuven, B-3000 Leuven (Belgium)

    2006-09-15

    We report that the antimalarial drug artemisinin inhibits hepatitis C virus (HCV) replicon replication in a dose-dependent manner in two replicon constructs at concentrations that have no effect on the proliferation of the exponentially growing host cells. The 50% effective concentration (EC{sub 5}) for inhibition of HCV subgenomic replicon replication in Huh 5-2 cells (luciferase assay) by artemisinin was 78 {+-} 21 {mu}M. Hemin, an iron donor, was recently reported to inhibit HCV replicon replication [mediated by inhibition of the viral polymerase (C. Fillebeen, A.M. Rivas-Estilla, M. Bisaillon, P. Ponka, M. Muckenthaler, M.W. Hentze, A.E. Koromilas, K. Pantopoulos, Iron inactivates the RNA polymerase NS5B and suppresses subgenomic replication of hepatitis C virus, J. Biol. Chem. 280 (2005) 9049-9057.)] at a concentration that had no adverse effect on the host cells. When combined, artemisinin and hemin resulted, over a broad concentration range, in a pronounced synergistic antiviral activity. Also at a concentration (2 {mu}M) that alone had no effect on HCV replication, hemin still potentiated the anti-HCV activity of artemisinin.

  6. Effectively utilising a 3rd party 3D visualization component in a discrete event simulation environment for Joint Command and Control (JC2)

    CSIR Research Space (South Africa)

    Ramadeen, P

    2009-09-01

    Full Text Available Roux [1]. Figure 13 shows the how the systems were connected during the respective exercises and operations. The computer icon represents a node. 7.2 Confederation Cup The Confederation Cup is a football tournament hosted by FIFA (The Fédération... Internationale de Football Association). It was held in South Africa in June 2009. Joint Command and Control is vital in events of this nature. JC2 includes include airspace control. The system was used as an Incident Management Tool to track and log...

  7. CNS activity of Pokeweed Anti-viral Protein (PAP in mice infected with Lymphocytic Choriomeningitis Virus (LCMV

    Directory of Open Access Journals (Sweden)

    Tibbles Heather E

    2005-02-01

    Full Text Available Abstract Background Others and we have previously described the potent in vivo and in vitro activity of the broad-spectrum antiviral agent PAP (Pokeweed antiviral protein against a wide range of viruses. The purpose of the present study was to further elucidate the anti-viral spectrum of PAP by examining its effects on the survival of mice challenged with lymphocytic choriomeningitis virus (LCMV. Methods We examined the therapeutic effect of PAP in CBA mice inoculated with intracerebral injections of the WE54 strain of LCMV at a 1000 PFU dose level that is lethal to 100% of mice within 7–9 days. Mice were treated either with vehicle or PAP administered intraperitoneally 24 hours prior to, 1 hour prior to and 24 hours, 48 hours 72 hours and 96 hours after virus inoculation. Results PAP exhibits significant in vivo anti- LCMV activity in mice challenged intracerebrally with an otherwise invariably fatal dose of LCMV. At non-toxic dose levels, PAP significantly prolonged survival in the absence of the majority of disease-associated symptoms. The median survival time of PAP-treated mice was >21 days as opposed to 7 days median survival for the control (p = 0.0069. Conclusion Our results presented herein provide unprecedented experimental evidence that PAP exhibits antiviral activity in the CNS of LCMV-infected mice.

  8. Filovirus pathogenesis and immune evasion: insights from Ebola virus and Marburg virus

    Energy Technology Data Exchange (ETDEWEB)

    Messaoudi, Ilhem; Amarasinghe, Gaya K.; Basler, Christopher F.

    2015-10-06

    Ebola viruses and Marburg viruses, members of the filovirus family, are zoonotic pathogens that cause severe disease in people, as highlighted by the latest Ebola virus epidemic in West Africa. Filovirus disease is characterized by uncontrolled virus replication and the activation of host responses that contribute to pathogenesis. Underlying these phenomena is the potent suppression of host innate antiviral responses, particularly the type I interferon response, by viral proteins, which allows high levels of viral replication. In this Review, we describe the mechanisms used by filoviruses to block host innate immunity and discuss the links between immune evasion and filovirus pathogenesis.

  9. Progressive multifocal leukoencephalopathy. Epidemiology, clinical pictures, diagnosis and therapy

    International Nuclear Information System (INIS)

    Kishida, Shuji

    2007-01-01

    Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system caused by the reactivation of a ubiquitous polyomavirus JC (JCV). PML was for many years a rare disease occurring only in patients with underlying severe impaired immunity. Over the past three decades, the incidence of PML has significantly increased related to the AIDS (acquired immunodeficiency syndrome) pandemic and, more recently, to the growing use of immunosuppressive drugs. The clinical presentation of PML is variable with neurological symptoms corresponding to affected cerebral areas. Usually, the clinical outcome of patients with PML is poor with an inexorable progression to death within 6 months of symptom onset. Although PML usually requires a brain biopsy or autopsy for confirmation, radiological imaging and a demonstration of JCV-DNA in the CSF (cerebrospinal fluid) provide supportive evidence for the diagnosis. Although there is no proven effective therapy for PML, patients with HIV (human immunodeficeincy virus)-related PML may benefit significantly from HAART (highly active antiretroviral therapy). In this article the author reviews the epidemiology, especially in Japan, current challenges in the diagnosis and the treatment guidelines of patients with PML based on recent advances in the understanding of the JC virus biology. (author)

  10. Assessment of sperm viability, mitochondrial activity, capacitation and acrosome intactness in extended boar semen during long-term storage.

    Science.gov (United States)

    Huo, Li-Jun; Ma, Xing-Hong; Yang, Zeng-Ming

    2002-10-15

    The purpose of this study was to assess sperm quality in extended boar semen during in vitro storage in order to determine which extender should be used and how long boar semen can be stored. Freshly ejaculated boar semen was diluted with equal volumes of Beltsville thaw solution (BTS), Androhep, KIEV or Zorlesco extenders and stored at 17 degrees C for up to 15 days. Sperm quality was evaluated by examining viability using SYBR-14/PI and Hoechst 33258 staining, mitochondrial activity using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) staining, acrosome intactness by Coomassie blue staining, and capacitation status by chlortetracycline (CTC) staining. There were over 50% viable spermatozoa in boar semen extended with Zorlesco and Androhep extenders on Day 13 of storage. The percentage of JC-1-stained spermatozoa was 53.8 +/- 2.1% for Zorlesco and 57.7 +/- 1.60% for Androhep extenders on Day 13 of storage. The percentage of acrosome-intact spermatozoa detected by Coomassie blue staining was higher than that in the SYBR-14PI-, Hoechst 33258-, and JC-1-stained samples in our study. The results from SYBR-14/PI, Hoechst 33258, JC-1, and Coomassie blue staining were highly correlated (r > or = 0.9461). There were less than 15% capacitated spermatozoa in the semen extended with BTS, Androhep and Zorlesco extenders during 9 days of storage. However, most viable boar spermatozoa became capacitated by Day 13 of storage. The rank order of four extenders for maintaining sperm viability and mitochondrial activity was as follows: Androhep, Zorlesco, BTS, KIEV.

  11. Discovery of a novel compound with anti-venezuelan equine encephalitis virus activity that targets the nonstructural protein 2.

    Directory of Open Access Journals (Sweden)

    Dong-Hoon Chung

    2014-06-01

    Full Text Available Alphaviruses present serious health threats as emerging and re-emerging viruses. Venezuelan equine encephalitis virus (VEEV, a New World alphavirus, can cause encephalitis in humans and horses, but there are no therapeutics for treatment. To date, compounds reported as anti-VEEV or anti-alphavirus inhibitors have shown moderate activity. To discover new classes of anti-VEEV inhibitors with novel viral targets, we used a high-throughput screen based on the measurement of cell protection from live VEEV TC-83-induced cytopathic effect to screen a 340,000 compound library. Of those, we identified five novel anti-VEEV compounds and chose a quinazolinone compound, CID15997213 (IC50 = 0.84 µM, for further characterization. The antiviral effect of CID15997213 was alphavirus-specific, inhibiting VEEV and Western equine encephalitis virus, but not Eastern equine encephalitis virus. In vitro assays confirmed inhibition of viral RNA, protein, and progeny synthesis. No antiviral activity was detected against a select group of RNA viruses. We found mutations conferring the resistance to the compound in the N-terminal domain of nsP2 and confirmed the target residues using a reverse genetic approach. Time of addition studies showed that the compound inhibits the middle stage of replication when viral genome replication is most active. In mice, the compound showed complete protection from lethal VEEV disease at 50 mg/kg/day. Collectively, these results reveal a potent anti-VEEV compound that uniquely targets the viral nsP2 N-terminal domain. While the function of nsP2 has yet to be characterized, our studies suggest that the protein might play a critical role in viral replication, and further, may represent an innovative opportunity to develop therapeutic interventions for alphavirus infection.

  12. Regulation of ROS in transmissible gastroenteritis virus-activated apoptotic signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Li [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158 (China); Zhao, Xiaomin; Huang, Yong; Du, Qian; Dong, Feng; Zhang, Hongling; Song, Xiangjun; Zhang, Wenlong [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); Tong, Dewen, E-mail: dwtong@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China)

    2013-12-06

    Highlights: •TGEV infection induced ROS accumulation. •ROS accumulation is involved in TGEV-induced mitochondrial integrity impairment. •ROS is associated with p53 activation and apoptosis occurrence in TGEV-infected cells. -- Abstract: Transmissible gastroenteritis virus (TGEV), an enteropathogenic coronavirus, causes severe lethal watery diarrhea and dehydration in piglets. Previous studies indicate that TGEV infection induces cell apoptosis in host cells. In this study, we investigated the roles and regulation of reactive oxygen species (ROS) in TGEV-activated apoptotic signaling. The results showed that TGEV infection induced ROS accumulation, whereas UV-irradiated TGEV did not promote ROS accumulation. In addition, TGEV infection lowered mitochondrial transmembrane potential in PK-15 cell line, which could be inhibited by ROS scavengers, pyrrolidinedithiocarbamic (PDTC) and N-acetyl-L-cysteine (NAC). Furthermore, the two scavengers significantly inhibited the activation of p38 MAPK and p53 and further blocked apoptosis occurrence through suppressing the TGEV-induced Bcl-2 reduction, Bax redistribution, cytochrome c release and caspase-3 activation. These results suggest that oxidative stress pathway might be a key element in TGEV-induced apoptosis and TGEV pathogenesis.

  13. Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication.

    Science.gov (United States)

    Thai, Minh; Graham, Nicholas A; Braas, Daniel; Nehil, Michael; Komisopoulou, Evangelia; Kurdistani, Siavash K; McCormick, Frank; Graeber, Thomas G; Christofk, Heather R

    2014-04-01

    Virus infections trigger metabolic changes in host cells that support the bioenergetic and biosynthetic demands of viral replication. Although recent studies have characterized virus-induced changes in host cell metabolism (Munger et al., 2008; Terry et al., 2012), the molecular mechanisms by which viruses reprogram cellular metabolism have remained elusive. Here, we show that the gene product of adenovirus E4ORF1 is necessary for adenovirus-induced upregulation of host cell glucose metabolism and sufficient to promote enhanced glycolysis in cultured epithelial cells by activation of MYC. E4ORF1 localizes to the nucleus, binds to MYC, and enhances MYC binding to glycolytic target genes, resulting in elevated expression of specific glycolytic enzymes. E4ORF1 activation of MYC promotes increased nucleotide biosynthesis from glucose intermediates and enables optimal adenovirus replication in primary lung epithelial cells. Our findings show how a viral protein exploits host cell machinery to reprogram cellular metabolism and promote optimal progeny virion generation. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Ebola Virus Disease Is Characterized by Poor Activation and Reduced Levels of Circulating CD16+ Monocytes.

    Science.gov (United States)

    Lüdtke, Anja; Ruibal, Paula; Becker-Ziaja, Beate; Rottstegge, Monika; Wozniak, David M; Cabeza-Cabrerizo, Mar; Thorenz, Anja; Weller, Romy; Kerber, Romy; Idoyaga, Juliana; Magassouba, N'Faly; Gabriel, Martin; Günther, Stephan; Oestereich, Lisa; Muñoz-Fontela, César

    2016-10-15

    A number of previous studies have identified antigen-presenting cells (APCs) as key targets of Ebola virus (EBOV), but the role of APCs in human Ebola virus disease (EVD) is not known. We have evaluated the phenotype and kinetics of monocytes, neutrophils, and dendritic cells (DCs) in peripheral blood of patients for whom EVD was diagnosed by the European Mobile Laboratory in Guinea. Acute EVD was characterized by reduced levels of circulating nonclassical CD16 + monocytes with a poor activation profile. In survivors, CD16 + monocytes were activated during recovery, coincident with viral clearance, suggesting an important role of this cell subset in EVD pathophysiology. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  15. The cyanobacterial lectin scytovirin displays potent in vitro and in vivo activity against Zaire Ebola virus.

    Science.gov (United States)

    Garrison, Aura R; Giomarelli, Barbara G; Lear-Rooney, Calli M; Saucedo, Carrie J; Yellayi, Srikanth; Krumpe, Lauren R H; Rose, Maura; Paragas, Jason; Bray, Mike; Olinger, Gene G; McMahon, James B; Huggins, John; O'Keefe, Barry R

    2014-12-01

    The cyanobacterial lectin scytovirin (SVN) binds with high affinity to mannose-rich oligosaccharides on the envelope glycoprotein (GP) of a number of viruses, blocking entry into target cells. In this study, we assessed the ability of SVN to bind to the envelope GP of Zaire Ebola virus (ZEBOV) and inhibit its replication. SVN interacted specifically with the protein's mucin-rich domain. In cell culture, it inhibited ZEBOV replication with a 50% virus-inhibitory concentration (EC50) of 50 nM, and was also active against the Angola strain of the related Marburg virus (MARV), with a similar EC50. Injected subcutaneously in mice, SVN reached a peak plasma level of 100 nm in 45 min, but was cleared within 4h. When ZEBOV-infected mice were given 30 mg/kg/day of SVN by subcutaneous injection every 6h, beginning the day before virus challenge, 9 of 10 animals survived the infection, while all infected, untreated mice died. When treatment was begun one hour or one day after challenge, 70-90% of mice survived. Quantitation of infectious virus and viral RNA in samples of serum, liver and spleen collected on days 2 and 5 postinfection showed a trend toward lower titers in treated than control mice, with a significant decrease in liver titers on day 2. Our findings provide further evidence of the potential of natural lectins as therapeutic agents for viral infections. Published by Elsevier B.V.

  16. Neurological Complications of AIDS

    Science.gov (United States)

    ... JC virus, which travels to the brain, infects multiple sites, and destroys the cells that make myelin – ... the infection. Individuals may experience anxiety disorder, depressive ... vomiting, and personality changes. Not all patients show signs of the ...

  17. Anti-dengue virus serotype 2 activity and mode of action of a novel peptide.

    Science.gov (United States)

    Chew, M-F; Tham, H-W; Rajik, M; Sharifah, S H

    2015-10-01

    To identify a novel antiviral peptide against dengue virus serotype 2 (DENV-2) by screening a phage display peptide library and to evaluate its in vitro antiviral activity and mode of action. A phage display peptide library was biopanned against purified DENV-2 and resulted in the identification and selection of a peptide (peptide gg-ww) for further investigation. ELISA was performed, and peptide gg-ww was shown to possess the highest binding affinity against DENV-2. Thus, peptide gg-ww was synthesized for cytotoxicity and antiviral assays. Virus plaque reduction assay, real-time PCR and immunofluorescence assay were used to investigate the inhibitory effect of peptide gg-ww on DENV-2 infection in Vero cells. Three different assays (pre-, simultaneous and post-treatments assays) were performed to investigate the peptide's mode of action. Results indicated that peptide gg-ww possessed strong antiviral activity with a ~96% inhibition rate, which was achieved at 250 μmol l(-1) . Viral replication was inhibited during a simultaneous treatment assay, indicating that the entry of the virus was impeded by this peptide. Peptide gg-ww displayed antiviral action against DENV-2 by targeting an early stage of viral replication (i.e. during viral entry). Peptide gg-ww may represent a new therapeutic candidate for the treatment of DENV infections and is a potential candidate to be developed as a peptide drug. © 2015 The Society for Applied Microbiology.

  18. Phenolic profile and antioxidant activity from non-toxic Mexican Jatropha curcas L. shell methanolic extracts.

    Science.gov (United States)

    Perea-Domínguez, Xiomara Patricia; Espinosa-Alonso, Laura Gabriela; Hosseinian, Farah; HadiNezhad, Mehri; Valdez-Morales, Maribel; Medina-Godoy, Sergio

    2017-03-01

    Jatropha curcas seed shells are the by-product obtained during oil extraction process. Recently, its chemical composition has gained attention since its potential applications. The aim of this study was to identify phenolic compounds profile from a non-toxic J. curcas shell from Mexico, besides, evaluate J. curcas shell methanolic extract (JcSME) antioxidant activity. Free, conjugate and bound phenolics were fractionated and quantified (606.7, 193.32 and 909.59 μg/g shell, respectively) and 13 individual phenolic compounds were detected by HPLC. The radical-scavenging activity of JcSME was similar to Trolox and ascorbic acid by DPPH assay while by ABTS assay it was similar to BHT. Effective antioxidant capacity by ORAC was found (426.44 ± 53.39 μmol Trolox equivalents/g shell). The Mexican non-toxic J. curcas shell is rich in phenolic compounds with high antioxidant activity; hence, it could be considerate as a good source of natural antioxidants.

  19. Mapping the history and current situation of research on John Cunningham virus – a bibliometric analysis

    Directory of Open Access Journals (Sweden)

    Guan Yi-fu

    2009-03-01

    Full Text Available Abstract Background John Cunningham virus (JCV constitutes a family of polyoma viruses, which plays important roles in the progressive multifocal leukoencephalopathy (PML and tumorigenesis. However, no bibliometric investigation has been reported to guide the researchers and potential readers. Methods Papers were collected from database Sci-expanded and Pubmed until May 22, 2008. The highly-productive authors, institutes and countries, highly-cited authors and journals were ranked. The highly-cited articles were subjected to co-citation and chronological analysis with highly-frequent MeSH words for co-occurrence analysis. Results Until now, 1785 articles about JCV were indexed in Sci-expanded and 1506 in Pubmed. The main document type was original article. USA, Japan and Italy were the largest three producers about JCV. Temple University published 128 papers and ranked the top, followed by University of Tokyo. Khalili K and Yogo Y became the core authors due to more than 20 documents produced. Journal of Neurovirology published more than 15 papers and ranked the top. Padgett BL and Berger JR were the first two highly-cited authors. Journal of Virology and Journal of Neurovirology respectively ranked to the first two highly-cited journals. These top highly-cited articles were divided into 5 aspects: (1 The correlation between JC virus and tumors; (2 Causal correlation of JCV with PML; (3 Polyoma virus infection and its related diseases in renal-allograft recipients; (4 Detection of JCV antibody, oncogene and its encoding protein; (5 Genetics and molecular biology of JCV. The MeSH/subheadings were classified into five groups: (1 JCV and virus infectious diseases; (2 JCV pathogenicity and pathological appearance of PML; (3 JCV isolation and detection; (4 Immunology of JCV and PML; (5 JCV genetics and tumors. Conclusion JCV investigation mainly focused on its isolation and detection, as well as its correlation with PML and tumors. Establishment of

  20. The human cathelicidin LL-37 has antiviral activity against respiratory syncytial virus.

    Directory of Open Access Journals (Sweden)

    Silke M Currie

    Full Text Available Respiratory syncytial virus is a leading cause of lower respiratory tract illness among infants, the elderly and immunocompromised individuals. Currently, there is no effective vaccine or disease modifying treatment available and novel interventions are urgently required. Cathelicidins are cationic host defence peptides expressed in the inflamed lung, with key roles in innate host defence against infection. We demonstrate that the human cathelicidin LL-37 has effective antiviral activity against RSV in vitro, retained by a truncated central peptide fragment. LL-37 prevented virus-induced cell death in epithelial cultures, significantly inhibited the production of new infectious particles and diminished the spread of infection, with antiviral effects directed both against the viral particles and the epithelial cells. LL-37 may represent an important targetable component of innate host defence against RSV infection. Prophylactic modulation of LL-37 expression and/or use of synthetic analogues post-infection may represent future novel strategies against RSV infection.

  1. Diterpenes from buds of Wikstroemia chamaedaphne showing anti-hepatitis B virus activities.

    Science.gov (United States)

    Li, Shi-Fei; Jiao, Ying-Ying; Zhang, Zhi-Qiang; Chao, Jian-Bin; Jia, Jie; Shi, Xun-Long; Zhang, Li-Wei

    2018-07-01

    Phytochemical study of the buds of Wikstroemia chamaedaphne Meisn. led to the isolation of seven previously undescribed diterpenes, including one tigliane diterpene (wikstchalide A), two daphnane diterpenes (wikstroelides W-X), and four lathyrane diterpenes (laurifoliosides A-B and 2-epi-laurifoliosides A-B), along with four known diterpenes. The structures of these compounds were established by extensive spectroscopic evidence and electronic circular dichroism (ECD) calculations. Wikstchalide A possesses a 5,6-epoxy ring in the tigliane skeleton. Two compounds exhibited potential anti-hepatitis B virus activities, with IC 50 values of 46.5 and 88.3 μg/mL against hepatitis B virus (HBV) surface antigen (HBsAg), and six compounds showed certain inhibitory effects on HBV-DNA replication with the inhibition ratios ranging from 2.0% to 33.0% at the concentrations ranging from 0.39 to 6.25 μg/mL. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. A new looming of Zika virus

    Institute of Scientific and Technical Information of China (English)

    Nirav R Soni

    2016-01-01

    Zika virus (ZIKV) is a member of the virus family Flaviviridae and the genus Flavivirus, transmitted by daytime-active Aedes mosquitoes, such as A. aegypti. ZIKV will continue to spread and it will be difficult to determine how the virus will spread over time. Sign and symptoms of ZIKAVD (Zika virus disease) were conjunctivitis (red eyes), back pain, birth defect-abnormal brain development known as microcephaly and it is diagnosed through PCR (polymerase chain reaction) and virus isolation from blood samples.

  3. Archaeal viruses of the sulfolobales

    DEFF Research Database (Denmark)

    Erdmann, Susanne; Garrett, Roger Antony

    2015-01-01

    in CRISPR loci of Sulfolobus species from a second coinfecting conjugative plasmid or virus (Erdmann and Garrett, Mol Microbiol 85:1044-1056, 2012; Erdmann et al. Mol Microbiol 91:900-917, 2014). Here we describe, firstly, the isolation of archaeal virus mixtures from terrestrial hot springs...... with an environmental virus mixture isolated from Yellowstone National Park (Erdmann and Garrett, Mol Microbiol 85:1044-1056, 2012). Experimental studies of isolated genetic elements from this mixture revealed that SMV1 (S ulfolobus Monocauda Virus 1), a tailed spindle-shaped virus, can induce spacer acquisition...... and the techniques used both to infect laboratory strains with these virus mixtures and to obtain purified virus particles. Secondly, we present the experimental conditions required for activating SMV1-induced spacer acquisition in two different Sulfolobus species....

  4. The traditional use of Vachellia nilotica for sexually transmitted diseases is substantiated by the antiviral activity of its bark extract against sexually transmitted viruses.

    Science.gov (United States)

    Donalisio, Manuela; Cagno, Valeria; Civra, Andrea; Gibellini, Davide; Musumeci, Giuseppina; Rittà, Massimo; Ghosh, Manik; Lembo, David

    2018-03-01

    Vachellia (Acacia) nilotica and other plants of this genus have been used in traditional medicine of Asian and African countries to treat many disorders, including sexually transmitted diseases, but few studies were performed to validate their anti-microbial and anti-viral activity against sexually transmitted infections. The present study was undertaken to explore whether the ethnomedical use of V.nilotica to treat genital lesions is substantiated by its antiviral activity against the human immunodeficiency virus (HIV), the herpes simplex virus (HSV) and the human papillomavirus (HPV). The antiviral activity of V.nilotica was tested in vitro by virus-specific inhibition assays using HSV-2 strains, sensible or resistant to acyclovir, HIV-1IIIb strain and HPV-16 pseudovirion (PsV). The potential mode of action of extract against HSV-2 and HPV-16 was further investigated by virus inactivation and time-of-addition assays on cell cultures. V.nilotica chloroform, methanolic and water bark extracts exerted antiviral activity against HSV-2 and HPV-16 PsV infections; among these, methanolic extract showed the best EC50s with values of 4.71 and 1.80µg/ml against HSV-2 and HPV-16, respectively, and it was also active against an acyclovir-resistant HSV-2 strain with an EC50 of 6.71µg/ml. By contrast, no suppression of HIV infection was observed. Investigation of the mechanism of action revealed that the methanolic extract directly inactivated the infectivity of the HPV-16 particles, whereas a partial virus inactivation and interference with virus attachment (EC50 of 2.74µg/ml) were both found to contribute to the anti-HSV-2 activity. These results support the traditional use of V.nilotica applied externally for the treatment of genital lesions. Further work remains to be done in order to identify the bioactive components. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. In Vitro inhibitory activity of Alpinia katsumadai extracts against influenza virus infection and hemagglutination

    Directory of Open Access Journals (Sweden)

    Park Su-Jin

    2010-11-01

    Full Text Available Abstract Background Alpinia katsumadai (AK extracts and fractions were tested for in vitro antiviral activities against influenza virus type A, specially human A/PR/8/34 (H1N1 and avian A/Chicken/Korea/MS96/96 (H9N2, by means of time-of-addition experiments; pre-treatment, simultaneous treatment, and post treatment. Results In pre-treatment assay, the AK extracts and AK fractions did not show significant antiviral activity. During the simultaneous treatment assay, one AK extract and five AK fractions designated as AK-1 to AK-3, AK-5, AK-10, and AK-11 showed complete inhibition of virus infectivity against A/PR/8/34 (H1N1 and A/Chicken/Korea/MS96/96 (H9N2. The 50% effective inhibitory concentrations (EC50 of these one AK extracts and five AK fractions with exception of the AK-9 were from 0.8 ± 1.4 to 16.4 ± 4.5 μg/mL against A/PR/8/34 (H1N1. The two AK extracts and three AK fractions had EC50 values ranging from μg/mL against A/Chicken/Korea/MS96/96 (H9N2. By the hemagglutination inhibition (HI assay, the two AK extracts and five AK fractions completely inhibited viral adsorption onto chicken RBCs at less than 100 μg/mL against both A/PR/8/34 (H1N1 and A/Chicken/Korea/MS96/96 (H9N2. Interestingly, only AK-3 was found with inhibition for both viral attachment and viral replication after showing extended antiviral activity during the post treatment assay and quantitative real-time PCR. Conclusions These results suggest that AK extracts and fractions had strong anti-influenza virus activity that can inhibit viral attachment and/or viral replication, and may be used as viral prophylaxis.

  6. Full Genome Sequence and sfRNA Interferon Antagonist Activity of Zika Virus from Recife, Brazil.

    Directory of Open Access Journals (Sweden)

    Claire L Donald

    2016-10-01

    Full Text Available The outbreak of Zika virus (ZIKV in the Americas has transformed a previously obscure mosquito-transmitted arbovirus of the Flaviviridae family into a major public health concern. Little is currently known about the evolution and biology of ZIKV and the factors that contribute to the associated pathogenesis. Determining genomic sequences of clinical viral isolates and characterization of elements within these are an important prerequisite to advance our understanding of viral replicative processes and virus-host interactions.We obtained a ZIKV isolate from a patient who presented with classical ZIKV-associated symptoms, and used high throughput sequencing and other molecular biology approaches to determine its full genome sequence, including non-coding regions. Genome regions were characterized and compared to the sequences of other isolates where available. Furthermore, we identified a subgenomic flavivirus RNA (sfRNA in ZIKV-infected cells that has antagonist activity against RIG-I induced type I interferon induction, with a lesser effect on MDA-5 mediated action.The full-length genome sequence including non-coding regions of a South American ZIKV isolate from a patient with classical symptoms will support efforts to develop genetic tools for this virus. Detection of sfRNA that counteracts interferon responses is likely to be important for further understanding of pathogenesis and virus-host interactions.

  7. Pseudorabies virus infection alters neuronal activity and connectivity in vitro.

    Directory of Open Access Journals (Sweden)

    Kelly M McCarthy

    2009-10-01

    Full Text Available Alpha-herpesviruses, including human herpes simplex virus 1 & 2, varicella zoster virus and the swine pseudorabies virus (PRV, infect the peripheral nervous system of their hosts. Symptoms of infection often include itching, numbness, or pain indicative of altered neurological function. To determine if there is an in vitro electrophysiological correlate to these characteristic in vivo symptoms, we infected cultured rat sympathetic neurons with well-characterized strains of PRV known to produce virulent or attenuated symptoms in animals. Whole-cell patch clamp recordings were made at various times after infection. By 8 hours of infection with virulent PRV, action potential (AP firing rates increased substantially and were accompanied by hyperpolarized resting membrane potentials and spikelet-like events. Coincident with the increase in AP firing rate, adjacent neurons exhibited coupled firing events, first with AP-spikelets and later with near identical resting membrane potentials and AP firing. Small fusion pores between adjacent cell bodies formed early after infection as demonstrated by transfer of the low molecular weight dye, Lucifer Yellow. Later, larger pores formed as demonstrated by transfer of high molecular weight Texas red-dextran conjugates between infected cells. Further evidence for viral-induced fusion pores was obtained by infecting neurons with a viral mutant defective for glycoprotein B, a component of the viral membrane fusion complex. These infected neurons were essentially identical to mock infected neurons: no increased AP firing, no spikelet-like events, and no electrical or dye transfer. Infection with PRV Bartha, an attenuated circuit-tracing strain delayed, but did not eliminate the increased neuronal activity and coupling events. We suggest that formation of fusion pores between infected neurons results in electrical coupling and elevated firing rates, and that these processes may contribute to the altered neural

  8. Progressive multifocal leukoencephalopathy in transplant recipients

    NARCIS (Netherlands)

    Mateen, Farrah J.; Muralidharan, RajaNandini; Carone, Marco; van de Beek, Diederik; Harrison, Daniel M.; Aksamit, Allen J.; Gould, Mary S.; Clifford, David B.; Nath, Avindra

    2011-01-01

    Transplant recipients are at risk of developing progressive multifocal leukoencephalopathy (PML), a rare demyelinating disorder caused by oligodendrocyte destruction by JC virus. Reports of PML following transplantation were found using PubMed Entrez (1958-July 2010). A multicenter, retrospective

  9. Flaviviruses

    Science.gov (United States)

    1990-01-01

    R, Paryanonda A. Human immunoglobulin M anti- virus de lots de moustiques adultes males et femelles. Med body in the serodiagnosis of Japanese...Immun 274. Roche JC, Cordellier R, Hervy JP, et al. Isolement de 96 1984;43:429-43 1. souches de virus dengue 2 a partir de moustiques captures en...dengue chez les moustiques . C R Acad Sci Paris persisting virus. Acta Virol (Praha) 1981 ;25:352-360. 1987;304:347-350. 257. Pool WA, Brownlee A, Wilson

  10. Chemical Synthesis and In Vitro Evaluation of a Phage Display-Derived Peptide Active against Infectious Salmon Anemia Virus.

    Science.gov (United States)

    Ojeda, Nicolás; Cárdenas, Constanza; Guzmán, Fanny; Marshall, Sergio H

    2016-04-01

    Infectious salmon anemia virus (ISAV) is the etiological agent of the disease by the same name and causes major losses in the salmon industry worldwide. Epizootic ISAV outbreaks have occurred in Norway and, to a lesser degree, in Canada. In 2007, an ISAV outbreak in Chile destroyed most of the seasonal production and endangered the entire Chilean salmon industry. None of the existing prophylactic approaches have demonstrated efficacy in providing absolute protection from or even a palliative effect on ISAV proliferation. Sanitary control measures for ISAV, based on molecular epidemiology data, have proven insufficient, mainly due to high salmon culture densities and a constant presence of a nonpathogenic strain of the virus. This report describes an alternative treatment approach based on interfering peptides selected from a phage display library. The screening of a phage display heptapeptide library resulted in the selection of a novel peptide with significant in vitro antiviral activity against ISAV. This peptide specifically interacted with the viral hemagglutinin-esterase protein, thereby impairing virus binding, with plaque reduction assays showing a significant reduction in viral yields. The identified peptide acts at micromolar concentrations against at least two different pathogenic strains of the virus, without detectable cytotoxic effects on the tested fish cells. Therefore, antiviral peptides represent a novel alternative for controlling ISAV and, potentially, other fish pathogens. Identifying novel methods for the efficient control of infectious diseases is imperative for the future of global aquaculture. The present study used a phage display heptapeptide library to identify a peptide with interfering activity against a key protein of the infectious salmon anemia virus (ISAV). A piscine orthomyxovirus, ISAV is a continuous threat to the commercial sustainability of cultured salmon production worldwide. The complex epidemiological strategy of this

  11. A new looming of Zika virus

    Directory of Open Access Journals (Sweden)

    Nirav R. Soni

    2016-05-01

    Full Text Available Zika virus (ZIKV is a member of the virus family Flaviviridae and the genus Flavivirus, transmitted by daytime-active Aedes mosquitoes, such as A. aegypti. ZIKV will continue to spread and it will be difficult to determine how the virus will spread over time. Sign and symptoms of ZIKAVD (Zika virus disease were conjunctivitis (red eyes, back pain, birth defect-abnormal brain development known as microcephaly and it is diagnosed through PCR (polymerase chain reaction and virus isolation from blood samples.

  12. Zika Virus: Common Questions and Answers.

    Science.gov (United States)

    Igbinosa, Irogue I; Rabe, Ingrid B; Oduyebo, Titilope; Rasmussen, Sonja A

    2017-04-15

    Since local mosquito-borne transmission of Zika virus was first reported in Brazil in early 2015, the virus has spread rapidly, with active transmission reported in at least 61 countries and territories worldwide, including the United States. Zika virus infection during pregnancy is a cause of microcephaly and other severe brain anomalies. The virus is transmitted primarily through the bite of an infected Aedes mosquito, but other routes of transmission include sexual, mother-to-fetus during pregnancy, mother-to-infant at delivery, laboratory exposure, and, possibly, transfusion of blood products. Most persons with Zika virus infection are asymptomatic or have only mild symptoms; hospitalizations and deaths are rare. When symptoms are present, maculopapular rash, fever, arthralgia, and conjunctivitis are most common. Zika virus testing is recommended for persons with possible exposure (those who have traveled to or live in an area with active transmission, or persons who had sex without a condom with a person with possible exposure) if they have symptoms consistent with Zika virus disease. Testing is also recommended for pregnant women with possible exposure, regardless of whether symptoms are present. Treatment is supportive, and no vaccine is currently available. The primary methods of prevention include avoiding bites of infected Aedes mosquitoes and reducing the risk of sexual transmission. Pregnant women should not travel to areas with active Zika virus transmission, and men and women who are planning to conceive in the near future should consider avoiding nonessential travel to these areas. Condoms can reduce the risk of sexual transmission.

  13. Pim kinases are upregulated during Epstein-Barr virus infection and enhance EBNA2 activity

    International Nuclear Information System (INIS)

    Rainio, Eeva-Marja; Ahlfors, Helena; Carter, Kara L.; Ruuska, Marja; Matikainen, Sampsa; Kieff, Elliott; Koskinen, Paeivi J.

