WorldWideScience

Sample records for japan power demonstration

  1. Decommissioning experience of the Japan power demonstration reactor

    International Nuclear Information System (INIS)

    Hoshi, T.; Yanagihara, S.; Tachibana, M.; Momma, T.

    1992-01-01

    Actual dismantling of the Japan Power Demonstration Reactor (JPDR) has been progressing since 1986 aiming to make stage 3 condition as the final goal. Such highly activated components as the reactor pressure vessel (RPV) and the inner portion of biological shield concrete close to the RPV have removed using the remotely operated cutting machines. Useful data on the dismantling techniques and their safety as well as the manpower expenditure and radiation exposure of workers have been obtained. Experiences gained through the dismantling works are described in this paper. (author)

  2. Data analysis on work activities in dismantling of Japan Power Demonstration Reactor (JPDR). Contract research

    International Nuclear Information System (INIS)

    Shiraishi, Kunio; Sukegawa, Takenori; Yanagihara, Satoshi

    1998-03-01

    The safe dismantling of a retired nuclear power plant was demonstrated by completion of dismantling activities for the Japan Power Demonstration Reactor (JPDR), March, 1996, which had been conducted since 1986. This project was a flag ship project for dismantling of nuclear power plants in Japan, aiming at demonstrating an applicability of developed dismantling techniques in actual dismantling work, developing database on work activities as well as dismantling of components and structures. Various data on dismantling activities were therefore systematically collected and these were accumulated on computer files to build the decommissioning database; dismantling activities were characterized by analyzing the data. The data analysis resulted in producing general forms such as unit activity factors, for example, manpower need per unit weight of component to be dismantled, and simple arithmetic forms for forecasting of project management data to be applied to planning another dismantling project through the evaluation for general use of the analyzed data. The results of data analysis could be usefully applied to planning of future decommissioning of commercial nuclear power plants in Japan. This report describes the data collection and analysis on the JPDR dismantling activities. (author)

  3. The Japan Power Demonstration Reactor dismantling project. Radiation control

    International Nuclear Information System (INIS)

    Tomii, Hiroyuki; Seiki, Yoshihiro

    1996-01-01

    In the Japan Power Demonstration Reactor (JPDR) dismantling project, radiation control was performed properly with routine and special monitoring to keep the occupational safety and to collect data necessary for future dismantling of nuclear facilities. This report describes a summary of radiation control in the dismantling activities and some results of parametric analysis on dose equivalent evaluation, and introduces the following knowledge on radiological protection effectiveness of the dismantling systems applied in the project. a) Use of remote dismantling systems was effective in reducing equivalent workplace exposure. b) Utilization of existing facilities as radiation shield or radioactivity containment was effective in reducing workplace exposure, and also in increasing work efficiency. c) Use of underwater cutting systems was useful to minimize air contamination, and to reduce the dose equivalent rate in the working area. d) In the planning of dismantling, it is necessary to optimize the radiation protection by analyzing dismantling work procedures and evaluating radiological features of the dismantling systems applied, including additional work which the systems require brought from such activities. (author)

  4. Nuclear power development in Japan

    International Nuclear Information System (INIS)

    Sugawara, A.

    1994-01-01

    Energy situation in Japan and Japan's strategy for stable supply of energy are discussed. Benefits of nuclear power in comparison with other energy sources is considered. History of nuclear power development in Japan, modern status and future trends are described. 6 figs

  5. The Japan Power Demonstration Reactor (JPDR) dismantling activities. Management of JPDR dismantling waste

    International Nuclear Information System (INIS)

    Abe, Masayoshi; Nakata, Susumu; Ito, Shinichi

    1996-01-01

    The management of wastes, both radioactive and non-radioactive, is one of the most important issues for a safe and reasonable dismantling operation of nuclear power plants. A large amount of radioactive wastes is arising from a reactor dismantling operation in a relatively short period time, ranging in a wide variety from very low level to relatively high level. Moreover non-radioactive waste is also in a huge amount. The dismantling operation of Japan Power Demonstration Reactor (JPDR) resulted in 24,440 tons of dismantling wastes, of which about 15% was radioactive and 85% non-radioactive. These wastes were managed successfully implementing a well developed management plan for JPDR dismantling waste. Research and development works for handling of JPDR dismantling wastes were performed, including fixation of loose contamination on surface, volume reduction and waste containers for on-site transportation and interim storage. The JPDR dismantling wastes generated were classified and categorized depending on their materials, characteristics and activity level. Approximately 2,100 tons of radioactive wastes were stored in the interim storage facilities on site using developed containers, and 1,670 tons of radioactive concrete waste were used for a safe demonstration test of a simple near-surface disposal for very low level waste. Other dismantling wastes such as steel and concrete which were categorized as non-radioactive were recycled and reused as useful resources. This paper describes the management of the JPDR dismantling wastes. (author)

  6. Nuclear power development in Japan

    International Nuclear Information System (INIS)

    Sugawara, A.

    1994-01-01

    The energy situation in Japan is briefly outlined. Vulnerability in energy structure of the country is shown by a comparison of primary energy supply patterns of Japan and Western countries. Japan's energy policy consists in reducing dependence on oil, promoting efficient use of energy and increasing use of non-fossil fuels. Nuclear power is a core of alternative energy for petroleum because of stable supply of nuclear fuel, low detrimental emissions and less dependence on the fuel. A short historical review of nuclear power development in Japan is presented. Some future issues as development of entire nuclear fuel cycle, social acceptance, reactor safety and nuclear power economics are also discussed. 6 figs. (R.T.)

  7. Progress on development of nuclear power in Japan

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Since three Laws on the nuclear power were published 45 years has passed. Now, development on nuclear power in Japan is at an emergent state. In Japan, 51 units of commercial nuclear reactors with 44.917 GW are in operation, occupy about 37% of total electric power generation, and is positioned at an essential basic energy source supporting economical society in Japan. However, an accident occurred at Tokai Works of the JCO Co., Ltd., one of the uranium reconversion company, on September 30, 1999, was the first critical accident in Japan, and became the worst case in history on development of nuclear power in Japan, because of forming three heavy radiation disabled persons (One of them was dead) in its operators. This was a big crisis with relation to existence on development of nuclear power in Japan, by which anxiety and distrust of the Japanese against the nuclear power were amplified rapidly. On the other side, for Japan short in energy sources and of a big energy consumption, in order to intend for a long term to carry out energy security, global environmental conservation, and sustainable maintenance of essential growth, it remains to be one of important optional methods to further promote nuclear power generation and to establish nuclear fuel cycle. Here were described on progress on peaceful applications of nuclear power in Japan, progress on the field of nuclear power in Japan (from 1955 to 1999), progress on Tokai nuclear power station, introduction of nuclear power generation and effort on its domestic production. (G.K.)

  8. Datafile: [nuclear power in] Japan

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Japan is third after the USA and France in terms of the Western World's installed nuclear capacity, but it has by far the largest forward programme. Great effort is also being put into the fuel cycle and advanced reactors. There is close co-operation between the government, utilities and manufacturers, but Japan has not sought to export reactors. The government has responded to the growing public opposition to nuclear power with a massive increase in its budget for public relations. Details of the nuclear power programme are given. (author)

  9. Nuclear power in Japan in 1987

    International Nuclear Information System (INIS)

    Molodtsov, S.D.

    1989-01-01

    Data on the development level of nuclear power in Japan as of 1988 beginning are presented. Total registed electric power of 36 nuclear power units under operation constituted 28046 MW. 13 power units with 12268 MW total power are under construction. In 1987 188.4 TWH electric power was generated at the Japanese NPPs, it constituted 31.7% of total electric power generation. About 360 bil. yens were assigned from the state budget to further development of nuclear power engineering. Efforts to create the improved BWR type reactor, as well as, scientific and research efforts on the development of fast breeder reactors, improvement of uranium enrichment and radioactive waste storage are carried out. It is expected that share of nuclear power in electric power generation in Japan will reach 40% to the beginning of the 21-th century

  10. FY 2000 report on the demonstrative research for photovoltaic power generation system in Thailand. Demonstrative study on photovoltaic power generation grid-connected system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    In relation to the demonstrative study of the photovoltaic power system that is planned in Libong island, Thailand, the FY 2000 results were reported. In this R and D, construction/demonstrative operation were planned for a photovoltaic power station with a generation output of 100kW, photovoltaic power system in school facilities, and system for transmitting/distributing power to houses by connecting the power station and power system. In this fiscal year, the field survey was conducted together with the alteration from Yao Yai island, for which the demonstrative study was planned at first, to Libong island. The electric equipment was selected which met the requests from Thailand and the results of the field survey, and the basic design of the photovoltaic power generation/transmission/distribution system was completed. Based on this, the design/manufacture of photovoltaic power generation modules, power control equipment, measuring equipment, etc. were made. At the construction site of photovoltaic power station, construction work such as land formation was conducted. Further, Thai engineers who visited Japan did the following: discussions about power system, presence at test/inspection of photovoltaic power generation modules, visits to photovoltaic power stations, wind power stations, etc. (NEDO)

  11. Nuclear power development in Japan

    International Nuclear Information System (INIS)

    Mishiro, M.

    2000-01-01

    This article describes the advantages of nuclear energy for Japan. In 1997 the composition of the total primary energy supply (TPES) was oil 52.7%, coal 16.5%, nuclear 16.1% and natural gas 10.7%. Nuclear power has a significant role to play in contributing to 3 national interests: i) energy security, ii) economic growth and iii) environmental protection. Energy security is assured because a stable supply of uranium fuel can be reasonably expected in spite of dependence on import from abroad. Economic growth implies the reduction of energy costs. As nuclear power is capital intensive, the power generation cost is less affected by the fuel cost, therefore nuclear power can realize low cost by favoring high capacity utilization factor. Fossil fuels have substantial impacts on environment such as global warming and acid rain by releasing massive quantities of CO 2 , so nuclear power is a major option for meeting the Kyoto limitations. In Japan, in 2010 nuclear power is expected to reach 17% of TPES and 45% of electricity generated. (A.C.)

  12. Engineering experiences through nuclear power development in Japan

    International Nuclear Information System (INIS)

    Uchida, Hideo

    2004-01-01

    This keynote paper deals with: energy issues and nuclear power development in Japan, problems of radiation protection, licensing and safety regulations, research on LOCA and ECCS, stress corrosion cracks related to pressure vessels, nuclear fuel failures, steam generators, incidents, waste management and fuel cycle facilities. In conclusion it is stated that: on order to cope with global matters vitally affecting the electricity generation, taking into consideration Japanese specific energy issues, the nuclear power development has been an indispensable policy of Japan. In order to proceed with further development of nuclear power plants, it is necessary to obtain proper understanding by the public, showing assurance of the safety and reliable operation of nuclear power plants through daily plant operation. The nuclear safety issues should be considered from a global point of view. It is necessary to establish common safety standards which could harmonize the safety level of nuclear power plants in the world. The safety goal concerning severe accidents should be established as an internationally agreeable one. Japan has accumulated highly technological experience in maintenance of nuclear power plants. It is believed that the cumulative experiences in Japan can contribute to the further improvement of safety of nuclear power plants throughout the world, and for this aim a mutual information exchange should be encouraged

  13. What is nuclear power in Japan?

    Science.gov (United States)

    Suzuki, Toshikazu

    2011-03-01

    The aggressive use of such non-fossil energy as the atomic energy with high power density and energy production efficiency is an indispensable choice aiming at the low-carbon society. There is a trial calculation that the carbon dioxide emission of 40000 ton can be suppressed by nuclear power generation by one ton of uranium. The basis of nuclear research after the Second World War in Japan was established by the researchers learnt in Argonne National Laboratory. In 2010, NPPs under operation are 54 units and the total electric generating power is 48.85GW. The amount of nuclear power generation per person of the people is 0.38kW in Japan, and it is near 0.34kW of the United States. However, the TMI accident and the Chernobyl disaster should have greatly stagnated the nuclear industry of Japan although it is not more serious than the United States. A lot of Japanese unconsciously associate a nuclear accident with the atomic bomb. According to the investigation which Science and Technology Agency carried out to the specialist in 1999, ``What will be the field where talent should be emphatically sent in the future?'' the rank of nuclear technology was the lowest in 32 fields. The influence of the nuclear industry stagnation was remarkable in the education. The subject related to the atomic energy of a university existed 19 in 1985 that was the previous year of the Chernobyl disaster decreased to 7 in 2003. In such a situation, we have to rely on the atomic energy because Japan depends for 96% of energy resources on import. The development of the fuel reprocessing and the fast breeder reactor has been continued in spite of a heavy failure. That is the only means left behind for Japan to be released from both fossil fuel and carbon dioxide.

  14. Fuel combustion in thermal power plants in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1983-11-01

    The position of black coal in the energy balance of Japan is discussed. About 75% of electric energy is produced by thermal power plants. Eighty-five per cent of electricity is produced by power plants fired with liquid fuels and 3% by coal fired plants. Coal production in Japan, the forecast coal import to the country by 1990 (132 Mt/year), proportion of coal imported from various countries, chemical and physical properties of coal from Australia, China and Japan are discussed. Coal classification used in Japan is evaluated. The following topics associated with coal combustion in fossil-fuel power plants in Japan are discussed: coal grindability, types of pulverizing systems, slagging properties of boiler fuel in Japan, systems for slag removal, main types of steam boilers and coal fired furnaces, burner arrangement and design, air pollution control from fly ash, sulfur oxides and nitrogen oxides, utilization of fly ash for cement production, methods for removal of nitrogen oxides from flue gas using ammonia and catalysts or ammonia without catalysts, efficiency of nitrogen oxide control, abatement of nitrogen oxide emission from boilers by flue gas recirculation and reducing combustion temperatures. The results of research into air pollution control carried out by the Nagasaki Technical Institute are reviewed.

  15. PA activity by using nuclear power plant safety demonstration and analysis

    International Nuclear Information System (INIS)

    Tsuchiya, Mitsuo; Kamimae, Rie

    1999-01-01

    INS/NUPEC presents one of Public acceptance (PA) methods for nuclear power in Japan, 'PA activity by using Nuclear Power Plant Safety Demonstration and Analysis', by using one of videos which is explained and analyzed accident events (Loss of Coolant Accident). Safety regulations of The National Government are strictly implemented in licensing at each of basic design and detailed design. To support safety regulation activities conducted by the National Government, INS/NLTPEC continuously implement Safety demonstration and analysis. With safety demonstration and analysis, made by assuming some abnormal conditions, what impacts could be produced by the assumed conditions are forecast based on specific design data on a given nuclear power plants. When analysis results compared with relevant decision criteria, the safety of nuclear power plants is confirmed. The decision criteria are designed to help judge if or not safety design of nuclear power plants is properly made. The decision criteria are set in the safety examination guidelines by taking sufficient safety allowance based on the latest technical knowledge obtained from a wide range of tests and safety studies. Safety demonstration and analysis is made by taking the procedure which are summarized in this presentation. In Japan, various PA (Public Acceptance) pamphlets and videos on nuclear energy have been published. But many of them focused on such topics as necessity or importance of nuclear energy, basic principles of nuclear power generation, etc., and a few described safety evaluation particularly of abnormal and accident events in accordance with the regulatory requirements. In this background, INS/NUPEC has been making efforts to prepare PA pamphlets and videos to explain the safety of nuclear power plants, to be simple and concrete enough, using various analytical computations for abnormal and accident events. In results, PA activity of INS/NUPEC is evaluated highly by the people

  16. The japan a nuclear power?

    International Nuclear Information System (INIS)

    Cumin, D.; Joubert, J.P.

    2003-01-01

    This work analyzes the Japan nuclear policy, in the frame of its foreign and safety policy in Pacific Asia, since the end of the cold war, especially the relations with the Usa and China. The Japan is a civil power because it has submitted the military institution to juridical restrictions and because it does not rely on the armed force to promote its national interests. The anti nuclear speech is joined with the acknowledgement of the dissuasion necessity, of the control of industrial processes and energy channels susceptible of military applications. Cultivating the ambiguity, the Japanese government can send a dissuasive message, perfectly legible, kind of communication of latent intimidation constituted by the virtual nuclear power of a state that takes part to the non proliferation treaty. (N.C.)

  17. JTEC panel on nuclear power in Japan. Final report

    International Nuclear Information System (INIS)

    Hansen, K.F.; Behnke, W.B.; Cousin, S.B.; Evans, E.A.; Olander, D.R.

    1990-10-01

    The report examines the status and direction of nuclear power-related research and development in Japan in six areas: the nuclear fuel cycle, nuclear materials, instrumentation and control technology, CAD/CAM, nuclear safety research, and nuclear plant construction. Overall findings suggest that the nuclear power industry in Japan is at an advanced state of development; in particular, Japan is now technologically self-sufficient. Long-term goals of the Japanese program include closure of the complete fuel cycle and pursuit of the liquid metal fast breeder reactor as the future base system

  18. Electric-power economy of Japan

    International Nuclear Information System (INIS)

    Dobrochotov, V.I.; Wolfberg, D.B.

    1975-01-01

    This is a survey on a) development and present capacity of electricity-supply companies in Japan, b) the structural shift in the capacity of power plants which took place from 1966 until 1974, arranged according to thermal, nuclear and hydraulic power stations, c) the structural shift in the use of fossile fuels, also from 1966 until 1974, d) the major thermal and nuclear power stations and pump storage plants under construction and in operation, e) interconnected operation. The survey ends with the development study of the Japanese Government being outlined. (GG/LN) [de

  19. Financing the electric power utilities, especially the nuclear power in Japan

    International Nuclear Information System (INIS)

    Tajima, T.

    1975-04-01

    Electric power demands in Japan have shown a remarkable growth at an annual rate of 12% since 1965. Nine electric power companies have invested large amounts of money so far, amounting to over 1 trillion yen every year since 1972. A survey of the electric power supply system and an estimation of the electric power demands in 1980 and in 1985 are given. It is expected that the main portion of electric power in the future will gradually be generated by nuclear plants. Financial features of the electrical power utilities, the credit risk of the electric power utilities, and the raising of funds by electric power utilities are discussed. It is concluded that it will be necessary (1) to expand the capital market, (2) to enable the electric power companies to issue a sufficient amount of bonds, (3) to make the Government financing institutions, such as the Japan Development Bank, provide the electric power companies with larger funds on a long-term and low-interest rate basis, and (4) even to take such drastic steps as subsidizing interest on private loans to the electric power companies. (B.P.)

  20. Nuclear power in Japan and the USA

    International Nuclear Information System (INIS)

    Titterton, E.

    1979-06-01

    The development of the nuclear power industry in Japan and the USA is discussed. The author lists the number of nuclear power plants operating, under construction and planned and considers the contribution made by nuclear power stations to the total electricity generated. The advantages of nuclear power to both countries are outlined and forecasts are made of the role to be played by nuclear power in future years

  1. Role of Fugen-HWR in Japan and design of a 600 MWe demonstration reactor

    International Nuclear Information System (INIS)

    Sawai, S.

    1982-01-01

    Fugen, a 165 MWe prototype of a heavy water moderated boiling light water cooled reactor; has been in commercial operation since March 20, 1979. In parallel with the Fugen project, the design work of the 600 MWe demonstration plant has been carried out since 1973. Important system and components, such as pressure tube assemblies, control rod drive mechanism, etc., are essentially the same as those of Fugen. Some modifications, however, are made especially from the stand point of experiences In the Fugen-HWR, plutonium and uranium would be effectively used; and plutonium could make the coolant void reactivity more negative which would give good results in increasing the reactor stability and safety. On the other hand, nuclear power plants are mainly consisted of LWRs in Japan. Considering the above situations, the Fugen-HWR, coupled with LWRs, is now considered in Japan to contribute to our energy security by using plutonium and depleted uranium extracted from spent fuels of LWRs: thereby reducing the demands On August 4, 1981, the ad hoc committee on the 600 MWe demonstration Fugen-HWR submitted the final report to the Japan AEC, after having had discussions and evaluations. In the report, the ad hoc committee recommended to build the 600 MWE demonstration plant with appropriate supports of the Government. The Japan AEC will be expected to make her decision on the program in the near future. As for the reactor safety R and C, development has been stressed on coolant leak detectors and ECCS performances or Since 1965, many development works have been done for mixed oxide fuel assemblies, both for establishment of the fabrication technology and for clarification of irradiation performances. 196 mixed oxide fuel assemblies have been manufactured for Fugen. 168 of them were loaded and 92 were withdrawn. No fuel has been failured yet. (author)

  2. Outline of geothermal power generation in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ezaki, Y

    1960-01-01

    The utilization of geothermal energy in electrical power generation throughout the world is described. Details of generating capacity and cost are given for Larderello, Italy; Wairakei, New Zealand: and the Geysers, USA. In Japan three types of conversion systems are used. These include the direct use of steam, direct use of hot water and binary fluid type systems. The history of Japanese investigation and exploitation of geothermal energy is reviewed and the status of the Matsukawa, Hakone, Otake and Takenoyu geothermal power plants is discussed. It is recommended that laws be enacted in Japan to encourage the development of this form of energy conversion.

  3. Japan's electric power industry: responding to the challenges of the 3Es

    International Nuclear Information System (INIS)

    Park, J.

    1999-01-01

    With the rapid push toward deregulation in the power markets of North America, the European Union, and emerging economies, the business environment of the global power market has been dramatically altered in recent years. Profit margins, strategic overseas investments, and shareholder equity have replaced stability and predictability as the new business paradigm in the international electric power industry. Although Japan's electric power industry has not undergone the same degree of market liberalization experienced by its counterparts in North America and the European Union, this does not mean that Japan has escaped the challenges of the 3Es (economic, energy, and environmental changes), which have transformed the international electric power industry in recent years. With companies and consumers in Japan paying the highest price for electricity in the industrialized world, the high price of electricity represents an important business competitiveness issue for firms in energy - and export-intensive industries. This is particularly true now that Japan is desperately trying to end the economic turmoil caused by over regulation and a weak banking system. What remains to be seen is if Japan will be able to deregulate its electric power industry and at the same time, comply with the Kyoto climate change pledge of reducing the country's greenhouse emissions by 6% (compared to 1990 levels) in the next 10 years and continue to meet its energy security objective of expanding the use of nuclear power in the national energy supply. The complex interplay of domestic and international pressures on the national power market need to be explored in order to fully understand the policy challenges facing Japan's electric power industry. (author)

  4. Power market restructuring in Asia : Russia, China, India, and Japan

    International Nuclear Information System (INIS)

    Hammons, T.J.; Zhong, J.; Mukhopadhyay, S.; Kurihara, I.

    2008-01-01

    Many countries are now in the process of deregulating their power industries in order to promote growth and competitiveness. This paper discussed power market restructuring activities in Russia, China, India and Japan. Economic convergence points in Russian and Asian power markets were reviewed. The state of Russia and China's power industry after the implementation of recent power restructuring initiatives was discussed. Technical characteristics of the industries were evaluated, and market development plans were outlined. Regional electricity markets in Asia were discussed, as well as issues related to domestic and foreign investment. Institutional reforms were reviewed, and individual outlines of revisions for the power industries of the 4 countries were presented. The study demonstrated that structuring processes vary from country to country. Differences in restructuring patterns were attributed to economic differences; country-specific features established within the electric power industry; and attitudes towards deregulation. It was concluded that the reforms adopted by the countries will lead to the expansion of national electric power systems. 23 refs., 4 tabs., 6 figs

  5. Data list of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Izumi, Fumio; Ito, Noboru; Higuchi, Suminori; Kobayashi, Kensuke; Tobioka, Toshiaki

    1987-03-01

    The PPD (Nuclear Power Plant Data Base) has been under development in JAERI since 1983 as a six-year program to provide useful information for reactor safety regulation and reactor safety research. Information source of the PPD is mainly based on SAR's (Safety Analysis Reports) of 35 nuclear power plants which are operating, under construction or under licensing review in Japan. The report BWR edition consists of several data lists stored in the PPD, concerning safety design such as performances, equipments and installations of 18 BWR plants in Japan. The informations are based on SAR Attachment Chapter 8 ''Nuclear Reactor Facility Safety Design''. (author)

  6. Data list of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Izumi, Fumio; Horikami, Kunihiko; Kobayashi, Kensuke; Namatame, Ken.

    1993-01-01

    The development of the database called PPD (Nuclear Power Plant Database) has started in 1983 at JAERI as a six-year program to provide useful information for reactor safety regulation and reactor safety research. In 1988 the program has been accomplished, and since then the data in the database has been updating and adding. Information source of the PPD is based on SAR's (Safety Analysis Report) of 47 nuclear power plants which are operating, under construction or under licensing review in Japan. The report, BWR edition, consists of lists of major data stored in the PPD, relating to safety design of 25 BWR plants in Japan. (author)

  7. Present status and future outlook of nuclear power generation in Japan

    International Nuclear Information System (INIS)

    Kunikazu Aisaka

    1987-01-01

    The structure of energy consumption in Japan is heavily dependent on imported oil, therefore Japan has been making its greatest effort in developing nuclear power among other alternatives of oil. The capacity factor of the nuclear power plants in Japan marked 76% in FY 1986, exceeding 70% level for the past several years. The share of nuclear power is expected to increase steadily in the future. Future scale of the nuclear power generation is projected as 62,000 MW in year 2000 and as 137,000 MW in 2030. Nuclear power is expected to produce 58% of the nation's total power generation in 2030. Under the present circumstances, Janpan is executing a nuclear energy policy based on the following guidelines: 1. Promoting the safety advancement program; 2. Improving LWR technologies; 3. Program on use of plutonium in thermal reactors; 4. Advanced thermal reactors (ATRs); 5. Promotion of FBR development; 6. Nuclear fuel cycle. (Liu)

  8. Radiological consequence of Chernobyl nuclear power accident in Japan

    International Nuclear Information System (INIS)

    Uchiyama, Masafumi; Nakamura, Yuji; Kankura, Takako; Iwasaki, Tamiko; Fujimoto, Kenzo; Kobayashi, Sadayoshi.

    1988-03-01

    Two years have elapsed since the accident in Chernobyl nuclear power station shocked those concerned with nuclear power generation. The effect that this accident exerted on human environment has still continued directly and indirectly, and the reports on the effect have been made in various countries and by international organizations. In Japan, about the exposure dose of Japanese people due to this accident, the Nuclear Safety Commission and Japan Atomic Energy Research Institute issued the reports. In this report, the available data concerning the envrionmental radioactivity level in Japan due to the Chernobyl accident are collected, and the evaluation of exposure dose which seems most appropriate from the present day scientific viewpoint was attempted by the detailed analysis in the National Institute of Radiological Sciences. The enormous number of the data observed in various parts of Japan were different in sampling, locality, time and measuring method, so difficulty arose frequently. The maximum concentration of I-131 in floating dust was 2.5 Bq/m 3 observed in Fukui, and the same kinds of radioactive nuclides as those in Europe were detected. (Kako, I.)

  9. Seismic design of equipment and piping systems for nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Minematsu, Akiyoshi

    1997-01-01

    The philosophy of seismic design for nuclear power plant facilities in Japan is based on 'Examination Guide for Seismic Design of Nuclear Power Reactor Facilities: Nuclear Power Safety Committee, July 20, 1981' (referred to as 'Examination Guide' hereinafter) and the present design criteria have been established based on the survey of governmental improvement and standardization program. The detailed design implementation procedure is further described in 'Technical Guidelines for Aseismic Design of Nuclear Power Plants, JEAG4601-1987: Japan Electric Association'. This report describes the principles and design procedure of the seismic design of equipment/piping systems for nuclear power plant in Japan. (J.P.N.)

  10. Seismic design of equipment and piping systems for nuclear power plants in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Minematsu, Akiyoshi [Tokyo Electric Power Co., Inc. (Japan)

    1997-03-01

    The philosophy of seismic design for nuclear power plant facilities in Japan is based on `Examination Guide for Seismic Design of Nuclear Power Reactor Facilities: Nuclear Power Safety Committee, July 20, 1981` (referred to as `Examination Guide` hereinafter) and the present design criteria have been established based on the survey of governmental improvement and standardization program. The detailed design implementation procedure is further described in `Technical Guidelines for Aseismic Design of Nuclear Power Plants, JEAG4601-1987: Japan Electric Association`. This report describes the principles and design procedure of the seismic design of equipment/piping systems for nuclear power plant in Japan. (J.P.N.)

  11. Seismic resistance design of nuclear power plant building structures in Japan

    International Nuclear Information System (INIS)

    Kitano, Takehito

    1997-01-01

    Japan is one of the countries where earthquakes occur most frequently in the world and has incurred a lot of disasters in the past. Therefore, the seismic resistance design of a nuclear power plant plays a very important role in Japan. This report describes the general method of seismic resistance design of a nuclear power plant giving examples of PWR and BWR type reactor buildings in Japan. Nuclear facilities are classified into three seismic classes and is designed according to the corresponding seismic class in Japan. Concerning reactor buildings, the short-term allowable stress design is applied for the S1 seismic load and it is confirmed that the structures have a safety margin against the S2 seismic load. (J.P.N.)

  12. Seismic resistance design of nuclear power plant building structures in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kitano, Takehito [Kansai Electric Power Co., Inc., Osaka (Japan)

    1997-03-01

    Japan is one of the countries where earthquakes occur most frequently in the world and has incurred a lot of disasters in the past. Therefore, the seismic resistance design of a nuclear power plant plays a very important role in Japan. This report describes the general method of seismic resistance design of a nuclear power plant giving examples of PWR and BWR type reactor buildings in Japan. Nuclear facilities are classified into three seismic classes and is designed according to the corresponding seismic class in Japan. Concerning reactor buildings, the short-term allowable stress design is applied for the S1 seismic load and it is confirmed that the structures have a safety margin against the S2 seismic load. (J.P.N.)

  13. IT substitution for energy leads to a resilient structure for a survival strategy of Japan's electric power industry

    International Nuclear Information System (INIS)

    Watanabe, Chihiro; Kishioka, Miharu; Carvajal, C.A.

    2005-01-01

    The dramatic surge in information technology (IT) around the world, and an evolving global economy, are subjecting firms to megacompetition. This is the case, particularly in Japan's electric power industry, where the power rate is one of the highest in the world; hence it is noted that Japan's industry has lost its price competitiveness in the world market, resulting in stagnation of production, hence leading to stagnation in power demand. In addition, an increase in trends of customer's preferences and the variety of participants in the power supply race, have put electric power companies at the mercy of customers with alternative supply sources. Given that uncertainty with respect to energy security, as well as power generation and distribution systems safety increases, as strongly cautioned by the recent blackout in the US and Canada, a dramatic conversion of existing strategies would be indispensable for electric power companies. A conversion from a high-demand-elasticity dependent, supply structure to a resilient structure is required. While the former aims at constructing a high-demand-elasticity supply structure, based on the myth of high growth of demand, the latter aims at maintaining profit, while minimizing the elasticities of factors with high uncertainty, such as energy resources and costly capital investment linked to a fluctuating power demand. This paper demonstrates the significance of IT substitution for energy through consortia structure, thereby utilizing IT spillover and leading to resilience and leveraging consortia structure as Japan's electric power industry survival strategy. An empirical analysis using Japan's nine leading electric power companies over the last quarter century has been conducted

  14. LWR-plants. Their evolutionary progress in the last half-century. (4) The start of the nuclear power generation in Japan

    International Nuclear Information System (INIS)

    Ishikawa, Hiroshi

    2008-01-01

    Evolutionary progress of the LWR plants in the last half-century was reviewed in series. The start of the nuclear power generation in Japan was reviewed in this article. The Japan Atomic Energy Research Institute (JAERI) promoted nuclear power research and development and introduced the Japan Power Demonstration Reactor (JPDR)-a 12.5 MWe natural circulation BWR, which began operation in 1965. In 1969 its power uprate modifications to a forced circulation BWR (JPDR-II) began and attained operation in 1972. During 50% power test, primary coolant leakage was observed at reactor core spray pipes in 1972. In 1975 the operation resumed and faults observed at condenser tubes in 1976. Primary coolant leakage from in-core flux monitor guide tubes at the bottom of reactor pressure vessel in 1979 led to its permanent shutdown. The nuclear ship Mutsu was put into service in 1970 and during rising power test radiation leakage due to fast neutron streaming was observed in 1974. After modifications of shielding experimental voyage was made in 1991. The first commercial nuclear power reactor, Tokai-1-a 166 MWe gas-cooled (Magnox) reactor, began operation in 1966 and continued until 1998. The LWR plants became the mainstay in Japan. (T. Tanaka)

  15. Data list of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Izumi, Fumio; Nakamura, Jinichi

    1982-10-01

    This report has collected and compiled the data by December in 1981 concerning performances, equipments and installations of the nuclear power plants in Japan. The data have been modified according to the changes produced after previous publication of 1979 edition including BWR and PWR (JAERI-M 8947) and 1980 edition including PWR (JAERI-M 9629), and extended to cover the new plants developed thereafter. All data have been processed and tabulated with a data processing computer program FREP. Besides this report, user also can refer to 'Data List of Nuclear Power Plant in Japan' through terminals equipped at various places in JAERI using TSS (Time Shearing System) network of FACOM M-200, and the explanation of the usage is given in the Appendix. (author)

  16. Future of nuclear power in Japan - Development of next Generation LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Eiji; Yamamoto, T.; Kurosaki, K.; Ohga, Y.; Tsuzuki, K.; Kasai, S.; Tanaka, T.

    2010-09-15

    Japan's energy policies have been to decrease the oil portion and dependence on the Middle East for energy security, as well as satisfy environmental requirement. The report of 2008 targeted reducing GHG emission by 60-80% before 2050, and highlighted ''Cool Earth-Innovative Energy Technology Program'' featuring 21 innovative technologies. In this context nuclear power is expected as a core power source. In April 2008, ''Next Generation Light Water Power Reactor Development Program'' was launched with the IAE as the core organization in alliance with Japan's major vendors and in collaboration with METI and power utilities for the future of nuclear power.

  17. Improvement of nuclear power plant operation and maintenance in Japan

    International Nuclear Information System (INIS)

    Kazushige Hamazaki

    1987-01-01

    Following the inauguration of commercial nuclear power generation in Japan in 1966, capacity factors were held in the relatively low level until around 1975 due to initial-period troubles. With subsequent improvement, however, capacity factors have climbed steadily and recently been sustaining more than 70%. To obtain this successful result, a various kind of improvement have been made not only for the operation management area but also for the maintenance management area in conjunction with the successive effort to reflect the operating experiences to the early stage design. Nowadays nuclear generation has assumed increasing importance for Japan's electrical power needs, and is making a great contribution to stabilizing power supply costs. (author)

  18. Assessment of post-Fukushima renewable energy policy in Japan's nation-wide power grid

    International Nuclear Information System (INIS)

    Komiyama, Ryoichi; Fujii, Yasumasa

    2017-01-01

    This manuscript analyzes an optimal power generation mix in Japan's nation-wide power grid by considering the post-Fukushima energy policy which puts a high priority on expanding renewable energy. The study is performed, employing an optimal power generation mix model which is characterized by detailed geographical resolution derived from 135 nodes and 166 high-voltage power transmission lines with 10-min temporal resolution. Simulated results reveal that renewable energy promotion policy underlies the necessity for capacity expansion of inter- or intra-regional power transmission lines in Japan in order to realize economical power system operation. In addition, the results show that the integration of massive variable renewable (VR) such as PV and wind decreases the capacity factor of power plant including ramp generator and possibly affects that profitability, which implies the challenge to ensure power system adequacy enough to control VR variability. - Highlights: • Authors analyze installable potential of renewable by Japan's power grid model. • Power grid of the model includes 135 nodes and 166 power transmission lines. • Renewable promotion underlies the necessity for capacity expansion of power lines. • Unremunerated power plants affect power grid adequacy under extensive renewable.

  19. Problems in Siting Nuclear Power Plants in Japan and Efforts to Solve Them

    Energy Technology Data Exchange (ETDEWEB)

    Inouye, T. [Ministry of International Trade and Industry, Tokyo (Japan)

    1967-09-15

    The rapidly growing demand for energy in Japan will require a total capacity of 30 to 40 thousand MW(e) in nuclear power by 1985. Materialization of this development programme must naturally be supported by securing the requisite sites for the nuclear power plants. The following factors make siting of nuclear power plants more difficult in Japan than in any other country: a small, densely populated territory with little level land, that is already completely utilized for agricultural and/or industrial purposes; small rivers and an active marine-product industry developed along most of the seacoasts, both of which create difficult cooling-water problems; frequent earthquakes; and the fear of possible radioactivity, which prevails in the only nation in the world to have suffered from the atomic bomb. There are at present four nuclear power plants in operation or under construction in Japan with a total capacity of about 1.3 thousand MW(e). However, the plants in these construction programmes have been sited on the basis of taking the easiest course available although there were several possible solutions to choose from. It is pointed out here that the long-range nuclear power development programme will call for a fundamental solution to enable siting a large number of power plants under the adverse conditions in Japan. Accordingly, a study was made, which included quantitative analyses of reactor siting factors and suggested measures for solving the siting problems. The analyses were based on nuclear power plant sites assumed to be located on the seacoast and characterized by low-population density, desirable geology and favourable topography. It was assumed that seacoast siting was more economical than inland siting. Although the study was made by a general survey using maps, it was shown that approximately 10% of the total coastline areas would be eligible for reactor siting, but most of these areas in this case are located in the northern part of Japan, far from

  20. Japan and the changing global balance of power: The view from the summit

    OpenAIRE

    Dobson, H.

    2010-01-01

    This article explores Japan's relative decline and its responses to the changing global balance of power through a case study of one symptom of this shift: the rise of the G20 as the 'premier forum for international economic co-operation' at the expense of the G8. The G8 has traditionally held a significant position in Japan's international relations that appears to be undermined by the rise of the G20. Japan's responses to these developments reveal it to be a status quo power that is still c...

  1. The status and future development of nuclear power in Japan

    International Nuclear Information System (INIS)

    Shoda, A.Y.

    1987-01-01

    As a result of its high dependence on imports in the energy supply sector, Japan has embarked on an extensive nuclear power program, which covers the whole nuclear fuel cycle and the construction of nuclear power plants. In 1985, 32 nuclear generating units with an aggregate power of 24.500 MW were in operation; this amounts to well over a quarter of the total generating capacity installed in Japan. Another ten units with an aggregate approx. 10,000 MW are under construction and six units with 6300 MW are being prepared for construction. After the completion of this phase of the program in 1995, the nuclear generating capacity is to be stepped up year by year by an aggregate 1500 to 2500 MW, for the time being. (orig.) [de

  2. Countermeasure to plant life management of the nuclear power plants out of Japan

    International Nuclear Information System (INIS)

    1999-01-01

    Some investigations on countermeasure to plant life management of the nuclear power plants were begun since beginning of 1990s under cooperation with Ministry of International Trade and Industry and all electric power companies under consideration of recent state on abroad and at concept of preventive conservation implementation against the plant life management. As a result, the Tokyo Electric Power Company, the Kansai Electric Power Company and the Japan Atomic Power Company settled each program on countermeasure to plant life management of the Fukushima-1 Power Plant, the Mihama-1 Power Plant and the Tsuruga-1 Power Plant, respectively, which were reported to the Atomic Energy Safety Commission to issue on February, 1999, after deliberation in the Adviser Group of Ministry of International Trade and Industry. Such investigations on countermeasure to the plant life management are also conducted out of Japan in parallel to those in Japan, which contain programs reflecting states of operation and maintenance of nuclear power plants and atmosphere around atomic energy in each country. Here were described on some present states of the countermeasures to plant life management in U.S.A., France, Germany, Sweden, England and so forth. (G.K.)

  3. Public acceptance of nuclear power development in Japan

    International Nuclear Information System (INIS)

    Ohori, H.

    1977-01-01

    Although the Japanese set out to achieve the peaceful uses of atomic energy in 1956, the question of public acceptance took on serious proportions only as the development of nuclear power moved toward commercial application. A string of reactor troubles over the past few years complicated the question apparently to the point where it could scarcely be worse. It is not possible to deal with opposition movements in Japan without taking into account the background of the special national sentiment born of the people's experience of the atomic bombings, but it is also true that the people's deep-going fears of atomic energy have been increased by sensational newspaper reports, as well as internetional attacks by the opponents of nuclear development. Added to this, the ''Mutsu'' incident and other troubles have given the people distrust of the whole nuclear administration and those responsible for nuclear regulation. but, at the same time, the oil crisis of 1973 brought about an awakening of the people to the need for the development of nuclear power to solve Japan's energy problems, for Japan is seriously lacking in natural resources. An influential newspaper took samplings of public opinion in 1975 which revealed that, while 48 percent of the people expressed fears of atomic energy, 70 percent, including those who had some misgivings but still took the need for granted, said that Japan has no choice but to depend on nuclear power. The Government and industry have made long-range projections on nuclear power generation, forecasting that it will expand to 25 percent of all power generating plants by 1985, and to 35 percent by 1990. The gravest problem to be solved if this projected scale of nuclear development is to be achieved is the shortage of adequate plant sites. This can not be solved unless every effort is made to dispel the general feeling of mistrust mentioned, and to make sure that the development of nuclear power is socially accepted. It is hoped that the

  4. Decline of Civilian power in Japan's Defense Policy

    OpenAIRE

    SEBATA, TAKAO; 瀬端, 孝夫

    2006-01-01

    Over the last thirty years, military official of Japan's Self-Defense Forces (SDF) have begun voicing their opinions more aggressively, exerting influence and power in such areas as: the right of personnel management, budget formulation, organization, and defense policy decision-making. Due to the enhanced status of military officials, change of power balance between civilians and military is taking place. This paper examines civil-military relations in the above areas and discusses how this ...

  5. Comparing electricity transitions: A historical analysis of nuclear, wind and solar power in Germany and Japan

    International Nuclear Information System (INIS)

    Cherp, Aleh; Vinichenko, Vadim; Jewell, Jessica; Suzuki, Masahiro; Antal, Miklós

    2017-01-01

    This paper contributes to understanding national variations in using low-carbon electricity sources by comparing the evolution of nuclear, wind and solar power in Germany and Japan. It develops and applies a framework for analyzing low-carbon electricity transitions based on interplay of techno-economic, political and socio-technical processes. We explain why in the 1970s–1980s, the energy paths of the two countries were remarkably similar, but since the 1990s Germany has become a leader in renewables while phasing out nuclear energy, whereas Japan has deployed less renewables while becoming a leader in nuclear power. We link these differences to the faster growth of electricity demand and energy insecurity in Japan, the easier diffusion of onshore wind power technology and the weakening of the nuclear power regime induced by stagnation and competition from coal and renewables in Germany. We show how these changes involve the interplay of five distinct mechanisms which may also play a role in other energy transitions. - Highlights: • We identify five mechanisms which play a role in national low-carbon electricity transitions. • Use of nuclear, wind and solar power in Germany and Japan diverged in the 1990s. • Wind power diffused to Germany from Denmark but different geography stalled it in Japan. • Demand growth and energy insecurity prompted nuclear power expansion in Japan. • Competition with domestic coal and wind led to the demise of nuclear power in Germany.

  6. Decommissioning situation and research and development for the decommissioning of the commercial nuclear power station in Japan

    International Nuclear Information System (INIS)

    Yamamoto, Tatsumi.

    1996-01-01

    There are 48 commercial nuclear power stations in operation in Japan as of January 1, 1995, which supplies about 28% (2.2 x 10 8 MWh) of total annual electricity generation in FY 1992. Accordingly, as the nuclear power contributes so much in electricity generation, there is a growing concern in the public toward the safety on decommissioning nuclear power station. It is gravely important to secure the safety throughout the decommissioning. This paper discusses: the decommissioning situation in Japan; the Japanese national policy for decommissioning of commercial nuclear power stations; R and D for decommissioning of commercial nuclear power stations in Japan; and the present conditions of low-level radioactive wastes disposal in Japan

  7. Current Status of QA For Nuclear Power Plants in Japan

    International Nuclear Information System (INIS)

    Nagoshi, Hitohiko

    1986-01-01

    It is the current status of QA and our QA experiences with nuclear power plants against the background of the Japanese social and business environment. Accordingly, in 1972, 'The Guidance for Quality Assurance in Construction of Nuclear Power Plants' based on U. S. 10CEF50 Appendix B, was published by the Japan Electric Association. 'Jug-4101 The Guide for Quality Assurance of Nuclear Power Plants' has been prepared by referring to the IAEA QA code. The Guide has been accepted by the Japanese nuclear industry and applied to the QA programs of every organization concerned therewith. The Japanese approach to higher quality will naturally be different from that of other countries because of Japan's cultural, social, and economic conditions. Even higher quality is being aimed at through the LWR Improvement and Standardization Program and coordinated quality assurance efforts

  8. Design and safety features of commercial nuclear power plants in Japan, 1976 edition

    International Nuclear Information System (INIS)

    Izumi, Fumio; Harayama, Yasuo

    1976-10-01

    The December 1975 edition (JAERI-M 5959) contained design particulars and safety features of 20 commercial nuclear power plants in Japan as of December 1974. Subsequently new plants have been put into operation and some plants under construction have undergone design modifications. The present edition presents similar data of the commercial nuclear power plants in Japan up to June 1976, compiled by computer processing. (auth.)

  9. Analysis on the Electric Power Supply - Demand Measures of Japan in 2011 Summer after Earthquake and Tsunami

    International Nuclear Information System (INIS)

    Lee, Y. E.; Chang, H. S.

    2011-01-01

    Only 12 of 54 nuclear reactors are in operation as of September 1, 2011 in the wake of the earthquake and tsunami in Japan. The share of nuclear power in the nation's installation capacity fell to about 14% in August from about 30% before March 11, 2011. Government or many of research institutes estimated that the power supply system in Japan would fall to the minus reserve margin, if the nuclear power stations could not be restarted as scheduled. However, the current situation of power supply system in Japan is less severe than expected before, because the power companies and public have engaged in various diligent efforts to boost supply capacity or reduce demand in response to the electric power crisis. This paper aims to analyze the how much Japan electric power supply system depends on the nuclear power, what kinds of countermeasures of electric power supply-demand are taken by electricity companies in summer time to avoid the blackouts and why the saving electricity in Japan could be possible unlike Korea. Insights from this paper would be taken into account in the long term energy planning, even though the further study in depth should be followed

  10. IAEA Expert Team Completes Mission to Review Japan's Nuclear Power Plant Safety Assessment Process, 31 January 2012, Tokyo, Japan

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: A team of international nuclear safety experts today completed a review of Japan's two-stage process for assessing nuclear safety at the nation's nuclear power plants. The team began its work on 23 January and delivered a Preliminary Summary Report to Japanese officials today and plans to finish the final report by the end of February. National safety assessments and their peer review by the IAEA are a key component of the IAEA's Action Plan on Nuclear Safety, which was approved by the Agency's 152 Member States following last year's nuclear accident at Fukushima Daiichi Nuclear Power Station. At the request of the Government of Japan, the International Atomic Energy Agency (IAEA) organized a 10-person team to review the Japanese Nuclear and Industrial Safety Agency's (NISA) approach to the Comprehensive Assessments for the Safety of Existing Power Reactor Facilities and how NISA examines the results submitted by nuclear operators. The IAEA safety review mission consisted of five IAEA and three international nuclear safety experts. To help its review, the team held meetings in Tokyo with officials from NISA, the Japanese Nuclear Energy Safety (JNES) Organization, and the Kansai Electric Power Company (KEPCO), and the team visited the Ohi Nuclear Power Station to see an example of how Japan's Comprehensive Safety Assessment is being implemented by nuclear operators. 'We concluded that NISA's instructions to power plants and its review process for the Comprehensive Safety Assessments are generally consistent with IAEA Safety Standards', said team leader James Lyons, director of the IAEA's Nuclear Installation Safety Division. In its Preliminary Summary Report delivered today, the team highlighted a number of good practices and identified some improvements that would enhance the overall effectiveness of the Comprehensive Safety Assessment process. Good practices identified by the mission team include: Based on NISA instructions and commitments of the

  11. The future of Japan's power business in a low-carbon society

    International Nuclear Information System (INIS)

    Toyoda, Masakazu

    2016-01-01

    This paper examines the implication and detail of the agreement of COP 21, and clarifies the task for electric power companies and the direction of development based on this. In face of the formulation of energy mix policy for 2030, in July 2015, Japan established a greenhouse gas reduction target of 25% compared to 2013, and registered it. Although the goal for achieving a low-carbon society has been completed by setting energy saving target and energy mix policy, how to realize it during the progress of power system innovation is important and it is not easy. As the energy policy, the following are important: (1) steady realization of energy saving, (2) cost reduction and balancing of introduction of renewable energy, (3) clean use of fossil fuels, and (4) ensuring the safety of nuclear power and steady restart. This study discusses what will be made for each item, and what will be needed. To make Japan's efforts toward a low-carbon society a reality, the securement of zero-emission power sources of 44% is indispensable, and 20% to 22% (a little less of half of it) is expectedly depending on nuclear power. With the Paris Agreement at COP 21, the buildup of a low-carbon society in Japan is now an urgent issue. However, there are various hurdles for realizing it, and in addition, the system innovation of electric power business has entered a full-fledged stage, making the task further complicated. (A.O.)

  12. The summary of the nuclear power development in Japan

    International Nuclear Information System (INIS)

    Mizoguchi, Kenzo; Hirose, Yasuo; Fukai, Yuzo; Hada, Mikio; Ogawa, Nagao.

    1980-01-01

    A quarter of century has elapsed since the development of atomic energy was started in Japan. At present, the scale of nuclear power generation reached the operation of 22 plants with about 15.12 million kW capacity, and 12% of the total installation capacity for power generation. Efforts have been exerted to bring up the domestic technologies gradually, while importing and digesting quickly the foreign technologies. Now in LWRs, the equipments of nearly 100% can be produced by the domestic technologies, moreover, the technologies have reached such level that they can be exported to foreign countries. In the last five years, the improvement and standardization of LWR technologies have been promoted. The development of the reactors of new types has been continued by the domestic technologies. According to the long term plan, the nuclear power generation of 53 million kW is expected by 1990, but various problems such as the location of nuclear power stations and nuclear fuel cycle remain, and considerable difficulty is expected in its materialization. The history of nuclear power generation in Japan, the features and progress of LWRs, the photographs and the main specifications of notable nuclear power plants, and the future perspectives of LWRs, the reactors of new types, nuclear fusion and nuclear fuel cycle are described. (Kako, I.)

  13. Fusion-power demonstration

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.; Carlson, G.A.; Neef, W.S.; Moir, R.W.; Campbell, R.B.; Botwin, R.; Clarkson, I.R.; Carpenter, T.J.

    1983-01-01

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment

  14. Fusion power demonstration

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.

    1983-01-01

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment

  15. Nuclear power in Japan

    International Nuclear Information System (INIS)

    Kishida, J.

    1990-01-01

    The Japanese movement against nuclear energy reached a climax in its upsurge in 1988 two years after the Chernobyl accident. At the outset of that year, this trend was triggered by the government acknowledgement that the Tokyo market was open to foods contaminated by the fallout from Chernobyl. Anti-nuclear activists played an agitating role and many housewives were persuaded to join them. Among many public opinion surveys conducted at that time by newspapers and broadcasting networks, I would like to give you some figures of results from the poll carried out by NHK: Sixty percent of respondents said that nuclear power 'should be promoted', either 'vigorously' 7 or 'carefully' 53%). Sixty-six percent doubted the 'safety of nuclear power', describing it as either 'very dangerous' 20%) or 'rather dangerous' (46%). Only 27% said it was 'safe'. In other words, those who acknowledged the need for nuclear power were almost equal in number with those who found it dangerous. What should these figures be taken to mean? I would take note of the fact that nearly two-thirds of valid responses were in favor of nuclear power even at the time when public opinion reacted most strongly to the impact of the Chernobyl accident. This apparently indicates that the majority of the Japanese people are of the opinion that they would 'promote nuclear power though it is dangerous' or that they would 'promote it, but with the understanding that it is dangerous'. But the anti-nuclear movement is continuing. It remains a headache for both the government and the electric utilities. But we can regard the anti-nuclear movement in Japan as not so serious as that faced by other industrial nations

  16. Nuclear power in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kishida, J [Japan Research Institute, Ltd., Tokyo (Japan)

    1990-07-01

    The Japanese movement against nuclear energy reached a climax in its upsurge in 1988 two years after the Chernobyl accident. At the outset of that year, this trend was triggered by the government acknowledgement that the Tokyo market was open to foods contaminated by the fallout from Chernobyl. Anti-nuclear activists played an agitating role and many housewives were persuaded to join them. Among many public opinion surveys conducted at that time by newspapers and broadcasting networks, I would like to give you some figures of results from the poll carried out by NHK: Sixty percent of respondents said that nuclear power 'should be promoted', either 'vigorously' 7 or 'carefully' 53%). Sixty-six percent doubted the 'safety of nuclear power', describing it as either 'very dangerous' 20%) or 'rather dangerous' (46%). Only 27% said it was 'safe'. In other words, those who acknowledged the need for nuclear power were almost equal in number with those who found it dangerous. What should these figures be taken to mean? I would take note of the fact that nearly two-thirds of valid responses were in favor of nuclear power even at the time when public opinion reacted most strongly to the impact of the Chernobyl accident. This apparently indicates that the majority of the Japanese people are of the opinion that they would 'promote nuclear power though it is dangerous' or that they would 'promote it, but with the understanding that it is dangerous'. But the anti-nuclear movement is continuing. It remains a headache for both the government and the electric utilities. But we can regard the anti-nuclear movement in Japan as not so serious as that faced by other industrial nations.

  17. Inefficient and opaque price formation in the Japan Electric Power Exchange

    International Nuclear Information System (INIS)

    Nakajima, Tadahiro

    2013-01-01

    This study examines whether the spot prices in the Japan Electric Power Exchange are efficiently formed from April 3, 2006, to March 31, 2012, using the conventional and rank-based variance-ratio tests. The results seem to reject the efficient market hypothesis in the market. Moreover, by applying Granger-causality tests, this paper investigates whether the power price is determined from the information of primary energy and exchange markets that directly affect the cost of power generation. The results indicate no Granger-causality from the prices of oil and gas and the exchange rate to the price of electricity. Finally, this paper discusses the factors that lead to inefficient and mysterious price formation. - Highlights: ► This study examines the wholesale electricity market in Japan. ► Efficient market hypothesis is rejected. ► Prices of imported fuel do not Granger-cause the prices of electricity. ► The WTI prices and the exchange rates do not Granger-cause the power prices

  18. Hydrogen fueling stations in Japan hydrogen and fuel cell demonstration project

    International Nuclear Information System (INIS)

    Koseki, K.; Tomuro, J.; Sato, H.; Maruyama, S.

    2004-01-01

    A new national demonstration project of fuel cell vehicles, which is called Japan Hydrogen and Fuel Cell Demonstration Project (JHFC Project), has started in FY2002 on a four-year plan. In this new project, ten hydrogen fueling stations have been constructed in Tokyo and Kanagawa area in FY2002-2003. The ten stations adopt the following different types of fuel and fueling methods: LPG reforming, methanol reforming, naphtha reforming, desulfurized-gasoline reforming, kerosene reforming, natural gas reforming, water electrolysis, liquid hydrogen, by-product hydrogen, and commercially available cylinder hydrogen. Approximately fifty fuel cell passenger cars and a fuel cell bus are running on public roads using these stations. In addition, two hydrogen stations will be constructed in FY2004 in Aichi prefecture where The 2005 World Exposition (EXPO 2005) will be held. The stations will service eight fuel cell buses used as pick-up buses for visitors. We, Engineering Advancement Association of Japan (ENAA), are commissioned to construct and operate a total of twelve stations by Ministry of Economy Trade and Industry (METI). We are executing to demonstrate or identify the energy-saving effect, reduction of the environmental footprint, and issues for facilitating the acceptance of hydrogen stations on the basis of the data obtained from the operation of the stations. (author)

  19. Application of reliability centered maintenance for nuclear power station in Japan

    International Nuclear Information System (INIS)

    Kumano, Haruyuki; Honda, Hironobu.

    1990-01-01

    The reliability centered maintenance (RCM) method has been widely used with good results in aviation companies in the U.S. to ensure positive preventive maintenance and management. In addition, the Electric Power Research Institute has been making studies and tests in an effort to apply the RCM method to nuclear power plants. The present report shows and discusses some results of a preliminary study aimed at the introduction of the RCM method to nuclear power plants in Japan. The history of the development and application of RCM is outlined first, and the procedure of its implementation is then described and discussed. The procedure consists of five major steps: collection of data, identification of system components, analysis of the functions of the system, selection of required tasks for preventive management, and packaging. Some actual examples of the application of RCM to nuclear power plants in the U.S. are described. And finally, the report discusses some major problems to be solved to permit the application of RCM to nuclear power plants in Japan. (N.K.)

  20. Role of nuclear power in energy policy of Japan

    International Nuclear Information System (INIS)

    Ikuta, Toyoaki

    1984-01-01

    About 62 % of the energy supply in Japan depends on petroleum, and about 65 % of oil import comes from Persian Gulf. It is very important to ensure the supply of oil for the energy policy of Japan. For the purpose, the conversation between oil producing countries and oil consuming countries is necessary, but all the conversation carried out so far failed. The oil consumption in the world continued to decline, and the situation of oil market changed. The future situation of oil market largely depends on the development of substitute energy resources for oil. In order to ensure the supply of oil, the buyer's market must continue, therefore, effort must be continued to expand substitute energy and to promote energy saving. As the energy policy hereafter, various energy resources should be most effectively used in combination. In this compound energy age, the importance of nuclear power increases. The stable supply and economical efficiency of energy must be taken in consideration with the same weight. The only method to reduce the dependence on import is nuclear power, and this feature should be evaluated high. Nuclear power generation must be expanded hereafter. (Kako, I.)

  1. Report on demonstrative research on photovoltaic power generation system in Myanmar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective of installation and demonstrative operation in Myanmar of a power generation system combining a small-scale photovoltaic power generation system, a wind power generation system, and a diesel generator, research and development is being made under a six year plan starting in 1999 and ending in 2004. Comparative discussions were given on the installation location of the power generation system for the climatic conditions in Chaungthar and Letkhokekone, whereas the final decision was given on Chaungthar. This project plans installation of a photovoltaic power generation system of 80 kW, a wind power generation system of 40 kW, and a diesel generator of 60 kW. Power generation will start at 6 o'clock in the morning and continue to 11 o'clock at night every day, with a storage battery of 1,000 Ah and a stabilized load comprising of ice maker units to be installed. Observation of wind power and solar insolation is being continued with an aim of acquiring data over a period of one year or longer, whereas the data as have been forecasted are being acquired at the present. The diesel generator was manufactured in Japan, which has been arrived at the port of Yangon in February 2001, and installed at the site in Chaungthar in March. (NEDO)

  2. Public perception of risks from nuclear power plants in Japan, before the Great East Japan Earthquake

    International Nuclear Information System (INIS)

    Murayama, Rumiko; Nakaune, Naoko; Kishikawa, Hiroki; Uchiyama, Iwao

    2011-01-01

    On this research we aim to clarify public perception of risks from nuclear power plants before the Great East Japan Earthquake. The findings of the questionnaire survey conducted in 2010 showed that 1) about 70% of the people felt that they gained benefit from nuclear power plants and these were needed for their daily life. 2) Fifty percent respondents recognized there was danger to themselves and their family members with regards to nuclear power plants. The risks of nuclear power plants to Japanese society ware estimated higher than that risk to individuals of Japanese public. 3) Perception of risks from nuclear power plants to individual Japanese tended to be slightly lower between 1999 and 2010. (author)

  3. Public acceptance (PA) activities of nuclear power in Japan

    International Nuclear Information System (INIS)

    Yamada, Masafumi; Iguchi, Tatsuro

    1993-10-01

    At the first part of presentation present status of nuclear power development in Japan is described. Then results of poll on nuclear energy acceptance by population are analyzed. Further, current activities and future efforts directed to broad understanding by people benefits of nuclear energy are described. 6 figs

  4. Regional electric power demand elasticities of Japan's industrial and commercial sectors

    International Nuclear Information System (INIS)

    Hosoe, Nobuhiro; Akiyama, Shu-ichi

    2009-01-01

    In the assessment and review of regulatory reforms in the electric power market, price elasticity is one of the most important parameters that characterize the market. However, price elasticity has seldom been estimated in Japan; instead, it has been assumed to be as small as 0.1 or 0 without proper examination of the empirical validity of such a priori assumptions. We estimated the regional power demand functions for nine regions, in order to quantify the elasticity, and found the short-run price elasticity to be 0.09-0.30 and the long-run price elasticity to be 0.12-0.56. Inter-regional comparison of our estimation results suggests that price elasticity in rural regions is larger than that in urban regions. Popular assumptions of small elasticity of 0.1, for example, could be suitable for examining Japan's aggregate power demand but not power demand functions that focus on respective regions. Furthermore, assumptions about smaller elasticity values such as 0.01 and 0 could not be supported statistically by this study.

  5. Development of nuclear powered ship in Japan

    International Nuclear Information System (INIS)

    Sato, Hiroshi

    1976-01-01

    The development of nuclear merchant ship in Japan was started in 1955 by the establishment of Nuclear Ship Study Group, and since then, the investigation, test and research on nuclear ships have been continued. As a result, a nuclear ocean observation and supply ship was designed for trial. Researches were carried out also in JAERI and Institute for Technical Research of Ships. Meanwhile, the nuclear icebreaker Lenin was completed in Soviet Union in 1959, the nuclear ship Savannah set out for maiden voyage in U.S. in 1962, and the construction of the nuclear ore carrier Otto Hahn was prepared in FRG. Japan Nuclear Ship Development Corp. was established in 1963, and started the design and construction of the first nuclear ship in Japan, Mutsu. The basic policy in the construction is the improvement of nuclear ship technology, the securing of safety, and the use of domestic technologies as far as possible. The progress of the design, construction and test of the Mutsu is described. Owing to the problem of radiation leak, the development of nuclear ships stagnated for a while, but the nuclear plant of the Mutsu demonstrated the expected performance in the functional test, land criticality test and zero output test, and it is expected that the bud of the independent development brought up so far can bear valuable fruit. The independent development of marine nuclear reactors should be continued by selecting the way most suitable to Japan. (Kako, I.)

  6. IAEA Issues Report on Mission to Review Japan's Nuclear Power Plant Safety Assessment Process

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: A team of international nuclear safety experts has delivered its report on a mission it conducted from 21-31 January 2012 to review Japan's process for assessing nuclear safety at the nation's nuclear power plants. International Atomic Energy Agency (IAEA) officials delivered the IAEA Mission Report to Japanese officials yesterday and made it publicly available today. Following the 11 March 2011 accident at TEPCO's Fukushima Daiichi Nuclear Power Station, Japan's Nuclear and Industrial Safety Agency (NISA) announced the development of a revised safety assessment process for the nation's nuclear power reactors. At the request of the Government of Japan, the IAEA organized a team of five IAEA and three international nuclear safety experts and visited Japan to review NISA's approach to the Comprehensive Assessments for the Safety of Existing Power Reactor Facilities and how NISA examines the results submitted by nuclear operators. A Preliminary Summary Report was issued on 31 January. 'The mission report provides additional information regarding the team's recommendations and overall finding that NISA's instructions to power plants and its review process for the Comprehensive Safety Assessments are generally consistent with IAEA Safety Standards', said team leader James Lyons, Director of the IAEA's Nuclear Installation Safety Division. National safety assessments and their peer review by the IAEA are a key component of the IAEA Action Plan on Nuclear Safety, which was approved by the Agency's Member States following last year's nuclear accident at Fukushima Daiichi Nuclear Power Station. The IAEA safety review mission held meetings in Tokyo with officials from NISA, the Japanese Nuclear Energy Safety Organization (JNES), and the Kansai Electric Power Company (KEPCO), and the team visited the Ohi Nuclear Power Station to see an example of how Japan's Comprehensive Safety Assessment is being implemented by nuclear operators. In its report delivered today

  7. Waste inventory, waste characteristics and waste repositories in Japan

    International Nuclear Information System (INIS)

    Shimooka, K.

    1997-01-01

    There are two types of repositories for the low level radioactive wastes in Japan. One is a trench type repository only for concrete debris generated from the dismantling of the research reactor. According to the safety assurance system, Japan Atomic Energy Research Institute (JAERI) has disposed of the concrete debris arose from the dismantling of the Japan Power Demonstration Reactor (JPDR). The other type is the concreted pit with engineered barriers. Rokkasho Low Level Radioactive Waste Disposal Center has this type of repository mainly for the power plant wastes. Japan Nuclear Fuel Ltd. (JNFL) established by electric power companies is the operator of the LLW disposal project. JNFL began the storage operation in 1992 and buried approximately 60,000 drums there. Two hundred thousand drums of uniformly solidified, waste may be buried ultimately. 4 refs, 3 tabs

  8. A review of fast reactor programme in Japan

    International Nuclear Information System (INIS)

    1998-01-01

    This report describes the development and activities on fast reactor in Japan for the period of April 1996 - March 1997. During this period, the 30th duty cycle operation has been started in the Experimental Fast Reactor ''''Joyo''''. The cause investigation on the sodium leak incident has completed and the safety examination are being performed in the Prototype Fast Breeder Reactor ''''Monju''''. The three years design study since FY1994 on the plant optimization of the Demonstration FBR has been completed by the Japan Atomic Power Company (JAPC). Related research and development works are underway at several organizations under the discussion and coordination of the Japanese FBR R and D Steering Committee, which is composed of Power Reactor and Nuclear Fuel Development Corporation (PNC), JAPC, Japan Atomic Energy Research Institute (JAERI) and Central Research Institute of Electric Power Industry (CRIEPI). In November 1996, the Japan Atomic Energy Commission (JAEC) established a Social Gathering Meeting to discuss generally the significance of FBR development in Japan for the future. (author)

  9. Licensing procedures and siting problems of nuclear power stations in Japan

    International Nuclear Information System (INIS)

    Saito, Osamu.

