WorldWideScience

Sample records for ito gate electrodes

  1. Process development of ITO source/drain electrode for the top-gate indium-gallium-zinc oxide transparent thin-film transistor

    International Nuclear Information System (INIS)

    Cheong, Woo-Seok; Yoon, Young-sun; Shin, Jae-Heon; Hwang, Chi-Sun; Chu, Hye Yong

    2009-01-01

    Indium-tin oxide (ITO) has been widely used as electrodes for LCDs and OLEDs. The applications are expanding to the transparent thin-film transistors (TTFT S ) for the versatile circuits or transparent displays. This paper is related with optimization of ITO source and drain electrode for TTFTs on glass substrates. For example, un-etched ITO remnants, which frequently found in the wet etching process, often originate from unsuitable ITO formation processes. In order to improve them, an ion beam deposition method is introduced, which uses for forming a seed layer before the main ITO deposition. We confirm that ITO films with seed layers are effective to obtain clean and smooth glass surfaces without un-etched ITO remnants, resulting in a good long-run electrical stability of the top-gate indium-gallium-zinc oxide-TTFT.

  2. Structural, optical and electrical characterization of ITO, ITO/Ag and ITO/Ni transparent conductive electrodes

    International Nuclear Information System (INIS)

    Ali, Ahmad Hadi; Shuhaimi, Ahmad; Hassan, Zainuriah

    2014-01-01

    We report on the transparent conductive oxides (TCO) characteristics based on the indium tin oxides (ITO) and ITO/metal thin layer as an electrode for optoelectronics device applications. ITO, ITO/Ag and ITO/Ni were deposited on Si and glass substrate by thermal evaporator and radio frequency (RF) magnetron sputtering at room temperature. Post deposition annealing was performed on the samples in air at moderate temperature of 500 °C and 600 °C. The structural, optical and electrical properties of the ITO and ITO/metal were characterized using X-ray diffraction (XRD), UV–Vis spectrophotometer, Hall effect measurement system and atomic force microscope (AFM). The XRD spectrum reveals significant polycrystalline peaks of ITO (2 2 2) and Ag (1 1 1) after post annealing process. The post annealing also improves the visible light transmittance and electrical resistivity of the samples. Figure of merit (FOM) of the ITO, ITO/Ag and ITO/Ni were determined as 5.5 × 10 −3 Ω −1 , 8.4 × 10 −3 Ω −1 and 3.0 × 10 −5 Ω −1 , respectively. The results show that the post annealed ITO with Ag intermediate layer improved the efficiency of the transparent conductive electrodes (TCE) as compared to the ITO and ITO/Ni.

  3. Structural, optical and electrical characterization of ITO, ITO/Ag and ITO/Ni transparent conductive electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmad Hadi, E-mail: ahadi@uthm.edu.my [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, Penang (Malaysia); Science Department, Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, Johor (Malaysia); Shuhaimi, Ahmad [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur (Malaysia); Hassan, Zainuriah [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, Penang (Malaysia)

    2014-01-01

    We report on the transparent conductive oxides (TCO) characteristics based on the indium tin oxides (ITO) and ITO/metal thin layer as an electrode for optoelectronics device applications. ITO, ITO/Ag and ITO/Ni were deposited on Si and glass substrate by thermal evaporator and radio frequency (RF) magnetron sputtering at room temperature. Post deposition annealing was performed on the samples in air at moderate temperature of 500 °C and 600 °C. The structural, optical and electrical properties of the ITO and ITO/metal were characterized using X-ray diffraction (XRD), UV–Vis spectrophotometer, Hall effect measurement system and atomic force microscope (AFM). The XRD spectrum reveals significant polycrystalline peaks of ITO (2 2 2) and Ag (1 1 1) after post annealing process. The post annealing also improves the visible light transmittance and electrical resistivity of the samples. Figure of merit (FOM) of the ITO, ITO/Ag and ITO/Ni were determined as 5.5 × 10{sup −3} Ω{sup −1}, 8.4 × 10{sup −3} Ω{sup −1} and 3.0 × 10{sup −5} Ω{sup −1}, respectively. The results show that the post annealed ITO with Ag intermediate layer improved the efficiency of the transparent conductive electrodes (TCE) as compared to the ITO and ITO/Ni.

  4. Mediatorless bioelectrocatalysis of dioxygen reduction at indium-doped tin oxide (ITO) and ITO nanoparticulate film electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Rozniecka, Ewa; Jonsson-Niedziolka, Martin; Sobczak, Janusz W. [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa (Poland); Opallo, Marcin, E-mail: mopallo@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa (Poland)

    2011-10-01

    Highlights: > We introduced ITO nanoparticulate films for enzyme immobilization. > The material promotes mediatorless bioelectrocatalysis towards dioxygen reduction. > The electrocatalytical current increase with the thickness of nanoparticulate film. > There is no difference in electrocatalytic current in the presence or absence of mediator. > The stability of the electrode can be improved by crosslinking of the enzyme with bovine serum albumin and glutaraldehyde. - Abstract: Bilirubin oxidase was immobilised on ITO electrodes: bare or covered by ITO nanoparticulate film. The latter material was obtained by immersion and withdrawal of the substrate into ITO nanoparticles suspension. Formation of a protein deposit was confirmed by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. The electrode surface is covered by a protein film in the form of globular aggregates and it exhibits mediatorless electrocatalytic activity towards dioxygen reduction to water at pH 4.8. Modification of the electrode with ITO particles increases its catalytic activity about ten times up to 110 {mu}A cm{sup -2} seen for electrodes prepared by twelve immersion and withdrawal steps into ITO nanoparticle suspension. The catalytic activity is almost unaffected by addition of mediator to solution. The stability of the electrodes is increased by cross-linking of the enzyme with bovine serum albumin and glutaraldehyde. This electrode was applied as biocathode in a zinc-dioxygen battery operating in 0.1 mol dm{sup -3} McIlvaine buffer (pH 4.8).

  5. Mediatorless bioelectrocatalysis of dioxygen reduction at indium-doped tin oxide (ITO) and ITO nanoparticulate film electrodes

    International Nuclear Information System (INIS)

    Rozniecka, Ewa; Jonsson-Niedziolka, Martin; Sobczak, Janusz W.; Opallo, Marcin

    2011-01-01

    Highlights: → We introduced ITO nanoparticulate films for enzyme immobilization. → The material promotes mediatorless bioelectrocatalysis towards dioxygen reduction. → The electrocatalytical current increase with the thickness of nanoparticulate film. → There is no difference in electrocatalytic current in the presence or absence of mediator. → The stability of the electrode can be improved by crosslinking of the enzyme with bovine serum albumin and glutaraldehyde. - Abstract: Bilirubin oxidase was immobilised on ITO electrodes: bare or covered by ITO nanoparticulate film. The latter material was obtained by immersion and withdrawal of the substrate into ITO nanoparticles suspension. Formation of a protein deposit was confirmed by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. The electrode surface is covered by a protein film in the form of globular aggregates and it exhibits mediatorless electrocatalytic activity towards dioxygen reduction to water at pH 4.8. Modification of the electrode with ITO particles increases its catalytic activity about ten times up to 110 μA cm -2 seen for electrodes prepared by twelve immersion and withdrawal steps into ITO nanoparticle suspension. The catalytic activity is almost unaffected by addition of mediator to solution. The stability of the electrodes is increased by cross-linking of the enzyme with bovine serum albumin and glutaraldehyde. This electrode was applied as biocathode in a zinc-dioxygen battery operating in 0.1 mol dm -3 McIlvaine buffer (pH 4.8).

  6. Roll-to-Roll sputtered ITO/Cu/ITO multilayer electrode for flexible, transparent thin film heaters and electrochromic applications.

    Science.gov (United States)

    Park, Sung-Hyun; Lee, Sang-Mok; Ko, Eun-Hye; Kim, Tae-Ho; Nah, Yoon-Chae; Lee, Sang-Jin; Lee, Jae Heung; Kim, Han-Ki

    2016-09-22

    We fabricate high-performance, flexible, transparent electrochromic (EC) films and thin film heaters (TFHs) on an ITO/Cu/ITO (ICI) multilayer electrode prepared by continuous roll-to-roll (RTR) sputtering of ITO and Cu targets. The RTR-sputtered ICI multilayer on a 700 mm wide PET substrate at room temperature exhibits a sheet resistance of 11.8 Ω/square and optical transmittance of 73.9%, which are acceptable for the fabrication of flexible and transparent EC films and TFHs. The effect of the Cu interlayer thickness on the electrical and optical properties of the ICI multilayer was investigated in detail. The bending and cycling fatigue tests demonstrate that the RTR-sputtered ICI multilayer was more flexible than a single ITO film because of high strain failure of the Cu interlayer. The flexible and transparent EC films and TFHs fabricated on the ICI electrode show better performances than reference EC films and TFHs with a single ITO electrode. Therefore, the RTR-sputtered ICI multilayer is the best substitute for the conventional ITO film electrode in order to realize flexible, transparent, cost-effective and large-area EC devices and TFHs that can be used as flexible and smart windows.

  7. Controllably annealed CuO-nanoparticle modified ITO electrodes: Characterisation and electrochemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tong; Su, Wen; Fu, Yingyi [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Hu, Jingbo, E-mail: hujingbo@bnu.edu.cn [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China)

    2016-12-30

    Graphical abstract: We report a simple and controllable synthesis of CuO-nanoparticle-modified ITO by employing a combination of ion-implantation and annealing methods for the first time. The optimum CuO/ITO electrode shows uniform morphology, highly accessible surface area, long-term stability and excellent electrochemical performance towards biomolecules such as glucose in alkaline solution. - Highlights: • Controllably annealed CuO/ITO electrode was synthesized for the first time. • The generation mechanism of CuO nanoparticles is revealed. • The optimum CuO/ITO electrode shows excellent electrochemical performance. • A reference for the controllable preparation of other metal oxide nanoparticles. - Abstract: In this paper, we report a facile and controllable two-step approach to produce indium tin oxide electrodes modified by copper(II) oxide nanoparticles (CuO/ITO) through ion implantation and annealing methods. After annealing treatment, the surface morphology of the CuO/ITO substrate changed remarkably and exhibited highly electroactive sites and a high specific surface area. The effects of annealing treatment on the synthesis of CuO/ITO were discussed based on various instruments’ characterisations, and the possible mechanism by which CuO nanoparticles were generated was also proposed in this work. Cyclic voltammetric results indicated that CuO/ITO electrodes exhibited effective catalytic responses toward glucose in alkaline solution. Under optimal experimental conditions, the proposed CuO/ITO electrode showed sensitivity of 450.2 μA cm{sup −2} mM{sup −1} with a linear range of up to ∼4.4 mM and a detection limit of 0.7 μM (S/N = 3). Moreover, CuO/ITO exhibited good poison resistance, reproducibility, and stability properties.

  8. ITO nanoparticles reused from ITO scraps and their applications to sputtering target for transparent conductive electrode layer

    OpenAIRE

    Hong, Sung-Jei; Song, Sang-Hyun; Kim, Byeong Jun; Lee, Jae-Yong; Kim, Young-Sung

    2017-01-01

    In this study, ITO nanoparticles (ITO-NPs) were reused from ITO target scraps to synthesize low cost ITO-NPs and to apply to make sputtering target for transparent conductive electrodes (TCEs). By controlling heat-treatment temperature as 980??C, we achieved reused ITO-NPs having Brunauer, Emmett and Teller specific surface area (BET SSA) and average particle size 8.05?m2/g and 103.8?nm, respectively. The BET SSA decreases along with increasing heat-treatment temperature. The ITO-NPs were gro...

  9. Involvement of flocculin in negative potential-applied ITO electrode adhesion of yeast cells

    Science.gov (United States)

    Koyama, Sumihiro; Tsubouchi, Taishi; Usui, Keiko; Uematsu, Katsuyuki; Tame, Akihiro; Nogi, Yuichi; Ohta, Yukari; Hatada, Yuji; Kato, Chiaki; Miwa, Tetsuya; Toyofuku, Takashi; Nagahama, Takehiko; Konishi, Masaaki; Nagano, Yuriko; Abe, Fumiyoshi

    2015-01-01

    The purpose of this study was to develop novel methods for attachment and cultivation of specifically positioned single yeast cells on a microelectrode surface with the application of a weak electrical potential. Saccharomyces cerevisiae diploid strains attached to an indium tin oxide/glass (ITO) electrode to which a negative potential between −0.2 and −0.4 V vs. Ag/AgCl was applied, while they did not adhere to a gallium-doped zinc oxide/glass electrode surface. The yeast cells attached to the negative potential-applied ITO electrodes showed normal cell proliferation. We found that the flocculin FLO10 gene-disrupted diploid BY4743 mutant strain (flo10Δ /flo10Δ) almost completely lost the ability to adhere to the negative potential-applied ITO electrode. Our results indicate that the mechanisms of diploid BY4743 S. cerevisiae adhesion involve interaction between the negative potential-applied ITO electrode and the Flo10 protein on the cell wall surface. A combination of micropatterning techniques of living single yeast cell on the ITO electrode and omics technologies holds potential of novel, highly parallelized, microchip-based single-cell analysis that will contribute to new screening concepts and applications. PMID:26187908

  10. Atomic-Layer-Deposited SnO2 as Gate Electrode for Indium-Free Transparent Electronics

    KAUST Repository

    Alshammari, Fwzah Hamud; Hota, Mrinal Kanti; Wang, Zhenwei; Aljawhari, Hala; Alshareef, Husam N.

    2017-01-01

    Atomic-layer-deposited SnO2 is used as a gate electrode to replace indium tin oxide (ITO) in thin-film transistors and circuits for the first time. The SnO2 films deposited at 200 °C show low electrical resistivity of ≈3.1 × 10−3 Ω cm with ≈93

  11. Effect of N,C-ITO on Composite N,C-Ti/N,C-ITO/ITO Electrode Used for Photoelectrochemical Degradation of Aqueous Pollutant with Simultaneous Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Kee-Rong Wu

    2012-01-01

    Full Text Available This study reports the effect of N,C-ITO (indium tin oxide layer on composite N,C-TiO2/N,C-ITO/ITO (Ti/TO electrode used for efficient photoelectrocatalytic (PEC degradation of aqueous pollutant with simultaneous hydrogen production. The structural properties of the composite Ti/TO electrode that determined by X-ray diffraction and Raman scattering, show primarily the crystallized anatase TiO2 phase and distinct diffraction patterns of polycrystalline In2O3 phase. Under solar light illumination, the composite Ti/TO electrode yields simultaneously a hydrogen production rate of 12.0 μmol cm−2 h−1 and degradation rate constant of  cm−2 h−1 in organic pollutant. It implies that the overlaid N,C-TiO2 layer enhances not only the photocurrent response of the composite Ti/TO electrode at entire applied potentials, but also the flat band potential; a shift of about 0.1 V toward cathode, which is desperately beneficial in the PEC process. In light of the X-ray photoelectron spectroscopy findings, these results are attributable partly to the synergetic effect of N,C-codoping into the TiO2 and ITO lattices on their band gap narrowing and photosensitizing as well. Thus, the Ti/TO electrode can potentially serve an efficient PEC electrode for simultaneous pollutant degradation and hydrogen production.

  12. ITO nanoparticles reused from ITO scraps and their applications to sputtering target for transparent conductive electrode layer.

    Science.gov (United States)

    Hong, Sung-Jei; Song, Sang-Hyun; Kim, Byeong Jun; Lee, Jae-Yong; Kim, Young-Sung

    2017-01-01

    In this study, ITO nanoparticles (ITO-NPs) were reused from ITO target scraps to synthesize low cost ITO-NPs and to apply to make sputtering target for transparent conductive electrodes (TCEs). By controlling heat-treatment temperature as 980 °C, we achieved reused ITO-NPs having Brunauer, Emmett and Teller specific surface area (BET SSA) and average particle size 8.05 m 2 /g and 103.8 nm, respectively. The BET SSA decreases along with increasing heat-treatment temperature. The ITO-NPs were grown as round mound shape, and highly crystallized to (222) preferred orientations. Also, applying the reused ITO-NPs, we achieved an ITO target of which density was 99.6%. Using the ITO target, we achieved high quality TCE layer of which sheet resistance and optical transmittance at 550 nm were 29.5 Ω/sq. and 82.3%. Thus, it was confirmed that the reused ITO-NPs was feasible to sputtering target for TCEs layer.

  13. ITO nanoparticles reused from ITO scraps and their applications to sputtering target for transparent conductive electrode layer

    Science.gov (United States)

    Hong, Sung-Jei; Song, Sang-Hyun; Kim, Byeong Jun; Lee, Jae-Yong; Kim, Young-Sung

    2017-09-01

    In this study, ITO nanoparticles (ITO-NPs) were reused from ITO target scraps to synthesize low cost ITO-NPs and to apply to make sputtering target for transparent conductive electrodes (TCEs). By controlling heat-treatment temperature as 980 °C, we achieved reused ITO-NPs having Brunauer, Emmett and Teller specific surface area (BET SSA) and average particle size 8.05 m2/g and 103.8 nm, respectively. The BET SSA decreases along with increasing heat-treatment temperature. The ITO-NPs were grown as round mound shape, and highly crystallized to (222) preferred orientations. Also, applying the reused ITO-NPs, we achieved an ITO target of which density was 99.6%. Using the ITO target, we achieved high quality TCE layer of which sheet resistance and optical transmittance at 550 nm were 29.5 Ω/sq. and 82.3%. Thus, it was confirmed that the reused ITO-NPs was feasible to sputtering target for TCEs layer.

  14. Self-assembled gold nanoparticles modified ITO electrodes: The monolayer binder molecule effect

    Energy Technology Data Exchange (ETDEWEB)

    Ballarin, Barbara; Cassani, Maria Cristina; Scavetta, Erika; Tonelli, Domenica [Dipartimento di Chimica Fisica ed Inorganica, Universita di Bologna, V.le Risorgimento 4, 40136 Bologna, INSTM, UdR Bologna (Italy)

    2008-11-15

    The fabrication of gold attached organosilane-coated indium tin oxide Au{sub NPs}-MPTMS/ITO and Au{sub NPs}-APTES/ITO electrodes [MPTMS 3-(mercaptopropyl)-trimethoxysilane, APTES = 3-(aminopropyl)-triethoxysilane, ITO = indium tin oxide] was carried out making use of a well-known two-step procedure and the role played by the -SH and -NH{sub 2} functional groups in the two electrodes has been examined and compared using different techniques. Information about particle coverage and inter-particle spacing has been obtained using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) whereas, bulk surface properties have been probed with UV-vis spectroscopy, CV and electrochemical impedance spectroscopy (EIS). The catalytic activity of the two electrodes has been evaluated studying the electrooxidation of methanol in alkaline conditions. The results obtained show that the NH{sub 2} functionality in the APTES binder molecule favours the formation of isle-like Au nanoparticle aggregates that lead to both a higher electron transfer and electrocatalytic activity. (author)

  15. Atomic-Layer-Deposited SnO2 as Gate Electrode for Indium-Free Transparent Electronics

    KAUST Repository

    Alshammari, Fwzah Hamud

    2017-08-04

    Atomic-layer-deposited SnO2 is used as a gate electrode to replace indium tin oxide (ITO) in thin-film transistors and circuits for the first time. The SnO2 films deposited at 200 °C show low electrical resistivity of ≈3.1 × 10−3 Ω cm with ≈93% transparency in most of the visible range of the electromagnetic spectrum. Thin-film transistors fabricated with SnO2 gates show excellent transistor properties including saturation mobility of 15.3 cm2 V−1 s−1, a low subthreshold swing of ≈130 mV dec−1, a high on/off ratio of ≈109, and an excellent electrical stability under constant-voltage stressing conditions to the gate terminal. Moreover, the SnO2-gated thin-film transistors show excellent electrical characteristics when used in electronic circuits such as negative channel metal oxide semiconductor (NMOS) inverters and ring oscillators. The NMOS inverters exhibit a low propagation stage delay of ≈150 ns with high DC voltage gain of ≈382. A high oscillation frequency of ≈303 kHz is obtained from the output sinusoidal signal of the 11-stage NMOS inverter-based ring oscillators. These results show that SnO2 can effectively replace ITO in transparent electronics and sensor applications.

  16. Tracking metal ions with polypyrrole thin films adhesively bonded to diazonium-modified flexible ITO electrodes.

    Science.gov (United States)

    Lo, Momath; Diaw, Abdou K D; Gningue-Sall, Diariatou; Aaron, Jean-Jacques; Oturan, Mehmet A; Chehimi, Mohamed M

    2018-05-09

    Adhesively bonded polypyrrole thin films doped with benzene sulfonic acid (BSA) were electrodeposited on aminobenzenediazonium-modified flexible ITO electrodes and further employed for the detection of Pb 2+ , Cu 2+ , and Cd 2+ metal ions in aqueous medium. The aminophenyl (AP) adhesive layer was grafted to ITO by electroreduction of the in situ generated parent diazonium compound. Polypyrrole (PPy) thin films exhibited remarkable adhesion to aminophenyl (ITO-AP). The strongly adherent polypyrrole films exhibited excellent electroactivity in the doped state with BSA which itself served to chelate the metal ions in aqueous medium. The surface of the resulting, modified flexible electrode was characterized by XPS, SEM, and electrochemical methods. The ITO-AP-PPy electrodes were then used for the simultaneous detection of Cu 2+ , Cd 2+ , and Pb 2+ by differential pulse voltammetry (DPV). The detection limits were 11.1, 8.95, and 0.99 nM for Cu 2+ , Cd 2+ , and Pb 2+ , respectively. In addition, the modified electrodes displayed a good reproducibility, making them suitable for the determination of heavy metals in real wastewater samples.

  17. On-chip nanostructuring and impedance trimming of transparent and flexible ITO electrodes by laser induced coherent sub-20 nm cuts

    Energy Technology Data Exchange (ETDEWEB)

    Afshar, Maziar, E-mail: m.afshar@lmm.uni-saarland.de [Lab for Micromechanics, Microfluidics, and Microactuators, Saarland University, Saarbrücken D-66123 (Germany); Leber, Moritz [Lab for Micromechanics, Microfluidics, and Microactuators, Saarland University, Saarbrücken D-66123 (Germany); Poppendieck, Wigand [Department of Medical Engineering & Neuroprosthetics, Fraunhofer Institute for Biomedical Engineering, St. Ingbert D-66386 (Germany); König, Karsten [Lab for Biophotonics and Laser Technology, Saarland University, Saarbrücken D-66123 (Germany); Seidel, Helmut; Feili, Dara [Lab for Micromechanics, Microfluidics, and Microactuators, Saarland University, Saarbrücken D-66123 (Germany)

    2016-01-01

    Graphical abstract: - Highlights: • A novel method to make sub-20 nm nanopatterning in ITO thin films by laser writing. • A novel way to functionalize ITO bio-electrodes to yield near-field polarizing feature. • A basic characterization of ITO electrodes was performed by impedance spectroscopy. • Presentation of simulations and possible theoretical approaches to explain the results. - Abstract: In this work, the effect of laser-induced nanostructuring of transparent indium tin oxide (ITO) electrodes on flexible glass is investigated. Multi-electrode arrays (MEA) for electrical and optical characterization of biological cells were fabricated using standard MEMS technologies. Optimal sputter parameters concerning oxygen flow, sputter power and ambient pressure for ITO layers with both good optical and electrical properties were determined. Afterwards, coherent sub-20 nm wide and 150 nm deep nanocuts of many micrometers in length were generated within the ITO electrodes by a sub-15 femtosecond (fs) pulsed laser. The influence of laser processing on the electrical and optical properties of electrodes was investigated. The electrochemical impedance of the manufactured electrodes was measured before and after laser modification using electrochemical impedance spectroscopy. A small reduction in electrode impedance was observed. These nanostructured electrodes show also polarizing effects by the visible spectrum.

  18. ZnS nanoparticles electrodeposited onto ITO electrode as a platform for fabrication of enzyme-based biosensors of glucose

    International Nuclear Information System (INIS)

    Du, Jian; Yu, Xiuping; Wu, Ying; Di, Junwei

    2013-01-01

    The electrochemical and photoelectrochemical biosensors based on glucose oxidase (GOD) and ZnS nanoparticles modified indium tin oxide (ITO) electrode were investigated. The ZnS nanoparticles were electrodeposited directly on the surface of ITO electrode. The enzyme was immobilized on ZnS/ITO electrode surface by sol–gel method to fabricate glucose biosensor. GOD could electrocatalyze the reduction of dissolved oxygen, which resulted in a great increase of the reduction peak current. The reduction peak current decreased linearly with the addition of glucose, which could be used for glucose detection. Moreover, ZnS nanoparticles deposited on ITO electrode surface showed good photocurrent response under illumination. A photoelectrochemical biosensor for the detection of glucose was also developed by monitoring the decreases in the cathodic peak photocurrent. The results indicated that ZnS nanoparticles deposited on ITO substrate were a good candidate material for the immobilization of enzyme in glucose biosensor construction. - Highlights: ► ZnS nanoparticles were electrodeposited directly on ITO surface. ► The direct electron transfer of GOD immobilized on ZnS surface was obtained. ► The enzyme electrode was used to the determination of glucose in the presence of oxygen. ► The response of photoelectrochemical biosensor towards glucose was more sensitive

  19. ZnS nanoparticles electrodeposited onto ITO electrode as a platform for fabrication of enzyme-based biosensors of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jian; Yu, Xiuping; Wu, Ying; Di, Junwei, E-mail: djw@suda.edu.cn

    2013-05-01

    The electrochemical and photoelectrochemical biosensors based on glucose oxidase (GOD) and ZnS nanoparticles modified indium tin oxide (ITO) electrode were investigated. The ZnS nanoparticles were electrodeposited directly on the surface of ITO electrode. The enzyme was immobilized on ZnS/ITO electrode surface by sol–gel method to fabricate glucose biosensor. GOD could electrocatalyze the reduction of dissolved oxygen, which resulted in a great increase of the reduction peak current. The reduction peak current decreased linearly with the addition of glucose, which could be used for glucose detection. Moreover, ZnS nanoparticles deposited on ITO electrode surface showed good photocurrent response under illumination. A photoelectrochemical biosensor for the detection of glucose was also developed by monitoring the decreases in the cathodic peak photocurrent. The results indicated that ZnS nanoparticles deposited on ITO substrate were a good candidate material for the immobilization of enzyme in glucose biosensor construction. - Highlights: ► ZnS nanoparticles were electrodeposited directly on ITO surface. ► The direct electron transfer of GOD immobilized on ZnS surface was obtained. ► The enzyme electrode was used to the determination of glucose in the presence of oxygen. ► The response of photoelectrochemical biosensor towards glucose was more sensitive.

  20. ITO with embedded silver grids as transparent conductive electrodes for large area organic solar cells

    Science.gov (United States)

    Patil, Bhushan R.; Mirsafaei, Mina; Piotr Cielecki, Paweł; Fernandes Cauduro, André Luis; Fiutowski, Jacek; Rubahn, Horst-Günter; Madsen, Morten

    2017-10-01

    In this work, development of semi-transparent electrodes for efficient large area organic solar cells (OSCs) has been demonstrated. Electron beam evaporated silver grids were embedded in commercially available ITO coatings on glass, through a standard negative photolithography process, in order to improve the conductivity of planar ITO substrates. The fabricated electrodes with embedded line and square patterned Ag grids reduced the sheet resistance of ITO by 25% and 40%, respectively, showing optical transmittance drops of less than 6% within the complete visible light spectrum for both patterns. Solution processed bulk heterojunction OSCs based on PTB7:[70]PCBM were fabricated on top of these electrodes with cell areas of 4.38 cm2, and the performance of these OSCs was compared to reference cells fabricated on pure ITO electrodes. The Fill Factor (FF) of the large-scale OSCs fabricated on ITO with embedded Ag grids was enhanced by 18% for the line grids pattern and 30% for the square grids pattern compared to that of the reference OSCs. The increase in the FF was directly correlated to the decrease in the series resistance of the OSCs. The maximum power conversion efficiency (PCE) of the OSCs was measured to be 4.34%, which is 23% higher than the PCE of the reference OSCs. As the presented method does not involve high temperature processing, it could be considered a general approach for development of large area organic electronics on solvent resistant, flexible substrates.

  1. Investigation of ITO free transparent conducting polymer based electrode

    Science.gov (United States)

    Sharma, Vikas; Sapna, Sachdev, Kanupriya

    2016-05-01

    The last few decades have seen a significant improvement in organic semiconductor technology related to solar cell, light emitting diode and display panels. The material and structure of the transparent electrode is one of the major concerns for superior performance of devices such as OPV, OLED, touch screen and LCD display. Commonly used ITO is now restricted due to scarcity of indium, its poor mechanical properties and rigidity, and mismatch of energy levels with the active layer. Nowadays DMD (dielectric-metal-dielectric) structure is one of the prominent candidates as alternatives to ITO based electrode. We have used solution based spin coated polymer layer as the dielectric layer with silver thin film embedded in between to make a polymer-metal-polymer (PMP) structure for TCE applications. The PMP structure shows low resistivity (2.3 x 10-4Ω-cm), high carrier concentration (2.9 x 1021 cm-3) and moderate transparency. The multilayer PMP structure is characterized with XRD, AFM and Hall measurement to prove its suitability for opto-electronic device applications.

  2. Investigation of ITO free transparent conducting polymer based electrode

    International Nuclear Information System (INIS)

    Sharma, Vikas; Sapna,; Sachdev, Kanupriya

    2016-01-01

    The last few decades have seen a significant improvement in organic semiconductor technology related to solar cell, light emitting diode and display panels. The material and structure of the transparent electrode is one of the major concerns for superior performance of devices such as OPV, OLED, touch screen and LCD display. Commonly used ITO is now restricted due to scarcity of indium, its poor mechanical properties and rigidity, and mismatch of energy levels with the active layer. Nowadays DMD (dielectric-metal-dielectric) structure is one of the prominent candidates as alternatives to ITO based electrode. We have used solution based spin coated polymer layer as the dielectric layer with silver thin film embedded in between to make a polymer-metal-polymer (PMP) structure for TCE applications. The PMP structure shows low resistivity (2.3 x 10"−"4Ω-cm), high carrier concentration (2.9 x 10"2"1 cm"−"3) and moderate transparency. The multilayer PMP structure is characterized with XRD, AFM and Hall measurement to prove its suitability for opto-electronic device applications.

  3. Investigation of ITO free transparent conducting polymer based electrode

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Vikas; Sapna,; Sachdev, Kanupriya [Department of Physics, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur-India-302017 (India)

    2016-05-23

    The last few decades have seen a significant improvement in organic semiconductor technology related to solar cell, light emitting diode and display panels. The material and structure of the transparent electrode is one of the major concerns for superior performance of devices such as OPV, OLED, touch screen and LCD display. Commonly used ITO is now restricted due to scarcity of indium, its poor mechanical properties and rigidity, and mismatch of energy levels with the active layer. Nowadays DMD (dielectric-metal-dielectric) structure is one of the prominent candidates as alternatives to ITO based electrode. We have used solution based spin coated polymer layer as the dielectric layer with silver thin film embedded in between to make a polymer-metal-polymer (PMP) structure for TCE applications. The PMP structure shows low resistivity (2.3 x 10{sup −4}Ω-cm), high carrier concentration (2.9 x 10{sup 21} cm{sup −3}) and moderate transparency. The multilayer PMP structure is characterized with XRD, AFM and Hall measurement to prove its suitability for opto-electronic device applications.

  4. Design and development of plasmonic nanostructured electrodes for ITO-free organic photovoltaic cells on rigid and highly flexible substrates

    Science.gov (United States)

    Richardson, Beau J.; Zhu, Leize; Yu, Qiuming

    2017-04-01

    Indium tin oxide (ITO) is the most common transparent electrode used in organic photovoltaics (OPVs), yet limited indium reserves and poor mechanical properties make it non-ideal for large-scale OPV production. To replace ITO, we designed, fabricated, and deployed plasmonic nanostructured electrodes in inverted OPV devices. We found that active layer absorption is significantly impacted by ZnO thickness which affects the optical field distribution inside the resonant cavity formed between the plasmonic nanostructured electrode and top electrode. High quality Cr/Au nanostructured electrodes were fabricated by nanoimprint lithography and deployed in ITO-free inverted devices on glass. Devices with thinner ZnO showed a PCE as high as 5.70% and higher J SC’s than devices on thicker ZnO, in agreement with finite-difference time-domain simulations. In addition, as the active layer was made optically thin, ITO-based devices showed diminished J SC while the resonant cavity effect from plasmonic nanostructured electrodes retained J SC. Preliminary ITO-free, flexible devices on PET showed a PCE of 1.82% and those fabricated on ultrathin and conformable Parylene substrates yielded an initial PCE over 1%. The plasmonic electrodes and device designs in this work show promise for developing highly functioning conformable devices that can be applied to numerous needs for lightweight, ubiquitous power generation.

  5. ITO with embedded silver grids as transparent conductive electrodes for large area organic solar cells

    DEFF Research Database (Denmark)

    Patil, Bhushan Ramesh; Mirsafaei, Mina; Cielecki, Pawel Piotr

    2017-01-01

    In this work, development of semi-transparent electrodes for efficient large area organic solar cells (OSCs) has been demonstrated. Electron beam evaporated silver grids were embedded in commercially available ITO coatings on glass, through a standard negative photolithography process, in order...... patterns. Solution processed bulk heterojunction OSCs based on PTB7:[70]PCBM were fabricated on top of these electrodes with cell areas of 4.38 cm2, and the performance of these OSCs was compared to reference cells fabricated on pure ITO electrodes. The Fill Factor of the large-scale OSCs fabricated on ITO...... with embedded Ag grids was enhanced by 18 % for the line grids pattern and 30 % for the square grids pattern compared to that of the reference OSCs. The increase in the Fill Factor was directly correlated to the decrease in the series resistance of the OSCs. The maximum power conversion efficiency (PCE...

  6. Transparently wrap-gated semiconductor nanowire arrays for studies of gate-controlled photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, Gustav; Storm, Kristian; Torstensson, Henrik; Wallentin, Jesper; Borgström, Magnus T.; Hessman, Dan; Samuelson, Lars [Solid State Physics, Nanometer Structure Consortium, Lund University, Box 118, S-221 00 Lund (Sweden)

    2013-12-04

    We present a technique to measure gate-controlled photoluminescence (PL) on arrays of semiconductor nanowire (NW) capacitors using a transparent film of Indium-Tin-Oxide (ITO) wrapping around the nanowires as the gate electrode. By tuning the wrap-gate voltage, it is possible to increase the PL peak intensity of an array of undoped InP NWs by more than an order of magnitude. The fine structure of the PL spectrum reveals three subpeaks whose relative peak intensities change with gate voltage. We interpret this as gate-controlled state-filling of luminescing quantum dot segments formed by zincblende stacking faults in the mainly wurtzite NW crystal structure.

  7. Characteristics of ITO electrode grown by linear facing target sputtering with ladder type magnetic arrangement for organic light emitting diodes

    International Nuclear Information System (INIS)

    Jeong, Jin-A; Kim, Han-Ki; Lee, Jae-Young; Lee, Jung-Hwan; Bae, Hyo-Dae; Tak, Yoon-Heung

    2009-01-01

    The preparation and characteristics of indium tin oxide (ITO) electrodes grown using a specially designed linear facing target sputtering (LFTS) system with a ladder type magnet arrangement for organic light emitting diodes (OLED) are described. It was found that the electrical and optical properties of the ITO electrode were critically dependent on the Ar/O 2 flow ratio, while its structural and surface properties remained fairly constant regardless of the Ar/O 2 flow ratio, due to the low substrate temperature during the plasma damage-free sputtering. Under the optimized conditions, we obtained an ITO electrode with the lowest sheet resistance of 39.4 Ω/sq and high transmittance of 90.1% (550 nm wavelength) at room temperature. This suggests that LFTS is a promising low temperature and plasma damage free sputtering technology for preparing high-quality ITO electrodes for OLEDs and flexible OLEDs at room temperature.

  8. High-Efficiency Graphene Photo Sensor Using a Transparent Electrode

    Institute of Scientific and Technical Information of China (English)

    LIU Tao; HUANG Zheng

    2011-01-01

    We report the first implementation of transparent electrodes in bottom-gate graphene transistors used for photo detection.Compared to conventional nontransparent electrodes,the transparent electrodes allow photons to transmit through to the graphene beneath,providing an enlarged absorption area and thereby giving rise to an enhancement of photocurrent generation.The devices are fabricated with an asymmetric metallization scheme and the experimental results show that the maximum photocurrent density using the transparent electrodes (ITO and Pd/ITO) is over two times higher than that using the nontransparent electrodes (Ti and Pd),indicating a significant enhancement in the performance of graphene photo sensors.Graphene,a single-atomic-layer of carbon atoms with a zero-gap band structure has received great attention recently.[1-4] One promising application of graphene is in high-speed photodetection,owing to its high Fermi velocity (~1/300 of the speed of light),high electrical mobility (200000 cm2/Vs for both electrons and holes) and zero-gap induced wide absorption spectrum (in the visible-to-infrared range).[5,6]%We report the first implementation of transparent electrodes in bottom-gate graphene transistors used for photo detection. Compared to conventional nontransparent electrodes, the transparent electrodes allow photons to transmit through to the graphene beneath, providing an enlarged absorption area and thereby giving rise to an enhancement of photocurrent generation. The devices are fabricated with an asymmetric metallization scheme and the experimental results show that the maximum photocurrent density using the transparent electrodes (ITO and Pd/ITO) is over two times higher than that using the nontransparent electrodes (Ti and Pd), indicating a significant enhancement in the performance of graphene photo sensors.

  9. Electrode patterning of ITO thin films by high repetition rate fiber laser

    International Nuclear Information System (INIS)

    Lin, H.K.; Hsu, W.C.

    2014-01-01

    Indium tin oxide (ITO) thin films are deposited on glass substrates using a radio frequency magnetron sputtering system. As-deposited ITO thin film was 100 nm in thickness and a transmittance of ITO film on glass substrate was 79% at 550 nm. Conductive electrodes are then patterned on the ITO films using a high repetition rate fiber laser system followed by a wet chemical etching process. The electrical, optical and structural properties of the patterned samples are evaluated by means of a four-point probe technique, spectrophotometer, X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results show that the samples annealed with a pulse repetition rate of 150 kHz or 400 kHz have a low sheet resistivity of 21 Ω/□ and a high optical transmittance of 90%. In addition, it is shown that a higher pulse repetition rate reduces both the residual stress and the surface roughness of the patterned specimens. Therefore, the present results suggest that a pulse repetition rate of 400 kHz represents the optimal processing condition for the patterning of crack-free ITO-coated glass substrates with good electrical and optical properties.

  10. Electrode patterning of ITO thin films by high repetition rate fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Lin, H.K., E-mail: HKLin@mail.npust.edu.tw; Hsu, W.C.