    2005-01-01

    Latent Epstein-Barr virus (EBV) infection is strongly associated with B-cell proliferative diseases such as Burkitt's lymphoma. Here we show that the oncogenic serine/threonine kinases Pim-1 and Pim-2 enhance the activity of the viral transcriptional activator EBNA2. During EBV infection of primary B-lymphocytes, the mRNA expression levels of pim genes, especially of pim-2, are upregulated and remain elevated in latently infected B-cell lines. Thus, EBV-induced upregulation of Pim kinases and Pim-stimulated EBNA2 transcriptional activity may contribute to the ability of EBV to immortalize B-cells and predispose them to malignant growth

  14. Seroprevalence of Epstein-Barr Virus, Cytomegalovirus, and Polyomaviruses in Children with Inflammatory Bowel Disease.

    Science.gov (United States)

    Hradsky, Ondrej; Copova, Ivana; Zarubova, Kristyna; Durilova, Marianna; Nevoral, Jiri; Maminak, Miroslav; Hubacek, Petr; Bronsky, Jiri

    2015-11-01

    Young age and thiopurine therapy are risk factors for lymphoproliferative disease among patients with inflammatory bowel disease (IBD). The aims of this study were to evaluate the prevalence of seropositivity for the Epstein-Barr virus (EBV) and human cytomegalovirus (CMV) among children and adolescents with IBD, to assess the viral load of EBV, CMV, and BK and JC polyomaviruses (BKV, JCV) in these patients, and to assess the influence of different therapeutic regimens on seroprevalence and viral load. Children who had been followed in our center were tested for EBV, CMV, BKV, and JCV in a cross-sectional study. One hundred and six children were included who had Crohn's disease (68%), ulcerative colitis (29%), and unclassified IBD (3%). We found that 64% of patients were EBV seropositive. The proportion of EBV seropositive patients increased during childhood. Azathioprine therapy (p = 0.003) was associated with EBV seropositivity in a multiple logistic regression model, after adjusting for gender, age, and disease activity at determination. We found a significant association between the number of polymerase chain reaction copies and infliximab dose (p = 0.023). We did not find any significant association between CMV serology and CMV, BKV, or JCV viral load, or any other therapeutic regimen or clinical characteristics. Treatment with azathioprine appears to be a risk factor for early EBV seropositivity in children with IBD, and the infliximab dose was associated with a higher EBV viral load.

  15. Cloned defective interfering influenza virus protects ferrets from pandemic 2009 influenza A virus and allows protective immunity to be established.

    Directory of Open Access Journals (Sweden)

    Nigel J Dimmock

    Full Text Available Influenza A viruses are a major cause of morbidity and mortality in the human population, causing epidemics in the winter, and occasional worldwide pandemics. In addition there are periodic outbreaks in domestic poultry, horses, pigs, dogs, and cats. Infections of domestic birds can be fatal for the birds and their human contacts. Control in man operates through vaccines and antivirals, but both have their limitations. In the search for an alternative treatment we have focussed on defective interfering (DI influenza A virus. Such a DI virus is superficially indistinguishable from a normal virus but has a large deletion in one of the eight RNAs that make up the viral genome. Antiviral activity resides in the deleted RNA. We have cloned one such highly active DI RNA derived from segment 1 (244 DI virus and shown earlier that intranasal administration protects mice from lethal disease caused by a number of different influenza A viruses. A more cogent model of human influenza is the ferret. Here we found that intranasal treatment with a single dose of 2 or 0.2 µg 244 RNA delivered as A/PR/8/34 virus particles protected ferrets from disease caused by pandemic virus A/California/04/09 (A/Cal; H1N1. Specifically, 244 DI virus significantly reduced fever, weight loss, respiratory symptoms, and infectious load. 244 DI RNA, the active principle, was amplified in nasal washes following infection with A/Cal, consistent with its amelioration of clinical disease. Animals that were treated with 244 DI RNA cleared infectious and DI viruses without delay. Despite the attenuation of infection and disease by DI virus, ferrets formed high levels of A/Cal-specific serum haemagglutination-inhibiting antibodies and were solidly immune to rechallenge with A/Cal. Together with earlier data from mouse studies, we conclude that 244 DI virus is a highly effective antiviral with activity potentially against all influenza A subtypes.

  16. Concanavalin A-mediated in vitro activation of a secondary cytotoxic T-cell response in virus-primed splenocytes

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Jensen, B L

    1980-01-01

    In a recent report it was shown that what appeared to be secondary cytotoxic T cells could be obtained from lymphocytic choriomeningitis virus (LCMV)-primed splenocytes after stimulation in vitro with the non-specific T cell mitogen concanavalin A (Con A). The present experiments attempt to chara......In a recent report it was shown that what appeared to be secondary cytotoxic T cells could be obtained from lymphocytic choriomeningitis virus (LCMV)-primed splenocytes after stimulation in vitro with the non-specific T cell mitogen concanavalin A (Con A). The present experiments attempt...... to characterize further these effector cells and, in particular, to establish whether the Con A-activated cytotoxic effectors are qualitatively different from the secondary cytotoxic T cells induced by restimulation with the homologous antigen. It was found that: (1) in vitro activation with Con A could......, since no evidence was found to indicate a role for other cell types or soluble (cytotoxic or arming) factors; (4) cytotoxicity was specific with regard to both virus and 'self'. By comparison with previous data on LCMV-induced cytotoxic T cells, it is concluded that Con A induces the generation...

  17. Monitoring of the antiviral potential of bee venom and wax extracts against Adeno-7 (DNA) and Rift Valley fever virus (RNA) viruses models.

    Science.gov (United States)

    Hassan, Mostafa I; Mohamed, Aly F; Amer, Moner A; Hammad, Kotb M; Riad, Saber A

    2015-04-01

    This study monitored the antiviral potential of bee venom and four wax extracts, ethanol white and black beeswax (EWW/EBW) and acetone white and black beeswax (AWW/ABW) extracts. Two different virus models namely Adeno-7 as DNA model and RVFV as RNA virus models. End point calculation assay was used to calculate virus depletion titer. The depletion of viral infectivity titer of ABW to Adeno-7 virus showed strong antiviral activity recorded a depletion of viral infectivity titer (1.66 log (10)/ ml) that gave equal action with bee venom and more than interferon IFN (1 log (10)/ ml). On the other hand, antiviral activity of EBW showed a moderate potential, while AWW showed no antiviral activity. Finally EWW showed synergetic activity against Adeno-7 virus activity. Thus, activity of wax extracts to RVFV was arranged in order of IFN bee venom > AWW & EBW > EWW and ABW recorded 3.34, 0.65, 0.5, 0.34 respectively. It is the first time to study the beeswax effect against DNA and RNA virus' models; acetone black beeswax recorded a depletion titer 1.66 log (10)/ml.

  18. Oncolytic viruses as anticancer vaccines

    Directory of Open Access Journals (Sweden)

    Norman eWoller

    2014-07-01

    Full Text Available Oncolytic virotherapy has shown impressive results in preclinical studies and first promising therapeutic outcomes in clinical trials as well. Since viruses are known for a long time as excellent vaccination agents, oncolytic viruses are now designed as novel anticancer agents combining the aspect of lysis-dependent cytoreductive activity with concomitant induction of antitumoral immune responses. Antitumoral immune activation by oncolytic virus infection of tumor tissue comprises both, immediate effects of innate immunity and also adaptive responses for long lasting antitumoral activity which is regarded as the most prominent challenge in clinical oncology. To date, the complex effects of a viral tumor infection on the tumor microenvironment and the consequences for the tumor-infiltrating immune cell compartment are poorly understood. However, there is more and more evidence that a tumor infection by an oncolytic virus opens up a number of options for further immunomodulating interventions such as systemic chemotherapy, generic immunostimulating strategies, dendritic cell-based vaccines, and antigenic libraries to further support clinical efficacy of oncolytic virotherapy.

  19. Comparative analysis of signature genes in porcine reproductive and respiratory syndrome virus (PRRSV)-infected porcine monocyte-derived dendritic cells at differential activation statuses

    Science.gov (United States)

    Activation statuses of monocytic cells, e.g. monocytes, macrophages and dendritic cells (DCs), are critically important for antiviral immunity. In particular, some devastating viruses, including porcine reproductive and respiratory syndrome virus (PRRSV), are capable of directly infecting these cell...

  20. Prevalence of JC virus in Chinese patients with colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Xiaozhou Mou

    Full Text Available BACKGROUND: JCV is a DNA polyomavirus very well adapted to humans. Although JCV DNA has been detected in colorectal cancers (CRC, the association between JCV and CRC remains controversial. In China, the presence of JCV infection in CRC patients has not been reported. Here, we investigated JCV infection and viral DNA load in Chinese CRC patients and to determine whether the JCV DNA in peripheral blood (PB can be used as a diagnostic marker for JCV-related CRC. METHODOLOGY/PRINCIPAL FINDINGS: Tumor tissues, non-cancerous tumor-adjacent tissues and PB samples were collected from 137 CRC patients. In addition, 80 normal colorectal tissue samples from patients without CRC and PB samples from 100 healthy volunteers were also harvested as controls. JCV DNA was detected by nested PCR and glass slide-based dot blotting. Viral DNA load of positive samples were determined by quantitative real-time PCR. JCV DNA was detected in 40.9% (56/137 of CRC tissues at a viral load of 49.1 to 10.3×10(4 copies/µg DNA. Thirty-four (24.5% non-cancerous colorectal tissues (192.9 to 4.4×10(3 copies/µg DNA and 25 (18.2% PB samples (81.3 to 4.9×10(3 copies/µg DNA from CRC patients were positive for JCV. Tumor tissues had higher levels of JCV than non-cancerous tissues (P = 0.003 or PB samples (P<0.001. No correlation between the presence of JCV and demographic or medical characteristics was observed. The JCV prevalence in PB samples was significantly associated with the JCV status in tissue samples (P<0.001. Eleven (13.8% normal colorectal tissues and seven (7.0% PB samples from healthy donors were positive for JCV. CONCLUSIONS/SIGNIFICANCE: JCV infection is frequently present in colorectal tumor tissues of CRC patients. Although the association between JCV presence in PB samples and JCV status in tissue samples was identified in this study, whether PB JCV detection can serve as a marker for JCV status of CRC requires further study.

  1. Critical role for cross-linking of trimeric lectin domains of surfactant protein D in antiviral activity against influenza A virus

    DEFF Research Database (Denmark)

    Tecle, Tesfaldet; White, Mitchell R; Sørensen, Grith Lykke

    2008-01-01

    binding activity for some ligands and mediate some functional activities. The lung collectin SP-D (surfactant protein D) has strong neutralizing activity for IAVs (influenza A viruses) in vitro and in vivo, however, the NCRD derived from SP-D has weak viral-binding ability and lacks neutralizing activity...

  2. Manipulation of Auxin Response Factor 19 affects seed size in the woody perennial Jatropha curcas

    Science.gov (United States)

    Sun, Yanwei; Wang, Chunming; Wang, Ning; Jiang, Xiyuan; Mao, Huizhu; Zhu, Changxiang; Wen, Fujiang; Wang, Xianghua; Lu, Zhijun; Yue, Genhua; Xu, Zengfu; Ye, Jian

    2017-01-01

    Seed size is a major determinant of seed yield but few is known about the genetics controlling of seed size in plants. Phytohormones cytokinin and brassinosteroid were known to be involved in the regulation of herbaceous plant seed development. Here we identified a homolog of Auxin Response Factor 19 (JcARF19) from a woody plant Jatropha curcas and genetically demonstrated its functions in controlling seed size and seed yield. Through Virus Induced Gene Silencing (VIGS), we found that JcARF19 was a positive upstream modulator in auxin signaling and may control plant organ size in J. curcas. Importantly, transgenic overexpression of JcARF19 significantly increased seed size and seed yield in plants Arabidopsis thaliana and J. curcas, indicating the importance of auxin pathway in seed yield controlling in dicot plants. Transcripts analysis indicated that ectopic expression of JcARF19 in J. curcas upregulated auxin responsive genes encoding essential regulators in cell differentiation and cytoskeletal dynamics of seed development. Our data suggested the potential of improving seed traits by precisely engineering auxin signaling in woody perennial plants. PMID:28102350

  3. Singular anti-RNA virus-directed proteins.

    Directory of Open Access Journals (Sweden)

    Rayanade R

    2000-07-01

    Full Text Available AIMS: To additionally purify and characterise the anti-RNA virus-directed protein termed p14. MATERIALS AND METHODS: Antiviral assays of p14 against RNA and DNA viruses were carried out and its antigenic similarities with chicken interferon (CIFN were studied. HPLC-Reverse Phase of p14 was performed to further purify p14. RESULTS: p14 showed antiviral activity against RNA viruses only and not against DNA viruses. It was antigenically distinct from CIFN. Purification of p14 yielded three proteins with antiviral activity, which had different physico-chemical properties than those described for interferons. CONCLUSIONS: The data presented on the antiviral, immunological and physico-chemical properties, establish the unique nature of p14 vis-á-vis those of interferons.

  4. Small molecule antagonism of oxysterol-induced Epstein-Barr virus induced gene 2 (EBI2) activation

    DEFF Research Database (Denmark)

    Benned-Jensen, Tau; Madsen, Christian M; Arfelt, Kristine N

    2013-01-01

    The Epstein-Barr virus induced gene 2 (EBI2) was recently identified as the first oxysterol-activated 7TM receptor. EBI2 is essential for B cell trafficking within lymphoid tissues and thus the humoral immune response in general. Here we characterize the antagonism of the non-peptide molecule GSK...

  5. Antiviral RNA silencing suppression activity of Tomato spotted wilt virus NSs protein.

    Science.gov (United States)

    Ocampo Ocampo, T; Gabriel Peralta, S M; Bacheller, N; Uiterwaal, S; Knapp, A; Hennen, A; Ochoa-Martinez, D L; Garcia-Ruiz, H

    2016-06-17

    In addition to regulating gene expression, RNA silencing is an essential antiviral defense system in plants. Triggered by double-stranded RNA, silencing results in degradation or translational repression of target transcripts. Viruses are inducers and targets of RNA silencing. To condition susceptibility, most plant viruses encode silencing suppressors that interfere with this process, such as the Tomato spotted wilt virus (TSWV) NSs protein. The mechanism by which NSs suppresses RNA silencing and its role in viral infection and movement remain to be determined. We cloned NSs from the Hawaii isolate of TSWV and using two independent assays show for the first time that this protein restored pathogenicity and supported the formation of local infection foci by suppressor-deficient Turnip mosaic virus and Turnip crinkle virus. Demonstrating the suppression of RNA silencing directed against heterologous viruses establishes the foundation to determine the means used by NSs to block this antiviral process.

  6. Influenza virus-induced alterations of cytochrome P-450 enzyme activities following exposure of mice to coal and diesel particulates

    Energy Technology Data Exchange (ETDEWEB)

    Rabovsky, J.; Judy, D.J.; Rodak, D.J.; Petersen, M.

    1986-06-01

    We have investigated a relationship between two detoxication systems, metabolic detoxication through the cytochrome P-450 (P-450) pathway and resistance to infection through interferon (IFN), in mice infected with influenza virus following exposure to coal dust (CD) and diesel exhaust (DE) particulates. Mice were exposed by inhalation to filtered air (FA; control), CD, or DE for 1 month and then inoculated intranasally (IN) with influenza virus. During infection, 7-ethoxycoumarin deethylase (7ECdeEt'ase) and ethylmorphine demethylase (EMdeMe'ase) (monooxygenases), and NADPH cytochrome c reductase (NADPH c red'ase) were measured in liver microsomes. Temporal patterns of enzyme activities were observed with control animals. EMdeMe'ase and NADPH c red'ase exhibited peak values at Day 4 postinfection (27.6 and 482 nmole/min/mg protein, respectively), compared to initial activities (9.1 and 307 nmole/min/mg protein, respectively). 7ECdeEt'ase activity decreased between Days 1-3 postvirus infection and thereafter returned to the original value (1.7 nmole/min/mg protein). When the mice were first exposed to CD or DE particulates for 1 month prior to influenza infection, changes in enzyme temporal patterns were observed. The increased EMdeMe'ase activity at Day 4 was not observed in mice exposed to CD and was reduced in mice exposed to DE. Preexposure to either particulate resulted in the abolition of the increased Day 4 activity of NADPH c red'ase. The 7ECdeEt'ase postinfection temporal pattern was not affected by a preexposure to either particulate. Estimates of the enzyme activities after the 1-month exposure to FA, CD, or DE but before virus infection indicated no changes due to particulate exposure alone. Under conditions of particulate exposure and virus infection, serum IFN levels peaked at Days 4-5 and were unaffected by the 1-month preexposure to CD or DE.

  7. Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses.

    Science.gov (United States)

    Holm, Christian K; Rahbek, Stine H; Gad, Hans Henrik; Bak, Rasmus O; Jakobsen, Martin R; Jiang, Zhaozaho; Hansen, Anne Louise; Jensen, Simon K; Sun, Chenglong; Thomsen, Martin K; Laustsen, Anders; Nielsen, Camilla G; Severinsen, Kasper; Xiong, Yingluo; Burdette, Dara L; Hornung, Veit; Lebbink, Robert Jan; Duch, Mogens; Fitzgerald, Katherine A; Bahrami, Shervin; Mikkelsen, Jakob Giehm; Hartmann, Rune; Paludan, Søren R

    2016-02-19

    Stimulator of interferon genes (STING) is known be involved in control of DNA viruses but has an unexplored role in control of RNA viruses. During infection with DNA viruses STING is activated downstream of cGAMP synthase (cGAS) to induce type I interferon. Here we identify a STING-dependent, cGAS-independent pathway important for full interferon production and antiviral control of enveloped RNA viruses, including influenza A virus (IAV). Further, IAV interacts with STING through its conserved hemagglutinin fusion peptide (FP). Interestingly, FP antagonizes interferon production induced by membrane fusion or IAV but not by cGAMP or DNA. Similar to the enveloped RNA viruses, membrane fusion stimulates interferon production in a STING-dependent but cGAS-independent manner. Abolishment of this pathway led to reduced interferon production and impaired control of enveloped RNA viruses. Thus, enveloped RNA viruses stimulate a cGAS-independent STING pathway, which is targeted by IAV.

  8. Autophagy is involved in anti-viral activity of pentagalloylglucose (PGG) against Herpes simplex virus type 1 infection in vitro

    International Nuclear Information System (INIS)

    Pei, Ying; Chen, Zhen-Ping; Ju, Huai-Qiang; Komatsu, Masaaki; Ji, Yu-hua; Liu, Ge; Guo, Chao-wan; Zhang, Ying-Jun; Yang, Chong-Ren; Wang, Yi-Fei; Kitazato, Kaio

    2011-01-01

    Research highlights: → We showed PGG has anti-viral activity against Herpes simplex virus type 1 (HSV-1) and can induce autophgy. → Autophagy may be a novel and important mechanism mediating PGG anti-viral activities. → Inhibition of mTOR pathway is an important mechanism of induction of autophagy by PGG. -- Abstract: Pentagalloylglucose (PGG) is a natural polyphenolic compound with broad-spectrum anti-viral activity, however, the mechanisms underlying anti-viral activity remain undefined. In this study, we investigated the effects of PGG on anti-viral activity against Herpes simplex virus type 1 (HSV-1) associated with autophagy. We found that the PGG anti-HSV-1 activity was impaired significantly in MEF-atg7 -/- cells (autophagy-defective cells) derived from an atg7 -/- knockout mouse. Transmission electron microscopy revealed that PGG-induced autophagosomes engulfed HSV-1 virions. The mTOR signaling pathway, an essential pathway for the regulation of autophagy, was found to be suppressed following PGG treatment. Data presented in this report demonstrated for the first time that autophagy induced following PGG treatment contributed to its anti-HSV activity in vitro.

  9. Epstein-Barr virus DNA loads in adult human immunodeficiency virus type 1-infected patients receiving highly active antiretroviral therapy

    Science.gov (United States)

    Ling, Paul D.; Vilchez, Regis A.; Keitel, Wendy A.; Poston, David G.; Peng, Rong Sheng; White, Zoe S.; Visnegarwala, Fehmida; Lewis, Dorothy E.; Butel, Janet S.

    2003-01-01

    Patients with human immunodeficiency virus type 1 (HIV-1) infection are at high risk of developing Epstein-Barr virus (EBV)-associated lymphoma. However, little is known of the EBV DNA loads in patients receiving highly active antiretroviral therapy (HAART). Using a real-time quantitative polymerase chain reaction assay, we demonstrated that significantly more HIV-1-infected patients receiving HAART than HIV-1-uninfected volunteers had detectable EBV DNA in blood (57 [81%] of 70 vs. 11 [16%] of 68 patients; P=.001) and saliva (55 [79%] of 68 vs. 37 [54%] of 68 patients; P=.002). The mean EBV loads in blood and saliva samples were also higher in HIV-1-infected patients than in HIV-1-uninfected volunteers (P=.001). The frequency of EBV detection in blood was associated with lower CD4+ cell counts (P=.03) among HIV-1-infected individuals, although no differences were observed in the EBV DNA loads in blood or saliva samples in the HIV-1-infected group. Additional studies are needed to determine whether EBV-specific CD4+ and CD8+ cells play a role in the pathogenesis of EBV in HIV-1-infected patients receiving HAART.

  10. Structure of unliganded HSV gD reveals a mechanism for receptor-mediated activation of virus entry

    Energy Technology Data Exchange (ETDEWEB)

    Krummenacher, Claude; Supekar, Vinit M.; Whitbeck, J. Charles; Lazear, Eric; Connolly, Sarah A.; Eisenberg, Roselyn J.; Cohen, Gary H.; Wiley, Don C.; Carfi, Andrea (UPENN); (IRBM); (CHLMM)

    2010-07-19

    Herpes simplex virus (HSV) entry into cells requires binding of the envelope glycoprotein D (gD) to one of several cell surface receptors. The 50 C-terminal residues of the gD ectodomain are essential for virus entry, but not for receptor binding. We have determined the structure of an unliganded gD molecule that includes these C-terminal residues. The structure reveals that the C-terminus is anchored near the N-terminal region and masks receptor-binding sites. Locking the C-terminus in the position observed in the crystals by an intramolecular disulfide bond abolished receptor binding and virus entry, demonstrating that this region of gD moves upon receptor binding. Similarly, a point mutant that would destabilize the C-terminus structure was nonfunctional for entry, despite increased affinity for receptors. We propose that a controlled displacement of the gD C-terminus upon receptor binding is an essential feature of HSV entry, ensuring the timely activation of membrane fusion.

  11. Synthesis and evaluation of antiviral activities of novel sonochemical silver nanorods against HIV and HSV viruses

    Directory of Open Access Journals (Sweden)

    Mazyar Etemadzade

    2016-11-01

    Full Text Available Objective: To evaluate the effect of novel sonochemical silver nanorods on HIV and herpes simplex virus type 1 (HSV-1 viruses in human cervical cancer HeLa cells. Methods: The formation of silver nanorods conjugated with sodium 2-mercaptoethane sulfonate (Ag-MES was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and thermal gravimetric analysis. The antiviral activity of this Ag-MES was examined against HIV and HSV-1 virus replication. Results: The characterizations of Ag-MES and physiochemical structure were determined by scanning electron microscopy, Fourier transform infrared spectroscopy and thermal gravimetric analysis. Approximately entire viral replication was inhibited by Ag-MES at 10 µmol/mL concentration. About 90% of HSV virions failed to replicate in the present of this concentration of nanorods. However, HIV showed more sensitivity to Ag-MES than HSV-1. Conclusions: According to the obtained data, the synthesized sonochemical silver nanorod in this study is a promising candidate for further drug discovery investigation.

  12. Mutation of the protein kinase C site in borna disease virus phosphoprotein abrogates viral interference with neuronal signaling and restores normal synaptic activity.

    Directory of Open Access Journals (Sweden)

    Christine M A Prat

    2009-05-01

    Full Text Available Understanding the pathogenesis of infection by neurotropic viruses represents a major challenge and may improve our knowledge of many human neurological diseases for which viruses are thought to play a role. Borna disease virus (BDV represents an attractive model system to analyze the molecular mechanisms whereby a virus can persist in the central nervous system (CNS and lead to altered brain function, in the absence of overt cytolysis or inflammation. Recently, we showed that BDV selectively impairs neuronal plasticity through interfering with protein kinase C (PKC-dependent signaling in neurons. Here, we tested the hypothesis that BDV phosphoprotein (P may serve as a PKC decoy substrate when expressed in neurons, resulting in an interference with PKC-dependent signaling and impaired neuronal activity. By using a recombinant BDV with mutated PKC phosphorylation site on P, we demonstrate the central role of this protein in BDV pathogenesis. We first showed that the kinetics of dissemination of this recombinant virus was strongly delayed, suggesting that phosphorylation of P by PKC is required for optimal viral spread in neurons. Moreover, neurons infected with this mutant virus exhibited a normal pattern of phosphorylation of the PKC endogenous substrates MARCKS and SNAP-25. Finally, activity-dependent modulation of synaptic activity was restored, as assessed by measuring calcium dynamics in response to depolarization and the electrical properties of neuronal networks grown on microelectrode arrays. Therefore, preventing P phosphorylation by PKC abolishes viral interference with neuronal activity in response to stimulation. Our findings illustrate a novel example of viral interference with a differentiated neuronal function, mainly through competition with the PKC signaling pathway. In addition, we provide the first evidence that a viral protein can specifically interfere with stimulus-induced synaptic plasticity in neurons.

  13. The replicative DNA polymerase of herpes simplex virus 1 exhibits apurinic/apyrimidinic and 5′-deoxyribose phosphate lyase activities

    Science.gov (United States)

    Bogani, Federica; Boehmer, Paul E.

    2008-01-01

    Base excision repair (BER) is essential for maintaining genome stability both to counter the accumulation of unusual bases and to protect from base loss in the DNA. Herpes simplex virus 1 (HSV-1) is a large dsDNA virus that encodes its own DNA replication machinery, including enzymes involved in nucleotide metabolism. We report on a replicative family B and a herpesvirus-encoded DNA Pol that possesses DNA lyase activity. We have discovered that the catalytic subunit of the HSV-1 DNA polymerase (Pol) (UL30) exhibits apurinic/apyrimidinic (AP) and 5′-deoxyribose phosphate (dRP) lyase activities. These activities are integral to BER and lead to DNA cleavage on the 3′ side of abasic sites and 5′-dRP residues that remain after cleavage by 5′-AP endonuclease. The UL30-catalyzed reaction occurs independently of divalent cation and proceeds via a Schiff base intermediate, indicating that it occurs via a lyase mechanism. Partial proteolysis of the Schiff base shows that the DNA lyase activity resides in the Pol domain of UL30. These observations together with the presence of a virus-encoded uracil DNA glycosylase indicates that HSV-1 has the capacity to perform critical steps in BER. These findings have implications on the role of BER in viral genome maintenance during lytic replication and reactivation from latency. PMID:18695225

  14. PBDE: Structure-Activity Studies for the Inhibition of Hepatitis C Virus NS3 Helicase

    Directory of Open Access Journals (Sweden)

    Kazi Abdus Salam

    2014-04-01

    Full Text Available The helicase portion of the hepatitis C virus nonstructural protein 3 (NS3 is considered one of the most validated targets for developing direct acting antiviral agents. We isolated polybrominated diphenyl ether (PBDE 1 from a marine sponge as an NS3 helicase inhibitor. In this study, we evaluated the inhibitory effects of PBDE (1 on the essential activities of NS3 protein such as RNA helicase, ATPase, and RNA binding activities. The structure-activity relationship analysis of PBDE (1 against the HCV ATPase revealed that the biphenyl ring, bromine, and phenolic hydroxyl group on the benzene backbone might be a basic scaffold for the inhibitory potency.

  15. Spiritual activities as a resistance resource for women with human immunodeficiency virus.

    Science.gov (United States)

    Sowell, R; Moneyham, L; Hennessy, M; Guillory, J; Demi, A; Seals, B

    2000-01-01

    Few studies have investigated the role that spiritual activities play in the adaptational outcomes of women with human immunodeficiency virus (HIV) disease. To examine the role of spiritual activities as a resource that may reduce the negative effects of disease-related stressors on the adaptational outcomes in HIV-infected women. A theoretically based causal model was tested to examine the role of spiritual activities as a moderator of the impact of HIV-related stressors (functional impairment, work impairment, and HIV-related symptoms) on two stress-related adaptational outcomes (emotional distress and quality of life), using a clinic-based sample of 184 HIV-positive women. Findings indicated that as spiritual activities increased, emotional distress decreased even when adjustments were made for HIV-related stressors. A positive relationship between spiritual activities and quality of life was found, which approached significance. Findings showed that HIV-related stressors have a significant negative effect on both emotional distress and quality of life. The findings support the hypothesis that spiritual activities are an important psychological resource accounting for individual variability in adjustment to the stressors associated with HIV disease.

  16. Viral RNA annealing activities of human immunodeficiency virus type 1 nucleocapsid protein require only peptide domains outside the zinc fingers.

    Science.gov (United States)

    De Rocquigny, H; Gabus, C; Vincent, A; Fournié-Zaluski, M C; Roques, B; Darlix, J L

    1992-07-15

    The nucleocapsid (NC) of human immunodeficiency virus type 1 consists of a large number of NC protein molecules, probably wrapping the dimeric RNA genome within the virion inner core. NC protein is a gag-encoded product that contains two zinc fingers flanked by basic residues. In human immunodeficiency virus type 1 virions, NCp15 is ultimately processed into NCp7 and p6 proteins. During virion assembly the retroviral NC protein is necessary for core formation and genomic RNA encapsidation, which are essential for virus infectivity. In vitro NCp15 activates viral RNA dimerization, a process most probably linked in vivo to genomic RNA packaging, and replication primer tRNA(Lys,3) annealing to the initiation site of reverse transcription. To characterize the domains of human immunodeficiency virus type 1 NC protein necessary for its various functions, the 72-amino acid NCp7 and several derived peptides were synthesized in a pure form. We show here that synthetic NCp7 with or without the two zinc fingers has the RNA annealing activities of NCp15. Further deletions of the N-terminal 12 and C-terminal 8 amino acids, leading to a 27-residue peptide lacking the finger domains, have little or no effect on NC protein activity in vitro. However deletion of short sequences containing basic residues flanking the first finger leads to a complete loss of NC protein activity. It is proposed that the basic residues and the zinc fingers cooperate to select and package the genomic RNA in vivo. Inhibition of the viral RNA binding and annealing activities associated with the basic residues flanking the first zinc finger of NC protein could therefore be used as a model for the design of antiviral agents.

  17. Inhibition of interferon induction and action by the nairovirus Nairobi sheep disease virus/Ganjam virus.

    Science.gov (United States)

    Holzer, Barbara; Bakshi, Siddharth; Bridgen, Anne; Baron, Michael D

    2011-01-01

    The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic fever virus) and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV)). NSDV is found in large parts of East Africa and the Indian subcontinent (where it is known as Ganjam virus). We have investigated the ability of NSDV to antagonise the induction and actions of interferon. Both pathogenic and apathogenic isolates could actively inhibit the induction of type 1 interferon, and also blocked the signalling pathways of both type 1 and type 2 interferons. Using transient expression of viral proteins or sections of viral proteins, these activities all mapped to the ovarian tumour-like protease domain (OTU) found in the viral RNA polymerase. Virus infection, or expression of this OTU domain in transfected cells, led to a great reduction in the incorporation of ubiquitin or ISG15 protein into host cell proteins. Point mutations in the OTU that inhibited the protease activity also prevented it from antagonising interferon induction and action. Interestingly, a mutation at a peripheral site, which had little apparent effect on the ability of the OTU to inhibit ubiquitination and ISG15ylation, removed the ability of the OTU to block the induction of type 1 and the action of type 2 interferons, but had a lesser effect on the ability to block type 1 interferon action, suggesting that targets other than ubiquitin and ISG15 may be involved in the actions of the viral OTU.

  18. Inhibition of interferon induction and action by the nairovirus Nairobi sheep disease virus/Ganjam virus.

    Directory of Open Access Journals (Sweden)

    Barbara Holzer

    Full Text Available The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic fever virus and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV. NSDV is found in large parts of East Africa and the Indian subcontinent (where it is known as Ganjam virus. We have investigated the ability of NSDV to antagonise the induction and actions of interferon. Both pathogenic and apathogenic isolates could actively inhibit the induction of type 1 interferon, and also blocked the signalling pathways of both type 1 and type 2 interferons. Using transient expression of viral proteins or sections of viral proteins, these activities all mapped to the ovarian tumour-like protease domain (OTU found in the viral RNA polymerase. Virus infection, or expression of this OTU domain in transfected cells, led to a great reduction in the incorporation of ubiquitin or ISG15 protein into host cell proteins. Point mutations in the OTU that inhibited the protease activity also prevented it from antagonising interferon induction and action. Interestingly, a mutation at a peripheral site, which had little apparent effect on the ability of the OTU to inhibit ubiquitination and ISG15ylation, removed the ability of the OTU to block the induction of type 1 and the action of type 2 interferons, but had a lesser effect on the ability to block type 1 interferon action, suggesting that targets other than ubiquitin and ISG15 may be involved in the actions of the viral OTU.

  19. Ebola Virus and Marburg Virus

    Science.gov (United States)

    Ebola virus and Marburg virus Overview Ebola virus and Marburg virus are related viruses that cause hemorrhagic fevers — illnesses marked by severe bleeding (hemorrhage), organ failure and, in many ...

  20. Enzymatically Active APOBEC3G Is Required for Efficient Inhibition of Human Immunodeficiency Virus Type 1▿

    OpenAIRE

    Miyagi, Eri; Opi, Sandrine; Takeuchi, Hiroaki; Khan, Mohammad; Goila-Gaur, Ritu; Kao, Sandra; Strebel, Klaus

    2007-01-01

    APOBEC3G (APO3G) is a cellular cytidine deaminase with potent antiviral activity. Initial studies of the function of APO3G demonstrated extensive mutation of the viral genome, suggesting a model in which APO3G's antiviral activity is due to hypermutation of the viral genome. Recent studies, however, found that deaminase-defective APO3G mutants transiently expressed in virus-producing cells exhibited significant antiviral activity, suggesting that the antiviral activity of APO3G could be disso...

  1. Comparing Effects of BK Virus Agnoprotein and Herpes Simplex-1 ICP47 on MHC-I and MHC-II Expression

    Directory of Open Access Journals (Sweden)

    Michela Cioni

    2013-01-01

    Full Text Available Background. Among human polyomaviruses, only BK virus (BKV and JC virus (JCV encode an agnoprotein upstream of VP1 on the viral late transcript. BKV agnoprotein is abundantly expressed late in the viral life cycle, but specific cellular and humoral immune responses are low or absent. We hypothesized that agnoprotein might contribute to BKV immune evasion by downregulating HLA expression, similar to Herpes simplex virus-1 ICP47. Methods UTA-6 or primary human renal proximal tubular epithelial cells (RPTEC were co-transfected with plasmids constitutively expressing agnoprotein, or ICP47, and enhanced green-fluorescent protein (EGFP. EGFP-gated cells were analyzed for HLA-ABC and HLA-DR expression by flow cytometry. HLA-ABC and HLA-DR expression was also analyzed on UTA-6 bearing tetracycline-regulated agnoprotein or ICP47. Effects of agnoprotein on viral peptide-dependent T-cell killing were investigated using 51Cr release. Results. ICP47 downregulated HLA-ABC without affecting HLA-DR, whereas agnoprotein did not affect HLA-ABC or HLA-DR expression. Interferon-γ treatment increased HLA-ABC in a dose-dependent manner, which was antagonized by ICP47, but not by agnoprotein. In UTA-6 cells, agnoprotein expression did neither impair HLA-ABC or -DR expression nor peptide-specific killing impaired by HLA-matched T-cells. Conclusion. Unlike the HSV-1 ICP47, BKV agnoprotein does not contribute to viral immune evasion by down-regulating HLA-ABC, or interfere with HLA-DR expression or peptide-dependent T-cell cytotoxicity.