    1981-10-01

    This paper describes the legislative and regulatory framework for nuclear power plant licensing in Japan and the different stages in the licensing procedure. The role and responsibilities of the authorities competent for the different types of nuclear facilities (power generation, ship propulsion and research) are also reviewed. The Annexes to the paper contain charts of the administrative structure for nuclear activities, the licensing procedure and nuclear facilities. (NEA) [fr

  10. On nuclear power problem in science education in Japan. Supplementary reader, authorization and scientific literacy for citizen

    International Nuclear Information System (INIS)

    Ryu, Jumpei

    2012-01-01

    Distribution of 'supplementary reader on nuclear power: Challenge! Nuclear power world' issued in 2010 and 'supplementary reader on radiation' issued in October 2011 was shelved in June 2012 by the administrative project review with revised policy of nuclear education for nuclear power promotion reflected. Great East Japan Earthquake and Fukushima Daiichi Nuclear Power Accident brought about great effects and change on fundamental conditions of citizen's life as well as national consciousness of future society in Japan. Reconsideration of scientific education should be needed taking account how to recognize 'scientific literacy' and 'scientific communication'. This article discussed nuclear power problem related with supplementary reader and nuclear power education so as to establish science education framework for 'scientific literacy' for citizen. Preparation of nuclear power education at junior high school according to guideline of new course of study was reviewed and then 'scientific literacy' based on British science higher level student textbook for public understanding of science in society was described for reference, which suggested some problem in science education in Japan although social background was different. (T. Tanaka)

  11. Power-up of Fugen reactor and development of demonstration plant

    International Nuclear Information System (INIS)

    Sawai, Sadamu; Akebi, Michio; Yazaki, Akira.

    1979-06-01

    The Fugen Nuclear Power Station is the 165 MWe prototype plant characterized by heavy water-moderated, boiling light water-cooled, pressure tube type, and was developed by the Power Reactor and Nuclear Fuel Development Corporation, Japan. The plant went into commercial operation on March 20, 1979, in Tsuruga, Fukui Prefecture. Some delay in the overall schedule occurred due to the shortage of cement caused by the oil crisis, more stringent regulations as the result of stress corrosion cracking experienced in BWRs, and design modifications. All functional tests, the final check-up of the whole plant, and remaining modifying works had been completed by March 10, 1978. The minimum criticality was achieved with 22 mixed oxide fuel assemblies on March 20, 1978. Thereafter, the tests on reactor physics, plant dynamics, the performances of components and systems, and radiation and water chemistry have been carried out. 5 MWe was sent to grid system for the first time on July 29, 1978. The commercial operation of the plant was licenced by the Government on March 30, 1979. The conceptual design of the 600 MWe demonstration plant was finished in early 1979, and the detailed design is to be carried out in 1979 and 1980. The main design principle was incorporated in the conceptual design, but some modifications are to be made to reduce the power cost and to facilitate the easy maintenance. (Kako, I.)

  12. Restructuring of technical standards for regulation of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Takehiko Nakamura; Masahiro Aoki; Kiyoshi Takasaka; Yukio Hirano; Eiji Hiraoka; Mikio Kurihara; Junichi Morita; Zenichi Ogiso; Yoshihiko Nishiwaki

    2005-01-01

    Regulatory requirements for nuclear power plants (NPPs) have been reviewed and restructured in Japan, in order to accommodate recent technical progress in a timely manner. In this new regulatory process, the governmental technical requirements are modified to performance specifications and the consensus codes and standards established by academic and public societies are being used as prescriptive specifications to realize the performance. As a first step, a fitness-rule to evaluate structural integrity of the components having cracks was introduced into the Japanese regulatory rules in Oct. 2003. 'Rules on Fitness-for-Service for Nuclear Power Plants' by the Japan Society of Mechanical Engineers (JSME) was utilized as a prescriptive specification for in-service-inspections and for the integrity evaluation of the components with stress corrosion cracks and fatigue cracks. The process is being extended to other requirements for structural design and construction of mechanical components and concrete containments, as well as requirements for welding. Prescriptive specifications for the requirements by the JSME and other consensus codes have been technically reviewed by a regulatory body, the Nuclear and Industrial Safety Agency, and specified as regulatory standards for the licensing procedure. In the course of the review, consistency and coverage of the requirements were examined against the Safety Design Guidelines by the Nuclear Safety Commission and the safety requirements for design of nuclear power plant by the International Atomic Energy Agency, NS-R-1. Additional requirements against the stress corrosion cracking, hydrogen accumulation, high-cycle thermal fatigue, etc. are being specified in the requirements to prevent troubles experienced in NPPs in Japan and overseas. This paper describes outlines of the on-going activities restructuring the technical standards for regulation of NPPs in Japan. (authors)

  13. Design and safety data of commercial nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Izumi, Fumio; Harayama, Yasuo; Nakazima, Tetuo

    1979-02-01

    Following the previous JAERI-M 6732(1976) and JAERI-M 7261(1977), the 1978 edition as of the December is presented, which contains the data of design parameters, performance, components and equipments in nuclear power plants of Japan. Data are given in tables by computer processing. (author)

  14. Public acceptance of nuclear power in Japan

    International Nuclear Information System (INIS)

    Iguchi, T.

    1995-01-01

    Japan has a fragile energy supply structure, with 84% of its energy depending on import; for example, 99.6% of the oil comes from overseas, which makes Japan's economic base rather vulnerable. In order to ensure constant energy supply, it is indispensable to diversify the energy sources and to create indigenous energy. In view of this, nuclear energy is considered to be the main alternative to crude oil because it has several advantages over other energy sources, such as stable supply of uranium and the fact that it is compatible with efforts to find solutions to global environmental problems. However, since the general public is not familiar with nuclear technology, it is difficult to get the understanding and co-operation of people. In view of this, public relations activities providing information on the need and safety of nuclear power generation have been performed. As a result, in recent years, about 70% of the people came to recognize the need for nuclear power generation. Although people's recognition of this need has increased substantially, it is still difficult for them to accept the construction of nuclear facilities, because of their anxiety regarding the safety of such plants and the lack of information by the government and electric utilities. This makes the acquisition of new sites for nuclear power plants difficult, so that the time required for developing such plants becomes longer. In order to eliminate people's anxieties, both the government and electric utilities should provide accurate information, at the proper time and using a method that makes it easy for the people to understand the problems involved. It is also important for the government and the electric utilities to listen carefully to the opinions and questions of people and to increase friendly communications with them. The government, electric utilities and constructors of nuclear facilities have to co-operate in order to improve the measures taken to gain public acceptance of

  15. Energy problems and nuclear power in Japan

    International Nuclear Information System (INIS)

    Shirasawa, T.

    1980-01-01

    International petroleum situation maintains the balance between demand and supply for the time being, but hereafter, it seems to be more serious and uncertain. Japanese economy tided over the first oil crisis with difficulty, and moreover, responded to the second oil crisis after the Iranian revolution somehow or other. But oil price has continued to rise, and the acceleration of inflation, the serious depression of businesses and electric power crisis are feared. In Japan where the dependence on imported petroleum is as high as 75%, it is necessary to establish the long term energy policy making energy saving and the development of substitute energy as its mainstay. In August, 1979, the report concerning the interim prospect of long term energy demand and supply was made. Largest efforts will be exerted to reduce the oil import. Then the total demand of energy in 1985 will be 582 million kl calculated in terms of petroleum. The law concerning energy saving was enacted in June, 1979. As the substitute energy, imported coal, LNG and nuclear power generation should be adopted. However, in order to put these energies in practical use, many problems to be solved remain. 21 nuclear power plants of 14.9 million kW capacity are in operation, and provide with 12% of total power generation installations. 30 million kW of nuclear power generation will be attained by 1985. (Kako, I.)

  16. Status of QNDE and NDC research for nuclear power plant in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, Teruo [Tokyo Univ. (Japan). Research Center for Advanced and Science]|[National Inst. for Advanced Interdisciplinary Research, MITI (Japan)

    1999-08-01

    Nuclear power plants in Japan have been fabricated and constructed in compliance with the standards developed by MITI in 1980. These standards were developed as design standards taking aging phenomena during service lifetime into consideration. But these standards do not specify the requirements for flaw evaluation and repair methods, though they include some maintenance requirements. Therefore, MITI decided to develop Maintenance Standards which commensurate with plant age, and entrusted Japan Power Engineering and Inspection Corporation (JAPEIC) with survey of ASME Sec. XI. Draft of Maintenance Standards was developed in March, 1996, and will be legislated by 1999. Structural materials of nuclear power plants would sustain damage owing to cyclic stress, high temperature or neutron irradiation etc. during operation. And damage would change mechanical properties of materials, such as tensile strength, charpy absorption energy, fracture toughness and so on. As integrity of nuclear power station depends on these mechanical properties of materials, it will become very important to be able to evaluate mechanical properties of materials nondestructively especially for older nuclear power plants. These circumstances made MITI entrust JAPEC with verification test to develop nondestructive characterization methods. This verification test started in the 1990 fiscal year and was completed in 1997 fiscal year. (orig./DGE)

  17. Setting of cesium residual ratio of molten solidified waste produced in Japan Atomic Power Company Tokai and Tokai No.2 Power Stations

    International Nuclear Information System (INIS)

    2013-02-01

    JNES investigated the appropriateness of a view of the Japan Nuclear Fuel Co. on cesium residual content and the radioactivity measurement precision regarding the molten solidified (with lowered inorganic salt used) radioactive wastes which were produced from Japan Atomic Power Company Tokai and Tokai No. 2 Power Stations. Based on the written performance report from the request and past disposal confirmation experience, a view of the JNFC is confirmed as appropriate that setting of 15% cesium residual ratio for molten solidified with volume ratio larger than 4% and less than 10% cases. (S. Ohno)

  18. Regional electric power demand elasticities of Japan's industrial and commercial sectors

    Energy Technology Data Exchange (ETDEWEB)

    Hosoe, Nobuhiro [National Graduate Institute for Policy Studies, 7-22-1 Roppongi, Minato, Tokyo 106-8677 (Japan); Akiyama, Shu-ichi [Kushiro Public University of Economics, 4-1-1 Ashino, Kushiro, Hokkaido 085-8585 (Japan)

    2009-11-15

    In the assessment and review of regulatory reforms in the electric power market, price elasticity is one of the most important parameters that characterize the market. However, price elasticity has seldom been estimated in Japan; instead, it has been assumed to be as small as 0.1 or 0 without proper examination of the empirical validity of such a priori assumptions. We estimated the regional power demand functions for nine regions, in order to quantify the elasticity, and found the short-run price elasticity to be 0.09-0.30 and the long-run price elasticity to be 0.12-0.56. Inter-regional comparison of our estimation results suggests that price elasticity in rural regions is larger than that in urban regions. Popular assumptions of small elasticity of 0.1, for example, could be suitable for examining Japan's aggregate power demand but not power demand functions that focus on respective regions. Furthermore, assumptions about smaller elasticity values such as 0.01 and 0 could not be supported statistically by this study. (author)

  19. The socio-political economy of nuclear power development in Japan and South Korea

    International Nuclear Information System (INIS)

    Valentine, Scott Victor; Sovacool, Benjamin K.

    2010-01-01

    This paper analyzes the socio-cultural, political and economic conditions prevalent during the inception of nuclear power programs in Japan and South Korea in order to identify commonalities which support nuclear power program expansion. The study identifies six factors as having a clear influence on supporting nuclear power development: (1) strong state involvement in guiding economic development; (2) centralization of national energy policymaking and planning; (3) campaigns to link technological progress with national revitalization; (4) influence of technocratic ideology on policy decisions; (5) subordination of challenges to political authority, and (6) low levels of civic activism. The paper postulates that insights from this study can be used to assess the propensity of nations which have the emergent capacity to support nuclear power development to actually embark on such programs. - Research highlights: → The study identifies six factors as having a clear influence on supporting nuclear power development in Japan and South Korea: (1) strong state involvement in guiding economic development; (2) centralization of national energy policymaking and planning; (3) campaigns to link technological progress with national revitalization; (4) influence of technocratic ideology on policy decisions; (5) subordination of challenges to political authority.

  20. The status and prospects for the fossil-fired and nuclear power industry in Japan

    International Nuclear Information System (INIS)

    Miyahara, S.

    1994-01-01

    Power plant capacity in Japan amounts to about 200 GW, of which 180 GW belong to the electricity supply industry. 60% are installed in fossil-fired power stations, 19% in nuclear power stations and 21% in hydro-electric power stations. Key engineering techniques for power production from fossil fuels are supercritical steam conditions and combined cycle power plant technology. Crucial points for nuclear power generation are the development of the advanced light water reactor, the commericialization of the fast breeder reactor and the installation of a closed nuclear fuel cycle. (orig.) [de

  1. Data list of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Izumi, Fumio; Morishima, Atsuyoshi; Suzuki, Motoe; Harayama, Yasuo

    1980-07-01

    this report has collected and compiled the data concerning performances, equipments and installations of the nuclear power plants constructed in Japan by December 1979. The data have been modified according to the changes produced after publication of 1978 edition (JAERI-M 8083), and extended to cover the new plants developed thereafter. All data have been processed and tabulated with a computer program FREP for the exclusive use of data processing. While this plant data list has been edited annually, there are increasing use of this in foreign countries; hence, a commentary in English on the usage has been presented in the Appendix. (author)

  2. Education and training of operators and maintenance staff at commercial nuclear power stations in Japan

    International Nuclear Information System (INIS)

    Takahashi, M.; Kataoka, H.

    1998-01-01

    Safe and stable operation of a nuclear power station requires personnel fostering. In Japan, with the objectives of systematically securing qualified people for a long period of time, and maintaining and improving their skills and knowledge, the utilities have created strict personnel training plans, for continuous education and training. Concrete examples of education and training for operators and maintenance personnel at commercial nuclear power stations in Japan, such as education systems training, facility and contents of curriculum, are detailed including some related matters. Recent activities to catch up with environment changes surrounding education and training of operators and maintenance staff are also mentioned. (author)

  3. Nuclear power supply (Japan Nuclear Safety Institute)

    International Nuclear Information System (INIS)

    Kameyama, Masashi

    2013-01-01

    After experienced nuclear disaster occurred on March 11, 2011, role of nuclear power in future energy share in Japan became uncertain because most public seemed to prefer nuclear power phase out to energy security or costs. Whether nuclear power plants were safe shutdown or operational, technologies were requisite for maintaining their equipment by refurbishment, partly replacement or pressure proof function recovery works, all of which were basically performed by welding. Nuclear power plants consisted of tanks, piping and pumps, and considered as giant welded structures welding was mostly used. Reactor pressure vessel subject to high temperature and high pressure was around 200mm thick and made of low-alloy steels (A533B), stainless steels (308, 316) and nickel base alloys (Alloy 600, 690). Kinds of welding at site were mostly shielded-metal arc welding and TIG welding, and sometimes laser welding. Radiation effects on welding of materials were limited although radiation protection was needed for welding works under radiation environment. New welding technologies had been applied after their technical validation by experiments applicable to required regulation standards. Latest developed welding technologies were seal welding to prevent SCC propagation and temper-bead welding for cladding after removal of cracks. Detailed procedures of repair welding of Alloy 600 at the reactor outlet pipe at Oi Nuclear Power Plants unit 3 due to PWSCC were described as an example of crack removal and water jet peening, and then overlay by temper-bead welding using Alloy 600 and clad welding using Alloy 690. (T. Tanaka)

  4. Dismantling of JPDR begins: to demonstrate advanced technology

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-01

    The first dismantling of the Japan Power Demonstration Reactor (JPDR, BWR, 90 MWt, 12.5 MWe) began on December 4, 1986, claiming the attention of nuclear interests in Japan and overseas. The Japan Atomic Energy Research Institute undertook the project as the second phase of the six year program for dismantling the JPDR at the Tokai Research Establishment. It is the demonstration of the technology developed in the first phase of the program from 1981 to 1986, aiming at establishing a total system for dismantling commercial nuclear power plants in the furture. At the ceremony for the beginning of dismantling held on December 4 at the site, a special switch was operated to fire a gas burner, and cutting of the upper head of the reactor pressure vessel on the service floor of the reactor building began. The long term program on the development and utilization of nuclear energy in 1982 decided the basic policy on reactor decommissioning. Under this policy, in July, 1984, the nuclear subcommittee of the Advisory Committee for Energy set up the guideline for standardized decommissioning suitable to the actual situation in Japan. The schedule of the program, the development of eight fundamental techniques, disassembling techniques, decontamination, measurement and robotics are described. (Kako, I.).

  5. Country Report Summary: Japan [Project Management in Nuclear Power Plant Construction: Guidelines and Experience

    International Nuclear Information System (INIS)

    2012-01-01

    The Hokkaido Electric Power Company (HEPCO) is the owner of the Tomari NPP comprising three operating PWR units. The latest unit to be connected to the grid, Tomari Unit 3, is a 3-loop PWR power plant with an electric output of 912 MW(e) supplied by Mitsubishi Heavy Industries (MHI). This is the newest unit in HEPCO and it is the newest PWR unit in Japan as well. The first concrete at Tomari Unit 3 was poured at the end of summer in 2004. The unit entered into commercial operation in December 2009. The Tomari site is located on a northern Japanese island. It is battered by strong winds and receives much snow in the winter. Therefore, civil works and building construction were temporarily suspended every year from the beginning of December until the end of March. This increased construction duration by one year compared to other sites. Consequently from first concrete to the start of commercial operation construction at Tomari lasted 64 months. There are specific factors in the approach to construction of nuclear power plants in Japan. (1) Japanese legislation defines that the sole licensee must be the electric power company. This implies that the electric power company is responsible for the safety of the plant and in that capacity it must submit for approval the Safety Analysis Report (SAR) but it is also responsible for the design and reliability of the plant; hence it must also submit for approval the Construction Plan (CP), containing all necessary detailed design information. Consequently, the electric power company becomes the sole counterpart to the regulatory body on all aspects of the project. (2) All Japanese electric power companies are considerably large and have the tradition to do the engineering of their power plant themselves, and this not only for nuclear but also for conventional power plant. Therefore, the owner/utilities in Japan carry themselves the burden of major portions of the engineering, procurement and construction (EPC) of their NPPs

  6. The ORNL fusion power demonstration study

    International Nuclear Information System (INIS)

    Shannon, T.E.; Steiner, D.

    1978-01-01

    In this paper, we review the design approach developed in the ORNL Fusion Power Demonstration Study [1]. The major emphasis of this study is in the application of current and near-term technology as the most logical path to near-term demonstration of tokamak fusion power. In addition we are pursuing a number of concepts to simplify the tokamak reactor to be more acceptable to the utility industry as a future source of energy. The discussion will focus on the areas having the greatest overall impact on reactor feasibility: 1) overall size and power output, 2) remote maintenance considerations, 3) electrical power supplies, 4) blanket design; and 5) economics. The tokamak device, by nature of its configuration and pulsed operation, is an exceptionally complex engineering design problem. We have concluded that innovative design concepts are essential to cope with this basic complexity. We feel that the feasibility of tokamak fusion power has been significantly improved by these design approaches. (author)

  7. International development of Japan's Nuclear Industry. Indispensable Japan-U.S. cooperation

    International Nuclear Information System (INIS)

    Saigo, Masao

    2006-01-01

    It is significant to internationally develop the nuclear power plants technology that has been fostered by Japan's nuclear industry. It is also important to work with taking the degree of development of nuclear power plants of the recipient country into consideration. ''Forum on International Development of Nuclear Industry'' organized by the Japan Atomic Industrial Forum, Inc. (JAIF) proposed it would be indispensable for a Japan's nuclear industry to establish a Japan-U.S. Cooperation with the support of Government in order to develop the nuclear technology internationally. In November 2005, the investigating team including utilities and nuclear industry visited U.S. and exchanged opinions on its possibility. Investigating results and their evaluation were described. (T.Tanaka)

  8. Touchstone for Japan's Export of nuclear power plant system. Vinh Hai unit 1 and 2 project in the Ninh Thuan province in Viet Nam

    International Nuclear Information System (INIS)

    Mitsumata, Hiroki; Takekuro, Ichiro; Kaneko, Kumao; Suzuki, Hideaki; Saito, Shinzo

    2011-01-01

    'Japan-Viet Nam Joint Statement on the Strategic Partnership for Peace and Prosperity in Asia' issued after the meeting between Japan-Viet Nam Prime Ministers on October 31, affirmed that the Vietnamese Government had decided to choose Japan as the cooperation partner for building Vinh Hai Unit 1 and 2 Project in the Ninh Thuan Province, southern Viet Nam, which showed substantially an order of Japan was arranged informally. 'International Nuclear Energy Development of Japan Co., Ltd. (JINED)' set up by industry and government, would negotiate to decide fundamental parameters such as type and power of nuclear power plants with the start of operation scheduled in 2021. This special issue consisted of six articles on significance of the project of Japan's first export, feasibility studies and future perspective and regional effects with introduction of nuclear power station in Viet Nam. (T. Tanaka)

  9. Summary of Great East Japan Earthquake response at Onagawa Nuclear Power Station and further safety improvement measures

    International Nuclear Information System (INIS)

    Sato, Toru

    2013-01-01

    A large earthquake occurred on March 11, 2011 and tsunami was generated following it. The East Japan suffered serious damage by the earthquake and tsunami. This is called the Great East Japan Earthquake. Onagawa Nuclear Power Station (NPS) is located closest to the epicenter of Great East Japan Earthquake. We experienced intense shake by the earthquake and some flooding from the tsunami, however, we have succeeded safely cold shutdown of the reactors. In this paper, we introduce summary of Great East Japan Earthquake response a Onagawa NPS and safety improvement measures which are based on both experience of Onagawa NPS and lesson from Fukushima Daiichi NPS accident. (author)

  10. Current approaches to nuclear power plant life management in Japan

    International Nuclear Information System (INIS)

    Noda, T.; Tajima, K.; Ishikawa, M.; Koyama, M.

    2002-01-01

    Full text: Some of Japan's commercial light water reactors (LWRs) have been operating for more than 30 years. The more progress in ageing, the more increasing concerns of the public will grow about such nuclear power plants. In order to develop basic policies regarding countermeasures against ageing on nuclear power plants, in 1996, the Ministry of International Trade and Industry (MITI) summarized a report entitled 'Basic Policy on Aged Nuclear Power Plants'. The MITI also indicated that following 30 years' commercial operation of these plants, the electric utility companies should conduct technical evaluations for the ageing of all the components in the plants and to prepare detailed maintenance plans for the future. The Nuclear Safety Commission (NSC) accepted the MITI's report as appropriate in November 1998. The Commission also recommended the addition of effective countermeasures against ageing to the Periodical Safety Review and the evaluation of activities in response to ageing in order to implement such activities regularly and systematically in the future. The MITI reviewed the ageing countermeasures conducted by the electric utility companies and issued the second report entitled 'Evaluation of Countermeasures for ageing Conducted by Electric Utility Companies and Future Plans to cope with ageing'. The evaluation was made for Tsuruga Power Station Unit 1, Mihama Power Station Unit 1, and Fukushima Daiichi Nuclear Power Station Unit 1. At the same time, the MITI determined to incorporate the technical evaluations of ageing and the preparation of long-term maintenance plans into the periodical safety review in the future. The Kansai Electric Power Co., Inc., and Tokyo Electric Power Co. conducted the technical evaluations in their periodical safety reviews concerning the ageing phenomena of all their safety-related components/structures of Mihama Power Station Unit 2 and Fukushima Daiichi Nuclear Power Station Unit 2. Also, concerning ageing, they

  11. Report on Hydrogen Bus Demonstrations Worldwide, 2002-2007.

    Science.gov (United States)

    2009-03-01

    Between 2002 and 2007 more than 20 cities in the United States, Europe, China, Japan and Australia have demonstrated buses powered by fuel cells or hydrogen-fueled internal combustion engines, as well as a variety of fueling and related technologies....

  12. Capacity factor of nuclear power stations in Japan in fiscal year 1984

    International Nuclear Information System (INIS)

    Agawa, Takashi

    1985-01-01

    In Japan presently a total of 28 nuclear power plants are in operation with aggregate capacity 20,561 MW, 22 % of the total power generation. Around 1975 there occurred such as stress corrosion cracking and to repair them much time was consumed, leading to the low capacity factor. With such troubles removed, in fiscal 1984, the capacity factor on average of the nuclear power stations is 73.9 %, the highest so far. Contributing to this are long period of the continuous operation, short period of the periodical inspection and increase in the in-operation capacity factor. Contents are the following : construction state of nuclear power stations, operation state in fiscal 1984, causes leading to the high capacity factor, future directions. (Mori, K.)

  13. Current status of nuclear power generation in Japan and directions in water cooled reactor technology development

    International Nuclear Information System (INIS)

    Miwa, T.

    1991-01-01

    Electric power demand aspects and current status of nuclear power generation in Japan are outlined. Although the future plan for nuclear power generation has not been determined yet the Japanese nuclear research centers and institutes are investigating and developing some projects on the next generation of light water reactors and other types of reactors. The paper describes these main activities

  14. Cost structure analysis of commercial nuclear power plants in Japan based on corporate financial statements of electric utility companies

    International Nuclear Information System (INIS)

    Kunitake, Norifumi; Nagano, Koji; Suzuki, Tatsujiro

    1998-01-01

    In this paper, we analyze past and current cost structure of commercial nuclear power plants in Japan based on annual corporate financial statements published by the Japanese electric utility companies, instead of employing the conventional methodology of evaluating the generation cost for a newly constructed model plant. The result of our study on existing commercial nuclear plants reveals the increasing significance of O and M and fuel cycle costs in total generation cost. Thus, it is suggested that electric power companies should take more efforts to reduce these costs in order to maintain the competitiveness of nuclear power in Japan. (author)

  15. Current Status and Future Outlook of Nuclear Power Generation in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yasuro; Yoshii, Ryosuke

    2007-07-01

    For Japan, a country poor in natural resources, in light of the tough energy situation in recent times, a National Energy Strategy with energy security at its core was established in May 2006. The key point of the Strategy is nuclear power generation, and the aim is to ensure that nuclear power generation continues to account for 30 to 40 percent or more of total electricity generated even after 2030. The first step to achieving this goal is to make maximum use of existing plants (55 plants, 49580MWe), and the aim is to achieve a 60-year service life by making improvements to plant operation and maintenance, such as extending current monitoring and maintenance of plant condition, and the implementation of plant aging management. In Japan, plant construction has been continuous since the 1970s. The current new plant construction plan (13 plants, 17230MWe) is to be achieved with a concerted, cohesive national effort. In addition, in order to complete the nuclear fuel cycle, a reprocessing plant is being constructed strictly for peaceful use, and construction of a site for disposing of high-level radioactive waste is also proceeding. Development of the next generation light water reactors and fast breeder reactor cycle is also underway. (auth)

  16. Foundations of a long-term strategy for nuclear power development in Japan

    International Nuclear Information System (INIS)

    Murata, H.

    1975-01-01

    A long-term strategy for nuclear power developments in Japan is proposed. The situation in the world has greatly changed in the recent years due to the rise in oil prices as well as the considerable concern about the environmental problems caused by the nuclear power plants. Stress is being placed on the harmonization with the environmental protection rather than on the economical generation of the nuclear power. In order to meet the future requirements, five systems are given for the short, medium and long ranges beyond the year 2000. For the final stage a system is proposed that combines fusion-fission hybrid reactors with very high temperature gas cooled reactors to supply clean energy. (author)

  17. Japan and atomic co-operation

    International Nuclear Information System (INIS)

    1965-01-01

    Japan, which is host country for the Ninth Regular Session of the Agency General Conference, has an important programme of nuclear power development to meet future needs. In addition, Japan is active in other applications of atomic energy and is building up a domestic nuclear engineering industry. Japan has profited by the Agency as a channel of international cooperation, and was a party to the first bilateral agreement in which the responsibility for administering safeguards against the diversion of materials to military purposes, was transferred to the Agency. Japan has also lent support to Agency programmes by gifts, training courses, research, and the loan of experts. In 1961, the Japan Atomic Energy Commission (AEC) formulated the 'Long-Range Programme for Development and Utilization of Atomic Energy', on the basis of the economic prospects of nuclear power generation, and the conditions necessary to meet the ever-increasing domestic energy demands. According to this programme, in the light of power reactor development trends overseas, it is expected that nuclear power costs will compete with those of oil burning stations by 1970. On this basis, total nuclear power generating capacity of 1000 MW(e) will be attained by 1970, and 7000 - 9 500M(e) by 1980. As a prelude to the above programme the Japan Atomic Power Company (JAPCO) began construction in 1959 of a graphite-moderated gas-cooled nuclear power station (Improved Calder Hall type) of 165 MW(e) gross capacity. This is now progressing smoothly, and reached criticality in May 1965; it is expected to supply commercial power by the end of this year. The second nuclear power station will be built by the same company on the coast of the Japan Sea, with a light water-moderated reactor of 250 - 300 MW(e) capacity. The construction plan i s currently being pushed forward for completion in 1970. Thereafter three private utility companies - Tokyo, Kansai and Chubu Electric Companies - are doing preparatory work for

  18. Demonstration tokamak fusion power plant for early realization of net electric power generation

    International Nuclear Information System (INIS)

    Hiwatari, R.; Okano, K.; Asaoka, Y.; Shinya, K.; Ogawa, Y.

    2005-01-01

    A demonstration tokamak fusion power plant Demo-CREST is proposed as the device for early realization of net electric power generation by fusion energy. The plasma configuration for Demo-CREST is optimized to satisfy the electric breakeven condition (the condition for net electric power, P e net = 0 MW) with the plasma performance of the ITER reference operation mode. This optimization method is considered to be suitable for the design of a demonstration power plant for early realization of net electric power generation, because the demonstration power plant has to ensure the net electric generation. Plasma performance should also be more reliably achieved than in past design studies. For the plasma performance planned in the present ITER programme, net electric power from 0 to 500 MW is possible with Demo-CREST under the following engineering conditions: maximum magnetic field 16 T, thermal efficiency 30%, NBI system efficiency 50% and NBI current drive power restricted to 200 MW. By replacing the blanket system with one of higher thermal efficiency, a net electric power of about 1000 MW is also possible so that the performance of the commercial plant with Demo-CREST can also be studied from the economic point of view. The development path from the experimental reactor 'ITER' to the commercial plant 'CREST' through the demonstration power plant 'Demo-CREST' is proposed as an example of the fast track concept. (author)

  19. Spent fuel management in Japan

    International Nuclear Information System (INIS)

    Shirahashi, K.; Maeda, M.; Nakai, T.

    1996-01-01

    Japan has scarce energy resources and depends on foreign resources for 84% of its energy needs. Therefore, Japan has made efforts to utilize nuclear power as a key energy source since mid-1950's. Today, the nuclear energy produced from 49 nuclear power plants is responsible for about 31% of Japan's total electricity supply. The cumulative amount of spent fuel generated as of March 1995 was about 11,600 Mg U. Japan's policy of spent fuel management is to reprocess spent nuclear fuel and recycle recovered plutonium and uranium as nuclear fuel. The Tokai reprocessing plant continues stable operation keeping the annual treatment capacity or around 90 Mg U. A commercial reprocessing plant is under construction at Rokkasho, northern part of Japan. Although FBR is the principal reactor to use plutonium, LWR will be a major power source for some time and recycling of the fuel in LWRs will be prompted. (author). 3 figs

  20. Location and public acceptance of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi

    1978-01-01

    Analysis of problems concerning the sites of nuclear power plants and policy of the government to develop nuclear power plants are presented. At present, national consensus about atomic energy is not yet sufficient in Japan. Accordingly, it is hard to get proper location for nuclear power plants, and more effort is required. Reasons of the hindrance of atomic energy development are not same, but they are based on lack of understanding, social and local situations, and interests accompanying atomic energy development. Also, there is effects from the activities of opposition groups. The most important factor is lack of communication between those concerned with the development and residents around prospective sites. The government has investigated how to promote the atomic energy development, taking into account the present status of public acceptance. The system to promote the development of sites for nuclear power plants has been established. Political efforts for improving the welfare of residents have been made, and three laws for the purpose were approved. According to these laws, subsidiary money is paid to cities, towns and villages where power plants are located. Speeding up and smoothing of legal procedures concerning the location for power plants are also studied. (Kato, T.)

  1. The outlook for nuclear power development in Japan

    International Nuclear Information System (INIS)

    Hiraiwa, Gaishi

    1987-01-01

    The world economy has entered a new stage of growth--albeit low growth--following painful adjustments in the wake of past oil crises. At the same time, energy demand is expanding at an even slower rate, due to the structural changes in industry and improved efficiency in energy use. Furthermore, progress in the development of alternative energies and technical innovations in both the supply and use of energy have sharpened competition between energy sources. We also aim to improve even further the economy of nuclear power, within the bounds of safety and reliability, to minimize electric power generation costs by optimizing the total system for nuclear power generation including the nuclear fuel cycle. In Japan's long-term strategy for the development of nuclear power, our basic plan is to switch from light-water reactors to fast-breeder reactors (FBR), as the latter use plutonium most efficiently. Every effort is being made to have FBR reactors up and running at an early date. However, given the outlook for the development of their technology and the supply and demand situation for uranium, we estimate that this won't be achieved until 2020 or 2030. With this timetable in mind, it will be important to prepare for the coming age of FBR by mastering the technologies of and establishing the foundation necessary for plutonium utilization. To this end, we plan to expand our use of plutonium to an appropriate scale, at the earliest possible date. (J.P.N.)

  2. Advance Power Technology Demonstration on Starshine 3

    Science.gov (United States)

    Jenkins, Phillip; Scheiman, David; Wilt, David; Raffaelle, Ryne; Button, Robert; Smith, Mark; Kerslake, Thomas; Miller, Thomas

    2002-01-01

    The Starshine 3 satellite will carry several power technology demonstrations. Since Starshine 3 is primarily a passive experiment and does not need electrical power to successfully complete its mission, the requirement for a highly reliable power system is greatly reduced. This creates an excellent opportunity to test new power technologies. Several government and commercial interests have teamed up to provide Starshine 3 with a small power system using state-of-the-art components. Starshine 3 will also fly novel integrated microelectronic power supplies (IMPS) for evaluation.

  3. Effort to grapple with improvement of security and reliability of nuclear power plant. Actions of the Japan Atomic Power Company

    International Nuclear Information System (INIS)

    Ishiguma, Kazuo

    2012-01-01

    Following the Great Tohoku Earthquake in 2011, Tokai No.2 reactor was shut down automatically. Three of emergency diesel generators worked automatically at loss-of-offsite-power and began to work the cooling system of reactor. The reactor could be kept stable and safe in cold state by management of power from the gas turbine electric generator and power source car. Actions of Japan Atomic Power Company (JAPC) for cold shutdown and Tsunami were stated. Inspection results after the earthquake and testimony of staff was described. Countermeasure of improvement of safety of nuclear power station is explained by ensuring of power source and water supply, crisis management system, countermeasure of accident, ensuring, and training of workers, and action for better understanding of reliance. (S.Y.)

  4. Fiscal 2000 report on data of international joint demonstrative development of photovoltaic power generation system. Demonstrative research on photovoltaic power generation system interconnection system (Myanmar); 2000 nendo taiyoko hatsuden system kokusai kyodo jissho kaihatsu hokokusho. Taiyoko hatsuden keito renkei system jissho kenkyu (Myanmar) - shiryohen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes the fiscal 2000 report on research data of joint demonstrative development with Myanmar concerning photovoltaic power generation system interconnection system. The purpose is an operation research in the case where a small-scale electric power generation system in an remote island or the like in Japan is linked with a severely output-fluctuating power generation system using energy of nature such as photovoltaic and wind power generation. In particular, among the system control (demand side management) methods by adjustment from a loading side, ballast load control was employed that adjustably operates load of an ice machine for example. As the contents of the data, the quantity of solar radiation and wind velocity at the Chaungthar site were shown as meteorological observation data. In addition, a graph was made on the meteorological observation data at the Chaungthar and Letkhokekone sites. The paper also explains the final explanatory data for selecting the sites in implementing the demonstrative research. As to the operation method of the hybrid power generation system, assumption was made for the daytime load in four cases from 50% (30kW) to 0% (0kW) of the nighttime. Storage batteries and diesel generators were installed and used in combination. Simulation results were also presented. (NEDO)

  5. Urgent Safety Measures in Japan after Great East Japan Earthquake

    International Nuclear Information System (INIS)

    Taniura, W.; Otani, H.

    2012-01-01

    Due to tsunami triggered by the Great East Japan Earthquake on March 11, 2011, the operating and refueling reactor facilities at Fukushima Dai-ichi and Dai-ni Nuclear Power Plants of Tokyo Electric Power Co. caused a nuclear hazard. Japanese electric power companies voluntarily began to compile various urgent measures against tsunami within the week the hazard was caused. As for the urgent safety measures of each licensee, it is clarified that effective measures have been appropriately implemented as a result of the inspection of the national government, the verification based on the guideline of the Japan Society of Maintenology and the stress test. (author)

  6. Nuclear energy in Japan

    International Nuclear Information System (INIS)

    Guillemard, B.

    1978-01-01

    After having described the nuclear partners in Japan, the author analyzes the main aspects of Japan's nuclear energy: nuclear power plants construction program; developping of light water reactors; fuel cycle politics [fr

  7. Operation Strategy for a Power Grid Supplied by 100% Renewable Energy at a Cold Region in Japan

    Directory of Open Access Journals (Sweden)

    Jorge Morel

    2014-09-01

    Full Text Available This paper presents an operation strategy for a power system supplied from 100% renewable energy generation in Kitami City, a cold region in Japan. The main goal of this work is the complete elimination of the CO2 emissions of the city while keeping the power frequency within prescribed limits. Currently, the main energy related issue in Japan is the reduction of CO2 emissions without depending on nuclear generation. Also, there is a need for the adoption of distributed generation architecture in order to permit local autonomous operation of the system by the local generation of power. As a solution, this paper proposes a strategy to eliminate CO2 emissions that considers digital simulations using past hourly meteorological data and demand for one year. Results shows that Kitami City can be supplied entirely by renewable generation, reducing its CO2 emission to zero while keeping the quality of its power grid frequency within permitted limits.

  8. Survey on the state of nuclear power industry for fiscal 1974. [Japan

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-01

    Results of the survey on the nuclear power industry in Japan for one year up to March 31, 1975 are presented. Carried out each year by JAIF, the survey covering expenditures, proceeds and employes aims to grasp the status of the nuclear power industry, thereby contributing to solid growth of the industry. Of the total 1,165 companies (mining and manufacturing 1,091, electric power 11 and trading 63), 760 answered the questionnaire. Expenditures and proceeds in the mining and manufacturing industry and expenditures in the electric power industry have risen significantly due to inflation. The total expenditures are 650,000 million (42% up); the proceeds in mining and manufacturing enterprises are 279,400 million (72% up) and the dealings by trading firms are 248,100 million (17% up). The total number of employes is 33,307 (17% up).

  9. Challenge to the enhancement of LWRs in Japan

    International Nuclear Information System (INIS)

    Inoue, T.

    1996-01-01

    Japan was way behind western countries in nuclear power development. This is partly because of the defeat in the second world war which bound Japan to the ban on nuclear power development. As a result, Japan was obliged to take the policy of introducing the power reactor, and its technology, from overseas advanced countries in order to promote the development of power reactors for its own country. (orig.)

  10. An evaluation of effects of large-scale introduction of renewable power on capacities and operation modes of power generation systems in Japan

    International Nuclear Information System (INIS)

    Yamamoto, Hiromi; Yabe, Kuniaki; Bando, Shigeru; Nagai, Yu

    2014-01-01

    This study aims to establish a methodology to adequately evaluate an optimal power generation mix in Japan taking into account load frequency control (LFC) capacity and operation modes of power plants in case of a large-scale introduction of photovoltaic and wind power. For this purpose, the authors gave such an improvement to the MM-OPG model, a power generation mix optimization model, which it can deal with different operation modes of pumped hydro power in addition to those of thermal power sources. Using the model, the authors calculated the optimal power generation mix and its corresponding operation modes of Japan's power systems in 2030 with additional insights to 2020, and obtained the following results. (1) Introduction of photovoltaic and wind can be substituted for a limited capacity of conventional power sources. The introduction of 150 GW that consists of 108GW of photovoltaic and 42GW of wind in 2030 can replace no greater than 0.5 GW of conventional power sources. (2) The introduction of the renewables will affect the operation patterns of thermal and pumped hydro power generation. The capacity factor of variable speed pumped hydro will be much greater than that of fixed speed pumped hydro since the former can supply LFC at pump modes as well as generation modes. The capacity factor of LNG combined cycle plants decreases from 43% to 29% in the case with the introduction of 150GW of renewables in 2030. On the same assumption, the average cost of power generation excluding the renewables increases by up to 0.55 JPY/kWh in 2030. (author)

  11. Fiscal 1999 research result report on energy and environment technology demonstration research support project (International joint demonstration research project). Japan- Russia joint demonstration research on large-capacity long- distant DC power transmission technology; 1999 nendo daiyoryo denryoku no chokyori chokuryu soden gijutsu ni kansuru Russia kenkyu kikan tono kyodo jissho kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Under the assumption of a large-capacity DC power transmission model project in the Far East and Siberia districts, technical study was made on the basic design of the project, considering selection of concrete power generation and consumption sites and power transmission routes, power transmission/transformation equipment, cables, and environmental impact. Study was also made on its applicability to similar projects in Japan. The model project aims at integration of Eastern Integrated Power System in the Far East and Russian Unified Power System, and development of abundant undeveloped hydraulic and tidal power generation in the Far East. The study result showed that (1) construction of the high-voltage DC power transmission (HVDC) system of model project class voltage and capacity in Eastern Siberia is possible technically enough, (2) the total construction cost of the model project scheduled to be put into operation in 2025 amounts to nearly $4.7 billion, and (3) the model project is environment-friendly without any CO{sub 2} gas emission because of hydraulic and tidal power generation. (NEDO)

  12. Some problems on domestic technology development from a point of fabricator of nuclear power plant. [Japan

    Energy Technology Data Exchange (ETDEWEB)

    Watamori, T [Hitachi Ltd., Tokyo (Japan)

    1976-06-01

    During past 20 years, the nuclear power industry in Japan has introduced foreign technology, digested it in a short period, and continued to research and develop domestic technology. Now, 95% of the machinery and equipments for nuclear power generation with light water reactors can be produced domestically, and some technologies are going to be exported. However, the nuclear power industry is still in a severe environment. The progress of the development of nuclear power plants passed the periods of organizational preparation, the construction of research reactors, the import of foreign technologies and reactors for practical use, and the construction of domestically produced reactors for practical use. The supplying capacity of the nuclear power industry in Japan reached 6 units of 1,000 MW yearly, but in order to meet the long term plan of nuclear power generation, this capacity must be further enhanced. The problems in the promotion of domestic production are the establishment of independent technologies, the promotion of standardization, the strengthening of business basis, the upbringing of relating enterprises, and the acceleration of national projects. Since the energy crisis, the trend of filling up energy demand with nuclear power generation became conspicuous, but for the expansion of export, the problems of safety guarantee, nuclear fuel cycle, and financial measures must be solved with government aid.

  13. APWR - Mitsubishi, Japan/Westinghouse, USA

    International Nuclear Information System (INIS)

    Aeba, Y.; Weiss, E.H.

    1999-01-01

    Nuclear power generated by light water reactors accounts for approximately 1/3 of Japan's power supply. Development of the Advanced Pressurized Water Reactor (APWR) was initiated by five PWR electric power companies (Hokkaido, Kansai, Shikoku, Kyushu and Japan Atomic Power), Mitsubishi Heavy Industries, and Westinghouse, with a view to providing a nuclear power source to meet future energy demand in Japan. The APWR was developed based on the results of the Improvement and Standardization Program, promoted by the Ministry of International Trade and Industry, with reconsideration of the needs of age, such as construction cost reduction, enhanced safety and increased reliability. One of the important concepts of the APWR is its large power rating that decreases the construction cost per unit of electric generation capacity. Though the electric output was lower at the early stage of basic design than it is now, uprating to approximately 1530 MW is achieved based on the results of design progress and high efficiency improvements to the steam turbine and reactor coolant pumps. Furthermore, the APWR remarkably enhances reliability, safety operability and maintainability by introducing new technologies that include a radial reflector and advanced accumulators. The first APWR is planned to be built at Tsuruga No. 3 and No. 4 by the Japan Atomic Power Company and will be the largest commercial operation plant in the early 21st century. (author)

  14. Demonstration tokamak power plant

    International Nuclear Information System (INIS)

    Abdou, M.; Baker, C.; Brooks, J.; Ehst, D.; Mattas, R.; Smith, D.L.; DeFreece, D.; Morgan, G.D.; Trachsel, C.

    1983-01-01

    A conceptual design for a tokamak demonstration power plant (DEMO) was developed. A large part of the study focused on examining the key issues and identifying the R and D needs for: (1) current drive for steady-state operation, (2) impurity control and exhaust, (3) tritium breeding blanket, and (4) reactor configuration and maintenance. Impurity control and exhaust will not be covered in this paper but is discussed in another paper in these proceedings, entitled Key Issues of FED/INTOR Impurity Control System

  15. Current status of waste power generation in Japan and its impact on carbon dioxide reduction

    International Nuclear Information System (INIS)

    Takaoka, Masaki; Takeda, Nobuo; Yamagata, Naruo; Masuda, Takahiro

    2010-01-01

    In this research, we discuss current status of waste power generation (WPG) in Japan and various scenarios about the indirect reduction of carbon dioxide by WPG. The numbers of WPG facilities are 291 domestically as of 2006. Power generation capacity achieves 1584 MW and power generation amount is 7179 G Wh/ year. When we consider to reduce the used electricity for operation and office by WPG and emission coefficient of electricity for operation and office is to be 0.555 kg-CO 2 / kWh in default value, then carbon dioxide reduction amount is calculated to 3.9 million tons, which is equivalent to 26.7 % of 14.6 million tons of carbon dioxide emitted by municipal solid waste incinerator (MSWI) in 2005. Using various existing technological options, it finds that the efficiency of power generation will achieve more than 20 % in MSWI with the power generation efficiency of 20% as a feasible assumption, the total power generation amount and the carbon dioxide reduction amount will become 16540 G Wh/ year and 9.18 million tons, respectively. So, it is equivalent to 62.7% of carbon dioxide emitted by MSWI. Also, the ratio of additional reduction amount of carbon dioxide by WPG to total additional reduction amount in Japan during the first commitment period is 26.3%, which suggests that the promotion of WPG in MSWI is one of effective options for prevention of global warming. (author)

  16. The socio-political economy of nuclear power development in Japan and South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, Scott Victor [Graduate School of Public Policy, University of Tokyo, 616 Administration Bureau Building No. 2, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo (Japan); Sovacool, Benjamin K. [Lee Kuan Yew School of Public Policy, National University of Singapore, 469C Bukit Timah Road, Singapore 259772 (Singapore)

    2010-12-15

    This paper analyzes the socio-cultural, political and economic conditions prevalent during the inception of nuclear power programs in Japan and South Korea in order to identify commonalities which support nuclear power program expansion. The study identifies six factors as having a clear influence on supporting nuclear power development: (1) strong state involvement in guiding economic development; (2) centralization of national energy policymaking and planning; (3) campaigns to link technological progress with national revitalization; (4) influence of technocratic ideology on policy decisions; (5) subordination of challenges to political authority, and (6) low levels of civic activism. The paper postulates that insights from this study can be used to assess the propensity of nations which have the emergent capacity to support nuclear power development to actually embark on such programs. (author)

  17. A framework of risk-informed seismic safety evaluation of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Kondo, S.; Sakagami, M.; Hirano, M.; Shiba, M.

    2001-01-01

    A framework of risk-informed seismic design and safety evaluation of nuclear power plants is under consideration in Japan so as to utilize the progress in the seismic probabilistic safety assessment methodology. Issues resolved to introduce this framework are discussed after the concept, evaluation process and characteristics of the framework are described. (author)

  18. Some problems of recent 'All Japan' strategy for nuclear power exports. Identification of its problems and a proposal for improvement based on international development strategies of the major three categories of businesses constituting nuclear power industry

    International Nuclear Information System (INIS)

    Tanabe, Tomoyuki

    2011-01-01

    In Japan, 'All Japan' strategy for nuclear power exports, which arranges engineering companies and electric utilities to sell nuclear power plants providing engineering, procurement, construction and operation abroad, with governmental support of expanded trade insurance, is strongly promoted today as a part of Japan's national growth strategy. However, 'All Japan' strategy generates some problems because the strategy does not consider difference of business strategies concerning international development of each enterprise. This report identifies problems of 'All Japan' strategy based on environmental scanning of major three categories of businesses, which are big nuclear technology companies, vendors and electric utilities constituting nuclear power industry. And this report proposes the way to improve the strategy as follows to resolve those problems. 1) It is necessary to assess the risk of the project that is to be undertaken by 'All Japan' approach carefully. 2) Governmental support for vendors is also needed because the vendors are source of strength of international development of the nuclear industry in Japan. 3) Where the cooperation among the electric utilities is necessary, imposing the risk burden on the utilities should be avoided. 4) It is necessary for government to take measures about 'Weakness' and 'Threat' that each category of business commonly faces. (author)

  19. Water electrolysis plants for hydrogen and oxygen production. Shipped to Tsuruga Power Station Unit No.1, and Tokai No.2 power station, the Japan Atomic Power Co

    International Nuclear Information System (INIS)

    Ueno, Syuichi; Sato, Takao; Ishikawa, Nobuhide

    1997-01-01

    Ebara's water electrolysis plants have been shipped to Tsuruga Power Station Unit No.1, (H 2 generation rate: 11 Nm 3 /h), and Tokai No.2 Power Station (H 2 generation rate: 36 Nm 3 /h), Japan Atomic Power Co. An outcome of a business agreement between Nissho Iwai Corporation and Norsk Hydro Electrolysers (Norway), this was the first time that such water electrolysis plants were equipped in Japanese boiling water reactor power stations. Each plant included an electrolyser (for generating hydrogen and oxygen), an electric power supply, a gas compression system, a dehumidifier system, an instrumentation and control system, and an auxiliary system. The plant has been operating almost continuously, with excellent feedback, since March 1997. (author)

  20. Comparison between Japan and the United States in the frequency of events in equipment and components at nuclear power plants

    International Nuclear Information System (INIS)

    Shimada, Yoshio

    2007-01-01

    The Institute of Nuclear Safety System, Incorporated (INSS) conducted trend analyses until 2005 to compare the frequency of events in certain electrical components and instrumentation components at nuclear power plants between Japan and the United States. The results revealed that events have occurred approximately an order of magnitude less often in Japan than in the United States. This paper compared Japan and the United States in more detail in terms of how often events - events reported under the reporting standards of the Nuclear Information Archive (NUCIA) or the Institute of Nuclear Power Operations (INPO) - occurred in electrical components, instrumentation components and mechanical components at nuclear power plants. The results were as follows: (1) In regard to electrical components and instrumentation components, events have occurred one-eighth less frequently in Japan than in the United States, suggesting that the previous results were correct. (2) Events have occurred more often in mechanical components than electrical components and instrumentation components in both Japan and the United States, and there was a smaller difference in the frequency of events in mechanical components between the two countries. (3) Regarding mechanical components, it was found that events in the pipes for critical systems and equipment, such as reactor coolant systems, emergency core cooling systems, instrument and control systems, ventilating and air-conditioning systems, and turbine equipment, have occurred more often in Japan than in the United States. (4) The above observations suggest that there is little scope for reducing the frequency of events in electrical components and instrumentation components, but that mechanical components such as pipes for main systems like emergency core cooling systems and turbine equipment in the case of PWRs, could be improved by re-examining inspection methods and intervals. (author)

  1. WTEC Panel on Power applications of superconductivity in Japan and Germany. Final report

    International Nuclear Information System (INIS)

    Shelton, R.D.; Larbalestier, David; Blaugher, Richard D.; Schwall, Robert E.; Sokolowski, Robert S.; Suenaga, Masaki; Willis, JefFR-ey O.

    1997-01-01

    In early 1996, the U.S. Department of Energy and National Science Foundation asked the World Technology Evaluation Center (WTEC) to assemble a panel to assess, relative to the United States, how Japan and Germany are responding to the challenge of applying superconductivity to power and energy applications. Although the study was focused mostly on the impact of high-temperature superconductors (HTS) on the power applications field, the WTEC panel also looked at many applications for low-temperature superconductors (LTS). The market for low-temperature superconductor applications is well established, as is that for superconducting electronics, for which there is a separate WTEC panel. The panel on power applications of superconductivity was commissioned to identify the roles of public organizations, industry, and academia for advancing power applications of superconductivity, taking both a present and a long-term view

  2. WTEC Panel on Power applications of superconductivity in Japan and Germany. Final report

    CERN Document Server

    Shelton, R D; Larbalestier, D; Schwall, R E; Sokolowski, R S; Suenaga, M; Willis, J E O

    1997-01-01

    In early 1996, the U.S. Department of Energy and National Science Foundation asked the World Technology Evaluation Center (WTEC) to assemble a panel to assess, relative to the United States, how Japan and Germany are responding to the challenge of applying superconductivity to power and energy applications. Although the study was focused mostly on the impact of high-temperature superconductors (HTS) on the power applications field, the WTEC panel also looked at many applications for low-temperature superconductors (LTS). The market for low-temperature superconductor applications is well established, as is that for superconducting electronics, for which there is a separate WTEC panel. The panel on power applications of superconductivity was commissioned to identify the roles of public organizations, industry, and academia for advancing power applications of superconductivity, taking both a present and a long-term view.

  3. Decontamination and radioactivity measurement on building surfaces related to dismantling of Japan power demonstration reactor (JPDR)

    International Nuclear Information System (INIS)

    Hatakeyama, Mutsuo; Tachibana, Mitsuo; Yanagihara, Satoshi

    1997-12-01

    In the final stage of dismantling activities for decommissioning a nuclear power plant, building structures have to be demolished to release the site for unrestricted use. Since building structures are generally made from massive reinforced concrete materials, it is not a rational way to treat all concrete materials arising from its demolition as radioactive waste. Segregation of radioactive parts from building structures is therefore indispensable. The rational procedures were studied for demolition of building structures by treating arising waste as non-radioactive materials, based on the concept established by Nuclear Safety Commission, then these were implemented in the following way by the JPDR dismantling demonstration project. Areas of the JPDR facilities are categorized into two groups : possibly contaminated areas, and possibly non-contaminated areas, based on the document of the reactor operation. Radioactivity on the building surfaces was then measured to confirm that the qualitative categorization is reasonable. After that, building surfaces were decontaminated in such a way that the contaminated layers were removed with enough margin to separate radioactive parts from non-radioactive building structures. Thought it might be possible to demolish the building structures by treating arising waste as non-radioactive materials, confirmation survey for radioactivity was conducted to show that there is no artificial radioactive nuclides produced by operation in the facility. This report describes the procedures studied on measurement of radioactivity and decontamination, and the results of its implementation in the JPDR dismantling demonstration project. (author)

  4. Long-term research in Japan: amorphous metals, metal oxide varistors, high-power semiconductors and superconducting generators

    Energy Technology Data Exchange (ETDEWEB)

    Hane, G.J.; Yorozu, M.; Sogabe, T.; Suzuki, S.

    1985-04-01

    The review revealed that significant activity is under way in the research of amorphous metals, but that little fundamental work is being pursued on metal oxide varistors and high-power semiconductors. Also, the investigation of long-term research program plans for superconducting generators reveals that activity is at a low level, pending the recommendations of a study currently being conducted through Japan's Central Electric Power Council.

  5. The current uranium exploration activities of the Power Reactor and Nuclear Fuel Development Corporation (PNC), Japan

    International Nuclear Information System (INIS)

    Miyada, H.

    2001-01-01

    As of November 1996, Japan's total installed commercial nuclear power generation capacity was 42 GW(e), accounting for 34% of total electric energy generation. By 2010, Japan intends to have an installed electricity generation capacity of 70.5 GW(e). This will increase the country's demand for nat Ural uranium from 7,700 t U in 1994 (13% of the world consumption) to 13,800 t U in 2010 (17%-19% of the world projected consumption). However, Japan's known uranium resources at Ningyo-Toge and Tono deposits, are estimated at roughly only 6,600 t U. The Long-term Programme for Research, Development and Utilization of Nuclear Energy (adopted in 1994) calls for diversification through long-term purchasing contracts, independent exploration and involvement in mining vent Ures, with the objective of ensuring independence and stability in Japan's development and utilization of nuclear energy. The Power Reactor and Nuclear Fuel Development Corporation (PNC) has been commissioned to carry out the task of independent exploration. PNC is carrying out exploration projects in Canada, Australia, USA and China targeting unconformity related type deposits with an eye to privatizing them. Currently about 40,000 t U of uranium resources are held by PNC. PNC has been carrying out the following related activities: (1) Reference surveys on uranium resources to delineate the promising areas; (2) Development of uranium exploration technology; (3) Information surveys on the nuclear industries to project long-term supply and demand; (4) International Cooperation programme on uranium exploration with Asian countries. (author)

  6. Japan's new energy policy

    International Nuclear Information System (INIS)

    2014-11-01

    Japan's energy policy is undergoing fundamental changes. The accident at TEPCO's Fukushima Daiichi nuclear power plant questions the future contribution of nuclear power in the national energy mix. Growing imports of fossil fuels to replace the lost nuclear capacity inflated energy prices and raise economic and energy security challenges. At the same time, the US shale gas and oil revolution is reshaping the global energy scene. Japan expects to take advantage of the trend to eliminate the 'Asian premium' on natural gas prices and expand cheaper natural gas consumption. These developments have driven the Government of Japan to review its energy policy from scratch and adopt a new Strategic Energy Plan. This new policy has far reaching implications for gas and coal development in Japan but also for the international markets as Japan is the world's largest LNG importer and the second largest coal importer. This document summarizes the key findings of a new report by CEDIGAZ 'Japan's new energy policy: In search for stable and competitive energy supply'. The report analyzes the current changes taking place on the gas and coal markets in Japan, in light of the new energy policy adopted in April 2014, and in particular the decision to restart safe nuclear power plants and push forward electricity market reforms

  7. Concentrating Solar Power Gen3 Demonstration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Mehos, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Vidal, Judith [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wagner, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ma, Zhiwen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ho, Clifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kolb, William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Andraka, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kruizenga, Alan [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-01-01

    Today's power-tower concentrating solar power (CSP) technology exists in large part as a result of Department of Energy (DOE) and utility industry funding of demonstration systems in the 1980s and 1990s. Today's most advanced towers are integrated with molten-salt thermal energy storage, delivering thermal energy at 565 degrees C for integration with conventional steam-Rankine cycles. The supercritical carbon dioxide power cycle has been identified as a likely successor to the steam-Rankine power cycle due to its potential for high efficiency when operating at elevated temperatures of 700 degrees C or greater. Over the course of the SunShot Initiative, DOE has supported a number of technology pathways that can operate efficiently at these temperatures and that hold promise to be reliable and cost effective. Three pathways - molten salt, particle, and gaseous - were selected for further investigation based on a two-day workshop held in August of 2016. The information contained in this roadmap identifies research and development challenges and lays out recommended research activities for each of the three pathways. DOE foresees that by successfully addressing the challenges identified in this roadmap, one or more technology pathways will be positioned for demonstration and subsequent commercialization within the next ten years. Based on current knowledge of the three power tower technologies, all three have the potential to achieve the SunShot goal of 6 cents/kilowatt-hour. Further development, modeling, and testing are now required to bring one or more of the technologies to a stage where integrated system tests and pilot demonstrations are feasible.

  8. Practical aspects of quality assurance in nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Inoue, Kunio

    1980-01-01

    Based on the occurrence of accidents caused by inappropriateness in quality assurance in nuclear power plants, the nuclear power plant quality assurance investigation committee was organized in January, 1980, to examine comprehensively what the quality assurance should be from designing through operating stages of the equipments and systems of nuclear power stations, in order to prevent the recurrence of such accidents, to secure the safety and to improve the reliability. The committee established three subcommittees: the first is in charge of the investigation of quality assurance system based on the analyses of accidents, failures or abnormal events, the second in charge of the investigation of quality assurance system in nuclear industries, and the third in charge of the investigation by comparing domestic legal control and the organization for implementing inspection with those of foreign countries. In nuclear power plants in Japan, approximately 20 accidents or failures have occurred every year in the last 3 or 4 years. Many of them seem to be caused by quality assurance problems such as the misuse of materials or the inadequacy in machining. In addition, to this paper the tables showing the general quality assurance activity in, and the present status of permission, approval and inspection for Japanese nuclear power plants are attached. (Wakatsuki, Y.)

  9. Aging countermeasures for nuclear power plants in Japan and PLEC's activities

    International Nuclear Information System (INIS)

    Tajima, K.; Ishikawa, M.; Koyama, M.

    2002-01-01

    Full text: This summarizes aging countermeasure program of the nuclear power plants performed by the Japanese Government and industries, and describes current R and D program and utilization of the research results for the aged plants. The regulatory bodies (NISA of METI: the Nuclear Industry Safety Agency of the Ministry of Economy, Trade and Industry, MITI was reorganized to the Ministry of Economy, Trade and Industry (METI) in 2001) reviewed the results of technical assessments of aging phenomena of structures and components of nuclear power plants, conducted by the electric utilities. Major technical research projects related to aging of nuclear power plants in Japan have been conducted by Japan Power Engineering and Inspection Corporation (JAPEIC) under the asepses of the regulatory bodies. The results of the research projects were applied to the review and technical assessments. Environmental Fatigue Tests of Nuclear Power Plants Materials for Reliability Verification Project (EFT Project), has been conducting the fatigue tests for carbon steels, low alloy steels and austenitic steels under the simulated light water reactor (LWR) water environmental conditions. Based on the results, EFT project developed the models for evaluating fatigue initiation life reduction in LWR environment. The models were applied to the fatigue evaluation in the technical assessments mentioned above. On the other hand, the Nuclear Power Plant Life Engineering Center (PLEC) entrusted by NISA is conducting to coordinate planning of technology research on aging, to integrate technologies and knowledge of aging for management and assessment, to promote practical applications of results of technical research, and to promote sharing of information on aging technology. As to codes and standards the PLEC plans to develop them, based on the research results of the national projects performed by JAPEIC, with completion of the projects in order. Current planning technical standard is based to

  10. A state-of-the art on decommissioning of nuclear facilities in Japan

    International Nuclear Information System (INIS)

    Park, Seung Kook; Kim, Hee Reyoung; Chung, Un Soo; Jung, Ki Jung

    2002-05-01

    While proceeding the KRR-1 and 2 decommissioning project, we are carried out study for the state of the art on decommissioning of nuclear facilities in Japan. Also, we are studied for the research reactors and commercial power plant that has the object of decommissioning, and for the government and the organization related on decommissioning operation. We are investigated for decommissioning activities of nuclear facilities achieved by JAERI, and collected the information and data for decommissioning techniques and computational system through the JPDR(Japan Power Demonstration Reactor) decommissioning activities. Such techniques are applying for Tokai Power Station began the decommissioning project from last year, and for Fugen Nuclear Power Station to be planned the decommissioning from 2003. Recent techniques for decommissioning was acquired by direct contact. The status of the treatment for decommissioning waste and the disposal facility for the very low-level radioactive concrete wastes was grasped

  11. Overview of Nuclear Fuel-Cycle Policy and the Role of the Nuclear Safety Commission in Japan

    International Nuclear Information System (INIS)

    Higashi, K.; Nishinosono, S.

