WorldWideScience

Sample records for iv fission reactors

  1. Synergies in the design and development of fusion and generation IV fission reactors

    International Nuclear Information System (INIS)

    Bogusch, E.; Carre, F.; Knebel, J.; Aoto, K.

    2007-01-01

    Future fusion reactors or systems and Generation IV fission reactors are designed and developed in worldwide programmes mostly involving the same partners to investigate and assess their potential for realisation and contribution to meet the future energy needs beyond 2030. Huge scientific and financial effort is necessary to meet these objectives. First programmes have been launched in Generation IV International Forum (GIF) for fission and in the Broader Approach for fusion reactor system development. Except the physics basis for the energy source, future fusion and fission reactors, in particular those with fast neutron core face similar design issues and development needs. Therefore the call for the identification of synergies became evident. Beyond ITER cooled by water, future fusion reactors or systems will be designed for helium and liquid metal cooling and higher temperatures similar to those proposed for some of the six fission reactor concepts in GIF with their diverse coolants. Beside materials developments which are not discussed in this paper, design and performance of components and systems related to the diverse coolants including lifetime and maintenance aspects might offer significant potentials for synergies. Furthermore, the use of process heat for applications in addition to electricity production as well as their safety approaches might create synergistic design and development programmes. Therefore an early identification of possible synergies in the relevant programmes should be endorsed to minimise the effort for future power plants in terms of investments and resources. In addition to a general overview of a possible synergistic work programme which promotes the interaction between fusion and fission programmes towards an integrated organisation of their design and R and D programmes, some specific remarks will be given for joint design tools, numerical code systems and joint experiments in support of common technologies. (orig.)

  2. Synergies in the design and development of fusion and generation IV fission reactors

    International Nuclear Information System (INIS)

    Bogusch, E.; Carre, F.; Knebel, J.U.; Aoto, K.

    2008-01-01

    Future fusion reactor and Generation IV fission reactor systems are designed and developed in worldwide programmes to investigate and assess their potential for realisation and contribution to the future energy needs beyond 2030 mostly involving the same partners. Huge scientific and financial effort is necessary to meet these objectives. First programmes have been launched in Generation IV International Forum (GIF) for fission and in the Broader Approach for fusion reactor system development. Except for the physics basis for the energy source, future fusion and fission reactors, in particular those with fast neutron core, face similar design issues and development needs. Therefore, the call for the identification of synergies became evident. Beyond ITER cooled by water, future fusion reactor systems will be designed for high-temperature helium and liquid metal cooling but also water including supercritical water and molten salt similar to those proposed for some of the six fission reactor concepts in GIF with their diverse coolants. Beside materials developments which are not discussed in this paper, design and performance of components and systems related to the diverse coolants including lifetime and maintenance aspects might offer significant potentials for synergies. Furthermore, the use of process heat for applications in addition to electricity production as well as their safety approaches can create synergistic design and development programmes. Therefore, an early identification of possible synergies in the relevant programmes should be endorsed to minimise the effort for future power plants in terms of investments and resources. In addition to a general overview of a possible synergistic work programme which promotes the interaction between fusion and fission programmes towards an integrated organisation of their design and R and D programmes, some specific remarks will be given for joint design tools, numerical code systems and joint experiments in

  3. Advanced Computational Materials Science: Application to Fusion and Generation IV Fission Reactors (Workshop Report)

    Energy Technology Data Exchange (ETDEWEB)

    Stoller, RE

    2004-07-15

    The ''Workshop on Advanced Computational Materials Science: Application to Fusion and Generation IV Fission Reactors'' was convened to determine the degree to which an increased effort in modeling and simulation could help bridge the gap between the data that is needed to support the implementation of these advanced nuclear technologies and the data that can be obtained in available experimental facilities. The need to develop materials capable of performing in the severe operating environments expected in fusion and fission (Generation IV) reactors represents a significant challenge in materials science. There is a range of potential Gen-IV fission reactor design concepts and each concept has its own unique demands. Improved economic performance is a major goal of the Gen-IV designs. As a result, most designs call for significantly higher operating temperatures than the current generation of LWRs to obtain higher thermal efficiency. In many cases, the desired operating temperatures rule out the use of the structural alloys employed today. The very high operating temperature (up to 1000 C) associated with the NGNP is a prime example of an attractive new system that will require the development of new structural materials. Fusion power plants represent an even greater challenge to structural materials development and application. The operating temperatures, neutron exposure levels and thermo-mechanical stresses are comparable to or greater than those for proposed Gen-IV fission reactors. In addition, the transmutation products created in the structural materials by the high energy neutrons produced in the DT plasma can profoundly influence the microstructural evolution and mechanical behavior of these materials. Although the workshop addressed issues relevant to both Gen-IV and fusion reactor materials, much of the discussion focused on fusion; the same focus is reflected in this report. Most of the physical models and computational methods

  4. Fission product data for thermal reactors. Final report. Part I. A data set for EPRI-CINDER using ENDF/B-IV

    International Nuclear Information System (INIS)

    England, T.R.; Wilson, W.B.; Stamatelatos, M.G.

    1976-12-01

    A four-group fission-product neutron absorption library, appropriate for use in thermal reactors, is described. All decay parameters are taken from ENDF/B-IV. The absorption cross sections are also processed from ENDF/B-IV files, first into a 154-group set and subsequently collapsed into the 4-group set described in this report. The decay and cross section data were used to form 84 linear chains in the CINDER code format. These chains contain all significant fission products having half-lives exceeding 4 hours--a total of 186 nuclides. A 12-chain set containing one pseudo-chain for use in spatial depletion calculations is described. This set accurately reproduces the aggregate absorption buildup of the 84 chains. This report describes the chains and processed data, results of comparison calculations for various fuels, and a comparison of calculated temporal fission-product absorption buildup with corresponding results from a long-term fuel irradiation and cooling integral experiment

  5. ENDF/B-IV fission-product files: summary of major nuclide data

    International Nuclear Information System (INIS)

    England, T.R.; Schenter, R.E.

    1975-09-01

    The major fission-product parameters [sigma/sub th/, RI, tau/sub 1/2/, E-bar/sub β/, E-bar/sub γ/, E-bar/sub α/, decay and (n,γ) branching, Q, and AWR] abstracted from ENDF/B-IV files for 824 nuclides are summarized. These data are most often requested by users concerned with reactor design, reactor safety, dose, and other sundry studies. The few known file errors are corrected to date. Tabular data are listed by increasing mass number

  6. Nuclear fission today and tomorrow: from renaissance to technological breakthrough (Generation IV)

    International Nuclear Information System (INIS)

    Van Goethem, G.

    2010-01-01

    This paper describes briefly the major scientific and technological challenges related to the very innovative nuclear fission reactor systems to be deployed at the horizon 2040 (called Generation IV). The paper focuses on the benefits of the Generation IV systems, according to criteria or technology goals established at the international level (Generation IV International Forum (GIF)). This goals are drastic improvements on four areas: sustainable development, industrial competitiveness, safety and reliability and proliferation resistance. The focus is on the design objectives and associated research issues that have been agreed upon internationally to meet these four ambitious goals. (author)

  7. Radiation shielding for fission reactors

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Yoshiaki [Tokyo Univ., Nuclear Engineering Research Laboratory, Tokyo (Japan)

    2000-03-01

    Radiation shielding aspects relating fission reactors have been reviewed. Domestic activities in the past five years have been mainly described concerning nuclear data, calculation methods, shielding and skyshine experiments, Advanced Boiling Water Reactor (ABWR), Advanced Pressurized Water Reactor (APWR), High Temperature Engineering Test Reactor (HTTR), Experimental and Prototype Fast Reactors (JOYO, MONJU), Demonstration FBR, core shroud replacement of BWR, and spent fuel transportation cask and vessel. These studies have valuable information in safety and cost reduction issues of fission reactor design for not only existing reactors but also new reactor concepts in the next century. It has been concluded that we should maintain existing shielding technologies and improve these data and methods for coming generations in the next millennium. (author)

  8. Calculation of burnup and power dependence on fission gas released from PWR type reactor fuel element

    International Nuclear Information System (INIS)

    Edy-Sulistyono

    1996-01-01

    Burn up dependence of fission gas released and variation power analysis have been conducted using FEMXI-IV computer code program for Pressure Water Reactor Fuel During steady-state condition. The analysis result shows that the fission gas release is sensitive to the fuel temperature, the increasing of burn up and power in the fuel element under irradiation experiment

  9. HAC and fission reactors

    International Nuclear Information System (INIS)

    Fujiwara, I.; Moriyama, H.; Tachikawa, E.

    1984-01-01

    In the fission process, newly formed fission products undergo hot atom reactions due to their energetic recoil and abnormal positive charge. The hot atom reactions of the fission products are usually accompanied by secondary effects such as radiation damage, especially in condensed phase. For reactor safety it is valuable to know the chemical behaviour and the release behaviour of these radioactive fission products. Here, the authors study the chemical behaviour and the release behaviour of the fission products from the viewpoint of hot atom chemistry (HAC). They analyze the experimental results concerning fission product behaviour with the help of the theories in HAC and other neighboring fields such as radiation chemistry. (Auth.)

  10. Structural materials issues for the next generation fission reactors

    Science.gov (United States)

    Chant, I.; Murty, K. L.

    2010-09-01

    Generation-IV reactor design concepts envisioned thus far cater to a common goal of providing safer, longer lasting, proliferation-resistant, and economically viable nuclear power plants. The foremost consideration in the successful development and deployment of Gen-W reactor systems is the performance and reliability issues involving structural materials for both in-core and out-of-core applications. The structural materials need to endure much higher temperatures, higher neutron doses, and extremely corrosive environments, which are beyond the experience of the current nuclear power plants. Materials under active consideration for use in different reactor components include various ferritic/martensitic steels, austenitic stainless steels, nickel-base superalloys, ceramics, composites, etc. This article addresses the material requirements for these advanced fission reactor types, specifically addressing structural materials issues depending on the specific application areas.

  11. Roles of plasma neutron source reactor in development of fusion reactor engineering: Comparison with fission reactor engineering

    International Nuclear Information System (INIS)

    Hirayama, Shoichi; Kawabe, Takaya

    1995-01-01

    The history of development of fusion power reactor has come to a turning point, where the main research target is now shifting from the plasma heating and confinement physics toward the burning plasma physics and reactor engineering. Although the development of fusion reactor system is the first time for human beings, engineers have experience of development of fission power reactor. The common feature between them is that both are plants used for the generation of nuclear reactions for the production of energy, nucleon, and radiation on an industrial scale. By studying the history of the development of the fission reactor, one can find the existence of experimental neutron reactors including irradiation facilities for fission reactor materials. These research neutron reactors played very important roles in the development of fission power reactors. When one considers the strategy of development of fusion power reactors from the points of fusion reactor engineering, one finds that the fusion neutron source corresponds to the neutron reactor in fission reactor development. In this paper, the authors discuss the roles of the plasma-based neutron source reactors in the development of fusion reactor engineering, by comparing it with the neutron reactors in the history of fission power development, and make proposals for the strategy of the fusion reactor development. 21 refs., 6 figs

  12. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    International Nuclear Information System (INIS)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed

  13. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

  14. Material challenges for the next generation of fission reactor systems

    International Nuclear Information System (INIS)

    Buckthorpe, Derek

    2010-01-01

    The new generation of fission reactor systems wil require the deployment and construction of a series of advanced water cooled reactors as part of a package of measures to meet UK and European energy needs and to provide a near term non-fossil fuel power solution that addresses CO 2 emission limits. In addition new longer term Generation IV reactor tye systems are being developed and evaluated to enhance safety, reliability, sustainability economics and proliferation resistance requirements and to meet alternative energy applications (outside of electricity generation) such as process heat and large scale hydrogen generation. New fission systems will impose significant challenges on materials supply and development. In the near term, because of the need to 'gear up' to large scale construction after decades of industrial hibernation/contraction and, in the longer term, because of the need for materials to operate under more challenging environments requiring the deployment and development of new alternative materials not yet established to an industrial stage. This paper investigates the materials challenges imposed by the new Generation III+ and Generation IV systems. These include supply and fabrication issues, development of new high temperature alloys and non-metallic materials, the use of new methods of manufacture and the best use of currently available resources and minerals. Recommendations are made as to how these materials challenges might be met and how governments, industry, manufacturers and researchers can all play their part. (orig.)

  15. Material challenges for the next generation of fission reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Buckthorpe, Derek [AMEC, Knutsford, Cheshire (United Kingdom)

    2010-07-01

    The new generation of fission reactor systems wil require the deployment and construction of a series of advanced water cooled reactors as part of a package of measures to meet UK and European energy needs and to provide a near term non-fossil fuel power solution that addresses CO{sub 2} emission limits. In addition new longer term Generation IV reactor tye systems are being developed and evaluated to enhance safety, reliability, sustainability economics and proliferation resistance requirements and to meet alternative energy applications (outside of electricity generation) such as process heat and large scale hydrogen generation. New fission systems will impose significant challenges on materials supply and development. In the near term, because of the need to 'gear up' to large scale construction after decades of industrial hibernation/contraction and, in the longer term, because of the need for materials to operate under more challenging environments requiring the deployment and development of new alternative materials not yet established to an industrial stage. This paper investigates the materials challenges imposed by the new Generation III+ and Generation IV systems. These include supply and fabrication issues, development of new high temperature alloys and non-metallic materials, the use of new methods of manufacture and the best use of currently available resources and minerals. Recommendations are made as to how these materials challenges might be met and how governments, industry, manufacturers and researchers can all play their part. (orig.)

  16. Utilization of fission reactors for fusion engineering testing

    International Nuclear Information System (INIS)

    Deis, G.A.; Miller, L.G.

    1985-01-01

    Fission reactors can be used to conduct some of the fusion nuclear engineering tests identified in the FINESSE study. To further define the advantages and disadvantages of fission testing, the technical and programmatic constraints on this type of testing are discussed here. This paper presents and discusses eight key issues affecting fission utilization. Quantitative comparisons with projected fusion operation are made to determine the technical assets and limitations of fission testing. Capabilities of existing fission reactors are summarized and compared with technical needs. Conclusions are then presented on the areas where fission testing can be most useful

  17. The behavior of fission products during nuclear rocket reactor tests

    International Nuclear Information System (INIS)

    Bokor, P.C.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    Fission product release from nuclear rocket propulsion reactor fuel is an important consideration for nuclear rocket development and application. Fission product data from the last six reactors of the Rover program are collected in this paper to provide as basis for addressing development and testing issues. Fission product loss from the fuel will depend on fuel composition and reactor design and operating parameters. During ground testing, fission products can be contained downstream of the reactor. The last Rover reactor tested, the Nuclear Furnance, was mated to an effluent clean-up system that was effective in preventing the discharge of fission products into the atmosphere

  18. Fission rate measurements in fuel plate type assembly reactor cores

    International Nuclear Information System (INIS)

    Rogers, J.W.

    1988-01-01

    The methods, materials and equipment have been developed to allow extensive and precise measurement of fission rate distributions in water moderated, U-Al fuel plate assembly type reactor cores. Fission rate monitors are accurately positioned in the reactor core, the reactor is operated at a low power for a short time, the fission rate monitors are counted with detectors incorporating automated sample changers and the measurements are converted to fission rate distributions. These measured fission rate distributions have been successfully used as baseline information related to the operation of test and experimental reactors with respect to fission power and distribution, fuel loading and fission experiments for approximately twenty years at the Idaho National Engineering Laboratory (INEL). 7 refs., 8 figs

  19. The LOFA analysis of fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Yu, Z.-C.; Xie, H.

    2014-01-01

    The fusion-fission hybrid energy reactor can produce energy, breed nuclear fuel, and handle the nuclear waste, etc, with the fusion neutron source striking the subcritical blanket. The passive safety system, consisting of passive residual heat removal system, passive safety injection system and automatic depressurization system, was adopted into the fusion-fission hybrid energy reactor in this paper. Modeling and nodalization of primary loop, passive core cooling system and partial secondary loop of the fusion-fission hybrid energy reactor using RELAP5 were conducted and LOFA (Loss of Flow Accident) was analyzed. The results of key transient parameters indicated that the PRHRs could mitigate the accidental consequence of LOFA effectively. It is also concluded that it is feasible to apply the passive safety system concept to fusion-fission hybrid energy reactor. (author)

  20. Transient coupled calculations of the Molten Salt Fast Reactor using the Transient Fission Matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Laureau, A., E-mail: laureau.axel@gmail.com; Heuer, D.; Merle-Lucotte, E.; Rubiolo, P.R.; Allibert, M.; Aufiero, M.

    2017-05-15

    Highlights: • Neutronic ‘Transient Fission Matrix’ approach coupled to the CFD OpenFOAM code. • Fission Matrix interpolation model for fast spectrum homogeneous reactors. • Application for coupled calculations of the Molten Salt Fast Reactor. • Load following, over-cooling and reactivity insertion transient studies. • Validation of the reactor intrinsic stability for normal and accidental transients. - Abstract: In this paper we present transient studies of the Molten Salt Fast Reactor (MSFR). This generation IV reactor is characterized by a liquid fuel circulating in the core cavity, requiring specific simulation tools. An innovative neutronic approach called “Transient Fission Matrix” is used to perform spatial kinetic calculations with a reduced computational cost through a pre-calculation of the Monte Carlo spatial and temporal response of the system. Coupled to this neutronic approach, the Computational Fluid Dynamics code OpenFOAM is used to model the complex flow pattern in the core. An accurate interpolation model developed to take into account the thermal hydraulics feedback on the neutronics including reactivity and neutron flux variation is presented. Finally different transient studies of the reactor in normal and accidental operating conditions are detailed such as reactivity insertion and load following capacities. The results of these studies illustrate the excellent behavior of the MSFR during such transients.

  1. Transient coupled calculations of the Molten Salt Fast Reactor using the Transient Fission Matrix approach

    International Nuclear Information System (INIS)

    Laureau, A.; Heuer, D.; Merle-Lucotte, E.; Rubiolo, P.R.; Allibert, M.; Aufiero, M.

    2017-01-01

    Highlights: • Neutronic ‘Transient Fission Matrix’ approach coupled to the CFD OpenFOAM code. • Fission Matrix interpolation model for fast spectrum homogeneous reactors. • Application for coupled calculations of the Molten Salt Fast Reactor. • Load following, over-cooling and reactivity insertion transient studies. • Validation of the reactor intrinsic stability for normal and accidental transients. - Abstract: In this paper we present transient studies of the Molten Salt Fast Reactor (MSFR). This generation IV reactor is characterized by a liquid fuel circulating in the core cavity, requiring specific simulation tools. An innovative neutronic approach called “Transient Fission Matrix” is used to perform spatial kinetic calculations with a reduced computational cost through a pre-calculation of the Monte Carlo spatial and temporal response of the system. Coupled to this neutronic approach, the Computational Fluid Dynamics code OpenFOAM is used to model the complex flow pattern in the core. An accurate interpolation model developed to take into account the thermal hydraulics feedback on the neutronics including reactivity and neutron flux variation is presented. Finally different transient studies of the reactor in normal and accidental operating conditions are detailed such as reactivity insertion and load following capacities. The results of these studies illustrate the excellent behavior of the MSFR during such transients.

  2. Fission gas behaviour in water reactor fuels

    International Nuclear Information System (INIS)

    2002-01-01

    During irradiation, nuclear fuel changes volume, primarily through swelling. This swelling is caused by the fission products and in particular by the volatile ones such as krypton and xenon, called fission gas. Fission gas behaviour needs to be reliably predicted in order to make better use of nuclear fuel, a factor which can help to achieve the economic competitiveness required by today's markets. These proceedings communicate the results of an international seminar which reviewed recent progress in the field of fission gas behaviour in light water reactor fuel and sought to improve the models used in computer codes predicting fission gas release. State-of-the-art knowledge is presented for both uranium-oxide and mixed-oxide fuels loaded in water reactors. (author)

  3. Photofission observations in reactor environments using selected fission-product yields

    International Nuclear Information System (INIS)

    Gold, R.; Ruddy, F.H.; Roberts, J.H.

    1982-01-01

    A new method for the observation of photofission in reactor environments is advanced. It is based on the in-situ observation of fission product yield. In fact, at a given in-situ reactor location, the fission product yield is simply a weighted linear combination of the photofission product yield, Y/sub gamma/, and the neutron induced fission product yield, Y/sub n. The weight factors arising in this linear combination are the photofission fraction and neutron induced fission fraction, respectively. This method can be readily implemented with established techniques for measuring in-situ reactor fission product yield. For example, one can use the method based on simultaneous irradiation of radiometric (RM) and solid state track recorder (SSTR) fission monitors. The sensitivity and accuracy and current knowledge of fission product yields. Unique advantages of this method for reactor applications are emphasized

  4. Updated comparison of economics of fusion reactors with advanced fission reactors

    International Nuclear Information System (INIS)

    Delene, J.G.

    1990-01-01

    The projected cost of electricity (COE) for fusion is compared with that from current and advanced nuclear fission and coal-fired plants. Fusion cost models were adjusted for consistency with advanced fission plants and the calculational methodology and cost factors follow guidelines recommended for cost comparisons of advanced fission reactors. The results show COEs of about 59--74 mills/kWh for the fusion designs considered. In comparison, COEs for future fission reactors are estimated to be in the 43--54 mills/kWh range with coal-fired plant COEs of about 53--69 mills/kWh ($2--3/GJ coal). The principal cost driver for the fusion plants relative to fission plants is the fusion island cost. Although the estimated COEs for fusion are greater than those for fission or coal, the costs are not so high as to preclude fusion's competitiveness as a safe and environmentally sound alternative

  5. Thermal Energetic Reactor with High Reproduction of Fission Materials

    International Nuclear Information System (INIS)

    Kotov, V.M.

    2012-01-01

    Existing thermal reactors are energy production scale limited because of low portion of raw uranium usage. Fast reactors are limited by reprocessing need of huge mass of raw uranium at the initial stage of development. The possibility of development of thermal reactors with high fission materials reproduction, which solves the problem, is discussed here. Neutron losses are decreased, uranium-thorium fuel with artificial fission materials equilibrium regime is used, additional in-core and out-core neutron sources are used for supplying of high fission materials reproduction. Liquid salt reactors can use dynamic loading regime for this purpose. Preferable construction is channel type reactor with heavy water moderator. Good materials for fuel element shells and channel walls are zirconium alloys enriched by 90Zr. Water cooled reactors with usage 12% of raw uranium and liquid metal cooled reactors with usage 25% of raw uranium are discussed. Reactors with additional neutron sources obtain full usage of raw uranium with small additional energy expenses. On the base of thermal reactors with high fission materials reproduction world atomic power engineering development supplying higher power and requiring smaller speed of raw uranium mining, than in the variant with fast reactors, is possible.

  6. Matching of dense plasma focus devices with fission reactors

    International Nuclear Information System (INIS)

    Harms, A.A.; Heindler, M.

    1978-01-01

    The potential role of dense plasma focus devices as compact neutron sources for fissile fuel breeding in conjunction with existing fission reactors is considered. It is found that advanced plasma focus devices can be used effectively in conjunction with neutronically efficient fission reactors to constitute ''self-sufficient'' breeders. Correlations among the various parameters such as the power output and conversion ratio of the fission reactor with the neutron yield and capacitor bank energy of the dense plasma focus device are presented and discussed

  7. Mirror hybrid (fusion--fission) reactor

    International Nuclear Information System (INIS)

    Bender, D.J.; Lee, J.D.; Neef, W.S.; Devoto, R.S.; Galloway, T.R.; Fink, J.H.; Schultz, K.R.; Culver, D.; Rao, S.

    1977-10-01

    The reference mirror hybrid reactor design performed by LLL and General Atomic is summarized. The reactor parameters have been chosen to minimize the cost of producing fissile fuel for consumption in fission power reactors. As in the past, we have emphasized the use of existing technology where possible and a minimum extrapolation of technology otherwise. The resulting reactor may thus be viewed as a comparatively near-term goal of the fusion program, and we project improved performance for the hybrid in the future as more advanced technology becomes available

  8. Fission product release from SLOWPOKE-2 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Harnden-Gillis, A M.C. [Queen` s Univ., Kingston, ON (Canada). Dept. of Physics

    1994-12-31

    Increasing radiation fields at several SLOWPOKE-2 reactors fuelled with highly enriched uranium aluminum alloy fuel have begun to interfere with the daily operation of these reactors. To investigate this phenomenon, samples of reactor container water and gas from the headspace were obtained at four SLOWPOKE-2 reactor facilities and examined by gamma ray spectroscopy methods. These radiation fields are due to the circulation of fission products within the reactor container vessel. The most likely source of the fission product release is an area of uranium-bearing material exposed to the coolant at the end weld line which originated at the time of fuel fabrication. The results of this study are compared with observations from an underwater visual examination of one core and the metallographic examination of archived fuel elements. 19 refs., 4 tabs., 8 figs.

  9. Innovative fission reactors for this century

    International Nuclear Information System (INIS)

    Minguez, E.

    2007-01-01

    It is well known that global trends indicate a rebirth of nuclear energy due to several items: the climate change and the use of energies that emits CO 2 , the cost and dependence of gas and oil, the new innovative reactors which are competitive, safer, and sustainable and can support the Kyoto Protocol. The Advanced Reactors have safer systems than those developed in the Generation II, which demonstrates that are sustainable for the present and nuclear industry has also developed new concepts for the future which also will be sustainable. Now the new power plants that have being constructed are classified in the Generation III. Several units of this technology are in operation in Japan and other countries of the Pacific. Europe is now constructing the first unit in Finland (Olkilouto) with European technology: the European Pressurized Reactor (EPR). France has announced the beginning of the construction of an EPR in Flamanville next year. In 2000, several countries with advanced nuclear technology established the Generation IV International Forum (GIF) to develop and demonstrate nuclear energy systems that offer advantages in the following areas: sustainability, economics, safety and reliability and proliferation resistance and physical protection. These new systems will be deployed commercially after 2030. Six innovative concepts are under research, and the aim is not only produce electricity, but also hydrogen using the operational conditions of several concepts. Developed countries with NPPs in operation have strategies for the future of the nuclear energy. For the short term is to extend the operation of the NPPs until 60 years, or alternatively construction of new units of Generation III, to substitute those closed for decommissioning, keeping the percentage of contribution to the electricity generated. Between the period 2030-50, the solution is to operate the new innovative systems of the Generation IV, which uses the passive concept, and in the second part

  10. Materials for generation-IV nuclear reactors

    International Nuclear Information System (INIS)

    Alvarez, M. G.

    2009-01-01

    Materials science and materials development are key issues for the implementation of innovative reactor systems such as those defined in the framework of the Generation IV. Six systems have been selected for Generation IV consideration: gas-cooled fast reactor, lead-cooled fast reactor, molten salt-cooled reactor, sodium-cooled fast reactor, supercritical water-cooled reactor, and very high temperature reactor. The structural materials need to resist much higher temperatures, higher neutron doses and extremely corrosive environment, which are beyond the experience of the current nuclear power plants. For this reason, the first consideration in the development of Generation-IV concepts is selection and deployment of materials that operate successfully in the aggressive operating environments expected in the Gen-IV concepts. This paper summarizes the Gen-IV operating environments and describes the various candidate materials under consideration for use in different structural applications. (author)

  11. Fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-01-01

    This chapter discusses the range of characteristics attainable from hybrid reactor blankets; blanket design considerations; hybrid reactor designs; alternative fuel hybrid reactors; multi-purpose hybrid reactors; and hybrid reactors and the energy economy. Hybrid reactors are driven by a fusion neutron source and include fertile and/or fissile material. The fusion component provides a copious source of fusion neutrons which interact with a subcritical fission component located adjacent to the plasma or pellet chamber. Fissile fuel and/or energy are the main products of hybrid reactors. Topics include high F/M blankets, the fissile (and tritium) breeding ratio, effects of composition on blanket properties, geometrical considerations, power density and first wall loading, variations of blanket properties with irradiation, thermal-hydraulic and mechanical design considerations, safety considerations, tokamak hybrid reactors, tandem-mirror hybrid reactors, inertial confinement hybrid reactors, fusion neutron sources, fissile-fuel and energy production ability, simultaneous production of combustible and fissile fuels, fusion reactors for waste transmutation and fissile breeding, nuclear pumped laser hybrid reactors, Hybrid Fuel Factories (HFFs), and scenarios for hybrid contribution. The appendix offers hybrid reactor fundamentals. Numerous references are provided

  12. The use of averages and other summation quantities in the testing of evaluated fission product yield and decay data. Applications to ENDF/B(IV)

    International Nuclear Information System (INIS)

    Walker, W.H.

    1976-01-01

    Averages of some fission product properties can be obtained by multiplying the fission product yield for each fission product by the value of the property (e.g. mass, atomic number, mass defect) for that fission product and summing all significant contributions. These averages can be used to test the reliability of the yield set or provide useful data for reactor calculations. The report gives the derivation of these averages and discusses their application using the ENDF/B(IV) fission product library. The following quantities are treated here: the number of fission products per fission ΣYsub(i); the average mass number and the average number of neutrons per fission; the average atomic number of the stable fission products and the average number of β-decays per fission; the average mass defect of the stable fission products and the total energy release per fission; the average decay energy per fission (beta, gamma and anti-neutrino); the average β-decay energy per fission; individual and group-averaged delayed neutron emission; the total yield for each fission product element. Wherever it is meaningful to do so, a sum is subdivided into its light and heavy mass components. The most significant differences between calculated values based on ENDF/B(IV) and measurements are the β and γ decay energies for 235 U thermal fission and delayed neutron yields for other fissile nuclides, most notably 238 U. (author)

  13. Systems study of tokamak fusion--fission reactors

    International Nuclear Information System (INIS)

    Tenney, F.H.; Bathke, C.G.; Price, W.G. Jr.; Bohlke, W.H.; Mills, R.G.; Johnson, E.F.; Todd, A.M.M.; Buchanan, C.H.; Gralnick, S.L.

    1978-11-01

    This publication reports the results of a two to three year effort at a systematic analysis of a wide variety of tokamak-driven fissioning blanket reactors, i.e., fusion--fission hybrids. It addresses the quantitative problems of determining the economically most desirable mix of the two products: electric power and fissionable fuel and shows how the price of electric power can be minimized when subject to a variety of constraints. An attempt has been made to avoid restricting assumptions, and the result is an optimizing algorithm that operates in a six-dimensional parameter space. Comparisons are made on sets of as many as 100,000 distinct machine models, and the principal results of the study have been derived from the examination of several hundred thousand possible reactor configurations

  14. Preliminary neutronics calculation of fusion-fission hybrid reactor breeding spent fuel assembly

    International Nuclear Information System (INIS)

    Ma Xubo; Chen Yixue; Gao Bin

    2013-01-01

    The possibility of using the fusion-fission hybrid reactor breeding spent fuel in PWR was preliminarily studied in this paper. According to the fusion-fission hybrid reactor breeding spent fuel characteristics, PWR assembly including fusion-fission hybrid reactor breeding spent fuel was designed. The parameters such as fuel temperature coefficient, moderator temperature coefficient and their variation were investigated. Results show that the neutron properties of uranium-based assembly and hybrid reactor breeding spent fuel assembly are similar. The design of this paper has a smaller uniformity coefficient of power at the same fissile isotope mass percentage. The results will provide technical support for the future fusion-fission hybrid reactor and PWR combined with cycle system. (authors)

  15. An optimized symbiotic fusion and molten-salt fission reactor system

    International Nuclear Information System (INIS)

    Blinkin, V.L.; Novikov, V.M.

    A symbiotic fusion-fission reactor system which breeds nuclear fuel is discussed. In the blanket of the controlled thermonuclear reactor (CTR) uranium-233 is generated from thorium, which circulates in the form of ThF 4 mixed with molten sodium and beryllium fluorides. The molten-salt fission reactor (MSR) burns up the uranium-233 and generates tritium for the fusion reactor from lithium, which circulates in the form of LiF mixed with BeF 2 and 233 UF 4 through the MSR core. With a CTR-MSR thermal power ratio of 1:11 the system can produce electrical energy and breed fuel with a doubling time of 4-5 years. The system has the following special features: (1) Fuel reprocessing is much simpler and cheaper than for contemporary fission reactors; reprocessing consists simply in continuous removal of 233 U from the salt circulating in the CTR blanket by the fluorination method and removal of xenon from the MSR fuel salt by gas scavenging; the MSR fuel salt is periodically exchanged for fresh salt and the 233 U is then removed from it; (2) Tritium is produced in the fission reactor, which is a much simpler system than the fusion reactor; (3) The CTR blanket is almost ''clean''; no tritium is produced in it and fission fragment activity does not exceed the activity induced in the structural materials; (4) Almost all the thorium introduced into the CTR blanket can be used for producing 233 U

  16. Nuclear Power from Fission Reactors. An Introduction.

    Science.gov (United States)

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  17. Space Fission Reactor Structural Materials: Choices Past, Present and Future

    International Nuclear Information System (INIS)

    Busby, Jeremy T.; Leonard, Keith J.

    2007-01-01

    Nuclear powered spacecraft will enable missions well beyond the capabilities of current chemical, radioisotope thermal generator and solar technologies. The use of fission reactors for space applications has been considered for over 50 years, although, structural material performance has often limited the potential performance of space reactors. Space fission reactors are an extremely harsh environment for structural materials with high temperatures, high neutron fields, potential contact with liquid metals, and the need for up to 15-20 year reliability with no inspection or preventative maintenance. Many different materials have been proposed as structural materials. While all materials meet many of the requirements for space reactor service, none satisfy all of them. However, continued development and testing may resolve these issues and provide qualified materials for space fission reactors.

  18. Tritium chemistry in fission and fusion reactors

    International Nuclear Information System (INIS)

    Roth, E.; Masson, M.; Briec, M.

    1986-09-01

    We are interested in the behaviour of tritium inside the solids where it is generated both in the case of fission nuclear reactor fuel elements, and in that of blankets of future fusion reactor. In the first case it is desirable to be able to predict whether tritium will be found in the hulls or in the uranium oxide, and under what chemical form, in order to take appropriate steps for it's removal in reprocessing plants. In fusion reactors breeding large amounts of tritium and burning it in the plasma should be accomplished in as short a cycle as possible in order to limit inventories that are associated with huge activities. Mastering the chemistry of every step is therefore essential. Amounts generated are not of the same order of magnitude in the two cases studied. Ternary fissions produce about 66 10 13 Bq (18 000 Ci) per year of tritium in a 1000 MWe fission generator, i.e., about 1.8 10 10 Bq (0.5 Ci) per day per ton of fuel

  19. Multi-scale approach to the modeling of fission gas discharge during hypothetical loss-of-flow accident in gen-IV sodium fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Behafarid, F.; Shaver, D. R. [Rensselaer Polytechnic Inst., Troy, NY (United States); Bolotnov, I. A. [North Carolina State Univ., Raleigh, NC (United States); Jansen, K. E. [Univ. of Colorado, Boulder, CO (United States); Antal, S. P.; Podowski, M. Z. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2012-07-01

    The required technological and safety standards for future Gen IV Reactors can only be achieved if advanced simulation capabilities become available, which combine high performance computing with the necessary level of modeling detail and high accuracy of predictions. The purpose of this paper is to present new results of multi-scale three-dimensional (3D) simulations of the inter-related phenomena, which occur as a result of fuel element heat-up and cladding failure, including the injection of a jet of gaseous fission products into a partially blocked Sodium Fast Reactor (SFR) coolant channel, and gas/molten sodium transport along the coolant channels. The computational approach to the analysis of the overall accident scenario is based on using two different inter-communicating computational multiphase fluid dynamics (CMFD) codes: a CFD code, PHASTA, and a RANS code, NPHASE-CMFD. Using the geometry and time history of cladding failure and the gas injection rate, direct numerical simulations (DNS), combined with the Level Set method, of two-phase turbulent flow have been performed by the PHASTA code. The model allows one to track the evolution of gas/liquid interfaces at a centimeter scale. The simulated phenomena include the formation and breakup of the jet of fission products injected into the liquid sodium coolant. The PHASTA outflow has been averaged over time to obtain mean phasic velocities and volumetric concentrations, as well as the liquid turbulent kinetic energy and turbulence dissipation rate, all of which have served as the input to the core-scale simulations using the NPHASE-CMFD code. A sliding window time averaging has been used to capture mean flow parameters for transient cases. The results presented in the paper include testing and validation of the proposed models, as well the predictions of fission-gas/liquid-sodium transport along a multi-rod fuel assembly of SFR during a partial loss-of-flow accident. (authors)

  20. Utilization of fast reactor excess neutrons for burning long-lived fission products

    International Nuclear Information System (INIS)

    Kawashima, K.; Kobayashi, K.; Kaneto, K.

    1995-01-01

    An evaluation is made on a large MOX fuel fast reactor's capability of burning long lived fission product Tc-99, which dominates the long term radiotoxicity of the high level radioactive waste. The excess neutrons generated in the fast reactor core are utilized to transmute Tc-99 to stable isotopes due to neutron capture reaction. The fission product target assemblies which consist of Tc-99 are charged to the reactor core periphery. The fission product target neutrons are moderated to a great deal to pursue the possibility of enhancing the transmutation rate. Any impacts of loading the fission product target assemblies on the core nuclear performances are assessed. A long term Tc-99 accumulation scenario is considered in the mix of fission product burner fast reactor and non-burner LWRs. (author)

  1. Some safety studies for conceptual fusion--fission hybrid reactors. Final report

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Okrent, D.

    1978-07-01

    The objective of this study was to make a preliminary examination of some potential safety questions for conceptual fusion-fission hybrid reactors. The study and subsequent analysis was largely based upon reference to one design, a conceptual mirror fusion-fission reactor, operating on the deuterium-tritium plasma fusion fuel cycle and the uranium-plutonium fission fuel cycle. The blanket is a fast-spectrum, uranium carbide, helium cooled, subcritical reactor, optimized for the production of fissile fuel. An attempt was made to generalize the results wherever possible

  2. Reference reactor module for NASA's lunar surface fission power system

    International Nuclear Information System (INIS)

    Poston, David I.; Kapernick, Richard J.; Dixon, David D.; Werner, James; Qualls, Louis; Radel, Ross

    2009-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO 2 -fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.

  3. Measurements of actinide-fission product yields in Caliban and Prospero metallic core reactor fission neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P.; Authier, N. [CEA, Centre de Valduc, 21120 Is-sur-Tille (France); Laurec, J.; Bauge, E.; Granier, T. [CEA, Centre DIF, 91297 Arpajon (France)

    2011-07-01

    In the 1970's and early 1980's, an experimental program was performed on the facilities of the CEA Valduc Research Center to measure several actinide-fission product yields. Experiments were, in particular, completed on the Caliban and Prospero metallic core reactors to study fission-neutron-induced reactions on {sup 233}U, {sup 235}U, and {sup 239}Pu. Thick actinide samples were irradiated and the number of nuclei of each fission product was determined by gamma spectrometry. Fission chambers were irradiated simultaneously to measure the numbers of fissions in thin deposits of the same actinides. The masses of the thick samples and the thin deposits were determined by mass spectrometry and alpha spectrometry. The results of these experiments will be fully presented in this paper for the first time. A description of the Caliban and Prospero reactors, their characteristics and performances, and explanations about the experimental approach will also be given in the article. A recent work has been completed to analyze and reinterpret these measurements and particularly to evaluate the associated uncertainties. In this context, calculations have also been carried out with the Monte Carlo transport code Tripoli-4, using the published benchmarked Caliban description and a three-dimensional model of Prospero, to determine the average neutron energy causing fission. Simulation results will be discussed in this paper. Finally, new fission yield measurements will be proposed on Caliban and Prospero reactors to strengthen the results of the first experiments. (authors)

  4. Conceptual Analysis of Fission Fragment Magnetic Collimator Reactors

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel V.; Parish, Theodore A.

    2002-01-01

    As part of the current research work within the US DOE NERI Direct Electricity Conversion (DEC) Project on methods for utilizing direct electricity conversion in nuclear reactors, a detailed study of a Fission Fragment Magnetic Collimator Reactor (FFMCR) has been performed. The FFMCR concept is an advanced DEC system that combines advantageous design solutions proposed for application in both fission and fusion reactors. The present study was focused on determining the electrical efficiency and other important operational aspects of the FFMCR concept. In principle, acceptable characteristics have been demonstrated, and results obtained are presented in the paper. Technological visibility of the FFMCR concept and required further design development are discussed. Preliminary characteristics of the promising design are outlined. (authors)

  5. Materials compatibility considerations for a fusion-fission hybrid reactor design

    International Nuclear Information System (INIS)

    DeVan, J.H.; Tortorelli, P.F.

    1983-01-01

    The Tandem Mirror Hybrid Reactor is a fusion reactor concept that incorporates a fission-suppressed breeding blanket for the production of 233 U to be used in conventional fission power reactors. The present paper reports on compatibility considerations related to the blanket design. These considerations include solid-solid interactions and liquid metal corrosion. Potential problems are discussed relative to the reference blanket operating temperature (490 0 C) and the recycling time of breeding materials (<1 year)

  6. Natural fission reactors - the Oklo phenomenon

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Overview describes the discovery of the site, location of the reactors and site geology and discusses the permanence of fission products, nuclear reaction control mechanisms and trace concentrations of elements that act as poisons. (Author)

  7. Fission product behavior in the Molten Salt Reactor Experiment

    International Nuclear Information System (INIS)

    Compere, E.L.; Kirslis, S.S.; Bohlmann, E.G.; Blankenship, F.F.; Grimes, W.R.

    1975-10-01

    Essentially all the fission product data for numerous and varied samples taken during operation of the Molten Salt Reactor Experiment or as part of the examination of specimens removed after particular phases of operation are reported, together with the appropriate inventory or other basis of comparison, and relevant reactor parameters and conditions. Fission product behavior fell into distinct chemical groups. Evidence for fission product behavior during operation over a period of 26 months with 235 U fuel (more than 9000 effective full-power hours) was consistent with behavior during operation using 233 U fuel over a period of about 15 months (more than 5100 effective full-power hours)

  8. Fission product chemistry in severe nuclear reactor accidents

    International Nuclear Information System (INIS)

    Nichols, A.L.

    1990-09-01

    A specialist's meeting was held at JRC-Ispra from 15 to 17 January 1990 to review the current understanding of fission-product chemistry during severe accidents in light water reactors. Discussions focussed on the important chemical phenomena that could occur across the wide range of conditions of a damaged nuclear plant. Recommendations for future chemistry work were made covering the following areas: (a) fuel degradation and fission-product release, (b) transport and attenuation processes in the reactor coolant system, (c) containment chemistry (iodine behaviour and core-concrete interactions)

  9. On the safety of conceptual fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Okrent, D.; Badham, V.; Caspi, S.; Chan, C.K.; Ferrell, W.J.; Frederking, T.H.K.; Grzesik, J.; Lee, J.Y.; McKone, T.E.; Pomraning, G.C.; Ullman, A.Z.; Ting, T.D.; Kim, Y.I.

    1979-01-01

    A preliminary examination of some potential safety questions for conceptual fusion-fission hybrid reactors is presented in this paper. The study and subsequent analysis was largely based upon one design, a conceptual mirror fusion-fission reactor, operating on the deuterium-tritium plasma fusion fuel cycle and the uranium-plutonium fission fuel cycle. The major potential hazards were found to be: (a) fission products, (b) actinide elements, (c) induced radioactivity, and (d) tritium. As a result of these studies, it appears that highly reliable and even redundent decay heat removal must be provided. Loss of the ability to remove decay heat results in melting of fuel, with ultimate release of fission products and actinides to the containment. In addition, the studies indicate that blankets can be designed which will remain subcritical under extensive changes in both composition and geometry. Magnet safety and the effects of magnetic fields on thermal parameters were also considered. (Auth.)

  10. A Review of Previous Research in Direct Energy Conversion Fission Reactors

    International Nuclear Information System (INIS)

    DUONG, HENRY; POLANSKY, GARY F.; SANDERS, THOMAS L.; SIEGEL, MALCOLM D.

    1999-01-01

    From the earliest days of power reactor development, direct energy conversion was an obvious choice to produce high efficiency electric power generation. Directly capturing the energy of the fission fragments produced during nuclear fission avoids the intermediate conversion to thermal energy and the efficiency limitations of classical thermodynamics. Efficiencies of more than 80% are possible, independent of operational temperature. Direct energy conversion fission reactors would possess a number of unique characteristics that would make them very attractive for commercial power generation. These reactors would be modular in design with integral power conversion and operate at low pressures and temperatures. They would operate at high efficiency and produce power well suited for long distance transmission. They would feature large safety margins and passively safe design. Ideally suited to production by advanced manufacturing techniques, direct energy conversion fission reactors could be produced more economically than conventional reactor designs. The history of direct energy conversion can be considered as dating back to 1913 when Moseleyl demonstrated that charged particle emission could be used to buildup a voltage. Soon after the successful operation of a nuclear reactor, E.P. Wigner suggested the use of fission fragments for direct energy conversion. Over a decade after Wigner's suggestion, the first theoretical treatment of the conversion of fission fragment kinetic energy into electrical potential appeared in the literature. Over the ten years that followed, a number of researchers investigated various aspects of fission fragment direct energy conversion. Experiments were performed that validated the basic physics of the concept, but a variety of technical challenges limited the efficiencies that were achieved. Most research in direct energy conversion ceased in the US by the late 1960s. Sporadic interest in the concept appears in the literature until this

  11. Measurement of fission cross-section of actinides at n_TOF for advanced nuclear reactors

    CERN Document Server

    Calviani, Marco; Montagnoli, G; Mastinu, P

    2009-01-01

    The subject of this thesis is the determination of high accuracy neutron-induced fission cross-sections of various isotopes - all of which radioactive - of interest for emerging nuclear technologies. The measurements had been performed at the CERN neutron time-of-flight facility n TOF. In particular, in this work, fission cross-sections on 233U, the main fissile isotope of the Th/U fuel cycle, and on the minor actinides 241Am, 243Am and 245Cm have been analyzed. Data on these isotopes are requested for the feasibility study of innovative nuclear systems (ADS and Generation IV reactors) currently being considered for energy production and radioactive waste transmutation. The measurements have been performed with a high performance Fast Ionization Chamber (FIC), in conjunction with an innovative data acquisition system based on Flash-ADCs. The first step in the analysis has been the reconstruction of the digitized signals, in order to extract the information required for the discrimination between fission fragm...

  12. Advantages of Production of New Fissionable Nuclides for the Nuclear Power Industry in Hybrid Fusion-Fission Reactors

    Science.gov (United States)

    Tsibulskiy, V. F.; Andrianova, E. A.; Davidenko, V. D.; Rodionova, E. V.; Tsibulskiy, S. V.

    2017-12-01

    A concept of a large-scale nuclear power engineering system equipped with fusion and fission reactors is presented. The reactors have a joint fuel cycle, which imposes the lowest risk of the radiation impact on the environment. The formation of such a system is considered within the framework of the evolution of the current nuclear power industry with the dominance of thermal reactors, gradual transition to the thorium fuel cycle, and integration into the system of the hybrid fusion-fission reactors for breeding nuclear fuel for fission reactors. Such evolution of the nuclear power engineering system will allow preservation of the existing structure with the dominance of thermal reactors, enable the reprocessing of the spent nuclear fuel (SNF) with low burnup, and prevent the dangerous accumulation of minor actinides. The proposed structure of the nuclear power engineering system minimizes the risk of radioactive contamination of the environment and the SNF reprocessing facilities, decreasing it by more than one order of magnitude in comparison with the proposed scheme of closing the uranium-plutonium fuel cycle based on the reprocessing of SNF with high burnup from fast reactors.

  13. HLW disposal by fission reactors; calculation of trans-mutation rate and recycle

    International Nuclear Information System (INIS)

    Mulyanto

    1997-01-01

    Transmutation of MA (Minor actinide) and LLFPS (long-lived fission products) into stable nuclide or short-lived isotopes by fission reactors seem to become an alternative technology for HLW disposal. in this study, transmutation rate and recycle calculation were developed in order to evaluate transmutation characteristics of MA and LLFPs in the fission reactors. inventory of MA and LLFPs in the transmutation reactors were determined by solving of criticality equation with 1-D cylindrical geometry of multigroup diffusion equations at the beginning of cycle (BOC). transmutation rate and burn-up was determined by solving of depletion equation. inventory of MA and LLFPs was calculated for 40 years recycle. From this study, it was concluded that characteristics of MA and LLFPs in the transmutation reactors can be evaluated by recycle calculation. by calculation of transmutation rate, performance of fission reactor for transmutation of MA or LLFPs can be discussed

  14. Materials degradation in fission reactors: Lessons learned of relevance to fusion reactor systems

    International Nuclear Information System (INIS)

    Was, Gary S.

    2007-01-01

    The management of materials in power reactor systems has become a critically important activity in assuring the safe, reliable and economical operation of these facilities. Over the years, the commercial nuclear power reactor industry has faced numerous 'surprises' and unexpected occurrences in materials. Mitigation strategies have sometimes solved one problem at the expense of creating another. Other problems have been solved successfully and have motivated the development of techniques to foresee problems before they occur. This paper focuses on three aspects of fission reactor experience that may benefit future fusion systems. The first is identification of parameters and processes that have had a large impact on the behavior of materials in fission systems such as temperature, dose rate, surface condition, gradients, metallurgical variability and effects of the environment. The second is the development of materials performance and failure models to provide a basis for assuring component integrity. Last is the development of proactive materials management programs that identify and pre-empt degradation processes before they can become problems. These aspects of LWR experience along with the growing experience with materials in the more demanding advanced fission reactor systems form the basis for a set of 'lessons learned' to aid in the successful management of materials in fusion reactor systems

  15. Neutronics analysis of water-cooled energy production blanket for a fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Jiang Jieqiong; Wang Minghuang; Chen Zhong; Qiu Yuefeng; Liu Jinchao; Bai Yunqing; Chen Hongli; Hu Yanglin

    2010-01-01

    Neutronics calculations were performed to analyse the parameters of blanket energy multiplication factor (M) and tritium breeding ratio (TBR) in a fusion-fission hybrid reactor for energy production named FDS (Fusion-Driven hybrid System)-EM (Energy Multiplier) blanket. The most significant and main goal of the FDS-EM blanket is to achieve the energy gain of about 1 GWe with self-sustaining tritium, i.e. the M factor is expected to be ∼90. Four different fission materials were taken into account to evaluate M in subcritical blanket: (i) depleted uranium, (ii) natural uranium, (iii) enriched uranium, and (iv) Nuclear Waste (transuranic from 33 000 MWD/MTU PWR (Pressurized Water Reactor) and depleted uranium) oxide. These calculations and analyses were performed using nuclear data library HENDL (Hybrid Evaluated Nuclear Data Library) and a home-developed code VisualBUS. The results showed that the performance of the blanket loaded with Nuclear Waste was most attractive and it could be promising to effectively obtain tritium self-sufficiency and a high-energy multiplication.

  16. Advanced nuclear fuel production by using fission-fusion hybrid reactor

    International Nuclear Information System (INIS)

    Al-Kusayer, T.A.; Sahin, S.; Abdulraoof, M.

    1993-01-01

    Efforts are made at the College of Engineering, King Saud University, Riyadh to lay out the main structure of a prototype experimental fusion and fusion-fission (hybrid) reactor blanket in cylindrical geometry. The geometry is consistent with most of the current fusion and hybrid reactor design concepts in respect of the neutronic considerations. Characteristics of the fusion chamber, fusion neutrons and the blanket are provided. The studies have further shown that 1 GWe fission-fusion reactor can produce up to 957 kg/year which is enough to fuel five light water reactors of comparable power. Fuel production can be increased further. 29 refs

  17. Role of fission-reactor-testing capabilities in the development of fusion technology

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Deis, G.A.; Longhurst, G.R.; Miller, L.G.; Schmunk, R.E.; Takata, M.L.; Watts, K.D.

    1981-01-01

    Testing of fusion materials and components in fission reactors will be increasingly important in the future due to the near-term lack of fusion engineering test devices, and the long-term high demand for testing when fusion reactors become available. Fission testing is capable of filling many gaps in fusion reactor design information, and thus should be aggressively pursued. EG and G Idaho has investigated the application of fission testing in three areas, which are discussed in this paper. First, we investigated radiation damage to magnet insulators. This work is now continuing with the use of an improved test capsule. Second, a study was performed which indicated that a fission-suppressed hybrid blanket module could be effectively tested in a reactor such as the Engineering Test Reactor (ETR), closely reproducing the predicted performance in a fusion environment. Finally, we explored a conceptual design for a fission-based Integrated Test Facility (ITF), which can accommodate entire First Wall/Blanket (FW/B) modules for testing in a nuclear environment, simultaneously satisfying many of the FW/B test requirements. This ITF can provide a cyclic neutron/gamma flux, as well as the necessary module support functions

  18. Chemistry of fission product iodine under nuclear reactor accident conditions

    International Nuclear Information System (INIS)

    Malinauskas, A.P.; Bell, J.T.

    1986-01-01

    The radioisotopes of iodine are generally acknowledged to be the species whose release into the biosphere as a result of a nuclear reactor accident is of the greatest concern. In the course of its release, the fission product is subjected to differing chemical environments; these can alter the physicochemical form of the fission product and thus modify the manner and extent to which release occurs. Both the chemical environments which are characteristic of reactor accidents and their effect in determining physical and chemical form of fission product iodine have been studied extensively, and are reviewed in this report. 76 refs

  19. Transmutation of Tc-99 in fission reactors

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Li, J.M.

    1994-12-01

    Transmutation of Tc-99 in three different types of fission reactors is considered: A heavy water reactor, a fast reactor and a light water reactor. For the first type a CANDU reactor was chosen, for the second one the Superphenix reactor, and for the third one a PWR. The three most promising Tc-99 transmuters are the fast reactor with a moderated subassembly in the inner core, a fast reactor with a non-moderated subassembly in the inner core, and a heavy water reactor with Tc-99 target pins in the moderator between the fuel bundles. Transmutation half lives of 15 to 25 years can be achieved, with yearly transmuted Tc-99 masses of about 100 kg at a thermal reactor power of about 3000 MW. (orig.)

  20. Integral measurement of fission products capture in fast breeder reactors

    International Nuclear Information System (INIS)

    Martin Deidier, Loick.

    1979-12-01

    For the SUPERPHENIX reactor project, it was necessary to know fission products capture with about 10% accuracy in the fast breeder reactor spectra. In this purpose, integral measurements have been carried out on the main separated products by different experimental technics (oscillation, activation and irradiation methods), but particularly on irradiated fuel pins from RAPSODIE and PHENIX reactors in order to directly obtain total effect of fission products. Same tendencies have been observed for both enriched uranium fuel and LMFBR characteristic plutonium fuel. All experimental results have been introduced in CARNAVAL cross section set [fr

  1. Neutronics issues in fusion-fission hybrid reactor design

    International Nuclear Information System (INIS)

    Liu Chengan

    1995-01-01

    The coupled neutron and γ-ray transport equations and nuclear number density equations, and its computer program systems concerned in fusion-fission hybrid reactor design are briefly described. The current status and focal point for coming work of nuclear data used in fusion reactor design are explained

  2. Maintenance of fission and fusion reactors. 10. workshop on fusion reactor engineering

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    This report contains copies of OHP presented at the title meeting. The presented topics are as follows, maintenance of nuclear power plants and ITER, exchange of shroud in BWR type reactors, deterioration of fission and fusion reactor materials, standards of pressure vessels, malfunction diagnosis method with neural network. (J.P.N.)

  3. Thermal Energetic Reactor with High Reproduction of Fission Materials

    Directory of Open Access Journals (Sweden)

    Vladimir M. Kotov

    2012-01-01

    On the base of thermal reactors with high fission materials reproduction world atomic power engineering development supplying higher power and requiring smaller speed of raw uranium mining, than in the variant with fast reactors, is possible.

  4. Brief review of the fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Tenney, F.H.

    1977-01-01

    Much of the conceptual framework of present day fusion-fission hybrid reactors is found in the original work of the early 1950's. Present day motivations for development are quite different. The role of the hybrid reactor is discussed as well as the current activities in the development program

  5. Chemical immobilization of fission products reactive with nuclear reactor components

    International Nuclear Information System (INIS)

    Grossman, L.N.; Kaznoff, A.I.; Clukey, H.V.

    1975-01-01

    This invention teaches a method of immobilizing deleterious fission products produced in nuclear fuel materials during nuclear fission chain reactions through the use of additives. The additives are disposed with the nuclear fuel materials in controlled quantities to form new compositions preventing attack of reactor components, especially nuclear fuel cld, by the deleterious fission products. (Patent Office Record)

  6. Measurement of delayed neutron-emitting fission products in nuclear reactor coolant water during reactor operation

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The method covers the detection and measurement of delayed neutron-emitting fission products contained in nuclear reactor coolant water while the reactor is operating. The method is limited to the measurement of the delayed neutron-emitting bromine isotope of mass 87 and the delayed neutron-emitting iodine isotope of mass 137. The other delayed neutron-emitting fission products cannot be accurately distinguished from nitrogen 17, which is formed under some reactor conditions by neutron irradiation of the coolant water molecules. The method includes a description of significance, measurement variables, interferences, apparatus, sampling, calibration, standardization, sample measurement procedures, system efficiency determination, calculations, and precision

  7. Determination of the fission coefficients in thermal nuclear reactors for antineutrino detection

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Lenilson M. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Cabral, Ronaldo G., E-mail: rgcabral@ime.eb.b [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Anjos, Joao C.C. dos, E-mail: janjos@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Dept. GLN - G

    2011-07-01

    The nuclear reactors in operation periodically need to change their fuel. It is during this process that these reactors are more vulnerable to occurring of several situations of fuel diversion, thus the monitoring of the nuclear installations is indispensable to avoid events of this nature. Considering this fact, the most promissory technique to be used for the nuclear safeguard for the nonproliferation of nuclear weapons, it is based on the detection and spectroscopy of antineutrino from fissions that occur in the nuclear reactors. The detection and spectroscopy of antineutrino, they both depend on the single contribution for the total number of fission of each actinide in the core reactor, these contributions receive the name of fission coefficients. The goal of this research is to show the computational and mathematical modeling used to determinate these coefficients for PWR reactors. (author)

  8. Method of fission product beta spectra measurements for predicting reactor anti-neutrino emission

    Energy Technology Data Exchange (ETDEWEB)

    Asner, D.M.; Burns, K.; Campbell, L.W.; Greenfield, B.; Kos, M.S., E-mail: markskos@gmail.com; Orrell, J.L.; Schram, M.; VanDevender, B.; Wood, L.S.; Wootan, D.W.

    2015-03-11

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron-rich fission products that subsequently beta decay and emit electron antineutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to today's precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent reconsiderations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable isotopes placed in this tailored neutron flux will ultimately emit beta particles from the resultant fission products. Measurement of these beta particles in a time projection chamber with a perpendicular magnetic field provides a distinctive set of systematic considerations for comparison to the original seminal beta spectra measurements. Ancillary measurements such as gamma-ray emission and post-irradiation radiochemical analysis will further constrain the absolute normalization of beta emissions per fission. The requirements for unfolding the beta spectra measured with this method into a predicted reactor neutrino spectrum are explored.

  9. Fuel performance and fission product behaviour in gas cooled reactors

    International Nuclear Information System (INIS)

    1997-11-01

    The Co-ordinated Research Programme (CRP) on Validation of Predictive Methods for Fuel and Fission Product Behaviour was organized within the frame of the International Working Group on Gas Cooled Reactors. This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs), and supports the conduct of these activities. The objectives of this CRP were to review and document the status of the experimental data base and of the predictive methods for GCR fuel performance and fission product behaviour; and to verify and validate methodologies for the prediction of fuel performance and fission product transport

  10. Reference reactor module for NASA's lunar surface fission power system

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David I [Los Alamos National Laboratory; Kapernick, Richard J [Los Alamos National Laboratory; Dixon, David D [Los Alamos National Laboratory; Werner, James [INL; Qualls, Louis [ORNL; Radel, Ross [SNL

    2009-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO{sub 2}-fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.