    2014-07-01

    Indium tin oxide (ITO) thin films are deposited on glass substrates using a radio frequency magnetron sputtering system. As-deposited ITO thin film was 100 nm in thickness and a transmittance of ITO film on glass substrate was 79% at 550 nm. Conductive electrodes are then patterned on the ITO films using a high repetition rate fiber laser system followed by a wet chemical etching process. The electrical, optical and structural properties of the patterned samples are evaluated by means of a four-point probe technique, spectrophotometer, X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results show that the samples annealed with a pulse repetition rate of 150 kHz or 400 kHz have a low sheet resistivity of 21 Ω/□ and a high optical transmittance of 90%. In addition, it is shown that a higher pulse repetition rate reduces both the residual stress and the surface roughness of the patterned specimens. Therefore, the present results suggest that a pulse repetition rate of 400 kHz represents the optimal processing condition for the patterning of crack-free ITO-coated glass substrates with good electrical and optical properties.

  11. Electrocolorimetry of electrochromic materials on flexible ITO electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Carlos [Requimte, Dep. Quimica, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); YDreams, Madan Parque, Quinta da Torre, 2829-516 Caparica (Portugal); Parola, A.J.; Pina, F. [Requimte, Dep. Quimica, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Fonseca, J.; Freire, C. [Requimte, Dep. Quimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal)

    2008-08-15

    Electrochromic materials are characterized by their colour changes upon applied voltage. Colour can mean many things: a certain kind of light, its effect on the human eye, or the result of this effect in the mind of the viewer. Since the electrochromic materials are developed towards real life applications it is relevant to characterize them with the usual commercial colour standards. A colorimetric study of electrogenerated Prussian blue and electrogenerated polymers based on salen-type complexes of Cu(II), Ni(II) and Pd(II) deposited over transparent flexible electrodes of polyethylene terephthalate coated with indium tin oxide (PET/ITO electrodes) was carried out using the CIELAB coordinates. A cuvette with a designed adapter to allow potentiostatic control was placed on an integrating sphere installed in the sample compartment of a spectrophotometer to run the colorimetric measurements. The colour evolution in situ was measured through the transmittance of the films by potentiostatic control. Chronocoulometry/chronoabsorptometry was used to evaluate maximum coloration efficiencies for the coloration step: 184 (Pd), 161 (Cu) and 83 cm{sup 2}/C (Ni) and for bleaching: 199 (Pd), 212 (Cu) and 173 cm{sup 2}/C (Ni) of the Pd, Cu and Ni polymer films, respectively. The Prussian Blue/Prussian White states over the PET/ITO films were relatively reversible while the reversibility and stability of the polymers based on the metals salen-type complexes depends on the metal, Pd being the most stable. (author)

  12. Environmentally Friendly Plasma-Treated PEDOT:PSS as Electrodes for ITO-Free Perovskite Solar Cells.

    Science.gov (United States)

    Vaagensmith, Bjorn; Reza, Khan Mamun; Hasan, Md Nazmul; Elbohy, Hytham; Adhikari, Nirmal; Dubey, Ashish; Kantack, Nick; Gaml, Eman; Qiao, Qiquan

    2017-10-18

    Solution processed poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) transparent electrodes (TEs) offer great potential as a low cost alternative to expensive indium tin oxide (ITO). However, strong acids are typically used for enhancing the conductivity of PEDOT:PSS TEs, which produce processing complexity and environmental issues. This work presents an environmentally friendly acid free approach to enhance the conductivity of PEDOT:PSS using a light oxygen plasma treatment, in addition to solvent blend additives and post treatments. The plasma treatment was found to significantly reduce the sheet resistance of PEDOT:PSS TEs from 85 to as low as 15 Ω sq -1 , which translates to the highest reported conductivity of 5012 S/cm for PEDOT:PSS TEs. The plasma treated PEDOT:PSS TE resulted in an ITO-free perovskite solar cell efficiency of 10.5%, which is the highest reported efficiency for ITO-free perovskite solar cells with a PEDOT:PSS electrode that excludes the use of acid treatments. This research presents the first demonstration of this technology. Moreover, the PEDOT:PSS TEs enabled better charge extraction from the perovskite solar cells and reduced hysteresis in the current density-voltage (J-V) curves.

  13. Electrical and optical properties of ITO and ITO/Cr-doped ITO films

    International Nuclear Information System (INIS)

    Caricato, A.P.; Cesaria, M.; Luches, A.; Martino, M.; Valerini, D.; Maruccio, G.; Catalano, M.; Cola, A.; Manera, M.G.; Lomascolo, M.; Taurino, A.; Rella, R.

    2010-01-01

    In this paper we report on the effects of the insertion of Cr atoms on the electrical and optical properties of indium tin oxide (ITO) films to be used as electrodes in spin-polarized light-emitting devices. ITO films and ITO(80 nm)/Cr-doped ITO(20 nm) bilayers and Cr-doped ITO films with a thickness of 20 nm were grown by pulsed ArF excimer laser deposition. The optical, structural, morphological and electrical properties of ITO films and ITO/Cr-doped structures were characterized by UV-Visible transmission and reflection spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and Hall-effect analysis. For the different investigations, the samples were deposited on different substrates like silica and carbon coated Cu grids. ITO films with a thickness of 100 nm, a resistivity as low as ∝4 x 10 -4 Ω cm, an energy gap of ∝4.3 eV and an atomic scale roughness were deposited at room temperature without any post-deposition process. The insertion of Cr into the ITO matrix in the upper 20 nm of the ITO matrix induced variations in the physical properties of the structure like an increase of average roughness (∝0.4-0.5 nm) and resistivity (up to ∝8 x 10 -4 Ω cm). These variations were correlated to the microstructure of the Cr-doped ITO films with particular attention to the upper 20 nm. (orig.)

  14. Electrical and optical properties of ITO and ITO/Cr-doped ITO films

    Science.gov (United States)

    Caricato, A. P.; Cesaria, M.; Luches, A.; Martino, M.; Maruccio, G.; Valerini, D.; Catalano, M.; Cola, A.; Manera, M. G.; Lomascolo, M.; Taurino, A.; Rella, R.

    2010-12-01

    In this paper we report on the effects of the insertion of Cr atoms on the electrical and optical properties of indium tin oxide (ITO) films to be used as electrodes in spin-polarized light-emitting devices. ITO films and ITO(80 nm)/Cr-doped ITO(20 nm) bilayers and Cr-doped ITO films with a thickness of 20 nm were grown by pulsed ArF excimer laser deposition. The optical, structural, morphological and electrical properties of ITO films and ITO/Cr-doped structures were characterized by UV-Visible transmission and reflection spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and Hall-effect analysis. For the different investigations, the samples were deposited on different substrates like silica and carbon coated Cu grids. ITO films with a thickness of 100 nm, a resistivity as low as ˜4×10-4 Ω cm, an energy gap of ˜4.3 eV and an atomic scale roughness were deposited at room temperature without any post-deposition process. The insertion of Cr into the ITO matrix in the upper 20 nm of the ITO matrix induced variations in the physical properties of the structure like an increase of average roughness (˜0.4-0.5 nm) and resistivity (up to ˜8×10-4 Ω cm). These variations were correlated to the microstructure of the Cr-doped ITO films with particular attention to the upper 20 nm.

  15. Electrical and optical properties of ITO and ITO/Cr-doped ITO films

    Energy Technology Data Exchange (ETDEWEB)

    Caricato, A.P.; Cesaria, M.; Luches, A.; Martino, M.; Valerini, D. [University of Salento, Physics Department, Lecce (Italy); Maruccio, G. [University of Salento, Scuola Superiore Isufi, Lecce (Italy); Catalano, M.; Cola, A.; Manera, M.G.; Lomascolo, M.; Taurino, A.; Rella, R. [IMM-CNR, Institute for Microelectronics and Microsystems, Lecce (Italy)

    2010-12-15

    In this paper we report on the effects of the insertion of Cr atoms on the electrical and optical properties of indium tin oxide (ITO) films to be used as electrodes in spin-polarized light-emitting devices. ITO films and ITO(80 nm)/Cr-doped ITO(20 nm) bilayers and Cr-doped ITO films with a thickness of 20 nm were grown by pulsed ArF excimer laser deposition. The optical, structural, morphological and electrical properties of ITO films and ITO/Cr-doped structures were characterized by UV-Visible transmission and reflection spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and Hall-effect analysis. For the different investigations, the samples were deposited on different substrates like silica and carbon coated Cu grids. ITO films with a thickness of 100 nm, a resistivity as low as {proportional_to}4 x 10{sup -4} {omega} cm, an energy gap of {proportional_to}4.3 eV and an atomic scale roughness were deposited at room temperature without any post-deposition process. The insertion of Cr into the ITO matrix in the upper 20 nm of the ITO matrix induced variations in the physical properties of the structure like an increase of average roughness ({proportional_to}0.4-0.5 nm) and resistivity (up to {proportional_to}8 x 10{sup -4}{omega} cm). These variations were correlated to the microstructure of the Cr-doped ITO films with particular attention to the upper 20 nm. (orig.)

  16. Combustion synthesized indium-tin-oxide (ITO) thin film for source/drain electrodes in all solution-processed oxide thin-film transistors

    International Nuclear Information System (INIS)

    Tue, Phan Trong; Inoue, Satoshi; Takamura, Yuzuru; Shimoda, Tatsuya

    2016-01-01

    We report combustion solution synthesized (SCS) indium-tin-oxide (ITO) thin film, which is a well-known transparent conductive oxide, for source/drain (S/D) electrodes in solution-processed amorphous zirconium-indium-zinc-oxide TFT. A redox-based combustion synthetic approach is applied to ITO thin film using acetylacetone as a fuel and metal nitrate as oxidizer. The structural and electrical properties of SCS-ITO precursor solution and thin films were systematically investigated with changes in tin concentration, indium metal precursors, and annealing conditions such as temperature, time, and ambient. It was found that at optimal conditions the SCS-ITO thin film exhibited high crystalline quality, atomically smooth surface (RMS ∝ 4.1 Aa), and low electrical resistivity (4.2 x 10 -4 Ω cm). The TFT using SCS-ITO film as the S/D electrodes showed excellent electrical properties with negligible hysteresis. The obtained ''on/off'' current ratio, subthreshold swing factor, subthreshold voltage, and field-effect mobility were 5 x 10 7 , 0.43 V/decade, 0.7 V, and 2.1 cm 2 /V s, respectively. The performance and stability of the SCS-ITO TFT are comparable to those of the sputtered-ITO TFT, emphasizing that the SCS-ITO film is a promising candidate for totally solution-processed oxide TFTs. (orig.)

  17. Photo- and electro-chromism of diarylethene modified ITO electrodes - towards molecular based read-write-erase information storage

    NARCIS (Netherlands)

    Areephong, J.; Browne, W.R.; Katsonis, N.; Feringa, B.L.

    2006-01-01

    Molecular memory devices based on dithienylethene switch modified ITO electrodes undergo reversible ring opening/closing both photo- and electro-chemically with non-destructive electrochemical readout.

  18. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition

    International Nuclear Information System (INIS)

    Wang, H-W; Ting, C-F; Hung, M-K; Chiou, C-H; Liu, Y-L; Liu Zongwen; Ratinac, Kyle R; Ringer, Simon P

    2009-01-01

    Dye-sensitized solar cells (DSSCs) show promise as a cheaper alternative to silicon-based photovoltaics for specialized applications, provided conversion efficiency can be maximized and production costs minimized. This study demonstrates that arrays of nanowires can be formed by wet-chemical methods for use as three-dimensional (3D) electrodes in DSSCs, thereby improving photoelectric conversion efficiency. Two approaches were employed to create the arrays of ITO (indium-tin-oxide) nanowires or arrays of ITO/TiO 2 core-shell nanowires; both methods were based on electrophoretic deposition (EPD) within a polycarbonate template. The 3D electrodes for solar cells were constructed by using a doctor-blade for coating TiO 2 layers onto the ITO or ITO/TiO 2 nanowire arrays. A photoelectric conversion efficiency as high as 4.3% was achieved in the DSSCs made from ITO nanowires; this performance was better than that of ITO/TiO 2 core-shell nanowires or pristine TiO 2 films. Cyclic voltammetry confirmed that the reaction current was significantly enhanced when a 3D ITO-nanowire electrode was used. Better separation of charge carriers and improved charge transport, due to the enlarged interfacial area, are thought to be the major advantages of using 3D nanowire electrodes for the optimization of DSSCs.

  19. Fabrication and characterization of a CuO/ITO heterojunction with a graphene transparent electrode

    Science.gov (United States)

    Mageshwari, K.; Han, Sanghoo; Park, Jinsub

    2016-05-01

    In this paper, we investigate the electrical properties of a CuO-ITO heterojunction diode with the use of a graphene transparent electrode by current-voltage (I-V) characteristics. CuO thin films were deposited onto an ITO substrate by a simple sol-gel spin coating method and annealed at 500 °C. The x-ray diffraction pattern of the CuO thin films revealed the polycrystalline nature of CuO and exhibited a monoclinic crystal structure. FESEM images showed a uniform and densely packed particulate morphology. The optical band gap of CuO thin films estimated using UV-vis absorption spectra was found to be 2.50 eV. The I-V characteristics of the fabricated CuO-ITO heterojunction showed a well-defined rectifying behavior with improved electrical properties after the insertion of graphene. The electronic parameters of the heterostructure such as barrier height, ideality factor and series resistance were determined from the I-V measurements, and the possible current transport mechanism was discussed.

  20. Liquid-crystal microlens array with swing and adjusting focus and constructed by dual patterned ITO-electrodes

    Science.gov (United States)

    Dai, Wanwan; Xie, Xingwang; Li, Dapeng; Han, Xinjie; Liu, Zhonglun; Wei, Dong; Xin, Zhaowei; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng

    2018-02-01

    Under the condition of existing intense turbulence, the object's wavefront may be severely distorted. So, the wavefront sensors based on the traditional microlens array (MLA) with a fixed focal length can not be used to measure the wavefront effectively. In order to obtain a larger measurement range and higher measurement accuracy, we propose a liquid-crystal microlens array (LCMLA) with needed ability of swing focus over the focal plane and further adjusting focal length, which is constructed by a dual patterned ITO electrodes. The main structure of the LCMLA is divided into two layers, which are made of glass substrate with ITO transparent electrodes. The top layer of each liquid-crystal microlens consists of four rectangular electrodes, and the bottom layer is a circular electrode. In common optical measurements performed, the operations are carried out such as adding the same signal voltage over four electrodes of each microlens to adjust the focal length of the lens cell and adding a signal voltage with different RMS amplitude to adjust the focus position on the focal plane. Experiments show that the LCMLA developed by us demonstrate a desired focal length adjustable function and dynamic swing ability, so as to indicate that the method can be used not only to measure wavefront but also correct the wavefront with strong distortion.

  1. ITO Modification for Efficient Inverted Organic Solar Cells.

    Science.gov (United States)

    Susarova, Diana K; Akkuratov, Alexander V; Kukharenko, Andrey I; Cholakh, Seif O; Kurmaev, Ernst Z; Troshin, Pavel A

    2017-10-03

    We demonstrate a facile approach to designing transparent electron-collecting electrodes by depositing thin layers of medium and low work function metals on top of transparent conductive metal oxides (TCOs) such as ITO and FTO. The modified electrodes were fairly stable for months under ambient conditions and maintained their electrical characteristics. XPS spectroscopy data strongly suggested integration of the deposited metal in the TCO structure resulting in additional doping of the conducting oxide at the interface. Kelvin probe microscopy measurements revealed a significant decrease in the ITO work function after modification. Organic solar cells based on three different conjugated polymers have demonstrated state of the art performances in inverted device geometry using Mg- or Yb-modified ITO as electron collecting electrode. The simplicity of the proposed approach and the excellent ambient stability of the modified ITO electrodes allows one to expect their wide utilization in research laboratories and electronic industry.

  2. Gate tunneling current and quantum capacitance in metal-oxide-semiconductor devices with graphene gate electrodes

    Science.gov (United States)

    An, Yanbin; Shekhawat, Aniruddh; Behnam, Ashkan; Pop, Eric; Ural, Ant

    2016-11-01

    Metal-oxide-semiconductor (MOS) devices with graphene as the metal gate electrode, silicon dioxide with thicknesses ranging from 5 to 20 nm as the dielectric, and p-type silicon as the semiconductor are fabricated and characterized. It is found that Fowler-Nordheim (F-N) tunneling dominates the gate tunneling current in these devices for oxide thicknesses of 10 nm and larger, whereas for devices with 5 nm oxide, direct tunneling starts to play a role in determining the total gate current. Furthermore, the temperature dependences of the F-N tunneling current for the 10 nm devices are characterized in the temperature range 77-300 K. The F-N coefficients and the effective tunneling barrier height are extracted as a function of temperature. It is found that the effective barrier height decreases with increasing temperature, which is in agreement with the results previously reported for conventional MOS devices with polysilicon or metal gate electrodes. In addition, high frequency capacitance-voltage measurements of these MOS devices are performed, which depict a local capacitance minimum under accumulation for thin oxides. By analyzing the data using numerical calculations based on the modified density of states of graphene in the presence of charged impurities, it is shown that this local minimum is due to the contribution of the quantum capacitance of graphene. Finally, the workfunction of the graphene gate electrode is extracted by determining the flat-band voltage as a function of oxide thickness. These results show that graphene is a promising candidate as the gate electrode in metal-oxide-semiconductor devices.

  3. In situ Observation of Direct Electron Transfer Reaction of Cytochrome c Immobilized on ITO Electrode Modified with 11-{2-[2-(2-Methoxyethoxy)ethoxy]ethoxy}undecylphosphonic Acid Self-assembled Monolayer Film by Electrochemical Slab Optical Waveguide Spectroscopy.

    Science.gov (United States)

    Matsuda, Naoki; Okabe, Hirotaka; Omura, Ayako; Nakano, Miki; Miyake, Koji

    2017-01-01

    To immobilize cytochrome c (cyt.c) on an ITO electrode while keeping its direct electron transfer (DET) functionality, the ITO electrode surface was modified with 11-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}undecylphosphonic acid (CH 3 O (CH 2 CH 2 O) 3 C 11 H 22 PO(OH) 2 , M-EG 3 -UPA) self-assembled monolayer (SAM) film. After a 100-times washing process to exchange a phosphate buffer saline solution surrounding cyt.c and ITO electrode to a fresh one, an in situ observation of visible absorption spectral change with slab optical waveguide (SOWG) spectroscopy showed that 87.7% of the cyt.c adsorbed on the M-EG 3 -UPA modified ITO electrode remained on the ITO electrode. The SOWG absorption spectra corresponding to oxidized and reduced cyt.c were observed with setting the ITO electrode potential at 0.3 and -0.3 V vs. Ag/AgCl, respectively, while probing the DET reaction between cyt.c and ITO electrode occurred. The amount of cyt.c was evaluated to be about 19.4% of a monolayer coverage based on the coulomb amount in oxidation and reduction peaks on cyclic voltammetry (CV) data. The CV peak current maintained to be 83.4% compared with the initial value for a M-EG 3 -UPA modified ITO electrode after 60 min continuous scan with 0.1 V/s between 0.3 and -0.3 V vs. Ag/AgCl.

  4. Characteristics of indium-tin-oxide (ITO) nanoparticle ink-coated layers recycled from ITO scraps

    Science.gov (United States)

    Cha, Seung-Jae; Hong, Sung-Jei; Lee, Jae Yong

    2015-09-01

    This study investigates the characteristics of an indium-tin-oxide (ITO) ink layer that includes nanoparticles synthesized from ITO target scraps. The particle size of the ITO nanoparticle was less than 15 nm, and the crystal structure was cubic with a (222) preferred orientation. Also, the composition ratio of In to Sn was 92.7 to 7.3 in weight. The ITO nanoparticles were well dispersed in the ink solvent to formulate a 20-wt% ITO nanoparticle ink. Furthermore, the ITO nanoparticle ink was coated onto a glass substrate, followed by heat-treatment at 600 °C. The layer showed good sheet resistances below 400 Ω/□ and optical transmittances higher than 88% at 550 nm. Thus, we can conclude that the characteristics of the layer make it highly applicable to a transparent conductive electrode.

  5. Scaling Up ITO-free solar cells

    DEFF Research Database (Denmark)

    Galagan, Yulia; Coenen, Erica W. C.; Zimmermann, Birger

    2014-01-01

    Indium-tin-oxide-free (ITO-free) polymer solar cells with composite electrodes containing current-collecting grids and a semitransparent poly(3,4-ethylenedioxythiophene):polystyrenesulfonate) (PEDOT:PSS) conductor are demonstrated. The up-scaling of the length of the solar cell from 1 to 6 cm...... resistances. The performance of ITO-free organic solar cells with different dimensions and different electrode resistances are evaluated for different light intensities. The current generation and electric potential distribution are found to not be uniformly distributed in large-area devices at simulated 1...

  6. Electromechanical properties of indium–tin–oxide/poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) hybrid electrodes for flexible transparent electrodes

    International Nuclear Information System (INIS)

    Jung, Sunghoon; Lim, Kyounga; Kang, Jae-Wook; Kim, Jong-Kuk; Oh, Se-In; Eun, Kyoungtae; Kim, Do-Geun; Choa, Sung-Hoon

    2014-01-01

    We investigated an indium–tin–oxide (ITO)/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) hybrid electrode as a potential flexible and transparent electrode. In particular, the mechanical integrity of an ITO/PEDOT:PSS hybrid electrode deposited onto a polyethylene terephthalate (PET) substrate was investigated via outer/inner bending, twisting, stretching, and adhesion tests. A PEDOT:PSS layer was inserted between ITO and PET substrate as a buffer layer to improve the flexibility and electrical properties. When a PEDOT:PSS layer was inserted, the sheet resistance of the 20 nm-thick ITO film decreased from 270 Ω/square to 57 Ω/square. Notably, the ITO/PEDOT:PSS hybrid electrode had a constant resistance change (ΔR/R 0 ) within an outer and inner bending radius of 3 mm. The bending fatigue test showed that the ITO/PEDOT:PSS hybrid electrode can withstand 10,000 bending cycles. Furthermore, the stretched ITO/PEDOT:PSS hybrid electrode showed a fairly constant resistance change up to 4%, which is more stable than the resistance change of the ITO electrode. The ITO/PEDOT:PSS electrode also shows good adhesion strength. The superior flexibility of the ITO/PEDOT:PSS hybrid electrode is attributed to the existence of a flexible PEDOT:PSS layer. This indicates that the hybridization of an ITO and PEDOT:PSS layer is a promising electrode scheme for next-generation flexible transparent electrodes. - Highlights: • We propose a hybrid electrode for flexible electronics. • Electrode made from In 2 O 3 :SnO 2 /poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) • PEDOT:PSS as a buffer layer increases flexibility and electrical conductivity. • Hybrid electrode has a superior flexibility. • Hybrid electrode can be a promising flexible transparent electrode scheme

  7. ITO-free flexible organic solar cells with printed current collecting grids

    NARCIS (Netherlands)

    Galagan, Y.O.; Rubingh, J.E.J.M.; Andriessen, H.A.J.M.; Fan, C.C.; Blom, P.W.M.; Veenstra, S.C.; Kroon, J.M.

    2011-01-01

    The presence of a transparent conductive electrode such as indium tin oxide (ITO) limits the reliability and cost price of organic photovoltaic devices as it is brittle and expensive. Moreover, the relative high sheet resistance of an ITO electrode on flexible substrates limits the maximum width of

  8. Convenient preparation of ITO nanoparticles inks for transparent conductive thin films

    International Nuclear Information System (INIS)

    Ito, Daisuke; Masuko, Keiichiro; Weintraub, Benjamin A.; McKenzie, Lallie C.; Hutchison, James E.

    2012-01-01

    Tin-doped indium oxide (ITO) nanoparticles are useful precursors to transparent electrodes in a variety of technologically important applications. We synthesized ITO nanoparticles from indium and tin acetylacetonates in oleyl alcohol using a novel temperature ramp profile. The monodispersed ITO nanoparticles have an average diameter of 8.6 nm and form dense, flat films by simple spin coating. The thickness of the film can be controlled by varying the number of additional depositions. The resulting ITO film is transparent and has a resistivity of 7 × 10 −3 Ω cm after sintering at 300 °C. Using a suitable solvent, it is possible to coat high-aspect-ratio structures with ITO nanoparticles. This approach to ITO coatings is greener and offers a number of advantages for transparent electrodes because it is highly versatile, easily scalable, and supports low-cost manufacturing.

  9. High-performance all-printed amorphous oxide FETs and logics with electronically compatible electrode/ channel interface.

    Science.gov (United States)

    Sharma, Bhupendra Kumar; Stoesser, Anna; Mondal, Sandeep Kumar; Garlapati, Suresh K; Fawey, Mohammed H; Chakravadhanula, Venkata Sai Kiran; Kruk, Robert; Hahn, Horst; Dasgupta, Subho

    2018-06-12

    Oxide semiconductors typically show superior device performance compared to amorphous silicon or organic counterparts, especially, when they are physical vapor deposited. However, it is not easy to reproduce identical device characteristics when the oxide field-effect transistors (FETs) are solution-processed/ printed; the level of complexity further intensifies with the need to print the passive elements as well. Here, we developed a protocol for designing the most electronically compatible electrode/ channel interface based on the judicious material selection. Exploiting this newly developed fabrication schemes, we are now able to demonstrate high-performance all-printed FETs and logic circuits using amorphous indium-gallium-zinc oxide (a-IGZO) semiconductor, indium tin oxide (ITO) as electrodes and composite solid polymer electrolyte as the gate insulator. Interestingly, all-printed FETs demonstrate an optimal electrical performance in terms of threshold voltages and device mobility and may very well be compared with devices fabricated using sputtered ITO electrodes. This observation originates from the selection of electrode/ channel materials from the same transparent semiconductor oxide family, resulting in the formation of In-Sn-Zn-O (ITZO) based diffused a-IGZO/ ITO interface that controls doping density while ensuring high electrical performance. Compressive spectroscopic studies reveal that Sn doping mediated excellent band alignment of IGZO with ITO electrodes is responsible for the excellent device performance observed. All-printed n-MOS based logic circuits have also been demonstrated towards new-generation portable electronics.

  10. Improved optoelectronics properties of ITO-based transparent conductive electrodes with the insertion of Ag/Ni under-layer

    Science.gov (United States)

    Ali, Ahmad Hadi; Abu Bakar, Ahmad Shuhaimi; Hassan, Zainuriah

    2014-10-01

    ITO-based transparent conductive electrodes (TCE) with Ag/Ni thin metal under-layer were deposited on Si and glass substrates by thermal evaporator and RF magnetron sputtering system. Ceramic ITO with purity of 99.99% and In2O3:SnO2 weight ratio of 90:10 was used as a target at room temperature. Post-deposition annealing was performed on the TCE at moderate temperature of 500 °C, 600 °C and 700 °C under N2 ambient. It was observed that the structural properties, optical transmittance, electrical characteristics and surface morphology were improved significantly after the post-annealing process. Post-annealed ITO/Ag/Ni at 600 °C shows the best quality of TCE with figure-of-merit (FOM) of 1.5 × 10-2 Ω-1 and high optical transmittance of 83% at 470 nm as well as very low electrical resistivity of 4.3 × 10-5 Ω-cm. The crystalline quality and surface morphological plays an important role in determining the quality of the TCE multilayer thin films properties.

  11. Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pruna, R., E-mail: rpruna@el.ub.edu; Palacio, F.; López, M. [SIC, Departament d' Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain); Pérez, J. [Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, E-08028 Barcelona (Spain); Mir, M. [Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, E-08028 Barcelona (Spain); Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5 Pabellón 11, E-28029 Madrid (Spain); Blázquez, O.; Hernández, S.; Garrido, B. [MIND-IN" 2UB, Departament d' Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain)

    2016-08-08

    The electroactivity of nanostructured indium tin oxide (ITO) has been investigated for its further use in applications such as sensing biological compounds by the analysis of redox active molecules. ITO films were fabricated by using electron beam evaporation at different substrate temperatures and subsequently annealed for promoting their crystallization. The morphology of the deposited material was monitored by scanning electron microscopy, confirming the deposition of either thin films or nanowires, depending on the substrate temperature. Electrochemical surface characterization revealed a 45 % increase in the electroactive surface area of nanostructured ITO with respect to thin films, one third lower than the geometrical surface area variation determined by atomic force microscopy. ITO surfaces were functionalized with a model organic molecule known as 6-(ferrocenyl)hexanethiol. The chemical attachment was done by means of a glycidoxy compound containing a reactive epoxy group, the so-called 3-glycidoxypropyltrimethoxy-silane. ITO functionalization was useful for determining the benefits of nanostructuration on the surface coverage of active molecules. Compared to ITO thin films, an increase in the total peak height of 140 % was observed for as-deposited nanostructured electrodes, whereas the same measurement for annealed electrodes resulted in an increase of more than 400 %. These preliminary results demonstrate the ability of nanostructured ITO to increase the surface-to-volume ratio, conductivity and surface area functionalization, features that highly benefit the performance of biosensors.

  12. Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces

    International Nuclear Information System (INIS)

    Pruna, R.; Palacio, F.; López, M.; Pérez, J.; Mir, M.; 2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" data-affiliation=" (MIND-IN2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" >Blázquez, O.; 2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" data-affiliation=" (MIND-IN2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" >Hernández, S.; 2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" data-affiliation=" (MIND-IN2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" >Garrido, B.

    2016-01-01

    The electroactivity of nanostructured indium tin oxide (ITO) has been investigated for its further use in applications such as sensing biological compounds by the analysis of redox active molecules. ITO films were fabricated by using electron beam evaporation at different substrate temperatures and subsequently annealed for promoting their crystallization. The morphology of the deposited material was monitored by scanning electron microscopy, confirming the deposition of either thin films or nanowires, depending on the substrate temperature. Electrochemical surface characterization revealed a 45 % increase in the electroactive surface area of nanostructured ITO with respect to thin films, one third lower than the geometrical surface area variation determined by atomic force microscopy. ITO surfaces were functionalized with a model organic molecule known as 6-(ferrocenyl)hexanethiol. The chemical attachment was done by means of a glycidoxy compound containing a reactive epoxy group, the so-called 3-glycidoxypropyltrimethoxy-silane. ITO functionalization was useful for determining the benefits of nanostructuration on the surface coverage of active molecules. Compared to ITO thin films, an increase in the total peak height of 140 % was observed for as-deposited nanostructured electrodes, whereas the same measurement for annealed electrodes resulted in an increase of more than 400 %. These preliminary results demonstrate the ability of nanostructured ITO to increase the surface-to-volume ratio, conductivity and surface area functionalization, features that highly benefit the performance of biosensors.

  13. ITO-free flexible organic photovoltaics with multilayer MoO3/LiF/MoO3/Ag/MoO3 as the transparent electrode

    International Nuclear Information System (INIS)

    Chen, Shilin; Dai, Yunjie; Zhang, Hongmei; Zhao, Dewei

    2016-01-01

    We present efficient flexible organic photovoltaics (OPVs) with multiple layers of molybdenum oxide (MoO 3 )/LiF/MoO 3 /Ag/MoO 3 as the transparent electrode, where the thin Ag layer yields high conductivity and the dielectric layer MoO 3 /LiF/MoO 3 has high transparency due to optical interference, leading to improved power conversion efficiency compared with indium tin oxide (ITO) based devices. The MoO 3 contacting organic active layer is used as a buffer layer for good hole extraction. Thus, the multilayer MoO 3 /LiF/MoO 3 /Ag/MoO 3 can improve light transmittance and also facilitate charge carrier extraction. Such an electrode shows excellent mechanical bendability with a 9% reduction of efficiency after 1000 cycles of bending due to the ductile nature of the thin metal layer and dielectric layer used. Our results suggest that the MoO 3 /LiF/MoO 3 /Ag/MoO 3 multilayer electrode is a promising alternative to ITO as an electrode in OPVs. (paper)

  14. Charge transport properties of graphene: Effects of Cu-based gate electrode

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Qide [School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105 (China); Zhang, C. X., E-mail: zhangchunxiao@xtu.edu.cn; Tang, Chao, E-mail: tang-chao@xtu.edu.cn; Zhong, Jianxin [School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105 (China); Hunan Provincial Key Laboratory of Micro-Nano Energy Materials and Devices, Xiangtan University, Hunan 411105 (China); He, Chaoyu [Hunan Provincial Key Laboratory of Micro-Nano Energy Materials and Devices, Xiangtan University, Hunan 411105 (China)

    2016-07-21

    Using the first-principles nonequilibrium Green's function method, we study effects of Cu and Ni@Cu used as the Cu-based gate electrode on the charge transport of graphene in the field effect transistors (FET). We find that the transmission of graphene decreases with both Cu and Ni@Cu absorbed in the scatter region. Especially, noticeable transmission gaps are present around the Femi level. The transmission gaps are still effective, and considerable cut-off regions are found under the non-equilibrium environment. The Ni@Cu depresses the transmission of graphene more seriously than the Cu and enlarges the transmission gap in armchair direction. The effects on the charge transport are attributed to the redistribution of electronic states of graphene. Both Cu and Ni@Cu induce the localization of states, so as to block the electronic transport. The Ni@Cu transforms the interaction between graphene and gate electrode from the physisorption to the chemisorption, and then induces more localized states, so that the transmission decreases further. Our results suggest that besides being used to impose gate voltage, the Cu-based gate electrode itself will have a considerable effect on the charge transport of graphene and induces noticeable transmission gap in the FET.

  15. Inkjet-printing of indium tin oxide (ITO) films for transparent conducting electrodes

    International Nuclear Information System (INIS)

    Hwang, Myun-sung; Jeong, Bong-yong; Moon, Jooho; Chun, Sang-Ki; Kim, Jihoon

    2011-01-01

    Highlights: → Inkjet printing of ITO films. → Ag-grid was inkjet-printed in between two ITO layers in order to improve the electrical property. → Ag-grid inserted ITO films with 2 mm Ag-grid pitch showed the sheet resistance less than 3.4 Ω/sq and the transmittance higher than 82%. - Abstract: Indium-tin-oxide (ITO) films have been prepared by inkjet-printing using ITO nanoparticle inks. The electrical and optical properties of the ITO films were investigated in order to understand the effects of annealing temperatures under microwave. The decrease in the sheet resistance and resistivity of the inkjet-printed ITO films was observed as the annealing temperature increases. The film annealed at 400 deg. C showed the sheet resistance of 517 Ω/sq with the film thickness of ∼580 nm. The optical transmittance of the films remained constant regardless of their annealing temperatures. In order to further reduce the sheet resistance of the films, Ag-grid was printed in between two layers of inkjet-printed ITO. With 3 mm Ag-grid line-to-line pitch, the Ag-grid inserted ITO film has the sheet resistance of 3.4 Ω/sq and the transmittance of 84% after annealing at 200 deg. C under microwave.

  16. Medium band gap polymer based solution-processed high-κ composite gate dielectrics for ambipolar OFET

    Science.gov (United States)

    Canımkurbey, Betül; Unay, Hande; Çakırlar, Çiğdem; Büyükköse, Serkan; Çırpan, Ali; Berber, Savas; Altürk Parlak, Elif

    2018-03-01

    The authors present a novel ambipolar organic filed-effect transistors (OFETs) composed of a hybrid dielectric thin film of Ta2O5:PMMA nanocomposite material, and solution processed poly(selenophene, benzotriazole and dialkoxy substituted [1,2-b:4, 5-b‧] dithiophene (P-SBTBDT)-based organic semiconducting material as the active layer of the device. We find that the Ta2O5:PMMA insulator shows n-type conduction character, and its combination with the p-type P-SBTBDT organic semiconductor leads to an ambipolar OFET device. Top-gated OFETs were fabricated on glass substrate consisting of interdigitated ITO electrodes. P-SBTBDT-based material was spin coated on the interdigitated ITO electrodes. Subsequently, a solution processed Ta2O5:PMMA nanocomposite material was spin coated, thereby creating the gate dielectric layer. Finally, as a gate metal, an aluminum layer was deposited by thermal evaporation. The fabricated OFETs exhibited an ambipolar performance with good air-stability, high field-induced current and relatively high electron and hole mobilities although Ta2O5:PMMA nanocomposite films have slightly higher leakage current compared to the pure Ta2O5 films. Dielectric properties of the devices with different ratios of Ta2O5:PMMA were also investigated. The dielectric constant varied between 3.6 and 5.3 at 100 Hz, depending on the Ta2O5:PMMA ratio.

  17. Light-extraction enhancement of GaN-based 395  nm flip-chip light-emitting diodes by an Al-doped ITO transparent conductive electrode.

    Science.gov (United States)

    Xu, Jin; Zhang, Wei; Peng, Meng; Dai, Jiangnan; Chen, Changqing

    2018-06-01

    The distinct ultraviolet (UV) light absorption of indium tin oxide (ITO) limits the performance of GaN-based near-UV light-emitting diodes (LEDs). Herein, we report an Al-doped ITO with enhanced UV transmittance and low sheet resistance as the transparent conductive electrode for GaN-based 395 nm flip-chip near-UV LEDs. The thickness dependence of optical and electrical properties of Al-doped ITO films is investigated. The optimal Al-doped ITO film exhibited a transmittance of 93.2% at 395 nm and an average sheet resistance of 30.1  Ω/sq. Meanwhile, at an injection current of 300 mA, the forward voltage decreased from 3.14 to 3.11 V, and the light output power increased by 13% for the 395 nm near-UV flip-chip LEDs with the optimal Al-doped ITO over those with pure ITO. This Letter provides a simple and repeatable approach to further improve the light extraction efficiency of GaN-based near-UV LEDs.

  18. Bipolar resistive switching behaviors of ITO nanowire networks

    Directory of Open Access Journals (Sweden)

    Qiang Li

    2016-02-01

    Full Text Available We have fabricated indium tin oxide (ITO nanowire (NW networks on aluminum electrodes using electron beam evaporation. The Ag/ITO-NW networks/Al capacitor exhibits bipolar resistive switching behavior. The resistive switching characteristics of ITO-NW networks are related to the morphology of NWs. The x-ray photoelectron spectroscopy was used to obtain the chemical nature from the NWs surface, investigating the oxygen vacancy state. A stable switching voltages and a clear memory window were observed in needle-shaped NWs. The ITO-NW networks can be used as a new two-dimensional metal oxide material for the fabrication of high-density memory devices.

  19. Synthesis and Characterization of Graphene/ITO Nanoparticle Hybrid Transparent Conducting Electrode

    Institute of Scientific and Technical Information of China (English)

    Jae-Kwan Kim; Ji-Myon Lee

    2018-01-01

    The combination of graphene with conductive nanoparticles, forming graphene–nanoparticle hybrid materials, offers a number of excellent properties for advanced engineering applications. A novel and simple method was developed to deposit 10 wt% tin-doped indium tin oxide (ITO) nanoparticles on graphene. The method involved a combination of a solution-based environmen-tally friendly electroless deposition approach and subse-quent vacuum annealing.A stable organic-free solution of ITO was prepared from economical salts of In(NO3)3?H2O and SnCl4. The obtained ITO nanostructure exhibited a unique architecture, with uniformly dispersed 25–35 nm size ITO nanoparticles, containing only the crystallized In2O3phase.The synthesized ITO nanoparticles–graphene hybrid exhibited very good and reproducible optical transparency in the visible range (more than 85%) and a 28.2% improvement in electrical conductivity relative to graphene synthesized by chemical vapor deposition.It was observed that the ITO nanoparticles affect the position of the Raman signal of graphene,in which the D,G,and 2D peaks were redshifted by 5.65, 5.69, and 9.74 cm-1,respectively, and the annealing conditions had no signifi-cant effect on the Raman signatures of graphene.