    2008-01-01

    Since the first generation of electricity by the Japan Power Demonstration Reactor in 1963, Japan has been extensively developing nuclear technologies solely for peaceful purposes. The country now operates 55 nuclear power plants consisted of BWRs and PWRs. Although Japan is one of the largest consumers of energy in the world, the country has very limited domestic energy resources. Therefore, Japan considers the nuclear power generation very important as plutonium and uranium recovered from spent fuels can be used in new nuclear fuels as quasi-domestic energy resource. For recycle use of nuclear fuels, the establishment of nuclear fuel recycling technologies including reprocessing technologies is essential. Since 1977, Japan has been recovering plutonium and uranium by a small scale reprocessing plant built by French technology. Recently, 800 ton/year scale commercial reprocessing plant is under construction. After overcoming the current technical problem in the vitrification facility, the commercial plant is expected to be in full operation soon. Concerning the disposal of radioactive wastes, which arises from nuclear utilization, sallow land disposal has already been implemented and medium depth (50 to 100 m) disposal plan is in progress. For high-level waste, possible candidate sites for disposal are being sought. In this paper, the statuses of nuclear power plants and of nuclear fuel cycle facilities in Japan are summarized. As safety is essential for these nuclear installations, safety regulations in Japan are briefly presented from the viewpoint of Nuclear Safety Commission. Furthermore, as the most significant recent safety issue in Japan, the impacts of the large near-site earthquake hit Kashiwazaki-Kariwa NPP last July are reported.(author)

  12. Technological solution for the protection of the environment (in the Central Research Inst. of Electric Power Industry, Tokyo, Japan)

    International Nuclear Information System (INIS)

    Glamochanin, Vlastimir

    1997-01-01

    As we approach the 21 century, the world finds itself confronting challenges regarding global-scale issues: economic development, the use of energy and natural resources, and environmental preservation. Moreover, these issues do not exist in a vacuum; they are all interrelated. They exert delicate effects on each other and can not be considered separately. If we continue as we have in the past, the earth will face an unprecedented crisis in the middle of coming century, in conjunction with the population explosion. (Susumu Yoda, President of the Central Research Inst. of Electric Power Industry, Tokyo, Japan). This paper presents a brief review of the research policy of the Japan Central Research Inst. of Electric Power Industry, regarding environmental preservation

  13. Demonstration project: Oxy-fuel combustion at Callide-A plant

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Keiji; Misawa, Nobuhiro; Kiga, Takashi; Spero, Chris

    2007-07-01

    Oxy-fuel combustion is expected to be one of the promising systems on CO2 recovery from pulverized-coal power plant, and enable the CO2 to be captured in a more cost-effective manner compared to other CO2 recover process. An Australia-Japan consortium was established in 2004 specifically for the purpose of conducting a feasibility study on the application of oxy-fuel combustion to an existing pulverized-coal power plant that is Callide-A power plant No.4 unit at 30MWe owned by CS Energy in Australia. One of the important components in this study has been the recent comparative testing of three Australian coals under both oxy-fuel and air combustion conditions using the IHI combustion test facilities. The tests have yielded a number of important outcomes including a good comparison of normal air with oxy-fuel combustion, significant reduction in NOx mass emission rates under oxy-fuel combustion. On the basis of the feasibility study, the project under Australia-Japan consortium is now under way for applying oxy-fuel combustion to an existing plant by way of demonstration. In this project, a demonstration plant of oxy-fuel combustion will be completed by the end of 2008. This project aims at recovering CO2 from an actual power plant for storage. (auth)

  14. Nuclear power plants making a comeback in Japan; El retorno de la centrales nucleares en Japon

    Energy Technology Data Exchange (ETDEWEB)

    Torralbo, J. R.

    2016-08-01

    We reproduce in this magazine the interesting article published by the president of the SNE in issue 46 of Cuadernos de Energia in October 2015, which describes the events that have taken place since the March 11, 2011 earthquake in Japan, the largest in its history, and the subsequent tsunami, which affected the Fukushima power plant, as well as the measures implemented since then and how some of this country nuclear power plants are being started up again. (Author)

  15. Liquid hydrogen in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yasumi, S. [Iwatani Corp., Osaka (Japan). Dept. of Overseas Business Development

    2009-07-01

    Japan's Iwatani Corporation has focused its attention on hydrogen as the ultimate energy source in future. Unlike the United States, hydrogen use and delivery in liquid form is extremely limited in the European Union and in Japan. Iwatani Corporation broke through industry stereotypes by creating and building Hydro Edge Co. Ltd., Japan's largest liquid hydrogen plant. It was established in 2006 as a joint venture between Iwatani and Kansai Electric Power Group in Osaka. Hydro Edge is Japan's first combined liquid hydrogen and ASU plant, and is fully operational. Liquid oxygen, liquid nitrogen and liquid argon are separated from air using the cryogenic energy of liquefied natural gas fuel that is used for power generation. Liquid hydrogen is produced efficiently and simultaneously using liquid nitrogen. Approximately 12 times as much hydrogen in liquid form can be transported and supplied as pressurized hydrogen gas. This technology is a significant step forward in the dissemination and expansion of hydrogen in a hydrogen-based economy.

  16. Recent developments: Japan and Australia

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Recent developments in the nuclear industry in Japan and Australia are briefly reviewed. Topics discussed include: the world energy situation; and nuclear power generation trends and completion the nuclear fuel cycle in Japan. Recent events that suggest possible policy changes in Australia are briefly discussed

  17. Determining barriers to developing geothermal power generation in Japan: Societal acceptance by stakeholders involved in hot springs

    International Nuclear Information System (INIS)

    Kubota, Hiromi; Hondo, Hiroki; Hienuki, Shunichi; Kaieda, Hideshi

    2013-01-01

    After many years of stagnant growth in geothermal power generation, development plans for new geothermal plants have recently emerged throughout Japan. Through a literature review, we investigated the relationships between the principal barriers to geothermal development and we thereby analyzed the deciding factors in the future success of such enterprises. The results show that the societal acceptance of geothermal power by local stakeholders is the fundamental barrier as it affects almost all other barriers, such as financial, technical, and political risks. Thus, we conducted semi-structured interviews with 26 stakeholders including developers, hot spring inn managers, and local government officials. Some hot spring inn managers and local government officials noted that they have always been strongly concerned about the adverse effects of geothermal power generation on hot springs; their opposition has delayed decision-making by local governments regarding drilling permits, prolonged lead times, and caused other difficulties. A key reason for opposition was identified as uncertainty about the reversibility and predictability of the adverse effects on hot springs and other underground structures by geothermal power production and reinjection of hot water from reservoirs. Therefore, we discuss and recommend options for improving the risk management of hot springs near geothermal power plants. - Highlights: • We clarify relationships between barriers to geothermal power development in Japan. • Local acceptance by hot spring managers is the most prominent barrier. • Uncertainty of reversibility and predictability induces low acceptance. • Risk transfer system and dialogue are needed to alleviate concerns

  18. Urgent Safety Measures in Japan after Great East Japan Earthquake

    International Nuclear Information System (INIS)

    Taniura, Wataru; Otani, Hiroyasu

    2012-01-01

    Due to tsunami triggered by the Great East Japan Earthquake, the operating and refueling reactor facilities at Fukushima Dai-ichi and Dai-ni Nuclear Power Plants caused a nuclear hazard. Given the fact, Japanese electric power companies voluntarily began to compile various urgent measures against tsunami. And then the Nuclear and Industrial Safety Agency (NISA) ordered the licensees to put into practice the voluntarily compiled urgent safety measures, in order to ensure the effectiveness of the means for recovering cooling functions along with avoiding the release of radioactive substances to the possible minimum, even if a huge tsunami following a severe earthquake hits nuclear power plants. The following describes the state and the effect of the urgent safety measures implemented for 44 reactors (under operation) and 1 reactor (under construction) in Japan and also describes the measures to be implemented by the licensees of reactor operation in the future.

  19. [The Chinese nuclear test and 'atoms for peace' as a measure for preventing nuclear armament of Japan: the nuclear non-proliferation policy of the United States and the introduction of light water reactors into Japan, 1964-1968].

    Science.gov (United States)

    Yamazaki, Masakatsu

    2014-07-01

    Japan and the United States signed in 1968 a new atomic energy agreement through which US light-water nuclear reactors, including those of the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company, were to be introduced into Japan. This paper studies the history of negotiations for the 1968 agreement using documents declassified in the 1990s in the US and Japan. After the success of the Chinese nuclear test in October 1964, the United States became seriously concerned about nuclear armament of other countries in Asia including Japan. Expecting that Japan would not have its own nuclear weapons, the US offered to help the country to demonstrate its superiority in some fields of science including peaceful nuclear energy to counter the psychological effect of the Chinese nuclear armament. Driven by his own political agenda, the newly appointed Prime Minister Eisaku Sato responded to the US expectation favorably. When he met in January 1965 with President Johnson, Sato made it clear that Japan would not pursue nuclear weapons. Although the US continued its support after this visit, it nevertheless gave priority to the control of nuclear technology in Japan through the bilateral peaceful nuclear agreement. This paper argues that the 1968 agreement implicitly meant a strategic measure to prevent Japan from going nuclear and also a tactic to persuade Japan to join the Nuclear Non -Proliferation Treaty.

  20. Recovery of mercury and other metals from used dry battery cells -the CJC demonstration plant in Hokkaido, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Naomichi; Gotoh, Sukehiro; Yajima, Takenori

    1987-01-01

    The present paper deals with a project associated with the Clean Japan Center Demonstration plant, which was financially supported by the National Government and constructed recently at Itomuka, Hokkaido, for the purpose of the proper disposal of and resource recovery from mainly used dry battery cells or wastes containing mercury (Hg) and other hazardous substances. The process details are also given.

  1. Decommissioning project feedback experience in the Japan Atomic Energy Research Institut

    International Nuclear Information System (INIS)

    Yanagihara, S.; Tachibana, M.; Miyajima, K.

    2003-01-01

    Since starting the research and development program for peaceful use of nuclear energy in 1950's, various research and demonstration facilities have been constructed in research organizations, universities and commercial sectors in Japan. Some of the nuclear facilities constructed in the early stage of research and development have been retired to be decommissioned because of completion of the initial objectives in the Japan Atomic Energy Research Institute (JAERI). On the other hand, since the first commercial operation of nuclear power plant (1968), the number of nuclear power plants has increased up to 52 plants operating as of August 2003 in Japan. The shear of nuclear energy accounts approximately for 35% of electricity generation in total at present time. However, several nuclear power plants have been operated for more than 25 years and two nuclear power plants are expected to be finally shutdown by 2010 to be eventually decommissioned. The Tokai Power Station, the oldest Japanese nuclear power plant operated by the Japan Atomic Power Company, was permanently shutdown from March 1998 and it is in decommissioning stage at this time. The Fugen, which is advanced thermal reactor operated by the Japan Nuclear Cycle Development Institute (JNC), was finally shutdown on March, 2003 after 25 years operation to be decommissioned. In addition, relating to planned unification between JAERI and JNC in 2005, the studies have been in progress on decommissioning and radioactive waste treatment and disposal; the cost was estimated to be 10 to 30 billion Japanese yens per year during 80 years for decommissioning of nearly 200 nuclear facilities. Decommissioning of nuclear facilities is thus getting to be one of important issues in Japan. Decommissioning of nuclear facilities might be possible using conventional and/or partially improved technology. However, reviewing project feedback experience on decommissioning and decontamination might contribute to solve various issues

  2. Experience with, and programme of, FBR and HWR development in Japan

    International Nuclear Information System (INIS)

    Iida, M.; Sawai, S.; Nomoto, S.

    1983-01-01

    Nuclear power generation in Japan is moving forward on the long-term development programme of nuclear power from the LWR to the FBR, essentially in the same way as in other advanced nuclear countries. In this development programme the unique HWR is also included; it can use plutonium produced in LWRs together with depleted uranium before the introduction of commercial FBRs. This report describes the status of the FBR and HWR development project being carried out by the Power Reactor and Nuclear Fuel Development Corporation (PNC) based upon the Long-Term Programme on Research, Development and Utilization of Nuclear Energy in Japan. Operational experience and technical results are shown for the experimental fast reactor JOYO (100 MW(th)), which reached initial criticality in 1977. The status of the 280 MW(e) prototype reactor MONJU, under construction as of 1982, is described. The conceptual design of the subsequent 1000 MW(e) demonstration plant is outlined, as is additional future planning. Research and development results, mainly carried out at Oarai Engineering Center of PNC, are shown. The 165 MW(e) prototype FUGEN is a heavy-water-moderated, boiling-light-water-cooled, pressure-tube-type reactor which uses plutonium mixed-oxide fuel. This report describes the relationship of the fuel cycle to the HWR in Japan and also discusses the operational experience of the prototype FUGEN, which has operated since 1979. Also described is the design of the 600 MW(e) demonstration plant and the programme of related research and development. (author)

  3. Wave Power Demonstration Project at Reedsport, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Mekhiche, Mike [Principal Investigator; Downie, Bruce [Project Manager

    2013-10-21

    Ocean wave power can be a significant source of large‐scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity is then conditioned and transmitted ashore as high‐voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon‐based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take‐off subsystem are complete; additionally the power take‐off subsystem has been successfully integrated into the spar.

  4. Development, operational experience and implications for future design of FBRS in Japan

    International Nuclear Information System (INIS)

    Sawai, S.; Hori, M.

    1990-01-01

    Joyo, the 100 MW t experimental reactor, has been successfully operated since 1977, and Monju, the 280 MW e prototype FBR, is under construction, with the first criticality planned for 1991. To promote FBR research and development efficiently - including the demonstration FBR (DFBR) programme - a steering committee for R and D was organized in 1986 by the Japan Atomic Power Company, the Power Reactor and Nuclear Fuel Development Corporation, the Japan Atomic Energy Research Institute and the Central Research Institute of Electric Power Industry. A design study of the DFBR is now underway to define its basic specifications by 1990. R and D for Monju, DFBR and future commercial FBRs has been done (1) to improve key technologies developed through the Joyo and Monju programmes; (2) to develop innovative technologies to make FBRs commercial; (3) to promote FBR development in conjunction with the development of the FBR fuel cycle. (author)

  5. NRC assessment of the Department of Energy annealing demonstration project

    International Nuclear Information System (INIS)

    Jackson, D.A.; Malik, S.N.

    1997-01-01

    Thermal annealing is the only known method for mitigating the effects of neutron irradiation embrittlement in reactor pressure vessel (RPV) steels. In May 1996, the US Department of Energy (DOE) in conjunction with the American Society of Mechanical Engineers, Westinghouse, Cooperheat, Electric Power Research Institute (with participating utilities), Westinghouse Owner's Group, Consumers Power, Electricite' de France, Duquesne Light and the Central Research Institute of the Electric Power Industry (Japan) sponsored an annealing demonstration project (ADP) at Marble Hill. The Marble Hill Plant, located in Madison, Indiana, is a Westinghouse 4 loop design. The plant was nearly 70% completed when the project was canceled. Hence, the RPV was never irradiated. The paper will present highlights from the NRCs independent evaluation of the Marble Hill Annealing Demonstration Project

  6. Recent movements and some topics on nuclear power plant control and instrumentation in Japan from 1984 to 1986

    International Nuclear Information System (INIS)

    Wakayama, N.

    1986-01-01

    Extensive works have been carried out in Japan in the field of nuclear power plants control and instrumentation, and many fruitful results have been obtained. This paper aims to introduce such progress and topics obtained since 1984 in this field

  7. Analysis of accidents and troubles of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Kobayashi, Kunio

    1980-01-01

    In Japan, electric power companies are obliged to report the accidents and troubles occurred in nuclear power stations to the MITI according to the relevant laws, and 166 cases in total have been reported as of the end of March, 1980. These accidents and troubles are all trivial, and do not cause problems from the viewpoint of the safety nuclear power stations. Regarding respective accidents and troubles, the causes have been sought thoroughly, and the sufficient countermeasures have been taken on all occasions. But in order to improve the reliability of nuclear power stations further, it is important to treat the accidents and troubles occurred so far statistically and grasp the general trend. Thereupon, 152 accidents and troubles occurred till September, 1979, were analyzed quantitatively, and the results are reported in this paper. From the results, the prospect hereafter is discussed. The number of the reported cases of accidents and troubles in each nuclear power plant in operation every year is tabulated. The accidents and troubles were relatively frequent in the initial two or three years of operation of respective new reactor types, but decreased thereafter. The systems to which troubled equipments belong and the troubled equipments are shown. Most troubles have occurred in reactor cooling systems and valves. The situations and causes of troubles, the operational conditions at the time of the accidents and troubles and the effects and others are reported. (Kako, I.)

  8. The future of nuclear power: Looking ahead. Address at the Japan Atomic Industrial Forum, Sendai, 12 April 1999

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1999-01-01

    In his address at the Japan Atomic Industrial Forum (Sendai, 12 April 1999), the Director General of the IAEA described the role of the IAEA for nuclear power development, emphasizing the following aspects: nuclear power and the global energy mix, nuclear safety and the importance of public confidence, economic competitiveness and the role of research and development, and the importance of nuclear verification and prevention of illicit trafficking

  9. Space Solar Power Technology Demonstration for Lunar Polar Applications

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, J.

    2002-01-01

    A solar power generation station on a mountaintop near the moon's North or South pole can receive sunlight 708 hours per lunar day, for continuous power generation. Power can be beamed from this station over long distances using a laser-based wireless power transmission system and a photo-voltaic receiver. This beamed energy can provide warmth, electricity, and illumination for a robotic rover to perform scientific experiments in cold, dark craters where no other power source is practical. Radio-frequency power transmission may also be demonstrated in lunar polar applications to locate and recover sub-surface deposits of volatile material, such as water ice. High circular polarization ratios observed in data from Clementine spacecraft and Arecibo radar reflections from the moon's South pole suggest that water ice is indeed present in certain lunar polar craters. Data from the Lunar Prospector spacecraft's epi-thermal neutron spectrometer also indicate that hydrogen is present at the moon's poles. Space Solar Power technology enables investigation of these craters, which may contain a billion-year-old stratigraphic record of tremendous scientific value. Layers of ice, preserved at the moon's poles, could help us determine the sequence and composition of comet impacts on the moon. Such ice deposits may even include distinct strata deposited by secondary ejecta following significant Earth (ocean) impacts, linked to major extinctions of life on Earth. Ice resources at the moon's poles could provide water and air for human exploration and development of space as well as rocket propellant for future space transportation. Technologies demonstrated and matured via lunar polar applications can also be used in other NASA science missions (Valles Marineris. Phobos, Deimos, Mercury's poles, asteroids, etc.) and in future large-scale SSP systems to beam energy from space to Earth. Ground-based technology demonstrations are proceeding to mature the technology for such a near

  10. The disappointments for nuclear energy in Japan

    International Nuclear Information System (INIS)

    2004-01-01

    Several dysfunctions are reported in this paper: A reactor (Onagawa) closed after a nitrogen leakage; a small leakage of radioactive water in the nuclear power plant of Mihama assessment raised to five deaths, the operator stops its nuclear power plants for inspection, the Japan face to its ageing nuclear power plants, the truth about the cost of M.O.X., the seven reactors of Japan closed for inspection after cracks and leaks hidden to authorities, Tokai MURA accident. (N.C.)

  11. Japan's policy on the nuclear power plant life management, life management for nuclear power plants and measures to cope with aging

    International Nuclear Information System (INIS)

    Takuma, Masao

    2002-01-01

    Full text: Nuclear Plant is born after a lengthy, multi-year construction period, and ends its life decades later, having generated a vast amount of electricity. Its period of operation is, far longer than its period of construction. 'Construction' is the process of 'creating something of value', a new nuclear plant, using technology. 'Operation' is the process of 'raising the child with care' so that its potential can be realized to the fullest over the course of its life. From the view point of plant life management, it is appropriate to divide the life of a power plant into three stages, 'fostering, mature and aging', from the start of operation to the end of its operation. It is important to manage a plant accordingly. It is recently become important to the Utility companies under the competitive power market to manage aging plants effectively, in order to extend its life with sustained high level of performances, with plant safety in the first place. Whether this is, in fact, possible or not, depends upon how the plant was operated in the prior stages, that means, depends upon how it was 'brought up'. This report briefly shows what are important points of management in these 3 stages, and also describes general significances of plant maintenance and inspection, with the practices applied to the plants in Japan. Currently 52 plants Light Water Reactor Nuclear Plants are in operation in Japan, and 13 plants within next 5 years and 23 plants within 10 years are regarded as aged plants. So the contents of periodic inspections by the government and maintenance requirements on the Utilities will be modified to keep and enhance safe and stable operations of the aged plants. In the year 1994, Japanese Government released the report 'Basic Concepts on the Nuclear Power Plant Aging', the objectives of which was the evaluation of the soundness of major equipment and to establish the concepts of aging measures, assuming the plant to be operated 60 years. Utilities, in

  12. Operational experiences of INES in Japan

    International Nuclear Information System (INIS)

    1997-01-01

    Japan has introduced IAEA's INES in August, 1992. As of September, 1997, the total number of domestic nuclear events which have evaluated by using the INES system has amounted 119. In Japan, when a nuclear event occurs at a nuclear power plant, a provisional evaluation is performed immediately by Nuclear Power Operation Administration Office, MITI. The final evaluation of events is implemented a few months after event occurrence by the Evaluation Committee on Incidents and Failures of Nuclear Power Plant which holds a neutral position. The results of the evaluation are transmitted to IAEA according to the INES reporting criteria

  13. Reactive power control with CHP plants - A demonstration

    DEFF Research Database (Denmark)

    Nyeng, Preben; Østergaard, Jacob; Andersen, Claus A.

    2010-01-01

    power rating of 7.3 MW on two synchronous generators. A closed-loop control is implemented, that remote controls the CHP plant to achieve a certain reactive power flow in a near-by substation. The solution communicates with the grid operator’s existing SCADA system to obtain measurements from...... lines to underground cables has changed the reactive power balance, and third, the TSO has introduced restrictions in the allowed exchange of reactive power between the transmission system and distribution grids (known as the Mvar-arrangement). The demonstration includes a CHP plant with an electric......In this project the potential for ancillary services provision by distributed energy resources is investigated. Specifically, the provision of reactive power control by combined heat and power plants is examined, and the application of the new standard for DER communication systems, IEC 61850...

  14. History and structure of Japan-US nuclear alliance

    International Nuclear Information System (INIS)

    Yoshioka, Hitoshi

    2011-01-01

    'Japan-US nuclear alliance' for civil use of nuclear energy was used here as technical term for the state Japanese commercial power plants were all water-cooled reactors under the US nuclear engineering umbrella and US admitted Japanese development of all 'SNT: sensitive nuclear technology' in the area of nuclear fuel cycle. 'Japan-US alliance' was used for various areas closely related with national security while 'Japan-US nuclear weapon alliance' was for military use of nuclear energy such as nuclear weapon (transport methods included) and counter weapon system. Military and civil use of nuclear energy relied fundamentally on common technical bases and especially nuclear fuel cycle related technologies were directly connected to both uses and called 'SNT'. Japanese nuclear policy sticking to SNT might come from the axiom: nuclear engineering for national security, that meant Japan refrained from nuclear arms but maintained technical and industrial potential of nuclear arms. This could be called 'nuclear arms standby strategy' and derived from compromise of both countries to play role of stabilizer of 'Japan-US alliance'. History of Japanese nuclear power development could be well understood as formation process of 'Japan-US nuclear alliance'. If Fukushima Daiichi accident forced nuclear power to phase out, nuclear fuel cycle would be obliged to terminate. This meant failure of the axiom and dissolution of 'Japan-US nuclear alliance'. (T. Tanaka)

  15. Child leukemia and magnetic fields in Japan: a study on the child leukemia and residential exposure to power-frequency magnetic fields in Japan

    International Nuclear Information System (INIS)

    Souques, M.

    2006-01-01

    A new study on the relationship between the exposure to magnetic fields 50/60 hz and the leukemia risk for child, realised in Japan, has just been published. The results show an increase of the risk for the exposure over to .4 μ T, but the interval of confidence shows that this study has a lack of power for the statistical analysis. Finally, this study cannot claims to bring contribution to the scientific debate about the low frequency magnetic fields. (N.C.)

  16. Fusion Power Demonstration III

    International Nuclear Information System (INIS)

    Lee, J.D.

    1985-07-01

    This is the third in the series of reports covering the Fusion Power Demonstration (FPD) design study. This volume considers the FPD-III configuration that incorporates an octopole end plug. As compared with the quadrupole end-plugged designs of FPD-I and FPD-II, this octopole configuration reduces the number of end cell magnets and shortens the minimum ignition length of the central cell. The end-cell plasma length is also reduced, which in turn reduces the size and cost of the end cell magnets and shielding. As a contiuation in the series of documents covering the FPD, this report does not stand alone as a design description of FPD-III. Design details of FPD-III subsystems that do not differ significantly from those of the FPD-II configuration are not duplicated in this report

  17. Severe weather data near nuclear power station and reprocessing fuel facility in Japan

    International Nuclear Information System (INIS)

    Nagata, Tadahisa

    2017-01-01

    The main weather data are updated at any time. The strong wind and tornado (strong wind/tornado) data are opened until March 2016 in Japan. The main weather and the strong wind/tornado data near the nuclear power station (NPS) were investigated. The earthquake, Tunami and volcano were not mentioned on this report. The main weather data might not be severe. The maximum temperature had not been considered in the safety analysis of NPS. The weather data of some small observation posts near NPSs had not been considered. The unusual high temperature and the local severe rain near NPS by the global warming may be considered in future. The maximum intensities of the strong wind/tornado in Japan and near NPS were Fujita-scale 3 and 2, respectively. The maximum intensities of almost half NPSs were Fujita-scale 1. The intensity and the number of the strong winds/tornados differed depending on NPS. The Japanese main weather and strong wind/tornado might not be severe compared with other country. (author)

  18. A 100 kW-Class Technology Demonstrator for Space Solar Power

    Science.gov (United States)

    Howell, J.; Carrington, C.; Day, G.

    2004-12-01

    A first step in the development of solar power from space is the flight demonstration of critical technologies. These fundamental technologies include efficient solar power collection and generation, power management and distribution, and thermal management. In addition, the integration and utilization of these technologies into a viable satellite bus could provide an energy-rich platform for a portfolio of payload experiments such as wireless power transmission (WPT). This paper presents the preliminary design of a concept for a 100 kW-class free-flying platform suitable for flight demonstration of Space Solar Power (SSP) technology experiments.

  19. Photovoltaic Power System and Power Distribution Demonstration for the Desert RATS Program

    Science.gov (United States)

    Colozza, Anthony; Jakupca, Ian; Mintz, Toby; Herlacher, Mike; Hussey, Sam

    2012-01-01

    A stand alone, mobile photovoltaic power system along with a cable deployment system was designed and constructed to take part in the Desert Research And Technology Studies (RATS) lunar surface human interaction evaluation program at Cinder Lake, Arizona. The power system consisted of a photovoltaic array/battery system. It is capable of providing 1 kW of electrical power. The system outputs were 48 V DC, 110 V AC, and 220 V AC. A cable reel with 200 m of power cable was used to provide power from the trailer to a remote location. The cable reel was installed on a small trailer. The reel was powered to provide low to no tension deployment of the cable. The cable was connected to the 220 V AC output of the power system trailer. The power was then converted back to 110 V AC on the cable deployment trailer for use at the remote site. The Scout lunar rover demonstration vehicle was used to tow the cable trailer and deploy the power cable. This deployment was performed under a number of operational scenarios, manned operation, remote operation and tele-robotically. Once deployed, the cable was used to provide power, from the power system trailer, to run various operational tasks at the remote location.

  20. Policy of Japan of radioactive waste management

    International Nuclear Information System (INIS)

    Oyama, A.

    1989-01-01

    Development and utilization of nuclear power has been steadily pursued in Japan in order to secure a stable source of energy over a long-term period. According to the author, nuclear power plants are operated carefully and safely and have been generating electricity for more than twenty years. In fact, it now accounts for approximately 30% of total electricity generated, and has become an integral part of the energy supply in Japan. The benefits of nuclear technology are now enjoyed not only in the electricity production, but also in the fields such as medicine and other industries. Under such circumstances, radioactive waste management generated in nuclear power plants and reprocessing plants as well as in industrial and medical uses of radiation, is an important part of the nuclear energy policy, and there is also a strong public interest in this field. The government is active in formulating waste management policies based on the basic policies indicated by Japan ATomic Energy Commission (JAEC). This presentation will touch upon the future perspective of radioactive waste management policy in Japan

  1. Japan's National Security: Structures, norms, and policies

    International Nuclear Information System (INIS)

    Katzenstein, P.J.; Okawara, N.

    1993-01-01

    Japan's national security policy has two distinctive aspects that deserve analysis. First, Japan's definition of national security goes far beyond traditional military notions. National security is viewed in comprehensive terms that also include economic and political dimensions. The second feature of Japan's security policy worth explanation is a distinctive mixture of flexibility and rigidity in the process of policy adaptation to change: flexibility on issues of economic security, rigidity on issues of military security, and flexibility combined with rigidity on issues of political security. With the end of the Cold War and changes in the structure of the international system, it is only natural that we ask whether and how Japan's national security policy will change as well. Optimists insist that the Asian balance of power and the US-Japan relationship will make Japan aspire to be a competitive, noninterventionist trading state that heeds the universal interest of peace and profit rather than narrow aspirations for national power. Pessimists warn us instead that the new international system will finally confirm Herman Kahn's prediction of 1970: Japan will quickly change to the status of a nuclear superpower, spurred perhaps by what some see as a dangerous rise of Japanese militarism in the 1970s and 1980s

  2. Fiscal 1998 research report. Feasibility survey on offshore wind power generation in Japan; 1998 nendo chosa hokokusho. Nippon ni okeru yojo furyoku hatsuden no donyu kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This survey studied the feasibility of large-scale offshore wind power generation in Japan. Attempt was also made on preparation of outline maps of offshore wind around Japan. The cost of future offshore wind power generation systems is roughly dependent on technical issues and environmental issues. As technical issues, 'installation site,' 'foundation,' 'system interconnection' and 'maintenance/management' were summarized based on applications in Europe. As a result, it was clarified that technical issues can be solved with existing technologies to a certain extent, however, those relate to economical problems closely. The previous environment impact assessments say that wind power generation has no problems on the environmental issues. As relatively strong wind coastal areas, the outline maps of offshore wind point out Western Hokkaido area, Japan Sea area of Tohoku district, Pacific ocean area of the central part of Honshu, Genkai Nada area, Western Kyushu area and Southwest islands area, and suggest that these areas are promising for offshore wind power generation. (NEDO)

  3. Solar power satellite system; Uchu hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S [Institute of Space and Astronautical Science, Tokyo (Japan)

    1995-09-05

    The solar power satellite system is a system that converts solar energy into electric energy in the space, transmits power to earth through wireless resort such as microwave and supplies energy of new concept. In order to realize this system it is necessary to have new technologies such as space power transmission at low cost, construction of large space buildings and wireless high power transmission. In this paper, the principles, characteristics and the necessary technology of this system were explained. Besides Japan`s SPS2000 Plan (cooperative research by universities, government agencies and private corporations on the model of solar power satellite) the group of Europe, Russia and the United States has also proposed some ideas concerning the solar power satellite system. As far as the microwave power transmission, which is the key technology for solar power satellite system, is concerned, ground demonstration tests at the level of several tens of kW are discussed in Canada and France. 3 refs., 3 figs.

  4. Pollution from the electric power sector in Japan and efficient pollution reduction

    International Nuclear Information System (INIS)

    Matsushita, Kyohei; Yamane, Fumihiro

    2012-01-01

    Under the scheme of the Kyoto Protocol, there are plans for the efficient reduction of carbon dioxide emissions. In the electric power sector, nuclear power generation, which emits no carbon dioxide in the process of generating electricity, has come under scrutiny. However, this energy produces a new environmental issue: the disposal of radioactive waste. First, we derive shadow prices of carbon dioxide and low-level waste as marginal abatement costs in the case of the electric power sector in Japan, employing a directional output distance function. It is found that the shadow prices are US$39 per tonne for carbon dioxide and US$1531 per liter for low-level waste. Secondly, we calculate the indirect Morishima elasticity between carbon dioxide and low-level waste in order to identify their substitutability, and it is found that the substitution of low-level waste for carbon dioxide is easier than the reverse. This result suggests that, with the amount of generated electricity fixed, carbon dioxide can be substituted more easily by low-level waste when the relative price of carbon dioxide increases, for example, as a result of implementation of a carbon dioxide tax or an emissions trading system.

  5. Beliefs about power and its relation to emotional experience: a comparison of Japan, France, Germany, and the United States.

    Science.gov (United States)

    Mondillon, Laurie; Niedenthal, Paula M; Brauer, Markus; Rohmann, Anette; Dalle, Nathalie; Uchida, Yukiko

    2005-08-01

    This research examined the concept of power in Japan, France, Germany, and the United States, as well as beliefs about the emotions persons in power tend to elicit in others and about powerful people's regulation (specifically, inhibition) of certain emotions. Definitions of power were assessed by examining the importance of two main components: control over self versus other and freedom of action vis-à-vis social norms. Beliefs about both positive (pride, admiration) and negative (jealousy, contempt) emotions were measured. Analyses revealed that the concept of power differed across countries and that the definitions of power as well as country of origin significantly predicted beliefs about the emotions that are elicited in others by powerful people and also the regulation of expression of emotion by powerful people.

  6. Summary of survey of SMR market potential in Japan

    International Nuclear Information System (INIS)

    Hoshi, T.; Ochiai, M.

    1998-01-01

    The nuclear power generation in Japan has grown to more than 30% of the total electricity generation as of the end of 1995. Considering the increase of energy demand in the future, the steadily energy supply is requested. The paper presents the outlook of energy supply and consumption in the future, the status of nuclear power generation and market potentials of the small and medium nuclear power plants in Japan. (author)

  7. Current status of personnel exposure at nuclear power plants and other medical, industrial and educational facilities in JAPAN

    International Nuclear Information System (INIS)

    Sasaki, Fumiaki

    1991-01-01

    The state of radiation exposure of the workers engaging in radiation works in Japanese nuclear power stations, the factors of the radiation exposure of the workers engaging in radiation works, the countermeasures for reducing exposure in nuclear power stations, the state of radiation exposure of doctors, the workers engaging in radiation works, researchers and others in medical, industrial, research and educational and other facilities in Japan, the factors of their radiation exposure and the countermeasures for reducing the exposure, and the comparison of the exposure in nuclear power stations with that in medical, industrial, research and educational facilities are reported. (K.I.)

  8. The state of improvement of security management setup in the Japan Atomic Power Company and improvement of facilities in its Tsuruga Nuclear Power Station

    International Nuclear Information System (INIS)

    1982-01-01

    In connection with the series of accidents in the Tsuruga Nuclear Power Station of the Japan Atomic Power Company, the state of security management in JAPC and the safety of facilities in the Tsuruga Nuclear Power Station, which have resulted from improvement efforts, are described on the following items: security management setup - communication and reporting in emergency, the management of inspection and maintenance records, work control and supervision in repair, improvement, etc., functional authority and responsibility in maintenance management, operation management, radiation control, personnel education; improvement of facilities - feed water heaters, laundry waste-water filter room, radioactive waste treatment facility, general drainage, concentrated waste liquid storage tanks in newly-built waste treatment building, etc. (Mori, K.)

  9. Fission Surface Power Technology Demonstration Unit Test Results

    Science.gov (United States)

    Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Sanzi, James L.

    2016-01-01

    The Fission Surface Power (FSP) Technology Demonstration Unit (TDU) is a system-level demonstration of fission power technology intended for use on manned missions to Mars. The Baseline FSP systems consists of a 190 kWt UO2 fast-spectrum reactor cooled by a primary pumped liquid metal loop. This liquid metal loop transfers heat to two intermediate liquid metal loops designed to isolate fission products in the primary loop from the balance of plant. The intermediate liquid metal loops transfer heat to four Stirling Power Conversion Units (PCU), each of which produce 12 kWe (48 kW total) and reject waste heat to two pumped water loops, which transfer the waste heat to titanium-water heat pipe radiators. The FSP TDU simulates a single leg of the baseline FSP system using an electrically heater core simulator, a single liquid metal loop, a single PCU, and a pumped water loop which rejects the waste heat to a Facility Cooling System (FCS). When operated at the nominal operating conditions (modified for low liquid metal flow) during TDU testing the PCU produced 8.9 kW of power at an efficiency of 21.7 percent resulting in a net system power of 8.1 kW and a system level efficiency of 17.2 percent. The reduction in PCU power from levels seen during electrically heated testing is the result of insufficient heat transfer from the NaK heater head to the Stirling acceptor, which could not be tested at Sunpower prior to delivery to the NASA Glenn Research Center (GRC). The maximum PCU power of 10.4 kW was achieved at the maximum liquid metal temperature of 875 K, minimum water temperature of 350 K, 1.1 kg/s liquid metal flow, 0.39 kg/s water flow, and 15.0 mm amplitude at an efficiency of 23.3 percent. This resulted in a system net power of 9.7 kW and a system efficiency of 18.7 percent.

  10. Data logger system of Tokai (I) Nuclear Power Station, the Japan Atomic Power Company

    International Nuclear Information System (INIS)

    Machida, Akira; Chikahata, Kiyomitsu; Nakamura, Mamoru; Nanbu, Taketoshi; Kawakami, Hiroshi

    1977-01-01

    The Tokai(I) nuclear power station, the Japan Atomic Power Company, was commissioned in July, 1966. In this station, temperatures of about 700 points are monitored and recorded with a data logger. However, the logger was manufactured some 15 years ago, therefore it is now old-fashioned, and has caused frequent failures these 2 or 3 years. So it was decided to replace it with a new one, and the process control computer, U-300 system including CRT display, has been adopted considering the latest trend in U.K. The control and monitoring system in this station is not a centralized control system, but a distributed control system divided into three control rooms, namely main control room, turbine generator control room and fuel exchanger (cask machine) control room. Therefore for grasping the complete plant conditions at the main control room, the system has not been convenient, and the centralization of data processing has been desired from the viewpoint of operation. The new logger system is composed so as to facilitate the centralized monitoring in the main control room, considering the above requirement. It has been improved so as to have seven important functions in addition to the existing functions. Hardware and software of this system are briefly explained. The new system was started up in February 1977, and is now operating well, though some early failures were experienced. (Wakatsuki, Y.)

  11. Outline of safety regulations and administrations for commercial nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Kinichi Yamamoto

    1987-01-01

    Outline of safety regulations and administrations for the commercial nuclear power plants in Japan is briefly described. The strict measures for safety assurance are always taken based on the principle of defense-indepth. In the actual procedures of regulatory control, the examinations and inspections shall be performed at each individual step in the stage of applications, and also in the stage of constructions. Thus, those regulatory examinations and inspections shall be performed in detail and carefully, and at the most suitable time; resulting in an effective regulatory control by the Ministry of International Trade and Industry. (author)

  12. Data list of nuclear power plants of pressurized-water reactor type in Japan

    International Nuclear Information System (INIS)

    Izumi, Fumio; Harayama, Yasuo

    1981-08-01

    This report has collected and compiled the data concerning performances, equipments and installations for nuclear power plants of the pressurized-water reactor type in Japan. The data used in the report are based on informations that were collected before December in 1980. The report is edited by modifing changes of the data appeared after publication of 1979 edition (JAERI-M 8947), and extending the data-package to cover new plants proposed thereafter. All data have been processed and tabulated with a computer program FREP, which has been developed as an exclusive use of data processing. (author)

  13. Trends in Japan's power generation costs after the Fukushima Daiichi Nuclear Power Plant accident and their influence on finance of electric utilities

    International Nuclear Information System (INIS)

    Matsuo, Yuhji; Yamaguchi, Yuhji; Murakami, Tomoko

    2013-01-01

    Following the Fukushima Daiichi nuclear power plant accident, the nuclear reactors that were suspended for periodic inspections after the Fukushima accident were not permitted to resume operation, and nuclear power generation in Japan continued to decline. In this article, the authors quantitatively evaluated the effects on power generation costs of Japan's situation, using electric utilities financial reports up to FY 2011. We also analyzed the profitability of the Japanese electric industry, using the financial statements included in the reports, and quantitatively evaluated the effects of changes in power generation costs. The total cost of power generation has increased from 7.5 trillion yen in FY 2010 before the Fukushima accident to 9.6 trillion yen in FY 2011 and to 10.6 trillion yen in FY 2012. In particular, the fuel cost for thermal power generation rose sharply from 3.7 trillion yen in FY 2010 to 6.1 trillion yen in FY 2011 and 7.3 trillion yen in FY 2012, almost doubling in the two years from FY 2010 to 2012. The unit cost of power generation rose sharply from 8.6 yen/kWh in FY 2010 to 11.8 yen/kWh in FY 2011 and 13.5 yen/kWh in FY 2012. The unit cost is expected to rise even further in FY 2013 due to the weak yen. As the result not only Tokyo Electric Power Company, but also the other general electric utilities registered huge net losses. Their retained earnings (total of eight utilities) dropped by 2 trillion yen between FY 2010 and 2012. With increased thermal power generation, the risk of rising costs associated with changes in primary energy prices and exchange rates has increased drastically. For the stability of the electricity industry and the development of the Japanese economy, the government should clearly formulate a basic policy regarding the composition of power sources, and an effective plan both at home and abroad, and should develop a system that will be also to handle sudden changes in the composition of power sources. (author)

  14. Cooperation ability of Japan to China in nuclear power industries. Present status and future

    International Nuclear Information System (INIS)

    Murakami, Tomoko

    2006-01-01

    Japan is superior to China in the field of LWR plant operation and maintenance, FBR cycle included operation and control of reactor and reprocessing facility, and measures of safeguards and non-proliferation of all commercial nuclear power facilities from the point of view that Japanese technologies are better than the other countries and China needs the technologies. It is important that Japanese electric power companies, plant makers, fuel industries and research organizations developed their business in China in the above fields on the basis of their knowledge, strategies and/or trough network of negotiation of two governments such as forum for nuclear cooperation in Asia (FNCA)·Generation IV International Forum (GIF), and World Association of Nuclear Operators (WANO)·World Nuclear Association (WNA). Outline of finding new market and technical cooperation in the industry and future of nuclear power industry in China are stated. As the supplementary materials, table of operating, building and planning nuclear power plants, estimation of demand for uranium enrichment on the basis of estimation and plans of expansion of power plant facilities, and results of calculation of Separative Work Unit (SWU) from demand for uranium are illustrated. (S.Y.)

  15. The role of the state in sustainable energy transitions: A case study of large smart grid demonstration projects in Japan

    International Nuclear Information System (INIS)

    Mah, Daphne Ngar-yin; Wu, Yun-Ying; Ip, Jasper Chi-man; Hills, Peter Ronald

    2013-01-01

    Smart grids represent one of the most significant evolutionary changes in energy management systems as they enable decentralised energy systems, the use of large-scale renewable energy as well as major improvements in demand-side-management. Japan is one of the pioneers in smart grid deployment. The Japanese model is characterised by a government-led, community-oriented, and business-driven approach with the launch of four large-scale smart-community demonstration projects. Our case study of large smart grid demonstration projects in Japan found that the Japanese government has demonstrated its high governing capacity in terms of leadership, recombinative capacity, institutional capacity, enabling capacity, and inducement capacity. However, the major limitations of the government in introducing some critical regulatory changes have constrained the smart grid deployment from advancing to a higher-order form of smart grid developments. This paper calls for more attention to be given to the importance of regulatory changes that are essential to overcome the technological lock-in, and the complementary roles of non-state actors such as the business sector and consumers to strengthen the governing capacity of the state. - Highlights: • Smart grids introduce evolutionary changes in energy management systems. • The Japanese model is government-led, community-oriented, and business-driven. • The Japanese government has demonstrated its high governing capacity. • But the limitations of the government have constrained the smart grid developments. • More attention needs to be given to regulatory changes and non-state actors

  16. Solar Power System Options for the Radiation and Technology Demonstration Spacecraft

    Science.gov (United States)

    Kerslake, Thomas W.; Haraburda, Francis M.; Riehl, John P.

    2000-01-01

    The Radiation and Technology Demonstration (RTD) Mission has the primary objective of demonstrating high-power (10 kilowatts) electric thruster technologies in Earth orbit. This paper discusses the conceptual design of the RTD spacecraft photovoltaic (PV) power system and mission performance analyses. These power system studies assessed multiple options for PV arrays, battery technologies and bus voltage levels. To quantify performance attributes of these power system options, a dedicated Fortran code was developed to predict power system performance and estimate system mass. The low-thrust mission trajectory was analyzed and important Earth orbital environments were modeled. Baseline power system design options are recommended on the basis of performance, mass and risk/complexity. Important findings from parametric studies are discussed and the resulting impacts to the spacecraft design and cost.

  17. World's third-largest producer of nuclear power. Japan in need of energy

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Japan is the third largest oil consumer in the world behind the United States and China, and the second largest net importer of oil. Japan boasts one of the largest economies in the world. The country continues to experience a moderate economic recovery that began in 2003, following a decade of economic stagnation. Japan's real gross domestic product (GDP) grew by 2.5% in 2005 and 2.3% in 2004. The modest upturn over the last few years reflects higher business confidence in Japan, a surge in export demand led by exports to China, and robust consumer spending. Unemployment in Japan fell to 4.4% in 2005, down from an early 2003 peak of 5.5%. Japan has virtually no domestic oil or natural gas reserves, and in 2005 was the second largest net importer of crude oil in the world. Despite the country's dearth of hydrocarbon resources, Japanese companies have actively pursued upstream oil and natural gas projects overseas. Japan remains one of the major exporters of energy-sector capital equipment, and Japanese companies provide engineering, construction, and project management services for energy projects. (orig.)

  18. Doing Occidentalism in contemporary Japan: Nation anthropomorphism and sexualized parody in Axis Powers Hetalia

    Directory of Open Access Journals (Sweden)

    Toshio Miyake

    2013-03-01

    Full Text Available Axis Powers Hetalia (2006–present, a Japanese gag comic and animation series, depicts relations between nations personified as cute boys against a background of World War I and World War II. The stereotypical rendering of national characteristics as well as the reduction of historically charged issues into amusing quarrels between nice-looking but incompetent boys was immensely popular, especially among female audiences in Japan and Asia, and among Euro-American manga, anime, and cosplay fans, but it also met with vehement criticism. Netizens from South Korea, for example, considered the Korean character insulting and in early 2009 mounted a protest campaign that was discussed in the Korean national assembly. Hetalia's controversial success relies to a great extent on the inventive conflation of male-oriented otaku fantasies about nations, weapons, and concepts represented as cute little girls, and of female-oriented yaoi parodies of male-male intimacy between powerful "white" characters and more passive Japanese ones. This investigation of the original Hetalia by male author Hidekaz Himaruya (b. 1985 and its many adaptations in female-oriented dōjinshi (fanzine texts and conventions (between 2009 and 2011, Hetalia was by far the most adapted work refers to notions of interrelationality, intersectionality, and positionality in order to address hegemonic representations of "the West," the orientalized "Rest" of the world, and "Japan" in the cross-gendered and sexually parodied mediascape of Japanese transnational subcultures.

  19. Status of pressure vessel embrittlement study in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Shigeki [Japan Power Engineering and Inspection Corp. (JAPEIC), Chiba (Japan)

    1997-09-01

    The number of nuclear power plants in service for more than 20 years is increasing in Japan. Subsequently, the aging of nuclear power plants will continue to increase and for this reason, the assurance of the safety and reliability of nuclear power plants is becoming more important. Under this circumstances, Japan Government issued a report: ``Specific Concepts in Dealing with Nuclear Power Plant High Aging`` in April, 1996. This report identified that continuous technology development efforts are important to deal with the issues of nuclear power plant aging, and the following items are extracted for important categories to be developed. (1) Aging phenomena evaluation technology. (2) Inspection/monitoring technology (3) Preventive maintenance/repair technology. Japan Power Engineering and Inspection Corporation (JAPEIC) have been implementing various verification test concerning the above items consigned by the Ministry of International Trade and Industry (MITI). This report outlines the Specific Concepts in Dealing with Nuclear Power Plant High Agency and the past achievements and future plans of various verification tests related to irradiation embrittlement of nuclear reactor pressure vessel, mainly related to Pressurized Thermal Shock (PTS). (author). 4 refs, 8 figs, 5 tabs.

  20. From sword to chrysanthemum: Japan's culture of anti-miltarism

    International Nuclear Information System (INIS)

    Berger, T.U.

    1993-01-01

    The end of the Cold War and the phenomenal increase in Japan's economic and technological power put Japan today in the position to become, if it chooses, a military as well as economic superpower. The diminution of the Soviet threat and the increasing US preoccupation with domestic problems give Japan a latitude for independent action it has not had since the end of World War II. At the same time the US-Japanese security alliance, which has enabled Japan to adopt a minimalist approach to defense and national security, is being weakened by ideologically charged trade and other economic frictions and a growing American perception of Japan as a threat to its interests. Moreover, in the long run Japan faces the prospect of having to deal with other rising regional powers, most notably the People's Republic of China. This changing international security environment thus raises question whether Japan, having become an economic rival of the United States, may not in the future become a military competitor as well; whether, after having adopted a pacifist stance for half a century, Japan may choose to unsheathe its sword once again

  1. Configuration and layout of the tandem mirror Fusion Power Demonstrator

    International Nuclear Information System (INIS)

    Clarkson, I.R.; Neef, W.S.

    1983-01-01

    Studies have been performed during the past year to determine the configuration of a tandem mirror Fusion Power Demonstrator (FPD) machine capable of producing 1750 MW of fusion power. The FPD is seen as the next logical step after the Mirror Fusion Test Facility-B (MFTF-B) toward operation of a power reactor. The design of the FPD machine allows a phased construction: Phase I, a hydrogen or deuterium checkout machine; Phase 2, a DT breakeven machine; Phase 3, development of the Phase 2 machine to provide net power and act as a reactor demonstrator. These phases are essential to the development of remote handling equipment and the design of components that will ultimately be remotely handled. Phasing also permits more modes funding early in the program with some costs committed only after reaching major milestones

  2. A review of fast reactor program in Japan

    International Nuclear Information System (INIS)

    1992-01-01

    In accordance with the Long-term Program for Development and Utilization of Nuclear Energy defined by the Japan Atomic Energy Commission (JAEC), Power Reactor and Nuclear Fuel Development Corporation (PNC) is playing the key role in the development of a plutonium utilization system by fast breeder reactor (FBR), which is superior to the uranium utilization system by light water reactor, aiming to achieve future stable long-term energy supply and energy security of Japan. The experimental reactor Joyo, located in the O-arai Engineering Center (OEC) of PNC, has provided abundant experimental data and excellent operational records attaining 43,500 hours operation in total by the end of 1991, since its first criticality in 1977. On the prototype reactor Monju, 97.6% of construction works has already been completed and the function tests are in progress aiming at the initial criticality by the end of FY 1992. As for the demonstration fast breeder reactor (DFBR) of Japan, the Japan Atomic Power Company (JAPC) is promoting design study under the contracts with several leading Japanese fabricators, including Toshiba, Hitachi and Mitsubishi Heavy Industries, for selection of the basic specifications of DFBR. The related research and development (R and D) works are underway at several organizations under the discussion and coordination of the Japanese FBR R and D Steering Committee, which was established by the JAPAC, PNC, Japan Atomic Energy Research Institute (JAERI) and Central Research Institute of Electric Power Industry (CRIEPI). Progress of the design study and the related R and D are reported to the Subcommittee on FBR Development Program of JAEC. Recent major emphases on the PNC R and D are placed on the integrated feedback of all existing R and D results and experiences to the development of demonstration reactor. Furthermore, the overall functional and performance tests of Monju, is another important key role to attain further excellency of FBR technology, with

  3. A review of fast reactor program in Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-07-01

    In accordance with the Long-term Program for Development and Utilization of Nuclear Energy defined by the Japan Atomic Energy Commission (JAEC), Power Reactor and Nuclear Fuel Development Corporation (PNC) is playing the key role in the development of a plutonium utilization system by fast breeder reactor (FBR), which is superior to the uranium utilization system by light water reactor, aiming to achieve future stable long-term energy supply and energy security of Japan. The experimental reactor Joyo, located in the O-arai Engineering Center (OEC) of PNC, has provided abundant experimental data and excellent operational records attaining 43,500 hours operation in total by the end of 1991, since its first criticality in 1977. On the prototype reactor Monju, 97.6% of construction works has already been completed and the function tests are in progress aiming at the initial criticality by the end of FY 1992. As for the demonstration fast breeder reactor (DFBR) of Japan, the Japan Atomic Power Company (JAPC) is promoting design study under the contracts with several leading Japanese fabricators, including Toshiba, Hitachi and Mitsubishi Heavy Industries, for selection of the basic specifications of DFBR. The related research and development (R and D) works are underway at several organizations under the discussion and coordination of the Japanese FBR R and D Steering Committee, which was established by the JAPAC, PNC, Japan Atomic Energy Research Institute (JAERI) and Central Research Institute of Electric Power Industry (CRIEPI). Progress of the design study and the related R and D are reported to the Subcommittee on FBR Development Program of JAEC. Recent major emphases on the PNC R and D are placed on the integrated feedback of all existing R and D results and experiences to the development of demonstration reactor. Furthermore, the overall functional and performance tests of Monju, is another important key role to attain further excellency of FBR technology, with

  4. IAEA Remediation Mission to Japan Concludes

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: A team of international experts today completed a preliminary assessment of the strategy and plans being considered by the Japanese authorities to remediate the areas off-site the Fukushima Dai-ichi Nuclear Power Plant reported to have elevated levels of radiation. The IAEA dispatched the mission to Japan on 7 October following a request from the country's Government. The mission, comprising 12 international and IAEA experts from several countries, visited numerous locations in the Fukushima Prefecture and conducted meetings in Tokyo and Fukushima with Japanese officials from several Ministries and institutions. ''The meetings held and visits made by the team over the last eight days gave us a first-hand appreciation of the extraordinary efforts and dedication on the part of Japanese people in their effort to remediate the areas affected by elevated levels of radiation in the Fukushima Prefecture,'' says Mr. Juan Carlos Lentijo, Team Leader and General Director for Radiation Protection at Spain's nuclear regulatory authority. ''As Japan continues its current remediation efforts, it is our belief that this work will bring relief to the populations who are affected by the consequences of the nuclear accident at the Fukushima Dai-ichi nuclear power plant.'' In a Preliminary Summary Report delivered to Japanese authorities today, the team prepared a set of conclusions including, though not limited to, the following: - Japan developed an efficient program for remediation - allocating the necessary legal, financial and technological resources to bring relief to the people affected by the accident, with priority being given to children. The Team was impressed with the strong commitment to the remediation effort from all institutions and parties involved, including the public; - Japan has also taken practical measures to inform the public and involve residents and local institutions in the process of defining its remediation strategy; - Japan is advised to avoid

  5. Fiscal 1998 research report. Feasibility survey on offshore wind power generation in Japan; 1998 nendo chosa hokokusho. Nippon ni okeru yojo furyoku hatsuden no donyu kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This survey studied the feasibility of large-scale offshore wind power generation in Japan. Attempt was also made on preparation of outline maps of offshore wind around Japan. The cost of future offshore wind power generation systems is roughly dependent on technical issues and environmental issues. As technical issues, 'installation site,' 'foundation,' 'system interconnection' and 'maintenance/management' were summarized based on applications in Europe. As a result, it was clarified that technical issues can be solved with existing technologies to a certain extent, however, those relate to economical problems closely. The previous environment impact assessments say that wind power generation has no problems on the environmental issues. As relatively strong wind coastal areas, the outline maps of offshore wind point out Western Hokkaido area, Japan Sea area of Tohoku district, Pacific ocean area of the central part of Honshu, Genkai Nada area, Western Kyushu area and Southwest islands area, and suggest that these areas are promising for offshore wind power generation. (NEDO)

  6. A 100 kW-Class Technology Demonstrator for Space Solar Power

    Science.gov (United States)

    Carrington, Connie; Howell, Joe; Day, Greg

    2004-01-01

    A first step in the development of solar power from space is the flight demonstration of critical technologies. These fundamental technologies include efficient solar power collection and generation, power management and distribution, and thermal management. In addition, the integration and utilization of these technologies into a viable satellite bus could provide an energy-rich platform for a portfolio of payload experiments such as wireless power transmission (WPT). This paper presents the preliminary design of a concept for a 100 kW-class fiee-flying platform suitable for flight demonstration of technology experiments. Recent space solar power (SSP) studies by NASA have taken a stepping stones approach that lead to the gigawatt systems necessary to cost-effectively deliver power from space. These steps start with a 100 kW-class satellite, leading to a 500 kW and then a 1 MW-class platform. Later steps develop a 100 M W bus that could eventually lead to a 1-2 GW pilot plant for SSP. Our studies have shown that a modular approach is cost effective. Modular designs include individual laser-power-beaming satellites that fly in constellations or that are autonomously assembled into larger structures at geosynchronous orbit (GEO). Microwave power-beamed approaches are also modularized into large numbers of identical units of solar arrays, power converters, or supporting structures for arrays and microwave transmitting antennas. A cost-effective approach to launching these modular units is to use existing Earth-to-orbit (ETO) launch systems, in which the modules are dropped into low Earth orbit (LEO) and then the modules perform their own orbit transfer to GEO using expendable solar arrays to power solar electric thrusters. At GEO, the modules either rendezvous and are assembled robotically into larger platforms, or are deployed into constellations of identical laser power-beaming satellites. Since solar electric propulsion by the modules is cost-effective for both

  7. Public information activities in Japan

    International Nuclear Information System (INIS)

    Ijima, Kazunori

    1998-01-01

    This is a slide presentation dealing with the public information (PI) activities in Japan. At present in Japan 51 nuclear power plants are in commercial operation contributing with a capacity of about 440 G We, i.e. 1/3 of the total electricity is produced by nuclear power. An investigation conducted by Advisory Committee for Energy resulted in the following guidelines in the advancing the Nuclear Power Policy: - maintain transparency in determining policy and reflect the voice of people, making information available to the public; - promote mutual understanding between areas that produce electricity by nuclear power and those that consume electricity; - cultivate an awareness of energy issues amongst the public to encourage them to take issues regarding Japan's energy policy to heart. Concerning the current PI, the following actions are undertaken at a nationwide scale: - for all people, supplying information by mass media, internet and holding lecture meetings and panel discussions etc; - for women, advertisements in journals; - for youth, educational materials, exhibition of energy etc; - for teachers, seminars; for opinion leaders, sending newsletters on nuclear energy. In areas for planned or constructed nuclear plants the PI actions are addressed to all people, women, fishermen, farmers and opinion leaders. There are given the responses to the following three questions addressed to the public concerning the nuclear power: - do you think whether we need nuclear power plants? - do you think whether nuclear power plants are safe? - what mechanism do you think generates energy during the production of nuclear power. A discussion of the results is presented. As future objectives of PI activities the following are in view: to cultivate reliability, to aware of information about nuclear power, to promote awareness of nuclear power, to promote mutual understanding of nuclear power. In conclusion, the need is stressed to make the PI activities more effective, to find

  8. Appearances of Fukushima Daiichi Nuclear Power Plant-Derived 137Cs in Coastal Waters around Japan: Results from Marine Monitoring off Nuclear Power Plants and Facilities, 1983-2016.

    Science.gov (United States)

    Takata, Hyoe; Kusakabe, Masashi; Inatomi, Naohiko; Ikenoue, Takahito

    2018-03-06

    Monitoring of 137 Cs in seawater in coastal areas around Japan between 1983 and 2016 yielded new insights into the sources and transport of Fukushima Daiichi Nuclear Power Plant (FDNPP)-derived 137 Cs, particularly along the west coast of Japan. Before the FDNPP accident (1983-2010), the activity concentrations of 137 Cs, mainly from fallout, were decreasing exponentially. Effective 137 Cs half-lives in surface seawater ranged from 15.6 to 18.4 yr. After the FDNPP accident (March 2011) 137 Cs activity concentrations in seawater off Fukushima and neighboring prefectures immediately increased. Since May/June 2011, 137 Cs activity concentrations there have been declining, and they are now approaching preaccident levels. Along the west coast of Japan remote from FDNPP (i.e., the Japan Sea), however, radiocesium activity concentrations started increasing by 2013, with earlier (May/June 2011) increases at some sites due to airborne transport and fallout. The inventory of 137 Cs in the Japan Sea (in the main body of the Tsushima Warm Current) in 2016 was calculated to be 0.97 × 10 14 Bq, meaning that 0.44 × 10 14 Bq of FDNPP-derived 137 Cs was added to the estimated global fallout 137 Cs inventory in 2016 (0.53 × 10 14 Bq). The net increase of 137 Cs inventory in the Japan Sea through the addition of FDNPP-derived 137 Cs accounts for approximately 0.2% of the total 137 Cs flux from the plant to the ocean from the accident.

  9. Conceptual design of a demonstration reactor for electric power generation

    International Nuclear Information System (INIS)

    Asaoka, Y.; Hiwatari, R.; Okano, K.; Ogawa, Y.; Ise, H.; Nomoto, Y.; Kuroda, T.; Mori, S.; Shinya, K.

    2005-01-01

    Conceptual study on a demonstration plant for electric power generation, named Demo-CREST, was conducted based on the consideration that a demo-plant should have capacities both (1) to demonstrate electric power generation in a plant scale with moderate plasma performance, which will be achieved in the early stage of the ITER operation, and foreseeable technologies and materials and (2) to have a possibility to show an economical competitiveness with advanced plasma performance and high performance blanket systems. The plasma core was optimized to be a minimum size for both net electric power generation with the ITER basic plasma parameters and commercial-scale generation with advance plasma parameters, which would be attained by the end of ITER operation. The engineering concept, especially the breeding blanket structure and its maintenance scheme, is also optimized to demonstrate the tritium self-sustainability and maintainability of in-vessel components. Within the plasma performance as planned in the present ITER program, the net electric power from 0 MW to 500 MW is possible with the basic blanket system under the engineering conditions of maximum magnetic field 16 T, NBI system efficiency 50%, and NBI current drive power restricted to 200 MW. Capacities of stabilization of reversed shear plasma and the high thermal efficiency are additional factors for optimization of the advanced blanket. By replacing the blanket system with the advanced one of higher thermal efficiency, the net electric power of about 1000 MW is also possible so that the economic performance toward the commercial plant can be also examined with Demo-CREST. (author)

  10. US nuclear policy and business trend of Japan's nuclear industries

    International Nuclear Information System (INIS)

    Matsuo, Yuji

    2010-01-01

    As several countries in the east-Asia and middle-east area have been taking an increasing interest in the deployment of nuclear power generation, Japan's nuclear industries have promoted international business activities including the success in the bid of second nuclear power plants in Vietnam. While there are plans for more than thirty of new reactors in the US, the lifetime extension of existing aged reactors, development of non-existing natural gas and trend of greenhouse gases reduction measures have dampened these plans and probably most of new units will not start construction by 2030. This article reviewed the details of US's new nuclear power introduction, trend of recent government's policies, future perspective of nuclear power construction and business trend of Japan's nuclear industries. Japan's industries should be flexible regarding nuclear power as one option to realize low-carbon society. (T. Tanaka)

  11. The nuclear power experience in Japan: exposing the myth

    International Nuclear Information System (INIS)

    Barrett, N.

    1977-06-01

    The author proposes that over the last four years the dreams of Japan's nuclear establishment have been severely shaken. Because of widespread public opposition, the nuclear program has fallen further and further behind schedule. Poor efficiency figures have also contributed to a scaling down of electricity production targets. Uranium stocks are said to be sufficient to last well into the 1990's and as a consequence Japan's optimism in seeking to purchase Australian uranium is completely unfounded and based on the belief that the current nuclear malaise is only temporary. (J.R.)

  12. The effect of the Fukushima nuclear accident on stock prices of electric power utilities in Japan

    International Nuclear Information System (INIS)

    Kawashima, Shingo; Takeda, Fumiko

    2012-01-01

    The purpose of this study is to investigate the effect of the accident at the Fukushima Daiichi nuclear power station, which is owned by Tokyo Electric Power Co. (TEPCO), on the stock prices of the other electric power utilities in Japan. Because the other utilities were not directly damaged by the Fukushima nuclear accident, their stock price responses should reflect the change in investor perceptions on risk and return associated with nuclear power generation. Our first finding is that the stock prices of utilities that own nuclear power plants declined more sharply after the accident than did the stock prices of other electric power utilities. In contrast, investors did not seem to care about the risk that may arise from the use of the same type of nuclear power reactors as those at the Fukushima Daiichi station. We also observe an increase of both systematic and total risks in the post-Fukushima period, indicating that negative market reactions are not merely caused by one-time losses but by structural changes in society and regulation that could increase the costs of operating a nuclear power plant.