  2. In vitro and in vivo antiviral activity of scopadulcic acid B from Scoparia dulcis, Scrophulariaceae, against herpes simplex virus type 1.

    Science.gov (United States)

    Hayashi, K; Niwayama, S; Hayashi, T; Nago, R; Ochiai, H; Morita, N

    1988-09-01

    The antiviral activity of five diterpenoids isolated from Scoparia dulcis L., Scrophulariaceae, was examined in vitro against herpes simplex virus type 1. Among these compounds, only scopadulcic acid B was found to inhibit the viral replication with the in vitro therapeutic index of 16.7. The action of scopadulcic acid B was not due to a direct virucidal effect or inhibition of virus attachment to host cells. Single-cycle replication experiments indicated that the compound interfered with considerably early events of virus growth. The influence of scopadulcic acid B on the course of the primary corneal herpes simplex virus infection was investigated by means of a hamster test model. When the treatment was initiated immediately after virus inoculation, scopadulcic acid B, when applied orally or intraperitoneally, effectively prolonged both the appearance of herpetic lesions and the survival time at the dose of 100 and 200 mg/kg per day.

  3. Vesicular Stomatitis Virus Pseudotyped with Ebola Virus Glycoprotein Serves as a Highly Protective, Non-infectious Vaccine Against Ebola Virus Challenge

    Science.gov (United States)

    2016-07-01

    Single-Injection Trivalent Filovirus 428 Vaccine: Proof of Concept Study in Outbred Guinea Pigs . J Infect Dis. 429 29. Murin, C. D., M. L. Fusco, Z...Jahrling, and J. F. Smith. 2000. Recombinant RNA replicons derived from attenuated 442 Venezuelan equine encephalitis virus protect guinea pigs and...platform, 65 including ease of production and characterization, absence of virus replication concerns and the 66 robust immune stimulatory activity

  4. Activation/proliferation and apoptosis of bystander goat lymphocytes induced by a macrophage-tropic chimeric caprine arthritis encephalitis virus expressing SIV Nef

    International Nuclear Information System (INIS)

    Bouzar, Baya Amel; Rea, Angela; Hoc-Villet, Stephanie; Garnier, Celine; Guiguen, Francois; Jin Yuhuai; Narayan, Opendra; Chebloune, Yahia

    2007-01-01

    Caprine arthritis encephalitis virus (CAEV) is the natural lentivirus of goats, well known for its tropism for macrophages and its inability to cause infection in lymphocytes. The viral genome lacks nef, tat, vpu and vpx coding sequences. To test the hypothesis that when nef is expressed by the viral genome, the virus became toxic for lymphocytes during replication in macrophages, we inserted the SIVsmm PBj14 nef coding sequences into the genome of CAEV thereby generating CAEV-nef. This recombinant virus is not infectious for lymphocytes but is fully replication competent in goat macrophages in which it constitutively expresses the SIV Nef. We found that goat lymphocytes cocultured with CAEV-nef-infected macrophages became activated, showing increased expression of the interleukin-2 receptor (IL-2R). Activation correlated with increased proliferation of the cells. Interestingly, a dual effect in terms of apoptosis regulation was observed in exposed goat lymphocytes. Nef was found first to induce a protection of lymphocytes from apoptosis during the first few days following exposure to infected macrophages, but later it induced increased apoptosis in the activated lymphocytes. This new recombinant virus provides a model to study the functions of Nef in the context of infection of macrophages, but in absence of infection of T lymphocytes and brings new insights into the biological effects of Nef on lymphocytes

  5. Viruses infecting marine molluscs.

    Science.gov (United States)

    Arzul, Isabelle; Corbeil, Serge; Morga, Benjamin; Renault, Tristan

    2017-07-01

    Although a wide range of viruses have been reported in marine molluscs, most of these reports rely on ultrastructural examination and few of these viruses have been fully characterized. The lack of marine mollusc cell lines restricts virus isolation capacities and subsequent characterization works. Our current knowledge is mostly restricted to viruses affecting farmed species such as oysters Crassostrea gigas, abalone Haliotis diversicolor supertexta or the scallop Chlamys farreri. Molecular approaches which are needed to identify virus affiliation have been carried out for a small number of viruses, most of them belonging to the Herpesviridae and birnaviridae families. These last years, the use of New Generation Sequencing approach has allowed increasing the number of sequenced viral genomes and has improved our capacity to investigate the diversity of viruses infecting marine molluscs. This new information has in turn allowed designing more efficient diagnostic tools. Moreover, the development of experimental infection protocols has answered some questions regarding the pathogenesis of these viruses and their interactions with their hosts. Control and management of viral diseases in molluscs mostly involve active surveillance, implementation of effective bio security measures and development of breeding programs. However factors triggering pathogen development and the life cycle and status of the viruses outside their mollusc hosts still need further investigations. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Isolation and identification of compounds from Kalanchoe pinnata having human alphaherpesvirus and vaccinia virus antiviral activity.

    Science.gov (United States)

    Cryer, Matthew; Lane, Kyle; Greer, Mary; Cates, Rex; Burt, Scott; Andrus, Merritt; Zou, Jiping; Rogers, Paul; Hansen, Marc D H; Burgado, Jillybeth; Panayampalli, Subbian Satheshkumar; Day, Craig W; Smee, Donald F; Johnson, Brent F

    2017-12-01

    Kalanchoe pinnata (Lam.) Pers. (Crassulaceae) is a succulent plant that is known for its traditional antivirus and antibacterial usage. This work examines two compounds identified from the K. pinnata plant for their antivirus activity against human alphaherpesvirus (HHV) 1 and 2 and vaccinia virus (VACV). Compounds KPB-100 and KPB-200 were isolated using HPLC and were identified using NMR and MS. Both compounds were tested in plaque reduction assay of HHV-2 wild type (WT) and VACV. Both compounds were then tested in virus spread inhibition and virus yield reduction (VYR) assays of VACV. KPB-100 was further tested in viral cytopathic effect (CPE) inhibition assay of HHV-2 TK-mutant and VYR assay of HHV-1 WT. KPB-100 and KPB-200 inhibited HHV-2 at IC 50 values of 2.5 and 2.9 μg/mL, respectively, and VACV at IC 50 values of 3.1 and 7.4 μg/mL, respectively, in plaque reduction assays. In virus spread inhibition assay of VACV KPB-100 and KPB-200 yielded IC 50 values of 1.63 and 13.2 μg/mL, respectively, and KPB-100 showed a nearly 2-log reduction in virus in VYR assay of VACV at 20 μg/mL. Finally, KPB-100 inhibited HHV-2 TK- at an IC 50 value of 4.5 μg/mL in CPE inhibition assay and HHV-1 at an IC 90 of 3.0 μg/mL in VYR assay. Both compounds are promising targets for synthetic optimization and in vivo study. KPB-100 in particular showed strong inhibition of all viruses tested.

  7. Which Plant Proteins Are Involved in Antiviral Defense? Review on In Vivo and In Vitro Activities of Selected Plant Proteins against Viruses

    Directory of Open Access Journals (Sweden)

    Oskar Musidlak

    2017-11-01

    Full Text Available Plants have evolved a variety of defense mechanisms to tackle virus attack. Endogenous plant proteins can function as virus suppressors. Different types of proteins mediate defense responses against plant viruses. Pathogenesis-related (PR proteins are activated upon pathogen infections or in different stress situations and their production is one of many components in plant defense. Ribosome-inactivating proteins (RIPs suppress translation by enzymatically damaging ribosomes and they have been found to have antiviral activity. RNA-binding proteins (RBPs bind to target RNAs via specialized RNA-binding domain and can directly or indirectly function in plant defense system against RNA viruses. Proteins involved in silencing machinery, namely Dicer-like (DCL proteins, Argonaute (AGO proteins, and RNA-dependent RNA polymerases (RDRs confer innate antiviral defense in plants as they are able to degrade foreign RNA of viral origin. This review aims to provide a comprehensive and up-to-date picture of plant proteins participating in antiviral defense. As a result we discuss proteins conferring plant antiviral resistance and their potential future applications in different fields of life including agriculture and medicine.

  8. Blood transfusion and hepatitis viruses

    African Journals Online (AJOL)

    virus in blood donors: investigation of type-specific differences in serologic reactivity and rate of alanine aminotransferase abnormalities. Transfusion 1993;. 33: 7-13. 45. McFarlane IG, Smith HM, Johnson PJ, Bray GP, Vergani 0, Williams R. Hepatitis. C virus antibodies in chronic active hepatitis: pathogenetic factor or false-.

  9. Radioimmunoassay of influenza A virus haemagglutinin. I

    International Nuclear Information System (INIS)

    Russ, G.; Styk, B.; Polakova, K.

    1978-01-01

    Haemagglutinin released from influenza A virus recombinant MRC11 [antigenically identical to the strain A/Port Chalmers/1/73 (H3N2)] by bromelain treatment and purified by rate zonal centrifugation (further on B-HA) was examined for possible contamination by neuraminidase. Specific enzymatic activities of the MRC11 virus and the B-HA respectively showed that B-HA contained less than 0.1% of enzymatically active neuraminidase originally present in the virus. Gel double diffusion tests, specificities of rabbit antisera induced by B-HA as well as radioimmunoprecipitation experiments demonstrated that B-HA was devoid of any antigenically active neuraminidase. Precipitation of 125 I-labelled B-HA with antisera to influenza virus recombinants with N2 neuraminidase was evidently caused by antibodies to host antigenic determinant(s) present in these sera. As for purity and radioimmunoprecipitation properties, B-HA is quite suitable for radioimmunoassay experiments. (author)

  10. The replicative DNA polymerase of herpes simplex virus 1 exhibits apurinic/apyrimidinic and 5′-deoxyribose phosphate lyase activities

    OpenAIRE

    Bogani, Federica; Boehmer, Paul E.

    2008-01-01

    Base excision repair (BER) is essential for maintaining genome stability both to counter the accumulation of unusual bases and to protect from base loss in the DNA. Herpes simplex virus 1 (HSV-1) is a large dsDNA virus that encodes its own DNA replication machinery, including enzymes involved in nucleotide metabolism. We report on a replicative family B and a herpesvirus-encoded DNA Pol that possesses DNA lyase activity. We have discovered that the catalytic subunit of the HSV-1 DNA polymeras...

  11. Deep Sequencing Reveals the Complete Genome and Evidence for Transcriptional Activity of the First Virus-Like Sequences Identified in Aristotelia chilensis (Maqui Berry

    Directory of Open Access Journals (Sweden)

    Javier Villacreses

    2015-04-01

    Full Text Available Here, we report the genome sequence and evidence for transcriptional activity of a virus-like element in the native Chilean berry tree Aristotelia chilensis. We propose to name the endogenous sequence as Aristotelia chilensis Virus 1 (AcV1. High-throughput sequencing of the genome of this tree uncovered an endogenous viral element, with a size of 7122 bp, corresponding to the complete genome of AcV1. Its sequence contains three open reading frames (ORFs: ORFs 1 and 2 shares 66%–73% amino acid similarity with members of the Caulimoviridae virus family, especially the Petunia vein clearing virus (PVCV, Petuvirus genus. ORF1 encodes a movement protein (MP; ORF2 a Reverse Transcriptase (RT and a Ribonuclease H (RNase H domain; and ORF3 showed no amino acid sequence similarity with any other known virus proteins. Analogous to other known endogenous pararetrovirus sequences (EPRVs, AcV1 is integrated in the genome of Maqui Berry and showed low viral transcriptional activity, which was detected by deep sequencing technology (DNA and RNA-seq. Phylogenetic analysis of AcV1 and other pararetroviruses revealed a closer resemblance with Petuvirus. Overall, our data suggests that AcV1 could be a new member of Caulimoviridae family, genus Petuvirus, and the first evidence of this kind of virus in a fruit plant.

  12. Autophagy is involved in anti-viral activity of pentagalloylglucose (PGG) against Herpes simplex virus type 1 infection in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Ying, E-mail: peiying-19802@163.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Chen, Zhen-Ping, E-mail: 530670663@qq.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Ju, Huai-Qiang, E-mail: 344464448@qq.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Komatsu, Masaaki, E-mail: komatsu-ms@igakuken.or.jp [Laboratory of Frontier Science, Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo 113-8613 (Japan); Ji, Yu-hua, E-mail: tjyh@jnu.edu.cn [Institute of Tissue Transplantation and Immunology, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China); Liu, Ge, E-mail: lggege_15@hotmail.com [Division of Molecular Pharmacology of Infectious agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Guo, Chao-wan, E-mail: chaovan_kwok@hotmail.com [Division of Molecular Pharmacology of Infectious agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Zhang, Ying-Jun, E-mail: zhangyj@mail.kib.ac.cn [Kunming Institute of Botany, the Chinese Academy of Sciences, Yunnan, Kunming 650204 (China); Yang, Chong-Ren, E-mail: cryang@mail.kib.ac.cn [Kunming Institute of Botany, the Chinese Academy of Sciences, Yunnan, Kunming 650204 (China); Wang, Yi-Fei, E-mail: twang-yf@163.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Kitazato, Kaio, E-mail: kkholi@msn.com [Division of Molecular Pharmacology of Infectious agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan)

    2011-02-11

    Research highlights: {yields} We showed PGG has anti-viral activity against Herpes simplex virus type 1 (HSV-1) and can induce autophgy. {yields} Autophagy may be a novel and important mechanism mediating PGG anti-viral activities. {yields} Inhibition of mTOR pathway is an important mechanism of induction of autophagy by PGG. -- Abstract: Pentagalloylglucose (PGG) is a natural polyphenolic compound with broad-spectrum anti-viral activity, however, the mechanisms underlying anti-viral activity remain undefined. In this study, we investigated the effects of PGG on anti-viral activity against Herpes simplex virus type 1 (HSV-1) associated with autophagy. We found that the PGG anti-HSV-1 activity was impaired significantly in MEF-atg7{sup -/-} cells (autophagy-defective cells) derived from an atg7{sup -/-} knockout mouse. Transmission electron microscopy revealed that PGG-induced autophagosomes engulfed HSV-1 virions. The mTOR signaling pathway, an essential pathway for the regulation of autophagy, was found to be suppressed following PGG treatment. Data presented in this report demonstrated for the first time that autophagy induced following PGG treatment contributed to its anti-HSV activity in vitro.

  13. Chemical characterization and radical scavenging activity of leaves of Juniperus foetidisima, J. excelsa and J. communis from Macedonian flora

    Directory of Open Access Journals (Sweden)

    Marija Karapandzova

    2014-12-01

    Full Text Available Chemical characterization of three Juniperus species: J. foetidisima (JF, J. excelsa (JE and J. communis (JC from Macedonian flora enclosed determination of yield and essential oil composition of the oils obtained by hydro-distillation of dried leaves and determination of the content of total phenols and total flavonoids in dried plant material. GC/FID/MS analysis showed mainly monoterpene profile of the JC oil and combined monoterpene/sesquiterpene profile of JF and JE oils. Sesquiterpene cedrol was found as an important constituent of the JF and JE, thus the JF oil was characterized by three main components (a-pinene, limonene and cedrol, in amount up to 67.63%, 27.11% and 33.91%, respectively and JE oil by four components (a-pinene, sabinene, cis-thujone and cedrol, in amount up to 33.83%, 29.49%, 26.20% and 24.44%, respectively. The JC oil was free of cedrol, but contained relatively large sesquiterpene fraction (sesquiterpene hydrocarbons and oxygen containing sesquiterpenes in amounts up to 28.64% and 13.57%, respectively. The JC oil was characterized by three monoterpene components (a-pinene, sabinene and terpinen-4-ol, presented up to 28.68%, 16.27% and 12.16%, respectively. The content of total phenols determined by Folin-Ciocalteu method ranged from 96.18-122.91 mg GAE/g dw (water extraction while the content of total flavonoids ranged from 2.05-11.91 mg CE/g dw (ethanol extraction. Both water and ethanol extracts possessed radical scavenging activity against DPPH radical. Water extracts were more powerful with % of inhibition of DPPH ranging up to 64.52%, 67.40% and 78.23% for water extract (10 mg/ml of JF, JE and JC, respectively. Obtained results showed correlation with the content of total phenols.

  14. An In Vitro RNA Synthesis Assay for Rabies Virus Defines Ribonucleoprotein Interactions Critical for Polymerase Activity.

    Science.gov (United States)

    Morin, Benjamin; Liang, Bo; Gardner, Erica; Ross, Robin A; Whelan, Sean P J

    2017-01-01

    We report an in vitro RNA synthesis assay for the RNA-dependent RNA polymerase (RdRP) of rabies virus (RABV). We expressed RABV large polymerase protein (L) in insect cells from a recombinant baculovirus vector and the phosphoprotein cofactor (P) in Escherichia coli and purified the resulting proteins by affinity and size exclusion chromatography. Using chemically synthesized short RNA corresponding to the first 19 nucleotides (nt) of the rabies virus genome, we demonstrate that L alone initiates synthesis on naked RNA and that P serves to enhance the initiation and processivity of the RdRP. The L-P complex lacks full processivity, which we interpret to reflect the lack of the viral nucleocapsid protein (N) on the template. Using this assay, we define the requirements in P for stimulation of RdRP activity as residues 11 to 50 of P and formally demonstrate that ribavirin triphosphate (RTP) inhibits the RdRP. By comparing the properties of RABV RdRP with those of the related rhabdovirus, vesicular stomatitis virus (VSV), we demonstrate that both polymerases can copy the heterologous promoter sequence. The requirements for engagement of the N-RNA template of VSV by its polymerase are provided by the C-terminal domain (CTD) of P. A chimeric RABV P protein in which the oligomerization domain (OD) and the CTD were replaced by those of VSV P stimulated RABV RdRP activity on naked RNA but was insufficient to permit initiation on the VSV N-RNA template. This result implies that interactions between L and the template N are also required for initiation of RNA synthesis, extending our knowledge of ribonucleoprotein interactions that are critical for gene expression. The current understanding of the structural and functional significance of the components of the rabies virus replication machinery is incomplete. Although structures are available for the nucleocapsid protein in complex with RNA, and also for portions of P, information on both the structure and function of the L

  15. Antivirion Effects of Streptovaricin Complex Against Friend Virus

    Science.gov (United States)

    Horoszewicz, Julius S.; Leong, Susan S.; Byrd, Daniel M.; Carter, William A.

    1974-01-01

    The in vitro antivirion activities of five different streptovaricin complex lots against the polycythemic strain of the Friend virus were evaluated. The assay system was based on the inhibition of the Friend virus-induced spleen foci. The virus inactivation process was shown to be susceptible to variation in temperature, pH, and time. The antivirion activity and the acute toxicity for mice, as well as the optical properties of these streptovaricin complexes, do not co-vary; this suggests that their biological activities are not associated with a single molecular structure. In addition, the antivirion activity of the five preparations of streptovaricin complex differs about 30-fold, indicating that this activity does not reside in a major component of the complex. PMID:15825311

  16. Inhibition of Dengue Virus Replication by a Class of Small-Molecule Compounds That Antagonize Dopamine Receptor D4 and Downstream Mitogen-Activated Protein Kinase Signaling

    Science.gov (United States)

    Smith, Jessica L.; Stein, David A.; Shum, David; Fischer, Matthew A.; Radu, Constantin; Bhinder, Bhavneet; Djaballah, Hakim; Nelson, Jay A.; Früh, Klaus

    2014-01-01

    ABSTRACT Dengue viruses (DENV) are endemic pathogens of tropical and subtropical regions that cause significant morbidity and mortality worldwide. To date, no vaccines or antiviral therapeutics have been approved for combating DENV-associated disease. In this paper, we describe a class of tricyclic small-molecule compounds—dihydrodibenzothiepines (DHBTs), identified through high-throughput screening—with potent inhibitory activity against DENV serotype 2. SKI-417616, a highly active representative of this class, displayed activity against all four serotypes of DENV, as well as against a related flavivirus, West Nile virus (WNV), and an alphavirus, Sindbis virus (SINV). This compound was characterized to determine its mechanism of antiviral activity. Investigation of the stage of the viral life cycle affected revealed that an early event in the life cycle is inhibited. Due to the structural similarity of the DHBTs to known antagonists of the dopamine and serotonin receptors, we explored the roles of two of these receptors, serotonin receptor 2A (5HTR2A) and the D4 dopamine receptor (DRD4), in DENV infection. Antagonism of DRD4 and subsequent downstream phosphorylation of epidermal growth factor receptor (EGFR)-related kinase (ERK) were found to impact DENV infection negatively, and blockade of signaling through this network was confirmed as the mechanism of anti-DENV activity for this class of compounds. IMPORTANCE The dengue viruses are mosquito-borne, reemerging human pathogens that are the etiological agents of a spectrum of febrile diseases. Currently, there are no approved therapeutic treatments for dengue-associated disease, nor is there a vaccine. This study identifies a small molecule, SKI-417616, with potent anti-dengue virus activity. Further analysis revealed that SKI-417616 acts through antagonism of the host cell dopamine D4 receptor and subsequent repression of the ERK phosphorylation pathway. These results suggest that SKI-417616, or other

  17. Influenza virus-induced alterations of cytochrome P-450 enzyme activities following exposure of mice to coal and diesel particulates.

    Science.gov (United States)

    Rabovsky, J; Judy, D J; Rodak, D J; Petersen, M

    1986-06-01

    We have investigated a relationship between two detoxication systems, metabolic detoxication through the cytochrome P-450 (P-450) pathway and resistance to infection through interferon (IFN), in mice infected with influenza virus following exposure to coal dust (CD) and diesel exhaust (DE) particulates. Mice were exposed by inhalation to filtered air (FA; control), CD, or DE for 1 month and then inoculated intranasally (IN) with influenza virus. During infection, 7-ethoxycoumarin deethylase (7ECdeEt'ase) and ethylmorphine demethylase (EMdeMe'ase) (monooxygenases), and NADPH cytochrome c reductase (NADPH c red'ase) were measured in liver microsomes. Temporal patterns of enzyme activities were observed with control animals. EMdeMe'ase and NADPH c red'ase exhibited peak values at Day 4 postinfection (27.6 and 482 nmole/min/mg protein, respectively), compared to initial activities (9.1 and 307 nmole/min/mg protein, respectively). 7ECdeEt'ase activity decreased between Days 1-3 postvirus infection and thereafter returned to the original value (1.7 nmole/min/mg protein). When the mice were first exposed to CD or DE particulates for 1 month prior to influenza infection, changes in enzyme temporal patterns were observed. The increased EMdeMe'ase activity at Day 4 was not observed in mice exposed to CD and was reduced in mice exposed to DE. Preexposure to either particulate resulted in the abolition of the increased Day 4 activity of NADPH c red'ase. The 7ECdeEt'ase postinfection temporal pattern was not affected by a preexposure to either particulate. Estimates of the enzyme activities after the 1-month exposure to FA, CD, or DE but before virus infection indicated no changes due to particulate exposure alone. Under these conditions of particulate exposure and virus infection, serum IFN levels in the mice used in this study peaked at Days 4-5 and were unaffected by the 1-month preexposure to CD or DE (Hahon et al., (1985). The data suggest the relationship that exists

  18. Tyrphostin AG1478 Inhibits Encephalomyocarditis Virus and Hepatitis C Virus by Targeting Phosphatidylinositol 4-Kinase IIIα

    NARCIS (Netherlands)

    Dorobantu, Cristina M.; Harak, Christian; Klein, Rahel; van der Linden, Lonneke; Strating, Jeroen R. P. M.; van der Schaar, Hilde M.; Lohmann, Volker; van Kuppeveld, Frank J. M.

    2016-01-01

    Encephalomyocarditis virus (EMCV), like hepatitis C virus (HCV), requires phosphatidylinositol 4-kinase IIIα (PI4KA) for genome replication. Here, we demonstrate that tyrphostin AG1478, a known epidermal growth factor receptor (EGFR) inhibitor, also inhibits PI4KA activity, both in vitro and in

  19. El citoesqueleto en la infección con virus dengue

    Directory of Open Access Journals (Sweden)

    Francisco Javier Díaz Castrillón

    2004-03-01

    de vimentina cambian su patrón reticular, formando prolongaciones celulares en donde se detecta aglomeración de haces con un aumento en inmunorreactividad.

    Estos hallazgos son compatibles con el efecto citopático del DV, pero se requieren anticuerpos que marquen específicamente los viriones, para poder vislumbrar la posible interacción entre el citoesqueleto y los virus. Estamos probando otros anticuerpos, y esperamos lograr detectar con más detalle este fenómeno. Las perspectivas son promisorias y nos darán aportes originales, pues hasta ahora no hay reportes al respecto. Además, estos datos pueden ser de utilidad para comprender la patogénesis del dengue desde la perspectiva de la biología celular.

    REFERENCIAS

    1. ARCANGELETTI MC, PINARDI F, MISSORINI S, DE CONTO F, CONTI G, PORTINCASA P, SCHERRER K, CHEZZI C. 1997. Modification of cytoskeleton and prosome networks in relation to protein synthesis in influenza A virus-infected LLC-MK2 cells. Virus Res. 51: 19-34.

    2. GALLEGO-GÓMEZ, J.C. 2003. El Dengue Hemorrágico: Emergencia, Re-emergencia y Globalización de la Pobreza. Simposio Anual “Tópicos en Enfermedades Infecciosas” del Depto. Microb. Parasit., Fac. Medicina, Universidad de Antioquia. Septiembre 24.

    3. GALLEGO-GÓMEZ, J.C., et al. “Vaccinia Virus and their Attenuated Mutants induce Epithelial to Mesenchymal Transition” XIV th International Poxvirus and Iridovirus Workshop Lake

  20. Detection and quantification of classic and emerging viruses by skimmed-milk flocculation and PCR in river water from two geographical areas.

    Science.gov (United States)

    Calgua, Byron; Fumian, Tulio; Rusiñol, Marta; Rodriguez-Manzano, Jesus; Mbayed, Viviana A; Bofill-Mas, Silvia; Miagostovich, Marize; Girones, Rosina

    2013-05-15

    Molecular techniques and virus concentration methods have shown that previously unknown viruses are shed by humans and animals, and may be transmitted by sewage-contaminated water. In the present study, 10-L river-water samples from urban areas in Barcelona, Spain and Rio Janeiro, Brazil, have been analyzed to evaluate the viral dissemination of human viruses, validating also a low-cost concentration method for virus quantification in fresh water. Three viral groups were analyzed: (i) recently reported viruses, klassevirus (KV), asfarvirus-like virus (ASFLV), and the polyomaviruses Merkel cell (MCPyV), KI (KIPyV) and WU (WUPyV); (ii) the gastroenteritis agents noroviruses (NoV) and rotaviruses (RV); and (iii) the human fecal viral indicators in water, human adenoviruses (HAdV) and JC polyomaviruses (JCPyV). Virus detection was based on nested and quantitative PCR assays. For KV and ASFLV, nested PCR assays were developed for the present study. The method applied for virus concentration in fresh water samples is a one-step procedure based on a skimmed-milk flocculation procedure described previously for seawater. Using spiked river water samples, inter- and intra-laboratory assays showed a viral recovery rate of about 50% (20-95%) for HAdV, JCPyV, NoV and RV with a coefficient of variation ≤ 50%. HAdV and JCPyV were detected in 100% (12/12) of the river samples from Barcelona and Rio de Janeiro. Moreover, NoV GGII was detected in 83% (5/6) and MCPyV in 50% (3/6) of the samples from Barcelona, whereas none of the other viruses tested were detected. NoV GGII was detected in 33% (2/6), KV in 33% (2/6), ASFLV in 17% (1/6) and MCPyV in 50% (3/6) of the samples from Rio de Janeiro, whereas KIPyV and WUPyV were not detected. RV were only analyzed in Rio de Janeiro and resulted positive in 67% (4/6) of the samples. The procedure applied here to river water represents a useful, straightforward and cost-effective method that could be applied in routine water quality testing

  1. Treatability evaluation of membrane technique by virus. Maku shori ni okeru shorisei hyoka to shite no virus

    Energy Technology Data Exchange (ETDEWEB)

    Yano, K. (Tokyo Metropolitan Research Lab. of Public Health, Tokyo (Japan))

    1990-08-10

    Concerning a high level treating method of regeneration of sewage water, there are methods of coagulation/precipitation, sand filtering and ozone treatment in addition to the conventional active sludge method. However, none of these methods are perfect from the viewpoint of virus. A film treating method to remove micro-organisms in water is twofold, i.e., microfiltration and reverse osmosis. For such filter treatments, polio virus is most suited as an experimental index for conducting an assessment of the treating ability of viruses. The reasons are as follows: 1. It is the smallest virus among the viruses which are mixed in the water systems. 2. Polio virus is always detected in the study of actual conditions of the viruses contained in the sewage waters. 3. It involves less danger in handling because there are vaccines which are made less poisonous. 4. Separation and quantification of viruses is easily conducted by means of cultured cells. 8 refs., 1 fig., 7 tabs.

  2. Screening Bioactives Reveals Nanchangmycin as a Broad Spectrum Antiviral Active against Zika Virus

    OpenAIRE

    Rausch, Keiko; Hackett, Brent A.; Weinbren, Nathan L.; Reeder, Sophia M.; Sadovsky, Yoel; Hunter, Christopher A.; Schultz, David C.; Coyne, Carolyn B.; Cherry, Sara

    2017-01-01

    Zika virus is an emerging arthropod-borne flavivirus for which there are no vaccines or specific therapeutics. We screened a library of 2,000 bioactive compounds for their ability to block Zika virus infection in three distinct cell types with two different strains of Zika virus. Using a microscopy-based assay, we validated 38 drugs that inhibited Zika virus infection, including FDA-approved nucleoside analogs. Cells expressing high levels of the attachment factor AXL can be protected from in...

  3. The hepatitis B virus large surface protein (LHBs) is a transcriptional activator.

    Science.gov (United States)

    Hildt, E; Saher, G; Bruss, V; Hofschneider, P H

    1996-11-01

    It has been shown that a C-terminally truncated form of the middle-sized hepatitis B virus (HBV) surface protein (MHBst) functions as a transcriptional activator. This function is dependent on the cytosolic orientation of the N-terminal PreS2 domain of MHBst, but in the case of wild-type MHBs, the PreS2 domain is contranslationally translocated into the ER lumen. Recent reports demonstrated that the PreS2 domain of the large HBV surface protein (LHBs) initially remains on the cytosolic side of the ER membrane after translation. Therefore, the question arose as to whether the LHBs protein exhibits the same transcriptional activator function as MHBst. We show that LHBs, like MHBst, is indeed able to activate a variety of promoter elements. There is evidence for a PKC-dependent activation of AP-1 and NF-kappa B by LHBs. Downstream of the PKC the functionality of c-Raf-1 kinase is a prerequisite for LHBs-dependent activation of AP-1 and NF-kappa B since inhibition of c-Raf-1 kinase abolishes LHBs-dependent transcriptional activation of AP-1 and NF-kappa B.

  4. Toll-like receptor agonist augments virus-like particle-mediated protection from Ebola virus with transient immune activation.

    Directory of Open Access Journals (Sweden)

    Karen A O Martins

    Full Text Available Identifying safe and effective adjuvants is critical for the advanced development of protein-based vaccines. Pattern recognition receptor (PRR agonists are increasingly being explored as potential adjuvants, but there is concern that the efficacy of these molecules may be dependent on potentially dangerous levels of non-specific immune activation. The filovirus virus-like particle (VLP vaccine protects mice, guinea pigs, and nonhuman primates from viral challenge. In this study, we explored the impact of a stabilized dsRNA mimic, polyICLC, on VLP vaccination of C57BL/6 mice and Hartley guinea pigs. We show that at dose levels as low as 100 ng, the adjuvant increased the efficacy of the vaccine in mice. Antigen-specific, polyfunctional CD4 and CD8 T cell responses and antibody responses increased significantly upon inclusion of adjuvant. To determine whether the efficacy of polyICLC correlated with systemic immune activation, we examined serum cytokine levels and cellular activation in the draining lymph node. PolyICLC administration was associated with increases in TNFα, IL6, MCP1, MIP1α, KC, and MIP1β levels in the periphery and with the activation of dendritic cells (DCs, NK cells, and B cells. However, this activation resolved within 24 to 72 hours at efficacious adjuvant dose levels. These studies are the first to examine the polyICLC-induced enhancement of antigen-specific immune responses in the context of non-specific immune activation, and they provide a framework from which to consider adjuvant dose levels.

  5. AIDS-related progressive multifocal leukoencephalopathy (PML): A ...

    African Journals Online (AJOL)

    Patients with positive cerebrospinal fluid (CSF) JC virus confirmed by real-time polymerase chain reaction (PCR) were retrospectively identified from January 2008 to June 2012. Adults seen at Neurology with PML were identified, and clinical features, laboratory findings and imaging studies were analysed. Results. Of 121 ...

  6. Zika virus: a new arboviral public health problem.

    Science.gov (United States)

    Demir, Tulin; Kilic, Selcuk

    2016-11-01

    Zika virus (ZIKV) is a single-stranded RNA virus in the Flaviviridae family and transmitted to human through infected mosquitos (Aedes aegypti and Aedes albopictus). Virus is closely related with other flaviviruses; dengue virus, yellow fever virus, West Nile virus, and Japanese encephalitis virus phylogenetically. Due to the possible relationship between virus and clinical features including microcephaly, ventricule, and eye deformities, Guillain-Barre syndrome increases the interest on this virus gradually. Along with the vector-borne transmission, exposure via blood transfusion and sexual contact are further concerns. Since December 2015, CDC reported 440.000-1.300.000 possible cases in Brazil and as of 19 January 2016, El Salvador, Venezuela, Colombia, Brazil, Surinam, French Guana, Honduras, Mexico, and Panama are the countries with active epidemic. CDC recommends ZIKV screening for all pregnants including asymptomatic cases those living in the active epidemic areas. Recently, virus is detected in the USA and most European countries including UK, Netherlands, Denmark, Switzerland, and Italy as a travel-associated infection. Owing to the changing world with increased capabilities for transportation globally, this vector-borne infection represents a valuable marker for the ability of spreading of any infection from its original area that it was first seen. In this review, we summarized the up-to-date data and reports in terms of the importance of the ZIKV infection in the public health.