  11. Hybrid fission-fusion nuclear reactors

    International Nuclear Information System (INIS)

    Zucchetti, Massimo

    2011-01-01

    A fusion-fission hybrid could contribute to all components of nuclear power - fuel supply, electricity production, and waste management. The idea of the fusion-fission hybrid is many decades old. Several ideas, both new and revisited, have been investigated by hybrid proponents. These ideas appear to have attractive features, but they require various levels of advances in plasma science and fusion and nuclear technology. As a first step towards the development of hybrid reactors, fusion neutron sources can be considered as an option. Compact high-field tokamaks can be a candidate for being the neutron source in a fission-fusion hybrid, essentially due to their design characteristics, such as compact dimensions, high magnetic field, flexibility of operation. This study presents the development of a tokamak neutron source for a material testing facility using an Ignitor-based concept. The computed values show the potential of this neutron-rich device for fusion materials testing. Some full-power months of operation are sufficient to obtain relevant radiation damage values in terms of dpa. (Author)

  12. Fission product model for lattice calculation of high conversion boiling water reactor

    International Nuclear Information System (INIS)

    Iijima, S.; Yoshida, T.; Yamamoto, T.

    1988-01-01

    A high precision fission product model for boiling water reactor (BWR) lattice calculation was developed, which consists of 45 nuclides to be treated explicitly and one nonsaturating pseudo nuclide. This model is applied to a high conversion BWR lattice calculation code. From a study based on a three-energy-group calculation of fission product poisoning due to full fission products and explicitly treated nuclides, the multigroup capture cross sections and the effective fission yields of the pseudo nuclide are determined, which do not depend on fuel types or reactor operating conditions for a good approximation. Apart from nuclear data uncertainties, the model and the derived pseudo nuclide constants would predict the fission product reactivity within an error of 0.1% Δk at high burnup

  13. Reactor physics and thermodynamics of a gaseous core fission reactor

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Van Dam, H.; Stekelenburg, A.J.C.; Hoogenboom, J.E.; Boersma-Klein, W.; Kistemaker, J.

    1990-01-01

    Neutron kinetics and thermodynamics of a Gaseous Core Fission Reactor with magnetical pumping are shown to have many unconventional aspects. Attention is focussed on the properties of the fuel gas, the stationary temperature distribution, the non-linear neutron kinetics and the energy balance in thermodynamical cycles

  14. Search for other natural fission reactors

    International Nuclear Information System (INIS)

    Apt, K.E.; Balagna, J.P.; Bryant, E.A.; Cowan, G.A.; Daniels, W.R.; Vidale, R.J.

    1977-01-01

    Precambrian uranium ores have been surveyed for evidence of other natural fission reactors. The requirements for formation of a natural reactor direct investigations to uranium deposits with large, high-grade ore zones. Massive zones with volumes approximately greater than 1 m 3 and concentrations approximately greater than 20 percent uranium are likely places for a fossil reactor if they are approximately greater than 0.6 b.a. old and if they contained sufficient water but lacked neutron-absorbing impurities. While uranium deposits of northern Canada and northern Australia have received most attention, ore samples have been obtained from the following worldwide locations: the Shinkolobwe and Katanga regions of Zaire; Southwest Africa; Rio Grande do Norte, Brazil; the Jabiluka, Nabarlek, Koongarra, Ranger, and El Sharana ore bodies of the Northern Territory, Australia; the Beaverlodge, Maurice Bay, Key Lake, Cluff Lake, and Rabbit Lake ore bodies and the Great Bear Lake region, Canada. The ore samples were tested for isotopic variations in uranium, neodymium, samarium, and ruthenium which would indicate natural fission. Isotopic anomalies were not detected. Criticality was not achieved in these deposits because they did not have sufficient 235 U content (a function of age and total uranium content) and/or because they had significant impurities and insufficient moderation. A uranium mill monitoring technique has been considered where the ''yellowcake'' output from appropriate mills would be monitored for isotopic alterations indicative of the exhumation and processing of a natural reactor

  15. Fuel performance and fission product behaviour in gas cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Co-ordinated Research Programme (CRP) on Validation of Predictive Methods for Fuel and Fission Product Behaviour was organized within the frame of the International Working Group on Gas Cooled Reactors. This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs), and supports the conduct of these activities. The objectives of this CRP were to review and document the status of the experimental data base and of the predictive methods for GCR fuel performance and fission product behaviour; and to verify and validate methodologies for the prediction of fuel performance and fission product transport. Refs, figs, tabs.

  16. Neutron irradiation facilities for fission and fusion reactor materials studies

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.

    1985-01-01

    The successful development of energy-conversion machines based upon nuclear fission or fusion reactors is critically dependent upon the behavior of the engineering materials used to construct the full containment and primary heat extraction systems. The development of radiation damage-resistant materials requires irradiation testing facilities which reproduce, as closely as possible, the thermal and neutronic environment expected in a power-producing reactor. The Oak Ridge National Laboratory (ORNL) reference core design for the Center for Neutron Research (CNR) reactor provides for instrumented facilities in regions of both hard and mixed neutron spectra, with substantially higher fluxes than are currently available. The benefits of these new facilities to the development of radiation damage resistant materials are discussed in terms of the major US fission and fusion reactor programs

  17. Study of advanced fission power reactor development for the United States. Volume I

    International Nuclear Information System (INIS)

    1976-01-01

    This volume summarizes the results and conclusions of an assessment of five advanced fission power reactor concepts in the context of potential nuclear power economies developed over the time period 1975 to 2020. The study was based on the premise that the LMFBR program has been determined to be the highest priority fission reactor program and it will proceed essentially as planned. Accepting this fact, the overall objective of the study was to provide evaluations of advanced fission reactor systems for input to evaluating the levels of research and development funding for fission power. Evaluation of the reactor systems included the following categories: (1) power plant performance, (2) fuel resource utilization; (3) fuel-cycle requirements; (4) economics; (5) environmental impact; (6) risk to the public; and (7) R and D requirements to achieve commercial status. The specific major objectives of the study were twofold: (1) to parametrically assess the impact of various reactor types for various levels of power demand through the year 2020 on fissile fuel utilization, economics, and the environment, based on varying but reasonable assumptions on the rates of installation; and (2) to qualitatively assess the practicality of the advanced reactor concepts, and their research and development. The reactor concepts examined were limited to the following: advanced high-temperature, gas-cooled reactor (HTGR) systems including the thorium/U-233 fuel cycle, gas turbine, and binary cycle (BIHTGR); gas-cooled fast breeder reactor (GCFR); molten salt breeder reactor (MSBR); light water breeder reactor (LWBR); and CANDU heavy water reactor

  18. Comparative energetics of three fusion-fission symbiotic nuclear reactor systems

    International Nuclear Information System (INIS)

    Gordon, C.W.; Harms, A.A.

    1975-01-01

    The energetics of three symbiotic fusion-fission nuclear reactor concepts are investigated. The fuel and power balances are considered for various values of systems parameters. The results from this analysis suggest that symbiotic fusion-fission systems are advantageous from the standpoint of economy and resource utilization. (Auth.)

  19. Fission power: a search for a ''second-generation'' reactor

    International Nuclear Information System (INIS)

    Hovingh, J.

    1985-01-01

    This report touches on the history of US fission reactors and explores the current technical status of such reactors around the world, including experimental reactors. Its purpose is to identify, evaluate, and rank the most promising concepts among existing reactors, proposed but unadopted designs, and what can be described as ''new'' concepts. Also discussed are such related concerns as utility requirements and design considerations. The report concludes with some recommendations for possible future LLNL involvement

  20. Fission fragment assisted reactor concept for space propulsion: Foil reactor

    International Nuclear Information System (INIS)

    Wright, S.A.

    1991-01-01

    The concept is to fabricate a reactor using thin films or foils of uranium, uranium oxide and then to coat them on substrates. These coatings would be made so thin as to allow the escaping fission fragments to directly heat a hydrogen propellant. The idea was studied of direct gas heating and direct gas pumping in a nuclear pumped laser program. Fission fragments were used to pump lasers. In this concept two substrates are placed opposite each other. The internal faces are coated with thin foil of uranium oxide. A few of the advantages of this technology are listed. In general, however, it is felt that if one look at all solid core nuclear thermal rockets or nuclear thermal propulsion methods, one is going to find that they all pretty much look the same. It is felt that this reactor has higher potential reliability. It has low structural operating temperatures, very short burn times, with graceful failure modes, and it has reduced potential for energetic accidents. Going to a design like this would take the NTP community part way to some of the very advanced engine designs, such as the gas core reactor, but with reduced risk because of the much lower temperatures

  1. LOFC fission product release and circulating activity calculations for gas-cooled reactors

    International Nuclear Information System (INIS)

    Apperson, C.E. Jr.; Carruthers, L.M.; Lee, C.E.

    1977-01-01

    The inventories of fission products in a gas-cooled reactor under accident and normal steady state conditions are time and temperature dependent. To obtain a reasonable estimate of these inventories it is necessary to consider fuel failure, a temperature dependent variable, and radioactive decay, a time dependent variable. Using arbitrary radioactive decay chains and published fuel failure models for the High Temperature Gas-Cooled Reactor (HTGR), methods have been developed to evaluate the release of fission products during the Loss of Forced Circulation (LOFC) accident and the circulating and plateout fission product inventories during steady state non-accident operation. The LARC-2 model presented here neglects the time delays in the release from the HTGR due to diffusion of fission products from particles in the fuel rod through the graphite matrix. It also neglects the adsorption and evaporation process of metallics at the fuel rod-graphite and graphite-coolant hole interfaces. Any time delay due to the finite time of transport of fission products by convection through the coolant to the outside of the prestressed concrete reactor vessel (PCRV) is also neglected. This model assumes that all fission products released from fuel particles are immediately deposited outside the PCRV with no time delay

  2. Burn-up calculation of fusion-fission hybrid reactor using thorium cycle

    International Nuclear Information System (INIS)

    Shido, S.; Matsunaka, M.; Kondo, K.; Murata, I.; Yamamoto, Y.

    2006-01-01

    A burn-up calculation system has been developed to estimate performance of blanket in a fusion-fission hybrid reactor which is a fusion reactor with a blanket region containing nuclear fuel. In this system, neutron flux is calculated by MCNP4B and then burn-up calculation is performed by ORIGEN2. The cross-section library for ORIGEN2 is made from the calculated neutron flux and evaluated nuclear data. The 3-dimensional ITER model was used as a base fusion reactor. The nuclear fuel (reprocessed plutonium as the fission materials mixed with thorium as the fertile materials), transmutation materials (minor actinides and long-lived fission products) and tritium breeder were loaded into the blanket. Performances of gas-cooled and water-cooled blankets were compared with each other. As a result, the proposed reactor can meet the requirement for TBP and power density. As far as nuclear waste incineration is concerned, the gas-cooled blanket has advantages. On the other hand, the water cooled-blanket is suited to energy production. (author)

  3. Sandia Pulse Reactor-IV Project

    International Nuclear Information System (INIS)

    Reuscher, J.A.

    1983-01-01

    Sandia National Laboratories has developed, designed and operated fast burst reactors for over 20 years. These reactors have been used for a variety of radiation effects programs. During this period, programs have required larger irradiation volumes primarily to expose complex electronic systems to postulated threat environments. As experiment volumes increased, a new reactor was built so that these components could be tested. The Sandia Pulse Reactor-IV is a logical evolution of the two decades of fast burst reactor development at Sandia

  4. Fission product release from TRIGA-LEU reactor fuels

    International Nuclear Information System (INIS)

    Baldwin, N.L.; Foushee, F.C.; Greenwood, J.S.

    1980-01-01

    Due to present international concerns over nuclear proliferation, TRIGA reactor fuels will utilize only low-enriched uranium (LEU) (enrichment <20%). This requires increased total uranium loading per unit volume of fuel in order to maintain the appropriate fissile loading. Tests were conducted to determine the fractional release of gaseous and metallic fission products from typical uranium-zirconium hydride TRIGA fuels containing up to 45 wt-% uranium. These tests, performed in late 1977 and early 1978, were similar to those conducted earlier on TRIGA fuels with 8.5 wt-% U. Fission gas release measurements were made on prototypic specimens from room temperature to 1100 deg. C in the TRIGA King Furnace Facility. The fuel specimens were irradiated in the TRIGA reactor at a low power level. The fractional releases of the gaseous nuclides of krypton and xenon were measured under steady-state operating conditions. Clean helium was used to sweep the fission gases released during irradiation from the furnace into a standard gas collection trap for gamma counting. The results of these tests on TRIGA-LEU fuel agree well with data from the similar, earlier tests on TRIGA fuel. The correlation used to calculate the release of fission products from 8.5 wt-% U TRIGA fuel applies equally well for U contents up to 45 wt-%. (author)

  5. Contained fissionly vaporized imploded fission explosive breeder reactor

    International Nuclear Information System (INIS)

    Marwick, E.F.

    1978-01-01

    Disclosed is a nuclear reactor system which produces useful thermal power and breeds fissile isotopes wherein large spherical complex slugs containing fissile and fertile isotopes as well as vaporizing and tamping materials are exploded seriatim in a large containing chamber having walls protected from the effects of the explosion by about two thousand tons of slurry of fissile and fertile isotopes in molten alkali metal. The slug which is slightly sub-critical prior to its entry into the centroid portion of the chamber, then becomes slightly more than prompt-critical because of the near proximity of neutron-reflecting atoms and of fissioning atoms within the slurry. The slurry is heated by explosion of the slugs and serves as a working fluid for extraction of heat energy from the reactor. Explosive debris is precipitated from the slurry and used for the fabrication of new slugs

  6. Fission product data for thermal reactors. Final report. Part 2. Users manual for EPRI-CINDER code and data

    International Nuclear Information System (INIS)

    England, T.R.; Wilson, W.B.; Stamatelatos, M.G.

    1976-12-01

    A four-group fission-product absorption chain library using ENDF/B-IV decay data and cross sections processed with a typical light water reactor spectrum for a modified version of the original CINDER code has been developed as described in Part 1. CINDER is a general point-depletion and fission product code based on an analytical solution of the equations describing nuclides coupled in any linear sequence of radioactive decays and neutron absorptions. The basic code has been in wide use for a number of years. Previously, the user was required to specify all physical data. This report describes the chain library in detail and a modified version of the basic CINDER code (EPRI-CINDER) that is still compatible with existing libraries

  7. New Monte Carlo-based method to evaluate fission fraction uncertainties for the reactor antineutrino experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ma, X.B., E-mail: maxb@ncepu.edu.cn; Qiu, R.M.; Chen, Y.X.

    2017-02-15

    Uncertainties regarding fission fractions are essential in understanding antineutrino flux predictions in reactor antineutrino experiments. A new Monte Carlo-based method to evaluate the covariance coefficients between isotopes is proposed. The covariance coefficients are found to vary with reactor burnup and may change from positive to negative because of balance effects in fissioning. For example, between {sup 235}U and {sup 239}Pu, the covariance coefficient changes from 0.15 to −0.13. Using the equation relating fission fraction and atomic density, consistent uncertainties in the fission fraction and covariance matrix were obtained. The antineutrino flux uncertainty is 0.55%, which does not vary with reactor burnup. The new value is about 8.3% smaller. - Highlights: • The covariance coefficients between isotopes vs reactor burnup may change its sign because of two opposite effects. • The relation between fission fraction uncertainty and atomic density are first studied. • A new MC-based method of evaluating the covariance coefficients between isotopes was proposed.

  8. ASN’s actions in GEN IV reactors and Sodium Fast Reactors (SFR)

    International Nuclear Information System (INIS)

    Belot, Clotilde

    2013-01-01

    The ASN is involved in 3 actions concerning GEN IV: • Overview of nuclear reactor GEN IV systems; • Specific analysis about transmutation; • Prototype reactor ASTRID (SFR). Furthermore theses actions are in the beginning (no conclusions or results available)

  9. An experimental investigation of fission product release in SLOWPOKE-2 reactors - Data report

    International Nuclear Information System (INIS)

    Harnden, A.M.C.

    1995-09-01

    The results of an investigation into the release of fission products from SLOWPOKE-2 reactors fuelled with a highly-enriched uranium alloy core are detailed in Volume 1. This data report (Volume 2) contains plots of the activity concentrations of the fission products observed in the reactor container at the University of Toronto, Ecole Polytechnique and the Kanata Isotope Production Facility. Release rates from the reactor container water to the gas headspace are also included. (author)

  10. Role of organic matter in the Proterozoic Oklo natural fission reactors, Gabon, Africa

    International Nuclear Information System (INIS)

    Nagy, B.; Rigali, M.J.; Gauthier-Lafaye, F.; Holliger, P.; Mossman, D.J.; Leventhal, J.S.

    1993-01-01

    Of the sixteen known Oklo and the Bangombe natural fission reactors (hydrothermally altered elastic sedimentary rocks that contain abundant uraninite and authigenic clay minerals), reactors 1 to 6 at Oklo contain only traces of organic matter, but the others are rich in organic substances. Reactors 7 to 9 are the subjects of this study. These organic-rich reactors may serve as time-tested analogues for anthropogenic nuclear-waste containment strategies. Organic matter helped to concentrate quantities of uranium sufficient to initiate the nuclear chain reactions. Liquid bitumen was generated from organic matter by hydrothermal reactions during nuclear criticality. The bitumen soon became a solid, consisting of polycyclic aromatic hydrocarbons and an intimate mixture of cryptocrystalline graphite, which enclosed and immobilized uraninite and the fission-generated isotopes entrapped in uraninite. This mechanism prevented major loss of uranium and fission products from the natural nuclear reactors for 1.2 b.y. 24 refs., 4 figs

  11. Thermochemical data for reactor materials and fission products

    International Nuclear Information System (INIS)

    Cordfunke, E.H.P.; Konings, R.J.M.

    1990-01-01

    This volume presents a collection of critically assessed data on inorganic compounds which are of special interest in nuclear reactor safety studies. Thermodynamic equilibrium calculations are an important and widely used instrument in the understanding of the chemical behavior and release of fission products in the course of nuclear reactor accidents. The reliability of such calculations is, nevertheless, limited by the availability of accurate input data for relevant compounds

  12. Thermal safety analysis for pebble bed blanket fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Wei Renjie

    1998-01-01

    Pebble bed blanket hybrid reactor may have more advantages than slab element blanket hybrid reactor in nuclear fuel production and nuclear safety. The thermo-hydraulic calculations of the blanket in the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor developed in China are carried out using the Code THERMIX and auxiliary code. In the calculations different fuel pebble material and steady state, depressurization and total loss of flow accident conditions are included. The results demonstrate that the conceptual design of the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor with dump tank is feasible and safe enough only if the suitable fuel pebble material is selected and the suitable control system and protection system are established. Some recommendations for due conceptual design are also presented

  13. DIRECT ENERGY CONVERSION (DEC) FISSION REACTORS - A U.S. NERI PROJECT

    International Nuclear Information System (INIS)

    Beller, D.; Polansky, G.

    2000-01-01

    The direct conversion of the electrical energy of charged fission fragments was examined early in the nuclear reactor era, and the first theoretical treatment appeared in the literature in 1957. Most of the experiments conducted during the next ten years to investigate fission fragment direct energy conversion (DEC) were for understanding the nature and control of the charged particles. These experiments verified fundamental physics and identified a number of specific problem areas, but also demonstrated a number of technical challenges that limited DEC performance. Because DEC was insufficient for practical applications, by the late 1960s most R and D ceased in the US. Sporadic interest in the concept appears in the literature until this day, but there have been no recent programs to develop the technology. This has changed with the Nuclear Energy Research Initiative that was funded by the U.S. Congress in 1999. Most of the previous concepts were based on a fission electric cell known as a triode, where a central cathode is coated with a thin layer of nuclear fuel. A fission fragment that leaves the cathode with high kinetic energy and a large positive charge is decelerated as it approaches the anode by a charge differential of several million volts, it then deposits its charge in the anode after its kinetic energy is exhausted. Large numbers of low energy electrons leave the cathode with each fission fragment; they are suppressed by negatively biased on grid wires or by magnetic fields. Other concepts include magnetic collimators and quasi-direct magnetohydrodynamic generation (steady flow or pulsed). We present the basic principles of DEC fission reactors, review the previous research, discuss problem areas in detail and identify technological developments of the last 30 years relevant to overcoming these obstacles. A prognosis for future development of direct energy conversion fission reactors will be presented

  14. Conceptual design of a fusion-fission hybrid reactor for transmutation of high level nuclear waste

    International Nuclear Information System (INIS)

    Qiu, L.J.; Wu, Y.C.; Yang, Y.W.; Wu, Y.; Luan, G.S.; Xu, Q.; Guo, Z.J.; Xiao, B.J.

    1994-01-01

    To assess the feasibility of the transmutation of long-lived radioactive waste using fusion-fission hybrid reactors, we are studying all the possible types of blanket, including a comparison of the thermal and fast neutron spectrum blankets. Conceptual designs of a small tokamak hybrid blanket with small inventory of actinides and fission products are presented. The small inventory of wastes makes the system safer. The small hybrid reactor system based on a fusion core with experimental parameters to be realized in the near future can effectively transmute actinides and fission products at a neutron wall loading of 1MWm -2 . An innovative energy system is also presented, including a fusion driver, fuel breeder, high level waste transmuter, fission reactor and so on. An optimal combination of all types of reactor is proposed in the system. ((orig.))

  15. Reactor physics challenges in GEN-IV reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Michael K.; Hejzlar, Pavel [Massachusetts Institute of Technology, MA (United States)

    2005-02-15

    An overview of the reactor physics aspects of GENeration Four (GEN-IV) advanced reactors is presented, emphasizing how their special requirements for enhanced sustainability, safety and economics motivates consideration of features not thoroughly analyzed in the past. The resulting concept-specific requirements for better data and methods are surveyed, and some approaches and initiatives are suggested to meet the challenges faced by the international reactor physics community. No unresolvable impediments to successful development of any of the six major types of proposed reactors are identified, given appropriate and timely devotion of resources.

  16. Reactor physics challenges in GEN-IV reactor design

    International Nuclear Information System (INIS)

    Driscoll, Michael K.; Hejzlar, Pavel

    2005-01-01

    An overview of the reactor physics aspects of GENeration Four (GEN-IV) advanced reactors is presented, emphasizing how their special requirements for enhanced sustainability, safety and economics motivates consideration of features not thoroughly analyzed in the past. The resulting concept-specific requirements for better data and methods are surveyed, and some approaches and initiatives are suggested to meet the challenges faced by the international reactor physics community. No unresolvable impediments to successful development of any of the six major types of proposed reactors are identified, given appropriate and timely devotion of resources

  17. Use of dwell time concept in fission product inventory assessment for CANDU reactors

    International Nuclear Information System (INIS)

    Bae, C.J.; Choi, J.H.; Hwang, H.R.; Seo, J.T.

    2003-01-01

    A realistic approach in calculating the initial fission product inventory within the CANFLEX-NU fuel has been assessed for its applicability to the single channel event safety analysis for CANDU reactors. This approach is based on the dwell time concept in which the accident is assumed to occur at the dwell time when the summation of fission product inventory for all isotopes becomes largest. However, in the current conservative analysis, the maximum total inventory and the corresponding gap inventory for each isotope are used as the initial fission product inventories regardless of the accident initiation time. The fission product inventory analysis has been performed using ELESTRES code considering power histories and burnup of the fuel bundles in the limiting channel. The analysis results showed that the total fission product inventory is found to be largest at 20% dwell time. Therefore, the fission product inventory at 20% dwell time can be used as the initial condition for the single channel event for the CANDU 6 reactors. (author)

  18. Comparison of actinides and fission products recycling scheme with the normal plutonium recycling scheme in fast reactors

    Directory of Open Access Journals (Sweden)

    Salahuddin Asif

    2013-01-01

    Full Text Available Multiple recycling of actinides and non-volatile fission products in fast reactors through the dry re-fabrication/reprocessing atomics international reduction oxidation process has been studied as a possible way to reduce the long-term potential hazard of nuclear waste compared to that resulting from reprocessing in a wet PUREX process. Calculations have been made to compare the actinides and fission products recycling scheme with the normal plutonium recycling scheme in a fast reactor. For this purpose, the Karlsruhe version of isotope generation and depletion code, KORIGEN, has been modified accordingly. An entirely novel fission product yields library for fast reactors has been created which has replaced the old KORIGEN fission products library. For the purposes of this study, the standard 26 groups data set, KFKINR, developed at Forschungszentrum Karlsruhe, Germany, has been extended by the addition of the cross-sections of 13 important actinides and 68 most important fission products. It has been confirmed that these 68 fission products constitute about 95% of the total fission products yield and about 99.5% of the total absorption due to fission products in fast reactors. The amount of fissile material required to guarantee the criticality of the reactor during recycling schemes has also been investigated. Cumulative high active waste per ton of initial heavy metal is also calculated. Results show that the recycling of actinides and fission products in fast reactors through the atomics international reduction oxidation process results in a reduction of the potential hazard of radioactive waste.

  19. Studies on the properties of hard-spectrum, actinide fissioning reactors. Final report

    International Nuclear Information System (INIS)

    Nelson, J.B.; Prichard, A.W.; Schofield, P.E.; Robinson, A.H.; Spinrad, B.I.

    1980-01-01

    It is technically feasible to construct an operable (e.g., safe and stable) reactor to burn waste actinides rapidly. The heart of the concept is a driver core of EBR-II type, with a central radial target zone in which fuel elements, made entirely of waste actinides are exposed. This target fuel undergoes fission, as a result of which actinides are rapidly destroyed. Although the same result could be achieved in more conventionally designed LWR or LMFBR systems, the fast spectrum reactor does a much more efficient job, by virtue of the fact that in both LWR and LMFBR reactors, actinide fission is preceded by several captures before a fissile nuclide is formed. In the fast spectrum reactor that is called ABR (actinide burning reactor), these neutron captures are short-circuited

  20. Transient Analysis Needs for Generation IV Reactor Concepts

    International Nuclear Information System (INIS)

    Siefken, L.J.; Harvego, E.A.; Coryell, E.W.; Davis, C.B.

    2002-01-01

    The importance of nuclear energy as a vital and strategic resource in the U. S. and world's energy supply mix has led to an initiative, termed Generation IV by the U.S. Department of Energy (DOE), to develop and demonstrate new and improved reactor technologies. These new Generation IV reactor concepts are expected to be substantially improved over the current generation of reactors with respect to economics, safety, proliferation resistance and waste characteristics. Although a number of light water reactor concepts have been proposed as Generation IV candidates, the majority of proposed designs have fundamentally different characteristics than the current generation of commercial LWRs operating in the U.S. and other countries. This paper presents the results of a review of these new reactor technologies and defines the transient analyses required to support the evaluation and future development of the Generation IV concepts. The ultimate objective of this work is to identify and develop new capabilities needed by INEEL to support DOE's Generation IV initiative. In particular, the focus of this study is on needed extensions or enhancements to SCDAP/RELAP5/3D code. This code and the RELAP5-3D code from which it evolved are the primary analysis tools used by the INEEL and others for the analysis of design-basis and beyond-design-basis accidents in current generation light water reactors. (authors)

  1. System model for analysis of the mirror fusion-fission reactor

    International Nuclear Information System (INIS)

    Bender, D.J.; Carlson, G.A.

    1977-01-01

    This report describes a system model for the mirror fusion-fission reactor. In this model we include a reactor description as well as analyses of capital cost and blanket fuel management. In addition, we provide an economic analysis evaluating the cost of producing the two hybrid products, fissile fuel and electricity. We also furnish the results of a limited parametric analysis of the modeled reactor, illustrating the technological and economic implications of varying some important reactor design parameters

  2. Feasibility study of applying the passive safety system concept to fusion–fission hybrid reactor

    International Nuclear Information System (INIS)

    Yu, Zhang-cheng; Xie, Heng

    2014-01-01

    The fusion–fission hybrid reactor can produce energy, breed nuclear fuel, and handle the nuclear waste, etc., with the fusion neutron source striking the subcritical blanket. The passive safety system consists of passive residual heat removal system, passive safety injection system and automatic depressurization system was adopted into the fusion–fission hybrid reactor in this paper. Modeling and nodalization of primary loop, partial secondary loop and passive core cooling system for the fusion–fission hybrid reactor using relap5 were conducted and small break LOCA on cold leg was analyzed. The results of key transient parameters indicated that the actuation of passive safety system could mitigate the accidental consequence of the 4-inch cold leg small break LOCA on cold leg in the early time effectively. It is feasible to apply the passive safety system concept to fusion–fission hybrid reactor. The minimum collapsed liquid level had great increase if doubling the volume of CMTs to increase its coolant injection and had no increase if doubling the volume of ACCs

  3. Scylla IV-P theta pinch

    International Nuclear Information System (INIS)

    Bailey, A.G.; Chandler, G.I.; Ekdahl, C.A. Jr.; Lillberg, J.W.; Machalek, M.D.; Seibel, F.T.

    1976-01-01

    Scylla IV-P is a flexible, linear theta pinch designed to investigate high-density linear concepts, end-stoppering, alternate heating methods, and plasma injection techniques relevant to a pure fusion reactor and/or a fusion-fission hybrid system. The construction and experimental arrangement of the device are briefly described

  4. Euratom innovation in nuclear fission: Community research in reactor systems and fuel cycles

    International Nuclear Information System (INIS)

    Goethem, G. van; Hugon, M.; Bhatnagar, V.; Manolatos, P.; Deffrennes, M.

    2007-01-01

    The following questions are naturally at the heart of the current Euratom research and training framework programme:(1)What are the challenges facing the European Union nuclear fission research community in the short (today), medium (2010) and long term (2040)? (2)What kind of research and technological development (RTD) does Euratom offer to respond to these challenges, in particular in the area of reactor systems and fuel cycles? In the general debate about energy supply technologies there are challenges of both a scientific and technological (S/T) as well as an economic and political (E/P) nature. Though the Community research programme acts mainly on the former, there is nevertheless important links with Community policy. These not only exist in the specific area of nuclear policy, but also more generally as is depicted in the following figure. It is shown in the particular area of nuclear fission, to what extent Euratom research, education and innovation ('Knowledge Triangle' in above figure) respond to the following long-term criteria: (1) sustainability, (2) economics, (3) safety, and (4) proliferation resistance. Research and innovation in nuclear fission technology has broad and extended geographical, disciplinary and time horizons:- the community involved extends to all 25 EU Member States and beyond; - the research assembles a large variety of scientific disciplines; - three generations of nuclear power technologies (called II, III and IV) are involved, with the timescales extending from now to around the year 2040. To each of these three generations, a couple of challenges are associated (six in total):- Generation II (1970-2000, today): security of supply+environmental compatibility; - Generation III (around 2010): enhanced safety and competitiveness (economics); - Generation IV (around 2040): cogeneration of heat and power, and full recycling. At the European Commission (EC), the research related to nuclear reactor systems and fuel cycles is

  5. Preparation of a primary target for the production of fission products in a nuclear reactor

    International Nuclear Information System (INIS)

    Arino, H.; Cosolito, F.J.; George, K.D.; Thornton, A.K.

    1976-01-01

    A primary target for the production of fission products in a nuclear reactor, such as uranium or plutonium fission products, is comprised of an enclosed, cylindrical vessel, preferably comprised of stainless steel, having a thin, continuous, uniform layer of fissionable material, integrally bonded to its inner walls and a port permitting access to the interior of the vessel. A process is also provided for depositing uranium material on to the inner walls of the vessel. Upon irradiation of the target with neutrons from a nuclear reactor, radioactive fission products, such as molybdenum-99, are formed, and thereafter separated from the target by the introduction of an acidic solution through the port to dissolve the irradiated inner layer. The irradiation and dissolution are thus effected in the same vessel without the necessity of transferring the fissionable material and fission products to a separate chemical reactor. Subsequently, the desired isotopes are extracted and purified. Molybdenum-99 decays to technetium-99m which is a valuable medical diagnostic radioisotope. 3 claims, 1 drawing figure

  6. Nuclear data in the problem of fission reactor decommissioning

    International Nuclear Information System (INIS)

    Manokhin, V.N.; Kulagin, N.T.

    1993-01-01

    This report presents a review of the works published in Russia during last several years and devoted to the problem of nuclear data and calculations of nuclear facilities activation for fission reactor decommissioning. 6 refs

  7. Expected value of finite fission chain lengths of pulse reactors

    International Nuclear Information System (INIS)

    Liu Jianjun; Zhou Zhigao; Zhang Ben'ai

    2007-01-01

    The average neutron population necessary for sponsoring a persistent fission chain in a multiplying system, is discussed. In the point reactor model, the probability function θ(n, t 0 , t) of a source neutron at time t 0 leading to n neutrons at time t is dealt with. The non-linear partial differential equation for the probability generating function G(z; t 0 , t) is derived. By solving the equation, we have obtained an approximate analytic solution for a slightly prompt supercritical system. For the pulse reactor Godiva-II, the mean value of finite fission chain lengths is estimated in this work and shows that the estimated value is reasonable for the experimental analysis. (authors)

  8. Fusion-Fission hybrid reactors and nonproliferation

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-09-01

    New options for the development of the nuclear energy economy which might become available by a successful development of fusion-breeders or fusion-fission hybrid power reactors, identified and their nonproliferative attributes are discussed. The more promising proliferation-resistance ettributes identified include: (1) Justification for a significant delay in the initiation of fuel processing, (2) Denaturing the plutonium with 238 Pu before its use in power reactors of any kind, and (3) Making practical the development of denatured uranium fuel cycles and, in particular, denaturing the uranium with 232 U. Fuel resource utilization, time-table and economic considerations associated with the use of fusion-breeders are also discussed. It is concluded that hybrid reactors may enable developing a nuclear energy economy which is more proliferation resistant than possible otherwise, whileat the same time, assuring high utilization of t he uranium and thorium resources in an economically acceptable way. (author)

  9. A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium

    International Nuclear Information System (INIS)

    Reed, Mark; Parker, Ronald R.; Forget, Benoit

    2012-01-01

    This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more

  10. Fission-suppressed hybrid reactor: the fusion breeder

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Coops, M.S.

    1982-12-01

    Results of a conceptual design study of a 233 U-producing fusion breeder are presented. The majority of the study was devoted to conceptual design and evaluation of a fission-suppressed blanket and to fuel cycle issues such as fuel reprocessing, fuel handling, and fuel management. Studies in the areas of fusion engineering, reactor safety, and economics were also performed

  11. Specialists' meeting on fission product release and transport in gas-cooled reactors. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-07-01

    The purpose of the Meeting on Fission Product Release and Transport in Gas-Cooled Reactors was to compare and discuss experimental and theoretical results of fission product behaviour in gas-cooled reactors under normal and accidental conditions and to give direction for future development. The technical part of the meeting covered operational experience and laboratory research, activity release, and behaviour of released activity.

  12. Specialists' meeting on fission product release and transport in gas-cooled reactors. Summary report

    International Nuclear Information System (INIS)

    1985-01-01

    The purpose of the Meeting on Fission Product Release and Transport in Gas-Cooled Reactors was to compare and discuss experimental and theoretical results of fission product behaviour in gas-cooled reactors under normal and accidental conditions and to give direction for future development. The technical part of the meeting covered operational experience and laboratory research, activity release, and behaviour of released activity

  13. Fabrication and Testing of a Modular Micro-Pocket Fission Detector Instrumentation System for Test Nuclear Reactors

    Science.gov (United States)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Roberts, Jeremy A.; Unruh, Troy C.; McGregor, Douglas S.

    2018-01-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Measurement of the neutron-flux distribution within the reactor core provides a more complete understanding of the operating conditions in the reactor than typical ex-core sensors. Micro-Pocket Fission Detectors have been developed and tested previously but have been limited to single-node operation and have utilized highly specialized designs. The development of a widely deployable, multi-node Micro-Pocket Fission Detector assembly will enhance nuclear research capabilities. A modular, four-node Micro-Pocket Fission Detector array was designed, fabricated, and tested at Kansas State University. The array was constructed from materials that do not significantly perturb the neutron flux in the reactor core. All four sensor nodes were equally spaced axially in the array to span the fuel-region of the reactor core. The array was filled with neon gas, serving as an ionization medium in the small cavities of the Micro-Pocket Fission Detectors. The modular design of the instrument facilitates the testing and deployment of numerous sensor arrays. The unified design drastically improved device ruggedness and simplified construction from previous designs. Five 8-mm penetrations in the upper grid plate of the Kansas State University TRIGA Mk. II research nuclear reactor were utilized to deploy the array between fuel elements in the core. The Micro-Pocket Fission Detector array was coupled to an electronic support system which has been specially developed to support pulse-mode operation. The Micro-Pocket Fission Detector array composed of four sensors was used to monitor local neutron flux at a constant reactor power of 100 kWth at different axial locations simultaneously. The array was positioned at five different radial locations within the core to emulate the deployment of multiple arrays and develop a 2-dimensional measurement of

  14. Needs and accuracy requirements for fission product nuclear data in the physics design of power reactor cores

    International Nuclear Information System (INIS)

    Rowlands, J.L.

    1978-01-01

    The fission product nuclear data accuracy requirements for fast and thermal reactor core performance predictions were reviewed by Tyror at the Bologna FPND Meeting. The status of the data was assessed at the Meeting and it was concluded that the requirements of thermal reactors were largely met, and the yield data requirements of fast reactors, but not the cross section requirements, were met. However, the World Request List for Nuclear Data (WRENDA) contains a number of requests for fission product capture cross sections in the energy range of interest for thermal reactors. Recent reports indicate that the fast reactor reactivity requirements might have been met by integral measurements made in zero power critical assemblies. However, there are requests for the differential cross sections of the individual isotopes to be determined in addition to the integral data requirements. The fast reactor requirements are reviewed, taking into account some more recent studies of the effects of fission products. The sodium void reactivity effect depends on the fission product cross sections in a different way to the fission product reactivity effect in a normal core. This requirement might call for different types of measurement. There is currently an interest in high burnup fuel cycles and alternative fuel cycles. These might require more accurate fission product data, data for individual isotopes and data for capture products. Recent calculations of the time dependence of fission product reactivity effects show that this is dependent upon the data set used and there are significant uncertainties. Some recent thermal reactor studies on approximations in the treatment of decay chains and the importance of xenon and samarium poisoning are also summarized. (author)

  15. Major features of a mirror fusion--fast fission hybrid reactor

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Burleigh, R.J.

    1974-01-01

    A conceptual design was made of a fusion-fission reactor. The fusion component is a D-T plasma confined by a pair of magnetic mirror coils in a Yin-Yang configuration and sustained by hot neutral beam injection. The neutrons from the fusion plasma drive the fission assembly which is composed of natural uranium carbide fuel rods clad with stainless steel and is cooled by helium. It was shown how the reactor can be built using essentially present day construction technology and how the uranium bearing blanket modules can be routinely changed to allow separation of the bred fissile fuel of which approximately 1200 kg of plutonium are produced each year along with the approximately 750 MW of electricity. (U.S.)

  16. Sustainable and safe nuclear fission energy technology and safety of fast and thermal nuclear reactors

    CERN Document Server

    Kessler, Günter

    2012-01-01

    Unlike existing books of nuclear reactor physics, nuclear engineering and nuclear chemical engineering this book covers a complete description and evaluation of nuclear fission power generation. It covers the whole nuclear fuel cycle, from the extraction of natural uranium from ore mines, uranium conversion and enrichment up to the fabrication of fuel elements for the cores of various types of fission reactors. This is followed by the description of the different fuel cycle options and the final storage in nuclear waste repositories. In addition the release of radioactivity under normal and possible accidental conditions is given for all parts of the nuclear fuel cycle and especially for the different fission reactor types.

  17. Investigations of the natural fission reactor program. Progress report, October 1977--September 1978

    International Nuclear Information System (INIS)

    Cowan, G.A.; Norris, A.E.

    1978-10-01

    The U.S. study of the Oklo natural reactor began in 1973 with the principal objectives of understanding the processes that produced the reactor and that led to the retention of many of its products. Major facets of the program have been the chemical separation and mass spectrometric analysis of the reactor components and products, the petrological and mineralogical examination of samples taken from the reactor zones, and an interdisciplinary modeling of possible processes consistent with reactor physics, geophysics, and geochemistry. Most of the past work has been on samples taken within the reactor zones. Presently, these studies give greater emphasis to the measurement of mobile products in additional suites of samples collected peripherally and ''downstream'' from the reactor zones. This report summarizes the current status of research and the views of U.S. investigators, with particular reference to the extensive work of the French scientists, concerning the main features of the Oklo natural fission reactor. Also mentioned briefly is the U.S. search for natural fission reactors at other locations

  18. Geochemical properties and nuclear chemical characteristics of Oklo natural fission reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hidaka, Hiroshi [Hiroshima Univ., Higashi-Hiroshima (Japan). Faculty of Science

    1997-07-01

    There are six uranium deposits in the Gabonese Republic in the cnetral Africa. `Fission reactor zone`, the fission chain reactions generated about 200 billion years ago, was existed in a part of them. CEA begun geochemical researches of Oklo deposits etc. in 1991. The geochemical and nuclear chemical properties of Oklo were reviewed from the results of researches. Oklo deposits is consisted of main five sedimentary faces such as sandstone (FA), Black Shale formation (FB), mudstone (FC), tuff (FD) and volcaniclastic sandstone (FE) from the bottom on the base rock of granite in the Precambrian era. Uranium is enriched in the upper part of FA layer and the under part of FB layer. {sup 235}U/{sup 238}U, U content, fission proportion, duration time, neutron fluence, temperature, restitution factor of {sup 235}U and epithermal index ({gamma}) were investigated and compared. The geochemical properties of Oklo are as followed: large enrich of uranium, the abundance ratio of {sup 235}U as same as that of enriched uranium, interaction of natural water and small rear earth elements. These factors made casually Oklo fission reactor. (S.Y.)

  19. Generation-IV nuclear reactors, SFR concept

    International Nuclear Information System (INIS)

    Dufour, P.

    2010-01-01

    In this presentation author deals with development of sodium-cooled fast reactors and lead-cooled fast reactors. He concluded that: - SFR is a proved concept that has never achieved industrial deployment; - The GEN IV objectives need to reconsider the design of both the core and the reactor design : innovations are being analysed; Future design will benefit from considerable feedback of design, licensing, construction and operation of PX, SPX, etc.

  20. Overview of standards subcommittee 8, fissionable materials outside reactors

    International Nuclear Information System (INIS)

    McLaughlin, T.P.

    1996-01-01

    The American Nuclear Society's Standards Subcommittee 8, titled open-quotes Fissionable Materials Outside Reactors,close quotes has worked for the past 35 yr to prepare and promote standards on nuclear criticality safety for the handling, processing, storing, and transportation of fissionable materials outside reactors. The reader is referred to the Transactions of the American Nuclear Society, Vols. 39 (1981) and 64 (1991), for previous papers associated with ANS-8 poster sessions. In addition to discussions on the then-current standards, the reader will find articles on working group efforts that never materialized into standards, such as proposed 8.13, open-quotes Use of the Solid-Angle Method in Nuclear Criticality Safety,close quotes and on applications and critiques of current standards. The paper by McLendon in Vol. 39 is particularly interesting as an overview of the early history of ANS-8 and its standards

  1. JENDL-4.0 benchmarking for fission reactor applications

    International Nuclear Information System (INIS)

    Chiba, Go; Okumura, Keisuke; Sugino, Kazuteru; Nagaya, Yasunobu; Yokoyama, Kenji; Kugo, Teruhiko; Ishikawa, Makoto; Okajima, Shigeaki

    2011-01-01

    Benchmark testing for the newly developed Japanese evaluated nuclear data library JENDL-4.0 is carried out by using a huge amount of integral data. Benchmark calculations are performed with a continuous-energy Monte Carlo code and with the deterministic procedure, which has been developed for fast reactor analyses in Japan. Through the present benchmark testing using a wide range of benchmark data, significant improvement in the performance of JENDL-4.0 for fission reactor applications is clearly demonstrated in comparison with the former library JENDL-3.3. Much more accurate and reliable prediction for neutronic parameters for both thermal and fast reactors becomes possible by using the library JENDL-4.0. (author)

  2. Anomalies in the Charge Yields of Fission Fragments from the ^{238}U(n,f) Reaction.

    Science.gov (United States)

    Wilson, J N; Lebois, M; Qi, L; Amador-Celdran, P; Bleuel, D; Briz, J A; Carroll, R; Catford, W; De Witte, H; Doherty, D T; Eloirdi, R; Georgiev, G; Gottardo, A; Goasduff, A; Hadyńska-Klęk, K; Hauschild, K; Hess, H; Ingeberg, V; Konstantinopoulos, T; Ljungvall, J; Lopez-Martens, A; Lorusso, G; Lozeva, R; Lutter, R; Marini, P; Matea, I; Materna, T; Mathieu, L; Oberstedt, A; Oberstedt, S; Panebianco, S; Podolyák, Zs; Porta, A; Regan, P H; Reiter, P; Rezynkina, K; Rose, S J; Sahin, E; Seidlitz, M; Serot, O; Shearman, R; Siebeck, B; Siem, S; Smith, A G; Tveten, G M; Verney, D; Warr, N; Zeiser, F; Zielinska, M

    2017-06-02

    Fast-neutron-induced fission of ^{238}U at an energy just above the fission threshold is studied with a novel technique which involves the coupling of a high-efficiency γ-ray spectrometer (MINIBALL) to an inverse-kinematics neutron source (LICORNE) to extract charge yields of fission fragments via γ-γ coincidence spectroscopy. Experimental data and fission models are compared and found to be in reasonable agreement for many nuclei; however, significant discrepancies of up to 600% are observed, particularly for isotopes of Sn and Mo. This indicates that these models significantly overestimate the standard 1 fission mode and suggests that spherical shell effects in the nascent fission fragments are less important for low-energy fast-neutron-induced fission than for thermal neutron-induced fission. This has consequences for understanding and modeling the fission process, for experimental nuclear structure studies of the most neutron-rich nuclei, for future energy applications (e.g., Generation IV reactors which use fast-neutron spectra), and for the reactor antineutrino anomaly.

  3. Policy-induced market introduction of Generation IV reactor systems

    International Nuclear Information System (INIS)

    Heek, Aliki Irina van; Roelofs, Ferry

    2011-01-01

    Almost 10 years ago the U.S. Department of Energy (DOE) started the Generation IV Initiative (GenIV) with 9 other national governments with a positive ground attitude towards nuclear energy. Some of these Generation IV systems, like the fast reactors, are nearing the demonstration stage. The question on how their market introduction will be implemented becomes increasingly urgent. One main topic for future reactor technologies is the treatment of radioactive waste products. Technological solutions to this issue are being developed. One possible process is the transformation of long-living radioactive nuclides into short living ones; a process known as transmutation, which can be done in a nuclear reactor only. Various Generation IV reactor concepts are suitable for this process, and of these systems most experience has been gained with the sodium-cooled fast reactor (SFR). However, both these first generation SFR plants and their Generation IV successors are designed as electricity generating plants, and therefore supposed to be commercially viable in the electricity markets. Various studies indicate that the generation costs of a combined LWR-(S)FR nuclear generating park (LWR: light water reactor) will be higher than that of an LWR-only park. To investigate the effects of the deployment of the different reactors and fuel cycles on the waste produced, resources used and costs incurred as a function of time, a dynamic fuel cycle assessment is performed. This study will focus on the waste impact of the introduction of a fraction of fast reactors in the European nuclear reactor park with a cost increase as described in the previous paragraph. The nuclear fuel cycle scenario code DANESS is used for this, as well as the nuclear park model of the EU-27 used for the previous study. (orig.)

  4. Fusion--fission hybrid reactors based on the laser solenoid

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Taussig, R.T.; Quimby, D.C.

    1976-01-01

    Fusion-fission reactors, based on the laser solenoid concept, can be much smaller in scale than their pure fusion counterparts, with moderate first-wall loading and rapid breeding capabilities (1 to 3 tonnes/yr), and can be designed successfully on the basis of classical plasma transport properties and free-streaming end-loss. Preliminary design information is presented for such systems, including the first wall, pulse coil, blanket, superconductors, laser optics, and power supplies, accounting for the desired reactor performance and other physics and engineering constraints. Self-consistent point designs for first and second generation reactors are discussed which illustrate the reactor size, performance, component parameters, and the level of technological development required

  5. Application of Campbell's MSV method in monitoring of reactor's fission power

    International Nuclear Information System (INIS)

    Stankovic, S.J.; Vukcevic, M.; Loncar, B.; Vasic, A.; Osmokrovic, P.

    2003-01-01

    This paper presents some possibilities of Campbell's MSV (Mean Square Value) method in monitoring the reactor's fission power. Investigation of gamma discrimination compared to neutron component of signal along with change of variance and mean value the detector output signal for a specified range of reactor's fission power (10mW-22W) was carried out. The uncompensated ionization chamber for mixed n- gamma fields was used as detector element. Experimental measurements were performed using digitized MSV method, and obtained results were compared to those obtained by classical measuring chain. The final conclusion is that the order of discrimination in MSV signal processing is about fifty times larger than for classical measuring method (author)

  6. Preparation of multigroup lumped fission product cross-sections from ENDF/B-VI for FBRs

    International Nuclear Information System (INIS)

    Devan, K.; Gopalakrishnan, V.; Mohanakrishnan, P.; Sridharan, M.S.

    1997-01-01

    Multigroup pseudo fission product cross-sections were computed from the American evaluated nuclear data library ENDF/B-VI, corresponding to various burnups of the proposed 500 MWe prototype fast breeder reactor (PFBR), in India. The data were derived from the cross-sections of 111 selected fission products that account for almost complete capture of fission products in an FBR. The dependence of burnup on the pseudo fission product cross-sections, and comparison with other data sets, viz. JNDC, ENDF/B-IV and ABBN, are discussed. (author)

  7. Hefei experimental hybrid fusion-fission reactor conceptual design

    International Nuclear Information System (INIS)

    Qiu Lijian; Luan Guishi; Xu Qiang

    1992-03-01

    A new concept of hybrid reactor is introduced. It uses JET-like(Joint European Tokamak) device worked at sub-breakeven conditions, as a source of high energy neutrons to induce a blanket fission of depleted uranium. The solid breeding material and helium cooling technique are also used. It can produce 100 kg of 239 Pu per year by partial fission suppressed. The energy self-sustained of the fusion core is not necessary. Plasma temperature is maintained by external 20 MW ICRF (ion cyclotron resonance frequency) and 10 MW ECRF (electron cyclotron resonance frequency) heating. A steady state plasma current at 1.5 Ma is driven by 10 MW LHCD (lower hybrid current driven). Plasma density will be kept by pellet injection. ICRF can produce a high energy tail in ion distribution function and lead to significant enhancement of D-T reaction rate by 2 ∼ 5 times so that the neutron source strength reaches to the level of 1 x 10 19 n/s. This system is a passive system. It's power density is 10 W/cm 3 and the wall loading is 0.6 W/cm 2 that is the lower limitation of fusion and fission technology. From the calculation of neutrons it could always be in sub-critical and has intrinsic safety. The radiation damage and neutron flux distribution on the first wall are also analyzed. According to the conceptual design the application of this type hybrid reactor earlier is feasible

  8. Report on generation IV technical working group 3 : liquid metal reactors

    International Nuclear Information System (INIS)

    Lineberry, M. J.; Rosen, S. L.; Sagayama, Y.

    2002-01-01

    This paper reports on the first round of R and D roadmap activities of the Generation IV (Gen IV) Technical Working Group (TWG) 3, on liquid metal-cooled reactors. Liquid metal coolants give rise to fast spectrum systems, and thus the reactor systems considered in this TWG are all fast reactors. Gas-cooled fast reactors are considered in the context of TWG 2. As is noted in other Gen IV papers, this first round activity is termed ''screening for potential'', and includes collecting the most complete set of liquid metal reactor/fuel cycle system concepts possible and evaluating the concepts against the Gen IV principles and goals. Those concepts or concept groups that meet the Gen IV principles and which are deemed to have reasonable potential to meet the Gen IV goals will pass to the next round of evaluation. Although we sometimes use the terms ''reactor'' or ''reactor system'' by themselves, the scope of the investigation by TWG 3 includes not only the reactor systems, but very importantly the closed fuel recycle system inevitably required by fast reactors. The response to the DOE Request for Information (RFI) on liquid metal reactor/fuel cycle systems from principal investigators, laboratories, corporations, and other institutions, was robust and gratifying. Thirty three liquid metal concept descriptions, from eight different countries, were ultimately received. The variation in the scope, depth, and completeness of the responses created a significant challenge for the group, but the TWG made a very significant effort not to screen out concepts early in the process

  9. Workshop summaries for the third US/USSR symposium on fusion-fission reactors

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1979-07-01

    Workshop summaries on topics related to the near-term development requirements for fusion-fission (hybrid) reactors are presented. The summary topics are as follows: (1) external factors, (2) plasma engineering, (3) ICF hybrid reactors, (4) blanket design, (5) materials and tritium, and (6) blanket engineering development requirements

  10. Preconceptual design and analysis of a solid-breeder blanket test in an existing fission reactor

    International Nuclear Information System (INIS)

    Deis, G.A.; Hsu, P.Y.; Watts, K.D.

    1983-01-01

    Preconceptual design and analysis have been performed to examine the capabilities of a proposed fission-based test of a water-cooled Li 2 O blanket concept. The mechanical configuration of the test piece is designed to simulate a unit cell of a breeder-outside-tube concept. This test piece will be placed in a fission test reactor, which provides an environment similar to that in a fusion reactor. The neutron/gamma flux from the reactor produces prototypical power density, tritium production rates, and operating temperatures and stresses. Steady-state tritium recovery from the test piece can be attained in short-duration (5-to-6-day) tests. The capabilities of this test indicate that fission-based testing can provide important near-term engineering information to support the development of fusion technology

  11. Progress on the conceptual design of a mirror hybrid fusion--fission reactor

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Burleigh, R.J.

    1975-01-01

    A conceptual design study was made of a fusion-fission reactor for the purpose of producing fissile material and electricity. The fusion component is a D-T plasma confined by a pair of magnetic mirror coils in a Yin-Yang configuration and is sustained by neutral beam injection. The neutrons from the fusion plasma drive the fission assembly which is composed of natural uranium carbide fuel rods clad with stainless steel and helium cooled. It was shown conceptually how the reactor might be built using essentially present-day technology and how the uranium-bearing blanket modules can be routinely changed to allow separation of the bred fissile fuel

  12. Nuclear data for structural materials of fission and fusion reactors

    International Nuclear Information System (INIS)

    Goulo, V.

    1989-06-01

    The document presents the status of nuclear reaction theory concerning optical model development, level density models and pre-equilibrium and direct processes used in calculation of neutron nuclear data for structural materials of fission and fusion reactors. 6 refs

  13. Fission-product burnup chain model for research reactor application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Do; Gil, Choong Sup; Lee, Jong Tai [Korea Atomic Energy Research Inst., Daeduk (Republic of Korea)

    1990-12-01

    A new fission-product burnup chain model was developed for use in research reactor analysis capable of predicting the burnup-dependent reactivity with high precision over a wide range of burnup. The new model consists of 63 nuclides treated explicitly and one fissile-independent pseudo-element. The effective absorption cross sections for the preudo-element and the preudo-element yield of actinide nuclides were evaluated in the this report. The model is capable of predicting the high burnup behavior of low-enriched uranium-fueled research reactors.(Author).

  14. Transient fission product release during reactor shutdown and startup

    International Nuclear Information System (INIS)

    Hunt, C.E.L.; Lewis, B.J.

    1995-01-01

    Sweep gas experiments performed at CRL from 1979 to 1985 have been analysed to determine the fraction of the fission product gas inventory that is released on reactor shutdown and startup. Empirical equations were derived and applied to calculate the xenon release from companion fuel elements and from a well documented experimental fuel bundle irradiated in the NRU reactor. The measured gas release could be matched to within about a factor of two for an experimental irradiation with a burnup of 217 MWh/kgU. (author)

  15. Direct energy conversion in fission reactors: A U.S. NERI project

    International Nuclear Information System (INIS)

    Slutz, Stephen A.; Seidel, David B.; Polansky, Gary F.; Rochau, Gary E.; Lipinski, Ronald J.; Besenbruch, G.; Brown, L.C.; Parish, T.A.; Anghaie, S.; Beller, D.E.

    2000-01-01

    In principle, the energy released by a fission can be converted directly into electricity by using the charged fission fragments. The first theoretical treatment of direct energy conversion (DEC) appeared in the literature in 1957. Experiments were conducted over the next ten years, which identified a number of problem areas. Research declined by the late 1960's due to technical challenges that limited performance. Under the Nuclear Energy Research Initiative the authors are determining if these technical challenges can be overcome with todays technology. The authors present the basic principles of DEC reactors, review previous research, discuss problem areas in detail, and identify technological developments of the last 30 years that can overcome these obstacles. As an example, the fission electric cell must be insulated to avoid electrons crossing the cell. This insulation could be provided by a magnetic field as attempted in the early experiments. However, from work on magnetically insulated ion diodes they know how to significantly improve the field geometry. Finally, a prognosis for future development of DEC reactors will be presented

  16. Source driven breeding fission power reactors and the nuclear energy strategy

    International Nuclear Information System (INIS)

    Greenspan, E.

    The nuclear energy economy is facing severe difficulties associated with low utilization of uranium resources, safety, non-proliferation and environmental issues. Energy policy makers face the dilemma: commercialize LMFBRs immediately with the risk of negative economical, proliferation or other consequences, or continue with R and D programs that will provide the information needed for sounder decisions, but now taking the risk of running out of economically exploitable uranium ore resources. The development of hybrid reactors can provide an assurance against the latter risk and offers many interesting new options for the nuclear energy strategy. Being based on the technology of LWRs and HWRs, Light Water Hybrid Reactors (LWHR) provide a most natural link between the fission reactor technology of the present and the fusion power technology of the future. The investment in their development in excess of that required for the development of fusion power reactors is expected to be relatively small, thus making the development of LWHRs potentially a high benefit-to-cost ratio program. It is recommended that the fission and fusion communities will cooperate in hybrids R and D programs aimed at assessing the technological and economical viability of hybrid reactors as reliably and soon as possible. (author)

  17. Reactor physics and reactor strategy investigations into the fissionable material economy of the thorium and uranium cycle in fast breeder reactors and high temperature reactors

    International Nuclear Information System (INIS)

    Schikorr, W.M.

    In this work the properties governing the fissionable material economy of the uranium and thorium cycles are investigated for the advanced reactor types currently under development - the fast breeder reactor (FBR) and the high temperature reactor (HTR) - from the point of view of the optimum utilization of the available nuclear fuel reserves and the continuance of supply of these reserves. For this purpose, the two reactor types are first of all considered individually and are subsequently discussed as a complementary overall system

  18. AUS, Neutron Transport and Gamma Transport System for Fission Reactors and Fusion Reactors

    International Nuclear Information System (INIS)

    1990-01-01

    1 - Description of program or function: AUS is a neutronics code system which may be used for calculations of a wide range of fission reactors, fusion blankets and other neutron applications. The present version, AUS98, has a nuclear cross section library based on ENDF/B-VI and includes modules which provide for reactor lattice calculations, one-dimensional transport calculations, multi-dimensional diffusion calculations, cell and whole reactor burnup calculations, and flexible editing of results. Calculations of multi-region resonance shielding, coupled neutron and photon transport, energy deposition, fission product inventory and neutron diffusion are combined within the one code system. The major changes from the previous release, AUS87, are the inclusion of a cross-section library based on ENDF/B-VI, the addition of the POW3D multi-dimensional diffusion module, the addition of the MICBURN module for controlling whole reactor burnup calculations, and changes to the system as a consequence of moving from IBM mainframe computers to UNIX workstations. 2 - Method of solution: AUS98 is a modular system in which the modules are complete programs linked by a path given in the input stream. A simple path is simply a sequence of modules, but the path is actually pre-processed and compiled using the Fortran 77 compiler. This provides for complex module linking if required. Some of the modules included in AUS98 are: MIRANDA Cross-section generation in a multi-region resonance subgroup calculation and preliminary group condensation. ANAUSN One-dimensional discrete ordinates calculation. ICPP Isotropic collision probability calculation in one dimension and for rod clusters. POW3D Multi-dimensional neutron diffusion calculation including feedback-free kinetics. AUSIDD One-dimensional diffusion calculation. EDITAR Reaction-rate editing and group collapsing following a transport calculation. CHAR Lattice and global burnup calculation. MICBURN Control of global burnup

  19. Fission product poisoning in KS-150 reactor operation

    International Nuclear Information System (INIS)

    Rana, S.B.