  20. Synthesis and Characterization of Graphene/ITO Nanoparticle Hybrid Transparent Conducting Electrode

    Science.gov (United States)

    Hemasiri, Bastian Waduge Naveen Harindu; Kim, Jae-Kwan; Lee, Ji-Myon

    2018-03-01

    The combination of graphene with conductive nanoparticles, forming graphene-nanoparticle hybrid materials, offers a number of excellent properties for advanced engineering applications. A novel and simple method was developed to deposit 10 wt% tin-doped indium tin oxide (ITO) nanoparticles on graphene. The method involved a combination of a solution-based environmentally friendly electroless deposition approach and subsequent vacuum annealing. A stable organic-free solution of ITO was prepared from economical salts of In(NO3) 3 · H2O and SnCl4. The obtained ITO nanostructure exhibited a unique architecture, with uniformly dispersed 25-35 nm size ITO nanoparticles, containing only the crystallized In2O3 phase. The synthesized ITO nanoparticles-graphene hybrid exhibited very good and reproducible optical transparency in the visible range (more than 85%) and a 28.2% improvement in electrical conductivity relative to graphene synthesized by chemical vapor deposition. It was observed that the ITO nanoparticles affect the position of the Raman signal of graphene, in which the D, G, and 2D peaks were redshifted by 5.65, 5.69, and 9.74 cm-1, respectively, and the annealing conditions had no significant effect on the Raman signatures of graphene. [Figure not available: see fulltext.

  1. Life cycle assessment of ITO-free flexible polymer solar cells prepared by roll-to-roll coating and printing

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; García-Valverde, Rafael; Urbina, Antonio

    2012-01-01

    Indium is a scarce and expensive material that has been identified as a bottleneck for future organic electronics deployment in large scale. Indium is the main constituent of Indium Tin Oxide (ITO), which is the most successful transparent electrode in organic photovoltaics (OPV) so far. A new...... process, termed Hiflex, allows for manufacture of flexible OPV modules where the ITO electrode has been replaced by a sputtered Al/Cr electrode in an inverted device architecture with front illumination. This work presents a life cycle assessment of the Hiflex process, in order to compare...... the environmental impact of avoiding ITO as electrode. The new ITO-free process reduces some of the processing steps, leading to important reductions of the energy input during OPV module manufacturing in comparison to ITO-based modules. The environmental analysis reveals an Energy Pay-Back time (EPBT) of 10 years...

  2. Improving Performance of CIGS Solar Cells by Annealing ITO Thin Films Electrodes

    Directory of Open Access Journals (Sweden)

    Chuan Lung Chuang

    2015-01-01

    Full Text Available Indium tin oxide (ITO thin films were grown on glass substrates by direct current (DC reactive magnetron sputtering at room temperature. Annealing at the optimal temperature can considerably improve the composition, structure, optical properties, and electrical properties of the ITO film. An ITO sample with a favorable crystalline structure was obtained by annealing in fixed oxygen/argon ratio of 0.03 at 400°C for 30 min. The carrier concentration, mobility, resistivity, band gap, transmission in the visible-light region, and transmission in the near-IR regions of the ITO sample were -1.6E+20 cm−3, 2.7E+01 cm2/Vs, 1.4E-03 Ohm-cm, 3.2 eV, 89.1%, and 94.7%, respectively. Thus, annealing improved the average transmissions (400–1200 nm of the ITO film by 16.36%. Moreover, annealing a copper-indium-gallium-diselenide (CIGS solar cell at 400°C for 30 min in air improved its efficiency by 18.75%. The characteristics of annealing ITO films importantly affect the structural, morphological, electrical, and optical properties of ITO films that are used in solar cells.

  3. Influence of ITO patterning on reliability of organic light emitting devices

    International Nuclear Information System (INIS)

    Wang, Zhaokui; Naka, Shigeki; Okada, Hiroyuki

    2009-01-01

    Indium tin oxide (ITO) films are widely used for a transparent electrode of organic light emitting devices (OLEDs) because of its excellent conductivity and transparency. Two types of ITO substrates with different surface roughness were selected to use as anode of OLEDs. In addition, two types of etching process of ITO substrate, particularly the etching time, were also carried out. It was found that the surface roughness and/or the etching process of ITO substrate strongly influenced on an edge of ITO surface, further affected the operating characteristics and reliability of devices.

  4. Silver front electrode grids for ITO-free all printed polymer solar cells with embedded and raised topographies, prepared by thermal imprint, flexographic and inkjet roll-to-roll processes

    DEFF Research Database (Denmark)

    Yu, Jong-Su; Kim, Inyoung; Kim, Jung-Su

    2012-01-01

    Semitransparent front electrodes for polymer solar cells, that are printable and roll-to-roll processable under ambient conditions using different approaches, are explored in this report. The excellent smoothness of indium-tin-oxide (ITO) electrodes has traditionally been believed to be difficult...

  5. Scaling the Serialization of MOSFETs by Magnetically Coupling Their Gate Electrodes

    DEFF Research Database (Denmark)

    Dimopoulos, Emmanouil; Munk-Nielsen, Stig

    2013-01-01

    More than twenty years of thorough research on the serialization of power semiconductor switches, like the Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) or the Insulated Gate Bipolar Transistor (IGBT), have resulted into several different stacking concepts; all aiming towards...... the establishment of a high-efficient, high-voltage, fast-switching device. Among the prevailing stacking approaches lies the gate balancing core technique, which, in its initial form, demonstrated very good performance in strings of high-power IGBT modules, by magnetically coupling their gate electrodes. Recently...

  6. Optical and Electrical Performance of MOS-Structure Silicon Solar Cells with Antireflective Transparent ITO and Plasmonic Indium Nanoparticles under Applied Bias Voltage.

    Science.gov (United States)

    Ho, Wen-Jeng; Sue, Ruei-Siang; Lin, Jian-Cheng; Syu, Hong-Jang; Lin, Ching-Fuh

    2016-08-10

    This paper reports impressive improvements in the optical and electrical performance of metal-oxide-semiconductor (MOS)-structure silicon solar cells through the incorporation of plasmonic indium nanoparticles (In-NPs) and an indium-tin-oxide (ITO) electrode with periodic holes (perforations) under applied bias voltage. Samples were prepared using a plain ITO electrode or perforated ITO electrode with and without In-NPs. The samples were characterized according to optical reflectance, dark current voltage, induced capacitance voltage, external quantum efficiency, and photovoltaic current voltage. Our results indicate that induced capacitance voltage and photovoltaic current voltage both depend on bias voltage, regardless of the type of ITO electrode. Under a bias voltage of 4.0 V, MOS cells with perforated ITO and plain ITO, respectively, presented conversion efficiencies of 17.53% and 15.80%. Under a bias voltage of 4.0 V, the inclusion of In-NPs increased the efficiency of cells with perforated ITO and plain ITO to 17.80% and 16.87%, respectively.

  7. Optical and Electrical Performance of MOS-Structure Silicon Solar Cells with Antireflective Transparent ITO and Plasmonic Indium Nanoparticles under Applied Bias Voltage

    Directory of Open Access Journals (Sweden)

    Wen-Jeng Ho

    2016-08-01

    Full Text Available This paper reports impressive improvements in the optical and electrical performance of metal-oxide-semiconductor (MOS-structure silicon solar cells through the incorporation of plasmonic indium nanoparticles (In-NPs and an indium-tin-oxide (ITO electrode with periodic holes (perforations under applied bias voltage. Samples were prepared using a plain ITO electrode or perforated ITO electrode with and without In-NPs. The samples were characterized according to optical reflectance, dark current voltage, induced capacitance voltage, external quantum efficiency, and photovoltaic current voltage. Our results indicate that induced capacitance voltage and photovoltaic current voltage both depend on bias voltage, regardless of the type of ITO electrode. Under a bias voltage of 4.0 V, MOS cells with perforated ITO and plain ITO, respectively, presented conversion efficiencies of 17.53% and 15.80%. Under a bias voltage of 4.0 V, the inclusion of In-NPs increased the efficiency of cells with perforated ITO and plain ITO to 17.80% and 16.87%, respectively.

  8. KChIP2 genotype dependence of transient outward current (Ito) properties in cardiomyocytes isolated from male and female mice.

    Science.gov (United States)

    Waldschmidt, Lara; Junkereit, Vera; Bähring, Robert

    2017-01-01

    The transient outward current (Ito) in cardiomyocytes is largely mediated by Kv4 channels associated with Kv Channel Interacting Protein 2 (KChIP2). A knockout model has documented the critical role of KChIP2 in Ito expression. The present study was conducted to characterize in both sexes the dependence of Ito properties, including current magnitude, inactivation kinetics, recovery from inactivation and voltage dependence of inactivation, on the number of functional KChIP2 alleles. For this purpose we performed whole-cell patch-clamp experiments on isolated left ventricular cardiomyocytes from male and female mice which had different KChIP2 genotypes; i.e., wild-type (KChIP2+/+), heterozygous knockout (KChIP2+/-) or complete knockout of KChIP2 (KChIP2-/-). We found in both sexes a KChIP2 gene dosage effect (i.e., a proportionality between number of alleles and phenotype) on Ito magnitude, however, concerning other Ito properties, KChIP2+/- resembled KChIP2+/+. Only in the total absence of KChIP2 (KChIP2-/-) we observed a slowing of Ito kinetics, a slowing of recovery from inactivation and a negative shift of a portion of the voltage dependence of inactivation. In a minor fraction of KChIP2-/- myocytes Ito was completely lost. The distinct KChIP2 genotype dependences of Ito magnitude and inactivation kinetics, respectively, seen in cardiomyocytes were reproduced with two-electrode voltage-clamp experiments on Xenopus oocytes expressing Kv4.2 and different amounts of KChIP2. Our results corroborate the critical role of KChIP2 in controlling Ito properties. They demonstrate that the Kv4.2/KChIP2 interaction in cardiomyocytes is highly dynamic, with a clear KChIP2 gene dosage effect on Kv4 channel surface expression but not on inactivation gating.

  9. Fast printing of thin, large area, ITO free electrochromics on flexible barrier foil

    DEFF Research Database (Denmark)

    Søndergaard, Roar R.; Hösel, Markus; Jørgensen, Mikkel

    2013-01-01

    Processing of large area, indium tin oxide (ITO) free electrochromic (EC) devices has been carried out using roll-toroll (R2R) processing. By use of very fine high-conductive silver grids with a hexagonal structure, it is possible to achieve good transparency of the electrode covered substrates...... and when used in EC devices switching times are similar to corresponding ITO devices. This is obtained without the uneven switching of larger areas, which is generally observed when using ITO because of its high-sheet resistance. The silver electrode structures for 18 ×18 cm2 devices can be processed...

  10. ITO-Free Semitransparent Organic Solar Cells Based on Silver Thin Film Electrodes

    Directory of Open Access Journals (Sweden)

    Zhizhe Wang

    2014-01-01

    Full Text Available ITO-free semitransparent organic solar cells (OSCs based on MoO3/Ag anodes with poly(3-hexylthiophene and [6,6]-phenyl-C61-butyric acid methyl ester films as the active layer are investigated in this work. To obtain the optimal transparent (MoO3/Ag anode, ITO-free reference OSCs are firstly fabricated. The power conversion efficiency (PCE of 2.71% is obtained for OSCs based on the optimal MoO3 (2 nm/Ag (9 nm anode, comparable to that of ITO-based reference OSCs (PCE of 2.85%. Then based on MoO3 (2 nm/Ag (9 nm anode, ITO-free semitransparent OSCs with different thickness combination of Ca and Ag as the cathodes are investigated. It is observed from our results that OSCs with Ca (15 nm/Ag (15 nm cathode have the optimal transparency. Meanwhile, the PCE of 1.79% and 0.67% is obtained for illumination from the anode and cathode side, respectively, comparable to that of similar ITO-based semitransparent OSCs (PCE of 1.59% and 0.75% for illumination from the anode and cathode side, resp. (Sol. Energy Mater. Sol. Cells, 95, pp. 877–880, 2011. The transparency and PCE of ITO-free semitransparent OSCs can be further improved by introducing a light couple layer. The developed method is compatible with various substrates, which is instructive for further research of ITO-free semitransparent OSCs.

  11. Understanding the mechanisms that change the conductivity of damaged ITO-coated polymeric films: A micro-mechanical investigation

    KAUST Repository

    Nasr Saleh, Mohamed

    2014-11-01

    Degradation from mechanical loading of transparent electrodes made of indium tin oxide (ITO) endangers the integrity of any material based on these electrodes, including flexible organic solar cells. However, how different schemes of degradation change the conductivity of ITO devices remains unclear. We propose a systematic micro-mechanics-based approach to clarify the relationship between degradation and changes in electrical resistance. By comparing experimentally measured channel crack densities to changes in electrical resistance returned by the different micro-mechanical schemes, we highlight the key role played by the residual conductivity in the interface between the ITO electrode and its substrate after delamination. We demonstrate that channel cracking alone does not explain the experimental observations. Our results indicate that delamination has to take place between the ITO electrode and the substrate layers and that the residual conductivity of this delaminated interface plays a major role in changes in electrical resistance of the degraded device. © 2014 Elsevier B.V.

  12. Scaling up ITO-Free solar cells

    NARCIS (Netherlands)

    Galagan, Y.O.; Coenen, E.W.C.; Zimmermann, B.; Slooff, L.H.; Verhees, W.J.H.; Veenstra, S.C.; Kroon, J.M.; Jørgensen, M.; Krebs, F.C.; Andriessen, H.A.J.M.

    2014-01-01

    Indium-tin-oxide-free (ITO-free) polymer solar cells with composite electrodes containing current-collecting grids and a semitransparent poly(3,4-ethylenedioxythiophene):polystyrenesulfonate) (PEDOT:PSS) conductor are demonstrated. The up-scaling of the length of the solar cell from 1 to 6 cm and

  13. A novel approach for the improvement of electrostatic behaviour of physically doped TFET using plasma formation and shortening of gate electrode with hetero-gate dielectric

    Science.gov (United States)

    Soni, Deepak; Sharma, Dheeraj; Aslam, Mohd.; Yadav, Shivendra

    2018-04-01

    This article presents a new device configuration to enhance current drivability and suppress negative conduction (ambipolar conduction) with improved RF characteristics of physically doped TFET. Here, we used a new approach to get excellent electrical characteristics of hetero-dielectric short gate source electrode TFET (HD-SG SE-TFET) by depositing a metal electrode of 5.93 eV work function over the heavily doped source (P+) region. Deposition of metal electrode induces the plasma (thin layer) of holes under the Si/HfO2 interface due to work function difference of metal and semiconductor. Plasma layer of holes is advantageous to increase abruptness as well as decrease the tunneling barrier at source/channel junction for attaining higher tunneling rate of charge carriers (i.e., electrons), which turns into 86.66 times higher ON-state current compared with the conventional physically doped TFET (C-TFET). Along with metal electrode deposition, gate electrode is under-lapped for inducing asymmetrical concentration of charge carriers in the channel region, which is helpful for widening the tunneling barrier width at the drain/channel interface. Consequently, HD-SG SE-TFET shows suppression of ambipolar behavior with reduction in gate-to-drain capacitance which is beneficial for improvement in RF performance. Furthermore, the effectiveness of hetero-gate dielectric concept has been used for improving the RF performance. Furthermore, reliability of C-TFET and proposed structures has been confirmed in term of linearity.

  14. Transport Properties of ZnSe- ITO Hetero Junction

    Science.gov (United States)

    Ichibakase, Tsuyoshi

    In this report, ITO(Indium Tin Oxide) was used on the glass substrates as the transparent electrode, and ZnSe layer was prepared by the vacuum deposition on this ITO. Then, the electrical characteristics of this sample were investigated by mans of the electric current transport analysis. The sample that ZnSe was prepared as 3.4 μm in case of ITO-ZnSe sample, has high density level at the junction surface. The ITO-ZnSe junction has two type of diffusion current. However, the ITO-ZnSe sample that ZnSe layer was prepared as 0.1 μm can be assumed as the ohmic contact, and ITO-ZnSe(0.1μm) -CdTe sample shows the avalanche breakdown, and it is considered that the avalanche breakdown occurs in CdTe layer. It is difficult to occur the avalanche breakdown, if ZnSe-CdTe junction has high-density level and CdTe layer has high-density defect. Hence, the ZnSe-CdTe sample that CdTe layer was prepared on ITO-ZnSe(0.1μm) substrate has not high-density level at the junction surface, and the CdTe layer with little lattice imperfection can be prepared. It found that ITO-ZnSe(0.1μm) substrate is available for the II-VI compounds semiconductor device through above analysis result.

  15. Influence of Gate Dielectrics, Electrodes and Channel Width on OFET Characteristics

    International Nuclear Information System (INIS)

    Liyana, V P; Stephania, A M; Shiju, K; Predeep, P

    2015-01-01

    Organic Field Effect Transistors (OFET) possess wide applications in large area electronics owing to their attractive features like easy fabrication process, light weight, flexibility, cost effectiveness etc. But instability, high operational voltages and low carrier mobility act as inhibitors to commercialization of OFETs and various approaches were tried on a regular basis so as to make it viable. In this work, Poly 3-hexylthiophene-2,5diyl (P3HT) based OFETs with bottom-contact top-gate configuration using Poly vinyl alcohol (PVA) and Poly (methyl methacrylate) (PMMA) as gate dielectrics, aluminium and copper as source-drain electrodes are investigated. An effort is made to compare the effect of these dielectric materials and electrodes on the performance of OFET. Also, an attempt has been made to optimize the channel width of the device. These devices are characterised with mobility (μ), threshold voltage (V T ), on-off ratio (I on /I off ) and their comparative analysis is reported. (paper)

  16. Influence of Gate Dielectrics, Electrodes and Channel Width on OFET Characteristics

    Science.gov (United States)

    Liyana, V. P.; Stephania, A. M.; Shiju, K.; Predeep, P.

    2015-06-01

    Organic Field Effect Transistors (OFET) possess wide applications in large area electronics owing to their attractive features like easy fabrication process, light weight, flexibility, cost effectiveness etc. But instability, high operational voltages and low carrier mobility act as inhibitors to commercialization of OFETs and various approaches were tried on a regular basis so as to make it viable. In this work, Poly 3-hexylthiophene-2,5diyl (P3HT) based OFETs with bottom-contact top-gate configuration using Poly vinyl alcohol (PVA) and Poly (methyl methacrylate) (PMMA) as gate dielectrics, aluminium and copper as source-drain electrodes are investigated. An effort is made to compare the effect of these dielectric materials and electrodes on the performance of OFET. Also, an attempt has been made to optimize the channel width of the device. These devices are characterised with mobility (μ), threshold voltage (VT), on-off ratio (Ion/Ioff) and their comparative analysis is reported.

  17. Graphene Transparent Conductive Electrodes for Next- Generation Microshutter Arrays

    Science.gov (United States)

    Li, Mary; Sultana, Mahmooda; Hess, Larry

    2012-01-01

    Graphene is a single atomic layer of graphite. It is optically transparent and has high electron mobility, and thus has great potential to make transparent conductive electrodes. This invention contributes towards the development of graphene transparent conductive electrodes for next-generation microshutter arrays. The original design for the electrodes of the next generation of microshutters uses indium-tin-oxide (ITO) as the electrode material. ITO is widely used in NASA flight missions. The optical transparency of ITO is limited, and the material is brittle. Also, ITO has been getting more expensive in recent years. The objective of the invention is to develop a graphene transparent conductive electrode that will replace ITO. An exfoliation procedure was developed to make graphene out of graphite crystals. In addition, large areas of single-layer graphene were produced using low-pressure chemical vapor deposition (LPCVD) with high optical transparency. A special graphene transport procedure was developed for transferring graphene from copper substrates to arbitrary substrates. The concept is to grow large-size graphene sheets using the LPCVD system through chemical reaction, transfer the graphene film to a substrate, dope graphene to reduce the sheet resistance, and pattern the film to the dimension of the electrodes in the microshutter array. Graphene transparent conductive electrodes are expected to have a transparency of 97.7%. This covers the electromagnetic spectrum from UV to IR. In comparison, ITO electrodes currently used in microshutter arrays have 85% transparency in mid-IR, and suffer from dramatic transparency drop at a wavelength of near-IR or shorter. Thus, graphene also has potential application as transparent conductive electrodes for Schottky photodiodes in the UV region.

  18. White organic light-emitting diodes with 4 nm metal electrode

    Science.gov (United States)

    Lenk, Simone; Schwab, Tobias; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl; Gather, Malte C.; Reineke, Sebastian

    2015-10-01

    We investigate metal layers with a thickness of only a few nanometers as anode replacement for indium tin oxide (ITO) in white organic light-emitting diodes (OLEDs). The ultrathin metal electrodes prove to be an excellent alternative that can, with regard to the angular dependence and efficiency of the OLED devices, outperform the ITO reference. Furthermore, unlike ITO, the thin composite metal electrodes are readily compatible with demanding architectures (e.g., top-emission or transparent OLEDs, device unit stacking, etc.) and flexible substrates. Here, we compare the sheet resistance of both types of electrodes on polyethylene terephthalate for different bending radii. The electrical performance of ITO breaks down at a radius of 10 mm, while the metal electrode remains intact even at radii smaller than 1 mm.

  19. Doped graphene electrodes for organic solar cells

    International Nuclear Information System (INIS)

    Park, Hyesung; Kim, Ki Kang; Bulovic, Vladimir; Kong, Jing; Rowehl, Jill A

    2010-01-01

    In this work graphene sheets grown by chemical vapor deposition (CVD) with controlled numbers of layers were used as transparent electrodes in organic photovoltaic (OPV) devices. It was found that for devices with pristine graphene electrodes, the power conversion efficiency (PCE) is comparable to their counterparts with indium tin oxide (ITO) electrodes. Nevertheless, the chances for failure in OPVs with pristine graphene electrodes are higher than for those with ITO electrodes, due to the surface wetting challenge between the hole-transporting layer and the graphene electrodes. Various alternative routes were investigated and it was found that AuCl 3 doping on graphene can alter the graphene surface wetting properties such that a uniform coating of the hole-transporting layer can be achieved and device success rate can be increased. Furthermore, the doping both improves the conductivity and shifts the work function of the graphene electrode, resulting in improved overall PCE performance of the OPV devices. This work brings us one step further toward the future use of graphene transparent electrodes as a replacement for ITO.

  20. ITO/Poly(Aniline/Sol-Gel Glass: An Optically Transparent, pH-Responsive Substrate for Supported Lipid Bilayers

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Obeidi

    2013-01-01

    Full Text Available Described here is fabrication of a pH-sensitive, optically transparent transducer composed of a planar indium-tin oxide (ITO electrode overcoated with a poly(aniline (PANI thin film and a porous sol-gel layer. Adsorption of the PANI film renders the ITO electrode sensitive to pH, whereas the sol-gel spin-coated layer makes the upper surface compatible with fusion of phospholipid vesicles to form a planar supported lipid bilayer (PSLB. The response to changes in the pH of the buffer contacting the sol-gel/PANI/ITO electrode is pseudo-Nernstian with a slope of 52 mV/pH over a pH range of 4–9. Vesicle fusion forms a laterally continuous PSLB on the upper sol-gel surface that is fluid with a lateral lipid diffusion coefficient of 2.2 μm2/s measured by fluorescence recovery after photobleaching. Due to its lateral continuity and lack of defects, the PSLB blocks the pH response of the underlying electrode to changes in the pH of the overlying buffer. This architecture is simpler to fabricate than previously reported ITO electrodes derivatized for PSLB formation and should be useful for optical monitoring of proton transport across supported membranes derivatized with ionophores and ion channels.

  1. Influence of indium tin oxide electrodes deposited at room temperature on the properties of organic light-emitting devices

    International Nuclear Information System (INIS)

    Satoh, Toshikazu; Fujikawa, Hisayoshi; Taga, Yasunori

    2005-01-01

    The influence of indium tin oxide (ITO) electrodes deposited at room temperature (ITO-RT) on the properties of organic light-emitting devices (OLEDs) has been studied. The OLED on the ITO-RT showed an obvious shorter lifetime and higher operating voltage than that on the conventional ITO electrode deposited at 573 K. The result of an in situ x-ray photoelectron spectroscopy analysis of the ITO electrode and the organic layer suggested that many of the hydroxyl groups that originate in the amorphous structure of the ITO-RT electrode oxidize the organic layer. The performance of the OLED on the ITO-RT is able to be explained by the oxidation of the organic layer

  2. Atomic-Layer-Deposited AZO Outperforms ITO in High-Efficiency Polymer Solar Cells

    KAUST Repository

    Kan, Zhipeng

    2018-05-11

    Tin-doped indium oxide (ITO) transparent conducting electrodes are widely used across the display industry, and are currently the cornerstone of photovoltaic device developments, taking a substantial share in the manufacturing cost of large-area modules. However, cost and supply considerations are set to limit the extensive use of indium for optoelectronic device applications and, in turn, alternative transparent conducting oxide (TCO) materials are required. In this report, we show that aluminum-doped zinc oxide (AZO) thin films grown by atomic layer deposition (ALD) are sufficiently conductive and transparent to outperform ITO as the cathode in inverted polymer solar cells. Reference polymer solar cells made with atomic-layer-deposited AZO cathodes, PCE10 as the polymer donor and PC71BM as the fullerene acceptor (model systems), reach power conversion efficiencies of ca. 10% (compared to ca. 9% with ITO-coated glass), without compromising other figures of merit. These ALD-grown AZO electrodes are promising for a wide range of optoelectronic device applications relying on TCOs.

  3. Atomic-Layer-Deposited AZO Outperforms ITO in High-Efficiency Polymer Solar Cells

    KAUST Repository

    Kan, Zhipeng; Wang, Zhenwei; Firdaus, Yuliar; Babics, Maxime; Alshareef, Husam N.; Beaujuge, Pierre

    2018-01-01

    Tin-doped indium oxide (ITO) transparent conducting electrodes are widely used across the display industry, and are currently the cornerstone of photovoltaic device developments, taking a substantial share in the manufacturing cost of large-area modules. However, cost and supply considerations are set to limit the extensive use of indium for optoelectronic device applications and, in turn, alternative transparent conducting oxide (TCO) materials are required. In this report, we show that aluminum-doped zinc oxide (AZO) thin films grown by atomic layer deposition (ALD) are sufficiently conductive and transparent to outperform ITO as the cathode in inverted polymer solar cells. Reference polymer solar cells made with atomic-layer-deposited AZO cathodes, PCE10 as the polymer donor and PC71BM as the fullerene acceptor (model systems), reach power conversion efficiencies of ca. 10% (compared to ca. 9% with ITO-coated glass), without compromising other figures of merit. These ALD-grown AZO electrodes are promising for a wide range of optoelectronic device applications relying on TCOs.

  4. Comparison study of transparent RF-sputtered ITO/AZO and ITO/ZnO bilayers for near UV-OLED applications

    Science.gov (United States)

    Rezaie, Mahdiyar Nouri; Manavizadeh, Negin; Abadi, Ehsan Mohammadi Nasr; Nadimi, Ebrahim; Boroumand, Farhad Akbari

    2017-01-01

    Hybrid inorganic/organic light-emitting diodes have attracted much attention in the field of luminescent electronics due to the desired incorporation of high optoelectronic features of inorganic materials with the processability and variety of organic polymers. To generate and emit a near ultraviolet (N-UV) ray, wide band gap semiconductors can be applied in the organic light-emitting diodes (OLEDs). In this paper, zinc oxide (ZnO) and aluminum-doped ZnO (AZO) thin films are deposited by radio frequency (RF) sputtering above the ITO electrode and poly [2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene-vinylene] (MEH-PPV) conjugated polymer is utilized as a complementary p-type semiconductor in OLED structure. The impact of ZnO and AZO thickness on the structural, electrical, optical and morphological properties of ITO/AZO and ITO/ZnO bilayers are scrutinized and compared. Results show that with the enlargement of both ZnO and AZO film thickness, the physical properties are gradually improved resulting in the better quality of transparent conducting thin film. The average electrical resistivity of 8.4 × 10-4 and 1.1 × 10-3 Ω-cm, average sheet resistance of 32.9 and 42.3 Ω/sq, average transmittance of 88.3 and 87.3% and average FOM of 1.0 × 104 and 7.4 × 103 (Ω-cm)-1 are obtained for ITO/AZO and ITO/ZnO bilayers, respectively. Moreover, comparing the results indicates that the strain and the stress within the ITO/AZO bilayer are decreased nearly 19% with respect to ITO/ZnO bilayer which yield higher quality of crystal. Consequently, the physical properties of ITO/AZO bilayer is found to be superior regarding ITO/ZnO bilayer. For fabricated UV-OLEDs, the turn-on voltages, the characteristic energy (Et) and the total concentration of traps (Nt) for the devices with the structures of ITO/ZnO/MEH-PPV/Al and ITO/AZO/MEH-PPV/Al are obtained 12 and 14 V, 0.108 and 0.191 eV, 9.33 × 1016 and 5.22 × 1016 cm-3, respectively. Furthermore, according to the electroluminescence

  5. Design and analysis of compact ultra energy-efficient logic gates using laterally-actuated double-electrode NEMS

    KAUST Repository

    Dadgour, Hamed F.

    2010-01-01

    Nano-Electro-Mechanical Switches (NEMS) are among the most promising emerging devices due to their near-zero subthreshold-leakage currents. This paper reports device fabrication and modeling, as well as novel logic gate design using "laterally-actuated double-electrode NEMS" structures. The new device structure has several advantages over existing NEMS architectures such as being immune to impact bouncing and release vibrations (unlike a vertically-actuated NEMS) and offer higher flexibility to implement compact logic gates (unlike a single-electrode NEMS). A comprehensive analytical framework is developed to model different properties of these devices by solving the Euler-Bernoulli\\'s beam equation. The proposed model is validated using measurement data for the fabricated devices. It is shown that by ignoring the non-uniformity of the electrostatic force distribution, the existing models "underestimate" the actual value of Vpull-in and Vpull-out. Furthermore, novel energy efficient NEMS-based circuit topologies are introduced to implement compact inverter, NAND, NOR and XOR gates. For instance, the proposed XOR gate can be implemented by using only two NEMS devices compared to that of a static CMOS-based XOR gate that requires at least 10 transistors. © Copyright 2010 ACM.

  6. Investigations on the effects of electrode materials on the device characteristics of ferroelectric memory thin film transistors fabricated on flexible substrates

    Science.gov (United States)

    Yang, Ji-Hee; Yun, Da-Jeong; Seo, Gi-Ho; Kim, Seong-Min; Yoon, Myung-Han; Yoon, Sung-Min

    2018-03-01

    For flexible memory device applications, we propose memory thin-film transistors using an organic ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] gate insulator and an amorphous In-Ga-Zn-O (a-IGZO) active channel. The effects of electrode materials and their deposition methods on the characteristics of memory devices exploiting the ferroelectric field effect were investigated for the proposed ferroelectric memory thin-film transistors (Fe-MTFTs) at flat and bending states. It was found that the plasma-induced sputtering deposition and mechanical brittleness of the indium-tin oxide (ITO) markedly degraded the ferroelectric-field-effect-driven memory window and bending characteristics of the Fe-MTFTs. The replacement of ITO electrodes with metal aluminum (Al) electrodes prepared by plasma-free thermal evaporation greatly enhanced the memory device characteristics even under bending conditions owing to their mechanical ductility. Furthermore, poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) was introduced to achieve robust bending performance under extreme mechanical stress. The Fe-MTFTs using PEDOT:PSS source/drain electrodes were successfully fabricated and showed the potential for use as flexible memory devices. The suitable choice of electrode materials employed for the Fe-MTFTs is concluded to be one of the most important control parameters for highly functional flexible Fe-MTFTs.

  7. White organic light-emitting diodes with 4 nm metal electrode

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, Simone; Schwab, Tobias; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl; Reineke, Sebastian [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Gather, Malte C. [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom)

    2015-10-19

    We investigate metal layers with a thickness of only a few nanometers as anode replacement for indium tin oxide (ITO) in white organic light-emitting diodes (OLEDs). The ultrathin metal electrodes prove to be an excellent alternative that can, with regard to the angular dependence and efficiency of the OLED devices, outperform the ITO reference. Furthermore, unlike ITO, the thin composite metal electrodes are readily compatible with demanding architectures (e.g., top-emission or transparent OLEDs, device unit stacking, etc.) and flexible substrates. Here, we compare the sheet resistance of both types of electrodes on polyethylene terephthalate for different bending radii. The electrical performance of ITO breaks down at a radius of 10 mm, while the metal electrode remains intact even at radii smaller than 1 mm.

  8. Enhanced Performance of Photoelectrochemical Water Splitting with ITO@α-Fe2O3 Core-Shell Nanowire Array as Photoanode.

    Science.gov (United States)

    Yang, Jie; Bao, Chunxiong; Yu, Tao; Hu, Yingfei; Luo, Wenjun; Zhu, Weidong; Fu, Gao; Li, Zhaosheng; Gao, Hao; Li, Faming; Zou, Zhigang

    2015-12-09

    Hematite (α-Fe2O3) is one of the most promising candidates for photoelectrodes in photoelectrochemical water splitting system. However, the low visible light absorption coefficient and short hole diffusion length of pure α-Fe2O3 limits the performance of α-Fe2O3 photoelectrodes in water splitting. Herein, to overcome these drawbacks, single-crystalline tin-doped indium oxide (ITO) nanowire core and α-Fe2O3 nanocrystal shell (ITO@α-Fe2O3) electrodes were fabricated by covering the chemical vapor deposited ITO nanowire array with compact thin α-Fe2O3 nanocrystal film using chemical bath deposition (CBD) method. The J-V curves and IPCE of ITO@α-Fe2O3 core-shell nanowire array electrode showed nearly twice as high performance as those of the α-Fe2O3 on planar Pt-coated silicon wafers (Pt/Si) and on planar ITO substrates, which was considered to be attributed to more efficient hole collection and more loading of α-Fe2O3 nanocrystals in the core-shell structure than planar structure. Electrochemical impedance spectra (EIS) characterization demonstrated a low interface resistance between α-Fe2O3 and ITO nanowire arrays, which benefits from the well contact between the core and shell. The stability test indicated that the prepared ITO@α-Fe2O3 core-shell nanowire array electrode was stable under AM1.5 illumination during the test period of 40,000 s.

  9. Current Collecting Grids for ITO-Free Solar Cells

    DEFF Research Database (Denmark)

    Galagan, Yulia; Zimmermann, Birger; Coenen, Erica W. C.

    2012-01-01

    Indium-tin-oxide (ITO) free polymer solar cells prepared by ink jet printing a composite front electrode comprising silver grid lines and a semitransparent PEDOT:PSS conductor are demonstrated. The effect of grid line density is explored for a large series of devices and a careful modeling study...

  10. General observation of the memory effect in metal-insulator-ITO structures due to indium diffusion

    International Nuclear Information System (INIS)

    Wu, Xiaojing; Xu, Huihua; Zhao, Ni; Wang, Yu; Rogach, Andrey L; Shen, Yingzhong

    2015-01-01

    Resistive random access memory (RRAM) devices based on metal oxides, organic molecules and inorganic nanocrystals (NCs) have been studied extensively in recent years. Different memory switching mechanisms have been proposed and shown to be closely related to the device architectures. In this work, we demonstrate that the use of an ITO/active layer/InGa structure can yield nonvolatile resistive memory behavior in a variety of active materials, including polymers, organic small molecules, and colloidal NCs. Through the electrode material and thickness-dependent study, we show that the ON state of the devices is associated with filamentary conduction induced by indium diffusion from the ITO electrode, occurring mostly within around 40–50 nm from the ITO/active layer interface. A negative differential resistance (NDR) regime is observed during transition from the ON to OFF state, and is explained by the space charge limited current (SCLC) effect due to hole injection at the ITO/active layer interface. Our study reveals the impact of indium diffusion at the ITO/active layer interface, an important factor that should be taken into consideration when designing thin printed RRAM devices. (paper)

  11. Indium tin oxide-rod/single walled carbon nanotube based transparent electrodes for ultraviolet light-emitting diodes

    International Nuclear Information System (INIS)

    Yun, Min Ju; Kim, Hee-Dong; Kim, Kyeong Heon; Sung, Hwan Jun; Park, Sang Young; An, Ho-Myoung; Kim, Tae Geun

    2013-01-01

    In this paper, we report a transparent conductive oxide electrode scheme working for ultraviolet light-emitting diodes based on indium tin oxide (ITO)-rod and a single walled carbon nanotube (SWCNT) layer. We prepared four samples with ITO-rod, SWCNT/ITO-rod, ITO-rod/SWCNT, and SWCNT/ITO-rod/SWCNT structures for comparison. As a result, the sample with SWCNT/ITO-rod/SWCNT structures showed the highest transmittance over 90% at 280 nm and the highest Ohmic behavior (with sheet resistance of 5.33 kΩ/□) in the current–voltage characteristic curves. - Highlights: • Transparent conductive oxide (TCO) electrodes are proposed for UV light-emitting diodes. • These TCO electrodes are based on evaporated indium tin oxide (ITO)-rods. • Single walled carbon nanotube (SWCNT) layers are used as a current spreading layer. • The proposed TCO electrode structures show more than 90% transmittance at 280 nm

  12. Effect of Oblique-Angle Sputtered ITO Electrode in MAPbI3 Perovskite Solar Cell Structures.

    Science.gov (United States)

    Lee, Kun-Yi; Chen, Lung-Chien; Wu, Yu-June

    2017-10-03

    This investigation reports on the characteristics of MAPbI 3 perovskite films on obliquely sputtered ITO/glass substrates that are fabricated with various sputtering times and sputtering angles. The grain size of a MAPbI 3 perovskite film increases with the oblique sputtering angle of ITO thin films from 0° to 80°, indicating that the surface properties of the ITO affect the wettability of the PEDOT:PSS thin film and thereby dominates the number of perovskite nucleation sites. The optimal power conversion efficiency (Eff) is achieved 11.3% in a cell with an oblique ITO layer that was prepared using a sputtering angle of 30° for a sputtering time of 15 min.

  13. ITO/Au/ITO sandwich structure for near-infrared plasmonics.

    Science.gov (United States)

    Fang, Xu; Mak, Chee Leung; Dai, Jiyan; Li, Kan; Ye, Hui; Leung, Chi Wah

    2014-09-24

    ITO/Au/ITO trilayers with varying gold spacer layer thicknesses were deposited on glass substrates by pulsed laser deposition. Transmission electron microscopy measurements demonstrated the continuous nature of the Au layer down to 2.4 nm. XRD patterns clearly showed an enhanced crystallinity of the ITO films promoted by the insertion of the gold layer. Compared with a single layer of ITO with a carrier concentration of 7.12 × 10(20) cm(-3), the ITO/Au/ITO structure achieved an effective carrier concentration as high as 3.26 × 10(22) cm(-3). Transmittance and ellipsometry measurements showed that the optical properties of ITO/Au/ITO films were greatly influenced by the thickness of the inserted gold layer. The cross-point wavelength of the trilayer samples was reduced with increasing gold layer thickness. Importantly, the trilayer structure exhibited a reduced loss (compared with plain Au) in the near-infrared region, suggesting its potential for plasmonic applications in the near-infrared range.