  13. Analysis on misconducts and inappropriate practices by Japan's Nuclear Power Utilities and Assessment of their corrective measures

    International Nuclear Information System (INIS)

    Torikai, Seishi; Ozawa, Michihiro; Kanegae, Naomichi; Tani, Masaaki; Miyakoshi, Naoki; Madarame, Haruki

    2010-01-01

    On March 30, 2007, Japan's electric utilities reported the results of a complete review of their powergenerating units to the Nuclear and Industrial Safety Agency of the Ministry of Economy, Trade, and Industry (METI). The Ethics Committee of the Atomic Energy Society of Japan (AESJ) then recommended an assessment method to analyze the seriousness of the problems from multiple perspectives in order to support the public's understanding of the reported problems. Accordingly, the Ethics Committee conducted the assessment. The assessment considered each reported problem associated with nuclear power-generating units and the preventive measures completed between June 2007 and September 2008 (corrective measures continued beyond that period). The results were presented at the autumn conferences of AESJ in 2007 and 2008, and are discussed in this report. (author)

  14. Research activities for nuclear power plant aging promoted by PLEC, JAPEIC, Japan

    International Nuclear Information System (INIS)

    Maeda, Noriyoshi; Tajima, Kenichi

    2004-01-01

    In order to perform research activity for aging countermeasure of nuclear power plant effectively, Plant Life Engineering Center (PLEC) was established in Japan Power Engineering and Inspection Corporation (JAPEIC) in April 2000 sponsored by Ministry of International Trade and Industry (MITI, presently METI). Outlined activities of PLEC are as follows. Results of technical survey for research and development for aging phenomena have been summarized in a table (Research Map) categorizing them into ''inspection and monitoring'', ''evaluation method for aging'' and ''preventive maintenances and refurbishment''. Necessary research themes have been extracted from the Research Map consulting to experts of the specified research area and they are summarized into Medium and Long-term Research Perspective (Research Perspective), which contains prioritized research themes and outlined specification of each theme. Several new research themes proposed by various organizations and selected by PLEC as effective for the regulation activities are identified and proposed to be funded by METI every year. This paper also provides outlines and obtained results of aging related research projects currently conducted by JAPEIC sponsored by METI. (author)

  15. White paper on atomic energy, for 1974 and 1975. [Japan

    Energy Technology Data Exchange (ETDEWEB)

    1975-09-01

    Nearly 20 years have passed since the initiation of peaceful uses of atomic energy in Japan. Close to the end of this period, there occurred the so-called oil crisis, which emphasized the need for nuclear power development. Meanwhile, voices of the people in Japan are varied concerning nuclear power, as in siting of the power plants and the n.s. (nuclear ship) Mutsu. The paper describes the following: safety, environmental protection, nuclear power generation, nuclear fuel cycle, fission reactor and fusion reactor development, nuclear-powered ships, and radiation utilization.

  16. Pregnancy and birth survey after the Great East Japan Earthquake and Fukushima Daiichi Nuclear Power Plant accident in Fukushima prefecture.

    Science.gov (United States)

    Fujimori, Keiya; Kyozuka, Hyo; Yasuda, Shun; Goto, Aya; Yasumura, Seiji; Ota, Misao; Ohtsuru, Akira; Nomura, Yasuhisa; Hata, Kenichi; Suzuki, Kouta; Nakai, Akihito; Sato, Mieko; Matsui, Shiro; Nakano, Kyoko; Abe, Masafumi

    2014-01-01

    On 11 March 2011, the Great East Japan Earthquake followed by a powerful tsunami hit the Pacific Coast of Northeast Japan and damaged Tokyo Electric Power Company's Fukushima Daiichi Nuclear Power Plant, causing a radiation hazard in Fukushima Prefecture. The objective of this report is to describe some results of a questionnaire-based pregnancy and birth survey conducted by the Radiation Medical Science Center for the Fukushima Health Management Survey. Questionnaires were sent to women who received maternal and child health handbooks from municipal officers in Fukushima Prefecture between 1 August 2010 and 31 July 2011, with the aim of reaching those who were pregnant at the time of the disaster. Mailing began 18 January 2012. Data were analyzed separately for six geographic areas in Fukushima Prefecture. The total number of women meeting survey criteria was 15,972. The number of responses received to date is 9,298 (58.2%). Data from 8602 respondents were analyzed after excluding 634 invalid responses and 5 induced and 57 spontaneous abortions (less than 22 gestational weeks). The incidences of stillbirth (over 22 completed gestational weeks), preterm birth, low birth weight and congenital anomalies were 0.25%, 4.4%, 8.7% and 2.72%, respectively. These incidences are similar to recent averages elsewhere in Japan. Considering the pregnancy and birth survey data in aggregate, our disaster seemed to provoke no significant adverse outcomes over the whole of Fukushima prefecture. But post-disaster prenatal care and support intended for patients' safety and security should be coupled with ongoing surveillance and rigorous data analysis.

  17. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  18. Economic and energetic assessment for the situation in Japan after Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Ramos A, R.; Puente E, F., E-mail: rodrigo.ramos.aranda@gmail.com [ININ, Direccion de Investigacion Cientifica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    In March 11 2011, a 9.0 mega thrust earthquake originated off the coast of Japan; as of now it has been the strongest ever recorded in the island. It produced a tsunami with waves over 15 meters high. The dimensions of the tsunami exceeded even the most pessimist scenarios for which the country was prepared. This happened in the Fukushima Daiichi nuclear power plant. Where there were containment walls built to withstand waves of up to 10 meters of height; the backup generation system was flooded, this left the plant disconnected from the grid and led to 7 degree nuclear accident in the Ines scale. Following the accident, the Japanese government decided to turn off all of its nuclear reactors and reevaluate the sector safety regulations. This decision had valid reasons and was backed up by most of the general public. However, the not so apparent consequences of turning the nuclear switch from one day to another need to be understood. In order to replace the energy produced by the nuclear power plants liquid natural gas and coal was imported for electric power generation. As of to day this extra imports cost more Japan than 90 billion dollars per year. this huge energy bill has led the country to perceive 20 month of trade deficits. This in addition to an exponential increase in greenhouse gases emissions and electricity prices so high that have forced hundreds of businesses to close, has demonstrated the importance of the nuclear sector in Japan. This situation left the Japanese government with no other option and in February 2014 it announced that they will restart their nuclear reactors. It is still uncertain what role will nuclear energy have in Japan. The objective of the following document is to show an analysis of the economical consequences of the Fukushima accident. There are many reports that address the environmental impacts, lessons learned from the accident and the changes in the safety regulations. In the contrary, the present highlights the importance

  19. Economic and energetic assessment for the situation in Japan after Fukushima

    International Nuclear Information System (INIS)

    Ramos A, R.; Puente E, F.

    2014-10-01

    In March 11 2011, a 9.0 mega thrust earthquake originated off the coast of Japan; as of now it has been the strongest ever recorded in the island. It produced a tsunami with waves over 15 meters high. The dimensions of the tsunami exceeded even the most pessimist scenarios for which the country was prepared. This happened in the Fukushima Daiichi nuclear power plant. Where there were containment walls built to withstand waves of up to 10 meters of height; the backup generation system was flooded, this left the plant disconnected from the grid and led to 7 degree nuclear accident in the Ines scale. Following the accident, the Japanese government decided to turn off all of its nuclear reactors and reevaluate the sector safety regulations. This decision had valid reasons and was backed up by most of the general public. However, the not so apparent consequences of turning the nuclear switch from one day to another need to be understood. In order to replace the energy produced by the nuclear power plants liquid natural gas and coal was imported for electric power generation. As of to day this extra imports cost more Japan than 90 billion dollars per year. this huge energy bill has led the country to perceive 20 month of trade deficits. This in addition to an exponential increase in greenhouse gases emissions and electricity prices so high that have forced hundreds of businesses to close, has demonstrated the importance of the nuclear sector in Japan. This situation left the Japanese government with no other option and in February 2014 it announced that they will restart their nuclear reactors. It is still uncertain what role will nuclear energy have in Japan. The objective of the following document is to show an analysis of the economical consequences of the Fukushima accident. There are many reports that address the environmental impacts, lessons learned from the accident and the changes in the safety regulations. In the contrary, the present highlights the importance

  20. Review of the activities in Japan

    International Nuclear Information System (INIS)

    Otake, I.

    1982-01-01

    The fast breeder reactor development project in Japan has been in progress through.operation of the experimental fast reactor JOYO, design of the prototype fast breeder reactor MONJU and related R and D works. JOYO began operation in mid-1977, increased power from 50 MWt to 75 MWth in July 1979 and operation cycles at 75 MWth are continued at present. With respect to MONJU, which is a 300 MWe plant, progress toward construction has been made and the safety review are started by the concerned authorities. Conceptual design studies of large demonstration fast breeder reactor are also being made by PNC. It is a 1000 MWe, loop type plant

  1. Peak Power Markets for Satellite Solar Power

    Science.gov (United States)

    Landis, Geoffrey A.

    2002-01-01

    This paper introduces first Indonesia, comprises 15,000 islands, has land area of two millions square kilometers. Extending from 95 to 141 degrees East longitude and from 6 degrees North to 11 degrees South latitude. Further the market of the Space Solar Power/SPS must be worldwide, including Indonesia. As we know, it can provide electricity anywhere in the world from the Earth's orbit, mostly Indonesia an equator country. We have to perform case studies of various countries to understand their benefits and disadvantages provided by the SSP, because each country has much different condition on energy from other countries. We are at the moment starting the international collaboration between Indonesia and Japan to carry out the case study for Indonesia. We understand that in Indonesia itself each province has much different micro-climate between one province compared to the other. In Japan, METI (Ministry of Economy, Trade and Industry) has already organized a committee to investigate the feasibility of Space Solar Power and to make a plan to launch a space demonstration of the SPS. While, Indonesia is quickly developing economy and increasing their energy demand. We are investigating the detailed energy conditions of Indonesia, the benefits and disadvantages of the Space Solar Power for Indonesia. Especially, we will perform the investigation on the receiving system for the Japanese pilot Space Power Satellite.

  2. Post-Fukushima Japan: The continuing nuclear controversy

    International Nuclear Information System (INIS)

    Fam, Shun Deng; Xiong, Jieru; Xiong, Gordon; Yong, Ding Li; Ng, Daniel

    2014-01-01

    The Fukushima disaster was a wake-up call for the nuclear industry as well as a shocking revelation of the inner workings of the Japanese power sector. The political fallout from the event was far-reaching, pushing governments into abandoning nuclear expansion, turning instead to fossil fuels and renewable energy alternatives. While the move away from nuclear energy was deemed a move critical to political survival in Europe, we find that political candidates running on anti-nuclear platforms did not win elections, while the pro-nuclear Liberal Democratic Party won government in the 2012 elections. Against this backdrop, we analyse the energy conflict in Japan using a framework of values versus interests and consider the regulatory and cultural conditions that contributed to the disaster. A number of considerations lie in the way of an organised phase-out of nuclear power in Japan. We also consider the possible policy paths Japan may take. - Highlights: • As Europeans urgently phase-out nuclear power, Japan voted out such a government despite high anti-nuclear sentiment. • Regulatory climate within the nuclear industry was dysfunctional as a result of being captured by the ‘nuclear village’. • New ‘independent’ nuclear authority is made up of previously captured agency. • With a pro-nuclear government, and lack of really independent nuclear authority, old problems may yet arise. • Japanese government has to choose between lowering emissions, low popular support for nuclear power, and affordable electricity

  3. Report of Nuclear Powered Ship Council

    International Nuclear Information System (INIS)

    1982-01-01

    From the forecast of energy balance in the world to 21st century, the diversification of energy supply and the technical development enabling it are necessary in Japan. The stable supply of marine fuel is important to maintain and develop the national life. At present, as the marine fuel substituting for petroleum, atomic energy is at the position nearest to practical use. In advanced countries, the basic technology required for the practical use of nuclear-powered merchant ships seems to have been established, but Japan is about 10 years behind them due to the delay of the Mutsu project. In order to maintain and improve the technical level of shipbuilders, the independent technology related to nuclear-powered ships must be established in Japan. In the economical examination of nuclear-powered ships, ice breakers and ice breaking tankers are advantageous, but in other types of ships, a number of conditions must be satisfied to be economical. The Mutsu must be operated to collect the data and experience, and the project of an improved marine prototype reactor must be decided. Also a demonstration ship must be built. The standards for the design, construction and operation of nuclear-powered ships and the public acceptance are necessary. (Kako, I.)

  4. Present status of nuclear education and training in Japan

    International Nuclear Information System (INIS)

    Kiyose, R.; Sumita, K.; Moriya, F.

    1994-01-01

    In Japan, where about 30% of electricity is supplied by nuclear actives require a good number of able and ambitious young scientists and engineers especially in the future. On the other hand, almost all Japanese electric power companies, which operate nuclear power plants, are striving to keep expertise of reactor operators as high as possible. Present status in Japan of education at universities, research and training reactors, training courses at governmental institutions and nonprofit organizations, and operator training centers of electric power companies, are reviewed. 3 tabs

  5. A tsunami wave propagation analysis for the Ulchin Nuclear Power Plant considering the tsunami sources of western part of Japan

    International Nuclear Information System (INIS)

    Rhee, Hyun Me; Kim, Min Kyu; Sheen, Dong Hoon; Choi, In Kil

    2013-01-01

    The accident which was caused by a tsunami and the Great East-Japan earthquake in 2011 occurred at the Fukushima Nuclear Power Plant (NPP) site. It is obvious that the NPP accident could be incurred by the tsunami. Therefore a Probabilistic Tsunami Hazard Analysis (PTHA) for an NPP site should be required in Korea. The PTHA methodology is developed on the PSHA (Probabilistic Seismic Hazard Analysis) method which is performed by using various tsunami sources and their weights. In this study, the fault sources of northwestern part of Japan were used to analyze as the tsunami sources. These fault sources were suggested by the Atomic Energy Society of Japan (AESJ). To perform the PTHA, the calculations of maximum and minimum wave elevations from the result of tsunami simulations are required. Thus, in this study, tsunami wave propagation analysis were performed for developing the future study of the PTHA

  6. Power situation in German and lessons for Japan. Expanding renewable energy and fluctuating FIT system

    International Nuclear Information System (INIS)

    Kitamura, Kazuya

    2016-01-01

    In Germany, energy shift has now caused that a quarter of the total consumed power is obtained from renewable energy sources. There, a shift from nuclear energy has been achieved, and the dissemination of renewable energy as industrial creation has been demanded. However, the Renewable Energy Act, which was the promoter of the above process, was revised drastically in August 2014. Although evaluation on the revised Renewable Energy Act is a future work, it is said that this revision is quite severe for the parties who have promoted the renewable energy business in local regions and enjoyed the profiles locally. Regarding electricity, the German government has a strong industrial protection policy. This paper summarized the basic stance of the German government, by taking up the specific examples of actual electricity fee and the reduction/exemption system of levies on power consumption type companies. The German government clearly shows its willingness to adhere to be an industrial nation. In Germany, the wholesaling spot price of electricity declined due to the spread of renewable energy. This also comes from the mechanism of the FIT system. Unlike Germany where FIT system started in 2000, levies are still small affecting less in Japan where the FIT system has just begun. However, in Germany, it is a big problem. In order to discuss the ideal way of FIT system in Japan, it is necessary to know as accurately as possible what the reality is, including about overseas precedents. (A.O.)

  7. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; O' Neill, Barbara

    2016-01-21

    A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of

  8. Water chemistry guidance in nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Okada, Hidetoshi; Suzuki, Hiroaki; Naitoh, Masanori

    2012-01-01

    Water chemistry plays important roles in safe and reliable plant operation which are very critical for future power rate increases as well as aging plant management. Water chemistry control is required to satisfy the need for improved integrity of target materials, and at the same time it must be optimal for all materials and systems in a plant. Optimal water chemistry can be maintained by expert engineers who are knowledgeable about plant water chemistry, who have sufficient experience with plant operation, and whose knowledge is based on fundamental technologies. One of the latest subjects in the field of water chemistry is achieving suitable technical transfers, in which the achievements and experience with plant water chemistry accumulated by experts are successfully transferred to the next generation of engineers. For this purpose, documents on experience with water chemistry are being compiled as the guidance for water chemistry control and water chemistry standards, e.g., standards for chemical analysis procedures and guidance for water chemistry control procedures. This paper introduces the latest activities in Japan in establishing water chemistry guidance involving water chemistry standards, guidance documents and their supporting documents. (orig.)

  9. Kilowatt Isotope Power System: component report for the Ground Demonstration System Accumulator

    International Nuclear Information System (INIS)

    Brainard, E.L.

    1978-01-01

    The Model Number ORC1A3A01 System Accumulator for the Kilowatt Isotope Power System was expulsion tested and demonstrated to be in compliance with the requirements of Sundstrand Explusion Test Procedure, TP 400. Test requirements of TP 400 were extracted from the Kilowatt Isotope Power System, Ground Demonstration System Test Plan

  10. Japan

    International Nuclear Information System (INIS)

    Huttner, Kevin; Suzuki, Tatsujiro

    1987-01-01

    The Japanese nuclear power programme began with reactors imported from the United States. A natural uranium heavy water reactor using domestic materials was started in 1958. Subsequent progress was with light water reactors imported from the United States. Domestic reactor development was of a fast breeder reactor and an advanced thermal reactor. By March 1986 there were 32 commercial power plants in operation which produced approximately 23% of the electricity consumed in Japan. Ten more are under construction and six more are planned. Their location and comparative generating cost are tabulated. Energy demand and targets for nuclear power generation are discussed. The FBR advanced thermal reactor and high temperature reactor programmes are summarized. The Japanese nuclear fuel cycle - uranium prospecting, enrichment, reprocessing, the development of mixed oxide fuels, thermal recycling and radioactive waste management is also discussed. (U.K.)

  11. Universal varicella vaccine immunization in Japan.

    Science.gov (United States)

    Yoshikawa, Tetsushi; Kawamura, Yoshiki; Ohashi, Masahiro

    2016-04-07

    In 1974, Japanese scientists developed a live attenuated varicella vaccine based on the Oka strain. The efficacy of the vaccine for the prevention of varicella has been primarily demonstrated in studies conducted in the United States following the adoption of universal immunization using the Oka strain varicella vaccine in 1996. Although the vaccine was developed by Japanese scientists, until recently, the vaccine has been administered on a voluntary basis in Japan resulting in a vaccine coverage rate of approximately 40%. Therefore, Japan initiated universal immunization using the Oka strain varicella vaccine in November 2014. Given the transition from voluntary to universal immunization in Japan, it will also be important to monitor the epidemiology of varicella and herpes zoster. The efficacy and safety of co-administration of the varicella vaccine and measles, mumps, and rubella vaccine have been demonstrated in many countries; however, there was no data from Japan. In order to adopt the practice of universal immunization using the Oka strain varicella vaccine in Japan, data demonstrating the efficacy and safety of co-administration of varicella vaccine and measles and rubella (MR) vaccine were required. Additionally, we needed to elucidate the appropriate time interval between the first and second administrations of the vaccine. It is also important to differentiate between wild type and Oka vaccine type strains in herpes zoster patient with past history of varicella vaccine. Thus, there are many factors to consider regarding the adoption of universal immunization in Japan to control varicella zoster virus (VZV) infections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Thermophotovoltaic systems for civilian and industrial applications in Japan

    International Nuclear Information System (INIS)

    Yugami, Hiroo; Sasa, Hiromi; Yamaguchi, Masafumi

    2003-01-01

    The potential market for thermophotovoltaic (TPV) applications has been studied for civilian and industrial sectors in Japan. Comparing the performance of gas engines or turbines, as well as the underdeveloped power generation technologies such as fuel cells or chemical batteries, we have discussed the feasible application field of TPV systems to compete with those power generators. From the point of view of applicability for TPV systems in Japan, portable generators, co-generation systems and solar power plants are selected for our system analysis. The cost and performance targets of TPV systems for co-generation are also discussed by assuming a typical daily profile of electricity and hot water demands in Japanese homes. A progress report on the recent TPV research activities is given as well as a feasibility study concerning such TPV systems in Japan. (Author)

  13. Results of operation of BWRs in Japan

    International Nuclear Information System (INIS)

    Fueki, Kensuke

    1987-01-01

    It is considered that the development of BWR plants in Japan has been advanced relatively smoothly though sometimes there were complications. As of the end of fiscal year 1986, the BWR plants in operation were 16, and the total power output amounted to 12,917 MW, which was equivalent to 8 % of 153 GW of the total power source facilities in Japan. Reflecting the excellent operational result of BWR plants, the generated electric power in fiscal year 1986 reached 85.9 TWh and about 15 % of the total, exceeding hydroelectric power. This means that about 18 million tons of petroleum import was reduced. At the initial stage, BWR plants suffered the stress corrosion cracking of stainless steel pipings in the reactor primary system. This trouble was successfully solved by the efforts of the government, electric power companies, plant manufacturers and research institutes. In fiscal year 1983, the capacity factor of all BWR plants in Japan recovered to more than 70 %, and in fiscal year 1986, it has reached 75.9 %. In order to improve the capacity factor further, it is necessary to prevent troubles by the development of diagnostic techniques and preventive maintenance, and to shorten regular inspection period. The change of accidents and troubles, the measures to reduce regular inspection period, the reduction of radiation exposure, and the reduction of wastes are reported. (Kako, I.)

  14. Various problems in establishment of fuel cycle business in Japan

    International Nuclear Information System (INIS)

    Murata, Hiroshi

    1985-01-01

    Since Japan instituted the Atomic Energy Act in 1956, and organized the Atomic Energy Commission, as the fundamental policy of the peaceful use of atomic energy, the industrialization and establishment of fuel cycle technology have been advanced as well as the development of power reactors. The consistent and harmonious industrialization of uranium enrichment, fuel fabrication, reprocessing, the utilization of recovered plutonium and uranium, and the storage, treatment and disposal of wastes has been the target. As the nuclear power generation in Japan grew, the enhancement of the various factors of nuclear fuel cycle as the base of supporting nuclear power generation has become necessary. The effort of technical development has been continued in the fields of uranium enrichment, fuel reprocessing, plutonium fuel and waste treatment by the Power Reactor and Nuclear Fuel Development Corp., Japan Atomic Energy Research Institute and related industries. The plan and present status of nuclear fuel cycle business in Japan, the problems such as the roles of the government and private enterprises, technology transfer, the economy of nuclear fuel cycle business, the industrialization of mixed oxide fuel fabrication, nuclear nonproliferation policy and location are discussed. (Kako, I.)

  15. Promotion of research and development for fast breeder reactors in Japan

    International Nuclear Information System (INIS)

    1989-01-01

    The ''Long-term Program for Development and Utilization of Nuclear Energy'' by Japan Atomic Energy Commission (JAEC) plans to develop fast breeder reactors (FBRs) as the mainstay of Japan's future nuclear power generation. For the development of the FBR, the main principle is to pursue the establishment of FBR plutonium utilization systems, which are superior to the LWR uranium utilization systems. The above program also states as follows: ''Incessant efforts, with proper co-operation of the public and private sectors, will be required for a considerably long time for FBR development, and the concrete measures to be implemented in this connection will be discussed, hereafter, in continuation at the Advisory Committee on FBR Development Program of the Atomic Energy Commission''. It was clearly stated in the ''Long-term Program'' that utilities would play a leading role in the design, construction, and operation of DFBRs to follow ''Monju''. They have entrusted Japan Atomic Power Company (JAPC) with the above tasks. Technical verification and demonstration tests for seismic design and feasibility studies of main components are being conducted with government support. Regarding the nuclear fuel cycle, PNC has been developing FBR fuel reprocessing technologies. Currently, the Recycle Equipment Test Facility (RETF) is being designed to conduct engineering-scale tests. A pilot plant is planned to start operation after 2000 assuming positive results of the tests. (author)

  16. 2012/13 abnormal cold winter in Japan associated with Large-scale Atmospheric Circulation and Local Sea Surface Temperature over the Sea of Japan

    Science.gov (United States)

    Ando, Y.; Ogi, M.; Tachibana, Y.

    2013-12-01

    On Japan, wintertime cold wave has social, economic, psychological and political impacts because of the lack of atomic power stations in the era of post Fukushima world. The colder winter is the more electricity is needed. Wintertime weather of Japan and its prediction has come under the world spotlight. The winter of 2012/13 in Japan was abnormally cold, and such a cold winter has persisted for 3 years. Wintertime climate of Japan is governed by some dominant modes of the large-scale atmospheric circulations. Yasunaka and Hanawa (2008) demonstrated that the two dominant modes - Arctic Oscillation (AO) and Western Pacific (WP) pattern - account for about 65% of the interannual variation of the wintertime mean surface air temperature of Japan. A negative AO brings about cold winter in Japan. In addition, a negative WP also brings about cold winter in Japan. Looking back to the winter of 2012/13, both the negative AO and negative WP continued from October through December. If the previous studies were correct, it would have been extremely very cold from October through December. In fact, in December, in accordance with previous studies, it was colder than normal. Contrary to the expectation, in October and November, it was, however, warmer than normal. This discrepancy signifies that an additional hidden circumstance that heats Japan overwhelms these large-scale atmospheric circulations that cool Japan. In this study, we therefore seek an additional cause of wintertime climate of Japan particularly focusing 2012 as well as the AO and WP. We found that anomalously warm oceanic temperature surrounding Japan overwhelmed influences of the AO or WP. Unlike the inland climate, the island climate can be strongly influenced by surrounding ocean temperature, suggesting that large-scale atmospheric patterns alone do not determine the climate of islands. (a) Time series of a 5-day running mean AO index (blue) as defined by Ogi et al., (2004), who called it the SVNAM index. For

  17. The rise of community wind power in Japan: Enhanced acceptance through social innovation

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yasushi [National Institute of Advanced Industrial Science and Technology, Technology (AIST), Energy Technology Research Institute, Namiki 1-2-1, Tsukuba-shi, Ibaraki (Japan); Nishikido, Makoto [Hosei University, Faculty of Humanity and Environment, Fujimi 2-17-1, Chiyoda-ku, Tokyo (Japan); Iida, Tetsunari [Institute Sustainable Energy Policies, Nakano 4-7-3, Nakano-ku, Tokyo (Japan)

    2007-05-15

    The purpose of this paper is to analyze the socio-economic dynamics that are brought about by renewable energy technologies. We call this dynamic ''Social Innovation'' as it changes the rules of risk-benefit distribution and the roles of social actors. For this purpose, we take up a typical case in Japan, community wind power in which the initial cost is funded by the investment of citizens. Through this case study, we examine how the citizens' initiative can affect the social acceptance of renewable energy as well as social change. Based on interviews with those involved in these projects, we analyze the interests of the various actors involved in community wind power projects in a framework of ''actor network theory'', which enables us to understand the detail of each actor's position. This study also involved a quantitative survey of investors. The case study clarified that there was a remarkable difference in the interests of the main actors in the community wind power projects, the networks are complex and actors share various interests such as economic interests and a sense of social commitment, participation and contribution. These incentives are also clarified in quantitative data. However, the variety of incentives differs in each project. (author)

  18. The rise of community wind power in Japan: Enhanced acceptance through social innovation

    International Nuclear Information System (INIS)

    Maruyama, Yasushi; Nishikido, Makoto; Iida, Tetsunari

    2007-01-01

    The purpose of this paper is to analyze the socio-economic dynamics that are brought about by renewable energy technologies. We call this dynamic 'Social Innovation' as it changes the rules of risk-benefit distribution and the roles of social actors. For this purpose, we take up a typical case in Japan, community wind power in which the initial cost is funded by the investment of citizens. Through this case study, we examine how the citizens' initiative can affect the social acceptance of renewable energy as well as social change. Based on interviews with those involved in these projects, we analyze the interests of the various actors involved in community wind power projects in a framework of 'actor network theory', which enables us to understand the detail of each actor's position. This study also involved a quantitative survey of investors. The case study clarified that there was a remarkable difference in the interests of the main actors in the community wind power projects, the networks are complex and actors share various interests such as economic interests and a sense of social commitment, participation and contribution. These incentives are also clarified in quantitative data. However, the variety of incentives differs in each project

  19. Execution techniques and approach for high level radioactive waste disposal in Japan: Demonstration of geological disposal techniques and implementation approach of HLW project

    International Nuclear Information System (INIS)

    Kawanishi, M.; Komada, H.; Kitayama, K.; Akasaka, H.; Tsuchi, H.

    2001-01-01

    In Japan, the high-level radioactive waste (HLW) disposal project is expected to start fully after establishment of the implementing organization, which is planned around the year 2000 and to dispose the wastes in the 2030s to at latest in the middle of 2040s. Considering each step in the implementation of the HLW disposal project in Japan, this paper discusses the execution procedure for HLW disposal project, such as the selection of candidate/planned disposal sites, the construction and operation of the disposal facility, the closure and decommissioning of facilities, and the institutional control and monitoring after the closure of disposal facility, from a technical viewpoint for the rational execution of the project. Furthermore, we investigate and propose some ideas for the concept of the design of geological disposal facility, the validation and demonstration of the reliability on the disposal techniques and performance assessment methods at a candidate/planned site. Based on these investigation results, we made clear a milestone for the execution of the HLW disposal project in Japan. (author)

  20. A review of fast reactor program in Japan

    International Nuclear Information System (INIS)

    1996-01-01

    The main R and D results of Japanese activities are summarized as follows: (1) the experimental 140 MW(th) sodium cooled fast reactor 'Joyo' provided abundant experimental data and excellent operational records, attaining more than 50,000 hours of operation since its first criticality in 1977; (2) the prototype 280 MW(e) fast reactor 'Monju' reached initial criticality on 5 April 1994; presently Monju is under the cold shutdown state because of secondary sodium leak on 8 December 1995, and multiple cause investigations of the sodium leak are being performed; (3) the Japan Atomic Power Company is promoting design studies for demonstration fast reactor (DFBR) with a power output of 600 MW(e) and R and D for DFBR are being conducted under the cooperation of governmental and private sectors. (author)

  1. Japan Atomic Energy Research Institute in the 21st century

    International Nuclear Information System (INIS)

    Sato, Y.

    2001-01-01

    Major nuclear research institutes in Japan are the Japan Atomic Energy Research Institute (JAERI), Nuclear Cycle Development Institute (JNC), National Research Institute of Radiological Science (NIRS), and the Institute of Physical and Chemical Research (RIKEN). In the 50s and 60s JAERI concentrated on the introduction of nuclear technology from overseas. Energy security issues led to the development of a strong nuclear power programme in the next two decades resulting in Japan having 50 light water cooled nuclear power plants in operation. Japan also worked on other reactor concepts. The current emphasis of JAERI is on advanced reactors and nuclear fusion. Its budget of 270 million US$ supports five research establishments. JAERI has strong collaboration with industry and university system on nuclear and other advanced research topics (neutron science, photon science). In many areas Japan has strong international links. JAERI has also been transferring know-how on radioisotope and radiation applications to the developing countries particularly through IAEA-RCA mechanisms. (author)

  2. Progress of international cooperation of nuclear power generation

    International Nuclear Information System (INIS)

    Sasaki, Sadaaki; Ishikawa, Hidetaka; Eda, Hisao; Noda, Hiroshi; Kobayashi, Ichiro; Kawahara, Akira; Nagano, Akira

    1999-01-01

    International cooperation on nuclear power technology under promotion of the Japan Electric Power Information Center can be divided roughly to two items: one is an assistant project of Japan Keirin Association and another is an international training of operation management and so forth on nuclear power plant trusted by Ministry of International Trade and Industry. Among upgrading needs of technical cooperation on nuclear power to the developing nations, the electric companies were received a request on private cooperation by the Ministry of International Trade and Industry. In 1985, it was decided that the nuclear power technical cooperation through an subsidy project of the Japan Keirin Association was advanced mainly by every electric companies as a window of the Japan Electric Power Information Center in Japan Electric Industry Association. And, by receiving another request, the Japan Electric Power Information Center began an international training on operation management and so one of the nuclear power plant since October, 1992. Here were introduced outlines of both technical cooperation on nuclear power and international training on operation management. (G.K.)

  3. Institutionalisation of Japan Identity Construction Policy

    Directory of Open Access Journals (Sweden)

    Zadvornaya Elena S.

    2016-09-01

    Full Text Available The article is devoted to the development of the modern politics of identity construction in Japan, which actively refers to the practice of designing self-image in international relations. This trend dates back to the 19th century, when there was the end of Sakoku (Japan’s policy of isolation. It is now possible to talk about the institutionalization of the identity construction policy to organized structures and regulations. Enhanced efforts in the field of Japanese traditional and popular culture, education and creative content has led to a number of institutions appearance (like Japan Foundation Fund, Japan Creative Agency, Japan Culture Fund, Agency for Cultural Affairs, Cool Japan Fund, Japan brand Fund and changing idea about the role of culture in foreign policy realization (it is fixed the documents of the Japanese Ministry of Foreign Affairs, the Ministry of Land, Infrastructure, Transport and Tourism, the Ministry of Education, Culture, Sports, Science and Technology, the Ministry of Economy, Trade and Industry, as well as a number of projects (Cool Japan, Visit Japan, Japan Culture Power, Japan Manga Awards, Kawaii Ambassadors, Cosplay International Fest and etc.. These efforts are aimed at forming Japan identity abroad to solve a number of foreign policy challenges of the future and the development of economic cooperation. The Japanese government nearest plans is to increase funding in order to create a positive image of Japan in the region of East Asia. All of these allows us to speak about the policy of the Japanese construction of identity as an institutionalized process in which there was clearance of organizations and regulatory activities.

  4. Testing the Nuclear Will of Japan

    Science.gov (United States)

    2007-12-01

    particularly the United States. This was significant because a soured economic relationship would undoubtedly affect the U.S.-Japan security...around the world, has sometimes soured its image as a serious international player.136 This is because many of the world’s great powers have extended...for International Exchange, 2005. Beer , Lawrence W. “Japan Turning the Corner.” Asian Survey 11, no. 1 (January 1971): 74 – 85. Bueno de Mesquita

  5. 16th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2016)

    International Nuclear Information System (INIS)

    2016-01-01

    Proceedings will be visible and accessible through IOP after conclusion of the Conference. For the first time this year we have plan a “Power MEMS in Action” special session that is specifically dedicated to table-top demonstrations of micro power sources and small scale energy harvesting systems. With the growing interest in wireless sensors for the Internet of Things and other distributed or portable devices, there is no better time to bring power MEMS out of the lab and into applications. The Power MEMS in Action session will provide this opportunity by allowing researchers to demonstrate their technologies at the conference. As every year, this meeting is made possible by many generous contributions of time, effort, and financial support. Many thanks are due to the Technical Program Committee led by Pr Einar Halvorsen for their intensive efforts in reviewing abstract submissions, and to the International Steering Committee for their advice and support. Thanks to The PowerMEMS School chair Mickaël Lallart and the expert speakers that made the School possible. The local organizing committee, led by Dimitri Galayko, has provided us with invaluable assistance in making PowerMEMS 2016 happen. We wish you a productive and enjoyable conference and a wonderful stay in Paris. Philippe Basset Skandar Basrour CONFERENCE OFFICIALS Conference Chairs Philippe Basset Université Paris-Est, FRANCE Skandar Basrour Grenoble Alpes Université, FRANCE Technical Program Chair Einar Halvorsen University College of Southeast Norway, NORWAY PowerMEMS School Chair Mickaël Lallart Université de Lyon, FRANCE PowerMEMS in Action Chair Luc Frechette University ofSherbrooke, CANADA International Steering Committee Mark G. Allen - University of Pennsylvania, USA Philippe Basset - Université Paris-Est, FRANCE Skandar Basrour - Grenoble Alpes Université, FRANCE Steve Beeby - University of Southampton, UK Luc Frechette - University of Sherbrooke, CANADA Takayuki Fujita - University of Hyogo

  6. Demonstration of Essential Reliability Services by a 300-MW Solar Photovoltaic Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Loutan, Clyde; Klauer, Peter; Chowdhury, Sirajul; Hall, Stephen; Morjaria, Mahesh; Chadliev, Vladimir; Milam, Nick; Milan, Christopher; Gevorgian, Vahan

    2017-03-24

    The California Independent System Operator (CAISO), First Solar, and the National Renewable Energy Laboratory (NREL) conducted a demonstration project on a large utility-scale photovoltaic (PV) power plant in California to test its ability to provide essential ancillary services to the electric grid. With increasing shares of solar- and wind-generated energy on the electric grid, traditional generation resources equipped with automatic governor control (AGC) and automatic voltage regulation controls -- specifically, fossil thermal -- are being displaced. The deployment of utility-scale, grid-friendly PV power plants that incorporate advanced capabilities to support grid stability and reliability is essential for the large-scale integration of PV generation into the electric power grid, among other technical requirements. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, PV power plants can be used to mitigate the impact of variability on the grid, a role typically reserved for conventional generators. In August 2016, testing was completed on First Solar's 300-MW PV power plant, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to use grid-friendly controls to provide essential reliability services. These data showed how the development of advanced power controls can enable PV to become a provider of a wide range of grid services, including spinning reserves, load following, voltage support, ramping, frequency response, variability smoothing, and frequency regulation to power quality. Specifically, the tests conducted included various forms of active power control such as AGC and frequency regulation; droop response; and reactive power, voltage, and power factor controls. This project demonstrated that advanced power electronics and solar generation can be

  7. Demonstration of Active Power Controls by Utility-Scale PV Power Plant in an Island Grid: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; O' Neill, Barbara

    2017-02-01

    The National Renewable Energy Laboratory (NREL), AES, and the Puerto Rico Electric Power Authority conducted a demonstration project on a utility-scale photovoltaic (PV) plant to test the viability of providing important ancillary services from this facility. As solar generation increases globally, there is a need for innovation and increased operational flexibility. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, it may mitigate the impact of its variability on the grid and contribute to important system requirements more like traditional generators. In 2015, testing was completed on a 20-MW AES plant in Puerto Rico, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to provide various types of new grid-friendly controls. This data showed how active power controls can leverage PV's value from being simply an intermittent energy resource to providing additional ancillary services for an isolated island grid. Specifically, the tests conducted included PV plant participation in automatic generation control, provision of droop response, and fast frequency response.

  8. Research activities for nuclear power plant aging promoted by PLEC, JAPEIC, Japan

    International Nuclear Information System (INIS)

    Maeda, N.; Tajima, K.

    2003-01-01

    In order to perform research activity for aging; countermeasure of nuclear power plant effectively, Plant Life Engineering Center (PLEC) was established in Japan Power Engineering and Inspection Corporation (JAPEIC) in April 2000 sponsored by Ministry of Economy, Trade and Industry (METI, called as MITI, at that time). Results of technical survey for research and development for aging phenomena have been summarized in a table (Research Map) categorizing them into 'inspection and monitoring', 'evaluation method for aging' and 'preventive maintenances and refurbishment'. Necessary research themes have been extracted from the Research Map consulting to experts of the specified research area. Medium and long-term research perspective (Research Perspective) has been established which contains prioritized research themes and outlined specification of each theme. Several new research themes proposed by various organizations and selected by PLEC as effective for the regulation activities of METI every year. There are about ten on-going research programs funded by METI. Their progress and performance are evaluated annually to improve their efficiency including their alteration, abolition and integration. This cycle of research is going to be attained successfully. Technology Advisory Committee composed of members from various field of nuclear power including prefectural and municipal governments supervises the PLEC activity to concentrate national wide potentials and to secure transparency, openness and neutrality. This paper also provides an outline of the aging related research projects currently conducted by JAPEIC under the auspices of METI. (author)

  9. Demonstration of leak-before-break in Japan Sodium cooled Fast Reactor (JSFR) pipes

    International Nuclear Information System (INIS)

    Wakai, Takashi; Machida, Hideo; Yoshida, Shinji; Xu, Yang; Tsukimori, Kazuyuki

    2014-01-01

    This paper describes the leak-before-break (LBB) assessment procedure applicable to Japan Sodium cooled Fast Reactor (JSFR) pipes made of modified 9Cr–1Mo steel. For the sodium pipes of JSFR, the continuous leak monitoring will be adopted as an alternative to a volumetric test of the weld joints under conditions that satisfy LBB. Firstly, a LBB assessment flowchart eliminating uncertainty resulted from small scale leakage, such as self plugging phenomenon and influence of crack surface roughness on leak rate, was proposed. Secondly, a rational unstable fracture assessment technique, taking the compliance changing with crack extension into account, was also proposed. Thirdly, a crack opening displacement (COD) assessment technique was developed, because COD assessment method applicable to JSFR pipes – thin wall and small work hardening material – had not been proposed yet. In addition, fracture toughness tests were performed using compact tension (CT) specimens to obtain the fracture toughness, J IC , and the crack growth resistance (J–R) curve at elevated temperature. Finally, by using the flowchart, proposed techniques and collected data, LBB assessment for the primary sodium pipes of JSFR was conducted. As a result, LBB aspect was successfully demonstrated with sufficient margins

  10. Licensing experiences, risk assessment, demonstration test on nuclear fuel packages and design criteria for sea going vessel carrying spent fuel in Japan

    International Nuclear Information System (INIS)

    Aoki, S.; Ikeda, K.

    1978-01-01

    In Japan spent fuels from nuclear power plants shall be shipped to reprocessing plants by sea-going vessels. Atomic Energy Committee has initiated a board of experts to implement the assessment of environmental safety for sea transport. As a part of the assessment a study has been conducted by Central Research Institute of Electric Power Industry under sponsorship of Nuclear Safety Bureau, which is intended to guarantee the safety of sea transport. Nuclear Safety Bureau also has a program to carry out a long term demonstration test on spent fuel package using full scale package models. The test consists of drop, heat transfer, fire, collapse under high external pressure, immersion, shielding and subcritical test. The purpose of this test is to obtain the public acceptance and also to verify the adequacy of the safety analysis for nuclear fuel packages. In order to secure the safety of sea transport, the Ministry of Transportation has provided for the design criteria for sea-going vessel in the case of full load shipping, which aims to make minimum the probability of sinking at collision, grounding and other unforeseen accidents on the sea and also to retain the radiation exposure to crews as low as possible. The design criteria consists of the following items: (1) structural strength of vessel, (2) collision protective structure, (3) arrangement of holds, (4) stability after damage, (5) grounding protective structure, (6) cooling system, (7) tie-down equipment, (8) radiation inspection apparatus, (9) decontamination facilities, (10) emergency water flooding equipment for ship fire, (11) emergency electric sources, etc. Based on the design criteria a sea-going vessel names HINOURA-MARU has been reconstructed to transport spent fuel packages from nuclear power stations to the reprocessing plant

  11. Ten years of KRB Gundremmingen demonstration power station

    International Nuclear Information System (INIS)

    Facius, H. von; Ettemeyer, R.

    1976-01-01

    In August 1976 the first large nuclear power station in the Federal Republic, the KRB Gundremmingen plant with a net power of 237 MWe, has been in operation ten years. The construction of KRB as a demonstration plant was a major step forward on the way to the economic utilization of nuclear power for German utilities. Design and operation of the plant have decisively influenced the further development of the technology of light water reactors in the Federal Republic. Unlike the Kahl Experimental Nuclear Power Station (VAK), which was a test facility designed to generate experience and to train personnel, the decision to build KRB from the outset was conditional upon the fulfillment of economic criteria. Here are some of the aspects in which KRB has greatly influenced the development of nuclear power station technology: first application of internal steam-water separation instead of a steam drum with a water content of the steam of less than 1%; construction of a reactor buildung with all the necessary safety factors; solution of the corrosion and erosion problems linked with the use of a saturated steam turbine; special measures taken to prevent the turbine from speeding up due to post-evaporation effects after shutdown. Detailed comments are devoted to the subjects of availability, causes of failure and repair work. (orig.) [de

  12. Public acceptance (PA) of nuclear energy in Japan

    International Nuclear Information System (INIS)

    Ishii, Makoto

    1994-01-01

    Japan's nuclear development is carried out in the spirit of the Atomic Energy Basic Law that it adopted in 1955. The only nation in the world devastated by nuclear weapons, Japan strongly hopes for the abolishment of nuclear weapons and promotes the peaceful use of nuclear energy. Since Japan is in poor in natural resources nuclear power has now become a major foundation of our society and economy. As far as the Japanese people's awareness of nuclear power generation is concerned, 60% recognize it as necessary although 70% are concerned about its safety. The public acceptance (PA) of nuclear energy is facing a critical juncture at thus point due to such imminent issues as the use of plutonium and the disposal of high-level wastes. The entire Japanese government is currently striving to promote PA measures targeting various population groups. This paper reports on the peaceful use of nuclear energy and Japan's stance on this issue; people's awareness; and the current state of nuclear energy PA measures. 1 fig

  13. Present Status of HTGR Utilization System Development in Japan

    International Nuclear Information System (INIS)

    Miyamoto, Yoshiaki

    2000-01-01

    Efforts are to be continuously devoted to establish and upgrade HTGR technology in the world. Japan Atomic Energy Research Institute (JAERI) has conducted the R and D of HTGRs since the 1960's in Japan, focusing on mainly the construction of High Temperature engineering Test Reactor (HTTR) which is an HTGR with a maximum helium gas temperature of 950 o C at the reactor outlet and HTGR utilization systems. The HTTR achieved first criticality on November 10, 1998 and will restart from January in 2001. In the R and D program of HTGR utilization systems, JAERI has conducted hydrogen production systems with HTGR to demonstrate the applicability of nuclear heat for extensive energy demands besides the electric power generation. JAERI has developed a hydrogen production system by steam reforming process of natural gas using nuclear heat supplied from the HTTR. Prior to the demonstration test of HTTR hydrogen production system, a 1/30-scale out-of-pile test facility is under construction for safety review and detailed design of the system. The out-of-pile test facility will be started in 2001 and will be continued about 4 years. The hydrogen permeation and corrosion tests have been carried out since 1997. Check and review for the demonstration program in the HTTR hydrogen production system will be made in 2001. Then the HTTR hydrogen production system is scheduled to be constructed from 2003 and demonstratively operated from around 2006. In parallel with the R and D of the HTTR hydrogen production system, hydrogen production method by thermochemical water splitting, so-called IS process, has been studied in JAERI. The IS process is placed as one of future candidates of the heat utilization systems of the HTTR following the steam reforming system. Continuous and stoichiometric production of hydrogen and oxygen for 48 hours was successfully achieved with a laboratory-scale apparatus mainly made of glass. Following this achievement, the study has been continued with a larger

  14. Photovoltaic Test and Demonstration Project. [for solar cell power systems

    Science.gov (United States)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.

  15. Japan: Super-Aging Society Preparing for the Future

    Science.gov (United States)

    Muramatsu, Naoko; Akiyama, Hiroko

    2011-01-01

    Japan has the highest proportion of older adults in the world. Aging is not only an immediate personal issue but also a salient factor in crucial public policies, such as pensions, health, and long-term care. The Great East Japan Earthquake, tsunami, and nuclear power plant disaster of March 2011 has highlighted current and emerging issues of a…

  16. Power conversion and quality of the Santa Clara 2 MW direct carbonate fuel cell demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Skok, A.J. [Fuel Cell Engineering Corp., Danbury, CT (United States); Abueg, R.Z. [Basic Measuring Instruments, Santa Clara, CA (United States); Schwartz, P. [Fluor Daniel, Inc., Irvine, CA (United States)] [and others

    1996-12-31

    The Santa Clara Demonstration Project (SCDP) is the first application of a commercial-scale carbonate fuel cell power plant on a US electric utility system. It is also the largest fuel cell power plant ever operated in the United States. The 2MW plant, located in Santa Clara, California, utilizes carbonate fuel cell technology developed by Energy Research Corporation (ERC) of Danbury, Connecticut. The ultimate goal of a fuel cell power plant is to deliver usable power into an electrical distribution system. The power conversion sub-system does this for the Santa Clara Demonstration Plant. A description of this sub-system and its capabilities follows. The sub-system has demonstrated the capability to deliver real power, reactive power and to absorb reactive power on a utility grid. The sub-system can be operated in the same manner as a conventional rotating generator except with enhanced capabilities for reactive power. Measurements demonstrated the power quality from the plant in various operating modes was high quality utility grade power.

  17. The electronuclear program of Japan

    International Nuclear Information System (INIS)

    Mori, Kazuhisa

    1978-01-01

    Japan, depending on imports for 80% of its energy supply, introduced a nuclear power program, which now comprises 14 reactors in operation (8,000 MW., that is 8% of its electricity production), and 15 reactors (14,000MW) under construction or being investigated. The objective for 1985 is from 26,000 to 33,000 MW. Japanese industry committed the error of placing too much confidence in its American licensers and not undertaking enough of its own research. This resulted in having a too small number of nuclear stations available, approximately 50%. Japan secured its uranium supply (Niger), its enrichment facilities (U.S.A. and Eurodif), while studying the centrifugation process, and facilities for reprocessing irradiated fuels (France and U.K.) while, at the same time, seeking national independence regarding its entire fuel cycle. The siting of nuclear power stations comes up against local opposition, which is being overcome by a taxation on electricity used to subsidize local collectivities favorable to the construction of a power station, whether hydro-electric, thermal or nuclear [fr

  18. Liberation of electric power and nuclear power generation

    International Nuclear Information System (INIS)

    Yajima, Masayuki

    2000-01-01

    In Japan, as the Rule on Electric Business was revised after an interval of 35 years in 1995, and a competitive bid on new electric source was adopted after 1996 fiscal year, investigation on further competition introduction to electric power market was begun by establishment of the Basic Group of the Electric Business Council in 1997. By a report proposed on January, 1999 by the Group, the Rule was revised again on March, 1999 to start a partial liberation or retail of the electric power from March, 2000. From a viewpoint of energy security and for solution of global environmental problem in Japan it has been decided to positively promote nuclear power in future. Therefore, it is necessary to investigate how the competition introduction affects to development of nuclear power generation and what is a market liberation model capable of harmonizing with the development on liberation of electric power market. Here was elucidated on effect of the introduction on previous and future nuclear power generation, after introducing new aspects of nuclear power problems and investigating characteristic points and investment risks specific to the nuclear power generation. And, by investigating some possibilities to development of nuclear power generation under liberation models of each market, an implication was shown on how to be future liberation on electric power market in Japan. (G.K.)

  19. Japan’s National Interests in Taiwan

    Science.gov (United States)

    2013-06-01

    the existential recognition of the power asymmetry at the core of the issue. C. PRC POWER ASYMMETRY: “COMPREHENSIVE NATIONAL POWER” Dealing with a...technological strength. Japan needs a grand strategy consonant with its self-image as a humanistic , democratic and peaceful nation, and a strategy able

  20. Japan [National and regional programmes on the production of hydrogen using nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    Japan has shown tremendous economic growth in the post-war period and is now one of the world's leading industrial countries. Japan has virtually no domestic oil or natural gas reserves and is the second-largest net importer of crude oil and largest net importer of liquefied natural gas in the world. Including nuclear power, Japan is only 16% energy self-sufficient (neglecting uranium imports). Japan's total primary energy demand in 2007 was 514 Mtoe. Oil is the most consumed energy resource in Japan (45% as of 2007), although its share of total energy consumption has strongly declined from 57% in 1990. Coal, with 22% (versus 17% in 1990), continues to account for a significant share of total energy consumption, although 99% of the coal must be imported. Natural gas (16%) and nuclear power (13%) are increasingly important sources. Total electricity production in Japan amounted to 1123 TW.h in 2007, with the largest share of 35% (up from 20% in 1990) from natural gas. The share of nuclear power is 32%, followed by coal (28%), oil (19%), hydro (9%) and other renewables (3%).

  1. Japan-IAEA sefeguards demonstration programme in the gas centrifuge uranium enrichment facility

    International Nuclear Information System (INIS)

    Akiba, Mitsunori; Iwamoto, Tomonori; Omae, Masayoshi

    1985-01-01

    The Hexa-partite Safequard Project was started for the purpose of examining the effective techniques of safeguards for gas centrifuge uranium enrichment facilities. By the proposal of respective participating countries, it was decided to carry out the verifying test of various safeguard techniques at the actual plants. Japan carried out the verifying test of safeguard techniques at the Ningyotoge uranium enrichment pilot plant in June, 1982, and from November, 1983, to August, 1984. The contents of this test is reported. In Japan, this verifying test was positioned as a part of JASPAS (Japanese project of supporting IAEA safeguards). The verifying test of realtime and in-operation inventories, the verifying test of IAEA load cell type weighing machines for UF 6 cylinders, the verifying test of the measurement of the degree of enrichment in UF 6 cylinders by nondestructive test, the verifying test of confinement/watch system, and the verifying test of IAEA gas phase uranium enrichment monitors were carried out. The results were presented as the data for examination in the HSP, and evaluated as useful, informative and well compiled. It is necessary to pursue more cost-effective approaches. (Kako, I.)

  2. Stationary power fuel cell commercialization status worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.C. [Dept. of Energy, Morgantown, WV (United States)

    1996-12-31

    Fuel cell technologies for stationary power are set to play a role in power generation applications worldwide. The worldwide fuel cell vision is to provide powerplants for the emerging distributed generation and on-site markets. Progress towards commercialization has occurred in all fuel cell development areas. Around 100 ONSI phosphoric acid fuel cell (PAFC) units have been sold, with significant foreign sales in Europe and Japan. Fuji has apparently overcome its PAFC decay problems. Industry-driven molten carbonate fuel cell (MCFC) programs in Japan and the U.S. are conducting megawatt (MW)-class demonstrations, which are bringing the MCFC to the verge of commercialization. Westinghouse Electric, the acknowledged world leader in tubular solid oxide fuel cell (SOFC) technology, continues to set performance records and has completed construction of a 4-MW/year manufacturing facility in the U.S. Fuel cells have also taken a major step forward with the conceptual development of ultra-high efficiency fuel cell/gas turbine plants. Many SOFC developers in Japan, Europe, and North America continue to make significant advances.

  3. Discussion on allowed outage time at online maintenance in Japan

    International Nuclear Information System (INIS)

    Kobayashi, Masahide

    2009-01-01

    The purpose of this report is clarification of the handling of online maintenance in important system for nuclear safety of nuclear power plant in Japan, and discusses future tasks of online maintenance in Japan. Now, online maintenance is limited few cases in Japan. But, the needs and importance of online maintenance will be increase near future. It is necessary to evaluate safety at the online maintenance, and if necessary PSA results were used. It will be safety to do online maintenance within AOT, but safety of repetition of online maintenance must be evaluated. And, it is necessary to evaluate the influence to which the man-power during year is leveled by OLM. (author)

  4. Seismic measures and defence in depth of nuclear power plant. Lessons learned from the great east Japan earthquake

    International Nuclear Information System (INIS)

    Ochiai, Kanehiro

    2011-01-01

    The Great East Japan Earthquake occurred in March 11, 2011 brought about severe accident at nuclear power plant, which gave significant lessons to nuclear experts concerned with safety measures. Concepts of defence in depth was basic philosophy to assure safety of nuclear power plant even against uncertainties exceeding design basis. This concept consisted of prevention, monitoring, and action to mitigate consequences of failures such as a series of physical barriers between the reactor core and the environment, which were called multiple safety systems, each with backup and designed to accommodate human error. As for natural disaster, depth of recognition of characteristic of natural phenomena and its effect and engineering judgment was of prime importance. Different waveforms of ground motion at Fukushima and Onagawa at the Great East Japan Earthquake showed that design ground motion should have large uncertainties. To cope with uncertainties of ground motion, robust seismic measures based on experience were such as design of static seismic intensity and rigid structure of natural period less than 0.1 sec. As for tsunami, defence in depth measures were prepared for the cooling of reactor core, spent fuel and related electric generation equipment with taking into account 1) time lag between tsunami generation and arrival, 2) tsunami affected area could be limited by coastal levee or anti-inundation measure, 3) system redundancy could be assured by different locations of equipments and 4) repair works could be done by shipment of replacement equipment from outside due to limitation of affected regional area. Success examples of Onagawa, Tokai unit 2, Fukushima Daiichi unit 6 and Fukushima Daini Nuclear Power Plants could suggest definite tsunami defence in depth measures. Containment vent system as final heat sink and emergency condenser as reactor core cooling at outage should be properly utilized for Fukushima Daiichi unit 1 Nuclear Power Plant. (T. Tanaka)

  5. Output Control Technologies for a Large-scale PV System Considering Impacts on a Power Grid

    Science.gov (United States)

    Kuwayama, Akira

    The mega-solar demonstration project named “Verification of Grid Stabilization with Large-scale PV Power Generation systems” had been completed in March 2011 at Wakkanai, the northernmost city of Japan. The major objectives of this project were to evaluate adverse impacts of large-scale PV power generation systems connected to the power grid and develop output control technologies with integrated battery storage system. This paper describes the outline and results of this project. These results show the effectiveness of battery storage system and also proposed output control methods for a large-scale PV system to ensure stable operation of power grids. NEDO, New Energy and Industrial Technology Development Organization of Japan conducted this project and HEPCO, Hokkaido Electric Power Co., Inc managed the overall project.

  6. Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources

    Energy Technology Data Exchange (ETDEWEB)

    Hays, Lance G

    2014-07-07

    A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator – on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapor leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.

  7. Current status of radioactive waste management in Japan

    International Nuclear Information System (INIS)

    Amanuma, Tsuyoshi

    1985-01-01

    In Japan the nuclear power generation capacity now exceeds the level of 20,000 MW, 24.3 % of the total power generation. It constitutes the major position of energy source, a substitute for a petroleum. In the nuclear power, chemical engineering contributes significantly to treatment and disposal of the radioactive wastes. In the interim report by an ad hoc committee in the Atomic Energy Commission, for the future, rational grouping of the wastes and the direction of land disposal are stated. Contents are the following: basic ideas for the radioactive wastes, radioactive wastes countermeasures in Japan (wastes classification, low and high level and transuranic wastes), radioactive wastes in the nuclear fuel cycle (reactor and fuel reprocessing and reactor dismantling wastes). (Mori, K.)

  8. Recent development of nuclear power in Japan and instrumentation and control system and control room equipment for advanced light water reactors

    International Nuclear Information System (INIS)

    Wakayama, N.

    1992-01-01

    This paper was provided for the 13th IAEA/IWG-NPPCI Meeting and aims to introduce an outline of recent development of nuclear power in Japan and some topics in the field of nuclear power plant control and instrumentation. Forty units of nuclear power plants are in operation in Japan and five units of BWRs and six PWRs are under construction. Construction of prototype FBR Monju have almost completed an construction of High-Temperature Engineering Test Reactor, HTTR, started in March 1991. In parallel of those, extensive effort has been carried out to develop the third generation LWRs which are called Advanced BWR (ABWR) and Advanced PWR (APWR). Two Advanced BWRs are under safety review for construction. Instrumentation and control system of these Advanced LWRs adopts integrated digital I and C system, optical multiplexing signal transmission, fault tolerant control systems and software logic for reactor protection and safety systems and enhances plant control performance and provides human-friendly operation and maintenance environments. Main control room of these Advanced LWRs, comprised with large display panels and advanced console, has special futures such as one-man sit-down operation, human friendly man-machine interface, high level automation in operation and maintenance. (author). 7 refs, 9 figs, 1 tab

  9. Japan's regulatory and safety issues regarding nuclear materials transport

    International Nuclear Information System (INIS)

    Saito, T.; Yamanaka, T.

    2004-01-01

    This paper focuses on the regulatory and safety issues on nuclear materials transport which the Government of Japan (GOJ) faces and needs to well handle. Background information about the status of nuclear power plants (NPP) and nuclear fuel cycle (NFC) facilities in Japan will promote a better understanding of what this paper addresses

  10. Problems and legislative remedies of the parallel law systems in Japan for nuclear power reactors

    International Nuclear Information System (INIS)

    Irie, Kazutomo

    2011-01-01

    There are two established laws governing nuclear power reactors in Japan. One is the Electricity Utilities Industry Law, which regulates the nuclear power reactors, and the other is the so-called 'Reactor Regulation Law', which dually regulates the reactors in some phases. When a graded approach on the regulation of nuclear reactors was adopted, it extended over these two laws and was legislatively imperfect. Such imperfection created problems from the beginning. Also, the original regulatory structures presented by these laws had become obscure during the operation process of the graded regulation. The situation becomes further complicated by the revision of these laws in recent years. It appears that the trait of the regulatory procedural structure of the Electricity Utilities Industry Law has been weakened. As there is a pressing need to review the entire regulatory structure and to propose a unified regulatory system by combining these laws, this paper examines the merits and demerits of combining these laws under a unified regulation. (author)

  11. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    Science.gov (United States)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  12. Water pollution control technology in Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This work is a compilation by members of the Committee for Studying Transfer of Environmental Technology on the expertise and technology developed by the members for controlling water pollution in Japan, together with consideration of issues concerning the transfer of environmental technologies to developing countries. The committee is composed of representatives for the Environment Agency, Japan, Osaka Prefectural Government, Osaka Municipal Government, and 25 companies such as manufacturers of environmental equipment. The document contains a total of 93 short papers grouped into sections on: industrial wastewater treatment; sewage treatment; right soil treatment; sludge treatment; and miscellaneous. One paper by the Kausai Electric Power Co., Inc., discusses waste water treatment systems in oil-fired thermal power plants; another describes an internally circulating fluidized bed boiler for cocombusting coal with industrial wastes.

  13. Good performance in Japan is proof of continuing safety and reliability improvement practice

    International Nuclear Information System (INIS)

    Sumi, Y.

    1987-01-01

    Nuclear power is a vital energy supply source for both security and economy for such countries as Japan whose sources of energy are dependent on imported materials. This is the very reason why Japan gives her national priority to the improvement of nuclear power safety and reliability. As of the end of 1986, total nuclear power capacity owned and operated by private utility companies in Japan amounted to 24521 MW with 32 units sharing -- 19% of the total generating capacity. Moreover, during 1986 these units scored a remarkably high capacity factor of 76.2% and shared almost 28% of the nationwide electric power production, thereby contributing to a considerable saving of imported sources of energy. This outstanding record has been achieved by the parties concerned who dedicated themselves to furthering nuclear plant safety and reliability improvement. In this connection, this paper summarizes those key factors contributing to the good nuclear power plant performance of the Kansai Electric Power Company

  14. Situation of nuclear industry in Japan

    International Nuclear Information System (INIS)

    2002-08-01

    This document is a reprint of a note published by the nuclear service of the French embassy in Japan. It evokes the present day situation of nuclear facilities in Japan, the public acceptance and its attitude in front of accidents, the national energy program, the deregulation and competitiveness of nuclear power, the carrying out of the nuclear program, the future reactors, the fast neutron reactors, the dismantling activities, the fuel enrichment and reprocessing of spent fuels, the use of MOX fuel, the off-site storage, the vitrified and radiological wastes, the geological disposal of wastes, the prospects of the nuclear program, the companies involved in the Japan nuclear industry, the French-Japanese bilateral cooperation, and the ITER project in the domain of nuclear fusion. (J.S.)

  15. Present status of nuclear energy development and utilization in Japan 1994

    International Nuclear Information System (INIS)

    1994-03-01

    Today, world energy demands continue to increase, and over the middle and long-term, access to petroleum supplies may become difficult. At the same time, such serious environmental problems as global warming and acid rain, which are caused by the burning of fossil fuels, have drawn great public attention, and the international community has urged that solutions to them should be found. Because nuclear power offers an economically efficient, stable supply of energy whose production has little adverse effect on the environment, the world has recognized the necessity of continuing to develop and use it. The changing international political situation, however, has complicated nuclear energy matters. In Japan, particularly the collapse of the former Soviet Union and North Korea's announcement of its intention to withdraw from the Nuclear Weapons Non-Proliferation Treaty have been cause for concern. Under these circumstances, it has become increasingly important for Japan to secure stable sources of energy, since Japan is dependent on imports for its energy supply. To that end, Japan has steadily promoted the development and utilization of nuclear energy. In fiscal 1992, nuclear power accounted for 28.2 % of the total power generated by Japanese electric utilities. Japan has also worked steadily to develop a nuclear fuel cycle, which is important to the long-term stability of the energy supply. This publication describes the present status of nuclear energy development and utilization in Japan. (J.P.N.)

  16. Recent development of the superconducting magnet in Japan

    International Nuclear Information System (INIS)

    Umeda, M.; Aiyama, Y.