    1978-01-01

    A three-dimensional model of the KS-150 reactor was used to study reactivity changes induced by reactor poisoning with fission products Xe 135 and Sm 149 . A comparison of transients caused by the poisoning showed the following differences: (1) the duration of the transient Xe poisoning (2 days) is shorter by one order of magnitude than the duration of Sm poisoning (20 days); however, the level of Xe poisoning is greater approximately by one order than the level of the Sm poisoning; (2) the level of steady-state Xe poisoning depends on the output level of the reactor; steady-state Sm poisoning does not depend on this level; (3) following reactor shutdown Xe poisoning may increase to the maximum value of up to Δrhosub(Xe)=20% and will then gradually decrease; Sm poisoning may reach maximum values of up to Δrhosub(Sm)=2% and does not decrease. (J.B.)

  20. Energy production using fission fragment rockets

    International Nuclear Information System (INIS)

    Chapline, G.; Matsuda, Y.

    1991-08-01

    Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: Approximately twice as efficient if one can directly convert the fission fragment energy into electricity; by reducing the buildup of a fission fragment inventory in the reactor one could avoid a Chernobyl type disaster; and collecting the fission fragments outside the reactor could simplify the waste disposal problem. 6 refs., 4 figs., 2 tabs

  1. Neutron dosimetry for radiation damage in fission and fusion reactors

    International Nuclear Information System (INIS)

    Smith, D.L.

    1979-01-01

    The properties of materials subjected to the intense neutron radiation fields characteristic of fission power reactors or proposed fusion energy devices is a field of extensive current research. These investigations seek important information relevant to the safety and economics of nuclear energy. In high-level radiation environments, neutron metrology is accomplished predominantly with passive techniques which require detailed knowledge about many nuclear reactions. The quality of neutron dosimetry has increased noticeably during the past decade owing to the availability of new data and evaluations for both integral and differential cross sections, better quantitative understanding of radioactive decay processes, improvements in radiation detection technology, and the development of reliable spectrum unfolding procedures. However, there are problems caused by the persistence of serious integral-differential discrepancies for several important reactions. There is a need to further develop the data base for exothermic and low-threshold reactions needed in thermal and fast-fission dosimetry, and for high-threshold reactions needed in fusion-energy dosimetry. The unsatisfied data requirements for fission reactor dosimetry appear to be relatively modest and well defined, while the needs for fusion are extensive and less well defined because of the immature state of fusion technology. These various data requirements are examined with the goal of providing suggestions for continued dosimetry-related nuclear data research

  2. Reference and standard benchmark field consensus fission yields for U.S. reactor dosimetry programs

    International Nuclear Information System (INIS)

    Gilliam, D.M.; Helmer, R.G.; Greenwood, R.C.; Rogers, J.W.; Heinrich, R.R.; Popek, R.J.; Kellogg, L.S.; Lippincott, E.P.; Hansen, G.E.; Zimmer, W.H.

    1977-01-01

    Measured fission product yields are reported for three benchmark neutron fields--the BIG-10 fast critical assembly at Los Alamos, the CFRMF fast neutron cavity at INEL, and the thermal column of the NBS Research Reactor. These measurements were carried out by participants in the Interlaboratory LMFBR Reaction Rates (ILRR) program. Fission product generation rates were determined by post-irradiation analysis of gamma-ray emission from fission activation foils. The gamma counting was performed by Ge(Li) spectrometry at INEL, ANL, and HEDL; the sample sent to INEL was also analyzed by NaI(Tl) spectrometry for Ba-140 content. The fission rates were determined by means of the NBS Double Fission Ionization Chamber using thin deposits of each of the fissionable isotopes. Four fissionable isotopes were included in the fast neutron field measurements; these were U-235, U-238, Pu-239, and Np-237. Only U-235 was included in the thermal neutron yield measurements. For the fast neutron fields, consensus yields were determined for three fission product isotopes--Zr-95, Ru-103, and Ba-140. For these fission product isotopes, a separately activated foil was analyzed by each of the three gamma counting laboratories. The experimental standard deviation of the three independent results was typically +- 1.5%. For the thermal neutron field, a consensus value for the Cs-137 yield was also obtained. Subsidiary fission yields are also reported for other isotopes which were studied less intensively (usually by only one of the participating laboratories). Comparisons with EBR-II fast reactor yields from destructive analysis and with ENDF/B recommended values are given

  3. Physical Investigation for Neutron Consumption and Multiplication in Blanket Module of Fusion-Fission Hybrid Reactor

    International Nuclear Information System (INIS)

    Tariq Siddique, M.; Kim, Myung Hyun

    2014-01-01

    Fusion-fission hybrid reactor can be the first milestone of fusion technology and achievable in near future. It can provide operational experience for tritium recycling for pure fusion reactor and be used for incineration of high-level long-lived waste isotopes from existing fission power reactors. Hybrid reactor for waste transmutation (Hyb-WT) was designed and optimized to assess its otential for waste transmutation. ITER will be the first large scaled experimental tokamak facility for the testing of test blanket modules (TBM) which will layout the foundation for DEMO fusion power plants. Similarly hybrid test blanket module (HTBM) will be the foundation for rationality of fusion fission hybrid reactors. Designing and testing of hybrid blankets will lead to another prospect of nuclear technology. This study is initiated with a preliminary design concept of a hybrid test blanket module (HTBM) which would be tested in ITER. The neutrons generated in D-T fusion plasma are of high energy, 14.1 MeV which could be multiplied significantly through inelastic scattering along with fission in HTBM. In current study the detailed neutronic analysis is performed for the blanket module which involves the neutron growth and loss distribution within blanket module with the choice of different fuel and coolant materials. TRU transmutation and tritium breeding performance of HTBM is analyzed under ITER irradiation environment for five different fuel types and with Li and LiPb coolants. Simple box geometry with plate type TRU fuel is adopted so that it can be modelled with heterogeneous material geometry in MCNPX. Waste transmutation ratio (WTR) of TRUs and tritium breeding ration (TBR) is computed to quantify the HTBM performance. Neutron balance is computed in detail to analyze the performance parameters of HTBM. Neutron spectrum and fission to capture ratio in TRU fuel types is also calculated for detailed analysis of HTBM

  4. Physical Investigation for Neutron Consumption and Multiplication in Blanket Module of Fusion-Fission Hybrid Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tariq Siddique, M.; Kim, Myung Hyun [Kyung Hee Univ., Yongin (Korea, Republic of)

    2014-05-15

    Fusion-fission hybrid reactor can be the first milestone of fusion technology and achievable in near future. It can provide operational experience for tritium recycling for pure fusion reactor and be used for incineration of high-level long-lived waste isotopes from existing fission power reactors. Hybrid reactor for waste transmutation (Hyb-WT) was designed and optimized to assess its otential for waste transmutation. ITER will be the first large scaled experimental tokamak facility for the testing of test blanket modules (TBM) which will layout the foundation for DEMO fusion power plants. Similarly hybrid test blanket module (HTBM) will be the foundation for rationality of fusion fission hybrid reactors. Designing and testing of hybrid blankets will lead to another prospect of nuclear technology. This study is initiated with a preliminary design concept of a hybrid test blanket module (HTBM) which would be tested in ITER. The neutrons generated in D-T fusion plasma are of high energy, 14.1 MeV which could be multiplied significantly through inelastic scattering along with fission in HTBM. In current study the detailed neutronic analysis is performed for the blanket module which involves the neutron growth and loss distribution within blanket module with the choice of different fuel and coolant materials. TRU transmutation and tritium breeding performance of HTBM is analyzed under ITER irradiation environment for five different fuel types and with Li and LiPb coolants. Simple box geometry with plate type TRU fuel is adopted so that it can be modelled with heterogeneous material geometry in MCNPX. Waste transmutation ratio (WTR) of TRUs and tritium breeding ration (TBR) is computed to quantify the HTBM performance. Neutron balance is computed in detail to analyze the performance parameters of HTBM. Neutron spectrum and fission to capture ratio in TRU fuel types is also calculated for detailed analysis of HTBM.

  5. Neutron and thermal dynamics of a gaseous core fission reactor

    International Nuclear Information System (INIS)

    van Dam, H.; Kuijper, J.C.; Stekelenburg, A.J.C.; Hoogenboom, J.E.; Boersma-Klein, W.; Kistemaker, J.

    1989-01-01

    In this paper neutron kinetics and thermal dynamics of a Gaseous Core Fission Reactor with magnetical pumping are shown to have many unconventional aspects. Attention is focused on the properties of the fuel gas, the non-linear neutron kinetics and the energy balance in thermodynamical cycles

  6. Tokamak hybrid thermonuclear reactor for the production of fissionable fuel and electric power

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Glukhikh, V.A.; Gur'ev, V.V.

    1978-01-01

    The results of feasibility studies of a tokamak- based hybrid reactor concept are presented. The system selected has a D-T plasma volume of 575 m 3 with additional plasma heating by injection of fast neutral particles. The method of heating makes it possible to achieve an economical two-component tokamak regime at ntau=(4-6)x10 13 sxcm -3 , i e. far below the Lawson criterion. Plasma and vacuum chamber are surrounded by a blanket where fissionable plutonium is produced and heat transformed into electric power is generated. Major plasma-neutron-physical characteristics of the 6905 MWth (2500 MWe) reactor and its electromagnetic system are presented. Evaluations show that the hybrid reactor can produce about 800 kg of Pu per 1GWth/yr as compared to 70-150 kg of Pu for fast breeder reactors. The increased Pu production rate is the major merit of the concept promising for both power generation and fuelling thermal fission reactions

  7. Transmutation of fission products in reactors and accelerator-driven systems

    International Nuclear Information System (INIS)

    Janssen, A.J.

    1994-01-01

    Energy flows and mass flows in several scenarios are considered. Economical and safety aspects of the transmutation scenarios are compared. It is difficult to find a sound motivation for the transmutation of fission products with accelerator-driven systems. If there would be any hesitation in transmuting fission products in nuclear reactors, there would be an even stronger hesitation to use accelerator-driven systems, mainly because of their lower energy efficiency and their poor cost effectiveness. The use of accelerator-driven systems could become a 'meaningful' option only if nuclear energy would be banished completely. (orig./HP)

  8. Transient fission-product release during reactor shutdown and startup

    International Nuclear Information System (INIS)

    Hunt, C.E.L.; Lewis, B.J.; Dickson, L.W.

    1997-12-01

    Sweep-gas experiments performed at AECL's Chalk River Laboratories from 1979 to 1985 have been further analysed to determine the fraction of the gaseous fission-product inventory that is released on reactor shutdown and startup. Empirical equations were derived and applied to calculate the stable xenon release from companion fuel elements and from a well-documented experimental fuel bundle irradiated in the NRU reactor. The calculated gas release could be matched to the measured values within about a factor of two for an experimental irradiation with a burnup of 217 MWh/kgU. There was also limited information on the fraction of the radioactive iodine that was exposed, but not released, on reactor shutdown. An empirical equation is proposed for calculating this fraction. (author)

  9. Radiochemical studies on fission

    Energy Technology Data Exchange (ETDEWEB)

    None

    1973-07-01

    Research progress is reported on nuclear chemistry; topics considered include: recoil range and kinetic energy distribution in the thermal neutron ftssion of /sup 245/Cm; mass distribution and recoil range measurements in the reactor neutron-induced fission of /sup 232/U; fission yields in the thermal neutron fission of /sup 241/PU highly asymmetric binary fission of uranium induced by reactor neutrons; and nuclear charge distribution in low energy fission. ( DHM)

  10. Solid State Track Recorder fission rate measurements in low power light water reactor pressure vessel mockups

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Roberts, J.H.; Kellogg, L.S.

    1985-01-01

    The results of extensive SSTR measurements made at the Pool Critical Assembly (PCA) facility at Oak Ridge National Laboratory have been reported previously. Measurements were made at key locations in PCA which is an idealized mockup of the water gap, thermal shield, pressure vessel geometry of a light water reactor. Recently, additional SSTR fission rate measurements have been carried out for 237-Np, 238-U, and 235-U in key locations in the NESTOR Shielding and Dosimetry Improvement Program (NESDIP) mockup facility located at Winfrith, England. NESDIP is a replica of the PCA facility, and comparisons will be made between PCA and NESDIP measurements. The results of measurements made at the engineering mockup at the VENUS critical assembly at CEN/SCK, Mol, Belgium will also be reported. Measurements were made at selected radial and azimuthal locations in VENUS, which models the in-core and near-core regions of a pressurized water reactor. Comparisons of absolute SSTR fission rates with absolute fission rates made with the Mol miniature fission chamber will be reported. Absolute fission rate comparisons have also been made between the NBS fission chamber, radiometric fission foils, and SSTRs, and these results will be summarized

  11. Vaporization of low-volatile fission products under severe CANDU reactor accident conditions

    International Nuclear Information System (INIS)

    Lewis, B.J.; Corse, B.J.; Thompson, W.T.; Kaye, M.H.; Iglesias, F.C.; Elder, P.; Dickson, R.; Liu, Z.

    1997-01-01

    An analytical model has been developed to describe the release behaviour of low-volatile fission products from uranium dioxide fuel under severe reactor accident conditions. The effect of the oxygen potential on the chemical form and volatility of fission products is determined by Gibbs-energy minimization. The release kinetics are calculated according to the rate-controlling step of diffusional transport in the fuel matrix or fission product vaporization from the fuel surface. The effect of fuel volatilization (i.e., matrix stripping) on the release behaviour is also considered. The model has been compared to data from an out-of-pile annealing experiment performed in steam at the Chalk River Laboratories. (author)

  12. Natural fission reactors from Gabon. Contribution to the study of the conditions of stability of a natural radioactive wastes storage site (2 Ga)

    International Nuclear Information System (INIS)

    Pourcelot, L.

    1997-01-01

    The natural fission reactors of Oklo consists of a core of uraninite (60%) with fission products, embedded in a pure clay matrix. Thus, the aim of geological, mineral, and geochemical studies of the Oklo Reactors is to assess the behaviour of fission products in an artificial waste depository. Previous studies have shown that Reactor Zone 10, located in the Oklo mine, represents an example for an exceptional confinement of fission products since 2 Ga. In reactor Zone 9, located in Oklo open pit, migrations are more important. Reactor ZOne 13 was influenced by a thermal event due to a doleritic intrusion, located some twenty meters far away, one Ga years after fission reaction operations. In this study,we characterized temperature and redox conditions of fluids by using stable isotopes of uraninites and clays. Moreover mineralogical and chemical characteristics were defined. (author)

  13. Thermochemical investigation of molten fluoride salts for Generation IV nuclear applications - an equilibrium exercise

    NARCIS (Netherlands)

    van der Meer, J.P.M.

    2006-01-01

    The concept of the Molten Salt Reactor, one of the so-called Generation IV future reactors, is that the fuel, a fissile material, which is dissolved in a molten fluoride salt, circulates through a closed circuit. The heat of fission is transferred to a second molten salt coolant loop, the heat of

  14. Transmutation of long-lived fission product (137Cs, 90Sr) by a reactor-accelerator system

    International Nuclear Information System (INIS)

    Toyama, Shin-ichi; Takashita, Hirofumi; Konashi, Kenji; Sasao, Nobuyuki; Sato, Isamu.

    1990-01-01

    The report discusses the transmutation of long-lived fission products by a reactor and accelerator. It is important to take some criteria into consideration in transmutation disposal. To satisfy the criteria, a combined system of a reactor and an accelerator is proposed for the transmutation. An outline of the transmutation reactor and the accelerator is presented. The transmutation reactor has the ability to transmute a large quantity of fission products. However, it is desirable to have a high transmutation rate as well as a large disposal ability. Besides the transmutation property, it is necessary to investigate the physics of the transmutation reactor such as nuclear characteristics and burnup properties in order to obtain the most suitable, high performance core concept. A study on those properties is also presented. A high power accelerator is required for the transmutation. So a test linac is developed to accelerate high intensity beams. (N.K.)

  15. Neutron lifetime and generation time by KENO IV

    International Nuclear Information System (INIS)

    Hayashi, Masatoshi

    1991-01-01

    It is believed that Monte Carlo method is suitable to the calculation of neutron lifetime and generation time with reference to the life cycle viewpoint. This paper illustrates that those times obtained by Monte Carlo method are quite different from the results by perturbation method. The neutron lifetime and the generation time for bare and reflected reactors were investigated by the Monte Carlo program, KENO IV. the Monte Carlo procedure is based on tracking and recording the life history of neutrons in a realistic fashion in a fissionable system with minimum nuclear and geometric approximations. The KENO IV provides the multiplication factor, neutron lifetime and generation time simultaneously. The thermal spherical reactors for both bare and reflected reactors were studied using the KENO IV. The reflected reactor is surrounded with 30 cm thick light water. The atomic densities in the regions and the calculated results of the multiplication factor, neutron lifetime and generation time are given. The different definitions of these times between the Monte Carlo method and perturbation theory caused the difference of the results. (K.I.)

  16. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    Directory of Open Access Journals (Sweden)

    Porta A.

    2016-01-01

    Full Text Available Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland using Total Absorption Spectroscopy (TAS. TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  17. Reaction Rate Benchmark Experiments with Miniature Fission Chambers at the Slovenian TRIGA Mark II Reactor

    Science.gov (United States)

    Štancar, Žiga; Kaiba, Tanja; Snoj, Luka; Barbot, Loïc; Destouches, Christophe; Fourmentel, Damien; Villard, Jean-François AD(; )

    2018-01-01

    A series of fission rate profile measurements with miniature fission chambers, developed by the Commisariat á l'énergie atomique et auxénergies alternatives, were performed at the Jožef Stefan Institute's TRIGA research reactor. Two types of fission chambers with different fissionable coating (235U and 238U) were used to perform axial fission rate profile measurements at various radial positions and several control rod configurations. The experimental campaign was supported by an extensive set of computations, based on a validated Monte Carlo computational model of the TRIGA reactor. The computing effort included neutron transport calculations to support the planning and design of the experiments as well as calculations to aid the evaluation of experimental and computational uncertainties and major biases. The evaluation of uncertainties was performed by employing various types of sensitivity analyses such as experimental parameter perturbation and core reaction rate gradient calculations. It has been found that the experimental uncertainty of the measurements is sufficiently low, i.e. the total relative fission rate uncertainty being approximately 5 %, in order for the experiments to serve as benchmark experiments for validation of fission rate profiles. The effect of the neutron flux redistribution due to the control rod movement was studied by performing measurements and calculations of fission rates and fission chamber responses in different axial and radial positions at different control rod configurations. It was confirmed that the control rod movement affects the position of the maximum in the axial fission rate distribution, as well as the height of the local maxima. The optimal detector position, in which the redistributions would have minimum effect on its signal, was determined.

  18. Survey on the fusion/fission-hybrid-reactors, a literature review

    International Nuclear Information System (INIS)

    A survey, based on existing literature, of the work being pursued worldwide on fusion - fission (hybrid) reactor systems is presented. Six areas are reviewed: Plasma physics parameters; Blankets concepts; Fuel cycles; Reactor conceptual designs; Safety and environmental problems; System studies and economic perspectives. Attention has been restricted to systems using magnetically confined plasmas, mainly to mirror and Tokamak - type concepts. The aim is to provide sufficient information, even if not exhaustive, on hybrid reactor concepts in order to help understand what may be expected from their possible development and the ways in which hybrids could affect the future energy scenario. Some concluding remarks are made which represent the personal view of the authors only

  19. Role of fission gas release in reactor licensing

    International Nuclear Information System (INIS)

    1975-11-01

    The release of fission gases from oxide pellets to the fuel rod internal voidage (gap) is reviewed with regard to the required safety analysis in reactor licensing. Significant analyzed effects are described, prominent gas release models are reviewed, and various methods used in the licensing process are summarized. The report thus serves as a guide to a large body of literature including company reports and government documents. A discussion of the state of the art of gas release analysis is presented

  20. Fission products collecting devices

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshi

    1979-01-01

    Purpose: To enable fission products trap with no contamination to coolants and cover gas by the provision of a fission products trap above the upper part of a nuclear power plant. Constitution: Upon fuel failures in a reactor core, nuclear fission products leak into coolants and move along the flow of the coolants to the coolants above the reactor core. The fission products are collected in a trap container and guided along a pipeline into fission products detector. The fission products detector monitors the concentration of the fission products and opens the downstream valve of the detector when a predetermined concentration of the fission products is detected to introduce the fission products into a waste gas processing device and release them through the exhaust pipe. (Seki, T.)

  1. FPDCYS and FPSPEC: computer programs for calculating fission-product beta and gamma multigroup spectra from ENDF/B-IV data

    International Nuclear Information System (INIS)

    Stamatelatos, M.G.; England, T.R.

    1977-05-01

    FPDCYS and FPSPEC are two FORTRAN computer programs used at the Los Alamos Scientific Laboratory (LASL), in conjunction with the CINDER-10 program, for calculating cumulative fission-product beta and/or gamma multigroup spectra in arbitrary energy structures, and for arbitrary neutron irradiation periods and cooling times. FPDCYS processes ENDF/B-IV fission-product decay energy data to generate multigroup beta and gamma spectra from individual ENDF/B-IV fission-product nuclides. FPSPEC further uses these spectra and the corresponding nuclide activities calculated by the CINDER-10 code to produce cumulative beta and gamma spectra in the same energy grids in which FPDCYS generates individual isotope decay spectra. The code system consisting of CINDER-10, FPDCYS, and FPSPEC has been used for comparisons with experimental spectra and continues to be used at LASL for generating spectra in special user-oriented group structures. 3 figures

  2. Measurement of tritium production rate distribution for a fusion-fission hybrid conceptual reactor

    International Nuclear Information System (INIS)

    Wang Xinhua; Guo Haiping; Mou Yunfeng; Zheng Pu; Liu Rong; Yang Xiaofei; Yang Jian

    2013-01-01

    A fusion-fission hybrid conceptual reactor is established. It consists of a DT neutron source and a spherical shell of depleted uranium and hydrogen lithium. The tritium production rate (TPR) distribution in the conceptual reactor was measured by DT neutrons using two sets of lithium glass detectors with different thicknesses in the hole in the vertical direction with respect to the D + beam of the Cockcroft-Walton neutron generator in direct current mode. The measured TPR distribution is compared with the calculated results obtained by the three-dimensional Monte Carlo code MCNP5 and the ENDF/B-Ⅵ data file. The discrepancy between the measured and calculated values can be attributed to the neutron data library of the hydrogen lithium lack S(α, β) thermal scattering model, so we show that a special database of low-energy and thermal neutrons should be established in the physics design of fusion-fission hybrid reactors. (authors)

  3. Fusion-fission hybrid as an alternative to the fast breeder reactor

    International Nuclear Information System (INIS)

    Barrett, R.J.; Hardie, R.W.

    1980-09-01

    This report compares the fusion-fission hybrid on the plutonium cycle with the classical fast breeder reactor (FBR) cycle as a long-term nuclear energy source. For the purpose of comparison, the current light-water reactor once-through (LWR-OT) cycle was also analyzed. The methods and models used in this study were developed for use in a comparative analysis of conventional nuclear fuel cycles. Assessment areas considered in this study include economics, energy balance, proliferation resistance, technological status, public safety, and commercial viability. In every case the characteristics of all fuel cycle facilities were accounted for, rather than just those of the reactor

  4. Nordic Nuclear Materials Forum for Generation IV Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Anghel, C. (Studsvik Nuclear AB, Nykoeping (Sweden)); Penttilae, S. (Technical Research Centre of Finland, VTT (Finland))

    2010-03-15

    A network for material issues for Generation IV nuclear power has been initiated within the Nordic countries. The objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) are to put the basis of a sustainable forum for Gen IV issues, especially focussing on fuels, cladding, structural materials and coolant interaction. Other issues include reactor physics, dynamics and diagnostics, core and fuel design. The present report summarizes the work performed during the year 2009. The efforts made include identification of organisations involved in Gen IV issues in the Nordic countries, update of the forum website, http://www.studsvik.se/GenerationIV, and investigation of capabilities for research within the area of Gen IV. Within the NOMAGE4 project a seminar on Generation IV Nuclear Energy Systems has been organized during 15-16th of October 2009. The aim of the seminar was to provide a forum for exchange of information, discussion on future research needs and networking of experts on Generation IV reactor concepts. As an outcome of the NOMAGE4, a few collaboration project proposals have been prepared/planned in 2009. The network was welcomed by the European Commission and was mentioned as an exemplary network with representatives from industries, universities, power companies and research institutes. NOMAGE4 has been invited to participate to the 'European Energy Research Alliance, EERA, workshop for nuclear structural materials' http://www.eera-set.eu/index.php?index=41 as external observers. Future plans include a new Nordic application for continuation of NOMAGE4 network. (author)

  5. Nordic Nuclear Materials Forum for Generation IV Reactors

    International Nuclear Information System (INIS)

    Anghel, C.; Penttilae, S.

    2010-03-01

    A network for material issues for Generation IV nuclear power has been initiated within the Nordic countries. The objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) are to put the basis of a sustainable forum for Gen IV issues, especially focussing on fuels, cladding, structural materials and coolant interaction. Other issues include reactor physics, dynamics and diagnostics, core and fuel design. The present report summarizes the work performed during the year 2009. The efforts made include identification of organisations involved in Gen IV issues in the Nordic countries, update of the forum website, http://www.studsvik.se/GenerationIV, and investigation of capabilities for research within the area of Gen IV. Within the NOMAGE4 project a seminar on Generation IV Nuclear Energy Systems has been organized during 15-16th of October 2009. The aim of the seminar was to provide a forum for exchange of information, discussion on future research needs and networking of experts on Generation IV reactor concepts. As an outcome of the NOMAGE4, a few collaboration project proposals have been prepared/planned in 2009. The network was welcomed by the European Commission and was mentioned as an exemplary network with representatives from industries, universities, power companies and research institutes. NOMAGE4 has been invited to participate to the 'European Energy Research Alliance, EERA, workshop for nuclear structural materials' http://www.eera-set.eu/index.php?index=41 as external observers. Future plans include a new Nordic application for continuation of NOMAGE4 network. (author)

  6. Generation IV reactors: international projects

    International Nuclear Information System (INIS)

    Carre, F.; Fiorini, G.L.; Kupitz, J.; Depisch, F.; Hittner, D.

    2003-01-01

    Generation IV international forum (GIF) was initiated in 2000 by DOE (American department of energy) in order to promote nuclear energy in a long term view (2030). GIF has selected 6 concepts of reactors: 1) VHTR (very high temperature reactor system, 2) GHR (gas-cooled fast reactor system), 3) SFR (sodium-cooled fast reactor system, 4) SCWR (super-critical water-cooled reactor system), 5) LFR (lead-cooled fast reactor system), and 6) MFR (molten-salt reactor system). All these 6 reactor systems have been selected on criteria based on: - a better contribution to sustainable development (through their aptitude to produce hydrogen or other clean fuels, or to have a high energy conversion ratio...) - economic profitability, - safety and reliability, and - proliferation resistance. The 6 concepts of reactors are examined in the first article, the second article presents an overview of the results of the international project on innovative nuclear reactors and fuel cycles (INPRO) within IAEA. The project finished its first phase, called phase-IA. It has produced an outlook into the future role of nuclear energy and defined the need for innovation. The third article is dedicated to 2 international cooperations: MICANET and HTR-TN. The purpose of MICANET is to propose to the European Commission a research and development strategy in order to develop the assets of nuclear energy for the future. Future reactors are expected to be more multiple-purposes, more adaptable, safer than today, all these developments require funded and coordinated research programs. The aim of HTR-TN cooperation is to promote high temperature reactor systems, to develop them in a long term perspective and to define their limits in terms of burn-up and operating temperature. (A.C.)

  7. Study on the technical feasibility of Fission-Track dating at two irradiation positions of the RA-6 research reactor

    International Nuclear Information System (INIS)

    Dorval, Eric

    2005-01-01

    The method of Fission-Track dating is based upon the detection of the damage caused by fission fragments from the Uranium contained in geological samples.In order to determine the age of a sample, both the amount of spontaneous fissions occurred and the Uranium concentration must be known.The latter requires the irradiation of the samples inside a reactor with a well-thermalized flux, so that fissions are induced over 235 U targets only. Therefore, the Uranium concentration may be determined.The main inconvenient presented by the irradiation sites at the RA-6 MTR-type reactor is that neutron flux is not completely thermal there, which means that fissions due to epithermal and fast neutrons will not be negligible.In the same way, tracks due to fissions of 238 U and 232 Th will be detected. In order to know the corrections that must be applied to those measurements performed in this reactor, it is necessary to characterize fast flux.Because of it, this laboratory's gamma spectrometry equipment had to be calibrated. After that, several activation detectors were irradiated and results were analyzed. Finally, it was determined that it is feasible to Fission-Track date at the I6 position. However, limitations associated to this method were analyzed for the values of flux measured in the different sites

  8. Inventories of radioactive fission products in the core of thermal nuclear reactor

    International Nuclear Information System (INIS)

    Marinkovic, N.

    1977-01-01

    As a part of the analysis concerning radiological consequences of a major LWR accident, inventories of the most significant radioactive nuclides and stable fission gases in the core of a PWR type reactor have been calculated. Calculations were performed by the DELFIN code using nuclide data and neutron flux data earlier obtained by the METHUSELAH code. Comparison with simplified calculation method show that it is quite rough for certain nuclides but the accuracy may be sufficient for safety analysis purposes recalling the inaccuracies in the later parts of fission product transport process (author)

  9. Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Halsey, William [Lawrence Livermore National Laboratory (LLNL); Hayner, George [Idaho National Laboratory (INL); Katoh, Yutai [ORNL; Klett, James William [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Stoller, Roger E [ORNL; Wilson, Dane F [ORNL

    2005-12-01

    The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

  10. The study of two, three and four dimensional nonlinear dynamics of nuclear fission reactors and effective parameters on its behaviour

    International Nuclear Information System (INIS)

    Tajik, M.; Ghasemizad, A.

    2008-01-01

    In this research, new physical fission reactor parameters which have very sensitive effects on the qualitative behavior of a reactor, are introduced. Therefore, the two, the nonlinear dynamics of two, three and four dimensional, considering almost the effective parameters are formulated for describing nuclear fission reactor systems. Using both analytical and numerical methods, the stability and instability of the given dynamical equations and the conditions of stability are studied in these systems. We have shown that the two parameters of the mean energy residence time in fuel and coolant and also their ratios have the most qualitative effects on the dynamical behaviour of a typical nuclear fission reactor. Increasing or decreasing of these parameters from a captain limit can lead to stability or un stability in a given system

  11. Comparison of nuclear irradiation parameters of fusion breeder materials in high flux fission test reactors and a fusion power demonstration reactor

    International Nuclear Information System (INIS)

    Fischer, U.; Herring, S.; Hogenbirk, A.; Leichtle, D.; Nagao, Y.; Pijlgroms, B.J.; Ying, A.

    2000-01-01

    Nuclear irradiation parameters relevant to displacement damage and burn-up of the breeder materials Li 2 O, Li 4 SiO 4 and Li 2 TiO 3 have been evaluated and compared for a fusion power demonstration reactor and the high flux fission test reactor (HFR), Petten, the advanced test reactor (ATR, INEL) and the Japanese material test reactor (JMTR, JAERI). Based on detailed nuclear reactor calculations with the MCNP Monte Carlo code and binary collision approximation (BCA) computer simulations of the displacement damage in the polyatomic lattices with MARLOWE, it has been investigated how well the considered HFRs can meet the requirements for a fusion power reactor relevant irradiation. It is shown that a breeder material irradiation in these fission test reactors is well suited in this regard when the neutron spectrum is well tailored and the 6 Li-enrichment is properly chosen. Requirements for the relevant nuclear irradiation parameters such as the displacement damage accumulation, the lithium burn-up and the damage production function W(T) can be met when taking into account these prerequisites. Irradiation times in the order of 2-3 full power years are necessary for the HFR to achieve the peak values of the considered fusion power Demo reactor blanket with regard to the burn-up and, at the same time, the dpa accumulation

  12. Euratom contributions in Fast Reactor research programmes

    International Nuclear Information System (INIS)

    Fanghänel, Th.; Somers, J.

    2013-01-01

    The Sustainable Nuclear Initiative: • demonstrate long-term sustainability of nuclear energy; • demonstration reactors of Gen IV: •more efficient use of resources; • closed fuel cycle; • reduced proliferation risks; • enhanced safety features. • Systems pursued in Europe: • Sodium-cooled fast reactor SFR; • Lead-cooled fast reactor LFR; • Gas-cooled fast reactor GFR. Sustainable Nuclear Energy Technology Platform SNE-TP promotes research, development and demonstration of the nuclear fission technologies necessary to achieve the SET-Plan goals

  13. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 2: Power from nuclear fission

    Science.gov (United States)

    Clement, J. D.

    1973-01-01

    Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.

  14. The generation IV nuclear reactor systems - Energy of future

    International Nuclear Information System (INIS)

    Ohai, Dumitru; Jianu, Adrian

    2006-01-01

    Ten nations joined within the Generation IV International Forum (GIF), agreeing on a framework for international cooperation in research. Their goal is to develop future-generation nuclear energy systems that can be licensed, constructed, and operated in an economically competitive way while addressing the issues of safety, proliferation, and other public perception concerns. The objective is for the Gen IV systems to be available for deployment by 2030. Using more than 100 nuclear experts from its 10 member nations, the GIF has developed a Gen IV Technology Roadmap to guide the research and development of the world's most advanced, efficient and safe nuclear power systems. The Gen IV Technology Roadmap calls for extensive research and development of six different potential future reactor systems. These include water-cooled, gas-cooled, liquid metal-cooled and nonclassical systems. One or more of these reactor systems will provide the best combination of safety, reliability, efficiency and proliferation resistance at a competitive cost. The main goals for the Gen IV Nuclear Energy Systems are: - Provide sustainable energy generation that meets clean air objectives and promotes long-term availability of systems and effective fuel use for worldwide energy production; - Minimize and manage their nuclear waste and noticeably reduce the long-term stewardship burden in the future, improving the protection of public health and the environment; - Increase the assurance that these reactors are very unattractive and the least desirable route for diversion or theft of weapons-usable materials, and provide increased protection against acts of terrorism; - Have a clear life-cycle cost advantage over other energy sources; - Have a level of financial risk comparable to other energy projects; - Excel in safety and reliability; - Have a low likelihood and degree of reactor core damage. (authors)

  15. Potentials of fissioning plasmas

    International Nuclear Information System (INIS)

    Karlheinz, Thom.

    1979-01-01

    Successful experiments with the nuclear pumping of lasers have demonstrated that in gaseous medium the kinetic energy of fission fragments can be converted directly into non-equilibrium optical radiation. This confirms the concept that the fissioning medium in a gas-phase nuclear reactor shows an internal structure such as a plasma in nearly thermal equilibrium varying up to a state of extreme-non-equilibrium. The accompanying variations of temperatures, pressure and radiative spectrum suggest wide ranges of applications. For example, in the gas-phase fission reactor concept enriched uranium hexafluoride or an uranium plasma replaces conventional fuel elements and permits operation above the melting point of solid materials. This potential has been motivation for the US National Aeronautics and Space Administration (NASA) to conduct relevant research for high specific impulse propulsion in space. The need to separate the high temperature gaseous fuel from the surfaces of a containing vessel and to protect them against thermal radiation has led to the concept of an externally moderated reactor in which the fissioning gaseous material is suspended by fluid dynamic means and the flow of opaque buffer gas removes the power. The gaseous nuclear fuel can slowly be circulated through the reactor for continuous on-site reprocessing including the annihilation of transuranium actinides at fission when being fed back into the reactor. An equilibrium of the generation and destruction of such actinides at fission when being fed back into the reactor. An equilibrium of the generation and destruction of such actinides can thus be achieved. These characteristics and the unique radiative properties led to the expectation that the gas-phase fission reactor could feature improved safety, safeguarding and economy, in addition to new technologies such as processing, photochemistry and the transmission of power over large distances in space

  16. Irradiated uranium reprocessing, Final report I-VI, IV Deo IV - Separation of uranium, plutonium and fission products from the irradiated fuel of the reactor in Vinca; Prerada ozracenog urana. Zavrsni izvestaj - I-VI, IV Deo - Odvajanje urana, plutonijuma i fisionih produkata iz isluzenog goriva reaktora u Vinci

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I [Institute of Nuclear Sciences Boris Kidric, Laboratorija za visoku aktivnost, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    This study describes the technology for separation of uranium, plutonium and fission products from the radioactive water solution which is obtained by dissolving the spent uranium fuel from the reactor in Vinca. The procedure should be completed in a hot cell, with the maximum permitted activity of 10 Ci.

  17. Organic free radicals and micropores in solid graphitic carbonaceous matter at the Oklo natural fission reactors, Gabon

    International Nuclear Information System (INIS)

    Rigali, M.J.; Nagy, B.

    1997-01-01

    The presence, concentration, and distribution of organic free radicals as well as their association with specific surface areas and microporosities help characterize the evolution and behavior of the Oklo carbonaceous matter. Such information is necessary in order to evaluate uranium mineralization, liquid bitumen solidification, and radio nuclide containment at Oklo. In the Oklo ore deposits and natural fission reactors carbonaceous matter is often referred to as solid graphitic bitumen. The carbonaceous parts of the natural reactors may contain as much as 65.9% organic C by weight in heterogeneous distribution within the clay-rich matrix. The solid carbonaceous matter immobilized small uraninite crystals and some fission products enclosed in this uraninite and thereby facilitated radio nuclide containment in the reactors. Hence, the Oklo natural fission reactors are currently the subjects of detailed studies because they may be useful analogues to support performance assessment of radio nuclide containment at anthropogenic radioactive waste repository sites. Seven carbonaceous matter rich samples from the 1968 ± 50 Ma old natural fission reactors and the associated Oklo uranium ore deposit were studied by electron spin resonance (ESR) spectroscopy and by measurements of specific surface areas (BET method). Humic acid, fulvic acid, and fully crystalline graphite standards were also examined by ESR spectroscopy for comparison with the Oklo solid graphitic bitumens. With one exception, the ancient Oklo bitumens have higher organic free radical concentrations than the modem humic and fulvic acid samples. The presence of carbon free radicals in the graphite standard could not be determined due to the conductivity of this material. 72 refs., 7 figs., 1 tab

  18. Energy distribution of antineutrinos originating from the decay of fission products in a nuclear reactor

    International Nuclear Information System (INIS)

    Rudstam, G.; Aleklett, K.

    1979-01-01

    The energy spectrum of antineutrinos around a nuclear reactor has been derived by summing contributions from individual fission products. The resulting spectrum is weaker at energies above approx. 8 MeV than earlier published antineutrino spectra. The reason may be connected to the strong feeding of high-lying daughter states in the beta decay of fission products with high disintegration energies

  19. The ARIES-II and ARIES-IV second-stability tokamak reactors

    International Nuclear Information System (INIS)

    Najmabadi, F.; Conn, R.W.; Hasan, M.Z.; Mau, T.-K.; Sharafat, S.; Baxi, C.B.; Leuer, J.A.; McQuillan, B.W.; Puhn, F.A.; Schultz, K.R.; Wong, C.P.C.; Brooks, J.; Ehst, D.A.; Hassanein, A.; Hua, T.; Hull, A.; Mattis, R.; Picologlou, B.; Sze, D.-K.; Dolan, T.J.; Herring, J.S.; Bathke, C.G.; Krakowski, R.A.; Werley, K.A.; Bromberg, L.; Schultz, J.; Davis, F.; Holmes, J.A.; Lousteau, D.C.; Strickler, D.J.; Jardin, S.C.; Kessel, C.; Snead, L.; Steiner, D.; Valenti, M.; El-Guebaly, L.A.; Emmert, G.A.; Khater, H.Y.; Santarius, J.F.; Sawan, M.; Sviatoslavsky, I.N.; Cheng, E.T.

    1992-01-01

    The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. Four ARIES visions are currently planned for the ARIES program. The ARIES-I design is a DT-burning reactor based on modest extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. The ARIES-III study focuses on the potential of tokamaks to operate with D- 3 He fuel system as an alternative to deuterium and tritium. The ARIES-II and ARIES-IV designs have the same fusion plasma but different fusion-power-core designs. The ARIES-II reactor uses liquid lithium as the coolant and tritium breeder and vanadium alloy as the structural material in order to study the potential of low-activation metallic blankets. The ARIES-IV reactor uses helium as the coolant, a solid tritium-breeding material, and silicon carbide composite as the structural material in order to achieve the safety and environmental characteristic of fusion. In this paper the authors describe the trade-off leading to the optimum regime of operation for the ARIES-II and ARIES-IV second-stability reactors and review the engineering design of the fusion power cores

  20. Thermochemical data for reactor materials and fission products: The ECN database

    International Nuclear Information System (INIS)

    Cordfunke, E.H.P.; Konings, R.J.M.

    1993-02-01

    The activities of the authors regarding the compilation of a database of thermochemical properties for reactor materials and fission products is reviewed. The evaluation procedures and techniques are outlined and examples are given. In addition, examples of the use of thermochemical data for the application in the field of Nuclear Technology are given. (orig.)

  1. Simulation of fusion first-wall environment in a fission reactor

    International Nuclear Information System (INIS)

    Hassanein, A.M.; Kulcinski, G.L.; Longhurst, G.R.

    1982-01-01

    A novel concept to produce a realistic simulation of a fusion first-wall test environment has been proposed recently. This concept takes advantage of the (/eta/, α) reaction in 59 Ni to produce a high internal helium content in the metal while using the 3 He (/eta/, /rho/)T reaction in the gas surrounding the specimen to produce an external heat and particle flux. Models to calculate heat flux, erosion rate, implantation, and damage rate to the walls of the test module are presented. Preliminary results show that a number of important fusion technology issues could be tested experimentally in a fission reactor such as the Engineering Test Reactor

  2. A long term radiological risk model for plutonium-fueled and fission reactor space nuclear system

    International Nuclear Information System (INIS)

    Bartram, B.W.; Dougherty, D.K.

    1987-01-01

    This report describes the optimization of the RISK III mathematical model, which provides risk assessment for the use of a plutonium-fueled, fission reactor in space systems. The report discusses possible scenarios leading to radiation releases on the ground; distinctions are made for an intact reactor and a dispersed reactor. Also included are projected dose equivalents for various accident situations. 54 refs., 31 figs., 11 tabs

  3. High Temperature Fission Chamber for He- and FLiBe-cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Zane W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giuliano, Dominic R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lance, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, Roger G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warmack, Robert J. Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    We have evaluated candidate technologies for in-core fission chambers for high-temperature reactors to monitor power level via measurements of neutron flux from start-up through full power at up to 800°C. This research is important because there are no commercially available instruments capable of operating above 550 °C. Component materials and processes were investigated for fission chambers suitable for operation at 800 °C in reactors cooled by molten fluoride salt (FLiBe) or flowing He, with an emphasis placed on sensitivity (≥ 1 cps/nv), service lifetime (2 years at full power), and resistance to direct immersion in FLiBe. The latter gives the instrument the ability to survive accidents involving breach of a thimble. The device is envisioned to be a two-gap, three-electrode instrument constructed from concentric nickel-plated alumina cylinders and using a noble gas–nitrogen fill-gas. We report the results of measurements and calculations of the response of fill gasses, impurity migration in nickel alloy, brazing of the alumina insulator, and thermodynamic calculations.

  4. Technical Bases to Consider for Performance and Demonstration Testing of Space Fission Reactors

    International Nuclear Information System (INIS)

    Hixson, Laurie L.; Houts, Michael G.; Clement, Steven D.

    2004-01-01

    Performance and demonstration testing are critical to the success of a space fission reactor program. However, the type and extent to which testing of space reactors should be performed has been a point of discussion within the industry for many years. With regard to full power ground nuclear tests, questions such as 'Do the benefits outweigh the risks? Are there equivalent alternatives? Can a test facility be constructed (or modified) in a reasonable amount of time? Will the test article accurately represent the flight system? Are the costs too restrictive?' have been debated for decades. There are obvious benefits of full power ground nuclear testing such as obtaining systems integrated reliability data on a full-scale, complete end-to-end system. But these benefits come at some programmatic risk. In addition, this type of testing does not address safety related issues. This paper will discuss and assess these and other technical considerations essential in deciding which type of performance and demonstration testing to conduct on space fission reactor systems. (authors)

  5. Qualitative and quantitative characteristics of fission products in spent nuclear fuel from RBMK-type reactor

    International Nuclear Information System (INIS)

    Adlys, G.; Adliene, D.

    2002-01-01

    Well-known empirical models or experimental instruments and methods for the estimation of fission product yields do not allow prediction of the behavior and evaluation of the time-dependent qualitative and quantitative characteristics of all fission products in spent nuclear fuel during long-term storage. Several computer codes were developed in different countries to solve this problem. French codes APOLLO1 and PEPIN were used in this work for modeling the characteristics of spent nuclear fuel in the RBMK reactor. The modeling results of qualitative and quantitative characteristics of long-lived fission products for different cooling periods of spent nuclear fuel, including 50-year cooling period, are presented in this paper. The 50-year cooling period conforms to the foreseen time of storage of spent nuclear fuel in CONSTOR and CASTOR casks at the Ignalina NPP. These results correlate well with evaluated quantities for the well-known yields of the nuclides and could be used for the compilation of the database for long-lived fission products in spent nuclear fuel from the RBMK-type reactor. They allow one to predict and to solve effectively safety problems concerning with long-term spent nuclear fuel storage in casks. (author)

  6. Thermodynamic cycle calculations for a pumped gaseous core fission reactor

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Van Dam, H.

    1991-01-01

    Finite and 'infinitesimal' thermodynamic cycle calculations have been performed for a 'solid piston' model of a pumped Gaseous Core Fission Reactor with dissociating reactor gas, consisting of Uranium, Carbon and Fluorine ('UCF'). In the finite cycle calculations the influence has been investigated of several parameters on the thermodynamics of the system, especially on the attainable direct (nuclear to electrical) energy conversion efficiency. In order to facilitate the investigation of the influence of dissociation, a model gas, 'Modelium', was developed, which approximates, in a simplified, analytical way, the dissociation behaviour of the 'real' reactor gas. Comparison of the finite cycle calculation results with those of a so-called infinitesimal Otto cycle calculation leads to the conclusion that the conversion efficiency of a finite cycle can be predicted, without actually performing the finite cycle calculation, with reasonable accuracy, from the so-called 'infinitesimal efficiency factor', which is determined only by the thermodynamic properties of the reactor gas used. (author)

  7. The electronuclear cycle: from fission to new reactor systems

    International Nuclear Information System (INIS)

    Belier, G.; Cugnon, J.; Lapoux, V.; Liatard, E.; Porquet, Marie-Genevieve; Rudolf, G.

    2006-09-01

    The Joliot Curie School trains each year, and since 1981, PhD students, post-Doctorates and researchers on scientific breakthroughs performed in a topic related to nuclear physics, in a broad range. These proceedings brings together the 11 lectures given at the 2006 session of Joliot Curie School on the topic of the electronuclear cycle: - Fission: from phenomenology to theory (Berger, J.F.); - Physics of nuclear reactors (Baeten, P.); - Data modeling and evaluation (Bauge, E.; Hilaire, S.); - Measurement of cross sections of interest for minor actinides incineration (Jurado, B.); - Spallation data and modelling for hybrid reactors (Boudard, A.); - Nuclear wastes: overview (Billard, I.); - Long living nuclear wastes transmutation processes and feasibility (Varaine, F.); - Hybrid reactors: recent advances for a demonstrator (Billebaud, A.); - Systems of the future and strategy (David, S.); - Non-nuclear energies (Nifenecker, H.); - Fundamental physics with ultracold neutrons (Protasov, K). The last section is a compilation of abstracts of presentations given by Young searchers' (Young searchers' seminars)

  8. Fission product release modelling for application of fuel-failure monitoring and detection - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.J., E-mail: lewibre@gmail.com [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, K7K 7B4 (Canada); Chan, P.K.; El-Jaby, A. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, K7K 7B4 (Canada); Iglesias, F.C.; Fitchett, A. [Candesco Division of Kinectrics Inc., 26 Wellington Street East, 3rd Floor, Toronto, Ontario M5E 1S2 (Canada)

    2017-06-15

    A review of fission product release theory is presented in support of fuel-failure monitoring analysis for the characterization and location of defective fuel. This work is used to describe: (i) the development of the steady-state Visual-DETECT code for coolant activity analysis to characterize failures in the core and the amount of tramp uranium; (ii) a generalization of this model in the STAR code for prediction of the time-dependent release of iodine and noble gas fission products to the coolant during reactor start-up, steady-state, shutdown, and bundle-shifting manoeuvres; (iii) an extension of the model to account for the release of fission products that are delayed-neutron precursors for assessment of fuel-failure location; and (iv) a simplification of the steady-state model to assess the methodology proposed by WANO for a fuel reliability indicator for water-cooled reactors.

  9. Feasibility study of a fission supressed blanket for a tandem-mirror hybrid reactor

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Barr, W.L.

    1981-01-01

    A study of fission suppressed blankets for the tandem mirror not only showed such blankets to be feasible but also to be safer than fissioning blankets. Such hybrids could produce enough fissile material to support up to 17 light water reactors of the same nuclear power rating. Beryllium was compared to 7 Li for neutron multiplication; both were considered feasible but the blanket with Li produced 20% less fissile fuel per unit of nuclear power in the reactor. The beryllium resource, while possibly being too small for extensive pure fusion application, would be adequate (with carefully planned industrial expansion) for the hybrid because of the large support ratio, and hence few hybrids required. Radiation damage and coatings for beryllium remain issues to be resolved by further study and experimentation. Molten salt reprocessing was compared to aqueous solution reprocessing

  10. Release of radioactive fission products from BN-600 reactor untight fuel elements

    International Nuclear Information System (INIS)

    Osipov, S.L.; Tsikunov, A.G.; Lisitsin, E.C.

    1996-01-01

    The experimental data on the release of radioactive fission products from BN-600 reactor untight fuel elements are given in the report. Various groups of radionuclides: inert gases Xe, Kr, volatile Cs, J, non-volatile Nb, and La are considered. The results of calculation-experimental study of transfer and distribution of radionuclides in the reactor primary circuit, gas system and sodium coolant are considered. It is shown that some complex radioactivity transfer processes can be described by simple mathematical models. (author)

  11. Computer program FPIP-REV calculates fission product inventory for U-235 fission

    Science.gov (United States)

    Brown, W. S.; Call, D. W.

    1967-01-01

    Computer program calculates fission product inventories and source strengths associated with the operation of U-235 fueled nuclear power reactor. It utilizes a fission-product nuclide library of 254 nuclides, and calculates the time dependent behavior of the fission product nuclides formed by fissioning of U-235.

  12. Fission product chemistry in severe nuclear reactor accidents, specialists' meeting at JRC-Ispra, 15-17 January 1990

    International Nuclear Information System (INIS)

    Nichols, A.L.

    1990-05-01

    A specialists' meeting was held at JRC-Ispra from 15 to 17 January 1990 to review the current understanding of fission-product chemistry during severe accidents in light water reactors. Discussions focussed on the important chemical phenomena that could occur across the wide range of conditions of a damaged nuclear plant. Recommendations for future chemistry work were made covering the following areas: (a) fuel degradation and fission-product release, (b) transport and attenuation processes in the reactor coolant system, (c) containment chemistry (iodine behaviour and core-concrete interactions). (author)

  13. Feasibility study of a fission-suppressed tandem-mirror hybrid reactor

    International Nuclear Information System (INIS)

    Lee, J.D.; Moir, R.W.; Barr, W.L.

    1982-04-01

    Results of a conceptual design study of a U-233 producing fusion breeder consisting of a tandem mirror fusion device and two types of fission-suppressed blankets are presented. The majority of the study was devoted to the conceptual design and evaluation of the two blankets. However, studies in the areas of fusion engineering, reactor safety, fuel reprocessing, other fuel cycle issues, economics, and deployment were also performed

  14. In-reactor testing of self-powered neutron detectors and miniature fission chambers

    International Nuclear Information System (INIS)

    Duchene, J.; LeMeur, R.; Verdant, R.

    1975-01-01

    The CEA has tested a variety of ''slow'' self-powered neutron detectors with rhodium, silver and vanadium emitters. Currently there are 120 vanadium detectors in the EL4 heavy water reactor. In addition, ''fast'' detectors with cobalt emitters have been tested at Saclay and 50 of these are in reactor. Other studies are concerned with 6 mm diameter miniature fission chambers. Two fast response chambers with argon-nitrogen filling gas became slow during irradiation, but operated to 600 deg C. An argon filled chamber of 4.7 mm diameter, for traversing in core system in pressurized water reactor, has shown satisfactory test results. (author)

  15. An experimental investigation of fission product release in SLOWPOKE-2 reactors

    International Nuclear Information System (INIS)

    Harnden, A.M.C.

    1995-09-01

    Increasing radiation fields due to a release of fission products in the reactor container of several SLOWPOKE-2 reactors fuelled with a highly-enriched uranium (HEU) alloy core have been observed. It is believed that these increases are associated with the fuel fabrication where a small amount of uranium-bearing material is exposed to the coolant at the end-welds of the fuel element. To investigate this phenomenon samples of reactor water and gas from the headspace above the water have been obtained and examined by gamma spectrometry methods for reactors of various burnups at the University of Toronto, Ecole Polytechnique and Kanata Isotope Production Facility. An underwater visual examination of the fuel core at Ecole Polytechnique has also provided information on the condition of the core. This report (Volume 1) summarizes the equipment, analysis techniques and results of tests conducted at the various reactor sites. The data report is published as Volume 2. (author). 30 refs., 9 tabs., 20 figs

  16. Nuclear data requirements for fission reactor neutronics calculations

    International Nuclear Information System (INIS)

    Finck, P.

    1998-01-01

    The paper discusses current European nuclear data measurement and evaluation requirements for fission reactor technology applications and problems involved in meeting the requirements. Reference is made to the NEA High Priority Nuclear Data Request List and to the production of the new JEFF-3 library of evaluated nuclear data. There are requirements for both differential (or basic) nuclear data measurements and for different types of integral measurement critical facility measurements and isotopic sample irradiation measurements. Cross-section adjustment procedures are being used to take into account the simpler types of integral measurement, and to define accuracy needs for evaluated nuclear data

  17. Reactor core and initially loaded reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    Koyama, Jun-ichi; Aoyama, Motoo.

    1989-01-01

    In BWR type reactors, improvement for the reactor shutdown margin is an important characteristic condition togehter with power distribution flattening . However, in the reactor core at high burnup degree, the reactor shutdown margin is different depending on the radial position of the reactor core. That is , the reactor shutdown margin is smaller in the outer peripheral region than in the central region of the reactor core. In view of the above, the reactor core is divided radially into a central region and as outer region. The amount of fissionable material of first fuel assemblies newly loaded in the outer region is made less than the amount of the fissionable material of second fuel assemblies newly loaded in the central region, to thereby improve the reactor shutdown margin in the outer region. Further, the ratio between the amount of the fissionable material in the upper region and that of the fissionable material in the lower portion of the first fuel assemblies is made smaller than the ratio between the amount of the fissionable material in the upper region and that of the fissionable material in the lower region of the second fuel assemblies, to thereby obtain a sufficient thermal margin in the central region. (K.M.)

  18. Conceptual design of a fission-based integrated test facility for fusion reactor components

    International Nuclear Information System (INIS)

    Watts, K.D.; Deis, G.A.; Hsu, P.Y.S.; Longhurst, G.R.; Masson, L.S.; Miller, L.G.

    1982-01-01

    The testing of fusion materials and components in fission reactors will become increasingly important because of lack of fusion engineering test devices in the immediate future and the increasing long-term demand for fusion testing when a fusion reactor test station becomes available. This paper presents the conceptual design of a fission-based Integrated Test Facility (ITF) developed by EG and G Idaho. This facility can accommodate entire first wall/blanket (FW/B) test modules such as those proposed for INTOR and can also accommodate smaller cylindrical modules similar to those designed by Oak Ridge National laboratory (ORNL) and Westinghouse. In addition, the facility can be used to test bulk breeder blanket materials, materials for tritium permeation, and components for performance in a nuclear environment. The ITF provides a cyclic neutron/gamma flux as well as the numerous module and experiment support functions required for truly integrated tests

  19. Generation IV nuclear reactors: Current status and future prospects

    International Nuclear Information System (INIS)

    Locatelli, Giorgio; Mancini, Mauro; Todeschini, Nicola

    2013-01-01

    Generation IV nuclear power plants (GEN IV NPPs) are supposed to become, in many countries, an important source of base load power in the middle–long term (2030–2050). Nowadays there are many designs of these NPPs but for political, strategic and economic reasons only few of them will be deployed. International literature proposes many papers and reports dealing with GEN IV NPPs, but there is an evident difference in the types and structures of the information and a general unbiased overview is missing. This paper fills the gap, presenting the state-of-the-art for GEN IV NPPs technologies (VHTR, SFR, SCWR, GFR, LFR and MSR) providing a comprehensive literature review of the different designs, discussing the major R and D challenges and comparing them with other advanced technologies available for the middle- and long-term energy market. The result of this research shows that the possible applications for GEN IV technologies are wider than current NPPs. The economics of some GEN IV NPPs is similar to actual NPPs but the “carbon cost” for fossil-fired power plants would increase the relative valuation. However, GEN IV NPPs still require substantial R and D effort, preventing short-term commercial adoption. - Highlights: • Generation IV reactors are the middle–long term technology for nuclear energy. • This paper provides an overview and a taxonomy for the designs under consideration. • R and D efforts are in the material, heat exchangers, power conversion unit and fuel. • The life cycle costs are competitive with other innovative technologies. • The hydrogen economy will foster the development of Generation IV reactors

  20. Safety analysis on tokamak helium cooling slab fuel fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Wei Renjie; Jian Hongbing

    1992-01-01

    The thermal analyses for steady state, depressurization and total loss of flow in the tokamak helium cooling slab fuel element fusion-fission hybrid reactor are presented. The design parameters, computed results of HYBRID program and safety evaluation for conception design are given. After all, it gives some recommendations for developing the design

  1. CANDU technology for generation III + AND IV reactors

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    2005-01-01

    Atomic Energy of Canada Limited (AECL) is the original developer of the CANDU?reactor, one of the three major commercial power reactor designs now used throughout the world. For over 60 years, AECL has continued to evolve the CANDU design from the CANDU prototypes in the 1950s and 1960s through to the second generation reactors now in operation, including the Generation II+ CANDU 6. The next phase of this evolution, the Generation III+ Advanced CANDU ReactorTM (ACRTM), continues the strategy of basing next generation technology on existing CANDU reactors. Beyond the ACR, AECL is developing the Generation IV CANDU Super Critical Water Reactor. Owing to the evolutionary nature of these advanced reactors, advanced technology from the development programs is also being applied to operating CANDU plants, for both refurbishments and upgrading of existing systems and components. In addition, AECL is developing advanced technology that covers the entire life cycle of the CANDU plant, including waste management and decommissioning. Thus, AECL maintains state-of-the-art expertise and technology to support both operating and future CANDU plants. This paper outlines the scale of the current core knowledge base that is the foundation for advancement and support of CANDU technology. The knowledge base includes advancements in materials, fuel, safety, plant operations, components and systems, environmental technology, waste management, and construction. Our approach in each of these areas is to develop the underlying science, carry out integrated engineering scale tests, and perform large-scale demonstration testing. AECL has comprehensive R and D and engineering development programs to cover all of these elements. The paper will show how the ongoing expansion of the CANDU knowledge base has led to the development of the Advanced CANDU Reactor. The ACR is a Generation III+ reactor with substantially reduced costs, faster construction, and enhanced passive safety and operating

  2. Irradiation positions for fission-track dating in the University of Pavia TRIGA Mark II nuclear reactor

    International Nuclear Information System (INIS)

    Oddone, Massimo; Meloni, Sandro; Balestrieri, Maria Laura; Bigazzi, Giulio

    2002-01-01

    An irradiation position arranged is described in the present paper for fission-track dating in the Triga Mark II reactor of the University of Pavia. Fluence values determined using the NIST glass standard SRM 962a for fission-track dating and the traditional metal foils are compared. Relatively good neutron thermalization (φ th /φ f = 0.956) and lack of significant fluence spatial gradients are good factors for fission-track dating. Finally, international age standards (or putative age standards) irradiated in this new position yielded results consistent with independent reference ages. (author)

  3. Overview of Generation IV (Gen IV) Reactor Designs - Safety and Radiological Protection Considerations

    International Nuclear Information System (INIS)

    Baudrand, Olivier; Blanc, Daniel; Ivanov, Evgeny; Bonneville, Herve; Clement, Bernard; Kissane, Martin; Meignen, Renaud; Monhardt, Daniel; Nicaise, Gregory; Bourgois, Thierry; Bruna, Giovanni; Hache, Georges; Repussard, Jacques

    2012-01-01

    The purpose of this document is to provide an updated overview of specific safety and radiological protection issues for all the reactor concepts adopted by the GIF (Generation IV International Forum), independent of their advantages or disadvantages in terms of resource optimization or long-lived-waste reduction. In particular, this new document attempts to bring out the advantages and disadvantages of each concept in terms of safety, taking into account the Western European Nuclear Regulators' Association (WENRA) statement concerning safety objectives for new nuclear power plants. Using an identical framework for each reactor concept (sodium-cooled fast reactors or SFR, high / very-high temperature helium-cooled reactors of V/HTR, gas-cooled fast reactors or GFR, lead-or lead / bismuth-cooled fast reactors or LFR, molten salt reactors or MSR, and supercritical-water-cooled reactors or SCWR), this summary report provides some general conclusions regarding their safety and radiological protection issues, inspired by WENRA's safety objectives and on the basis of available information. Initial lessons drawn from the events at the Fukushima-Daiichi nuclear power plant in March 2011 have also been taken into account in IRSN's analysis of each reactor concept

  4. Resonance self-shielding effect in uncertainty quantification of fission reactor neutronics parameters

    International Nuclear Information System (INIS)

    Chiba, Go; Tsuji, Masashi; Narabayashi, Tadashi

    2014-01-01

    In order to properly quantify fission reactor neutronics parameter uncertainties, we have to use covariance data and sensitivity profiles consistently. In the present paper, we establish two consistent methodologies for uncertainty quantification: a self-shielded cross section-based consistent methodology and an infinitely-diluted cross section-based consistent methodology. With these methodologies and the covariance data of uranium-238 nuclear data given in JENDL-3.3, we quantify uncertainties of infinite neutron multiplication factors of light water reactor and fast reactor fuel cells. While an inconsistent methodology gives results which depend on the energy group structure of neutron flux and neutron-nuclide reaction cross section representation, both the consistent methodologies give fair results with no such dependences.