  14. ICP dry etching ITO to improve the performance of GaN-based LEDs

    International Nuclear Information System (INIS)

    Meng Lili; Chen Yixin; Ma Li; Liu Zike; Shen Guangdi

    2011-01-01

    In order to improve the light efficiency of the conventional GaN-based light-emitting diodes (LEDs), the indium tin oxide (ITO) film is introduced as the current spreading layer and the light anti-reflecting layer on the p-GaN surface. There is a big problem with the ITO thin film's corrosion during the electrode preparation. In this paper, at least, the edge of the ITO film was lateral corroded 3.5 μm width, i.e. 6.43%-1/3 of ITO film's area. An optimized simple process, i.e. inductively couple plasma (ICP), was introduced to solve this problem. The ICP process not only prevented the ITO film from lateral corrosion, but also improved the LED's light intensity and device performance. The edge of the ITO film by ICP dry etching is steep, and the areas of ITO film are whole. Compared with the chip by wet etching, the areas of light emission increase by 6.43% at least and the chip's lop values increase by 45.9% at most. (semiconductor devices)

  15. Flexible powder electroluminescent device on silver nanowire electrode

    International Nuclear Information System (INIS)

    Park, K.W.; Jeong, H.S.; Park, J.H.; Deressa, G.; Jeong, Y.T.; Lim, K.T.; Park, J.H.; Lee, S.H.; Kim, J.S.

    2015-01-01

    We have demonstrated the flexible AC powder electroluminescent device based on Ag nanowire electrode. The Ag nanowire electrode showed the nanowire morphology of 20 nm in diameter and 15 μm in length, the transmittance of 87%, and the sheet resistance of 50 Ω/sq, and the higher flexibility than the conventional ITO substrate. The electroluminescence spectra of the Ag nanowire-based device in all frequency and voltage ranges were almost similar with the ITO-based device. In comparison with the ITO-based device, the luminous efficiency of the Ag nanowire-based device was almost same as 1.53 lm/W. - Highlights: • Flexibility of Ag NW substrate was higher than ITO substrate. • EL intensity of Ag NW-based EL device was almost similar with ITO-based EL device. • Charge density and turn-on voltage of Ag NW-based EL device were a little larger than ITO-based EL device

  16. Flexible powder electroluminescent device on silver nanowire electrode

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.W.; Jeong, H.S.; Park, J.H.; Deressa, G.; Jeong, Y.T.; Lim, K.T. [Department of Display Science and Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of); Park, J.H. [AIDEN company, Cheongju-si 361-911 (Korea, Republic of); Lee, S.H. [R& D Business Lab, Hyosung Corporation, Anyang 431-080 (Korea, Republic of); Kim, J.S., E-mail: jsukim@pknu.ac.kr [Department of Display Science and Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2015-09-15

    We have demonstrated the flexible AC powder electroluminescent device based on Ag nanowire electrode. The Ag nanowire electrode showed the nanowire morphology of 20 nm in diameter and 15 μm in length, the transmittance of 87%, and the sheet resistance of 50 Ω/sq, and the higher flexibility than the conventional ITO substrate. The electroluminescence spectra of the Ag nanowire-based device in all frequency and voltage ranges were almost similar with the ITO-based device. In comparison with the ITO-based device, the luminous efficiency of the Ag nanowire-based device was almost same as 1.53 lm/W. - Highlights: • Flexibility of Ag NW substrate was higher than ITO substrate. • EL intensity of Ag NW-based EL device was almost similar with ITO-based EL device. • Charge density and turn-on voltage of Ag NW-based EL device were a little larger than ITO-based EL device.

  17. Effect of surface roughness and surface modification of indium tin oxide electrode on its potential response to tryptophan

    International Nuclear Information System (INIS)

    Khan, Md. Zaved Hossain; Nakanishi, Takuya; Kuroiwa, Shigeki; Hoshi, Yoichi; Osaka, Tetsuya

    2011-01-01

    Highlights: → We examine factors affecting potential response of ITO electrode to tryptophan. → Surface roughness of ITO electrode affects the stability of its rest potential. → Surface modification is effective for ITO electrode with a certain roughness. → Optimum values of work function exist for potential response of ITO to tryptophan. - Abstract: The effect of surface modification of indium tin oxide (ITO) electrode on its potential response to tryptophan was investigated for ITO substrates with different surface roughness. It was found that a small difference in surface roughness, between ∼1 and ∼2 nm of R a evaluated by atomic force microscopy, affects the rest potential of ITO electrode in the electrolyte. A slight difference in In:Sn ratio at the near surface of the ITO substrates, measured by angle-resolved X-ray photoelectron spectrometry and Auger electron spectroscopy is remarkable, and considered to relate with surface roughness. Interestingly, successive modification of the ITO surface with aminopropylsilane and disuccinimidyl suberate, of which essentiality to the potential response to indole compounds we previously reported, improved the stability of the rest potential and enabled the electrodes to respond to tryptophan in case of specimens with R a values ranging between ∼2 and ∼3 nm but not for those with R a of ∼1 nm. It was suggested that there are optimum values of effective work function of ITO for specific potential response to tryptophan, which can be obtained by the successive modification of ITO surface.

  18. Roll-to-roll printed silver nanowires for increased stability of flexible ITO-free organic solar cell modules

    DEFF Research Database (Denmark)

    Benatto, Gisele Alves dos Reis; Roth, Bérenger; Corazza, Michael

    2016-01-01

    We report the use of roll-to-roll printed silver nanowire networks as front electrodes for fully roll-to-roll processed flexible indium-tin-oxide (ITO) free OPV modules. We prepared devices with two types of back electrodes, a simple PEDOT:PSS back electrode and a PEDOT:PSS back electrode...

  19. Improvement of the electrochromic response of a low-temperature sintered dye-modified porous electrode using low-resistivity indium tin oxide nanoparticles

    International Nuclear Information System (INIS)

    Watanabe, Yuichi; Suemori, Kouji; Hoshino, Satoshi

    2016-01-01

    An indium tin oxide (ITO) nanoparticle-based porous electrode sintered at low temperatures was investigated as a transparent electrode for electrochromic displays (ECDs). The electrochromic (EC) response of the dye-modified ITO porous electrode sintered at 150 °C, which exhibited a generally low resistivity, was markedly superior to that of a conventional dye-modified TiO 2 porous electrode sintered at the same temperature. Moreover, the EC characteristics of the dye-modified ITO porous electrode sintered at 150 °C were better than those of the high-temperature (450 °C) sintered conventional dye-modified TiO 2 porous electrode. These improvements in the EC characteristics of the dye-modified ITO porous electrode are attributed to its lower resistivity than that of the TiO 2 porous electrodes. In addition to its sufficiently low resistivity attained under the sintering conditions required for flexible ECD applications, the ITO porous film had superior visible-light transparency and dye adsorption capabilities. We conclude that the process temperature, resistivity, optical transmittance, and dye adsorption capability of the ITO porous electrode make it a promising transparent porous electrode for flexible ECD applications.

  20. Fabrication of Dye-Sensitized Solar Cells with a 3D Nanostructured Electrode

    Directory of Open Access Journals (Sweden)

    Guo-Yang Chen

    2010-01-01

    Full Text Available A novel Dye-Sensitized Solar Cell (DSSC scheme for better solar conversion efficiency is proposed. The distinctive characteristic of this novel scheme is that the conventional thin film electrode is replaced by a 3D nanostructured indium tin oxide (ITO electrode, which was fabricated using RF magnetron sputtering with an anodic aluminum oxide (AAO template. The template was prepared by immersing the barrier-layer side of an AAO film into a 30 wt% phosphoric acid solution to produce a contrasting surface. RF magnetron sputtering was then used to deposit a 3D nanostructured ITO thin film on the template. The crystallinity and conductivity of the 3D ITO films were further enhanced by annealing. Titanium dioxide nanoparticles were electrophoretically deposited on the 3D ITO film after which the proposed DSSC was formed by filling vacant spaces in the 3D nanostructured ITO electrode with dye. The measured solar conversion efficiency of the device was 0.125%. It presents a 5-fold improvement over that of conventional spin-coated TiO2 film electrode DSSCs.

  1. Understanding the mechanisms that change the conductivity of damaged ITO-coated polymeric films: A micro-mechanical investigation

    KAUST Repository

    Nasr Saleh, Mohamed; Lubineau, Gilles

    2014-01-01

    Degradation from mechanical loading of transparent electrodes made of indium tin oxide (ITO) endangers the integrity of any material based on these electrodes, including flexible organic solar cells. However, how different schemes of degradation

  2. Graphene as a transparent electrode for amorphous silicon-based solar cells

    International Nuclear Information System (INIS)

    Vaianella, F.; Rosolen, G.; Maes, B.

    2015-01-01

    The properties of graphene in terms of transparency and conductivity make it an ideal candidate to replace indium tin oxide (ITO) in a transparent conducting electrode. However, graphene is not always as good as ITO for some applications, due to a non-negligible absorption. For amorphous silicon photovoltaics, we have identified a useful case with a graphene-silica front electrode that improves upon ITO. For both electrode technologies, we simulate the weighted absorption in the active layer of planar amorphous silicon-based solar cells with a silver back-reflector. The graphene device shows a significantly increased absorbance compared to ITO-based cells for a large range of silicon thicknesses (34.4% versus 30.9% for a 300 nm thick silicon layer), and this result persists over a wide range of incidence angles

  3. Graphene as a transparent electrode for amorphous silicon-based solar cells

    Science.gov (United States)

    Vaianella, F.; Rosolen, G.; Maes, B.

    2015-06-01

    The properties of graphene in terms of transparency and conductivity make it an ideal candidate to replace indium tin oxide (ITO) in a transparent conducting electrode. However, graphene is not always as good as ITO for some applications, due to a non-negligible absorption. For amorphous silicon photovoltaics, we have identified a useful case with a graphene-silica front electrode that improves upon ITO. For both electrode technologies, we simulate the weighted absorption in the active layer of planar amorphous silicon-based solar cells with a silver back-reflector. The graphene device shows a significantly increased absorbance compared to ITO-based cells for a large range of silicon thicknesses (34.4% versus 30.9% for a 300 nm thick silicon layer), and this result persists over a wide range of incidence angles.

  4. Graphene as a transparent electrode for amorphous silicon-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Vaianella, F., E-mail: Fabio.Vaianella@umons.ac.be; Rosolen, G.; Maes, B. [Micro- and Nanophotonic Materials Group, Faculty of Science, University of Mons, 20 place du Parc, B-7000 Mons (Belgium)

    2015-06-28

    The properties of graphene in terms of transparency and conductivity make it an ideal candidate to replace indium tin oxide (ITO) in a transparent conducting electrode. However, graphene is not always as good as ITO for some applications, due to a non-negligible absorption. For amorphous silicon photovoltaics, we have identified a useful case with a graphene-silica front electrode that improves upon ITO. For both electrode technologies, we simulate the weighted absorption in the active layer of planar amorphous silicon-based solar cells with a silver back-reflector. The graphene device shows a significantly increased absorbance compared to ITO-based cells for a large range of silicon thicknesses (34.4% versus 30.9% for a 300 nm thick silicon layer), and this result persists over a wide range of incidence angles.

  5. Sintering and electrical properties of titania- and zirconia-containing In2O3-SnO2 (ITO) ceramics

    International Nuclear Information System (INIS)

    Nadaud, N.; Nanot, M.; Bock, P.

    1994-01-01

    The deposition rate and film quality of In 2 O 3 -SnO 2 (ITO) transparent electrodes processed by sputtering are improved when using dense sputtering targets. Unfortunately, ITO ceramics do not sinter easily. It is shown that addition of TiO 2 ( 2 was also investigated

  6. Electrodeposition of lead on ITO electrode: influence of copper as an additive

    International Nuclear Information System (INIS)

    Avellaneda, Cesar O.; Napolitano, Marcos A.; Kaibara, Evandro K.; Bulhoes, Luis O.S.

    2005-01-01

    The reversible electrodeposition of metallic lead onto indium-tin oxide coated glass (ITO) was investigated and the influence of Cu(NO 3 ) 2 ·3H 2 O as additive was evaluated. The presence of Cu 2+ in the electrolytic solution produces a higher variation in the optical transmissivity. The optical response of the system changes from 85 to 10% relative to the ITO coated substrate. The kinetics of the electroreduction process of the Pb 2+ and Cu 2+ from the electrolytes has been determined by electrochemical impedance spectroscopy (EIS) at different electrodeposition potentials. This system may be a promising candidate for electrochromic materials

  7. Gate-dependent asymmetric transport characteristics in pentacene barristors with graphene electrodes.

    Science.gov (United States)

    Hwang, Wang-Taek; Min, Misook; Jeong, Hyunhak; Kim, Dongku; Jang, Jingon; Yoo, Daekyung; Jang, Yeonsik; Kim, Jun-Woo; Yoon, Jiyoung; Chung, Seungjun; Yi, Gyu-Chul; Lee, Hyoyoung; Wang, Gunuk; Lee, Takhee

    2016-11-25

    We investigated the electrical characteristics and the charge transport mechanism of pentacene vertical hetero-structures with graphene electrodes. The devices are composed of vertical stacks of silicon, silicon dioxide, graphene, pentacene, and gold. These vertical heterojunctions exhibited distinct transport characteristics depending on the applied bias direction, which originates from different electrode contacts (graphene and gold contacts) to the pentacene layer. These asymmetric contacts cause a current rectification and current modulation induced by the gate field-dependent bias direction. We observed a change in the charge injection barrier during variable-temperature current-voltage characterization, and we also observed that two distinct charge transport channels (thermionic emission and Poole-Frenkel effect) worked in the junctions, which was dependent on the bias magnitude.

  8. UV-sensitive optical sensors based on ITO-gallium phosphide heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Oleksandr; Hidalga-Wade, F. Javier de la; Zuniga-Islas, Carlos; Abundis Patino, Jesus H. [National Institute for Astrophysics, Optics, and Electronics (INAOE), Puebla (Mexico)

    2010-04-15

    Design and characteristics of wide-band UV sensors based on ITO/GaP heterostructures are discussed. Such sensors have perfect electrical parameters and high UV-visible sensitivity in comparison with surface-barrier structures using a semi-transparent thin metal film as an electrode. Many applications require UV sensors with an effective rejection of visible radiation and a wide temperature operating interval. For this aim, the theoretical modelling of extreme selective optical sensors with a double Ag/ITO thin film on the GaP surface, in which the thin silver film serves as a narrow bandpass filter at 320 nm, has been conducted. With this modelling the optimal thickness combination for the silver and ITO films was found for the maximum rejection of the sensitivity to visible radiation (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Graphene-based transparent electrodes for hybrid solar cells

    Directory of Open Access Journals (Sweden)

    Pengfei eLi

    2014-11-01

    Full Text Available The graphene-based transparent and conductive films were demonstrated to be cost-effective electrodes working in organic-inorganic hybrid Schottky solar cells. Large area graphene films were produced by chemical vapor deposition (CVD on copper foils and transferred onto glass as transparent electrodes. The hybrid solar cell devices consist of solution processed poly (3, 4-ethlenedioxythiophene: poly (styrenesulfonate (PEDOT: PSS which is sandwiched between silicon wafer and graphene electrode. The solar cells based on graphene electrodes, especially those doped with HNO3, has comparable performance to the reference devices using commercial indium tin oxide (ITO. Our work suggests that graphene-based transparent electrode is a promising candidate to replace ITO.

  10. Electrochemical polymerization of an aniline-terminated self-assembled monolayer on indium tin oxide electrodes and its effect on polyaniline electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Silva, Rodolfo [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, UAEM. Av. Universidad 1001Col. Chamilpa, CP 62210, Cuernavaca, Mor. (Mexico)], E-mail: rcruzsilva@uaem.mx; Nicho, Maria E.; Resendiz, Mary C.; Agarwal, Vivechana [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, UAEM. Av. Universidad 1001Col. Chamilpa, CP 62210, Cuernavaca, Mor. (Mexico); Castillon, Felipe F.; Farias, Mario H. [Centro de Ciencias de la Materia Condensada de la UNAM, Apdo. Postal 2681 C.P. 22800 Ensenada, B.C. (Mexico)

    2008-06-02

    Indium tin oxide (ITO) transparent electrodes were surface modified by a self-assembled monolayer of N-phenyl-{gamma}-aminopropyl-trimethoxysilane (PAPTS). Cyclic voltammetry of the PAPTS monolayer in aniline-free aqueous electrolyte showed the typical shape of a surface-confined monomer, due to the oxidation of the aniline moieties. This process resulted in a two-dimensional polyaniline film with uniform thickness of 1.3 nm, as measured by atomic force microscopy. X-ray photoelectron and UV-visible spectroscopic techniques confirm the formation of a conjugated polymer film. The influence of the surface modification of ITO electrodes on polyaniline electrochemical deposition was also studied. The initial oxidation rate of aniline increased in the PAPTS-modified ITO electrodes, although the overall film formation rate was lower than that of unmodified ITO electrodes. The morphology of the electrodeposited polyaniline films on PAPTS-modified and unmodified ITO electrodes was studied by atomic force microscopy. Films of smaller grain were grown in the PAPTS-modified ITO as compared to films grown on unmodified ITO. A blocking effect due to the propyl spacer is proposed to explain the reduced electron transfer in PAPTS-modified electrodes.

  11. All solution processing of ITO-free organic solar cell modules directly on barrier foil

    DEFF Research Database (Denmark)

    Angmo, Dechan; Hösel, Markus; Krebs, Frederik C

    2012-01-01

    In this study, we demonstrate fully solution processed semi-transparent silver electrodes on flexible substrates having a sheet resistance as low as 5Ω/□ and transmittance of ∼30% at 550nm. We demonstrate the use of this electrode as a substitute for ITO in an inverted organic solar cell (OSC...

  12. Transparent conductive ITO/Cu/ITO films prepared on flexible substrates at room temperature

    International Nuclear Information System (INIS)

    Ding Xingwei; Yan Jinliang; Li Ting; Zhang Liying

    2012-01-01

    Transparent conductive ITO/Cu/ITO films were deposited on PET substrates by magnetron sputtering using three cathodes at room temperature. Effects of the SiO 2 buffer layer and thickness of Cu interlayer on the structural, electrical and optical properties of ITO/Cu/ITO films were investigated. The optical transmittance was affected slightly by SiO 2 buffer layer, but the electrical properties of ITO/Cu/ITO films were improved. The transmittance and resistivity of the SiO 2 /ITO/Cu/ITO films decrease as the Cu layer thickness increases. The ITO/Cu/ITO film with 5 nm Cu interlayer deposited on the 40 nm thick SiO 2 buffer layer exhibits the sheet resistance of 143 Ω/sq and transmittance of 65% at 550 nm wavelength. The optical and electrical properties of the ITO/Cu/ITO films were mainly dependent on the Cu layer.

  13. Transparent conductive ITO/Cu/ITO films prepared on flexible substrates at room temperature

    Science.gov (United States)

    Ding, Xingwei; Yan, Jinliang; Li, Ting; Zhang, Liying

    2012-01-01

    Transparent conductive ITO/Cu/ITO films were deposited on PET substrates by magnetron sputtering using three cathodes at room temperature. Effects of the SiO2 buffer layer and thickness of Cu interlayer on the structural, electrical and optical properties of ITO/Cu/ITO films were investigated. The optical transmittance was affected slightly by SiO2 buffer layer, but the electrical properties of ITO/Cu/ITO films were improved. The transmittance and resistivity of the SiO2/ITO/Cu/ITO films decrease as the Cu layer thickness increases. The ITO/Cu/ITO film with 5 nm Cu interlayer deposited on the 40 nm thick SiO2 buffer layer exhibits the sheet resistance of 143 Ω/sq and transmittance of 65% at 550 nm wavelength. The optical and electrical properties of the ITO/Cu/ITO films were mainly dependent on the Cu layer.

  14. Nano-honeycomb structured transparent electrode for enhanced light extraction from organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiao-Bo; Qian, Min; Wang, Zhao-Kui, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn; Liao, Liang-Sheng, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123 (China)

    2015-06-01

    A universal nano-sphere lithography method has been developed to fabricate nano-structured transparent electrode, such as indium tin oxide (ITO), for light extraction from organic light-emitting diodes (OLEDs). Perforated SiO{sub 2} film made from a monolayer colloidal crystal of polystyrene spheres and tetraethyl orthosilicate sol-gel is used as a template. Ordered nano-honeycomb pits on the ITO electrode surface are obtained by chemical etching. The proposed method can be utilized to form large-area nano-structured ITO electrode. More than two folds' enhancement in both current efficiency and power efficiency has been achieved in a red phosphorescent OLED which was fabricated on the nano-structured ITO substrate.

  15. Interfacial Energy Alignment at the ITO/Ultra-Thin Electron Selective Dielectric Layer Interface and Its Effect on the Efficiency of Bulk-Heterojunction Organic Solar Cells.

    Science.gov (United States)

    Itoh, Eiji; Goto, Yoshinori; Saka, Yusuke; Fukuda, Katsutoshi

    2016-04-01

    We have investigated the photovoltaic properties of an inverted bulk heterojunction (BHJ) cell in a device with an indium-tin-oxide (ITO)/electron selective layer (ESL)/P3HT:PCBM active layer/MoOx/Ag multilayered structure. The insertion of only single layer of poly(diallyl-dimethyl-ammonium chloride) (PDDA) cationic polymer film (or poly(ethyleneimine) (PEI) polymeric interfacial dipole layer) and titanium oxide nanosheet (TN) films as an ESL effectively improved cell performance. Abnormal S-shaped curves were observed in the inverted BHJ cells owing to the contact resistance across the ITO/active layer interface and the ITO/PDDA/TN/active layer interface. The series resistance across the ITO/ESL interface in the inverted BHJ cell was successfully reduced using an interfacial layer with a positively charged surface potential with respect to ITO base electrode. The positive dipole in PEI and the electronic charge phenomena at the electrophoretic deposited TN (ED-TN) films on ITO contributed to the reduction of the contact resistance at the electrode interface. The surface potential measurement revealed that the energy alignment by the transfer of electronic charges from the ED-TN to the base electrodes. The insertion of the ESL with a large positive surface potential reduced the potential barrier for the electron injection at ITO/TN interface and it improved the photovoltaic properties of the inverted cell with an ITO/TN/active layer/MoOx/Ag structure.

  16. Effects O2 plasma surface treatment on the electrical properties of the ITO substrate

    International Nuclear Information System (INIS)

    Hong, Jin-Woong; Oh, Dong-Hoon; Shim, Sang-Min; Lee, Young-Sang; Kang, Yong-Gil; Shin, Jong-Yeol

    2012-01-01

    The indium-tin-oxide (ITO) substrate is used as a transparent electrode in organic light-emitting diodes (OLEDs) and organic photovoltaic cells. The effect of an O 2 plasma surface treatment on the electrical properties of the ITO substrate was examined. The four-point probe method, an atomic force microscope (AFM), a LCR meter, a Cole-Cole plot, and a conductive mechanism analysis were used to assess the properties of the treated ITO substrates. The four-point probe method and the AFM study revealed a lower ITO surface resistance of 17.6 Ω/sq and an average roughness of 2 nm, respectively, for a substrate treated by a plasma at 250 W for 40 s. The lower surface resistance of the ITO substrate treated at 250 W for 40 s was confirmed by using a LCR meter. An amorphous fluoropolymer (AF) was deposited on an ITO substrate treated under the optimal conditions and on a non-plasma treated ITO substrate as well. The potential barriers for charge injection in these devices were 0.25 eV and 0.15 eV, respectively, indicating a 0.1-eV decrease due to the plasma treatment.

  17. Electrochromic Characteristics of Nitrogen-Doped Graphene/TiO2 Nanocomposite Electrodes

    International Nuclear Information System (INIS)

    Yang, Chien-Hsin; Chen, Shih-Ming; Wang, Tzong-Liu; Shieh, Yeong-Tarng

    2014-01-01

    Nitrogen-doped graphene (NDG)/titanium dioxide (TiO 2 ) nanoparticles were coated on indium-tin oxide (ITO) glass substrates to fabricate NDG-TiO 2 nanocomposite electrodes. 3-methylthiophene (3MT) was electrochemically deposited on the NDG-TiO 2 films to form poly(3-methylthiophene) (P3MT/NDG/TiO 2 ) composite electrochromic electrodes. The introduction of NDG and TiO 2 mesoporous films significantly increased the initial maximum optical contrast (ΔT%) to 70% as compared 41% of pure ITO electrodes, whereas the P3MT/NDG/TiO 2 composite electrodes enhanced the adhesion of P3MT polymers to the NDG/TiO 2 /ITO substrate, thereby increasing the long-term stability of the corresponding electrochromic devices. Experimental results reveal that P3MT/NDG/TiO 2 composite electrodes retained up to 90% of ΔT%, relative to 70% remaining ΔT% of pure ITO electrodes. This illustrates the enhanced long-term stability achieved through the introduction of a NDG-TiO 2 nanocomposite films in electrochromic devices. These devices demonstrated excellent response time characteristics and ΔT% value of 6 s and ca. of 70%, respectively. This work has shown that conductive polymer/NDG/TiO 2 composite electrodes are well suited to electrochromic devices for the promotion of performance and stability

  18. Low Reflectivity and High Flexibility of Tin-Doped Indium Oxide Nanofiber Transparent Electrodes

    KAUST Repository

    Wu, Hui

    2011-01-12

    Tin-doped indium oxide (ITO) has found widespread use in solar cells, displays, and touch screens as a transparent electrode; however, two major problems with ITO remain: high reflectivity (up to 10%) and insufficient flexibility. Together, these problems severely limit the applications of ITO films for future optoelectronic devices. In this communication, we report the fabrication of ITO nanofiber network transparent electrodes. The nanofiber networks show optical reflectivity as low as 5% and high flexibility; the nanofiber networks can be bent to a radius of 2 mm with negligible changes in the sheet resistance. © 2010 American Chemical Society.

  19. Better Organic Ternary Memory Performance through Self-Assembled Alkyltrichlorosilane Monolayers on Indium Tin Oxide (ITO) Surfaces.

    Science.gov (United States)

    Hou, Xiang; Cheng, Xue-Feng; Zhou, Jin; He, Jing-Hui; Xu, Qing-Feng; Li, Hua; Li, Na-Jun; Chen, Dong-Yun; Lu, Jian-Mei

    2017-11-16

    Recently, surface engineering of the indium tin oxide (ITO) electrode of sandwich-like organic electric memory devices was found to effectively improve their memory performances. However, there are few methods to modify the ITO substrates. In this paper, we have successfully prepared alkyltrichlorosilane self-assembled monolayers (SAMs) on ITO substrates, and resistive random access memory devices are fabricated on these surfaces. Compared to the unmodified ITO substrates, organic molecules (i.e., 2-((4-butylphenyl)amino)-4-((4-butylphenyl)iminio)-3-oxocyclobut-1-en-1-olate, SA-Bu) grown on these SAM-modified ITO substrates have rougher surface morphologies but a smaller mosaicity. The organic layer on the SAM-modified ITO further aged to eliminate the crystalline phase diversity. In consequence, the ternary memory yields are effectively improved to approximately 40-47 %. Our results suggest that the insertion of alkyltrichlorosilane self-assembled monolayers could be an efficient method to improve the performance of organic memory devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Fabrication of GaAs nanowire devices with self-aligning W-gate electrodes using selective-area MOVPE

    International Nuclear Information System (INIS)

    Ooike, N.; Motohisa, J.; Fukui, T.

    2004-01-01

    We propose and demonstrate a novel self-aligning process for fabricating the tungsten (W) gate electrode of GaAs nanowire FETs by using selective-area metalorganic vapor phase epitaxy (SA-MOVPE) where SiO 2 /W composite films are used to mask the substrates. First, to study the growth process and its dependence on mask materials, GaAs wire structures were grown on masked substrates partially covered with a single W layer or SiO 2 /W composite films. We found that lateral growth over the masked regions could be suppressed when a wire along the [110] direction and a SiO 2 /W composite mask were used. Using this composite mask, we fabricated GaAs narrow channel FETs using W as a Schottky gate electrode, and we were able to observe FET characteristics at room temperature

  1. Organic Photovoltaic Structures as Photo-active Electrodes

    International Nuclear Information System (INIS)

    Gustafson, Matthew P.; Clark, Noel; Winther-Jensen, Bjorn; MacFarlane, Douglas R.

    2014-01-01

    This study demonstrated the novel use of a bulk heterojunction (BHJ), as present in modern organic solar cells, as a light-assisted electrocatalyst for water electrolysis reactions. Two separate organic photo-voltaic electrode structures were designed for targeting both the reduction, (ITO-PET/PEDOT:PSS/P3HT:PCBM)* and oxidation, (ITO-PET/ZnO/P3HT:PCBM)* reactions of water, denoted as OPE-R and OPE-O respectively. The OPE-R electrode supported both the proton reduction reaction (PRR) and oxygen reduction reaction (ORR) achieving photocurrents of -0.04 mAcm −2 (ORR) and -0.03 mAcm −2 (PRR) and a photovoltage of 0.50 V (ORR) and onset photovoltage at -0.59 V (PRR). By comparison, the OPE-O electrode achieved photocurrents of 0.15 mAcm −2 and photovoltages of 0.35 V for the water oxidation reaction (WOR). Both BHJ designs confirmed evidence of photo-enhanced Bulk Heterojunction Electrode (BHE) activity. The stability and sources of electrode degradation were also studied, with the OPE-O electrode proving to be more stable than the OPE-R electrode, most likely due to the PEDOT:PSS layer and PSS migration in the presence of water. *Indium Tin Oxide (ITO), Polyethylene Terephthalate (PET), Poly(3,4-ethylenedioxythiophene) (PEDOT), Polystyrenesulfonate acid (PSS), Poly(3-hexylthiophene) (P3HT), Phenyl-C 61 -Butyric acid Methyl ester (PCBM), Zinc Oxide (ZnO)

  2. ITO-TiN-ITO Sandwiches for Near-Infrared Plasmonic Materials.

    Science.gov (United States)

    Chen, Chaonan; Wang, Zhewei; Wu, Ke; Chong, Haining; Xu, Zemin; Ye, Hui

    2018-05-02

    Indium tin oxide (ITO)-based sandwich structures with the insertion of ultrathin (ITO layers show TiN-thickness-dependent properties, which lead to moderate and tunable effective permittivities for the sandwiches. The surface plasmon polaritons (SPP) of the ITO-TiN-ITO sandwich at the telecommunication window (1480-1570 nm) are activated by prism coupling using Kretschmann configuration. Compared with pure ITO films or sandwiches with metal insertion, the reflectivity dip for sandwiches with TiN is relatively deeper and wider, indicating the enhanced coupling ability in plasmonic materials for telecommunications. The SPP spatial profile, penetration depth, and degree of confinement, as well as the quality factors, demonstrate the applicability of such sandwiches for NIR plasmonic materials in various devices.

  3. Performance of GaN-Based LEDs with Nanopatterned Indium Tin Oxide Electrode

    Directory of Open Access Journals (Sweden)

    Zhanxu Chen

    2016-01-01

    Full Text Available The indium tin oxide (ITO has been widely applied in light emitting diodes (LEDs as the transparent current spreading layer. In this work, the performance of GaN-based blue light LEDs with nanopatterned ITO electrode is investigated. Periodic nanopillar ITO arrays are fabricated by inductive coupled plasma etching with the mask of polystyrene nanosphere. The light extraction efficiency (LEE of LEDs can be improved by nanopatterned ITO ohmic contacts. The light output intensity of the fabricated LEDs with nanopatterned ITO electrode is 17% higher than that of the conventional LEDs at an injection current of 100 mA. Three-dimensional finite difference time domain simulation matches well with the experimental result. This method may serve as a practical approach to improving the LEE of the LEDs.

  4. ITO electrode/photoactive layer interface engineering for efficient inverted polymer solar cells based on P3HT and PCBM using a solution-processed titanium chelate

    International Nuclear Information System (INIS)

    Zhang Wenqing; Zheng Hua; Tan Zhan'ao; Qian Deping; Li Liangjie; Xu Qi; Li Shusheng; Li Yongfang

    2012-01-01

    We report efficient inverted polymer solar cells (PSCs) based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) using alcohol-soluble titanium (diisopropoxide) bis (2,4-pentanedionate) (TIPD) as an electron selective layer between the indium tin oxide (ITO) electrode and the photoactive layer. The thermally annealed TIPD layer is highly transparent in the visible range and shows effective electron collection ability. By optimizing the electron-collecting layer, the photoactive layer and the hole-collecting layer, the power conversion efficiency (PCE) of the inverted device with the structure ITO/TIPD/P3HT : PCBM/MoO 3 /Ag reaches 4.10% under the illumination of AM1.5G, 100 mW cm -2 , which is among the highest values for inverted PSCs based on P3HT : PCBM. The PCE of the inverted device is improved in comparison with the conventional device (3.77%) under the same experimental conditions. (paper)

  5. Mechano-chemical degradation of flexible electrodes for optoelectronic device applications

    International Nuclear Information System (INIS)

    Bejitual, T.S.; Morris, N.J.; Cronin, S.D.; Cairns, D.R.; Sierros, K.A.

    2013-01-01

    The electrical, optical, and structural integrity of flexible transparent electrodes is of paramount importance in the design and fabrication of optoelectronic devices such as organic light emitting diodes, liquid crystal displays, touch panels, solar cells, and solid-state lighting. The electrodes may corrode due to acid-containing pressure sensitive adhesives present in the device stacks. In addition, structural failure may occur due to external applied loading. The combined action and further accumulation of both repeated mechanical loading and corrosion can aggravate the loss of functionality of the electrodes. In this study we investigate, using the design of experimental methods, the effects of corrosion, applied mechanical strain, film thickness, and number of bending cycles on the electrical and structural integrity of indium tin oxide (ITO) and carbon nanotube (CNT) films both coated on polyethylene terephthalate (PET) substrates. In situ electrical resistance measurements suggest that fatigue-corrosion is found to be the most critical failure mode for the ITO-based coatings. For example, the change in ITO electrical resistance increase under fatigue-corrosion (1% strain, 150,000 cycles) is 5.8 times higher than that of fatigue mode alone. On the other hand, a minimum change in electrical resistance of the CNT-based electrodes is found when applying the same conditions. - Highlights: • Combined mechano-chemical effects on electrode durability. • CNT-based electrodes outperform ITO counterparts. • Importance of combined fatigue and corrosion action on device reliability

  6. Mechano-chemical degradation of flexible electrodes for optoelectronic device applications

    Energy Technology Data Exchange (ETDEWEB)

    Bejitual, T.S.; Morris, N.J.; Cronin, S.D.; Cairns, D.R.; Sierros, K.A., E-mail: kostas.sierros@mail.wvu.edu

    2013-12-31

    The electrical, optical, and structural integrity of flexible transparent electrodes is of paramount importance in the design and fabrication of optoelectronic devices such as organic light emitting diodes, liquid crystal displays, touch panels, solar cells, and solid-state lighting. The electrodes may corrode due to acid-containing pressure sensitive adhesives present in the device stacks. In addition, structural failure may occur due to external applied loading. The combined action and further accumulation of both repeated mechanical loading and corrosion can aggravate the loss of functionality of the electrodes. In this study we investigate, using the design of experimental methods, the effects of corrosion, applied mechanical strain, film thickness, and number of bending cycles on the electrical and structural integrity of indium tin oxide (ITO) and carbon nanotube (CNT) films both coated on polyethylene terephthalate (PET) substrates. In situ electrical resistance measurements suggest that fatigue-corrosion is found to be the most critical failure mode for the ITO-based coatings. For example, the change in ITO electrical resistance increase under fatigue-corrosion (1% strain, 150,000 cycles) is 5.8 times higher than that of fatigue mode alone. On the other hand, a minimum change in electrical resistance of the CNT-based electrodes is found when applying the same conditions. - Highlights: • Combined mechano-chemical effects on electrode durability. • CNT-based electrodes outperform ITO counterparts. • Importance of combined fatigue and corrosion action on device reliability.

  7. Performance enhancement of III–V multi-junction solar cells using indium-tin-oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Yu-Cheng [Graduate Institute of Precision Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Ou, Sin-Liang [Department of Materials Science and Engineering, Da-Yeh University, Changhua 515, Taiwan (China); Wu, Fan-Lei [Graduate Institute of Precision Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Horng, Ray-Hua, E-mail: rhh@nctu.edu.tw [Graduate Institute of Precision Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Department of Electronics Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2016-08-01

    InGaP/GaAs dual-junction solar cells were prepared on p-type GaAs substrates by metalorganic chemical vapor deposition. Three types of front-side electrodes, which included AuGe/Au metal-finger, ITO-finger, and ITO-overcoated, were individually fabricated on the devices and denoted as samples A, B, and C, respectively. The thickness of ITO film is 200 nm, and its transmittance can reach 99% in the visible region. Based on the current density-voltage (J-V) measurement, the short-circuit current density (J{sub sc}) of samples A, B, and C are 8.13, 9.35, and 10.90 mA/cm{sup 2}, while the conversion efficiencies of these three samples are evaluated to be 15.45%, 18.14%, and 20.24%, respectively. This reveals that sample C possesses 31.0% enhancement in the conversion efficiency compared to that of sample A. Additionally, the series resistances (Rs) of samples A, B, and C are 21.43, 22.94, and 6.71 Ω-cm{sup 2}, respectively. The lowest Rs occurred in sample C can be attributed to the elimination of the lateral resistance between electrodes because this device was fabricated with the ITO-overcoated front-side electrode. In sample C, since the ITO front-side electrode can cover overall surface of the device, all regions on the sample surface can extract the electrons, leading to the highest J{sub sc}. - Highlights: • The InGaP/GaAs dual-junction solar cells were prepared on p-type GaAs substrates. • The device was prepared with an ITO-overcoat electrode directly on the n{sup +}-GaAs layer. • This cell has 31.0% enhancement in the η compared to that with an AuGe/Au electrode. • This device possesses the lowest R{sub s} of 6.71 Ω-cm{sup 2} owing to the elimination of R{sub L}. • ITO-overcoat electrode acts a dual role both as the TCL and an anti-reflection layer.

  8. Conducting polymers based counter electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Veerender, P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Saxena, Vibha, E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Gusain, Abhay, E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Jha, P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Koiry, S. P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Chauhan, A. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Aswal, D. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Gupta, S. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085 (India)

    2014-04-24

    Conducting polymer films were synthesized and employed as an alternative to expensive platinum counter electrodes for dye-sensitized solar cells. poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) thin films were spin-coated and polypyrrole films were electrochemically deposited via cyclic voltammetry method on ITO substrates. The morphology of the films were imaged by SEM and AFM. These films show good catalytic activity towards triiodide reduction as compared to Pt/FTO electrodes. Finally the photovoltaic performance of DSSC fabricated using N3 dye were compared with PT/FTO, PEDOT/ITO, and e-PPy counter electrodes.