  7. Dengue virus infection-enhancing antibody activities against Indonesian strains in inhabitants of central Thailand.

    Science.gov (United States)

    Yamanaka, Atsushi; Oddgun, Duangjai; Chantawat, Nantarat; Okabayashi, Tamaki; Ramasoota, Pongrama; Churrotin, Siti; Kotaki, Tomohiro; Kameoka, Masanori; Soegijanto, Soegeng; Konishi, Eiji

    2016-04-01

    Dengue virus (DENV) infection-enhancing antibodies are a hypothetic factor to increase the dengue disease severity. In this study, we investigated the enhancing antibodies against Indonesian strains of DENV-1-4 in 50 healthy inhabitants of central Thailand (Bangkok and Uthai Thani). Indonesia and Thailand have seen the highest dengue incidence in Southeast Asia. The infection history of each subject was estimated by comparing his/her neutralizing antibody titers against prototype DENV-1-4 strains. To resolve the difficulty in obtaining foreign live viruses for use as assay antigens, we used a recombinant system to prepare single-round infectious dengue viral particles based on viral sequence information. Irrespective of the previously infecting serotype(s), most serum samples showed significantly higher enhancement titers against Indonesian DENV-2 strains than against Thai DENV-2 strains, whereas the opposite effect was observed for the DENV-3 strains. Equivalent enhancing activities were observed against both DENV-1 and DENV-4. These results suggest that the genotype has an impact on enhancing antibody activities against DENV-2 and DENV-3, because the predominant circulating genotypes of each serotype differ between Indonesia and Thailand. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. Dengue Virus-Infected Dendritic Cells, but Not Monocytes, Activate Natural Killer Cells through a Contact-Dependent Mechanism Involving Adhesion Molecules.

    Science.gov (United States)

    Costa, Vivian Vasconcelos; Ye, Weijian; Chen, Qingfeng; Teixeira, Mauro Martins; Preiser, Peter; Ooi, Eng Eong; Chen, Jianzhu

    2017-08-01

    Natural killer (NK) cells play a protective role against dengue virus (DENV) infection, but the cellular and molecular mechanisms are not fully understood. Using an optimized humanized mouse model, we show that human NK cells, through the secretion of gamma interferon (IFN-γ), are critical in the early defense against DENV infection. Depletion of NK cells or neutralization of IFN-γ leads to increased viremia and more severe thrombocytopenia and liver damage in humanized mice. In vitro studies using autologous human NK cells show that DENV-infected monocyte-derived dendritic cells (MDDCs), but not monocytes, activate NK cells in a contact-dependent manner, resulting in upregulation of CD69 and CD25 and secretion of IFN-γ. Blocking adhesion molecules (LFA-1, DNAM-1, CD2, and 2β4) on NK cells abolishes NK cell activation, IFN-γ secretion, and the control of DENV replication. NK cells activated by infected MDDCs also inhibit DENV infection in monocytes. These findings show the essential role of human NK cells in protection against acute DENV infection in vivo , identify adhesion molecules and dendritic cells required for NK cell activation, and delineate the sequence of events for NK cell activation and protection against DENV infection. IMPORTANCE Dengue is a mosquito-transmitted viral disease with a range of symptoms, from mild fever to life-threatening dengue hemorrhagic fever. The diverse disease manifestation is thought to result from a complex interplay between viral and host factors. Using mice engrafted with a human immune system, we show that human NK cells inhibit virus infection through secretion of the cytokine gamma interferon and reduce disease pathogenesis, including depletion of platelets and liver damage. During a natural infection, DENV initially infects dendritic cells in the skin. We find that NK cells interact with infected dendritic cells through physical contact mediated by adhesion molecules and become activated before they can control

  9. Designing herpes viruses as oncolytics

    Science.gov (United States)

    Peters, Cole; Rabkin, Samuel D

    2015-01-01

    Oncolytic herpes simplex virus (oHSV) was one of the first genetically-engineered oncolytic viruses. Because HSV is a natural human pathogen that can cause serious disease, it is incumbent that it can be genetically-engineered or significantly attenuated for safety. Here, we present a detailed explanation of the functions of HSV-1 genes frequently mutated to endow oncolytic activity. These genes are nonessential for growth in tissue culture cells but are important for growth in postmitotic cells, interfering with intrinsic antiviral and innate immune responses or causing pathology, functions dispensable for replication in cancer cells. Understanding the function of these genes leads to informed creation of new oHSVs with better therapeutic efficacy. Virus infection and replication can also be directed to cancer cells through tumor-selective receptor binding and transcriptional- or post-transcriptional miRNA-targeting, respectively. In addition to the direct effects of oHSV on infected cancer cells and tumors, oHSV can be “armed” with transgenes that are: reporters, to track virus replication and spread; cytotoxic, to kill uninfected tumor cells; immune modulatory, to stimulate antitumor immunity; or tumor microenvironment altering, to enhance virus spread or to inhibit tumor growth. In addition to HSV-1, other alphaherpesviruses are also discussed for their oncolytic activity. PMID:26462293

  10. Toscana virus induces interferon although its NSs protein reveals antagonistic activity.

    Science.gov (United States)

    Gori Savellini, Gianni; Weber, Friedemann; Terrosi, Chiara; Habjan, Matthias; Martorelli, Barbara; Cusi, Maria Grazia

    2011-01-01

    Toscana virus (TOSV) is a phlebotomus-transmitted virus that belongs to the family Bunyaviridae and causes widespread infections in humans; about 30 % of these cases result in aseptic meningitis. In the present study, it was shown that TOSV is an inducer of beta interferon (IFN-β), although its non-structural protein (NSs) could inhibit the induction of IFN-β if expressed in a heterologous context. A recombinant Rift Valley fever virus expressing the TOSV NSs could suppress IFN-β expression in infected cells. Moreover, in cells expressing NSs protein from a cDNA plasmid, IFN-β transcripts were not inducible by poly(I : C). Unlike other members of the family Bunyaviridae, TOSV appears to express an NSs protein that is a weak antagonist of IFN induction. Characterization of the interaction of TOSV with the IFN system will help our understanding of virus-host cell interactions and may explain why the pathogenesis of this disease is mostly mild in humans.

  11. Influenza virus induces apoptosis via BAD-mediated mitochondrial dysregulation.

    Science.gov (United States)

    Tran, Anh T; Cortens, John P; Du, Qiujiang; Wilkins, John A; Coombs, Kevin M

    2013-01-01

    Influenza virus infection results in host cell death and major tissue damage. Specific components of the apoptotic pathway, a signaling cascade that ultimately leads to cell death, are implicated in promoting influenza virus replication. BAD is a cell death regulator that constitutes a critical control point in the intrinsic apoptosis pathway, which occurs through the dysregulation of mitochondrial outer membrane permeabilization and the subsequent activation of downstream apoptogenic factors. Here we report a novel proviral role for the proapoptotic protein BAD in influenza virus replication. We show that influenza virus-induced cytopathology and cell death are considerably inhibited in BAD knockdown cells and that both virus replication and viral protein production are dramatically reduced, which suggests that virus-induced apoptosis is BAD dependent. Our data showed that influenza viruses induced phosphorylation of BAD at residues S112 and S136 in a temporal manner. Viral infection also induced BAD cleavage, late in the viral life cycle, to a truncated form that is reportedly a more potent inducer of apoptosis. We further demonstrate that knockdown of BAD resulted in reduced cytochrome c release and suppression of the intrinsic apoptotic pathway during influenza virus replication, as seen by an inhibition of caspases-3, caspase-7, and procyclic acidic repetitive protein (PARP) cleavage. Our data indicate that influenza viruses carefully modulate the activation of the apoptotic pathway that is dependent on the regulatory function of BAD and that failure of apoptosis activation resulted in unproductive viral replication.

  12. Suppressing active replication of a live attenuated simian immunodeficiency virus vaccine does not abrogate protection from challenge

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Benjamin; Fiebig, Uwe; Hohn, Oliver [Robert Koch-Institut, Berlin (Germany); Plesker, Roland; Coulibaly, Cheick; Cichutek, Klaus; Mühlebach, Michael D. [Paul-Ehrlich-Institut, Langen (Germany); Bannert, Norbert; Kurth, Reinhard [Robert Koch-Institut, Berlin (Germany); Norley, Stephen, E-mail: NorleyS@rki.de [Robert Koch-Institut, Berlin (Germany)

    2016-02-15

    Although safety concerns preclude the use of live attenuated HIV vaccines in humans, they provide a useful system for identifying the elusive correlates of protective immunity in the SIV/macaque animal model. However, a number of pieces of evidence suggest that protection may result from prior occupancy of susceptible target cells by the vaccine virus rather than the immune response. To address this, we developed a Nef-deletion variant of an RT-SHIV whose active replication could be shut off by treatment with RT-inhibitors. Groups of macaques were inoculated with the ∆Nef-RT-SHIV and immune responses allowed to develop before antiretroviral treatment and subsequent challenge with wild-type SIVmac239. Vaccinated animals either resisted infection fully or significantly controlled the subsequent viremia. However, there was no difference between animals undergoing replication of the vaccine virus and those without. This strongly suggests that competition for available target cells does not play a role in protection. - Highlights: • A Nef-deleted RT-SHIV was used as a live attenuated vaccine in macaques. • Vaccine virus replication was shut down to investigate its role in protection. • Ongoing vaccine virus replication did not appear to be necessary for protection. • An analysis of T- and B-cell responses failed to identify a correlate of protection.

  13. Suppressing active replication of a live attenuated simian immunodeficiency virus vaccine does not abrogate protection from challenge

    International Nuclear Information System (INIS)

    Gabriel, Benjamin; Fiebig, Uwe; Hohn, Oliver; Plesker, Roland; Coulibaly, Cheick; Cichutek, Klaus; Mühlebach, Michael D.; Bannert, Norbert; Kurth, Reinhard; Norley, Stephen

    2016-01-01

    Although safety concerns preclude the use of live attenuated HIV vaccines in humans, they provide a useful system for identifying the elusive correlates of protective immunity in the SIV/macaque animal model. However, a number of pieces of evidence suggest that protection may result from prior occupancy of susceptible target cells by the vaccine virus rather than the immune response. To address this, we developed a Nef-deletion variant of an RT-SHIV whose active replication could be shut off by treatment with RT-inhibitors. Groups of macaques were inoculated with the ∆Nef-RT-SHIV and immune responses allowed to develop before antiretroviral treatment and subsequent challenge with wild-type SIVmac239. Vaccinated animals either resisted infection fully or significantly controlled the subsequent viremia. However, there was no difference between animals undergoing replication of the vaccine virus and those without. This strongly suggests that competition for available target cells does not play a role in protection. - Highlights: • A Nef-deleted RT-SHIV was used as a live attenuated vaccine in macaques. • Vaccine virus replication was shut down to investigate its role in protection. • Ongoing vaccine virus replication did not appear to be necessary for protection. • An analysis of T- and B-cell responses failed to identify a correlate of protection.

  14. Dengue Virus Genome Uncoating Requires Ubiquitination

    Directory of Open Access Journals (Sweden)

    Laura A. Byk

    2016-06-01

    Full Text Available The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world. Here, we examined for the first time molecular aspects of dengue virus genome uncoating. We followed the fate of the capsid protein and RNA genome early during infection and found that capsid is degraded after viral internalization by the host ubiquitin-proteasome system. However, proteasome activity and capsid degradation were not necessary to free the genome for initial viral translation. Unexpectedly, genome uncoating was blocked by inhibiting ubiquitination. Using different assays to bypass entry and evaluate the first rounds of viral translation, a narrow window of time during infection that requires ubiquitination but not proteasome activity was identified. In this regard, ubiquitin E1-activating enzyme inhibition was sufficient to stabilize the incoming viral genome in the cytoplasm of infected cells, causing its retention in either endosomes or nucleocapsids. Our data support a model in which dengue virus genome uncoating requires a nondegradative ubiquitination step, providing new insights into this crucial but understudied viral process.

  15. Persistent hepatitis virus infection and immune homeostasis

    OpenAIRE

    ZHOU Yun

    2014-01-01

    Homeostasis between the host and viruses is naturally maintained. On the one hand, the immune system activates the immune response to kill or eliminate viruses; on the other hand, the immune system controls the immune response to maintain immune homeostasis. The cause of persistent infections with hepatitis viruses such as HBV and HCV is that viral molecules damage the immune system of the host and their variants escape immune clearance. Long-term coexistence of the host and viruses is the pr...

  16. Immunity to VHS virus in rainbow trout

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Olesen, Niels Jørgen; Koch, C.

    1999-01-01

    Viral hemorrhagic septicemia virus (VHSV) is the rhabdovirus that causes most disease problems in farmed rainbow trout in Europe. Survivors of infection are usually immune to reinfection but as with other fish viruses, development of a modern recombinant vaccine has been complicated by the limited...... knowledge of the immune mechanisms and antigens involved in induction of immunity. Neutralizing and protective monoclonal antibodies recognize the envelope glycoprotein (G protein) which is the only viral protein known to be present on the surface of the virus particle. Immunoblotting analyses...... with monoclonal antibodies as well as with sera from immunized trout have indicated that protein conformation plays an important role in neutralization epitopes. The virus neutralizing activity often found in sera from convalescent trout is highly dependent on a poorly defined complementing activity in normal...

  17. Epimedium koreanum Nakai Water Extract Exhibits Antiviral Activity against Porcine Epidermic Diarrhea Virus In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Won-Kyung Cho

    2012-01-01

    Full Text Available Porcine epidemic diarrhea virus (PEDV causes diarrhea of pigs age-independently and death of young piglets, resulting in economic loss of porcine industry. We have screened 333 natural oriental herbal medicines to search for new antiviral candidates against PEDV. We found that two herbal extracts, KIOM 198 and KIOM 124, contain significant anti-PED viral effect. KIOM 198 and KIOM 124 were identified as Epimedium koreanum Nakai and Lonicera japonica Thunberg, respectively. The further plaque and CPE inhibition assay in vitro showed that KIOM 198 has much stronger antiviral activity than KIOM 124. Additionally, KIOM 198 exhibited a similar extent of antiviral effect against other subtypes of Corona virus such as sm98 and TGE viruses. Cytotoxicity results showed that KIOM 198 is nontoxic on the cells and suggest that it can be delivered safely for therapy. Furthermore, when we orally administered KIOM 198 to piglets and then infected them with PEDV, the piglets did not show any disease symptoms like diarrhea and biopsy results showed clean intestine, whereas control pigs without KIOM 198 treatment exhibited PED-related severe symptoms. These results imply that KIOM 198 contains strong antiviral activity and has a potential to be developed as an antiviral phytomedicine to treat PEDV-related diseases in pigs.

  18. Cross-species transmission of honey bee viruses in associated arthropods.

    Science.gov (United States)

    Levitt, Abby L; Singh, Rajwinder; Cox-Foster, Diana L; Rajotte, Edwin; Hoover, Kelli; Ostiguy, Nancy; Holmes, Edward C

    2013-09-01

    There are a number of RNA virus pathogens that represent a serious threat to the health of managed honey bees (Apis mellifera). That some of these viruses are also found in the broader pollinator community suggests the wider environmental spread of these viruses, with the potential for a broader impact on ecosystems. Studies on the ecology and evolution of these viruses in the arthropod community as a whole may therefore provide important insights into these potential impacts. We examined managed A. mellifera colonies, nearby non-Apis hymenopteran pollinators, and other associated arthropods for the presence of five commonly occurring picorna-like RNA viruses of honey bees - black queen cell virus, deformed wing virus, Israeli acute paralysis virus, Kashmir bee virus and sacbrood virus. Notably, we observed their presence in several arthropod species. Additionally, detection of negative-strand RNA using strand-specific RT-PCR assays for deformed wing virus and Israeli acute paralysis virus suggests active replication of deformed wing virus in at least six non-Apis species and active replication of Israeli acute paralysis virus in one non-Apis species. Phylogenetic analysis of deformed wing virus also revealed that this virus is freely disseminating across the species sampled in this study. In sum, our study indicates that these viruses are not specific to the pollinator community and that other arthropod species have the potential to be involved in disease transmission in pollinator populations. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Targeting an Oncolytic Influenza A Virus to Tumor Tissue by Elastase

    Directory of Open Access Journals (Sweden)

    Irina Kuznetsova

    2017-12-01

    Full Text Available Oncolytic viruses are currently established as a novel type of immunotherapy. The challenge is to safely target oncolytic viruses to tumors. Previously, we have generated influenza A viruses (IAVs containing deletions in the viral interferon antagonist. Those deletions have attenuated the virus in normal tissue but allowed replication in tumor cells. IAV entry is mediated by hemagglutinin (HA, which needs to be activated by a serine protease, for example, through trypsin. To further target the IAV to tumors, we have changed the trypsin cleavage site to an elastase cleavage site. We chose this cleavage site because elastase is expressed in the tumor microenvironment. Moreover, the exchange of the cleavage site previously has been shown to attenuate viral growth in lungs. Newly generated elastase-activated influenza viruses (AE viruses grew to similar titers in tumor cells as the trypsin-activated counterparts (AT viruses. Intratumoral injection of AE viruses into syngeneic B16f1 melanoma-derived tumors in mice reduced tumor growth similar to AT viruses and had a better therapeutic effect in heterologous human PANC-1-derived tumors. Therefore, the introduction of the attenuation marker “elastase cleavage site” in viral HA allows for safe, effective oncolytic virus therapy.

  20. The dynamics of herpesvirus and polyomavirus reactivation and shedding in healthy adults: a 14-month longitudinal study

    Science.gov (United States)

    Ling, Paul D.; Lednicky, John A.; Keitel, Wendy A.; Poston, David G.; White, Zoe S.; Peng, RongSheng; Liu, Zhensheng; Mehta, Satish K.; Pierson, Duane L.; Rooney, Cliona M.; hide

    2003-01-01

    Humans are infected with viruses that establish long-term persistent infections. To address whether immunocompetent individuals control virus reactivation globally or independently and to identify patterns of sporadic reactivation, we monitored herpesviruses and polyomaviruses in 30 adults, over 14 months. Epstein-Barr virus (EBV) DNA was quantitated in saliva and peripheral blood mononuclear cells (PBMCs), cytomegalovirus (CMV) was assayed in urine, and JC virus (JCV) and BK virus (BKV) DNAs were assayed in urine and PBMCs. All individuals shed EBV in saliva, whereas 67% had >or=1 blood sample positive for EBV. Levels of EBV varied widely. CMV shedding occurred infrequently but occurred more commonly in younger individuals (Por=40 years old (P.50). Thus, adults independently control persistent viruses, which display discordant, sporadic reactivations.

  1. Antiviral activities of Radix Isatidis polysaccharide against type II herpes simplex virus in vitro

    Directory of Open Access Journals (Sweden)

    Chunmei WANG

    2018-03-01

    Full Text Available Abstract This study investigated the antiviral activities of Radix Isatidis polysaccharide (RIP against type II herpes simplex virus (HSV-2 in vitro. RIP was prepared from the Radix Isatidis root. The toxicity of RIP on Vero cells was detected. The direct killing effect of RIP on HSV-2, inhibitory effect of RIP on HSV-2 replication and inhibitory effect of RIP on HSV-2 adsorption were determined. Results showed that, RIP in concentration range of 25-800 mg/L had no toxic effect on Vero cells. RIP with different concentrations could not directly inactivate the HSV-2. The effective rates on inhibition of HSV-2 replication and adsorption in 800 mg/L RIP group were 71.57% and 48.37%, respectively, which were the highest among different groups. In conclusion, RIP has the antiviral effect against HSV-2 in vitro. This effect mainly occurs in inhibiting the virus duplication and adsorption.

  2. Virus-cell fusion inhibitory activity of novel analogue peptides based on the HP (2-20) derived from N-terminus of Helicobacter pylori Ribosomal Protein L1.

    Science.gov (United States)

    Woo, Eun-Rhan; Lee, Dong Gun; Chang, Young-Su; Park, Yoonkyung; Hahm, Kyung-Soo

    2002-12-01

    HP (2-20) (AKKVFKRLEKLFSKIQNDK) is the antibacterial sequence derived from N-terminus of Helicobacter pylori Ribosomal Protein L1 (RPL1). It has a broad-spectrum microbicidal activity in vitro that is thought to be related to the membrane-disruptive properties of the peptide. Based on the putative membrane-targeted mode of action, we postulated that HP (2-20) might be possessed virus-cell fusion inhibitory activity. To develop the novel virus-cell fusion inhibitory peptides, several analogues with amino acid substitution were designed to increase or decrease only net hydrophobic region. In particular, substitution of Gln and Asp for hydrophobic amino acid, Trp at position 17 and 19 of HP (2-20) (Anal 3) caused a dramatic increase in virus-cell fusion inhibitory activity without hemolytic effect.

  3. EBNA1: Oncogenic Activity, Immune Evasion and Biochemical Functions Provide Targets for Novel Therapeutic Strategies against Epstein-Barr Virus- Associated Cancers

    Directory of Open Access Journals (Sweden)

    Joanna B. Wilson

    2018-04-01

    Full Text Available The presence of the Epstein-Barr virus (EBV-encoded nuclear antigen-1 (EBNA1 protein in all EBV-carrying tumours constitutes a marker that distinguishes the virus-associated cancer cells from normal cells and thereby offers opportunities for targeted therapeutic intervention. EBNA1 is essential for viral genome maintenance and also for controlling viral gene expression and without EBNA1, the virus cannot persist. EBNA1 itself has been linked to cell transformation but the underlying mechanism of its oncogenic activity has been unclear. However, recent data are starting to shed light on its growth-promoting pathways, suggesting that targeting EBNA1 can have a direct growth suppressing effect. In order to carry out its tasks, EBNA1 interacts with cellular factors and these interactions are potential therapeutic targets, where the aim would be to cripple the virus and thereby rid the tumour cells of any oncogenic activity related to the virus. Another strategy to target EBNA1 is to interfere with its expression. Controlling the rate of EBNA1 synthesis is critical for the virus to maintain a sufficient level to support viral functions, while at the same time, restricting expression is equally important to prevent the immune system from detecting and destroying EBNA1-positive cells. To achieve this balance EBNA1 has evolved a unique repeat sequence of glycines and alanines that controls its own rate of mRNA translation. As the underlying molecular mechanisms for how this repeat suppresses its own rate of synthesis in cis are starting to be better understood, new therapeutic strategies are emerging that aim to modulate the translation of the EBNA1 mRNA. If translation is induced, it could increase the amount of EBNA1-derived antigenic peptides that are presented to the major histocompatibility (MHC class I pathway and thus, make EBV-carrying cancers better targets for the immune system. If translation is further suppressed, this would provide another

  4. Mutual antagonism between the Ebola virus VP35 protein and the RIG-I activator PACT determines infection outcome.

    Science.gov (United States)

    Luthra, Priya; Ramanan, Parameshwaran; Mire, Chad E; Weisend, Carla; Tsuda, Yoshimi; Yen, Benjamin; Liu, Gai; Leung, Daisy W; Geisbert, Thomas W; Ebihara, Hideki; Amarasinghe, Gaya K; Basler, Christopher F

    2013-07-17

    The cytoplasmic pattern recognition receptor RIG-I is activated by viral RNA and induces type I IFN responses to control viral replication. The cellular dsRNA binding protein PACT can also activate RIG-I. To counteract innate antiviral responses, some viruses, including Ebola virus (EBOV), encode proteins that antagonize RIG-I signaling. Here, we show that EBOV VP35 inhibits PACT-induced RIG-I ATPase activity in a dose-dependent manner. The interaction of PACT with RIG-I is disrupted by wild-type VP35, but not by VP35 mutants that are unable to bind PACT. In addition, PACT-VP35 interaction impairs the association between VP35 and the viral polymerase, thereby diminishing viral RNA synthesis and modulating EBOV replication. PACT-deficient cells are defective in IFN induction and are insensitive to VP35 function. These data support a model in which the VP35-PACT interaction is mutually antagonistic and plays a fundamental role in determining the outcome of EBOV infection. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Virus-Vectored Influenza Virus Vaccines

    Science.gov (United States)

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

  6. Mechanism of aftered cytoskeleton organization in influenza virus infection

    International Nuclear Information System (INIS)

    Krizanova, O.; Ciampor, F.; Zavodska, E.; Matis, J.; Stancek, D.; Krivjanska, M.

    1989-01-01

    The autophosphorylation was followed of cytoskeleton (CS) isolated from control chick embryo cell membranes (CS-C) and from these membranes after influenza virus adsorption (CS-V) under conditions allowing to determine the activity of a single type proteinkinase. The Ca 2+ dependent calmodulin (CaM) kinase used different substrates from CS-V than did the c'AMP dependent proteinkinase. The catalytic subunit (c-subunit) of the c'AMP dependent proteinkinase added from outside phosphorylated the same polypeptides than the endogeneous c'AMP dependent proteinkinase, the further being more active than the latter. The purified influenza virus incorporated 32 P in the presence of the c-subunit only. Incubation of influenza virus with the c-subunit caused morphological changes visible by electron microscopy. The pleomorphy of the particles as well as their electron transmissibility were enhanced in the result of structural alterations and rarefaction of surface spikes of the haemagglutinin and neuraminidase. The contractibility of CS isolated from normal CEC and of the CS from CEC by 15 min postinfection (p.i.) was determined according to the actomyosin ATPase activity. The ATPase activity of the cytoskeleton in the presence of the Ca 2+ /CaM and that in the presence of c'AMP were used as controls. The virus as well as the Ca 2+ /CaM increased the ATPase activity. EGTA had no effect but did not interfere with virus stimulation, while c'AMP blocked the virus-induced enhancement of the ATPase activity. (author). 3 figs., 1 tab., 36 refs

  7. Viroporin Activity of the Foot-and-Mouth Disease Virus Non-Structural 2B Protein.

    Directory of Open Access Journals (Sweden)

    Da Ao

    Full Text Available Viroporins are a family of low-molecular-weight hydrophobic transmembrane proteins that are encoded by various animal viruses. Viroporins form transmembrane pores in host cells via oligomerization, thereby destroying cellular homeostasis and inducing cytopathy for virus replication and virion release. Among the Picornaviridae family of viruses, the 2B protein encoded by enteroviruses is well understood, whereas the viroporin activity of the 2B protein encoded by the foot-and-mouth disease virus (FMDV has not yet been described. An analysis of the FMDV 2B protein domains by computer-aided programs conducted in this study revealed that this protein may contain two transmembrane regions. Further biochemical, biophysical and functional studies revealed that the protein possesses a number of features typical of a viroporin when it is overexpressed in bacterial and mammalian cells as well as in FMDV-infected cells. The protein was found to be mainly localized in the endoplasmic reticulum (ER, with both the N- and C-terminal domains stretched into the cytosol. It exhibited cytotoxicity in Escherichia coli, which attenuated 2B protein expression. The release of virions from cells infected with FMDV was inhibited by amantadine, a viroporin inhibitor. The 2B protein monomers interacted with each other to form both intracellular and extracellular oligomers. The Ca(2+ concentration in the cells increased, and the integrity of the cytoplasmic membrane was disrupted in cells that expressed the 2B protein. Moreover, the 2B protein induced intense autophagy in host cells. All of the results of this study demonstrate that the FMDV 2B protein has properties that are also found in other viroporins and may be involved in the infection mechanism of FMDV.

  8. Systematic review of the published data on the worldwide prevalence of John Cunningham virus in patients with multiple sclerosis and neuromyelitis optica.

    Science.gov (United States)

    Paz, Sonia Patricia Castedo; Branco, Luciana; Pereira, Marina Alves de Camargo; Spessotto, Caroline; Fragoso, Yara Dadalti

    2018-01-01

    John Cunningham virus (JCV) is a polyoma virus that infects humans, mainly in childhood or adolescence, and presents no symptomatic manifestations. JCV can cause progressive multifocal leukoencephalopathy (PML) in immunosuppressed individuals, including those undergoing treatment for multiple sclerosis (MS) and neuromyelitis optica (NMO). PML is a severe and potentially fatal disease of the brain. The prevalence of JCV antibodies in human serum has been reported to be between 50.0 and 90.0%. The aim of the present study was to review worldwide data on populations of patients with MS and NMO in order to establish the rates of JCV seropositivity in these individuals. The present review followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines and used the following search terms: "JCV" OR "JC virus" AND "multiple sclerosis" OR "MS" OR "NMO" OR "neuromyelitis optica" AND "prevalence." These terms were searched for both in smaller and in larger clusters of words. The databases searched included PubMed, MEDLINE, SciELO, LILACS, Google Scholar, and Embase. After the initial selection, 18 papers were included in the review. These articles reported the prevalence of JCV antibodies in the serum of patients with MS or NMO living in 26 countries. The systematic review identified data on 29,319 patients with MS/NMO and found that 57.1% of them (16,730 individuals) were seropositive for the anti-JCV antibody (range, 40.0 to 69.0%). The median worldwide prevalence of JCV among adults with MS or NMO was found to be 57.1%.

  9. Reactivation of BK polyomavirus in patients with multiple sclerosis receiving natalizumab therapy.

    LENUS (Irish Health Repository)

    Lonergan, Roisin M

    2012-02-01

    Natalizumab therapy in multiple sclerosis has been associated with JC polyomavirus-induced progressive multifocal leucoencephalopathy. We hypothesized that natalizumab may also lead to reactivation of BK, a related human polyomavirus capable of causing morbidity in immunosuppressed groups. Patients with relapsing remitting multiple sclerosis treated with natalizumab were prospectively monitored for reactivation of BK virus in blood and urine samples, and for evidence of associated renal dysfunction. In this cohort, JC and BK DNA in blood and urine; cytomegalovirus (CMV) DNA in blood and urine; CD4 and CD8 T-lymphocyte counts and ratios in peripheral blood; and renal function were monitored at regular intervals. BK subtyping and noncoding control region sequencing was performed on samples demonstrating reactivation. Prior to commencement of natalizumab therapy, 3 of 36 patients with multiple sclerosis (8.3%) had BK viruria and BK reactivation occurred in 12 of 54 patients (22.2%). BK viruria was transient in 7, continuous in 2 patients, and persistent viruria was associated with transient viremia. Concomitant JC and CMV viral loads were undetectable. CD4:CD8 ratios fluctuated, but absolute CD4 counts did not fall below normal limits. In four of seven patients with BK virus reactivation, transient reductions in CD4 counts were observed at onset of BK viruria: these resolved in three of four patients on resuppression of BK replication. No renal dysfunction was observed in the cohort. BK virus reactivation can occur during natalizumab therapy; however, the significance in the absence of renal dysfunction is unclear. We propose regular monitoring for BK reactivation or at least for evidence of renal dysfunction in patients receiving natalizumab.

  10. Viruses in the Oceanic Basement.

    Science.gov (United States)

    Nigro, Olivia D; Jungbluth, Sean P; Lin, Huei-Ting; Hsieh, Chih-Chiang; Miranda, Jaclyn A; Schvarcz, Christopher R; Rappé, Michael S; Steward, Grieg F

    2017-03-07

    Microbial life has been detected well into the igneous crust of the seafloor (i.e., the oceanic basement), but there have been no reports confirming the presence of viruses in this habitat. To detect and characterize an ocean basement virome, geothermally heated fluid samples (ca. 60 to 65°C) were collected from 117 to 292 m deep into the ocean basement using seafloor observatories installed in two boreholes (Integrated Ocean Drilling Program [IODP] U1362A and U1362B) drilled in the eastern sediment-covered flank of the Juan de Fuca Ridge. Concentrations of virus-like particles in the fluid samples were on the order of 0.2 × 10 5 to 2 × 10 5  ml -1 ( n = 8), higher than prokaryote-like cells in the same samples by a factor of 9 on average (range, 1.5 to 27). Electron microscopy revealed diverse viral morphotypes similar to those of viruses known to infect bacteria and thermophilic archaea. An analysis of virus-like sequences in basement microbial metagenomes suggests that those from archaeon-infecting viruses were the most common (63 to 80%). Complete genomes of a putative archaeon-infecting virus and a prophage within an archaeal scaffold were identified among the assembled sequences, and sequence analysis suggests that they represent lineages divergent from known thermophilic viruses. Of the clustered regularly interspaced short palindromic repeat (CRISPR)-containing scaffolds in the metagenomes for which a taxonomy could be inferred (163 out of 737), 51 to 55% appeared to be archaeal and 45 to 49% appeared to be bacterial. These results imply that the warmed, highly altered fluids in deeply buried ocean basement harbor a distinct assemblage of novel viruses, including many that infect archaea, and that these viruses are active participants in the ecology of the basement microbiome. IMPORTANCE The hydrothermally active ocean basement is voluminous and likely provided conditions critical to the origins of life, but the microbiology of this vast habitat is not

  11. A fusion-inhibiting peptide against Rift Valley fever virus inhibits multiple, diverse viruses.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Koehler

    Full Text Available For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive infection to occur. This fusion process is mediated by at least three classes of fusion proteins (Class I, II, and III based on the protein sequence and structure. For Rift Valley fever virus (RVFV, the glycoprotein Gc (Class II fusion protein mediates this fusion event following entry into the endocytic pathway, allowing the viral genome access to the cell cytoplasm. Here, we show that peptides analogous to the RVFV Gc stem region inhibited RVFV infectivity in cell culture by inhibiting the fusion process. Further, we show that infectivity can be inhibited for diverse, unrelated RNA viruses that have Class I (Ebola virus, Class II (Andes virus, or Class III (vesicular stomatitis virus fusion proteins using this single peptide. Our findings are consistent with an inhibition mechanism similar to that proposed for stem peptide fusion inhibitors of dengue virus in which the RVFV inhibitory peptide first binds to both the virion and cell membranes, allowing it to traffic with the virus into the endocytic pathway. Upon acidification and rearrangement of Gc, the peptide is then able to specifically bind to Gc and prevent fusion of the viral and endocytic membranes, thus inhibiting viral infection. These results could provide novel insights into conserved features among the three classes of viral fusion proteins and offer direction for the future development of broadly active fusion inhibitors.

  12. Hepatitis A virus antibody

    International Nuclear Information System (INIS)

    Novak, J.; Kselikova, M.; Urbankova, J.

    1980-01-01

    A description is presented of a radioimmunoassay designed to prove the presence of the antibody against the hepatitis A virus (HA Ab, anti-Ha) using an Abbott HAVAB set. This proof as well as the proof of the antibody against the nucleus of the hepatitis B virus is based on competition between a normal antibody against hepatitis A virus and a 125 I-labelled antibody for the binding sites of a specific antigen spread all over the surface of a tiny ball; this is then indirect proof of the antibody under investigation. The method is described of reading the results from the number of impulses per 60 seconds: the higher the titre of the antibody against the hepatitis A virus in the serum examined, the lower the activity of the specimen concerned. The rate is reported of incidence of the antibody against the hepatitis A virus in a total of 68 convalescents after hepatitis A; the antibody was found in 94.1%. The immunoglobulin made from the convalescents' plasma showed the presence of antibodies in dilutions as high as 1:250 000 while the comparable ratio for normal immunoglobulin Norga was only 1:2500. Differences are discussed in the time incidence of the antibodies against the hepatitis A virus, the antibodies against the surface antigen of hepatitis B, and the antibody against the nucleus of the hepatitis V virus. (author)

  13. The 42-kDa coat protein of Andean potato mottle virus acts as a transcriptional activator in yeast

    Directory of Open Access Journals (Sweden)

    Vidal M.S.

    2002-01-01

    Full Text Available Interactions of viral proteins play an important role in the virus life cycle, especially in capsid assembly. Andean potato mottle comovirus (APMoV is a plant RNA virus with a virion formed by two coat proteins (CP42 and CP22. Both APMoV coat protein open reading frames were cloned into pGBT9 and pGAD10, two-hybrid system vectors. HF7c yeast cells transformed with the p9CP42 construct grew on yeast dropout selection media lacking tryptophan and histidine. Clones also exhibited ß-galactosidase activity in both qualitative and quantitative assays. These results suggest that CP42 protein contains an amino acid motif able to activate transcription of His3 and lacZ reporter genes in Saccharomyces cerevisiae. Several deletions of the CP42 gene were cloned into the pGBT9 vector to locate the region involved in this activation. CP42 constructions lacking 12 residues from the C-terminal region and another one with 267 residues deleted from the N-terminus are still able to activate transcription of reporter genes. However, transcription activation was not observed with construction p9CP42deltaC57, which does not contain the last 57 amino acid residues. These results demonstrate that a transcription activation domain is present at the C-terminus of CP42 between residues 267 and 374.