  5. Development and manufacturing of special fission chambers for in-core measurement requirements in nuclear reactors

    International Nuclear Information System (INIS)

    Geslot, B.; Berhouet, F.; Oriol, L.; Breaud, S.; Jammes, C.; Filliatre, P.; Villard, J. F.

    2009-01-01

    The Dosimetry Command control and Instrumentation Laboratory (LDCI) at CEA/Cadarache is specialized in the development, design and manufacturing of miniature fission chambers (from 8 mm down to 1.5 mm in diameter). The LDCI fission chambers workshop specificity is its capacity to manufacture and distribute special fission chambers with fissile deposits other than U 235 (typically Pu 242 , Np 237 , U 238 , Th 232 ). We are also able to define the characteristics of the detector for any in-core measurement requirements: sensor geometry, fissile deposit material and mass, filling gas composition and pressure, operating mode (pulse, current or Campbelling) with associated cable and electronics. The fission chamber design relies on numerical simulation and modeling tools developed by the LDCI. One of our present activities in fission chamber applications is to develop a fast neutron flux instrumentation using Campbelling mode dedicated to measurements in material testing reactors. (authors)

  6. Sargent-IV Project. Development of new methodologies for safety analysis of Generation IV reactors; Proyecto SARGEB-IV. Desarrollo de nuevas metodologias de analisis de seguridad para reactores de Generacion IV

    Energy Technology Data Exchange (ETDEWEB)

    Queral, C.; Gallego, E.; Jimenez, G.

    2013-07-01

    The main result of this paper is the proposal for the addition of new ingredients in the safety analysis methodologies for Generation-IV reactors that integrates the features of probabilistic safety analysis within deterministic. This ensures a higher degree of integration between the classical deterministic and probabilistic methodologies.

  7. Cavity Ring-Down Spectroscopy for Gaseous Fission Products Trace Measurements in Sodium Fast Reactors

    International Nuclear Information System (INIS)

    Jacquet, P.; Pailloux, A.; Doizi, D.; Aoust, G.; Jeannot, J.-P.

    2013-06-01

    Safety and availability are key issues of the generation IV reactors. Hence, the three radionuclide confinement barriers, including fuel cladding, must stay tight during the reactor operation. During the primary gaseous failure, fission products xenon and krypton are released. Their fast and sensitive detection guarantees the first confinement barrier tightness. In the frame of the French ASTRID project, an optical spectroscopy technique - Cavity Ring Down Spectroscopy (CRDS) - is investigated for the gaseous fission products measurement. A dedicated CRDS set-up is needed to detect the rare gases with a commercial laser. Indeed, the CRDS is coupled to a glow discharge plasma, which generates a population of metastable atoms. The xenon plasma conditions are optimized to 110 Pa and 1.3 W (3 mA). The production efficiency of metastable Xe is then 0.8 %, stable within 0.5% during hours. The metastable number density is proportional to the xenon over argon molar fraction. The spectroscopic parameters of the strong 823.16 nm xenon transition are calculated and/or measured in order to optimize the fit of the experimental spectra and make a quantitative measurement of the metastable xenon. The CRDS is coupled to the discharge cell. The laser intensity inside the cavity is limited by the optical saturation process, resulting from the strong optical pumping of the metastable state. The resulting weak CRDS signal requires a fast and very sensitive photodetector. A 600 ppt xenon molar fraction was measured by CRDS. With the present set-up, the detection limits are estimated from the baseline noise to approximately 20 ppt for each even isotope, 60 ppt for the 131 Xe and 55 ppt for the 129 Xe. This sensitivity matches the specifications required for gaseous leak measurement; approximately 100 ppt for 133 Xe (4 GBq/m 3 ) and 10 ppb for stable isotopes. The odd isotopes are selectively measured, whereas the even isotopes overlap, a spectroscopic feature that applies for stable or

  8. Japanese list of requests for neutron nuclear data for fission reactors

    International Nuclear Information System (INIS)

    Igarasi, Sin-iti; Asami, Tetsuo

    1977-05-01

    Requests for neutron nuclear data for fission reactors are presented. These are screened by a WRENDA Working Group of Japanese Nuclear Data Committee and submitted to WRENDA 76/77. This report includes 163 requests of which 55 requests are newly registered in the WRENDA. Three requests of the previous list are withdrawn. This activity is a part of the international cooperation with CCDN, NEANDC and INDC. (auth.)

  9. Development and optimization of neutron measurement methods by fission chamber on experimental reactors - management, treatment and reduction of uncertainties

    International Nuclear Information System (INIS)

    Blanc-De-Lanaute, N.

    2012-01-01

    The main objectives of this research thesis are the management and reduction of uncertainties associated with measurements performed by means of a fission-chamber type sensor. The author first recalls the role of experimental reactors in nuclear research, presents the various sensors used in nuclear detection (photographic film, scintillation sensor, gas ionization sensor, semiconducting sensor, other types of radiation sensors), and more particularly addresses neutron detection (activation sensor, gas filling sensor). In a second part, the author gives an overview of the state of the art of neutron measurement by fission chamber in a mock-up reactor (signal formation, processing and post-processing, associated measurements and uncertainties, return on experience of measurements by fission chamber on Masurca and Minerve research reactors). In a third part, he reports the optimization of two intrinsic parameters of this sensor: the thickness of fissile material deposit, and the pressure and nature of the filler gas. The fourth part addresses the improvement of measurement electronics and of post-processing methods which are used for result analysis. The fifth part deals with the optimization of spectrum index measurements by means of a fission chamber. The impact of each parameter is quantified. Results explain some inconsistencies noticed in measurements performed on the Minerve reactor in 2004, and allow the improvement of biases with computed values [fr

  10. Study of advanced fission power reactor development for the United States. Volume II

    International Nuclear Information System (INIS)

    1976-01-01

    This report presents the results of a multi-phase research study which had as its objective the comparative study of various advanced fission reactors and evaluation of alternate strategies for their development in the USA through the year 2020. By direction from NSF, ''advanced'' reactors were defined as those which met the dual requirements of (1) offering a significant improvement in fissile fuel utilization as compared to light-water reactors and (2) currently receiving U.S. Government funding. (A detailed study of the LMFBR was specifically excluded, but cursory baseline data were obtained from ERDA sources.) Included initially were the High-Temperature Gas-Cooled Reactor (HTGR), Gas-Cooled Fast Reactor (GCFR), Molten Salt Reactor (MSR), and Light-Water Breeder Reactor (LWBR). Subsequently, the CANDU Heavy Water Reactor (HWR) was included for comparison due to increased interest in its potential. This volume presents the reasoning process and analytical methods utilized to arrive at the conclusions for the overall study

  11. Comparative analysis of power conversion cycles optimized for fast reactors of generation IV; Analisis comparativo de ciclos de conversion de potencia optimizados para reactores rapidos de generacion IV

    Energy Technology Data Exchange (ETDEWEB)

    Perez Pichel, G. D.

    2011-07-01

    For the study, which is presented here, has been chosen as the specific parameters of each reactor, which are today the three largest projects within generation IV technology development: ESFR for the reactor's sodium, LEADER for the lead reactor's and finally, GoFastR in the case of reactor gas-cooled.

  12. Fission track dating method: I. Study of neutron flux uniformity in some irradiation positions of IEA-R1 reactor

    International Nuclear Information System (INIS)

    Osorio, A.M.; Hadler, J.C.; Iunes, P.J.; Paulo, S.R. de

    1993-06-01

    In order to use the fission track dating method the flux gradient was verified within the sample holder, in some irradiation positions of the IEA-R1 reactor at IPEN/CNEN, Sao Paulo. The fission track dating method considers only the thermal neutron fission tracks, to subtract the other contributions sample irradiations with a cadmium cover was performed. The neutron flux cadmium influence was studied. (author)

  13. Journey from discovery of nuclear fission to accelerator-driven sub-critical reactor systems (ADS)

    International Nuclear Information System (INIS)

    Kapoor, S.S.

    2005-01-01

    The epoch making discovery of nuclear fission in 1939, which resulted purely from the curiosity driven basic research to understand the atomic and nuclear structure has changed the world forever with the onset of a new era in the history of human civilization. The basic nuclear physics research pursued after the discovery of fission has also been of much relevance in the harnessing of nuclear energy. In the recent years, there is considerable interest towards developing accelerator driven sub-critical reactor systems (ADS) for the incineration of the long-lived spent fuel radioactive waste and for the utilization of thorium fuel for nuclear power generation. In this talk, we discuss important milestones in the journey from discovery of nuclear fission to ADS. (author)

  14. Technological studies for obtaining lead oxide compacts used in generation IV nuclear reactors

    International Nuclear Information System (INIS)

    Paraschiv, I.; Benga, D.

    2016-01-01

    One of the main concerns of the nuclear research at this moment is the development of the necessary technologies for Generation IV reactors. The main candidate as coolant agent in these reactors is molten lead but this material involves ensuring the oxygen control, due to potential contamination of coolant through the formation of solid oxides and the influence on the corrosion rate of structural parts and for this reason, the oxygen concentration must be kept in a well specified domain. One of the proposed methods for oxygen monitoring and control in the technology of Generation IV reactors, is the use of PbO compacts. For this paper technological tests were performed for developing and setting the optimal parameters in order to attain lead oxide compacts necessary for the oxygen control technology in Generation IV nuclear reactors. (authors)

  15. Physics of Fast and Intermediate Reactors. V. I. Proceedings of the Seminar on the Physics of Fast and Intermediate Reactors. V. I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-03-15

    in all cases that of heir presentation during the Seminar. Changes have been made where it was considered that these would enhance the usefulness of these volumes as reference books. The subject grouping adopted is given below. Volume I - I. Neutron Physics: I.1. Data requirements, I.2. Cross-section measurements, I.3. Fission properties, I.4. Nuclear theory, I.5. Multi-group cross-sections; II. Integral Experiments: II.1. Critical experiments, II.2. Other integral experiments, II.3. Theoretical correlations; Volume II - III. Reactor Theory: III.1. Calculation methods, III.2. Effects of cross-section errors, III.3. Reactivity effects, III.4. Long-term effects, III.5. Reactor concept studies; Volume III - IV. Reactor Dynamics: IV.1. Kinetics, IV.2. Stability, IV.3. Doppler effect, IV.4. Safety problems; V. Physics of Specific Reactors.

  16. Migration of U-series radionuclides around the Bangombe natural fission reactor (Gabon)

    International Nuclear Information System (INIS)

    Bros, R.; Yanase, N.; Isobe, H.; Sato, T.; Iida, Y.; Ohnuki, T.; Roos, P.; Holm, E.

    1999-01-01

    The Bangombe natural fission reactors has undergone extensive weathering phenomena and continues to be affected by the penetration of meteoric waters. Hence this system provides a model for studying the stability of spent fuel uraninite and the influence of various rock matrices on the mobilization/retardation of various actinides and fission products. The Bangombe uranium deposit has been investigated by drilling on a grid. Radiochemical analysis by alpha- and gamma-spectroscopy of the obtained rocks show significant disequilibria of the 234 U/ 238 U, 230 Th/ 234 U, and 226 Ra/ 230 Th parent-daughter pairs. In this paper, a conceptual model for spatio/temporal evolution of the Bangombe system is proposed. (J.P.N.)

  17. Development and manufacturing of special fission chambers for in-core measurement requirements in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Geslot, B.; Berhouet, F.; Oriol, L.; Breaud, S.; Jammes, C.; Filliatre, P.; Villard, J. F. [CEA, DEN, Dosimetry Command Control and Instrumentation Laboratory, F-13109 Saint-Paul-lez-Durance (France)

    2009-07-01

    The Dosimetry Command control and Instrumentation Laboratory (LDCI) at CEA/Cadarache is specialized in the development, design and manufacturing of miniature fission chambers (from 8 mm down to 1.5 mm in diameter). The LDCI fission chambers workshop specificity is its capacity to manufacture and distribute special fission chambers with fissile deposits other than U{sup 235} (typically Pu{sup 242}, Np{sup 237}, U{sup 238}, Th{sup 232}). We are also able to define the characteristics of the detector for any in-core measurement requirements: sensor geometry, fissile deposit material and mass, filling gas composition and pressure, operating mode (pulse, current or Campbelling) with associated cable and electronics. The fission chamber design relies on numerical simulation and modeling tools developed by the LDCI. One of our present activities in fission chamber applications is to develop a fast neutron flux instrumentation using Campbelling mode dedicated to measurements in material testing reactors. (authors)

  18. Transient Analysis of Generation IV quick reactors; Analisis de Transitorios en Reactores Rapidos de Generacion IV

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.; Martin-Fuertes, F.

    2013-07-01

    As a complement to the attached code 3D neutron-CIEMAT thermohydraulic added a module to simulate transient. Temporary kinetics is resolved by factoring flow in a spatial part and another storm. MCNP provides the reactivity and updated spatial function and COBRA-IV calculates the temperature distribution. Temporary dependence of amplitude is calculated using time delayed neutron Kinetic equations. As an example of application, examines a transient loss of flow in MYRRHA, a lead-cooled experimental reactor.

  19. Theoretical analysis of nuclear reactors (Phase II), I-V, Part III, Reactor poisoning; Razrada metoda teorijske analize nuklearnih reaktora (II faza) I-V, III Deo, Zatrovanje reaktora, II faza

    Energy Technology Data Exchange (ETDEWEB)

    Pop-Jordanov, J [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1962-10-15

    This phase is dealing with influence of all the fission products except Xe{sup 135} on the reactivity of a reactor, usually named as reactor poisoning. The first part of the report is a review of methods for calculation of reactor poisoning. The second part shows the most frequently used method for calculation of cross sections and yields of pseudo products (for thermal neutrons). The system of equations was adopted dependent on the conditions of the available computer system. It is described in part three. Detailed method for their application is described in part four and results obtained are presented in part five.

  20. Fission product monitoring of TRISO coated fuel for the advanced gas reactor-1 experiment

    International Nuclear Information System (INIS)

    Scates, Dawn M.; Hartwell, John K.; Walter, John B.; Drigert, Mark W.; Harp, Jason M.

    2010-01-01

    The US Department of Energy has embarked on a series of tests of TRISO coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burnup of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B's) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  1. The 235U Prompt Fission Neutron Spectrum in the BR1 Reactor at SCK•CEN

    Science.gov (United States)

    Wagemans, Jan; Malambu, Edouard; Borms, Luc; Fiorito, Luca

    2016-02-01

    The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma) irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f) prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f) prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards.

  2. The 235U Prompt Fission Neutron Spectrum in the BR1 Reactor at SCK•CEN

    Directory of Open Access Journals (Sweden)

    Wagemans Jan

    2016-01-01

    Full Text Available The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards.

  3. Eugene P. Wigner's Visionary Contributions to Generations-I through IV Fission Reactors

    Science.gov (United States)

    Carré, Frank

    2014-09-01

    Among Europe's greatest scientists who fled to Britain and America in the 1930s, Eugene P. Wigner made instrumental advances in reactor physics, reactor design and technology, and spent nuclear fuel processing for both purposes of developing atomic weapons during world-war II and nuclear power afterwards. Wigner who had training in chemical engineering and self-education in physics first gained recognition for his remarkable articles and books on applications of Group theory to Quantum mechanics, Solid state physics and other topics that opened new branches of Physics.

  4. RESONANCE SELF-SHIELDING EFFECT IN UNCERTAINTY QUANTIFICATION OF FISSION REACTOR NEUTRONICS PARAMETERS

    Directory of Open Access Journals (Sweden)

    GO CHIBA

    2014-06-01

    Full Text Available In order to properly quantify fission reactor neutronics parameter uncertainties, we have to use covariance data and sensitivity profiles consistently. In the present paper, we establish two consistent methodologies for uncertainty quantification: a self-shielded cross section-based consistent methodology and an infinitely-diluted cross section-based consistent methodology. With these methodologies and the covariance data of uranium-238 nuclear data given in JENDL-3.3, we quantify uncertainties of infinite neutron multiplication factors of light water reactor and fast reactor fuel cells. While an inconsistent methodology gives results which depend on the energy group structure of neutron flux and neutron-nuclide reaction cross section representation, both the consistent methodologies give fair results with no such dependences.

  5. Gas dynamics models for an oscillating gaseous core fission reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, J.C.; Dam, H. van; Hoogenboom, J.E. (Interuniversitair Reactor Inst., Delft (Netherlands))

    1991-01-01

    Two one-dimensional models are developed for the investigation of the gas dynamical behaviour of the fuel gas in a cylindrical gaseous core fission reactor. By numerical and analytical calculations, it is shown that, for the case where a direct energy extraction mechanism (such as magneto-hydrodynamics (MHD)) is not present, increasing density oscillations occur in the gas. Also an estimate is made of the attainable direct energy conversion efficiency, for the case where a direct energy extraction mechanism is present. (author).

  6. Fission-product source terms

    International Nuclear Information System (INIS)

    Lorenz, R.A.

    1981-01-01

    This presentation consists of a review of fission-product source terms for light water reactor (LWR) fuel. A source term is the quantity of fission products released under specified conditions that can be used to calculate the consequences of the release. The source term usually defines release from breached fuel-rod cladding but could also describe release from the primary coolant system, the reactor containment shell, or the site boundary. The source term would be different for each locality, and the chemical and physical forms of the fission products could also differ

  7. Thermodynamics of soluble fission products cesium and iodine in the Molten Salt Reactor

    NARCIS (Netherlands)

    Capelli, E.; Beneš, O.; Konings, R.J.M.

    2018-01-01

    The present study describes the full thermodynamic assessment of the Li,Cs,Th//F,I system. The existing database for the relevant fluoride salts considered as fuel for the Molten Salt Reactor (MSR) has been extended with two key fission products, cesium and iodine. A complete evaluation of all

  8. Development of assessment technology for hydrogen burn and fission product behavior in containment

    International Nuclear Information System (INIS)

    Kim, S. B.; Kim, J. T.; Ha, K. S.; Hong, S. W.; Song, Y. M.; Park, J. H.; Cho, Y. R.; Kang, H. S.

    2012-04-01

    Analysis tools for hydrogen burn was established to resolve the hydrogen issues in containment. To validate CFX commercial CFD(computational fluid dynamics) code, the hydrogen combustion experiments such as FLAME and ENACEFF for reactor containment were analyzed. And OpenFOAM hydrogen combustion code was developed and validated. Experiments for the flame propagation characteristics in IRWST and the run-up-distance for DDT(Deflagration to detonation transition) were performed and analytical model was evaluated to evaluation of the performance of hydrogen mitigation system, that is, PAR(Passive auto-catalistic re-combiner) To improvement of the fission product modelling in containment, separate analysis module for Iodine behavior and its application tool of K-IODIP (Korea IODIne Package) were developed. PHEBUS FPT-3 analysis was performed to validate MELCOR code. And also the characteristics of fission product behaviors in Future Reactors(GEN-IV) were compared

  9. Main orientations of the JRC nuclear fission programme

    International Nuclear Information System (INIS)

    Haas, Didier

    2009-01-01

    Full text: The European Union has taken the lead in responding to climate change, announcing far-reaching initiatives from promoting energy efficient light bulbs and cars to new building codes, carbon trading schemes, the development of low carbon technologies and greater competition in energy markets. Nuclear energy remains central to the energy debate in Europe. One third of EU electricity is produced via nuclear fission, and eight new reactors are under construction. Traditionally non-nuclear countries are manifesting an interest in building nuclear power plants while the clock is ticking down on Belgium, Germany and the UK's decision to renew or close existing nuclear infrastructures. Sustainability in nuclear energy production is ensured in the medium term due to the large and diverse uranium resources available in politically stable countries around the world. The quantities available with high probability ensure more than hundred year of nuclear energy production. This extrapolation depends however on the forecast for the future nuclear energy production. The use of fast neutron breeder reactors would lead to a much more efficient utilisation of the uranium, extending the sustainable energy production to several thousands of years. The presentation will outline the fast reactors of the new generation currently being developed within the 'Generation IV' initiative. Broad conclusions of the presentation will be that: -There is a growing nuclear renaissance in Europe for good reason; - Nuclear energy is a green and sustainable option for Europe and indeed the world's energy needs; - Nuclear energy is a competitive energy that makes economic sense; - Nuclear fission reactors have a safety and environmental track record that is second to none, yet public misperceptions persist and must be tackled; - Waste management solutions exist while new developments hold great promise; - The evolution and promise of nuclear technologies must also be examined against the

  10. Theoretical analysis of nuclear reactors (Phase I), I-V, Part IV, Nuclear fuel depletion

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.

    1962-07-01

    Nuclear fuel depletion is analyzed in order to estimate the qualitative and quantitative fuel property changes during irradiation and the influence of changes on the reactivity during long-term reactor operation. The changes of fuel properties are described by changes of neutron absorption and fission cross sections. Part one of this report covers the economic significance of fuel burnup and the review of fuel isotopic changes during depletion. Pat two contains the analysis of the U 235 chain, analytical expressions for the concentrations of U 235 , U 236 and Np 237 as a function of burnup. Part three contains the analysis of neutron spectrum influence on the Westcott method for calculating the cross sections. Part four contains the calculation method applied on Calder Hall type reactor. The results were obtained by applying ZUSE-22 R digital computer

  11. Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system

    International Nuclear Information System (INIS)

    Zhou, Z.; Yang, Y.; Xu, H.

    2011-01-01

    This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.

  12. Irradiation effects in fused quartz 'Suprasil' as a detector of fission fragments under high flux of reactor neutrons

    International Nuclear Information System (INIS)

    Moraes, O.M.G. de.

    1984-01-01

    A systematic study about the registration characteristics of synthetic fused quartz 'Suprasil I' use as a detector of fission fragments under high flux of reactor neutrons and the effects of irradiation on it was performed. Fission fragments of 252 Cf, gamma radiation doses of of 60 Co up to 150 MGy, and integrated neutrons fluxes up to 10 20 n/cm 2 were used. A model to explain the effects on track registration and development characteristics of 'Suprasil I' irradiated on reactors were proposed, based on the obtained results for efficiency an for annealing. (C.G.C.) [pt

  13. Conceptual design study of Hyb-WT as fusion–fission hybrid reactor for waste transmutation

    International Nuclear Information System (INIS)

    Siddique, Muhammad Tariq; Kim, Myung Hyun

    2014-01-01

    Highlights: • Conceptual design study of fusion-fission hybrid reactor for waste transmutation. • MCNPX and MONTEBURNS are compared for transmutation performance of WT-Hyb. • Detailed neutronic performance of final optimized Hyb-WT design is analyzed. • A new tube-in-duct core design is implemented and compared with pin type design. • Study shows many aspects of hybrid reactor even though scope was limited to neutronic analysis. - Abstract: This study proposes a conceptual design of a hybrid reactor for waste transmutation (Hyb-WT). The design of Hyb-WT is based on a low-power tokamak (less than 150 MWt) and an annular ring-shaped reactor core with metal fuel (TRU 60 w/o, Zr 40 w/o) and a fission product (FP) zone. The computational code systems MONTEBURNS and MCNPX2.6 are investigated for their suitability in evaluating the performance of Hyb-WT. The overall design performance of the proposed reactor is determined by considering pin-type and tube-in-duct core designs. The objective of such consideration is to explore the possibilities for enhanced transmutation with reduced wall loading from fusion neutrons and reduced transuranic (TRU) inventory. TRU and FP depletion is analyzed by calculating waste transmutation ratio, mass burned per full power year (in units of kg/fpy), and support ratio. The radio toxicity analysis of TRUs and FPs is performed by calculating the percentage of toxicity reduction in TRU and FP over a burn cycle

  14. Computation of fission product distribution in core and primary circuit of a high temperature reactor during normal operation

    International Nuclear Information System (INIS)

    Mattke, U.H.

    1991-08-01

    The fission product release during normal operation from the core of a high temperature reactor is well known to be very low. A HTR-Modul-reactor with a reduced power of 170 MW th is examined under the aspect whether the contamination with Cs-137 as most important nuclide will be so low that a helium turbine in the primary circuit is possible. The program SPTRAN is the tool for the computations and siumlations of fission product transport in HTRs. The program initially developed for computations of accident events has been enlarged for computing the fission product transport under the conditions of normal operation. The theoretical basis, the used programs and data basis are presented followed by the results of the computations. These results are explained and discussed; moreover the consequences and future possibilities of development are shown. (orig./HP) [de

  15. Overview of tritium fast-fission yields

    International Nuclear Information System (INIS)

    Tanner, J.E.

    1981-03-01

    Tritium production rates are very important to the development of fast reactors because tritium may be produced at a greater rate in fast reactors than in light water reactors. This report focuses on tritium production and does not evaluate the transport and eventual release of the tritium in a fast reactor system. However, if an order-of-magnitude increase in fast fission yields for tritium is confirmed, fission will become the dominant production source of tritium in fast reactors

  16. Fission Product Transport and Source Terms in HTRs: Experience from AVR Pebble Bed Reactor

    Directory of Open Access Journals (Sweden)

    Rainer Moormann

    2008-01-01

    Full Text Available Fission products deposited in the coolant circuit outside of the active core play a dominant role in source term estimations for advanced small pebble bed HTRs, particularly in design basis accidents (DBA. The deposited fission products may be released in depressurization accidents because present pebble bed HTR concepts abstain from a gas tight containment. Contamination of the circuit also hinders maintenance work. Experiments, performed from 1972 to 88 on the AVR, an experimental pebble bed HTR, allow for a deeper insight into fission product transport behavior. The activity deposition per coolant pass was lower than expected and was influenced by fission product chemistry and by presence of carbonaceous dust. The latter lead also to inconsistencies between Cs plate out experiments in laboratory and in AVR. The deposition behavior of Ag was in line with present models. Dust as activity carrier is of safety relevance because of its mobility and of its sorption capability for fission products. All metal surfaces in pebble bed reactors were covered by a carbonaceous dust layer. Dust in AVR was produced by abrasion in amounts of about 5 kg/y. Additional dust sources in AVR were ours oil ingress and peeling of fuel element surfaces due to an air ingress. Dust has a size of about 1  m, consists mainly of graphite, is partly remobilized by flow perturbations, and deposits with time constants of 1 to 2 hours. In future reactors, an efficient filtering via a gas tight containment is required because accidents with fast depressurizations induce dust mobilization. Enhanced core temperatures in normal operation as in AVR and broken fuel pebbles have to be considered, as inflammable dust concentrations in the gas phase.

  17. An assessment of fission product data for decay power calculation in fast reactors

    International Nuclear Information System (INIS)

    Sridharan, M.S.; Murthy, K.P.N.

    1987-01-01

    A review of our present capability at IGC, Kalpakkam to predict fission product decay power in fast reactors is presented. This is accomplished by comparing our summation calculations with the calculations of others and the reported experimental measurements. Our calculations are based on Chandy code developed at our Centre. The fission product data base of Chandy is essentially drawn from the yield data compiled by Crouch (1977) and the data on halflives etc. compiled by Tobias (1973). In general, we find good agreement amongst the different calculations (within ±5%) and our calculations also compare well with experimental measurements of AKIAMA et al and MURPHY et al

  18. A method for measuring power signal background and source strength in a fission reactor

    International Nuclear Information System (INIS)

    Baers, B.; Kall, L.; Visuri, P.

    1977-01-01

    Theory and experimental verification of a novel method for measuring power signal bias and source strength in a fission reactor are reported. A minicomputer was applied in the measurements. The method is an extension of the inverse kinetics method presented by Mogilner et al. (Auth.)

  19. Review of the neutron capture process in fission reactors

    International Nuclear Information System (INIS)

    Poenitz, W.P.

    1981-07-01

    The importance of the neutron capture process and the status of the more important cross section data are reviewed. The capture in fertile and fissile nuclei is considered. For thermal reactors the thermal to epithermal capture ratio for 238 U and 232 Th remains a problem though some improvements were made with more recent measurements. The capture cross section of 238 U in the fast energy range remains quite uncertain and a long standing discrepancy for the calculated versus experimental central reaction rate ratio C28/F49 persists. Capture in structural materials, fission product nuclei and the higher actinides is also considered

  20. Conceptual design of a hybrid fusion-fission reactor with intrinsic safety and optimized energy productivity

    International Nuclear Information System (INIS)

    Talebi, Hosein; Sadat Kiai, S.M.

    2017-01-01

    Highlights: • Designing a high yield and feasible Dense Plasma Focus for driving the reactor. • Presenting a structural method to design the dual layer cylindrical blankets. • Finding, the blanket production energy, in terms of its geometrical and material parameters. • Designing a subcritical blanket with optimization of energy amplification in detail. - Abstract: A hybrid fission-fusion reactor with a Dense Plasma Focus (DPF) as a fusion core and the dual layer fissionable blanket as the energy multiplier were conceptually designed. A cylindrical DPF, energized by a 200 kJ bank energy, is considered to produce fusion neutron, and these neutrons drive the subcritical fission in the surrounding blankets. The emphasis has been placed on the safety and energy production with considering technical and economical limitations. Therefore, the k eff-t of the dual cylindrical blanket was defined and mathematically, specified. By applying the safety criterion (k eff-t ≤ 0.95), the geometrical and material parameters of the blanket optimizing the energy amplification were obtained. Finally, MCNPX code has been used to determine the detailed dimensions of the blankets and fuel rods.

  1. Thermoradiation treatment of sewage sludge using reactor waste fission products

    International Nuclear Information System (INIS)

    Reynolds, M.C.; Hagengruber, R.L.; Zuppero, A.C.

    1974-06-01

    The hazards to public health associated with the application of municipal sewage sludge to land usage are reviewed to establish the need for disinfection of sludge prior to its distribution as a fertilizer, especially in the production of food and fodder. The use of ionizing radiation in conjunction with mild heating is shown to be an effective disinfection treatment and an economical one when reactor waste fission products are utilized. A program for researching and experimental demonstration of the process on sludges is also outlined

  2. Transport of volatile fission products in the fuel-to-sheath gap of defective fuel elements during normal and reactor accident conditions

    International Nuclear Information System (INIS)

    Lewis, B.J.; Bonin, H.W.

    1995-01-01

    An analytical treatment has been used to model the vapour transport of radioactive fission products released into the fuel-to-sheath gap of defective nuclear fuel elements. The model accounts for both diffusive and bulk-convective transport. Convective transport becomes important as a result of a significant release of gaseous fission products into the gap during a high-temperature reactor accident. However, during normal reactor operation, diffusion is shown to be the dominant process of transport. The model is based on an analysis of several in-reactor tests with operating defective fuel elements, and high-temperature annealing experiments with irradiated fuel specimens. ((orig.))

  3. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities

    Science.gov (United States)

    Murty, K. L.; Charit, I.

    2008-12-01

    Generation-IV reactor design concepts envisioned thus far cater toward a common goal of providing safer, longer lasting, proliferation-resistant and economically viable nuclear power plants. The foremost consideration in the successful development and deployment of Gen-IV reactor systems is the performance and reliability issues involving structural materials for both in-core and out-of-core applications. The structural materials need to endure much higher temperatures, higher neutron doses and extremely corrosive environment, which are beyond the experience of the current nuclear power plants. Materials under active consideration for use in different reactor components include various ferritic/martensitic steels, austenitic stainless steels, nickel-base superalloys, ceramics, composites, etc. This paper presents a summary of various Gen-IV reactor concepts, with emphasis on the structural materials issues depending on the specific application areas. This paper also discusses the challenges involved in using the existing materials under both service and off-normal conditions. Tasks become increasingly complex due to the operation of various fundamental phenomena like radiation-induced segregation, radiation-enhanced diffusion, precipitation, interactions between impurity elements and radiation-produced defects, swelling, helium generation and so forth. Further, high temperature capability (e.g. creep properties) of these materials is a critical, performance-limiting factor. It is demonstrated that novel alloy and microstructural design approaches coupled with new materials processing and fabrication techniques may mitigate the challenges, and the optimum system performance may be achieved under much demanding conditions.

  4. Joint ICFRM-14 (14. international conference on fusion reactor materials) and IAEA satellite meeting on cross-cutting issues of structural materials for fusion and fission applications. PowerPoint presentations

    International Nuclear Information System (INIS)

    2009-01-01

    The Conference was devoted to the challenges in the development of new materials for advanced fission, fusion and hybrid reactors. The topics discussed include fuels and materials research under the high neutron fluence; post-irradiation examination; development of radiation resistant structural materials utilizing fission research reactors; core materials development for the advanced fuel cycle initiative; qualification of structural materials for fission and fusion reactor systems; application of charged particle accelerators for radiation resistance investigations of fission and fusion structural materials; microstructure evolution in structural materials under irradiation; ion beams and ion accelerators

  5. Regulatory aspects of fusion power-lessons from fission plants

    International Nuclear Information System (INIS)

    Natalizio, A.; Brunnader, H.; Sood, S.K.

    1993-01-01

    Experience from fission reactors has shown the regulatory process for licensing a nuclear facility to be legalistic, lengthy, unpredictable, and costly. This experience also indicates that much of the regulatory debate is focused on safety margins, that is, the smaller the safety margins the bigger the regulatory debate and the greater the amount of proof required to satisfy the regulatory. Such experience suggests that caution and prudence guide the development of a regulatory regime for fusion reactors. Fusion has intrinsic safety and environmental advantages over fission, which should alleviate significantly, or even eliminate, the regulatory problems associated with fission. The absence of a criticality concern and the absence of fission products preclude a Chernobyl type accident from occurring in a fusion reactor. Although in a fusion reactor there are large inventories of radioactive products that can be mobilized, the total quantity is orders of magnitude smaller than in fission power reactors. The bulk of the radioactivity in a fusion reactor is either activation products in steel structures, or tritium fuel supplies safely stored in the form of a metal tritide in storage beds. The quantity of tritium that can be mobilized under accident conditions is much less than ten million curies. This compares very favorably with a fission product inventory greater than ten billion curies in a fission power reactor. Furthermore, in a fission reactor, all of the reactivity is contained in a steel vessel that is pressurized to about 150 atmospheres, whereas in a fusion reactor, the inventory of radioactive material is dispersed in different areas of the plant, such that it is improbable that a single event could give rise to the release of the entire inventory to the environment. With such significant intrinsic safety advantages there is no a priori need to make fusion requirements/regulations more demanding and more stringent than fission

  6. Fluidized bed nuclear reactor as a IV generation reactor

    International Nuclear Information System (INIS)

    Sefidvash, Farhang

    2002-01-01

    The object of this paper is to analyze the characteristics of the Fluidized Bed Nuclear Reactor (FBNR) concept under the light of the requirements set for the IV generation nuclear reactors. It is seen that FBNR generally meets the goals of providing sustainable energy generation that meets clean air objectives and promotes long-term availability of systems and effective fuel utilization for worldwide energy production; minimize and manage their nuclear waste and notably reduce the long term stewardship burden in the future, thereby improving protection for the public health and the environment; increase the assurance that it is a very unattractive and least desirable route for diversion or theft of weapons-usable materials; excel in safety and reliability; have a very low likelihood and degree of reactor core damage; eliminate the need for offsite emergency response; have a clear life-cycle cost advantage over other energy sources; have a level of financial risk comparable to other energy projects. The other advantages of the proposed design are being modular, low environmental impact, exclusion of severe accidents, short construction period, flexible adaptation to demand, excellent load following characteristics, and competitive economics. (author)

  7. Fuel Development For Gas-Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    M. K. Meyer

    2006-06-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High Temperature Reactor (VHTR), as well as actinide burning concepts [ ]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is a dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the U.S. and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic ‘honeycomb’ structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  8. GEN IV reactors: Where we are, where we should go

    International Nuclear Information System (INIS)

    Locatelli, G.; Mancini, M.; Todeschini, N.

    2012-01-01

    GEN IV power plants represent the mid-long term option of the nuclear sector. International literature proposes many papers and reports dealing with these reactors, but there is an evident difference of type and shape of information making impossible each kind of detailed comparison. Moreover, authors are often strongly involved in some particular design; this creates many difficulties in their super-partes position. Therefore it is necessary to put order in the most relevant information to understand strengths and weaknesses of each design and derive an overview useful for technicians and policy makers. This paper presents the state-of the art for GEN IV nuclear reactors providing a comprehensive literature review of the different designs with a relate taxonomy. It presents the more relevant references, data, advantages, disadvantages and barriers to the adoptions. In order to promote an efficient and wide adoption of GEN IV reactors the paper provides the pre-conditions that must be accomplished, enabling factors promoting the implementation and barriers limiting the extent and intensity of its implementation. It concludes outlying the state of the art of the most important R and D areas and the future achievements that must be accomplished for a wide adoption of these technologies. (authors)

  9. Comparative analysis of power conversion cycles optimized for fast reactors of generation IV

    International Nuclear Information System (INIS)

    Perez Pichel, G. D.

    2011-01-01

    For the study, which is presented here, has been chosen as the specific parameters of each reactor, which are today the three largest projects within generation IV technology development: ESFR for the reactor's sodium, LEADER for the lead reactor's and finally, GoFastR in the case of reactor gas-cooled.

  10. Part I. Fuel-motion diagnostics in support of fast-reactor safety experiments. Part II. Fission product detection system in support of fast reactor safety experiments

    International Nuclear Information System (INIS)

    Devolpi, A.; Doerner, R.C.; Fink, C.L.; Regis, J.P.; Rhodes, E.A.; Stanford, G.S.; Braid, T.H.; Boyar, R.E.

    1986-05-01

    In all destructive fast-reactor safety experiments at TREAT, fuel motion and cladding failure have been monitored by the fast-neutron/gamma-ray hodoscope, providing experimental results that are directly applicable to design, modeling, and validation in fast-reactor safety. Hodoscope contributions to the safety program can be considered to fall into several groupings: pre-failure fuel motion, cladding failure, post-failure fuel motion, steel blockages, pretest and posttest radiography, axial-power-profile variations, and power-coupling monitoring. High-quality results in fuel motion have been achieved, and motion sequences have been reconstructed in qualitative and quantitative visual forms. A collimated detection system has been used to observe fission products in the upper regions of a test loop in the TREAT reactor. Particular regions of the loop are targeted through any of five channels in a rotatable assembly in a horizontal hole through the biological shield. A well-type neutron detector, optimized for delayed neutrons, and two GeLi gamma ray spectrometers have been used in several experiments. Data are presented showing a time history of the transport of Dn emitters, of gamma spectra identifying volatile fission products deposited as aerosols, and of fission gas isotopes released from the coolant

  11. Fifty years with nuclear fission

    International Nuclear Information System (INIS)

    Behrens, J.W.; Carlson, A.D.

    1989-01-01

    The news of the discovery of nuclear fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fifieth anniversary of its discovery by holding a topical meeting entitled, ''Fifty Years with Nuclear Fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent development in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicated a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two fully days of sessions (April 27 and 28) at the main site of the NIST in Gaithersburg, Maryland. The wide range of topics covered in this Volume 1 by this topical meeting included plenary invited, and contributed sessions entitled: Preclude to the First Chain Reaction -- 1932 to 1942; Early Fission Research -- Nuclear Structure and Spontaneous Fission; 50 Years of Fission, Science, and Technology; Nuclear Reactors, Secure Energy for the Future; Reactors 1; Fission Science 1; Safeguards and Space Applications; Fission Data; Nuclear Fission -- Its Various Aspects; Theory and Experiments in Support of Theory; Reactors and Safeguards; and General Research, Instrumentation, and By-Product. The individual papers have been cataloged separately

  12. Production of Fission Product 99Mo using High-Enriched Uranium Plates in Polish Nuclear Research Reactor MARIA: Technology and Neutronic Analysis

    Directory of Open Access Journals (Sweden)

    Jaroszewicz Janusz

    2014-07-01

    Full Text Available The main objective of 235U irradiation is to obtain the 99mTc isotope, which is widely used in the domain of medical diagnostics. The decisive factor determining its availability, despite its short lifetime, is a reaction of radioactive decay of 99Mo into 99mTc. One of the possible sources of molybdenum can be achieved in course of the 235U fission reaction. The paper presents activities and the calculation results obtained upon the feasibility study on irradiation of 235U targets for production of 99Mo in the MARIA research reactor. Neutronic calculations and analyses were performed to estimate the fission products activity for uranium plates irradiated in the reactor. Results of dummy targets irradiation as well as irradiation uranium plates have been presented. The new technology obtaining 99Mo is based on irradiation of high-enriched uranium plates in standard reactor fuel channel and calculation of the current fission power generation. Measurements of temperatures and the coolant flow in the molybdenum installation carried out in reactor SAREMA system give online information about the current fission power generated in uranium targets. The corrective factors were taken into account as the heat generation from gamma radiation from neighbouring fuel elements as well as heat exchange between channels and the reactor pool. The factors were determined by calibration measurements conducted with aluminium mock-up of uranium plates. Calculations of fuel channel by means of REBUS code with fine mesh structure and libraries calculated by means of WIMS-ANL code were performed.

  13. Assessment of fission product release from the reactor containment building during severe core damage accidents in a PWR

    International Nuclear Information System (INIS)

    Fermandjian, J.; Evrard, J.M.; Generino, G.

    1984-07-01

    Fission product releases from the RCB associated with hypothetical core-melt accidents ABβ, S 2 CDβ and TLBβ in a PWR-900 MWe have been performed using French computer codes (in particular, the JERICHO Code for containment response analysis and AEROSOLS/B1 for aerosol behavior in the containment) related to thermalhydraulics and fission product behavior in the primary system and in the reactor containment building

  14. Evaluations of fission product capture cross sections for ENDF/B-V

    International Nuclear Information System (INIS)

    Schenter, R.E.; Johnson, D.L.; Mann, F.M.; Schmittroth, F.

    1979-01-01

    Capture cross section evaluations were made for the 36 most important fission product absorbers in a fast reactor system. These evaluations were obtained by use of a generalized least-squares approach with calculations being performed with the computer code FERRET. These results will provide the major revisions to the ENDF/B-IV Fission Product Cross Section File which will be released as part of ENDF/B-V. Input for the cross section adjustment calculations included both integral and differential experimental data results. The differential cross sections and their uncertainties were obtained from the CSIRS library. Integral measurement results came from CFRMF and STEK Assemblies 500, 1000, 2000, 3000, and 4000. Comparisons of these evaluations with recent capture measurements are presented. 14 figures

  15. Mirror fusion--fission hybrids

    International Nuclear Information System (INIS)

    Lee, J.D.

    1978-01-01

    The fusion-fission concept and the mirror fusion-fission hybrid program are outlined. Magnetic mirror fusion drivers and blankets for hybrid reactors are discussed. Results of system analyses are presented and a reference design is described

  16. Resuspension of fission products during severe accidents in light-water reactors

    International Nuclear Information System (INIS)

    Borkowski, R.; Bunz, H.; Schoeck, W.

    1986-05-01

    This report investigates the influence of resuspension phenomena on the overall radiological source term of core melt accidents in a pressurized water reactor. A review of the existing literature is given and the literature data are applied to calculations of the source term. A large scatter in the existing data was found. Depending on the scenario and on the data set chosen for the calculations the relative influence of resuspended fission products on the source term ranges from dominant to negligible. (orig.) [de

  17. Transfer parameters of fission and activation products present in effluents of nuclear power reactors

    International Nuclear Information System (INIS)

    Cancio, D.; Menossi, C.A.; Ciallella, N.R.

    1978-01-01

    The paper presents results of research carried out in Argentina on transfer parameters of fission and activation products which may be present in the effluents of nuclear power reactors. For some nuclides, as Sr-90, Co-137 and I-131, the parameters were obtained by studies of the fallout, from measurements of integrated levels in the environment and in the food chains. Other values are concentration factors derived from laboratory and field experiments. They refer to fish, molluscs, crustaces and fresh water plants, for several fission and activation nuclides. Transfer parameters obtained have been of significant importance for environmental assessments, relating to nuclear installations in Argentina. (author)

  18. A proposed standard on medical isotope production in fission reactors

    International Nuclear Information System (INIS)

    Schenter, R. E.; Brown, G. J.; Holden, C. S.

    2006-01-01

    Authors Robert E. Sehenter, Garry Brown and Charles S. Holden argue that a Standard for 'Medical Isotope Production' is needed. Medical isotopes are becoming major components of application for the diagnosis and treatment of all the major diseases including all forms of cancer, heart disease, arthritis, Alzheimer's, among others. Current nuclear data to perform calculations is incomplete, dated or imprecise or otherwise flawed for many isotopes that could have significant applications in medicine. Improved data files will assist computational analyses to design means and methods for improved isotope production techniques in the fission reactor systems. Initial focus of the Standard is expected to be on neutron cross section and branching data for both fast and thermal reactor systems. Evaluated and reviewed tables giving thermal capture cross sections and resonance integrals for the major target and product medical isotopes would be the expected 'first start' for the 'Standard Working Group'. (authors)

  19. Progress in the development of the neutron flux monitoring system of the French GEN-IV SFR: simulations and experimental validations [ANIMMA--2015-IO-98

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, C.; Filliatre, P.; De Izarra, G. [CEA, DEN, DER, Instrumentation, Sensors and Dosimetry Laboratory, Cadarache, F-13108 Saint-Paul-lez-Durance, (France); Elter, Zs.; Pazsit, I. [Chalmers University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 Goteborg, (Sweden); Verma, V.; Hellesen, C.; Jacobsson, S. [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala, (Sweden); Hamrita, H.; Bakkali, M. [CEA, DRT, LIST, Sensors and Electronic Architecture Laboratory, Saclay, F-91191 Gif Sur Yvette, (France); Chapoutier, N.; Scholer, A-C.; Verrier, D. [AREVA NP, 10 rue Juliette Recamier F-69456 Lyon, (France); Cantonnet, B.; Nappe, J-C. [PHONIS France S.A.S, Nuclear Instrumentation, Avenue Roger Roncier, B.P. 520, F-19106 Brive Cedex, (France); Molinie, P.; Dessante, P.; Hanna, R.; Kirkpatrick, M.; Odic, E. [Supelec, Department of Power and Energy System, F-91192 Gif Sur Yvette, (France); Jadot, F. [CEA, DEN, DER, ASTRID Project Group, Cadarache, F-13108 Saint-Paul-lez-Durance, (France)

    2015-07-01

    The neutron flux monitoring system of the French GEN-IV sodium-cooled fast reactor will rely on high temperature fission chambers installed in the reactor vessel and capable of operating over a wide-range neutron flux. The definition of such a system is presented and the technological solutions are justified with the use of simulation and experimental results. (authors)

  20. Fission product release from UO2 during irradiation. Diffusion data and their application to reactor fuel pins

    International Nuclear Information System (INIS)

    Findlay, J.R.; Johnson, F.A.; Turnbull, J.A.; Friskney, C.A.

    1980-01-01

    Release of fission product species from UO 2 , and to a limited extent from (U, Pu)0 2 was studied using small scale in-reactor experiments in which these interacting variables may be separated, as far as is possible, and their influences assessed. Experiments were at fuel ratings appropriate to water reactor fuel elements and both single crystal and poly-crystalline specimens were used. They employed highly enriched uranium such that the relative number of fissions occurring in plutonium formed by neutron capture was small. The surface to volume ratio (S/V) of the specimens was well defined thus reducing the uncertainties in the derivation of diffusion coefficients. These experiments demonstrate many of the important characteristics of fission product behaviour in UO 2 during irradiation. The samples used for these experiments were small being always less than 1g with a fissile content usually between 2 and 5mg. Polycrystalline materials were taken from batches of production fuel prepared by conventional pressing and sintering techniques. The enriched single crystals were grown from a melt of sodium and potassium chloride doped with UO 2 powder 20% 235 U content. The irradiations were performed in the DIDO reactor at Harwell. The neutron flux at the specimen was 4x10 16 neutrons m -2 s -1 providing a heat rating within the samples of 34.5 MW/teU

  1. Material synergism fusion-fission

    International Nuclear Information System (INIS)

    Sankara Rao, K.B.; Raj, B.; Cook, I.; Kohyama, A.; Dudarev, S.

    2007-01-01

    In fission and fusion reactors the common features such as operating temperatures and neutron exposures will have the greatest impact on materials performance and component lifetimes. Developing fast neutron irradiation resisting materials is a common issue for both fission and fusion reactors. The high neutron flux levels in both these systems lead to unique materials problems like void swelling, irradiation creep and helium embitterment. Both fission and fusion rely on ferritic-martensitic steels based on 9%Cr compositions for achieving the highest swelling resistance but their creep strength sharply decreases above ∝ 823K. The use of oxide dispersion strengthened (ODS) alloys is envisaged to increase the operating temperature of blanket systems in the fusion reactors and fuel clad tubes in fast breeder reactors. In view of high operating temperatures, cyclic and steady load conditions and the long service life, properties like creep, low cycle fatigue,fracture toughness and creepfatigue interaction are major considerations in the selection of structural materials and design of components for fission and fusion reactors. Currently, materials selection for fusion systems has to be based upon incomplete experimental database on mechanical properties. The usage of fairly well developed databases, in fission programmes on similar materials, is of great help in the initial design of fusion reactor components. Significant opportunities exist for sharing information on technology of irradiation testing, specimen miniaturization, advanced methods of property measurement, safe windows for metal forming, and development of common materials property data base system. Both fusion and fission programs are being directed to development of clean steels with very low trace and tramp elements, characterization of microstructure and phase stability under irradiation, assessment of irradiation creep and swelling behaviour, studies on compatibility with helium and developing

  2. Fission product and aerosol behaviour within the containment

    International Nuclear Information System (INIS)

    Beard, A.M.; Benson, C.G.; Bowsher, B.R.; Dickinson, S.; Nichols, A.L.

    1990-04-01

    Experimental studies have been undertaken to characterise the behaviour of fission products in the containment of a pressurised water reactor during a severe accident. The following aspects of fission product transport have been studied: (a) aerosol nucleation, (b) vapour transport processes, (c) chemical forms of high-temperature vapours, (d) interaction of fission product vapours with aerosols generated from within the reactor core, (e) resuspension processes, (f) chemistry in the containment. Chemical effects have been shown to be important in defining and quantifying fission product source terms in a wide range of accident sequences. Both the chemical forms of the fission product vapours and their interactions with reactor materials aerosols could have a major effect on the magnitude and physicochemical forms of the radioactive emission from a severe reactor accident. Only the main conclusions are presented in this summary document; detailed technical aspects of the work are described in separate reports listed in the annex

  3. Eugene P. Wigner’s Visionary Contributions to Generations-I through IV Fission Reactors

    Directory of Open Access Journals (Sweden)

    Carré Frank

    2014-01-01

    Full Text Available Among Europe’s greatest scientists who fled to Britain and America in the 1930s, Eugene P. Wigner made instrumental advances in reactor physics, reactor design and technology, and spent nuclear fuel processing for both purposes of developing atomic weapons during world-war II and nuclear power afterwards. Wigner who had training in chemical engineering and self-education in physics first gained recognition for his remarkable articles and books on applications of Group theory to Quantum mechanics, Solid state physics and other topics that opened new branches of Physics.

  4. Device for measuring fission product density

    International Nuclear Information System (INIS)

    Kaneda, Mitsunori.

    1980-01-01

    Purpose: To determine the fission product density of xenon or the like and enable measurement of real time of fission product density in a reactor by calculating the disintegration and annihilation of the fission product on the basis of neutron detected output. Constitution: The neutron flux in a reactor is detected by a detector, and applied to first and second density calculators. Second fission product density signal of xenon or the like outputted from first device is again inputted to the device to form an annihilation signal due to disintegration to determine the present density of the second fission product of xenon or the like corresponding to the decrease of the neutron due to the poison of xeron or the like. Similarly, second device determines the first fission product density of iodine or the like. (Sekiya, K.)

  5. Impact of material thicknesses on fission observables obtained with the FALSTAFF experimental setup

    Directory of Open Access Journals (Sweden)

    Thulliez L.

    2017-01-01

    Full Text Available In the past years, the fission studies have been mainly focused on thermal fission because most of the current nuclear reactors work in this energy domain. With the development of GEN-IV reactor concepts, mainly working in the fast energy domain, new nuclear data are needed. The FALSTAFF spectrometer under development at CEA-Saclay, France, is a two-arm spectrometer which will provide mass yields before (2V method and after (EV method neutron evaporation and consequently will have access to the neutron multiplicity as a function of mass. The axial ionization chamber, in addition to the kinetic energy value, will measure the energy loss profile of the fragment along its track. This energy loss profile will give information about the fragment nuclear charge. This paper will focus on recent developments on the FALSTAFF design. A special attention will be paid to the impact of the detector material thickness on the uncertainty of different observables.

  6. Hybrid reactors

    International Nuclear Information System (INIS)

    Moir, R.W.

    1980-01-01

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of 233 U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m -2 , and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid

  7. The geo-reactor. A link between nuclear fission and geothermal energy?

    International Nuclear Information System (INIS)

    Degueldre, Claude; Fiorina, Carlo

    2013-01-01

    Recent high-precision isotope analysis data suggests the potential occurrence of a geo-reactor. Specific gas isotopes that could have been generated by binary and ternary fissions were identified in volcano emanations or as soluble/associated species in crystalline rocks and semi-quantitatively evaluated as isotopic ratio or estimated amounts. Presently if it is evident that according to the actinide inventory on the Earth, local potential criticality of the geo-system may have been reached, several questions remain such as why, where and when did a geo-reactor be operational? Even if the hypothesis of a geo-reactor operation in the proto-Earth period should be acceptable, it could be difficult to anticipate that a geo-reactor is still operating today. This could be tested in the future by assessing and reconstructing the system by antineutrino detection and tomography through the Earth. The present paper focuses on the geo-reactor conditions including history, spatial extension and regimes. The discussion based on recent calculations involves investigations on the limits in term of fissile inventory, size and power, based on stratification through the gravitational field and the various features through the inner mantel, the boundary with the core, the external part and the inner-core. the reconstruction allows to formulating that from the history point of view there are possibilities that the geo-reactor reached criticality in a proto-Earth period as a thorium/uranium reactor triggered by an under-layer with heavier actinides. The geo-reactor should be a key component of geothermal energy sources. (author)

  8. Analysis of a Spanish energy scenario with Generation IV nuclear reactors

    International Nuclear Information System (INIS)

    Ochoa, Raquel; Jimenez, Gonzalo; Perez-Martin, Sara

    2013-01-01

    Highlights: • Spanish energy scenario for the hypothetical deployment of Gen-IV SFR reactors. • Availability of national resources is assessed, considering SFR’s breeding. • An assessment of the impact of transmuting MA on the final repository. • SERPENT code with own pre- and post-processing tools were employed. • The employed SFR core design is based on the specifications of the CP-ESFR. - Abstract: The advantages of fast-spectrum reactors consist not only of an efficient use of fuel through the breeding of fissile material and the use of natural or depleted uranium, but also of the potential reduction of the amount of actinides such as americium and neptunium contained in the irradiated fuel. The first aspect means a guaranteed future nuclear fuel supply. The second fact is key for high-level radioactive waste management, because these elements are the main responsible for the radioactivity of the irradiated fuel in the long term. The present study aims to analyze the hypothetical deployment of a Gen-IV Sodium Fast Reactor (SFR) fleet in Spain. A nuclear fleet of fast reactors would enable a fuel cycle strategy different than the open cycle, currently adopted by most of the countries with nuclear power. A transition from the current Gen-II to Gen-IV fleet is envisaged through an intermediate deployment of Gen-III reactors. Fuel reprocessing from the Gen-II and Gen-III Light Water Reactors (LWR) has been considered. In the so-called advanced fuel cycle, the reprocessed fuel used to produce energy will breed new fissile fuel and transmute minor actinides at the same time. A reference case scenario has been postulated and further sensitivity studies have been performed to analyze the impact of the different parameters on the required reactor fleet. The potential capability of Spain to supply the required fleet for the reference scenario using national resources has been verified. Finally, some consequences on irradiated final fuel inventory are assessed

  9. Review of fission-fusion pellet designs and inertial confinement system studies at EIR

    Energy Technology Data Exchange (ETDEWEB)

    Seifriz, W [Eidgenoessisches Inst. fuer Reaktorforschung, Wuerenlingen (Switzerland)

    1978-01-01

    The article summarizes the work done so far at the Swiss Federal Institute for Reactor Research (EIR) in the field of the inertial confinement fusion technique. The following subjects are reviewed: a) fission fusion pellet designs using fissionable triggers, b) uranium tampered pellets, c) tampered pellets recycling unwanted actinide wastes from fission reactors in beam-driven micro-explosion reactors, and d) symbiotic fusion/fission reactor studies.

  10. Fast reactor development and worldwide cooperation in Generation-IV International Forum

    International Nuclear Information System (INIS)

    Sagayama, Yutaka

    2013-01-01

    Objectives of Gen-IV systems development: Goals: Four challenging technology goals have been defined to be applied to innovative nuclear reactor concepts in the 21st century: 1) Safety and Reliability (safe and reliable operation, no offsite emergency response); 2) Sustainability (effective fuel utilization, minimization of nuclear waste); 3) Proliferation Resistance & Physical Protection (to assure unattractive and the least desirable route for diversion or theft of weapons-usable materials, and provide increased physical protection against acts of terrorism); 4) Economic Competitiveness (life-cycle cost advantage over other energy resources). Phase: Each Generation-IV reactor system is one of three stages. 1) Viability Phase; 2) Performance Phase; 3) Demonstration Phase. Target: Commercial Deployment is expected around 2030s or beyond

  11. Assessment of the high temperature fission chamber technology for the French fast reactor program

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, C.; Filliatre, P.; Geslot, B.; Domenech, T.; Normand, S. [Commissariat a l' Energie Atomique, CEA (France)

    2011-07-01

    High temperature fission chambers are key instruments for the control and protection of the sodium-cooled fast reactor. First, the developments of those neutron detectors, which are carried out either in France or abroad are reviewed. Second, the French realizations are assessed with the use of the technology readiness levels in order to identify tracks of improvement. (authors)

  12. Apparatus for measuring the release of fission gases and other fission products by degassing

    Energy Technology Data Exchange (ETDEWEB)

    Stradal, Karl Alfred

    1970-10-15

    In gas-cooled high-temperature reactors, the fuel is, in general, inserted in the fuel elements in the form of small particles, which are, for example, coated with pyrolytic carbon. The purpose of this coating is to keep the fission products separate from the coolant gas. The further development of these coated particles makes it necessary to check the retention capacity. One possible method of doing this is the degassing test after irradiation in the reactor. An apparatus is described below, which was developed and installed in order to measure to a higher degree of sensitivity and in serial measurements the release of fission gases and sparingly volatile fission products.

  13. Benchmark analysis of SPERT-IV reactor with Monte Carlo code MVP

    International Nuclear Information System (INIS)

    Motalab, M.A.; Mahmood, M.S.; Khan, M.J.H.; Badrun, N.H.; Lyric, Z.I.; Altaf, M.H.