  9. Light stability of ITO-free semi-transparent and opaque organic photovoltaic devices

    NARCIS (Netherlands)

    Voroshazi, E.; Yaala, M.B.; Uytterhoeven, G.; Tait, J.G.; Andriessen, R.H.A.J.M.; Galagan, Y.; Cheyns, D.

    2015-01-01

    Intrinsic light stability of transparent MoO3/Ag/TiO2 electrode is studied in four different polymer:fullerene solar cell configurations. We demonstrate that this stack can successfully replace ITO both in superstrate and substrate configurations required for non-transparent carriers. Although we

  10. Structural and optical properties of ITO and Cu doped ITO thin films

    Science.gov (United States)

    Chakraborty, Deepannita; Kaleemulla, S.; Rao, N. Madhusudhana; Subbaravamma, K.; Rao, G. Venugopal

    2018-04-01

    (In0.95Sn0.05)2O3 and (In0.90Cu0.05Sn0.05)2O3 thin films were coated onto glass substrate by electron beam evaporation technique. The structural and optical properties of ITO and Cu doped ITO thin films have been studied by X-ray diffractometer (XRD) and UV-Vis-NIR spectrophotometer. The crystallite size obtained for ITO and Cu doped ITO thin films was in the range of 24 nm to 22 nm. The optical band gap of 4 eV for ITO thin film sample has been observed. The optical band gap decreases to 3.85 eV by doping Cu in ITO.

  11. Transparent ITO/Ag-Pd-Cu/ITO multilayer cathode use in inverted organic solar cells

    International Nuclear Information System (INIS)

    Kim, Hyo-Joong; Kim, Han-Ki; Lee, Hyun Hwi; Kal, Jinha; Hahn, Jungseok

    2015-01-01

    The characteristics of transparent ITO/Ag-Pd-Cu (APC)/ITO multilayer cathodes were investigated for use in inverted organic solar cells (IOSCs). The insertion of an APC interlayer into the ITO film effectively led to crystallization of the top ITO layer, unlike that in the Ag interlayer, and resulted in a low sheet resistance of 6.55 Ohm/square and a high optical transmittance of 84.14% without post annealing. In addition, the alloying of the Pd and Cu elements into Ag prevented agglomeration and oxidization of the metal interlayer and led to more stable ITO/APC/ITO films under ambient conditions. The microstructure and interfacial structure of the transparent ITO/APC/ITO cathode in the IOSCs were examined in detail by synchrotron X-ray scattering and high resolution transmission electron microscopy. Furthermore, we suggested a possible mechanism to explain the lower PCE of the IOSCs with an ITO/APC/ITO cathode than that of a reference IOSC with a crystalline ITO cathode using the external quantum efficiency of the IOSCs

  12. Transparent ITO/Ag-Pd-Cu/ITO multilayer cathode use in inverted organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo-Joong; Kim, Han-Ki, E-mail: imdlhkkim@khu.ac.kr [Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, 1 Seocheon-dong, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Lee, Hyun Hwi [Pohang Accelerator Laboratory, POSTECH, Jigokro-127beon-gil, Nam-gu, Pohang 790-784 (Korea, Republic of); Kal, Jinha; Hahn, Jungseok [Future Technology Research Group, Kolon Central Research Park, 154 Mabukro, Giheung-ku, Yongin-si, Kyunggi-do, 16910 (Korea, Republic of)

    2015-10-15

    The characteristics of transparent ITO/Ag-Pd-Cu (APC)/ITO multilayer cathodes were investigated for use in inverted organic solar cells (IOSCs). The insertion of an APC interlayer into the ITO film effectively led to crystallization of the top ITO layer, unlike that in the Ag interlayer, and resulted in a low sheet resistance of 6.55 Ohm/square and a high optical transmittance of 84.14% without post annealing. In addition, the alloying of the Pd and Cu elements into Ag prevented agglomeration and oxidization of the metal interlayer and led to more stable ITO/APC/ITO films under ambient conditions. The microstructure and interfacial structure of the transparent ITO/APC/ITO cathode in the IOSCs were examined in detail by synchrotron X-ray scattering and high resolution transmission electron microscopy. Furthermore, we suggested a possible mechanism to explain the lower PCE of the IOSCs with an ITO/APC/ITO cathode than that of a reference IOSC with a crystalline ITO cathode using the external quantum efficiency of the IOSCs.

  13. Ag-Pd-Cu alloy inserted transparent indium tin oxide electrodes for organic solar cells

    International Nuclear Information System (INIS)

    Kim, Hyo-Joong; Seo, Ki-Won; Kim, Han-Ki; Noh, Yong-Jin; Na, Seok-In

    2014-01-01

    The authors report on the characteristics of Ag-Pd-Cu (APC) alloy-inserted indium tin oxide (ITO) films sputtered on a glass substrate at room temperature for application as transparent anodes in organic solar cells (OSCs). The effect of the APC interlayer thickness on the electrical, optical, structural, and morphological properties of the ITO/APC/ITO multilayer were investigated and compared to those of ITO/Ag/ITO multilayer electrodes. At the optimized APC thickness of 8 nm, the ITO/APC/ITO multilayer exhibited a resistivity of 8.55 × 10 −5 Ω cm, an optical transmittance of 82.63%, and a figure-of-merit value of 13.54 × 10 −3 Ω −1 , comparable to those of the ITO/Ag/ITO multilayer. Unlike the ITO/Ag/ITO multilayer, agglomeration of the metal interlayer was effectively relieved with APC interlayer due to existence of Pd and Cu elements in the thin region of the APC interlayer. The OSCs fabricated on the ITO/APC/ITO multilayer showed higher power conversion efficiency than that of OSCs prepared on the ITO/Ag/ITO multilayer below 10 nm due to the flatness of the APC layer. The improved performance of the OSCs with ITO/APC/ITO multilayer electrodes indicates that the APC alloy interlayer prevents the agglomeration of the Ag-based metal interlayer and can decrease the thickness of the metal interlayer in the oxide-metal-oxide multilayer of high-performance OSCs

  14. Effect of gate dielectrics on the performance of p-type Cu2O TFTs processed at room temperature

    KAUST Repository

    Al-Jawhari, Hala A.

    2013-12-01

    Single-phase Cu2O films with p-type semiconducting properties were successfully deposited by reactive DC magnetron sputtering at room temperature followed by post annealing process at 200°C. Subsequently, such films were used to fabricate bottom gate p-channel Cu2O thin film transistors (TFTs). The effect of using high-κ SrTiO3 (STO) as a gate dielectric on the Cu2O TFT performance was investigated. The results were then compared to our baseline process which uses a 220 nm aluminum titanium oxide (ATO) dielectric deposited on a glass substrate coated with a 200 nm indium tin oxide (ITO) gate electrode. We found that with a 150 nm thick STO, the Cu2O TFTs exhibited a p-type behavior with a field-effect mobility of 0.54 cm2.V-1.s-1, an on/off ratio of around 44, threshold voltage equaling -0.62 V and a sub threshold swing of 1.64 V/dec. These values were obtained at a low operating voltage of -2V. The advantages of using STO as a gate dielectric relative to ATO are discussed. © (2014) Trans Tech Publications, Switzerland.

  15. Efficient electrochemical regeneration of nicotinamide cofactors using a cyclopentadienyl-rhodium complex on functionalized indium tin oxide electrodes

    International Nuclear Information System (INIS)

    Kim, Soojin; Lee, Ga Ye; Lee, Jungha; Rajkumar, Eswaran; Baeg, Jin-Ook; Kim, Jinheung

    2013-01-01

    Functionalized ITO electrodes are used to regenerate NADH using [Cp*Rh(bpy)(H 2 O)] 2+ (Cp* = pentamethylcyclopentadienyl, bpy = 2,2′-bipyridine) electrochemically in a buffer solution. Amino- and mercapto-functionalized electrodes featured higher activity and stability for electrocatalytic generation of NADH than a bare ITO electrode. Effect of metal nanoparticles was also studied on modified ITO electrodes and the addition of platinum nanoparticles even resulted in improved activity. The electrochemical regeneration was somewhat affected in the presence of dioxygen, but not significantly. In addition, a conversion of carbon dioxide was carried out utilizing the electrochemically generated NADH and formate dehydrogenase to produce formic acid

  16. A electrochemiluminescence aptasensor for detection of thrombin incorporating the capture aptamer labeled with gold nanoparticles immobilized onto the thio-silanized ITO electrode

    International Nuclear Information System (INIS)

    Fang Lanyun; Lue Zhaozi; Wei Hui; Wang Erkang

    2008-01-01

    A novel electrochemiluminescence (ECL) aptasensor was proposed for sensitive and cost-effective detection of the target thrombin adopted an aptamer-based sandwich format. To detect thrombin, capture aptamers labeled with gold nanoparticles (AuNPs) were first immobilized onto the thio-silanized ITO electrode surface through strong Au-S bonds. After catching the target thrombin, signal aptamers tagged with ECL labels were attached to the assembled electrode surface. As a result, an AuNPs-capture-aptamer/thrombin/ECL-tagged-signal-aptamer sandwich type was formed. Treating the resulting electrode surface with tri-n-propylamine (TPA) and applying a swept potential to the electrode, ECL response was generated which realized the detection of target protein. Spectroscopy and electrochemical impedance techniques were used to characterize and confirm the fabrication of the ECL aptasensor. AuNPs amplification and smart sensor fabrication art were implemented for the sensitive and cost-effective detection purpose. Signal-to-dose curve excellently followed a sandwich format equation and could be used to quantify the protein, and the detection limit was estimated to be 10 nM. Other forms of thrombin such as β- and γ-thrombins had negligible response, which indicated a high specificity of α-thrombin detection. The aptasensor opened up new fields of aptamer applications in ECL domain, a highly sensitive technique, and had a promising perspective to be applied in microarray analysis

  17. Investigation on surface, electrical and optical properties of ITO-Ag-ITO coated glass

    International Nuclear Information System (INIS)

    Aslan Necdet; Sen, Tuba; Coruhlu Turgay; Senturk Kenan; Keskin Sinan; Seker Sedat; Dobrovolskiy Andrey

    2015-01-01

    The aim of this work was to study the optical and electrical properties of thick ITO-Ag-ITO multilayer coating onto glass. ITO-Ag-ITO coatings with thickness of ITO layers 110 nm, 185 nm and intermediate Ag layer thickness 40 nm were prepared by magnetron sputtering. The optical, electrical and atomic properties of the coating were examined by scanning electron microscope, atomic force microscope, X-ray diffraction analysis and ultraviolet-visible spectroscopy

  18. Multi-gated field emitters for a micro-column

    International Nuclear Information System (INIS)

    Mimura, Hidenori; Kioke, Akifumi; Aoki, Toru; Neo, Yoichiro; Yoshida, Tomoya; Nagao, Masayoshi

    2011-01-01

    We have developed a multi-gated field emitter (FE) such as a quadruple-gated FE with a three-stacked electrode lens and a quintuple-gated FE with a four-stacked electrode lens. Both the FEs can focus the electron beam. However, the quintuple-gated FE has a stronger electron convergence than the quadruple-gated FE, and a beam crossover is clearly observed for the quintuple-gated FE.

  19. Enhancing light out-coupling of organic light-emitting devices using indium tin oxide-free low-index transparent electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yi-Hsiang; Lu, Chun-Yang; Tsai, Shang-Ta; Tsai, Yu-Tang; Chen, Chien-Yu; Tsai, Wei-Lung; Lin, Chun-Yu; Chang, Hong-Wei; Lee, Wei-Kai; Jiao, Min; Wu, Chung-Chih, E-mail: wucc@ntu.edu.tw [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, Graduate Institute of Electronics Engineering, and Innovative Photonics Advanced Research Center (i-PARC), National Taiwan University, Taipei 10617, Taiwan (China)

    2014-05-05

    With its increasing and sufficient conductivity, the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been capable of replacing the widely used but less cost-effective indium tin oxides (ITOs) as alternative transparent electrodes for organic light-emitting devices (OLEDs). Intriguingly, PEDOT:PSS also possesses an optical refractive index significantly lower than those of ITO and typical organic layers in OLEDs and well matching those of typical OLED substrates. Optical simulation reveals that by replacing ITO with such a low-index transparent electrode, the guided modes trapped within the organic/ITO layers in conventional OLEDs can be substantially suppressed, leading to more light coupled into the substrate than the conventional ITO device. By applying light out-coupling structures onto outer surfaces of substrates to effectively extract radiation into substrates, OLEDs using such low-index transparent electrodes achieve enhanced optical out-coupling and external quantum efficiencies in comparison with conventional OLEDs using ITO.

  20. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes

    KAUST Repository

    Hu, Liangbing

    2010-05-25

    We report a comprehensive study of transparent and conductive silver nanowire (Ag NW) electrodes, including a scalable fabrication process, morphologies, and optical, mechanical adhesion, and flexibility properties, and various routes to improve the performance. We utilized a synthesis specifically designed for long and thin wires for improved performance in terms of sheet resistance and optical transmittance. Twenty Ω/sq and ∼ 80% specular transmittance, and 8 ohms/sq and 80% diffusive transmittance in the visible range are achieved, which fall in the same range as the best indium tin oxide (ITO) samples on plastic substrates for flexible electronics and solar cells. The Ag NW electrodes show optical transparencies superior to ITO for near-infrared wavelengths (2-fold higher transmission). Owing to light scattering effects, the Ag NW network has the largest difference between diffusive transmittance and specular transmittance when compared with ITO and carbon nanotube electrodes, a property which could greatly enhance solar cell performance. A mechanical study shows that Ag NW electrodes on flexible substrates show excellent robustness when subjected to bending. We also study the electrical conductance of Ag nanowires and their junctions and report a facile electrochemical method for a Au coating to reduce the wire-to-wire junction resistance for better overall film conductance. Simple mechanical pressing was also found to increase the NW film conductance due to the reduction of junction resistance. The overall properties of transparent Ag NW electrodes meet the requirements of transparent electrodes for many applications and could be an immediate ITO replacement for flexible electronics and solar cells. © 2010 American Chemical Society.

  1. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes

    KAUST Repository

    Hu, Liangbing; Kim, Han Sun; Lee, Jung-Yong; Peumans, Peter; Cui, Yi

    2010-01-01

    We report a comprehensive study of transparent and conductive silver nanowire (Ag NW) electrodes, including a scalable fabrication process, morphologies, and optical, mechanical adhesion, and flexibility properties, and various routes to improve the performance. We utilized a synthesis specifically designed for long and thin wires for improved performance in terms of sheet resistance and optical transmittance. Twenty Ω/sq and ∼ 80% specular transmittance, and 8 ohms/sq and 80% diffusive transmittance in the visible range are achieved, which fall in the same range as the best indium tin oxide (ITO) samples on plastic substrates for flexible electronics and solar cells. The Ag NW electrodes show optical transparencies superior to ITO for near-infrared wavelengths (2-fold higher transmission). Owing to light scattering effects, the Ag NW network has the largest difference between diffusive transmittance and specular transmittance when compared with ITO and carbon nanotube electrodes, a property which could greatly enhance solar cell performance. A mechanical study shows that Ag NW electrodes on flexible substrates show excellent robustness when subjected to bending. We also study the electrical conductance of Ag nanowires and their junctions and report a facile electrochemical method for a Au coating to reduce the wire-to-wire junction resistance for better overall film conductance. Simple mechanical pressing was also found to increase the NW film conductance due to the reduction of junction resistance. The overall properties of transparent Ag NW electrodes meet the requirements of transparent electrodes for many applications and could be an immediate ITO replacement for flexible electronics and solar cells. © 2010 American Chemical Society.

  2. High stability and high activity Pd/ITO-CNTs electrocatalyst for direct formic acid fuel cell

    International Nuclear Information System (INIS)

    Qu, Wei-Li; Gu, Da-Ming; Wang, Zhen-Bo; Zhang, Jing-Jia

    2014-01-01

    Graphical abstract: The addition of ITO in Pd/CNTs catalyst significantly improves the activity and stability of catalyst for formic acid electrooxidation due to excellent stability and high electrical conductivity of ITO, and metal-support interaction between Pd nanoparticles and ITO. - Highlights: • Pd catalyst with ITO and CNTs as a mixture support for DFAFC was first prepared by microwave-assisted polyol process. • The activity and stability of Pd/ITO-CNTs catalyst is significantly higher than those of Pd/CNTs. • When ITO content is 50% of ITO/CNTs support mass, Pd/ITO-CNTs exhibits the best performance. - Abstract: Indium tin oxide (ITO) and carbon nanotube hybrid has been explored as a support for Pd catalyst. Pd/ITO-CNTs catalysts with different ITO contents were prepared by the microwave-assisted polyol process. The as-prepared Pd/ITO-CNTs catalysts were characterized by X-ray diffraction (XRD), energy dispersive analysis of X-ray (EDAX), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), and electrochemical measurements in this work. The TEM results show that Pd particle size distribution in the Pd/ITO-CNTs catalyst is more uniform than that in Pd/CNTs, indicating that the ITO can promote the dispersion of Pd nanoparticles. It is found that there is metal-support interaction between Pd nanoparticles and ITO in the Pd/ITO-CNTs catalyst through XPS test. The results of electrochemical tests prove that the Pd/ITO-CNTs catalysts exhibit higher electro-catalytic activity and stability than Pd/CNTs toward formic acid electrooxidation. When the ITO content is 50% of ITO-CNTs support mass, the Pd/ITO-CNTs catalyst has the best catalytic performance for formic acid electrooxidation. The peak current density of formic acid electrooxidation on the Pd/ITO-CNTs50% electrode is 1.53 times as high as that on Pd/CNTs, 2.31 times higher than that on Pd/ITO. The results of aging

  3. Optimization of ITO layers for applications in a-Si/c-Si heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Pla, J.; Tamasi, M.; Rizzoli, R.; Losurdo, M.; Centurioni, E.; Summonte, C.; Rubinelli, F

    2003-02-03

    A detailed study of the properties of indium tin oxide (ITO) thin films used as antireflecting front electrodes in a-Si/c-Si heterojunction solar cells is presented. The deposition conditions of ITO layers by radiofrequency magnetron sputtering were optimized for heterojunction solar cells applications. The X-ray photoelectron spectroscopy analysis of the deposited films allowed for a correlation between the film composition and the experimental parameters used in the sputtering process. The ITO thickness was optimized considering the thickness of the a-Si emitter layer, its optical characteristics and the heterojunction solar cell spectral response. In our devices, the optimal thickness calculated for the ITO film was in the range 80-95 nm, depending on the solar cell spectral response, and a thickness tolerance of {+-}10 nm was found to be suitable to limit the degradation of the device performance. Finally, device simulation results obtained by the 'Analysis of Microelectronic and Photonic Structures' code are reported.

  4. Study of narrow and intense UV electroluminescence from ITO/SRO/Si-p and ITO/SRN/SRO/Si-p based light emitting capacitors

    International Nuclear Information System (INIS)

    Cabañas-Tay, S.A.; Palacios-Huerta, L.; Aceves-Mijares, M.; Coyopol, A.; Morales-Morales, F.; Pérez-García, S.A.; Licea-Jiménez, L.; Domínguez-Horna, C.; Monfil-Leyva, K.; Morales-Sánchez, A.

    2017-01-01

    In this work, multiple narrow and highly intense ultraviolet (UV) electroluminescent (EL) bands were observed in light emitting capacitors (LECs) using silicon rich oxide (SRO) films as active layer. Besides, the effect of a thin silicon rich nitride (SRN) film on top of the SRO (as SRN/SRO bilayer) layer was also studied. LECs were fabricated using simple metal–insulator–semiconductor (MIS) structures with indium tin oxide (ITO) and aluminum as gate and substrate electrodes, respectively. SRO and SRN films contain 41.85±1.1 and 46.96±1.1 at% of silicon, respectively. Both structures exhibited a resistance switching (RS) behavior from a high conduction state (HCS) to a low conduction state (LCS), enhancing an intense UV EL. This RS behavior produces structural changes in the active layer and probably in the ITO contact. Seven narrow bands with half-peak width of 7±0.6 nm at ~250, 270, 285, 305, 325, 415 and 450 nm were clearly observed once the LCS was reached. These bands could be related to a combination of emissions through defects inside SRO (252, 288.2 and 415 nm), and characteristic radiation of neutral tin (252.39 and 286.33 nm), neutral indium (271.02, 303.93 and 325.85 nm), single (444.82 nm) and doubly ionized indium (403.07 nm). Furthermore, red EL was observed at the HCS and it was similar to the PL spectra indicating the same radiative process involved. The charge transport is improved when the SRN/SRO bilayer is used as active layer in the LEC. An EL band at ~590 nm is observed when the SRN/SRO bilayer is formed at both conduction states. This band has been observed before and attributed to transitions from the minimum conduction band to K° centers in SRN films. The conduction mechanism responsible of the EL at both conduction states was also studied.

  5. Study of narrow and intense UV electroluminescence from ITO/SRO/Si-p and ITO/SRN/SRO/Si-p based light emitting capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Cabañas-Tay, S.A., E-mail: scabanastay@hotmail.com [Centro de Investigación en Materiales Avanzados S.C., Unidad Monterrey-PIIT, 66600, Apodaca, Nuevo León (Mexico); Palacios-Huerta, L.; Aceves-Mijares, M. [INAOE, Electronics Department, Apartado 51, Puebla 72000 (Mexico); Coyopol, A. [CIDS-BUAP, Apdo. 1651, Puebla Pue 72000 (Mexico); Morales-Morales, F.; Pérez-García, S.A.; Licea-Jiménez, L. [Centro de Investigación en Materiales Avanzados S.C., Unidad Monterrey-PIIT, 66600, Apodaca, Nuevo León (Mexico); Domínguez-Horna, C. [Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Bellaterra, 08103, Barcelona (Spain); Monfil-Leyva, K. [CIDS-BUAP, Apdo. 1651, Puebla Pue 72000 (Mexico); Morales-Sánchez, A., E-mail: alfredo.morales@cimav.edu.mx [Centro de Investigación en Materiales Avanzados S.C., Unidad Monterrey-PIIT, 66600, Apodaca, Nuevo León (Mexico)

    2017-03-15

    In this work, multiple narrow and highly intense ultraviolet (UV) electroluminescent (EL) bands were observed in light emitting capacitors (LECs) using silicon rich oxide (SRO) films as active layer. Besides, the effect of a thin silicon rich nitride (SRN) film on top of the SRO (as SRN/SRO bilayer) layer was also studied. LECs were fabricated using simple metal–insulator–semiconductor (MIS) structures with indium tin oxide (ITO) and aluminum as gate and substrate electrodes, respectively. SRO and SRN films contain 41.85±1.1 and 46.96±1.1 at% of silicon, respectively. Both structures exhibited a resistance switching (RS) behavior from a high conduction state (HCS) to a low conduction state (LCS), enhancing an intense UV EL. This RS behavior produces structural changes in the active layer and probably in the ITO contact. Seven narrow bands with half-peak width of 7±0.6 nm at ~250, 270, 285, 305, 325, 415 and 450 nm were clearly observed once the LCS was reached. These bands could be related to a combination of emissions through defects inside SRO (252, 288.2 and 415 nm), and characteristic radiation of neutral tin (252.39 and 286.33 nm), neutral indium (271.02, 303.93 and 325.85 nm), single (444.82 nm) and doubly ionized indium (403.07 nm). Furthermore, red EL was observed at the HCS and it was similar to the PL spectra indicating the same radiative process involved. The charge transport is improved when the SRN/SRO bilayer is used as active layer in the LEC. An EL band at ~590 nm is observed when the SRN/SRO bilayer is formed at both conduction states. This band has been observed before and attributed to transitions from the minimum conduction band to K° centers in SRN films. The conduction mechanism responsible of the EL at both conduction states was also studied.

  6. The effect of the gate electrode on the C-V- characteristics of the structure M-TmF3-SiO2-Si

    International Nuclear Information System (INIS)

    Basily, R.R.

    1979-09-01

    The C-V characteristics of the structure M-TmF 3 -SiO 2 -Si, thermally treated at a temperature of 300 0 C for 15 minutes, were investigated. At higher temperatures to about 150 0 C, the hysteresis of the C-V characteristics is completely absent, whereas at room temperature hysteresis depends on the applied voltage and on the material of the gate electrode. The dependence of the flat band voltage shift on the applied voltage, the thickness of SiO 2 layer and the material of the gate electrode were measured. (author)

  7. Polymer Photovoltaic Cell Using TiO2/G-PEDOT Nanocomplex Film as Electrode

    Directory of Open Access Journals (Sweden)

    F. X. Xie

    2008-01-01

    Full Text Available Using TiO2/G-PEDOT (PEDOT/PSS doped with glycerol nanocomplex film as a substitute for metal electrode in organic photovoltaic cell is described. Indium tin oxide (ITO worked as cathode and TiO2/G-PEDOT nanocomplex works as anode. The thickness of TiO2 layer in nanocomplex greatly affects the act of this nonmetallic electrode of the device. To enhance its performance, this inverted organic photovoltaic cell uses another TiO2 layer as electron selective layer contacted to ITO coated glass substrates. All films made by solution processing techniques are coated on the transparent substrate (glass with a conducting film ITO. The efficiency of this solar cell is compared with the conventional device using Al as electrode.

  8. Patterning of nanoparticulate transparent conductive ITO films using UV light irradiation and UV laser beam writing

    International Nuclear Information System (INIS)

    Solieman, A.; Moharram, A.H.; Aegerter, M.A.

    2010-01-01

    Indium tin oxide (ITO) thin film is one of the most widely used as transparent conductive electrodes in all forms of flat panel display (FPD) and microelectronic devices. Suspension of already crystalline conductive ITO nanoparticles fully dispersed in alcohol was spun, after modifying with coupling agent, on glass substrates. The low cost, simple and versatile traditional photolithography process without complication of the photoresist layer was used for patterning ITO films. Using of UV light irradiation through mask and direct UV laser beam writing resulted in an accurate linear, sharp edge and very smooth patterns. Irradiated ITO film showed a high transparency (∼85%) in the visible region. The electrical sheet resistance decrease with increasing time of exposure to UV light and UV laser. Only 5 min UV light irradiation is enough to decrease the electrical sheet resistance down to 5 kΩ□.

  9. Modulating indium doped tin oxide electrode properties for laccase electron transfer enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Diaconu, Mirela [National Institute for Biological Sciences, Centre of Bioanalysis, 296 Spl. Independentei, Bucharest 060031 (Romania); Chira, Ana [National Institute for Biological Sciences, Centre of Bioanalysis, 296 Spl. Independentei, Bucharest 060031 (Romania); Politehnica University of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu Str., 011061 (Romania); Radu, Lucian, E-mail: gl_radu@chim.upb.ro [Politehnica University of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu Str., 011061 (Romania)

    2014-08-28

    Indium doped tin oxide (ITO) electrodes were functionalized with gold nanoparticles (GNPs) and cysteamine monolayer to enhance the heterogeneous electron transfer process of laccase from Trametes versicolor. The assembly of GNP on ITO support was performed through generation of H{sup +} species at the electrode surface by hydroquinone electrooxidation at 0.9 V vs Ag/AgCl. Uniform distribution of gold nanoparticle aggregates on electrode surfaces was confirmed by atomic force microscopy. The size of GNP aggregates was in the range of 200–500 nm. The enhanced charge transfer at the GNP functionalized ITO electrodes was observed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy. Electrocatalytic behavior of laccase immobilized on ITO modified electrode toward oxygen reduction reaction was evaluated using CV in the presence of 2,2′-azino-bis 3-ethylbenzothiazoline-6-sulfuric acid (ABTS). The obtained sigmoidal-shaped voltammograms for ABTS reduction in oxygen saturated buffer solution are characteristic for a catalytic process. The intensity of catalytic current increased linearly with mediator concentration up to 6.2 × 10{sup −4} M. The registered voltammogram in the absence of ABTS mediator clearly showed a significant faradaic current which is the evidence of the interfacial oxygen reduction. - Highlights: • Assembly of gold nanoparticles on indium tin oxide support at positive potentials • Electrochemical and morphological evaluation of the gold nanoparticle layer assembly • Bioelectrocatalytic oxygen reduction on laccase modified electrode.

  10. Design and characterization of Ga-doped indium tin oxide films for pixel electrode in liquid crystal display

    International Nuclear Information System (INIS)

    Choi, J.H.; Kang, S.H.; Oh, H.S.; Yu, T.H.; Sohn, I.S.

    2013-01-01

    Indium tin oxide (ITO) thin films doped with various metal atoms were investigated in terms of phase transition behavior and electro-optical properties for the purpose of upgrading ITO and indium zinc oxide (IZO) films, commonly used for pixel electrodes in flat panel displays. We explored Ce, Mg, Zn, and Ga atoms as dopants to ITO by the co-sputtering technique, and Ga-doped ITO films (In:Sn:Ga = 87.4:6.7:5.9 at.%) showed the phase transition behavior at 210 °C within 20 min with high visible transmittance of 91% and low resistivity of 0.22 mΩ cm. The film also showed etching rate similar to amorphous ITO, and no etching residue on glass surfaces. These results were confirmed with the film formed from a single Ga-doped ITO target with slightly different compositions (In:Sn:Ga = 87:9:4 at.%). Compared to the ITO target, Ga-doped ITO target left 1/4 less nodules on the target surface after sputtering. These results suggest that Ga-doped ITO films could be an excellent alternative to ITO and IZO for pixel electrodes in thin film transistor liquid crystal display (TFT-LCD). - Highlights: ► We report Ga-doped In–Sn–O films for a pixel electrode in liquid crystal display. ► Ga-doped In–Sn–O films show phase transition behavior at 210 °C. ► Ga-doped In–Sn–O films show high wet etchability and low resistivity

  11. Fabricating ZnO single microwire light-emitting diode with transparent conductive ITO film

    International Nuclear Information System (INIS)

    Xu, Yingtian; Dai, Jun; Shi, Zhifeng; Long, Beihong; Wu, Bin; Cai, Xupu; Chu, Xianwei; Du, Guotong; Zhang, Baolin; Yin, Jingzhi

    2014-01-01

    In this paper, n-ZnO single microwire/p + -Si heterojunction LEDs are fabricated using the transparent conductive ITO film as an electrode. A distinct UV emission resulting from free exciton recombination in a ZnO single microwire is observed in the electroluminescence. Size difference of ZnO single microwire shows significant influence on emission efficiency. The EL spectra of n-ZnO single microwire/p-Si heterostructure exhibited relatively stronger UV emission which was compared with the EL spectra of n-ZnO single nanowire/p-Si heterostructure and n-ZnO film/p-Si heterostructure, respectively. - Highlights: • The ZnO microwires were synthesized with a vapor phase transport method. • ZnO single microwire/Si LEDs were fabricated using the ITO film as an electrode. • The EL spectra had been compared with n-ZnO film/p-Si heterostructure. • The EL spectra had been compared with n-ZnO single nanowire/p-Si heterostructure

  12. Transparent conductive electrodes of mixed TiO2−x–indium tin oxide for organic photovoltaics

    KAUST Repository

    Lee, Kyu-Sung

    2012-05-22

    A transparent conductive electrode of mixed titanium dioxide (TiO2−x)–indium tin oxide (ITO) with an overall reduction in the use of indium metal is demonstrated. When used in organic photovoltaicdevices based on bulk heterojunction photoactive layer of poly (3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester, a power conversion efficiency of 3.67% was obtained, a value comparable to devices having sputtered ITO electrode. Surface roughness and optical efficiency are improved when using the mixed TiO2−x–ITO electrode. The consumption of less indium allows for lower fabrication cost of such mixed thin filmelectrode.

  13. Temperature dependence of the work function of ruthenium-based gate electrodes

    International Nuclear Information System (INIS)

    Alshareef, H.N.; Wen, H.C.; Luan, H.F.; Choi, K.; Harris, H.R.; Senzaki, Y.; Majhi, P.; Lee, B.H.; Foran, B.; Lian, G.

    2006-01-01

    The effect of device fabrication temperature on the work function of ruthenium (Ru) metal gate and its bilayers was investigated. The work function shows strong temperature dependence when Ru electrodes are deposited on silicon oxide, SiO 2 , but not on hafnium silicates (HfSiO x ). Specifically, the work function of Ru on SiO 2 increased from 4.5 eV at 500 deg. C to 5.0 eV at 700 deg. C. On further annealing to 900 deg. C or higher, the work function dropped to about 4.4 eV. In the case of HfSiO x , the work function of Ru changed by less than 100 mV over the same temperature range. Identical temperature dependence was observed using hafnium (Hf)/Ru and tantalum (Ta)/Ru bilayers. However, the peak values of the work function decreased with increasing Hf/Ru and Ta/Ru thickness ratios. Materials analysis suggests that these trends are driven by interactions at the Ru metal gate-dielectric interface

  14. Poly(aniline) nanowires in sol-gel coated ITO: A pH-responsive substrate for planar supported lipid bilayers

    Science.gov (United States)

    Ge, Chenhao; Orosz, Kristina S.; Armstrong, Neal R.; Saavedra, S. Scott

    2011-01-01

    Facilitated ion transport across an artificial lipid bilayer coupled to a solid substrate is a function common to several types of bioelectronic devices based on supported membranes, including biomimetic fuel cells and ion channel biosensors. Described here is fabrication of a pH-sensitive transducer composed of a porous sol-gel layer derivatized with poly(aniline) (PANI) nanowires grown from an underlying planar indium-tin oxide (ITO) electrode. The upper sol-gel surface is hydrophilic, smooth, and compatible with deposition of a planar supported lipid bilayer (PSLB) formed via vesicle fusion. Conducting tip AFM was used to show that the PANI wires are connected to the ITO, which convert this electrode into a potentiometric pH sensor. The response to changes in the pH of the buffer contacting the PANI nanowire/sol-gel/ITO electrode is blocked by the very low ion permeability of the overlying, fluid PSLB. The feasibility of using this assembly to monitor facilitated proton transport across the PSLB was demonstrated by doping the membrane with lipophilic ionophores that respond to a transmembrane pH gradient, which produced an apparent proton permeability several orders of magnitude greater than values measured for undoped lipid bilayers. PMID:21707069

  15. The effects of film thickness on the electrical, optical, and structural properties of cylindrical, rotating, magnetron-sputtered ITO films

    Science.gov (United States)

    Kim, Jae-Ho; Seong, Tae-Yeon; Ahn, Kyung-Jun; Chung, Kwun-Bum; Seok, Hae-Jun; Seo, Hyeong-Jin; Kim, Han-Ki

    2018-05-01

    We report the characteristics of Sn-doped In2O3 (ITO) films intended for use as transparent conducting electrodes; the films were prepared via a five-generation, in-line type, cylindrical, rotating magnetron sputtering (CRMS) system as a function of film thickness. By using a rotating cylindrical ITO target with high usage (∼80%), we prepared high conductivity, transparent ITO films on five-generation size glass. The effects of film thickness on the electrical, optical, morphological, and structural properties of CRMS-grown ITO films are investigated in detail to correlate the thickness and performance of ITO films. The preferred orientation changed from the (2 2 2) to the (4 0 0) plane with increasing thickness of ITO is attributed to the stability of the (4 0 0) plane against resputtering during the CRMS process. Based on X-ray diffraction, surface field emission scanning electron microscopy, and cross-sectional transmission electron microscopy, we suggest a possible mechanism to explain the preferred orientation and effects of film thickness on the performance of CRMS-grown ITO films.

  16. Transparent Electrodes with Nanotubes and Graphene for Printed Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Marcin Słoma

    2014-01-01

    Full Text Available We report here on printed electroluminescent structures containing transparent electrodes made of carbon nanotubes and graphene nanoplatelets. Screen-printing and spray-coating techniques were employed. Electrodes and structures were examined towards optical parameters using spectrophotometer and irradiation meter. Electromechanical properties of transparent electrodes are exterminated with cyclical bending test. Accelerated aging process was conducted according to EN 62137 standard for reliability tests of electronics. We observed significant negative influence of mechanical bending on sheet resistivity of ITO, while resistivity of nanotube and graphene based electrodes remained stable. Aging process has also negative influence on ITO based structures resulting in delamination of printed layers, while those based on carbon nanomaterials remained intact. We observe negligible changes in irradiation for structures with carbon nanotube electrodes after accelerated aging process. Such materials demonstrate a high application potential in general purpose electroluminescent devices.

  17. Dependence of plasma treatment of ITO electrode films on electrical and optical properties of polymer light-emitting diodes

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Baek, Seung Jun; Chang, Ho Jung; Chang, Young Chul

    2012-01-01

    Polymer light-emitting diodes (PLEDs) having indium tin oxide (ITO)/PEDOT:PSS [poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate]/PVK [poly-vinylcarbazole]:PFO-poss [poly(9,9-dioctylfluorene) end capped by polyhedral oligomeric silsesquioxane]/TPBI [2,2',2''-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)]/LiF/Al structures were prepared on plasma-treated ITO/glass substrates using spin-coating and thermal evaporation methods. The effects of the plasma treatment on the ITO films to the optical and electrical properties of the PLEDs were examined. The sheet resistance of the ITO films decreased with an increasing radio frequency (RF) plasma intensity from 20 to 200 W under a 20 mTorr Ar + O 2 gas (50:50 vol.%) pressure. The work function of the ITO films without plasma treatment was 4.97 eV, and increased to about 5.16-5.23 eV after the plasma treatment of the films. The surface roughness improved with increasing plasma intensities. The luminance and current efficiency of the PLEDs were improved when the devices were prepared on the plasma-treated ITO/glass substrates. The maximum current density and luminance for the PLEDs was obtained at a 150-W RF plasma intensity; they were 310 mA cm -2 and 2535 cd m -2 at 9 V, respectively. The Commission Internationale d'Eclairage (CIE) color coordinates were found to be x, y = 0.17, 0.06-0.07, showing a good blue color. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Characterization of lead zirconate titanate (PZT)--indium tin oxide (ITO) thin film interface

    International Nuclear Information System (INIS)

    Sreenivas, K.; Sayer, M.; Laursen, T.; Whitton, J.L.; Pascual, R.; Johnson, D.J.; Amm, D.T.