    1980-01-01

    The current R and D works on large-scale superconducting magnets in Japan are reviewed with special emphasis on those for fusion power and electric power storage. The contents include Nb-Ti and Nb 3 Sn magnets and pulsed magnets. (E.G.) [pt

  17. Scenario analysis on future electricity supply and demand in Japan

    International Nuclear Information System (INIS)

    Zhang, Qi; Ishihara, Keiichi N.; Mclellan, Benjamin C.; Tezuka, Tetsuo

    2012-01-01

    Under continuing policies of CO 2 emissions reduction, it is crucial to consider scenarios for Japan to realize a safe and clean future electricity system. The development plans for nuclear power and renewable energy - particularly solar and wind power - are being reconsidered in light of the Fukushima nuclear accident. To contribute to this, in the present study, three electricity supply scenarios for 2030 are proposed according to different future nuclear power development policies, and the maximum penetration of renewable energy generation is pursued. On the other side of the equation, three electricity demand scenarios are also proposed considering potential energy saving measures. The purpose of the study is to demonstrate quantitatively the technological, economic and environmental impacts of different supply policy selections and demand assumptions on future electricity systems. The scenario analysis is conducted using an input–output hour-by-hour simulation model subject to constraints from technological, economic and environmental perspectives. The obtained installed capacity mix, power generation mix, CO 2 emissions, and generation cost of the scenarios were inter-compared and analyzed. The penetration of renewable energy generation in a future electricity system in Japan, as well as its relationship with nuclear power share was uncovered. -- Highlights: ► Scenario analysis is conducted on future electricity systems under different supply policies and demand assumptions. ► Scenario analysis is conducted using a input–output hour-by-hour simulation model for real-time demand-supply balance. ► The technological, economic and environmental impacts of supply policies and demand assumptions on future electricity systems are studied. ► The maximum penetration of renewable energy generation is pursued in the scenario analysis using the hour-by-hour simulation. ► The relationship between the penetration levels of renewable energy and nuclear power

  18. Japan's Energy Policy in a Post-3/11 World Juggling Safety, Sustainability and Economics

    International Nuclear Information System (INIS)

    Hiranuma, Hikaru

    2014-09-01

    The March 2011 accident at the Fukushima Daiichi Nuclear Power Station turned Japan's energy policy on its head, shedding a harsh new light on Japan's energy policy and power supply system, and throwing into relief six major problem areas that had largely escaped scrutiny before the disaster. (1) Fragmentation of the power grid under the regional monopolies of Japan's 10 'general electric utilities' and the resulting failure to develop the kind of wide-area transmission system needed to transfer electricity from regions with a surplus to those suffering shortages. (2) The low electric supply capacity of entities other than the 10 regional utilities, making procurement of electric power from other sources difficult. (3) The lack of effective mechanisms for curtailing demand at times when a reliable electric supply is jeopardized. (4) The inability of customers to choose a power source or supplier. (5) The failure to manage the energy risks associated with a shutdown of Japan's nuclear power plants. (6) The urgent need to confront the risk of severe accidents and other hazards associated with nuclear power facilities. The pre-quake Strategic Energy Plan announced by the Democratic Party (DPJ) in 2010 put an emphasis on nuclear power as the mainstay of Japan's energy supply and offered little guidance for addressing these issues. The plan was subsequently rejected, and a new policy was announced by the DPJ to eliminate nuclear power from Japan's energy mix before 2040. The coalition agreement between the Liberal Democratic Party and the New Komeito Party, which defeated the DPJ in the December 2012 general election, backtracked from the 'zero nuclear power' policy, which constituted an important shift from the nuclear-dependent policies of the pre-Fukushima era. In April 2013, the LDP government of Prime Minister Shinzo Abe approved a document titled Policy on Electricity System Reform emphasizing the need to make use of a wider range of energy sources, and in April

  19. Japan/India. Towards a nuclear cooperation?

    International Nuclear Information System (INIS)

    Pajon, Celine

    2011-10-01

    As diplomatic, economic and strategic relationships between Japan and India have been intensively developed for a decade, the author aims at discussing the very sensitive approach to a nuclear cooperation between these two countries as Japan, while taking benefit of the American nuclear umbrella, is a strong defender of nuclear disarmament and non proliferation, and India has been developing its own civilian and military nuclear programme outside of the international regime which it considers as discriminative. The author first discusses factors which incited Japan to build up a strategic partnership with India in front of the evolution of the political context, of the powerful upswing of China, and of the new American orientation with respect to Delhi. She comments the economic and political stakes of the currently negotiated Japan-India nuclear cooperation agreement which not only concerns the relationships between these both countries, but also French and American industrial groups which are present on the Indian market. She also notices that the Fukushima accident which has put Japan energy choices into question again, is a new deal which is to be taken into account

  20. Investigation of uranium resources out of Japan. Summary on investigation techniques

    International Nuclear Information System (INIS)

    2001-03-01

    Investigation of uranium resources in Japan was begun on 1954 by inland survey of the Geological Survey Bureau in the Agency of Industrial Science and Technology, Ministry of Industrial Trade and Industry, and then it was inherited to the Atomic Fuel Corporation and the Power Reactor and Nuclear Fuel Development Corporation (PNC). Since 1960s, under expectation of rapid growth of nuclear power generation and increase of uranium demand, as it was elucidated to be impossible to fill to its inland demand in quality and quantity, investigation of uranium resources out of Japan by private companies and its basic survey out of Japan by government were promoted. However, in accompanying with revise of PNC to be Japan Nuclear Cycle Development Institute, withdraw of the ore mining business was determined. According to the determination, as a result of investigation on inheritance of right of mining out of Japan to inland companies, rights in Canada were finished to inherit on November, 2000. Here were described on outlines on investigation, investigative method, and investigative business on uranium resources. (G.K.)

  1. The Great East Japan Earthquake, tsunami, and Fukushima Daiichi nuclear power plant accident: a triple disaster affecting the mental health of the country.

    Science.gov (United States)

    Yamashita, Jun; Shigemura, Jun

    2013-09-01

    The Great East Japan Earthquake in 2011 caused 2 other serious disasters: a tsunami and a nuclear power plant accident. A chronic shortage of mental health resources had been previously reported in the Tohoku region, and the triple disaster worsened the situation. Eventually a public health approach was implemented by providing a common room in temporary housing developments to build a sense of community and to approach evacuees so that they could be triaged and referred to mental health teams. Japan now advocates using psychological first aid to educate first responders. This article extracts key lessons from relevant literature. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. A proposed high-power UV industrial demonstration laser at CEBAF

    International Nuclear Information System (INIS)

    Benson, S.V.; Bisognano, J.J.; Bohn, C.L.

    1996-01-01

    The Laser Processing Consortium, a collaboration of industries, universities, and the Continuous Electron Beam Accelerator Facility (CEBAF) in Newport News, Virginia, has proposed building a demonstration industrial processing laser for surface treatment and micro-machining. The laser is a free-electron laser (FEL) with average power output exceeding 1 kW in the ultraviolet (UV). The design calls for a novel driver accelerator that recovers most of the energy of the exhaust electron beam to produce laser light with good wall-plug efficiency. The laser and accelerator design use technologies that are scalable to much higher power. The authors describe the critical design issues in the laser such as the stability, power handling, and losses of the optical resonator, and the quality, power, and reliability of the electron beam. They also describe the calculated laser performance. Finally progress to date on accelerator development and resonator modeling will be reported

  3. A proposed high-power UV industrial demonstration laser at CEBAF

    International Nuclear Information System (INIS)

    Benson, S.V.; Bisognano, J.J.; Bohn, C.L.

    1996-01-01

    The Laser Processing Consortium, a collaboration of industries, universities, and the Continuous Electron Beam Accelerator Facility (CEBAF) in Newport News, Virginia, has proposed building a demonstration industrial processing laser for surface treatment and micro-machining. The laser is a free-electron laser (FEL) with average power output exceeding 1 kW in the ultraviolet (UV). The design calls for a novel driver accelerator that recovers most of the energy of the exhaust electron beam to produce laser light with good wall-plug efficiency. The laser and accelerator design use technologies that are scalable to much higher power. The authors will describe the critical design issues in the laser such as the stability, power handling, and losses of the optical resonator, and the quality, power, and reliability of the electron beam. They will also describe the calculated laser performance. Finally progress to date on accelerator development and resonator modeling will be reported

  4. Economic estimation of the external effect on the security of energy and public acceptance for nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Fujimoto, Noboru; Morita, Koji; Fukuda, Kenji

    2000-01-01

    Energy taxes in Japan, i. e., three laws of electric power source, crude oil customs duties and oil taxes, as well as the fuel stock of the power plants have been investigated, and the economical estimation for the nuclear power generation has been carried out from standpoints of the security of energy and public acceptance. For the security, it has been clear that the nuclear power is advanced in internalization of fuel stock by external economy and diversification of electric power source by external diseconomy, but oil and LNG thermal power generation is not sufficiently internalized. None of the power source has paid for the compensation for the risk in public acceptance. The fuel stock for the thermal power is estimated to be for about one week to a month, whereas nuclear power plants have a potential stock that lasts for 3 years. The external effect could go up to 35 billion yen if it is converted to fuel. The predominance, therefore, of the nuclear power for the security of energy is confirmed. Also, it is presumable that the external cost for the fuel stock, so called, is larger than the one for risk and CO 2 reduction. (author)

  5. Energy management in Japan. Consequences for RIs

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Japan is eager to host the ILC, the International Linear Collider Project. One of the issues in realizing such a large accelerator facility in Japan would be assuring a satisfactory supply of electrical power. As is well known, after the Tohoku - Pacific Ocean Earthquake in March 11, 2011, most Japanese nuclear power plants have been off-line. Prior to that, up to 30% of the demand on the electrical grid was supplied by nuclear power. While there is no prospect for resumption of reactor operations, a rapid increase of the generation capacity of fossil fuel plants has allowed Japanese industries and domestic life to survive without major disruption, thought it has worsened the trade imbalance. In any case, we must be realistic in preparing an energy management plan for our Research Institutes where large-scale energy consumers are. Already for many years laboratories such as TRISTAN, KEKB and J-PARC have scheduled their operations so that they could contract to draw minimal power during the summer cooling sea...

  6. Preliminary Demonstration of Power Beaming With Non-Coherent Laser Diode Arrays

    National Research Council Canada - National Science Library

    Kare, Jordin

    1999-01-01

    A preliminary demonstration of free-space electric power transmission has been conducted using non-coherent laser diode arrays as the transmitter and standard silicon photovoltaic cell arrays as the receiver...

  7. Technical Evaluation on Ageing Management in Nuclear Power in Japan -Life Extension over 40 Years at Japanese Nuclear Power Plants-

    International Nuclear Information System (INIS)

    Tanaka, H.; Iwasaki, M.; Miyama, S.

    2012-01-01

    The Japanese commercial reactors have accumulated more than 40 years operating experience since Tsuruga-1 started commercial operation in March 1970. However, the severe accident occurred at Fukushima nuclear power plants triggered by East Japan Great Earthquake on March 11 last year. The facts that all the reactors having experienced core meltdown had operated for more than 30 years and Fukushima Daiichi unit 1 had just received the approval for its 40th year Ageing Management Technical Evaluation results from the Japanese government caused increasing distrust among the public in nuclear power plants operating for a long period of time. However, investigations of the accident conducted so far have not revealed any evidence that ageing degradation accelerated the accident. In addition, the analysis of seismic accelerations of the earthquake did not show that any component function was lost due to the accident. Considering these facts, I would like to discuss the issues to be continuously pursued and to be additionally implemented as part of the plat life management activities. In addition, I will introduce the efforts made by the Japanese utilities following the accident. (author)

  8. Research on energy supply, demand and economy forecasting in Japan

    International Nuclear Information System (INIS)

    Shiba, Tsuyoshi; Kamezaki, Hiroshi; Yuyama, Tomonori; Suzuki, Atsushi

    1999-10-01

    This project aims to do research on forecasts of energy demand structure and electricity generation cost in each power plant in Japan in the 21st century, considering constructing successful FBR scenario. During the process of doing research on forecasts of energy demand structure in Japan, documents published from organizations in inside and outside of Japan were collected. These documents include prospects of economic growth rate, forecasts of amount for energy supply and demand, the maximum amount of introducing new energy resources, CO2 regulation, and evaluation of energy best mixture. Organizations in Japan such as Economic Council and Japan Energy Economic Research Institute have provided long-term forecasts until the early 21st century. Meanwhile, organizations overseas have provided forecasts of economic structure, and demand and supply for energy in OECD and East Asia including Japan. In connection with forecasts of electricity generation cost in each power plant, views on the ultimate reserves and cost of resources are reviewed in this report. According to some views on oil reserves, making assumptions based on reserves/production ratio, the maximum length of the time that oil reserves will last is 150 years. In addition, this report provides summaries of cost and potential role of various resources, including solar energy and wind energy; and views on waste, safety, energy security-related externality cost, and the price of transferring CO2 emission right. (author)

  9. Japan's Energy and Climate Policy: Towards Dispelling the Uncertainties

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie; Mathieu, Carole

    2015-05-01

    Four years after the Great East Japan Earthquake and a few months before the opening of the Paris Climate Conference, Japan is about to clarify its energy and climate policy. Already in spring 2014, the Cabinet of Prime Minister Shinzo Abe released the 4. Strategic Energy Plan, drawing the first lessons for the post-Fukushima era. The zero-nuclear scenario was abandoned, although it was established that dependence on nuclear should be as low as possible. Later in 2014, two expert panels were requested to work on quantitative targets for 2030, both in terms of future split between sources for power generation and in terms of greenhouse gas (GHG) emission reduction. The Cabinet's final decisions are expected for June 2015. The draft proposals are already known and suggest that Japan is determined to find a proper balance between system stability, energy security and cost control objectives on the one hand, and the need to reduce domestic GHG emissions on the other hand. Because this task is highly challenging, the government's proposals are unlikely to gain unanimous support, neither domestically nor from the international community. Taking into account the March 2015 decision to decommission five reactors, Japan now has 43 operable nuclear power plants with a capacity of 40.47 GW. Should all of them come back online, their total capacity would be sufficient to meet the draft 2030 target (20-22% share of electricity production), provided that electricity consumption does not rise significantly and that the lifetime of the nuclear plants is extended to 60 years. Although the approved restart of some nuclear units is a milestone for Japan's nuclear industry and energy mix, there are still uncertainties around the scale and timing of the restart, in particular because of the local opposition. Japan aims at increasing the share of renewable electricity production, which is set to reach 22-24% in 2030. Such target does not seem particularly ambitious, knowing that the

  10. Total-factor energy efficiency of regions in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Honma, Satoshi [Faculty of Economics, Kyushu Sangyo University, 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503 (Japan); Hu, Jin-Li [Institute of Business and Management, National Chiao Tung University (China)

    2008-02-15

    This study computes the regional total-factor energy efficiency (TFEE) in Japan by employing the data envelopment analysis (DEA). A dataset of 47 prefectures in Japan for the period 1993-2003 is constructed. There are 14 inputs, including three production factors (labor employment, private, and public capital stocks) and 11 energy sources (electric power for commercial and industrial use, electric power for residential use, gasoline, kerosene, heavy oil, light oil, city gas, butane gas, propane gas, coal, and coke). GDP is the sole output. Following Fukao and Yue [2000. Regional factor inputs and convergence in Japan - how much can we apply closed economy neoclassical growth models? Economic Review 51, 136-151 (in Japanese)], data on private and public capital stocks are extended. All the nominal variables are transformed into real variables, taking into consideration the 1995 price level. For kerosene, gas oil, heavy oil, butane gas, coal, and coke, there are a few prefectures with TFEEs less than 0.7. The five most inefficient prefectures are Niigata, Wakayama, Hyogo, Chiba, and Yamaguchi. Inland regions and most regions along the Sea of Japan are efficient in energy use. Most of the inefficient prefectures that are developing mainly upon energy-intensive industries are located along the Pacific Belt Zone. A U-shaped relation similar to the environmental Kuznets curve (EKC) is discovered between energy efficiency and per capita income for the regions in Japan. (author)

  11. Total-factor energy efficiency of regions in Japan

    International Nuclear Information System (INIS)

    Honma, Satoshi; Hu, Jin-Li

    2008-01-01

    This study computes the regional total-factor energy efficiency (TFEE) in Japan by employing the data envelopment analysis (DEA). A dataset of 47 prefectures in Japan for the period 1993-2003 is constructed. There are 14 inputs, including three production factors (labor employment, private, and public capital stocks) and 11 energy sources (electric power for commercial and industrial use, electric power for residential use, gasoline, kerosene, heavy oil, light oil, city gas, butane gas, propane gas, coal, and coke). GDP is the sole output. Following Fukao and Yue [2000. Regional factor inputs and convergence in Japan-how much can we apply closed economy neoclassical growth models? Economic Review 51, 136-151 (in Japanese)], data on private and public capital stocks are extended. All the nominal variables are transformed into real variables, taking into consideration the 1995 price level. For kerosene, gas oil, heavy oil, butane gas, coal, and coke, there are a few prefectures with TFEEs less than 0.7. The five most inefficient prefectures are Niigata, Wakayama, Hyogo, Chiba, and Yamaguchi. Inland regions and most regions along the Sea of Japan are efficient in energy use. Most of the inefficient prefectures that are developing mainly upon energy-intensive industries are located along the Pacific Belt Zone. A U-shaped relation similar to the environmental Kuznets curve (EKC) is discovered between energy efficiency and per capita income for the regions in Japan

  12. HTTR demonstration test plan for industrial utilization of nuclear heat

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Ohashi, Hirofumi; Yan, Xing L.; Kubo, Shinji; Nishihara, Tetsuo; Tachibana, Yukio; Inagaki, Yoshiyuki

    2014-09-01

    Japan Atomic Energy Agency has been conducting research and development with a central focus on the utilization of High Temperature engineering Test Reactor (HTTR), the first High Temperature Gas-cooled Reactor (HTGR) in Japan, towards the realization of industrial use of nuclear heat. Several studies have made on the integration of the HTTR with thermochemical iodine-sulfur process and steam methane reforming hydrogen production plant (H 2 plant) as well as helium gas turbine power conversion system. In addition, safety standards for coupling a H 2 plant to a nuclear facility has been investigated. Based on the past design information, the present study identified test items to be validated in the HTTR demonstration test to accomplish a formulation of safety requirement and design consideration for coupling a H 2 plant to a nuclear facility as well as confirmation of overall performance of helium gas turbine system. In addition, plant concepts for the heat utilization system to be connected with the HTTR are investigated. (author)

  13. Return of vitrified wastes from France to Japan

    International Nuclear Information System (INIS)

    2000-01-01

    The radioactive wastes resulting from the burnup of nuclear fuels in nuclear reactors represent 3 to 5% of the spent fuel. These wastes cannot be reused nor recycled and thus are vitrified after reprocessing. Japanese power companies have signed contracts with Cogema in France and BNFL in the UK for the reprocessing of their spent fuels. Then, the ultimate reprocessed wastes are sent back to Japan for storage. This information dossier takes stock of different questions relative to the transport of the vitrified wastes from France to Japan: why France sends back containers of vitrified wastes to Japan? What is a vitrified wastes container made of? How containers are transported? What is the regulatory frame applicable to these transports? Which safety measures are taken during transport? Which physical protection is applied? Which temporary storage facilities are used before and after transportation? How is performed the ultimate storage of wastes in Japan? Which quality and safety warranties are taken? Which emergency plans and exercises are provided? What are the applicable civil liability regimes? And what kind of information is given to the public about these transports. Some general information about energy and nuclear power worldwide, energy and environment, radioactivity, BNFL, Cogema and ORC is given in appendixes. (J.S.)

  14. Evaluation of efficiency in Japan electric power companies

    International Nuclear Information System (INIS)

    Ghaderi, F.; Muyajima, M.

    2001-01-01

    efficiencies drastic. with taking into account some operational non operational parameters as inputs and outputs in the Electric Power Companies in Japan, some insight in the extent of operation could be achieved with which it could be argued on the companies efficiency. Then with comparing them with each other the most efficient company with considering the particular parameter could be introduce. The main focus of the paper will be to evaluate the implementation of the electric companies which could be leaded later to promote efficiency. decreasing the price for the end users and energy-saving opportunities in the operating

  15. Present state of development of demonstration FBR and prospect of practical use

    International Nuclear Information System (INIS)

    Inagaki, Tatsutoshi

    1996-01-01

    As for the FBR development in Japan, the Atomic Energy Commission revised the long term plan on the research, development and utilization of atomic energy in June, 1994, and under the basic policy that through the considerable period of using LWRs together, FBRs will be adopted as the main nuclear power plants in future, it was decided to establish FBR technology system so that the practical use of FBRs becomes feasible by about 2030 through two demonstration FBRs following the experimental FBR 'Joyo' and the prototype FBR 'Monju'. The Monju started power generation and transmission in August, 1995, but secondary sodium leak accident occurred in December, 1995, and at present it is stopped. The demonstration FBR No. 1 is a top entry type loop reactor, and the power output is about 660 MWe. The start of construction is scheduled at the beginning of 2000s. The research on the whole plant design is carried out as the research on the optimization of demonstration FBR plant for three years from fiscal year 1994. The design of the demonstration FBR No. 1, the research and development for it, the prospect of the practical use and the research and development for the practical use are reported. (K.I.)

  16. Impact of Fukushima nuclear disaster on oil-consuming sectors of Japan

    OpenAIRE

    Taghizadeh-Hesary, Farhad; Yoshino, Naoyuki; Rasoulinezhad, Ehsan

    2017-01-01

    The Fukushima Daiichi nuclear disaster was an accident at the Fukushima I Nuclear Power Plant in Fukushima, Japan, which resulted primarily from the tsunami following the Tohoku earthquake on 11 March 2011, and which led to year-long nuclear shutdown in the country. During the shutdown, Japan substituted fossil fuels for nuclear power and became more dependent on import and consumption of fossil fuels including oil, gas, and coal. In this paper, we try to shed light on the elasticity of oil c...

  17. Fusion power demonstration - a baseline for the mirror engineering test reactor

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.; Neef, W.S.

    1983-01-01

    Developing a definition of an engineering test reactor (ETR) is a current goal of the Office of Fusion Energy (OFE). As a baseline for the mirror ETR, the Fusion Power Demonstration (FPD) concept has been pursued at Lawrence Livermore National Laboratory (LLNL) in cooperation with Grumman Aerospace, TRW, and the Idaho National Engineering Laboratory. Envisioned as an intermediate step to fusion power applications, the FPD would achieve DT ignition in the central cell, after which blankets and power conversion would be added to produce net power. To achieve ignition, a minimum central cell length of 67.5 m is needed to supply the ion and alpha particles radial drift pumping losses in the transition region. The resulting fusion power is 360 MW. Low electron-cyclotron heating power of 12 MW, ion-cyclotron heating of 2.5 MW, and a sloshing ion beam power of 1.0 MW result in a net plasma Q of 22. A primary technological challenge is the 24-T, 45-cm bore choke coil, comprising a copper hybrid insert within a 15 to 18 T superconducting coil

  18. Motivation for a near term gun launch to space demonstration and a variable induction power supply concept to minimize initial demonstration costs

    International Nuclear Information System (INIS)

    Palmer, M.R.

    1993-01-01

    The history of the Gun Launch to Space (GLTS) concept is briefly reviewed along with recent progress and motivations for a near term launch demonstration. A current multiplying reconfigurable inductor design is developed which could couple to an existing battery system to power a GLTS railgun demonstration at the 300 megajoule muzzle energy level. The design is developed using proven approaches and performance levels and appears capable of reducing the power supply cost for an initial GLTS demonstration below that of a simple battery charged inductor system. Possible uses are (1) launching of space weapons; (2) launching of communication satellites; (3) and launching of satellites for space disposal of radioactive wastes

  19. The Solar Umbrella: A Low-cost Demonstration of Scalable Space Based Solar Power

    Science.gov (United States)

    Contreras, Michael T.; Trease, Brian P.; Sherwood, Brent

    2013-01-01

    Within the past decade, the Space Solar Power (SSP) community has seen an influx of stakeholders willing to entertain the SSP prospect of potentially boundless, base-load solar energy. Interested parties affiliated with the Department of Defense (DoD), the private sector, and various international entities have all agreed that while the benefits of SSP are tremendous and potentially profitable, the risk associated with developing an efficient end to end SSP harvesting system is still very high. In an effort to reduce the implementation risk for future SSP architectures, this study proposes a system level design that is both low-cost and seeks to demonstrate the furthest transmission of wireless power to date. The overall concept is presented and each subsystem is explained in detail with best estimates of current implementable technologies. Basic cost models were constructed based on input from JPL subject matter experts and assume that the technology demonstration would be carried out by a federally funded entity. The main thrust of the architecture is to demonstrate that a usable amount of solar power can be safely and reliably transmitted from space to the Earth's surface; however, maximum power scalability limits and their cost implications are discussed.

  20. Energy security strategy and nuclear power

    International Nuclear Information System (INIS)

    Toichi, Tsutomu; Shibata, Masaharu; Uchiyama, Yoji; Suzuki, Tatsujiro; Yamazaki, Kazuo

    2006-01-01

    This special edition of 'Energy security strategy and nuclear power' is abstracts of the 27 th Policy Recommendations 'The Establishment of an International Energy Security System' by the Japan Forum on International Relations, Inc on May 18 th , 2006. It consists of five papers: Energy security trend in the world and Japan strategy by Tsutomu Toichi, Establishment of energy strategy supporting Japan as the focus on energy security by Masaharu Shibata, World pays attention to Japan nuclear power policy and nuclear fuel cycle by Yoji Uchiyama, Part of nuclear power in the energy security - the basic approach and future problems by Tatsujiro Suzuki, and Drawing up the energy strategy focused on the national interests - a demand for the next government by Kazuo Yamazaki. (S.Y.)

  1. Implications of Japan's NPPs overseas expansion policy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. E.; Yun, S. W. [Nuclear Policy Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The accident at the Fukushima Daiichi contributing to nuclear power's loss of acceptability in most developed countries however new nuclear market has been growing especially in developing countries. According to IAEA, it is estimated that the construction of 121 to 743 nuclear power plants (NPPs) by 2050. Japanese government reviewed national nuclear export strategy after Korea KEPCO consortium ordered for construction of the UAE Project in 2009 and Russia won a contract of the Vietnam 1st Nuclear Power Plant Project in 2010. Japan figured out that reasons of failed at UAE project were price competitiveness and lack of top-level's attention. Also Russia offered to Vietnam military cooperation which was diagnosed as a failure to Japan. In these circumstances Fukushima accident influenced attitudes towards and acceptance of nuclear power immediately compared to before the accident. Nevertheless, Japanese government decided to keep focusing on nuclear export.

  2. [Different uses of Fagopyrum esculentum Moench (buckwheat) in Japan and China: what ancient medical documents reveal].

    Science.gov (United States)

    Tatsumi, Nami; Marui, Eiji

    2012-03-01

    The purpose of this thesis is to demonstrate that buckwheat has been recognized, both in Japan and China, as a crop that is useful in many ways: as an agricultural crop, and for the healing powers and properties that, according to traditional Chinese medicine, it has. A comparative study of ancient documents pertaining to medicine in these countries has made it clear that this is the case. Buckwheat, however, has been used quite differently in each country. As is shown in some ancient Chinese documents pertaining to medicine, China has treated buckwheat primarily as a medicine for clinical use rather than as an edible crop. Nowadays, buckwheat is eaten only in some regions of China. Although it came to Japan from China as a medicine, in Japan buckwheat gradually became a popular food crop. It has become an important component of traditional Japanese cuisine thanks in part to government support and the strong demand that developed in Japanese society.

  3. Water chemistry experience of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Ishigure, Kenkichi; Abe, Kenji; Nakajima, Nobuo; Nagao, Hiroyuki; Uchida, Shunsuke.

    1989-01-01

    Japanese LWRs have experienced several troubles caused by corrosions of structural materials in the past ca. 20 years of their operational history, among which are increase in the occupational radiation exposures, intergranular stress corrosion cracking (IGSCC) of stainless steel piping in BWR, and steam generator corrosion problems in PWR. These problems arised partly from the improper operation of water chemistry control of reactor coolant systems. Consequently, it has been realized that water chemistry control is one of the most important factors to attain high availability and reliability of LWR, and extensive researches and developments have been conducted in Japan to achieve the optimum water chemistry control, which include the basic laboratory experiments, analyses of plant operational data, loop tests in operating plants and computer code developments. As a result of the continuing efforts, the Japanese LWR plants have currently attained a very high performance in their operation with high availability and low occupational radiation exposures. A brief review is given here on the R and D of water chemistry in Japan. (author)

  4. Heat Pipe Powered Stirling Conversion for the Demonstration Using Flattop Fission (DUFF) Test

    Science.gov (United States)

    Gibson, Marc A.; Briggs, Maxwell H.; Sanzi, James L.; Brace, Michael H.

    2013-01-01

    Design concepts for small Fission Power Systems (FPS) have shown that heat pipe cooled reactors provide a passive, redundant, and lower mass option to transfer heat from the fuel to the power conversion system, as opposed to pumped loop designs typically associated with larger FPS. Although many systems have been conceptually designed and a few making it to electrically heated testing, none have been coupled to a real nuclear reactor. A demonstration test named DUFF Demonstration Using Flattop Fission, was planned by the Los Alamos National Lab (LANL) to use an existing criticality experiment named Flattop to provide the nuclear heat source. A team from the NASA Glenn Research Center designed, built, and tested a heat pipe and power conversion system to couple to Flattop with the end goal of making electrical power. This paper will focus on the design and testing performed in preparation for the DUFF test.

  5. Demonstration of the SeptiStrand benthic microbial fuel cell powering a magnetometer for ship detection

    Science.gov (United States)

    Arias-Thode, Y. Meriah; Hsu, Lewis; Anderson, Greg; Babauta, Jerome; Fransham, Roy; Obraztsova, Anna; Tukeman, Gabriel; Chadwick, D. Bart

    2017-07-01

    The Navy has a need for monitoring conditions and gathering information in marine environments. Sensors can monitor and report environmental parameters and potential activities such as animal movements, ships, or personnel. However, there has to be a means to power these sensors. One promising enabling technology that has been shown to provide long-term power production in underwater environments is the benthic microbial fuel cells (BMFC). BMFCs are devices that generate energy by coupling bioanodes and biocathodes through an external energy harvester. Recent studies have demonstrated success for usage of BMFCs in powering small instruments and other devices on the seafloor over limited periods of time. In this effort, a seven-stranded BMFC linear array of 30 m was designed to power a seafloor magnetometer to detect passing ship movements through Pearl Harbor, Hawaii. The BMFC system was connected to a flyback energy harvesting circuit that charged the battery powering the magnetometer. The deployment was demonstrated the BMFC supplied power to the battery for approximately 38 days. This is the first large-scale demonstration system for usage of the SeptiStrand BMFC technology to power a relevant sensor.

  6. Japan reforms its nuclear safety

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    The Fukushima Daiichi NPP accident deeply questioned the bases of nuclear safety and nuclear safety regulation in Japan. It also resulted in a considerable loss of public confidence in the safety of nuclear power across the world. Although the accident was caused by natural phenomena, institutional and human factors also largely contributed to its devastating consequences, as shown by the Japanese Diet's and Government's investigation reports. 'Both regulators and licensees were held responsible and decided to fully reconsider the existing approaches to nuclear safety. Consequently, the regulatory system underwent extensive reform based on the lessons learned from the accident,' Yoshihiro Nakagome, the President of Japan Nuclear Energy Safety Organisation, an ETSON member TSO, explains. (orig.)

  7. A case study of economic incentives and local citizens' attitudes toward hosting a nuclear power plant in Japan: Impacts of the Fukushima accident

    International Nuclear Information System (INIS)

    Kato, Takaaki; Takahara, Shogo; Nishikawa, Masashi; Homma, Toshimitsu

    2013-01-01

    The attitude of local communities near a nuclear power plant (NPP) is a key factor in nuclear policy decision making in Japan. This case study compared local citizens' attitudes in 2010 and 2011 toward the benefits and drawbacks of hosting Kashiwazaki–Kariwa NPP. The Fukushima accident occurred in this period. After the accident, benefit recognition of utility bill refunds clearly declined, while that of public facilities did not, suggesting the influence of a bribery effect. The negative shift of attitudes about hosting the NPP after the accident was more modest in Kariwa Village, which saw a large expansion of social welfare programs, than in the other two areas, which lacked such a budget expansion. Policy implications of these results regarding the provision of economic incentives in NPP host areas after the Fukushima accident were discussed. - Highlights: • The Fukushima accident shocked Japan's nuclear policy. • Citizens' attitudes toward incentives of hosting a nuclear power plant surveyed. • More citizens thought negatively about incentives after the Fukushima accident. • The bribery effect, mode and amount of incentives affected citizens' attitudes

  8. Climatological attribution of wind power ramp events in East Japan and their probabilistic forecast based on multi-model ensembles downscaled by analog ensemble using self-organizing maps

    Science.gov (United States)

    Ohba, Masamichi; Nohara, Daisuke; Kadokura, Shinji

    2016-04-01

    Severe storms or other extreme weather events can interrupt the spin of wind turbines in large scale that cause unexpected "wind ramp events". In this study, we present an application of self-organizing maps (SOMs) for climatological attribution of the wind ramp events and their probabilistic prediction. The SOM is an automatic data-mining clustering technique, which allows us to summarize a high-dimensional data space in terms of a set of reference vectors. The SOM is applied to analyze and connect the relationship between atmospheric patterns over Japan and wind power generation. SOM is employed on sea level pressure derived from the JRA55 reanalysis over the target area (Tohoku region in Japan), whereby a two-dimensional lattice of weather patterns (WPs) classified during the 1977-2013 period is obtained. To compare with the atmospheric data, the long-term wind power generation is reconstructed by using a high-resolution surface observation network AMeDAS (Automated Meteorological Data Acquisition System) in Japan. Our analysis extracts seven typical WPs, which are linked to frequent occurrences of wind ramp events. Probabilistic forecasts to wind power generation and ramps are conducted by using the obtained SOM. The probability are derived from the multiple SOM lattices based on the matching of output from TIGGE multi-model global forecast to the WPs on the lattices. Since this method effectively takes care of the empirical uncertainties from the historical data, wind power generation and ramp is probabilistically forecasted from the forecasts of global models. The predictability skill of the forecasts for the wind power generation and ramp events show the relatively good skill score under the downscaling technique. It is expected that the results of this study provides better guidance to the user community and contribute to future development of system operation model for the transmission grid operator.

  9. The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy

    Science.gov (United States)

    Tender, Leonard M.; Gray, Sam A.; Groveman, Ethan; Lowy, Daniel A.; Kauffman, Peter; Melhado, Julio; Tyce, Robert C.; Flynn, Darren; Petrecca, Rose; Dobarro, Joe

    2008-05-01

    Here we describe the first demonstration of a microbial fuel cell (MFC) as a practical alternative to batteries for a low-power consuming application. The specific application reported is a meteorological buoy (ca. 18-mW average consumption) that measures air temperature, pressure, relative humidity, and water temperature, and that is configured for real-time line-of-sight RF telemetry of data. The specific type of MFC utilized in this demonstration is the benthic microbial fuel cell (BMFC). The BMFC operates on the bottom of marine environments, where it oxidizes organic matter residing in oxygen depleted sediment with oxygen in overlying water. It is maintenance free, does not deplete (i.e., will run indefinitely), and is sufficiently powerful to operate a wide range of low-power marine-deployed scientific instruments normally powered by batteries. Two prototype BMFCs used to power the buoy are described. The first was deployed in the Potomac River in Washington, DC, USA. It had a mass of 230 kg, a volume of 1.3 m3, and sustained 24 mW (energy equivalent of ca. 16 alkaline D-cells per year at 25 °C). Although not practical due to high cost and extensive in-water manipulation required to deploy, it established the precedence that a fully functional scientific instrument could derive all of its power from a BMFC. It also provided valuable lessons for developing a second, more practical BMFC that was subsequently used to power the buoy in a salt marsh near Tuckerton, NJ, USA. The second version BMFC has a mass of 16 kg, a volume of 0.03 m3, sustains ca. 36 mW (energy equivalent of ca. 26 alkaline D-cells per year at 25 °C), and can be deployed by a single person from a small craft with minimum or no in-water manipulation. This BMFC is being further developed to reduce cost and enable greater power output by electrically connecting multiple units in parallel. Use of this BMFC powering the meteorological buoy highlights the potential impact of BMFCs to enable long

  10. Damage of the Unit 1 reactor building overhead bridge crane at Onagawa Nuclear Power Station caused by the Great East Japan Earthquake and its repair works

    International Nuclear Information System (INIS)

    Sugamata, Norihiko

    2014-01-01

    The driving shaft bearings of the Unit 1 overhead bridge crane were damaged by the Great East Japan Earthquake at Onagawa Nuclear Power Station. The situation, investigation and repair works of the bearing failure are introduced in this paper. (author)

  11. Present status of marine environmental radioactivity survey in the sea of Japan

    International Nuclear Information System (INIS)

    Matsuoka, H.

    1994-01-01

    Science and Technology Agency has been conducting some Marine Environmental Radioactivity Surveys around Japan in cooperation with the relevant organizations (Maritime Safety Agency, Japan Meteorological Agency, Fishery Agency, National Institute of Radiological Sciences, Japan Marine Science and Technology Center, Japan Chemical Analysis Center and Marine Ecology Research Institute). Several artificial radionuclides have been detected but the main origin is supposed to be fall-out. The level trend of marine environmental radioactivity has no anomalies excepting the effect of Chernobyl Accident. The data summarized here are as follows. 1. Marine Environmental Survey of Fisheries near the Nuclear Power Stations, 2. Past Data of Marine Environmental Radioactivity around Japan (Apr. 1982 - Mar. 1991), 3. Marine Environmental Survey of the Sea of Japan (spring, 1993), 4. Marine Environmental Survey of the Sea of Japan (autumn, 1993). In addition, JAPAN-KOREA-RUSSIA JOINT EXPEDITION in the Sea of Japan will start in the middle of March. We are expecting to get valuable data through the EXPEDITION. (J.P.N.)

  12. Demonstration test of electron beam flue gas treatment pilot plant of a coal fired thermal power station

    International Nuclear Information System (INIS)

    Doi, Yoshitaka; Hayashi, Kazuaki; Izutsu, Masahiro; Watanabe, Shigeharu; Namba, Hideki; Tokunaga, Okihiro; Hashimoto, Shoji; Tanaka, Tadashi; Ogura, Yoshimi.

    1995-01-01

    The Japan Atomic Energy Research Institute, Chubu Electric Power Company and Ebara Corporation jointly constructed a pilot plant for electron beam flue gas treatment (dry process) capable of treating 12,000 m 3 /h (NTP) of flue gas from a coal fired boiler, at Shin-Nagoya Thermal Power Station, Chubu Electric Power Company. Various tests carried out at the plant over a period extending one year verified the followings. By appropriately controlling parameters such as electron beam dosage, flue gas temperature, and ammonia stoichiometric amount, highly efficient simultaneous SO 2 and NOx removal from flue gas was achieved under all gas conditions, equal to or more efficient than that by the highest level conventional treatment. The operation of the pilot plant was stable and trouble-free over a long term, and the operation and the process was easy to operate and control. By-products (ammonium sulfate and ammonium nitrate) produced by the flue gas treatment were proven to have superior quality, equivalent to that of market-available nitrogen fertilizers. These by-products had been registered as by-product nitrogen fertilizers. (author)

  13. Japan

    DEFF Research Database (Denmark)

    Hansen, Annette Skovsted

    2013-01-01

    I 1500- og 1600-tallet dannedes tidligt moderne stater i Europa, men samtidig eksisterede der ligeså avancerede statsdannelser uden for Europa, bl.a. i Kina, Indien og Japan. I det følgende ser vi nærmere på dannelsen af den moderne stat i Japan. Hvorfor blev Japan aldrig en europæisk koloni......? Hvordan havde japanske magthavere igennem 300 år forberedt Japan og de mennesker, der boede på de japanske øer, til at kunne udvikle en nation, der skulle blive den stærkeste og rigeste i Asien i mere end 100 år? Hvem bestemte i Japan? Kejseren eller shogunen?...

  14. Development of high-power dye laser chain

    Science.gov (United States)

    Konagai, Chikara; Kimura, Hironobu; Fukasawa, Teruichiro; Seki, Eiji; Abe, Motohisa; Mori, Hideo

    2000-01-01

    Copper vapor laser (CVL) pumped dye laser (DL) system, both in a master oscillator power amplifier (MOPA) configuration, has been developed for Atomic Vapor Isotope Separation program in Japan. Dye laser output power of about 500 W has been proved in long-term operations over 200 hours. High power fiber optic delivery system is utilized in order to efficiently transport kilowatt level CVL beams to the DL MOPA. Single model CVL pumped DL oscillator has been developed and worked for 200 hours within +/- 0.1 pm wavelength stability. Phase modulator for spreading spectrum to the linewidth of hyperfine structure has been developed and demonstrated.

  15. Japan's regulatory and safety issues regarding nuclear materials transport

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T. [Nuclear and Industrial Safety Agency, Ministry of Economy, Trade and Industry, Government of Japan, Tokyo (Japan); Yamanaka, T. [Japan Nuclear Energy Safety Organization, Government of Japan, Tokyo (Japan)

    2004-07-01

    This paper focuses on the regulatory and safety issues on nuclear materials transport which the Government of Japan (GOJ) faces and needs to well handle. Background information about the status of nuclear power plants (NPP) and nuclear fuel cycle (NFC) facilities in Japan will promote a better understanding of what this paper addresses.

  16. Empowered? Evaluating Japan's national energy strategy under the DPJ administration

    International Nuclear Information System (INIS)

    Valentine, Scott; Sovacool, Benjamin K.; Matsuura, Masahiro

    2011-01-01

    In August 2009, after 54 years of virtually unbroken rule, Japan's Liberal Democratic Party (LDP) was ousted from power by the Democratic Party of Japan (DPJ). The DPJ's campaign platform included a pledge to facilitate extreme reductions in greenhouse gas (GHG) emissions. Yet, at the COP16 meeting in Cancun, Japan announced that it would not accept further emission reduction targets without broader commitment from all nations. This paper seeks to explain this dichotomy by employing a targeted stakeholder evaluation based on surveys with 321 Japanese citizens to assess the extent to which influential stakeholder groups in Japan supports a potentially costly transition to a low-carbon energy infrastructure amidst severe economic challenges that the nation faces. Findings help explain Japan's adversarial role in COP16 negotiations in Cancun, despite the stated GHG reduction ambitions of Japan's current ruling party. The analysis concludes that if the DPJ does embrace aggressive CO 2 reduction targets in the future, the strategic focus will likely mirror the former ruling party's energy policy of bolstering nuclear power generation capacity and promoting energy efficiency improvements while exhibiting lukewarm commitment to supporting capacity development in alternative sources of energy supply such as solar panels and wind turbines. - Research highlights: → Public consensus exists regarding which energy policy goals are important in Japan. → Minor perceptual differences are not of a catalytic nature. → Public consensus does not deviate significantly from past LDP energy policy. → Unlikely that the DPJ will pursue costly energy transition initiatives. → Likely that the DPJ energy strategy will be substantively similar to LDP strategy. → Any differences in strategy will focus on CO 2 reduction magnitude not substance.

  17. Current status of sea transport of nuclear fuel materials and LLW in Japan

    International Nuclear Information System (INIS)

    Kitagawa, Hiroshi; Akiyama, Hideo

    2000-01-01

    Along with the basic policy of the nuclear fuel cycle of Japan, many fuel cycle facilities have been already constructed in Rokkasho-Mura, Aomori prefecture, such as the uranium enrichment plant, the low level waste disposal center and the receiving pool of the spent nuclear fuels for reprocessing. These facilities belong to the Japan Nuclear Fuel Limited. (JNFL). Domestic sea transport of the spent nuclear fuels (SF) has been carried out since 1977 to the Tokai Reprocessing Plant, and the first sea transport of the SF to the fuel cycle facility in Rokkasho-Mura was done in Oct, 1998 using a new exclusive ship 'Rokuei-Maru'. Sea transport of the low level radioactive wastes (LLW) has been carried out since 1992 to the Rokkasho LLW Disposal Center, and about 130,000 LLW drams were transported from the nuclear power plant sites. These sea transport have demonstrated the safety of the transport of the nuclear fuel cycle materials. It is hoped that the safe sea transport of the nuclear fuel materials will contribute to the more progress of the nuclear fuel cycle activities of Japan. (author)

  18. Application of seismic isolation technology to demonstration FBR

    International Nuclear Information System (INIS)

    Kato, Muneaki

    1994-01-01

    The Japanese demonstration FBR is loop type, the intermediate heat exchanger is installed between the reactor and the steam generator, and up to the intermediate heat exchanger is in the containment vessel, which is designed as a reinforced concrete vessel. In FBRs, the optimization in aseismatic design and high temperature structural design is important. The reactor building is buried in rock bed up to its center of gravity to minimize the amplifying earthquake response. If the seismic isolation structure for a reactor is realized, cost reduction can be expected by the rationalization of machinery and equipment and the standardization of buildings and facilities. The research on FBR seismic isolation design has been carried out by Central Research Institute of Electric Power Industry and Japan Atomic Power Co. The concept of FBR seismic isolation design, the basic condition for the design evaluation, the research on safety allowance and the conceptual design analysis are reported. (K.I.)

  19. Role of fast breeders in Japan

    International Nuclear Information System (INIS)

    Oyama, A.; Tomabechi, K.

    1978-09-01

    To meet increasing future energy demand in Japan utilization of fission energy should be promoted. In particular it is of vital importance to develop and utilize FBRs as soon as possible in order to save the natural uranium needed. If one considers the commercial introduction of FBRs in the mid-1990s in Japan, a delay of only one year will eventually result in an additional demand for natural uranium of more than 20,000 tons, because several LWRs will have to be installed instead. Ten years have passed since the development of FBRs in Japan was initiated as a national project with the highest priority and now the experimental fast reactor JOYO is successfully being operated at 50MW and the prototype fast breeder reactor MONJU has reached the stage of proceeding to construction with a schedule of operation in the mid-1980s. Following operation of MONJU, construction of a large demonstration reactor of 1000 - 15000 MW(e) will be undertaken. Some 2 - 3 years after the construction of the demonstration reactor, a series of reactors will be constructed similar in size and design to promote commercialization of LMFBRs. Strong efforts will be made to put this programme into practice. It is expected that LMFBRs will play an important role in mitigating the serious problem of energy supply in Japan foreseeable around the turn of the century

  20. Achievement motivation revisited : New longitudinal data to demonstrate its predictive power

    NARCIS (Netherlands)

    Hustinx, P.W.J.; Kuyper, H.; Van der Werf, M.P.C.; Dijkstra, Pieternel

    2009-01-01

    During recent decades, the classical one-dimensional concept of achievement motivation has become less popular among motivation researchers. This study aims to revive the concept by demonstrating its predictive power using longitudinal data from two cohort samples, each with 20,000 Dutch secondary

  1. Human resources in nuclear power program

    International Nuclear Information System (INIS)

    Machi, Sueo

    2008-01-01

    Nuclear power utilization within 2020 horizon is expanding in Asia, particularly in Japan, China, India, Republic of Korea, Vietnam and Indonesia. The nuclear energy policy iof Japan sees the increase of nuclear power contribution for energy security and to control CO 2 emission with the contribution ratio through the 21 st century kept at the current level of 30-40% or even higher. Japan expects its first reprocessing plant to be operational in 2007 and its first commercial fast breeder reactor operational in 2050. Starting with her experience with the operation of its first research reactor in 1957, a power demonstration reactor from USA in 1963; the first commercial 166 MW power plant from UK in 1966 and then its first commercial 375 MW light water reactor from USA in 1970, Japan developed her own nuclear reactor technology. Today, Japan has 55 operating nuclear power plants (NPPs) totaling 49 GW which supply 30% of its electricity needs. There are two NPPs under construction and 11 additional NPPs to be completed by 2017. Japan's experience showed that engineers in the nuclear, mechanical, electrical, material and chemical fields are needed to man their nuclear power plant. For the period 1958 to about 1970, there was a rapid increase in the number of students enrolled for their bachelor of science majoring in nuclear science and technology but this number of enrollees leveled off beyond 1970 up to 2002. For those pursuing their masters of science degree in this field, there was a steady but moderate rise in the number of students from 1958 to 2002. The population of students in the Ph.D program in nuclear science and technology had the lowest number of enrollees and lowest level of increase from 1958 to 2002. The courses offered at the university for nuclear power are nuclear reactor physics and engineering, nuclear reactor safety engineering and radiation safety. Prior to graduation, the students undergo training at a nuclear research institute, nuclear power

  2. Japan, new agenda for energy security

    International Nuclear Information System (INIS)

    Chrisstoffels, J.H.

    2007-07-01

    The author argues that the Japanese government will actively seek to strengthen security of supply. Japan has almost no domestic energy reserves. It is Asia's leading energy importer, but it faces increasing competition for resources from China and India. This has led to growing concern among Japanese policy makers. In the spring of 2007 a new Basic Energy Law was drafted that offers a strategic change of direction, away from a policy emphasis on free (energy) trade promotion and liberalisation of domestic energy markets. Japan will boost energy diplomacy towards energy producing countries and increase financial guarantees to Japanese oil and gas development companies. At the same time, Japan will raise efforts to lower its dependency on foreign oil and gas. To this end, it has set ambitious targets for further nuclear power development and the promotion of bio-trade. The author points at a multitude of complexities that may impede the success of these policies, Still, EU policy makers should be aware that Japan's energy policy has changed, driven by the conviction that markets alone cannot be relied upon to guarantee a secure supply of energy. [nl

  3. The Elusive China-Japan-South Korea Free Trade Agreement

    Science.gov (United States)

    2015-09-01

    Keohane and Joseph S. Nye, Power & Interdependence, 4th edition (Boston: Pearson , 2011), 232–3. 8 Dong Wang, “China-Japan Relations - Now What?,” PacNet...trilateral FTA could provide Japan and South Korea with a sense of assurance regarding Chinese foreign policy, which is often seen as aggressive...successfully led the charge against JA-Zenchu and removed its authority to audit and guide all Japanese farming cooperatives, removing a coercive tool to

  4. Plant specific safety inspection of German nuclear power plants taking into account the Fukushima-I (Japan) events

    International Nuclear Information System (INIS)

    2011-01-01

    The German Parliament requested (17 March 2011) a comprehensive inspection of German nuclear power plants. For this purpose independent expert commissions should perform a new risk analysis of all German NPPS and nuclear installations with respect to the lessons learned from the Fukushima (Japan) events and other extraordinary damage scenarios. The Reactor safety commission (RSK) was assigned by the German Bundesamt fuer Strahlenschutz to develop a catalogue of requirements for this safety inspection. The contribution summarizes the required inspection volume (status 30.03.2011) including the following events: natural events like earth quakes, floods, weather-based consequences and possible superposition. Additionally the following assumptions have to be considered: event independent postulated common failures or systematic faults, station blackout larger than 2 hours, long-term failure of the auxiliary cooling water supply; aggravating boundary conditions for the performance of emergency measures (non-availability of power supply), hydrogen generation and detonation hazard, restricted personnel availability, non-accessibility due to high radiation levels, impeded technical support from outside. (orig.)

  5. Case study of medical evacuation before and after the Fukushima Daiichi nuclear power plant accident in the great east Japan earthquake.

    Science.gov (United States)

    Okumura, Tetsu; Tokuno, Shinichi

    2015-01-01

    In Japan, participants in the disaster-specific medical transportation system have received ongoing training since 2002, incorporating lessons learned from the Great Hanshin Earthquake. The Great East Japan Earthquake occurred on March 11, 2011, and the very first disaster-specific medical transport was performed. This article reviews in detail the central government's control and coordination of the disaster medical transportation process following the Great East Japan Earthquake and the Fukushima Daiichi Nuclear Power Plant Accident. In total, 124 patients were air transported under the coordination of the C5 team in the emergency response headquarter of the Japanese Government. C5 includes experts from the Cabinet Office, Cabinet Secretariat, Fire Defense Agency, Ministry of Health, Labour and Welfare, and Ministry of Defense. In the 20-30 km evacuation zone around the Fukushima Daiichi nuclear power plant, 509 bedridden patients were successfully evacuated without any fatalities during transportation. Many lessons have been learned in disaster-specific medical transportation. The national government, local government, police, and fire agencies have made significant progress in their mutual communication and collaboration. Fortunately, hospital evacuation from the 20-30 km area was successfully performed with the aid of local emergency physicians and Disaster Medical Assistance Teams (DMATs) who have vast experience in patient transport in the course of day-to-day activities. The emergency procedures that are required during crises are an extension of basic daily procedures that are performed by emergency medical staff and first responders, such as fire fighters, emergency medical technicians, or police officers. Medical facilities including nursing homes should have a plan for long-distance (over 100 km) evacuation, and the plan should be routinely reevaluated with full-scale exercises. In addition, hospital evacuation in disaster settings should be

  6. The IAEA's Activities in a Changing World, Foreign Correspondent's Club of Japan, 17 March 2014, Tokyo, Japan

    International Nuclear Information System (INIS)

    Amano, Y.

    2014-01-01

    The last time I had the pleasure of speaking to the Foreign Correspondents' Club of Japan was in December 2010. I had been IAEA Director General for about a year. Three months later came the Fukushima Daiichi accident. It was triggered by a powerful tsunami which followed the Great East Japan Earthquake. Human and organizational failings also played a part. Helping Japan deal with the aftermath of the accident has been a top priority for the IAEA, and for me personally, in the past three years. Nuclear safety is a hugely important issue, both in Japan and throughout the world. We have been working with our 162 Member States to implement the IAEA Action Plan on Nuclear Safety, which was adopted soon after the accident. Just recently, the final reports of our international review missions on decommissioning, and on remediation of large contaminated off-site areas, were made public. Both missions observed good progress in their respective areas. The IAEA is preparing a report on the Fukushima Daiichi accident, which will be finalized by the end of this year and shared with our Member States next year. I welcome the way in which Japan is sharing its post-Fukushima experience with the rest of the world and I encourage all States to make full use of IAEA services in order to help raise levels of safety everywhere

  7. Nuclear power generation

    International Nuclear Information System (INIS)

    Hirao, Katumi; Sato, Akira; Kaimori, Kimihiro; Kumano, Tetsuji

    2001-01-01

    Nuclear power generation for commercial use in Japan has passed 35 years since beginning of operation in the Tokai Nuclear Power Station in 1966, and has 51 machines of reactor and about 44.92 MW of total output of equipment scale in the 21st century. However, an environment around nuclear energy becomes severer at present, and then so many subjects to be overcome are remained such as increased unreliability of the public on nuclear energy at a chance of critical accident of the JCO uranium processing facility, delay of pull-thermal plan, requirement for power generation cost down against liberalization of electric power, highly aging countermeasure of power plant begun its operation as its Genesis, and so on. Under such conditions, in order that nuclear power generation in Japan survives as one of basic electric source in future, it is necessary not only to pursue safety and reliability of the plant reliable to the public, but also to intend to upgrade its operation and maintenance by positively adopting good examples on operational management method on abroad and to endeavor further upgrading of application ratio of equipments and reduction of generation cost. Here were outlined on operation conditions of nuclear power stations in Japan, and introduced on upgrading of their operational management and maintenance management. (G.K.)

  8. R and D programme for HLW disposal in Japan

    International Nuclear Information System (INIS)

    Tsuboya, Takao

    1997-01-01

    The Power Reactor and Nuclear Fuel Development Corporation (PNC) has been active in developing an R and D programme for high-level radioactive waste (HLW) disposal in accordance with the overall HLW management programme defined by the Atomic Energy Commission (AEC) of Japan. The aim of the R and D activities at the current stage is to provide a scientific and technical basis for the geological disposal of HLW in Japan, which is turn promotes understanding of the safety concept not only in the scientific and technical community but also by the general public. As a major milestone in the R and D programme, PNC submitted a first progress report, referred to as H3, in September 1992. H3 summarised the results of R and D activities up to March 1992 and identified priority issues for further study. The second progress report, scheduled to be submitted around 2000, and should demonstrated more rigorously and transparently the feasibility of the specified disposal concept. It should also provide input for the siting and regulatory processes, which will be set in motion after the year 2000. (author). 10 refs., 4 figs

  9. IAEA Fact-Finding Team Completes Visit to Japan

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: A team of international nuclear safety experts today completed a preliminary assessment of the safety issues linked with TEPCO's Fukushima Daiichi Nuclear Power Station accident following the Great East Japan Earthquake and Tsunami. The team - created by an agreement of the International Atomic Energy Agency (IAEA) and the Government of Japan - sought to identify lessons learned from the accident that can help improve nuclear safety around the world. To conduct its work, the team held extensive discussions with officials from the full range of Japanese nuclear-related agencies and visited three nuclear sites, including the nuclear power plant at TEPCO's Fukushima Daiichi. These visits gave the team a first-hand appreciation of the scale of devastation wreaked by the earthquake and tsunami on 11 March and of the extraordinary efforts Japanese workers have been applying ever since to stabilize the situation. ''Our entire team was humbled by the enormous damage inflicted by the tsunami on Japan. We are also profoundly impressed by the dedication of Japanese workers working to resolve this unprecedented nuclear accident,'' said team leader Mike Weightman, the United Kingdom's Chief Inspector of Nuclear Installations. The team was comprised of international experts with experience across a range of nuclear specialties. They came from 12 countries: Argentina, China, France, Hungary, India, Indonesia, Russia, South Korea, Spain, Turkey, United Kingdom and the United States. In a draft report summary delivered to Japanese authorities today, the team prepared a set of preliminary conclusions and identified lessons learned in three broad areas: external hazards, severe accident management and emergency preparedness. The final report will be delivered to the Ministerial Conference on Nuclear Safety at IAEA headquarters in Vienna from 20 to 24 June. The expert team made several preliminary findings and lessons learned, including: Japan's response to the nuclear

  10. Status of LMFBR development project in Japan

    International Nuclear Information System (INIS)

    Nagane, G.; Akebi, M.; Matsuno, Y.

    1987-01-01

    Initiation of the LMFBR development project in Japan was decided by the Atomic Energy Commission of Japan in 1966. In 1967, the Power Reactor and Nuclear Fuel Development Corporation (PNC) was established to realize the project as a part of its tasks of a wide scope covering all the reseatch and development activities concerning fuel cycle. In the present paper the status of experimental fast reactor (Joyo), which is the first milestone of the LMFBR project, prototype fast reactor (Monju) and R and D activities supporting the project including that for larger LMFBRs in the future is described. (author)

  11. Present state and prospect of nuclear power generation

    International Nuclear Information System (INIS)

    Fukushima, Akira

    1980-01-01

    Energy resources are scarce in Japan, therefore Japan depends heavily on imported petroleum. However, the international situation of petroleum became more unstable recently, and the promotion of the development and utilization of nuclear power generation was agreed upon in the summit meeting and the IEA. In order to achieve the stable growth of economy and improve the national welfare in Japan, it is urgent subject to accelerate the development of nuclear power generation. Japan depends the nuclear fuel also on import, but the stable supply is assured by the contract of long term purchase. It is not necessary to replace nuclear fuel usually for three years, and the transport and storage of nuclear fuel are easy because the quantity is not very large. By establishing the independent nuclear fuel cycle in Japan, it is possible to give the character similar to domestically produced energy to nuclear fuel. Moreover, uranium resources can be effectively utilized by the development of nuclear reactors of new types, such as FBRs. The cost of generating 1 kWh of electricity was about 8 yen in case of nuclear power and 15 yen in petroleum thermal power as of January, 1980. 21 nuclear power plants of about 15 million kW capacity are in operation in Japan, and about 30 million kW will be installed by 1985. The measures to promote the development of nuclear power generation are discussed. (Kako, I.)

  12. Policy for securing human resources in the nuclear industry of Japan

    International Nuclear Information System (INIS)

    Takeuchi, S.

    1993-01-01

    The shortage of human resources in the field of nuclear industry in Japan is due to: structural difficulty resulting from the prevailing labor shortage in Japan, difficulties from the ever-intensifying adverse wind against nuclear power, and difficulties specific to R and D organizations. A practical plan is proposed for securing qualified personnel: approach to be directly made on campuses; effective/advanced management of human resources; better treatment and fringe benefit; promoting the nuclear industry attractiveness; expanding the scope of basic and fundamental researches; regaining the public confidence; closer cooperation between the government and the nuclear power groups. 6 figs

  13. 1000kW on-site PAFC power plant development and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Satomi, Tomohide; Koike, Shunichi [Phosphoric Acid Fuel Cell Technology Research Association (PAFC-TRA), Osaka (Japan); Ishikawa, Ryou [New Energy and Industrial Technology Development Organization (NEDO), Tokyo (Japan)

    1996-12-31

    Phosphoric Acid Fuel Cell Technology Research Association (PAFC-TRA) and New Energy and Industrial Technology Development Organization (NEDO) have been conducting a joint project on development of a 5000kW urban energy center type PAFC power plant (pressurized) and a 1000kW on-site PAFC power plant (non-pressurized). The objective of the technical development of 1000kW on-site PAFC power plant is to realize a medium size power plant with an overall efficiency of over 70% and an electrical efficiency of over 36%, that could be installed in a large building as a cogeneration system. The components and system integration development work and the plant design were performed in 1991 and 1992. Manufacturing of the plant and installation at the test site were completed in 1994. PAC test was carried out in 1994, and generation test was started in January 1995. Demonstration test is scheduled for 1995 and 1996.

  14. Achievement Motivation Revisited: New Longitudinal Data to Demonstrate Its Predictive Power

    Science.gov (United States)

    Hustinx, Paul W. J.; Kuyper, Hans; van der Werf, Margaretha P. C.; Dijkstra, Pieternel

    2009-01-01

    During recent decades, the classical one-dimensional concept of achievement motivation has become less popular among motivation researchers. This study aims to revive the concept by demonstrating its predictive power using longitudinal data from two cohort samples, each with 20,000 Dutch secondary school students. Two measures of achievement…

  15. Catalogue of requirements for a plant-specific safety inspection of German nuclear power plants taking into account the Fukushima-I (Japan) events; Anforderungskatalog fuer anlagenbezogene Ueberpruefungen deutscher Kernkraftwerke unter Beruecksichtigung der Ereignisse in Fukushima-I (Japan)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-03-30

    The catalogue of requirements for a plant-specific safety inspection of German nuclear power plants taking into account the Fukushima-I (Japan) events worked out by the German RSK (reactor safety commission) includes the following inspection topics: natural events like earth quakes, floods, weather-based consequences and possible superposition; civilization-based events like airplane crash, gas release, reactor accident consequences for neighboring units, terroristic impacts, external attacks on computer-based control systems. Further event-independent assumptions have to be considered: station blackout, long-term emergency power supply requirement, failure of auxiliary cooling water supply, efficacy of preventive measures, aggravating boundary conditions for the performance of emergency measures.

  16. Current status of life management policies for nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Bannai, T.

    2000-01-01

    Almost 30 years have passed since the initial commercial NPPs started operation in Japan. It is natural. therefore that concerns related to aging og these NPPs have increased. This report covers the following related key points. Technical assessment was applied to the major components (reactor pressure vessel, primary piping,...) of NPPs. It was concluded that complete periodical inspections would enable safe operation assuming a long term operation. The safety of Japanese NPPs is sufficiently ensured bu the execution of periodical inspection/examinations and thorough preventive maintenance measures. It is appropriate for the electric utility companies to apply detailed technical assessment to all NPP components after 30 year operation, and to produce detailed maintenance schedules thereafter; Enhancement of structural codes/standards in response to the toughness change due to aging shall be constantly studied in the future by reflecting the knowledge accumulated so far and by referring to the codes/standards of the USA; Technology development is required to enable the further reliable management of aged NPPs. It is important to continue to develop inspection and repair technologies. It is also important to acquire the material data and operation data of power plants related to their aging

  17. An overview of in-service inspection for nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Takano, Eishiro

    1996-01-01

    In nuclear power stations, for maintaining the safety of machinery and equipment, it is stipulated to carry out periodic inspection. The contents of the periodic inspection and the inspections of important matters are explained. In-service inspection (ISI) is the nondestructive inspection for confirming the soundness of reactor pressure vessels, main pipings, valves and others. The stipulations on the scope and time of the periodic inspection and ISI, the course of introducing ISI into Japan, and the basic way of thinking on ISI are described. Pre-service inspection (PSI) is carried out for the purpose of collecting and recording the initial data for ISI. The range of the objects of nondestructive inspection and leak test and the range of the objects of leak test only are shown. As to nondestructive inspection, the parts to be inspected, the frequency of inspection and the methods of inspection, and the method of leak test are described. As the present state of inspection technology, the automatic ultrasonic flow detectors for reactor vessels, piping welded parts and reactor vessel stud bolts, and the eddy current flaw detector for steam generator tubes are explained. (K.I.)

  18. China's air pollution and Japan's response to it

    International Nuclear Information System (INIS)

    Matsuura, S.

    1995-01-01

    Long-range transport of air pollutants has been a serious global environment problem. Japan's Central Research Institute of Electric Power Industry (CRIEPI) researchers are investigating the possibility of acid rain from China. So far, the acid rain that has appeared in Japan has not had a significant effect. However, because of the high economic growth projected for the coming years in China, acidic fallout from that country is likely to cause serious damage there and in Japan as well. China is one of the largest coal users in the world. One of the biggest factors making air quality worse is the lack of appropriate technologies. Although Japanese desulfurization technologies are well advanced, they cannot be directly applied to stationary pollution sources in China, because of their cost. Japan has sophisticated technologies, but lacks experience in and knowledge of alternative, intermediate, and low-technology solutions. Given this, Japan may attempt to buy pollution control technology equipment from the United States, which provides a wider range of desulfurization technologies, as a part of the Official Development Assistance program. At the same time, international support that includes the establishment of additional global environmental monitoring stations in China are also necessary

  19. Nuclear power operating experience and technical improvement in Japan

    International Nuclear Information System (INIS)

    Toyota, M.