    2014-01-01

    Highlights: • MVP was used for SPERT-IV core modeling. • Neutronics analysis of SPERT-IV reactor was performed. • Calculation performed to estimate critical rod height, excess reactivity. • Neutron flux, time integrated neutron flux and Cd-ratio also calculated. • Calculated values agree with experimental data. - Abstract: The benchmark experiment of the SPERT-IV D-12/25 reactor core has been analyzed with the Monte Carlo code MVP using the cross-section libraries based on JENDL-3.3. The MVP simulation was performed for the clean and cold core. The estimated values of K eff at the experimental critical rod height and the core excess reactivity were within 5% with the experimental data. Thermal neutron flux profiles at different vertical and horizontal positions of the core were also estimated. Cadmium Ratio at different point of the core was also estimated. All estimated results have been compared with the experimental results. Generally good agreement has been found between experimentally determined and the calculated results

  14. Nuclear data uncertainty analysis for the generation IV gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Pelloni, S.; Mikityuk, K.

    2012-01-01

    For the European 2400 MW Gas-cooled Fast Reactor (GoFastR), this paper summarizes a priori uncertainties, i.e. without any integral experiment assessment, of the main neutronic parameters which were obtained on the basis of the deterministic code system ERANOS (Edition 2.2-N). JEFF-3.1 cross-sections were used in conjunction with the newest ENDF/B-VII.0 based covariance library (COMMARA-2.0) resulting from a recent cooperation of the Brookhaven and Los Alamos National Laboratories within the Advanced Fuel Cycle Initiative. The basis for the analysis is the original GoFastR concept with carbide fuel pins and silicon-carbide ceramic cladding, which was developed and proposed in the first quarter of 2009 by the 'French alternative energies and Atomic Energy Commission', CEA. The main conclusions from the current study are that nuclear data uncertainties of neutronic parameters may still be too large for this Generation IV reactor, especially concerning the multiplication factor, despite the fact that the new covariance library is quite complete; These uncertainties, in relative terms, do not show the a priori expected increase with bum-up as a result of the minor actinide and fission product build-up. Indeed, they are found almost independent of the fuel depletion, since the uncertainty associated with 238 U inelastic scattering results largely dominating. This finding clearly supports the activities of Subgroup 33 of the Working Party on International Nuclear Data Evaluation Cooperation (WPEC), i.e. Methods and issues for the combined use of integral experiments and covariance data, attempting to reduce the present unbiased uncertainties on nuclear data through adjustments based on available experimental data. (authors)

  15. Market share scenarios for Gen-DIII and gen-IV reactors in Europe

    International Nuclear Information System (INIS)

    Roelofs, F.; Heek, A. V.; Durpel, L. V. D.

    2008-01-01

    Nuclear energy is back on the agenda worldwide in order to meet growing energy demand and especially the growth in electricity demand. Many objectives direct to an increased use of nuclear energy, i.e. minimising energy costs, reducing climate change effects and others. In the light of the potential renewed growth of nuclear energy, the public demands a clear view on what nuclear energy may contribute towards meeting these objectives and especially how nuclear energy may address some socio-political obstructions with respect to economics, radioactive waste, safety and proliferation of fissile materials. To address these questions, the future nuclear reactor park mix in Europe has been analysed applying an integrated dynamic process modelling technique. Various market share scenarios for nuclear energy are derived including sub-variants with regard to the intra-nuclear options. In the analyses, it is assumed that different types of new reactors may be built, taking into account the introduction date of considered Gen-Ill (i.e. EPR) and Gen-IV (i.e. SCWR, HTR, FR) reactors, and the economic evaluation of the complete fuel cycle. The assessment was undertaken using the DANESS code (Dynamic Analysis of Nuclear Energy System Strategies). The analyses show that given the considered realistic nuclear energy demand and given a limited number of available Gen-III and Gen-IV reactor types, the future European nuclear park will exist of combinations of Gen-III and Gen-IV reactors. This mix will always consist of a set of reactor types each having its specific strengths. The analyses also highlight the triggers influencing the choice between different nuclear energy deployment scenarios. (authors)

  16. Fusion--fission hybrid concepts for laser-induced fusion

    International Nuclear Information System (INIS)

    Maniscalco, J.

    1976-01-01

    Fusion-fission hybrid concepts are viewed as subcritical fission reactors driven and controlled by high-energy neutrons from a laser-induced fusion reactor. Blanket designs encompassing a substantial portion of the spectrum of different fission reactor technologies are analyzed and compared by calculating their fissile-breeding and fusion-energy-multiplying characteristics. With a large number of different fission technologies to choose from, it is essential to identify more promising hybrid concepts that can then be subjected to in-depth studies that treat the engineering safety, and economic requirements as well as the neutronic aspects. In the course of neutronically analyzing and comparing several fission blanket concepts, this work has demonstrated that fusion-fission hybrids can be designed to meet a broad spectrum of fissile-breeding and fusion-energy-multiplying requirements. The neutronic results should prove to be extremely useful in formulating the technical scope of future studies concerned with evaluating the technical and economic feasibility of hybrid concepts for laser-induced fusion

  17. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

    2008-08-01

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of

  18. Cumulative fission yield of Ce-148 produced by thermal-neutron fission of U-235

    International Nuclear Information System (INIS)

    Hasan, A.A.

    1984-12-01

    Cumulative fission yield of 148 cesium isotopes and some other fission products produced by thermal-neutron fission of 235 uranium is determined by Germanium/Lithium spectroscopic methods. The measuremets were done at Tsing-Hua open pool reactor using 3 to 4 mg of 93.15% enriched 235 uranium samples. Gamma rays are assigned to the responsible fission products by matching gamma rays energies and half lives. Fission rate is calculated by fission track method. Cumulative fission yields of 148 cesium, 90 krypton, 130 iodine, 144 lanthanum, 89 krypton, 136 xenon, 137 xenon and 140 cesium are calculated. This values are compared with previously predicted values and showed good agreement. 21 Ref

  19. Space Fission System Test Effectiveness

    International Nuclear Information System (INIS)

    Houts, Mike; Schmidt, Glen L.; Van Dyke, Melissa; Godfroy, Tom; Martin, James; Bragg-Sitton, Shannon; Dickens, Ricky; Salvail, Pat; Harper, Roger

    2004-01-01

    Space fission technology has the potential to enable rapid access to any point in the solar system. If fission propulsion systems are to be developed to their full potential, however, near-term customers need to be identified and initial fission systems successfully developed, launched, and utilized. One key to successful utilization is to develop reactor designs that are highly testable. Testable reactor designs have a much higher probability of being successfully converted from paper concepts to working space hardware than do designs which are difficult or impossible to realistically test. ''Test Effectiveness'' is one measure of the ability to realistically test a space reactor system. The objective of this paper is to discuss test effectiveness as applied to the design, development, flight qualification, and acceptance testing of space fission systems. The ability to perform highly effective testing would be particularly important to the success of any near-term mission, such as NASA's Jupiter Icy Moons Orbiter, the first mission under study within NASA's Project Prometheus, the Nuclear Systems Program

  20. Status of fission yield measurements

    International Nuclear Information System (INIS)

    Maeck, W.J.

    1979-01-01

    Fission yield measurement and yield compilation activities in the major laboratories of the world are reviewed. In addition to a general review of the effort of each laboratory, a brief summary of yield measurement activities by fissioning nuclide is presented. A new fast reactor fission yield measurement program being conducted in the US is described

  1. Evaluation of fission spectra and cross sections by zero-leakage core experiments

    International Nuclear Information System (INIS)

    Iijima, T.; Mukaiyama, T.

    1979-01-01

    A series of unit k-infinity core experiments were performed in FCA of JAERI to obtain the information on the equivalence of 239 Pu to 235 U in fast reactors, and to examine the inelastic slowing down cross section of 238 U. Three assemblies were built. Each assembly consists of a test zone (about 44l) of nearly unit k-infinity, a 20% enriched uranium driver and a natural uranium blanket. Assembly IV-1 (first built in 1969 and rebuilt in 1972) is an all uranium system, and Assemblies IV-1-P, IV-1-P' have a plutonium/natural uranium test zone. Three assemblies are nearly the same from the view-point of the slowing down cross section in the main energy region of the neutron spectrum, since 238 U occupies the most part of the composition. The main difference between Assembly IV-1 and the latter two is the difference in the fissile material. Fission rate ratios and k-infinity values were measured to obtain knowledge of the fission spectra and cross sections important for the criticality. In order to evaluate the inelastic slowing down cross section of 238 U, neutron spectra were measured with various methods. The analysis was done with four cross section sets. The agreement of k-infinity values between the experiment and the calculation is unsatisfactory, especially for Pu/NU systems

  2. New ceramics for nuclear industry. Case of fission and fusion reactors

    International Nuclear Information System (INIS)

    Yvars, M.

    1979-10-01

    The ceramics used in the nuclear field are described as is their behaviour under radiation. 1) Power reactors - nuclear fission. Ceramics enter into the fabrication of nuclear fuels: oxides, carbides, uranium or plutonium nitrides or oxy-nitrides. Silicon carbide SiC is used for preparing the fuels of helium cooled high temperature reactors. Its use is foreseen in the design of gas high temperature gas thermal exchangers, as is silicon nitride (Si 3 N 4 ). In the materials for safety or control rods, the intense neutron flows induce nuclear reactions which increase the temperature of the neutron absorbing material. Boron carbide B 4 C, rare earth oxides Ln 2 O 3 , or B 4 C-Cu or B 4 C-Al cermets are employed. Burnable poison materials are formed of Al 2 O 3 -B 4 C or Al 2 O 3 -Ln 2 O 3 cermets. The moderators of thermal neutron reactors are in high purety polycrystalline graphite. For the thermal insulation of reactor vessels and jackets, honeycomb ceramics are used as well as ceramic fibres on an increasing scale (kaolin, alumina and other fibres). 2) fusion reactors (Tokomak). These require refractory materials with a low atomic number. Carbon fibres, boron carbide, some borons (Al B 12 ), silicon nitrides and oxy-nitrides and high density alumina are the substances considered [fr

  3. The wastes of nuclear fission; Les dechets de la fission nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Doubre, H. [Paris-11 Univ., Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, IN2P3/CNRS, 91 - Orsay (France)

    2005-07-01

    In this paper the author presents the problems of the radioactive wastes generated by the nuclear fission. The first part devoted to the fission phenomenon explains the incident neutron energy and the target nuclei role. The second part devoted to the nuclear wastes sources presents the production of wastes upstream of the reactors, in the reactors and why these wastes are dangerous. The third part discusses the radioactive wastes management in France (classification, laws). The last part details the associated research programs: the radionuclides separation, the disposal, the underground storage, the transmutation and the thorium cycle. (A.L.B.)

  4. Energy deposition measurements in fast reactor safety experiments with fission thermocouple detectors

    International Nuclear Information System (INIS)

    Wright, S.A.; Scott, H.L.

    1979-01-01

    The investigation of phenomena occurring in in-pile fast reactor safety experiments requires an accurate measurement of the time dependent energy depositions within the fissile material. At Sandia Laboratories thin-film fission thermocouples are being developed for this purpose. These detectors have high temperature capabilities (400 to 500 0 C), are sodium compatible, and have milli-second time response. A significant advantage of these detectors for use as energy deposition monitors is that they produce an output voltage which is directly dependent on the temperature of a small chip of fissile material within the detectors. However, heat losses within the detector make it necessary to correct the response of the detector to determine the energy deposition. A method of correcting the detector response which uses an inverse convolution procedure has been developed and successfully tested with experimental data obtained in the Sandia Pulse Reactor (SPR-II) and in the Annular Core Research Reactor

  5. Theoretical Description of the Fission Process

    International Nuclear Information System (INIS)

    Nazarewicz, Witold

    2009-01-01

    Advanced theoretical methods and high-performance computers may finally unlock the secrets of nuclear fission, a fundamental nuclear decay that is of great relevance to society. In this work, we studied the phenomenon of spontaneous fission using the symmetry-unrestricted nuclear density functional theory (DFT). Our results show that many observed properties of fissioning nuclei can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. From the calculated collective potential and collective mass, we estimated spontaneous fission half-lives, and good agreement with experimental data was found. We also predicted a new phenomenon of trimodal spontaneous fission for some transfermium isotopes. Our calculations demonstrate that fission barriers of excited superheavy nuclei vary rapidly with particle number, pointing to the importance of shell effects even at large excitation energies. The results are consistent with recent experiments where superheavy elements were created by bombarding an actinide target with 48-calcium; yet even at high excitation energies, sizable fission barriers remained. Not only does this reveal clues about the conditions for creating new elements, it also provides a wider context for understanding other types of fission. Understanding of the fission process is crucial for many areas of science and technology. Fission governs existence of many transuranium elements, including the predicted long-lived superheavy species. In nuclear astrophysics, fission influences the formation of heavy elements on the final stages of the r-process in a very high neutron density environment. Fission applications are numerous. Improved understanding of the fission process will enable scientists to enhance the safety and reliability of the nation's nuclear stockpile and nuclear reactors. The deployment of a fleet of safe and efficient advanced reactors, which will also minimize radiotoxic

  6. Miniature fission chambers calibration in pulse mode: interlaboratory comparison at the. SCK·CEN BR1 and CEA CALIBAN reactors

    International Nuclear Information System (INIS)

    Lamirand, V.; Geslot, B.; Gregoire, G.; Garnier, D.; Breaud, S.; Mellier, F.; Di-Salvo, J.; Destouches, C.; Blaise, P.; Wagemans, J.; Borms, L.; Malambu, E.; Casoli, P.; Jacquet, X.; Rousseau, G.; Sauvecane, P.

    2013-06-01

    Miniature fission chambers are suited tools for instrumenting experimental reactors, allowing online and in-core neutron measurements of quantities such as fission rates or reactor power. A new set of such detectors was produced by CEA to be used during the next experimental program at the EOLE facility starting in 2013. Some of these detectors will be employed in pulse mode for absolute measurements, thus requiring calibration. The calibration factor is expressed in mass units and thus called 'effective mass'. A calibration campaign was conducted in December 2012 at the SCK.CEN BR1 facility within the framework of the scientific cooperation VEP (VENUS-EOLE-PROTEUS) between SCK.CEN, CEA and PSI. Two actions were conducted in order to improve the calibration method. First a new characterisation of the thermal flux cavity and the MARK3 neutron flux conversion device performed by SCK.CEN allowed using calculated effective cross sections for determining detectors effective masses. Dosimetry irradiations were performed in situ in order to determine the neutron flux level and provide link to the metrological standard. Secondly two fission chambers were also calibrated at the CEA CALIBAN reactor (fast neutron spectrum), using the same method so that the results can be compared with the results obtained at the SCK.CEN. In this paper the calibration method and recent improvements on uncertainty reduction are presented. The results and uncertainties obtained in the two reactors CALIBAN and BR1 are compared and discussed. (authors)

  7. Optimisation of the mechanical alloying process for odsferritic steels for generation IV reactors application

    International Nuclear Information System (INIS)

    Stanciulescu, M.; Carlan, P.; Mihalache, M.; Abrudeanu, M.

    2016-01-01

    ODS ferritic steels appear as promising materials for fusion and Gen IV fission reactors, offering high temperature performance, corrosion and irradiation resistance and meeting low activation criteria. Mechanical alloying (MA) is a powder metallurgy technique efficient for fabricating advanced materials, and has been used for strengthening structural materials including Fe-Cr alloys. In this paper a high-energy ball mill is used to study the microstructural evolution of 14YW alloy during the mechanical alloying process. The elemental powders are milled at a rotation speed of 250rot/min in cycles of 10min milling and 5min pause, with a ball-to-powder ration of 10:1 and in argon protective atmosphere. After 72 hours milling, the morphology and element distribution of the MA powders is investigated by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis, respectively. It is observed that the particles size increases in the first milling stages and then decreases with the milling time. Changes in the material composition are analysed by X-ray diffraction (DRX). It seems that after milling part of the W remains non-dissolved in the Fe-Cr matrix retarding the solid solution formation. (authors)

  8. Chemical aspects of fission product transport in the primary circuit of a light water reactor

    International Nuclear Information System (INIS)

    Bowsher, B.R.; Dickinson, S.; Nichols, A.L.; Ogden, J.S.; Potter, P.E.

    1985-01-01

    The transport and fission products in the primary circuit of a light water reactor are of fundamental importance in assessing the consequences of severe accidents. Recent experimental studies have concentrated upon the behaviour of simulant fission product species such as caesium iodide, caesium hydroxide and tellurium, in terms of their vapour deposition characteristics onto metals representative of primary circuit materials. An induction furnace has been used to generate high-density/structural materials aerosols for subsequent analysis, and similar equipment has been incorporated into a glove-box to study lightly-irradiated UO/sub 2/ clad in Zircaloy. Analytical techniques are being developed to assist in the identification of fission product chemical species released from the fuel at temperatures from 1000 to 2500 0 C. Matrix isolation-infrared spectroscopy has been used to identify species in the vapour phase, and specific data using this technique are reported

  9. Chemical aspects of fission product transport in the primary circuit of a light water reactor

    International Nuclear Information System (INIS)

    Bowsher, B.R.; Dickinson, S.; Nichols, A.L.; Ogden, J.S.; Potter, P.E.

    1985-01-01

    The transport and deposition of fission products in the primary circuit of a light water reactor are of fundamental importance in assessing the consequences of severe accidents. Recent experimental studies have concentrated upon the behavior of simulant fission product species such as cesium iodide, cesium hydroxide and tellurium, in terms of their vapor deposition characteristics onto metals representative of primary circuit materials. An induction furnace has been used to generate high density/structural materials aerosols for subsequent analysis, and similar equipment has been incorporated into a glove-box to study lightly-irradiated UO 2 clad in Zircaloy. Analytical techniques are being developed to assist in the identification of fission product chemical species released from the fuel at temperatures from 1000 to 2500 0 C. Matrix isolation-infrared spectroscopy has been used to identify species in the vapor phase, and specific data using this technique are reported

  10. ASTRID, Generation IV advanced sodium technological reactor for industrial demonstration

    International Nuclear Information System (INIS)

    Gauche, F.

    2013-01-01

    ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) is an integrated technology demonstrator designed to demonstrate the operability of the innovative choices enabling fast neutron reactor technology to meet the Generation IV criteria. ASTRID is a sodium-cooled fast reactor with an electricity generating power of 600 MWe. In order to meet the generation IV goals, ASTRID will incorporate the following decisive innovations: -) an improved core with a very low, even negative void coefficient; -) the possible installation of additional safety devices in the core. For example, passive anti-reactivity insertion devices are explored; -) more core instrumentation; -) an energy conversion system with modular steam generators, to limit the effects of a possible sodium-water reaction, or sodium-nitrogen exchangers; -) considerable thermal inertia combined with natural convection to deal with decay heat; -)elimination of major sodium fires by bunkerization and/or inert atmosphere in the premises; -) to take into account off-site hazards (earthquake, airplane crash,...) right from the design stage; -) a complete rethink of the reactor architecture in order to limit the risk of proliferation. ASTRID will also include systems for reducing the length of refueling outages and increasing the burn-up and the duration of the cycle. In-service inspection, maintenance and repair are also taken into account right from the start of the project. The ASTRID prototype should be operational by about 2023. (A.C.)

  11. Planetary Surface Power and Interstellar Propulsion Using Fission Fragment Magnetic Collimator Reactor

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel V.; Hart, Ron R.; King, Don B.; Rochau, Gary E.

    2006-01-01

    Fission energy can be used directly if the kinetic energy of fission fragments is converted to electricity and/or thrust before turning into heat. The completed US DOE NERI Direct Energy Conversion (DEC) Power Production project indicates that viable DEC systems are possible. The US DOE NERI DEC Proof of Principle project began in October of 2002 with the goal to demonstrate performance principles of DEC systems. One of the emerging DEC concepts is represented by fission fragment magnetic collimator reactors (FFMCR). Safety, simplicity, and high conversion efficiency are the unique advantages offered by these systems. In the FFMCR, the basic energy source is the kinetic energy of fission fragments. Following escape from thin fuel layers, they are captured on magnetic field lines and are directed out of the core and through magnetic collimators to produce electricity and thrust. The exiting flow of energetic fission fragments has a very high specific impulse that allows efficient planetary surface power and interstellar propulsion without carrying any conventional propellant onboard. The objective of this work was to determine technological feasibility of the concept. This objective was accomplished by producing the FFMCR design and by analysis of its performance characteristics. The paper presents the FFMCR concept, describes its development to a technologically feasible level and discusses obtained results. Performed studies offer efficiencies up to 90% and velocities approaching speed of light as potentially achievable. The unmanned 10-tons probe with 1000 MW FFMCR propulsion unit would attain mission velocity of about 2% of the speed of light. If the unit is designed for 4000 MW, then in 10 years the unmanned 10-tons probe would attain mission velocity of about 10% of the speed of light

  12. Directions for attractive tokamak reactors: The ARIES-II and ARIES-IV second-stability designs

    International Nuclear Information System (INIS)

    Najmabadi, F.; Conn, R.W.

    1993-01-01

    ARIES is a research program to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The ARIES study has developed four visions for tokamaks. All four designs are steady-state, 1000-MWe (net) power reactors. The ARIES-II and ARIES-IV designs assume potential advances in plasma physics (such as second-stability operation) predicted by theory but not yet established experimentally. The two designs have the same fusion plasma but different fusion-power-core. There are only minor differences between the ARIES-II and ARIES-IV plasma parameters. ARIES-IV is a 1000-MWe reactor with an average neutron wall loading of 3 MW/m 2 , and a mass power density of about 120 kWe/tonne of fusion power core. The reactor major radius is 6.1 m, the plasma minor radius is 1.5 m and the plasma elongation is 2, and the plasma triangularity is 0.67. The plasma current is low (6.8 MA), B on-axis is 7.7 T (corresponding to a maximum field at the coil of 16T), and the toroidal beta is 3.4% (Troyon coefficient = 6). The operating regime is optimized such that most of the plasma current (∼ 90%) is provided by the bootstrap current. ARIES-II uses liquid lithium as the coolant and tritium breeder. V-5Cr-5Ti is used as the structural material so that the potential of low-activation metallic blankets can be studied. ARIES-IV uses helium as the coolant, a solid tritium-breeding material (Li 2 O), and silicon carbide composite as structural material. The waste produced by neutron activation in both designs is found to meet the criteria allowing shallow-land burial under U.S. regulations. The cost of electricity for the ARIES-II-IV class of reactors is estimated to be about 20% lower than comparable, steady-state first-stability reactors (e.g. ARIES-I). 25 refs, 2 figs, 1 tab

  13. RSAC, Gamma Doses, Inhalation and Ingestion Doses, Fission Products Inventory after Fission Products Release

    International Nuclear Information System (INIS)

    Richardson, L.C.

    1967-01-01

    1 - Description of problem or function: RSAC generates a fission product inventory from a given set of reactor operating conditions and then computes the external gamma dose, the deposition gamma dose, and the inhalation-ingestion dose to critical body organs as a result of exposure to these fission products. Program output includes reactor operating history, fission product inventory, dosages, and ingestion parameters. 2 - Method of solution: The fission product inventory generated by the reactor operating conditions and the inventory remaining at various times after release are computed using the equations of W. Rubinson in Journal of Chemical Physics, Vol. 17, pages 542-547, June 1949. The external gamma dose and the deposition gamma dose are calculated by determining disintegration rates as a function of space and time, then integrating using Hermite's numerical techniques for the spatial dependence. The inhalation-ingestion dose is determined by the type and quantity of activity inhaled and the biological rate of decay following inhalation. These quantities are integrated with respect to time to obtain the dosage. The ingestion dose is related to the inhalation dose by an input constant

  14. Fast reactor programme

    International Nuclear Information System (INIS)

    Plakman, J.C.

    1981-06-01

    The accuracy requirements and the status of the evaluated fission-product cross sections for fast reactors are reviewed; the work on calculating the sensitivity of the sodium void effect to fission-product cross sections is described; some results of the intercomparison of adjusted data sets for capture cross sections of fission-products (RCN-2A and CARNAVAL-IV) are discussed; the applicability of the maximum-likelihood method for the analysis of resolved resonance parameters for a large class of fission-product nuclides is demonstrated; the neutron cross sections for corrosion product 64 Ni are evaluated. Some results of post-irradiation examination of a loss-of-cooling experiment are given; the progress in testing the equipment and instrumentation for transient-overpower experiments is reported. The proceedings in the thermochemical investigations on uranium compounds with some fission-products are described. The creep behaviour of a heat of DIN 1.4948 parent metal is investigated with respect to the changes in strain with different test temperatures. Sodium smoke aerosols have been produced and analysed with respect to their aerodynamic behaviour and morphology. The two-phase local boiling experiments have been analysed to find criteria for the occurrence of different boiling regimes with the objection to deduce general dryout correlations

  15. NEET Enhanced Micro-Pocket Fission Detector for High Temperature Reactors - FY16 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Unruh, Troy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reichenberger, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Stevenson, Sarah [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tsai, Kevin [Idaho National Lab. (INL), Idaho Falls, ID (United States); McGregor, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    A collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Atomic Energy Agency, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), has been initiated by the Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and Instrumentation (ASI) program for developing and testing High Temperature Micro-Pocket Fission Detectors (HT MPFD), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package for temperatures up to 800 °C. The MPFD technology utilizes a small, multi-purpose, robust, in-core fission chambers and thermocouple. As discussed within this report, the small size, variable sensitivity, and increased accuracy of the MPFD technology represent a revolutionary improvement over current methods used to support irradiations in US Material Test Reactors (MTRs). Previous research conducted through NEET ASI1-3 has shown that the MPFD technology could be made robust and was successfully tested in a reactor core. This new project will further the MPFD technology for higher temperature regimes and other reactor applications by developing a HT MPFD suitable for temperatures up to 800 °C. This report summarizes the research progress for year two of this three year project. Highlights from research accomplishments include: • Continuation of a joint collaboration between INL, KSU, and CEA. Note that CEA is participating at their own expense because of interest in this unique new sensor. • An updated parallel wire HT MPFD design was developed. • Program support for HT MPFD deployments was given to Accident Tolerant Fuels (ATF) and Advanced Gas-cooled Reactor (AGR) irradiation test programs. • Quality approved materials for HT MPFD construction were procured by irradiation test programs for upcoming deployments. • KSU improved and performed electrical contact and fissile material plating.

  16. Experiments to determine the rate of beta energy release following fission of Pu239 andU235 in a fast reactor

    International Nuclear Information System (INIS)

    Murphy, M.F.; Taylor, W.H.; Sweet, D.W.; March, M.R.

    1979-02-01

    Measurements have been made of the rate of beta energy release from Pu239 and U235 fission fragments over a period of 107 seconds following a 105 second irradiation in the zero-power fast reactor Zebra. Results are compared with predictions using the UKFPDD-1 decay data file and two different sets of fission product yield data. (author)

  17. Energy released in fission

    International Nuclear Information System (INIS)

    James, M.F.

    1969-05-01

    The effective energy released in and following the fission of U-235, Pu-239 and Pu-241 by thermal neutrons, and of U-238 by fission spectrum neutrons, is discussed. The recommended values are: U-235 ... 192.9 ± 0.5 MeV/fission; U-238 ... 193.9 ± 0.8 MeV/fission; Pu-239 ... 198.5 ± 0.8 MeV/fission; Pu-241 ... 200.3 ± 0.8 MeV/fission. These values include all contributions except from antineutrinos and very long-lived fission products. The detailed contributions are discussed, and inconsistencies in the experimental data are pointed out. In Appendix A, the contribution to the total useful energy release in a reactor from reactions other than fission are discussed briefly, and in Appendix B there is a discussion of the variations in effective energy from fission with incident neutron energy. (author)

  18. Thermal hydraulic core simulation of the MYRRHA Reactor in steady state operation

    International Nuclear Information System (INIS)

    Ferandes, Gustavo H.N.; Ramos, Mário C.; Carvalho, Athos M.S.S.; Cabrera, Carlos E.V.; Costa, Antonella L.; Pereira, Claubia

    2017-01-01

    MYRRHA (Multi-purpose Hybrid Research Reactor for High-tech Applications) is a prototype nuclear subcritical reactor driven by a particle accelerator. As a special property, the reactor maintains the nuclear fission chain reaction by means of an external neutron source provided by a particle accelerator. The main aim of this work is to study two types of coolants, LBE (Lead-Bismuth Eutectic) and Na (Sodium) that are two strong candidates to be used in ADS systems as well as in Generation IV (GEN-IV) reactors. Firstly, it was developed a thermal hydraulic model of the MYRRHA core using the RELAP5-3D, considering LBE as coolant (original project). After this, the LBE was substituted by Na coolant to investigate the reactor behavior in such case. Results have demonstrated the high heat transfer capacity of the LBE coolant in this type of system. (author)

  19. Thermal hydraulic core simulation of the MYRRHA Reactor in steady state operation

    Energy Technology Data Exchange (ETDEWEB)

    Ferandes, Gustavo H.N.; Ramos, Mário C.; Carvalho, Athos M.S.S.; Cabrera, Carlos E.V.; Costa, Antonella L.; Pereira, Claubia, E-mail: ghnfernandes@gmail.com, E-mail: marc5663@gmail.com, E-mail: athos1495@yahoo.com.br, E-mail: carlosvelcab@hotmail.com, E-mail: antonella@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Instituto Nacional de Ciência e Tecnologia de Reatores Nucleares Inovadores/CNPq (Brazil)

    2017-07-01

    MYRRHA (Multi-purpose Hybrid Research Reactor for High-tech Applications) is a prototype nuclear subcritical reactor driven by a particle accelerator. As a special property, the reactor maintains the nuclear fission chain reaction by means of an external neutron source provided by a particle accelerator. The main aim of this work is to study two types of coolants, LBE (Lead-Bismuth Eutectic) and Na (Sodium) that are two strong candidates to be used in ADS systems as well as in Generation IV (GEN-IV) reactors. Firstly, it was developed a thermal hydraulic model of the MYRRHA core using the RELAP5-3D, considering LBE as coolant (original project). After this, the LBE was substituted by Na coolant to investigate the reactor behavior in such case. Results have demonstrated the high heat transfer capacity of the LBE coolant in this type of system. (author)

  20. STAR: The Secure Transportable Autonomous Reactor System - Encapsulated Fission Heat Source

    International Nuclear Information System (INIS)

    Ehud Greenspan

    2003-01-01

    OAK-B135 The Encapsulated Nuclear Heat Source (ENHS) is a novel 125 MWth fast spectrum reactor concept that was selected by the 1999 DOE NERI program as a candidate ''Generation-IV'' reactor. It uses Pb-Bi or other liquid-metal coolant and is intended to be factory manufactured in large numbers to be economically competitive. It is anticipated to be most useful to developing countries. The US team studying the feasibility of the ENHS reactor concept consisted of the University of California, Berkeley, Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL) and Westinghouse. Collaborating with the US team were three Korean organizations: Korean Atomic Energy Research Institute (KAERI), Korean Advanced Institute for Science and Technology (KAIST) and the University of Seoul, as well as the Central Research Institute of the Electrical Power Industry (CRIEPI) of Japan. Unique features of the ENHS include at least 20 years of operation without refueling; no fuel handling in the host country; no pumps and valves; excess reactivity does not exceed 1$; fully passive removal of the decay heat; very small probability of core damaging accidents; autonomous operation and capability of load-following over a wide range; very long plant life. In addition it offers a close match between demand and supply, large tolerance to human errors, is likely to get public acceptance via demonstration of superb safety, lack of need for offsite response, and very good proliferation resistance. The ENHS reactor is designed to meet the requirements of Generation IV reactors including sustainable energy supply, low waste, high level of proliferation resistance, high level of safety and reliability, acceptable risk to capital and, hopefully, also competitive busbar cost of electricity

  1. Gamma-ray spectrometric measurements of fission rate ratios between fresh and burnt fuel following irradiation in a zero-power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kröhnert, H., E-mail: hanna.kroehnert@ensi.ch [Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Perret, G.; Murphy, M.F. [Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); Chawla, R. [Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2013-01-11

    The gamma-ray activity from short-lived fission products has been measured in fresh and burnt UO{sub 2} fuel samples after irradiation in a zero-power reactor. For the first time, short-lived gamma-ray activity from fresh and burnt fuel has been compared and fresh-to-burnt fuel fission rate ratios have been derived. For the measurements, well characterized fresh and burnt fuel samples, with burn-ups up to 46 GWd/t, were irradiated in the zero-power research reactor PROTEUS. Fission rate ratios were derived based on the counting of high-energy gamma-rays above 2200 keV, in order to discriminate against the high intrinsic activity of the burnt fuel. This paper presents the measured fresh-to-burnt fuel fission rate ratios based on the {sup 142}La (2542 keV), {sup 89}Rb (2570 keV), {sup 138}Cs (2640 keV) and {sup 95}Y (3576 keV) high-energy gamma-ray lines. Comparisons are made with the results of Monte Carlo modeling of the experimental configuration, carried out using the MCNPX code. The measured fission rate ratios have 1σ uncertainties of 1.7–3.4%. The comparisons with calculated predictions show an agreement within 1–3σ, although there appears to be a slight bias (∼3%).

  2. Fission Surface Power Technology Development Update

    Science.gov (United States)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2011-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power

  3. High flux Particle Bed Reactor systems for rapid transmutation of actinides and long lived fission products

    International Nuclear Information System (INIS)

    Powell, J.; Ludewig, H.; Maise, G.; Steinberg, M.; Todosow, M.

    1993-01-01

    An initial assessment of several actinide/LLFP burner concepts based on the Particle Bed Reactor (PBR) is described. The high power density/flux level achievable with the PBR make it an attractive candidate for this application. The PBR based actinide burner concept also possesses a number of safety and economic benefits relative to other reactor based transmutation approaches including a low inventory of radionuclides, and high integrity, coated fuel particles which can withstand extremely high in temperatures while retaining virtually all fission products. In addition the reactor also posesses a number of ''engineered safety features,'' which, along with the use of high temperature capable materials further enhance its safety characteristics

  4. The story of fission reactors: from Chicago Pile to advanced energy systems

    International Nuclear Information System (INIS)

    Kannan, Umasankari

    2017-01-01

    Nuclear reactors have been designed which cater to different applications from small research reactors of a few watts to power reactors of several Giga Watts. Based on the neutron energy, there are thermal, intermediate and fast reactors operating are being designed. On the fuel utilization front, there are designs ranging from reactors using natural uranium fuel to enriched uranium to more efficient thorium based reactors. Reactors have also been designed which are neutron eaters, minor actinide burners and breeders. There have been variety of coolant and moderating materials used for different applications from water, gas cooled, liquid sodium cooled to molten salt cooled reactors. Several new reactor designs have been developed using innovative concepts in high temperature reactors, nuclear power packs and compact reactors for special purposes. The design challenges are many from modest designs to complicated hybrid reactors. The GEN-IV forum of IAEA has selected a few of these reactor designs for commercial power production in the coming years based on several quantified indicators. The evolutionary and revolutionary design approaches have been made over the years catering to different need of energy generation. A glimpse of some of the reactors being currently developed and the design modifications done in existing reactors have been given in this paper

  5. Isotopic composition of fission gases in LWR fuel

    International Nuclear Information System (INIS)

    Jonsson, T.

    2000-01-01

    Many fuel rods from power reactors and test reactors have been punctured during past years for determination of fission gas release. In many cases the released gas was also analysed by mass spectrometry. The isotopic composition shows systematic variations between different rods, which are much larger than the uncertainties in the analysis. This paper discusses some possibilities and problems with use of the isotopic composition to decide from which part of the fuel the gas was released. In high burnup fuel from thermal reactors loaded with uranium fuel a significant part of the fissions occur in plutonium isotopes. The ratio Xe/Kr generated in the fuel is strongly dependent on the fissioning species. In addition, the isotopic composition of Kr and Xe shows a well detectable difference between fissions in different fissile nuclides. (author)

  6. Pebble bed modular reactor - The first Generation IV reactor to be constructed

    International Nuclear Information System (INIS)

    Ion, S.; Nicholls, D.; Matzie, R.; Matzner, D.

    2004-01-01

    Substantial interest has been generated in advanced reactors over the past few years. This interest is motivated by the view that new nuclear power reactors will be needed to provide low carbon generation of electricity and possibly hydrogen to support the future growth in demand for both of these commodities. Some governments feel that substantially different designs will be needed to satisfy the desires for public perception, improved safety, proliferation resistance, reduced waste and competitive economics. This has motivated the creation of the Generation IV Nuclear Energy Systems programme in which ten countries have agreed on a framework for international cooperation in research for advanced reactors. Six designs have been selected for continued evaluation, with the objective of deployment by 2030. One of these designs is the very high temperature reactor (VHTR), which is a thermal neutron spectrum system with a helium-cooled core utilising carbon-based fuel. The pebble bed modular reactor (PBMR), being developed in South Africa through a worldwide international collaborative effort led by Eskom, the national utility, will represent a key milestone on the way to achievement of the VHTR design objectives, but in the much nearer term. This paper outlines the design objectives, safety approach and design details of the PBMR, which is already at a very advanced stage of development. (author)

  7. On fission product retention in the core of the low powered high temperature reactor under accident conditions

    International Nuclear Information System (INIS)

    Bastek, H.

    1984-01-01

    In the core of the high temperature reactor the fuel element and the coated particles contained herein provide the safest enclosure for fission products. The complex process of fission product transport out of the particle kernel, through the particle coating and within the fuel element graphite is described in a simplified form by the Fick's diffusion. The effective diffusion coefficient is used for calculation. Starting from the existing ideas of fission product transport five burn-up and temperature-dependent diffusion coefficients for Cesium in (Th,U)O 2 -kernels are derived in this study. The results have been gained from several fuel element radiation experiments in recent years, which showed extreme variation in regard to burn-up, temperature cycle, neutron flux and operation time. Cs-137 release measurements from single particle kernels were present from all the experiments. Furthermore, annealing tests of AVR-fuel elements were analyzed. Heat-temperatur and heating-time, the fuel element burn-up in the AVR-reactor, as well as the measured Cs-137 inventory of the fuel elements before and after annealing, are included in the investigation as essential parameters. With the aid of the derived diffusion coeffizients and already present data sets the Cs-137 release of fuel elements into a small reactor core is investigated under unrestricted core heat-up. While the released Cs-137 is derived mainly from defective particles at accident temperatures up to 1600 0 C, the main part diffuses through the particle coating at higher accident temperatures. (orig./HP) [de

  8. Status of recent fast capture cross section evaluations for important fission product nuclides

    International Nuclear Information System (INIS)

    Gruppelaar, H.

    1982-01-01

    A comparison is made between recent evaluations of fission-product cross sections as given in the CNEN/CEA, ENDF/B-IV, ENDF/V-V, JENDL-1, RCN-2 and RCN-3 data libraries. The intercomparison is restricted to 24 important fission products in a fast power reactor. The evaluation methods used to obtain the various data files are reviewed and possible shortcomings are indicated. A survey is given of the experimental data based used in the various evaluations. Some graphs are included showing the new ENDF/B-V and RCN-3 fastcapture cross-section evaluations. Further intercomparisons are made by means of multi-group and one-group cross sections. It is shown that lumped fission-product cross sections calculated from the most recent versions of the data files are in quite good agreement with each other. This review concludes with a discussion on observed discrepancies and requests for new measurements. 78 references

  9. Yields of some fragments on 235U, 238U and 239Pu fission due to the neutrons of the SBR-1 reactors

    International Nuclear Information System (INIS)

    Yurova, L.N.; Bushuev, A.V.; Ozerkov, V.N.; Chachin, V.V.; Zvonarev, A.V.; Liforov, Yu.G.; Koleganov, Yu.V.; Miller, V.V.; Gorbatyuk, O.V.

    1979-01-01

    Determined are the values of the yields of fission fragments in spectrum close to that of the neutron fission using the data on yields at fission by thermal neutrons. The relation between the activities of fragments in samples irradiated in the BR-1 center and in the thermal colomn of the same reactor was measured with the help of the Ge(Li). The relative rate of fissions in uranium and plutonium samples in the center or in thermal colomn were measured by track detectors. The comparison of the yields obtained and the data of other authors is being made

  10. Advanced burnup calculation code system in a subcritical state with continuous-energy Monte Carlo code for fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Matsunaka, Masayuki; Ohta, Masayuki; Miyamaru, Hiroyuki; Murata, Isao

    2009-01-01

    The fusion-fission (FF) hybrid reactor is a promising energy source that is thought to act as a bridge between the existing fission reactor and the genuine fusion reactor in the future. The burnup calculation system that aims at precise burnup calculations of a subcritical system was developed for the detailed design of the FF hybrid reactor, and the system consists of MCNP, ORIGEN, and postprocess codes. In the present study, the calculation system was substantially modified to improve the calculation accuracy and at the same time the calculation speed as well. The reaction rate estimation can be carried out accurately with the present system that uses track-length (TL) data in the continuous-energy treatment. As for the speed-up of the reaction rate calculation, a new TL data bunching scheme was developed so that only necessary TL data are used as long as the accuracy of the point-wise nuclear data is conserved. With the present system, an example analysis result for our proposed FF hybrid reactor is described, showing that the computation time could really be saved with the same accuracy as before. (author)

  11. Fission cross-section measurements on 233U and minor actinides at the CERN n-TOF facility

    International Nuclear Information System (INIS)

    Calviani, M.; Cennini, P.; Chiaveri, E.; Dahlfors, M.; Ferrari, A.; Herrera-Martinez, A.; Kadi, Y.; Sarchiapone, L.; Vlachoudis, V.; Colonna, N.; Terlizzi, R.; Abbondanno, U.; Marrone, S.; Belloni, F.; Fujii, K.; Moreau, C.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Gunsing, F.; Pancin, J.; Perrot, L.; Plukis, A.; Alvarez, H.; Duran, I.; Paradela, C.; Alvarez-Velarde, F.; Cano-Ott, D.; Embid-Sesura, M.; Gonzalez-Romero, E.; Guerrero, C.; Martinez, T.; Vincente, M. C.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; David, S.; Ferrant, L.; Stephan, C.; Tassan-Got, L.; Badurek, G.; Jericha, E.; Leeb, H.; Oberhummer, H.; Pigni, M. T.; Baumann, P.; Kerveno, M.; Lukic, S.; Rudolf, G.; Becvar, F.; Calvino, F.; Capote, R.; Carrapico, C.; Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.; Cortes, G.; Poch, A.; Pretel, C.; Couture, A.; Cox, J.; O'Brien, S.; Wiescher, M.; Dillmann, I.; Heil, M.; Kaeppeler, F.; Mosconi, M.; Plag, R.; Walter, S.; Wisshak, K.; Domingo-Pardo, C.; Eleftheriadis, C.; Furman, W.; Goverdovski, A.; Gramegna, F.; Mastinu, P.; Praena, J.; Haas, B.; Haight, R.; Igashira, M.; Karadimos, D.; Karamanis, D.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Lozano, M.; Marganiec, J.; Massimi, C.; Mengoni, A.; Milazzo, P. M.; Papachristodoulou, C.; Papadopoulos, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Plompen, A.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rullhusen, P.; Salgado, J.; Santos, C.; Savvidis, I.; Tagliente, G.; Tain, J. L.; Tavora, L.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vlastou, R.; Voss, F.

    2010-01-01

    Neutron-induced fission cross-sections of minor actinides have been measured at the white neutron source n-TOF at CERN, Geneva. The studied isotopes include 233 U, interesting for Th/U based nuclear fuel cycles, 241, 243 Am and 245 Cm, relevant for transmutation and waste reduction studies in new generation fast reactors (Gen-IV) or Accelerator Driven Systems. The measurements take advantage of the unique features of the n-TOF facility, namely the wide energy range, the high instantaneous neutron flux and the low background. Results for the involved isotopes are reported from ∼30 meV to around 1 MeV neutron energy. The measurements have been performed with a dedicated Fission Ionization Chamber (FIC), relative to the standard cross-section of the 235 U fission reaction, measured simultaneously with the same detector. Results are here reported. (authors)

  12. Chemical Production using Fission Fragments

    International Nuclear Information System (INIS)

    Dawson, J. K.; Moseley, F.

    1960-01-01

    Some reactor design considerations of the use of fission recoil fragment energy for the production of chemicals of industrial importance have been discussed previously in a paper given at the Second United Nations International Conference on the Peaceful Uses of Atomic Energy [A/Conf. 15/P.76]. The present paper summarizes more recent progress made on this topic at AERE, Harwell. The range-energy relationship for fission fragments is discussed in the context of the choice of fuel system for a chemical production reactor, and the experimental observation of a variation of chemical effect along the length of a fission fragment track is described for the irradiation of nitrogen-oxygen mixtures. Recent results are given on the effect of fission fragments on carbon monoxide-hydrogen gas mixtures and on water vapour. No system investigated to date shows any outstanding promise for large-scale chemical production. (author) [fr

  13. Pressure due to fission gases in a fuel element circulating in a reactor

    International Nuclear Information System (INIS)

    Fonteray, Jean

    1965-01-01

    This document states calculation hypotheses and methods used to assess pressures due to fission gases in a fuel element moving in a reactor channel in the reverse direction with respect to the cooling fluid. The calculation comprises the calculation of the temperature in the fuel rod, of the reduced diffusion coefficient, of the diffused gas fraction, of the pressure. The appendix describes the use of the SPM 076 software: input data, output results, computing time [fr

  14. Growth of optical transmission loss at 850 nm in silica core optical fibers during fission reactor irradiation

    International Nuclear Information System (INIS)

    Shikama, T.; Narui, M.; Sagawa, T.

    1998-01-01

    Pure, OH-doped and F-doped silica core optical fibers were irradiated in a fission reactor at 400±10 K using an electric heater at a reactor power greater than 10 MW (20% of the full power). The temperature was not controlled well at the early stage of the reactor startup, when the temperature was about 320-340 K. The optical fibers were irradiated with a fast neutron (E>1 MeV) flux of 3.2 x 10 17 n/cm 2 s and a gamma dose rate of 3 x 10 3 Gy/s for 527 h. Optical transmission loss at 850 nm was measured in situ during irradiation. A prompt increase in optical transmission loss was observed as irradiation started, which was probably due to dynamic irradiation effects caused by short-lived and transient defects and is probably recoverable when irradiation ceases. After the prompt increase in optical transmission loss, a so-called radiation hardening was observed in fibers containing OH. Radiation hardening was also observed in 900 ppm OH-doped fiber at the second startup. The optical transmission loss increased linearly with irradiation dose, denoted as the accumulated loss, which we believe is due to irradiation-induced long-lived defects. Accumulated loss dominates radiation-induced optical transmission loss in a fission reactor irradiation. (orig.)

  15. Fission energy program of the US Department of Energy, FY 1981

    International Nuclear Information System (INIS)

    1980-03-01

    Information is presented concerning the National Energy Plan and fission energy policy; fission energy program management; converter reactor systems; breeder reactor systems; and special nuclear evaluations and systems

  16. The Sustainable Nuclear Future: Fission and Fusion E.M. Campbell Logos Technologies

    Science.gov (United States)

    Campbell, E. Michael

    2010-02-01

    Global industrialization, the concern over rising CO2 levels in the atmosphere and other negative environmental effects due to the burning of hydrocarbon fuels and the need to insulate the cost of energy from fuel price volatility have led to a renewed interest in nuclear power. Many of the plants under construction are similar to the existing light water reactors but incorporate modern engineering and enhanced safety features. These reactors, while mature, safe and reliable sources of electrical power have limited efficiency in converting fission power to useful work, require significant amounts of water, and must deal with the issues of nuclear waste (spent fuel), safety, and weapons proliferation. If nuclear power is to sustain its present share of the world's growing energy needs let alone displace carbon based fuels, more than 1000 reactors will be needed by mid century. For this to occur new reactors that are more efficient, versatile in their energy markets, require minimal or no water, produce less waste and more robust waste forms, are inherently safe and minimize proliferation concerns will be necessary. Graphite moderated, ceramic coated fuel, and He cooled designs are reactors that can satisfy these requirements. Along with other generation IV fast reactors that can further reduce the amounts of spent fuel and extend fuel resources, such a nuclear expansion is possible. Furthermore, facilities either in early operations or under construction should demonstrate the next step in fusion energy development in which energy gain is produced. This demonstration will catalyze fusion energy development and lead to the ultimate development of the next generation of nuclear reactors. In this presentation the role of advanced fission reactors and future fusion reactors in the expansion of nuclear power will be discussed including synergies with the existing worldwide nuclear fleet. )

  17. Applications: fission, nuclear reactors. Fission: the various ways for reactors and cycles

    International Nuclear Information System (INIS)

    Bacher, P.

    1997-01-01

    A historical review is presented concerning the various nuclear reactor systems developed in France by the CEA: the UNGG (graphite-gas) system with higher CO 2 pressures, bigger fuel assemblies and powers higher than 500 MW e, allowed by studies on reactor physics, cladding material developments and reactor optimization; the fast neutron reactor system, following the graphite-gas development, led to the Superphenix reactor and important progress in simulation based on experiment and return of experience; and the PWR system, based on the american license, which has been successfully accommodated to the french industry and generates up to 75% of the electric power in France

  18. Fission reactor based epithermal neutron irradiation facilities for routine clinical application in BNCT-Hatanaka memorial lecture

    International Nuclear Information System (INIS)

    Harling, Otto K.

    2009-01-01

    Based on experience gained in the recent clinical studies at MIT/Harvard, the desirable characteristics of epithermal neutron irradiation facilities for eventual routine clinical BNCT are suggested. A discussion of two approaches to using fission reactors for epithermal neutron BNCT is provided. This is followed by specific suggestions for the performance and features needed for high throughput clinical BNCT. An example of a current state-of-the-art, reactor based facility, suited for routine clinical use is discussed. Some comments are provided on the current status of reactor versus accelerator based epithermal neutron sources for BNCT. This paper concludes with a summary and a few personal observations on BNCT by the author.

  19. Contained fission explosion breeder reactor system

    International Nuclear Information System (INIS)

    Juhl, N.H.; Marwick, E.F.

    1983-01-01

    A reactor system for producing useful thermal energy and valuable isotopes, such as plutonium-239, uranium-233, and/or tritium, in which a pair of sub-critical masses of fissile and fertile actinide slugs are propelled into an ellipsoidal pressure vessel. The propelled slugs intercept near the center of the chamber where the concurring slugs become a more than prompt configuration thereby producing a fission explosion. Re-useable accelerating mechanisms are provided external of the vessel for propelling the slugs at predetermined time intervals into the vessel. A working fluid of lean molten metal slurry is injected into the chamber prior to each explosion for the attenuation of the explosion's effects, for the protection of the chamber's walls, and for the absorbtion of thermal energy and debris from the explosion. The working fluid is injected into the chamber in a pattern so as not to interfere with the flight paths of the slugs and to maximize the concentration of working fluid near the chamber's center. The heated working fluid is drained from the vessel and is used to perform useful work. Most of the debris from the explosion is collected as precipitate and is used for the manufacture of new slugs

  20. Muon catalyzed fusion - fission reactor driven by a recirculating beam

    International Nuclear Information System (INIS)

    Eliezer, S.; Tajima, T.; Rosenbluth, M.N.

    1986-01-01

    The recent experimentally inferred value of multiplicity of fusion of deuterium and tritium catalyzed by muons has rekindled interest in its application to reactors. Since the main energy expended is in pion (and consequent muon) productions, we try to minimize the pion loss by magnetically confining pions where they are created. Although it appears at this moment not possible to achieve energy gain by pure fusion, it is possible to gain energy by combining catalyzed fusion with fission blankets. We present two new ideas that improve the muon fusion reactor concept. The first idea is to combine the target, the converter of pions into muons, and the synthesizer into one (the synergetic concept). This is accomplished by injecting a tritium or deuterium beam of 1 GeV/nucleon into DT fuel contained in a magnetic mirror. The confined pions slow down and decay into muons, which are confined in the fuel causing little muon loss. The necessary quantity of tritium to keep the reactor viable has been derived. The second idea is that the beam passing through the target is collected for reuse and recirculated, while the strongly interacted portion of the beam is directed to electronuclear blankets. The present concepts are based on known technologies and on known physical processes and data. 29 refs., 6 figs., 4 tabs

  1. 1: the atom. 2: radioactivity. 3: man and radiations. 4: the energy. 5: nuclear energy: fusion and fission. 6: the operation of a nuclear reactor. 7: the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2002-01-01

    This series of 7 digest booklets present the bases of the nuclear physics and of the nuclear energy: 1 - the atom (structure of matter, chemical elements and isotopes, the four fundamental interactions, nuclear physics); 2 - radioactivity (definition, origins of radioelements, applications of radioactivity); 3 - man and radiations (radiations diversity, biological effects, radioprotection, examples of radiation applications); 4 - energy (energy states, different forms of energy, characteristics); 5 - nuclear energy: fusion and fission (nuclear energy release, thermonuclear fusion, nuclear fission and chain reaction); 6 - operation of a nuclear reactor (nuclear fission, reactor components, reactor types); 7 - nuclear fuel cycle (nuclear fuel preparation, fuel consumption, reprocessing, wastes management). (J.S.)

  2. Fission-product release during accidents

    International Nuclear Information System (INIS)

    Hunt, C.E.L.; Cox, D.S.

    1991-09-01

    One of the aims when managing a reactor accident is to minimize the release of radioactive fission products. Release is dependent not only on the temperature, but also on the partial pressure of oxygen. Strongly oxidizing atmospheres, such as those that occurred during the Chernobyl accident, released semi-volatile elements like ruthenium, which has volatile oxides. At low temperatures, UO 2 oxidization to U 3 O 8 can result in extensive breakup of the fuel, resulting in the release of non-volatile fission products as aerosols. Under less oxidizing conditions, when hydrogen accumulates from the zirconium-water reaction, the resulting low oxygen partial pressure can significantly reduce these reactions. At TMI-2, only the noble gases and volatile fission products were released in significant quantities. A knowledge of the effect of atmosphere as well as temperature on the release of fission products from damaged reactor cores is therefore a useful, if not necessary, component of information required for accident management

  3. Data sheets of fission product release experiments for light water reactor fuel, (2)

    International Nuclear Information System (INIS)

    Ishiwatari, Nasumi; Nagai, Hitoshi; Takeda, Tsuneo; Yamamoto, Katsumune; Nakazaki, Chozaburo.

    1979-07-01

    This is the second data sheets of fission products (FP) release experiments for light water reactor fuel. Results of five FP release experiments from the third to the seventh are presented: results of pre-examinations of UO 2 pellets, photographs of parts of fuel rod assemblies for irradiation and the assemblies, operational conditions of JMTR and OWL-1, variations of radioiodine-131 level in the main loop coolant during experimental periods, and representative results of post-irradiation examinations of respective fuel rods. (author)

  4. Fission reactors and materials

    International Nuclear Information System (INIS)

    Frost, B.R.T.

    1981-12-01

    The American-designed boiling water reactor and pressurized water reactor dominate the designs currently in use and under construction worldwide. As in all energy systems, materials problems have appeared during service; these include stress-corrosion of stainless steel pipes and heat exchangers and questions regarding crack behavior in pressure vessels. To obtain the maximum potential energy from our limited uranium supplies is is essential to develop the fast breeder reactor. The materials in these reactors are subjected to higher temperatures and neutron fluxes but lower pressures than in the water reactors. The performance required of the fuel elements is more arduous in the breeder than in water reactors. Extensive materials programs are in progress in test reactors and in large test rigs to ensure that materials will be available to meet these conditions

  5. Fusion-Fission Hybrid for Fissile Fuel Production without Processing

    Energy Technology Data Exchange (ETDEWEB)

    Fratoni, M; Moir, R W; Kramer, K J; Latkowski, J F; Meier, W R; Powers, J J

    2012-01-02

    Two scenarios are typically envisioned for thorium fuel cycles: 'open' cycles based on irradiation of {sup 232}Th and fission of {sup 233}U in situ without reprocessing or 'closed' cycles based on irradiation of {sup 232}Th followed by reprocessing, and recycling of {sup 233}U either in situ or in critical fission reactors. This study evaluates a third option based on the possibility of breeding fissile material in a fusion-fission hybrid reactor and burning the same fuel in a critical reactor without any reprocessing or reconditioning. This fuel cycle requires the hybrid and the critical reactor to use the same fuel form. TRISO particles embedded in carbon pebbles were selected as the preferred form of fuel and an inertial laser fusion system featuring a subcritical blanket was combined with critical pebble bed reactors, either gas-cooled or liquid-salt-cooled. The hybrid reactor was modeled based on the earlier, hybrid version of the LLNL Laser Inertial Fusion Energy (LIFE1) system, whereas the critical reactors were modeled according to the Pebble Bed Modular Reactor (PBMR) and the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) design. An extensive neutronic analysis was carried out for both the hybrid and the fission reactors in order to track the fuel composition at each stage of the fuel cycle and ultimately determine the plant support ratio, which has been defined as the ratio between the thermal power generated in fission reactors and the fusion power required to breed the fissile fuel burnt in these fission reactors. It was found that the maximum attainable plant support ratio for a thorium fuel cycle that employs neither enrichment nor reprocessing is about 2. This requires tuning the neutron energy towards high energy for breeding and towards thermal energy for burning. A high fuel loading in the pebbles allows a faster spectrum in the hybrid blanket; mixing dummy carbon pebbles with fuel pebbles enables a softer spectrum in

  6. Unit mechanisms of fission gas release: Current understanding and future needs

    Energy Technology Data Exchange (ETDEWEB)

    Tonks, Michael; Andersson, David; Devanathan, Ram; Dubourg, Roland; El-Azab, Anter; Freyss, Michel; Iglesias, Fernando; Kulacsy, Katalin; Pastore, Giovanni; Phillpot, Simon R.; Welland, Michael

    2018-06-01

    Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel properties and, once the gas is released into the gap between the fuel and cladding, lowering gap thermal conductivity and increasing gap pressure. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are being applied to provide unprecedented understanding of the unit mechanisms that define the fission product behavior. In this article, existing research on the basic mechanisms behind the various stages of fission gas release during normal reactor operation are summarized and critical areas where experimental and simulation work is needed are identified. This basic understanding of the fission gas behavior mechanisms has the potential to revolutionize our ability to predict fission product behavior during reactor operation and to design fuels that have improved fission product retention. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.

  7. Overview of Generation IV (Gen IV) Reactor Designs - Safety and Radiological Protection Considerations. Published on September 24, 2012

    International Nuclear Information System (INIS)

    Couturier, Jean; Bruna, Giovanni; Baudrand, Olivier; Blanc, Daniel; Ivanov, Evgeny; Bonneville, Herve; Clement, Bernard; Kissane, Martin; Meignen, Renaud; Monhardt, Daniel; Nicaise, Gregory; Bourgois, Thierry; Hache, Georges

    2012-01-01

    The purpose of this document is to provide an updated overview of specific safety and radiological protection issues for all the reactor concepts adopted by the GIF (Generation IV International Forum), independent of their advantages or disadvantages in terms of resource optimization or long-lived-waste reduction. In particular, this new document attempts to bring out the advantages and disadvantages of each concept in terms of safety, taking into account the Western European Nuclear Regulators' Association (WENRA) statement concerning safety objectives for new nuclear power plants. Using an identical framework for each reactor concept (sodium-cooled fast reactors or SFR, high / very-high temperature helium-cooled reactors of V/HTR, gas-cooled fast reactors or GFR, lead-or lead / bismuth-cooled fast reactors or LFR, molten salt reactors or MSR, and supercritical-water-cooled reactors or SCWR), this summary report provides some general conclusions regarding their safety and radiological protection issues, inspired by WENRA's safety objectives and on the basis of available information. Initial lessons drawn from the events at the Fukushima-Daiichi nuclear power plant in March 2011 have also been taken into account in IRSN's analysis of each reactor concept

  8. Future research program on prompt γ-ray emission in nuclear fission

    Science.gov (United States)

    Oberstedt, S.; Billnert, R.; Hambsch, F.-J.; Lebois, M.; Oberstedt, A.; Wilson, J. N.