  14. Molecular cloning and characterization of two β-ketoacyl-acyl carrier protein synthase I genes from Jatropha curcas L.

    Science.gov (United States)

    Xiong, Wangdan; Wei, Qian; Wu, Pingzhi; Zhang, Sheng; Li, Jun; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2017-07-01

    The β-ketoacyl-acyl carrier protein synthase I (KASI) is involved in de novo fatty acid biosynthesis in many organisms. Two putative KASI genes, JcKASI-1 and JcKASI-2, were isolated from Jatropha curcas. The deduced amino acid sequences of JcKASI-1 and JcKASI-2 exhibit around 83.8% and 72.5% sequence identities with AtKASI, respectively, and both contain conserved Cys-His-Lys-His-Phe catalytic active sites. Phylogenetic analysis indicated that JcKASI-2 belongs to a clade with several KASI proteins from dicotyledonous plants. Both JcKASI genes were expressed in multiple tissues, most strongly in filling stage seeds of J. curcas. Additionally, the JcKASI-1 and JcKASI-2 proteins were both localized to the plastids. Expressing JcKASI-1 in the Arabidopsis kasI mutant rescued the mutant's phenotype and restored the fatty acid composition and oil content in seeds to wild-type, but expressing JcKASI-2 in the Arabidopsis kasI mutant resulted in only partial rescue. This implies that JcKASI-1 and JcKASI-2 exhibit partial functional redundancy and KASI genes play a universal role in regulating fatty acid biosynthesis, growth, and development in plants. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Changes in soluble factor-mediated CD8+ cell-derived antiviral activity in cynomolgus macaques infected with simian immunodeficiency virus SIVmac251: relationship to biological markers of progression.

    Science.gov (United States)

    Dioszeghy, Vincent; Benlhassan-Chahour, Kadija; Delache, Benoit; Dereuddre-Bosquet, Nathalie; Aubenque, Celine; Gras, Gabriel; Le Grand, Roger; Vaslin, Bruno

    2006-01-01

    Cross-sectional studies have shown that the capacity of CD8+ cells from human immunodeficiency virus (HIV)-infected patients and simian immunodeficiency virus (SIV) SIVmac-infected macaques to suppress the replication of human and simian immunodeficiency viruses in vitro depends on the clinical stage of disease, but little is known about changes in this antiviral activity over time in individual HIV-infected patients or SIV-infected macaques. We assessed changes in the soluble factor-mediated noncytolytic antiviral activity of CD8+ cells over time in eight cynomolgus macaques infected with SIVmac251 to determine the pathophysiological role of this activity. CD8+ cell-associated antiviral activity increased rapidly in the first week after viral inoculation and remained detectable during the early phase of infection. The net increase in antiviral activity of CD8+ cells was correlated with plasma viral load throughout the 15 months of follow-up. CD8+ cells gradually lost their antiviral activity over time and acquired virus replication-enhancing capacity. Levels of antiviral activity correlated with CD4+ T-cell counts after viral set point. Concentrations of beta-chemokines and interleukin-16 in CD8+ cell supernatants were not correlated with this antiviral activity, and alpha-defensins were not detected. The soluble factor-mediated antiviral activity of CD8+ cells was neither cytolytic nor restricted to major histocompatibility complex. This longitudinal study strongly suggests that the increase in noncytolytic antiviral activity from baseline and the maintenance of this increase over time in cynomolgus macaques depend on both viral replication and CD4+ T cells.

  16. Changes in Soluble Factor-Mediated CD8+ Cell-Derived Antiviral Activity in Cynomolgus Macaques Infected with Simian Immunodeficiency Virus SIVmac251: Relationship to Biological Markers of Progression†

    Science.gov (United States)

    Dioszeghy, Vincent; Benlhassan-Chahour, Kadija; Delache, Benoit; Dereuddre-Bosquet, Nathalie; Aubenque, Celine; Gras, Gabriel; Le Grand, Roger; Vaslin, Bruno

    2006-01-01

    Cross-sectional studies have shown that the capacity of CD8+ cells from human immunodeficiency virus (HIV)-infected patients and simian immunodeficiency virus (SIV) SIVmac-infected macaques to suppress the replication of human and simian immunodeficiency viruses in vitro depends on the clinical stage of disease, but little is known about changes in this antiviral activity over time in individual HIV-infected patients or SIV-infected macaques. We assessed changes in the soluble factor-mediated noncytolytic antiviral activity of CD8+ cells over time in eight cynomolgus macaques infected with SIVmac251 to determine the pathophysiological role of this activity. CD8+ cell-associated antiviral activity increased rapidly in the first week after viral inoculation and remained detectable during the early phase of infection. The net increase in antiviral activity of CD8+ cells was correlated with plasma viral load throughout the 15 months of follow-up. CD8+ cells gradually lost their antiviral activity over time and acquired virus replication-enhancing capacity. Levels of antiviral activity correlated with CD4+ T-cell counts after viral set point. Concentrations of β-chemokines and interleukin-16 in CD8+ cell supernatants were not correlated with this antiviral activity, and α-defensins were not detected. The soluble factor-mediated antiviral activity of CD8+ cells was neither cytolytic nor restricted to major histocompatibility complex. This longitudinal study strongly suggests that the increase in noncytolytic antiviral activity from baseline and the maintenance of this increase over time in cynomolgus macaques depend on both viral replication and CD4+ T cells. PMID:16352548

  17. The anti-canine distemper virus activities of ex vivo-expanded canine natural killer cells.

    Science.gov (United States)

    Park, Ji-Yun; Shin, Dong-Jun; Lee, Soo-Hyeon; Lee, Je-Jung; Suh, Guk-Hyun; Cho, Duck; Kim, Sang-Ki

    2015-04-17

    Natural killer (NK) cells play critical roles in induction of antiviral effects against various viruses of humans and animals. However, few data on NK cell activities during canine distemper virus (CDV) infections are available. Recently, we established a culture system allowing activation and expansion of canine non-B, non-T, large granular NK lymphocytes from PBMCs of normal dogs. In the present study, we explored the ability of such expanded NK cells to inhibit CDV infection in vitro. Cultured CD3-CD5-CD21- NK cells produced large amounts of IFN-γ, exhibited highly upregulated expression of mRNAs encoding NK-cell-associated receptors, and demonstrated strong natural killing activity against canine tumor cells. Although the expanded NK cells were dose-dependently cytotoxic to both normal and CDV-infected Vero cells, CDV infection rendered Vero cells more susceptible to NK cells. Pretreatment with anti-CDV serum from hyperimmunized dogs enhanced the antibody-dependent cellular cytotoxicity (ADCC) of NK cells against CDV-infected Vero cells. The culture supernatants of NK cells, added before or after infection, dose-dependently inhibited both CDV replication and development of CDV-induced cytopathic effects (CPEs) in Vero cells. Anti-IFN-γ antibody neutralized the inhibitory effects of NK cell culture supernatants on CDV replication and CPE induction in Vero cells. Such results emphasize the potential significance of NK cells in controlling CDV infection, and indicate that NK cells may play roles both during CDV infection and in combating such infections, under certain conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Reduced incorporation of the influenza B virus BM2 protein in virus particles decreases infectivity

    International Nuclear Information System (INIS)

    Jackson, David; Zuercher, Thomas; Barclay, Wendy

    2004-01-01

    BM2 is the fourth integral membrane protein encoded by the influenza B virus genome. It is synthesized late in infection and transported to the plasma membrane from where it is subsequently incorporated into progeny virus particles. It has recently been reported that BM2 has ion channel activity and may be the functional homologue of the influenza A virus M2 protein acting as an ion channel involved in viral entry. Using a reverse genetic approach it was not possible to recover virus which lacked BM2. A recombinant influenza B virus was generated in which the BM2 AUG initiation codon was mutated to GUG. This decreased the efficiency of translation of BM2 protein such that progeny virions contained only 1/8 the amount of BM2 seen in wild-type virus. The reduction in BM2 incorporation resulted in a reduction in infectivity although there was no concomitant decrease in the numbers of virions released from the infected cells. These data imply that the incorporation of sufficient BM2 protein into influenza B virions is required for infectivity of the virus particles

  19. T cell-macrophage interaction in arginase-mediated resistance to herpes simplex virus.

    Science.gov (United States)

    Bonina, L; Nash, A A; Arena, A; Leung, K N; Wildy, P

    1984-09-01

    Peritoneal macrophages activated by-products derived from a herpes simplex virus-specific helper T cell clone were used to investigate intrinsic and extrinsic resistance mechanisms to herpes simplex virus type 1 infection in vitro. T cell-activated macrophages produced fewer infective centres, indicating enhanced intrinsic resistance, and markedly reduced the growth of virus in a permissive cell line. The reduction in virus growth correlated with the depletion of arginine in the support medium, presumably resulting from increased arginase production by activated macrophages. The significance of these findings for antiviral immunity in vivo is discussed.

  20. Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies.

    Science.gov (United States)

    Koch, Claudia; Eber, Fabian J; Azucena, Carlos; Förste, Alexander; Walheim, Stefan; Schimmel, Thomas; Bittner, Alexander M; Jeske, Holger; Gliemann, Hartmut; Eiben, Sabine; Geiger, Fania C; Wege, Christina

    2016-01-01

    The rod-shaped nanoparticles of the widespread plant pathogen tobacco mosaic virus (TMV) have been a matter of intense debates and cutting-edge research for more than a hundred years. During the late 19th century, their behavior in filtration tests applied to the agent causing the 'plant mosaic disease' eventually led to the discrimination of viruses from bacteria. Thereafter, they promoted the development of biophysical cornerstone techniques such as electron microscopy and ultracentrifugation. Since the 1950s, the robust, helically arranged nucleoprotein complexes consisting of a single RNA and more than 2100 identical coat protein subunits have enabled molecular studies which have pioneered the understanding of viral replication and self-assembly, and elucidated major aspects of virus-host interplay, which can lead to agronomically relevant diseases. However, during the last decades, TMV has acquired a new reputation as a well-defined high-yield nanotemplate with multivalent protein surfaces, allowing for an ordered high-density presentation of multiple active molecules or synthetic compounds. Amino acid side chains exposed on the viral coat may be tailored genetically or biochemically to meet the demands for selective conjugation reactions, or to directly engineer novel functionality on TMV-derived nanosticks. The natural TMV size (length: 300 nm) in combination with functional ligands such as peptides, enzymes, dyes, drugs or inorganic materials is advantageous for applications ranging from biomedical imaging and therapy approaches over surface enlargement of battery electrodes to the immobilization of enzymes. TMV building blocks are also amenable to external control of in vitro assembly and re-organization into technically expedient new shapes or arrays, which bears a unique potential for the development of 'smart' functional 3D structures. Among those, materials designed for enzyme-based biodetection layouts, which are routinely applied, e.g., for

  1. Designing herpes viruses as oncolytics

    Directory of Open Access Journals (Sweden)

    Cole Peters

    Full Text Available Oncolytic herpes simplex virus (oHSV was one of the first genetically-engineered oncolytic viruses. Because HSV is a natural human pathogen that can cause serious disease, it is incumbent that it can be genetically-engineered or significantly attenuated for safety. Here, we present a detailed explanation of the functions of HSV-1 genes frequently mutated to endow oncolytic activity. These genes are nonessential for growth in tissue culture cells but are important for growth in postmitotic cells, interfering with intrinsic antiviral and innate immune responses or causing pathology, functions dispensable for replication in cancer cells. Understanding the function of these genes leads to informed creation of new oHSVs with better therapeutic efficacy. Virus infection and replication can also be directed to cancer cells through tumor-selective receptor binding and transcriptional- or post-transcriptional miRNA-targeting, respectively. In addition to the direct effects of oHSV on infected cancer cells and tumors, oHSV can be “armed” with transgenes that are: reporters, to track virus replication and spread; cytotoxic, to kill uninfected tumor cells; immune modulatory, to stimulate antitumor immunity; or tumor microenvironment altering, to enhance virus spread or to inhibit tumor growth. In addition to HSV-1, other alphaherpesviruses are also discussed for their oncolytic activity.

  2. Viral exploitation of the MEK/ERK pathway - A tale of vaccinia virus and other viruses.

    Science.gov (United States)

    Bonjardim, Cláudio A

    2017-07-01

    The VACV replication cycle is remarkable in the sense that it is performed entirely in the cytoplasmic compartment of vertebrate cells, due to its capability to encode enzymes required either for regulating the macromolecular precursor pool or the biosynthetic processes. Although remarkable, this gene repertoire is not sufficient to confer the status of a free-living microorganism to the virus, and, consequently, the virus relies heavily on the host to successfully generate its progeny. During the complex virus-host interaction, viruses must deal not only with the host pathways to accomplish their temporal demands but also with pathways that counteract viral infection, including the inflammatory, innate and acquired immune responses. This review focuses on VACV and other DNA or RNA viruses that stimulate the MEK (MAPK - Mitogen Activated Protein Kinase)/ERK- Extracellular signal-Regulated Kinase) pathway as part of their replication cycle. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Simian Immunodeficiency Virus and Human Immunodeficiency Virus Type 1 Nef Proteins Show Distinct Patterns and Mechanisms of Src Kinase Activation

    Science.gov (United States)

    Greenway, Alison L.; Dutartre, Hélène; Allen, Kelly; McPhee, Dale A.; Olive, Daniel; Collette, Yves

    1999-01-01

    The nef gene from human and simian immunodeficiency viruses (HIV and SIV) regulates cell function and viral replication, possibly through binding of the nef product to cellular proteins, including Src family tyrosine kinases. We show here that the Nef protein encoded by SIVmac239 interacts with and also activates the human Src kinases Lck and Hck. This is in direct contrast to the inhibitory effect of HIV type 1 (HIV-1) Nef on Lck catalytic activity. Unexpectedly, however, the interaction of SIV Nef with human Lck or Hck is not mediated via its consensus proline motif, which is known to mediate HIV-1 Nef binding to Src homology 3 (SH3) domains, and various experimental analyses failed to show significant interaction of SIV Nef with the SH3 domain of either kinase. Instead, SIV Nef can bind Lck and Hck SH2 domains, and its N-terminal 50 amino acid residues are sufficient for Src kinase binding and activation. Our results provide evidence for multiple mechanisms by which Nef binds to and regulates Src kinases. PMID:10364375

  4. Separation of foot-and-mouth disease virus leader protein activities; identification of mutants that retain efficient self-processing activity but poorly induce eIF4G cleavage.

    Science.gov (United States)

    Guan, Su Hua; Belsham, Graham J

    2017-04-01

    Foot-and-mouth disease virus is a picornavirus and its RNA genome encodes a large polyprotein. The N-terminal part of this polyprotein is the leader protein, a cysteine protease, termed Lpro. The virus causes the rapid inhibition of host cell cap-dependent protein synthesis within infected cells. This results from the Lpro-dependent cleavage of the cellular translation initiation factor eIF4G. Lpro also releases itself from the virus capsid precursor by cleaving the L/P1 junction. Using site-directed mutagenesis of the Lpro coding sequence, we have investigated the role of 51 separate amino acid residues in the functions of this protein. These selected residues either are highly conserved or are charged and exposed on the protein surface. Using transient expression assays, within BHK-21 cells, it was found that residues around the active site (W52, L53 and A149) of Lpro and others located elsewhere (K38, K39, R44, H138 and W159) are involved in the induction of eIF4G cleavage but not in the processing of the L/P1 junction. Modified viruses, encoding such amino acid substitutions within Lpro, can replicate in BHK-21 cells but did not grow well in primary bovine thyroid cells. This study characterizes mutant viruses that are deficient in blocking host cell responses to infection (e.g. interferon induction) and can assist in the rational design of antiviral agents targeting this process and in the production of attenuated viruses.

  5. Recombinant Sheep Pox Virus Proteins Elicit Neutralizing Antibodies.

    Science.gov (United States)

    Chervyakova, Olga V; Zaitsev, Valentin L; Iskakov, Bulat K; Tailakova, Elmira T; Strochkov, Vitaliy M; Sultankulova, Kulyaisan T; Sandybayev, Nurlan T; Stanbekova, Gulshan E; Beisenov, Daniyar K; Abduraimov, Yergali O; Mambetaliyev, Muratbay; Sansyzbay, Abylay R; Kovalskaya, Natalia Y; Nemchinov, Lev G; Hammond, Rosemarie W

    2016-06-07

    The aim of this work was to evaluate the immunogenicity and neutralizing activity of sheep pox virus (SPPV; genus Capripoxvirus, family Poxviridae) structural proteins as candidate subunit vaccines to control sheep pox disease. SPPV structural proteins were identified by sequence homology with proteins of vaccinia virus (VACV) strain Copenhagen. Four SPPV proteins (SPPV-ORF 060, SPPV-ORF 095, SPPV-ORF 117, and SPPV-ORF 122), orthologs of immunodominant L1, A4, A27, and A33 VACV proteins, respectively, were produced in Escherichia coli. Western blot analysis revealed the antigenic and immunogenic properties of SPPV-060, SPPV-095, SPPV-117 and SPPV-122 proteins when injected with adjuvant into experimental rabbits. Virus-neutralizing activity against SPPV in lamb kidney cell culture was detected for polyclonal antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. To our knowledge, this is the first report demonstrating the virus-neutralizing activities of antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins.

  6. Recombinant Sheep Pox Virus Proteins Elicit Neutralizing Antibodies

    Directory of Open Access Journals (Sweden)

    Olga V. Chervyakova

    2016-06-01

    Full Text Available The aim of this work was to evaluate the immunogenicity and neutralizing activity of sheep pox virus (SPPV; genus Capripoxvirus, family Poxviridae structural proteins as candidate subunit vaccines to control sheep pox disease. SPPV structural proteins were identified by sequence homology with proteins of vaccinia virus (VACV strain Copenhagen. Four SPPV proteins (SPPV-ORF 060, SPPV-ORF 095, SPPV-ORF 117, and SPPV-ORF 122, orthologs of immunodominant L1, A4, A27, and A33 VACV proteins, respectively, were produced in Escherichia coli. Western blot analysis revealed the antigenic and immunogenic properties of SPPV-060, SPPV-095, SPPV-117 and SPPV-122 proteins when injected with adjuvant into experimental rabbits. Virus-neutralizing activity against SPPV in lamb kidney cell culture was detected for polyclonal antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. To our knowledge, this is the first report demonstrating the virus-neutralizing activities of antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins.

  7. Promotion of Hendra Virus Replication by MicroRNA 146a

    Science.gov (United States)

    Marsh, Glenn A.; Jenkins, Kristie A.; Gantier, Michael P.; Tizard, Mark L.; Middleton, Deborah; Lowenthal, John W.; Haining, Jessica; Izzard, Leonard; Gough, Tamara J.; Deffrasnes, Celine; Stambas, John; Robinson, Rachel; Heine, Hans G.; Pallister, Jackie A.; Foord, Adam J.; Bean, Andrew G.; Wang, Lin-Fa

    2013-01-01

    Hendra virus is a highly pathogenic zoonotic paramyxovirus in the genus Henipavirus. Thirty-nine outbreaks of Hendra virus have been reported since its initial identification in Queensland, Australia, resulting in seven human infections and four fatalities. Little is known about cellular host factors impacting Hendra virus replication. In this work, we demonstrate that Hendra virus makes use of a microRNA (miRNA) designated miR-146a, an NF-κB-responsive miRNA upregulated by several innate immune ligands, to favor its replication. miR-146a is elevated in the blood of ferrets and horses infected with Hendra virus and is upregulated by Hendra virus in human cells in vitro. Blocking miR-146a reduces Hendra virus replication in vitro, suggesting a role for this miRNA in Hendra virus replication. In silico analysis of miR-146a targets identified ring finger protein (RNF)11, a member of the A20 ubiquitin editing complex that negatively regulates NF-κB activity, as a novel component of Hendra virus replication. RNA interference-mediated silencing of RNF11 promotes Hendra virus replication in vitro, suggesting that increased NF-κB activity aids Hendra virus replication. Furthermore, overexpression of the IκB superrepressor inhibits Hendra virus replication. These studies are the first to demonstrate a host miRNA response to Hendra virus infection and suggest an important role for host miRNAs in Hendra virus disease. PMID:23345523

  8. Development of a generic virus behavioural detector: a preview ...

    African Journals Online (AJOL)

    The Generic Virus Behavioral Detector (GVBD) is a system (program) that monitors various system activities; reading and writing block of disks and memory and the use of Interrupts. A technique for its realisation is presented. Key Words: Computer virus, interrupts, handlers, GVBD (Generic Virus Behavioral Detector).

  9. Viruses and Antiviral Immunity in Drosophila

    Science.gov (United States)

    Xu, Jie; Cherry, Sara

    2013-01-01

    Viral pathogens present many challenges to organisms, driving the evolution of a myriad of antiviral strategies to combat infections. A wide variety of viruses infect invertebrates, including both natural pathogens that are insect-restricted, and viruses that are transmitted to vertebrates. Studies using the powerful tools available in the model organism Drosophila have expanded our understanding of antiviral defenses against diverse viruses. In this review, we will cover three major areas. First, we will describe the tools used to study viruses in Drosophila. Second, we will survey the major viruses that have been studied in Drosophila. And lastly, we will discuss the well-characterized mechanisms that are active against these diverse pathogens, focusing on non-RNAi mediated antiviral mechanisms. Antiviral RNAi is discussed in another paper in this issue. PMID:23680639

  10. [The inhibitory effect of decomposed Chinese traditional medicine Chaihu on Coxsackie B virus(CVB3m) replication and its influence on cell activity].

    Science.gov (United States)

    Wang, X; Wang, Y; Liu, F; Wei, K L

    2001-09-01

    To study the anti-Coxsackie B virus (CVB3m) action of Chaihu(XCT) and its decomposed herb soups No.1 and No.2 in vitro, and also their protective effect on cells. The anti CVB3m and cell protection effects of XCT and its decomposed herb soups No.1 and No.2 were observed by the methods of micro-cell culture and neutral red ingestion, taking cytopathic effect and cell activity as judgments of medicine toxicity and virus replication. The non-toxic concentrations of XCTand its decomposed herb soups No.1 and No.2 had no apparent influence on HeLa cell activity, on the contrary, in certain range of concentrations, they could promote cell growth and cell activity. In therapeutic cell group, XCT and its decomposed herb soups No.1 and No.2 all had apparent inhibitory effect on CVB3m replication, especially the decomposed No.1 showing an inhibitory rate of 107.6%. Under the same decomposed No.1 concentration(1.5 mg/ml), the viral inhibitory rate of the preventive therapeutic cell group was much higher than that of the therapeutic cell group, reaching as high as 128.1%. In virus adsorbed cell group, the CVB3m was also obviously inhibited by the XCT and decomposed No.1 and No.2. By comparing the effects on cell protection and virus replication of XCT and its decomposed herb soups No.1 and No.2, it identifies that XCT can protect cells against virus infection and directly kill the CVB3m, this Chinese herb medicine may be applied clinically for preventing and curing of viral myocarditis.

  11. The C-terminal region of the non-structural protein 2B from Hepatitis A Virus demonstrates lipid-specific viroporin-like activity

    Science.gov (United States)

    Shukla, Ashutosh; Dey, Debajit; Banerjee, Kamalika; Nain, Anshu; Banerjee, Manidipa

    2015-10-01

    Viroporins are virally encoded, membrane-active proteins, which enhance viral replication and assist in egress of viruses from host cells. The 2B proteins in the picornaviridae family are known to have viroporin-like properties, and play critical roles during virus replication. The 2B protein of Hepatitis A Virus (2B), an unusual picornavirus, is somewhat dissimilar from its analogues in several respects. HAV 2B is approximately 2.5 times the length of other 2B proteins, and does not disrupt calcium homeostasis or glycoprotein trafficking. Additionally, its membrane penetrating properties are not yet clearly established. Here we show that the membrane interacting activity of HAV 2B is localized in its C-terminal region, which contains an alpha-helical hairpin motif. We show that this region is capable of forming small pores in membranes and demonstrates lipid specific activity, which partially rationalizes the intracellular localization of full-length 2B. Using a combination of biochemical assays and molecular dynamics simulation studies, we also show that HAV 2B demonstrates a marked propensity to dimerize in a crowded environment, and probably interacts with membranes in a multimeric form, a hallmark of other picornavirus viroporins. In sum, our study clearly establishes HAV 2B as a bona fide viroporin in the picornaviridae family.

  12. PA from an H5N1 highly pathogenic avian influenza virus activates viral transcription and replication and induces apoptosis and interferon expression at an early stage of infection

    Directory of Open Access Journals (Sweden)

    Wang Qiang

    2012-06-01

    Full Text Available Abstract Background Although gene exchange is not likely to occur freely, reassortment between the H5N1 highly pathogenic avian influenza virus (HPAIV and currently circulating human viruses is a serious concern. The PA polymerase subunit of H5N1 HPAIV was recently reported to activate the influenza replicon activity. Methods The replicon activities of PR8 and WSN strains (H1N1 of influenza containing PA from HPAIV A/Cambodia/P0322095/2005 (H5N1 and the activity of the chimeric RNA polymerase were analyzed. A reassortant WSN virus containing the H5N1 Cambodia PA (C-PA was then reconstituted and its growth in cells and pathogenicity in mice examined. The interferon promoter, TUNEL, and caspase 3, 8, and 9 activities of C-PA-infected cells were compared with those of WSN-infected cells. Results The activity of the chimeric RNA polymerase was slightly higher than that of WSN, and C-PA replicated better than WSN in cells. However, the multi-step growth of C-PA and its pathogenicity in mice were lower than those of WSN. The interferon promoter, TUNEL, and caspase 3, 8, and 9 activities were strongly induced in early infection in C-PA-infected cells but not in WSN-infected cells. Conclusions Apoptosis and interferon were strongly induced early in C-PA infection, which protected the uninfected cells from expansion of viral infection. In this case, these classical host-virus interactions contributed to the attenuation of this strongly replicating virus.

  13. Characterization of Dengue Virus Resistance to Brequinar in Cell Culture▿

    Science.gov (United States)

    Qing, Min; Zou, Gang; Wang, Qing-Yin; Xu, Hao Ying; Dong, Hongping; Yuan, Zhiming; Shi, Pei-Yong

    2010-01-01

    Brequinar is an inhibitor of dihydroorotate dehydrogenase, an enzyme that is required for de novo pyrimidine biosynthesis. Here we report that brequinar has activity against a broad spectrum of viruses. The compound not only inhibits flaviviruses (dengue virus, West Nile virus, yellow fever virus, and Powassan virus) but also suppresses a plus-strand RNA alphavirus (Western equine encephalitis virus) and a negative-strand RNA rhabdovirus (vesicular stomatitis virus). Using dengue virus serotype 2 (DENV-2) as a model, we found that brequinar suppressed the viral infection cycle mainly at the step of RNA synthesis. Supplementing the culture medium with pyrimidines (cytidine or uridine) but not purines (adenine or guanine) could be used to reverse the inhibitory effect of the compound. Continuous culturing of DENV-2 in the presence of brequinar generated viruses that were partially resistant to the inhibitor. Sequencing of the resistant viruses revealed two amino acid mutations: one mutation (M260V) located at a helix in the domain II of the viral envelope protein and another mutation (E802Q) located at the priming loop of the nonstructural protein 5 (NS5) polymerase domain. Functional analysis of the mutations suggests that the NS5 mutation exerts resistance through enhancement of polymerase activity. The envelope protein mutation reduced the efficiency of virion assembly/release; however, the mutant virus became less sensitive to brequinar inhibition at the step of virion assembly/release. Taken together, the results indicate that (i) brequinar blocks DENV RNA synthesis through depletion of intracellular pyrimidine pools and (ii) the compound may also exert its antiviral activity through inhibition of virion assembly/release. PMID:20606073

  14. Hepatitis C virus infection can mimic type 1 (antinuclear antibody positive) autoimmune chronic active hepatitis.

    Science.gov (United States)

    Pawlotsky, J M; Deforges, L; Bretagne, S; André, C; Métreau, J M; Thiers, V; Zafrani, E S; Goossens, M; Duval, J; Mavier, J P

    1993-01-01

    Hepatitis C virus (HCV) has been shown to induce anti-liver-kidney microsomal-1 (LKM1) antibody positive chronic active hepatitis, simulating type 2 autoimmune chronic active hepatitis. The cases of five patients presenting with features of type 1 (antinuclear antibody positive) autoimmune chronic active hepatitis and extrahepatic autoimmune manifestations, in whom immunosuppressive treatment had no effect on liver disease are presented. In these patients, HCV infection could be shown by the presence in serum of anti-HCV antibodies and HCV-RNA detected by polymerase chain reaction. These cases suggest the following: (a) chronic HCV infection can mimic type 1, as well as type 2, autoimmune chronic active hepatitis; (b) HCV infection might be systematically sought in patients presenting with features of type 1 autoimmune chronic active hepatitis, with special care in patients who are unresponsive to immunosuppressive treatment. Images Figure PMID:7686122

  15. The Heterologous Expression of the p22 RNA Silencing Suppressor of the Crinivirus Tomato Chlorosis Virus from Tobacco Rattle Virus and Potato Virus X Enhances Disease Severity but Does Not Complement Suppressor-Defective Mutant Viruses.

    Science.gov (United States)

    Landeo-Ríos, Yazmín; Navas-Castillo, Jesús; Moriones, Enrique; Cañizares, M. Carmen

    2017-11-24

    To counteract host antiviral RNA silencing, plant viruses express suppressor proteins that function as pathogenicity enhancers. The genome of the Tomato chlorosis virus (ToCV) (genus Crinivirus , family Closteroviridae ) encodes an RNA silencing suppressor, the protein p22, that has been described as having one of the longest lasting local suppressor activities when assayed in Nicotiana benthamiana . Since suppression of RNA silencing and the ability to enhance disease severity are closely associated, we analyzed the effect of expressing p22 in heterologous viral contexts. Thus, we studied the effect of the expression of ToCV p22 from viral vectors Tobacco rattle virus (TRV) and Potato virus X (PVX), and from attenuated suppressor mutants in N. benthamiana plants. Our results show that although an exacerbation of disease symptoms leading to plant death was observed in the heterologous expression of ToCV p22 from both viruses, only in the case of TRV did increased viral accumulation occur. The heterologous expression of ToCV p22 could not complement suppressor-defective mutant viruses.

  16. The effect of antiviral activity of a green seaweed from the Persian Gulf, Caulerpa sertularioides on Herpes Simplex Virus Type 1

    Directory of Open Access Journals (Sweden)

    Keyvan Zandi

    2006-09-01

    Full Text Available Background: By considering the daily increase in drug resistance of various viruses, novel antiviral compounds extracted from natural resources – due to their fewer side effects, had always been important to researchers. In the present study, we investigated antiviral activity of the hot water extract of a green seaweed, Caulerpa sertularioides, collected from coastal water of Bushehr in the Persian Gulf, against Herpes Simplex Virus Type 1 (HSV-1. Methods: The hot water extract of a green seaweed, Caulerpa sertularioides was sterilized by autoclave and filtration methods. After determining its cytotoxic concentration 50 (CC50 value, the effect of the extract on the inhibition of HSV-1 replication was examined in Vero cell culture. Results: The extract showed antiviral activity against HSV-1 in both attachment and entry of virus to the Vero cells and also on post attachment stages of virus replication. Inhibitory concentration 50 (IC50 values of the autoclaved extract were 81µg/ml and 126 µg/ml for attachment and post attachment stages, respectively. IC50 values of the filtered extract were 73 µg/ml and 104 µg/ml for attachment and post attachment stages, respectively. CC50 values for autoclaved and filtered extracts were 3140 µg/ml and 3095 µg/ml, respectively. Conclusion: The hot water extract of Caulerpa sertularioides of the Persian Gulf had antiviral effect against HSV-1.

  17. Immunological tolerance to lymphocytic choriomeningitis virus in neonatally infected virus carrier mice: evidence supporting a clonal inactivation mechanism

    International Nuclear Information System (INIS)

    Cihak, J.; Lehmann-Grube, F.

    1978-01-01

    Experiments are described aimed at analysing the mechanism responsible for the absence of cell-mediated immunity against LCM virus-infected cells in neonatally established LCM virus carrier mice. Virus-specific cell-mediated immunity was assessed by 51 Cr release and target cell reduction assays. Attempts to demonstrate cells in spleens of CBA/J carrier mice able to suppress in syngeneic recipients the induction or the effector phase of the cytotoxic T-cell response against LCM virus-infected cells were unsuccessful. Also, no factors were detected in CBA/J and C57BL/6J carrier mice, either spleen cell-associated or free in the circulation, which would block the activity of cytotoxic T-lymphocytes against LCM virus-infected syngeneic target cells. The results indicate that inability of LCM virus carrier mice to act immunologically against virus-infected target cells is due to deletion or irreversible inactivation of T lymphocytes carrying receptors for virally altered cell membrane antigens. (author)

  18. Low prevalence of transcriptionally active human papilloma virus in Indian patients with HNSCC and leukoplakia.

    Science.gov (United States)

    Bhosale, Priyanka G; Pandey, Manishkumar; Desai, Rajiv S; Patil, Asawari; Kane, Shubhada; Prabhash, Kumar; Mahimkar, Manoj B

    2016-11-01

    In the present study, we comprehensively analyzed the prevalence of transcriptionally active human papilloma virus (HPV) in tissue samples of Indian patients with leukoplakia, predominantly hyperplastic lesions and head and neck squamous cell carcinoma (HNSCC). In addition, saliva samples from patients with HNSCC were screened for HPV detection. P16 overexpression was analyzed by immunohistochemistry. Tissue samples of leukoplakia (n = 121) and HNSCC (n = 427) and saliva from patients with HNSCC (n = 215) were tested for HPV using nested polymerase chain reaction. Positive samples were sequenced for subtyping. The presence of HPV E6/E7 mRNA was confirmed by RNA in situ hybridization. P16 expression and HPV DNA were not detected in any of the leukoplakia specimens. Of the 427 HNSCC tumors, 9 showed p16 overexpression and 7/427 cases were positive for HPV16 DNA, in saliva or tissue. E6/E7 mRNA positivity was observed in 8 HNSCC samples, primarily from patients with no habit of tobacco consumption. The prevalence of high-risk HPV was restricted to oropharynx and larynx, with very little concordance between p16 overexpression and HPV positivity. All patients with HPV-positive saliva samples had transcriptionally active HPV present in their tumors. The presence of HPV DNA does not necessarily reflect transcriptionally active virus in tumors; hence, it is important to consider this fact while categorizing HPV-associated tumors. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. MEK/ERK activation plays a decisive role in yellow fever virus replication: implication as an antiviral therapeutic target.