    1983-01-01

    LWR technology in Japan, originally introduced from the United States of America, is now almost entirely supplied domestically. During the initial stage of plant operation, electric power companies experienced various troubles such as intergranular stress corrosion cracking (IGSCC) in the piping in BWRs and steam generator (S/G) tube leaks in PWRs, which once reduced the capacity factor to about 40%. As a result of efforts to investigate the causes of the troubles and to establish countermeasures, which were applied to the plants in operation and under construction for improvement, as well as to shorten the period of regular inspection and to extend the operation cycle, the capacity factor has been improved to 60% since 1980. In 1975 an LWR improvement and standardization programme was launched to aim at improvement of reliability and availability factor and reduction of occupational radiation exposure with the development of domestic technology based on construction and operating experience. The First Phase Programme, which ran from 1975 to 1977, established countermeasures to preclude these troubles and improved workability by enlargement of the containment vessel. The Second Phase Programme followed and ran until 1981. The major steps taken during this period include the adoption of new IGSCC-resistant material and improved core design for BWRs and the improvement of fuels and S/Gs for PWRs. With these improvements, the capacity factor is now expected to reach a 75% level and occupational radiation exposure should be reduced by 50%. A Third Phase Programme will centre on the test and development programme for advanced BWRs and PWRs now under way to further improve the availability factor and reliability while also minimizing radiation exposure. (author)

  20. Thorium research activities in Japan

    International Nuclear Information System (INIS)

    Sasa, Toshinobu

    2015-01-01

    The nuclear energy policy in Japan is based on the Uranium-Plutonium fuel cycle with Light Water Reactors (LWR) and Fast Breeder Reactors (FBR). After the accident at Fukushima-Daiichi Nuclear Power Plant, the Japanese government recognizes the importance to ensure the flexibility for future nuclear power generation and then, it was specified in the latest Japanese strategic energy plan. Two research groups related to thorium fuelled nuclear systems and fuel cycle was set up in the Atomic Energy Society of Japan in 2013. One is a 'Research Committee on Nuclear Applications of Molten Salt'. The committee was established to discuss the current molten-salt technology including molten-salt cooled reactor, molten-salt fuelled reactor, accelerator driven system, fusion reactor blankets and dry reprocessing processes. Throughout two years discussion, the committee summarizes a current state of the art and issues of molten-salt application systems. Committee also discussed the handling technologies for molten-salt reactors especially in China and United Kingdom, issues of molten-salt application to fusion reactor, dry reprocessing of spent nuclear fuel, and non-nuclear application of molten-salt. Term of the committee will be extended for further research activities

  1. IAEA Sends International Fact-finding Expert Mission to Japan

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: The International Atomic Energy Agency will dispatch an international expert fact-finding mission to Japan. Based upon the agreement between the IAEA and the Government of Japan, the mission, comprising nearly 20 international and IAEA experts from a dozen countries, will visit Japan between 24 May and 2 June 2011. Under the leadership of Mr. Mike Weightman, HM Chief Inspector of Nuclear Installations of the United Kingdom, the mission will conduct fact-finding activities at Tokyo Electric Power Company's Fukushima Dai-ichi Nuclear Power Station (NPS) site and in other locations. The expert mission will make a preliminary assessment of the safety issues linked with TEPCO's Fukushima Dai-ichi NPS accident following the Great East Japan Earthquake and Tsunami. During the mission, areas that need further exploration or assessment based on the IAEA safety standards will also be identified. In the course of the IAEA mission, the international experts will become acquainted with the Japanese lessons learned from the accident and will share their experience and expertise in their fields of competence with the Japanese authorities. Mr. Weightman will present the mission's report at the Ministerial Conference on Nuclear Safety organised by the IAEA in Vienna from 20 to 24 June 2011, as an important input in the process of reviewing and strengthening the global nuclear safety framework that will be launched by the Conference. (IAEA)

  2. T700 power turbine rotor multiplane/multispeed balancing demonstration

    Science.gov (United States)

    Burgess, G.; Rio, R.

    1979-01-01

    Research was conducted to demonstrate the ability of influence coefficient based multispeed balancing to control rotor vibration through bending criticals. Rotor dynamic analyses were conducted of the General Electric T700 power turbine rotor. The information was used to generate expected rotor behavior for optimal considerations in designing a balance rig and a balance technique. The rotor was successfully balanced 9500 rpm. Uncontrollable coupling behavior prevented observations through the 16,000 rpm service speed. The balance technique is practical and with additional refinement it can meet production standards.

  3. A review of fast reactor program in Japan. April 1997 - March 1998

    International Nuclear Information System (INIS)

    1998-01-01

    This report describes the development and activities on fast reactor in Japan for the period of April 1997 - March 1998. During this period, two important results were drawn by the Special Committee on Fast Breeder Reactors (FBRs) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) Reform Committee, respectively. The Special Committee on FBRs discussed on the future FBR development in Japan including the Prototype FBR 'Monju' operation, and proposed its conclusion as the final report to the Japan Atomic Energy Commission (JAEC) on December 1, 1997. The PNC Reform Committee reviewed PNC's management and safety assurance system, and recommended to reform PNC to a new organization. Each committee result is outlined in this report. The Experimental Fast Reactor 'Joyo' operated 30th - 32nd cycle. In parallel with the operation, the Joyo Upgrading Program (MK-III program) is in progress. Five MK-III driver fuel subassemblies were loaded to the core in the 32nd cycle. Monju comprehensive safety review, which was started in December 1996, was continued through 1997, and was completed in March 1998. The DFBR Plant Optimization (phase 2) design study was launched by the Japan Atomic Power Company (JAPC) with goal of constructing FBR plant that achieves both reliability and economy from FY 1997 for three years. Research and development works are underway under the discussion and coordination of the Japanese FBR R and D Steering Committee, which is composed of PNC, JAPC, Japan Atomic Energy Research Institute (JAERI) and Central Research Institute of Electric Power Industry (CRIEPI). (author)

  4. Situation of nuclear industry in Japan

    International Nuclear Information System (INIS)

    2004-03-01

    This document presents the situation of nuclear industry in Japan: cooperation with France in the domain of the fuel cycle (in particular the back-end) and of for the industrial R and D about fast reactors and nuclear safety; present day situation characterized by a series of incidents in the domain of nuclear safety and by an administrative reorganization of the research and safety organizations; power of local representatives, results of April 2003 elections, liberalization of the electric power sector, impact of the TEPCO affair (falsification of safety reports) on the nuclear credibility, re-start up of the Monju reactor delayed by judicial procedures, stopping of the program of MOX fuel loading in Tepco's reactors, discovery of weld defects in the newly built Rokkasho-mura reprocessing plant, an ambitious program of reactors construction, the opportunity of Russian weapons dismantling for the re-launching of sodium-cooled fast reactors; the competition between France and Japan for the setting up of ITER reactor and its impact of the French/Japanese partnership. (J.S.)

  5. The disappointments for nuclear energy in Japan; Les deconvenues pour l'energie nucleaire au Japon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Several dysfunctions are reported in this paper: A reactor (Onagawa) closed after a nitrogen leakage; a small leakage of radioactive water in the nuclear power plant of Mihama assessment raised to five deaths, the operator stops its nuclear power plants for inspection, the Japan face to its ageing nuclear power plants, the truth about the cost of M.O.X., the seven reactors of Japan closed for inspection after cracks and leaks hidden to authorities, Tokai MURA accident. (N.C.)

  6. Strategy of nuclear power in Korea, non-nuclear-weapon state and peaceful use of nuclear power

    International Nuclear Information System (INIS)

    Nagasaki, Takao

    2005-01-01

    The nuclear power plant started at Kori in Korea in April, 1978. Korea has carried out development of nuclear power as a national policy. The present capacity of nuclear power plants takes the sixes place in the world. It supplies 42% total power generation. The present state of nuclear power plant, nuclear fuel cycle facility, strategy of domestic production of nuclear power generation, development of next generation reactor and SMART, strategy of export in corporation with industry, government and research organization, export of nuclear power generation in Japan, nuclear power improvement project with Japan, Korea and Asia, development of nuclear power system with nuclear diffusion resistance, Hybrid Power Extraction Reactor System, radioactive waste management and construction of joint management and treatment system of spent fuel in Asia are stated. (S.Y.)

  7. Research report for fiscal 1995 on analysis and evaluation of demonstration tests for establishment of residential photovoltaic power generation load leveling technology (putting of related data into order); 1995 nendo kenkyu hokokusho. Jutaku you taiyoko hatsuden fuka heijunka gijutsu tou kakuritsu jissho shiken ni kansuru kaiseki hyoka (Kanren data no seibi)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research and development has been performed with the objectives to establish an evaluation technology for load leveling effect by using a small photovoltaic power generation system for residential use, to clarify the effectiveness of the system as a discrete power supply source through demonstration operation, and furthermore to achieve optimization of the small photovoltaic power generation system for residential use. This paper describes the actual state survey data related to grid connection systems for the small photovoltaic power generation system for residential use. The survey has been performed mainly on the system for individuals' use inside and outside Japan with regard to the small grid connection systems of 1-10 kW scale. The number of survey has reached 216 cases for 46 prefectures in Japan (1,004.02 kW in total), and 47 cases for 13 other countries (205.60 kW in total), or 263 cases in grand total (1,209.63 kW). These 263 cases were tabulated with items of owners (or the facility names and installation locations) as seen by territories (prefectures or countries), facility operators (or executing organizations), connection modes, and power generation scales. These data will serve for discussions on the load leveling effect and the optimized system forms. (NEDO)

  8. Research report for fiscal 1995 on analysis and evaluation of demonstration tests for establishment of residential photovoltaic power generation load leveling technology (putting of related data into order); 1995 nendo kenkyu hokokusho. Jutaku you taiyoko hatsuden fuka heijunka gijutsu tou kakuritsu jissho shiken ni kansuru kaiseki hyoka (Kanren data no seibi)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research and development has been performed with the objectives to establish an evaluation technology for load leveling effect by using a small photovoltaic power generation system for residential use, to clarify the effectiveness of the system as a discrete power supply source through demonstration operation, and furthermore to achieve optimization of the small photovoltaic power generation system for residential use. This paper describes the actual state survey data related to grid connection systems for the small photovoltaic power generation system for residential use. The survey has been performed mainly on the system for individuals' use inside and outside Japan with regard to the small grid connection systems of 1-10 kW scale. The number of survey has reached 216 cases for 46 prefectures in Japan (1,004.02 kW in total), and 47 cases for 13 other countries (205.60 kW in total), or 263 cases in grand total (1,209.63 kW). These 263 cases were tabulated with items of owners (or the facility names and installation locations) as seen by territories (prefectures or countries), facility operators (or executing organizations), connection modes, and power generation scales. These data will serve for discussions on the load leveling effect and the optimized system forms. (NEDO)

  9. Building a new energy network in North East Asia. A perspective from post-Fukushima Japan

    International Nuclear Information System (INIS)

    Shibutani, Yu

    2012-01-01

    The accident at Fukushima Daiichi Nuclear Power Station (NPS) has accelerated Japan's drive for less dependence on nuclear and fossil energy and more green renewables, which inevitably require a new energy strategy. In this paper, a new strategic scenario for moving 'beyond a single economy' is proposed to incorporate Japan with the North East Asian (NEA) energy market in regards to its electricity grid and natural gas pipeline network while preserving nuclear power by strengthening safety. Suggestions are also made that Japan should open more doors for new comers in a manner of open-access towards member economies of NEA. However, there are persistent geopolitical constraints and risks in NEA. The connection of Japan's energy network to its regional neighbors would avoid the tendrils and tentacles of geopolitics that wrap around NEA, and subsequently provide opportunities to build on common energy interests. (author)

  10. History of nuclear technology development in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Kiyonobu, E-mail: yamashita.kiyonobu@jaea.go.jp [Visiting Professor, at the Faculty of Petroleum and Renewable Energy Engineering, University Teknologi Malaysia Johor Bahru 81310 (Malaysia); General Advisor Nuclear HRD Centre, Japan Atomic Energy Agency, TOKAI-mura, NAKA-gun, IBARAKI-ken, 319-1195 (Japan)

    2015-04-29

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  11. History of nuclear technology development in Japan

    Science.gov (United States)

    Yamashita, Kiyonobu

    2015-04-01

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  12. History of nuclear technology development in Japan

    International Nuclear Information System (INIS)

    Yamashita, Kiyonobu

    2015-01-01

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident

  13. Dose reduction and cost-benefit analysis at Japan`s Tokai No. 2 Plant

    Energy Technology Data Exchange (ETDEWEB)

    Humamoto, Hisao; Suzuki, Seishiro; Taniguchi, Kazufumi [Japan Atomic Power Co., Otemachi (Japan)

    1995-03-01

    In the Tokai No. 2 power plant of the Japan Atomic Power Company, about 80% of the annual dose equivalent is received during periodic maintenance outages. A project group for dose reduction was organized at the company`s headquarters in 1986; in 1988, they proposed a five-year program to reduce by half the collective dose of 4 person-Sv per normal outage work. To achieve the target dose value, some dose-reduction measures were undertaken, namely, permanent radiation shielding, decontamination, automatic, operating machines, and ALARA organization. As the result, the collective dose from normal outage work was 1.6 person-Sv in 1992, which was less than the initial target value.

  14. Power facility plan and power supply plan of Japan in 1988

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Shoji; Makino, Masao

    1988-06-01

    The power facility plan and the power supply plan for 1988 are described. The demand by non-industrial use will grow at an average of 3.8% for the 1986-97 period due to changes in the life style, construction and extension of buildings and increasing use of OA equipment although the power conservation is promoted. The industrial consumption will increase at only 1.2% a year due to the slowed growth and energy saving. As a result, the total demand will be 778,200 million kWh in 1997 with annual growth of 2.4%. The maximum demand will be 151,210 kW in 1997 with annual growth of 2.9%. The annual load rate will decrease to 56.9%, showing a continuously worsening utilization efficiency of power facilities. The development of 29 power units with total capacity of 2,760 MW is planned in 1988 for a stable power supply with a sufficient margin regarding maximum demand. The plan requires the investment of 3,700 billion yen, including the power transmission systems and substations. The power supply plan in 1988 is aimed at the effective operation of facilities and cost reduction by regional management under proper recognition of local characteristics of each power source, while maintaining a stable power supply with specified margins. (1 fig, 11 tabs)

  15. Japan - IAEA joint Nuclear Energy Management School 2016

    International Nuclear Information System (INIS)

    Yamaguchi, Mika; Hidaka, Akihide; Ikuta, Yuko; Yamashita, Kiyonobu; Sawai, Tomotsugu; Murakami, Kenta; Uesaka, Mitsuru; Tomita, Akira; Toba, Akio; Hirose, Hiroya; Watanabe, Masanori; Kitabata, Takuya; Ueda, Kinichi; Kita, Tomohiko; Namaizawa, Ken; Onose, Takatoshi

    2017-03-01

    Since 2010, International Atomic Energy Agency (IAEA) has held the 'Nuclear Energy Management School' so-called 'IAEA-NEM' to develop future leaders who plan and manage nuclear energy utilization in their county. Since 2012, Japan Atomic Energy Agency (JAEA) together with the Japan Nuclear Human Resource Development Network (JN-HRD Net), the University of Tokyo (UT), the Japan Atomic Industrial Forum (JAIF) and JAIF International Cooperation Center (JICC) have cohosted the NEM school in Japan in cooperation with IAEA. Since then, the school has been held every year, with the school in 2016 marking the fifth. In the 2016 NEM school, Japanese nuclear energy technology and experience, such as lessons learned from the Fukushima Daiichi Nuclear Power Station accident, were provided by not only lectures by IAEA experts, but also lectures by Japanese experts and leaders in order to offer a unique opportunity for the participants from other countries to learn about particular cases in Japan. Opportunities to visit a variety of nuclear facilities were offered for the participants in the form of technical tours in Fukui and Kobe. Through the school, we contributed to the internationalization of Japanese young nuclear professionals, development of nuclear human resource of other countries including nuclear newcomers, and enhanced cooperative relationship between IAEA and Japan. Additionally, collaborative relationship with JN-HRD Net was strengthened solidly through the integrated cooperation among ministries, universities, manufacturers and research organizations across the county by holding the school in Japan. In this report, findings obtained during the preparatory work and the school period were reported in order to make a valuable contribution towards effectively and efficiently conducting future international nuclear human resource development activities in Japan. (author)

  16. Economy and technology roles played by nuclear power

    International Nuclear Information System (INIS)

    Yamada, Eiji

    1985-01-01

    On the basis of the survey analysis made by Atomic Energy Commission on the roles in economy and technology played in the nuclear energy development and utilization, the following are described: economic roles in nuclear energy development and utilization (the present state of nuclear power industry in Japan and the economy effects); technological roles in the same (the present state of nuclear power technology in Japan and the technology effects). The economy effects in other areas are on higher level than in other industries etc. Then, in the technology effects, system technology and quality control in the nuclear power possess significant effects in other areas. While the nuclear energy development and utilization is important in Japan's energy security, it is contributing largely to the economy and society in Japan. (Mori, K.)

  17. Japan's new basic energy plan

    International Nuclear Information System (INIS)

    Duffield, John S.; Woodall, Brian

    2011-01-01

    In June 2010, the Japanese cabinet adopted a new Basic Energy Plan (BEP). This was the third such plan that the government has approved since the passage of the Basic Act on Energy Policy in 2002, and it represents the most significant statement of Japanese energy policy in more than four years, since the publication of the New National Energy Strategy (NNES) in 2006. Perhaps more than its predecessors, moreover, the new plan establishes a number of ambitious targets as well as more detailed measures for achieving those targets. Among the targets are a doubling of Japan's 'energy independence ratio,' a doubling of the percentage of electricity generated by renewable sources and nuclear power, and a 30 percent reduction in energy-related CO 2 emissions, all by 2030. This paper explains the origins of the 2010 BEP and why it was adopted. It then describes the content of the plan and how it differs from the NNES. A third section analyzes the appropriateness of the new goals and targets contained in the BEP and their feasibility, finding that achievement of many of the targets was likely to be quite challenging even before the March 2011 earthquake, tsunami, and nuclear crisis. - Highlights: → Origins of Japan's new Basic Energy Plan. → Content of Japan's new Basic Energy Plan. → Feasibility of achieving the targets in Japan's new Basic Energy Plan. → Impact of 2011 earthquake and tsunami on Japanese energy policy.

  18. The Development and Demonstration of a 360m/10 kA HTS DC Power Cable

    Science.gov (United States)

    Xiao, Liye

    With the quick development of renewable energy, it is expected that the electric power from renewable energy would be the dominant one for the future power grid. Due to the specialty of the renewable energy, the HVDC power transmission would be very useful for the transmission of electric power from renewable energy. DC power cable made of High Tc Superconductor (HTS) would be a possible alternative for the construction of HVDC power transmission system. In this chapter, we report the development and demonstration of a 360 m/10 kA HTS DC power cable and the test results.

  19. Marital Adjustment and Psychological Distress in Japan

    Science.gov (United States)

    Li, Angela; Robustelli, Briana L.; Whisman, Mark A.

    2016-01-01

    This study was conducted to examine the association between marital adjustment and psychological distress in a large, probability sample of married adults in Japan (N = 710) from the Midlife Development in Japan (MIDJA) study. Results indicate that positive and negative dimensions of marital adjustment were significantly associated with dimensional and categorical measures of psychological distress. Furthermore, the associations between marital adjustment and psychological distress remained significant when statistically controlling for neuroticism, quality of friend and family relationships, and demographic variables. These results demonstrate that the well-established association between marital adjustment and psychological distress found in European-American countries is also found in Japan. Findings support continued research on marital functioning and psychological distress in East Asian countries. PMID:28082761

  20. Building good relationships with neighbors of Japan's oldest plant, Tsuruga

    International Nuclear Information System (INIS)

    Hata, Emi

    1992-01-01

    Since its establishment in 1957 as a pioneer company of nuclear power development in Japan, the Japan Atomic Power Company (JAPC) has gained a great deal of experience with construction and operation of four nuclear power plants - one gas-cooled reactor, two boiling water reactors (BWRs), and one pressurized water reactor (PWR) - at two sites, Tsuruga and Tokai. To gain the understanding and cooperation of the local community, the Tsuruga station must keep running. Each employee is encouraged to make every possible effort not only to ensure the safe and reliable operation of the two units, but also to ensure conscientious coexistence and coprosperity within the local community. The Tsuruga office in the city and the Public Relations (PR) Pavilion (visitor's center) at the site work together as an open window of communication with the local community. Under these basic philosophies, various good neighbor activities are developed and carried out

  1. Safety policy for nuclear power development

    International Nuclear Information System (INIS)

    Uchida, Hideo

    1987-01-01

    The report discusses various aspects of the safety policy for nuclear power development in Japan. Nuclear power development over three decades in Japan has led to operating performance which is highly safe and reliable. This has been appreciated internationally. Discussed here is the Japanese basic safety policy for nuclear power development that is essential first to design, manufacture and construction using high technology. The current careful quality assurance and reliable operation management by skilled operators are relied upon, on the basis of the fact that measures to prevent abnormal events are given first priority rather than those to mitigate consequences of abnormal events or accidents. Lessons learned from accidents and failures within or outside Japan such as the TMI accident and Chernobyl accident have been reflected in the improvement of safety through careful and thorough examinations of them. For further improvement in nuclear safety, deliberate studies and investigations on severe accidents and probabilistic safety assessment are considered to be important. Such efforts are currently being promoted. For this purpose, it is important to advance international cooperation and continue technical exchanges, based on operation experience in nuclear power stations in Japan. (Nogami, K.)

  2. ASME factory authorization system and the situation in Japan

    International Nuclear Information System (INIS)

    Futagawa, Kiyoshi

    1978-01-01

    Since about three or four years ago, the enterprises of machinery, iron and steel and welding materials in Japan are paying much attention to the acquisition of ASME (American Society of Mechanical Engineers) certificates or authorization to stamp the code symbols. That is, over 70 factories in Japan have undergone ASME examination, and consequently acquired the authorization or certificates. Such authorization is divided into over 20 kinds, of which about 7 are possessed by the companies in Japan. In nuclear field, the kinds of authorization are N (nuclear vessel), NPT (nuclear vessel parts), NV (nuclear vessel safety valve), and MM (material manufacturing). In non-nuclear fields, they are S (power boilers), U (pressure vessels, in Div. 1), and U2 (pressure vessels in Div. 2). The following matters are described: ASME setup, authorization procedures of ASME for factories, the kinds of authorization, factories in Japan holding the authorization or certificates, and renewal of the authorization. (Mori, K.)

  3. Guideline on in-service testing (IST) of ECCS for nuclear power stations in Japan

    International Nuclear Information System (INIS)

    Yamashita, N.; Honjin, M.; Yamazaki, M.; Iwami, H.

    2001-01-01

    In Japan, METI (Ministry of Economy, Trade and Industry) periodic inspections are conducted every 13 months in accordance with the EUIL (Electric Utility Industry Law) for light water reactors. On the other hand, during operation, many kinds of function tests are conducted in accordance with Technical Specifications or utilities voluntary test procedures. However, these maintenance activities during outages are in other respects considered too costly and more than necessary because of its predetermined maintenance interval and its old-fashioned full scope maintenance menu. In these circumstances, the ASME O and M Codes and Standards, which are applied to nuclear power plants in the United States, came to be one of the issues to be considered among Japanese utilities. This is because the ASME O and M Codes and Standards, which are developed to verify the operational readiness of equipment or systems by condition based maintenance or performance testing without overhauls, will be considered to suggest a rational alternative to our existing maintenance activities. Because there had been no standard for function tests other than the METI inspection procedures in Japan, activities started for the development of Japanese Operation and Maintenance Guideline (hereinafter called the Japanese OM Guideline or the Guideline) for function tests and condition monitoring. The Japanese OM Guideline is not proclaimed for regulatory use, but the long-term objective is to provide a substantial basis to change the current maintenance activities including regulatory inspection. The Guideline is composed of five parts, which are general requirements, pumps, valves, snubbers and ECCS systems. This paper gives a summary of the ECCS part of the Japanese OM Guideline, in particular, focusing on the differences between the Guideline and the ASME O and M Standards, and topics or discussion during their establishment. (author)

  4. History of decontamination after the Great East Japan Earthquake

    International Nuclear Information System (INIS)

    Omura, Takashi; Onodera, Hideaki; Morishita, Satoru; Kato, Sei

    2015-01-01

    The magnitude 9.0 earthquake (the Great East Japan Earthquake) hit Japan on March 11, 2011 brought tsunami hazard as well as a nuclear accident in addition to the seismic hazard. A wide area of the eastern Japan was contaminated by radioactive materials released from the Fukushima Daiichi Nuclear Power Plant of the Tokyo Electric Power Company. In response to the unprecedented situation of the radioactive pollution after the accident, the Act on Special Measures Concerning the Handling of Radioactive Pollution was enacted in August 2011. The Ministry of the Environment (MOE) has formulated a set of guidelines by the end of 2011 to provide information on how to store and manage contaminated waste. In addition, the MOE established 'The Policies for the Decontamination of Specific Areas (Decontamination Roadmap)' in January 2012. As a result, the radiation dose rate has decreased by approximately 46% in the residential area of Naraha town. The MOE will have been promoting decontamination and construction of interim storage facilities which are able to store and manage the removed soils and incineration ashes generated from decontamination works. (author)

  5. Standards for transport and storage components established by The Atomic Energy Society of Japan and The Japan Society of Mechanical Engineers

    International Nuclear Information System (INIS)

    Hirose, M.; Aritomi, M.; Saegusa, T.; Hayashi, T.; Takeda, T.; Onishi, K.; Kawakami, K.

    2004-01-01

    Since June 1997 the standards/specifications and inspection/certification of various products in Japan have been reviewed by Ministries and Agencies, with the aim of reducing direct government intervention to a necessary minimum and creating a free and fair socio-economic system that is fully opened to the international community and based on the rules of self-responsibility and market principles. Reflecting this policy the administrative regulations which prescribe technical standards as specific requirements have been revised by degrees into performance prescriptions. Detailed provisions in ordinances and notices have been abolished gradually to utilize voluntary standards and rules. In the nuclear energy field voluntary standards are being developed to make up statutory performance requirements by the Atomic Energy Society of Japan (AESJ) and the Japan Society of Mechanical Engineers (JSME) together with other organizations such as the Japan Electric Association, the Thermal and Nuclear Power Engineering Society. These voluntary standards and rules by these organizations have been established in order to maintain openness, transparency, fairness, professionalism and promptness and to promote development and globalization

  6. Current trends in rehabilitation engineering in Japan.

    Science.gov (United States)

    Ohnabe, Hisaichi

    2006-01-01

    In 2005, the elderly generation comprised 20% of the Japanese population. This percentage will grow to approximately 30% in 2030, meaning that nearly one in three people in Japan will be 65 years of age or older. Japan is the first nation in the world to face this situation. This article uses the context of Japanese society to give an overview of the elderly and people with disabilities; the International Classification of Functioning, Disability, and Health model; rehabilitation engineering-related policy; and education. In addition, we examine how governmental programs and Japanese law regarding technical aids may evolve by 2030. Partner robots, intelligent powered wheelchairs, nursing robots, and other technologies are introduced as examples of rehabilitation engineering and assistive technology. We also discuss the volunteer activities of the Rehabilitation Engineering Society of Japan (RESJA) in response to the Asian tsunami disaster and the achievements of a group of students from a Japanese senior high school of industry.

  7. Status of cold fusion research in Japan

    International Nuclear Information System (INIS)

    Kitamura, Akira

    2015-01-01

    In Japan, the Condensed Matter Nuclear Science (CMNS) works have been centering around the Japan CF-Research Society (JCFRS) established in 1999. Recently, about 10 research groups were actively working in the CMNS field, and have been exchanging information mainly in the annual meetings of JCFRS in addition to the International ICCF conferences. For many years efforts have been exclusively devoted to clarification of the underlying physics of excess heat phenomenon and isotopic composition change. Recently, however, an entrepreneur group, Clean Planet Inc., has entered into the CMNS field in Japan, and joined Mizuno to form the above-mentioned group and made a presentation at the LANR/CF Colloquium, at MIT in March 2014. In their work they used glow discharge to form surface nanostructures on nickel mesh wires that are to be subjected to deuterium exposure. They claimed excess power on the order of kilowatts with a coefficient of performance of 1.9. Confirmation of their claim by third parties is highly expected

  8. Japan and India: soft balancing as a reaction to China's rise?

    Directory of Open Access Journals (Sweden)

    Wellington Amorim

    2014-01-01

    Full Text Available What are Indian and Japanese reactions to China's rise in economic, political and military terms? According to realist tradition, their option would be between balancing and bandwagoning. Applying Stephen Walt's balance of threats approach, this work aims to analyze Indian and Japan responses to an increasingly powerful China; its conclusions point to an evolving relationship between India and Japan, in military terms, especially after 2005.

  9. Emergency response of Fukushima Daini Nuclear Power Station during the Great East Japan Earthquake and its lessons

    International Nuclear Information System (INIS)

    Kawamura, Shinichi

    2016-01-01

    At the time of the occurrence of the Great East Japan Earthquake, Fukushima Daini Nuclear Power Station (hereinafter, Fukushima Daini) was operating four units of BWRS-5 type plants with an output of 1,100 MWe/unit. Among these plants, No. 1, 2, and 4 Units lost all the functions of heat removal equipment of reactors affected by tsunami. However, ad-hoc activities such as the exchange of submerged motors and temporary power installation allowed the recovery of residual heat removal (RHR) system, leading to a success in cold shutdown. This is a success story more than expectation in dealing with emergency situations, but not necessarily all of the correspondences were successfully carried out, leaving some problems. As lessons, the following are pointed out: (1) confirmation of the damage situation of the site and setting of priority rank of recovery, (2) securement of the means that do not depend on initial on-site activities, and (3) possession at the site of the skills of emergency restoration, equipment diagnostic technology, and repair technology. With reflecting lessons and challenges in these correspondences, Tokyo Electric Power Company is working to improve the accident response capability of the organization including Kashiwazaki-Kariwa Nuclear Power Station. As an example of effort of emergency response capability strengthening, there is an application of the US Incident Management System (IMS). The company is continuously making efforts for improving safety through training. (A.O.)

  10. Nuclear power-related facilities and neighboring land price: a case study on the Mutsu-Ogawara region, Japan.

    Science.gov (United States)

    Yamane, Fumihiro; Ohgaki, Hideaki; Asano, Kota

    2011-12-01

    From the perspective of risk, nuclear-power-related facilities (NPRFs) are often regarded as locally undesirable land use. However, construction of NPRFs contributes to social infrastructural improvement and job creation in the host communities. This raises a question: How large are these positive and negative effects? To approach this question from an economic viewpoint, we estimated the hedonic land price function for the Mutsu-Ogawara region of Japan from 1976 to 2004 and analyzed year-by-year fluctuations in land prices around the NPRFs located there. Land prices increased gradually in the neighborhood of the nuclear fuel cycle facilities (NFCFs) in Rokkasho Village, except for some falling (i) from 1982 to 1983 (the first official announcement of the project of construction came in 1983), (ii) from 1987 to 1988 (in 1988, the construction began and opposition movements against the project reached their peak), and (iii) from 1998 to 1999 (the pilot carry-in of spent fuels into the reprocessing plant began in 1998). Land prices around the Higashidori Nuclear Power Plant decreased during the period 1981-1982, when the Tohoku Electric Power Corp. and Tokyo Electric Power Corp. announced their joint construction plan. On the other hand, we obtained some results, even though not significant, indicating that land prices around Ohminato and Sekinehama harbors changed with the arrival and departure of the nuclear ship Mutsu, which suffered a radiation leak in 1974. © 2011 Society for Risk Analysis.

  11. A comparative study of Japan and United States nuclear enterprise: Industry structure and construction experience

    International Nuclear Information System (INIS)

    Hinman, G.W.; Lowinger, T.C.

    1987-01-01

    Both Japan and the United States have undertaken major programs to utilize nuclear power for central station electricity generation. Over the past 20 years, the Japanese have developed their own construction and government regulatory institutions and now have an essentially independent domestic nuclear power program. Nuclear construction and government oversight of nuclear power have developed somewhat differently in Japan and the United States, reflecting to some extent the two countries' different business and social cultures. In the United States the vendor and utility industries are much more fragmented than those in Japan, and construction projects are carried out on a more competitive basis. The Japanese industry operates through a few well-established consortia while the U.S. industry does not. Relations among the national government, the vendors, and the electric utilities tend to be cooperative in Japan while they are more adversarial in the Untied States. This paper discusses these topics in a framework of a comparative study of the countries' nuclear industries. Whether because of the factors mentioned above or for other reasons the success of nuclear power in Japan and the United States has differed dramatically in recent years. This paper compares the performance of the nuclear enterprise in these two countries in terms of the physical attributes of the plants themselves, the labor required to build them, and the construction times required. It also discusses the relationship between initial estimates of costs and schedules and actual results achieved. On all counts, recent Japanese performance has been better than in the United States

  12. Confusion surrounding the concept of nuclear 'security'. 'Preventing Japan from going nuclear contributes to Japan's national security'?

    International Nuclear Information System (INIS)

    Kubota, Masafumi

    2012-01-01

    A law enacted on June 20 to establish a new Nuclear Regulatory Authority (NRA) fully separated from the nuclear promotional authorities. It added the provision, which says nuclear safety should be guaranteed not only to defend lives, people's health and the environment but also to 'contribute to Japan's national security', to Article 2 of the Atomic Energy Basic Law. NRA integrated the existing regulatory authorities for safety, security and safeguards, into one. Supporters of an amendment quietly slipped into the law were denying it could provide cover for military use of nuclear technology, but arouse international concern about recycling program of extracting plutonium from spent fuels. Nuclear policy minister said: 'The safeguards are in place to prevent nuclear proliferation. The world 'security' precisely means the prevention of nuclear proliferation.' If not used explicitly about safeguards, they left room for stretched interpretation. The author recommended the world' contribute to Japan's national security' should be deleted instead of explaining appropriately, both at home and abroad, the use of nuclear power in Japan limited to peaceful purposes. (T. Tanaka)

  13. Nuclear situation in Japan

    International Nuclear Information System (INIS)

    2006-01-01

    This analysis takes stock on the nuclear situation in Japan. It discusses the ambitious equipment program in collaboration with the France, the destabilization of the japanese nuclear industry following the accidents and the energy policy evolutions. It presents the projects of the japanese nuclear industry: the Monju reactor restart, the Pluthermal project, the reprocessing power plant of Rokkasho Mura, the new reactors, the russian weapons dismantling, the ITER site selection and the buy out of Westinghouse by Toshiba. (A.L.B.)

  14. Safety aspects and operating experience of LWR plants in Japan

    International Nuclear Information System (INIS)

    Aoki, S.; Hinoki, M.

    1977-01-01

    From the outset of nuclear power development in Japan, major emphasis has been placed on the safety of the nuclear power plants. There are now twelve nuclear power plants in operation with a total output of 6600 MWe. Their operating records were generally satisfactory, but in the 1974 to 1975 period, they experienced somewhat declined availability due to the repair work under the specific circumstances. After investigation of causes of troubles and the countermeasures thereof were made to ensure safety, they are now keeping good performance. In Japan, nuclear power plants are strictly subject to sufficient and careful inspection in compliance with the safety regulation, and are placed under stringent radiation control of employees. Under the various circumstances, however, the period of annual inspection tends to be prolonged more than originally planned, and this consequently is considered to be one of the causes of reduced availability. In order to develop nuclear power generation for the future, it is necessary to put further emphasis on the assurance of safety and to endeavor to devise measures to improve availability of the plants, based on the careful analysis of causes which reduce plant availability. This paper discusses the results of studies made for the following items from such viewpoints: (1) Safety and Operating Experience of LWR Nuclear Power Plants in Japan; a) Operating experience with light water reactors b) Improvements in design of light water reactors during the past ten years c) Analysis of the factors which affect plant availability; 2) Assurance of Safety and Measures to Increase Availability a) Measures for safety and environmental protection b) Measures to reduce radiation exposure of employees c) Appropriateness of maintenance and inspection work d) Measures to increase plant availability e) Measures to improve reliability of equipments and components; and 3) Future Technical Problems

  15. Report on demonstrative research on photovoltaic power generation system in Myanmar. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective of installation and demonstrative operation in Myanmar of a power generation system combining a small-scale photovoltaic power generation system, a wind power generation system, and a diesel generator, research and development is being made under a six year plan starting in 1999 and ending in 2004. This paper compiles the appendices related thereto. Collected for the climatic observation are the insolation data and wind velocity data in Chaungthar, and the insolation graph in both of Chaungthar and Lethokekone. Furthermore, materials for selection and decision on the installation location, and design materials for a hybrid power generation system were collected. Collected for procurement, construction, and installation of devices and facilities include test data for the diesel generator, drawings for the power generation control panel, test operation report, bill of lading for the diesel generator, a completion certificate of the diesel generator building, photographs of the building, a certificate of completion of installation of the diesel generator, photographs taken during the installation work, a certificate of completion of power transmission cable installation, photographs of the installation works, and the operation manual for the diesel engine. (NEDO)

  16. Photovoltaic electricity production in Japan

    International Nuclear Information System (INIS)

    Destruel, P.

    2009-01-01

    The author first recalls the early investment of Japan in the solar energy which gave a leadership position to this country. However, it has been recently over-taken by Germany and Spain in terms of installed power. The share of the different technologies for the manufacturing of photovoltaic panels (polycrystalline silicon, mono-crystalline silicon, amorphous silicon, copper-indium-selenium cells) of different sizes, is presented, together with the current measures which are aimed at giving a new boost to this sector. The author tries then to foresee the evolutions of this sector during the next years and in a longer term (market prospective evolutions, factory projects, power station projects)

  17. Fungal levels in houses in the Fukushima Daiichi Nuclear Power Plant evacuation zone after the Great East Japan Earthquake.

    Science.gov (United States)

    Shinohara, Naohide; Tokumura, Masahiro; Hashimoto, Kazuhiro; Asano, Katsuyoshi; Kawakami, Yuji

    2017-10-01

    Residences located within 20 km of the damaged Fukushima Daiichi Nuclear Power Plant were evacuated shortly after the Great East Japan Earthquake. The levels of airborne and surface fungi were measured in six houses in the evacuation zone in August 2012 and February 2013. Airborne fungal levels in all of the houses in the summer were higher than the environmental standard levels for residential houses published in Architectural Institute of Japan (>1000 colony-forming units [CFU]/m 3 ). In two houses whose residents rarely returned to visit, fungal levels were extremely high (>52,000 CFU/m 3 ). Although fungal levels in the winter were much lower than those in the summer, they were still higher than environmental standard levels in several houses. Indoor fungal levels were significantly inversely related to the frequency with which residents returned, but they were not correlated with the air exchange rates, temperature, humidity, or radiation levels. Cladosporium spp. and Penicillium spp. were detected in every house. Aspergillus section Circumdati (Aspergillus ochraceus group) was also detected in several houses. These fungi produced ochratoxin A and ochratoxin B, which have nephrotoxic and carcinogenic potential. The present study suggests that further monitoring of fungal levels is necessary in houses in the Fukushima Daiichi Nuclear Power Plant evacuation zone, and that some houses may require fungal disinfection. The results suggest that residents' health could be at risk owing to the high levels of airborne fungi and toxic fungi Aspergillus section Circumdati. Therefore, monitoring and decontamination/disinfection of fungi are strongly recommended before residents are allowed to return permanently to their homes. In addition, returning to home with a certain frequency and adequate ventilation are necessary during similar situations, e.g., when residents cannot stay in their homes for a long period, because fungal levels in houses in the Fukushima Daiichi

  18. Demonstration tokamak-power-plant study (DEMO)

    International Nuclear Information System (INIS)

    1982-09-01

    A study of a Demonstration Tokamak Power Plant (DEMO) has been completed. The study's objective was to develop a conceptual design of a prototype reactor which would precede commercial units. Emphasis has been placed on defining and analyzing key design issues and R and D needs in five areas: noninductive current drivers, impurity control systems, tritium breeding blankets, radiation shielding, and reactor configuration and maintenance features. The noninductive current drive analysis surveyed a wide range of candidates and selected relativistic electron beams for the reference reactor. The impurity control analysis considered both a single-null poloidal divertor and a pumped limiter. A pumped limiter located at the outer midplane was selected for the reference design because of greater engineering simplicity. The blanket design activity focused on two concepts: a Li 2 O solid breeder with high pressure water cooling and a lead-rich Li-Pb eutectic liquid metal breeder (17Li-83Pb). The reference blanket concept is the Li 2 O option with a PCA structural material. The first wall concept is a beryllium-clad corrugated panel design. The radiation shielding effort concentrated on reducing the cost of bulk and penetration shielding; the relatively low-cost outborad shield is composed of concrete, B 4 C, lead, and FE 1422 structural material

  19. Fusion Power Demonstrations I and II

    International Nuclear Information System (INIS)

    Doggett, J.N.

    1985-01-01

    In this report we present a summary of the first phase of the Fusion Power Demonstration (FPD) design study. During this first phase, we investigated two configurations, performed detailed studies of major components, and identified and examined critical issues. In addition to these design specific studies, we also assembled a mirror-systems computer code to help optimize future device designs. The two configurations that we have studied are based on the MARS magnet configuration and are labeled FPD-I and FPD-II. The FPD-I configuration employs the same magnet set used in the FY83 FPD study, whereas the FPD-II magnets are a new, much smaller set chosen to help reduce the capital cost of the system. As part of the FPD study, we also identified and explored issues critical to the construction of an Engineering Test Reactor (ETR). These issues involve subsystems or components, which because of their cost or state of technology can have a significant impact on our ability to meet FPD's mission requirements on the assumed schedule. General Dynamics and Grumman Aerospace studied two of these systems, the high-field choke coil and the halo pump/direct converter, in great detail and their findings are presented in this report

  20. Performance demonstration of a high-power space-reactor heat-pipe design

    International Nuclear Information System (INIS)

    Merrigan, M.A.; Martinez, E.H.; Keddy, E.S.; Runyan, J.; Kemme, J.E.

    1983-01-01

    Performance of a 15.9-mm diam, 2-m long, artery heat pipe has been demonstrated at power levels to 22.6 kW and temperatures to 1500 0 K. The heat pipe employed lithium as a working fluid with distribution wicks and arteries fabricated from 400 mesh Mo-41 wt % Re screen. Molybdenum alloy (TZM) was used for the container. Peak axial power density attained in the testing was 19 kW/cm 2 at 1465 0 K. The corresponding radial flux density in the evaporator region of the heat pipe was 150 W/cm 2 . The extrapolated limit for the heat pipe at its 1500 0 K design point is 30 kW, corresponding to an axial flux density of 25 kW/cm 2 . Sonic and capillary limits for the design were investigated in the 1100 to 1500 0 K temperature range. Excellent agreement of measured and predicted temperature and power levels was observed

  1. Advertising campaigns on the necessity of nuclear energy through mass-media in Japan

    International Nuclear Information System (INIS)

    Niwano, Sadaji

    1998-01-01

    In Japan, the way of PA activities concerning nuclear power has relatively been one-sided and the content of the information which provided to the public has focused mainly on the safety and necessity of nuclear power generations unilaterally so far. But, with the incident of sodium leakage at the Monju plant occurred at December, 1995 and subsequent fire explosion at the Tokai reprocessing plant at March 1997, distrust of the public increased rapidly against the promotion of nuclear power development in Japan. According to the opinion poll carried out in February 1996, it was shown that 70.3% of the public felt that nuclear power is not safe, up from 57.8% of previous survey in November 1995. therefore, it has become important to gain public confidence in order to achieve nuclear power development programs, and clarification of the national policy for nuclear energy development are required strongly. As a result, a series of discussions were actively made at the round- tabled conferences held by Atomic Energy Committee, Japan s national body for promotion of nuclear energy utilization and development, and Advisory Committee for Energy held by MITI, to find out the way of how Japan's nuclear power development should be promoted. In conclusions of discussions, the important theme concerning the ideal method for proceeding PA activities were emphasized. To summarize these briefly, (1) reestablish the trust in the national nuclear policy among the public by transparency and openness, reflecting public opinions. (2) promote understanding and reach an agreement with the regional community where nuclear power plant are installed or are scheduled to be installed in the future. (3) explain and convey information so that the public will think together with us. As for the (3), we are making every effort to rouse public awareness to the importance of tackling severe energy situations in Japan and lead individual people to think seriously about the issues. For that purpose, we

  2. Concerning improvement and reform towards a more effective and realisable nuclear liability legal system in Japan

    International Nuclear Information System (INIS)

    Iizuka, H.

    2006-01-01

    Japan is the only country in the world that has ever experienced being attacked by atomic bombs. Japanese people have a special feeling towards nuclear power. Japan has opted for an unlimited liability system, which is regarded as a hospitable one to victims in Japan. Under the existing unlimited liability system in Japan, however, there is a problem that nuclear operators cannot necessarily foresee the probable limit of their risks to owe. In this paper, I want to present problems of the nuclear liability legal system, and proposals for improvement and reform towards more effective and realisable system in Japan. (author)

  3. Annual report of the Japan Atomic Energy Research Institute, for fiscal 1989

    International Nuclear Information System (INIS)

    1990-01-01

    Japan Atomic Energy Research Institute has promoted the research on nuclear safety, the research and development of high temperature engineering and nuclear fusion which are the leading projects bringing about the breakthrough in atomic energy technology, the research on radiation utilization and the research and development of nuclear-powered ships, following the 'Plan of development and long term utilization of atomic energy' decided in 1987, as the central, general research institute in atomic energy field in Japan. Also the advanced basic research for opening atomic energy frontier and various international cooperation as well as the cooperation in Japan have been promoted. The engineering safety of nuclear facilities and environmental safety, the construction of the Nuclear Fuel Cycle Safety Engineering Research Facility, the design of the High Temperature Engineering Test Reactor and the various tests related to it, the reconstruction of JT-60 for increasing the current, the design of a nuclear fusion reactor, the high utilization of radiation using ion beam, the construction of Sekinehama Port for the nuclear-powered ship 'Mutsu', the power increasing test of the reactor of the Mutsu, the reconstruction of JRR-3 and others are reported. (K.I.)

  4. Haida Gwaii / Queen Charlotte Islands demonstration tidal power plant feasibility study : summary results

    Energy Technology Data Exchange (ETDEWEB)

    Tu, A. [BC Hydro, Burnaby, BC (Canada)

    2008-07-01

    Remote communities may benefit from using tidal energy in terms of reduced diesel fuel consumption and the associated greenhouse gas emissions. A study was conducted to assess the feasibility for a tidal demonstration project on the Haida Gwaii, Queen Charlotte Islands. Candidate communities were scanned for resource potential, load profile, infrastructure distribution and community interest. This presentation focused on choosing an appropriate site for a given tidal power technology. Three hotspots in Masset Sound were identified as well as one hotspot at Juskatla Narrows. Technology providers were solicited for information on unit performance, cost, and trials to date. The presentation noted that demonstration or future commercial deployment is limited by resource and by the ability of the grid to accommodate tidal power. The presentation concluded with next steps which include publishing the study. tabs., figs.

  5. Toshiba's developments on construction techniques of nuclear power plants

    International Nuclear Information System (INIS)

    Hayashi, Y.; Itoh, N.

    1987-01-01

    Reliable and economic energy supplies are fundamental requirements of energy policies in Japan. To accomplish these needs, nuclear power plants are being increased in Japan. In recent years, construction cost increases and schedule extensions have affected the capital cost of nuclear energy, compared with fossil power plants, due to lower costs of oil and coal. On the other hand, several severe regulations have been applied to nuclear power plant designs. High-quality and cooperative engineering and harmonized design of equipment and parts are strongly required. Therefore, reduced construction costs and scheduling, as well as higher quality and reliability, are the most important items for nuclear industry. Toshiba has developed new construction techniques, as well as design and engineering tools for control and management, that demonstrate the positive results achieved in the shorter construction period of 1100-MW(electric) nuclear power plants. The normal construction period so far is 64 months, whereas the current construction period is 52 months. (New construction techniques are partially applied). In future years, the construction period will be lowered to 48 months. (New construction techniques are fully applied). A construction period is defined as time from the start of rock inspection to the start of commercial operation

  6. Conceptual design study for the demonstration reactor of JSFR. (1) Current status of JSFR development

    International Nuclear Information System (INIS)

    Hayafune, Hiroki; Sakamoto, Yoshihiko; Kotake, Shoji; Aoto, Kazumi; Ohshima, Jun; Ito, Takaya

    2011-01-01

    JAEA is now conducting 'Fast Reactor Cycle Technology Development (FaCT)' project for the commercialization before 2050s. A demonstration reactor of Japan Sodium-cooled Fast Reactor (JSFR) is planned to start operation around 2025. In the FaCT project, conceptual design study on the demonstration reactor has been performed since 2007 to determine the referential reactor specifications for the next stage design work from 2011 for the licensing and construction. Plant performance as a demonstration reactor for the 1.5 GWe commercial reactor JSFR is being compared between 750 MWe and 500 MWe plant designs. By using the results of conceptual design study, output power will be determined during year of 2010. This paper describes development status of key technologies and comparison between 750 MWe and 500 MWe plants with the view points of demonstration ability for commercial JSFR plant. (author)

  7. Competition in Japan

    OpenAIRE

    Michael E. Porter; Mariko Sakakibara

    2004-01-01

    This article examines competition in Japan and its link to postwar economic prosperity. While Japan's industrial structure and competition policy seem to indicate that competition in Japan has been less intense, the empirical evidence does not support this conclusion. The sectors in which competition was restricted prove to be those where Japan was not internationally successful. In the internationally successful sectors, internal competition in Japan was invariably fierce. While the level of...

  8. Present and future activities of nuclear desalination in Japan

    International Nuclear Information System (INIS)

    Minato, A.; Hirai, M.

    2004-01-01

    Seawater desalination plants have been installed at several nuclear power plants in Japan in order to satisfy the regulations for nuclear plant installation. This has been done where there is a limited source of water due to the geological conditions. These desalination plants are being operated to ensure supplemental water by using thermal or electrical energy from the nuclear power plant. The desalination plant is not operated continuously during the year because the major function of the plant is to ensure the supply of supplemental water for the nuclear power plant. Regarding maintenance of the desalination plant, some piping was exchanged due to corrosion by high temperature seawater, however, the desalination plants are being operated without any trouble as of today. Recently, the development of innovative and/or small reactor designs, that emphasise safety features, has been promoted in Japan to use for seawater desalination and for installation in developing countries. An advanced RO system with lower energy consumption technology is also being developed. Furthermore, some Japanese industries and universities are now very interested in nuclear desalination. (author)

  9. Education Programme About Radiation at School in Japan

    International Nuclear Information System (INIS)

    Ukai, M.

    2015-01-01

    After Fukushima–Daiichi Nuclear Power Plant accident Japanese have thought “Basic radiation knowledge for school education” is very important. Ministry of Education, Culture, Sports, Science and Technology of Japan published supplemental learning textbooks on radiation for school students and teachers written in Japanese in October 2011 just after the accident. These textbooks show the clear explanation of radiation and cover the various topics especially on the accident. Japan Atomic Energy Agency has also published new textbook for secondary school students and teachers written in English in January 2015. English version textbooks are very useful for Japanese students who want be a teacher and also for students from foreign countries in our University. Using these textbooks new class have stated at our University. In this presentation the education programmes at school in Japan and the effects of these textbooks as a practical tool will be discussed. (author)

  10. Social contention about safety of nuclear power plant

    International Nuclear Information System (INIS)

    Nemoto, Kazuyasu

    1978-01-01

    In Japan, the contentions and arguments on the safety of nuclear power generation have been active since its first introduction, and these are greatly influenced by the nation's experiences of atomic bombs in Hiroshima, Nagasaki, and Bikini. As the result, the attitude of peoples toward the acceptance of nuclear power plants is significantly different from that in other countries. The situation in Japan of social contentions about nuclear power safety is explained in two aspects: acceptance of the safety, by peoples and Japanese pattern of safety contentions. In both upstream and downstream of nuclear power generation, not only the safety but also the right or wrong for nuclear power generation itself is discussed. The problem of nuclear power safety has gone into the region beyond the technological viewpoint. The pattern of safety contentions in Japan is the entanglement of three sectors; i.e. local people, labor unions and political parties, enterprises and administration, and intellectuals. (Mori, K.)

  11. Present status and problems of nuclear power generation

    International Nuclear Information System (INIS)

    Harada, Hiroshi.

    1984-01-01

    The nuclear power generation in Japan began in 1963 with the successful power generation in the JPDR of the Japan Atomic Energy Research Institute, and since then, more than 20 years have elapsed. The Japan Atomic Power Co. started the operation of an imported Calder Hall type gas-cooled reactor with 166,000 kWe output in Tokai Nuclear Power Station in July, 1966. In 1983, the quantity of nuclear power generation was 113.1 billion kWh, which was equivalent to 21.4 % of the total power generation in Japan. As of April 1, 1984, 25 nuclear power plants with 18.28 million kW output were in operation, 12 plants of 11.8 million kW were under construction, and 7 plants of 6.05 million kW were in preparation phase. Besides, the ATR ''Fugen'' with 165,000 kW output has been in operation, and the FBR ''Monju'' with 280,000 kW output is under construction. The capacity ratio of Japanese nuclear power stations attained 71.5 % in 1983. According to the ''Long term energy demand and supply outlook'' revised in November, 1983, the nuclear power generation in 2000 will be about 62 million kW to cater for about 16 % of primary energy supply. The problems are the improvement of economy, the establishment of independent nuclear fuel cycle, the decommissioning of nuclear reactors and so on. (Kako, I.)

  12. Empowered? Evaluating Japan's national energy strategy under the DPJ administration

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, Scott, E-mail: valentine@pp.u-tokyo.ac.j [Graduate School of Public Policy (GraSPP), University of Tokyo, 620 Administration Bureau Building No. 2, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sovacool, Benjamin K., E-mail: bsovacool@nus.edu.s [Lee Kuan Yew School of Public Policy, National University of Singapore, 02-03J Oei Tiong Ham Building, 469C Bukit Timah Road, Singapore 259772 (Singapore); Matsuura, Masahiro, E-mail: matsuura@pp.u-tokyo.ac.j [Graduate School of Public Policy (GraSPP), University of Tokyo, 620 Administration Bureau Building No. 2, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2011-03-15

    In August 2009, after 54 years of virtually unbroken rule, Japan's Liberal Democratic Party (LDP) was ousted from power by the Democratic Party of Japan (DPJ). The DPJ's campaign platform included a pledge to facilitate extreme reductions in greenhouse gas (GHG) emissions. Yet, at the COP16 meeting in Cancun, Japan announced that it would not accept further emission reduction targets without broader commitment from all nations. This paper seeks to explain this dichotomy by employing a targeted stakeholder evaluation based on surveys with 321 Japanese citizens to assess the extent to which influential stakeholder groups in Japan supports a potentially costly transition to a low-carbon energy infrastructure amidst severe economic challenges that the nation faces. Findings help explain Japan's adversarial role in COP16 negotiations in Cancun, despite the stated GHG reduction ambitions of Japan's current ruling party. The analysis concludes that if the DPJ does embrace aggressive CO{sub 2} reduction targets in the future, the strategic focus will likely mirror the former ruling party's energy policy of bolstering nuclear power generation capacity and promoting energy efficiency improvements while exhibiting lukewarm commitment to supporting capacity development in alternative sources of energy supply such as solar panels and wind turbines. - Research highlights: {yields} Public consensus exists regarding which energy policy goals are important in Japan. {yields} Minor perceptual differences are not of a catalytic nature. {yields} Public consensus does not deviate significantly from past LDP energy policy. {yields} Unlikely that the DPJ will pursue costly energy transition initiatives. {yields} Likely that the DPJ energy strategy will be substantively similar to LDP strategy. {yields} Any differences in strategy will focus on CO{sub 2} reduction magnitude not substance.

  13. Public perceptions of climate change and energy futures before and after the Fukushima accident: A comparison between Britain and Japan

    International Nuclear Information System (INIS)

    Poortinga, Wouter; Aoyagi, Midori; Pidgeon, Nick F.

    2013-01-01

    The threats posed by climate change call for strong action from the international community to limit carbon emissions. Before the Fukushima accident that followed the Great East Japan earthquake and tsunami on 11 March 2011, both Britain and Japan were considering an ambitious expansion of nuclear power as part of their strategy to reduce carbon emissions. However, the accident may have thrown nuclear power as a publicly accep’ energy technology into doubt. This study uses several nationally representative surveys from before and after the Fukushima accident to examine how it may have changed public perceptions of climate change and energy futures in Britain and Japan. The study found that already before the accident the Japanese public were less supportive of nuclear power than the British. While British attitudes have remained remarkably stable over time, the Japanese public appear to have completely lost trust in nuclear safety and regulation, and have become less acceptive of nuclear power even if it would contribute to climate change mitigation or energy security. In Japan the public are now less likely to think that any specific energy source will contribute to a reliable and secure supply of energy. The implications for energy policy are discussed. - highlights: • We report data from 2005 to 2011 of British and Japanese attitudes towards nuclear power and climate change. • The Japanese are less supportive of nuclear power as a solution to climate change than the British. • Public support for and trust in nuclear power has collapsed in Japan after Fukushima. • British public attitudes to nuclear power are remarkably robust in the wake of Fukushima

  14. Experimental Demonstration of Coexistence of Microwave Wireless Communication and Power Transfer Technologies for Battery-Free Sensor Network Systems

    Directory of Open Access Journals (Sweden)

    Satoshi Yoshida

    2013-01-01

    Full Text Available This paper describes experimental demonstrations of a wireless power transfer system equipped with a microwave band communication function. Battery charging using the system is described to evaluate the possibility of the coexistence of both wireless power transfer and communication functions in the C-band. A battery-free wireless sensor network system is demonstrated, and a high-power rectifier for the system is also designed and evaluated in the S-band. We have confirmed that microwave wireless power transfer can coexist with communication function.

  15. Japan country report

    Energy Technology Data Exchange (ETDEWEB)

    Morisaki, Rieko [Energy Communication Planning, 3-9-16 Aobadai, 818-0137 Dazaifu (Japan)

    2008-07-01

    1. Nuclear 2007 highlights: - A magnitude 6.8 earthquake occurred in Niigata on July 16 2007. Owing to this earthquake, 3 units operating and 1 unit during start-up were shutdown automatically at TEPCO's Kashiwazaki-Kariwa NPS. Now, all 7 units of the NPS are in an outage for investigation. This influenced the capacity factor of Japanese NPPs in FY 2007, which stood at just 60.7%. - Debate on global warming is more and more active in Japan, as it is the host country of the G8 Hokkaido Toyako Summit in July. The Japan Atomic Energy Commission released 'White Paper on Nuclear Energy 2007' in March 2008. In the paper, they first expressed the view that the expansion of the peaceful use of nuclear energy is indispensable. 2. Nuclear overview: a. Energy policy: Electricity share: 25.4% of nuclear. The energy policy of Japan aims at nuclear power generation being maintained at the current level (30 to 40% of the total electricity generation) or increasing even after 2030, for stable energy supply and as a countermeasure against global warming. - Nuclear Fuel Cycle: The active tests at the JNFL reprocessing plant in Rokkasho-mura are in the final phase for commercial operation in 2008. By FY 2010 Plutonium utilization in LWRs in 16 to 18 NPP units. Around FY 2010 Installment of new centrifuges at the uranium enrichment plant at Rokkasho-mura. In FY 2012 Start of commercial operation of MOX fuel fabrication plant. Fast-breeder reactor cycle: Operation of the prototype reactor 'MONJU' has been suspended since a secondary sodium leak in 1995. JAEA (Japan Atomic Energy Agency) completed full-scale remodeling work and is implementing various tests to confirm the capabilities and soundness of MONJU. They aim to start its operation within FY 2008. Around 2025 Building a demonstration FBR. Before 2050 Development of a commercial FBR. - Electricity production (Operating): BWR: 32 units (including 4 units of APWR), PWR: 23 units. - Electricity production

  16. Evaluation of power commissioning of the Mochovce Unit 1 demonstration run

    International Nuclear Information System (INIS)

    Sarvaic, I.; Miskolci, M.

    1998-01-01

    The document contains evaluation of the 144 hour demonstration run of the Mochovce Unit 1. In the document, the courses and results of additional tests in this phase of power commissioning are summarized, evaluation of the performance of important systems and equipment of the unit is carried out, as well as of the compliance with Limits and Conditions in the course of the demonstration run. On this basis, conclusions are drawn and recommendations given for the unit to by ready for trial operation. The evaluation was developed by the scientific management of the Mochovce commissioning providing an independent support for the operators for supervising the commissioning tasks from the point of nuclear safety

  17. Energy balance sheet of Japan. A very high degree of dependence

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Japan, a country poor in energetic resources, is obliged to import more than 80% of its consumption, and is thus a major participant in the petroleum and natural gas international trades. A hundred of japanese societies are implied in abroad exploration-production. A financial help is given by the Japan National Oil Corporation (JNOC). 80% of the imported crude oil is furnished by the OPEP countries (Unified Arab Emirates, Saudi Arabia and Indonesia). Japan disposes of 43 petroleum refineries which totalize a distillation capacity of 4.86 b/d. Refineries production has increased from 188 Mt in 1993 to 193 Mt in 1994. Town gas distribution is in the hands of 244 municipal gas companies which uses a 188000 km pipe network. 73 % of the gas is from imported LNG and the rest is of local production. The three quarters of the imported LNG is used for electricity production. A 2800 MW natural gas combined-cycle power plant will be put into service in 1998 by Tokyo Electric Power. (J.S.). 1 photo., 1 tab

  18. Japan. Superconductivity for Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, K.

    2012-11-15

    Currently, many smart grid projects are running or planned worldwide. These aim at controlling the electricity supply more efficiently and more stably in a new power network system. In Japan, especially superconductivity technology development projects are carried out to contribute to the future smart grid. Japanese cable makers such as Sumitomo Electric and Furukawa Electric are leading in the production of high-temperature superconducting (HTS) power cables. The world's largest electric current and highest voltage superconductivity proving tests have been started this year. Big cities such as Tokyo will be expected to introduce the HTS power cables to reduce transport losses and to meet the increased electricity demand in the near future. Superconducting devices, HTS power cables, Superconducting Magnetic Energy Storage (SMES) and flywheels are the focus of new developments in cooperations between companies, universities and research institutes, funded by the Japanese research and development funding organization New Energy and Industrial Technology Development Organization (NEDO)

  19. Evolution of the Fusion Power Demonstration tandem mirror reactor configuration

    International Nuclear Information System (INIS)

    O'Toole, J.A.; Lousteau, D.C.

    1985-01-01

    This paper gives a presentation of the evolution of configurations proposed for tandem mirror Fusion Power Demonstration (FPD) machines. The FPD study was undertaken to scope the mission as well as the technical and design requirements of the next tandem mirror device. Three configurations, entitled FPD I, II, and III were studied. During this process new systems were conceived and integrated into the design, resulting in a significantly changed overall machine configuration. The machine can be divided into two areas. A new center cell configuration, minimizing magnetic field ripple and thus maximizing center cell fusion power, features a semicontinuous solenoid. A new end cell has evolved which maintains the required thermal barrier in a significantly reduced axial length. The reduced end cell effective length leads to a shorter central cell length being required to obtain minimum ignition conditions. Introduced is the concept of an electron mantle stabilized octopole arrangement. The engineering features of the new end cell and maintenance concepts developed are influenced to a great extent by the octopole-based design. The new ideas introduced during the FPD study have brought forth a new perspective of the size, design, and maintenance of tandem mirror reactors, making them more attractive as commercial power sources

  20. Current status of water chemistry in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ishigure, K. [Saitama Inst. of Tech. (Japan)

    2002-07-01

    At present 28 BWRs including 2 ABWRs and 23 PWRs are in operation in Japan and generated 36.8{open_square} of total electric power in 1998. Totally 4 BWRs, of which two are ABWRs, are now under construction, and one BWR together with one ABWR is in the stage of planning. One gas-cooled reactor (Tokai-1) was shut down permanently in 1998 and last year entered into decommissioning stage. According to the Japanese 2001 plan of electric power supply, 13 nuclear power plants newly constructed are to start operation in the next 10 years. In this paper the recent status of water chemistry technology in Japanese nuclear power plants is briefly summarized together with a touch upon the activities in the fundamental research. (author)

  1. Current status of water chemistry in Japan

    International Nuclear Information System (INIS)

    Ishigure, K.

    2002-01-01

    At present 28 BWRs including 2 ABWRs and 23 PWRs are in operation in Japan and generated 36.8□ of total electric power in 1998. Totally 4 BWRs, of which two are ABWRs, are now under construction, and one BWR together with one ABWR is in the stage of planning. One gas-cooled reactor (Tokai-1) was shut down permanently in 1998 and last year entered into decommissioning stage. According to the Japanese 2001 plan of electric power supply, 13 nuclear power plants newly constructed are to start operation in the next 10 years. In this paper the recent status of water chemistry technology in Japanese nuclear power plants is briefly summarized together with a touch upon the activities in the fundamental research. (author)

  2. Experience with nuclear desalination in Japan

    International Nuclear Information System (INIS)

    Shiota, Y.