    2015-12-01

    In recent years the measurement of prompt fission γ-ray spectra (PFGS) has gained renewed interest, after about forty years since the first comprehensive studies of the reactions 235U(n th , f), 239Pu(n th ,f) and 252Cf(sf). The renaissance was initiated by requests for new values especially for γ-ray multiplicity and average total energy release per fission in neutron-induced fission of 235U and 239Pu. Both isotopes are considered the most important ones with respect to the modeling of innovative cores required for the Generation-IV reactors, the majority working with fast neutrons. During the last 5 years we have conducted a systematic study of spectral data for thermal-neutron-induced fission on 235U and 241Pu as well as for the spontaneous fission of 252Cf with unprecedented accuracy. From the new data we conclude that those reactions do not considerably contribute to the observed heat excess and suspect other reactions playing a significant role. Possible contributions may originate from fast-neutron-induced reactions on 238U, which is largely present in the fuel, or from γ-induced fission from neutron capture in the construction material. A first experiment campaign on prompt γ-ray emission from fast-neutron-induced fission on 235,238U was successfully performed in order to test our assumptions. In the following we attempt to summarize, what has been done in the field to date, and to motivate future measurement campaigns exploiting dedicated neutron and photon beams as well as upcoming highly efficient detector assemblies.

  9. Study on the calculation method of source term from fission products

    International Nuclear Information System (INIS)

    Zhou Jing; Gong Quan; Qiu Haifeng

    2014-01-01

    As a major part of radioactive nuclides, fission products play an important role in nuclear power plant design. The paper analyzes the calculation model of core activity inventory, the model of fission products releasing from the pellets to RCS, the balance model of fission products in RCS, and then proves them by calculation of the typical pressurized water reactor. The model is proved applicable for calculating fission products of pressurized water reactors. (authors)

  10. Modeling requirements for full-scope reactor simulators of fission-product transport during severe accidents

    International Nuclear Information System (INIS)

    Ellison, P.G.; Monson, P.R.; Mitchell, H.A.

    1990-01-01

    This paper describes in the needs and requirements to properly and efficiently model fission product transport on full scope reactor simulators. Current LWR simulators can be easily adapted to model severe accident phenomena and the transport of radionuclides. Once adapted these simulators can be used as a training tool during operator training exercises for training on severe accident guidelines, for training on containment venting procedures, or as training tool during site wide emergency training exercises

  11. The neutronics studies of a fusion fission hybrid reactor using pressure tube blankets

    International Nuclear Information System (INIS)

    Zheng Youqi; Zu Tiejun; Wu Hongchun; Cao Liangzhi; Yang Chao

    2012-01-01

    In this paper, a fusion fission hybrid reactor used for energy producing is proposed based on the situation of nuclear power in China. The pressurized light water is applied as the coolant. The fuel assemblies are loaded in the pressure tubes with a modular type structure. The neutronics analysis is performed to get the suitable design and prove the feasibility. The energy multiplication and tritium self-sustaining are evaluated. The neutron load is also cared. From different candidates, the PWR spent fuel is selected as the feed fuel. The results show that the hybrid reactor can meet the expected reactor core lifetime of 5 years with 1000 MWe power output. Two ways are discussed including burning the discharged PWR spent fuel and burning the reprocessed plutonium. The energy multiplication is big enough and the tritium can be self-sustaining for both of the two ways. The neutron wall load in the operating time is kept smaller than the one of ITER. The way to use the reprocessed plutonium brings low neutron wall load, but also brings additional difficulties in operating the hybrid reactor. The way to use the discharged spent fuel is proposed to be a better choice currently.

  12. Non Nuclear Testing of Reactor Systems In The Early Flight Fission Test Facilities (EFF-TF)

    International Nuclear Information System (INIS)

    Van Dyke, Melissa; Martin, James

    2004-01-01

    The Early Flight Fission-Test Facility (EFF-TF) can assist in the design and development of systems through highly effective non-nuclear testing of nuclear systems when technical issues associated with near-term space fission systems are 'non-nuclear' in nature (e.g. system's nuclear operations are understood). For many systems, thermal simulators can be used to closely mimic fission heat deposition. Axial power profile, radial power profile, and fuel pin thermal conductivity can be matched. In addition to component and subsystem testing, operational and lifetime issues associated with the steady state and transient performance of the integrated reactor module can be investigated. Instrumentation at the EFF-TF allows accurate measurement of temperature, pressure, strain, and bulk core deformation (useful for accurately simulating nuclear behavior). Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE laboratories, industry, universities, and other Nasa centers. This paper describes the current efforts for the latter portion of 2003 and beginning of 2004. (authors)

  13. Fission cross section calculations for 209Bi target nucleus based on fission reaction models in high energy regions

    Directory of Open Access Journals (Sweden)

    Kaplan Abdullah

    2015-01-01

    Full Text Available Implementation of projects of new generation nuclear power plants requires the solving of material science and technological issues in developing of reactor materials. Melts of heavy metals (Pb, Bi and Pb-Bi due to their nuclear and thermophysical properties, are the candidate coolants for fast reactors and accelerator-driven systems (ADS. In this study, α, γ, p, n and 3He induced fission cross section calculations for 209Bi target nucleus at high-energy regions for (α,f, (γ,f, (p,f, (n,f and (3He,f reactions have been investigated using different fission reaction models. Mamdouh Table, Sierk, Rotating Liquid Drop and Fission Path models of theoretical fission barriers of TALYS 1.6 code have been used for the fission cross section calculations. The calculated results have been compared with the experimental data taken from the EXFOR database. TALYS 1.6 Sierk model calculations exhibit generally good agreement with the experimental measurements for all reactions used in this study.

  14. Study of short-lived fission products with the aid of an isotope separator connected to reactor R2-0

    International Nuclear Information System (INIS)

    Rudstam, G.

    1976-01-01

    This report constitutes a final report on project 74-3289 together with a preliminary report for project 75-3332. These projects have been included in the budget years 1974/75 and 1975/76 as a contribution to the operating costs of reactor R2-0 at Studsvik. The reactor was used for experimental studies on short-lived fission products with OSIRIS isotope-separator equipment. The scientific programme is very broad. It comprises, in the first place, characterisation of fission products (a study of their excitation levels, measurement of decay properties such as half-life and emission of delayed neutrons, determination of neutron energy spectrum, determination of total decay energy, etc.). An important application of this field of research is the determination of decay heat in nuclear fuel. The programme thus comprises research of a fundamental character and applied research. (H.E.G.)

  15. Generation IV reactors: reactor concepts

    International Nuclear Information System (INIS)

    Cardonnier, J.L.; Dumaz, P.; Antoni, O.; Arnoux, P.; Bergeron, A.; Renault, C.; Rimpault, G.; Delpech, M.; Garnier, J.C.; Anzieu, P.; Francois, G.; Lecomte, M.

    2003-01-01

    Liquid metal reactor concept looks promising because of its hard neutron spectrum. Sodium reactors benefit a large feedback experience in Japan and in France. Lead reactors have serious assets concerning safety but they require a great effort in technological research to overcome the corrosion issue and they lack a leader country to develop this innovative technology. In molten salt reactor concept, salt is both the nuclear fuel and the coolant fluid. The high exit temperature of the primary salt (700 Celsius degrees) allows a high energy efficiency (44%). Furthermore molten salts have interesting specificities concerning the transmutation of actinides: they are almost insensitive to irradiation damage, some salts can dissolve large quantities of actinides and they are compatible with most reprocessing processes based on pyro-chemistry. Supercritical water reactor concept is based on operating temperature and pressure conditions that infers water to be beyond its critical point. In this range water gets some useful characteristics: - boiling crisis is no more possible because liquid and vapour phase can not coexist, - a high heat transfer coefficient due to the low thermal conductivity of supercritical water, and - a high global energy efficiency due to the high temperature of water. Gas-cooled fast reactors combining hard neutron spectrum and closed fuel cycle open the way to a high valorization of natural uranium while minimizing ultimate radioactive wastes and proliferation risks. Very high temperature gas-cooled reactor concept is developed in the prospect of producing hydrogen from no-fossil fuels in large scale. This use implies a reactor producing helium over 1000 Celsius degrees. (A.C.)

  16. Standard interface files and procedures for reactor physics codes. Version IV

    International Nuclear Information System (INIS)

    O'Dell, R.D.

    1977-09-01

    Standards, procedures, and recommendations of the Committee on Computer Code Coordination for promoting the exchange of reactor physics codes are updated to Version IV status. Standards and procedures covering general programming, program structure, standard interface files, and file management and handling subroutines are included

  17. Modelling and simulation the radioactive source-term of fission products in PWR type reactors

    International Nuclear Information System (INIS)

    Porfirio, Rogilson Nazare da Silva

    1996-01-01

    The source-term was defined with the purpose the quantify all radioactive nuclides released the nuclear reactor in the case of accidents. Nowadays the source-term is limited to the coolant of the primary circuit of reactors and may be measured or modelled with computer coders such as the TFP developed in this work. The calculational process is based on the linear chain techniques used in the CINDER-2 code. The TFP code considers forms of fission products release from the fuel pellet: Recoil, Knockout and Migration. The release from the gap to the coolant fluid is determined from the ratio between activity measured in the coolant and calculated activity in the gap. Considered the operational data of SURRY-1 reactor, the TFP code was run to obtain the source=term of this reactor. From the measured activities it was verified the reliability level of the model and the employed computational logic. The accuracy of the calculated quantities were compared to the measured data was considered satisfactory. (author)

  18. Unit mechanisms of fission gas release: Current understanding and future needs

    Science.gov (United States)

    Tonks, Michael; Andersson, David; Devanathan, Ram; Dubourg, Roland; El-Azab, Anter; Freyss, Michel; Iglesias, Fernando; Kulacsy, Katalin; Pastore, Giovanni; Phillpot, Simon R.; Welland, Michael

    2018-06-01

    Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel and gap properties. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are beginning to reveal new understanding of the unit mechanisms that define fission product behavior. Here, existing research on the basic mechanisms of fission gas release during normal reactor operation are summarized and critical areas where work is needed are identified. This basic understanding of the fission gas behavior mechanisms has the potential to revolutionize our ability to predict fission product behavior and to design fuels with improved performance. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.

  19. Theoretical analysis of nuclear reactors (Phase I), I-V, Part IV, Nuclear fuel depletion; Razrada metoda teorijske analize nuklearnih reaktora (I faza) I-V, IV Deo, Promena izotopnog sastava goriva

    Energy Technology Data Exchange (ETDEWEB)

    Pop-Jordanov, J [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1962-07-15

    Nuclear fuel depletion is analyzed in order to estimate the qualitative and quantitative fuel property changes during irradiation and the influence of changes on the reactivity during long-term reactor operation. The changes of fuel properties are described by changes of neutron absorption and fission cross sections. Part one of this report covers the economic significance of fuel burnup and the review of fuel isotopic changes during depletion. Pat two contains the analysis of the U{sup 235} chain, analytical expressions for the concentrations of U{sup 235}, U{sup 236} and Np{sup 237} as a function of burnup. Part three contains the analysis of neutron spectrum influence on the Westcott method for calculating the cross sections. Part four contains the calculation method applied on Calder Hall type reactor. The results were obtained by applying ZUSE-22 R digital computer.

  20. Environmental sensitivity studies for Gen-IV roadmap fast reactor scenario

    International Nuclear Information System (INIS)

    Jeong, Chang Joon

    2004-03-01

    The environmental effect of the self-sufficient fast reactor scenario, which is considered as one of the full fissile plutonium and transuranic recycle scenario in Gen-IV roadmap, has been analyzed by using the dynamic analysis method. Through the parametric calculations for the fast reactor deployment time and capacity, the environmental effects of the fuel cycle for important parameters such as the amount of spent fuel and the combined amounts of plutonium and minor actinides were estimated and compared to those of the once-through LWR fuel cycle. The results of the sensitivity calculations showed that an early deployment of the fast reactor with a high capacity can reduce the accumulation of spent fuel by up to 37%. Furthermore, the recycling of plutonium and minor actinides can reduce the key repository parameter (long term decay heat). Therefore the favorable environmental effects can be expected with the implementation of the symbiotic fast reactor scenario

  1. Tritium control and capture in salt-cooled fission and fusion reactors: Status, challenges, and path forward

    International Nuclear Information System (INIS)

    Forsberg, Charles W.; Lam, Stephen; Carpenter, David M.; Whyte, Dennis G.; Scarlat, Raluca

    2017-01-01

    Three advanced nuclear power systems use liquid salt coolants that generate tritium and thus face the common challenges of containing and capturing tritium to prevent its release to the environment. The Fluoride-salt-cooled High-temperature Reactor (FHR) uses clean fluoride salt coolants and the same graphite-matrix coated-particle fuel as high-temperature gas-cooled reactors. Molten salt reactors (MSRs) dissolve the fuel in a fluoride or chloride salt with release of fission product tritium into the salt. In most FHR and MSR systems, the base-line salts contain lithium where isotopically separated "7Li is proposed to minimize tritium production from neutron interactions with the salt. The Chinese Academy of Science plans to start operation of a 2-MWt molten salt test reactor by 2020. For high-magnetic-field fusion machines, the use of lithium enriched in "6Li is proposed to maximize tritium generation the fuel for a fusion machine. Advances in superconductors that enable higher power densities may require the use of molten lithium salts for fusion blankets and as coolants. Recent technical advances in these three reactor classes have resulted in increased government and private interest and the beginning of a coordinated effort to address the tritium control challenges in 700 °C liquid salt systems. We describe characteristics of salt-cooled fission and fusion machines, the basis for growing interest in these technologies, tritium generation in molten salts, the environment for tritium capture, models for high-temperature tritium transport in salt systems, alternative strategies for tritium control, and ongoing experimental work. Several methods to control tritium appear viable. Finally, limited experimental data is the primary constraint for designing efficient cost-effective methods of tritium control.

  2. Fifty years with nuclear fission

    International Nuclear Information System (INIS)

    Behrens, J.W.; Carlson, A.D.

    1989-01-01

    The news of the discovery of nucler fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fiftieth anniversary of its discovery by holding a topical meeting entitled, ''Fifty years with nuclear fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent developments in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicating a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two full days of sessions (April 27 and 28) at the main sites of the NIST in Gaithersburg, Maryland. The wide range of topics covered by Volume 2 of this topical meeting included plenary invited, and contributed sessions entitled, Nuclear fission -- a prospective; reactors II; fission science II; medical and industrial applications by by-products; reactors and safeguards; general research, instrumentation, and by-products; and fission data, astrophysics, and space applications. The individual papers have been cataloged separately

  3. Description of the blowdown test facility COG program on in-reactor fission product release, transport, and deposition under severe accident conditions

    International Nuclear Information System (INIS)

    Fehrenbach, P.J.; Wood, J.C.

    1987-06-01

    Loss-of-coolant accidents with additional impairment of emergency cooling would probably result in high fuel temperatures leading to severe fuel damage (SFD) and significant fission product activity would then be transported along the PHTS to the break where a fraction of it would be released and transport under such conditions, there are many interacting and sometimes competing phenomena to consider. Laboratory simulations are being used to provide data on these individual phenomena, such as UO 2 oxidation and Zr-UO 2 interaction, from which mathematical models can be constructed. These are then combined into computer codes to include the interaction effects and assess the overall releases. In addition, in-reactor tests are the only source of data on release and transport of short-lived fission product nuclides, which are important in the consequence analysis of CANDU reactor accidents. Post-test decontamination of an in-reactor test facility also provides a unique opportunity to demonstrate techniques and obtain decontamination data relevant to post-accident rehabilitation of CANDU power reactors. Specialized facilities are required for in-reactor testing because of the extensive release of radioactive fission products and the high temperatures involved (up to 2500 degrees Celsius). To meet this need for the Canadian program, the Blowdown Test Facility (BTF) has been built in the NRU reactor at Chalk River. Between completion of construction in mid-1987 and the first Zircaloy-sheathed fuel test in fiscal year 1987/88, several commissioning tests are being performed. Similarly, extensive development work has been completed to permit application of instrumentation to irradiated fuel elements, and in support of post-test fuel assembly examination. A program of decontamination studies has also been developed to generate information relevant to post-accident decontamination of power reactors. The BTF shared cost test program funded by the COG High Temperature

  4. Assessment of the Technical Maturity of Generation IV Concepts for Test or Demonstration Reactor Applications, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    The United States Department of Energy (DOE) commissioned a study the suitability of different advanced reactor concepts to support materials irradiations (i.e. a test reactor) or to demonstrate an advanced power plant/fuel cycle concept (demonstration reactor). As part of the study, an assessment of the technical maturity of the individual concepts was undertaken to see which, if any, can support near-term deployment. A Working Group composed of the authors of this document performed the maturity assessment using the Technical Readiness Levels as defined in DOE’s Technology Readiness Guide . One representative design was selected for assessment from of each of the six Generation-IV reactor types: gas-cooled fast reactor (GFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), supercritical water-cooled reactor (SCWR), sodium-cooled fast reactor (SFR), and very high temperature reactor (VHTR). Background information was obtained from previous detailed evaluations such as the Generation-IV Roadmap but other technical references were also used including consultations with concept proponents and subject matter experts. Outside of Generation IV activity in which the US is a party, non-U.S. experience or data sources were generally not factored into the evaluations as one cannot assume that this data is easily available or of sufficient quality to be used for licensing a US facility. The Working Group established the scope of the assessment (which systems and subsystems needed to be considered), adapted a specific technology readiness scale, and scored each system through discussions designed to achieve internal consistency across concepts. In general, the Working Group sought to determine which of the reactor options have sufficient maturity to serve either the test or demonstration reactor missions.

  5. The wastes of nuclear fission

    International Nuclear Information System (INIS)

    Doubre, H.

    2005-01-01

    In this paper the author presents the problems of the radioactive wastes generated by the nuclear fission. The first part devoted to the fission phenomenon explains the incident neutron energy and the target nuclei role. The second part devoted to the nuclear wastes sources presents the production of wastes upstream of the reactors, in the reactors and why these wastes are dangerous. The third part discusses the radioactive wastes management in France (classification, laws). The last part details the associated research programs: the radionuclides separation, the disposal, the underground storage, the transmutation and the thorium cycle. (A.L.B.)

  6. Ternary fission

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Since its discovery in 1946, light (charged) particle accompanied fission (ternary fission) has been extensively studied, for spontaneous as well as for induced fission reactions. The reason for this interest was twofold: the ternary particles being emitted in space and time close to the scission point were expected to supply information on the scission point configuration and the ternary fission process was an important source of helium, tritium, and hydrogen production in nuclear reactors, for which data were requested by the nuclear industry. Significant experimental progress has been realized with the advent of high-resolution detectors, powerful multiparameter data acquisition systems, and intense neutron and photon beams. As far as theory is concerned, the trajectory calculations (in which scission point parameters are deduced from the experimental observations) have been very much improved. An attempt was made to explain ternary particle emission in terms of a Plateau-Rayleigh hydrodynamical instability of a relatively long cylindrical neck or cylindrical nucleus. New results have also been obtained on the so-called open-quotes trueclose quotes ternary fission (fission in three about-equal fragments). The spontaneous emission of charged particles has also clearly been demonstrated in recent years. This chapter discusses the main characteristics of ternary fission, theoretical models, light particle emission probabilities, the dependence of the emission probabilities on experimental variables, light particle energy distributions, light particle angular distributions, correlations between light particle accompanied fission observables, open-quotes trueclose quotes ternary fission, and spontaneous emission of heavy ions. 143 refs., 18 figs., 8 tabs

  7. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Moir, R.W.

    1978-01-01

    We have carried out conceptual design studies of fusion reactors based on the three current mirror confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fission fuel for fission reactors. We have designed a large commercial hybrid based on standard mirror confinement, and also a small pilot plant hybrid. Tandem mirror designs include a commercial 1000 MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single cell pilot plant

  8. 99Tc, Pb and Ru migration around the Oklo natural fission reactors

    International Nuclear Information System (INIS)

    Gancarz, A.; Cowan, G.; Curtis, D.; Maeck, W.

    1980-01-01

    This work demonstrates the utility of the Oklo uranium ore deposit and natural fission reactors as a long time scale analogue for man-made radioactive waste repositories. It has been shown that the ores and nearby rocks were open to the loss and gain of 99 Tc, ruthenium, and lead relative to uranium. Identified regions of element deficiencies and those which are correspondingly enriched are separated by less than 10 meters. However, more extensive sampling is required to define the overall extent of the element migration. Element fractionation took place on at least two vastly different time scales; 99 Tc was fractionated from ruthenium within one million years of the end of reactor criticality. Lead-uranium fractionation has been ongoing for most of the two billion years since the ores were formed. Diffusion loss of lead from host uraninite appears to be an important process in the fractionation of lead from uranium

  9. GRSIS program to predict fission gas release and swelling behavior of metallic fast reactor fuel

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Lee, Byung Ho; Nam, Cheol; Sohn, Dong Seong

    1999-03-01

    A mechanistic model of fission gas release and swelling for the U-(Pu)-Zr metallic fuel in the fast reactor, GRSIS (Gas Release and Swelling in ISotropic fuel matrix) was developed. Fission gas bubbles are assumed to nucleate isotropically from the gas atoms in the metallic fuel matrix since they can nucleate at both the grain boundaries and the phase boundaries which are randomly distributed inside the grain. Bubbles can grow to larger size by gas diffusion and coalition with other bubbles so that they are classified as three classes depending upon their sizes. When bubble swelling reaches the threshold value, bubbles become interconnected each other to make the open channel to the external free space, that is, the open bubbles and then fission gases inside the interconnected open bubbles are released instantaneously. During the irradiation, fission gases are released through the open bubbles. GRSIS model can take into account the fuel gap closure by fuel bubble swelling. When the fuel gap is closed by fuel swelling, the contact pressure between fuel and cladding in relation to the bubble swelling and temperature is calculated. GRSIS model was validated by comparison with the irradiation test results of U-(Pu)-Zr fuels in ANL as well as the parametric studies of the key variable in the model. (author). 13 refs., 1 tab., 22 figs

  10. GRSIS program to predict fission gas release and swelling behavior of metallic fast reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Lee, Byung Ho; Nam, Cheol; Sohn, Dong Seong

    1999-03-01

    A mechanistic model of fission gas release and swelling for the U-(Pu)-Zr metallic fuel in the fast reactor, GRSIS (Gas Release and Swelling in ISotropic fuel matrix) was developed. Fission gas bubbles are assumed to nucleate isotropically from the gas atoms in the metallic fuel matrix since they can nucleate at both the grain boundaries and the phase boundaries which are randomly distributed inside the grain. Bubbles can grow to larger size by gas diffusion and coalition with other bubbles so that they are classified as three classes depending upon their sizes. When bubble swelling reaches the threshold value, bubbles become interconnected each other to make the open channel to the external free space, that is, the open bubbles and then fission gases inside the interconnected open bubbles are released instantaneously. During the irradiation, fission gases are released through the open bubbles. GRSIS model can take into account the fuel gap closure by fuel bubble swelling. When the fuel gap is closed by fuel swelling, the contact pressure between fuel and cladding in relation to the bubble swelling and temperature is calculated. GRSIS model was validated by comparison with the irradiation test results of U-(Pu)-Zr fuels in ANL as well as the parametric studies of the key variable in the model. (author). 13 refs., 1 tab., 22 figs.

  11. Characterization of a facility for the measurement of fission fragment transport effects: experimental determination of the fission rates for fissile and fissionable isotopes

    International Nuclear Information System (INIS)

    Benetti, P.; Raselli, G.L.; Tigliole, A. Borio di; Cagnazzo, M.; Cesana, A.; Mongelli, S.; Terrani, M.

    2002-01-01

    The transfer facility of the LENA laboratory allows the direct neutron irradiation of fissionable material in the D channel of the TRIGA reactor. A test measurement carried out with a ionization chamber and a 239 Pu sample shows the possibility to use this tool for the study of the transport effects of the fission fragment emerging from thin layers of fissile materials. (author)

  12. Advances on fission chamber modelling

    International Nuclear Information System (INIS)

    Filliatre, Philippe; Jammes, Christian; Geslot, Benoit; Veenhof, Rob

    2013-06-01

    In-vessel, online neutron flux measurements are routinely performed in mock-up and material testing reactors by fission chambers. Those measurements have a wide range of applications, including characterization of experimental conditions, reactor monitoring and safety. Depending on the application, detectors may experience a wide range of constraints, of several magnitudes, in term of neutron flux, gamma-ray flux, temperature. Hence, designing a specific fission chamber and measuring chain for a given application is a demanding task. It can be achieved by a combination of experimental feedback and simulating tools, the latter being based on a comprehensive understanding of the underlying physics. A computation route that simulates fission chambers, named CHESTER, is presented. The retrieved quantities of interest are the neutron-induced charge spectrum, the electronic and ionic pulses, the mean current and variance, the power spectrum. It relies on the GARFIELD suite, originally developed for drift chambers, and makes use of the MAGBOLTZ code to assess the drift parameters of electrons within the filling gas, and the SRIM code to evaluate the stopping range of fission products. The effect of the gamma flux is also estimated. Computations made with several fission chambers exemplify the possibilities of the route. A good qualitative agreement is obtained when comparing the results with the experimental data available to date. In a near future, a comprehensive experimental programme will be undertaken to qualify the route using the known neutron sources, mock-up reactors and wide choice of fission chambers, with a stress on the predictiveness of the Campbelling mode. Depending on the results, a refinement of the modelling and an effort on the accuracy of input data are also to be considered. CHESTER will then make it possible to predict the overall sensitivity of a chamber, and to optimize the design for a given application. Another benefit will be to increase the

  13. Performance investigation of the pulse and Campbelling modes of a fission chamber using a Poisson pulse train simulation code

    Energy Technology Data Exchange (ETDEWEB)

    Elter, Zs. [CEA, DEN, DER, Instrumentation, Sensors and Dosimetry Laboratory, Cadarache, F-13108 Saint-Paul-lez-Durance (France); Chalmers University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 Göteborg (Sweden); Jammes, C., E-mail: christian.jammes@cea.fr [CEA, DEN, DER, Instrumentation, Sensors and Dosimetry Laboratory, Cadarache, F-13108 Saint-Paul-lez-Durance (France); Pázsit, I. [Chalmers University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 Göteborg (Sweden); Pál, L. [Centre for Energy Research, Hungarian Academy of Sciences, H-1525 Budapest 114, POB 49 (Hungary); Filliatre, P. [CEA, DEN, DER, Instrumentation, Sensors and Dosimetry Laboratory, Cadarache, F-13108 Saint-Paul-lez-Durance (France)

    2015-02-21

    The detectors of the neutron flux monitoring system of the foreseen French GEN-IV sodium-cooled fast reactor (SFR) will be high temperature fission chambers placed in the reactor vessel in the vicinity of the core. The operation of a fission chamber over a wide-range neutron flux will be feasible provided that the overlap of the applicability of its pulse and Campbelling operational modes is ensured. This paper addresses the question of the linearity of these two modes and it also presents our recent efforts to develop a specific code for the simulation of fission chamber pulse trains. Our developed simulation code is described and its overall verification is shown. An extensive quantitative investigation was performed to explore the applicability limits of these two standard modes. It was found that for short pulses the overlap between the pulse and Campbelling modes can be guaranteed if the standard deviation of the background noise is not higher than 5% of the pulse amplitude. It was also shown that the Campbelling mode is sensitive to parasitic noise, while the performance of the pulse mode is affected by the stochastic amplitude distributions.

  14. Future research program on prompt γ-ray emission in nuclear fission

    Energy Technology Data Exchange (ETDEWEB)

    Oberstedt, S.; Hambsch, F.J. [Joint Research Centre IRMM, European Commission, Geel (Belgium); Billnert, R. [Joint Research Centre IRMM, European Commission, Geel (Belgium); Chalmers Tekniska Hoegskola, Fundamental Fysik, Goeteborg (Sweden); Lebois, M.; Wilson, J.N. [Institut de Physique Nucleaire Orsay, Orsay (France); Oberstedt, A. [Chalmers Tekniska Hoegskola, Fundamental Fysik, Goeteborg (Sweden); Ossolution Consulting, Oerebro (Sweden)

    2015-12-15

    In recent years the measurement of prompt fission γ-ray spectra (PFGS) has gained renewed interest, after about forty years since the first comprehensive studies of the reactions {sup 235}U(n{sub th}, f), {sup 239}Pu(n{sub th},f) and {sup 252}Cf(sf). The renaissance was initiated by requests for new values especially for γ-ray multiplicity and average total energy release per fission in neutron-induced fission of {sup 235}U and {sup 239}Pu. Both isotopes are considered the most important ones with respect to the modeling of innovative cores required for the Generation-IV reactors, the majority working with fast neutrons. During the last 5 years we have conducted a systematic study of spectral data for thermal-neutron-induced fission on {sup 235}U and {sup 241}Pu as well as for the spontaneous fission of {sup 252}Cf with unprecedented accuracy. From the new data we conclude that those reactions do not considerably contribute to the observed heat excess and suspect other reactions playing a significant role. Possible contributions may originate from fast-neutron-induced reactions on {sup 238}U, which is largely present in the fuel, or from γ-induced fission from neutron capture in the construction material. A first experiment campaign on prompt γ-ray emission from fast-neutron-induced fission on {sup 235,238}U was successfully performed in order to test our assumptions. In the following we attempt to summarize, what has been done in the field to date, and to motivate future measurement campaigns exploiting dedicated neutron and photon beams as well as upcoming highly efficient detector assemblies. (orig.)

  15. The Oklo natural nuclear reactors: neutron parameters, age and duration of the reactions, uranium and fission products migrations

    International Nuclear Information System (INIS)

    Ruffenach, J.-C.

    1979-09-01

    Mass spectrometry and isotopic dilution technique are used in order to carry out, on various samples from the fossil nuclear reactors at Oklo, Gabon, isotopic and chemical analyses of some particular elements involved in the nuclear reactions: uranium, lead, bismuth, thorium, rare gases (krypton, xenon), rare earths (neodymium, samarium, europium, gadolinium, dysprosium), ruthenium and palladium. Interpretations of these analyses lead to the determination of many neutron parameters such as the neutron fluence received by the samples, the spectrum index, the conversion coefficient, and also the percentages of fissions due to uranium-238 and plutonium-239 and the total number of fissions relative to uranium. All these results make it possible to determine the age of the nuclear reactions by measuring the amounts of fission rare earths formed, i.e. 1.97 billion years. This study brings some informations to the general problem of radioactive wastes storage in deep geological formations, the storage of uranium, plutonium and many fission products having been carried out naturally, and for about two billion years [fr

  16. Development of Commercial-scale Fission Mo-99 Production System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Kon; Lee, Suseung; Hong, Soon-Bog; Jang, Kyung-Duk; Park, Ul Jael; Lee, Jun Sig [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    These days, worldwide {sup 99} Mo supply is not only insufficient but also unstable. Because, most of the main {sup 99}Mo production reactors are more than years old and suffered from frequent and unscheduled shutdown. Therefore, movement to replace old reactors to keep stable supply is now active. Under these conditions, KAERI (Korea Atomic Energy Research Institute) is developing LEU-based fission {sup 99}Mo production process which is connected to the new research reactor (Kijang New Research Reactor, KJRR), which is being constructed in Gijang, Busan, Korea. Historically, the most fission {sup 99}Mo producers have been used highly enriched uranium (HEU) targets so far. However, to reduce the use of HEU in private sector for non-proliferation, {sup 99}Mo producers are forced to convert their HEU-based process to use low enriched uranium (LEU) targets. Economic impact of a target conversion from HEU to LEU is significant. In this study, fission {sup 99}Mo process with non-irradiated LEU targets was presented except separation and purification steps. Pre- and post-irradiation tests of the fission {sup 99}Mo target will be done in 4th quarter of 2016. For the fission Mo production process development, hot experiments with irradiated LEU targets will be done in 4th quarter of 2016. Then, verification of the production process with quality control will be followed until the commercial production of fission {sup 99}Mo scheduled in 2019.

  17. Measurement of prompt fission gamma-ray spectra in fast neutron-induced fission

    International Nuclear Information System (INIS)

    Laborie, J.M.; Belier, G.; Taieb, J.

    2012-01-01

    Knowledge of prompt fission gamma-ray emission has been of major interest in reactor physics for a few years. Since very few experimental spectra were ever published until now, new measurements would be also valuable to improve our understanding of the fission process. An experimental method is currently being developed to measure the prompt fission gamma-ray spectrum from some tens keV up to 10 MeV at least. The mean multiplicity and total energy could be deduced. In this method, the gamma-rays are measured with a bismuth germanate (BGO) detector which has the advantage to present a high P/T ratio and a high efficiency compared to other gamma-ray detectors. The prompt fission neutrons are rejected by the time of flight technique between the BGO detector and a fission trigger given by a fission chamber or a scintillating active target. Energy and efficiency calibration of the BGO detector were carried out up to 10.76 MeV by means of the Al-27(p, gamma) reaction. First prompt fission gamma-ray spectrum measurements performed for the spontaneous fission of Cf-252 and for 1.7 and 15.6 MeV neutron-induced fission of U-238 at the CEA, DAM, DIF Van de Graaff accelerator, will be presented. (authors)

  18. Regulatory simplification of fission product chemistry

    International Nuclear Information System (INIS)

    Read, J.B.J.; Soffer, L.

    1986-01-01

    The requirements for design provisions intended to limit fission product escape during reactor accidents have been based since 1962 upon a small number of simply-stated assumptions. These assumptions permeate current reactor regulation, but are too simple to deal with the complex processes that can reasonably be expected to occur during real accidents. Potential chemical processes of fission products in severe accidents are compared with existing plant safety features designed to minimize off-site consequences, and the possibility of a new set of simply-stated assumptions to replace the 1982 set is discussed

  19. The irradiation test program for transmutation in the French Phenix fast reactor

    International Nuclear Information System (INIS)

    Guidez, J.; Chaucheprat, P.; Fontaine, B.; Brunon, E.

    2004-01-01

    Put on commercial operation in July 1974, the French fast reactor Phenix reached a 100 000 hours operation time in september 2003. When the French law relative to long lived radioactive waste management was promulgated on December 1991, priority was given to Phenix to be run as a research reactor and to carry on a wide irradiation program dedicated to study transmutation of minor actinides and long-lived fission products. After a major renovation program required to extend the reactor lifetime, Phenix power buildup took place in 2003. Experimental irradiations have been loaded in the core, involving components for heterogeneous and homogeneous transmutation modes, americium targets, technetium 99 metal pins and isolated isotopes for integral cross-sections measurements. Associated post- irradiated examination programs are already underway or planned. With new experiments to be loaded in the core in 2006 the Phenix reactor remains to be a powerful tool providing an important experimental data on fast reactors and on transmutation of minor actinides and long-lived fission products, as well as it will contribute to gain further experience in the framework of the GENERATION IV International Forum. (authors)

  20. Computations of nuclear response functions with MACK-IV

    International Nuclear Information System (INIS)

    Abdou, M.A.; Gohar, Y.

    1978-01-01

    The MACK computer program calculates energy pointwise and multigroup nuclear response functions from basic nuclear data in ENDF/B format. The new version of the program, MACK-IV, incorporates major developments and improvements aimed at maximizing the utilization of available nuclear data and ensuring energy conservation in nuclear heating calculations. A new library, MACKLIB-IV, of nuclear response functions was generated in the CTR energy group structure of 171 neutron groups and 36 gamma groups. The library was prepared using MACK-IV and ENDF/B-IV and is suitable for fusion, fusion-fission hybrids, and fission applications

  1. Computations of nuclear response functions with MACK-IV

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M A; Gohar, Y

    1978-01-01

    The MACK computer program calculates energy pointwise and multigroup nuclear response functions from basic nuclear data in ENDF/B format. The new version of the program, MACK-IV, incorporates major developments and improvements aimed at maximizing the utilization of available nuclear data and ensuring energy conservation in nuclear heating calculations. A new library, MACKLIB-IV, of nuclear response functions was generated in the CTR energy group structure of 171 neutron groups and 36 gamma groups. The library was prepared using MACK-IV and ENDF/B-IV and is suitable for fusion, fusion-fission hybrids, and fission applications.

  2. 239Pu prompt fission neutron spectra impact on a set of criticality and experimental reactor benchmarks

    International Nuclear Information System (INIS)

    Peneliau, Y.; Litaize, O.; Archier, P.; De Saint Jean, C.

    2014-01-01

    A large set of nuclear data are investigated to improve the calculation predictions of the new neutron transport simulation codes. With the next generation of nuclear power plants (GEN IV projects), one expects to reduce the calculated uncertainties which are mainly coming from nuclear data and are still very important, before taking into account integral information in the adjustment process. In France, future nuclear power plant concepts will probably use MOX fuel, either in Sodium Fast Reactors or in Gas Cooled Fast Reactors. Consequently, the knowledge of 239 Pu cross sections and other nuclear data is crucial issue in order to reduce these sources of uncertainty. The Prompt Fission Neutron Spectra (PFNS) for 239 Pu are part of these relevant data (an IAEA working group is even dedicated to PFNS) and the work presented here deals with this particular topic. The main international data files (i.e. JEFF-3.1.1, ENDF/B-VII.0, JENDL-4.0, BRC-2009) have been considered and compared with two different spectra, coming from the works of Maslov and Kornilov respectively. The spectra are first compared by calculating their mathematical moments in order to characterize them. Then, a reference calculation using the whole JEFF-3.1.1 evaluation file is performed and compared with another calculation performed with a new evaluation file, in which the data block containing the fission spectra (MF=5, MT=18) is replaced by the investigated spectra (one for each evaluation). A set of benchmarks is used to analyze the effects of PFNS, covering criticality cases and mock-up cases in various neutron flux spectra (thermal, intermediate, and fast flux spectra). Data coming from many ICSBEP experiments are used (PU-SOL-THERM, PU-MET-FAST, PU-MET-INTER and PU-MET-MIXED) and French mock-up experiments are also investigated (EOLE for thermal neutron flux spectrum and MASURCA for fast neutron flux spectrum). This study shows that many experiments and neutron parameters are very sensitive to

  3. Neutronic calculation and cross section sensitivity analysis of the Livermore mirror fusion/fission hybrid reactor blanket

    International Nuclear Information System (INIS)

    Ku, L.P.; Price, W.G. Jr.

    1977-08-01

    The neutronic calculation for the Livermore mirror fusion/fission hybrid reactor blanket was performed using the PPPL cross section library. Significant differences were found in the tritium breeding and plutonium production in comparison to the results of the LLL calculation. The cross section sensitivity study for tritium breeding indicates that the response is sensitive to the cross section of 238 U in the neighborhood of 14 MeV and 1 MeV. The response is also sensitive to the cross sections of iron in the vicinity of 14 MeV near the first wall. Neutron transport in the resonance region is not important in this reactor model

  4. Conceptual design of the blanket and power conversion system for a mirror hybrid fusion-fission reactor. 12-month progress report, July 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Schultz, K.R.; Baxi, C.B.; Rao, R.

    1976-01-01

    This report presents the conceptual design and preliminary feasibility assessment for the hybrid blanket and power conversion system of the Mirror Hybrid Fusion-Fission Reactor. Existing gas-cooled fission reactor technology is directly applicable to the Mirror Hybrid Reactor. There are a number of aspects of the present conceptual design that require further design and analysis effort. The blanket and power conversion system operating parameters have not been optimized. The method of supporting the blanket modules and the interface between these modules and the primary loop helium ducting will require further design work. The means of support and containment of the primary loop components must be studied. Nevertheless, in general, the conceptual design appears quite feasible

  5. Nuclear data processing for cross-sections generation for fusion-fission, ADS, and IV generation reactors utilization

    International Nuclear Information System (INIS)

    Velasquez, Carlos E.; Fernandes, Lorena C.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L.

    2017-01-01

    One of the mains topics about nuclear reactors is the microscopic cross section for incident neutrons. Therefore, in this work, it is evaluated the microscopic and macroscopic cross section for a nuclide and a material. One of the nuclides microscopic cross-section studied is the 56 Fe which is the highest compound from the material macroscopic cross section studied SS316. On the other hand, it was studied the microscopic cross section of the 242 Pu which is one of the nuclides that composes the nuclear fuel. The nuclear fuel chosen is a spent fuel reprocessed by UREX+ technique and spiked with thorium with 20% of fissile material. Therefore it was studied the macroscopic cross section from this nuclear fuel. Both of them were compared by using three different ways to reprocess the nuclides, one for LWR, another for ADS and the last one for Fusion reactors. The library used was JEFF-3.2 recommend for the reactors studied. The comparison was made at 1200 K for the nuclear fuel and 700K for the SS316.The results present differences due to the energy discretization, the number of groups chosen for each reactor and some nuclear reactions taken into consideration according to the neutron spectrum for each reactor. The nuclides were processed by NJOY99.364 and plotted with MCNP-Vised. (author)

  6. Nuclear data processing for cross-sections generation for fusion-fission, ADS, and IV generation reactors utilization

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez, Carlos E.; Fernandes, Lorena C.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-11-01

    One of the mains topics about nuclear reactors is the microscopic cross section for incident neutrons. Therefore, in this work, it is evaluated the microscopic and macroscopic cross section for a nuclide and a material. One of the nuclides microscopic cross-section studied is the {sup 56}Fe which is the highest compound from the material macroscopic cross section studied SS316. On the other hand, it was studied the microscopic cross section of the {sup 242}Pu which is one of the nuclides that composes the nuclear fuel. The nuclear fuel chosen is a spent fuel reprocessed by UREX+ technique and spiked with thorium with 20% of fissile material. Therefore it was studied the macroscopic cross section from this nuclear fuel. Both of them were compared by using three different ways to reprocess the nuclides, one for LWR, another for ADS and the last one for Fusion reactors. The library used was JEFF-3.2 recommend for the reactors studied. The comparison was made at 1200 K for the nuclear fuel and 700K for the SS316.The results present differences due to the energy discretization, the number of groups chosen for each reactor and some nuclear reactions taken into consideration according to the neutron spectrum for each reactor. The nuclides were processed by NJOY99.364 and plotted with MCNP-Vised. (author)

  7. Level II Probabilistic Safety Analysis Methodology for the Application to GEN-IV Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Park, S. Y.; Kim, T. W.; Han, S. H.; Jeong, H. Y.

    2010-03-01

    The Korea Atomic Energy Research Institute (KAERI) has been developing liquid metal reactor (LMR) design technologies under a National Nuclear R and D Program. Nevertheless, there is no experience of the probabilistic safety assessment (PSA) domestically for a fast reactor with the metal fuel. Therefore, the objective of this study is to establish the methodologies of risk assessment for the reference design of GEN-IV sodium fast reactor (SFR). An applicability of the PSA methodology of U. S. NRC and PRISM plant to the domestic GEN-IV SFR has been studied. The study contains a plant damage state analysis, a containment event tree analysis, and a source-term release category binning process

  8. Measurement of MA fission cross sections at YAYOI

    Energy Technology Data Exchange (ETDEWEB)

    Ohkawachi, Yasushi; Ohki, Shigeo; Wakabayashi, Toshio [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    Fission cross section ratios of minor actinide nuclides (Am-241, Am-243) relative to U-235 in the fast neutron energy region have been measured using a back-to-back (BTB) fission chamber at YAYOI fast neutron source reactor. A small BTB fission chamber was developed to measure the fission cross section ratios in the center of the core at YAYOI reactor. Dependence of the fission cross section ratios on neutron spectra was investigated by changing the position of the detector in the reactor core. The measurement results were compared with the fission cross sections in the JENDL-3.2, ENDF/B-VI and JEF-2.2 libraries. It was found that calculated values of Am-241 using the JENDL-3.2, ENDF/B-VI and JEF-2.2 data are lower by about 15% than the measured value in the center of the core (the neutron average energy is 1.44E+6(eV)). And, good agreement can be seen the measured value and calculated value of Am-243 using the JENDL-3.2 data in the center of the core (the neutron average energy is 1.44E+6)(eV), but calculated values of Am-243 using the ENDF/B-VI and JEF-2.2 data are lower by 11% and 13% than the measured value. (author)

  9. Fusion technology development: role of fusion facility upgrades and fission test reactors

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Deis, G.A.; Longhurst, G.R.; Miller, L.G.; Schmunk, R.E.

    1983-01-01

    The near term national fusion program is unlikely to follow the aggressive logic of the Fusion Engineering Act of 1980. Faced with level budgets, a large, new fusion facility with an engineering thrust is unlikely in the near future. Within the fusion community the idea of upgrading the existing machines (TFTR, MFTF-B) is being considered to partially mitigate the lack of a design data base to ready the nation to launch an aggressive, mission-oriented fusion program with the goal of power production. This paper examines the cost/benefit issues of using fusion upgrades to develop the technology data base which will be required to support the design and construction of the next generation of fusion machines. The extent of usefulness of the nation's fission test reactors will be examined vis-a-vis the mission of the fusion upgrades. The authors show that while fission neutrons will provide a useful test environment in terms of bulk heating and tritium breeding on a submodule scale, they can play only a supporting role in designing the integrated whole modules and systems to be used in a nuclear fusion machine

  10. Fusion technology development: role of fusion facility upgrades and fission test reactors

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Deis, G.A.; Miller, L.G.; Longhurst, G.R.; Schmunk, R.E.

    1983-01-01

    The near term national fusion program is unlikely to follow the aggressive logic of the Fusion Engineering Act of 1980. Faced with level budgets, a large, new fusion facility with an engineering thrust is unlikely in the near future. Within the fusion community the idea of upgrading the existing machines (TFTR, MFTF-B) is being considered to partially mitigate the lack of a design data base to ready the nation to launch an aggressive, mission-oriented fusion program with the goal of power production. This paper examines the cost/benefit issues of using fusion upgrades to develop the technology data base which will be required to support the design and construction of the next generation of fusion machines. The extent of usefulness of the nation's fission test reactors will be examined vis-a-vis the mission of the fusion upgrades. We will show that while fission neutrons will provide a useful test environment in terms of bulk heating and tritium breeding on a submodule scale, they can play only a supporting role in designing the integrated whole modules and systems to be used in a nuclear fusion machine

  11. Independent fission yields of Rb and Cs from thermal-neutron-induced fission of 239Pu

    International Nuclear Information System (INIS)

    Balestrini, S.J.; Forman, L.

    1975-01-01

    The relative independent fission yields of Rb and Cs from thermal-neutron-induced fission of 239 Pu have been measured on line using a mass spectrograph and thermalized neutrons from a burst reactor. Independent yields were derived by normalizing the measurements to products of chain yields and fractional independent yields, estimating the latter from measured cumulative yields of Kr and Xe. Comparing the independent yields with those from 238 U fission, the 239 Pu results show shifts in isotopic yield distribution toward lower mass for both Rb and Cs and also toward the production of more Cs and less Rb when 239 Pu is fissioned

  12. Proton-fission for the accelerator production of Mo-99

    International Nuclear Information System (INIS)

    Lagunas-Solar, M.C.; Jungerman, J.A.; Castaneda, C.M.

    1993-01-01

    The production of Mo-99 (66.0 h) via de U-238(p,f) Mo-99 fission reaction is proposed as a non-reactor source of this essential precursor of 6.6-h Tc-99m, an isotope of wide use of diagnostic nuclear medicine applications. Measurements of the total excitation function for the U-238(p,f) reaction indicated a maximum and fairly constant cross section of 1.4 barns at > 30 MeV. Combining the advances of high-current (mA) H-accelerators with dual beam (dual target) operation, and assuming a 5% fission yield, estimates of Mo-99 reaches 5 to 14 Ci/h at 1 mA. The proton fission production of Mo-99 appears to more advantageous than the reactor produced via evaporation neutron-induced fission. An accelerator method could allow securing ample supply of Mo-99 independently of the current scarce reactor operation, while also simplifying the associated waste management problems as well as some of the environmental concerns

  13. Proposal to represent neutron absorption by fission products by a single pseudo-fragment

    International Nuclear Information System (INIS)

    Tsibulya, A.M.; Kochetkov, A.L.; Kravchenko, I.V.; Nikolaev, M.N.

    1991-01-01

    The concentration of fission products during reactor operation is analyzed. The dependence of a composite fission product capture cross-section as a function of time and on the nature of the A of the fissile nuclide are investigated, and the neutron radiative capture in fission products of a thermal reactor is evaluated. It is concluded that neutron absorption by fission products can be described by pseudo-fragments. (author). 18 refs, 2 figs, 3 tabs

  14. Calculated model of radioactive fission and corrosion product accumulation and distribution in a fast reactor sodium coolant circuit

    International Nuclear Information System (INIS)

    Kizin, V.D.; Konyashov, V.V.

    1987-01-01

    A simple calculation procedure of radioactive products accumulation and distribution in a primary circuit has been developed on the basis of experimental investigations at the BOR-60 reactor. Common knowledge on the impurity products transfer at the liquid-solid and liquid-gas phase boundary is taken. Use is made of the typical in reactor physics relationships for the description of the products transition to the equipment surfaces, of fission products release, metal corrosion and others. Satisfactory agreement of the calculation data with the experimental ones has been obtained. (orig.)

  15. Activation and Radiation Damage Behaviour of Russian Structural Materials for Fusion Reactors in the Fission and Fusion Reactors

    International Nuclear Information System (INIS)

    Blokhin, A.; Demin, N.; Chernov, V.; Leonteva-Smirnova, M.; Potapenko, M.

    2006-01-01

    Various structural low (reduced) activated materials have been proposed as a candidate for the first walls-blankets of fusion reactors. One of the main problems connected with using these materials - to minimise the production of long-lived radionuclides from nuclear transmutations and to provide with good technological and functional properties. The selection of materials and their metallurgical and fabrication technologies for fusion reactor components is influenced by this factor. Accurate prediction of induced radioactivity is necessary for the development of the fusion reactor materials. Low activated V-Ti-Cr alloys and reduced activated ferritic-martensitic steels are a leading candidate material for fusion first wall and blanket applications. At the present time a range of compositions and an impurity level are still being investigated to better understand the sensitive of various functional and activation properties to small compositional variations and impurity level. For the two types of materials mentioned above (V-Ti-Cr alloys and 9-12 % Cr f/m steels) and manufactured in Russia (Russia technologies) the analysis of induced activity, hydrogen and helium-production as well as the accumulation of such elements as C, N, O, P, S, Zn and Sn as a function of irradiation time was performed. Materials '' were irradiated '' by fission (BN-600, BOR-60) and fusion (Russian DEMO-C Reactor Project) typical neutron spectra with neutron fluency up to 10 22 n/cm 2 and the cooling time up to 1000 years. The calculations of the transmutation of elements and the induced radioactivity were carried out using the FISPACT inventory code, and the different activation cross-section libraries like the ACDAM, FENDL-2/A and the decay data library FENDL-2/D. It was shown that the level of impurities controls a long-term behaviour of induced activity and contact dose rate for materials. From this analysis the concentration limits of impurities were obtained. The generation of gas

  16. Natural fission reactors in the Franceville basin, Gabon: A review of the conditions and results of a open-quotes critical eventclose quotes in a geologic system

    International Nuclear Information System (INIS)

    Gauthier-Lafaye, F.; Holliger, P.; Blanc, P.L.

    1996-01-01

    Natural nuclear fission reactors are only known in two uranium deposits in the world, the Oklo and Bangombe deposits of the Franceville basin: Gabon. Since 1982, five new reactor zones have been discovered in these deposits and studied since 1989 in a cooperative European program. New geological, mineralogical, and geochemical studies have been carried out in order to understand the behavior of the actinides and fission products which have been stored in a geological environment for more than 2.0 Ga years. The Franceville basin and the uranium deposits remained geologically stable over a long period of time. Therefore, the sites of Oklo and Bangombe are well preserved. For the reactors, two main periods of actinide and radionuclides migration have been observed: during the criticality, under P-T conditions of 300 bars and 400-500 degrees C, respectively, and during a distention event which affected the Franceville basin 800 to 900 Ma ago and which was responsible for the intrusion of dolerite dikes close to the reactors. New isotopic analyses on uranium dioxides, clays, and phosphates allow us to determine their respective importance for the retention of fission products. The UO 2 matrix appears to be efficient at retaining most actinides and fission products such as REEs, Y, and Zr but not the volatile fission products (Cd, Cs, Xe, and Kr) nor Rb, Sr, and Ba. Some fissiogenic elements such as Mo, Tc, Ru, Rh, Pd, and Te could have formed metallic and oxide inclusion in the UO 2 matrix which are similar to those observed in artificial spent fuel. Clays and phosphate minerals also appear to have played a role in the retention of fissiogenic REEs and also of Pu. 82 refs., 21 figs., 12 tabs

  17. Dosimetry of fission neutrons in a 1-W reactor, UTR-KINKI

    CERN Document Server

    Endo, S; Yoshitake, Y

    2002-01-01

    The energy spectrum of fission neutrons in the biological irradiation field of the Kinki University reactor, UTR-KINKI, has been determined by a multi-foil activation analysis coupled with artificial neural network techniques and a Au-foil activation method. The mean neutron energy was estimated to be 1.26+-0.05 MeV from the experimentally determined spectrum. Based on this energy value and other information, the neutron dose rate was estimated to be 19.7+-1.4 cGy/hr. Since this dose rate agrees with that measured by a pair of ionizing chambers (21.4 cGy/hr), we conclude that the mean neutron energy could be estimated with reasonable accuracy in the irradiation field of UTR-KINKI. (author)

  18. Experimental facilities for Generation IV reactors research

    International Nuclear Information System (INIS)

    Krecanova, E.; Di Gabriele, F.; Berka, J.; Zychova, M.; Macak, J.; Vojacek, A.

    2013-06-01

    Centrum Vyzkumu Rez (CVR) is research and development Company situated in Czech Republic and member of the UJV group. One of its major fields is material research for Generation IV reactor concepts, especially supercritical water-cooled reactor (SCWR), very high temperature/gas-cooled fast reactor (VHTR/GFR) and lead-cooled fast reactor (LFR). The CVR is equipped by and is building unique experimental facilities which simulate the environment in the active zones of these reactor concepts and enable to pre-qualify and to select proper constructional materials for the most stressed components of the facility (cladding, vessel, piping). New infrastructure is founded within the Sustainable Energy project focused on implementation the Generation IV and fusion experimental facilities. The research of SCWR concept is divided to research and development of the constructional materials ensured by SuperCritical Water Loop (SCWL) and fuel components research on Fuel Qualification Test loop (SCWL-FQT). SCWL provides environment of the primary circuits of European SCWR, pressure 25 MPa, temperature 600 deg. C and its major purpose is to simulate behavior of the primary medium and candidate constructional materials. On-line monitoring system is included to collect the operational data relevant to experiment and its evaluation (pH, conductivity, chemical species concentration). SCWL-FQT is facility focused on the behavior of cladding material and fuel at the conditions of so-called preheater, the first pass of the medium through the fuel (in case of European SCWR concept). The conditions are 450 deg. C and 25 MPa. SCWL-FQT is unique facility enabling research of the shortened fuel rods. VHTR/GFR research covers material testing and also cleaning methods of the medium in primary circuit. The High Temperature Helium Loop (HTHL) enables exposure of materials and simulates the VHTR/GFR core environment to analyze the behavior of medium, especially in presence of organic compounds and

  19. Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors: Final Scientific/Technical Report

    International Nuclear Information System (INIS)

    Vierow, Karen; Aldemir, Tunc

    2009-01-01

    The project entitled, 'Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors', was conducted as a DOE NERI project collaboration between Texas A and M University and The Ohio State University between March 2006 and June 2009. The overall goal of the proposed project was to develop practical approaches and tools by which dynamic reliability and risk assessment techniques can be used to augment the uncertainty quantification process in probabilistic risk assessment (PRA) methods and PRA applications for Generation IV reactors. This report is the Final Scientific/Technical Report summarizing the project.

  20. Investigation of tritium and 233U breeding in a fission-fusion hybrid reactor fuelling with ThO2

    International Nuclear Information System (INIS)

    Yildiz, K.; Sahin, S.; Sahin, H. M.; Acir, A.; Yalcin, S.; Altinok, T.; Bayrak, M.; Alkan, M.; Durukan, O.

    2007-01-01

    In the world, thorium reserves are three times more than natural Uranium reserves. It is planned in the near future that nuclear reactors will use thorium as a fuel. Thorium is not a fissile isotope because it doesn't make fission with thermal neutrons so it could be converted to 2 33U isotope which has very high quality fission cross-section with thermal neutrons. 2 33U isotope can be used in present LWRs as an enrichment fuel. In the fusion reactors, tritium is the most important fossil fuel. Because tritium is not natural isotope, it has to be produced in the reactor. The purpose of this work is to investigate the tritium and 2 33U breeding in a fission-fusion hybrid reactor fuelling with ThO 2 for Δt=10 days during a reactor operation period in five years. The neutronic analysis is performed on an experimental hybrid blanket geometry. In the center of the hybrid blanket, there is a line neutron source in a cylindrical cavity, which simulates the fusion plasma chamber where high energy neutrons (14.1 MeV) are produced. The conventional fusion reaction delivers the external neutron source for blankets following, 2 D + 3 T →? 4 He (3.5 MeV) + n (14.1 MeV). (1) The fuel zone made up of natural-ThO 2 fuel and it is cooled with different coolants. In this work, five different moderator materials, which are Li 2 BeF 4 , LiF-NaF-BeF 2 , Li 2 0Sn 8 0, natural Lithium and Li 1 7Pb 8 3, are used as coolants. The radial reflector, called tritium breeding zones, is made of different Lithium compounds and graphite in sandwich structure. In the work, eight different Lithium compounds were used as tritium breeders in the tritium breeding zones, which are Li 3 N, Li 2 O, Li 2 O 2 , Li 2 TiO 3 , Li 4 SiO 3 , Li 2 ZrO 3 , LiBr and LiH. Neutron transport calculations are conducted in spherical geometry with the help of SCALE4.4A SYSTEM by solving the Boltzmann transport equation with code CSAS and XSDRNPM, under consideration of unresolved and resolved resonances, in S 8 -P 3

  1. TMI-2 [Three Mile Island] fission product inventory program: FY-85 status report

    International Nuclear Information System (INIS)

    Langer, S.; Croney, S.T.; Akers, D.W.; Russell, M.L.

    1986-11-01

    This report presents the status of the TMI-2 fission product inventory program through May 1985. The fission product inventory program is an assessment of the location of fission products distributed in the plant as a result of the TMI-2 accident. Included in this report are principal results of samples from the reactor building where most of the mobile fission products (i.e., radiocesium and iodine) are expected to be found. The data are now complete enough for most reactor components; therefore, it is possible to direct the balance of the examination and sampling program to areas and components where it is likely to be most productive. Those areas are the reactor core and the reactor building basement, with emphasis on the currently unsampled portions of the core

  2. Safety device for nuclear fission reactors

    International Nuclear Information System (INIS)

    Brownlee, M.L.

    1982-01-01

    A plurality of radially arranged and neutron absorbing baffles are stacked in vertical sets under the fuel core assemblies, and the whole enclosed in a bottle shaped containment vessel. The radially arranged baffles of each set extend vertically, and each set has double the number of baffles as the set above it in the stack. A melt-down of a fuel core assembly drops the fissioning nuclear fuel into the stacked sets of baffles, there, as it passes through, to be progressively divided, redivided and dispersed in smaller and smaller masses between the doubling number of baffles in safe fuel pellet size. Neutron absorbing containment prevents contamination of the environment and together with cooling means stops fissioning of fuel

  3. Organic matter and containment of uranium and fissiogenic isotopes at the Oklo natural reactors

    International Nuclear Information System (INIS)

    Nagy, B.; Rigali, M.J.; Davis, D.W.; Parnell, J.

    1991-01-01

    Some of the Precambrian natural fission reactors at Oklo in Gabon contain abundant organic matter, part of which was liquefied at the time of criticality and subsequently converted to a graphitic solid. The liquid organic matter helps to reduce U(VI) to U(IV) from aqueous solutions, resulting in the precipitation of uraninite. It is known that in the prevailing reactor environments, precipitated uraninite grains incorporated fission products. We report here observations which show that these uraninite crystals were held immobile within the re-solidified, graphitic bituminous organics at Oklo thus enhanced radionuclide containment. Uraninite encased in solid graphitic matter in the organic-rich reactor zones lost virtually no fissiogenic lanthanide isotopes. The first major episode of uranium and lead migration was caused by the intrusion of a swarm of adjacent dolerite dykes about 1,100 Myr after the reactors went critical. Our results from Oklo imply that the use of organic, hydrophobic solids such as graphitic bitumen as a means of immobilizing radionuclides in pre-treated nuclear waste warrants further investigation. (author)

  4. The performance of ENDF/B-V.2 nuclear data for fast reactor calculations

    International Nuclear Information System (INIS)

    Atkinson, C.A.; Collins, P.J.

    1987-01-01

    Calculations with ENDF/B-V.2 data have been made for twenty-five fast-spectrum integral assemblies covering a wide range of sizes and compositions. Analysis was done by transport codes with refined cross section processing methods and detailed reactor modelling. The predictions of fission rate distributions and control rod worths were emphasized for the more prototypic benchmark cores. The results show considerable improvements in agreement with experiment compared with analysis using ENDF/B-IV data, but it is apparent that significant errors remain for fast reactor design calculations

  5. Generation IV reactors and the ASTRID prototype: lessons from the Fukushima accident

    International Nuclear Information System (INIS)

    Gauche, F.