    Science.gov (United States)

    Albarnaz, Jonas D; De Oliveira, Leonardo C; Torres, Alice A; Palhares, Rafael M; Casteluber, Marisa C; Rodrigues, Claudiney M; Cardozo, Pablo L; De Souza, Aryádina M R; Pacca, Carolina C; Ferreira, Paulo C P; Kroon, Erna G; Nogueira, Maurício L; Bonjardim, Cláudio A

    2014-11-01

    Exploiting the inhibition of host signaling pathways aiming for discovery of potential antiflaviviral compounds is clearly a beneficial strategy for the control of life-threatening diseases caused by flaviviruses. Here we describe the antiviral activity of the MEK1/2 inhibitor U0126 against Yellow fever virus 17D vaccine strain (YFV-17D). Infection of VERO cells with YFV-17D stimulates ERK1/2 phosphorylation early during infection. Pharmacological inhibition of MEK1/2 through U0126 treatment of VERO cells blockades not only the YFV-stimulated ERK1/2 phosphorylation, but also inhibits YFV replication by ∼99%. U0126 was also effective against dengue virus (DENV-2 and -3) and Saint-Louis encephalitis virus (SLEV). Levels of NS4AB, as detected by immunofluorescence, are diminished upon treatment with the inhibitor, as well as the characteristic endoplasmic reticulum membrane invagination stimulated during the infection. Though not protective, treatment of YFV-infected, adult BALB/c mice with U0126 resulted in significant reduction of virus titers in brains. Collectively, our data suggest the potential targeting of the MEK1/2 kinase as a therapeutic tool against diseases caused by flaviviruses such as yellow fever, adverse events associated with yellow fever vaccination and dengue. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Independent Activation of Hepatitis B Virus Biosynthesis by Retinoids, Peroxisome Proliferators, and Bile Acids

    Science.gov (United States)

    Reese, Vanessa C.; Oropeza, Claudia E.

    2013-01-01

    In the human hepatoma cell line HepG2, retinoic acid, clofibric acid, and bile acid treatment can only modestly increase hepatitis B virus (HBV) biosynthesis. Utilizing the human embryonic kidney cell line 293T, it was possible to demonstrate that the retinoid X receptor α (RXRα) plus its ligand can support viral biosynthesis independently of additional nuclear receptors. In addition, RXRα/peroxisome proliferator-activated receptor α (PPARα) and RXRα/farnesoid X receptor α (FXRα) heterodimeric nuclear receptors can also mediate ligand-dependent HBV transcription and replication when activated by clofibric acid and bile acid, respectively, independently of a requirement for the ligand-dependent activation of RXRα. These observations indicate that there are at least three possible modes of ligand-mediated activation of HBV transcription and replication existing within hepatocytes, suggesting that multiple independent mechanisms control viral production in the livers of infected individuals. PMID:23135717

  1. BRAD: Software for BRain Activity Detection from hemodynamic response

    Czech Academy of Sciences Publication Activity Database

    Pidnebesna, Anna; Tomeček, David; Hlinka, Jaroslav

    2018-01-01

    Roč. 156, March (2018), s. 113-119 ISSN 0169-2607 R&D Projects: GA ČR GA13-23940S; GA ČR GA17-01251S; GA ČR GA13-23940S Grant - others:GA MŠk(CZ) LO1611 Institutional support: RVO:67985807 Keywords : deconvolution methods * functional magnetic resonance imaging * hemodynamic response * neuronal activity estimation * Wiener filtering Subject RIV: JC - Computer Hardware ; Software Impact factor: 2.503, year: 2016

  2. Case definition for progressive multifocal leukoencephalopathy following treatment with monoclonal antibodies.

    Science.gov (United States)

    Mentzer, Dirk; Prestel, Jürgen; Adams, Ortwin; Gold, Ralf; Hartung, Hans-Peter; Hengel, Hartmut; Kieseier, Bernd C; Ludwig, Wolf-Dieter; Keller-Stanislawski, Brigitte

    2012-09-01

    Novel immunosuppressive/modulating therapies with monoclonal antibodies (MABs) have been associated with progressive multifocal leukoencephalopathy (PML), a potentially fatal disease of the brain caused by the JC virus. Taking the complex diagnostic testing and heterogeneous clinical presentation of PML into account, an agreed case definition for PML is a prerequisite for a thorough assessment of PML. A working group was established to develop a standardised case definition for PML which permits data comparability across clinical trials, postauthorisation safety studies and passive postmarketing surveillance. The case definition is designed to define levels of diagnostic certainty of reported PML cases following treatment with MABs. It was subsequently used to categorise retrospectively suspected PML cases from Germany reported to the Paul-Ehrlich-Institute as the responsible national competent authority. The algorithm of the case definition is based on clinical symptoms, PCR for JC virus DNA in cerebrospinal fluid, brain MRI, and brain biopsy/autopsy. The case definition was applied to 119 suspected cases of PML following treatment with MABs and is considered to be helpful for case ascertainment of suspected PML cases for various MABs covering a broad spectrum of indications. Even if the available information is not yet complete, the case definition provides a level of diagnostic certainty. The proposed case definition permits data comparability among different medicinal products and among active as well as passive surveillance settings. It may form a basis for meaningful risk analysis and communication for regulators and healthcare professionals.

  3. Targeting N-Glycan Cryptic Sugar Moieties for Broad-Spectrum Virus Neutralization: Progress in Identifying Conserved Molecular Targets in Viruses of Distinct Phylogenetic Origins

    Directory of Open Access Journals (Sweden)

    Denong Wang

    2015-03-01

    Full Text Available Identifying molecular targets for eliciting broadly virus-neutralizing antibodies is one of the key steps toward development of vaccines against emerging viral pathogens. Owing to genomic and somatic diversities among viral species, identifying protein targets for broad-spectrum virus neutralization is highly challenging even for the same virus, such as HIV-1. However, viruses rely on host glycosylation machineries to synthesize and express glycans and, thereby, may display common carbohydrate moieties. Thus, exploring glycan-binding profiles of broad-spectrum virus-neutralizing agents may provide key information to uncover the carbohydrate-based virus-neutralizing epitopes. In this study, we characterized two broadly HIV-neutralizing agents, human monoclonal antibody 2G12 and Galanthus nivalis lectin (GNA, for their viral targeting activities. Although these agents were known to be specific for oligomannosyl antigens, they differ strikingly in virus-binding activities. The former is HIV-1 specific; the latter is broadly reactive and is able to neutralize viruses of distinct phylogenetic origins, such as HIV-1, severe acute respiratory syndrome coronavirus (SARS-CoV, and human cytomegalovirus (HCMV. In carbohydrate microarray analyses, we explored the molecular basis underlying the striking differences in the spectrum of anti-virus activities of the two probes. Unlike 2G12, which is strictly specific for the high-density Man9GlcNAc2Asn (Man9-clusters, GNA recognizes a number of N-glycan cryptic sugar moieties. These include not only the known oligomannosyl antigens but also previously unrecognized tri-antennary or multi-valent GlcNAc-terminating N-glycan epitopes (Tri/m-Gn. These findings highlight the potential of N-glycan cryptic sugar moieties as conserved targets for broad-spectrum virus neutralization and suggest the GNA-model of glycan-binding warrants focused investigation.

  4. Development and Characterization of Canine Distemper Virus Monoclonal Antibodies.

    Science.gov (United States)

    Liu, Yuxiu; Hao, Liying; Li, Xiangdong; Wang, Linxiao; Zhang, Jianpo; Deng, Junhua; Tian, Kegong

    2017-06-01

    Five canine distemper virus monoclonal antibodies were developed by immunizing BALB/c mice with a traditional vaccine strain Snyder Hill. Among these monoclonal antibodies, four antibodies recognized both field and vaccine strains of canine distemper virus without neutralizing ability. One monoclonal antibody, 1A4, against hemagglutinin protein of canine distemper virus was found to react only with vaccine strain virus but not field isolates, and showed neutralizing activity to vaccine strain virus. These monoclonal antibodies could be very useful tools in the study of the pathogenesis of canine distemper virus and the development of diagnostic reagents.

  5. Vaccinia virus as a subhelper for AAV replication and packaging

    Directory of Open Access Journals (Sweden)

    Andrea R Moore

    Full Text Available Adeno-associated virus (AAV has been widely used as a gene therapy vector to treat a variety of disorders. While these vectors are increasingly popular and successful in the clinic, there is still much to learn about the viruses. Understanding the biology of these viruses is essential in engineering better vectors and generating vectors more efficiently for large-scale use. AAV requires a helper for production and replication making this aspect of the viral life cycle crucial. Vaccinia virus (VV has been widely cited as a helper virus for AAV. However, to date, there are no detailed analyses of its helper function. Here, the helper role of VV was studied in detail. In contrast to common belief, we demonstrated that VV was not a sufficient helper virus for AAV replication. Vaccinia failed to produce rAAV and activate AAV promoters. While this virus could not support rAAV production, Vaccinia could initiate AAV replication and packaging when AAV promoter activation is not necessary. This activity is due to the ability of Vaccinia-driven Rep78 to transcribe in the cytoplasm and subsequently translate in the nucleus and undergo typical functions in the AAV life cycle. As such, VV is subhelper for AAV compared to complete helper functions of adenovirus.

  6. Suppression of human immunodeficiency virus type 1 activity in vitro by oligonucleotides which form intramolecular tetrads.

    Science.gov (United States)

    Rando, R F; Ojwang, J; Elbaggari, A; Reyes, G R; Tinder, R; McGrath, M S; Hogan, M E

    1995-01-27

    An oligonucleotide (I100-15) composed of only deoxyguanosine and thymidine was able to inhibit human immunodeficiency virus type-1 (HIV-1) in culture assay systems. I100-15 did not block virus entry into cells but did reduce viral-specific transcripts. As assessed by NMR and polyacrylamide gel methods, I100-15 appears to form a structure in which two stacked guanosine tetrads are connected by three two-base long loops. Structure/activity experiments indicated that formation of intramolecular guanosine tetrads was necessary to achieve maximum antiviral activity. The single deoxyguanosine nucleotide present in each loop was found to be extremely important for the overall antiviral activity. The toxicity of I100-15 was determined to be well above the 50% effective dose (ED50) in culture which yielded a high therapeutic index (> 100). The addition of a cholesterol moiety to the 3' terminus of I100-15 (I100-23) reduced the ED50 value to less than 50 nM (from 0.12 microM for I100-15) and increased the duration of viral suppression to greater than 21 days (versus 7-10 days for I100-15) after removal of the drug from infected cell cultures. The favorable therapeutic index of such molecules coupled with the prolonged suppression of HIV-1, suggest that such compounds further warrant investigation as potential therapeutic agents.

  7. High-dose interferon-alpha2a exerts potent activity against human immunodeficiency virus type 1 not associated with antitumor activity in subjects with Kaposi's sarcoma

    NARCIS (Netherlands)

    Frissen, P. H.; de Wolf, F.; Reiss, P.; Bakker, P. J.; Veenhof, C. H.; Danner, S. A.; Goudsmit, J.; Lange, J. M.

    1997-01-01

    Anti-human immunodeficiency virus type 1 (HIV-1) activity was assessed in HIV-1-infected homosexual and bisexual men receiving 18-36 MIU/day of recombinant interferon (IFN)-alpha2a for Kaposi's sarcoma (KS). The median baseline HIV-1 RNA level was 4.99 log10 copies/mL. Seventeen subjects (68%)

  8. Differential Susceptibility of Spleen Focus-Forming Virus and Murine Leukemia Viruses to Ansamycin Antibiotics

    Science.gov (United States)

    Horoszewicz, Julius S.; Leong, Susan S.; Carter, William A.

    1977-01-01

    The streptovaricin complex (SvCx) and rifamycin SV derivatives display potent antiviral activity against the polycythemic strain of Friend leukemia virus (FV-P), as measured by a reduction in the number of spleen foci produced in mice. Such reductions may be explained by inactivation of functions of (i) the spleen focus-forming virus (SFFV), (ii) its “helper” murine leukemia virus (MuLV), or (iii) both viruses normally present in FV-P. We noted that preincubation of FV-P with fractionation products of SvCx, or derivatives of rifamycin SV, at low concentrations (3 to 5 μg/ml) reduces the number of spleen foci 80 to 97%, whereas titers of MuLV (from the same inoculum) remain unaffected (MuLV titers were measured by XC, S+L−, and “helper activity” assays). Our findings indicate a remarkable biological selectivity of ansamycins, as well as nonansamycin components of SvCx, against the transforming and defective spleen focus-forming virus as compared to MuLV. Thus, the drugs might be useful in distinguishing other types of oncornaviruses. PMID:18986

  9. Expression of DAI by an oncolytic vaccinia virus boosts the immunogenicity of the virus and enhances antitumor immunity

    Directory of Open Access Journals (Sweden)

    Mari Hirvinen

    2016-01-01

    Full Text Available In oncolytic virotherapy, the ability of the virus to activate the immune system is a key attribute with regard to long-term antitumor effects. Vaccinia viruses bear one of the strongest oncolytic activities among all oncolytic viruses. However, its capacity for stimulation of antitumor immunity is not optimal, mainly due to its immunosuppressive nature. To overcome this problem, we developed an oncolytic VV that expresses intracellular pattern recognition receptor DNA-dependent activator of IFN-regulatory factors (DAI to boost the innate immune system and to activate adaptive immune cells in the tumor. We showed that infection with DAI-expressing VV increases expression of several genes related to important immunological pathways. Treatment with DAI-armed VV resulted in significant reduction in the size of syngeneic melanoma tumors in mice. When the mice were rechallenged with the same tumor, DAI-VV-treated mice completely rejected growth of the new tumor, which indicates immunity established against the tumor. We also showed enhanced control of growth of human melanoma tumors and elevated levels of human T-cells in DAI-VV-treated mice humanized with human peripheral blood mononuclear cells. We conclude that expression of DAI by an oncolytic VV is a promising way to amplify the vaccine potency of an oncolytic vaccinia virus to trigger the innate—and eventually the long-lasting adaptive immunity against cancer.

  10. Telomerase Activity in Chicken EmbryoFibroblast Cell Cultures Infected withMarek's Disease Virus

    Directory of Open Access Journals (Sweden)

    Gregory A. Tannock

    2010-07-01

    Full Text Available Background:Telomerase is a ribonucleoprotein, which adds telomeric repeats onto the 3’end of existing telomers at the end of chromosomes ineukaryotes. One hypothesis states that telomere length may function as a mitoticclock, therefore expression of telomerase activity in cancer cells may be a necessary and essential step for tumor development and progression.Methods:The detectability of telomerase activity in chicken embryofibroblast (CEF cells infected with different passages of Marek's disease virus(MDV was tested with the TRAPEZE® telomerase detection kit at passages14 (P14, P80/1 and P120 for the Woodland strain, and passage 9 (P9 for theMPF57 strain. Results:The results showed increased telomerase activity in MDV Woodlands strain at P14 and MPF57 strain at P9. Conclusion:Our results suggest that MDV-transformed cells at low passage are a suitable system for the study of telomerases in tumor developmentand for testing telomerase-inhibiting drugs.

  11. The PreS2 activator MHBst of hepatitis B virus activates c-raf-1/Erk2 signaling in transgenic mice

    Science.gov (United States)

    Hildt, Eberhard; Munz, Barbara; Saher, Gesine; Reifenberg, Kurt; Hofschneider, Peter Hans

    2002-01-01

    The large hepatitis B virus (HBV) surface protein (LHBs) and C-terminally truncated middle size surface proteins (MHBst) form the family of the PreS2 activator proteins of HBV. Their transcriptional activator function is based on the cytoplasmic orientation of the PreS2 domain. MHBst activators are paradigmatic for this class of activators. Here we report that MHBst is protein kinase C (PKC)-dependently phosphorylated at Ser28. The integrity of the phosphorylation site is essential for the activator function. MHBst triggers PKC-dependent activation of c-Raf-1/Erk2 signaling that is a prerequisite for MHBst-dependent activation of AP-1 and NF-κB. To analyze the pathophysiological relevance of these data in vivo, transgenic mice were established that produce the PreS2 activator MHBst specifically in the liver. In these mice, a permanent PreS2-dependent specific activation of c-Raf-1/Erk2 signaling was observed, resulting in an increased hepatocyte proliferation rate. In transgenics older than 15 months, an increased incidence of liver tumors occurs. These data suggest that PreS2 activators LHBs and MHBst exert a tumor promoter-like function by activation of key enzymes of proliferation control. PMID:11847101

  12. Regulation of hepatitis B virus ENI enhancer activity by hepatocyte-enriched transcription factor HNF3.

    Science.gov (United States)

    Chen, M; Hieng, S; Qian, X; Costa, R; Ou, J H

    1994-11-15

    Hepatitis B virus (HBV) ENI enhancer can activate the expression of HBV and non-HBV genes in a liver-specific manner. By performing the electrophoretic mobility-shift assays, we demonstrated that the three related, liver-enriched, transcription factors, HNF3 alpha, HNF3 beta, and HNF3 gamma could all bind to the 2c site of HBV ENI enhancer. Mutations introduced in the 2c site to abolish the binding by HNF3 reduced the enhancer activity approximately 15-fold. Moreover, expression of HNF3 antisense sequences to suppress the expression of HNF3 in Huh-7 hepatoma cells led to reduction of the ENI enhancer activity. These results indicate that HNF3 positively regulates the ENI enhancer activity and this regulation is most likely mediated through the 2c site. The requirement of HNF3 for the ENI enhancer activity could explain the liver specificity of this enhancer element.

  13. Alpha 4 integrin directs virus-activated CD8+ T cells to sites of infection

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Andersson, E C; Scheynius, A

    1995-01-01

    This article examines the role of VLA-4 in directing lymphocytes to sites of viral infection using the murine lymphocytic choriomeningitis virus infection (LCMV) as the model system. This virus by itself induces little or no inflammation, but in most mouse/virus strain combinations a potent T cell...... response is induced, which is associated with marked CD8+ cell-mediated inflammation. Two expressions of LCMV-induced inflammation were studied: meningitis induced by intracerebral infection and adoptive transfer of virus-specific delayed-type hypersensitivity. Our previous studies have shown that LCMV...

  14. Inhibitory effect of Epstein-Barr virus activation by Citrus fruits, a cancer chemopreventor.

    Science.gov (United States)

    Iwase, Y; Takemura, Y; Ju-ichi, M; Kawaii, S; Yano, M; Okuda, Y; Mukainaka, T; Tsuruta, A; Okuda, M; Takayasu, J; Tokuda, H; Nishino, H

    1999-05-24

    To search useful compounds in Citrus fruit for cancer chemoprevention, we carried out a primary screening of extracts of fruit peels and seeds from 78 species of the genus Citrus and those from two Fortunella and one Poncirus species, which were closely related to the genus Citrus. These Citrus extracts inhibited the Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol 13-acetate (TPA) as a useful screening method for anti-tumor promoters. Our results indicated that Citrus containing substances may be inhibit susceptibility factors involved in the events leading to the development of cancer.

  15. Activation of human T cells by a tumor vaccine infected with recombinant Newcastle disease virus producing IL-2

    NARCIS (Netherlands)

    Janke, M.; Peeters, B.; Zhao, H.; Leeuw, O.; Moormann, R.J.M.; Arnold, A.; Ziouta, Y.; Fournier, P.; Schirrmacher, V.

    2008-01-01

    A new recombinant (rec) Newcastle disease virus (NDV) with incorporated human interleukin 2 (IL-2) as foreign therapeutic gene [rec(IL-2)] will be described. The foreign gene in rec(IL-2) did not affect the main features of NDV replication nor its tumor selectivity. Biologically active IL-2 was

  16. Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry

    Science.gov (United States)

    2013-01-01

    Background We previously identified two hydrolyzable tannins, chebulagic acid (CHLA) and punicalagin (PUG) that blocked herpes simplex virus type 1 (HSV-1) entry and spread. These compounds inhibited viral glycoprotein interactions with cell surface glycosaminoglycans (GAGs). Based on this property, we evaluated their antiviral efficacy against several different viruses known to employ GAGs for host cell entry. Results Extensive analysis of the tannins’ mechanism of action was performed on a panel of viruses during the attachment and entry steps of infection. Virus-specific binding assays and the analysis of viral spread during treatment with these compounds were also conducted. CHLA and PUG were effective in abrogating infection by human cytomegalovirus (HCMV), hepatitis C virus (HCV), dengue virus (DENV), measles virus (MV), and respiratory syncytial virus (RSV), at μM concentrations and in dose-dependent manners without significant cytotoxicity. Moreover, the natural compounds inhibited viral attachment, penetration, and spread, to different degrees for each virus. Specifically, the tannins blocked all these steps of infection for HCMV, HCV, and MV, but had little effect on the post-fusion spread of DENV and RSV, which could suggest intriguing differences in the roles of GAG-interactions for these viruses. Conclusions CHLA and PUG may be of value as broad-spectrum antivirals for limiting emerging/recurring viruses known to engage host cell GAGs for entry. Further studies testing the efficacy of these tannins in vivo against certain viruses are justified. PMID:23924316

  17. Evidence that the respiratory syncytial virus polymerase complex associates with lipid rafts in virus-infected cells: a proteomic analysis

    International Nuclear Information System (INIS)

    McDonald, Terence P.; Pitt, Andrew R.; Brown, Gaie; Rixon, Helen W. McL.; Sugrue, Richard J.

    2004-01-01

    The interaction between the respiratory syncytial virus (RSV) polymerase complex and lipid rafts was examined in HEp2 cells. Lipid-raft membranes were prepared from virus-infected cells and their protein content was analysed by Western blotting and mass spectrometry. This analysis revealed the presence of the N, P, L, M2-1 and M proteins. However, these proteins appeared to differ from one another in their association with these structures, with the M2-1 protein showing a greater partitioning into raft membranes compared to that of the N, P or M proteins. Determination of the polymerase activity profile of the gradient fractions revealed that 95% of the detectable viral enzyme activity was associated with lipid-raft membranes. Furthermore, analysis of virus-infected cells by confocal microscopy suggested an association between these proteins and the raft-lipid, GM1. Together, these results provide evidence that the RSV polymerase complex is able to associate with lipid rafts in virus-infected cells

  18. Mild to moderate influenza activity in Europe and the detection of novel A (H1N2) and B viruses during the winter of 2001-02.

    NARCIS (Netherlands)

    Paget, W.J.; Meerhoff, T.J.; Goddard, N.L.

    2002-01-01

    Influenza activity in Europe during the 2001-02 influenza season was mild to moderate. Compared to historical data, the intensity was low in six countries, medium in eleven and high in one country (Spain). The dominant virus circulating in Europe was influenza A(H3N2). Two novel influenza virus

  19. Inhibition of tobacco mosaic virus replication in lateral roots is dependent on an activated meristem-derived signal.

    Science.gov (United States)

    Valentine, T A; Roberts, I M; Oparka, K J

    2002-05-01

    Viral invasion of the root system of Nicotiana benthamiana was studied noninvasively with a tobacco mosaic virus (TMV) vector expressing the green-fluorescent protein (GFP). Lateral root primordia, which developed from the pericycle of primary roots, became heavily infected as they emerged from the root cortex. However, following emergence, a progressive wave of viral inhibition occurred that originated in the lateral-root meristem and progressed towards its base. Excision of source and sink tissues suggested that the inhibition of virus replication was brought about by the basipetal movement of a root meristem signal. When infected plants were inoculated with tobacco rattle virus (TRV) expressing the red-fluorescent protein, DsRed, TRV entered the lateral roots and suppressed the host response, leading to a reestablishment of TMV infection in lateral roots. By infecting GFP-expressing transgenic plants with TMV carrying the complementary GFP sequence it was possible to silence the host GFP, leading to the complete loss of fluorescence in lateral roots. The data suggest that viral inhibition in lateral roots occurs by a gene-silencing-like mechanism that is dependent on the activation of a lateral-root meristem.

  20. Host DNA synthesis-suppressing factor in culture fluid of tissue cultures infected with measles virus

    International Nuclear Information System (INIS)

    Minagawa, T.; Nakaya, C.; Iida, H.

    1974-01-01

    Host DNA synthesis is suppressed by the culture fluid of cell cultures infected with measles virus. This activity in the culture fluid is initiated somewhat later than the growth of infectious virus. Ninety percent of host DNA synthesis in HeLa cells is inhibited by culture fluid of 3-day-old cell cultures of Vero or HeLa cells infected with measles virus. This suppressing activity is not a property of the virion, but is due to nonvirion-associated componentnent which shows none of the activities of measles virus such as hemagglutination, hemolysis, or cell fusion nor does it have the antigenicity of measles virus as tested by complement-fixation or hemagglutination-inhibiting antibody blocking tests. Neutralization of the activity of this component is not attained with the pooled sera of convalescent measles patients. This component has molecular weights of about 45,000, 20,000, and 3,000 and appears to be a heat-stable protein. The production of host DNA suppressing factor (DSF) is blocked by cycloheximide. Neither uv-inactivated nor antiserum-neutralized measles virus produce DSF. Furthermore, such activity of nonvirion-associated component is not detected in the culture fluid of cultures infected with other RNA viruses such as poliovirus, vesicular stomatitis virus, or Sindbis virus. (auth)

  1. Polyomavirus JCV excretion and genotype analysis in HIV-infected patients receiving highly active antiretroviral therapy

    Science.gov (United States)

    Lednicky, John A.; Vilchez, Regis A.; Keitel, Wendy A.; Visnegarwala, Fehmida; White, Zoe S.; Kozinetz, Claudia A.; Lewis, Dorothy E.; Butel, Janet S.

    2003-01-01

    OBJECTIVE: To assess the frequency of shedding of polyomavirus JC virus (JCV) genotypes in urine of HIV-infected patients receiving highly active antiretroviral therapy (HAART). METHODS: Single samples of urine and blood were collected prospectively from 70 adult HIV-infected patients and 68 uninfected volunteers. Inclusion criteria for HIV-infected patients included an HIV RNA viral load < 1000 copies, CD4 cell count of 200-700 x 106 cells/l, and stable HAART regimen. PCR assays and sequence analysis were carried out using JCV-specific primers against different regions of the virus genome. RESULTS: JCV excretion in urine was more common in HIV-positive patients but not significantly different from that of the HIV-negative group [22/70 (31%) versus 13/68 (19%); P = 0.09]. HIV-positive patients lost the age-related pattern of JCV shedding (P = 0.13) displayed by uninfected subjects (P = 0.01). Among HIV-infected patients significant differences in JCV shedding were related to CD4 cell counts (P = 0.03). Sequence analysis of the JCV regulatory region from both HIV-infected patients and uninfected volunteers revealed all to be JCV archetypal strains. JCV genotypes 1 (36%) and 4 (36%) were the most common among HIV-infected patients, whereas type 2 (77%) was the most frequently detected among HIV-uninfected volunteers. CONCLUSION: These results suggest that JCV shedding is enhanced by modest depressions in immune function during HIV infection. JCV shedding occurred in younger HIV-positive persons than in the healthy controls. As the common types of JCV excreted varied among ethnic groups, JCV genotypes associated with progressive multifocal leukoencephalopathy may reflect demographics of those infected patient populations.

  2. Modulation of mitogen-activated protein kinase-activated protein kinase 3 by hepatitis C virus core protein

    DEFF Research Database (Denmark)

    Ngo, HT; Pham, Long; Kim, JW

    2013-01-01

    Hepatitis C virus (HCV) is highly dependent on cellular proteins for its own propagation. In order to identify the cellular factors involved in HCV propagation, we performed protein microarray assays using the HCV core protein as a probe. Of ~9,000 host proteins immobilized in a microarray...... inducers. Binding of HCV core to MAPKAPK3 was confirmed by in vitro pulldown assay and further verified by coimmunoprecipitation assay. HCV core protein interacted with MAPKAPK3 through amino acid residues 41 to 75 of core and the N-terminal half of kinase domain of MAPKAPK3. In addition, both RNA...... increased HCV IRES-mediated translation and MAPKAPK3-dependent HCV IRES activity was further increased by core protein. These data suggest that HCV core may modulate MAPKAPK3 to facilitate its own propagation....

  3. Widespread Usutu virus outbreak in birds in the Netherlands, 2016

    Science.gov (United States)

    Rijks, JM; Kik, ML; Slaterus, R; Foppen, RPB; Stroo, A; IJzer, J; Stahl, J; Gröne, A; Koopmans, MGP; van der Jeugd, HP; Reusken, CBEM

    2016-01-01

    We report a widespread Usutu virus outbreak in birds in the Netherlands. Viral presence had been detected through targeted surveillance as early as April 2016 and increased mortality in common blackbirds and captive great grey owls was noticed from August 2016 onwards. Usutu virus infection was confirmed by post-mortem examination and RT-PCR. Extensive Usutu virus activity in the Netherlands in 2016 underlines the need to monitor mosquito activity and mosquito-borne infections in 2017 and beyond. PMID:27918257

  4. Structure of the cleavage-activated prefusion form of the parainfluenza virus 5 fusion protein.

    Science.gov (United States)

    Welch, Brett D; Liu, Yuanyuan; Kors, Christopher A; Leser, George P; Jardetzky, Theodore S; Lamb, Robert A

    2012-10-09

    The paramyxovirus parainfluenza virus 5 (PIV5) enters cells by fusion of the viral envelope with the plasma membrane through the concerted action of the fusion (F) protein and the receptor binding protein hemagglutinin-neuraminidase. The F protein folds initially to form a trimeric metastable prefusion form that is triggered to undergo large-scale irreversible conformational changes to form the trimeric postfusion conformation. It is thought that F refolding couples the energy released with membrane fusion. The F protein is synthesized as a precursor (F0) that must be cleaved by a host protease to form a biologically active molecule, F1,F2. Cleavage of F protein is a prerequisite for fusion and virus infectivity. Cleavage creates a new N terminus on F1 that contains a hydrophobic region, known as the FP, which intercalates target membranes during F protein refolding. The crystal structure of the soluble ectodomain of the uncleaved form of PIV5 F is known; here we report the crystal structure of the cleavage-activated prefusion form of PIV5 F. The structure shows minimal movement of the residues adjacent to the protease cleavage site. Most of the hydrophobic FP residues are buried in the uncleaved F protein, and only F103 at the newly created N terminus becomes more solvent-accessible after cleavage. The conformational freedom of the charged arginine residues that compose the protease recognition site increases on cleavage of F protein.

  5. Viruses and kidney disease: beyond HIV.

    Science.gov (United States)

    Waldman, Meryl; Marshall, Vickie; Whitby, Denise; Kopp, Jeffrey B

    2008-11-01

    Human immunodeficiency virus (HIV)-infected patients may acquire new viral co-infections; they also may experience the reactivation or worsening of existing viral infections, including active, smoldering, or latent infections. HIV-infected patients may be predisposed to these viral infections owing to immunodeficiency or risk factors common to HIV and other viruses. A number of these affect the kidney, either by direct infection or by deposition of immune complexes. In this review we discuss the renal manifestations and treatment of hepatitis C virus, BK virus, adenovirus, cytomegalovirus, and parvovirus B19 in patients with HIV disease. We also discuss an approach to the identification of new viral renal pathogens, using a viral gene chip to identify viral DNA or RNA.

  6. Hydroxyurea-resistant vaccinia virus: overproduction of ribonucleotide reductase

    International Nuclear Information System (INIS)

    Slabaugh, M.B.; Mathews, C.K.

    1986-01-01

    Repeated passage of vaccinia virus in increasing concentrations of hydroxyurea followed by plaque purification resulted in the isolation of variants capable of growth in 5 mM hydroxyurea, a drug concentration which inhibited the reproduction of wild-type vaccinia virus 1000-fold. Analyses of viral protein synthesis by using [ 35 S]methionine pulse-labeling at intervals throughout the infection cycle revealed that all isolates overproduced a 34,000-molecular-weight (MW) early polypeptide. Measurement of ribonucleoside-diphosphate reductase activity after infection indicated that 4- to 10-fold more activity was induced by hydroxyurea-resistant viruses than by the wild-type virus. A two-step partial purification resulted in a substantial enrichment for the 34,000-MW protein from extracts of wild-type and hydroxyurea-resistant-virus-infected, but not mock-infected, cells. In the presence of the drug, the isolates incorporated [ 3 H]thymidine into DNA earlier and a rate substantially greater than that of the wild type, although the onset of DNA synthesis was delayed in both cases. The drug resistance trait was markedly unstable in all isolates. In the absence of selective pressure, plaque-purified isolated readily segregated progeny that displayed a wide range of resistance phenotypes. The results of this study indicate that vaccinia virus encodes a subunit of ribonucleotide reductase which is 34,000-MW early protein whose overproduction confers hydroxyurea resistance on reproducing viruses

  7. No Love Lost Between Viruses and Interferons.

    Science.gov (United States)

    Fensterl, Volker; Chattopadhyay, Saurabh; Sen, Ganes C

    2015-11-01

    The interferon system protects mammals against virus infections. There are several types of interferons, which are characterized by their ability to inhibit virus replication and resultant pathogenesis by triggering both innate and cell-mediated immune responses. Virus infection is sensed by a variety of cellular pattern-recognition receptors and triggers the synthesis of interferons, which are secreted by the infected cells. In uninfected cells, cell surface receptors recognize the secreted interferons and activate intracellular signaling pathways that induce the expression of interferon-stimulated genes; the proteins encoded by these genes inhibit different stages of virus replication. To avoid extinction, almost all viruses have evolved mechanisms to defend themselves against the interferon system. Consequently, a dynamic equilibrium of survival is established between the virus and its host, an equilibrium that can be shifted to the host's favor by the use of exogenous interferon as a therapeutic antiviral agent.

  8. Easy and Rapid Detection of Mumps Virus by Live Fluorescent Visualization of Virus-Infected Cells.

    Directory of Open Access Journals (Sweden)

    Tadanobu Takahashi

    Full Text Available Mumps viruses show diverse cytopathic effects (CPEs of infected cells and viral plaque formation (no CPE or no plaque formation in some cases depending on the viral strain, highlighting the difficulty in mumps laboratory studies. In our previous study, a new sialidase substrate, 2-(benzothiazol-2-yl-4-bromophenyl 5-acetamido-3,5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosidonic acid (BTP3-Neu5Ac, was developed for visualization of sialidase activity. BTP3-Neu5Ac can easily and rapidly perform histochemical fluorescent visualization of influenza viruses and virus-infected cells without an antiviral antibody and cell fixation. In the present study, the potential utility of BTP3-Neu5Ac for rapid detection of mumps virus was demonstrated. BTP3-Neu5Ac could visualize dot-blotted mumps virus, virus-infected cells, and plaques (plaques should be called focuses due to staining of infected cells in this study, even if a CPE was not observed. Furthermore, virus cultivation was possible by direct pick-up from a fluorescent focus. In conventional methods, visible appearance of the CPE and focuses often requires more than 6 days after infection, but the new method with BTP3-Neu5Ac clearly visualized infected cells after 2 days and focuses after 4 days. The BTP3-Neu5Ac assay is a precise, easy, and rapid assay for confirmation and titration of mumps virus.

  9. Chemical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cornus canadensis.

    Science.gov (United States)

    Lavoie, Serge; Côté, Isabelle; Pichette, André; Gauthier, Charles; Ouellet, Michaël; Nagau-Lavoie, Francine; Mshvildadze, Vakhtang; Legault, Jean

    2017-02-22

    Many plants of boreal forest of Quebec have been used by Native Americans to treat a variety of microbial infections. However, the antiviral activities of these plants have been seldom evaluated on cellular models to validate their in vitro efficiencies. In this study, Cornus canadensis L. (Cornaceae), a plant used in Native American traditional medicine to treat possible antiviral infections, has been selected for further examination. The plant was extracted by decoction and infusion with water, water/ethanol 1:1 and ethanol to obtain extracts similar to those used by Native Americans. The effects of the extracts were tested on herpes simplex virus type-1 (HSV-1) using a plaque reduction assay. Moreover, bioassay-guided fractionation was achieved to isolate bioactive compounds. Water/ethanol 1:1 infusion of C. canadensis leaves were the most active extracts to inhibit virus absorption with EC 50 of about 9 μg mL -1 , whereas for direct mode, both extraction methods using water or water/ethanol 1:1 as solvent were relatively similar with EC 50 ranging from 11 to 17 μg mL -1 . The fractionation led to the identification of active fractions containing hydrolysable tannins. Tellimagrandin I was found the most active compound with an EC 50 of 2.6 μM for the direct mode and 5.0 μM for the absorption mode. Altogether, the results presented in this work support the antiviral activity of Cornus canadensis used in Native American traditional medicine.