    1990-01-01

    In this paper the interface between ultrathin sputtered lead zirconate titanate (PZT) films and a conductive electrode (indium tin oxide-ITO) is investigated. Structural and compositional changes at the PZT-ITO interface have been examined by surface analysis and depth profiling techniques of glancing angle x-ray diffraction, Rutherford backscattering (RBS), SIMS, Auger electron spectroscopy (AES), and elastic recoil detection analysis (ERDA). Studies indicate significant interdiffusion of lead into the underlying ITP layer and glass substrate with a large amount of residual stress at the interface. Influence of such compositional deviations at the interface is correlated to an observed thickness dependence in the dielectric properties of PZT films

  19. Thickness-dependent surface plasmon resonance of ITO nanoparticles for ITO/In-Sn bilayer structure.

    Science.gov (United States)

    Wei, Wenzuo; Hong, Ruijin; Jing, Ming; Shao, Wen; Tao, Chunxian; Zhang, Dawei

    2018-01-05

    Tuning the localized surface plasmon resonance (LSPR) in doped semiconductor nanoparticles (NPs), which represents an important characteristic in LSPR sensor applications, still remains a challenge. Here, indium tin oxide/indium tin alloy (ITO/In-Sn) bilayer films were deposited by electron beam evaporation and the properties, such as the LSPR and surface morphology, were investigated by UV-VIS-NIR double beam spectrophotometer and atomic force microscopy (AFM), respectively. By simply engineering the thickness of ITO/In-Sn NPs without any microstructure fabrications, the LSPR wavelength of ITO NPs can be tuned by a large amount from 858 to 1758 nm. AFM images show that the strong LSPR of ITO NPs is closely related to the enhanced coupling between ITO and In-Sn NPs. Blue shifts of ITO LSPR from 1256 to 1104 nm are also observed in the as-annealed samples due to the higher free carrier concentration. Meanwhile, we also demonstrated that the ITO LSPR in ITO/In-Sn NPs structures has good sensitivity to the surrounding media and stability after 30 d exposure in air, enabling its application prospects in many biosensing devices.

  20. Detection of nicotine based on molecularly imprinted TiO{sub 2}-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.-T.; Chen, P.-Y.; Chen, J.-G.; Suryanarayanan, Vembu [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Ho, K.-C. [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)], E-mail: kcho@ntu.edu.tw

    2009-02-02

    Amperometric detection of nicotine (NIC) was carried out on a titanium dioxide (TiO{sub 2})/poly(3,4-ethylenedioxythiophene) (PEDOT)-modified electrode by a molecular imprinting technique. In order to improve the conductivity of the substrate, PEDOT was coated onto the sintered electrode by in situ electrochemical polymerization of the monomer. The sensing potential of the NIC-imprinted TiO{sub 2} electrode (ITO/TiO{sub 2}[NIC]/PEDOT) in a phosphate-buffered saline (PBS) solution (pH 7.4) containing 0.1 M KCl was determined to be 0.88 V (vs. Ag/AgCl/saturated KCl). The linear detection range for NIC oxidation on the so-called ITO/TiO{sub 2}[NIC]/PEDOT electrode was 0-5 mM, with a sensitivity and limit of detection of 31.35 {mu}A mM{sup -1} cm{sup -2} and 4.9 {mu}M, respectively. When comparing with the performance of the non-imprinted one, the sensitivity ratio was about 1.24. The sensitivity enhancement was attributed to the increase in the electroactive area of the imprinted electrode. The at-rest stability of the ITO/TiO{sub 2}[NIC]/PEDOT electrode was tested over a period of 3 days. The current response remained about 85% of its initial value at the end of 2 days. The ITO/TiO{sub 2}[NIC]/PEDOT electrode showed reasonably good selectivity in distinguishing NIC from its major interferent, (-)-cotinine (COT). Moreover, scanning electrochemical microscopy (SECM) was employed to elucidate the surface morphology of the imprinted and non-imprinted electrodes using Fe(CN){sub 6}{sup 3-}/Fe(CN){sub 6}{sup 4-} as a redox probe on a platinum tip. The imprinted electrode was further characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR)

  1. Embedding of inkjet-printed Ag-grid/ITO hybrid transparent electrode ...

    Indian Academy of Sciences (India)

    2018-02-02

    Feb 2, 2018 ... Keywords. Solution process; inkjet; electrohydrodynamic printing; transparent electrode; flexible electrode. 1. Introduction. Transparent electrodes (TEs) are one of the most indispensable materials to fabricate rapidly emerging elec- tronic devices, including flexible displays, touch panels, photovoltaic cells ...

  2. A new strategy for label-free electrochemical immunoassay based on “gate-effect” of β-cyclodextrin modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Huan [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004 (China); Li, Jianping, E-mail: likianping@263.net [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004 (China); Zhang, Yun; Pan, Hongcheng [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004 (China); Xu, Guobao, E-mail: guobaoxu@ciac.ac.cn [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004 (China); State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2016-07-05

    A novel label-free electrochemical immunoassay was developed for prostate-specific antigen (PSA) detection via using β-cyclodextrin (β-CD) assembled layer created gates for the electron transfer of probe. To construct the sensor, a gold electrode was self-assembled with monoclonal anti-PSA antibody labeled 6-mercapto-β-cyclodextrin. Interspaces among β-CD molecules in the layer were automatically formed on gold electrode, which act as the channel of the electron transfer of [Fe(CN){sub 6}]{sup 3−/4−} probe. When PSA bind with anti-PSA, it can block these channels on the electrode surface due to their steric hindrance effect, resulting in the decrease in redox current of the probe. Through such a gate-controlled effect, ultra trace amount of PSA may make the currents change greatly after the immunoreaction, which enhanced the signal-to-noise ratio to achieve the amplification effect. By evaluating the logarithm of PSA concentrations, the immunosensor had a good linear response to the current changes with a detection limit of 0.3 pg/mL (S/N = 3) when PSA concentration ranged from 1.0 pg/mL to 1.0 ng/mL. The label-free immunosensor exhibited satisfactory performances in sensitivity, repeatability as well as specificity. - Highlights: • A label-free PSA immunoassay was developed based on “gate-effect” amplification. • Interspaces among β-CD assembled for [Fe(CN){sub 6}]{sup 3−/4−} electron transfer were controlled by the immunoreaction. • Higher sensitivity was achieved with time and cost saving principle.

  3. Touch sensors based on planar liquid crystal-gated-organic field-effect transistors

    International Nuclear Information System (INIS)

    Seo, Jooyeok; Lee, Chulyeon; Han, Hyemi; Lee, Sooyong; Nam, Sungho; Kim, Youngkyoo; Kim, Hwajeong; Lee, Joon-Hyung; Park, Soo-Young; Kang, Inn-Kyu

    2014-01-01

    We report a tactile touch sensor based on a planar liquid crystal-gated-organic field-effect transistor (LC-g-OFET) structure. The LC-g-OFET touch sensors were fabricated by forming the 10 μm thick LC layer (4-cyano-4 ′ -pentylbiphenyl - 5CB) on top of the 50 nm thick channel layer (poly(3-hexylthiophene) - P3HT) that is coated on the in-plane aligned drain/source/gate electrodes (indium-tin oxide - ITO). As an external physical stimulation to examine the tactile touch performance, a weak nitrogen flow (83.3 μl/s) was employed to stimulate the LC layer of the touch device. The LC-g-OFET device exhibited p-type transistor characteristics with a hole mobility of 1.5 cm 2 /Vs, but no sensing current by the nitrogen flow touch was measured at sufficiently high drain (V D ) and gate (V G ) voltages. However, a clear sensing current signal was detected at lower voltages, which was quite sensitive to the combination of V D and V G . The best voltage combination was V D = −0.2 V and V G = −1 V for the highest ratio of signal currents to base currents (i.e., signal-to-noise ratio). The change in the LC alignment upon the nitrogen flow touch was assigned as the mechanism for the present LC-g-OFET touch sensors

  4. Sensitive electrochemiluminescence biosensor based on Au-ITO hybrid bipolar electrode amplification system for cell surface protein detection.

    Science.gov (United States)

    Wu, Mei-Sheng; Yuan, Da-Jing; Xu, Jing-Juan; Chen, Hong-Yuan

    2013-12-17

    Here we developed a novel hybrid bipolar electrode (BPE)-electrochemiluminescence (ECL) biosensor based on hybrid bipolar electrode (BPE) for the measurement of cancer cell surface protein using ferrocence (Fc) labeled aptamer as signal recognition and amplification probe. According to the electric neutrality of BPE, the cathode of U-shaped ITO BPE was electrochemically deposited by Au nanoparticles (NPs) to enhance its conductivity and surface area, decrease the overpotential of O2 reduction, which would correspondingly increase the oxidation current of Ru(bpy)3(2+)/tripropylamine (TPA) on the anode of BPE and resulting a ∼4-fold enhancement of ECL intensity. Then a signal amplification strategy was designed by introducing Fc modified aptamer on the anode surface of BPE through hybridization for detecting the amount of mucin-1 on MCF-7 cells. The presence of Fc could not only inhibit the oxidation of Ru(bpy)3(2+) because of its lower oxidation potential, its oxidation product Fc(+) could also quench the ECL of Ru(bpy)3(2+)/TPA by efficient energy-transfer from the excited-state Ru(bpy)3(2+)* to Fc(+), making the ECL intensity greatly quenched. On the basis of the cathodic Au NPs induced ECL enhancing coupled with anodic Fc induced signal quenching amplification, the approach allowed detection of mucin-1 aptamer at a concentration down to 0.5 fM and was capable of detecting a minimum of 20 MCF-7 cells. Besides, the amount of mucin-1 on MCF-7 cells was calculated to be 9041 ± 388 molecules/cell. This approach therefore shows great promise in bioanalysis.

  5. Electro-Mechanical Coupling of Indium Tin Oxide Coated Polyethylene Terephthalate ITO/PET for Flexible Solar Cells

    KAUST Repository

    Saleh, Mohamed A.

    2013-05-15

    Indium tin oxide (ITO) is the most widely used transparent electrode in flexible solar cells because of its high transparency and conductivity. But still, cracking of ITO on PET substrates due to tensile loading is not fully understood and it affects the functionality of the solar cell tremendously as ITO loses its conductivity. Here, we investigate the cracking evolution in ITO/PET exposed to two categories of tests. Monotonous tensile testing is done in order to trace the crack propagation in ITO coating as well as determining a loading range to focus on during our study. Five cycles test is also conducted to check the crack closure effect on the resistance variation of ITO. Analytical model for the damage in ITO layer is implemented using the homogenization concept as in laminated composites for transverse cracking. The homogenization technique is done twice on COMSOL to determine the mechanical and electrical degradation of ITO due to applied loading. Finally, this damage evolution is used for a simulation to predict the degradation of ITO as function in the applied load and correlate this degradation with the resistance variation. Experimental results showed that during unloading, crack closure results in recovery of conductivity and decrease in the overall resistance of the cracked ITO. Also, statistics about the crack spacing showed that the cracking pattern is not perfectly periodical however it has a positively skewed distribution. The higher the applied load, the less the discrepancy in the crack spacing data. It was found that the cracking mechanism of ITO starts with transverse cracking with local delamination at the crack tip unlike the mechanism proposed in the literature of having only cracking pattern without any local delamination. This is the actual mechanism that leads to the high increase in ITO resistance. The analytical code simulates the damage evolution in the ITO layer as function in the applied strain. This will be extended further to

  6. Annealing effect of ITO and ITO/Cu transparent conductive films in low pressure hydrogen atmosphere

    International Nuclear Information System (INIS)

    Lin, T.-C.; Chang, S.-C.; Chiu, C.-F.

    2006-01-01

    A layer of copper was sputtered onto an indium tin oxide (ITO) glass substrates to form an ITO/Cu film, using a direct current magnetron operated at room temperature and in argon gas. The ITO and ITO/Cu films were heated in vacuum, and in hydrogen gas, to study their dependence of electronic and optical properties on annealing temperature. The resistivity of the ITO film was reduced from 6.2 x 10 -4 to 2.7 x 10 -4 Ω cm, and the average optical transmittance was improved to above 90% by the annealing process. The ITO/Cu film showed a low value of resistivity of 2.8 x 10 -4 Ω cm and the transmittance was between 58 and 72%

  7. Microscopically crumpled indium-tin-oxide thin films as compliant electrodes with tunable transmittance

    International Nuclear Information System (INIS)

    Ong, Hui-Yng; Shrestha, Milan; Lau, Gih-Keong

    2015-01-01

    Indium-tin-oxide (ITO) thin films are perceived to be stiff and brittle. This letter reports that crumpled ITO thin films on adhesive poly-acrylate dielectric elastomer can make compliant electrodes, sustaining compression of up to 25% × 25% equi-biaxial strain and unfolding. Its optical transmittance reduces with crumpling, but restored with unfolding. A dielectric elastomer actuator (DEA) using the 14.2% × 14.2% initially crumpled ITO thin-film electrodes is electrically activated to produce a 37% areal strain. Such electric unfolding turns the translucent DEA to be transparent, with transmittance increased from 39.14% to 52.08%. This transmittance tunability promises to make a low-cost smart privacy window

  8. Microscopically crumpled indium-tin-oxide thin films as compliant electrodes with tunable transmittance

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Hui-Yng [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore); School of Engineering, Nanyang Polytechnic, Singapore 569830 (Singapore); Shrestha, Milan; Lau, Gih-Keong, E-mail: mgklau@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2015-09-28

    Indium-tin-oxide (ITO) thin films are perceived to be stiff and brittle. This letter reports that crumpled ITO thin films on adhesive poly-acrylate dielectric elastomer can make compliant electrodes, sustaining compression of up to 25% × 25% equi-biaxial strain and unfolding. Its optical transmittance reduces with crumpling, but restored with unfolding. A dielectric elastomer actuator (DEA) using the 14.2% × 14.2% initially crumpled ITO thin-film electrodes is electrically activated to produce a 37% areal strain. Such electric unfolding turns the translucent DEA to be transparent, with transmittance increased from 39.14% to 52.08%. This transmittance tunability promises to make a low-cost smart privacy window.

  9. Fabrication and characterization of transparent metallic electrodes in the terahertz domain

    DEFF Research Database (Denmark)

    Zalkovskij, Maksim; Malureanu, Radu; Song, Zhengyong

    The demand for transparent electrodes keeps increasing as new generations of electronic devices appear, including solar cells and touch screens. Indium tin oxide (ITO) is the most promising transparent electrode material to date [1] although there are several limitations when using ITO. Firstly...... by the use of the T-Ray 4000 terahertz time-domain spectroscopy system. The physics behind the cancellation of the scattering from the target opaque layer requires carefully chosen geometrical parameters of the metamaterial layers, AB and C, (see Fig. 1(b)). Figure 1(c) displays the transmittance through...

  10. Smooth Nanowire/Polymer Composite Transparent Electrodes

    KAUST Repository

    Gaynor, Whitney; Burkhard, George F.; McGehee, Michael D.; Peumans, Peter

    2011-01-01

    Smooth composite transparent electrodes are fabricated via lamination of silver nanowires into the polymer poly-(4,3-ethylene dioxythiophene): poly(styrene-sulfonate) (PEDOT:PSS). The surface roughness is dramatically reduced compared to bare nanowires. High-efficiency P3HT:PCBM organic photovoltaic cells can be fabricated using these composites, reproducing the performance of cells on indium tin oxide (ITO) on glass and improving the performance of cells on ITO on plastic. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Smooth Nanowire/Polymer Composite Transparent Electrodes

    KAUST Repository

    Gaynor, Whitney

    2011-04-29

    Smooth composite transparent electrodes are fabricated via lamination of silver nanowires into the polymer poly-(4,3-ethylene dioxythiophene): poly(styrene-sulfonate) (PEDOT:PSS). The surface roughness is dramatically reduced compared to bare nanowires. High-efficiency P3HT:PCBM organic photovoltaic cells can be fabricated using these composites, reproducing the performance of cells on indium tin oxide (ITO) on glass and improving the performance of cells on ITO on plastic. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. All-Carbon Electrodes for Flexible Solar Cells

    OpenAIRE

    Zexia Zhang; Ruitao Lv; Yi Jia; Xin Gan; Hongwei Zhu; Feiyu Kang

    2018-01-01

    Transparent electrodes based on carbon nanomaterials have recently emerged as new alternatives to indium tin oxide (ITO) or noble metal in organic photovoltaics (OPVs) due to their attractive advantages, such as long-term stability, environmental friendliness, high conductivity, and low cost. However, it is still a challenge to apply all-carbon electrodes in OPVs. Here, we report our efforts to develop all-carbon electrodes in organic solar cells fabricated with different carbon-based materia...

  13. Effect of temperature on the electrical properties of ITO in a TiO2/ITO film

    International Nuclear Information System (INIS)

    Nishimoto, Naoki; Imawaka, Naoto; Yoshino, Katsumi; Yamada, Yasuji; Ohnishi, Yosuke

    2013-01-01

    Thermal stabilities of indium tin oxide (ITO) substrates and TiO 2 /ITO structures were evaluated in relation to their electrical properties. The ITO substrates and TiO 2 /ITO structures were annealed at 350, 400, and 500 C. The ITO substrate with large grain size showed higher thermal stability than that with small grain size. The thermal stability of TiO 2 /ITO structure improved with increasing TiO 2 thickness, and a decrease in electron concentration was observed in resistance-increased samples. These changes were attributed to variations in grain-boundary potential caused by oxygen adsorption. It may be concluded that variation of the grain-boundary potential by thermal annealing has a dominant influence on resistance. Therefore, optimization of the grain size is important to improve the thermal stability of ITO. This mechanism and procedure can be applied to improve the characteristics of other TCO materials. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Effect of platinum-nanodendrite modification on the glucose-sensing properties of a zinc-oxide-nanorod electrode

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Razak, Khairunisak, E-mail: khairunisak@usm.my [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); NanoBiotechnology Research & Innovation (NanoBRI), INFORMM, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Neoh, Soo Huan; Ridhuan, N.S.; Mohamad Nor, Noorhashimah [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2016-09-01

    Highlights: • Effect of PtNDs on ZnONRs/ITO glucose sensor was studied. • Well-defined PtNDs synthesis using 20 mM K{sub 2}PtCl{sub 4} produced good dispersion between nanodendrites with uniform particle size. • Nafion coating significantly improved the catalytic oxidation of glucose sensor. • Nafion/GO{sub x}/PtNDs/ZnONRs/ITO demonstrated better properties compared with Nafion/GO{sub x}/PtNDs/ITO and Nafion/GO{sub x}/ZnONRs/ITO electrodes. - Abstract: The properties of ZnO nanorods (ZnONRs) decorated with platinum nanodendrites (PtNDs) were studied. Various sizes of PtNDs were synthesized and spin coated onto ZnONRs, which were grown on indium–titanium–oxide (ITO) substrates through a low-temperature hydrothermal method. Scanning electron microscopy and X-ray diffraction analyses were conducted to analyze the morphology and structural properties of the electrodes. The effects of PtND size, glucose concentration, and Nafion amount on glucose-sensing properties were investigated. The glucose-sensing properties of electrodes with immobilized glucose oxidase (GO{sub x}) were measured using cyclic voltammetry. The bio-electrochemical properties of Nafion/GO{sub x}/42 nm PtNDs/ZnONRs/ITO glucose sensor was observed with linear range within 1–18 mM, with a sensitivity value of 5.85 μA/mM and a limit of detection of 1.56 mM. The results of this study indicate that PtNDs/ZnONRs/ITO has potential in glucose sensor applications.

  15. Anodic deposition-assisted photoelectrocatalytic degradation of bisphenol A at a cadmium sulfide modified electrode based on visible light-driven fuel cells

    International Nuclear Information System (INIS)

    Luo, Jin-Yuan; Chen, Lin-Lin; Liang, Xing-Hui; Zhao, Qian-Wen; Li, Hong

    2015-01-01

    Highlights: • CdS nanoparticles can largely promote anodic deposition of BPA in the dark. • Photoelectrocatalytic degradation of BPA is driven by photo-stimulated fuel cells. • CdS/ITO is regenerated in photoelectrocatalytic degradation process of BPA. • Visible light-driven BPA fuel cell exhibits several unique advantages. - Abstract: A novel photoelectrocatalytic oxidation method has been successfully developed to effectively degrade bisphenol A (BPA) using a visible light-sensitive CdS nanoparticle modified indium-tin oxide (ITO) electrode. In the present protocol, BPA is oxidized on the CdS/ITO electrode to produce a redox-active film (BPA AD ), which is subsequently degraded upon incorporation of visible light irradiation and anodic electric fields, making the CdS/ITO electrode cyclically regenerated and the BPA removed. The addition of CdS nanoparticles to the ITO electrode not only increases the anodic deposition of BPA in the dark, but also promotes the photoelectrocatalytic degradation of BPA under visible light irradiation. The CdS/ITO photoanode shows high regeneration ability, and the removal efficiency of BPA is high up to 94.1%. Meanwhile, a monopolar visible light-simulated BPA fuel cell vs. Ag/AgCl electrode with a salt bridge is fabricated to achieve the photoelectrocatalytic degradation of BPA, showing open-circuit photovoltage of 0.412 (±0.015) V and short-circuit photocurrent density of 20.52 (±1.02) μA cm −2 , respectively. The present study provides a new approach for efficient removal of phenolic pollutants and optimum utilization of renewable energy sources.

  16. Optical and electro-catalytic properties of bundled ZnO nanowires grown on a ITO substrate

    International Nuclear Information System (INIS)

    Xia Cao; Wang Ning; Wang Long

    2010-01-01

    Bundled wurtzite zinc oxide (ZnO) nanowires were fabricated in a facile manner on an ITO-conducting substrate via a microemulsion route without using any hard template or external electric/magnetic field. Structure and properties of the as-prepared ZnO electrode were investigated using scanning electron microscopy, X-ray diffraction, photoluminescence, Raman spectroscopy, as well as electrochemical tests. The ZnO electrode shows excellent optical and electrocatalytic ability, which may find further applications such as optoelectronics or as sensors as well as other modern industrial areas.

  17. Study of surface atmospheric pressure glow discharge plasma based on ultrathin laminated electrodes in air

    Science.gov (United States)

    Zhao, Luxiang; Liu, Wenzheng; Li, Zhiyi; Ma, Chuanlong

    2018-05-01

    A method to generate large-area surface plasma in air by micro-discharge is proposed. Two ultrathin laminated electrode structures of non-insulating and insulating types were formed by using the nanoscale ITO conductive layer. The surface glow discharge in atmospheric air is realized in low discharge voltage by constructing the special electric field of two-dimensional unidirectional attenuation. In particular, the insulating electrode structure can avoid the loss of ITO electrodes so that the discharge stability can be increased, and the treated objects can be prevented from metal ion pollution caused by the electrode in the discharge. It has broad application prospects in the fields of aerodynamics and material surface treatment.

  18. Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode.

    Science.gov (United States)

    Nam, Sanggil; Song, Myungkwan; Kim, Dong-Ho; Cho, Byungjin; Lee, Hye Moon; Kwon, Jung-Dae; Park, Sung-Gyu; Nam, Kee-Seok; Jeong, Yongsoo; Kwon, Se-Hun; Park, Yun Chang; Jin, Sung-Ho; Kang, Jae-Wook; Jo, Sungjin; Kim, Chang Su

    2014-04-25

    Transparent electrodes have been widely used in electronic devices such as solar cells, displays, and touch screens. Highly flexible transparent electrodes are especially desired for the development of next generation flexible electronic devices. Although indium tin oxide (ITO) is the most commonly used material for the fabrication of transparent electrodes, its brittleness and growing cost limit its utility for flexible electronic devices. Therefore, the need for new transparent conductive materials with superior mechanical properties is clear and urgent. Ag nanowire (AgNW) has been attracting increasing attention because of its effective combination of electrical and optical properties. However, it still suffers from several drawbacks, including large surface roughness, instability against oxidation and moisture, and poor adhesion to substrates. These issues need to be addressed before wide spread use of metallic NW as transparent electrodes can be realized. In this study, we demonstrated the fabrication of a flexible transparent electrode with superior mechanical, electrical and optical properties by embedding a AgNW film into a transparent polymer matrix. This technique can produce electrodes with an ultrasmooth and extremely deformable transparent electrode that have sheet resistance and transmittance comparable to those of an ITO electrode.

  19. Functionalization of indium-tin-oxide electrodes by laser-nanostructured gold thin films for biosensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Grochowska, Katarzyna, E-mail: kgrochowska@imp.gda.pl [Centre for Plasma and Laser Engineering, The Szewalski Institute, Polish Academy of Sciences, 14 Fiszera St, 80-231 Gdańsk (Poland); Siuzdak, Katarzyna [Centre for Plasma and Laser Engineering, The Szewalski Institute, Polish Academy of Sciences, 14 Fiszera St, 80-231 Gdańsk (Poland); Karczewski, Jakub [Solid State Physics Department, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, 11/12 Narutowicza St, 80-233, Gdańsk (Poland); Śliwiński, Gerard [Centre for Plasma and Laser Engineering, The Szewalski Institute, Polish Academy of Sciences, 14 Fiszera St, 80-231 Gdańsk (Poland)

    2015-12-01

    Graphical abstract: - Highlights: • ITO electrodes modified by NP arrays prepared by laser dewetting of thin Au films. • Enhanced activity, linear response and high sensitivity towards glucose. • Promising biosensor material AuNP-modified ITO of improved performance. - Abstract: The production and properties of the indium-tin-oxide (ITO) electrodes functionalized by Au nanoparticle (NP) arrays of a relatively large area formed by pulsed laser nanostructuring of thin gold films are reported and discussed. The SEM inspection of modified electrodes reveals the presence of the nearly spherical and disc-shaped particles of dimensions in the range of 40–120 nm. The NP-array geometry can be controlled by selection of the laser processing conditions. It is shown that particle size and packing density of the array are important factors which determine the electrode performance. In the case of NP-modified electrodes the peak current corresponding to the glucose direct oxidation process shows rise with increasing glucose concentration markedly higher comparing to the reference Au disc electrode. The detection limit reaches 12 μM and linear response of the sensor is observed from 0.1 to 47 mM that covers the normal physiological range of the blood sugar detection.

  20. Technology ready use of single layer graphene as a transparent electrode for hybrid photovoltaic devices

    OpenAIRE

    Wang, Zhibing; Puls, Conor P.; Staley, Neal E.; Zhang, Yu; Todd, Aaron; Xu, Jian; Howsare, Casey A.; Hollander, Matthew J.; Robinson, Joshua A.; Liu, Ying

    2011-01-01

    Graphene has been used recently as a replacement for indium tin oxide (ITO) for the transparent electrode of an organic photovoltaic device. Due to its limited supply, ITO is considered as a limiting factor for the commercialization of organic solar cells. We explored the use of large-area graphene grown on copper by chemical vapor deposition (CVD) and then transferred to a glass substrate as an alternative transparent electrode. The transferred film was shown by scanning Raman spectroscopy m...

  1. Factors affecting the photovoltaic behavior of inverted polymer solar cells using various indium tin oxide electrodes modified by amines with simple chemical structures

    Energy Technology Data Exchange (ETDEWEB)

    Kusumi, Takuji [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Kuwabara, Takayuki, E-mail: tkuwabar@se.kanazawa-u.ac.jp [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Research Center for Sustainable Energy and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Yamaguchi, Takahiro [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Taima, Tetsuya [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Research Center for Sustainable Energy and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Takahashi, Kohshin, E-mail: ktakaha@se.kanazawa-u.ac.jp [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Research Center for Sustainable Energy and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan)

    2015-09-30

    In a glass–indium tin oxide (ITO)/amine/regioregular poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C{sub 61} butyric acid methyl ester (PCBM)/poly(3,4-ethylenedioxylenethiophene):poly(4-styrene sulfonic acid) (PEDOT:PSS)/Au cell, which uses small molecule amine-modified ITO as the electron collection electrode, a light-soaking effect under irradiation of simulated sunlight was restrained considerably compared with in an ITO/P3HT:PCBM/PEDOT:PSS/Au cell containing bare ITO. That is, the time taken to arrive at a saturated V{sub oc} from the initial V{sub oc} became short when the ionization potential (I{sub P}) of ITO reduced by the amine modification, and consequently both of its saturated V{sub oc} and power conversion efficiency (PCE) improved. The I{sub P} decreased with an increase in the number (N) of amino groups in a single amine molecule, because the basic amino groups can efficiently neutralize any acidic hydroxyl groups on ITO through a multipoint interaction. The superior performance of the cell containing the amine-modified electrode with large N was perhaps because the energy mismatch formed by a contact between ITO and acceptor PCBM reduced, and consequently the rate of electron collection at ITO increased. - Highlights: • Surface-modification of ITO electrode with low molecular weight amines • Ionization potential of ITO was decreased by forming an electrical double layer. • Light-soaking effect has been observed by irradiating white light. • The light-soaking effect mainly improved the open-circuit photovoltage. • Open-circuit photovoltage was limited by ionization potential of amine-modified ITO.

  2. Factors affecting the photovoltaic behavior of inverted polymer solar cells using various indium tin oxide electrodes modified by amines with simple chemical structures

    International Nuclear Information System (INIS)

    Kusumi, Takuji; Kuwabara, Takayuki; Yamaguchi, Takahiro; Taima, Tetsuya; Takahashi, Kohshin

    2015-01-01

    In a glass–indium tin oxide (ITO)/amine/regioregular poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C_6_1 butyric acid methyl ester (PCBM)/poly(3,4-ethylenedioxylenethiophene):poly(4-styrene sulfonic acid) (PEDOT:PSS)/Au cell, which uses small molecule amine-modified ITO as the electron collection electrode, a light-soaking effect under irradiation of simulated sunlight was restrained considerably compared with in an ITO/P3HT:PCBM/PEDOT:PSS/Au cell containing bare ITO. That is, the time taken to arrive at a saturated V_o_c from the initial V_o_c became short when the ionization potential (I_P) of ITO reduced by the amine modification, and consequently both of its saturated V_o_c and power conversion efficiency (PCE) improved. The I_P decreased with an increase in the number (N) of amino groups in a single amine molecule, because the basic amino groups can efficiently neutralize any acidic hydroxyl groups on ITO through a multipoint interaction. The superior performance of the cell containing the amine-modified electrode with large N was perhaps because the energy mismatch formed by a contact between ITO and acceptor PCBM reduced, and consequently the rate of electron collection at ITO increased. - Highlights: • Surface-modification of ITO electrode with low molecular weight amines • Ionization potential of ITO was decreased by forming an electrical double layer. • Light-soaking effect has been observed by irradiating white light. • The light-soaking effect mainly improved the open-circuit photovoltage. • Open-circuit photovoltage was limited by ionization potential of amine-modified ITO.

  3. All-Solution-Processed, Ambient Method for ITO-Free, Roll-Coated Tandem Polymer Solar Cells using Solution- Processed Metal Films

    DEFF Research Database (Denmark)

    Angmo, Dechan; Dam, Henrik Friis; Andersen, Thomas Rieks

    2014-01-01

    A solution-processed silver film is employed in the processing of top-illuminated indium-tin-oxide (ITO)-free polymer solar cells in single- and double-junction (tandem) structures. The nontransparent silver film fully covers the substrate and serves as the bottom electrode whereas a PEDOT...... in terms of surface morphological and topographical properties and to ITO in terms of flexibility. The slot–die coated Ag film demonstrates extremely low roughness (a root-meansquare roughness of 3 nm was measured over 240_320 mm2 area), is highly conductive (

  4. Study of surface-modified PVP gate dielectric in organic thin film transistors with the nano-particle silver ink source/drain electrode.

    Science.gov (United States)

    Yun, Ho-Jin; Ham, Yong-Hyun; Shin, Hong-Sik; Jeong, Kwang-Seok; Park, Jeong-Gyu; Choi, Deuk-Sung; Lee, Ga-Won

    2011-07-01

    We have fabricated the flexible pentacene based organic thin film transistors (OTFTs) with formulated poly[4-vinylphenol] (PVP) gate dielectrics treated by CF4/O2 plasma on poly[ethersulfones] (PES) substrate. The solution of gate dielectrics is made by adding methylated poly[melamine-co-formaldehyde] (MMF) to PVP. The PVP gate dielectric layer was cross linked at 90 degrees under UV ozone exposure. Source/drain electrodes are formed by micro contact printing (MCP) method using nano particle silver ink for the purposes of low cost and high throughput. The optimized OTFT shows the device performance with field effect mobility of the 0.88 cm2/V s, subthreshold slope of 2.2 V/decade, and on/off current ratios of 1.8 x 10(-6) at -40 V gate bias. We found that hydrophobic PVP gate dielectric surface can influence on the initial film morphologies of pentacene making dense, which is more important for high performance OTFTs than large grain size. Moreover, hydrophobic gate dielelctric surface reduces voids and -OH groups that interrupt the carrier transport in OTFTs.

  5. Investigation of pentacene growth on SiO2 gate insulator after photolithography for nitrogen-doped LaB6 bottom-contact electrode formation

    Science.gov (United States)

    Maeda, Yasutaka; Hiroki, Mizuha; Ohmi, Shun-ichiro

    2018-04-01

    Nitrogen-doped (N-doped) LaB6 is a candidate material for the bottom-contact electrode of n-type organic field-effect transistors (OFETs). However, the formation of a N-doped LaB6 electrode affects the surface morphology of a pentacene film. In this study, the effects of surface treatments and a N-doped LaB6 interfacial layer (IL) were investigated to improve the pentacene film quality after N-doped LaB6 electrode patterning with diluted HNO3, followed by resist stripping with acetone and methanol. It was found that the sputtering damage during N-doped LaB6 deposition on a SiO2 gate insulator degraded the crystallinity of pentacene. The H2SO4 and H2O2 (SPM) and diluted HF treatments removed the damaged layer on the SiO2 gate insulator surface. Furthermore, the N-doped LaB6 IL improved the crystallinity of pentacene and realized dendritic grain growth. Owing to these surface treatments, the hole mobility improved from 2.8 × 10-3 to 0.11 cm2/(V·s), and a steep subthreshold swing of 78 mV/dec for the OFET with top-contact configuration was realized in air even after bottom-contact electrode patterning.

  6. An amperometric uric acid biosensor based on Bis[sulfosuccinimidyl] suberate crosslinker/3-aminopropyltriethoxysilane surface modified ITO glass electrode

    International Nuclear Information System (INIS)

    Ahuja, Tarushee; Rajesh; Kumar, Devendra; Tanwar, Vinod Kumar; Sharma, Vikash; Singh, Nahar; Biradar, Ashok M.

    2010-01-01

    A label free, amperometric uric acid biosensor is described by immobilizing enzyme uricase through a self assembled monolayer (SAM) of 3-aminopropyltriethoxysilane (APTES) using a crosslinker, Bis[sulfosuccinimidyl]suberate (BS 3 ) on an indium-tin-oxide (ITO) coated glass plate. The biosensor (uricase/BS 3 /APTES/ITO) was characterized by, scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrochemical techniques. Chronoamperometric response was measured as a function of uric acid concentration in aqueous solution (pH 7.4). The biosensor shows a linear response over a concentration range of 0.05 to 0.58 mM with a sensitivity of 39.35 μA mM -1 . The response time is 50 s reaching to a 95% steady state current value and about 90% of enzyme activity is retained for about 7 weeks. These results indicate an efficient binding of enzyme with the crosslinker over the surface of APTES modified ITO glass plates, which leads to an improved sensitivity and shelf life of the biosensor.

  7. The Joule heating problem in silver nanowire transparent electrodes

    Science.gov (United States)

    Khaligh, H. H.; Xu, L.; Khosropour, A.; Madeira, A.; Romano, M.; Pradére, C.; Tréguer-Delapierre, M.; Servant, L.; Pope, M. A.; Goldthorpe, I. A.

    2017-10-01

    Silver nanowire transparent electrodes have shown considerable potential to replace conventional transparent conductive materials. However, in this report we show that Joule heating is a unique and serious problem with these electrodes. When conducting current densities encountered in organic solar cells, the average surface temperature of indium tin oxide (ITO) and silver nanowire electrodes, both with sheet resistances of 60 ohms/square, remains below 35 °C. However, in contrast to ITO, the temperature in the nanowire electrode is very non-uniform, with some localized points reaching temperatures above 250 °C. These hotspots accelerate nanowire degradation, leading to electrode failure after 5 days of continuous current flow. We show that graphene, a commonly used passivation layer for these electrodes, slows nanowire degradation and creates a more uniform surface temperature under current flow. However, the graphene does not prevent Joule heating in the nanowires and local points of high temperature ultimately shift the failure mechanism from nanowire degradation to melting of the underlying plastic substrate. In this paper, surface temperature mapping, lifetime testing under current flow, post-mortem analysis, and modelling illuminate the behaviour and failure mechanisms of nanowires under extended current flow and provide guidelines for managing Joule heating.

  8. Low-loss tunable 1D ITO-slot photonic crystal nanobeam cavity

    Science.gov (United States)

    Amin, Rubab; Tahersima, Mohammad H.; Ma, Zhizhen; Suer, Can; Liu, Ke; Dalir, Hamed; Sorger, Volker J.

    2018-05-01

    Tunable optical material properties enable novel applications in both versatile metamaterials and photonic components including optical sources and modulators. Transparent conductive oxides (TCOs) are able to highly tune their optical properties with applied bias via altering their free carrier concentration and hence plasma dispersion. The TCO material indium tin oxide (ITO) exhibits unity-strong index change and epsilon-near-zero behavior. However, with such tuning the corresponding high optical losses, originating from the fundamental Kramers–Kronig relations, result in low cavity finesse. However, achieving efficient tuning in ITO-cavities without using light–matter interaction enhancement techniques such as polaritonic modes, which are inherently lossy, is a challenge. Here we discuss a novel one-dimensional photonic crystal nanobeam cavity to deliver a cavity system offering a wide range of resonance tuning range, while preserving physical compact footprints. We show that a vertical silicon-slot waveguide incorporating an actively gated-ITO layer delivers ∼3.4 nm of tuning. By deploying distributed feedback, we are able to keep the Q-factor moderately high with tuning. Combining this with the sub-diffraction limited mode volume (0.1 (λ/2n)3) from the photonic (non-plasmonic) slot waveguide, facilitates a high Purcell factor exceeding 1000. This strong light–matter-interaction shows that reducing the mode volume of a cavity outweighs reducing the losses in diffraction limited modal cavities such as those from bulk Si3N4. These tunable cavities enable future modulators and optical sources such as tunable lasers.

  9. Influence of Substrate Temperature on Structural, Electrical and Optical Properties of Ito Thin Films Prepared by RF Magnetron Sputtering

    Science.gov (United States)

    He, Bo; Zhao, Lei; Xu, Jing; Xing, Huaizhong; Xue, Shaolin; Jiang, Meng

    2013-10-01

    In this paper, we investigated indium-tin-oxide (ITO) thin films on glass substrates deposited by RF magnetron sputtering using ceramic target to find the optimal condition for fabricating optoelectronic devices. The structural, electrical and optical properties of the ITO films prepared at various substrate temperatures were investigated. The results indicate the grain size increases with substrate temperature increases. As the substrate temperature grew up, the resistivity of ITO films greatly decreased. The ITO film possesses high quality in terms of electrode functions, when substrate temperature is 480°C. The resistivity is as low as 9.42 × 10-5 Ω•cm, while the carrier concentration and mobility are as high as 3.461 × 1021 atom/cm3 and 19.1 cm2/Vṡs, respectively. The average transmittance of the film is about 95% in the visible region. The novel ITO/np-Silicon frame, which prepared by RF magnetron sputtering at 480°C substrate temperature, can be used not only for low-cost solar cell, but also for high quantum efficiency of UV and visible lights enhanced photodetector for various applications.