    2012-01-01

    In France, the ASTRID prototype is an industrial demonstrator of a sodium-cooled fast neutron reactor (SFR), fulfilling the criteria for Generation IV reactors. ASTRID will meet safety requirements as stringent as for third generation reactors, and it takes into account lessons from the Fukushima accident. The objectives are to reinforce the robustness of the safety demonstration for all safety functions. ASTRID will feature an innovative core with a negative sodium void coefficient, it will take advantage of the large thermal inertia of SFR for decay heat removal, and will provide for a design either eliminating the sodium-water reaction, or guaranteeing no consequences for safety in case such reaction would take place. (author)

  6. Fission product release mechanisms and groupings

    International Nuclear Information System (INIS)

    Iglesia, F.C.; Brito, A.C.; Liu, Y.

    1995-01-01

    During CANDU postulated accidents the reactor fuel is estimated to be exposed to a variety of conditions. These conditions are dynamic and, during the course of an accident, the fuel may experience a wide range of temperatures and conditions from highly oxidizing to mildly reducing environments. The exposure of the reactor fuel to these environments and temperatures may affect its stoichiometry and release performance. In this paper a review of the important fission product release mechanisms is presented, the results of three out-of-pile experimental programs are summarized, and fission product release groups, for both oxidizing and reducing conditions are proposed. (author)

  7. Physicochemical state of the spent fuel leaving the reactors

    International Nuclear Information System (INIS)

    Dehaut, Ph.

    2000-01-01

    This report focuses on the current knowledge, updated at the end of 1999, about the physicochemical state of the fuels leaving light water reactors, and particularly pressurized water reactors. Lessons are withdrawn from it making it possible to determine the points which require a necessary deepening of the data and coherence of interpretations. Lastly, evolution of the sailed fuel rod as well as the potential availability of gases and volatile fission products, during a secular storage or of a multi-millennium disposal, are the subject of an attempt at forecast. Accessible data in the scientific literature, or those acquired at the CEA, are particularly numerous. Their analysis and their synthesis are joined together to constitute a collection of references intended to the specialists in nuclear fuel and for all those which contribute to the reflexion on the storage or final disposal of the irradiated fuel. This memory is structured in ten chapters. The last chapter makes it possible to retain on some pages, the essential lessons of this study. Chapter I: Introduction; Chapter II: Characteristics of assemblies and fuels before irradiation; Chapter III: Transformations in reactor; Chapter IV: State of rods leaving the reactor; Chapter V: State of pellets; Chapter VI: Chemical and structural composition of the fuel; Chapter VII: Fuel fragmentation and density; Chapter VIII: Phenomena at the pellet periphery. Formation, characteristics and structure of the rim.Chemical interaction between pellet and cladding; Chapter IX: Location of fission gases and volatile fission products; Chapter X: Review, lessons and predictions. (authors)

  8. New Burnup Calculation System for Fusion-Fission Hybrid System

    International Nuclear Information System (INIS)

    Isao Murata; Shoichi Shido; Masayuki Matsunaka; Keitaro Kondo; Hiroyuki Miyamaru

    2006-01-01

    Investigation of nuclear waste incineration has positively been carried out worldwide from the standpoint of environmental issues. Some candidates such as ADS, FBR are under discussion for possible incineration technology. Fusion reactor is one of such technologies, because it supplies a neutron-rich and volumetric irradiation field, and in addition the energy is higher than nuclear reactor. However, it is still hard to realize fusion reactor right now, as well known. An idea of combination of fusion and fission concepts, so-called fusion-fission hybrid system, was thus proposed for the nuclear waste incineration. Even for a relatively lower plasma condition, neutrons can be well multiplied by fission in the nuclear fuel, tritium is thus bred so as to attain its self-sufficiency, enough energy multiplication is then expected and moreover nuclear waste incineration is possible. In the present study, to realize it as soon as possible with the presently proven technology, i.e., using ITER model with the achieved plasma condition of JT60 in JAEA, Japan, a new calculation system for fusion-fission hybrid reactor including transport by MCNP and burnup by ORIGEN has been developed for the precise prediction of the neutronics performance. The author's group already has such a calculation system developed by them. But it had a problem that the cross section libraries in ORIGEN did not have a cross section library, which is suitable specifically for fusion-fission hybrid reactors. So far, those for FBR were approximately used instead in the analysis. In the present study, exact derivation of the collapsed cross section for ORIGEN has been investigated, which means it is directly evaluated from calculated track length by MCNP and point-wise nuclear data in the evaluated nuclear data file like JENDL-3.3. The system realizes several-cycle calculation one time, each of which consists of MCNP criticality calculation, MCNP fixed source calculation with a 3-dimensional precise

  9. International handling of fissionable material

    International Nuclear Information System (INIS)

    1975-01-01

    The opinion of the ministry for foreign affairs on international handling of fissionable materials is given. As an introduction a survey is given of the possibilities to produce nuclear weapons from materials used in or produced by power reactors. Principles for international control of fissionable materials are given. International agreements against proliferation of nuclear weapons are surveyed and methods to improve them are proposed. (K.K.)

  10. Design of an Online Fission Gas Monitoring System for Post-irradiation Examination Heating Tests of Coated Fuel Particles for High-Temperature Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dawn Scates

    2010-10-01

    A new Fission Gas Monitoring System (FGMS) has been designed at the Idaho National Laboratory (INL) for use of monitoring online fission gas-released during fuel heating tests. The FGMS will be used with the Fuel Accident Condition Simulator (FACS) at the Hot Fuels Examination Facility (HFEF) located at the Materials and Fuels Complex (MFC) within the INL campus. Preselected Advanced Gas Reactor (AGR) TRISO (Tri-isotropic) fuel compacts will undergo testing to assess the fission product retention characteristics under high temperature accident conditions. The FACS furnace will heat the fuel to temperatures up to 2,000ºC in a helium atmosphere. Released fission products such as Kr and Xe isotopes will be transported downstream to the FGMS where they will accumulate in cryogenically cooledcollection traps and monitored with High Purity Germanium (HPGe) detectors during the heating process. Special INL developed software will be used to monitor the accumulated fission products and will report data in near real-time. These data will then be reported in a form that can be readily available to the INL reporting database. This paper describes the details of the FGMS design, the control and acqusition software, system calibration, and the expected performance of the FGMS. Preliminary online data may be available for presentation at the High Temperature Reactor (HTR) conference.

  11. The effect of the greek research reactor operating schedule on its fission product inventory

    International Nuclear Information System (INIS)

    Annousis, J.N., Armyriotis, J.S.

    1987-12-01

    A simple method to convert the fission product inventory of the 'Democritos' uous Greek Research Reactor (GRR) corresponding to its continuous operation over a given time interval, into the inventory corresponting to GRR discontinuous but periodic operation of the same total duration, is presented in this paper. Relevant correction factors for 31 radioecologically significant radionuclides of the inventory are given as a function of the number of hours or operation per day, 5 days per week of the GRR, according to its present of possible future operating schedule

  12. The effect of the Greek Research Reactor operating schedule on its fission product inventory

    International Nuclear Information System (INIS)

    ANOUSSIS, J.N.; ARMYRIOTIS, J.S.

    1987-12-01

    Full text:A simple method to convert the fission product inventory of ''Demokritos'' Greek Research Reactor(GRR) corresponding to its continuous operation over a given time interval, into the inventory corresponding to GRR discontinuous but periodic operation of the same total duration, is presented in this paper. Relevant correction factors for 31 radioecologically significant radionuclides of the inventory are given as a function of the number of hours of operation per day, 5 days per week of the GRR, according to its present or possible future operating schedule. (author)

  13. A Simplified Supercritical Fast Reactor with Thorium Fuel

    OpenAIRE

    Peng Zhang; Kan Wang; Ganglin Yu

    2014-01-01

    Super-Critical water-cooled Fast Reactor (SCFR) is a feasible option for the Gen-IV SCWR designs, in which much less moderator and thus coolant are needed for transferring the fission heat from the core compared with the traditional LWRs. The fast spectrum of SCFR is useful for fuel breeding and thorium utilization, which is then beneficial for enhancing the sustainability of the nuclear fuel cycle. A SCFR core is constructed in this work, with the aim of simplifying the mechanical structure ...

  14. The SGR Multipurpose - Generation IV - Transportable Cogeneration Nuclear Reactor with Innovative Shielding

    International Nuclear Information System (INIS)

    Pahladsingh, R.R.

    2002-01-01

    Deregulation and liberalization are changing the global energy-markets. At the same time innovative technologies are introduced in the electricity industry; often as a requirement from the upcoming Digital Society. Energy solutions for the future are more seen as a mix of energy-sources for generation-, transmission- and distribution energy-services. The Internet Energy-web based 'Virtual' enterprises are coming up and will gradually change our society. It the fast changing world we have to realize that there will be less time to look for the adequate solutions to anticipate on global developments and the way they will influence our own societies. Global population may reach 9 billion people by 2030; this will put tremendous pressure on energy-, water- and food supply in the global economy. It is time to think about some major issues as described below and come up with the right answers. These are needed on very short term to secure a humane global economic growth and the sustainable global environment. The DOE (Department of Energy - USA) has started the Generation IV initiative for the new generation of nuclear reactors that must lead to much better safety, economics and public acceptance the new reactors. The SGR (Simplified Gas-cooled Reactor) is being proposed as a Generation IV modular nuclear reactor, using graphite pebbles as fuel, whereby an attempt has been made to meet all the DOE requirements, to be used for future nuclear reactors. The focus in this paper is on the changing and emerging global energy-markets and shows some relevant criteria to the nuclear industry and how we can anticipate with improved and new designs towards the coming Digital Society. (author)

  15. Thermal reactor benchmark tests on JENDL-2

    International Nuclear Information System (INIS)

    Takano, Hideki; Tsuchihashi, Keichiro; Yamane, Tsuyoshi; Akino, Fujiyoshi; Ishiguro, Yukio; Ido, Masaru.

    1983-11-01

    A group constant library for the thermal reactor standard nuclear design code system SRAC was produced by using the evaluated nuclear data JENDL-2. Furthermore, the group constants for 235 U were calculated also from ENDF/B-V. Thermal reactor benchmark calculations were performed using the produced group constant library. The selected benchmark cores are two water-moderated lattices (TRX-1 and 2), two heavy water-moderated cores (DCA and ETA-1), two graphite-moderated cores (SHE-8 and 13) and eight critical experiments for critical safety. The effective multiplication factors and lattice cell parameters were calculated and compared with the experimental values. The results are summarized as follows. (1) Effective multiplication factors: The results by JENDL-2 are considerably improved in comparison with ones by ENDF/B-IV. The best agreement is obtained by using JENDL-2 and ENDF/B-V (only 235 U) data. (2) Lattice cell parameters: For the rho 28 (the ratio of epithermal to thermal 238 U captures) and C* (the ratio of 238 U captures to 235 U fissions), the values calculated by JENDL-2 are in good agreement with the experimental values. The rho 28 (the ratio of 238 U to 235 U fissions) are overestimated as found also for the fast reactor benchmarks. The rho 02 (the ratio of epithermal to thermal 232 Th captures) calculated by JENDL-2 or ENDF/B-IV are considerably underestimated. The functions of the SRAC system have been continued to be extended according to the needs of its users. A brief description will be given, in Appendix B, to the extended parts of the SRAC system together with the input specification. (author)

  16. A study of fission product transport from failed fuel during N reactor postulated accidents

    International Nuclear Information System (INIS)

    Hagrman, D.L.

    1989-09-01

    This report presents a study of fission product transport behavior in N Reactor during a severe accident. More detail about fission product behavior than has previously been available is provided and key parameters that control this behavior are identified. The current report is an extension to a previous interum study that has added an aerosol formation model, replaced an older aerosol deposition model with an improved correlation, and incorporated results of a revised analysis of the process tubes. The LACE LA1 and LA3 tests are used to assess the revised model applied to determine aerosol deposition. The study concludes that a cesium iodide aerosol is likely to form near the downstream end of the process tubes. Transport of most of the released cesium and iodine as well as less volatile material depends on the behavior of this aerosol and the behavior is sensitive to several parameters that are not well known. If the environment is very clean and effluent flow is sufficient to support oxidation of the zircaloy and uranium of the process tubes, almost none of the aerosol deposits in the riser. Reduction of the effluent flow or the presence of high concentrations of aerosols of very low volatile material like zirconium, uranium, or their oxides causes deposition of the fission products in the riser piping. 24 refs., 18 figs., 11 tabs

  17. Neutronic analysis for the fission Mo99 production by irradiation of leu targets in TRIGA 14 MW reactor

    International Nuclear Information System (INIS)

    Dulugeac, S. D.; Mladin, M.; Budriman, A. G.

    2013-01-01

    Molybdenum production can be a solution for the future in the utilization of the Romanian TRIGA, taking into account the international market supply needs. Generally, two different techniques are available for Mo 99 production for use in medical Tc 99 generation.The first one is based on neutron irradiation of molybdenum targets of natural isotopic composition or enriched in Mo 98 . In a second process, Mo 99 is obtained as a result of the neutron induced fission of U 235 according to U 235 (n,f) Mo 99 . The objectives of the paper are related to Mo 99 production as a result of fission. Neutron physics parameters are determined and presented, such as: thermal flux axial distribution for the critical reactor at 10 MW inside the irradiation location; reactivity introduced by three Uranium foil containers; neutron fluxes and fission rates in the Uranium foils; released and deposited power in the Uranium foils; Mo 99 activity in the Uranium foils. (authors)

  18. Transient core characteristics of small molten salt reactor coupling problem between heat transfer/flow and nuclear fission reaction

    International Nuclear Information System (INIS)

    Yamamoto, Takahisa; Mitachi, Koshi

    2004-01-01

    This paper performed the transient core analysis of a small Molten Salt Reactor (MSR). The emphasis is that the numerical model employed in this paper takes into account the interaction among fuel salt flow, nuclear reaction and heat transfer. The model consists of two group diffusion equations for fast and thermal neutron fluexs, balance equations for six-group delayed neutron precursors and energy conservation equations for fuel salt and graphite moderator. The results of transient analysis are that (1) fission reaction (heat generation) rate significantly increases soon after step reactivity insertion, e.g., the peak of fission reaction rate achieves about 2.7 times larger than the rated power 350 MW when the reactivity of 0.15% Δk/k 0 is inserted to the rated state, and (2) the self-control performance of the small MSR effectively works under the step reactivity insertion of 0.56% Δk/k 0 , putting the fission reaction rate back on the rated state. (author)

  19. The different facilities of the reactor Phenix for radio isotope production and fission product burner

    International Nuclear Information System (INIS)

    Coulon, P.; Clerc, R.; Tommasi, J.

    1993-01-01

    During the last few years different tests have been made to optimize the blanket of the reactor. Year after year the breeding ratio has lost a part of interest regarding the production and availability of plutonium in the world. A characteristic of a fast reactor is to have important neutron leaks from the core. The spectrum of those neutrons is intermediate, the idea was to find a moderator compatible with sodium and stable in temperature. After different tests we kept as a moderator the calcium hydride and as a samply support, a cluster which is separated from the carrier. At the end we present the model used for thermalized calculations. The scheme is then applied to a heavy nuclide transmutation example (Np237 Pu238) and to fission product transmutation (Tc99). (authors). 9 figs

  20. Study of Xenon-poisoning effect on the research reactor power

    International Nuclear Information System (INIS)

    Khamis, I.; Khattab, K.

    2000-01-01

    The uranium 235 is often used as a fuel to produce the energy in nuclear reactors. Uranium nuclei are fissioned with thermal neutrons and produce energy plus a number of neutrons. A fraction of such fission neutrons is involved in other fission with new nuclei to sustain the fission reactions. The remain fraction of the neutrons is lost from the reactor in two ways: escaped from the reactor, or absorbed with other nuclei that exist in the reactor before or produced from fission. Fission nuclei which absorb neutrons heavily are called p oison , such as Xe 135. Because Xe 135 absorbs neutrons heavily, it reduces the number of neutrons in the reactor. Hence, Xe 135 is studied explicitly in the MNSR reactor, and calculation of its negative reactivity is presented in this research during the operation, equilibrium, and after the shutting down of the reactor. (author)

  1. A preliminary safety analysis for the prototype Gen IV Sodium-Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwi Lim; Ha, Kwi Seok; Jeong, Jae Ho; Choi, Chi Woong; Jeong, Tae Kyeong; Ahn, Sang June; Lee, Seung Won; Chang, Won Pyo; Kang, Seok Hun; Yoo, Jae Woon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Korea Atomic Energy Research Institute has been developing a pool-type sodium-cooled fast reactor of the Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR). To assess the effectiveness of the inherent safety features of the PGSFR, the system transients during design basis accidents and design extended conditions are analyzed with MARS-LMR and the subchannel blockage events are analyzed with MATRA-LMR-FB. In addition, the in-vessel source term is calculated based on the super-safe, small, and simple reactor methodology. The results show that the PGSFR meets safety acceptance criteria with a sufficient margin during the events and keeps accidents from deteriorating into more severe accidents.

  2. Diamond as a solid state micro-fission chamber for thermal neutron detection at the VR-1 research reactor

    International Nuclear Information System (INIS)

    Pomorski, Michal; Mer-Calfati, Christine; Foulon, Francois; Sklenka, Lubomir; Rataj, Jan; Bily, Tomas

    2015-01-01

    Diamond exhibits a combination of properties which makes it attractive for neutron detection in hostile conditions. In the particular case of detection in a nuclear reactor, it is resilient to radiation, exhibits a natural low sensitivity to gamma rays, and its small size (as compared with that of gas ionisation chambers) enables fluency monitoring with a high position resolution. We report here on the use of synthetic CVD diamond as a solid state micro-fission chamber with U-235 converting material for in-core thermal neutron monitoring. Two types of thin diamond detectors were developed for this application. The first type of detector is fabricated using thin diamond membrane obtained by etching low-cost commercially available single crystal CVD intrinsic diamond, so called 'optical grade' material. Starting from a few hundred of micrometre thick samples, the sample is sliced with a laser and then plasma etched down to a few tenths of micrometre. Here we report the result obtained with a 17 μm thick device. The detection surface of this detector is equal to 1 mm 2 . Detectors with surfaces up to 1 cm 2 can be fabricated with this technique. The second type of detector is fabricated by growing successively two thin films of diamond, by the microwave enhanced chemical vapour deposition technique, on HPHT single crystal diamond. A first, a film of boron doped (p+) single crystal diamond, a few microns thick, is deposited. Then a second film of intrinsic diamond with a thickness of a few tens of microns is deposited. This results in a P doped, Intrinsic, Metal structure (PIM) structure in which the intrinsic volume id the active part of the detector. Here we report the results obtained with a 20 μm thick intrinsic whose detection surface is equal to 0.5 mm 2 , with the possibility to enlarge the surface of the detector up to 1 cm 2 . These two types of detector were tested at the VR-1 research reactor at the Czech Technical University in Prague. The

  3. Overview of nuclear safety activities performed by JRC-IE on Gen IV fast reactor concepts

    Energy Technology Data Exchange (ETDEWEB)

    Tsige-Tamirat, H.; Ammirabile, L.; D' Agata, E.; Fuetterer, M.; Ranguelova, V. [European Commission, Joint Research Centre, Institute for Energy, Westerduinweg 3, 1755LE Petten (Netherlands)

    2010-07-01

    The European Strategic Energy Technology (SET) Plan recognizes the need to develop new energy technologies, in order to reduce greenhouse gas emissions and secure energy supply in Europe. Besides renewable energy and improved energy efficiency, a new generation of nuclear power plants and innovative nuclear power applications can play a significant role to achieve this goal. The JRC Institute for Energy 'Safety of Future Nuclear Reactors' (SFNR) Unit is engaged in experimental research, numerical simulation and modelling, scientific, feasibility and engineering studies on innovative nuclear reactor systems. This also represents a significant EURATOM contribution to the Generation IV International Forum. Its activities deal with, among others, the performance assessment of innovative fuels and materials, development of new reactor core concepts and safety solutions, and knowledge management and preservation. Special attention is given to fast reactor concepts, namely the sodium (SFR) and lead (LFR) cooled reactors. Recognizing the maturity of the SFR technology, the European Sustainable Nuclear Energy Technology Platform (SNETP) considers a prototype SFR to be built as a next-step towards the deployment of a first-of-a-kind Gen IV SFR. This paper gives an overview of current research preformed at JRC-IE with emphasis on the work performed in the Collaborative Project on European Sodium Fast Reactor (CP-ESFR) within the European Commission's Seventh Framework Program. (authors)

  4. Overview of nuclear safety activities performed by JRC-IE on Gen IV fast reactor concepts

    International Nuclear Information System (INIS)

    Tsige-Tamirat, H.; Ammirabile, L.; D'Agata, E.; Fuetterer, M.; Ranguelova, V.

    2010-01-01

    The European Strategic Energy Technology (SET) Plan recognizes the need to develop new energy technologies, in order to reduce greenhouse gas emissions and secure energy supply in Europe. Besides renewable energy and improved energy efficiency, a new generation of nuclear power plants and innovative nuclear power applications can play a significant role to achieve this goal. The JRC Institute for Energy 'Safety of Future Nuclear Reactors' (SFNR) Unit is engaged in experimental research, numerical simulation and modelling, scientific, feasibility and engineering studies on innovative nuclear reactor systems. This also represents a significant EURATOM contribution to the Generation IV International Forum. Its activities deal with, among others, the performance assessment of innovative fuels and materials, development of new reactor core concepts and safety solutions, and knowledge management and preservation. Special attention is given to fast reactor concepts, namely the sodium (SFR) and lead (LFR) cooled reactors. Recognizing the maturity of the SFR technology, the European Sustainable Nuclear Energy Technology Platform (SNETP) considers a prototype SFR to be built as a next-step towards the deployment of a first-of-a-kind Gen IV SFR. This paper gives an overview of current research preformed at JRC-IE with emphasis on the work performed in the Collaborative Project on European Sodium Fast Reactor (CP-ESFR) within the European Commission's Seventh Framework Program. (authors)

  5. Fission product release from fuel of water-cooled reactors

    International Nuclear Information System (INIS)

    Strupczewski, A.; Marks, P.; Klisinska, M.

    1997-01-01

    The report contains a review of theoretical models and experimental works of gaseous and volatile fission products from uranium dioxide fuel. The experimental results of activity release at low burnup and the model of fission gas behaviour at initial stage of fuel operational cycle are presented. Empirical models as well as measured results of transient fission products release rate in the temperature up to UO 2 melting point, with consideration of their chemical reactions with fuel and cladding, are collected. The theoretical and experimental data were used for calculations of gaseous and volatile fission products release, especially iodine and caesium, to the gas volume of WWER-1000 and WWER-440 type fuel rods at low and high burnup and their further release from defected rods at the assumed loss-of-coolant accident. (author)

  6. Fission rates measured using high-energy gamma-rays from short half-life fission products in fresh and spent nuclear fuel

    International Nuclear Information System (INIS)

    Kroehnert, H.

    2011-02-01

    In recent years, higher discharge burn-ups and initial fuel enrichments have led to more and more heterogeneous core configurations in light water reactors (LWRs), especially at the beginning of cycle when fresh fuel assemblies are loaded next to highly burnt ones. As this trend is expected to continue in the future, the Paul Scherrer Institute has, in collaboration with the Swiss Association of Nuclear Utilities, swissnuclear, launched the experimental programme LIFE(at)PROTEUS. The LIFE(at)PROTEUS programme aims to better characterise interfaces between burnt and fresh UO 2 fuel assemblies in modern LWRs. Thereby, a novel experimental database is to be made available for enabling the validation of neutronics calculations of strongly heterogeneous LWR core configurations. During the programme, mixed fresh and highly burnt UO 2 fuel lattices will be investigated in the zero-power research reactor PROTEUS. One of the main types of investigations will be to irradiate the fuel in PROTEUS and measure the resulting fission rate distributions across the interface between fresh and burnt fuel zones. The measurement of fission rates in burnt fuel re-irradiated in a zero-power reactor requires, however, the development of new experimental techniques which are able to discriminate against the high intrinsic activity of the fuel. The principal goal of the present research work has been to develop such a new measurement technique. The selected approach is based on the detection of high-energy gamma-ray lines above the intrinsic background (i.e. above 2200 keV), which are emitted by short-lived fission products freshly created in the fuel. The fission products 88 Kr, 142 La, 138 Cs, 84 Br, 89 Rb, 95 Y, 90m Rb and 90 Rb, with half-lives between 2.6 min and 2.8 h, have been identified as potential candidates. During the present research work, the gamma-ray activity of short-lived fission products has, for the first time, been measured and quantitatively evaluated for re

  7. Feasibility study of Self Powered Neutron Detectors in Fast Reactors for detecting local change in neutron flux distribution

    International Nuclear Information System (INIS)

    Jammes, Christian; Filliatre, Philippe; Verma, Vasudha; Hellesen, Carl; Jacobsson Svard, Staffan

    2015-01-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor system. Diverse possibilities of detector systems installation have to be investigated with respect to practicality and feasibility according to the detection parameters. In this paper, we demonstrate the feasibility of using self powered neutron detectors as in-core detectors in fast reactors for detecting local change in neutron flux distribution. We show that the gamma contribution from fission products decay in the fuel and activation of structural materials is very small compared to the fission gammas. Thus, it is possible for the in-core SPND signal to follow changes in local neutron flux as they are proportional to each other. This implies that the signal from an in-core SPND can provide dynamic information on the neutron flux perturbations occurring inside the reactor core. (authors)

  8. Feasibility study of Self Powered Neutron Detectors in Fast Reactors for detecting local change in neutron flux distribution

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, Christian; Filliatre, Philippe [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St Paul-Lez-Durance, (France); Verma, Vasudha; Hellesen, Carl; Jacobsson Svard, Staffan [Division of Applied Nuclear Physics, Uppsala University, SE-75120 Uppsala, (Sweden)

    2015-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor system. Diverse possibilities of detector systems installation have to be investigated with respect to practicality and feasibility according to the detection parameters. In this paper, we demonstrate the feasibility of using self powered neutron detectors as in-core detectors in fast reactors for detecting local change in neutron flux distribution. We show that the gamma contribution from fission products decay in the fuel and activation of structural materials is very small compared to the fission gammas. Thus, it is possible for the in-core SPND signal to follow changes in local neutron flux as they are proportional to each other. This implies that the signal from an in-core SPND can provide dynamic information on the neutron flux perturbations occurring inside the reactor core. (authors)

  9. Fission product release mechanisms and groupings

    Energy Technology Data Exchange (ETDEWEB)

    Iglesia, F C; Brito, A C; Liu, Y [Ontario Hydro, Toronto, ON (Canada); and others

    1996-12-31

    During CANDU postulated accidents the reactor fuel is estimated to be exposed to a variety of conditions. These conditions are dynamic and, during the course of an accident, the fuel may experience a wide range of temperatures and conditions from highly oxidizing to mildly reducing environments. The exposure of the reactor fuel to these environments and temperatures may affect its stoichiometry and release performance. In this paper a review of the important fission product release mechanisms is presented, the results of three out-of-pile experimental programs are summarized, and fission product release groups, for both oxidizing and reducing conditions are proposed. (author) 92 refs., 6 tabs.

  10. A Virtual Reality Framework to Optimize Design, Operation and Refueling of GEN-IV Reactors

    International Nuclear Information System (INIS)

    Rizwan-uddin; Nick Karancevic; Stefano Markidis; Joel Dixon; Cheng Luo; Jared Reynolds

    2008-01-01

    Many GEN-IV candidate designs are currently under investigation. Technical issues related to material, safety and economics are being addressed at research laboratories, industry and in academia. After safety, economic feasibility is likely to be the most important criterion in the success of GEN-IV design(s). Lessons learned from the designers and operators of GEN-II (and GEN-III) reactors must play a vital role in achieving both safety and economic feasibility goals

  11. A Virtual Reality Framework to Optimize Design, Operation and Refueling of GEN-IV Reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Rizwan-uddin; Nick Karancevic; Stefano Markidis; Joel Dixon; Cheng Luo; Jared Reynolds

    2008-04-23

    many GEN-IV candidate designs are currently under investigation. Technical issues related to material, safety and economics are being addressed at research laboratories, industry and in academia. After safety, economic feasibility is likely to be the most important crterion in the success of GEN-IV design(s). Lessons learned from the designers and operators of GEN-II (and GEN-III) reactors must play a vital role in achieving both safety and economic feasibility goals.

  12. FORIG: a computer code for calculating radionuclide generation and depletion in fusion and fission reactors. User's manual

    International Nuclear Information System (INIS)

    Blink, J.A.

    1985-03-01

    In this manual we describe the use of the FORIG computer code to solve isotope-generation and depletion problems in fusion and fission reactors. FORIG runs on a Cray-1 computer and accepts more extensive activation cross sections than ORIGEN2 from which it was adapted. This report is an updated and a combined version of the previous ORIGEN2 and FORIG manuals. 7 refs., 15 figs., 13 tabs

  13. A new technique to measure fission-product diffusion coefficients in UO2 fuel

    International Nuclear Information System (INIS)

    Hocking, W.H.; Verrall, R.A.; Bushby, S.J.

    1999-01-01

    This paper describes a new out-reactor technique for the measurement of fission-product diffusion rates in UO 2 . The technique accurately simulates in-reactor fission-fragment effects: a thermal diffusion that is due to localized mixing in the fission track, radiation-enhanced diffusion that is due to point-defect creation by fission fragments, and bubble resolution. The technique utilizes heavy-ion accelerators - low energy (40 keV to 1 MeV) for fission-product implantation, high energy (72 MeV) to create fission-fragment damage effects, and secondary ion mass spectrometry (SIMS) for measuring the depth profile of the implanted species. Preliminary results are presented from annealing tests (not in the 72 MeV ion flux) at 1465 deg. C and 1650 deg. C at low and high concentrations of fission products. (author)

  14. A Model to Reproduce the Response of the Gaseous Fission Product Monitor (GFPM) in a CANDU{sup R} 6 Reactor (An Estimate of Tramp Uranium Mass in a Candu Core)

    Energy Technology Data Exchange (ETDEWEB)

    Mostofian, Sara; Boss, Charles [AECL Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga Ontario L5K 1B2 (Canada)

    2008-07-01

    In a Canada Deuterium Uranium (Candu) reactor, the fuel bundles produce gaseous and volatile fission products that are contained within the fuel matrix and the welded zircaloy sheath. Sometimes a fuel sheath can develop a defect and release the fission products into the circulating coolant. To detect fuel defects, a Gaseous Fission Product Monitoring (GFPM) system is provided in Candu reactors. The (GFPM) is a gamma ray spectrometer that measures fission products in the coolant and alerts the operator to the presence of defected fuel through an increase in measured fission product concentration. A background fission product concentration in the coolant also arises from tramp uranium. The sources of the tramp uranium are small quantities of uranium contamination on the surfaces of fuel bundles and traces of uranium on the pressure tubes, arising from the rare defected fuel element that released uranium into the core. This paper presents a dynamic model that reproduces the behaviour of a GFPM in a Candu 6 plant. The model predicts the fission product concentrations in the coolant from the chronic concentration of tramp uranium on the inner surface of the pressure tubes (PT) and the surface of the fuel bundles (FB) taking into account the on-power refuelling system. (authors)

  15. Fission gas measuring technology

    International Nuclear Information System (INIS)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok.

    1998-02-01

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs

  16. Fission gas measuring technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok

    1998-02-01

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs.

  17. Fission reactor container

    International Nuclear Information System (INIS)

    Akagawa, Katsuhiko.

    1991-01-01

    Cooling water is sent without using dynamic equipments upon loss of coolants accident in a pressure vessel by improving an arrangement of a nuclear reactor pressure vessel. That is, a containing space is formed at the center of a suppression chamber for storing cooling water while being partitioned with each other, in which the pressure vessel is placed. Further, a water reservoir is formed above the pressure vessel. Then a water discharge pipe is connected to the reservoir for submerging the stored water over the pressure vessel upon occurrence of loss of coolants accident. Further, a water injection pipe is disposed between the pressure suppression chamber and the pressure vessel for injecting the cooling water in the pressure suppression chamber to the reactor core of the pressure vessel by the difference of a water head upon loss of coolants accident. With such a constitution, the pressure vessel has high earthquake proofness. Further, upon loss of coolants accident of the pressure vessel, the cooling water in the reservoir is discharged to submerge and cool the pressure vessel efficiently. Further, the reactor core of the pressure vessel can certainly be cooled by the cooling water of the pressure suppression chamber without relying on dynamic equipments. (I.S.)

  18. NEET Enhanced Micro Pocket Fission Detector for High Temperature Reactors - FY15 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Unruh, Troy [Idaho National Lab. (INL), Idaho Falls, ID (United States); McGregor, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ugorowski, Phil [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reichenberger, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ito, Takashi [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    A new project, that is a collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Atomic Energy Agency, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), has been initiated by the Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and Instrumentation (ASI) program for developing and testing High Temperature Micro-Pocket Fission Detectors (HT MPFD), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package for temperatures up to 800 °C. The MPFD technology utilizes a small, multi-purpose, robust, in-core parallel plate fission chamber and thermocouple. As discussed within this report, the small size, variable sensitivity, and increased accuracy of the MPFD technology represent a revolutionary improvement over current methods used to support irradiations in US Material Test Reactors (MTRs). Previous research conducted through NEET ASI1-3 has shown that the MPFD technology could be made robust and was successfully tested in a reactor core. This new project will further the MPFD technology for higher temperature regimes and other reactor applications by developing a HT MPFD suitable for temperatures up to 800 °C. This report summarizes the research progress for year one of this three year project. Highlights from research accomplishments include: A joint collaboration was initiated between INL, KSU, and CEA. Note that CEA is participating at their own expense because of interest in this unique new sensor. An updated HT MPFD design was developed. New high temperature-compatible materials for HT MPFD construction were procured. Construction methods to support the new design were evaluated at INL. Laboratory evaluations of HT MPFD were initiated. Electrical contact and fissile material plating has been performed at KSU. Updated detector electronics are undergoing evaluations at KSU. A

  19. Laser solenoid fusion--fission design

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Taussig, R.T.

    1976-01-01

    The dependence of breeding performance on system engineering parameters is examined for laser solenoid fusion-fission reactors. Reactor performance is found to be relatively insensitive to most of the engineering parameters, and compact designs can be built based on reasonable technologies. Point designs are described for the prototype series of reactors (mid-term technologies) and for second generation systems (advanced technologies). It is concluded that the laser solenoid has a good probability of timely application to fuel breeding needs

  20. IGORR-IV: Proceedings of the fourth meeting of the International Group On Research Reactors

    International Nuclear Information System (INIS)

    Rosenbalm, K.F.

    1995-01-01

    The fourth meeting of the International Group on Research Reactors (IGORR-IV) was attended by was good 55 registered participants from 28 organizations in 13 countries, which compares well with the previous meetings. Twenty-nine papers were presented in five sessions over the two-day meeting. Session subjects were: Operating Research Reactors and Facility Upgrades; Research Reactors in Desin and Construction; Research, Development, and Analysis Results of Thermal Hydraulic Calculations, U 3 Si 2 Fuel Performance and Faibrication; Structural Materials Performance; Neutronics; Severe Accident analysis. Written versions of the papers or hard copies of the viewgraphs used are published in these Proceedings

  1. Two billion year old natural analogs for nuclear waste disposal: the natural nuclear fission reactors in Gabon (Africa)

    International Nuclear Information System (INIS)

    Gauthier-Lafaye, F.

    2002-01-01

    Two billion years ago, the increase of oxygen in atmosphere and the high 235 U/ 238 U uranium ratio (> 3%) made possible the occurrence of natural nuclear reactors on Earth. These reactors are considered to be a good natural analogue for nuclear waste disposal. Their preservation during such a long period of time is mainly due to the geological stability of the site, the occurrence of clays surrounding the reactors and acting as an impermeable shield, and the occurrence of organic matter that maintained the environment in reducing conditions, favourable for the stability of uraninite. Hydrogeochemical studies and modelling have shown the complexity of the geochemical system at Oklo and Bangombe (Gabon) and the lack of precise data about uranium and fission products retention and migration mechanisms in geological environments. (author)

  2. Method to Reduce Long-lived Fission Products by Nuclear Transmutations with Fast Spectrum Reactors.

    Science.gov (United States)

    Chiba, Satoshi; Wakabayashi, Toshio; Tachi, Yoshiaki; Takaki, Naoyuki; Terashima, Atsunori; Okumura, Shin; Yoshida, Tadashi

    2017-10-24

    Transmutation of long-lived fission products (LLFPs: 79 Se, 93 Zr, 99 Tc, 107 Pd, 129 I, and 135 Cs) into short-lived or non-radioactive nuclides by fast neutron spectrum reactors without isotope separation has been proposed as a solution to the problem of radioactive wastes disposal. Despite investigation of many methods, such transmutation remains technologically difficult. To establish an effective and efficient transmutation system, we propose a novel neutron moderator material, yttrium deuteride (YD 2 ), to soften the neutron spectrum leaking from the reactor core. Neutron energy spectra and effective half-lives of LLFPs, transmutation rates, and support ratios were evaluated with the continuous-energy Monte Carlo code MVP-II/MVP-BURN and the JENDL-4.0 cross section library. With the YD 2 moderator in the radial blanket and shield regions, effective half-lives drastically decreased from 106 to 102 years and the support ratios reached 1.0 for all six LLFPs. This successful development and implementation of a transmutation system for LLFPs without isotope separation contributes to a the ability of fast spectrum reactors to reduce radioactive waste by consuming their own LLFPs.

  3. Conceptual innovations in hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Miley, G.H.

    1980-01-01

    A number of innovations in the conception of fusion-fission hybrid reactors, including the blanket, the fusion driver, the coupling of the fusion and the fission components as well as the application of hybrid reactors are described, and their feasibility assessed

  4. Overview of Fusion-Fission Hybrid Reactor Design Study in China

    International Nuclear Information System (INIS)

    Huang Jinhua; Feng Kaiming; Deng Baiquan; Deng, P.Zh.; Zhang Guoshu; Hu Gang; He Kaihui; Wu Yican; Qiu Lijian; Huang Qunying; Xiao Bingjia; Liu Xiaoping; Chen Yixue; Kong, M.H.

    2002-01-01

    The motivation for developing fusion-fission hybrid reactors is discussed in the context of electricity power requirements by 2050 in China. A detailed conceptual design of the Fusion Experimental Breeder (FEB) was developed from 1986-1995. The FEB has a subignited tokamak fusion core with a major radius of 4.0 m, a fusion power of 145 MW, and a fusion energy gain Q of 3. Based on this, an engineering outline design study of the FEB, FEB-E, has been performed. This design study is a transition from conceptual to engineering design in this research. The main results beyond that given in the detailed conceptual design are included in this paper, namely, the design studies of the blanket, divertor, test blanket, and tritium and environment issues. In-depth analyses have been performed to support the design. Studies of related advanced concepts such as the waste transmutation blanket concept and the spherical tokamak core concept are also presented

  5. Experimental verification of the fission chamber gamma signal suppression by the Campbelling mode

    Energy Technology Data Exchange (ETDEWEB)

    Vermeeren, L.; Weber, M. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Oriol, L.; Breaud, S.; Filliatre, P.; Geslot, B.; Jammes, C. [CEA, Centre de Cadarache, F-13109 Saint-Paul-lez-Durance (France); Normand, S.; Lescop, B. [CEA, Centre de Saclay, F-91191 Gif sur Yvette Cedex (France)

    2009-07-01

    For the on-line monitoring of high fast neutron fluxes in the presence of a strong thermal neutron component, SCK-CEN and CEA are jointly developing a Fast Neutron Detector System, based on {sup 242}Pu fission chambers as sensors and including dedicated electronics and data processing systems. Irradiation tests in the BR2 reactor of {sup 242}Pu fission chambers operating in current mode showed that in typical MTR (Materials Test Reactors) conditions the fission chamber currents are dominated by the gamma contribution. In order to reduce the gamma contribution to the signal, it was proposed to use the fission chambers in Campbelling mode. An irradiation experiment in the BR2 reactor with a {sup 242}Pu and a {sup 235}U fission chamber, both equipped with a suitable cable for measurements in Campbelling mode, proved the effectiveness of the suppression of the gamma-induced signal component by the Campbelling mode: gamma contribution reduction factors of 26 for the {sup 235}U fission chamber and more than 80 for the {sup 242}Pu fission chamber were obtained. The experimental data also prove that photofission contributions are negligibly small. Consequently, in typical MTR conditions the gamma contribution to the fission chamber Campbelling signal can be neglected. (authors)

  6. Determination of the fission products yields, lanthanide and yttrium, in the fission of 238U with neutrons of fission spectra

    International Nuclear Information System (INIS)

    Nicoli, I.G.

    1981-06-01

    A radiochemical investigation is performed to measure the cumulative fission product yields of several lantanides and yttrium nuclides in the 238 U by fission neutron spectra. Natural and depleted uranium are irradiated under the same experimental conditions in order to find a way to subtract the contribution of the 235 U fission. 235 U percentage in the natural uranium was 3.5 times higher than in the depleted uranium. Uranium oxides samples are irradiated inside the core of the Argonaut Reactor, at the Instituto de Engenharia Nuclear, and the lantanides and yttrium are chemically separated. The fission products gamma activities were detected, counted and analysed in a system constituted by a high resolution Ge(Li) detector, 4096 multichannel analyser and a PDP-11 computer. Cumulative yields for fission products with half-lives between 1 to 33 hours are measured: 93 Y, 141 La, 142 La, 143 Ce and 149 Nd. The chain total yields are calculated. The cumulative fission yields measured for 93 Y, 141 La, 142 La, 143 Ce and 149 Nd are 4,49%, 4,54%, 4,95%, 4,16% and 1,37% respectively and they are in good agreement with the values found in the literature. (Author) [pt

  7. Investigation of applications for high-power, self-critical fissioning uranium plasma reactors. Final technical report

    International Nuclear Information System (INIS)

    Rodgers, R.J.; Latham, T.S.; Krascella, N.L.

    1976-09-01

    Analytical studies were conducted to investigate potentially attractive applications for gaseous nuclear cavity reactors fueled by uranium hexafluoride and its decomposition products at temperatures of 2000 to 6000 K and total pressures of a few hundred atmospheres. Approximate operating conditions and performance levels for a class of nuclear reactors in which fission energy removal is accomplished principally by radiant heat transfer from the high temperature gaseous nuclear fuel to surrounding absorbing media were determined. The results show the radiant energy deposited in the absorbing media may be efficiently utilized in energy conversion system applications which include (1) a primary energy source for high thrust, high specific impulse space propulsion, (2) an energy source for highly efficient generation of electricity, and (3) a source of high intensity photon flux for heating working fluid gases for hydrogen production or MHD power extraction. (Author)

  8. NOMAGE4 activities 2011. Part I, Nordic Nuclear Materials Forum for Generation IV Reactors: Status and activities in 2011

    International Nuclear Information System (INIS)

    Van Nieuwenhove, R.

    2012-01-01

    A network for materials issues has been initiated in 2009 within the Nordic countries. The original objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) were to form the basis of a sustainable forum for Gen-IV issues, especially focusing on fuels, cladding, structural materials and coolant interaction. Over the last years, other issues such as reactor physics, thermal hydraulics, safety and waste have gained in importance (within the network) and therefore the scope of the forum has been enlarged and a more appropriate and more general name, NORDIC-GEN4, has been chosen for the forum. Further, the interaction with non-Nordic countries (such as The Netherlands (JRC, NRG) and Czech Republic (CVR)) will be increased. Within the NOMAGE4 project, a seminar was organized by IFE-Halden during 31 October - 1 November 2011. The seminar attracted 65 participants from 12 countries. The seminar provided a forum for exchange of information, discussion on future research reactor needs and networking of experts on Generation IV reactor concepts. The participants could also visit the Halden reactor site and the workshop. (Author)

  9. NOMAGE4 activities 2011. Part I, Nordic Nuclear Materials Forum for Generation IV Reactors: Status and activities in 2011

    Energy Technology Data Exchange (ETDEWEB)

    Van Nieuwenhove, R. (Institutt for Energiteknikk, OECD Halden Reactor Project (Norway))

    2012-01-15

    A network for materials issues has been initiated in 2009 within the Nordic countries. The original objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) were to form the basis of a sustainable forum for Gen-IV issues, especially focusing on fuels, cladding, structural materials and coolant interaction. Over the last years, other issues such as reactor physics, thermal hydraulics, safety and waste have gained in importance (within the network) and therefore the scope of the forum has been enlarged and a more appropriate and more general name, NORDIC-GEN4, has been chosen for the forum. Further, the interaction with non-Nordic countries (such as The Netherlands (JRC, NRG) and Czech Republic (CVR)) will be increased. Within the NOMAGE4 project, a seminar was organized by IFE-Halden during 31 October - 1 November 2011. The seminar attracted 65 participants from 12 countries. The seminar provided a forum for exchange of information, discussion on future research reactor needs and networking of experts on Generation IV reactor concepts. The participants could also visit the Halden reactor site and the workshop. (Author)

  10. Fission fragment simulation of fusion neutron radiation effects on bulk mechanical properties

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; Mitchell, J.B.; Guinan, M.W.; Stuart, R.N.; Borg, R.J.

    1976-01-01

    This research demonstrates the feasibility of using homogeneously-generated fission fragments to simulate high-fluence fusion neutron damage in niobium tensile specimens. This technique makes it possible to measure radiation effects on bulk mechanical properties at high damage states, using conveniently short irradiation times. The primary knock-on spectrum for a fusion reactor is very similar to that produced by fission fragments, and nearly the same ratio of gas atoms to displaced atoms is produced in niobium. The damage from fission fragments is compared to that from fusion neutrons and fission reactor neutrons in terms of experimentally measured yield strength increase, transmission electron microscopy (TEM) observations, and calculated damage energies

  11. Light water reactor fuel analysis code FEMAXI-IV(Ver.2). Detailed structure and user's manual

    International Nuclear Information System (INIS)

    Suzuki, Motoe; Saitou, Hiroaki.

    1997-11-01

    A light water reactor fuel behavior analysis code FEMAXI-IV(Ver.2) was developed as an improved version of FEMAXI-IV. Development of FEMAXI-IV has been already finished in 1992, though a detailed structure and input manual of the code have not been open to users yet. Here, the basic theories and structure, the models and numerical solutions applied to FEMAXI-IV(Ver.2), and the material properties adopted in the code are described in detail. In FEMAXI-IV(Ver.2), programming bugs in previous FEMAXI-IV were eliminated, renewal of the pellet thermal conductivity was performed, and a model of thermal-stress restraint on FP gas release was incorporated. For facilitation of effective and wide-ranging application of the code, methods of input/output of the code are also described in detail, and sample output is included. (author)

  12. IRIS - Generation IV Advanced Light Water Reactor for Countries with Small and Medium Electricity Grids

    International Nuclear Information System (INIS)

    Carelli, M. D.

    2002-01-01

    An international consortium of industry, laboratory, university and utility establishments, led by Westinghouse, is developing a Generation IV Reactor, International Reactor Innovative and Secure (IRIS). IRIS is a modular, integral, light water cooled, low-to-medium power (100-350 MWe) reactor which addresses the requirements defined by the US DOE for Generation IV reactors, i.e., fuel cycle sustainability, enhanced reliability and safety, and improved economics. It features innovative, advanced engineering, but it does not require new technology development since it relies on the proven technology of light water reactors. This paper presents the current reference IRIS design, which features a 1000 MWt thermal core with proven 5%-enriched uranium oxide fuel and four-year long straight burn fuel cycle, integral reactor vessel housing helical tube steam generators and immersed spool pumps. Other major contributors to the high level of safety and economic attractiveness are the safety by design and optimized maintenance approaches, which allow elimination of some classes of accidents, lower capital cost, long operating cycle, and high capacity factors. The path forward for possible future extension to a eight-year cycle will be also discussed. IRIS has a large potential worldwide market because of its proven technology, modularity, low financing, compatibility with existing grids and very limited infrastructure requirements. It is especially appealing to developing countries because of ease of operation and because its medium power is more adaptable to smaller grids. (author)

  13. Fission Fragment Yield Data in Support of Advanced Reactor Technology

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, Adam [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-11-21

    Within the 3 year POP we propose to continue to test and further develop the fission spectrometers, to do development tests and full data acquisition run at the national laboratory neutron beam facilities, to measure correlated fission fragment yields at low neutron energies with 235 U fission targets, and make these data available to the nuclear community. The spectrometer development will be both on the university based r\\prototype and on the National Laboratory Spectrometer, and measurements will be performed with both. Over the longer time frame of the collaboration, we will take data over a range of low energies, and use other fission targets available to the laboratory. We will gather energy specific fragment distributions and reaction cross sections. We will further develop the data acquisition capabilities to take correlated fission fragment'gamma ray/neurton data, all on an event-by-event basis. This really is an enabling technology.

  14. Proceedings of the Second Fusion-Fission Energy Systems Review Meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-11-02

    The agenda of the meeting was developed to address, in turn, the following major areas: specific problem areas in nuclear energy systems for application of fusion-fission concepts; current and proposed fusion-fission programs in response to the identified problem areas; target costs and projected benefits associated with fusion-fission energy systems; and technical problems associated with the development of fusion-fission concepts. The greatest emphasis was placed on the characteristics of and problems, associated with fuel producing fusion-fission hybrid reactors.

  15. Fission-product releases from a PHWR terminal debris bed

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.J.; Bailey, D.G., E-mail: morgan.brown@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    During an unmitigated severe accident in a pressurized heavy water reactor (PHWR) with horizontal fuel channels, the core may disassemble and relocate to the bottom of the calandria vessel. The resulting heterogeneous in-vessel terminal debris bed (TDB) would likely be quenched by any remaining moderator, and some of the decay heat would be conducted through the calandria vessel shell to the surrounding reactor vault or shield tank water. As the moderator boiled off, the solid debris bed would transform into a more homogeneous molten corium pool located between top and bottom crusts. Until recently, the severe accident code MAAP-CANDU assumed that unreleased volatile and semi-volatile fission products remained in the TDB until after calandria vessel failure, due to low diffusivity through the top crust and the lack of gases or steam to flush released fission products from the debris. However, national and international experimental results indicate this assumption is unlikely; instead, high- and medium-volatility fission products would be released from a molten debris pool, and their volatility and transport should be taken into account in TDB modelling. The resulting change in the distribution of fission products within the reactor and containment, and the associated decay heat, can have significant effects upon the progression of the accident and fission-product releases to the environment. This article describes a postulated PHWR severe accident progression to generate a TDB and the effects of fission-product releases from the terminal debris, using the simple release model in the MAAP-CANDU severe accident code. It also provides insights from various experimental programs related to fission-product releases from core debris, and their applicability to the MAAP-CANDU TDB model. (author)

  16. Neutronic performance of a fusion-fission hybrid reactor designed for fuel enrichment for LWRs

    International Nuclear Information System (INIS)

    Yapici, H.; Baltacioglu, E.

    1997-01-01

    In this study, the breeding performance of a fission hybrid reactor was analyzed to provide fissile fuel for Light Water Reactors (LWR) as an alternative to the current methods of gas diffusion and gas centrifuge. LWR fuel rods containing UO 2 or ThO 2 fertile material were located in the fuel zone of the blanket and helium gas or Flibe (Li 2 BeF 4 ) fluid was used as coolant. As a result of the analysis, according to fusion driver (D,T and D,D) and the type of coolant the enrichment of 3%-4% were achieved for operation periods of 12 and 36 months in case of fuel rods containing UO 2 , respectively and for operation periods of 18 and 48 months in case of fuel rods containing ThO 2 , respectively. Depending on the type of fusion driver, coolant and fertile fuel, varying enrichments of between 3% and 8.9% were achieved during operation period of four years

  17. Investigation of materials for fusion power reactors

    Science.gov (United States)

    Bouhaddane, A.; Slugeň, V.; Sojak, S.; Veterníková, J.; Petriska, M.; Bartošová, I.

    2014-06-01

    The possibility of application of nuclear-physical methods to observe radiation damage to structural materials of nuclear facilities is nowadays a very actual topic. The radiation damage to materials of advanced nuclear facilities, caused by extreme radiation stress, is a process, which significantly limits their operational life as well as their safety. In the centre of our interest is the study of the radiation degradation and activation of the metals and alloys for the new nuclear facilities (Generation IV fission reactors, fusion reactors ITER and DEMO). The observation of the microstructure changes in the reactor steels is based on experimental investigation using the method of positron annihilation spectroscopy (PAS). The experimental part of the work contains measurements focused on model reactor alloys and ODS steels. There were 12 model reactor steels and 3 ODS steels. We were investigating the influence of chemical composition on the production of defects in crystal lattice. With application of the LT 9 program, the spectra of specimen have been evaluated and the most convenient samples have been determined.

  18. Some applications of fission-based testing capabilities in the development of fusion technology

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Deis, G.A.; Longhurst, G.R.; Masson, L.S.; Miller, L.G.; Schmunk, R.E.; Takata, M.L.; Watts, K.D.

    1981-10-01

    The testing of fusion materials and components in fission reactors will be increasingly important in the future due to the near-term lack of fusion engineering test devices, and the long-term high demand for fusion testing when they do become available. Fission testing is capable of filling many gaps in fusion reactor design information, and should be aggressively pursued. EG and G Idaho has investigated the application of fission testing in three areas, which are discussed in this paper. First, work was performed on the irradiation of magnet insulators. This work is continuing with an improved test environment. Second, a study was performed which indicated that a fission-suppressed hybrid blanket module could be effectively tested in a reactor such as the Engineering Test Reactor (ETR), closely reproducing the predicted performance in a fusion environment. Finally, a conceptual design is presented for a fission-based Integrated Test Facility (ITF), which can accommodate entire wall/blanket (FW/B) modules for testing in a nuclear environment, simultaneously satisfying many of the FW/B test requirements. This ITF can provide a cyclic neutron/gamma flux, as well as the necessary module support functions

  19. A standard fission neutron irradiation facility

    International Nuclear Information System (INIS)

    Sahasrabudhe, S.G.; Chakraborty, P.P.; Iyer, M.R.; Kirthi, K.N.; Soman, S.D.

    1979-01-01

    A fission neutron irradiation facility (FISNIF) has been set up at the thermal column of the CIRUS reactor at BARC. The spectrum and the flux have been measured using threshold detectors. The paper describes the setting up of the facility, measurement and application. A concentric cylinder containing UO 2 powder sealed inside surrounds the irradiation point of a pneumatic sample transfer system located in the thermal column of the reactor. Samples are loaded in a standard aluminium capsule with cadmium lining and transported pneumatically. A sample transfer time of 1 s can be achieved in the facility. Typical applications of the facility for studying activation of iron and sodium in fission neutrons are also discussed. (Auth.)

  20. Neutron induced fission of 237Np – status, challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Ruskov Ivan

    2018-01-01

    Full Text Available Nowadays, there is an increased interest in a complete study of the neutron-induced fission of 237Np. This is due to the need of accurate and reliable nuclear data for nuclear science and technology. 237Np is generated (and accumulated in the nuclear reactor core during reactor operation. As one of the most abundant long-lived isotopes in spent fuel (“waste”, the incineration of 237Np becomes an important issue. One scenario for burning of 237Np and other radio-toxic minor actinides suggests they are to be mixed into the fuel of future fast-neutron reactors, employing the so-called transmutation and partitioning technology. For testing present fission models, which are at the basis of new generation nuclear reactor developments, highly accurate and detailed neutron-induced nuclear reaction data is needed. However, the EXFOR nuclear database for 237Np on neutron-induced capture cross-section, σγ, and fission cross-section, σf, as well as on the characteristics of capture and fission resonance parameters (Γγ, Γf, σoΓf, fragments mass-energy yield distributions, multiplicities of neutrons vn and γ-rays vγ, has not been updated for decades.

  1. Nuclear reactor

    International Nuclear Information System (INIS)

    Schulze, I.; Gutscher, E.

    1980-01-01

    The core contains a critical mass of UN or U 2 N 3 in the form of a noncritical solution with melted Sn being kept below a N atmosphere. The lining of the reactor core consists of graphite. If fission progresses part of the melted metal solution is removed and cleaned from fission products. The reactor temperatures lie in the range of 300 to 2000 0 C. (Examples and tables). (RW) [de

  2. Consultancy to review and finalize the IAEA publication 'Compendium on the use of fusion/fission hybrids for the utilization and transmutation of actinides and long-lived fission products'. Working material

    International Nuclear Information System (INIS)

    2004-01-01

    In addition to the traditional fission reactor research, fusion R and D activities are becoming of interest also to nuclear fission power development. There is renewed interest in utilizing fusion neutrons, Heavy Liquid Metals, and molten salts for innovative systems (energy production and transmutation). Indeed, for nuclear power development to become sustainable as a long-term energy option, innovative fuel cycle and reactor technologies will have to be developed to solve the problems of resource utilization and long-lived radioactive waste management. In this context Member States clearly expressed the need for comparative assessments of various transmutation reactors. Both the fusion and fission communities are currently investigating the potential of innovative reactor and fuel cycle strategies that include a fusion/fission system. The attention is mainly focused on substantiating the potential advantages of such systems: utilization and transmutation of actinides and long-lived fission products, intrinsic safety features, enhanced proliferation resistance, and fuel breeding capabilities. An important aspect of the ongoing activities is the comparison with the accelerator driven subcritical system (spallation neutron source), which is the other main option for producing excess neutrons. Apart from comparative assessments, knowledge preservation is another subject of interest to the Member States: the goal, applied to fusion/fission systems, is to review the status of, and to produce a 'compendium' of past and present achievements in this area

  3. Diversification of 99Mo/99mTc separation: non–fission reactor production of 99Mo as a strategy for enhancing 99mTc availability.

    Science.gov (United States)

    Pillai, Maroor R A; Dash, Ashutosh; Knapp, Furn F Russ

    2015-01-01

    This paper discusses the benefits of obtaining (99m)Tc from non-fission reactor-produced low-specific-activity (99)Mo. This scenario is based on establishing a diversified chain of facilities for the distribution of (99m)Tc separated from reactor-produced (99)Mo by (n,γ) activation of natural or enriched Mo. Such facilities have expected lower investments than required for the proposed chain of cyclotrons for the production of (99m)Tc. Facilities can receive and process reactor-irradiated Mo targets then used for extraction of (99m)Tc over a period of 2 wk, with 3 extractions on the same day. Estimates suggest that a center receiving 1.85 TBq (50 Ci) of (99)Mo once every 4 d can provide 1.48-3.33 TBq (40-90 Ci) of (99m)Tc daily. This model can use research reactors operating in the United States to supply current (99)Mo needs by applying natural (nat)Mo targets. (99)Mo production capacity can be enhanced by using (98)Mo-enriched targets. The proposed model reduces the loss of (99)Mo by decay and avoids proliferation as well as waste management issues associated with fission-produced (99)Mo.