    1996-01-01

    In Japan, the seawater desalination facilities were used mainly for potable water in remote islands and industrial water such as boiler feedwater. In order to produce potable water, distillation processes, Electrical Dialysis (ED) and Reverse Osmosis (RO) were used in the past. The distillation facilities were used to produce boiler feedwater, however, RO facilities are now used for this purpose, such as the nuclear desalination facilities with capacities of 2600 m 3 /d, 2000 m 3 /d and 1000 m 3 /d, in Kansai Electric Power Co., Ltd., Shikoku Electric Power Co., Inc. and Kyuhshu Electric Power Co., Inc., respectively. The RO process is becoming a main stream of desalination because the process has a low energy consumption. 6 tabs

  3. Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit

    Science.gov (United States)

    Mason, Lee; Palac, Donald; Gibson, Marc; Houts, Michael; Warren, John; Werner, James; Poston, David; Qualls, Arthur Lou; Radel, Ross; Harlow, Scott

    2012-01-01

    A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.

  4. Japan, world leader of photovoltaic energy

    International Nuclear Information System (INIS)

    Strasser, F.

    2006-01-01

    Since the beginning of the 1970's, the potentialities of photovoltaic energy has been recognized by the Japanese government which has sustained this technology in two ways. First, by the financing of R and D programs, and second, by giving subsidies to citizens for the installation of solar panels. Today, Japan is the world leader of photovoltaic energy, both for the installed power and for the production of solar cells. In 2003, the International Energy Agency was reporting 1.809 GW of worldwide installed capacity among which 48% was in Japan (0.86 GW) with respect to 0.4 GW in Germany, 0.275 GW in the USA and only 20 MW in France. This capacity would have exceeded 1.1 GW at the end of 2004. Half of the solar modules are manufactured in Japan. The ministry of economy, trade and industry (METI) has fixed ambitious goals for 2010: the overall new energy sources much represent 3% of the primary energy (with respect to 1% today) and the installed capacity must reach 4.8 GW. The road-map of the New Energy and Industrial Technology Development Organisation (NEDO) foresees 100 GW by 2030. (J.S.)

  5. STS-47 Payload Specialist Mohri tosses an apple during SLJ demonstration

    Science.gov (United States)

    1992-01-01

    STS-47 Payload Specialist Mamoru Mohri tosses an apple in the weightless environment of the Spacelab Japan (SLJ) science module aboard the Earth-orbitng Endeavour, Orbiter Vehicle (OV) 105. Mohri was handling the space end of a space-to-Earth youth Conference with students in his home country (Japan) in which he gave a brief demonstration on the specifics of his mission as well as general information on space travel and space physics. Mohri conducts his demonstration in front of the NASDA Material Sciences Rack 10. In the background is the SLJ end cone with Detailed Test Objective (DTO), Foot restraint evaluation, base plate, a banner from Auburn University, and portraits of the backup payload specialists. Mohri represents Japan's National Space Development Agency (NASDA).

  6. Development of the ultra high efficiency thermal power generation facility

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Toshihiro

    2010-09-15

    In order to prevent global warming, attention is focused on nuclear power generation and renewable energy such as wind and solar power generation. The electric power suppliers of Japan are aiming to increase the amount of nuclear and non-fossil fuel power generation over 50% of the total power generation by 2020. But this means that the remaining half will still be of thermal power generation using fossil fuel and will still play an important role. Under such circumstances, further efficiency improvement of the thermal power generation and its aggressive implementation is ongoing in Japan.

  7. Programme and current status of fast breeder reactor development in Japan

    International Nuclear Information System (INIS)

    Suita, T.; Oyama, A.

    1977-01-01

    In 1967 the Japan Atomic Energy Commission revised her long term programme after a two year study for giving principles to her nuclear energy development programme, which indicated the dominant role of nuclear energy mid 1980's in the electric power generation and stressed the necessity of developing fast breeder reactors. It also recommended to organize a nucleus to undertake this nation-wide project, bringing together the total capability available throughout the country. Accordingly, the Power Reactor and Nuclear Fuel Development Corporation (PNC) was established in 1967 to develop two sodium-cooled fast reactors, an experimental fast reactor of about 100 MW thermal and a prototype fast breeder reactor of about 300 MW electrical, both using mixed oxide fuels. Construction of the experimental fast reactor started in 1970 and was essentially completed at the end of in 1974. The precommissioning test was followed in parallel with re-evaluating quality assurance of all systems. Physics test will be initiated around the end of 1976. The conceptual design of the prototype fast breeder reactor is now toward its final stage. Surveys on its proposed site have just started. Construction will start in 1978. Beside R and D works conducted by many organizations in Japan as well as under the international cooperation, several key test facilities were installed by PNC itself to conduct in-sodium test of full-size prototype components including 50 MW steam generators and post-irradiation-examination of fuels and materials. Recently an interim report was issued to an ad-hoc committee organized by JAEC to evaluate future prospect of the fuel cycle and power reactors. This recommended start of construction of the prototype reactor as scheduled and the large demonstration reactor to be followed to the prototype. Thus the fast breeder reactor is indicated as the most indispensable in 1990's

  8. Preliminary test results from a free-piston Stirling engine technology demonstration program to support advanced radioisotope space power applications

    International Nuclear Information System (INIS)

    White, Maurice A.; Qiu Songgang; Augenblick, Jack E.

    2000-01-01

    Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's)

  9. Preliminary test results from a free-piston Stirling engine technology demonstration program to support advanced radioisotope space power applications

    Science.gov (United States)

    White, Maurice A.; Qiu, Songgang; Augenblick, Jack E.

    2000-01-01

    Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's). .

  10. Effects of social participation and the emergence of voluntary social interactions on household power-saving practices in post-disaster Kanagawa, Japan

    International Nuclear Information System (INIS)

    Nakamura, Hidenori

    2013-01-01

    An online social survey was conducted to reveal household electricity-saving behaviour and its relationship with participation in social group activities, as well as face-to-face and online social interactions, i.e., information sources used and information dissemination through personal networks, in a disaster-affected region of Kanagawa, Japan, during the summer of 2011. The study confirms the positive contribution of respondents’ participation in social group activities to the number of power-saving practices conducted. It also reveals the emergence of voluntary social face-to-face and/or online interactions for power-saving. The study suggests it would be useful to provide effective information to proactive individuals who are closely engaged in power-saving in households and who are proactively disseminating power-saving information practices to others. Such individuals include (1) women who have school-children and who are proactively engaging in the social interactions of their children’s schools, other parents, neighbours, as well as their own parents and relatives; and (2) men and women who are using various kinds of online interaction tools and are also engaged in face-to-face social interactions

  11. Deregulation for the electric power industry in Japan and the outlook; Nippon no denryoku sangyo no kisei kanwa to sono tenbo

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, N. [The Institute of Energy Economics, Tokyo (Japan)

    1996-10-01

    The future direction and outlook of the electric power industry in Japan was described in a new systematical framework based on the amendment to the Electric Utility Industry Law. When viewing the deregulation system from a viewpoint of `induction of competition,` comparative assessment may mean competition introduced among electric power companies; establishment of the competitive bidding system by the whole supply business may mean competition introduced into the power generation sector; establishment of the specified electric utility industry system may mean competition introduced into the retailing sector. Further, a system to notify the authority of the price list, rationalization of safety rules, deregulation on the entry into another business, etc. can be interpreted as the spread of a width of discretion on business management. An increase in economic efficiency by cost reduction is expected as an influence of this deregulation, but the subject is how well the deregulation can balance with publicity and social responsibility. Relating to the entry of IPP, there is some anxiety: small scale power sources have high failure rates and difficulty in load frequency control. Moreover, it affects the public benefit in a sense of the apparently worsening air pollution. 12 figs., 1 tab.

  12. Status reports of supercomputing astrophysics in Japan

    International Nuclear Information System (INIS)

    Nakamura, Takashi; Nagasawa, Mikio

    1990-01-01

    The Workshop on Supercomputing Astrophysics was held at National Laboratory for High Energy Physics (KEK, Tsukuba) from August 31 to September 2, 1989. More than 40 participants of physicists, astronomers were attendant and discussed many topics in the informal atmosphere. The main purpose of this workshop was focused on the theoretical activities in computational astrophysics in Japan. It was also aimed to promote effective collaboration between the numerical experimentists working on supercomputing technique. The various subjects of the presented papers of hydrodynamics, plasma physics, gravitating systems, radiative transfer and general relativity are all stimulating. In fact, these numerical calculations become possible now in Japan owing to the power of Japanese supercomputer such as HITAC S820, Fujitsu VP400E and NEC SX-2. (J.P.N.)

  13. The social effects of the industrialization of Japan

    Directory of Open Access Journals (Sweden)

    Martha Loaiza Becerra

    2010-01-01

    Full Text Available Until today a utilitarian approach subsists to analyze the human effects of the process of economic-technological change called industrialization. In this essay we review the extraeconomic costs that this process has meant in the case of Japan, the second economic power of the global world, from a multidisciplinary perspective. We focus in the observable most recent phenomena in the social sphere that resulted from the reindustrialization of Japan under the regime of the Occupation led by the United States. In this paper we indicate if the USA’s hegemony in Japan caused a development of most egalitarian and sustainable society in ecological terms, or, on the contrary a market society serving the best interest of USA dependent and incapable to contribute to the formation of a market society centered on world-wide scale in Eastern Asia and based on a greater equality between the civilizations of the world.

  14. International Framework and Japan’s Pursuit of Being A Major Political Power

    Directory of Open Access Journals (Sweden)

    Meng Xiaoxu

    2016-12-01

    Full Text Available The boom of post-war Japan is deeply affected by the international framework when choosing the development path of the state. The bipolar architecture of the Cold War has made Japan a sovereign state again with the support of the United States. Within the Cold War framework, Japan has come up with the goal of being a political power based on its economic strength. After the end of Cold War, multipolar architecture has become the main trend in the world, and Japan has regarded this trend as its opportunity to realize its political dream, expecting to be more involved in world affairs as well as taking responsibilities within the international order and economic system. Meanwhile, Japan has also made a breakthrough within military power and used this to become a political power. Entering the 21st century, the multipolar architecture has deepened, while emerging nations have risen sharply collectively. Japan has speeded up the process of pursuing a political path accordingly, enhancing its leadership and influence in the regional economy, revising peace constitution to breakthrough military shackles, playing a role in counter-terrorism affairs and international organizations, thus making its dream of being a political power come true. Nevertheless, Japan has faced obstacles both at home and abroad.

  15. Status report of shielding investigation in Japan

    International Nuclear Information System (INIS)

    Shindo, M.

    1964-01-01

    The Japan Atomic Energy Research Institute (JAERI) was established in 1954, and immediately proceeded with the construction of a research reactor. The first symposium in Japan on nuclear energy was held in 1957. Most of the papers presented in the field of reactor shielding were limited to shielding materials and their fabrication. In the first stage of our investigations, our efforts were devoted to practical design studies of reactor shielding. As a result of these studies, it was found that the formulae at hand for calculations were inadequate, but at that time no electronic computer was available in Japan nor were theoretical calculations very actively undertaken. Problems on nuclear ship shielding had been investigated at the Ship Research Institute, since 1956 and many fruitful results had been obtained. About that time the Japan Atomic Industry Forum started activities and took the initiative in organizing shielding research. Research workers in the shipbuilding industry in particular have been seriously studying shielding problems. Few years after the first symposium, problems concerning more fundamental studies were treated by many research workers. Shielding experiments using radioisotopes were carried out and many fruitful results were obtained. They are described in the this paper. Medium size electronic computers became available in Japan, permitting a theoretical study group to make an active contribution. They produced some codes, and their results are also described in the following sections. This constituted the second stage of our investigations. A swimming-pool reactor, JRR-4 (Japan Research Reactor-4), has been under construction at JAERI since 1962 and will become critical in autumn 1964. After characteristic tests it will be a very powerful tool for the shielding investigations. This id the beginning of the third stage of investigations

  16. Spontaneous stabilization of HTGRs without reactor scram and core cooling—Safety demonstration tests using the HTTR: Loss of reactivity control and core cooling

    Energy Technology Data Exchange (ETDEWEB)

    Takamatsu, Kuniyoshi, E-mail: takamatsu.kuniyoshi@jaea.go.jp; Yan, Xing L.; Nakagawa, Shigeaki; Sakaba, Nariaki; Kunitomi, Kazuhiko

    2014-05-01

    It is well known that a High-Temperature Gas-cooled Reactor (HTGR) has superior safety characteristics; for example, an HTGR has a self-control system that uses only physical phenomena against various accidents. Moreover, the large heat capacity and low power density of the core result in very slow temperature transients. Therefore, an HTGR serves inherently safety features against loss of core cooling accidents such as the Tokyo Electric Power Co., Inc. (TEPCO)’s Fukushima Daiichi Nuclear Power Station (NPS) disaster. Herein we would like to demonstrate the inherent safety features using the High-Temperature Engineering Test Reactor (HTTR). The HTTR is the first HTGR in Japan with a thermal power of 30 MW and a maximum reactor outlet coolant temperature of 950 °C; it was built at the Oarai Research and Development Center of Japan Atomic Energy Agency (JAEA). In this study, an all-gas-circulator trip test was analyzed as a loss of forced cooling (LOFC) test with an initial reactor power of 9 MW to demonstrate LOFC accidents. The analytical results indicate that reactor power decreases from 9 MW to 0 MW owing to the negative reactivity feedback effect of the core, even if the reactor shutdown system is not activated. The total reactivity decreases for 2–3 h and then gradually increases in proportion to xenon reactivity; therefore, the HTTR achieves recritical after an elapsed time of 6–7 h, which is different from the elapsed time at reactor power peak occurrence. After the reactor power peak occurs, the total reactivity oscillates several times because of the negative reactivity feedback effect and gradually decreases to zero. Moreover, the new conclusions are as follows: the greater the amount of residual heat removed from the reactor core, the larger the stable reactor power after recriticality owing to the heat balance of the reactor system. The minimum reactor power and the reactor power peak occurrence are affected by the neutron source. The greater the

  17. Possible pathways for dealing with Japan's post-Fukushima challenge and achieving CO2 emission reduction targets in 2030

    International Nuclear Information System (INIS)

    Su, Xuanming; Zhou, Weisheng; Sun, Faming; Nakagami, Ken'Ichi

    2014-01-01

    Considering the unclear nuclear future of Japan after Fukushima Dai-ichi nuclear power plant accident since Mar. 11, 2011, this study assesses a series of energy consumption scenarios including the reference scenario, nuclear limited scenarios and current nuclear use level scenario for Japan in 2030 by the G-CEEP (Glocal Century Energy Environment Planning) model. The simulation result for each scenario is firstly presented in terms of primary energy consumption, electricity generation, CO 2 emission, marginal abatement cost and GDP (gross domestic product) loss. According to the results, energy saving contributes the biggest share in total CO 2 emission reduction, regardless of different nuclear use levels and different CO 2 emission reduction levels. A certain amount of coal generation can be retained in the nuclear limited scenarios due to the applying of CCS (carbon capture and storage). The discussion indicates that Japan needs to improve energy use efficiency, increase renewable energy and introduce CCS in order to reduce the dependence on nuclear power and to achieve CO 2 emission reduction target in 2030. In addition, it is ambitious for Japan to achieve the zero nuclear scenario with 30% CO 2 emission reduction which will cause a marginal abatement cost of 383 USD/tC and up to −2.54% GDP loss from the reference scenario. Dealing with the nuclear power issue, Japan is faced with a challenge as well as an opportunity. - Highlights: • Nuclear use limited and carbon emission reduction scenarios for Japan in 2030. • Contributions of different abatement options to carbon emissions. • CCS for reducing dependence on nuclear power

  18. The Follow-up IAEA International Mission on Remediation of Large Contaminated Areas Off-Site the Fukushima Daiichi Nuclear Power Plant, Tokyo and Fukushima Prefecture, Japan, 14-21 October 2013. Final Report

    International Nuclear Information System (INIS)

    2014-01-01

    In October 2011, the IAEA conducted an International Mission to Japan to support the remediation of large contaminated areas off-site TEPCO's Fukushima Daiichi Nuclear Power Plant (NPP). In response to the request made by the Government of Japan, in October 2013, the IAEA organized a follow-up International Mission on remediation of large contaminated areas off-site TEPCO's Fukushima Daiichi NPP (hereinafter referred to as the 'Follow-up Mission' or the 'Mission') with the main purpose of evaluating the progress of the on-going remediation works achieved since the previous mission in October 2011. The Follow-up Mission Team involved 13 international experts. Additionally, 3 experts of the Working Group 5 (Subgroup 5.2, Remediation) in charge of preparing the IAEA Report on TEPCO Fukushima Daiichi Accident accompanied the Mission as observers to obtain first-hand information for the report. The Follow-up Mission had the following three objectives: 1. To provide assistance to Japan in assessing the progress made with the remediation of the Special Decontamination Area (not included in the previous mission of 2011) and the Intensive Contamination Survey Areas; 2. To review remediation strategies, plans and works, in view of the advice provided by the previous mission on remediation of large contaminated off-site areas; and 3. To share its findings with the international community as lessons learned. The Mission was conducted through the assessment of information provided to the Team and by means of professional and open discussions with the relevant institutions in Japan, including national, prefectural and local institutions. The Japanese authorities provided comprehensive information on their remediation programme. The Mission Team visited the affected areas, including several sites where activities on remediation were conducted. The Team also visited some temporary storage sites for radioactive waste and soil generated in the remediation activities, as well as a

  19. Radiological Consequence Analyses Following a Hypothetical Severe Accident in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Juyub; Kim, Juyoul [FNC Technology Co., Yongin (Korea, Republic of)

    2016-10-15

    In order to reflect the lessons learned from the Fukushima Daiichi nuclear power plant accident, a simulator which is named NANAS (Northeast Asia Nuclear Accident Simulator) for overseas nuclear accident has been developed. It is composed of three modules: source-term estimation, atmospheric dispersion prediction and dose assessment. For the source-term estimation module, the representative reactor types were selected as CPR1000, BWR5 and BWR6 for China, Japan and Taiwan, respectively. Considering the design characteristics of each reactor type, the source-term estimation module simulates the transient of design basis accident and severe accident. The atmospheric dispersion prediction module analyzes the transport and dispersion of radioactive materials and prints out the air and ground concentration. Using the concentration result, the dose assessment module calculates effective dose and thyroid dose in the Korean Peninsula region. In this study, a hypothetical severe accident in Japan was simulated to demonstrate the function of NANAS. As a result, the radiological consequence to Korea was estimated from the accident. PC-based nuclear accident simulator, NANAS, has been developed. NANAS contains three modules: source-term estimation, atmospheric dispersion prediction and dose assessment. The source-term estimation module simulates a nuclear accident for the representative reactor types in China, Japan and Taiwan. Since the maximum calculation speed is 16 times than real time, it is possible to estimate the source-term release swiftly in case of the emergency. The atmospheric dispersion prediction module analyzes the transport and dispersion of radioactive materials in wide range including the Northeast Asia. Final results of the dose assessment module are a map projection and time chart of effective dose and thyroid dose. A hypothetical accident in Japan was simulated by NANAS. The radioactive materials were released during the first 24 hours and the source

  20. Transformer Efficiency Assessment - Okinawa, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Thomas L. Baldwin; Robert J. Turk; Kurt S. Myers; Jake P. Gentle; Jason W. Bush

    2012-08-01

    The US Army Engineering & Support Center, Huntsville (USAESCH), and the US Marine Corps Base (MCB), Okinawa, Japan retained Idaho National Laboratory (INL) to conduct a Transformer Efficiency Assessment of “key” transformers located at multiple military bases in Okinawa, Japan. The purpose of this assessment is to support the Marine Corps Base, Okinawa in evaluating medium voltage distribution transformers for potential efficiency upgrades. The original scope of work included the MCB providing actual transformer nameplate data, manufacturer’s factory test sheets, electrical system data (kWh), demand data (kWd), power factor data, and electricity cost data. Unfortunately, the MCB’s actual data is not available and therefore making it necessary to de-scope the original assessment. Note: Any similar nameplate data, photos of similar transformer nameplates, and basic electrical details from one-line drawings (provided by MCB) are not a replacement for actual load loss test data. It is recommended that load measurements are performed on the high and low sides of transformers to better quantify actual load losses, demand data, and power factor data. We also recommend that actual data, when available, be inserted by MCB Okinawa where assumptions have been made and then the LCC analysis updated. This report covers a generalized assessment of modern U.S. transformers in a three level efficiency category, Low-Level efficiency, Medium-Level efficiency, and High-Level efficiency.

  1. Transformer Efficiency Assessment - Okinawa, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Thomas L. Baldwin; Robert J. Turk; Kurt S. Myers; Jake P. Gentle; Jason W. Bush

    2012-05-01

    The US Army Engineering & Support Center, Huntsville (USAESCH), and the US Marine Corps Base (MCB), Okinawa, Japan retained Idaho National Laboratory (INL) to conduct a Transformer Efficiency Assessment of “key” transformers located at multiple military bases in Okinawa, Japan. The purpose of this assessment is to support the Marine Corps Base, Okinawa in evaluating medium voltage distribution transformers for potential efficiency upgrades. The original scope of work included the MCB providing actual transformer nameplate data, manufacturer’s factory test sheets, electrical system data (kWh), demand data (kWd), power factor data, and electricity cost data. Unfortunately, the MCB’s actual data is not available and therefore making it necessary to de-scope the original assessment. Note: Any similar nameplate data, photos of similar transformer nameplates, and basic electrical details from one-line drawings (provided by MCB) are not a replacement for actual load loss test data. It is recommended that load measurements are performed on the high and low sides of transformers to better quantify actual load losses, demand data, and power factor data. We also recommend that actual data, when available, be inserted by MCB Okinawa where assumptions have been made and then the LCC analysis updated. This report covers a generalized assessment of modern U.S. transformers in a three level efficiency category, Low-Level efficiency, Medium-Level efficiency, and High-Level efficiency.

  2. Fiscal 2000 achievement report. International demonstrative development of photovoltaic power generation system (Demonstrative study on grid-connected photovoltaic power generation system in Thailand); 2000 nendo seika hokokusho. Taiyoko hatsuden system kokusai kyodo jissho kaihatsu - Taiyoko hatsuden keitou renkei system jissho kenkyu (Tai)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    A demonstrative study was conducted in Thailand for grasping the effect on small electricity grids when several photovoltaic power generation systems, including AC modules, are connected to the grid. In fiscal 2000, surveys and studies were conducted about the data of the local power system, where to install the demonstrative system, and how to install the same, which were necessary for working out a basic design for Libong Island newly designated as the site for the demonstrative system. It was then concluded that the demonstrative system be a grid-connected 100 kW-level photovoltaic system comprising one main photovoltaic power station (85 kW), photovoltaic power systems for school buildings (3-6 kW, three schools), and AC modules (110 W, 10 locations). The manufacture of solar cell modules, grid-connected power conditioners, and measuring devices were completed. Civil engineering work and construction were under way on the site, including the construction of a management building, installation of concrete bases for solar cell arrays, construction of fences surrounding the site, and so forth. (NEDO)

  3. As US breathes new life into nuclear, Switzerland says adieu, Japan hello again

    International Nuclear Information System (INIS)

    Shepherd, John

    2017-01-01

    The US has given its strongest signal to date, since President Donald Trump moved into the Oval office at the start of the year, that nuclear will have a strong role to play in the administration's energy policy. In May, Switzerland confirmed that it would follow the lead of neighbouring Germany in beginning a phase-out of nuclear power as part of a revised energy strategy. Japan's actual actions stand in marked contrast to those of Switzerland - and Germany. Instead of turning its back on nuclear, Japan took a sensible, long-term pragmatic view of its energy needs into the future with restarts of nuclear power plants.

  4. As US breathes new life into nuclear, Switzerland says adieu, Japan hello again

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, John [nuclear 24, St. George' s Redditch (United Kingdom)

    2017-07-15

    The US has given its strongest signal to date, since President Donald Trump moved into the Oval office at the start of the year, that nuclear will have a strong role to play in the administration's energy policy. In May, Switzerland confirmed that it would follow the lead of neighbouring Germany in beginning a phase-out of nuclear power as part of a revised energy strategy. Japan's actual actions stand in marked contrast to those of Switzerland - and Germany. Instead of turning its back on nuclear, Japan took a sensible, long-term pragmatic view of its energy needs into the future with restarts of nuclear power plants.

  5. Transport system for low level radioactive wastes in Japan

    International Nuclear Information System (INIS)

    Tanaka, K.; Yoshida, K.; Sanui, T.

    1993-01-01

    Nuclear Fuel Transport Co. (NFT) is to take charge of LLW transportation from each nuclear power plants to the final repository consigned by 10 electric power companies in Japan. In order to transport LLW safely and efficiently, NFT has developed and prepared various hardware, such as special packaging, an exclusive use vessel, automatic cranes and so forth together with software to use them. The procedure of transport is also described. (J.P.N.)

  6. The 13th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2013)

    Science.gov (United States)

    Mitcheson, Paul; Beeby, Steve

    2013-12-01

    our conference. The social program is an important aspect of any conference and the PowerMEMS 2013 banquet will be held in the Science Museum. This provides a fantastic opportunity to network whilst viewing some of the fundamental engineering innovations that have ultimately bought us all here today. There is a long list of individuals we would like to thank for their support in organising PowerMEMS 2013. Once again the TPC, chaired by Eric Yeatman and Douglas Paul, have given us their valuable time and effort in reviewing abstracts. The PowerMEMS School chairs Einar Halvorsen and Shad Roundy and the expert speakers made the School possible. The local organising committee, led by Alwyn Elliott, have provided us with invaluable assistance in making PowerMEMS 2013 happen. The financial support from Imperial College London, the University of Southampton and conference sponsors has also been gratefully appreciated. Finally, we would like to thank you all for attending and helping in making PowerMEMS 2013 a success. We wish you a productive and enjoyable conference and a wonderful stay in London. Paul Mitcheson and Steve Beeby CONFERENCE OFFICIALS Conference Co-Chairs Stephen Beeby, University of Southampton, UK Paul Mitcheson, Imperial College London, UK Technical Program Committee Co-Chairs Douglas Paul, University of Glasgow, UK Eric Yeatman, Imperial College London, UK PowerMEMS School Co Chairs Einar Halvorsen, Vestfold University College, Norway Shad Roundy, University of Utah, USA Local Organising Committee Chair Alwyn Elliott, Imperial College London, UK International Steering Committee Mark Allen, Georgia Institute of Technology, USA Steve Beeby, University of Southampton, UK Young-Ho Cho, KAIST, South Korea Alan Epstein, Massachusetts Institute of Technology, USA Masayoshi Esashi, Tohoku University, Japan Luc Fréchette, Université de Sherbrooke, Canada Reza Ghodssi, University of Maryland, USA Hiroki Kuwano, Tohoku University, Japan Jeff Lang, Massachusetts

  7. Culture and medical decision making: Healthcare consumer perspectives in Japan and the United States.

    Science.gov (United States)

    Alden, Dana L; Friend, John M; Lee, Angela Y; de Vries, Marieke; Osawa, Ryosuke; Chen, Qimei

    2015-12-01

    Two studies identified core value influences on medical decision-making processes across and within cultures. In Study 1, Japanese and American adults reported desired levels of medical decision-making influence across conditions that varied in seriousness. Cultural antecedents (interdependence, independence, and power distance) were also measured. In Study 2, American adults reviewed a colorectal cancer screening decision aid. Decision preparedness was measured along with interdependence, independence, and desire for medical information. In Study 1, higher interdependence predicted stronger desire for decision-making information in both countries, but was significantly stronger in Japan. The path from information desire to decision-making influence desire was significant only in Japan. The independence path to desire for decision-making influence was significant only in the United States. Power distance effects negatively predicted desire for decision-making influence only in the United States. For Study 2, high (low) interdependents and women (men) in the United States felt that a colorectal cancer screening decision aid helped prepare them more (less) for a medical consultation. Low interdependent men were at significantly higher risk for low decision preparedness. Study 1 suggests that Japanese participants may tend to view medical decision-making influence as an interdependent, information sharing exchange, whereas American respondents may be more interested in power sharing that emphasizes greater independence. Study 2 demonstrates the need to assess value influences on medical decision-making processes within and across cultures and suggests that individually tailored versions of decision aids may optimize decision preparedness. (c) 2015 APA, all rights reserved).

  8. Nuclear power plants: 2005 atw compact statistics

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    Nuclear power plants were available for power supply and under construction, respectively, in 32 countries of the world as per end of 2005. A total of 444 nuclear power plants, i.e. three plants more than at the end of 2004, with an aggregate gross power of approx. 389 GWe and an aggregate net power of 370 GWe, respectively, were in operation in 31 countries. The available capacity of nuclear power plants increased by some 4,5 GWe as a result of the capacities added by the four newly commissioned units of Higashidori 1 (Japan), Shika 2 (Japan), Tarapur 4 (India), and Tianwan 1 (China). In addition, unit A-1 of the Pickering nuclear power station in Canada, with 825 MWe, was restarted after a downtime of several years. Two plants were decommissioned for good in 2005: Obrigheim in Germany, and Barsebaeck 2 in Sweden. 23 nuclear generating units, i.e. one unit more than in late 2004, with an aggregate gross power of approx. 19 GWe were still under construction in nine countries by late 2005. In Pakistan, construction of a new project, Chasnupp 2, was started; in China, construction was begun of two units, Lingao Phase 2, units 3 and 4, and in Japan, the Shimane 3 generating unit is being built. (orig.)

  9. A target-oriented data envelopment analysis for energy-environment efficiency improvement in Japan

    NARCIS (Netherlands)

    Suzuki, S.; Nijkamp, P.; Rietveld, P.

    2015-01-01

    This paper aims to offer a quantitative contribution to energy-environment policy in Japan in the aftermath of the Fukushima nuclear power accident. Since then, nuclear power energy supply has almost entirely been banned, and consequently, an intensive search for alternative forms of energy supply

  10. Database structure and file layout of Nuclear Power Plant Database. Database for design information on Light Water Reactors in Japan

    International Nuclear Information System (INIS)

    Yamamoto, Nobuo; Izumi, Fumio.

    1995-12-01

    The Nuclear Power Plant Database (PPD) has been developed at the Japan Atomic Energy Research Institute (JAERI) to provide plant design information on domestic Light Water Reactors (LWRs) to be used for nuclear safety research and so forth. This database can run on the main frame computer in the JAERI Tokai Establishment. The PPD contains the information on the plant design concepts, the numbers, capacities, materials, structures and types of equipment and components, etc, based on the safety analysis reports of the domestic LWRs. This report describes the details of the PPD focusing on the database structure and layout of data files so that the users can utilize it efficiently. (author)

  11. Response to the Chernobyl accident in Japan

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The worst nuclear accident in history happened at No.4 unit of the Chernobyl Atomic Power Station in USSR. Since the Chernobyl accident, a number of measures have been introduced in many countries, including the reconsideration of programs for construction and operation of nuclear power plants. In Japan, the press and television first reported the accident on April 29. The next day, all the relevant governmental agencies began to collect and analyze information in order to prepare possible countermeasures. The Nuclear Safety Commission issued a statement covering three points: 1) the radioactive substances released by the accident will have virtually no influence on the health of people in Japan, 2) a Special Committee on the Chernobyl Atomic Power Station Accident will be established, and 3) the Soviet government must provide all detailed information about the accident as soon as it is available. On April 30, the Committee on Radioactivity decided to increase radioactivity observations by the Science and Technology Agency, the Defence Agency, and the Meteorological Agency. On the same day, the Ministry of International Trade and Industry set up a survey committee for the Chernobyl accident with the responsibility of collecting and analyzing information about the accident. A review is also made in this article as to how the Japanese media reported the accident and how people reacted on reading the newspapers and watching TV on the accident. (Nogami, K.)

  12. Wind Energy Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komatsubara, Kazuyo [Embassy of the Kingdom of the Netherlands, Tokyo (Japan)

    2012-06-15

    An overview is given of wind energy in Japan: Background; Wind Energy in Japan; Japanese Wind Energy Industry; Government Supports; Useful Links; Major Japanese Companies; Profiles of Major Japanese Companies; Major Wind Energy Projects in Japan.

  13. Japan's post-Fukushima reconstruction: A case study for implementation of sustainable energy technologies

    International Nuclear Information System (INIS)

    Nesheiwat, Julia; Cross, Jeffrey S.

    2013-01-01

    Following World War II, Japan miraculously developed into an economic powerhouse and a model of energy efficiency among developed countries. This lasted more than 65 years until the Northeastern Japan earthquake and tsunami induced nuclear crisis of March 2011 brought Japan to an existential crossroads. Instead of implementing its plans to increase nuclear power generation capacity from thirty percent to fifty percent, Japan shut-down all fifty-four nuclear reactors for safety checks and stress-checks (two have since been restarted), resulting in reduced power generation during the summer of 2012. The reconstruction of Northeastern Japan approaches at a time when the world is grappling with a transition to sustainable energy technologies—one that will require substantial investment but one that would result in fundamental changes in infrastructure and energy efficiency. Certain reconstruction methods can be inappropriate in the social, cultural and climatic context of disaster affected areas. Thus, how can practitioners employ sustainable reconstructions which better respond to local housing needs and availability of natural energy resources without a framework in place? This paper aims at sensitizing policy-makers and stakeholders involved in post disaster reconstruction by recognizing advantages of deploying sustainable energy technologies, to reduce dependence of vulnerable communities on external markets. - Highlights: • We examine the energy challenges faced by Japan in the aftermath of Fukushima. • We identify policy measures for the use of energy technologies applicable to disaster prone nations. • We evaluate the potential for renewable energy to support reduced reliance on nuclear energy in Japan. • We model scenarios for eco-towns and smart-cities in post-disaster reconstruction. • We assess the role of culture in formulating energy policy in post-disaster reconstruction

  14. Japan 2003

    DEFF Research Database (Denmark)

    Ørstrup, Finn Rude; Hvass, Sven

    2003-01-01

    Kompendium udarbejdet til en studierejse til Japan  2003 Kunstakademiets Arkitektskole, Studieafdeling 10......Kompendium udarbejdet til en studierejse til Japan  2003 Kunstakademiets Arkitektskole, Studieafdeling 10...

  15. Superconducting magnet development in Japan

    International Nuclear Information System (INIS)

    Yasukochi, K.

    1983-01-01

    The present state of R and D works on the superconducting magnet and its applications in Japan are presented. On electrical rotating machines, 30 MVA superconducting synchronous rotary condenser (Mitsubishi and Fuji) and 50 MVA generator are under construction. Two ways of ship propulsion by superconducting magnets are developing. A superconducting magnetically levitated and linear motor propelled train ''MAGLEV'' was developed by the Japan National Railways (JNR). The superconducting magnet development for fusion is the most active field in Japan. The Cluster Test program has been demonstrated on a 10 T Nb 3 Sn coil and the first coil of Large Coil Task in IEA collaboration has been constructed and the domestic test was completed in JAERI. These works are for the development of toroidal coils of the next generation tokamak machine. R and D works on superconducting ohmic heating coil are in progress in JAERI and ETL. The latter group has constructed 3.8 MJ pulsed coil. A high ramp rate of changing field in pulsed magnet, 200 T/s, has been tested successfully. High Energy Physics Laboratory (KEK) are conducting active works. The superconducting μ meson channel and π meson channel have been constructed and are operating successfully. KEK has also a project of big accelerator named ''TRISTAN'', which is similar to ISABELLE project of BNL. Superconducting synchrotron magnets are developed for this project. The development of superconducting three thin wall solenoid has been started. One of them, CDF, is progressing under USA-Japan collaboration

  16. Emergency feature. Great east Japan earthquake disaster Fukushima Daiichi accident

    International Nuclear Information System (INIS)

    Kawata, Tomio; Tsujikura, Yonezo; Kitamura, Toshiro

    2011-01-01

    The Tohoku Pacific Ocean earthquake occurred in March 11, 2011. The disastrous tsunami attacked Fukushima Daiichi nuclear power plants after automatically shutdown by the earthquake and all motor operated pumps became inoperable due to station black out. Despite the strenuous efforts of operators, if caused serious accident such as loss of cooling function, hydrogen explosion and release of large amount of radioactive materials into the environment, leading to nuclear power emergency that ordered resident to evacuate or remain indoors. This emergency feature consisted of four articles. The first was the interview with the president of JAIF (Japan Atomic Industrial Forum) on how to identify the cause of the accident completely, intensify safety assurance measures and promote discussions on a role of nuclear power in the nation's entire energy policy toward the reconstruction. Others were reactor states and events sequence after the accident with trend data of radiation in the reactor site, statement of president of AESJ (Atomic Energy Society of Japan) on nuclear crisis following Tohoku Pacific Ocean earthquake our response and my experience in evacuation life. (T. Tanaka)

  17. The 1991 Japan Solar Energy Society. Japan Wind Energy Association Joint Conference

    Science.gov (United States)

    1991-09-01

    Thie paper summarizes the lectures presented at the research presentation conference held by the Japan Solar Energy Society and the Japan Wind Energy Association. The contents include a lecture relating to photovoltaic cells intended for efficiency improvement; a lecture relating to a light power generation system including the field test reports, improvements on peripheral devices and output characteristics; a lecture relating to optical chemistry; a lecture relating to heat pumps utilizing solar heat and well water; a lecture relating air conditioning utilizing photovoltaic cells; a lecture relating to heat systems utilizing solar heat directly; a lecture relating to heat collection; a lecture relating to cold heat for cooling using earth tubes; a lecture relating to direct utilization of ground water heat and solar heat; a lecture relating to underground heat storage; a lecture relating to accumulation of cold heat and hot heat; a lecture relating to insolation on the amount of insolation and spectroscopy; a lecture relating to light collection intended of energy saving; a lecture relating to improving materials including light collecting plates and thin films; a lecture relating to development and characteristics of solar cars; and a lecture relating to wind energy.

  18. System design specification Brayton Isotope Power System (BIPS) Flight System (FS), and Ground Demonstration System (GDS)

    International Nuclear Information System (INIS)

    1976-01-01

    The system design specification for ground demonstration, development, and flight qualification of a Brayton Isotope Power System (BIPS) is presented. The requirements for both a BIPS conceptual Flight System (FS) and a Ground Demonstration System (GDS) are defined

  19. Japan’s Foreign Policy: Metamorphosis in Asia

    Science.gov (United States)

    1976-03-01

    time that the Japanese were building their own nuclear -pov/ered comimercial ship , the MUTSU , at a Northern port, public outcries and media pressures...port visits by U.S. nuclear - powered ships . In that respect, it is interesting to note former Ambassador Armin Meyer’s observation that, at the same...AID: SURVIVAL OF THE FITTEST - 28 III. THE POLITICS OF NON-POWER — - 36 A. THE THIRTY YEAR "PEACE": 1945-1975 36 B. THE NUCLEAR DEBATE 49 C. JAPAN’S

  20. Nuclear power goes to the polls

    International Nuclear Information System (INIS)

    Cross, Michael.

    1990-01-01

    Grass roots opposition to nuclear power is growing in Japan. The number of protesters, especially female protesters, has come as a surprise to Japanese politicians in the Liberal Democratic party which has ruled Japan for the last thirty years. With elections close government policy on nuclear power is coming under review, with opposition parties pledged to scrap it. The Japanese nuclear industry thus faces a variety of problems and can no longer be sure of government support. Japan has no fossil fuels of its own, which has meant a variety of nuclear reactors being installed. Reprocessing of spent fuel, currently done at Sellafield, may be undertaken at a new Japanese plant at Tokkasho on Honshu island, if protests about geological instability and other problems are overcome. (UK)

  1. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Komiyama, Ryoichi; Marnay, Chris; Stadler, Michael; Lai, Judy; Borgeson, Sam; Coffey, Brian; Azevedo, Ines Lima

    2009-09-01

    In this analysis, the authors projected Japan's energy demand/supply and energy-related CO{sub 2} emissions to 2050. Their analysis of various scenarios indicated that Japan's CO{sub 2} emissions in 2050 could be potentially reduced by 26-58% from the current level (FY 2005). These results suggest that Japan could set a CO{sub 2} emission reduction target for 2050 at between 30% and 60%. In order to reduce CO{sub 2} emissions by 60% in 2050 from the present level, Japan will have to strongly promote energy conservation at the same pace as an annual rate of 1.9% after the oil crises (to cut primary energy demand per GDP (TPES/GDP) in 2050 by 60% from 2005) and expand the share of non-fossil energy sources in total primary energy supply in 2050 to 50% (to reduce CO{sub 2} emissions per primary energy demand (CO{sub 2}/TPES) in 2050 by 40% from 2005). Concerning power generation mix in 2050, nuclear power will account for 60%, solar and other renewable energy sources for 20%, hydro power for 10% and fossil-fired generation for 10%, indicating substantial shift away from fossil fuel in electric power supply. Among the mitigation measures in the case of reducing CO{sub 2} emissions by 60% in 2050, energy conservation will make the greatest contribution to the emission reduction, being followed by solar power, nuclear power and other renewable energy sources. In order to realize this massive CO{sub 2} abatement, however, Japan will have to overcome technological and economic challenges including the large-scale deployment of nuclear power and renewable technologies.

  2. Generation of multi-branch beam with thermionic gun for the Japan linear collider

    International Nuclear Information System (INIS)

    Naito, T.; Akemoto, M.; Matsumonto, H.; Urakawa, J.; Yoshioka, M.; Akiyama, H.

    1992-01-01

    We report on the development of a thermionic gun that is capable of producing multi-bunch beam to be used at the KEK Accelerator Test Facility for the Japan Linear Collider project. Two types of grid pulse generators have been developed. One is an avalanche pulse generator. A Y-646E cathode was successfully operated to generate double-bunch beam with a pulse width shorter than 700 ps, bunch spacing 1.4 ns, and a peak current 4.3 A. The other grid pulse generator is a fast ECL circuit with an RF power amplifier. Generation of 20-pulse trains with 2.1 ns time spacing has been demonstrated. (Author) 4 refs., 6 figs

  3. Light water reactors development in Japan. (1) Introduction of LWR technology (PWR)

    International Nuclear Information System (INIS)

    Yamada, Ichita; Suzuki, Shigemitsu

    2008-01-01

    Evolutionary progress of the LWR plants in the last half-century was reviewed in series. Introduction of LWR technology (PWR) in Japan was reviewed in this article. Kansai Electric Power imported the Mihama-1 - a 340 MWe PWR built by Westinghouse Corp. It began operating in 1970 to supply power to the World Exposition (EXPO70). There followed a period in which designs was purchased from US vendors and they were constructed with the co-operation of Mitsubishi Heavy Industry, who would then receive a license to build similar plants in Japan and develop the capacity to design and construct PWRs by itself. Progress of designs, fabrications, project management and construction of PWRs were reviewed from technology transfer to its autonomy age. (T. Tanaka)

  4. Study of electrical power facilities and measures for planned outages in Japanese hemodialysis clinics after the Great East Japan Earthquake.

    Science.gov (United States)

    Ishida, Kai; Sawa, Manami; Fujiwara, Kousaku; Hirose, Minoru; Tsuruta, Harukazu; Takeuchi, Akihiro; Ikeda, Noriaki

    2013-02-01

    The Great East Japan Earthquake on 11 March 2011 caused major damage in northeastern Japan. The Kanto region experienced a massive electrical power shortage in the summer of 2011. A questionnaire was submitted to 354 hemodialysis clinics in Kanagawa prefecture and the Tokyo metropolitan area, excluding isolated islands, and 176 responses were analyzed (49.7%). The questions included evaluation of the availability of a private electricity generator, countermeasures in case of a planned outage, awareness of saving electricity, and improvement of safety of medical devices or electrical facilities after the earthquake. Only 12% of the clinics had private electricity generators and many clinics had no plans to introduce this facility. However, 96% of the clinics had established countermeasures to deal with a planned outage. Many clinics planned to provide dialysis on a different day or at a different time. All clinics had tried hard to establish procedures to save electricity in the summer of 2011, and 84% of the clinics had reconsidered and improved the safety of medical devices or electricity facilities after the earthquake. These results show that the awareness of crisis management was greatly improved in the wake of the earthquake. © 2012 The Authors. Therapeutic Apheresis and Dialysis © 2012 International Society for Apheresis.

  5. FY 1998 Report on development of large-scale wind power generation systems. Research on the future prospects of wind power generation systems; 1998 nendo ogata furyoku hatsuden system kaihatsu. Furyoku hatsuden system no shorai tenbo ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Current status of wind power generation in Japan and situations in foreign countries ahead of Japan are surveyed, in order to clarify the prospects for the future diffusion and expansion of wind power generation systems in Japan. The surveyed trends of wind power generation in Japan include those related to mandatory laws and regulations, e.g., the Electricity Enterprises Act, introductory and operation situations in local autonomies and electric power companies, and R and D efforts by academic and research organizations. The surveyed wind power generation situations in foreign countries include trends of international standardization for wind power generation, and global situations of introducing these systems. The on-the-spot oversea surveys include location/wind conditions in Greece's islands, cyclone-caused damages in India, World Renewable Energy Congress in Perth and advanced technologies in Europe for wind power generation systems, and the survey results are reported in detail. The surveyed R and D projects in Japan include the basic technological R and D plans (draft) for, e.g., wind power generation systems for isolated islands. (NEDO)

  6. Round Robin Test for Performance Demonstration System of Ultrasound Examination Personnel in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Young Ho; Yang, Seung Han; Kim, Yong Sik; Yoon, Byung Sik; Lee, Hee Jong

    2005-01-01

    Ultrasound testing performance during in-service inspection for the main components of NPPs is strongly affected by each examination person. Therefore, ASME established a more strict qualification requirement in Sec. XI Appendix VIII for the ultrasound testing personnel in nuclear power plants. The Korean Performance Demonstration (KPD) System according to the ASME code for the ultrasonic testing personnel, equipments, and procedures to apply to the Class 1 and 2 piping ultrasound examination of nuclear power plants in Korea was established. And a round robin test was conducted in order to verify the effectiveness of PD method by comparing the examination results from the method of Performance Demonstration (PD) and a traditional ASME code dB-drop method. The round robin test shows that the reliability of the PD method is better than that of the dB-drop method. As a result, application of the PD method to the in-service inspection of the nuclear power plants will improve the performance of ultrasound testing

  7. Questioning the economic viability of nuclear power

    International Nuclear Information System (INIS)

    Murota, Takeshi

    1981-01-01

    In the United States, the pioneer in nuclear power generation, the economic aspect of nuclear power is now questioned. Its economy in Japan is supported by the entirely monopolistic nature of the power generating firms. The economy of the nuclear power generation in Japan is first examined in its original cost. It is then analyzed in legislative economics. In the conventional arguments, the authorities in favor of nuclear power stick to its practical safety, acknowledging its potential danger, while the people against it adheres to its danger. Thus both arguments go in parallel, never converging. It is attempted to elucidate through the atomic energy damage compensation system, on the boundary between legislation and economy, to whom nuclear power generation is safe, and to whom it is dangerous. (J.P.N.)

  8. Decommissioning and decontamination of licensed reactor facilities and demonstration nuclear power plants

    International Nuclear Information System (INIS)

    Lear, G.; Erickson, P.B.

    1975-01-01

    Decommissioning of licensed reactors and demonstration nuclear power plants has been accomplished by mothballing (protective storage), entombment, and dismantling or a combination of these three. The alternative selected by a licensee seems to be primarily based on cost. A licensee must, however, show that the decommissioning process provides adequate protection of the health and safety of the public and no adverse impact on the environment. To date the NRC has approved each of the alternatives in the decommissioning of different facilities. The decommissioning of small research reactors has been accomplished primarily by dismantling. Licensed nuclear power plants, however, have been decommissioned primarily by being placed in a mothballed state in which they continue to retain a reactor license and the associated licensee responsibilities

  9. Public relations activities of the Service Hall for Kashiwazaki-Kariwa Nuclear Power Station

    International Nuclear Information System (INIS)

    Kono, T.

    1998-01-01

    This article includes information of the Service Hall for Kashiwazaki-Kariwa Nuclear Power Station. About 30% of the total electricity production in Japan is due to 16 power stations and 52 reactors. The service hall is a kind of atomic power pavilion for public relations. In Japan, each nuclear power station has such a pavilion, which acts a a center of public relations activities for the atomic power. (S. Grainger)

  10. Progress of innovation of electrical power technology in 2013

    International Nuclear Information System (INIS)

    Nakaiwa, Masaru; Inumaru, Jun; Hamada, Takashi

    2014-01-01

    The following is the description of technical innovations at five companies including Central Research Institute of Electric Power Industry, Japan Atomic Energy Agency, and Japan Nuclear Fuel Ltd. Central Research Institute of Electric Power Industry presented their efforts in (1) advancement of the safety of light water reactors (2) clarification of radiological risks and improvement of radiation protection matters (3) support of backend projects and (4) countermeasures against natural disasters for electric power distribution facilities aiming at the establishment of the optimum risk management. Japan Atomic Energy Agency presented the research and development related to (1) measures taken for the Fukushima Daiichi nuclear power plant accident (2) practical use of FBR cycle (3) disposal technology of high-level radioactive wastes (4) technical system to extract fusion energy (5) particle beam technology (6) research based on the formation of the foundation and social needs of atomic study (7) nuclear hydrogen/heat application (8) atomic safety (9) backend measures; and (10) nuclear proliferation. Japan Nuclear Fuel Ltd. presented the record of 5 and half years from the start to the completion of vitrification test. In the course of the development, the active test started from March 2003 was suspended due to the Great East Japan Earthquake on March 11th, 2011 but resumed thereafter and completed. (S.Y.)

  11. Facts about the Eastern Japan Great Earthquake of March 2011

    Science.gov (United States)

    Moriyama, T.

    2011-12-01

    The 2011 great earthquake was a magnitude 9.0 Mw undersea megathrust earthquake off the coast of Japan that occurred early morning UTC on Friday, 11 March 2011, with the epicenter approximately 70 kilometres east of the Oshika Peninsula of Tohoku and the hypocenter at an underwater depth of approximately 32 km. It was the most powerful known earthquake to have hit Japan, and one of the five most powerful earthquakes in the world overall since modern record keeping began in 1900. The earthquake triggered extremely destructive tsunami waves of up to 38.9 metres that struck Tohoku Japan, in some cases traveling up to 10 km inland. In addition to loss of life and destruction of infrastructure, the tsunami caused a number of nuclear accidents, primarily the ongoing level 7 meltdowns at three reactors in the Fukushima I Nuclear Power Plant complex, and the associated evacuation zones affecting hundreds of thousands of residents. The Japanese National Police Agency has confirmed 1,5457 deaths, 5,389 injured, and 7,676 people missing across eighteen prefectures, as well as over 125,000 buildings damaged or destroyed. JAXA carried out ALOS emergency observation just after the earthquake occured, and acquired more than 400 scenes over the disaster area. The coseismic interferogram by InSAR analysis cleary showing the epicenter of the earthquake and land surface deformation over Tohoku area. By comparison of before and after satellite images, the large scale damaged area by tunami are extracted. These images and data can access via JAXA website and also GEO Tohoku oki event supersite website.

  12. Mechanical and thermal characteristics of JT-60 tokamak machine demonstrated in its power tests

    International Nuclear Information System (INIS)

    Takatsu, Hideyuki; Yamamoto, Masahiro; Ohkubo, Minoru

    1985-09-01

    JT-60 power tests were carried out from Dec. 10, 1984 to Feb. 20, 1985 to demonstrate, in advance of actual plasma operation, satisfactory performance of tokamak machine, power suppliers and control system in combination. The tests began with low power test of individual coil systems and progressed to full power tests. Power tests were successfully concluded with the following conclusions. (1) All of the coil systems were raised up to full power operation in combination and system performance was verified including thermal and structural integrity of tokamak machine. (2) Measured strain and deflection showed good agreements with those predicted in the design, which was an evidence that electromagnetic loads were supported adequately as expected in the design. (3) Vibration of lateral port was found to be large up to 50 m/s 2 and caused excessive vibration of gate-valves. (4) A few limitations to machine operation were made clear quantatively. (5) It was found that the existing detectors were insufficient to monitor the machine integrity and a few kinds of detectors were necessary to be installed. (author)

  13. Safety aspect of digital reactor protection system in Japan

    International Nuclear Information System (INIS)

    Ogiso, Zen-Ichi

    1998-01-01

    It was early in 1980's that the digital controllers were first applied to nuclear power plant in japan. After that, their application area had been expanding gradually, reaching to the overall integrated digital system including the safety system in Kashiwazaki-Kariwa units 6 and 7. The software for computer-based systems has been produced using the graphical language ''POL'' in Japanese nuclear power plants. It is the fundamental principle that the reliability of the software should be assured through the properly managed quality assurance. The POL-based system is fitted to this principle. In applying POL-based systems to safety system, the MITI, Ministry of International Trade and Industry, identified the licensing issues as the regulatory body, while the utilities had developed the digital technology feasible to the safety application. Through the activities, a specific industrial design guide for the software important to safety was established and the adequacy of the technology was certified through the demonstration tests of the integrated system. In the safety examination of the digital reactor protection system of K-6/7, the application of POL were approved. The POL-based systems in nuclear power plants were successful design and production process of the POL-based systems. This paper describes the activities in licensing and maintaining the computer-based systems by the utilities and manufacturers as well as the MITI. (author)

  14. Nuclear industry and nuclear supervision in Japan prior to and after Fukushima; Atomwirtschaft und Atomaufsicht in Japan vor und nach Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Spatz, Philipp

    2012-06-15

    The Japanese nuclear industry owes its rise to the american message 'atoms for piece' of President Eisenhower. The Japanese reactors were built in the United States of America. The Nuclear Supervision was marked by the sponsoring spirit at the expense of security. Therefore, Fukushima was no accident. But Japan now creates a law on renewable energies. It remains unclear whether all 54 nuclear reactors being shut down jet will be connected to the power distribution line. In any case, the power supply of the country did not collapse.

  15. Development of radiation resistant structural materials utilizing fission research reactors in Japan (Role of research reactors)

    International Nuclear Information System (INIS)

    Shikama, T.; Tanigawa, H.; Nozawa, T.; Muroga, T.; Aoyama, T.; Kawamura, H.; Ishihara, M.; Ito, C.; Kaneda, S.; Mimura, S.

    2009-01-01

    Structural materials for next-generation nuclear power systems should have a good radiation resistance, where the expected accumulation dose will largely exceed 10 dpa. Among several candidate materials, materials of five categories, 1. Austenitic steels, including high nickel alloys, 2. Low activation ferritic martensitic steels, 3. ODS steels (austenitic and ferritic), 4. Vanadium based alloys, 5. Silicon carbide composites (SiC/SiCf). All have been most extensively studied in Japan, in collaboration among industries, national institutes such as Japan Atomic Energy Agency (JAEA), National Institute for Fusion Science (NIFS) and National Institute for Materials Science (NIMS), and universities. The high nickel base alloys were studied for their low swelling behaviors mainly by the NIMS and the austenitic steels are studied for their reliable engineering data base and their reliable performance in irradiation environments mainly by the JAEA, mainly for their application in the near-term projects such as the ITER and the Sodium Cooled Fast Reactors. The most extensive studies are now concentrated on the Low Activation Ferritic Marsensitic steels and ODS steels, for their application in a demonstration fusion reactor and prototype sodium cooled fast reactors. Fundamental studies on radiation effects are carried out, mainly utilizing Japan Materials Testing Rector (JMTR) with its flexible irradiation ability, up to a few dpa. For higher dpa irradiation, a fast test reactor, JOYO is utilized up to several 10s dpa. Some international collaborations such as Japan/USA and Japan/France are effective to utilize reactors abroad, such as High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory, and sodium cooled high flux fast reactors in France. Silicon carbide based composites are extensively studied by university groups led by Kyoto University and the JAEA. For their performance in heavy irradiation environments, the Japan/USA collaboration plays an important role

  16. Safety of the batteries and power units used in insulin pumps: A pilot cross-sectional study by the Association for the Study of Innovative Diabetes Treatment in Japan.

    Science.gov (United States)

    Murata, Takashi; Nirengi, Shinsuke; Sakane, Naoki; Kuroda, Akio; Hirota, Yushi; Matsuhisa, Munehide; Namba, Mitsuyoshi; Kobayashi, Tetsuro

    2017-10-21

    We investigated the safety of the batteries and power units used in insulin pumps in Japan. A self-administered questionnaire was sent to the 201 members of the Association for Innovative Diabetes Treatment in Japan. A total of 56 members responded, and among the 1,499 active devices, 66 had episodes of trouble related to the batteries and power units. The ratio of reported troubles to the number of insulin pumps was significantly higher in insulin pumps with a continuous glucose monitoring sensor compared with insulin pumps without a continuous glucose monitoring sensor (odds ratio 2.82, P batteries varied; alkaline batteries purchased at drug stores and other shops accounted for 19.7%. Termination of battery life within 72 h of use was reported most frequently (50.0%), suspension of the insulin pump (21.2%) and leakage of the battery fluid (4.5%) followed. A total of 53.2% of the reported insulin pumps needed to be replaced, and 37.1% of them recovered after replacement of the battery. As trouble related to the batteries and power units of insulin pumps was frequent, practical guidance should be provided to respective patients regarding the use of reliable batteries, and to be well prepared for unexpected insulin pump failure. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  17. Annual report on nuclear power station operational management, 1984

    International Nuclear Information System (INIS)

    1985-09-01

    As of the end of fiscal year 1984, 28 nuclear power plants were in operation in Japan, the total power output of which was 20.56 million kW, equivalent to 22.9 % of the total generated electric power in Japan. Now nuclear power generation bears a very important role in the stable supply and cost stabilization of electric power. The result of the capacity factor in fiscal year 1984 was 73.9 %, which showed that the nuclear power generation and safety management technologies in Japan are at the top level in the world. However, in order that nuclear power generation accomplishes the role as main power source sufficiently hereafter by increasing the number of plants, the reliability and economical efficiency must be further improved, and especially the safety management and operational management become important. For the purpose, the operational experience accumulated so far must be effectively utilized. In this book, the outline of the administration on the safety regulation of nuclear power generation, the state of operation of nuclear power plants, the state of accidents and failures, the state of regular inspections and so on are summarized. Also the state of radioactive waste management and the radiation control for workers are reported. (Kako, I.)

  18. Nuclear fuel cycle in Japan : status and perspective

    International Nuclear Information System (INIS)

    Suzuki, Atsuyuki

    1996-01-01

    Nearly one third of electricity in Japan is being generated by nuclear fission primarily by light-water reactors. The industries to supply uranium fuel for these reactors have been well established including the capability for uranium enrichment. From the onset of nuclear program in Japan, a country with thin energy resources, the emphasis has been placed on maximizing the efficiency of uranium utilization. Thus the national nuclear program set forth by the Japan Atomic Energy Commission has consistently called for the establishment of closed fuel cycle, or for recycling of nuclear fuel. As part of such efforts in private sectors, the first commercial reprocessing plant is now under construction at Rokkasho-mura. The program to develop technologies for recycling nuclear fuel in a fast reactor system is also in progress steadily under the governmental support, while the Monju accident casts a long shadow on the future of fast reactor development in Japan. Even though the price of uranium has been stable at relatively low level in recent years, the uranium market in the longer time range is somewhat unpredictable. In Asian countries, a rapid growth of nuclear power production is foreseen in the 21st century. Under such circumstances, the effort to pursue the recycling option in Japan is important not only for its own energy security but also for stabilization of future uranium market in the world. The recycling option can also offer more flexible, easier and safer ways of radioactive waste management. Since the recycling option means utilization of plutonium in an industrial scale, special attention is inevitably required from the viewpoint of nuclear non-proliferation. It is the Japan's national policy to develop recycling technologies in compliance with the NPT and IAEA safeguard system as well as to maintain the transparency of its developmental program. (author)

  19. Japan's energy sector beyond Fukushima. What direction for a sustainable energy future?; Japans Energiesektor nach Fukushima. Welche nachhaltige Energiezukunft ist moeglich?

    Energy Technology Data Exchange (ETDEWEB)

    Feldhoff, Thomas [Frankfurt Univ., Frankfurt am Main (Germany). Inst. fuer Humangeographie (IHG) und Interdisziplinaeres Zentrum fuer Ostasienstudien (IZO)

    2013-03-15

    The 11 March 2011 Fukushima nuclear power plant disaster will create long-term challenges for Japans energy security. Energy shortage is a major threat because all facets of the archipelago's economy and society are dependent upon reliable energy supply. Within this context and based on a historical institutionalist approach, this paper reflects on the long-term implications of the disaster for Japan's post-Fukushima energy policies. It argues that institutional change is incremental and path dependent for four major reasons: the massive costs of a major move to alternative energy sources; the rising importance of emission reduction and climate change mitigation policies; vested interests in the status quo of a centralised large-scale energy supply system; and the massive increase in resource nationalism in East Asia as a result of continuing geopolitical tensions. However, promoting energy efficiency, encouraging energy-saving behaviour and focusing on decentralized renewable energy development could help to reduce Japan's energy vulnerability.

  20. Military aspect of nuclear policy of Japan

    International Nuclear Information System (INIS)

    Fujita, Yuko

    2011-01-01

    Military aspect of nuclear policy of Japan was outlined. In 1952 Prime Minister Yoshida asked to prepare production of weapons for rearmament and to establish Science and Technology Agency such as to overcome lack of science research budget and inefficiency of research and cooperation. Kaya and Fushimi proposed establishment of Atomic Energy Commission as recommendation of Science Council of Japan. In 1954 Nakasone proposed budget for nuclear energy with yen 235 million to construct reactor. In 1955 Japanese delegation participated in international conference on peaceful use of nuclear energy at Geneva and nonpartisan members proposed Atomic Energy Basic Law, which limited the use of nuclear technology to peaceful purposes, ensured three principles - democratic methods, independent management, and transparency - as the basis of nuclear research and promoted international co-operation. In 1956 Atomic Energy Commission and Science and Technology Agency were established with other organizations under this law. According to internal report in the age of Prime Minister Sato, nuclear policy in Japan would be (1) no holding nuclear weapon for the time being, (2) maintaining economic and technical potential of nuclear weapon production and (3) considering no restraint for this policy whether Japan participated in NPT or not. Fuel cycle program of Monju reactor and reprocessing for power production seemed to be deployed corresponding to (3) above. Irradiated blanket of Monju reactor could be reprocessed to produce highly purified plutonium suited for nuclear bombs. (T. Tanaka)

  1. Simulation on effect of stopping nuclear power generation

    International Nuclear Information System (INIS)

    Yajima, Masayuki; Kumakura, Osamu; Sakurai, Norihisa; Nagata, Yutaka; Hattori, Tsuneaki

    1990-01-01

    The effects that the stopping of nuclear power generation exerts on the price of primary energy such as petroleum, LNG and coal and the trend of Japanese energy and economy are analyzed by using the medium term economy forecasting system. In the simulation, the case of stopping nuclear power generation in seven countries of OECD is supposed, and as for the process of stopping, two cases of immediate stopping and stopping by gradual reduction are set up. The models used for the simulation are the world energy model, the competition among energies model and the multiple category model. By the decrease of nuclear power generation, thermal power generation increases, and the demand of fossil fuel increases. As the result, the price of fossil fuel rises (the world energy model), and the price of fossil fuel imported to Japan rises. Also the quantity of fossil fuel import to Japan increase. These price rise and quantity increase exert deflation effect to Japanese economy (the multiple category model). The price rise of fossil fuel affects the competition among energies in Japan through the relative change of secondary energy price (the competition among energies model). The impact to the world and to Japan is discussed. (K.I.)

  2. Remote systems and remote maintenance of a reprocessing plant in Japan

    International Nuclear Information System (INIS)

    Funaya, T.