  10. Complement-mediated neutralization of dengue virus requires mannose-binding lectin

    DEFF Research Database (Denmark)

    Avirutnan, Panisadee; Hauhart, Richard E; Marovich, Mary A

    2011-01-01

    -dependent activation of the complement cascade neutralized insect cell-derived West Nile virus (WNV) in cell culture and restricted pathogenesis in mice. Here, we investigated the antiviral activity of MBL in infection by dengue virus (DENV), a related flavivirus. Using a panel of naïve sera from mouse strains...... with lower levels. Our studies suggest that allelic variation of MBL in humans may impact complement-dependent control of DENV pathogenesis. IMPORTANCE Dengue virus (DENV) is a mosquito-transmitted virus that causes a spectrum of clinical disease in humans ranging from subclinical infection to dengue...... hemorrhagic fever and dengue shock syndrome. Four serotypes of DENV exist, and severe illness is usually associated with secondary infection by a different serotype. Here, we show that mannose-binding lectin (MBL), a pattern recognition molecule that initiates the lectin pathway of complement activation...

  11. Fluorescence-based monitoring of in vivo neural activity using a circuit-tracing pseudorabies virus.

    Directory of Open Access Journals (Sweden)

    Andrea E Granstedt

    Full Text Available The study of coordinated activity in neuronal circuits has been challenging without a method to simultaneously report activity and connectivity. Here we present the first use of pseudorabies virus (PRV, which spreads through synaptically connected neurons, to express a fluorescent calcium indicator protein and monitor neuronal activity in a living animal. Fluorescence signals were proportional to action potential number and could reliably detect single action potentials in vitro. With two-photon imaging in vivo, we observed both spontaneous and stimulated activity in neurons of infected murine peripheral autonomic submandibular ganglia (SMG. We optically recorded the SMG response in the salivary circuit to direct electrical stimulation of the presynaptic axons and to physiologically relevant sensory stimulation of the oral cavity. During a time window of 48 hours after inoculation, few spontaneous transients occurred. By 72 hours, we identified more frequent and prolonged spontaneous calcium transients, suggestive of neuronal or tissue responses to infection that influence calcium signaling. Our work establishes in vivo investigation of physiological neuronal circuit activity and subsequent effects of infection with single cell resolution.

  12. Dynamical Models for Computer Viruses Propagation

    Directory of Open Access Journals (Sweden)

    José R. C. Piqueira

    2008-01-01

    Full Text Available Nowadays, digital computer systems and networks are the main engineering tools, being used in planning, design, operation, and control of all sizes of building, transportation, machinery, business, and life maintaining devices. Consequently, computer viruses became one of the most important sources of uncertainty, contributing to decrease the reliability of vital activities. A lot of antivirus programs have been developed, but they are limited to detecting and removing infections, based on previous knowledge of the virus code. In spite of having good adaptation capability, these programs work just as vaccines against diseases and are not able to prevent new infections based on the network state. Here, a trial on modeling computer viruses propagation dynamics relates it to other notable events occurring in the network permitting to establish preventive policies in the network management. Data from three different viruses are collected in the Internet and two different identification techniques, autoregressive and Fourier analyses, are applied showing that it is possible to forecast the dynamics of a new virus propagation by using the data collected from other viruses that formerly infected the network.

  13. Phosphoinositide-3 kinase-Akt pathway controls cellular entry of Ebola virus.

    Directory of Open Access Journals (Sweden)

    Mohammad F Saeed

    2008-08-01

    Full Text Available The phosphoinositide-3 kinase (PI3K pathway regulates diverse cellular activities related to cell growth, migration, survival, and vesicular trafficking. It is known that Ebola virus requires endocytosis to establish an infection. However, the cellular signals that mediate this uptake were unknown for Ebola virus as well as many other viruses. Here, the involvement of PI3K in Ebola virus entry was studied. A novel and critical role of the PI3K signaling pathway was demonstrated in cell entry of Zaire Ebola virus (ZEBOV. Inhibitors of PI3K and Akt significantly reduced infection by ZEBOV at an early step during the replication cycle. Furthermore, phosphorylation of Akt-1 was induced shortly after exposure of cells to radiation-inactivated ZEBOV, indicating that the virus actively induces the PI3K pathway and that replication was not required for this induction. Subsequent use of pseudotyped Ebola virus and/or Ebola virus-like particles, in a novel virus entry assay, provided evidence that activity of PI3K/Akt is required at the virus entry step. Class 1A PI3Ks appear to play a predominant role in regulating ZEBOV entry, and Rac1 is a key downstream effector in this regulatory cascade. Confocal imaging of fluorescently labeled ZEBOV indicated that inhibition of PI3K, Akt, or Rac1 disrupted normal uptake of virus particles into cells and resulted in aberrant accumulation of virus into a cytosolic compartment that was non-permissive for membrane fusion. We conclude that PI3K-mediated signaling plays an important role in regulating vesicular trafficking of ZEBOV necessary for cell entry. Disruption of this signaling leads to inappropriate trafficking within the cell and a block in steps leading to membrane fusion. These findings extend our current understanding of Ebola virus entry mechanism and may help in devising useful new strategies for treatment of Ebola virus infection.

  14. Viral coinfection is shaped by host ecology and virus-virus interactions across diverse microbial taxa and environments.

    Science.gov (United States)

    Díaz-Muñoz, Samuel L

    2017-01-01

    Infection of more than one virus in a host, coinfection, is common across taxa and environments. Viral coinfection can enable genetic exchange, alter the dynamics of infections, and change the course of viral evolution. Yet, a systematic test of the factors explaining variation in viral coinfection across different taxa and environments awaits completion. Here I employ three microbial data sets of virus-host interactions covering cross-infectivity, culture coinfection, and single-cell coinfection (total: 6,564 microbial hosts, 13,103 viruses) to provide a broad, comprehensive picture of the ecological and biological factors shaping viral coinfection. I found evidence that ecology and virus-virus interactions are recurrent factors shaping coinfection patterns. Host ecology was a consistent and strong predictor of coinfection across all three data sets: cross-infectivity, culture coinfection, and single-cell coinfection. Host phylogeny or taxonomy was a less consistent predictor, being weak or absent in the cross-infectivity and single-cell coinfection models, yet it was the strongest predictor in the culture coinfection model. Virus-virus interactions strongly affected coinfection. In the largest test of superinfection exclusion to date, prophage sequences reduced culture coinfection by other prophages, with a weaker effect on extrachromosomal virus coinfection. At the single-cell level, prophage sequences eliminated coinfection. Virus-virus interactions also increased culture coinfection with ssDNA-dsDNA coinfections >2× more likely than ssDNA-only coinfections. The presence of CRISPR spacers was associated with a ∼50% reduction in single-cell coinfection in a marine bacteria, despite the absence of exact spacer matches in any active infection. Collectively, these results suggest the environment bacteria inhabit and the interactions among surrounding viruses are two factors consistently shaping viral coinfection patterns. These findings highlight the role of

  15. Infección por el virus de la Lengua azul: activación de señales celulares que inducen apoptosis Bluetongue virus infection: signaling pathway activated during apoptosis

    Directory of Open Access Journals (Sweden)

    E. Mortola

    2009-09-01

    Full Text Available El virus de la Lengua azul (VLA es un ARN virus de doble cadena que induce apoptosis tanto en cultivos celulares como en tejidos blanco. Con el fin de dilucidar el mecanismo de apoptosis en la infección por el VLA, en el presente trabajo examinamos en detalle, por la técnica de Western blot, las señales celulares de caspasas, Bax, citocromo c, Smac/DIABLO y factor nuclear kappa B (NF-kB que se activan en la infección viral. Hemos comprobado que luego de la infección in vitro con el VLA, se detectó la activación de la caspasa 8 y con ello el mecanismo extrínseco de la apoptosis. También detectamos por primera vez no sólo la activación de miembros de la familia Bcl-2 (Bax, sino también la liberación del citocromo c y la proteína Smac/DIABLO, confirmando que en la infección por el VLA está involucrado el mecanismo secuencial intrínseco de la apoptosis. Asimismo, demostramos que la infección por el VLA activa el NF-kB y que la apoptosis es sustancialmente reducida mediante la inhibición del mismo. La activación de las señales celulares tales como Bax, citocromo c, Smac/DIABLO y NF-kB presentados en este trabajo, esclarecen los mecanismos apoptóticos durante la infección por el VLA para una mayor comprensión del papel primario que juega la apoptosis en la patogénesis del virus.Bluetongue (BTV is a double-stranded RNA virus that induces apoptosis both in mammalian cell cultures and in target tissues. To elucidate the apoptosis pathways in BTV infection, we have examined in detail the apoptosis mechanism by examination of caspases, Bax, cytochrome c, Smac/DIABLO and NF-kB signalling pathways. In this report, after cell infection with BTV, the activation of caspase 8 was detected, proving the extrinsic receptor binding apoptotic pathway. Apoptosis followed a sequential pathway involving the detection of activated Bcl-2 family members. Furthermore, its translocation to the mitochondria, as well as the release of cytochrome c and

  16. Dengue Virus Genome Uncoating Requires Ubiquitination.

    Science.gov (United States)

    Byk, Laura A; Iglesias, Néstor G; De Maio, Federico A; Gebhard, Leopoldo G; Rossi, Mario; Gamarnik, Andrea V

    2016-06-28

    The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world. Here, we examined for the first time molecular aspects of dengue virus genome uncoating. We followed the fate of the capsid protein and RNA genome early during infection and found that capsid is degraded after viral internalization by the host ubiquitin-proteasome system. However, proteasome activity and capsid degradation were not necessary to free the genome for initial viral translation. Unexpectedly, genome uncoating was blocked by inhibiting ubiquitination. Using different assays to bypass entry and evaluate the first rounds of viral translation, a narrow window of time during infection that requires ubiquitination but not proteasome activity was identified. In this regard, ubiquitin E1-activating enzyme inhibition was sufficient to stabilize the incoming viral genome in the cytoplasm of infected cells, causing its retention in either endosomes or nucleocapsids. Our data support a model in which dengue virus genome uncoating requires a nondegradative ubiquitination step, providing new insights into this crucial but understudied viral process. Dengue is the most significant arthropod-borne viral infection in humans. Although the number of cases increases every year, there are no approved therapeutics available for the treatment of dengue infection, and many basic aspects of the viral biology remain elusive. After entry, the viral membrane must fuse with the endosomal membrane to deliver the viral genome into the cytoplasm for translation and replication. A great deal of information has been obtained in the last decade

  17. Impairment of interferon regulatory factor-3 activation by hepatitis C virus core protein basic amino acid region 1.

    Science.gov (United States)

    Inoue, Kazuaki; Tsukiyama-Kohara, Kyoko; Matsuda, Chiho; Yoneyama, Mitsutoshi; Fujita, Takashi; Kuge, Shusuke; Yoshiba, Makoto; Kohara, Michinori

    2012-11-30

    Interferon regulatory factor-3 (IRF-3), a key transcriptional factor in the type I interferon system, is frequently impaired by hepatitis C virus (HCV), in order to establish persistent infection. However, the exact mechanism by which the virus establishes persistent infection has not been fully understood yet. The present study aimed to investigate the effects of various HCV proteins on IRF-3 activation, and elucidate the underlying mechanisms. To achieve this, full-length HCV and HCV subgenomic constructs corresponding to structural and each of the nonstructural proteins were transiently transfected into HepG2 cells. IFN-β induction, plaque formation, and IRF-3 dimerization were elicited by Newcastle disease virus (NDV) infection. The expressions of IRF-3 homodimer and its monomer, Ser386-phosphorylated IRF-3, and HCV core protein were detected by immunofluorescence and western blotting. IFN-β mRNA expression was quantified by real-time PCR (RT-PCR), and IRF-3 activity was measured by the levels of IRF-3 dimerization and phosphorylation, induced by NDV infection or polyriboinosinic:polyribocytidylic acid [poly(I:C)]. Switching of the expression of the complete HCV genome as well as the core proteins, E1, E2, and NS2, suppressed IFN-β mRNA levels and IRF-3 dimerization, induced by NDV infection. Our study revealed a crucial region of the HCV core protein, basic amino acid region 1 (BR1), to inhibit IRF-3 dimerization as well as its phosphorylation induced by NDV infection and poly (I:C), thus interfering with IRF-3 activation. Therefore, our study suggests that rescue of the IRF-3 pathway impairment may be an effective treatment for HCV infection. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Tracing Males From Different Continents by Genotyping JC Polyomavirus in DNA From Semen Samples.

    Science.gov (United States)

    Rotondo, John Charles; Candian, Tommaso; Selvatici, Rita; Mazzoni, Elisa; Bonaccorsi, Gloria; Greco, Pantaleo; Tognon, Mauro; Martini, Fernanda

    2017-05-01

    The human JC polyomavirus (JCPyV) is an ubiquitous viral agent infecting approximately 60% of humans. Recently, JCPyV sequences have been detected in semen samples. The aim of this investigation was to test whether semen JCPyV genotyping can be employed to trace the origin continent of males. Semen DNA samples (n = 170) from males of different Continents were investigated by PCR for the polymorphic JCPyV viral capsid protein 1 (VP1) sequences, followed by DNA sequencing. JCPyV sequences were detected with an overall prevalence of 27.6% (47/170). DNA sequencing revealed that European males carried JCPyV types 1A (71.4%), 4 (11.4%), 2B (2.9%), 2D1 (2.9%), and 3A (2.9%). Asians JCPyV type 2D1 (66.7%) and Africans JCPyV types 3A (33.3%) and 1A (33.3%). In 10.6% of males, two different JCPyV genotypes were detected, suggesting that the second JCPyV genotype was acquired in the destination country. This study indicates that the majority of semen samples found to be JCPyV-positive, were infected with the JCPyV genotype found in the geographic area of male origin. Therefore, semen JCPyV genotyping could be employed to trace the origin continent of males. Our findings could be applied to forensic investigations, in case of for instance sexual crimes. Indeed, JCPyV genotyping should enable investigators to make additional detailed profiling of the offender. J. Cell. Physiol. 232: 982-985, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. New world bats harbor diverse influenza A viruses.

    Directory of Open Access Journals (Sweden)

    Suxiang Tong

    Full Text Available Aquatic birds harbor diverse influenza A viruses and are a major viral reservoir in nature. The recent discovery of influenza viruses of a new H17N10 subtype in Central American fruit bats suggests that other New World species may similarly carry divergent influenza viruses. Using consensus degenerate RT-PCR, we identified a novel influenza A virus, designated as H18N11, in a flat-faced fruit bat (Artibeus planirostris from Peru. Serologic studies with the recombinant H18 protein indicated that several Peruvian bat species were infected by this virus. Phylogenetic analyses demonstrate that, in some gene segments, New World bats harbor more influenza virus genetic diversity than all other mammalian and avian species combined, indicative of a long-standing host-virus association. Structural and functional analyses of the hemagglutinin and neuraminidase indicate that sialic acid is not a ligand for virus attachment nor a substrate for release, suggesting a unique mode of influenza A virus attachment and activation of membrane fusion for entry into host cells. Taken together, these findings indicate that bats constitute a potentially important and likely ancient reservoir for a diverse pool of influenza viruses.

  20. An influenza A virus (H7N9) anti-neuraminidase monoclonal antibody with prophylactic and therapeutic activity in vivo

    Science.gov (United States)

    Wilson, Jason R.; Guo, Zhu; Reber, Adrian; Kamal, Ram P.; Music, Nedzad; Gansebom, Shane; Bai, Yaohui; Levine, Min; Carney, Paul; Tzeng, Wen-Pin; Stevens, James; York, Ian A.

    2017-01-01

    Zoonotic A(H7N9) avian influenza viruses emerged in China in 2013 and continue to be a threat to human public health, having infected over 800 individuals with a mortality rate approaching 40%. Treatment options for people infected with A(H7N9) include the use of neuraminidase (NA) inhibitors. However, like other influenza viruses, A(H7N9) can become resistant to these drugs. The use of monoclonal antibodies is a rapidly developing strategy for controlling influenza virus infection. Here we generated a murine monoclonal antibody (3c10-3) directed against the NA of A(H7N9) and show that prophylactic systemic administration of 3c10-3 fully protected mice from lethal challenge with wild-type A/Anhui/1/2013 (H7N9). Further, post-infection treatment with a single systemic dose of 3c10-3 at either 24, 48 or 72 h post A(H7N9) challenge resulted in both dose- and time-dependent protection of up to 100% of mice, demonstrating therapeutic potential for 3c10-3. Epitope mapping revealed that 3c10-3 binds near the enzyme active site of NA, and functional characterization showed that 3c10-3 inhibits the enzyme activity of NA and restricts the cell-to-cell spread of the virus in cultured cells. Affinity analysis also revealed that 3c10-3 binds equally well to recombinant NA of wild-type A/Anhui/1/2013 and to a variant NA carrying a R289K mutation known to infer NAI resistance. These results suggest that 3c10-3 has the potential to be used as a therapeutic to treat A(H7N9) infections either as an alternative to, or in combination with, current NA antiviral inhibitors. PMID:27713074

  1. Radix isatidis Polysaccharides Inhibit Influenza a Virus and Influenza A Virus-Induced Inflammation via Suppression of Host TLR3 Signaling In Vitro

    Directory of Open Access Journals (Sweden)

    Zhengtu Li

    2017-01-01

    Full Text Available Influenza remains one of the major epidemic diseases worldwide, and rapid virus replication and collateral lung tissue damage caused by excessive pro-inflammatory host immune cell responses lead to high mortality rates. Thus, novel therapeutic agents that control influenza A virus (IAV propagation and attenuate excessive pro-inflammatory responses are needed. Polysaccharide extract from Radix isatidis, a traditional Chinese herbal medicine, exerted potent anti-IAV activity against human seasonal influenza viruses (H1N1 and H3N2 and avian influenza viruses (H6N2 and H9N2 in vitro. The polysaccharides also significantly reduced the expression of pro-inflammatory cytokines (IL-6 and chemokines (IP-10, MIG, and CCL-5 stimulated by A/PR/8/34 (H1N1 at a range of doses (7.5 mg/mL, 15 mg/mL, and 30 mg/mL; however, they were only effective against progeny virus at a high dose. Similar activity was detected against inflammation induced by avian influenza virus H9N2. The polysaccharides strongly inhibited the protein expression of TLR-3 induced by PR8, suggesting that they impair the upregulation of pro-inflammatory factors induced by IAV by inhibiting activation of the TLR-3 signaling pathway. The polysaccharide extract from Radix isatidis root therefore has the potential to be used as an adjunct to antiviral therapy for the treatment of IAV infection.

  2. Inhibition of enveloped viruses infectivity by curcumin.

    Directory of Open Access Journals (Sweden)

    Tzu-Yen Chen

    Full Text Available Curcumin, a natural compound and ingredient in curry, has antiinflammatory, antioxidant, and anticarcinogenic properties. Previously, we reported that curcumin abrogated influenza virus infectivity by inhibiting hemagglutination (HA activity. This study demonstrates a novel mechanism by which curcumin inhibits the infectivity of enveloped viruses. In all analyzed enveloped viruses, including the influenza virus, curcumin inhibited plaque formation. In contrast, the nonenveloped enterovirus 71 remained unaffected by curcumin treatment. We evaluated the effects of curcumin on the membrane structure using fluorescent dye (sulforhodamine B; SRB-containing liposomes that mimic the viral envelope. Curcumin treatment induced the leakage of SRB from these liposomes and the addition of the influenza virus reduced the leakage, indicating that curcumin disrupts the integrity of the membranes of viral envelopes and of liposomes. When testing liposomes of various diameters, we detected higher levels of SRB leakage from the smaller-sized liposomes than from the larger liposomes. Interestingly, the curcumin concentration required to reduce plaque formation was lower for the influenza virus (approximately 100 nm in diameter than for the pseudorabies virus (approximately 180 nm and the vaccinia virus (roughly 335 × 200 × 200 nm. These data provide insights on the molecular antiviral mechanisms of curcumin and its potential use as an antiviral agent for enveloped viruses.

  3. Inhibition of Enveloped Viruses Infectivity by Curcumin

    Science.gov (United States)

    Wen, Hsiao-Wei; Ou, Jun-Lin; Chiou, Shyan-Song; Chen, Jo-Mei; Wong, Min-Liang; Hsu, Wei-Li

    2013-01-01

    Curcumin, a natural compound and ingredient in curry, has antiinflammatory, antioxidant, and anticarcinogenic properties. Previously, we reported that curcumin abrogated influenza virus infectivity by inhibiting hemagglutination (HA) activity. This study demonstrates a novel mechanism by which curcumin inhibits the infectivity of enveloped viruses. In all analyzed enveloped viruses, including the influenza virus, curcumin inhibited plaque formation. In contrast, the nonenveloped enterovirus 71 remained unaffected by curcumin treatment. We evaluated the effects of curcumin on the membrane structure using fluorescent dye (sulforhodamine B; SRB)-containing liposomes that mimic the viral envelope. Curcumin treatment induced the leakage of SRB from these liposomes and the addition of the influenza virus reduced the leakage, indicating that curcumin disrupts the integrity of the membranes of viral envelopes and of liposomes. When testing liposomes of various diameters, we detected higher levels of SRB leakage from the smaller-sized liposomes than from the larger liposomes. Interestingly, the curcumin concentration required to reduce plaque formation was lower for the influenza virus (approximately 100 nm in diameter) than for the pseudorabies virus (approximately 180 nm) and the vaccinia virus (roughly 335 × 200 × 200 nm). These data provide insights on the molecular antiviral mechanisms of curcumin and its potential use as an antiviral agent for enveloped viruses. PMID:23658730

  4. Viruses and Multiple Sclerosis

    Science.gov (United States)

    Virtanen, Jussi Oskari; Jacobson, Steve

    2016-01-01

    Multiple sclerosis (MS) is a heterogeneous disease that develops as an interplay between the immune system and environmental stimuli in genetically susceptible individuals. There is increasing evidence that viruses may play a role in MS pathogenesis acting as these environmental triggers. However, it is not known if any single virus is causal, or rather several viruses can act as triggers in disease development. Here, we review the association of different viruses to MS with an emphasis on two herpesviruses, Epstein-Barr virus (EBV) and human herpesvirus 6 (HHV-6). These two agents have generated the most impact during recent years as possible co-factors in MS disease development. The strongest argument for association of EBV with MS comes from the link between symptomatic infectious mononucleosis and MS and from seroepidemiological studies. In contrast to EBV, HHV-6 has been found significantly more often in MS plaques than in MS normal appearing white matter or non-MS brains and HHV-6 re-activation has been reported during MS clinical relapses. In this review we also suggest new strategies, including the development of new infectious animal models of MS and antiviral MS clinical trials, to elucidate roles of different viruses in the pathogenesis of this disease. Furthermore, we introduce the idea of using unbiased sequence-independent pathogen discovery methodologies, such as next generation sequencing, to study MS brain tissue or body fluids for detection of known viral sequences or potential novel viral agents. PMID:22583435

  5. Maraviroc (UK-427,857), a Potent, Orally Bioavailable, and Selective Small-Molecule Inhibitor of Chemokine Receptor CCR5 with Broad-Spectrum Anti-Human Immunodeficiency Virus Type 1 Activity

    OpenAIRE

    Dorr, Patrick; Westby, Mike; Dobbs, Susan; Griffin, Paul; Irvine, Becky; Macartney, Malcolm; Mori, Julie; Rickett, Graham; Smith-Burchnell, Caroline; Napier, Carolyn; Webster, Rob; Armour, Duncan; Price, David; Stammen, Blanda; Wood, Anthony

    2005-01-01

    Maraviroc (UK-427,857) is a selective CCR5 antagonist with potent anti-human immunodeficiency virus type 1 (HIV-1) activity and favorable pharmacological properties. Maraviroc is the product of a medicinal chemistry effort initiated following identification of an imidazopyridine CCR5 ligand from a high-throughput screen of the Pfizer compound file. Maraviroc demonstrated potent antiviral activity against all CCR5-tropic HIV-1 viruses tested, including 43 primary isolates from various clades a...

  6. AAV-mediated delivery of zinc finger nucleases targeting hepatitis B virus inhibits active replication.

    Directory of Open Access Journals (Sweden)

    Nicholas D Weber

    Full Text Available Despite an existing effective vaccine, hepatitis B virus (HBV remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB, imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy.

  7. Intracellular route and biological activity of exogenously delivered Rep proteins from the adeno-associated virus type 2

    International Nuclear Information System (INIS)

    Awedikian, Rafi; Francois, Achille; Guilbaud, Mickael; Moullier, Philippe; Salvetti, Anna

    2005-01-01

    The two large Rep proteins, Rep78 and Rep68, from the adeno-associated virus type 2 (AAV-2) are required for AAV-2 DNA replication, site-specific integration, and for the regulation of viral gene expression. The study of their activities is dependent on the ability to deliver these proteins to the cells in a time and dose-dependent manner. We evaluated the ability of a protein transduction domain (PTD) derived from the human immunodeficiency virus 1 (HIV-1) TAT protein to drive the cellular internalization of exogenously delivered PTD-fused Rep68 proteins. This analysis unexpectedly revealed that recombinant Rep68 alone, in the absence of any PTD, could be endocytosed by the cells. Rep68 as the chimeric TAT-Rep68 proteins were internalized through endocytosis in clathrin-coated vesicles and retained in late endosomes/lysosomes with no detectable nuclear localization. In the presence of adenovirus, the Rep proteins could translocate into the nucleus where they displayed a biological activity. These findings support recent reports on the mechanism of entry of TAT-fused proteins and also revealed a new property of Rep68

  8. Application of radioisotopes in biochemistry of proteins, hydrocarbons and lipids of viruses

    International Nuclear Information System (INIS)

    Budarkov, V.A.; Bakulov, I.A.; Makarov, V.V.; Chumak, R.M.

    1990-01-01

    The article desribes the methods of radioisotope application in biochemistry of proteins, hydrocarbons and lipids of viruses: - radionuclide analysis of immunocompetent cell surface components; - technique of radionuclide introduction into viruse and cell proteins; - method of investigating of viruse glycoproteins; - method of measuring viruse ferment activity. 383 refs.; 2 figs.; 4 tabs

  9. Herpes Simplex Virus 1 DNA Polymerase RNase H Activity Acts in a 3'-to-5' Direction and Is Dependent on the 3'-to-5' Exonuclease Active Site.

    Science.gov (United States)

    Lawler, Jessica L; Mukherjee, Purba; Coen, Donald M

    2018-03-01

    The catalytic subunit (Pol) of herpes simplex virus 1 (HSV-1) DNA polymerase has been extensively studied both as a model for other family B DNA polymerases and for its differences from these enzymes as an antiviral target. Among the activities of HSV-1 Pol is an intrinsic RNase H activity that cleaves RNA from RNA-DNA hybrids. There has long been a controversy regarding whether this activity is due to the 3'-to-5' exonuclease of Pol or whether it is a separate activity, possibly acting on 5' RNA termini. To investigate this issue, we compared wild-type HSV-1 Pol and a 3'-to-5' exonuclease-deficient mutant, D368A Pol, for DNA polymerase activity, 3'-to-5' exonuclease activity, and RNase H activity in vitro Additionally, we assessed the RNase H activity using differentially end-labeled templates with 5' or 3' RNA termini. The mutant enzyme was at most modestly impaired for DNA polymerase activity but was drastically impaired for 3'-to-5' exonuclease activity, with no activity detected even at high enzyme-to-DNA substrate ratios. Importantly, the mutant showed no detectable ability to excise RNA with either a 3' or 5' terminus, while the wild-type HSV-1 Pol was able to cleave RNA from the annealed RNA-DNA hairpin template, but only detectably with a 3' RNA terminus in a 3'-to-5' direction and at a rate lower than that of the exonuclease activity. These results suggest that HSV-1 Pol does not have an RNase H separable from its 3'-to-5' exonuclease activity and that this activity prefers DNA degradation over degradation of RNA from RNA-DNA hybrids. IMPORTANCE Herpes simplex virus 1 (HSV-1) is a member of the Herpesviridae family of DNA viruses, several of which cause morbidity and mortality in humans. Although the HSV-1 DNA polymerase has been studied for decades and is a crucial target for antivirals against HSV-1 infection, several of its functions remain to be elucidated. A hypothesis suggesting the existence of a 5'-to-3' RNase H activity intrinsic to this enzyme

  10. The PreS2 activator MHBs(t) of hepatitis B virus activates c-raf-1/Erk2 signaling in transgenic mice.

    Science.gov (United States)

    Hildt, Eberhard; Munz, Barbara; Saher, Gesine; Reifenberg, Kurt; Hofschneider, Peter Hans

    2002-02-15

    The large hepatitis B virus (HBV) surface protein (LHBs) and C-terminally truncated middle size surface proteins (MHBs(t)) form the family of the PreS2 activator proteins of HBV. Their transcriptional activator function is based on the cytoplasmic orientation of the PreS2 domain. MHBs(t) activators are paradigmatic for this class of activators. Here we report that MHBs(t) is protein kinase C (PKC)-dependently phosphorylated at Ser28. The integrity of the phosphorylation site is essential for the activator function. MHBs(t) triggers PKC-dependent activation of c-Raf-1/Erk2 signaling that is a prerequisite for MHBs(t)-dependent activation of AP-1 and NF-kappaB. To analyze the pathophysiological relevance of these data in vivo, transgenic mice were established that produce the PreS2 activator MHBs(t) specifically in the liver. In these mice, a permanent PreS2-dependent specific activation of c-Raf-1/Erk2 signaling was observed, resulting in an increased hepatocyte proliferation rate. In transgenics older than 15 months, an increased incidence of liver tumors occurs. These data suggest that PreS2 activators LHBs and MHBs(t) exert a tumor promoter-like function by activation of key enzymes of proliferation control.

  11. A "candidate-interactome" aggregate analysis of genome-wide association data in multiple sclerosis

    DEFF Research Database (Denmark)

    Mechelli, Rosella; Umeton, Renato; Policano, Claudia

    2013-01-01

    of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge......, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate...... immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated...

  12. Inhibition of Nipah virus infection in vivo: targeting an early stage of paramyxovirus fusion activation during viral entry.

    Directory of Open Access Journals (Sweden)

    Matteo Porotto

    2010-10-01

    Full Text Available In the paramyxovirus cell entry process, receptor binding triggers conformational changes in the fusion protein (F leading to viral and cellular membrane fusion. Peptides derived from C-terminal heptad repeat (HRC regions in F have been shown to inhibit fusion by preventing formation of the fusogenic six-helix bundle. We recently showed that the addition of a cholesterol group to HRC peptides active against Nipah virus targets these peptides to the membrane where fusion occurs, dramatically increasing their antiviral effect. In this work, we report that unlike the untagged HRC peptides, which bind to the postulated extended intermediate state bridging the viral and cell membranes, the cholesterol tagged HRC-derived peptides interact with F before the fusion peptide inserts into the target cell membrane, thus capturing an earlier stage in the F-activation process. Furthermore, we show that cholesterol tagging renders these peptides active in vivo: the cholesterol-tagged peptides cross the blood brain barrier, and effectively prevent and treat in an established animal model what would otherwise be fatal Nipah virus encephalitis. The in vivo efficacy of cholesterol-tagged peptides, and in particular their ability to penetrate the CNS, suggests that they are promising candidates for the prevention or therapy of infection by Nipah and other lethal paramyxoviruses.

  13. Anti-Dengue Virus Constituents from Formosan Zoanthid Palythoa mutuki

    Science.gov (United States)

    Lee, Jin-Ching; Chang, Fang-Rong; Chen, Shu-Rong; Wu, Yu-Hsuan; Hu, Hao-Chun; Wu, Yang-Chang; Backlund, Anders; Cheng, Yuan-Bin

    2016-01-01

    A new marine ecdysteroid with an α-hydroxy group attaching at C-4 instead of attaching at C-2 and C-3, named palythone A (1), together with eight known compounds (2–9) were obtained from the ethanolic extract of the Formosan zoanthid Palythoa mutuki. The structures of those compounds were mainly determined by NMR spectroscopic data analyses. The absolute configuration of 1 was further confirmed by comparing experimental and calculated circular dichroism (CD) spectra. Anti-dengue virus 2 activity and cytotoxicity of five isolated compounds were evaluated using virus infectious system and [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assays, respectively. As a result, peridinin (9) exhibited strong antiviral activity (IC50 = 4.50 ± 0.46 μg/mL), which is better than that of the positive control, 2′CMC. It is the first carotene-like substance possessing anti-dengue virus activity. In addition, the structural diversity and bioactivity of the isolates were compared by using a ChemGPS–NP computational analysis. The ChemGPS–NP data suggested natural products with anti-dengue virus activity locate closely in the chemical space. PMID:27517937

  14. Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons

    Science.gov (United States)

    Saunders, Arpiar; Johnson, Caroline A.; Sabatini, Bernardo L.

    2012-01-01

    Understanding the organization of the nervous system requires methods for dissecting the contributions of each component cell type to circuit function. One widely used approach combines genetic targeting of Cre recombinase to specific cell populations with infection of recombinant adeno-associated viruses (rAAVs) whose transgene expression is activated by Cre (“Cre-On”). Distinguishing how the Cre-expressing neurons differ functionally from neighboring Cre-negative neurons requires rAAVs that are inactivated by Cre (“Cre-Off”) and can be used in tandem with Cre-On viruses. Here we introduce two rAAV vectors that are inactivated by Cre and carry different fluorophore and optogenetic constructs. We demonstrate single and dual rAAV systems to achieve Cre-On and Cre-Off expression in spatially-intermingled cell populations of the striatum. Using these systems, we uncovered cryptic genomic interactions that occur between multiple Cre-sensitive rAAVs or between Cre-sensitive rAAVs and somatic Cre-conditional alleles and devised methods to avoid these interactions. Our data highlight both important experimental caveats associated with Cre-dependent rAAV use as well as opportunities for the development of improved rAAVs for gene delivery. PMID:22866029

  15. Protective Effect of Panax notoginseng Root Water Extract against Influenza A Virus Infection by Enhancing Antiviral Interferon-Mediated Immune Responses and Natural Killer Cell Activity

    Directory of Open Access Journals (Sweden)

    Jang-Gi Choi

    2017-11-01

    Full Text Available Influenza is an acute respiratory illness caused by the influenza A virus, which causes economic losses and social disruption mainly by increasing hospitalization and mortality rates among the elderly and people with chronic diseases. Influenza vaccines are the most effective means of preventing seasonal influenza, but can be completely ineffective if there is an antigenic mismatch between the seasonal vaccine virus and the virus circulating in the community. In addition, influenza viruses resistant to antiviral drugs are emerging worldwide. Thus, there is an urgent need to develop new vaccines and antiviral drugs against these viruses. In this study, we conducted in vitro and in vivo analyses of the antiviral effect of Panax notoginseng root (PNR, which is used as an herbal medicine and nutritional supplement in Korea and China. We confirmed that PNR significantly prevented influenza virus infection in a concentration-dependent manner in mouse macrophages. In addition, PNR pretreatment inhibited viral protein (PB1, PB2, HA, NA, M1, PA, M2, and NP and viral mRNA (NS1, HA, PB2, PA, NP, M1, and M2 expression. PNR pretreatment also increased the secretion of pro-inflammatory cytokines [tumor necrosis factor alpha and interleukin 6] and interferon (IFN-beta and the phosphorylation of type-I IFN-related proteins (TANK-binding kinase 1, STAT1, and IRF3 in vitro. In mice exposed to the influenza A H1N1 virus, PNR treatment decreased mortality by 90% and prevented weight loss (by approximately 10% compared with the findings in untreated animals. In addition, splenocytes from PNR-administered mice displayed significantly enhanced natural killer (NK cell activity against YAC-1 cells. Taking these findings together, PNR stimulates an antiviral response in murine macrophages and mice that protects against viral infection, which may be attributable to its ability to stimulate NK cell activity. Further investigations are needed to reveal the molecular

  16. Bcl-2 and Bcl-xL overexpression inhibits cytochrome c release, activation of multiple caspases, and virus release following coxsackievirus B3 infection

    International Nuclear Information System (INIS)

    Carthy, Christopher M.; Yanagawa, Bobby; Luo Honglin; Granville, David J.; Yang, Decheng; Cheung, Paul; Cheung, Caroline; Esfandiarei, Mitra; Rudin, Charles M.; Thompson, Craig B.; Hunt, David W.C.; McManus, Bruce M.