  10. Enhancement of the electrical characteristics of thin-film transistors with indium-zinc-tin oxide/Ag/indium-zinc-tin oxide multilayer electrodes

    Science.gov (United States)

    Oh, Dohyun; Yun, Dong Yeol; Cho, Woon-Jo; Kim, Tae Whan

    2014-08-01

    Transparent indium-zinc-tin oxide (IZTO)-based thin-film transistors (TFTs) with IZTO/Ag/IZTO multilayer electrodes were fabricated on glass substrates using a tilted dual-target radio-frequency magnetron sputtering system. The IZTO TFTs with IZTO/Ag/IZTO multilayer electrodes exhibited a high optical transmittance in a visible region. The threshold voltage, the mobility, and the on/off-current ratio of the TFTs with IZTO/Ag/IZTO multilayer electrodes were enhanced in comparison with those of the TFTs with ITO electrodes. The source/drain contact resistance of the IZTO TFTs with IZTO/Ag/IZTO multilayer electrodes was smaller than that of the IZTO TFTs with ITO electrodes, resulting in enhancement of their electrical characteristics.

  11. Bannai-Ito polynomials and dressing chains

    OpenAIRE

    Derevyagin, Maxim; Tsujimoto, Satoshi; Vinet, Luc; Zhedanov, Alexei

    2012-01-01

    Schur-Delsarte-Genin (SDG) maps and Bannai-Ito polynomials are studied. SDG maps are related to dressing chains determined by quadratic algebras. The Bannai-Ito polynomials and their kernel polynomials -- the complementary Bannai-Ito polynomials -- are shown to arise in the framework of the SDG maps.

  12. Mechanical Properties of ZTO, ITO, and a-Si:H Multilayer Films for Flexible Thin Film Solar Cells.

    Science.gov (United States)

    Hengst, Claudia; Menzel, Siegfried B; Rane, Gayatri K; Smirnov, Vladimir; Wilken, Karen; Leszczynska, Barbara; Fischer, Dustin; Prager, Nicole

    2017-03-01

    The behavior of bi- and trilayer coating systems for flexible a-Si:H based solar cells consisting of a barrier, an electrode, and an absorption layer is studied under mechanical load. First, the film morphology, stress, Young's modulus, and crack onset strain (COS) were analyzed for single film coatings of various thickness on polyethylene terephthalate (PET) substrates. In order to demonstrate the role of the microstructure of a single film on the mechanical behavior of the whole multilayer coating, two sets of InSnOx (indium tin oxide, ITO) conductive coatings were prepared. Whereas a characteristic grain-subgrain structure was observed in ITO-1 films, grain growth was suppressed in ITO-2 films. ITO-1 bilayer coatings showed two-step failure under tensile load with cracks propagating along the ITO-1/a-Si:H-interface, whereas channeling cracks in comparable bi- and trilayers based on amorphous ITO-2 run through all constituent layers. A two-step failure is preferable from an application point of view, as it may lead to only a degradation of the performance instead of the ultimate failure of the device. Hence, the results demonstrate the importance of a fine-tuning of film microstructure not only for excellent electrical properties, but also for a high mechanical performance of flexible devices (e.g., a-Si:H based solar cells) during fabrication in a roll-to-roll process or under service.

  13. Mechanical Properties of ZTO, ITO, and a-Si:H Multilayer Films for Flexible Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Claudia Hengst

    2017-03-01

    Full Text Available The behavior of bi- and trilayer coating systems for flexible a-Si:H based solar cells consisting of a barrier, an electrode, and an absorption layer is studied under mechanical load. First, the film morphology, stress, Young’s modulus, and crack onset strain (COS were analyzed for single film coatings of various thickness on polyethylene terephthalate (PET substrates. In order to demonstrate the role of the microstructure of a single film on the mechanical behavior of the whole multilayer coating, two sets of InSnOx (indium tin oxide, ITO conductive coatings were prepared. Whereas a characteristic grain–subgrain structure was observed in ITO-1 films, grain growth was suppressed in ITO-2 films. ITO-1 bilayer coatings showed two-step failure under tensile load with cracks propagating along the ITO-1/a-Si:H-interface, whereas channeling cracks in comparable bi- and trilayers based on amorphous ITO-2 run through all constituent layers. A two-step failure is preferable from an application point of view, as it may lead to only a degradation of the performance instead of the ultimate failure of the device. Hence, the results demonstrate the importance of a fine-tuning of film microstructure not only for excellent electrical properties, but also for a high mechanical performance of flexible devices (e.g., a-Si:H based solar cells during fabrication in a roll-to-roll process or under service.

  14. Electrophoretic deposition (EPD) of multi-walled carbon nano tubes (MWCNT) onto indium-tin-oxide (ITO) glass substrates

    International Nuclear Information System (INIS)

    Mohd Roslie Ali; Shahrul Nizam Mohd Salleh

    2009-01-01

    Full text: Multi-Walled Carbon Nano tubes (MWCNT) were deposited onto Indium-Tin-Oxide (ITO)-coated glass substrates by introducing the use of Electrophoretic Deposition (EPD) as the method. The Multi-Walled Carbon Nano tubes (MWCNT) were dispersed ultrasonically in ethanol and sodium hydroxide (NaOH) to form stable suspension. The addition of Sodium Hydroxide in ethanol can stabilize the suspension, which was very important step before the deposition take place. Two substrates of Indium-Tin-Oxide(ITO)-coated glass placed in parallel facing each other (conductive side) into the suspension. The deposition occurs at room temperature, which the distance fixed at 1 cm between both electrodes and the voltage level applied was fixed at 400 V, respectively. The deposition time also was fixed at 30 minutes. The deposited ITO-Glass with Multi-Walled Carbon Nano tubes (MWCNT) will be characterized using Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM), and Raman Microscope. The images of SEM shows that the Multi -Walled Carbon Nano tubes (MWCNT) were distributed uniformly onto the surface of ITO-Glass. The deposited ITO-Glass with Multi-Walled Carbon Nano tubes (MWCNT) could be the potential material in various practical applications such as field emission devices, fuel cells, and super capacitors. Electrophoretic deposition (EPD) technique was found to be an efficient technique in forming well distribution of Multi-Walled Carbon Nano tubes (MWCNT) onto ITO-Glass substrates, as proved in characterization methods, in which the optimum conditions will play the major role. (author)

  15. Effective Electrochemistry of Human Sulfite Oxidase Immobilized on Quantum-Dots-Modified Indium Tin Oxide Electrode.

    Science.gov (United States)

    Zeng, Ting; Leimkühler, Silke; Koetz, Joachim; Wollenberger, Ulla

    2015-09-30

    The bioelectrocatalytic sulfite oxidation by human sulfite oxidase (hSO) on indium tin oxide (ITO) is reported, which is facilitated by functionalizing of the electrode surface with polyethylenimine (PEI)-entrapped CdS nanoparticles and enzyme. hSO was assembled onto the electrode with a high surface loading of electroactive enzyme. In the presence of sulfite but without additional mediators, a high bioelectrocatalytic current was generated. Reference experiments with only PEI showed direct electron transfer and catalytic activity of hSO, but these were less pronounced. The application of the polyelectrolyte-entrapped quantum dots (QDs) on ITO electrodes provides a compatible surface for enzyme binding with promotion of electron transfer. Variations of the buffer solution conditions, e.g., ionic strength, pH, viscosity, and the effect of oxygen, were studied in order to understand intramolecular and heterogeneous electron transfer from hSO to the electrode. The results are consistent with a model derived for the enzyme by using flash photolysis in solution and spectroelectrochemistry and molecular dynamic simulations of hSO on monolayer-modified gold electrodes. Moreover, for the first time a photoelectrochemical electrode involving immobilized hSO is demonstrated where photoexcitation of the CdS/hSO-modified electrode lead to an enhanced generation of bioelectrocatalytic currents upon sulfite addition. Oxidation starts already at the redox potential of the electron transfer domain of hSO and is greatly increased by application of a small overpotential to the CdS/hSO-modified ITO.

  16. 7 CFR 254.3 - Administration by an ITO.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Administration by an ITO. 254.3 Section 254.3... FOR INDIAN HOUSEHOLDS IN OKLAHOMA § 254.3 Administration by an ITO. (a) Applicability of part 253. All... any claim and to settle and adjust any claim against an ITO. (d) ITO administration. The ITO, acting...

  17. 18.4%-Efficient Heterojunction Si Solar Cells Using Optimized ITO/Top Electrode.

    Science.gov (United States)

    Kim, Namwoo; Um, Han-Don; Choi, Inwoo; Kim, Ka-Hyun; Seo, Kwanyong

    2016-05-11

    We optimize the thickness of a transparent conducting oxide (TCO) layer, and apply a microscale mesh-pattern metal electrode for high-efficiency a-Si/c-Si heterojunction solar cells. A solar cell equipped with the proposed microgrid metal electrode demonstrates a high short-circuit current density (JSC) of 40.1 mA/cm(2), and achieves a high efficiency of 18.4% with an open-circuit voltage (VOC) of 618 mV and a fill factor (FF) of 74.1% as result of the shortened carrier path length and the decreased electrode area of the microgrid metal electrode. Furthermore, by optimizing the process sequence for electrode formation, we are able to effectively restore the reduction in VOC that occurs during the microgrid metal electrode formation process. This work is expected to become a fundamental study that can effectively improve current loss in a-Si/c-Si heterojunction solar cells through the optimization of transparent and metal electrodes.

  18. Flexible ITO-Free Polymer Solar Cells

    DEFF Research Database (Denmark)

    Angmo, Dechan; Krebs, Frederik C

    2013-01-01

    Indium tin oxide (ITO) is the material-of-choice for transparent conductors in any optoelectronic application. However, scarce resources of indium and high market demand of ITO have created large price fluctuations and future supply concerns. In polymer solar cells (PSCs), ITO is the single......-cost alternatives to ITO suitable for use in PSCs. These alternatives belong to four material groups: polymers; metal and polymer composites; metal nanowires and ultra-thin metal films; and carbon nanotubes and graphene. We further present the progress of employing these alternatives in PSCs and identify future...

  19. Visible-light induced photoelectrochemical biosensor for the detection of microRNA based on Bi2S3 nanorods and streptavidin on an ITO electrode

    International Nuclear Information System (INIS)

    Wang, Mo; Yang, Zhiqing; Guo, Yunlong; Wang, Xinxu; Yin, Huanshun; Ai, Shiyun

    2015-01-01

    We demonstrate a photo-electrochemical biosensor for the sensitive and specific detection of microRNA using Bi 2 S 3 nanorods as a photoactive material and streptavidin as the unit that inhibits photocurrent. Bi 2 S 3 nanorods were synthesized hydrothermally in organic phase and displayed excellent light-to-current conversion efficiency. The Bi 2 S 3 was deposited on an indium tin oxide (ITO) slice and then modified with gold nanoparticles onto which biotinylated hairpin probe DNA was deposited as a monolayer. Following hybridization between the biotinylated probe DNA and the target microRNA, the stem-loop structure of the probe DNA was unfolded and the biotin directed outwards into the solution. Streptavidin was then added to bind to biotin via the strong streptavidin-biotin interactions. This causes the photocurrent of the modified ITO to decrease due to steric hindrance that blocks the transfer of electrons from added ascorbic acid to the surface of the electrode. The method has a detection limit as low as 3.5 fM of microRNA and can excellently discriminate even singly mismatched microRNA. The method was successfully applied to investigate the effect of abscisic acid on the expression level of microRNA-159a in seeds of Arabidopsis thaliana. We conclude that the assay presented here has a large potential as a method for quantification of microRNA and for studying the epigenetic regulation of flowering plants. (author)

  20. Noise analysis of gate electrode work function engineered recessed channel (GEWE-RC) MOSFET

    International Nuclear Information System (INIS)

    Agarwala, Ajita; Chaujar, Rishu

    2012-01-01

    This paper discusses the noise assessment, using ATLAS device simulation software, of a gate electrode work function engineered recessed channel (GEWE-RC) MOSFET involving an RC and GEWE design integrated onto a conventional MOSFET. Furthermore, the behaviour of GEWE-RC MOSFET is compared with that of a conventional MOSFET having the same device parameters. This paper thus optimizes and predicts the feasibility of a novel design, i.e., GEWE-RC MOSFET for high-performance applications where device and noise reduction is a major concern. The noise metrics taken into consideration are: minimum noise figure and optimum source impedance. The statistical tools auto correlation and cross correlation are also analysed owing to the random nature of noise.

  1. Improve the surface of silver nanowire transparent electrode using a double-layer structure for the quantum-dot light-emitting diodes

    Science.gov (United States)

    Cho, Seok Hyeon; Been Heo, Su; Kang, Seong Jun

    2018-03-01

    We developed a double-layer structured transparent electrode for use in flexible quantum-dot light-emitting diodes (QLEDs). Silver nanowires (AgNWs) and highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) were coated on a transparent substrate to obtain a highly conductive and flexible transparent electrode. The highly conductive PEDOT:PSS improved the surface roughness of the AgNWs transparent electrode film as well as the surface coverage area of the film. The double-layer structured transparent electrode showed superior mechanical properties than conventional indium-tin oxide (ITO) and AgNWs transparent electrodes. QLEDs with the double-layer structured transparent electrode also showed good reliability under cyclic bending conditions. These results indicate that the double-layer structured AgNWs/PEDOT:PSS transparent electrode described here is a feasible alternative to ITO transparent electrodes for flexible QLEDs.

  2. Evaluation of Biofuel Cells with Hemoglobin as Cathodic Electrocatalysts for Hydrogen Peroxide Reduction on Bare Indium-Tin-Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Yusuke Ayato

    2013-12-01

    Full Text Available A biofuel cell (BFC cathode has been developed based on direct electron transfer (DET of hemoglobin (Hb molecules with an indium-tin-oxide (ITO electrode and their electrocatalysis for reduction of hydrogen peroxide (H2O2. In this study, the ITO-coated glass plates or porous glasses were prepared by using a chemical vapor deposition (CVD method and examined the electrochemical characteristics of the formed ITO in pH 7.4 of phosphate buffered saline (PBS solutions containing and not containing Hb. In half-cell measurements, the reduction current of H2O2 due to the electrocatalytic activity of Hb increased with decreasing electrode potential from around 0.1 V versus Ag|AgCl|KCl(satd. in the PBS solution. The practical open-circuit voltage (OCV on BFCs utilizing H2O2 reduction at the Hb-ITO cathode with a hydrogen (H2 oxidation anode at a platinum (Pt electrode was expected to be at least 0.74 V from the theoretical H2 oxidation potential of −0.64 V versus Ag|AgCl|KCl(satd. in pH 7.4. The assembled single cell using the ITO-coated glass plate showed the OCV of 0.72 V and the maximum power density of 3.1 µW cm−2. The maximum power per single cell was recorded at 21.5 µW by using the ITO-coated porous glass.

  3. Transparent Indium Tin Oxide Electrodes on Muscovite Mica for High-Temperature-Processed Flexible Optoelectronic Devices.

    Science.gov (United States)

    Ke, Shanming; Chen, Chang; Fu, Nianqing; Zhou, Hua; Ye, Mao; Lin, Peng; Yuan, Wenxiang; Zeng, Xierong; Chen, Lang; Huang, Haitao

    2016-10-26

    Sn-doped In 2 O 3 (ITO) electrodes were deposited on transparent and flexible muscovite mica. The use of mica substrate makes a high-temperature annealing process (up to 500 °C) possible. ITO/mica retains its low electric resistivity even after continuous bending of 1000 times on account of the unique layered structure of mica. When used as a transparent flexible heater, ITO/mica shows an extremely fast ramping (solar cells (PSCs) with high efficiency.

  4. Environmental stability of high-mobility indium-oxide based transparent electrodes

    Directory of Open Access Journals (Sweden)

    Thanaporn Tohsophon

    2015-11-01

    Full Text Available Large-scale deployment of a wide range of optoelectronic devices, including solar cells, critically depends on the long-term stability of their front electrodes. Here, we investigate the performance of Sn-doped In2O3 (ITO, H-doped In2O3 (IO:H, and Zn-doped In2O3 (IZO electrodes under damp heat (DH conditions (85 °C, 85% relative humidity. ITO, IO:H capped with ITO, and IZO show high stability with only 3%, 9%, and 13% sheet resistance (Rs degradation after 1000 h of DH, respectively. For uncapped IO:H, we find a 75% Rs degradation, due to losses in electron Hall mobility (μHall. We propose that this degradation results from chemisorbed OH- or H2O-related species in the film, which is confirmed by thermal desorption spectroscopy and x-ray photoelectron spectroscopy. While μHall strongly degrades during DH, the optical mobility (μoptical remains unchanged, indicating that the degradation mainly occurs at grain boundaries.

  5. A transparent conductive oxide electrode with highly enhanced flexibility achieved by controlled crystallinity by incorporating Ag nanoparticles on substrates

    Energy Technology Data Exchange (ETDEWEB)

    Triambulo, Ross E.; Cheong, Hahn-Gil [Department of Materials Science and Engineering, Yonsei University, Seoul (Korea, Republic of); Lee, Gun-Hwan [Advanced Thin Film Research Group, Korea Institute of Materials Science (KIMS), Changwon (Korea, Republic of); Yi, In-Sook [R and D Center, InkTec Co., Ltd., Ansan (Korea, Republic of); Park, Jin-Woo, E-mail: jwpark09@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, Seoul (Korea, Republic of)

    2015-01-25

    Highlights: • We developed a composite transparent electrode with Ag nanoparticles and indium-tin-oxide. • Transmittance of AgNPs was improved by formation of oxide layers by O{sub 2} plasma treatment. • Ag nanoparticles became crystalline seeds to grow strong ITO with a uniform growth orientation. • The hybrid electrode is highly more conductive and stable under bending than ITO. - Abstract: We report the synthesis of highly flexible indium tin oxide (ITO) on a polymer substrate whose surface was engineered by oxide-coated Ag nanoparticles (AgNPs) smaller than 20 nm in diameter. Polyimide (PI) substrates were spin coated with Ag ion ink and were subsequently heat treated to form AgNP coatings. The Ag oxide was formed by O{sub 2} plasma treatment to reduce the light absorbance by AgNPs. ITO was dc magnetron sputter-deposited atop the AgNPs. The ITO on the AgNPs was crystalline grown primarily with (2 2 2) growth orientation. This contrasts to the typical microstructure of ITO grown on the polymer, which is that growing c-ITO nucleates are embedded in an amorphous ITO (a-ITO) matrix like a particulate composite. The surface roughness of ITO on AgNPs was as small as the ITO on PI without AgNPs. The crystalline nature of the ITO on the AgNP-coated polymer resulted in the decrease of electric resistivity (ρ) by 65% compared to that of ITO on the bare PI. Furthermore, an electric resistivity change (Δρ) of the ITO on the AgNPs was only 8% at a bending radius (r{sub b}) down to 4 mm, whereas the ITO on the non-coated polymer became almost insulating at an r{sub b} of 10 mm, owing to a drastic increase in the number of cracks. To validate the potential application in the displays, flexible organic light emitting diodes (f-OLEDs) were fabricated on the ITO on AgNPs and the performances was compared with the f-OLED on ITO on the bare PI.

  6. A transparent conductive oxide electrode with highly enhanced flexibility achieved by controlled crystallinity by incorporating Ag nanoparticles on substrates

    International Nuclear Information System (INIS)

    Triambulo, Ross E.; Cheong, Hahn-Gil; Lee, Gun-Hwan; Yi, In-Sook; Park, Jin-Woo

    2015-01-01

    Highlights: • We developed a composite transparent electrode with Ag nanoparticles and indium-tin-oxide. • Transmittance of AgNPs was improved by formation of oxide layers by O 2 plasma treatment. • Ag nanoparticles became crystalline seeds to grow strong ITO with a uniform growth orientation. • The hybrid electrode is highly more conductive and stable under bending than ITO. - Abstract: We report the synthesis of highly flexible indium tin oxide (ITO) on a polymer substrate whose surface was engineered by oxide-coated Ag nanoparticles (AgNPs) smaller than 20 nm in diameter. Polyimide (PI) substrates were spin coated with Ag ion ink and were subsequently heat treated to form AgNP coatings. The Ag oxide was formed by O 2 plasma treatment to reduce the light absorbance by AgNPs. ITO was dc magnetron sputter-deposited atop the AgNPs. The ITO on the AgNPs was crystalline grown primarily with (2 2 2) growth orientation. This contrasts to the typical microstructure of ITO grown on the polymer, which is that growing c-ITO nucleates are embedded in an amorphous ITO (a-ITO) matrix like a particulate composite. The surface roughness of ITO on AgNPs was as small as the ITO on PI without AgNPs. The crystalline nature of the ITO on the AgNP-coated polymer resulted in the decrease of electric resistivity (ρ) by 65% compared to that of ITO on the bare PI. Furthermore, an electric resistivity change (Δρ) of the ITO on the AgNPs was only 8% at a bending radius (r b ) down to 4 mm, whereas the ITO on the non-coated polymer became almost insulating at an r b of 10 mm, owing to a drastic increase in the number of cracks. To validate the potential application in the displays, flexible organic light emitting diodes (f-OLEDs) were fabricated on the ITO on AgNPs and the performances was compared with the f-OLED on ITO on the bare PI

  7. Trapped-ion quantum logic gates based on oscillating magnetic fields.

    Science.gov (United States)

    Ospelkaus, C; Langer, C E; Amini, J M; Brown, K R; Leibfried, D; Wineland, D J

    2008-08-29

    Oscillating magnetic fields and field gradients can be used to implement single-qubit rotations and entangling multiqubit quantum gates for trapped-ion quantum information processing (QIP). With fields generated by currents in microfabricated surface-electrode traps, it should be possible to achieve gate speeds that are comparable to those of optically induced gates for realistic distances between the ion crystal and the electrode surface. Magnetic-field-mediated gates have the potential to significantly reduce the overhead in laser-beam control and motional-state initialization compared to current QIP experiments with trapped ions and will eliminate spontaneous scattering, a fundamental source of decoherence in laser-mediated gates.

  8. Toward Plastic Smart Windows: Optimization of Indium Tin Oxide Electrodes for the Synthesis of Electrochromic Devices on Polycarbonate Substrates.

    Science.gov (United States)

    Laurenti, Marco; Bianco, Stefano; Castellino, Micaela; Garino, Nadia; Virga, Alessandro; Pirri, Candido F; Mandracci, Pietro

    2016-03-01

    Plastic smart windows are becoming one of the key elements in view of the fabrication of inexpensive, lightweight electrochromic (EC) devices to be integrated in the new generation of high-energy-efficiency buildings and automotive applications. However, fabricating electrochromic devices on polymer substrates requires a reduction of process temperature, so in this work we focus on the development of a completely room-temperature deposition process aimed at the preparation of ITO-coated polycarbonate (PC) structures acting as transparent and conductive plastic supports. Without providing any substrate heating or surface activation pretreatments of the polymer, different deposition conditions are used for growing indium tin oxide (ITO) thin films by the radiofrequency magnetron sputtering technique. According to the characterization results, the set of optimal deposition parameters is selected to deposit ITO electrodes having high optical transmittance in the visible range (∼90%) together with low sheet resistance (∼8 ohm/sq). The as-prepared ITO/PC structures are then successfully tested as conductive supports for the fabrication of plastic smart windows. To this purpose, tungsten trioxide thin films are deposited by the reactive sputtering technique on the ITO/PC structures, and the resulting single electrode EC devices are characterized by chronoamperometric experiments and cyclic voltammetry. The fast switching response between colored and bleached states, together with the stability and reversibility of their electrochromic behavior after several cycling tests, are considered to be representative of the high quality of the EC film but especially of the ITO electrode. Indeed, even if no adhesion promoters, additional surface activation pretreatments, or substrate heating were used to promote the mechanical adhesion among the electrode and the PC surface, the observed EC response confirmed that the developed materials can be successfully employed for the

  9. Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode

    KAUST Repository

    Wu, Hui

    2010-10-13

    Transparent electrodes, indespensible in displays and solar cells, are currently dominated by indium tin oxide (ITO) films although the high price of indium, brittleness of films, and high vacuum deposition are limiting their applications. Recently, solution-processed networks of nanostructures such as carbon nanotubes (CNTs), graphene, and silver nanowires have attracted great attention as replacements. A low junction resistance between nanostructures is important for decreasing the sheet resistance. However, the junction resistances between CNTs and boundry resistances between graphene nanostructures are too high. The aspect ratios of silver nanowires are limited to ∼100, and silver is relatively expensive. Here, we show high-performance transparent electrodes with copper nanofiber networks by a low-cost and scalable electrospinning process. Copper nanofibers have ultrahigh aspect ratios of up to 100000 and fused crossing points with ultralow junction resistances, which result in high transmitance at low sheet resistance, e.g., 90% at 50 Ω/sq. The copper nanofiber networks also show great flexibility and stretchabilty. Organic solar cells using copper nanowire networks as transparent electrodes have a power efficiency of 3.0%, comparable to devices made with ITO electrodes. © 2010 American Chemical Society.

  10. Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode

    KAUST Repository

    Wu, Hui; Hu, Liangbing; Rowell, Michael W.; Kong, Desheng; Cha, Judy J.; McDonough, James R.; Zhu, Jia; Yang, Yuan; McGehee, Michael D.; Cui, Yi

    2010-01-01

    Transparent electrodes, indespensible in displays and solar cells, are currently dominated by indium tin oxide (ITO) films although the high price of indium, brittleness of films, and high vacuum deposition are limiting their applications. Recently, solution-processed networks of nanostructures such as carbon nanotubes (CNTs), graphene, and silver nanowires have attracted great attention as replacements. A low junction resistance between nanostructures is important for decreasing the sheet resistance. However, the junction resistances between CNTs and boundry resistances between graphene nanostructures are too high. The aspect ratios of silver nanowires are limited to ∼100, and silver is relatively expensive. Here, we show high-performance transparent electrodes with copper nanofiber networks by a low-cost and scalable electrospinning process. Copper nanofibers have ultrahigh aspect ratios of up to 100000 and fused crossing points with ultralow junction resistances, which result in high transmitance at low sheet resistance, e.g., 90% at 50 Ω/sq. The copper nanofiber networks also show great flexibility and stretchabilty. Organic solar cells using copper nanowire networks as transparent electrodes have a power efficiency of 3.0%, comparable to devices made with ITO electrodes. © 2010 American Chemical Society.

  11. Interface Study of ITO/ZnO and ITO/SnO2 Complex Transparent Conductive Layers and Their Effect on CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    Tingliang Liu

    2013-01-01

    Full Text Available Transparent ITO/ZnO and ITO/SnO2 complex conductive layers were prepared by DC- and RF-magnetron sputtering. Their structure and optical and electronic performances were studied by XRD, UV/Vis Spectroscopy, and four-probe technology. The interface characteristic and band offset of the ITO/ZnO, ITO/SnO2, and ITO/CdS were investigated by Ultraviolet Photoelectron Spectroscopy (UPS and X-ray Photoelectron Spectroscopy (XPS, and the energy band diagrams have also been determined. The results show that ITO/ZnO and ITO/SnO2 films have good optical and electrical properties. The energy barrier those at the interface of ITO/ZnO and ITO/SnO2 layers are almost 0.4 and 0.44 eV, which are lower than in ITO/CdS heterojunctions (0.9 eV, which is beneficial for the transfer and collection of electrons in CdTe solar cells and reduces the minority carrier recombination at the interface, compared to CdS/ITO. The effects of their use in CdTe solar cells were studied by AMPS-1D software simulation using experiment values obtained from ZnO, ITO, and SnO2. From the simulation, we confirmed the increase of Eff, FF, Voc, and Isc by the introduction of ITO/ZnO and ITO/SnO2 layers in CdTe solar cells.

  12. ITO/metal/ITO anode for efficient transparent white organic light-emitting diodes

    Science.gov (United States)

    Joo, Chul Woong; Lee, Jonghee; Sung, Woo Jin; Moon, Jaehyun; Cho, Nam Sung; Chu, Hye Yong; Lee, Jeong-Ik

    2015-02-01

    We report on the characteristics of enhanced and balanced white-light emission of transparent organic light emitting diodes (TOLEDs) by introducing anode that has a stack structure of ITO/metal/ITO (IMI). We have investigated an anode that has a stack structure of IMI. IMI anodes are typically composed of a thin Ag layer (˜15 nm) sandwiched between two ITO layers (˜50 nm). By inserting an Ag layer it was possible to achieve sheet resistance lower than 3 Ω/sq. and transmittance of 86% at a wavelength of 550 nm. The Ag insert can act as a reflective component. With its counterpart, a transparent cathode made of a thin Ag layer (˜15 nm), micro-cavities (MC) can be effectively induced in the OLED, leading to improved performance. Using an IMI anode, it was possible to significantly increase the current efficiencies. The current efficiencies of the top and the bottom of the IMI TOLED increased to 23.0 and 15.6 cd/A, respectively, while those of the white TOLED with the ITO anode were 20.7 and 5.1 cd/A, respectively. A 30% enhancement in the overall current efficiency was achieved by taking advantage of the MC effect and the low sheet resistance.

  13. Structured-gate organic field-effect transistors

    International Nuclear Information System (INIS)

    Aljada, Muhsen; Pandey, Ajay K; Velusamy, Marappan; Burn, Paul L; Meredith, Paul; Namdas, Ebinazar B

    2012-01-01

    We report the fabrication and electrical characteristics of structured-gate organic field-effect transistors consisting of a gate electrode patterned with three-dimensional pillars. The pillar gate electrode was over-coated with a gate dielectric (SiO 2 ) and solution processed organic semiconductors producing both unipolar p-type and bipolar behaviour. We show that this new structured-gate architecture delivers higher source-drain currents, higher gate capacitance per unit equivalent linear channel area, and enhanced charge injection (electrons and/or holes) versus the conventional planar structure in all modes of operation. For the bipolar field-effect transistor (FET) the maximum source-drain current enhancements in p- and n-channel mode were >600% and 28%, respectively, leading to p and n charge mobilities with the same order of magnitude. Thus, we have demonstrated that it is possible to use the FET architecture to manipulate and match carrier mobilities of material combinations where one charge carrier is normally dominant. Mobility matching is advantageous for creating organic logic circuit elements such as inverters and amplifiers. Hence, the method represents a facile and generic strategy for improving the performance of standard organic semiconductors as well as new materials and blends. (paper)

  14. Structured-gate organic field-effect transistors

    Science.gov (United States)

    Aljada, Muhsen; Pandey, Ajay K.; Velusamy, Marappan; Burn, Paul L.; Meredith, Paul; Namdas, Ebinazar B.

    2012-06-01

    We report the fabrication and electrical characteristics of structured-gate organic field-effect transistors consisting of a gate electrode patterned with three-dimensional pillars. The pillar gate electrode was over-coated with a gate dielectric (SiO2) and solution processed organic semiconductors producing both unipolar p-type and bipolar behaviour. We show that this new structured-gate architecture delivers higher source-drain currents, higher gate capacitance per unit equivalent linear channel area, and enhanced charge injection (electrons and/or holes) versus the conventional planar structure in all modes of operation. For the bipolar field-effect transistor (FET) the maximum source-drain current enhancements in p- and n-channel mode were >600% and 28%, respectively, leading to p and n charge mobilities with the same order of magnitude. Thus, we have demonstrated that it is possible to use the FET architecture to manipulate and match carrier mobilities of material combinations where one charge carrier is normally dominant. Mobility matching is advantageous for creating organic logic circuit elements such as inverters and amplifiers. Hence, the method represents a facile and generic strategy for improving the performance of standard organic semiconductors as well as new materials and blends.

  15. The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor.

    Science.gov (United States)

    Rashid, Jahwarhar Izuan Abdul; Yusof, Nor Azah; Abdullah, Jaafar; Hashim, Uda; Hajian, Reza

    2014-12-01

    This work describes the incorporation of SiNWs/AuNPs composite as a sensing material for DNA detection on indium tin-oxide (ITO) coated glass slide. The morphology of SiNWs/AuNPs composite as the modifier layer on ITO was studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The morphological studies clearly showed that SiNWs were successfully decorated with 20 nm-AuNPs using self-assembly monolayer (SAM) technique. The effective surface area for SiNWs/AuNPs-modified ITO enhanced about 10 times compared with bare ITO electrode. SiNWs/AuNPs nanocomposite was further explored as a matrix for DNA probe immobilization in detection of dengue virus as a bio-sensing model to evaluate its performance in electrochemical sensors. The hybridization of complementary DNA was monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as the redox indicator. The fabricated biosensor was able to discriminate significantly complementary, non-complementary and single-base mismatch oligonucleotides. The electrochemical biosensor was sensitive to target DNA related to dengue virus in the range of 9.0-178.0 ng/ml with detection limit of 3.5 ng/ml. In addition, SiNWs/AuNPs-modified ITO, regenerated up to 8 times and its stability was up to 10 weeks at 4°C in silica gel. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. High-current and low acceleration voltage arsenic ion implanted polysilicon-gate and source-drain electrode Si mos transistor

    International Nuclear Information System (INIS)

    Saito, Yasuyuki; Sugimura, Yoshiro; Sugihara, Michiyuki

    1993-01-01

    The fabrication process of high current arsenic (As) ion implanted polysilicon (Si) gate and source drain (SD) electrode Si n-channel metal oxide-semiconductor field effect transistor (MOSFET) was examined. Poly Si film n-type doping was performed by using high current (typical current: 2mA) and relatively low acceleration voltage (40keV) As ion implantation technique (Lintott series 3). It was observed that high dose As implanted poly Si films as is show refractoriness against radical fluorine excited by microwave. Using GCA MANN4800 (m/c ID No.2, resist: OFPR) mask pattern printing technique, the high current As ion implantation technique and radical fluorine gas phase etching (Chemical dry etching: CDE) technique, the n-channel Poly Si gate (ρs = ≅100Ω/□) enhancement MQSFETs(ρs source drain = ≅50Ω/□, SiO 2 gate=380 angstrom) with off-leak-less were obtained on 3 inch Czochralski grown 2Ωcm boron doped p type wafers (Osaka titanium). By the same process, a 8 bit single chip μ-processor with 26MHz full operation was performed

  17. Preparation and voltammetric characterization of electrodes coated with Langmuir-Schaefer ultrathin films of Nafion®

    Directory of Open Access Journals (Sweden)

    Bertoncello Paolo

    2003-01-01

    Full Text Available Ultrathin films of Nafion® perfluorinated polymer were deposited on indium-tin oxide electrodes (ITO by using Langmuir-Schaefer (LS technique, after optimization of the subphase composition conditions. Morphological characteristics of these coatings were obtained by Atomic Force Microscopy (AFM. Nafion® LS films showed a good uniformity and complete coverage of the electrode surface, however a different organization degree of the polymer layer was evidenced with respect to thin films deposited by spin-coating. ITO electrodes modified with Nafion® LS coatings preconcentrate by ion-exchange electroactive cations, such as Ru[(NH36]3+, dissolved in diluted solutions. The electroactive species is retained by the Nafion® LS coated ITO also after transfer of the modified electrode into pure supporting electrolyte. This allowed the use of the ruthenium complex as voltammetric probe to test diffusion phenomena within the Nafion® LS films. Apparent diffusion coefficients (Dapp of Ru[(NH36]3+ incorporated in Nafion® LS films were obtained by voltammetric measurements. Dapp values decrease slightly by increasing the amount of ruthenium complex incorporated in the ultrathin film. They are significantly lower than values typical for recasted Nafion® films, in agreement with the highly condensed nature of the Nafion® LS fims.

  18. Graphene as transmissive electrodes and aligning layers for liquid-crystal-based electro-optic devices.

    Science.gov (United States)

    Basu, Rajratan; Shalov, Samuel A

    2017-07-01

    In a conventional liquid crystal (LC) cell, polyimide layers are used to align the LC homogeneously in the cell, and transmissive indium tin oxide (ITO) electrodes are used to apply the electric field to reorient the LC along the field. It is experimentally presented here that monolayer graphene films on the two glass substrates can function concurrently as the LC aligning layers and the transparent electrodes to fabricate an LC cell, without using the conventional polyimide and ITO substrates. This replacement can effectively decrease the thickness of all the alignment layers and electrodes from about 100 nm to less than 1 nm. The interaction between LC and graphene through π-π electron stacking imposes a planar alignment on the LC in the graphene-based cell-which is verified using a crossed polarized microscope. The graphene-based LC cell exhibits an excellent nematic director reorientation process from planar to homeotropic configuration through the application of an electric field-which is probed by dielectric and electro-optic measurements. Finally, it is shown that the electro-optic switching is significantly faster in the graphene-based LC cell than in a conventional ITO-polyimide LC cell.

  19. Nanoarchitectured current collector for high rate capability of polyaniline based supercapacitor electrode

    International Nuclear Information System (INIS)

    Sumboja, Afriyanti; Wang Xu; Yan Jian; Lee, Pooi See

    2012-01-01

    Highlights: ► Preparation of organic/inorganic coaxial nanowires. ► Modifying current collector to improve both capacitance and rate capability simultaneously. ► Improvement in the charge transport process resulted in the superior rate capability. - Abstract: Indium tin oxide (ITO) nanowires array was used as current collector and building block for polyaniline based supercapacitor. Thin polyaniline coating was deposited on the nanowires and resulted in the formation of polyaniline ITO coaxial nanowires. This hybrid heterostructure design improved the specific capacitance, rate capability, and cycling stability of the supercapacitor electrode. Good conductivity harnessed by these directly grown ITO nanowires is useful to improve the charge transport during the charge discharge processes which were confirmed by the electrochemical impedance spectroscopy measurement. Electrochemical test in 1 M H 2 SO 4 at 4 A g −1 delivered specific capacitance as high as 738 F g −1 . In addition, sub-micron size of the intercoaxial nanowires spacing ensures the fast penetration of electrolyte ions which resulted in the superior rate capability (98% capacitance retention when applied current was varied from 4 to 25 A g −1 ). The capacitance retention is significantly higher as compared to other polyaniline composite electrodes and it is one of the best reported performances to date for polyaniline based supercapacitor electrodes. This work illustrates a promising platform that can be adopted for other redox nanocomposite materials while reaping the benefit as low cost and binder free electrode material for supercapacitor application.

  20. Large-Area CVD-Grown Sub-2 V ReS2 Transistors and Logic Gates.

    Science.gov (United States)

    Dathbun, Ajjiporn; Kim, Youngchan; Kim, Seongchan; Yoo, Youngjae; Kang, Moon Sung; Lee, Changgu; Cho, Jeong Ho

    2017-05-10

    We demonstrated the fabrication of large-area ReS 2 transistors and logic gates composed of a chemical vapor deposition (CVD)-grown multilayer ReS 2 semiconductor channel and graphene electrodes. Single-layer graphene was used as the source/drain and coplanar gate electrodes. An ion gel with an ultrahigh capacitance effectively gated the ReS 2 channel at a low voltage, below 2 V, through a coplanar gate. The contact resistance of the ion gel-gated ReS 2 transistors with graphene electrodes decreased dramatically compared with the SiO 2 -devices prepared with Cr electrodes. The resulting transistors exhibited good device performances, including a maximum electron mobility of 0.9 cm 2 /(V s) and an on/off current ratio exceeding 10 4 . NMOS logic devices, such as NOT, NAND, and NOR gates, were assembled using the resulting transistors as a proof of concept demonstration of the applicability of the devices to complex logic circuits. The large-area synthesis of ReS 2 semiconductors and graphene electrodes and their applications in logic devices open up new opportunities for realizing future flexible electronics based on 2D nanomaterials.