    1977-01-01

    The design concept and overall maintenance philosophy applied in the Power Reactor and Nuclear Fuel Development Corporation Reprocessing Plant at Tokai-mura, Japan, are briefly introduced. Details on remote systems and remote maintenance in mechanical processing areas are described

  3. Face and Facework in Conflict: A Cross-Cultural Comparison of China, Germany, Japan, and the United States.

    Science.gov (United States)

    Oetzel, John; Ting-Toomey, Stella; Masumoto, Tomoko; Yokochi, Yumiko; Pan, Xiaohui; Takai, Jiro; Wilcox, Richard

    2001-01-01

    Investigates face and facework during conflicts among undergraduate students across four national cultures: China, Germany, Japan, and the United States. Presents major findings concerning self-construals; power distance; individualistic, small-power distance cultures; large-power distance cultures; and relational closeness and status. Discusses…

  4. Development and future perspective of nuclear power plants. Current status and future prospect of world nuclear power plants

    International Nuclear Information System (INIS)

    Kobayashi, Masaharu

    2013-01-01

    Fukushima Daiichi NPS accidents occurred on 11 March 2011 brought about great effects on nuclear development not only in Japan but also in the world. In Japan restart of operation of periodically inspected nuclear power plants (NPPs) could not be allowed except Oi NPPs two units and most parties except Liberal Democratic Party (LDP) pledged to possibly phasing out nuclear power at House of Councillors election in July and public opinion was mostly against nuclear power after the accident. LDP clearly stated that, with the inauguration of new government last December, Japan would not pursuing the policy of the prior government of possibly phasing out nuclear power by the 2030s, but would instead make a 'zero-base' review of energy policy. Germany decided to close eight reactors immediately and remaining nine by the end of 2022. For many countries, nuclear power would play an important role in achieving energy security and sustainable development goals. In 2011 NPPs 6 units started operation with 2 units under construction, and in 2012 NPPs 3 units started operation with 7 units under construction. At present there are now over 400 NPPs operating in 31 countries and world trend seemed nuclear development was continued and number of countries newly deploying NPPs was increasing as much as eighteen. This article presented current status and future prospect of world NPPs in details. Japan would like to share its experiences and information obtained from the accident with the world and also promote NPPs overseas to meet the world's expectations. (T. Tanaka)

  5. Overview of the Habitat Demonstration Unit Power System Integration and Operation at Desert RATS 2010

    Science.gov (United States)

    Colozza, Anthony J.; George, Pat; Gambrell, Ronnie; Chapman, Chris

    2013-01-01

    A habitat demonstration unit (HDU) was constructed at NASA Johnson Space Center (JSC) and designed by a multicenter NASA team led out of NASA Kennedy Space Center (KSC). The HDU was subsequently utilized at the 2010 Desert Research and Technology Studies (RATS) program held at the Black Point Lava Flow in Arizona. This report describes the power system design, installation and operation for the HDU. The requirements for the power system were to provide 120 VAC, 28 VDC, and 120 VDC power to the various loads within the HDU. It also needed to be capable of providing power control and real-time operational data on the load's power consumption. The power system had to be capable of operating off of a 3 phase 480 VAC generator as well as 2 solar photovoltaic (PV) power systems. The system operated well during the 2 week Desert RATS campaign and met all of the main goals of the system. The power system is being further developed to meet the future needs of the HDU and options for this further development are discussed.

  6. The gas industry in Japan

    International Nuclear Information System (INIS)

    Jego, H.

    2000-01-01

    Though oil is the most widely used primary energy in Japan, its market share is decreasing steadily in favour of other energies such as natural gas. Around 80 % of the gas consumed in Japan is imported in the form of LNG, with locally produced natural gas accounting for 5 % and LPG 12%. Annual LNG supplies now total 48 million tons (720 TWh) and are forecast to rise to 57 million tons over the next ten years. However, only on third of the total volume of LNG, i.e., 242 TWh, is distributed to final consumers. The rest is imported directly by power companies to produce electricity. The 245 gas distribution companies, 70 in the public sector and 175 in the private sector (including three large firms: Tokyo Gas, Osaka Gas and Toho Gas) carry the gas through their own non-interconnected networks to around 25 million customers, though the gas supply area covers only 5 % of the country. This small percentage can be explained partly by Japan's topography: 80 % of the land is covered by mountains. This means that only 20 % of the country is suitable for industrial and residential development. Populations living outside the gas supply areas mainly use LPG. The number of LPG customers totals around 25 million, a similar number to those using mains gas. However, the share of mains gas is increasing each year due to the population increase in urban zones. Though gas represents only 11 % of the energy consumed in Japan, it is nevertheless present on practically all markets and holds the leading position for domestic hot water and cooking in the residential sector. However, for heating, it lags well behind oil. In industry, mains gas covers only 5% of energy needs. However, with the expansion of the pipeline network and market liberalization, the share of gas is set to increase. The price of gas for the residential sector is 2 to 3 times higher than in western countries. This can be attributed to the following factors: most natural gas is imported LNG; unit consumption in the

  7. Demonstration plant of smoke treatment by electron beam irradiation

    International Nuclear Information System (INIS)

    Kawamura, Keita

    1989-01-01

    The acid rain caused by sulfur oxides and nitrogen oxides has become the large social problem as it damages forests, lakes and agricultural crops and also buildings in Europe and America. In such circumstances, concern has been expressed in various countries on the smoke treatment technology, EBA process, which removes the sulfur oxides and nitrogen oxides contained in smoke simultaneously by irradiating electron beam on the smoke which is exhausted from power station boilers and industrial boilers and mainly causes acid rain. The research and development of this technology were begun in 1971 based on the original idea of Ebara Corp., and from 1972, those were advanced as the joint research with Japan Atomic Energy Research Institute. Thereafter, by the joint research with the technical research association on prevention of nitrogen oxides in iron and steel industry, by ammonia addition and irradiation process, the desulfurization and denitration performance was heightened, and the byproduct was successfully captured as powder, in this way, the continuous dry treatment process was established. The demonstration test plant was constructed in a coal-firing power station in Indiana, USA, and the trial operation was carried out from 1985 for two years. (K.I.)

  8. Spent fuel management in Japan - Facts and prospects

    International Nuclear Information System (INIS)

    Nagano, K.

    2002-01-01

    This paper discusses recent developments and future issues related to spent fuel management in Japan. With increasing pressure of spent fuel discharge from the power plants in operation and, in contrast, uncertainties in their processing and management services, spent fuel storage in short and medium terms has been receiving the highest priority in nuclear policy discussions in Japan. While small-scale interim storage devices, as well as capacity expansion (re-racking, etc.) and shared uses of existing devices, are introduced at number of power stations, large scale AFR (away from reactor) 'Storage of Recycle Fuel Resources' is expected to come in a medium and long-run. Commercial operation of 'Storage of Recycle Fuel Resources' is allowed its way, as the bill of amendment to the law for regulation of nuclear power reactors and other nuclear-related activities has passed in the Diet. In the meantime, the Atomic Energy Commission has launched working group discussions for revision of 'The Long-term Program of Research, Development and Utilization of Nuclear Energy' to be completed in 2000. This revision is hoped to set up a stage of national debate of nuclear policy, which might lead to fill conceptual gaps between bodies promoting nuclear development and general public. The author's attempt to illustrate the role of storage in spent fuel management is also presented from a theoretical point of view. (author)

  9. Effective use of electric power facilities and promotion of energy conservation

    International Nuclear Information System (INIS)

    Tokumitsu, Iwao

    1999-01-01

    The capacity of Japan's commercial electric power facilities has been increased to more than 200 million kw. In order to provide a stable supply of electric power to meet constantly fluctuaring electric power demands, Japan's power plants generate electricity using an optimal combination of facilities, with nuclear power and coal-fired thermoelectric power providing the base load supply. In the use of electric power, moreover, measures are being implemented to reduce generation costs, conserve energy, and cut carbon dioxide emissions by reducing maximum output and equalizing the load. This report presents information concerning measures for improving the efficiency of electric power facilities operation, equalizing the load and promoting energy conservation. (author)

  10. Remote Operation and Maintenance Demonstration Facility at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Burgess, T.W.

    1986-01-01

    The Remote Operation and Maintenance Demonstration (ROMD) Facility at the Oak Ridge National Laboratory has been developed by the Consolidated Fuel Reprocessing Program to demonstrate remote handling concepts on advanced nuclear fuel reprocessing equipment and for other programs of national interest. The ROMD facility is a large-volume high-bay area that encloses a complete, technologically advanced remote maintenance system and full-scale development reprocessing equipment. The maintenance system consists of a full complement of teleoperated manipulators, manipulator transport systems, and overhead hoists that provide the capability of performing a large variety of remote handling tasks. This system has been used to demonstrate remote manipulation techniques for the US Department of Energy (DOE), the Power Reactor and Nuclear Fuels Development Corporation of Japan, the US Navy, and the National Aeronautics and Space Administration. Extensive tests of manipulative systems and remote maintainability of process equipment have been performed. This paper describes the ROMD facility and key remote maintenance equipment and presents a summary of major experimental activities. 7 refs., 6 figs

  11. Actual state of the nuclear industry in Japan and trends of nuclear development in the world

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    Nuclear industry in Japan established a fixed foundation as a large complex system industry by elapsing about forty years since beginning of its development at top of 1930s. For Japan with little energy resources, nuclear power generation is one of essential choices because not only of keeping energy security but also of response to global warming problem such as global warming protection. Then, in order to intend to promote sound development of the nuclear industry in Japan, further upgrading of technology aimed at maintenance and improvement of safety and formation of understanding and agreement of the peoples must be established. Here was introduced a report on actual state of the nuclear industry in Japan in 1997 fiscal year prepared on February, 1999 by the Japan Atomic Industrial Forum. (G.K.)

  12. IAEA International Peer Review Mission on Mid-and-Long-Term Roadmap Towards the Decommissioning of TEPCO's Fukushima Daiichi Nuclear Power Station Units 1-4, Tokyo and Fukushima Prefecture, Japan, 15-22 April 2013. Mission Report

    International Nuclear Information System (INIS)

    2013-01-01

    Following the accident at TEPCO's Fukushima Daiichi Nuclear Power Station (NPS) on 11 March 2011, the ''Mid-and-Long-Term Roadmap towards the Decommissioning of TEPCO's Fukushima Daiichi Nuclear Power Station Units 1-4'' was adopted by the Government of Japan and TEPCO Council on Mid-to-Long-Term Response for Decommissioning in December 2011 and revised in July 2012. The Roadmap, which is scheduled for an additional update in June 2013, describes the main steps and activities to be implemented for the decommissioning of the Fukushima Daiichi NPS through the combined efforts of the Government of Japan and TEPCO. Within the framework of the IAEA Action Plan on Nuclear Safety, the Government of Japan invited the IAEA to conduct an independent peer review of the Roadmap with two main objectives: - To improve the decommissioning planning and the implementation of pre-decommissioning activities at TEPCO's Fukushima Daiichi NPS; and - To share with the international community the good practices and lessons learned by the review. The review has been organized in two steps, and the IAEA conducted the first part in Japan from 15 to 22 April 2013. The objective of the first mission was to undertake an initial review of the Roadmap, including assessments of decommissioning strategy, planning and timing of decommissioning phases and a review of several specific short-term issues and recent challenges. Specifically, it covered the assessment of current reactor conditions, assessment of management of radioactive releases and associated doses, control of radioactive exposure of employees and decontamination within the site for improvement of working environment, structural integrity of reactor buildings and other constructions. The incidents recently experienced at the site, related with failures of the power supply and leakages of water from the underground reservoirs, were also included in the review of the specific short-term issues. The Government of Japan and TEPCO have

  13. Networking Japan

    DEFF Research Database (Denmark)

    Hansen, Annette Skovsted

    Human Resource Development was the first and remains an important pillar in Japanese foreign aid. I will argue that Japan has access to a global network of alumni who will co-define Japanese foreign aid in the future, because Japan has encouraged alumni societies and networking since 1965. A total...... of more than a million people in more than 100 countries have attended courses in Japan funded fully or partly by Japanese ODA since the inception of the technical assistance programs in 1954 through the Colombo Plan and since 1959 through the Association of Overseas Technical Scholarships (AOTS from 2009...... HIDA). Many of these alumni have and will in the future exchange ideas and keep contact not only to Japan, but also to fellow alumni around the globe and, thereby, practice south-south exchanges, which are made possible and traceable by their established alumni network and the World Network of Friends...

  14. IRBA SERIES : Accounting In Japan

    OpenAIRE

    Arai, Kiyomitsu

    1994-01-01

    Preface / Legal and Conceptual Framework of Accounting in Japan / Setting Accounting Standards in Japan - The American Influence and The Present Status / Accounting Education and Profession in Japan / The International Harmonization of Accounting Standards / The Accounting Standard Setting in Japan and Its Responses to International Accounting Standards / Selected Bibliography for Accounting in Japan

  15. Innovations in techniques of electric power in 2008

    International Nuclear Information System (INIS)

    Ohfusa, Takahiro; Endo, Yukio; Ino, Hiroyuki

    2009-01-01

    Tokyo Electric Power Company (TEPCO), Kansai Electric Power Co., Inc., Tohoku Electric Power and other nine companies reported the results of innovations in techniques of electric power in 2008, Japan. J-Power started construction of the Ohma Nuclear Power Plant (power generating capacity: 1,383 MW, ABWR) in Ohma Town, Aomori prefecture, Japan, in May 2008. TEPCO developed the low vibration control valve and carried out the model experiments using air as fluid and the simulation by computational fluid dynamics. Mach number distribution (ε L =0.068) at the valve showed change of the supersonic jet flow as time advanced and a periodic pressure change on the valve and valve seat. Japan Atomic Power Company reported development of techniques for the established nuclear power station such as control of pipe thinning of the secondary system of PWR by insertion of oxygen at Tsuruga Power Station Unit 2, risk evaluation, the effects of increase of generating power on aging deterioration, and development of heat protective clothing. Researched are a power generation plant of small-and-medium-size reactors which took in reforming technology using the location to a narrow site, funds by stakeholders and the idea of future 'fast breeder reactor system', sodium-cooled loop type reactor, which uses TRU as fuel. The accumulator tank of new type safety system for Tsuruga Power Station Unit 3 and 4 is designed and tested. Decommissioning process of Tokai Power Plant and recycling of shielding materials, blocks and concrete powder are stated. (S.Y.)

  16. Does Europe Include Japan? European Normativity in Japanese Attitudes towards International Law, 1854–1945

    Directory of Open Access Journals (Sweden)

    Urs Matthias Zachmann

    2014-01-01

    Full Text Available European normativity has been an epistemological problem for Japan throughout modernity (1868–1945. This essay discusses this problem in the case of international law by tracing its reception and application from the beginning, the opening- up of Japan in 1854, until the final demise of its imperialist project in 1945. During this period, Japan was the only non-Western great power in the hitherto all-European concert of powers. International law and the critique of European normativity played a central role in Japan’s ascent to power and confrontation with the West. In the first phase of reception between 1954 and 1905, Japanese attitudes towards international law were marked by an exceptional commitment to and acquiescence with the European standard, in line with Japan’s ambition to »leave Asia«. However, due to its strategic purposes, European normativity was more a means of political expediency than a matter of intrinsic conviction. Moreover, after the initial phase of receiving and practicing the principles of international law with considerable success, many Japanese began to feel a certain estrangement and inner reservation to European standards. Not until 1905, was Japan in a position to gradually challenge Europe. Thus, Japan’s interwar period (1905–1931 was an uneasy combination of outward compliance and inner reservation, a tension that Japan eventually resolved by withdrawing from Europe and trying to build its own autonomous sphere in East Asia after 1931. However, the example of Japanese international lawyers shows that in order to save international law from its ultranationalist critics and enemies, European normativity still remained the central cultural reference, albeit now in its revisionist variant (especially Soviet and Nazi German political thought and subject to a strategic re-interpretation. Thus, from the perspective of Japanese international lawyers, despite the Pan-Asianist pretenses of Japan’s official

  17. New evolution on the high level radioactive waste disposal in Japan

    International Nuclear Information System (INIS)

    Koumoto, Harumi

    2001-01-01

    On nuclear power generation, spent fuel is formed and reaches to about 30 ton from a 1 million kW class large power plant. As some nations deal with the spent fuel itself to waste, Japan adopts a reprocessing and recycling route to recover uranium and plutonium reusable for nuclear fuels by reprocessing of the spent fuels. As waste liquid containing about one ton of cinder (fission product) formed by nuclear fission after its recovery, a glass solid solidifying this to a stable glassy state is called the high level radioactive wastes (HLW). As it has extremely high radioactivity which continues for long term in spite of its decay with elapsing time, safety security must be paid enough attention to its countermeasure. Therefore, as a result of long-term research and development in Japan as well as in many other nations, it is admitted to be the most preferable countermeasure to bury HLW into deep stratum to safely isolate from human life environment for its scientific and technical method. Here was introduced on a framework of its disposal business in Japan of which preparation rapidly advanced as a turning point of 2000 at a center of its technical and regulative advancement. (G.K.)

  18. Theorizing School Bullying: Insights from Japan

    Directory of Open Access Journals (Sweden)

    Shoko Yoneyama

    2015-08-01

    Full Text Available This paper identifies a lacuna in the existing paradigms of bullying: a gap caused by the frame of reference being largely limited to the highly industrialized societies of the 'west': Europe, North America and Oceania. The paper attempts to address this gap by presenting research developed in Japan. In Japan, sociological discourse on school bullying, i.e. the analysis of institutional factors relevant to understanding bullying was established relatively early, as was the epistemology now referred to as the second paradigm of bullying. The paper attempts to integrate the research strengths of Japan with this new trend in bullying research, with the view of incorporating 'non-western' research traditions into mainstream discourse on bullying. It introduces a typology of school bullying: Types I and II, and discusses 1 hierarchical relationships in schools, focusing on corporal punishment and teacher-student bullying, and 2 group dynamics surrounding bullying. The paper illustrates how bullying among students is entwined with various aspects of schools as social institutions. It argues that school bullying may represent a state of anomie in both formal and informal power structures in schools, which have become dysfunctional communities unable to deal with bullying, while at the same time it can be students' way of compensating their sense of alienation and disconnectedness from school.

  19. Emergency response arrangements for the transport of irradiated nuclear fuel from Japan to Europe in Japanese territorial waters

    International Nuclear Information System (INIS)

    Ikeda, T.; Inada, T.; Narahara, S.; Cheshire, R.D.; Lee, G.

    1993-01-01

    About 90 % of nuclear fuel irradiated in Japanese nuclear power stations is transported to UK and France for reprocessing. Pacific Nuclear Transport Ltd (PNTL), a subsidiary of British Nuclear Fuels plc (BNFL), owns and operates its own fleet of 5 purpose built ships specially designed for the transport of flasks containing irradiated fuel from Japan to Europe. These vessels sail to Japan on 8 to 10 voyages per year from the BNFL's Marine Terminal at Barrow in UK via Cherbourg Port in France. On arrival in Japan empty flasks are delivered to Japanese nuclear power stations, and full flasks are collected for the return journey to Europe. Whilst the probability of a serious flask incident involving the release of radioactivity is very small, it is nevertheless important to plan for such an emergency. In the case of an incident BNFL will provide an emergency response. If an incident occurs in Japanese territorial waters, the initial response will be provided by Nuclear Services Company (NSC), who are based in Japan (the head office in Tokyo, Tokai Office in Ibaraki Prefecture and Tsuruga Office in Fukui Prefecture) and contracted to BNFL to provide a similar response to that available from UK. This paper describes the communication links which have been established between UK and Japan and the internal communication within Japan. It also describes the emergency equipent held in Japan, the training of teams and the results of exercises jointly carried out with BNFL. (J.P.N.)

  20. Analysis Of Japans Economy Based On 2014 From Macroeconomics Prospects

    Directory of Open Access Journals (Sweden)

    Dr Mohammad Rafiqul Islam

    2015-02-01

    Full Text Available Abstract Japan is the worlds third largest economy. But currently economic situations of Japan are not stable. It is not increasing as expected. Since 2013 it was world second largest economy but Japan loosed its placed to China in 2014 due to slow growth of important economic indicators. By using the basic Keynesian model we will provide a detailed analysis of the short and long run impacts of the changes for Japans real GDP rate of unemployment and inflation rate. We demonstrated a detailed use of the 45-degree diagram or the AD-IA model and other economic analysis of the macroeconomic principles that underlie the model and concepts. Finally we will recommend the government with a change in fiscal policy what based on the analysis by considering what might be achieved with a fiscal policy response and the extent to which any impact on the stock of public debt might be a consideration

  1. A review of fast reactor progress in Japan, March 1979

    Energy Technology Data Exchange (ETDEWEB)

    Tomabechi, K

    1979-07-01

    The fast reactor development project in Japan will be continued in the next fiscal year, from April 1979 through March 1980, at a similar scale of effort both in budget and personnel, to those of the fiscal year of 1978. The total budget for LMFBR development for the next fiscal year is approximately 24 billion Yen, excluding wages of the personnel of the Power Reactor and Nuclear Fuel Development Corporation, PNC. The number of the technical people currently engaging in the fast reactor development in the PNC is approximately 500, excluding those working for plutonium fuel fabrication. Concerning the experimental fast reactor JOYO, approval for power increase from presently approved 50 MWt to 75 MWt with the present core and also to 100 MWt with a modified core in the future was granted by the regulatory authority in September 1978. Two operational cycles at 50 MWt have been completed very recently and preparation for power increase to 75 MWt is being made. With respect to the prototype fast breeder reactor MONJU, progress toward construction is being made and an environmental impact statement of MONJU filed last autumn is being reviewed by the concerned authorities. By the new atomic energy law recently made effective in Japan, the tasks of the former Japan Atomic Energy Commission were split into two and the Atomic Energy Safety Commission was newly established on 4th October 1978 in order to deal with nuclear safety problems in the country. All other problems are treated by the Atomic Energy Commission, as before. Highlights and topics of the fast reactor development activities in the past twelve months are summarized in this paper.

  2. The first in Poland demonstrative ORC power plant of low power output

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Wladyslaw; Borsukiewicz-Gozdur, Aleksandra; Stachel, Aleksander A. [West Pomeranian Univ. of Technology, Szczecin (Poland); Klonowicz, Wojciech; Hanausek, Pawel [Turboservice Sp. z o.o., Lodz (Poland); Klonowicz, Piotr; Magiera, Radomir [Lodz Univ. of Technology (Poland)

    2010-07-01

    A description of the power plant working according to the organic Clausius-Rankine cycle (ORC) and developed at the Department of Heat Engineering (KTC), West Pomeranian University of Technology in Szczecin, is presented. The ORC power plant is powered by the low temperature heat of hot water with the temperature of up to 100 C. The hot water heat is here converted into mechanical energy that is generated by a turbine and used to drive a centrifugal air compressor. The ORC turbine is supplied with dry, saturated vapour of the R227ea working fluid of low boiling point. The working fluid vapour is generated in a combined preheater-evaporator heat exchanger. The results of calculations and experimental measurements are presented and supplemented with conclusions derived from the ORC power plant operation. Perspective modernization of the ORC power plant scheme is also outlined. (orig.)

  3. The emergency medical programs of japan and foreign countries for radiation accidents in nuclear power stations

    International Nuclear Information System (INIS)

    Aoki, Yoshiro

    1994-01-01

    In our country, the medical emergency programs for the people living near nuclear power stations are well organized, however, preparation of medical staffs who are well trained is considered to be not sufficient. In the USA, on call 24 hours response to a radiological emergency is provided and funded by Department of Energy(DOE) or electric companies. Especially, REAC/TS is a part of DOE response network, in which there are provided well-trained physicians, nurses, health physicists, coordinators and support personnels. In United Kingdom, National Radiological Protection Board(NRPB) is responsible to a radiological emergency program. Each nuclear power station has its own emergency program consisting of a team of physicians, nurses and health physicists. In France, French Atomic Energy Commission (CEA) is a responsible agency for a radiological emergency program. On call 24 hours response to a radiological emergency is provided in Fontenay-aux Roses Institute and Curie Institute. Curie Institute also responds to radiological emergencies in other countries at the request of WHO. In Germany(West Germany), compulsory assurance system covers a radiological emergency program and a radiological protection. There are seven centers in West Germany, in which well-trained medical staffs are provided against radiological injuries. In this report, I tried to propose a new concept about emergency medical programs for nuclear power station accidents in Japan. I think it is a very urgent theme to provide on call 24 hours radiological emergency program, in which patients suffered from acute radiation sickness with internal contamination or contaminated radiation burns will be treated without any trouble. We have to make our best efforts to complete basic or clinical research about radiation injuries including bone marrow transplantation, radioprotectors, chelating agents and radiation burns etc. (J.P.N.)

  4. Solar Powered Aircraft, Photovoltaic Array/Battery System Tabletop Demonstration: Design and Operation Manual

    Science.gov (United States)

    Colozza, Anthony J.; Scheiman, David A.; Bailey, Sheila (Technical Monitor)

    2000-01-01

    A system was constructed to demonstrate the power system operation of a solar powered aircraft. The system consists of a photovoltaic (PV) array, a charge controller, a battery, an electric motor and propeller. The system collects energy from the PV array and either utilizes this energy to operate an electric motor or stores it in a rechargeable battery for future use. The system has a control panel which displays the output of the array and battery as well as the total current going to the electric motor. The control panel also has a means for adjusting the output to the motor to control its speed. The entire system is regulated around 12 VDC.

  5. Conceptual design study for the demonstration reactor of JSFR. (3) Safety design and evaluation

    International Nuclear Information System (INIS)

    Tani, Akihiro; Shimakawa, Yoshio; Kubo, Shigenobu; Fujimura, Ken; Yamano, Hidemasa

    2011-01-01

    This paper describes the result of conceptual safety design and evaluation for the demonstration plant of Japan sodium-cooled fast reactor (JSFR), which was preliminarily conducted for providing information necessary to decide the plant specification for further design study. The plant major specifications except for output power and safety design concept are almost the same as those of the commercial JSFR. A set of safety evaluation for typical design basis events (DBEs) is mainly focused here, which was conducted for the 750 MWe design. Safety analyses for DBEs evaluation were performed on the basis of conservative assumptions using a one-dimensional flow network code with point kinetics. For representative DBEs, transient over power type events and loss of flow type events were analyzed. The long-term loss-of-offsite power event was also calculated to evaluate the natural circulation decay heat removal system. All analytical results showed to meet tentative safety criteria, thus it was confirmed that the safety design concept of JSFR is feasible against DBEs. (author)

  6. The Tokai-mura JCO criticality accident and the activities of the accident countermeasure support team of Electric Power Companies, Japan

    International Nuclear Information System (INIS)

    Ogawa, Junko

    2000-01-01

    A criticality accident occurred at the JCO Tokai-mura nuclear fuel processing plant on September 30, 1999. This accident brought the damages which were unrivaled in the history of atomic energy development in Japan, seriously influencing the citizen life to such an extent as requesting for 320,000 inhabitants within 10 kilometers radius to stay indoors for as long as 18 hours. However, it could be said that though three workers suffered fatal injuries, no substantial hazards were made upon the regional inhabitants due to little release of radioactive substances. This video recorded the activities of the Accident Countermeasure Support Team of the Electric Power Companies immediately after the accident occurred, showing the chronological overview of the particulars of the accident. (author)

  7. RIMAP demonstration project. Risk-based life management of piping system in power plant Heilbronn

    International Nuclear Information System (INIS)

    Bareiss, J.; Buck, P.; Matschecko, B.; Jovanovic, A.; Balos, D.; Perunicic, M.

    2004-01-01

    In the framework of EU project RIMAP [Risk Based Inspection and Maintenance Procedures for European Industry (2000)] a new European Guideline for optimized risk based maintenance and inspection planning of industrial plants (RBLM, Risk Based Life Management) is being developed. The RIMAP project consists of the three clustered projects: - development (RTD); - demonstration (DEMO): - thematic network (TN). Current work and future, planned work in RIMAP demonstration project on applications of the RIMAP methodology in power plants are presented briefly in the first part of the paper. Also presented in the paper are the results of a preliminary analysis of piping system in power plant Heilbronn using the concept of risk-based monitoring as part of overall concept of risk-based life management. Shortly the following issues are discussed in the paper: - identification of critical components; - application of a multilevel risk analysis (...from 'screening' to 'detailed analysis'); - determination of PoF (Probability of Failure); - determination of CoF (Consequence of Failure); - optimation of inspection and maintenance plan. From our experience with the application of the RIMAP methodology the following conclusions can be drawn: The use of risk-based methods in inspection and maintenance of piping systems in power plants gives transparency to the decision making process and gives an optimized maintenance policy based on current state of the components. The results of the work clearly show the power of the proposed method for concentration on critical items: out of 64 monitored components 5 were selected for intermediate analysis and only 1 for the detailed analysis (probabilistic high temperature fracture mechanics)

  8. Japan revises its long-term energy supply and demand outlook

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    A report, published recently by the Japanese Ministry of International Trade and Industry, revises earlier official views about how the industrial colossus plans to meet its energy needs to the end of century and beyond. A small chapter is devoted to the role of nuclear power in Japans energy supply. (qui)

  9. Permanent cessation of Tokai power plant's operation

    International Nuclear Information System (INIS)

    Satoh, T.

    1998-01-01

    Tokai power plant (166MWe, Magnox type: GCR) is the first commercial reactor in Japan and has been kept operating stable since its commissioning in July 1996. During this period it has produced electricity of approximately 27.7 billion KWh (as of March 1997) and its stable operation has contributed greatly to the stable supply of electricity in Japan. Furthermore, technologies in various fields have been developed, demonstrated and accumulated through the construction and operation of Tokai power plant. It also contributes to training for many nuclear engineers, and constructions and operations of nuclear power stations by other Japanese power companies. As a pioneer, it has been achieved to develop and popularize Japanese nuclear power generation. On the other hand, Tokai power plant has small capacity in its electric power output, even though the size of the reactor and heat exchangers are rather bigger than those of LWR due to the characteristics of GCR. Therefore, the generation cost is higher than the LWR. Since there is no plant whose reactor type is the same as that of Tokai power plant, the costs for maintenance and fuel cycle are relatively higher than that of LWR. Finally we concluded that the longer we operate it, the less we can take advantage of it economically. As a result of the evaluation for the future operation of Tokai power plant including the current status for supply of electricity by the Japanese utilities and study of decommissioning by Japanese government, we decided to have a plan of stopping its commercial operation of Tokai power plant in the end of March, 1998, when we completely consume its fuel that we possess. From now on, we set about performing necessary studies and researches on the field of plant characterization, remote-cutting, waste disposal for carrying out the decommissioning of Tokai power plant safely and economically. We are going to prepare the decommissioning planning for Tokai power plant in a few years based on the

  10. Reconsidering Japan's underperformance in pharmaceuticals: evidence from Japan's anticancer drug sector.

    Science.gov (United States)

    Umemura, Maki

    2010-01-01

    Unlike its automobile or electronics industries, Japan's pharmaceutical industry did not become a global leader. Japan remains a net importer of pharmaceuticals and has introduced few global blockbuster drugs. Alfred Chandler argued that Japan's pharmaceutical firms remained relatively weak because Western firms enjoyed an insurmountable first first-mover advantage. However, this case study of the anticancer drug sector illustrates that Chandler's explanation is incomplete. Japanese medical culture, government policy, and research environment also played a substantial role in shaping the industry. In the 1970s and 1980s, these factors encouraged firms to develop little few effective drugs with low side effects, and profit from Japan's domestic market. But, these drugs were unsuitable to foreign markets with more demanding efficacy standards. As a result, Japan not only lost more than a decade in developing ineffective drugs, but also neglected to create the infrastructure necessary to develop innovative drugs and build a stronger pharmaceutical industry.

  11. Total Quality Education: Profiles of Schools That Demonstrate the Power of Deming's Management Principles.

    Science.gov (United States)

    Schmoker, Michael J.; Wilson, Richard B.

    This book presents profiles of schools that have demonstrated the power of Deming's Total Quality Management (TQM) principles. It describes schools that have successfully applied those strategies for change. The book explores what public education needs most--a compelling but flexible action plan for improvement. Chapter 1 offers a rationale for…

  12. Status of the Virginia Power/DOE Cooperative Cask Testing/Demonstration Program: A video presentation

    International Nuclear Information System (INIS)

    McKinnon, M.A.; Creer, J.M.; Collantes, C.E.

    1990-01-01

    This paper is documentation of a video presentation and provides a brief summary of the Virginia power/US Department of Energy Cooperative Cask Testing/Demonstration Program. The program consists of two phases. The first phase has been completed and involved the unlicensed performance testing (heat transfer and shielding) of three metal spent fuel storage casks at the federally owned Idaho National Engineering Laboratory. The second phase is ongoing and consists of licensed demonstrations of standard casks from two different vendors and of one or two enhanced capacity casks. 6 refs., 1 tab

  13. Statement on Nuclear Safety and Future Development, 7 October 2012, Kyoto, Japan

    International Nuclear Information System (INIS)

    Amano, Y.

    2012-01-01

    When I addressed the 2011 STS Forum a year ago, Japan was still dealing with the immediate aftermath of the Fukushima Daiichi accident. Now, we are well into the post-accident phase. The emphasis for the IAEA and its 155 Member States is on implementing the IAEA Action Plan on Nuclear Safety, which was adopted just over a year ago. Progress has been made in many areas. Possible safety weak points at nuclear power plants have been identified and are being addressed. These include issues such as ensuring adequate backup electrical power in case of a blackout. The IAEA has expanded its programme of expert peer reviews. We undertook a systematic review of IAEA Safety Standards, taking into account lessons learned from the Fukushima Daiichi accident. And we held a series of international expert meetings focussing on different technical issues. A lot has been done already, but a considerable amount of work still remains to be done under the IAEA Action Plan on Nuclear Safety. It is essential that all of us - Member States, the IAEA and other key stakeholders - maintain our sense of urgency and our commitment to implementing the Action Plan in full. In December, the Fukushima Ministerial Conference on Nuclear Safety, organized by the Government of Japan and the IAEA, will take place in Fukushima Prefecture. This Conference will be a good opportunity for participants from abroad to learn first-hand lessons from the accident. For Japan, it will be an excellent opportunity to understand how other countries are reacting to the accident. For the IAEA, it will be an occasion to redouble our efforts to help people in Fukushima. A year ago, I told the STS Forum that nuclear power looked set to remain an important option for many countries, despite the Fukushima Daiichi accident. This trend has become even clearer during the past year. The latest IAEA projection is for global nuclear power capacity to grow by nearly 25 percent from current levels to 456 gigawatts by 2030. That is

  14. SCWR Concepts in Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-08-15

    Two SCWR concepts are being developed in Japan, one corresponding to the thermal spectrum reactor and the other to the fast spectrum reactor. Yamada et al. described the thermal-spectrum reactor concept referred to as the Japan SCWR (or JSCWR). This concept was developed under the financial support of the Ministry of Economy, Trade and Industry (METI). The basic philosophy of the JSCWR development is to utilize proven light water reactor and supercritical fossil-fired power plant technologies as much as possible to minimize the R&D cost, time and risks. Therefore, the JSCWR is designed as a thermal neutron spectrum reactor using light water as moderator and reactor coolant. The JSCWR plant consists of a pressure-vessel type, once-through reactor and a direct Rankine cycle system. Reactor coolant fed through inlet nozzles is heated up in the core and flows through outlet nozzles with no recirculation in the vessel. Other options to the JSCWR core design are being investigated at the University of Tokyo. The electric output of the JSCWR is assumed to range from 600 MWe to 1700 MWe class to fulfill user’s requirements as much as possible. In this section, the reference value is selected to 1725 MWe, which corresponds to a reactor thermal output of 4039 MWth. Nakatsuka et al. described the core design for the fast-spectrum reactor, which is based on a similar plant system compared to that of the thermal-spectrum reactor. The fast-spectrum reactor, however, would produce higher power rating than the thermal-spectrum one of the same reactor pressure-vessel size. Since the fast-spectrum reactor does not require the moderator, its unit capital cost would be lower than the thermal-spectrum reactor.

  15. Do investment-specific technological changes matter for business fluctuations? Evidence from Japan

    OpenAIRE

    Hirose, Yasuo; Kurozumi, Takushi

    2011-01-01

    The observed decline in the relative price of investment goods to consumption goods in Japan suggests the existence of investment-specific technological (IST) changes. We examine whether IST changes are a major source of business fluctuations in Japan, by estimating a dynamic stochastic general equilibrium model with Bayesian methods. We show that IST changes are less important than neutral technological changes in explaining output fluctuations. We also demonstrate that investment fluctuatio...

  16. 21 CFR 186.1555 - Japan wax.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Japan wax. 186.1555 Section 186.1555 Food and Drugs... Substances Affirmed as GRAS § 186.1555 Japan wax. (a) Japan wax (CAS Reg. No. 8001-39-6), also known as Japan... fruits of the oriental sumac, Rhus succedanea (Japan, Taiwan, and Indo-China), R. vernicifera (Japan...

  17. The time is ripe to introduce nuclear power plants in Asia

    International Nuclear Information System (INIS)

    Machi, Sueo; Odera, Mitsutoshi; Ishii, Noriyuki; Nakasugi, Hideo; Mukaiyama, Takehiko; Nagasaki, Takao; Ake, Yutaka

    2010-01-01

    While the ambitious growth in nuclear power generation is expected in China and India, a number of countries in East and South Asia such as Vietnam and Indonesia are planning to construct new nuclear power plants to meet their increasing demands for electricity. In this feature article, eight experts described the state of introduction of nuclear power plants in such countries. These were titled as 'Trends of Deployment of Nuclear Energy in Asia-FNCA Ministerial Level Meeting', 'Vietnam- National Assembly Approval of Pre-feasibility Study and its Implementation', 'Present State of Nuclear Power Introduction in Indonesia-Awaiting the Decision of the President-', 'Present Status of Volcanic Hazard Assessment for Nuclear Facilities and Case of Bataan Nuclear Power Plant in Philippines', 'State of Nuclear Power Introduction in Thailand', 'Slow Start of Nuclear Power Introduction in Malaysia', 'Nuclear Energy Development in China in the View of Asian Market' and 'Is the Rollback in the Asian Market of Japan Group Possible?' It is highly expected Japan's high level of technology and safety with nuclear power generation would lead to promote international activities and cooperation of Japan group in the Asian Market. (T. Tanaka)

  18. Does nuclear power-related facility siting always lower the local property Values? Comparative analysis among the sites in Japan

    International Nuclear Information System (INIS)

    Yamane, Fumihiro; Ohgaki, Hideaki; Asano, Kota

    2011-01-01

    Yamane et al. (2011) carried out hedonic house rent analyses for several nuclear power plant sites in Japan, compared the result for each plant, and obtained some empirical results indicating that the local residents' marginal willingness-to-pay (MWTP) for living near the plant was not necessarily positive and that the MWTP was correlated with operation years of the plants and some of the host communities' attributes (i.e., population density, financial condition and public service improvement). However, these results may suffer from biases and inefficiency in estimating hedonic functions, caused by spatial dependency: spatial autoregression and spatial autocorrelation. In this paper, we introduce spatial econometric techniques to settle this problem. As a revised result, it is indicated that the local residents' MWTP is correlated with past accidents in the plants, education service improvement in the host communities and so on. (author)

  19. Design of PCCV for Tsuruga No.2 plant of Japan Atomic Power Co

    International Nuclear Information System (INIS)

    Toda, Shiro; Yamada, Yasushi; Kuno, Toshio.

    1987-01-01

    The reactor containment vessel for Tsuruga No.2 plant is a prestressed concrete structure, the design of which was carried out in USA for three years from August, 1977. The research on PCCVs has been carried out for more than ten years in Japan, but this is the first case adopting it for an actual plant, so the design was advanced by the close cooperation between both Japanese and USA sides so as to conform to Japanese laws and tradition, and the check and review of the design results were jointly carried out. In reactor containment vessels, the internal pressure and temperature rise occurring at the time of LOCA become the main design load. The features of PCCVs as prestressed concrete structures are the utilization of prestress for large scale membrane structures, the vessels are subjected to thermal stress since those contain nuclear reactors, and the sufficient safety to the severe aseismatic condition peculiar to nuclear power stations. The prestressed concrete structure achieves the function of pressure vessels, the steel liner achieves the function of leak prevention, and the concrete achieves the function of radiation shield, and these are combined in one body as PCCVs. A PCCV is composed of a prestressed concrete upper shell and a reinforced concrete foundation. The structure, the standards to be applied, the allowable values of load and materials, the stress analysis, the cross section design and the design reinforcement are reported. (Kako, I.)

  20. Buffer Construction Methodology in Demonstration Test For Cavern Type Disposal Facility

    International Nuclear Information System (INIS)

    Yoshihiro, Akiyama; Takahiro, Nakajima; Katsuhide, Matsumura; Kenji, Terada; Takao, Tsuboya; Kazuhiro, Onuma; Tadafumi, Fujiwara

    2009-01-01

    A number of studies concerning a cavern type disposal facility have been carried out for disposal of low level radioactive waste mainly generated by power plant decommissioning in Japan. The disposal facility is composed of an engineered barrier system with concrete pit and bentonite buffer, and planed to be constructed in sub-surface 50 - 100 meters depth. Though the previous studies have mainly used laboratory and mock-up tests, we conducted a demonstration test in a full-size cavern. The main objectives of the test were to study the construction methodology and to confirm the quality of the engineered barrier system. The demonstration test was planned as the construction of full scale mock-up. It was focused on a buffer construction test to evaluate the construction methodology and quality control in this paper. Bentonite material was compacted to 1.6 Mg/m 3 in-site by large vibrating roller in this test. Through the construction of the buffer part, a 1.6 Mg/m 3 of the density was accomplished, and the data of workability and quality is collected. (authors)

  1. Why nuclear power generation must be developed? A many-faceted verification of its irreplaceable role

    International Nuclear Information System (INIS)

    Kawai, Yuichi; Oda, Toshiyuki

    1998-01-01

    Given the poor public acceptance right now, the future of nuclear power development is not necessarily bright. Yet, from the energy security aspect, the role of nuclear power, already responsible for about 30% of Japan's generated output, is never negligible. Also, Japan could hardly meet the GHG reduction target under the Kyoto Protocol without carbon-free nuclear power generation. While Japan is required to deal with both energy security and global warming from now on, to satisfy the two concurrently without nuclear power development is nearly impossible in practical terms. We have to consider calmly how nuclear power generation should be understood and treated in our effort to ensure energy supply and mitigate global warming. With this study, the need for nuclear power development was verified anew by reevaluating nuclear power generation from many facets, which are energy (electricity) supply and demand, environmental measures, energy security, and cost. Verification results showed: On supply and demand, the absence of nuclear power causes an electricity shortage during peak hours; On environment, no GHG-free power sources but nuclear currently have a sufficient supply capacity; On energy security, nuclear fuel procurement sources are diverse and located in relatively stable areas; On cost, the strong yen and cheap oil favors fossil fuels, and the weak yen and dear oil does nuclear power, though depending on unpredictable elements to send their cost up, typically waste disposal cost incurred in nuclear power, and CO 2 reduction cost in fossil fuels. With all these factors taken into consideration, the best mix of power sources should be figured out. From the verification results, we can conclude that nuclear power is one of irreplaceable energy sources for Japan. To prepare for growing electricity demand and care the environment better, Japan has few choices but to increase the installed capacity of nuclear power generation in the years to come. (author)

  2. HTTR demonstration program for nuclear cogeneration of hydrogen and electricity

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Sumita, Junya; Terada, Atsuhiko; Ohashi, Hirofumi; Yan, Xing L.; Nishihara, Tetsuo; Tachibana, Yukio; Inagaki, Yoshiyuki

    2015-01-01

    Japan Atomic Energy Agency initiated a High Temperature Engineering Test Reactor (HTTR) demonstration program in accordance with recommendations of a task force established by Ministry of Education, Culture, Sports, Science and Technology according to the Strategic Energy Plan as of April 2014. The demonstration program is designed to complete helium gas turbine and hydrogen production system technologies aiming at commercial plant deployment in 2030s. The program begins with coupling a helium gas turbine in the secondary loop of the HTTR and expands by adding the H 2 plant to a tertiary loop to enable hydrogen cogeneration. Safety standards for coupling the helium gas turbine and H 2 plant to the nuclear reactor will be established through safety review in licensing. A system design and its control method are planned to be validated with a series of test operations using the HTTR-GT/H 2 plant. This paper explains the outline of HTTR demonstration program with a plant concept of the heat application system directed at establishing an HTGR cogeneration system with 950°C reactor outlet temperature for production of power and hydrogen as recommended by the task force. Commercial deployment strategy including a development plan for the helium gas turbine is also presented. (author)

  3. The Fukushima Daiichi Nuclear Power Plant accident. How has the Geochemical Society of Japan been grappling with it?

    International Nuclear Information System (INIS)

    Ebihara, Mitsuru

    2012-01-01

    On March 11 in 2011, a great earthquake hit the eastern part of mainland Japan and triggered several gigantic tsunami waves, which destroyed the coastal areas in Tohoku and north Kanto districts facing the Pacific Ocean. The earthquake and a tsunami fatally damaged the Fukushima Daiichi Nuclear Power Plant (FDNPP) and took over the nuclear reactors. Eventually a large amount of radioactive materials was released into the environment. Radioactive nuclides were detected in a wide area including remote areas such as the Kanto district and metropolitan Tokyo. Some radioactive nuclides were detected in the United States and in some European countries, implying that radioactive materials released into the atmosphere and oceans were carried by global atmospheric and oceanic circulations all over the world. The Geochemical Society of Japan (GSJ) initiated several actions soon after the earthquake and the FDNPP accident. For instance, in response to the society's appeal, many GSJ members joined the project to map the distribution of several radioactive nuclides in soil samples in the Fukushima Prefecture. The members' contributions led to the creation of several distribution maps of radioactive nuclides, such as 134,137 Cs, 131 I, and 132 Te, trapped in soils in Fukushima. Another approach was to set the occasion for presenting the members' activities related to the FDNPP accident. For instance, the GSJ proposed to organize special sessions on research activities related to the FDNPP accident on the occasions of the 2011 Goldschmidt Conference and 2011 Annual Meeting of the GSJ. In this article, how the GSJ have been grappling with the PDNPP accident was chronologically described, especially from a viewpoint of an alliance with other organizations. (author)

  4. The cause of larger local magnitude (Mj) in western Japan

    Science.gov (United States)

    Kawamoto, H.; Furumura, T.

    2017-12-01

    The local magnitude of the Japan Meteorological Agency (JMA) scale (Mj) in Japan sometimes show a significant discrepancy between Mw. The Mj is calculated using the amplitude of the horizontal component of ground displacement recorded by seismometers with the natural period of T0=5 s using Katsumata et al. (2004). A typical example of such a discrepancy in estimating Mj was an overestimation of the 2000 Western Tottori earthquake (Mj=7.3, Mw=6.7; hereafter referred to as event T). In this study, we examined the discrepancy between Mj and Mw for recent large earthquakes occurring in Japan.We found that the most earthquakes with larger Mj (>Mw) occur in western Japan while the earthquakes in northern Japan show reasonable Mj (=Mw). To understand the cause of such larger Mj for western Japan earthquakes we examined the strong motion record from the K-NET and KiK-net network for the event T and other earthquakes for reference. The observed ground displacement record from the event T shows a distinctive Love wave packet in tangential motion with a dominant period of about T=5 s which propagates long distances without showing strong dispersions. On the other hand, the ground motions from the earthquakes in northeastern Japan do not have such surface wave packet, and attenuation of ground motion is significant. Therefore, the overestimation of the Mj for earthquakes in western Japan may be attributed to efficient generation and propagation properties of Love wave probably relating to the crustal structure of western Japan. To explain this, we then conducted a numerical simulation of seismic wave propagation using 3D sedimentary layer model (JIVSM; Koketsu et al., 2012) and the source model of the event T. The result demonstrated the efficient generation of Love wave from the shallow strike-slip source which propagates long distances in western Japan without significant dispersions. On the other hand, the generation of surface wave was not so efficient when using a

  5. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2000-01-01

    The Japan Atomic Industrial Forum (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Developmental trends on nuclear power plants in the world'. In this report, some data at the end of 1999 was made up on bases of answers on questionnaires from 72 electric companies in 31 nations and regions in the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; location of the plants; the plants in the world; and so forth. And, it also has some survey results on the 'Liberalization of electric power markets and nuclear power generation' such as some 70% of respondents in nuclear power for future option, gas-thermal power seen as power source with most to gain from liberalization, merits on nuclear power generation (environmental considerations and supply stability), most commonly voiced concern about new plant orders in poor economy, and so forth. (G.K.)

  6. Public opinion on environmental and energy issues. Result of the census after 3 years of the Great East Japan Earthquake

    International Nuclear Information System (INIS)

    Kosugi, Motoko

    2014-01-01

    The public opinion on the energy and environmental issues has changed greatly in Japan through experiences in and along the Great East Japan Earthquake. We conducted a social survey in order to grasp public opinions for environment and energy issues in March, 2014, which obtained 2313 valid responses (response rate was 64.3%). For the energy and environmental issues, while respondents show high interests in matters related to the Fukushima accident and nuclear power generation as well as electricity prices, they show relatively low interest in every other aspect. With regard to Japan's energy policy in the future, as expectations for renewable and natural sources of energy are large, about 60% of respondents have negative attitude in restart of nuclear power. For nuclear power, as compared to the previous survey conducted in August 2008, evaluation of 'control-ability of environmental impacts' and 'the power companies' risk management ability' was greatly reduced in particular. These results suggest the importance of provoke interest in the energy issues in general, as a premise to seek an understanding of the activities of the government and power companies. Furthermore, in order for the power companies to restore trust from the public, it is important to sympathize to public's anticipations of impacts on the health and environment through uses of nuclear power in the future. (author)

  7. Japan in Maritime Asia: Security, Commerce, and Sovereignty

    Directory of Open Access Journals (Sweden)

    Philip Thai

    2015-12-01

    Full Text Available Catherine L. Phipps, Empires on the Waterfront: Japan’s Ports and Power, 1858–1899. Cambridge, MA: Harvard University Asia Center, 2015. 308 pp. $39.95 (cloth. Noell Wilson, Defensive Positions: The Politics of Maritime Security in Tokugawa Japan. Cambridge, MA: Harvard University Asia Center, 2015. 258 pp. $39.95 (cloth. Historiography on Japan’s place within the world of maritime Asia has undergone dramatic reinterpretation in recent decades. Scholars of the early modern era have thoroughly demolished the shibboleth of sakoku (“closed country”, the supposed isolation of Tokugawa Japan before the sudden arrival of Western gunboats in the 1850s. The active pursuit of diplomatic and commercial ties by shogun and daimyo alike embedded Japan firmly within global circuits of exchange (e.g., Hellyer 2010; Toby 1984. Scholars of the modern era, for their part, have been inspired by the “imperial turn” to put overseas empires at the heart of national narratives. Bookending the Tokugawa and Meiji periods, the two studies under review here push the frontiers of this research agenda further. Noell Wilson’s political history focuses on the buildup of domainal defense on the coast and the devolution of shogunal monopoly on violence. At the heart of this dialectical relationship was the “Nagasaki system”—the security arrangements that originated in the eponymous port and were eventually implemented throughout Japan. Catherine Phipps’s economic history examines the commercial expansion of Meiji Japan by tracing maritime networks of exchange, transportation, and information at multiple spatial scales. Forged in the crucible of Western imperialism, such ties simultaneously compromised the sovereignty of the nation while laying the foundations for empire. Both works offer compelling cases for the centrality of maritime relations in understanding core issues in Japanese history...

  8. Appreciation for Support for Japan in Responding to the Natural Disaster

    Science.gov (United States)

    Ishikuma, Toshinori; Nishiyama, Hisako

    2011-01-01

    March 11, 2011, began the most difficult natural disaster ever experienced in Japan. Earthquakes, a massive tsunami, and multiple breaches at nuclear power plants have changed the lives of many Japanese people including children, teachers, and parents. Throughout this difficult time, Japanese school psychologists and teachers have been supported…

  9. Fukushima nuclear accident independent investigation commission by the National Diet of Japan

    International Nuclear Information System (INIS)

    Kurokawa, Kiyoshi

    2013-01-01

    After the Fukushima nuclear accident, Independent Investigation Commission (IIC) was firstly established in constitutional government by the National Diet of Japan. This article described recognition of its necessity, its setup process, its framework with start from almost zero and about 6 months period and time, its basic way to proceed investigation and several obstacles and hardships, significance of openness to the public, web's communication and simultaneous interpretation (transparency) and basic philosophy of the report. Further significance of Diet's IIC in the democratic system and evaluation of the report were added. As a problem of separation of three powers in Japan, specific recommendations to the legislation of IIC and their future evaluation, nation's governance system problem and social responsibility of scientists and others were also discussed. If Japan were not to be changed after the disaster, Japanese future might be unreliable. (T. Tanaka)

  10. Present status and future perspectives of research and test reactor in Japan

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko; Kaieda, Keisuke

    2000-01-01

    Since 1957, Japan Atomic Energy Research Institute (JAERI) has constructed several research and test reactors to fulfill a major role in the study of nuclear energy and fundamental research. At present four reactors, the Japan Research Reactor No. 3 and No. 4 (JRR-3M and JRR-4 respectively), the Japan Materials Testing Reactor (JMTR) and the Nuclear Safety Research Reactor (NSRR) are in operation, and a new High Temperature Engineering Test Reactor (HTTR) has recently reached first criticality and now in the power up test. In 1966, the Kyoto University built the Kyoto University Reactor (KUR) and started its operation for joint use program of the Japanese universities. This paper introduces these reactors and describes their present operational status and also efforts for aging management. The recent tendency of utilization and future perspectives is also reported. (author)

  11. Present status and future perspectives of research and test reactor in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Yoshihiko [Atomic Energy Research Laboratory, Musashi Institute of Technology, Kawasaki, Kanagawa (Japan); Kaieda, Keisuke [Department of Research Reactor, Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    2000-10-01

    Since 1957, Japan Atomic Energy Research Institute (JAERI) has constructed several research and test reactors to fulfill a major role in the study of nuclear energy and fundamental research. At present four reactors, the Japan Research Reactor No. 3 and No. 4 (JRR-3M and JRR-4 respectively), the Japan Materials Testing Reactor (JMTR) and the Nuclear Safety Research Reactor (NSRR) are in operation, and a new High Temperature Engineering Test Reactor (HTTR) has recently reached first criticality and now in the power up test. In 1966, the Kyoto University built the Kyoto University Reactor (KUR) and started its operation for joint use program of the Japanese universities. This paper introduces these reactors and describes their present operational status and also efforts for aging management. The recent tendency of utilization and future perspectives is also reported. (author)

  12. Some legal aspects on high level radioactive waste disposal in Japan

    International Nuclear Information System (INIS)

    Tanabe, Tomoyuki

    1997-01-01

    In Japan, it is considered to be an urgent problem to prepare the system for the research and execution of high level radioactive waste disposal. Under what regulation scheme the disposal should be done has not been sufficiently examined. In this research, the examination was carried out on the legal aspects of high level radioactive waste disposal as follows. First, the current legislation on the disposal in Japan was analyzed, and it was made clear that high level radioactive waste disposal has not been stipulated clearly. Next, on the legal choices which are conceivable on the way the legislation for high level radioactive waste disposal should be, from the aspects of applying the law on regulating nuclear reactors and others, applying the law on nuclear power damage reparation, and industrialization by changing the government ordinances, those were arranged in six choices, and the examination was carried out for each choice from the viewpoints of the relation with the base stipulation for waste-burying business, the speciality of high level radioactive waste disposal as compared with other actions of nuclear power business, the coordination with existing nuclear power of nuclear power business, the coordination with existing nuclear power law system and the formation of national consensus. In this research, it was shown that the execution of high level radioactive waste disposal as the business based on the separate legislation is the realistic choice. (K.I.)

  13. Overview of plant life extension technology development in Japan

    International Nuclear Information System (INIS)

    Takahashi, T.; Arai, H.; Akiyama, M.; Mishima, Y.; Okubo, T.

    1993-01-01

    In Japan, it is expected that the nuclear power will continue to play an important role in electric power supply. Since it is expected that the fast breeder reactor (FBR) will be introduced sometime during the first half of the 21st century, light water reactors (LWRs) will continue to play a key role some 30 to 40 years to come. For this reason, technology development projects are being implemented to further enhance light water reactor technology and thereby improve the reliability of LWRs. From this point, the Plant Life Extension (PLEX) technology development program [1-4] is entrusted by the Ministry of International Trade and Industry to the Japan Power Engineering and Inspection Corporation (JAPEIC). This program is an 11-year plan which started in 1985. The objectives are to extend the service lives of existing LWRs to increase the energy generated by these plants during their lifetime, and to reduce the lifetime generating costs. In this report, we will present our project overview and recent activities with respect to extensive verification tests on component material behavior. The JAPEIC PLEX project is divided into 3 phases. Phase I is the feasibility study. Phase 2 involves the verification tests and the evaluation of life extension technologies. The overall evaluation of the project will be conducted in Phase 3. The feasibility study of Phase I has been completed in fiscal year 1985 and 1986. In Phase I, the important components (the components and structures that are likely to govern the lives of nuclear power plants) have been selected. (author)

  14. Human resource development in the beginning phase of nuclear technology development in Japan

    International Nuclear Information System (INIS)

    Yamashita, Kiyonobu

    2015-01-01

    Japan Research Reactor No.1 (JRR-1) was constructed as the first nuclear reactor in Japan and reached the first criticality in 1957. The construction of both the first BWR and the first PWR were started in the same year 1967 and they started power operation in the same year 1970. Engineers of electrical utilities and vendors gave efforts to have knowledge for reactor engineering mainly on the job training with high self-motivation to contribute for nuclear technology development. A part of them participated in the reactor engineering training course of the JAERI. (author)

  15. Utilization of nuclear power in oceans and its perspective

    International Nuclear Information System (INIS)

    Yamaji, Akio

    2000-01-01

    Since 1959, Russia retains many nuclear icebreakers and has a plan to construct two new types of nuclear icebreakers. In Japan, research for advanced marine reactors and its fundamental studies are being conducted by the Japan Atomic Energy Research Institute (JAERI), the Ship Research Institute (SRI) and universities. The advanced marine reactor MRX designed by JAERI is a lightweight and compact integral PWR with a passive decay heat removal system. The Shipbuilding Research Association of Japan (JSRA) and the Japan Atomic Industrial Forum (JAIF) took a survey of the future nuclear ships and conducted an investigation of the total system related to the operation of nuclear ships, respectively, commissioned by JAERI. The committee of JSRA has recommended the displacement type of a large high-speed container ship promises to act as the next generation nuclear merchant ship. In the committee of JAIF, the cost evaluation has been made for a high-speed, large container ship equipped with two MRXs sailing the Pacific Ocean, and it is found that it could have an advantage economically over the diesel in some future conditions. The committee of JSRA has also recommended the deep-sea research vessel has been identified as a promising form for the next generation nuclear special-purpose ship, since the deep-sea represents a vast frontier in terms of basic scientific understanding of the earth. Many countries including Russia, Japan and U.S.A. are conducting a research of reactors for deep-sea vessels. The U.S. Navy made available nuclear powered submarines for civilian oceanographic research and the submarines were used in the Scientific Ice Expedition (SCICEX) program from 1995 to 1999. For floating nuclear power plant, the design of nuclear co-generation plant Pevek' for remote regions of Russia is completed using KLT-40C, based on a marine reactor. In Japan, fundamental studies of floating plants are being performed by private companies and JAERI. The designs of floating

  16. Utilization of nuclear power in oceans and its perspective

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, Akio [Ship Research Institute, Ministry of Transport, Mitaka, Tokyo (Japan)

    2000-03-01

    Since 1959, Russia retains many nuclear icebreakers and has a plan to construct two new types of nuclear icebreakers. In Japan, research for advanced marine reactors and its fundamental studies are being conducted by the Japan Atomic Energy Research Institute (JAERI), the Ship Research Institute (SRI) and universities. The advanced marine reactor MRX designed by JAERI is a lightweight and compact integral PWR with a passive decay heat removal system. The Shipbuilding Research Association of Japan (JSRA) and the Japan Atomic Industrial Forum (JAIF) took a survey of the future nuclear ships and conducted an investigation of the total system related to the operation of nuclear ships, respectively, commissioned by JAERI. The committee of JSRA has recommended the displacement type of a large high-speed container ship promises to act as the next generation nuclear merchant ship. In the committee of JAIF, the cost evaluation has been made for a high-speed, large container ship equipped with two MRXs sailing the Pacific Ocean, and it is found that it could have an advantage economically over the diesel in some future conditions. The committee of JSRA has also recommended the deep-sea research vessel has been identified as a promising form for the next generation nuclear special-purpose ship, since the deep-sea represents a vast frontier in terms of basic scientific understanding of the earth. Many countries including Russia, Japan and U.S.A. are conducting a research of reactors for deep-sea vessels. The U.S. Navy made available nuclear powered submarines for civilian oceanographic research and the submarines were used in the Scientific Ice Expedition (SCICEX) program from 1995 to 1999. For floating nuclear power plant, the design of nuclear co-generation plant Pevek' for remote regions of Russia is completed using KLT-40C, based on a marine reactor. In Japan, fundamental studies of floating plants are being performed by private companies and JAERI. The designs of

  17. Current status of the first interim spent fuel storage facility in Japan

    International Nuclear Information System (INIS)

    Shinbo, Hitoshi; Kondo, Mitsuru

    2008-01-01

    In Japan, storage of spent fuels outside nuclear power plants was enabled as a result of partial amendments to the Nuclear Reactor Regulation Law in June 2000. Five months later, Mutsu City in Aomori Prefecture asked the Tokyo Electric Power Company (TEPCO) to conduct technical surveys on siting of the interim spent fuel storage facility (we call it 'Recyclable-Fuel Storage Center'). In April 2003, TEPCO submitted the report on siting feasibility examination, concluded that no improper engineering data for siting, construction of the facility will be possible from engineering viewpoint. Siting Activities for publicity and public acceptance have been continued since then. After these activities, Aomori Prefecture and Mutsu City approved siting of the Recyclable Fuel Storage Center in October 2005. Aomori Prefecture, Mutsu City, TEPCO and Japan Atomic Power Company (JAPC) signed an agreement on the interim spent fuel storage Facility. A month later, TEPCO and JAPC established Recyclable-Fuel Storage Company (RFS) in Mutsu City through joint capital investment, specialized in the first interim spent fuel storage Facility in Japan. In May 2007, we made an application for establishment permit, following safety review by regulatory authorities. In March 2008, we started the preparatory construction. RFS will safely store of spent fuels of TEPCO and JAPC until they will be reprocessed. Final storage capacity will be 5,000 ton-U. First we will construct the storage building of 3,000 ton-U to be followed by second building. We aim to start operation by 2010. (author)

  18. Demonstration test for reliability of valves for atomic power plants

    International Nuclear Information System (INIS)

    Hosaka, Shiro

    1978-01-01

    The demonstration test on the reliability of valves for atomic power plants being carried out by the Nuclear Engineering Test Center is reported. This test series is conducted as six-year project from FY 1976 to FY 1981 at the Isogo Test Center. The demonstration test consists of (1) environmental test, (2) reaction force test, (3) vibration test, (4) stress measurement test, (5) operational characteristic test, (6) flow resistance coefficient measuring test, (7) leakage test and (8) safety valve and relief valve test. These contents are explained about the special requirements for nuclear use, for example, the enviornmental condition after the design base accident of PWRs and BWRs, the environmental test sequence for isolation valves of containment vessels under the emergency condition, the seismic test condition for valves of nuclear use, the various stress measurements under thermal transient conditions, the leak test after 500 cycles between the normal operating conditions for PWRs and BWRs and the start up conditions and so on. As for the testing facilities, the whole flow diagram is shown, in which the environmental test section, the vibration test section, the steam test section, the hot water test section, the safety valve test section and main components are included. The specifications of each test section and main components are presented. (Nakai, Y.)

  19. LIFAC Demonstration at Richmond Power and Light Whitewater Valley Unit No. 2 Volume II: Project Performance and Economics

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1998-04-01

    The C1ean Coal Technology (CCT) Program has been recognized in the National Energy Strategy as a major initiative whereby coal will be able to reach its full potential as a source of energy for the nation and the international marketplace. Attainment of this goal depends upon the development of highly efficient, environmentally sound, competitive coal utilization technologies responsive to diverse energy markets and varied consumer needs. The CCT Program is an effort jointly funded by government and industry whereby the most promising of the advanced coal-based technologies are being moved into the marketplace through demonstration. The CCT Program is being implemented through a total of five competitive solicitations. LIFAC North America, a joint venture partnership of ICF Kaiser Engineers, Inc., and Tampella Power Corporation, is currently demonstrating the LIFAC flue gas desulfurization technology developed by Tampella Power. This technology provides sulfur dioxide emission control for power plants, especially existing facilities with tight space limitations. Sulfur dioxide emissions are expected to be reduced by up to 85% by using limestone as a sorbent. The LIFAC technology is being demonstrated at Whitewater Valley Unit No. 2, a 60-MW coal-fired power plant owned and operated by Richmond Power and Light (RP&L) and located in Richmond, Indiana. The Whitewater plant consumes high-sulfur coals, with sulfur contents ranging from 2.0-2.9 $ZO. The project, co-funded by LIFAC North America and DOE, is being conducted with the participation of Richmond Power and Light, the State of Indiana, the Electric Power Research Institute (EPRI), and the Black Beauty Coal Company. The project has a total cost of $21.4 million and a duration of 48 months from the preliminary design phase through the testing program.

  20. Conditions for a 100% Renewable Energy Supply System in Japan and South Korea

    DEFF Research Database (Denmark)

    Sørensen, Bent Erik

    2017-01-01

    renewable energy have proposed the use of photovoltaic power as the main source of electricity supply, in combination with diurnal battery storage and supplemented by other renewable sources such as wind, hydro, and geothermal power. Here, an alternative approach is explored, with wind and derived hydrogen......In the wake of the Fukushima nuclear accident, alternative energy paths have been discussed for Japan, but except for a few studies the assumption is usually made that Japan is too densely populated to be suited for a near-100% sustainable, indigenous energy provision. The studies emphasizing...... production as the main energy source, but still using solar energy, biofuels, and hydropower in a resilient combination allowing full satisfaction of demands in all sectors of the economy, i.e., for dedicated electricity, transportation energy as well as heat for processes and comfort. Furthermore...