    2003-01-01

    Coxsackievirus B3, a cytopathic virus in the family Picornaviridae, induces degenerative changes in host cell morphology. Here we demonstrate cytochrome c release and caspases-2, -3, -6, -7, -8, and -9 processing. Enforced Bcl-2 and Bcl-xL expression markedly reduced release of cytochrome c, presentation of the mitochondrial epitope 7A6, and depressed caspase activation following infection. In comparison, cell death using TRAIL ligand caused caspase-8 processing prior to cytochrome c release and executioner caspases and cell death was only partially rescued by Bcl-2 and Bcl-xL overexpression. Disruption of the mitochondrial inner membrane potential following CVB3 infection was not inhibited by zVAD.fmk treatment. Bcl-2 or Bcl-xL overexpression or zVAD.fmk treatment delayed the loss of host cell viability and decreased progeny virus release following infection. Our data suggest that mitochondrial release of cytochrome c may be an important early event in caspase activation in CVB3 infection, and, as such, may contribute to the loss of host-cell viability and progeny virus release

  17. Nairobi sheep disease virus/Ganjam virus.

    Science.gov (United States)

    M D, Baron; B, Holzer

    2015-08-01

    Nairobi sheep disease virus (NSDV) is a tick-borne virus which causes a severe disease in sheep and goats, and has been responsible for several outbreaks of disease in East Africa. The virus is also found in the Indian subcontinent, where it is known as Ganjam virus. The virus only spreads through the feeding of competent infected ticks, and is therefore limited in its geographic distribution by the distribution of those ticks, Rhipicephalus appendiculata in Africa and Haemaphysalis intermedia in India. Animals bred in endemic areas do not normally develop disease, and the impact is therefore primarily on animals being moved for trade or breeding purposes. The disease caused by NSDV has similarities to several other ruminant diseases, and laboratory diagnosis is necessary for confirmation. There are published methods for diagnosis based on polymerase chain reaction, for virus growth in cell culture and for other simple diagnostic tests, though none has been commercialised. There is no established vaccine against NSDV, although cell-culture attenuated strains have been developed which show promise and could be put into field trials if it were deemed necessary. The virus is closely related to Crimean-Congo haemorrhagic fever virus, and studies on NSDV may therefore be useful in understanding this important human pathogen.

  18. Antiviral activity of some Tunisian medicinal plants against Herpes simplex virus type 1.

    Science.gov (United States)

    Sassi, A Ben; Harzallah-Skhiri, F; Bourgougnon, N; Aouni, M

    2008-01-10

    Fifteen species of Tunisian traditional medicinal plants, belonging to 10 families, were selected for this study. They were Inula viscosa (L.) Ait and Reichardia tingitana (L.) Roth ssp. discolor (Pom.) Batt. (Asteraceae), Mesembryanthemum cristallinum L. and M. nodiflorum L. (Aizoaceae), Arthrocnemum indicum (Willd.) Moq., Atriplex inflata Muell., A. parvifolia Lowe var. ifiniensis (Caball) Maire, and Salicornia fruticosa L. (Chenopodiaceae), Cistus monspeliensis L. (Cistaceae), Juniperus phoenicea L. (Cupressaceae), Erica multiflora L. (Ericaceae), Frankenia pulverulenta L. (Frankeniaceae), Hypericum crispum L. (Hypericaceae), Plantago coronopus L. ssp. eu-coronopus Pilger var. vulgaris G.G. (Plantaginaceae) and Zygophyllum album L. (Zygophyllaceae). Fifty extracts prepared from those plants were screened in order to assay their antiviral activity against Herpes simplex virus type 1 (HSV-1), using neutral red incorporation. Extracts from eight plants among these 15 showed some degree of antiviral activity, while the methanolic extract of E. multiflora was highly active with EC(50) of 132.6 microg mL(-1). These results corroborate that medicinal plants from Tunisia can be a rich source of potential antiviral compounds.

  19. Human Immunodeficiency Virus Tat-Activated Expression of Poliovirus Protein 2A Inhibits mRNA Translation

    Science.gov (United States)

    Sun, Xiao-Hong; Baltimore, David

    1989-04-01

    To study the effect of poliovirus protein 2A on cellular RNA translation, the tat control system of human immunodeficiency virus (HIV) was used. Protein 2A was expressed from a plasmid construct (pHIV/2A) incorporating the HIV long terminal repeat. Protein synthesis was measured by using chloramphenicol acetyltransferase as a reporter gene driven by the Rous sarcoma virus long terminal repeat. When HIV/2A was contransfected with the reporter, addition of a tat-producing plasmid caused at least a 50-fold drop in chloramphenicol acetyltransferase synthesis. A HeLa cell line carrying HIV/2A was established. In it, tat expression caused more than a 10-fold drop in chloramphenicol acetyltransferase synthesis from the reporter plasmid. Furthermore, 2A induction by tat caused cleavage of the cellular translation factor P220, a part of eukaryotic translation initiation factor 4F. Thus protein 2A can, by itself, carry out the inhibition of cellular protein synthesis characteristic of a poliovirus infection. Also, the HIV tat activation provides a very effective method to control gene expression in mammalian cells.

  20. Sensitive luminescent reporter viruses reveal appreciable release of hepatitis C virus NS5A protein into the extracellular environment.

    Science.gov (United States)

    Eyre, Nicholas S; Aloia, Amanda L; Joyce, Michael A; Chulanetra, Monrat; Tyrrell, D Lorne; Beard, Michael R

    2017-07-01

    The HCV NS5A protein is essential for viral RNA replication and virus particle assembly. To study the viral replication cycle and NS5A biology we generated an infectious HCV construct with a NanoLuciferase (NLuc) insertion within NS5A. Surprisingly, beyond its utility as a sensitive reporter of cytoplasmic viral RNA replication, we also observed strong luminescence in cell culture fluids. Further analysis using assembly-defective viruses and subgenomic replicons revealed that infectious virus production was not required for extracellular NS5A-NLuc activity but was associated with enrichment of extracellular NS5A-NLuc in intermediate-density fractions similar to those of exosomes and virus particles. Additionally, BRET analysis indicated that intracellular and extracellular forms of NS5A may adopt differing conformations. Importantly, infection studies using a human liver chimeric mouse model confirmed robust infection in vivo and ready detection of NLuc activity in serum. We hypothesise that the presence of NS5A in extracellular fluids contributes to HCV pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Immunopathology of highly virulent pathogens: insights from Ebola virus.

    Science.gov (United States)

    Zampieri, Carisa A; Sullivan, Nancy J; Nabel, Gary J

    2007-11-01

    Ebola virus is a highly virulent pathogen capable of inducing a frequently lethal hemorrhagic fever syndrome. Accumulating evidence indicates that the virus actively subverts both innate and adaptive immune responses and triggers harmful inflammatory responses as it inflicts direct tissue damage. The host immune system is ultimately overwhelmed by a combination of inflammatory factors and virus-induced cell damage, particularly in the liver and vasculature, often leading to death from septic shock. We summarize the mechanisms of immune dysregulation and virus-mediated cell damage in Ebola virus-infected patients. Future approaches to prevention and treatment of infection will be guided by answers to unresolved questions about interspecies transmission, molecular mechanisms of pathogenesis, and protective adaptive and innate immune responses to Ebola virus.

  2. Evaluation of sprayed hypochlorous acid solutions for their virucidal activity against avian influenza virus through in vitro experiments

    Science.gov (United States)

    HAKIM, Hakimullah; THAMMAKARN, Chanathip; SUGURO, Atsushi; ISHIDA, Yuki; KAWAMURA, Akinobu; TAMURA, Miho; SATOH, Keisuke; TSUJIMURA, Misato; HASEGAWA, Tomomi; TAKEHARA, Kazuaki

    2014-01-01

    Hypochlorous acid (HOCl) solutions were evaluated for their virucidal ability against a low pathogenic avian influenza virus (AIV), H7N1. HOCl solutions containing 50, 100 and 200 ppm chlorine (pH 6) or their sprayed solutions (harvested in dishes placed at 1 or 30 cm distance between the spray nozzle and dish) were mixed with the virus with or without organic materials (5% fetal bovine serum: FBS). Under plain diluent conditions (without FBS), harvested solutions of HOCl after spraying could decrease the AIV titer by more than 1,000 times, to an undetectable level (< 2.5 log10TCID50/ml) within 5 sec, with the exception of the 50 ppm solution harvested after spraying at the distance of 30 cm. Under the dirty conditions (in the presence of 5% FBS), they lost their virucidal activity. When HOCl solutions were sprayed directly on the virus on rayon sheets for 10 sec, the solutions of 100 and 200 ppm could inactivate AIV immediately after spraying, while 50 ppm solution required at least 3 min of contact time. In the indirect spray form, after 10 sec of spraying, the lids of the dishes were opened to expose the virus on rayon sheets to HOCl. In this form, the 200 ppm solution inactivated AIV within 10 min of contact, while 50 and 100 ppm could not inactivate it. These data suggest that HOCl can be used in spray form to inactivate AIV at the farm level. PMID:25421399

  3. Evaluation of sprayed hypochlorous acid solutions for their virucidal activity against avian influenza virus through in vitro experiments.

    Science.gov (United States)

    Hakim, Hakimullah; Thammakarn, Chanathip; Suguro, Atsushi; Ishida, Yuki; Kawamura, Akinobu; Tamura, Miho; Satoh, Keisuke; Tsujimura, Misato; Hasegawa, Tomomi; Takehara, Kazuaki

    2015-02-01

    Hypochlorous acid (HOCl) solutions were evaluated for their virucidal ability against a low pathogenic avian influenza virus (AIV), H7N1. HOCl solutions containing 50, 100 and 200 ppm chlorine (pH 6) or their sprayed solutions (harvested in dishes placed at 1 or 30 cm distance between the spray nozzle and dish) were mixed with the virus with or without organic materials (5% fetal bovine serum: FBS). Under plain diluent conditions (without FBS), harvested solutions of HOCl after spraying could decrease the AIV titer by more than 1,000 times, to an undetectable level (< 2.5 log10TCID50/ml) within 5 sec, with the exception of the 50 ppm solution harvested after spraying at the distance of 30 cm. Under the dirty conditions (in the presence of 5% FBS), they lost their virucidal activity. When HOCl solutions were sprayed directly on the virus on rayon sheets for 10 sec, the solutions of 100 and 200 ppm could inactivate AIV immediately after spraying, while 50 ppm solution required at least 3 min of contact time. In the indirect spray form, after 10 sec of spraying, the lids of the dishes were opened to expose the virus on rayon sheets to HOCl. In this form, the 200 ppm solution inactivated AIV within 10 min of contact, while 50 and 100 ppm could not inactivate it. These data suggest that HOCl can be used in spray form to inactivate AIV at the farm level.

  4. Viruses in the Oceanic Basement

    Directory of Open Access Journals (Sweden)

    Olivia D. Nigro

    2017-03-01

    Full Text Available Microbial life has been detected well into the igneous crust of the seafloor (i.e., the oceanic basement, but there have been no reports confirming the presence of viruses in this habitat. To detect and characterize an ocean basement virome, geothermally heated fluid samples (ca. 60 to 65°C were collected from 117 to 292 m deep into the ocean basement using seafloor observatories installed in two boreholes (Integrated Ocean Drilling Program [IODP] U1362A and U1362B drilled in the eastern sediment-covered flank of the Juan de Fuca Ridge. Concentrations of virus-like particles in the fluid samples were on the order of 0.2 × 105 to 2 × 105 ml−1 (n = 8, higher than prokaryote-like cells in the same samples by a factor of 9 on average (range, 1.5 to 27. Electron microscopy revealed diverse viral morphotypes similar to those of viruses known to infect bacteria and thermophilic archaea. An analysis of virus-like sequences in basement microbial metagenomes suggests that those from archaeon-infecting viruses were the most common (63 to 80%. Complete genomes of a putative archaeon-infecting virus and a prophage within an archaeal scaffold were identified among the assembled sequences, and sequence analysis suggests that they represent lineages divergent from known thermophilic viruses. Of the clustered regularly interspaced short palindromic repeat (CRISPR-containing scaffolds in the metagenomes for which a taxonomy could be inferred (163 out of 737, 51 to 55% appeared to be archaeal and 45 to 49% appeared to be bacterial. These results imply that the warmed, highly altered fluids in deeply buried ocean basement harbor a distinct assemblage of novel viruses, including many that infect archaea, and that these viruses are active participants in the ecology of the basement microbiome.

  5. Binding of human papilloma virus L1 virus-like particles to dendritic cells is mediated through heparan sulfates and induces immune activation

    NARCIS (Netherlands)

    de Witte, Lot; Zoughlami, Younes; Aengeneyndt, Birgit; David, Guido; van Kooyk, Yvette; Gissmann, Lutz; Geijtenbeek, Teunis B. H.

    2007-01-01

    Immunization using human papilloma virus (HPV)-L1 virus-like particles (VLPs) induces a robust and effective immune response, which has recently resulted in the implementation of the HPV-L1 VLP vaccination in health programs. However, during infection, HPV can escape immune surveillance leading to

  6. Antiviral Properties of the Natural Polyphenols Delphinidin and Epigallocatechin Gallate against the Flaviviruses West Nile Virus, Zika Virus, and Dengue Virus

    Directory of Open Access Journals (Sweden)

    Ángela Vázquez-Calvo

    2017-07-01

    Full Text Available The Flavivirus genus contains important pathogens, such as West Nile virus (WNV, Zika virus (ZIKV, and Dengue virus (DENV, which are enveloped plus-strand RNA viruses transmitted by mosquitoes and constitute a worrisome threat to global human and animal health. Currently no licensed drugs against them are available, being, thus, still necessary the search for effective antiviral molecules. In this line, a novel antiviral approach (economical, simple to use, and environmental friendly is the use of natural compounds. Consequently, we have tested the antiviral potential of different polyphenols present in plants and natural products, such as wine and tea, against WNV, ZIKV, and DENV. So that, we assayed the effect of a panel of structurally related polyphenols [delphinidin (D, cyanidin (Cy, catechin (C, epicatechin (EC, epigallocatechin (EGC, and epigallocatechin gallate (EGCG] on WNV infection, and found that D and EGCG inhibited more effectively the virus production. Further analysis with both compounds indicated that they mainly affected the attachment and entry steps of the virus life cycle. Moreover, D and EGCG showed a direct effect on WNV particles exerting a virucidal effect. We showed a similar inhibition of viral production of these compounds on WNV variants that differed on acidic pH requirements for viral fusion, indicating that their antiviral activity against WNV is produced by a virucidal effect rather than by an inhibition of pH-dependent viral fusion. Both polyphenols also reduced the infectivity of ZIKV and DENV. Therefore, D and EGCG impair the infectivity in cell culture of these three medically relevant flaviviruses.

  7. Impact of transgenic wheat with wheat yellow mosaic virus resistance on microbial community diversity and enzyme activity in rhizosphere soil.

    Science.gov (United States)

    Wu, Jirong; Yu, Mingzheng; Xu, Jianhong; Du, Juan; Ji, Fang; Dong, Fei; Li, Xinhai; Shi, Jianrong

    2014-01-01

    The transgenic wheat line N12-1 containing the WYMV-Nib8 gene was obtained previously through particle bombardment, and it can effectively control the wheat yellow mosaic virus (WYMV) disease transmitted by Polymyxa graminis at turngreen stage. Due to insertion of an exogenous gene, the transcriptome of wheat may be altered and affect root exudates. Thus, it is important to investigate the potential environmental risk of transgenic wheat before commercial release because of potential undesirable ecological side effects. Our 2-year study at two different experimental locations was performed to analyze the impact of transgenic wheat N12-1 on bacterial and fungal community diversity in rhizosphere soil using polymerase chain reaction-denaturing gel gradient electrophoresis (PCR-DGGE) at four growth stages (seeding stage, turngreen stage, grain-filling stage, and maturing stage). We also explored the activities of urease, sucrase and dehydrogenase in rhizosphere soil. The results showed that there was little difference in bacterial and fungal community diversity in rhizosphere soil between N12-1 and its recipient Y158 by comparing Shannon's, Simpson's diversity index and evenness (except at one or two growth stages). Regarding enzyme activity, only one significant difference was found during the maturing stage at Xinxiang in 2011 for dehydrogenase. Significant growth stage variation was observed during 2 years at two experimental locations for both soil microbial community diversity and enzyme activity. Analysis of bands from the gel for fungal community diversity showed that the majority of fungi were uncultured. The results of this study suggested that virus-resistant transgenic wheat had no adverse impact on microbial community diversity and enzyme activity in rhizosphere soil during 2 continuous years at two different experimental locations. This study provides a theoretical basis for environmental impact monitoring of transgenic wheat when the introduced gene is

  8. Impact of transgenic wheat with wheat yellow mosaic virus resistance on microbial community diversity and enzyme activity in rhizosphere soil.

    Directory of Open Access Journals (Sweden)

    Jirong Wu

    Full Text Available The transgenic wheat line N12-1 containing the WYMV-Nib8 gene was obtained previously through particle bombardment, and it can effectively control the wheat yellow mosaic virus (WYMV disease transmitted by Polymyxa graminis at turngreen stage. Due to insertion of an exogenous gene, the transcriptome of wheat may be altered and affect root exudates. Thus, it is important to investigate the potential environmental risk of transgenic wheat before commercial release because of potential undesirable ecological side effects. Our 2-year study at two different experimental locations was performed to analyze the impact of transgenic wheat N12-1 on bacterial and fungal community diversity in rhizosphere soil using polymerase chain reaction-denaturing gel gradient electrophoresis (PCR-DGGE at four growth stages (seeding stage, turngreen stage, grain-filling stage, and maturing stage. We also explored the activities of urease, sucrase and dehydrogenase in rhizosphere soil. The results showed that there was little difference in bacterial and fungal community diversity in rhizosphere soil between N12-1 and its recipient Y158 by comparing Shannon's, Simpson's diversity index and evenness (except at one or two growth stages. Regarding enzyme activity, only one significant difference was found during the maturing stage at Xinxiang in 2011 for dehydrogenase. Significant growth stage variation was observed during 2 years at two experimental locations for both soil microbial community diversity and enzyme activity. Analysis of bands from the gel for fungal community diversity showed that the majority of fungi were uncultured. The results of this study suggested that virus-resistant transgenic wheat had no adverse impact on microbial community diversity and enzyme activity in rhizosphere soil during 2 continuous years at two different experimental locations. This study provides a theoretical basis for environmental impact monitoring of transgenic wheat when the

  9. Viruses & kidney disease: beyond HIV

    Science.gov (United States)

    Waldman, Meryl; Marshall, Vickie; Whitby, Denise; Kopp, Jeffrey B.

    2008-01-01

    HIV-infected patients may acquire new viral co-infections; they may also experience the reactivation or worsening of existing viral infections, including active, smoldering, or latent infections. HIV-infected patients may be predisposed to these viral infections due to immunodeficiency or to risk factors common to HIV and other viruses. A number of these affect the kidney, either by direct infection or by deposition of immune complexes. In this review we discuss the renal manifestations and treatment of hepatitis C virus, BK virus, adenovirus, cytomegalovirus, and parvovirus B19 in patients with HIV disease. We also discuss an approach to the identification of new viral renal pathogens, using a viral gene chip to identify viral DNA or RNA. PMID:19013331

  10. Los virus B y C en la enfermedad hepática crónica en Medellín

    Directory of Open Access Journals (Sweden)

    Juan Carlos Restrepo

    2004-03-01

    serie del TOHUdeA un total de 3 pacientes de una serie de 126 TH (2.3% lo cual está muy distante de las estadísticas mundiales. De estos pacientes tenían asociado CHC 1 paciente y otro tenía coinfección VHB-VHC y CHC. Nuestra estadística refleja que la infección por VHC sigue subdiagnósticada y que emergerá en los próximos 5 años como causa importante de infección crónica cuando comiencen a expresarse clínicamente los pacientes multitransfundidos en la época del 84-94, período de gran violencia en nuestra ciudad, cuando la prueba de tamizaje no se había establecido.

     

    REFERENCIAS

    1. www.dssa.gov.co

    2. RESTREPO JC. Hepatitis virales. En Franco F, Sierra F. Gastroenterología y Hepatología. Fundamentos de

    Medicina. Editorial CIB 2004: 191-198

    . RESTREPO JC. Hepatitis Virales. En Restrepo A et al. Enfermedades Infecciosas. 6ta. edición. Fundamentos de Medicina. Editorial CIB 2002: 169-173

    4. SANCHEZ–FUEYO A, RESTREPO JC, QUINTO LL, et al. Impact of the recurrence of hepatitis C virus infection after liver Transplantation on the long-term viability of the graft. Transplantation. Estados Unidos: , v.73, n.1,p.56-63,2002.

    5. VALENCIA WH, RESTREPO JC, CORREA G. Immunohemolytic anemia associated with acute hepatitis B virus

  11. Arthropods as a source of new RNA viruses.

    Science.gov (United States)

    Bichaud, L; de Lamballerie, X; Alkan, C; Izri, A; Gould, E A; Charrel, R N

    2014-12-01

    The discovery and development of methods for isolation, characterisation and taxonomy of viruses represents an important milestone in the study, treatment and control of virus diseases during the 20th century. Indeed, by the late-1950s, it was becoming common belief that most human and veterinary pathogenic viruses had been discovered. However, at that time, knowledge of the impact of improved commercial transportation, urbanisation and deforestation, on disease emergence, was in its infancy. From the late 1960s onwards viruses, such as hepatitis virus (A, B and C) hantavirus, HIV, Marburg virus, Ebola virus and many others began to emerge and it became apparent that the world was changing, at least in terms of virus epidemiology, largely due to the influence of anthropological activities. Subsequently, with the improvement of molecular biotechnologies, for amplification of viral RNA, genome sequencing and proteomic analysis the arsenal of available tools for virus discovery and genetic characterization opened up new and exciting possibilities for virological discovery. Many recently identified but "unclassified" viruses are now being allocated to existing genera or families based on whole genome sequencing, bioinformatic and phylogenetic analysis. New species, genera and families are also being created following the guidelines of the International Committee for the Taxonomy of Viruses. Many of these newly discovered viruses are vectored by arthropods (arboviruses) and possess an RNA genome. This brief review will focus largely on the discovery of new arthropod-borne viruses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Activity of cardiorespiratory networks revealed by transsynaptic virus expressing GFP.

    Science.gov (United States)

    Irnaten, M; Neff, R A; Wang, J; Loewy, A D; Mettenleiter, T C; Mendelowitz, D

    2001-01-01

    A fluorescent transneuronal marker capable of labeling individual neurons in a central network while maintaining their normal physiology would permit functional studies of neurons within entire networks responsible for complex behaviors such as cardiorespiratory reflexes. The Bartha strain of pseudorabies virus (PRV), an attenuated swine alpha herpesvirus, can be used as a transsynaptic marker of neural circuits. Bartha PRV invades neuronal networks in the CNS through peripherally projecting axons, replicates in these parent neurons, and then travels transsynaptically to continue labeling the second- and higher-order neurons in a time-dependent manner. A Bartha PRV mutant that expresses green fluorescent protein (GFP) was used to visualize and record from neurons that determine the vagal motor outflow to the heart. Here we show that Bartha PRV-GFP-labeled neurons retain their normal electrophysiological properties and that the labeled baroreflex pathways that control heart rate are unaltered by the virus. This novel transynaptic virus permits in vitro studies of identified neurons within functionally defined neuronal systems including networks that mediate cardiovascular and respiratory function and interactions. We also demonstrate superior laryngeal motorneurons fire spontaneously and synapse on cardiac vagal neurons in the nucleus ambiguus. This cardiorespiratory pathway provides a neural basis of respiratory sinus arrhythmias.

  13. DIAGNOSTICS OF VIRUS PHYTOPATHOGENS FRUIT TREE PLUM POX VIRUS, PRUNUS NECROTIC RINGSPOT VIRUS AND PRUNUS DWARF VIRUS BY BIOLOGICAL AND MOLECULAR DIAGNOSTICS

    Directory of Open Access Journals (Sweden)

    Július Rozák

    2013-02-01

    Full Text Available The aim of this study was to determine the incidence of viral phytopathogen Plum pox virus, Prunus necrotic ringspot virus and Prunus dwarf virus in selected localities of Slovakia and diagnose them using a molecular and biological methods. Forty samples of fruit trees of the genus Prunus, twenty samples from intensive plantings and twenty samples from wild subject were analysed. Biological diagnostic by using biological indicators Prunus persica cv. GF 305, Prunus serrulata cv. Schirofugen and molecular diagnostic by mRT-PCR were applied. Five samples with Plum pox virus were infected. The two samples positive for Prunus necrotic ringspot virus and one sample for Prunus dwarf virus were confirmed. The two samples were found to be infected with two viruses Prunus necrotic ringspot virus and Prunus dwarf virus. This work focuses on two techniques, their application to the diagnosis of stone fruit viruses and their routinely used for sanitary and certification programmes.

  14. Inactivation of viruses in labile blood derivatives. II. Physical methods

    International Nuclear Information System (INIS)

    Horowitz, B.; Wiebe, M.E.; Lippin, A.; Vandersande, J.; Stryker, M.H.

    1985-01-01

    The thermal inactivation of viruses in labile blood derivatives was evaluated by addition of marker viruses (VSV, Sindbis, Sendai, EMC) to anti-hemophilic factor (AHF) concentrates. The rate of virus inactivation at 60 degrees C was decreased by at least 100- to 700-fold by inclusion of 2.75 M glycine and 50 percent sucrose, or 3.0 M potassium citrate, additives which contribute to retention of protein biologic activity. Nonetheless, at least 10(4) infectious units of each virus was inactivated within 10 hours. Increasing the temperature from 60 to 70 or 80 degrees C caused a 90 percent or greater loss in AHF activity. An even greater decline in the rate of virus inactivation was observed on heating AHF in the lyophilized state, although no loss in AHF activity was observed after 72 hours of heating at 60 degrees C. Several of the proteins present in lyophilized AHF concentrates displayed an altered electrophoretic mobility as a result of exposure to 60 degrees C for 24 hours. Exposure of lyophilized AHF to irradiation from a cobalt 60 source resulted in an acceptable yield of AHF at 1.0, but not at 2.0, megarads. At 1 megarad, greater than or equal to 6.0 logs of VSV and 3.3 logs of Sindbis virus were inactivated

  15. A literature review on cardiovascular risk in human immunodeficiency virus-infected patients: implications for clinical management

    Directory of Open Access Journals (Sweden)

    Mansueto Gomes Neto

    Full Text Available INTRODUCTION: In recent years, there has been growing concern about an increasing rate of cardiovascular diseases in human immunodeficiency virus-infected patients, which could be associated with side effects of highly active antiretroviral therapy. It is likely that the metabolic disorders related to anti-human immunodeficiency virus treatment will eventually translate into a increased cardiovascular risk in patients submitted to such regimens. OBJECTIVE: To evaluate if human immunodeficiency virus-infected patients receiving highly active antiretroviral therapy are at higher risk of cardiovascular diseases than human immunodeficiency virus infected patients not receiving highly active antiretroviral therapy, or the general population. RESEARCH DESIGN AND METHODS: We conducted a computer-based search in representative databases, and also performed manual tracking of citations in selected articles. RESULT: The available evidence suggests an excess risk of cardiovascular events in human immunodeficiency virus-infected persons compared to non-human immunodeficiency virus infected individuals. The use of highly active antiretroviral therapy is associated with increased levels of total cholesterol, triglycerides, low-density lipoprotein and morphological signs of cardiovascular diseases. Some evidence suggested that human immunodeficiency virus-infected individuals on highly active antiretroviral therapy regimens are at increased risk of dyslipidemia, ischemic heart disease, and myocardial infarction, particularly if the highly active antiretroviral therapy regimen contains a protease inhibitor. CONCLUSION: Physicians must weigh the cardiovascular risk against potential benefits when prescribing highly active antiretroviral therapy. Careful cardiac screening is warranted for patients who are being evaluated for, or who are receiving highly active antiretroviral therapy regimens, particularly for those with known underlying cardiovascular risk

  16. Antitubercular activity and inhibitory effect on Epstein-Barr virus activation of sterols and polyisoprenepolyols from an edible mushroom, Hypsizigus marmoreus.

    Science.gov (United States)

    Akihisa, Toshihiro; Franzblau, Scott Gary; Tokuda, Harukuni; Tagata, Masaaki; Ukiya, Motohiko; Matsuzawa, Tsunetomo; Metori, Koichi; Kimura, Yumiko; Suzuki, Takashi; Yasukawa, Ken

    2005-06-01

    Seven sterols (1-7) and eight polyisoprenepolyols (8-15), isolated from the non-saponifiable lipid fraction of the dichloromethane extract of an edible mushroom, Hypsizigus marmoreus (Buna-shimeji), were tested for their antitubercular activity against Mycobacterium tuberculosis strain H37Rv using the Microplate Alamar Blue Assay (MABA). Six sterols (2-7) and two polyisoprenepolyols (8, 12) showed a minimum inhibitory concentration (MIC) in the range of 1-51 microg/ml, while the others (1, 9-11, 13-15) were inactive (MIC>128 microg/ml). The seven sterols (1-7) and three polyisoprenepolyols (8, 10, 12) were further evaluated for their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells. Sterols 6 and 7 showed potent inhibitory effects while preserving the high viability of Raji cells.

  17. Understanding Zika virus pathogenesis: an interview with Catherine Spong

    OpenAIRE

    Spong, Catherine Y.

    2016-01-01

    A recent outbreak of Zika virus has been linked to fetal abnormalities in pregnant women who have been infected. The scientific community is working toward understanding Zika virus pathogenesis to better manage affected women and children. In an interview with Dr. Catherine Spong, we discuss the aims and challenges of a forthcoming longitudinal study of a cohort of pregnant women in areas of current active Zika virus transmission.

  18. Drug Modulators of B Cell Signaling Pathways and Epstein-Barr Virus Lytic Activation.

    Science.gov (United States)

    Kosowicz, John G; Lee, Jaeyeun; Peiffer, Brandon; Guo, Zufeng; Chen, Jianmeng; Liao, Gangling; Hayward, S Diane; Liu, Jun O; Ambinder, Richard F

    2017-08-15

    Epstein-Barr virus (EBV) is a ubiquitous human gammaherpesvirus that establishes a latency reservoir in B cells. In this work, we show that ibrutinib, idelalisib, and dasatinib, drugs that block B cell receptor (BCR) signaling and are used in the treatment of hematologic malignancies, block BCR-mediated lytic induction at clinically relevant doses. We confirm that the immunosuppressive drugs cyclosporine and tacrolimus also inhibit BCR-mediated lytic induction but find that rapamycin does not inhibit BCR-mediated lytic induction. Further investigation shows that mammalian target of rapamycin complex 2 (mTORC2) contributes to BCR-mediated lytic induction and that FK506-binding protein 12 (FKBP12) binding alone is not adequate to block activation. Finally, we show that BCR signaling can activate EBV lytic induction in freshly isolated B cells from peripheral blood mononuclear cells (PBMCs) and that activation can be inhibited by ibrutinib or idelalisib. IMPORTANCE EBV establishes viral latency in B cells. Activation of the B cell receptor pathway activates lytic viral expression in cell lines. Here we show that drugs that inhibit important kinases in the BCR signaling pathway inhibit activation of lytic viral expression but do not inhibit several other lytic activation pathways. Immunosuppressant drugs such as cyclosporine and tacrolimus but not rapamycin also inhibit BCR-mediated EBV activation. Finally, we show that BCR activation of lytic infection occurs not only in tumor cell lines but also in freshly isolated B cells from patients and that this activation can be blocked by BCR inhibitors. Copyright © 2017 American Society for Microbiology.

  19. Information role of sonographic research at virus hepatitis

    International Nuclear Information System (INIS)

    Zhivitsya, D.G.; Zhivitsya, G.D.

    2003-01-01

    It is surveyed 104 patients by a chronic virus hepatitis in the age of 16-62 years. Ultrasonic examination it was carried out in dynamics. Parameters of ultrasonic examination did not depend on type of the virus, duration of disease, activity of a hepatitis, a sex, age and other laboratory parameters

  20. Zika Virus Escapes NK Cell Detection by Upregulating Major Histocompatibility Complex Class I Molecules.

    Science.gov (United States)

    Glasner, Ariella; Oiknine-Djian, Esther; Weisblum, Yiska; Diab, Mohammad; Panet, Amos; Wolf, Dana G; Mandelboim, Ofer

    2017-11-15

    NK cells are innate lymphocytes that participate in many immune processes encompassing cancer, bacterial and fungal infection, autoimmunity, and even pregnancy and that specialize in antiviral defense. NK cells express inhibitory and activating receptors and kill their targets when activating signals overpower inhibitory signals. The NK cell inhibitory receptors include a uniquely diverse array of proteins named killer cell immunoglobulin-like receptors (KIRs), the CD94 family, and the leukocyte immunoglobulin-like receptor (LIR) family. The NK cell inhibitory receptors recognize mostly major histocompatibility complex (MHC) class I (MHC-I) proteins. Zika virus has recently emerged as a major threat due to its association with birth defects and its pandemic potential. How Zika virus interacts with the immune system, and especially with NK cells, is unclear. Here we show that Zika virus infection is barely sensed by NK cells, since little or no increase in the expression of activating NK cell ligands was observed following Zika infection. In contrast, we demonstrate that Zika virus infection leads to the upregulation of MHC class I proteins and consequently to the inhibition of NK cell killing. Mechanistically, we show that MHC class I proteins are upregulated via the RIGI-IRF3 pathway and that this upregulation is mediated via beta interferon (IFN-β). Potentially, countering MHC class I upregulation during Zika virus infection could be used as a prophylactic treatment against Zika virus. IMPORTANCE NK cells are innate lymphocytes that recognize and eliminate various pathogens and are known mostly for their role in controlling viral infections. NK cells express inhibitory and activating receptors, and they kill or spare their targets based on the integration of inhibitory and activating signals. Zika virus has recently emerged as a major threat to humans due to its pandemic potential and its association with birth defects. The role of NK cells in Zika virus