  4. Innovative reactor core: potentialities and design

    International Nuclear Information System (INIS)

    Artioli, C.; Petrovich, Carlo; Grasso, Giacomo

    2010-01-01

    Gen IV nuclear reactors are considered a very attractive answer for the demand of energy. Because public acceptance they have to fulfil very clearly the requirement of sustainable development. In this sense a reactor concept, having by itself a rather no significant interaction with the environment both on the front and back end ('adiabatic concept'), is vital. This goal in mind, a new way of designing such a core has to be assumed. The starting point must be the 'zero impact'. Therefore the core will be designed having as basic constraints: a) fed with only natural or depleted Uranium, and b) discharges only fission products. Meantime its potentiality as a net burner of Minor Actinide has to be carefully estimated. This activity, referred to the ELSY reactor, shows how to design such an 'adiabatic' core and states its reasonable capability of burning MA legacy in the order of 25-50 kg/GW e y. (authors)

  5. Evaluation of transmutation performance of long-lived fission products with a super fast reactor

    International Nuclear Information System (INIS)

    Lu, Haoliang; Han, Chiyoung; Oka, Yoshiaki; Ikejiri, Satoshi; Ishiwatari, Yuki

    2009-01-01

    The performance of the Super Fast Reactor for transmutation treatment of long-lived fission products (LLFPs) was evaluated. Two regions with soft neutron spectrum, which is of great benefit to the LLFPs transmutation, can be utilized in the Super Fast Reactor. First is in the blanket assembly due to the ZrH 1.7 layer which can slow down the fast neutrons. Second is in the reflector region of core like other metal-cooled fast reactors. The LLFPs selected of transmutation analysis include 99 Tc, 129 I and 135 Cs discharged from LWR. Their isotopes, such as 127 I, 133 Cs, 134 Cs and 137 Cs were also considered. By loading the isotopes ( 99 Tc or 127 I and 129 I) in the blanket assembly and the reflector region simultaneously, the transmutation rates of 5.36%/GWe·y and 2.79%/GWe.y can be obtained for 99 Tc and 129 I, respectively. The transmuted amounts of 99 Tc and 129 I are equal to the outputs from 11.8 and 6.2 1000MWe-class PWRs. Because of the very low capture cross section of 135 Cs and the effect of other cesium isotopes, 135 Cs was loaded with three rings of assemblies in the reflector region to make the transmuted amount be larger than the yields of two 1000MWe-class PWRs. Based on these results, 99 Tc and 129 I can be transmuted conveniently and higher transmutation performance can be obtained by the Super Fast Reactor. However, the transmutation of 135 Cs is very difficult and the transmuted amount is less than that produced by the Super Fast Reactor. It turns out that the 135 Cs transmutation is a challenge not only for the Super Fast Reactor but also for other commercial fast reactors. (author)

  6. Fuel assembly for FBR type reactor and reactor core thereof

    International Nuclear Information System (INIS)

    Kobayashi, Kaoru.

    1998-01-01

    The present invention provides a fuel assembly to be loaded to a reactor core of a large sized FBR type reactor, in which a coolant density coefficient can be reduced without causing power peaking in the peripheral region of neutron moderators loaded in the reactor core. Namely, the fuel assembly for the FBR type reactor comprises a plurality of fission product-loaded fuel rods and a plurality of fertile material-loaded fuel rods and one or more rods loading neutron moderators. In this case, the plurality of fertile material-loaded fuel rods are disposed to the peripheral region of the neutron moderator-loaded rods. The plurality of fission product-loaded fuel rods are disposed surrounding the peripheral region of the plurality of fertile material-loaded fuel rods. The neutron moderator comprises zirconium hydride, yttrium hydride and calcium hydride. The fission products are mixed oxide fuels. The fertile material comprises depleted uranium or natural uranium. (I.S.)

  7. Neutron-induced fission cross sections

    International Nuclear Information System (INIS)

    Weigmann, H.

    1991-01-01

    In the history of fission research, neutron-induced fission has always played the most important role. The practical importance of neutron-induced fission rests upon the fact that additional neutrons are produced in the fission process, and thus a chain reaction becomes possible. The practical applications of neutron-induced fission will not be discussed in this chapter, but only the physical properties of one of its characteristics, namely (n,f) cross sections. The most important early summaries on the subject are the monograph edited by Michaudon which also deals with the practical applications, the earlier review article on fission by Michaudon, and the review by Bjornholm and Lynn, in which neutron-induced fission receives major attention. This chapter will attempt to go an intermediate way between the very detailed theoretical treatment in the latter review and the cited monograph which emphasizes the applied aspects and the techniques of fission cross-section measurements. The more recent investigations in the field will be included. Section II will survey the properties of cross sections for neutron-induced fission and also address some special aspects of the experimental methods applied in their measurement. Section Ill will deal with the formal theory of neutron-induced nuclear reactions for the resolved resonance region and the region of statistical nuclear reactions. In Section IV, the fission width, or fission transmission coefficient, will be discussed in detail. Section V will deal with the broader structures due to incompletely damped vibrational resonances, and in particular will address the special case of thorium and neighboring isotopes. Finally, Section VI will briefly discuss parity violation effects in neutron-induced fission. 74 refs., 14 figs., 3 tabs

  8. On fusion and fission breeder reactors

    International Nuclear Information System (INIS)

    Brandt, B.; Schuurman, W.; Klippel, H.Th.

    1981-02-01

    Fast breeder reactors and fusion reactors are suitable candidates for centralized, long-term energy production, their fuel reserves being practically unlimited. The technology of a durable and economical fusion reactor is still to be developed. Such a development parallel with the fast breeder is valuable by reasons of safety, proliferation, new fuel reserves, and by the very broad potential of the development of the fusion reactor. In order to facilitate a discussion of these aspects, the fusion reactor and the fast breeder reactor were compared in the IIASA-report. Aspects of both reactor systems are compared

  9. Nuclear data for fission reactor core design and safety analysis: Requirements and status of accuracy of nuclear data

    International Nuclear Information System (INIS)

    Rowlands, J.L.

    1984-01-01

    The types of nuclear data required for fission reactor design and safety analysis, and the ways in which the data are represented and approximated for use in reactor calculations, are summarised first. The relative importance of different items of nuclear data in the prediction of reactor parameters is described and ways of investigating the accuracy of these data by evaluating related integral measurements are discussed. The use of sensitivity analysis, together with estimates of the uncertainties in nuclear data and relevant integral measurements, in assessing the accuracy of prediction of reactor parameters is described. The inverse procedure for deciding nuclear data requirements from the target accuracies for prediction of reactor parameters follows on from this. The need for assessments of the uncertainties in nuclear data evaluations and the form of the uncertainty information is discussed. The status of the accuracies of predictions and nuclear data requirements are then summarised. The reactor parameters considered include: (a) Criticality conditions, conversion and burn-up effects. (b) Energy production and deposition, decay heating, irradiation damage, dosimetry and induced radioactivity. (c) Kinetics characteristics and control, including temperature, power and coolant density coefficients, delayed neutrons and control absorbers. (author)

  10. Transport properties of fission product vapors

    International Nuclear Information System (INIS)

    Im, K.H.; Ahluwalia, R.K.

    1983-07-01

    Kinetic theory of gases is used to calculate the transport properties of fission product vapors in a steam and hydrogen environment. Provided in tabular form is diffusivity of steam and hydrogen, viscosity and thermal conductivity of the gaseous mixture, and diffusivity of cesium iodide, cesium hydroxide, diatomic tellurium and tellurium dioxide. These transport properties are required in determining the thermal-hydraulics of and fission product transport in light water reactors

  11. IGORR-IV: Proceedings of the fourth meeting of the International Group On Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbalm, K F [comp.

    1995-07-01

    The fourth meeting of the International Group on Research Reactors (IGORR-IV) was attended by was good 55 registered participants from 28 organizations in 13 countries, which compares well with the previous meetings. Twenty-nine papers were presented in five sessions over the two-day meeting. Session subjects were: Operating Research Reactors and Facility Upgrades; Research Reactors in Desin and Construction; Research, Development, and Analysis Results of Thermal Hydraulic Calculations, U{sub 3}Si{sub 2} Fuel Performance and Faibrication; Structural Materials Performance; Neutronics; Severe Accident analysis. Written versions of the papers or hard copies of the viewgraphs used are published in these Proceedings.

  12. The encapsulated nuclear heat source reactor for proliferation-resistant nuclear energy

    International Nuclear Information System (INIS)

    Brown, N.W.; Hossain, Q.; Carelli, M.D.; Conway, L.; Dzodzo, M.; Greenspan, E.; Saphier, D.

    2001-01-01

    The encapsulated nuclear heat source (ENHS) is a modular reactor that was selected by the 1999 DOE NERI program as a candidate ''Generation-IV'' reactor concept. It is a fast neutron spectrum reactor cooled by Pb-Bi using natural circulation. It is designed for passive load following, for high level of passive safety, and for 15 years without refueling. One of the unique features of the ENHS is that the fission-generated heat is transferred from the primary coolant to the secondary coolant across the reactor vessel wall by conduction-providing for an essentially sealed module that is easy to install and replace. Because the fuel is encapsulated within a heavy steel container throughout its life it provides a unique improvement to the proliferation resistance of the nuclear fuel cycle. This paper presents the innovative technology of the ENHS. (author)

  13. Target conception for the Munich fission fragment accelerator

    CERN Document Server

    Maier, H J; Gross, M L; Grossmann, R; Kester, O; Thirolf, P

    1999-01-01

    For the new high-flux reactor FRM II, the fission fragment accelerator MAFF is under design. MAFF will supply intense mass-separated radioactive ion beams of very neutron-rich nuclei with energies around the Coulomb barrier. A central part of this accelerator is the ion source with the fission target, which is operated at a neutron flux of 1.5x10 sup 1 sup 4 cm sup - sup 2 s sup - sup 1. The target consists of typically 1 g of sup 2 sup 3 sup 5 U dispersed in a cylindrical graphite matrix, which is encapsulated in a Re container. To enable diffusion and extraction of the fission products, the target has to be maintained at a temperature of up to 2400 deg. C during operation. It has to stand this temperature for at least one reactor cycle of 1250 h. Comprehensive tests are required to study the long-term behaviour of the involved materials at these conditions prior to operation in the reactor. The present paper gives details of the target conception and the projected tests.

  14. Fission gas release of MOX with heterogeneous structure

    International Nuclear Information System (INIS)

    Nakae, N.; Akiyama, H.; Kamimura, K; Delville, R.; Jutier, F.; Verwerft, M.; Miura, H.; Baba, T.

    2015-01-01

    It is very useful for fuel integrity evaluation to accumulate knowledge base on fuel behavior of uranium and plutonium mixed oxide (MOX) fuel used in light water reactors (LWRs). Fission gas release is one of fuel behaviors which have an impact on fuel integrity evaluation. Fission gas release behavior of MOX fuels having heterogeneous structure is focused in this study. MOX fuel rods with a heterogeneous fuel microstructure were irradiated in Halden reactor (IFA-702) and the BR-3/BR-2 CALLISTO Loop (CHIPS program). The 85 Kr gamma spectrometry measurements were carried out in specific cycles in order to examine the concerned LHR (Linear Heat Rate) for fission gas release in the CHIPS program. The concerned LHR is defined in this paper to be the LHR at which a certain additional fission gas release thermally occurs. Post-irradiation examination was performed to understand the fission gas release behavior in connection with the pellet microstructure. The followings conclusions can be made from this study. First, the concerned LHR for fission gas release is estimated to be in the range of 20-23 kW/m with burnup over 37 GWd/tM. It is moreover guessed that the concerned LHR for fission gas release tends to decrease with increasing burnup. Secondly It is observed that FGR (fission gas release rate) is positively correlated with LHR when the LHR exceeds the concerned value. Thirdly, when burnup dependence of fission gas release is discussed, effective burnup should be taken into account. The effective burnup is defined as the burnup at which the LHR should be exceed the concerned value at the last time during all the irradiation period. And fourthly, it appears that FGR inside Pu spots is higher than outside and that retained (not released) fission gases mainly exist in the fission gas bubbles. Since fission gases in bubbles are considered to be easily released during fuel temperature increase, this information is very important to estimate fission gas release behavior

  15. Theoretical analysis of nuclear reactors (Phase III), I-V, Part IV, Influence of isotopic composition of nuclear fuel on the reactivity with constant flux; Razrada metoda teorijske analize nuklearnih reaktora (III faza) I-IV, IV Deo, Uticaj promene izotopnog sastava goriva na reaktivnost uz konstantan fluks

    Energy Technology Data Exchange (ETDEWEB)

    Pop-Jordanov, J [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1963-01-15

    Part one of this report presents a series of differential equations describing the nuclear fuel depletion during reactor operation. This series of differential equations is extended to describe the fission products. This part includes equations for effective multiplication factor k{sub eff} and reactivity {rho} as a function of irradiation {tau}. Part two includes results obtained on the analog computer PACE 231 R, and related to Calder Hall type reactor. Part three covers detailed preparation of the series of equations for solution by using the analog computer. Part four includes the list of references related to this task.

  16. Energy from nuclear fission()

    Science.gov (United States)

    Ripani, M.

    2015-08-01

    The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  17. Future trends in the assessment of hazards from fission product releases

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, J. R.

    1983-11-15

    In comparing and selecting sites for reactors from the point of view of safety, one considers the remote possibility of an accidental release of moderately large amounts of fission products and its effects in relation to the present and future distribution of population in the neighbourhood. At present, until experience is gained of the reliability and safety of reactors, there is a tendency to site them remotely from centres of industry and population, although for economic reasons there will be a need to site large power reactors more closely to such centres in the future. With, among other objectives, the aim of adopting, in the proper course or time, less restrictive siting criteria, improvements are continually made in the intrinsic safety of reactor system and more sophisticated forms of reactor containment are devised, in order to reduce the possibility and scale of any fission product release. Changes and improvements in reactor systems could affect the nature and proportion of an accidental release of fission products if this should occur in the future. It is appropriate to consider what such a release and its radiobiological effects might be.

  18. Chemistry of fission products for accident analysis

    International Nuclear Information System (INIS)

    Potter, P.E.

    1985-01-01

    Current knowledge concerning the chemical state of the fission product elements during the development of accidents in water reactor systems is reviewed in this paper. The fission product elements which have been considered are Cs, I, Te, Sr and Ba but aspects of the behavior of Mo, Ru and the lanthanides are also discussed. Some features of the reactions of the various species of these elements with other components of the reactor systems are described. The importance of having an adequate knowledge of thermodynamic data and phase equilibria of relatively simple systems in order to interpret experimental observations on complex multi-component systems is stressed

  19. R and D Trends For The Future Sodium Fast Reactors In France

    International Nuclear Information System (INIS)

    Dufour, Ph.; Anzieu, P.; Lecarpentier, D.; Serpantie, JP.

    2006-01-01

    The sodium fast reactors are the natural Generation IV candidate, thanks to their strong potential for incineration and/or breeding that allow drastic fissile materials economy and fission waste products recycling or transmutation. The question is now to make evolve the existing or past projects of reactors to systems fully compatible with Generation IV objectives, in particular with regard to the economy, durability and safety. This work must be achieved in an international frame which requires a sharing of the objectives and will allow, in the long term, the sharing of the activities. However, in order to ensure the overall coherence of the various development programs defined within the Gen-IV framework, it is necessary to define a new SFR development plan based on the experience gained in France (Phenix, Superphenix) and Europe, in the EFR project. The commonly agreed SFR system issues to be improved or further investigated are its capital cost, safety issues (sodium risks, core criticality accidents), and in-service inspection and maintenance technology. (authors)

  20. Assessment of the Dry Processed Oxide Fuel in Liquid Metal Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Gyu Hong; Choi, Hang Bok

    2005-09-15

    The neutronic feasibility of the dry process oxide fuel was assessed for the sodium-cooled and lead-cooled fast reactors (SFR and LFR, respectively), which were recommended as Generation-IV (Gen-IV) reactor systems by the Gen-IV international forum. The reactor analysis was performed for the equilibrium fuel cycle of two core configurations: Hybrid BN-600 benchmark core with an enlarged lattice pitch and a modified BN-600 core. The dry process technology assumed in this study is the molten-salt process, which was developed by Russian scientists for recycling oxide fuels. The core calculation was performed by the REBUS-3 code and the reactor characteristics such as the transuranic (TRU) enrichment, breeding ratio, peak linear power, burnup reactivity swing, etc. were calculated for the equilibrium core under a fixed fuel management scheme. The results showed that a fissile self-sustainable breakeven core was achievable without blanket fuels when the fuel volume fraction was {approx}50% and most of the fission products were removed. If the design criteria used in this study is proved to be acceptable through a detailed physics design and thermal hydraulic analysis in the future, it is practically possible to construct an equilibrium fuel cycle of the SFR and LFR systems based on the oxide fuel by utilizing the dry process technology.

  1. Assessment of the Dry Processed Oxide Fuel in Liquid Metal Fast Reactors

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Choi, Hang Bok

    2005-09-01

    The neutronic feasibility of the dry process oxide fuel was assessed for the sodium-cooled and lead-cooled fast reactors (SFR and LFR, respectively), which were recommended as Generation-IV (Gen-IV) reactor systems by the Gen-IV international forum. The reactor analysis was performed for the equilibrium fuel cycle of two core configurations: Hybrid BN-600 benchmark core with an enlarged lattice pitch and a modified BN-600 core. The dry process technology assumed in this study is the molten-salt process, which was developed by Russian scientists for recycling oxide fuels. The core calculation was performed by the REBUS-3 code and the reactor characteristics such as the transuranic (TRU) enrichment, breeding ratio, peak linear power, burnup reactivity swing, etc. were calculated for the equilibrium core under a fixed fuel management scheme. The results showed that a fissile self-sustainable breakeven core was achievable without blanket fuels when the fuel volume fraction was ∼50% and most of the fission products were removed. If the design criteria used in this study is proved to be acceptable through a detailed physics design and thermal hydraulic analysis in the future, it is practically possible to construct an equilibrium fuel cycle of the SFR and LFR systems based on the oxide fuel by utilizing the dry process technology

  2. Diamond as a solid state micro-fission chamber for thermal neutron detection at the VR-1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pomorski, Michal; Mer-Calfati, Christine [CEA-LIST, Diamond Sensors Laboratory, 91191, Gif-sur-Yvette (France); Foulon, Francois [CEA, National Institute for Nuclear Science and Technology, 91191, Gif-sur-Yvette (France); Sklenka, Lubomir; Rataj, Jan; Bily, Tomas [Department of Nuclear Reactors,Faculty of Nuclear Science and Physical Engineering, Czech Technical University, V. Holesovickach 2, 180 00 PRAHA 8 (Czech Republic)

    2015-07-01

    Diamond exhibits a combination of properties which makes it attractive for neutron detection in hostile conditions. In the particular case of detection in a nuclear reactor, it is resilient to radiation, exhibits a natural low sensitivity to gamma rays, and its small size (as compared with that of gas ionisation chambers) enables fluency monitoring with a high position resolution. We report here on the use of synthetic CVD diamond as a solid state micro-fission chamber with U-235 converting material for in-core thermal neutron monitoring. Two types of thin diamond detectors were developed for this application. The first type of detector is fabricated using thin diamond membrane obtained by etching low-cost commercially available single crystal CVD intrinsic diamond, so called 'optical grade' material. Starting from a few hundred of micrometre thick samples, the sample is sliced with a laser and then plasma etched down to a few tenths of micrometre. Here we report the result obtained with a 17 μm thick device. The detection surface of this detector is equal to 1 mm{sup 2}. Detectors with surfaces up to 1 cm{sup 2} can be fabricated with this technique. The second type of detector is fabricated by growing successively two thin films of diamond, by the microwave enhanced chemical vapour deposition technique, on HPHT single crystal diamond. A first, a film of boron doped (p+) single crystal diamond, a few microns thick, is deposited. Then a second film of intrinsic diamond with a thickness of a few tens of microns is deposited. This results in a P doped, Intrinsic, Metal structure (PIM) structure in which the intrinsic volume id the active part of the detector. Here we report the results obtained with a 20 μm thick intrinsic whose detection surface is equal to 0.5 mm{sup 2}, with the possibility to enlarge the surface of the detector up to 1 cm{sup 2}. These two types of detector were tested at the VR-1 research reactor at the Czech Technical University in

  3. Generation IV reactors: economics

    International Nuclear Information System (INIS)

    Dupraz, B.; Bertel, E.

    2003-01-01

    The operating nuclear reactors were built over a short period: no more than 10 years and today their average age rounds 18 years. EDF (French electricity company) plans to renew its reactor park over a far longer period : 30 years from 2020 to 2050. According to EDF this objective implies 3 constraints: 1) a service life of 50 to 60 years for a significant part of the present operating reactors, 2) to be ready to built a generation 3+ unit in 2020 which infers the third constraint: 3) to launch the construction of an EPR (European pressurized reactor) prototype as soon as possible in order to have it operating in 2010. In this scheme, generation 4 reactor will benefit the feedback experience of generation 3 and will take over in 2030. Economic analysis is an important tool that has been used by the generation 4 international forum to select the likely future reactor systems. This analysis is based on 4 independent criteria: the basic construction cost, the construction time, the operation and maintenance costs and the fuel cycle cost. This analysis leads to the evaluation of the global cost of electricity generation and of the total investment required for each of the reactor system. The former defines the economic competitiveness in a de-regulated energy market while the latter is linked to the financial risk taken by the investor. It appears, within the limits of the assumptions and models used, that generation 4 reactors will be characterized by a better competitiveness and an equivalent financial risk when compared with the previous generation. (A.C.)

  4. FISA-2009 Conference on Euratom Research and Training Activities: Nuclear Fission - Past, Present and Future (Generation-II, -III and -IV + Partitioning and Transmutation)

    International Nuclear Information System (INIS)

    Bhatnagar, V.; Deffrennes, M.; Hugon, M.; Manolatos, P.; Ptackova, K.; Van Goethem, G.; Webster, S.

    2011-01-01

    This paper is an introduction to the research and training activities carried out under the Euratom 7th Framework Programme (FP7, 2007-2011) in the field of nuclear fission science and technology, covering in particular nuclear systems and safety, and including innovative reactor systems and partitioning and transmutation. It is based on the more than 40 invited lectures that were delivered by Euratom project coordinators and keynote speakers at the FISA-2009 Conference (), organised by the European Commission DG Research, 22-24 June 2009, Prague, Czech Republic. The Euratom programme must be considered in the context of current and future nuclear technology and the respective research effort: ·Generation-II (i.e. yesterday, NPP construction 1970-2000): safety and reliability of nuclear facilities and energy independence in order to ensure security of supply worldwide; ·Generation-III (i.e. today, construction 2000-2040+): continuous improvement of safety and reliability, and increased industrial competitiveness in a growing energy market; ·Generation-IV (i.e. tomorrow, construction from 2040) for increased sustainability though optimal utilisation of natural resources and waste minimisation, and increased proliferation resistance. Consequently, the focus of the lectures devoted to Generation-II and -III is on the major scientific challenges and technological developments needed to guarantee safety and reliability, in particular issues associated with plant lifetime extension and operation. The focus of the lectures devoted to Generation-IV is on the design objectives and associated research issues that have been agreed upon internationally, in particular the ambitious criteria and technology goals established at the international level by the Generation-IV International Forum (GIF). In the future, electricity must continue to be produced competitively, and in addition high temperature process heat may also be required, while exploiting a maximum of fissile and

  5. Conceptual research on reactor core physics for accelerator driven sub-critical reactor

    International Nuclear Information System (INIS)

    Zhao Zhixiang; Ding Dazhao; Liu Guisheng; Fan Sheng; Shen Qingbiao; Zhang Baocheng; Tian Ye

    2000-01-01

    The main properties of reactor core physics are analysed for accelerator driven sub-critical reactor. These properties include the breeding of fission nuclides, the condition of equilibrium, the accumulation of long-lived radioactive wastes, the effect from poison of fission products, as well as the thermal power output and the energy gain for sub-critical reactor. The comparison between thermal and fast system for main properties are carried out. The properties for a thermal-fast coupled system are also analysed

  6. Mirror fusion reactors

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Conceptual design studies were made of fusion reactors based on the three current mirror-confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fuel for fission reactors. We have designed a large commercial hybrid and a small pilot-plant hybrid based on standard mirror confinement. Tandem mirror designs include a commercial 1000-MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single-cell pilot plant

  7. Fission rates measured using high-energy gamma-rays from short half-life fission products in fresh and spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kroehnert, H.

    2011-02-15

    In recent years, higher discharge burn-ups and initial fuel enrichments have led to more and more heterogeneous core configurations in light water reactors (LWRs), especially at the beginning of cycle when fresh fuel assemblies are loaded next to highly burnt ones. As this trend is expected to continue in the future, the Paul Scherrer Institute has, in collaboration with the Swiss Association of Nuclear Utilities, swissnuclear, launched the experimental programme LIFE(at)PROTEUS. The LIFE(at)PROTEUS programme aims to better characterise interfaces between burnt and fresh UO{sub 2} fuel assemblies in modern LWRs. Thereby, a novel experimental database is to be made available for enabling the validation of neutronics calculations of strongly heterogeneous LWR core configurations. During the programme, mixed fresh and highly burnt UO{sub 2} fuel lattices will be investigated in the zero-power research reactor PROTEUS. One of the main types of investigations will be to irradiate the fuel in PROTEUS and measure the resulting fission rate distributions across the interface between fresh and burnt fuel zones. The measurement of fission rates in burnt fuel re-irradiated in a zero-power reactor requires, however, the development of new experimental techniques which are able to discriminate against the high intrinsic activity of the fuel. The principal goal of the present research work has been to develop such a new measurement technique. The selected approach is based on the detection of high-energy gamma-ray lines above the intrinsic background (i.e. above 2200 keV), which are emitted by short-lived fission products freshly created in the fuel. The fission products {sup 88}Kr, {sup 142}La, {sup 138}Cs, {sup 84}Br, {sup 89}Rb, {sup 95}Y, {sup 90m}Rb and {sup 90}Rb, with half-lives between 2.6 min and 2.8 h, have been identified as potential candidates. During the present research work, the gamma-ray activity of short-lived fission products has, for the first time, been

  8. Simulation of fission products behavior in severe accidents for advanced passive PWR

    International Nuclear Information System (INIS)

    Tong, L.L.; Huang, G.F.; Cao, X.W.

    2015-01-01

    Highlights: • A fission product analysis model based on thermal hydraulic module is developed. • An assessment method for fission product release and transport is constructed. • Fission products behavior during three modes of containment response is investigated. • Source term results for the three modes of containment response are obtained. - Abstract: Fission product behavior for common Pressurized Water Reactor (PWR) has been studied for many years, and some analytical tools have developed. However, studies specifically on the behavior of fission products related to advanced passive PWR is scarce. In the current study, design characteristics of advanced passive PWR influencing fission product behavior are investigated. An integrated fission products analysis model based on a thermal hydraulic module is developed, and the assessment method for fission products release and transport for advanced passive PWR is constructed. Three modes of containment response are simulated, including intact containment, containment bypass and containment overpressure failure. Fission products release from the core and corium, fission products transport and deposition in the Reactor Coolant System (RCS), fission products transport and deposition in the containment considering fission products retention in the in-containment refueling water storage tank (IRWST) and in the secondary side of steam generators (SGs) are simulated. Source term results of intact containment, containment bypass and containment overpressure failure are obtained, which can be utilized to evaluate the radiological consequences

  9. Current status of NPP generation IV

    International Nuclear Information System (INIS)

    Yohanes Dwi Anggoro; Dharu Dewi; Nurlaila; Arief Tris Yuliyanto

    2013-01-01

    Today development of nuclear technology has reached the stage of research and development of Generation IV nuclear power plants (advanced reactor systems) which is an innovative development from the previous generation of nuclear power plants. There are six types of power generation IV reactors, namely: Very High Temperature Reactor (VHTR), Sodium-cooled Fast Reactor (SFR), Gas-cooled Fast Reactor (GFR), Lead-cooled Fast Reactor (LFR), Molten Salt Reactor (MSR), and Super Critical Water-cooled Reactor (SCWR). The purpose of this study is to know the development of Generation IV nuclear power plants that have been done by the thirteen countries that are members of the Gen IV International Forum (GIF). The method used is review study and refers to various studies related to the current status of research and development of generation IV nuclear power. The result of this study showed that the systems and technology on Generation IV nuclear power plants offer significant advances in sustainability, safety and reliability, economics, and proliferation resistance and physical protection. In addition, based on the research and development experience is estimated that: SFR can be used optimally in 2015, VHTR in 2020, while NPP types GFR, LFR, MSR, and SCWR in 2025. Utilization of NPP generation IV said to be optimal if fulfill the goal of NPP generation IV, such as: capable to generate energy sustainability and promote long-term availability of nuclear fuel, minimize nuclear waste and reduce the long term stewardship burden, has an advantage in the field of safety and reliability compared to the previous generation of NPP and VHTR technology have a good prospects in Indonesia. (author)

  10. Home brew technetium : clinical scale desktop plasma fusion neutron source to produce Tc99m as an alternative to industrial scale fission reactor sources

    International Nuclear Information System (INIS)

    Bosi, S.G.; Khachan, J.; Oborn, B.M.

    2011-01-01

    Full text: Tc-99m (decay product of Mo-99) accounts for ∼ 90% of world's production of radiopharmaceuticals. Recent unexpected shutdowns of two fission reactors and routine maintenance closures .e created a global shortage of Tc-99m, hence the large global effort to find alternative sources. This project aims to design and produce a novel prototype Mo-99/Tc-99m source. An operational desktop neutron source is available at the University of Sydney, employing a deuterium fusion-plasma to create 2.45 MeV neutrons. These neutrons will be used to activate Mo-98 thin an activation vessel. In one embodiment, the activation vessel contains an aqueous slurry or gel containing Mo-98 which converts to 0-99 upon activation. The decay product Tc-99m could then be milked, similar to existing Tc-99m generators. Monte Carlo will be :ed to assess yield versus size and geometry for various vessel designs. The neutron source filled with deuterium operating at 250 W, produces 3 x 106 neutrons continuously. The neutron flux can be increased ∼ 100-fold if the fill gas is 50% tritium and by another ∼ 100-1000-fold by increasing the power. This is being designed for local use, perhaps on the scale f one or a few hospitals, so the yield would not need to be industrial ;ale as with fission reactor sources. This device is low cost <$300 K) compared with cyclotrons and fission reactors.

  11. Lanthanide fission product separation from the transuranics in the integral fast reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Goff, K.M.; Mariani, R.D.; Benedict, R.W.; Ackerman, J.P.

    1993-01-01

    The Integral Fast Reactor (IFR) is an innovative reactor concept being developed by Argonne National Laboratory. This reactor uses liquid-metal cooling and metallic fuel. Its spent fuel will be reprocessed using a pyrochemical method employing molten salts and liquid metals in an electrofining operation. The lanthanide fission products are a concern during reprocessing because of heating and fuel performance issues, so they must be removed periodically from the system to lessen their impact. The actinides must first be removed form the system before the lanthanides are removed as a waste stream. This operation requires a relatively good lanthanide-actinide separation to minimize both the amount of transuranic material lost in the waste stream and the amount of lanthanides collected when the actinides are first removed. A computer code, PYRO, that models these operations using thermodynamic and empirical data was developed at Argonne and has been used to model the removal of the lanthanides from the electrorefiner after a normal operating campaign. Data from this model are presented. The results demonstrate that greater that 75% of the lanthanides can be separated from the actinides at the end of the first fuel reprocessing campaign using only the electrorefiner vessel

  12. Fission product behaviour in the primary circuit of an HTR

    International Nuclear Information System (INIS)

    Decken, C.B. von der; Iniotakis, N.

    1981-01-01

    The knowledge of fission product behaviour in the primary circuit of a High Temperature Reactor (HTR) is an essential requirement for the estimations of the availability of the reactor plant in normal operation, of the hazards to personnel during inspection and repair and of the potential danger to the environment from severe accidents. On the basis of the theoretical and experimental results obtained at the ''Institute for Reactor Components'' of the KFA Juelich /1/,/2/ the transport- and deposition behaviour of the fission- and activation products in the primary circuit of the PNP-500 reference plant has been investigated thoroughly. Special work had been done to quantify the uncertainties of the investigations and to calculate or estimate the dose rate level at different components of the primary cooling circuit. The contamination and the dose rate level in the inspection gap in the reactor pressure vessel is discussed in detail. For these investigations in particular the surface structure and the composition of the material, the chemical state of the fission products in the cooling gas, the composition of the cooling gas and the influence of dust on the transport- and deposition behaviour of the fission products have been taken into account. The investigations have been limited to the nuclides Ag-110m; Cs-134 and Cs-137

  13. Feasibility study on fission moly target development

    International Nuclear Information System (INIS)

    Kim, Byung Ku; Kim, Seong Nyun; Shon, Dong Seong; Choi, Chang Beom; Lee, Jae Kuk; Park, Jin Ho; Jeong, Won Myung; Jeon, Kwan Sik; You, Jae Hyung; Kang, Kyung Chul; Ahn, Jong Hwan; Ju, Po Kuk

    1996-01-01

    A multi-purpose research reactor, HANARO has been operated on the beginning of 1995 and can be utilized for production of various radioisotopes. And a R and D program for fission Mo production was established, and the technical and economical feasibility study has been performed for fission Mo production in Korea. In this study the process for fission Mo production was recommended as follows; 1. Target : UO 2 of annulus type. 2. Separation and purification : Nitric acid dissolution → Alumina adsorption → Benzoin oxime precipitation → Alumina adsorption. And more desirable plan for steady supply of fission Mo were suggested in following viewpoints; 1. Technical collaboration with foreign company. 2. Backup supply system. 3. Marketing arrangement. (Author)

  14. World Energy Data System (WENDS). Volume XI. Nuclear fission program summaries

    International Nuclear Information System (INIS)

    1979-06-01

    Brief management and technical summaries of nuclear fission power programs are presented for nineteen countries. The programs include the following: fuel supply, resource recovery, enrichment, fuel fabrication, light water reactors, heavy water reactors, gas cooled reactors, breeder reactors, research and test reactors, spent fuel processing, waste management, and safety and environment

  15. Okulo natural reactors

    International Nuclear Information System (INIS)

    Yamakawa, Minoru

    1993-01-01

    French CEA has reported in 1972 that natural nuclear reactors existed in Okulo uranium deposit in Gabon in Africa, that caused nuclear fission chain reaction (Okulo phenomena) spontaneously two billion years ago. The fission products and transuranic elements produced by the natural reactors have been preserved in strata without movement while subjected to geological phenomena for such very long years. 16 zones of the natural reactors have been discovered so far. The geological features of the Okulo uranium deposit are explained. The total amount of 235 U lost by the chain reaction was estimated to be about 6t, and the fission products were about 6t. The Okulo phenomena offered the valuable results of the synthetic formation disposal test that the nature has carried out for such long years. The significance of the study on natural analog is discussed. Organic substances and the mechanism of holding and movement of uranium and fission nuclides, the stability of uraninite and the age measurement of the deposit by Nd-Sm process are reported as the main results. (K.I.)

  16. Light water reactor fuel analysis code FEMAXI-IV(Ver.2). Detailed structure and user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Saitou, Hiroaki

    1997-11-01

    A light water reactor fuel behavior analysis code FEMAXI-IV(Ver.2) was developed as an improved version of FEMAXI-IV. Development of FEMAXI-IV has been already finished in 1992, though a detailed structure and input manual of the code have not been open to users yet. Here, the basic theories and structure, the models and numerical solutions applied to FEMAXI-IV(Ver.2), and the material properties adopted in the code are described in detail. In FEMAXI-IV(Ver.2), programming bugs in previous FEMAXI-IV were eliminated, renewal of the pellet thermal conductivity was performed, and a model of thermal-stress restraint on FP gas release was incorporated. For facilitation of effective and wide-ranging application of the code, methods of input/output of the code are also described in detail, and sample output is included. (author)

  17. Fission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on 239Pu, 235U, 238U

    International Nuclear Information System (INIS)

    Selby, H.D.; Mac Innes, M.R.; Barr, D.W.; Keksis, A.L.; Meade, R.A.; Burns, C.J.; Chadwick, M.B.; Wallstrom, T.C.

    2010-01-01

    We describe measurements of fission product data at Los Alamos that are important for determining the number of fissions that have occurred when neutrons are incident on plutonium and uranium isotopes. The fission-spectrum measurements were made using a fission chamber designed by the National Institute for Standards and Technology (NIST) in the BIG TEN critical assembly, as part of the Inter-laboratory Liquid Metal Fast Breeder Reactor (LMFBR) Reaction Rate (ILRR) collaboration. The thermal measurements were made at Los Alamos' Omega West Reactor. A related set of measurements were made of fission-product ratios (so-called R-values) in neutron environments provided by a number of Los Alamos critical assemblies that range from having average energies causing fission of 400-600 keV (BIG TEN and the outer regions of the Flattop-25 assembly) to higher energies (1.4-1.9 MeV) in the Jezebel, and in the central regions of the Flattop-25 and Flattop-Pu, critical assemblies. From these data we determine ratios of fission product yields in different fuel and neutron environments (Q-values) and fission product yields in fission spectrum neutron environments for 99 Mo, 95 Zr, 137 Cs, 140 Ba, 141,143 Ce, and 147 Nd. Modest incident-energy dependence exists for the 147 Nd fission product yield; this is discussed in the context of models for fission that include thermal and dynamical effects. The fission product data agree with measurements by Maeck and other authors using mass-spectrometry methods, and with the ILRR collaboration results that used gamma spectroscopy for quantifying fission products. We note that the measurements also contradict earlier 1950s historical Los Alamos estimates by ∼5-7%, most likely owing to self-shielding corrections not made in the early thermal measurements. Our experimental results provide a confirmation of the England-Rider ENDF/B-VI evaluated fission-spectrum fission product yields that were carried over to the ENDF/B-VII.0 library, except

  18. Monte Carlo analyses of TRX slightly enriched uranium-H2O critical experiments with ENDF/B-IV and related data sets (AWBA Development Program)

    International Nuclear Information System (INIS)

    Hardy, J. Jr.

    1977-12-01

    Four H 2 O-moderated, slightly-enriched-uranium critical experiments were analyzed by Monte Carlo methods with ENDF/B-IV data. These were simple metal-rod lattices comprising Cross Section Evaluation Working Group thermal reactor benchmarks TRX-1 through TRX-4. Generally good agreement with experiment was obtained for calculated integral parameters: the epi-thermal/thermal ratio of U238 capture (rho 28 ) and of U235 fission (delta 25 ), the ratio of U238 capture to U235 fission (CR*), and the ratio of U238 fission to U235 fission (delta 28 ). Full-core Monte Carlo calculations for two lattices showed good agreement with cell Monte Carlo-plus-multigroup P/sub l/ leakage corrections. Newly measured parameters for the low energy resonances of U238 significantly improved rho 28 . In comparison with other CSEWG analyses, the strong correlation between K/sub eff/ and rho 28 suggests that U238 resonance capture is the major problem encountered in analyzing these lattices

  19. Integral decay-heat measurements and comparisons to ENDF/B--IV and V

    International Nuclear Information System (INIS)

    England, T.R.; Schenter, R.E.; Schmittroth, F.

    Results from recent integral decay-power experiments are presented and compared with summation calculations. The experiments include the decay power following thermal fission of 233 U, 235 U, and 239 Pu. The summation calculations use ENDF/B-IV decay data and yields from Versions IV and V. Limited comparisons of experimental β and γ spectra with summation calculations using ENDF/B-IV are included. Generalized least-squares methods are applied to the recent 235 U and 239 Pu decay-power experiments and summation calculations to arrive at evaluated values and uncertainties. Results for 235 U imply uncertainties less than 2% (1 sigma) for the ''infinite'' exposure case for all cooling times greater than 10 seconds. The uncertainties for 239 Pu are larger. Accurate analytical representations of the decay power are presented for 235 , 238 U, and 239 Pu for use in light-water reactors and as the nominal values in the new ANS 5.1 Draft Standard (1978). Comparisons of the nominal values with ENDF/B-IV and the 1973 ANS Draft Standard in current use are included. Gas content, important to decay-heat experiments, and absorption effects on decay power are reviewed. 37 figures, 8 tables

  20. Proceedings of the specialists' meeting on physics and engineering of fission and spallation, 1989

    International Nuclear Information System (INIS)

    Nakagome, Yoshihiro

    1990-07-01

    The third meeting was held on August 1, and the fourth meeting was held on December 12, 1989. The reports of the international conferences on 50 years research on nuclear fission in Germany and USA, and the reports on the nuclear data of fission-produced nuclei for evaluating reactor decay heat, the atomic mass formula considering proton-neutron interaction and unstable nuclei, research on short life fission fragments by on-line isotope separation process, the reactor physics on waste annihilation disposal and fuel breeding with an accelerator, the double differential cross section of back neutrons in nuclear spallation reaction, measurement of fission cross section and fission neutron spectra with fast neutrons, U-235 fission spectra by unfolding activation foil data and production mechanisms of intermediate mass fragments from hot nuclei-emission of complex and fission fragments for 84 Kr+ 27 Al at 10.6 MeV/u were made. (K.I.)

  1. Fluidized-bed nuclear reactor

    International Nuclear Information System (INIS)

    Grimmett, E.S.; Kunze, J.F.

    1975-01-01

    A reactor vessel containing a fluidized-bed region of particulate material including both a neutron-moderating and a fertile substance is described. A gas flow including fissile material passes through the vessel at a sufficient rate to fluidize the particulate material and at a sufficient density to support a thermal fission reaction within the fluidized-bed region. The high-temperature portion of a heat transfer system is located within the fluidized-bed region of the reactor vessel in direct contact with the fluidized particles. Heat released by fission is thereby transferred at an enhanced rate to a coolant circulating within the heat transfer system. Fission products are continuously removed from the gas flow and supplemental fissile material added during the reactor operation. (U.S.)

  2. Transport and release of fission products during nuclear reactor accident

    International Nuclear Information System (INIS)

    Lee, K.W.; Kuhlman, M.R.; Gieseke, J.A.

    1984-01-01

    This study represents the identification and formulation of a systematic, mechanistic approach to estimating source terms and the implementation of this approach through calculations of fission products release to the environment for a large PWR reactor under a selected set of accident conditions. The development and improvement of calculational procedures is an evolutionary process and in the long term must be verified through experimental studies. It is anticipated that as additional information is obtained the accuracy of predictions can be improved and uncertainties reduced. Transport and deposition of radionuclides were found to be quite dependent on the accident sequences and the corresponding thremal hydraulic conditions. Reduced temperatures led to increased deposition of vapor species, and reduced flow rates to increased aerosol deposition. It is to be recognized that the estimates of release fractions are subject to uncertainties in the data and computer models employed in the calculations and are expected to have been influenced by assumptions regarding plant geometry, thermal hydraulics, deposition mechanisms, and sequence events. The effects of these assumptions will be investigated as this study continues. (Author)

  3. Fast Reactor Research in Europe: The Way Towards Sustainability (Summary)

    International Nuclear Information System (INIS)

    Schenkel, R.

    2012-01-01

    Full text: The European Union (EU) has taken the lead in responding to climate change, announcing far-reaching initiatives ranging from promoting energy efficient light bulbs and cars to new building codes, carbon trading schemes, development of low carbon technologies and greater competition in energy markets. Nuclear energy remains central to the energy debate in Europe. One third of EU electricity is produced via nuclear fission and eight new reactors are under construction. Traditionally non-nuclear countries are manifesting an interest in building nuclear power plants while the clock is ticking down on Belgium, Germany and the United Kingdom's decision to renew or close existing nuclear infrastructures. Sustainability in nuclear energy production is ensured in the medium term as a result of the large and diverse uranium resources available in politically stable countries around the world. The quantities available with high probability ensure more than one hundred years of nuclear energy production. This extrapolation depends, however, on the forecast for future nuclear energy production. The use of fast neutron breeder reactors would lead to a much more efficient utilization of the uranium, extending the sustainable energy production to several thousands of years. The presentation will outline the fast reactors of the new generation currently being developed within the Generation IV initiative. Broad conclusions of the presentation are that: - There is a growing nuclear renaissance in Europe for good reason; - Nuclear energy is a green and sustainable option for Europe and indeed the world's energy needs; - Nuclear energy is a competitive energy that makes economic sense; - Nuclear fission reactors have a safety and environmental track record that is second to none, yet public misperceptions persist and must be tackled; - Waste management solutions exist while new developments hold great promise; - The evolution and promise of nuclear technologies must also be

  4. Steady-state and transient fission gas release and swelling model for LIFE-4

    International Nuclear Information System (INIS)

    Villalobos, A.; Liu, Y.Y.; Rest, J.

    1984-06-01

    The fuel-pin modeling code LIFE-4 and the mechanistic fission gas behavior model FASTGRASS have been coupled and verified against gas release data from mixed-oxide fuels which were transient tested in the TREAT reactor. Design of the interface between LIFE-4 and FASTGRASS is based on an earlier coupling between an LWR version of LIFE and the GRASS-SST code. Fission gas behavior can significantly affect steady-state and transient fuel performance. FASTGRASS treats fission gas release and swelling in an internally consistent manner and simultaneously includes all major mechanisms thought to influence fission gas behavior. The FASTGRASS steady-state and transient analysis has evolved through comparisons of code predictions with fission-gas release and swelling data from both in- and ex-reactor experiments. FASTGRASS was chosen over other fission-gas behavior models because of its availability, its compatibility with the LIFE-4 calculational framework, and its predictive capability

  5. Determination of procedures for transmutation of fission product wastes by fusion neutrons. Volume 2. Final report

    International Nuclear Information System (INIS)

    Lang, G.P.

    1980-12-01

    This study is concerned with the engineering aspects of the transmutation of fission products utilizing neutrons generated in fusion reactors. It is assumed that fusion reactors, although not yet developed, will be available around the turn of the century. Therefore, early studies of this type are appropriate as a guide to the large amount of further investigations that will be needed to fully evaluate this concept. Not all of the radioactive products from light water reactors can be economically transmuted, but it appears that the most hazardous can. This requires that fission-product wastes must first be separated into a number of fractions, and in some instances this must be accomplished with extremely high separation factors. A review of current commercial separation processes and of promising methods that are now in the laboratory stage indicate that the necessary processes can most likely be developed but will require an active and sustained development program. Current fusion reactor concepts were examined as to their suitability for transmuting the separated fission wastes. It was concluded that the long-lived fission products were most amenable to transmutation. The medium-lived fission products, Cs-137 and Sr-90, require higher neutron fluxes than are available in the most developed fusion reactor concepts. Concepts which are less developed may eventually be adaptable as transmuters of these fission products

  6. Preliminary assessment of a symbiotic fusion--fission power system using the TH/U refresh fuel cycle

    International Nuclear Information System (INIS)

    Bender, D.J.; Lee, J.D.; Moir, R.W.

    1977-10-01

    Studies of the mirror hybrid reactor by LLL/GA have concluded that the most promising role for this reactor concept is that of a producer of fissile fuel for fission reactors. Studies to date have examined primarily the U/Pu fuel cycle with light-water reactors serving as the consumers of the hybrid-bred fissile fuel; the specific scenarios examined required reprocessing and refabrication of the bred fuel before introduction into the fission reactor. This combination of technologies was chosen to illustrate the manner in which the hybrid reactor concept could serve the needs of, and use the technology of, the fission reactor industry as it now exists (and as it was thought it would evolve). However, the current U.S. Administration has expressed strong concerns about proliferation of nuclear weapons capability and terrorist diversion of weapons-grade nuclear materials. These concerns are based on the projected technology for the light-water reactor/fast breeder reactor using the U/Pu fuel cycle and extensive reprocessing/refabrication. A symbiotic nuclear power generation concept (hybrid fissile producer plus fission burner reactors) is described which eliminates those aspects of the present nuclear fuel cycle that (may) represent significant proliferation/diversion risks. Specifically, the proposed concept incorporates the following features: (1)Th/U 233 fuel cycle, (2) no reprocessing or fabrication of fissile material, and (3) no fissile material in a weapons-grade state

  7. Average cross-sections for /n, p/ reactions on calcium in a fission-type reactor spectrum

    International Nuclear Information System (INIS)

    Bruggeman, A.; Maenhaut, W.; Hoste, J.

    1974-01-01

    The average cross-section in a fission-type reactor spectrum sigmasub(F) was experimentally determined for the reactions 42 Ca/n,p/ 42 K, 43 Ca/n,p/ 43 K and 44 Ca/n,p/ 44 K. Calcium carbonate samples and fast neutron flux monitors were irradiated with and without cadmium shielding in the Thetis reactor (Institute for Nuclear Sciences, Rijksuniversiteit Gent). The potassium activities induced in the calcium carbonate samples were separated and purified by tetraphenylborate precipitation, after which they were measured with a Ge/Li/-detector of calibrated detection efficiency. On the basis of sigmasub(F)=0.64 mb for the reaction 27 Al/n,α/ 24 Na, the average cross-sections were as follows: 42 Ca/n,p/ 42 K: 2.82+-0.07 mb; 43 Ca/n,p/ 43 K: 1.89+-0.05 mb; 44 Ca/n,p/ 44 K: 0.065+-0.003 mb. (T.G.)

  8. Continuous radiochemical analysis of fission products in a nuclear reactor water coolant

    International Nuclear Information System (INIS)

    Moskvin, L.N.; Zakharov, L.K.; Leont'ev, G.G.; Mel'nikov, V.A.; Orlenkov, I.S.; Slutskij, G.K.

    1975-01-01

    Method for continuous radiochemical analysis of I, Cs, Ba, Sr and Ce isotopes in a reactor water heat-transfer agent was developed. A continuous two-dimensional chromatographic process of complex mixtures separation of substances proved to be feasible on several parallel sorbent layers, which moved at constant velocities and separated by stationary intermediate collectors. Tests on model solutions containing I, Ce, Cs and Ba isotopes and on heat-carrier samples showed quantitative separation of elements. The results were indicative of a basic possibility of using multisorbent chromatographs for continuous control of multicomponent mixtures, particularly for control of radioactive fission product compositions in water heat-transfer agents in nuclear power plants. A diagram is shown for a two-dimensional chromatographic separation of a multicomponent mixture. Also shown is a flow chart of an installation for continuous control of iodine and cesium isotope activities

  9. Fission product release assessment for end fitting failure in Candu reactor loaded with CANFLEX-NU fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dirk Joo; Jeong, Chang Joon; Lee, Kang Moon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    Fission product release (FPR) assessment for End Fitting Failure (EFF) in CANDU reactor loaded with CANFLEX-natural uranium (NU) fuel bundles has been performed. The predicted results are compared with those for the reactor loaded with standard 37-element bundles. The total channel I-131 release at the end of transient for EFF accident is calculated to be 380.8 TBq and 602.9 TBq for the CANFLEX bundle and standard bundle channel cases, respectively. They are 4.9% and 7.9% of total inventory, respectively. The lower total releases of the CANFLEX bundle O6 channel are attributed to the lower initial fuel temperatures caused by the lower linear element power of the CANFLEX bundle compared with the standard bundle. 4 refs., 1 fig., 4 tabs. (Author)

  10. Fission product release assessment for end fitting failure in Candu reactor loaded with CANFLEX-NU fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dirk Joo; Jeong, Chang Joon; Lee, Kang Moon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Fission product release (FPR) assessment for End Fitting Failure (EFF) in CANDU reactor loaded with CANFLEX-natural uranium (NU) fuel bundles has been performed. The predicted results are compared with those for the reactor loaded with standard 37-element bundles. The total channel I-131 release at the end of transient for EFF accident is calculated to be 380.8 TBq and 602.9 TBq for the CANFLEX bundle and standard bundle channel cases, respectively. They are 4.9% and 7.9% of total inventory, respectively. The lower total releases of the CANFLEX bundle O6 channel are attributed to the lower initial fuel temperatures caused by the lower linear element power of the CANFLEX bundle compared with the standard bundle. 4 refs., 1 fig., 4 tabs. (Author)

  11. World Energy Data System (WENDS). Volume XI. Nuclear fission program summaries

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    Brief management and technical summaries of nuclear fission power programs are presented for nineteen countries. The programs include the following: fuel supply, resource recovery, enrichment, fuel fabrication, light water reactors, heavy water reactors, gas cooled reactors, breeder reactors, research and test reactors, spent fuel processing, waste management, and safety and environment. (JWR)

  12. The G4-ECONS Economic Evaluation Tool for Generation IV Reactor Systems and its Proposed Application to Deliberately Small Reactor Systems and Proposed New Nuclear Fuel Cycle Facilities. Annex IX

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    At the outset of the international Generation IV programme, it was decided that the six candidate reactor systems will ultimately be evaluated on the basis of safety, sustainability, non-proliferation attributes, technical readiness and projected economics. It is likely that the same factors will influence the evaluation of deliberately small reactor systems1 and new fuel cycle facilities, such as reprocessing plants that are being considered under the more recent Global Nuclear Energy Partnership (GNEP). This annex describes how the development of an economic modelling system has evolved to address the issue of economic competitiveness for both the Generation IV and GNEP programmes. In 2004, the Generation IV Economic Modelling Working Group (EMWG) commissioned the development of a Microsoft Excel based model capable of calculating the levelized unit electricity cost (LUEC) in mills/kW.h (1 mill = $10{sup -3}) or $/MW.h for multiple types of reactor system being developed under the Generation IV programme. This overall modelling system is now called the Generation IV spreadsheet calculation of nuclear systems (G4-ECONS), and is being expanded to calculate costs of energy products in addition to electricity, such as hydrogen and desalinated water. A version has also been developed to evaluate the costs of products or services from fuel cycle facilities. The cost estimating methodology and algorithms are explained in detail in the Generation IV Cost Estimating Guidelines and in the G4-ECONS User's Manual. The model was constructed with relatively simple economic algorithms such that it could be used by almost any nation without regard to country specific taxation, cost accounting, depreciation or capital cost recovery methodologies. It was also designed with transparency to the user in mind (i.e. all algorithms and cell contents are visible to the user). A short description of version 1.0 G4-ECONS-R (reactor economics model) has also been published in the

  13. The G4-ECONS Economic Evaluation Tool for Generation IV Reactor Systems and its Proposed Application to Deliberately Small Reactor Systems and Proposed New Nuclear Fuel Cycle Facilities. Annex IX

    International Nuclear Information System (INIS)

    2013-01-01

    At the outset of the international Generation IV programme, it was decided that the six candidate reactor systems will ultimately be evaluated on the basis of safety, sustainability, non-proliferation attributes, technical readiness and projected economics. It is likely that the same factors will influence the evaluation of deliberately small reactor systems1 and new fuel cycle facilities, such as reprocessing plants that are being considered under the more recent Global Nuclear Energy Partnership (GNEP). This annex describes how the development of an economic modelling system has evolved to address the issue of economic competitiveness for both the Generation IV and GNEP programmes. In 2004, the Generation IV Economic Modelling Working Group (EMWG) commissioned the development of a Microsoft Excel based model capable of calculating the levelized unit electricity cost (LUEC) in mills/kW.h (1 mill = $10 -3 ) or $/MW.h for multiple types of reactor system being developed under the Generation IV programme. This overall modelling system is now called the Generation IV spreadsheet calculation of nuclear systems (G4-ECONS), and is being expanded to calculate costs of energy products in addition to electricity, such as hydrogen and desalinated water. A version has also been developed to evaluate the costs of products or services from fuel cycle facilities. The cost estimating methodology and algorithms are explained in detail in the Generation IV Cost Estimating Guidelines and in the G4-ECONS User's Manual. The model was constructed with relatively simple economic algorithms such that it could be used by almost any nation without regard to country specific taxation, cost accounting, depreciation or capital cost recovery methodologies. It was also designed with transparency to the user in mind (i.e. all algorithms and cell contents are visible to the user). A short description of version 1.0 G4-ECONS-R (reactor economics model) has also been published in the Proceedings of

  14. Conceptual design of the blanket and power conversion system for a mirror hybrid fusion-fission reactor. Addendum 1. Alternate concepts. 12-month progress report addendum, July 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Schultz, K.R.; Dee, J.B.; Backus, G.A.; Culver, D.W.

    1976-01-01

    During the course of the Mirror Hybrid Fusion-Fission Reactor study several alternate concepts were considered for various reactor components. Several of the alternate concepts do appear to exhibit features with potential advantage for use in the mirror hybrid reactor. These are described and should possibly be investigated further in the future

  15. Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Lap-Yan, C.; Wie, T. Y. C.

    2009-01-01

    The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs) is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR) in a GEN IV direct-cycle gas-cooled fast reactor (GFR) which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow were evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.

  16. Research Reactors Types and Utilization

    International Nuclear Information System (INIS)

    Abdelrazek, I.D.

    2008-01-01

    A nuclear reactor, in gross terms, is a device in which nuclear chain reactions are initiated, controlled, and sustained at a steady rate. The nuclei of fuel heavy atoms (mostly 235 U or 239 Pu), when struck by a slow neutron, may split into two or more smaller nuclei as fission products,releasing energy and neutrons in a process called nuclear fission. These newly-born fast neutrons then undergo several successive collisions with relatively low atomic mass material, the moderator, to become thermalized or slow. Normal water, heavy water, graphite and beryllium are typical moderators. These neutrons then trigger further fissions, and so on. When this nuclear chain reaction is controlled, the energy released can be used to heat water, produce steam and drive a turbine that generates electricity. The fission process, and hence the energy release, are controlled by the insertion (or extraction) of control rods through the reactor. These rods are strongly neutron absorbents, and thus only enough neutrons to sustain the chain reaction are left in the core. The energy released, mostly in the form of heat, should be continuously removed, to protect the core from damage. The most significant use of nuclear reactors is as an energy source for the generation of electrical power and for power in some military ships. This is usually accomplished by methods that involve using heat from the nuclear reaction to power steam turbines. Research reactors are used for radioisotope production and for beam experiments with free neutrons. Historically, the first use of nuclear reactors was the production of weapons grade plutonium for nuclear weapons. Currently all commercial nuclear reactors are based on nuclear fission. Fusion power is an experimental technology based on nuclear fusion instead of fission.

  17. Fission gas release behaviour in MOX fuels

    International Nuclear Information System (INIS)

    Viswanathan, U.K.; Anantharaman, S.; Sahoo, K.C.

    2002-01-01

    As a part of plutonium recycling programme MOX (U,Pu)O 2 fuels will be used in Indian boiling water reactors (BWR) and pressurised heavy water reactors (PHWR). Based on successful test irradiation of MOX fuel in CIRUS reactor, 10 MOX fuel assemblies have been loaded in the BWR of Tarapur Atomic Power Station (TAPS). Some of these MOX fuel assemblies have successfully completed the initial target average burnup of ∼16,000 MWD/T. Enhancing the burnup target of the MOX fuels and increasing loading of MOX fuels in TAPS core will depend on the feedback information generated from the measurement of released fission gases. Fission gas release behaviour has been studied in the experimental MOX fuel elements (UO 2 - 4% PuO 2 ) irradiated in pressurised water loop (PWL) of CIRUS. Eight (8) MOX fuel elements irradiated to an average burnup of ∼16,000 MWD/T have been examined. Some of these fuel elements contained controlled porosity pellets and chamfered pellets. This paper presents the design details of the experimental set up for studying fission gas release behaviour including measurement of gas pressure, void volume and gas composition. The experimental data generated is compared with the prediction of fuel performance modeling codes of PROFESS and GAPCON THERMAL-3. (author)

  18. Local Fission Gas Release and Swelling in Water Reactor Fuel during Slow Power Transients

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Walker, C.T.; Ray, I.L.F.

    1985-01-01

    Gas release and fuel swelling caused by a power increase in a water reactor fuel (burn-up 2.7–4.5% FIMA) is described. At a bump terminal level of about 400 W/cm (local value) gas release was 25–40%. The formation of gas bubbles on grain boundaries and their degree of interlinkage are the two...... factors that determine the level of fission gas release during a power bump. Release begins when gas bubbles on grain boundaries start o interlink. This occurred at r/r0 ~ 0.75. Release tunnels were fully developed at r/r0 ~ 0.55 with the result that gas release was 60–70% at this position....

  19. Neutron transport. Physics and calculation of nuclear reactors with applications to pressurized water reactors and fast neutron reactors. 2 ed.

    International Nuclear Information System (INIS)

    Bussac, J.; Reuss, P.

    1985-01-01

    This book presents the main physical bases of neutron theory and nuclear reactor calculation. 1) Interactions of neutrons with matter and basic principles of neutron transport; 2) Neutron transport in homogeneous medium and the neutron field: kinetic behaviour, slowing-down, resonance absorption, diffusion equation, processing methods; 3) Theory of a reactor constituted with homogeneous zones: critical condition, kinetics, separation of variables, calculation and neutron balance of the fundamental mode, one-group and multigroup theories; 4) Study of heterogeneous cell lattices: fast fission factor, resonance absorption, thermal output factor, diffusion coefficient, computer codes; 5) Operation and control of reactors: perturbation theory, reactivity, fuel properties evolution, poisoning by fission products, calculation of a reactor and fuel management; 6) Study of some types of reactors: PWR and fast breeder reactors, the main reactor types of the present French program [fr

  20. Fission 99Mo production technology

    International Nuclear Information System (INIS)

    Miao Zengxing; Luo Zhifu; Ma Huimin; Liang Yufu; Yu Ningwen

    2003-01-01

    This paper describes a production technology of fission 99 Mo in the Department Isotope, CIAE. The irradiation target is tubular U-Al alloy containing highly enriched uranium. The target is irradiated in the swimming pool reactor core. The neutron flux is about 4x10 13 /cm 2 .sec. The production scale is 3.7-7.4 TBq (100-200Ci) of fission 99 Mo per batch. Total recovery of 99 Mo is more than 70%. The production practice proves that the process and equipment are safe and reliable. (author)