  1. Amperometric morphine sensing using a molecularly imprinted polymer-modified electrode

    International Nuclear Information System (INIS)

    Yeh, W.-M.; Ho, K.-C.

    2005-01-01

    This study incorporates morphine into a molecularly imprinted polymer (MIP) for the amperometric detection of morphine. The polymer, poly(3,4-ethylenedioxythiophene), PEDOT, is an electroactive film that catalyzes morphine oxidation and lowers the oxidization potential on an indium tin oxide (ITO) electrode. The MIP-PEDOT modified electrode is prepared by electropolymerizing PEDOT onto an ITO electrode in a 0.1 M LiClO 4 solution with template addition (morphine). After template molecule extraction, the oxidizing current of the MIP-PEDOT modified electrode is measured in a 0.1 M KCl solution (pH = 5.3) at 0.75 V (versus Ag/AgCl/sat'd KCl) with the morphine concentration varying in the 0.1-5 mM range. A linear range, displaying the relationship between steady-state currents and morphine concentrations, from 0.1 to 1 mM, is obtained. The proposed amperometric sensor could be used for morphine detection with a sensitivity of 91.86 μA/cm 2 per mM. A detection limit of 0.2 mM at a signal-to-noise ratio of 3 is achieved. Moreover, the proposed method can discriminate between morphine and its analogs, such as codeine

  2. Gate voltage and drain current stress instabilities in amorphous In–Ga–Zn–O thin-film transistors with an asymmetric graphene electrode

    Directory of Open Access Journals (Sweden)

    Joonwoo Kim

    2015-09-01

    Full Text Available The gate voltage and drain current stress instabilities in amorphous In–Ga–Zn–O thin-film transistors (a-IGZO TFTs having an asymmetric graphene electrode structure are studied. A large positive shift in the threshold voltage, which is well fitted to a stretched-exponential equation, and an increase in the subthreshold slope are observed when drain current stress is applied. This is due to an increase in temperature caused by power dissipation in the graphene/a-IGZO contact region, in addition to the channel region, which is different from the behavior in a-IGZO TFTs with a conventional transparent electrode.

  3. Nitrite reduction on a multimetallic porphyrin/polyoxotungstate layer-by-layer modified electrodes

    International Nuclear Information System (INIS)

    García, Macarena; Honores, Jessica; Quezada, Diego; Díaz, Carlos; Dreyse, Paulina; Celis, Freddy; Kubiak, Clifford P.; Canzi, Gabriele; Guzmán, Fernando

    2016-01-01

    Electro and photoelectrochemical reduction of nitrite in aqueous solution was studied using a multielectrocatalysts modified ITO electrode. ITO modification was carried out using the layer-by-layer (LBL) method, where sequential electrostatic assemblies were formed using a μ-(meso-5,10,15,20-tetra(pirydil)porphyrin)tetrakis{bis(bipyridine)chloride ruthenium (II)} [MTRP] n+ , coordinated in its central cavity with Mn(III), Zn(II) or Ni(II) as a cationic layer, and polyoxotungstate [SiW 12 O 40 ] 4− as the anionic layer. Electrochemical measurements and UV–vis spectroscopy were used to monitor the modification process. Optimal results were obtained when three layers were deposited onto the ITO surface and were stable in aqueous solution. The order of the multilayer formation was explored by comparing a modified electrode where [Zn(II)TRP] 4+ was the outermost layer with an electrode where [SiW 12 O 40 ] 4− was the outer layer. Results show that the best performing electrode is one with [SiW 12 O 40 ] 4− as the outer layer. Nitrite reduction on these electrode surfaces was studied in dark conditions and under light irradiation. Potential controlled electrolysis experiments were also performed, finding hydroxylamine, hydrazine and ammonia as the reduction products in dark conditions. Under light irradiation, only hydrazine and ammonia were found and, we observed an increase in the amount of obtained product. In this case, the electrolysis was carried out 150 mV less and half of time than in dark conditions. These results show that the combination of light and potential give rise to an improvement in the electrocatalytic properties of the modified electrodes. Continuous photolysis and IR spectroelectrochemical experiments were carried out to determinate the nature of this phenomena, evidencing the formation of an intermediary species between nitrite and [Mn(III)TRP] 5+.

  4. Transparent conductive oxides and alternative transparent electrodes for organic photovoltaics and OLEDs; Transparente leitfaehige Elektroden. Oxide und alternative Materialien fuer die organische Photovoltaik und OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Meskamp, Lars; Sachse, Christoph; Kim, Yong Hyun; Furno, Mauro [Technische Univ. Dresden (DE). Inst. fuer Angewandte Photophysik (IAPP); May, Christian [Fraunhofer Institut fuer Photonische Mikrosysteme (IPMS), Dresden (Germany); Leo, Karl [Technische Univ. Dresden (DE). Inst. fuer Angewandte Photophysik (IAPP); Fraunhofer Institut fuer Photonische Mikrosysteme (IPMS), Dresden (Germany)

    2012-08-15

    Organic, photoactive devices, such as OLEDs or organic solar cells, currently use indium tin oxide (ITO) as transparent electrode. Whereas ITO is industry-proven for many years and shows very good electrical and optical properties, its application for low-cost and flexible devices might not be optimal. For such applications innovative technologies such as network-based metal nanowire or carbon nanotube electrodes, graphene, conductive polymers, metal thin-films and alternative transparent conductive oxides emerge. Although some of these technologies are rather experimental and far from application, some of them have the potential to replace ITO in selected applications. (orig.)

  5. Silver nanowire-graphene hybrid transparent conductive electrodes for highly efficient inverted organic solar cells

    Science.gov (United States)

    Ye, Neng; Yan, Jielin; Xie, Shuang; Kong, Yuhan; Liang, Tao; Chen, Hongzheng; Xu, Mingsheng

    2017-07-01

    Silver nanowires (AgNWs) and graphene are both promising candidates as a transparent conductive electrode (TCE) to replace expensive and fragile indium tin oxide (ITO) TCE. A synergistically optimized performance is expected when the advantages of AgNWs and graphene are combined. In this paper, the AgNW-graphene hybrid electrode is constructed by depositing a graphene layer on top of the network of AgNWs. Compared with the pristine AgNWs electrode, the AgNW-graphene TCE exhibits reduced sheet resistance, lower surface roughness, excellent long-term stability, and corrosion resistance in corrosive liquids. The graphene layer covering the AgNWs provides additional conduction pathways for electron transport and collection by the electrode. Benefiting from these advantages of the hybrid electrodes, we achieve a power conversion efficiency of 8.12% of inverted organic solar cells using PTB7:PC71BM as the active layer, which is compared to that of the solar cells based on standard ITO TCE but about 10% higher than that based on AgNWs TCE.

  6. Electrical circuit model of ITO/AZO/Ge photodetector.

    Science.gov (United States)

    Patel, Malkeshkumar; Kim, Joondong

    2017-10-01

    In this data article, ITO/AZO/Ge photodetector was investigated for electrical circuit model. Due to the double (ITO and AZO) transparent metal-oxide films (DOI:10.1016/j.mssp.2016.03.007) (Yun et al., 2016) [1], the Ge heterojunction device has a better interface quality due to the AZO layer with a low electrical resistance due to the ITO layer (Yun et al., 2015) [2]. The electrical and interfacial benefitted ITO/AZO/Ge heterojunction shows the quality Schottky junction. In order to investigate the device, the ITO/AZO/Ge heterojunction was analyzed by R-C circuit model using the impedance spectroscopy.

  7. Microwave exposure as a fast and cost-effective alternative of oxygen plasma treatment of indium-tin oxide electrode for application in organic solar cells

    Science.gov (United States)

    Soultati, Anastasia; Kostis, Ioannis; Papadimitropoulos, Giorgos; Zeniou, Angelos; Gogolides, Evangelos; Alexandropoulos, Dimitris; Vainos, Nikos; Davazoglou, Dimitris; Speliotis, Thanassis; Stathopoulos, Nikolaos A.; Argitis, Panagiotis; Vasilopoulou, Maria

    2017-12-01

    Pre-treatment methods are commonly employed to clean as well as to modify electrode surfaces. Many previous reports suggest that modifying the surface properties of indium tin oxide (ITO) by oxygen plasma treatment is a crucial step for the fabrication of high performance organic solar cells. In this work, we propose a fast and cost-effective microwave exposure step for the modification of the surface properties of ITO anode electrodes used in organic solar cells. It is demonstrated that a short microwave exposure improves the hydrophilicity and reduces the roughness of the ITO surface, as revealed by contact angle and atomic force microscopy (AFM) measurements, respectively, leading to a better quality of the PEDOT:PSS film coated on top of it. Similar results were obtained with the commonly used oxygen plasma treatment of ITO suggesting that microwave exposure is an effective process for modifying the surface properties of ITO with the benefits of low-cost, easy and fast processing. In addition, the influence of the microwave exposure of ITO anode electrode on the performance of an organic solar cell based on the poly(3-hexylthiophene):[6,6]-phenyl C70 butyric acid methyl ester (P3HT:PC70BM) blend is investigated. The 71% efficiency enhancement obtained in the microwave annealed-ITO based device as compared to the device with the as-received ITO was mainly attributed to the improvement in the short circuit current (J sc) and decreased leakage current caused by the reduced series and the increased shunt resistances and also by the higher charge generation efficiency, and the reduced recombination losses.

  8. A laboratory scale approach to polymer solar cells using one coating/printing machine, flexible substrates, no ITO, no vacuum and no spincoating

    DEFF Research Database (Denmark)

    Carlé, Jon Eggert; Andersen, Thomas Rieks; Helgesen, Martin

    2013-01-01

    Printing of the silver back electrode under ambient conditions using simple laboratory equipment has been the missing link to fully replace evaporated metal electrodes. Here we demonstrate how a recently developed roll coater is further developed into a single machine that enables processing of a......–tin-oxide (ITO) or vacuum evaporation steps making it a significant step beyond the traditional laboratory polymer solar cell processing methods involving spin coating and metal evaporation....

  9. F2-laser patterning of indium tin oxide (ITO) thin film on glass substrate

    International Nuclear Information System (INIS)

    Xu, M.Y.; Li, J.; Herman, P.R.; Lilge, L.D.

    2006-01-01

    This paper reports the controlled micromachining of 100 nm thick indium tin oxide (ITO) thin films on glass substrates with a vacuum-ultraviolet 157 nm F 2 laser. Partial to complete film removal was observed over a wide fluence window from 0.49 J/cm 2 to an optimized single pulse fluence of 4.5 J/cm 2 for complete film removal. Optical microscopy, atomic force microscopy, and energy dispersive X-ray analysis show little substrate or collateral damage by the laser pulse which conserved the stoichiometry, optical transparency and electrical conductivity of ITO coating adjacent to the trenches. At higher fluence, a parallel micron sized channel can be etched in the glass substrate. The high photon energy and top-hat beam homogenized optical system of the F 2 laser opens new means for direct structuring of electrodes and microchannels in biological microfluidic systems or in optoelectronics. (orig.)

  10. Correlation between photoelectrochemical behaviour and photoelectrocatalytic activity and scaling-up of P25-TiO2 electrodes

    International Nuclear Information System (INIS)

    Pablos, Cristina; Marugán, Javier; Grieken, Rafael van; Adán, Cristina; Riquelme, Ainhoa; Palma, Jesús

    2014-01-01

    The use of TiO 2 electrodes may solve the two main drawbacks of photocatalytic processes: i) the necessity of recovering the catalyst and ii) the low quantum yield in the use of the radiation. This work focuses on the correlation between the photoelectrochemical properties of TiO 2 electrodes and their activity for the photoelectrocatalytic oxidation of methanol. Particulate TiO 2 electrodes prepared by deposition of P25-TiO 2 nanoparticles on titanium (TiO 2 /Ti) or conductive glass support (TiO 2 /ITO) seem to be effective for charge carrier transference on TiO 2 surface favouring the formation of ·OH radicals and consequently, the oxidation of molecules. In contrast, thermal TiO 2 electrodes prepared by annealing of titanium (Ti) present better properties for charge carrier separation as a consequence of the application of a potential bias. Despite reducing charge carrier recombination by applying an electric potential bias, the activity of thermal electrodes remains lower than that of P25-particulate electrodes. TiO 2 structure of P25-particulate electrodes does not completely allow developing a potential gradient. However, their adequate TiO 2 layer characteristics for charge carrier transfer lead to a reduction in charge carrier recombination making up for the lack of charge carrier separation when applying an electric potential bias. TiO 2 /Ti showed the highest values of activity. Therefore, the combination of the suitable TiO 2 surface properties for charge carrier transfer with an adequate conductive support seems to increase the properties of the electrode for allowing charge carrier separation. The scaling-up calculations for a TiO 2 /ITO electrode do lead to good estimations of the activity and photocurrent of larger electrodes since this photoanode made from ITO as conductive support does not seem to be significantly affected by the applied potential bias

  11. Electrical circuit model of ITO/AZO/Ge photodetector

    Directory of Open Access Journals (Sweden)

    Malkeshkumar Patel

    2017-10-01

    Full Text Available In this data article, ITO/AZO/Ge photodetector was investigated for electrical circuit model. Due to the double (ITO and AZO transparent metal-oxide films (DOI:10.1016/j.mssp.2016.03.007 (Yun et al., 2016 [1], the Ge heterojunction device has a better interface quality due to the AZO layer with a low electrical resistance due to the ITO layer (Yun et al., 2015 [2]. The electrical and interfacial benefitted ITO/AZO/Ge heterojunction shows the quality Schottky junction. In order to investigate the device, the ITO/AZO/Ge heterojunction was analyzed by R–C circuit model using the impedance spectroscopy.

  12. Two-dimensional threshold voltage model and design considerations for gate electrode work function engineered recessed channel nanoscale MOSFET: I

    International Nuclear Information System (INIS)

    Chaujar, Rishu; Kaur, Ravneet; Gupta, Mridula; Gupta, R S; Saxena, Manoj

    2009-01-01

    This paper discusses a threshold voltage model for novel device structure: gate electrode work function engineered recessed channel (GEWE-RC) nanoscale MOSFET, which combines the advantages of both RC and GEWE structures. In part I, the model accurately predicts (a) surface potential, (b) threshold voltage and (c) sub-threshold slope for single material gate recessed channel (SMG-RC) and GEWE-RC structures. Part II focuses on the development of compact analytical drain current model taking into account the transition regimes from sub-threshold to saturation. Furthermore, the drain conductance evaluation has also been obtained, reflecting relevance of the proposed device for analogue design. The analysis takes into account the effect of gate length and groove depth in order to develop a compact model suitable for device design. The analytical results predicted by the model confirm well with the simulated results. Results in part I also provide valuable design insights in the performance of nanoscale GEWE-RC MOSFET with optimum threshold voltage and negative junction depth (NJD), and hence serves as a tool to optimize important device and technological parameters for 40 nm technology

  13. Interface engineering and reliability characteristics of hafnium dioxide with poly silicon gate and dual metal (ruthenium-tantalum alloy, ruthenium) gate electrode for beyond 65 nm technology

    Science.gov (United States)

    Kim, Young-Hee

    Chip density and performance improvements have been driven by aggressive scaling of semiconductor devices. In both logic and memory applications, SiO 2 gate dielectrics has reached its physical limit, direct tunneling resulting from scaling down of dielectrics thickness. Therefore high-k dielectrics have attracted a great deal of attention from industries as the replacement of conventional SiO2 gate dielectrics. So far, lots of candidate materials have been evaluated and Hf-based high-k dielectrics were chosen to the promising materials for gate dielectrics. However, lots of issues were identified and more thorough researches were carried out on Hf-based high-k dielectrics. For instances, mobility degradation, charge trapping, crystallization, Fermi level pinning, interface engineering, and reliability studies. In this research, reliability study of HfO2 were explored with poly gate and dual metal (Ru-Ta alloy, Ru) gate electrode as well as interface engineering. Hard breakdown and soft breakdown were compared and Weibull slope of soft breakdown was smaller than that of hard breakdown, which led to a potential high-k scaling issue. Dynamic reliability has been studied and the combination of trapping and detrapping contributed the enhancement of lifetime projection. Polarity dependence was shown that substrate injection might reduce lifetime projection as well as it increased soft breakdown behavior. Interface tunneling mechanism was suggested with dual metal gate technology. Soft breakdown (l st breakdown) was mainly due to one layer breakdown of bi-layer structure. Low weibull slope was in part attributed to low barrier height of HfO 2 compared to interface layer. Interface layer engineering was thoroughly studied in terms of mobility, swing, and short channel effect using deep sub-micron MOSFET devices. In fact, Hf-based high-k dielectrics could be scaled down to below EOT of ˜10A and it successfully achieved the competitive performance goals. However, it is

  14. Role of indium tin oxide electrode on the microstructure of self-assembled WO3-BiVO4 hetero nanostructures

    Science.gov (United States)

    Song, Haili; Li, Chao; Van, Chien Nguyen; Dong, Wenxia; Qi, Ruijuan; Zhang, Yuanyuan; Huang, Rong; Chu, Ying-Hao; Duan, Chun-Gang

    2017-11-01

    Self-assembled WO3-BiVO4 nanostructured thin films were grown on a (001) yttrium stabilized zirconia (YSZ) substrate by the pulsed laser deposition method with and without the indium tin oxide (ITO) bottom electrode. Their microstructures including surface morphologies, crystalline phases, epitaxial relationships, interface structures, and composition distributions were investigated by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray energy dispersive spectroscopy. In both samples, WO3 formed nanopillars embedded into the monoclinic BiVO4 matrix with specific orientation relationships. In the sample with the ITO bottom electrode, an atomically sharp BiVO4/ITO interface was formed and the orthorhombic WO3 nanopillars were grown on a relaxed BiVO4 buffer layer with a mixed orthorhombic and hexagonal WO3 transition layer. In contrast, a thin amorphous layer appears at the interfaces between the thin film and the YSZ substrate in the sample without the ITO electrode. In addition, orthorhombic Bi2WO6 lamellar nanopillars were formed between WO3 and BiVO4 due to interdiffusion. Such a WO3-Bi2WO6-BiVO4 double heterojunction photoanode may promote the photo-generated charge separation and further improve the photoelectrochemical water splitting properties.

  15. The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Jahwarhar Izuan Abdul [Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Department of Chemistry and Biology, Centre for Defense Foundation Studies, National Defense University of Malaysia, Sungai Besi Camp, 57000 Kuala Lumpur (Malaysia); Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Yusof, Nor Azah, E-mail: azahy@upm.edu.my [Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Abdullah, Jaafar [Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Hashim, Uda [Institute of Nanoelectronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); Hajian, Reza, E-mail: rezahajian@upm.edu.my [Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2014-12-01

    This work describes the incorporation of SiNWs/AuNPs composite as a sensing material for DNA detection on indium tin-oxide (ITO) coated glass slide. The morphology of SiNWs/AuNPs composite as the modifier layer on ITO was studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The morphological studies clearly showed that SiNWs were successfully decorated with 20 nm-AuNPs using self-assembly monolayer (SAM) technique. The effective surface area for SiNWs/AuNPs-modified ITO enhanced about 10 times compared with bare ITO electrode. SiNWs/AuNPs nanocomposite was further explored as a matrix for DNA probe immobilization in detection of dengue virus as a bio-sensing model to evaluate its performance in electrochemical sensors. The hybridization of complementary DNA was monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as the redox indicator. The fabricated biosensor was able to discriminate significantly complementary, non-complementary and single-base mismatch oligonucleotides. The electrochemical biosensor was sensitive to target DNA related to dengue virus in the range of 9.0–178.0 ng/ml with detection limit of 3.5 ng/ml. In addition, SiNWs/AuNPs-modified ITO, regenerated up to 8 times and its stability was up to 10 weeks at 4 °C in silica gel. - Highlights: • A sensitive biosensor is presented for detection of dengue virus. • SiNWs and AuNPs used as nanocomposite layers on ITO for construction of biosensor • The detection mechanism is based on the interaction of MB with DNA bonded on AuNPs. • The reduction signal of MB decreases upon complementary hybridization.

  16. The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor

    International Nuclear Information System (INIS)

    Rashid, Jahwarhar Izuan Abdul; Yusof, Nor Azah; Abdullah, Jaafar; Hashim, Uda; Hajian, Reza

    2014-01-01

    This work describes the incorporation of SiNWs/AuNPs composite as a sensing material for DNA detection on indium tin-oxide (ITO) coated glass slide. The morphology of SiNWs/AuNPs composite as the modifier layer on ITO was studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The morphological studies clearly showed that SiNWs were successfully decorated with 20 nm-AuNPs using self-assembly monolayer (SAM) technique. The effective surface area for SiNWs/AuNPs-modified ITO enhanced about 10 times compared with bare ITO electrode. SiNWs/AuNPs nanocomposite was further explored as a matrix for DNA probe immobilization in detection of dengue virus as a bio-sensing model to evaluate its performance in electrochemical sensors. The hybridization of complementary DNA was monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as the redox indicator. The fabricated biosensor was able to discriminate significantly complementary, non-complementary and single-base mismatch oligonucleotides. The electrochemical biosensor was sensitive to target DNA related to dengue virus in the range of 9.0–178.0 ng/ml with detection limit of 3.5 ng/ml. In addition, SiNWs/AuNPs-modified ITO, regenerated up to 8 times and its stability was up to 10 weeks at 4 °C in silica gel. - Highlights: • A sensitive biosensor is presented for detection of dengue virus. • SiNWs and AuNPs used as nanocomposite layers on ITO for construction of biosensor • The detection mechanism is based on the interaction of MB with DNA bonded on AuNPs. • The reduction signal of MB decreases upon complementary hybridization

  17. High precision patterning of ITO using femtosecond laser annealing process

    International Nuclear Information System (INIS)

    Cheng, Chung-Wei; Lin, Cen-Ying

    2014-01-01

    Highlights: • We have reported a process of fabrication of crystalline indium tin oxide (c-ITO) patterns using femtosecond laser-induced crystallization with a Gaussian beam profile followed by chemical etching. • The experimental results have demonstrated that the ablation and crystallization threshold fluences of a-ITO thin film are well-defined, the line width of the c-ITO patterns is controllable. • Fast fabrication of the two parallel sub-micro (∼0.5 μm) c-ITO line patterns using a single femtosecond laser beam and a single scanning path can be achieved. • A long-length sub-micro c-ITO line pattern is fabricated, and the feasibility of fabricating c-ITO patterns is confirmed, which are expected to be used in micro-electronics devices. - Abstract: High precision patterning of crystalline indium tin oxide (c-ITO) patterns on amorphous ITO (a-ITO) thin films by femtosecond laser-induced crystallization with a Gaussian beam profile followed by chemical etching is demonstrated. In the proposed approach, the a-ITO thin film is selectively transformed into a c-ITO structure via a low heat affect zone and the well-defined thresholds (ablation and crystallization) supplied by the femtosecond laser pulse. The experimental results show that by careful control of the laser fluence above the crystallization threshold, c-ITO patterns with controllable line widths and ridge-free characteristics can be accomplished. By careful control of the laser fluence above the ablation threshold, fast fabrication of the two parallel sub-micro c-ITO line patterns using a single femtosecond laser beam and single scanning path can be achieved. Along-length sub-micro c-ITO line pattern is fabricated, and the feasibility of fabricating c-ITO patterns is confirmed, which are expected to be used in micro-electronics devices

  18. Chlorinated indium tin oxide electrode by InCl{sub 3} aqueous solution for high-performance organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yun; Wang, Bo; Wang, Zhao-Kui, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn; Liao, Liang-Sheng, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China); Zhou, Dong-Ying [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou, Jiangsu 215123 (China)

    2016-04-11

    The authors develop a facile and effective method to produce the chlorinated indium tin oxide (Cl-ITO) treated by InCl{sub 3} aqueous solution and UV/ozone. The work function of the Cl-ITO achieved by this treatment is as high as 5.69 eV, which is increased by 1.09 eV compared with that of the regular ITO without any treatment. Further investigation proved that the enhancement of the work function is attributed to the formation of In-Cl bonds on the Cl-ITO surface. Green phosphorescent organic light-emitting devices based on the Cl-ITO electrodes exhibit excellent electroluminescence performance, elongating lifetime due to the improvement in hole injection.

  19. Light scattering effect of ITO:Zr/AZO films deposited on periodic textured glass surface morphologies for silicon thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Shahzada Qamar [Sungkyunkwan University, Department of Energy Science, Suwon (Korea, Republic of); COMSATS Institute of Information Technology, Department of Physics, Lahore (Pakistan); Kwon, Gi Duk; Kim, Sunbo; Balaji, Nagarajan; Shin, Chonghoon; Kim, Sangho; Khan, Shahbaz; Pribat, Didier [Sungkyunkwan University, Department of Energy Science, Suwon (Korea, Republic of); Ahn, Shihyun; Le, Anh Huy Tuan; Park, Hyeongsik; Raja, Jayapal; Lee, Youn-Jung [Sungkyunkwan University, College of Information and Communication Engineering, Suwon (Korea, Republic of); Razaq, Aamir [COMSATS Institute of Information Technology, Department of Physics, Lahore (Pakistan); Velumani, S. [Sungkyunkwan University, College of Information and Communication Engineering, Suwon (Korea, Republic of); Department of Electrical Engineering (SEES), Mexico City (Mexico); Yi, Junsin [Sungkyunkwan University, Department of Energy Science, Suwon (Korea, Republic of); Sungkyunkwan University, College of Information and Communication Engineering, Suwon (Korea, Republic of)

    2015-09-15

    Various SF{sub 6}/Ar plasma-textured periodic glass surface morphologies for high transmittance, haze ratio and low sheet resistance of ITO:Zr films are reported. The SF{sub 6}/Ar plasma-textured glass surface morphologies were changed from low aspect ratio to high aspect ratio with the increase in RF power from 500 to 600 W. The micro- and nano-size features of textured glass surface morphologies enhanced the haze ratio in visible as well as NIR wavelength region. Micro-size textured features also influenced the sheet resistance and electrical characteristics of ITO:Zr films due to step coverage. The ITO:Zr/AZO bilayer was used as front TCO electrode for p-i-n amorphous silicon thin film solar cells with current density-voltage characteristics as: V{sub oc} = 875 mV, FF = 70.90 %, J{sub sc} = 11.31 mA/cm{sup 2}, η = 7.02 %. (orig.)

  20. Multi-material gate poly-crystalline thin film transistors: Modeling and simulation for an improved gate transport efficiency

    International Nuclear Information System (INIS)

    Sehgal, Amit; Mangla, Tina; Gupta, Mridula; Gupta, R.S.

    2008-01-01

    In this work, a two-dimensional potential distribution formulation is presented for multi-material gate poly-crystalline silicon thin film transistors. The developed formulation incorporates the effects due to traps and grain-boundaries. In short-channel devices, short-channel effects and drain-induced barrier lowering (DIBL) effect exists, and are accounted for in the analysis. The work aims at the reduction of DIBL effect and grain-boundary effects i.e. to reduce the potential barriers generated in the channel by employing gate-engineered structures. A study of work-functions and electrode lengths of multi-material gate electrode is done to suppress the potential barriers, hot electron effect and to improve the carrier transport efficiency. Green's function approach is adopted for the two-dimensional potential solution. The results obtained show a good agreement with simulated results, thus, demonstrating the validity of our model

  1. Decoupling optical and electronic optimization of organic solar cells using high-performance temperature-stable TiO2/Ag/TiO2 electrodes

    Directory of Open Access Journals (Sweden)

    Kwang-Dae Kim

    2015-10-01

    Full Text Available An electrode structured with a TiO2/Ag/TiO2 (TAT multilayer as indium tin oxide (ITO replacement with a superior thermal stability has been successfully fabricated. This electrode allows to directly tune the optical cavity mode towards maximized photocurrent generation by varying the thickness of the layers in the sandwich structure. This enables tailored optimization of the transparent electrode for different organic thin film photovoltaics without alteration of their electro-optical properties. Organic photovoltaic featuring our TAT multilayer shows an improvement of ∼12% over the ITO reference and allows power conversion efficiencies (PCEs up to 8.7% in PTB7:PC71BM devices.

  2. Highly transparent conductive ITO/Ag/ITO trilayer films deposited by RF sputtering at room temperature

    Directory of Open Access Journals (Sweden)

    Ningyu Ren

    2017-05-01

    Full Text Available ITO/Ag/ITO (IAI trilayer films were deposited on glass substrate by radio frequency magnetron sputtering at room temperature. A high optical transmittance over 94.25% at the wavelength of 550 nm and an average transmittance over the visual region of 88.04% were achieved. The calculated value of figure of merit (FOM reaches 80.9 10-3 Ω-1 for IAI films with 15-nm-thick Ag interlayer. From the morphology and structural characterization, IAI films could show an excellent correlated electric and optical performance if Ag grains interconnect with each other on the bottom ITO layer. These results indicate that IAI trilayer films, which also exhibit low surface roughness, will be well used in optoelectronic devices.

  3. A new architecture as transparent electrodes for solar and IR applications based on photonic structures via soft lithography

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Ping [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Transparent conducting electrodes with the combination of high optical transmission and good electrical conductivity are essential for solar energy harvesting and electric lighting devices. Currently, indium tin oxide (ITO) is used because ITO offers relatively high transparency (>80%) to visible light and low sheet resistance (Rs = 10 ohms/square (Ω /2)) for electrical conduction. However, ITO is costly due to limited indium reserves, and it is brittle. These disadvantages have motivated the search for other conducting electrodes with similar or better properties. There has been research on a variety of electrode structures involving carbon nanotube networks, graphene films, nanowire and nanopatterned meshes and grids. Due to their novel characteristics in light manipulation and collection, photonic crystal structures show promise for further improvement. Here, we report on a new architecture consisting of nanoscale high aspect ratio metallic photonic structures as transparent electrodes fabricated via a combination of processes. For (Au) and silver (Ag) structures, the visible light transmission can reach as high as 80%, and the sheet resistance of the structure can be as low as 3.2Ω /2. The optical transparency of the high aspect ratio metal structures at visible wavelength range is comparable to that of ITO glass, while their sheet resistance is more than 3 times lower, which indicates a much higher electrical conductivity of the metal structures. Furthermore, the high aspect ratio metal structures have very high infrared (IR) reflection (90%) for the transverse magnetic (TM) mode, which can lead to the development of fabrication of metallic structures as IR filters for heat control applications. Investigations of interdigitated structures based on the high aspect ratio metal electrodes are ongoing to study the feasibility in smart window applications in light transmission modulation.

  4. Electrochemical deposition of gold-platinum alloy nanoparticles on an indium tin oxide electrode and their electrocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Song Yan; Ma Yuting; Wang Yuan [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China); Di Junwei, E-mail: djw@suda.edu.c [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China); Tu Yifeng [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China)

    2010-07-01

    Gold-platinum (Au-Pt) hybrid nanoparticles (Au-PtNPs) were successfully deposited on an indium tin oxide (ITO) surface using a direct electrochemical method. The resulting nanoparticles were characterized by scanning electron microscopy (SEM), UV-vis spectroscopy, X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and electrochemical methods. It was found that the size of the Au-PtNPs depends on the number of electrodeposition cycles. Au-PtNPs obtained by 20 electrodeposition cycles had a cauliflower-shaped structure with an average diameter of about 60 nm. These Au-PtNPs exhibited alloy properties. Electrochemical measurements showed that the charge transfer resistivity was significantly decreased for the Au-PtNPs/ITO electrode. Additionally, the Au-PtNPs displayed an electrocatalytic activity for nitrite oxidation and oxygen reduction. The Au-PtNPs/ITO electrodes reported herein could possibly be used as electrocatalysts and sensors.

  5. Study of Ag/RGO/ITO sandwich structure for resistive switching behavior deposited on plastic substrate

    Science.gov (United States)

    Vartak, Rajdeep; Rag, Adarsh; De, Shounak; Bhat, Somashekhara

    2018-05-01

    We report here the use of facile and environmentally benign way synthesized reduced graphene oxide (RGO) for low-voltage non-volatile memory device as charge storing element. The RGO solutions have been synthesized using electrochemical exfoliation of battery electrode. The solution processed based RGO solution is suitable for large area and low-cost processing on plastic substrate. Room-temperature current-voltage characterisation has been carried out in Ag/RGO/ITO PET sandwich configuration to study the type of trap distribution. It is observed that in the low-voltage sweep, ohmic current is the main mechanism of current flow and trap filled/assisted conduction is observed at high-sweep voltage region. The Ag/RGO/ITO PET sandwich structure showed bipolar resistive switching behavior. These mechanisms can be analyzed based on oxygen availability and vacancies in the RGO giving rise to continuous least resistive path (conductive) and high resistance path along the structure. An Ag/RGO/ITO arrangement demonstrates long retention time with low operating voltage, low set/reset voltage, good ON/OFF ratio of 103 (switching transition between lower resistance state and higher resistance state and decent switching performance. The RGO memory showed decent results with an almost negligible degradation in switching properties which can be used for low-voltage and low-cost advanced flexible electronics.

  6. Effects of a base coating used for electropolymerization of poly(3,4-ethylenedioxythiophene) on indium tin oxide electrode

    International Nuclear Information System (INIS)

    Wang, X.J.; Wong, K.Y.

    2006-01-01

    Electropolymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) films on indium tin oxide (ITO), using a very thin PEDOT:poly(styrene sulfonate) (PEDOT:PSS) film as a base coating, was carried out in a non-aqueous solution containing the monomer, an electrolyte and propylene carbonate by a two-electrode system. For comparison, PEDOT film electrodeposited on bare ITO substrate under the same condition was also presented. The PEDOT films deposited on these two substrates were characterized by scanning electron microscopy, energy disperse X-ray spectroscopy and Raman spectroscopy. The results indicate that the PEDOT film electrodeposited on bare ITO was not uniform, while the PEDOT film electrodeposited on PEDOT:PSS/ITO has better uniformity. The compositions of the different regions of PEDOT film electrodeposited on bare ITO and PEDOT:PSS/ITO were studied and discussed. Electrochromic devices (ECDs) based on PEDOT films electrodeposited on bare ITO and PEDOT:PSS/ITO were fabricated and characterized by UV-Vis-NIR spectrophotometric study. The results show that the display contrast of the ECD based on PEDOT film electrodeposited on PEDOT:PSS/ITO was improved over that on a bare ITO substrate

  7. Electro-optical characteristics of a liquid crystal cell with graphene electrodes

    Directory of Open Access Journals (Sweden)

    Nune H. Hakobyan

    2017-12-01

    Full Text Available In liquid crystal devices (LCDs the indium tin oxide (ITO films are traditionally used as transparent and conductive electrodes. However, today, due to the development of multichannel optical communication, the need for flexible LCDs and multilayer structures has grown. For this application ITO films cannot be used in principle. For this problem, graphene (an ultrathin material with unique properties, e.g., high optical transparency, chemical inertness, excellent conductivity is an excellent candidate. In this work, the electro-optical and dynamic characteristics of a liquid crystal (LC cell with graphene and ITO transparent conducting layers are investigated. To insure uniform thickness of the LC layer, as well as the same orientation boundary conditions, a hybrid LC cell containing graphene and ITO conductive layers has been prepared. The characteristics of LC cells with both types of conducting layers were found to be similar, indicating that graphene can be successfully used as a transparent conductive layer in LC devices.

  8. 7 CFR 254.4 - Application by an ITO.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Application by an ITO. 254.4 Section 254.4 Agriculture... INDIAN HOUSEHOLDS IN OKLAHOMA § 254.4 Application by an ITO. (a) Application to FNS Regional Office. An ITO which desires to participate in the Food Distribution Program shall file an application with the...

  9. Reversible degradation in ITO-containing organic photovoltaics under concentrated sunlight

    NARCIS (Netherlands)

    Galagan, Y.O.; Mescheloff, A.; Veenstra, S.C.; Andriessen, H.A.J.M.; Katz, E.A.

    2015-01-01

    Stabilities of ITO-containing and ITO-free organic solar cells were investigated under simulated AM 1.5G illumination and under concentrated natural sunlight. In both cases ITO-free devices exhibit high stability, while devices containing ITO show degradation of their photovoltaic performance. The

  10. Bilayered Oxide thin films for transparent electrode application

    Science.gov (United States)

    Dutta, Titas; Narayan, Jagdish

    2008-10-01

    Ga doped ZnO films with electrical and optical properties comparable to indium tin oxide (ITO) is a promising candidate for transparent conducting oxides (TCOs) because of its superior stability in hydrogen environment, benign nature and relatively inexpensive supply. However, ZnO based TCO films suffer from low work function, which is a critical parameter for device applications. We report here the growth of a novel bilayered structure consisting of very thin (few monolayers) ITO, MoOx layer on Zn0.95Ga0.05O film for transparent electrode applications by using pulsed laser deposition technique at different temperatures and oxygen partial pressure. The characteristics of the ITO film and the heterostructure have been investigated in detail using XRD, TEM, XPS, and electrical and optical property measurements. It is envisaged that the overall transmittance and the resistivity are dictated by the thicker layer of ZnGa0.05O beneath the ITO layer. Hence, this study is aimed to improve the surface characteristics without affecting the overall transmittance and sheet resistance. This will enhance the transport of the carriers across the heterojunction in the device, thus, resulting in the increase in device efficiency.

  11. IR spectroscopy at the ITO-organic interface

    Energy Technology Data Exchange (ETDEWEB)

    Alt, Milan [Karlsruher Institut fuer Technologie, Karlsruhe (Germany); Shazada, Ahmad [Max-Planck Institut fuer Polymerforschung, Mainz (Germany); Tamanai, Akemi; Trollmann, Jens; Glaser, Tobias; Beck, Sebastian; Tengeler, Sven; Pucci, Annemarie [Kirchhoff-Institut fuer Physik, Heidelberg (Germany)

    2012-07-01

    Thin films of P3HT have been prepared by spin coating and electrooxidative polymerization on platinum- and ITO-coated substrates. Additionally, P3HT-films on silicon substrates have been prepared by spin coating only. The measured IR spectra of the spin coated films allowed for an elaboration of a detailed optical model for P3HT, which has been used to simulate IR reflection-absorption spectra on ITO and Pt substrates. Comparison of simulated spectra with measurements revealed no substrate influence on the IR spectra for the spincoated films. In case of spincoated P3HT-films on ITO-substrate, the obtained IR spectra correspond to simulation data very well up to 6000 wavenumbers. In the electropolymerized P3HT films we have identified residuals of the electrolyte ionic liquid, acting as dopand for P3HT. While IR spectra of the electropolymerized P3HT films on Pt substrate could be explained reasonably well as a superposition of chemically doped P3HT and the ionic electrolyte, the IR spectra of electropolymerized P3HT films on ITO substrates showed strongly deposition-time dependent deviations. These were most likely related to varying properties of the ITO surface between reference and sample measurement due to an interaction of ITO and the electrolyte at the film-substrate interface.

  12. Dual functional reduced graphene oxide as photoanode and counter electrode in dye-sensitized solar cells and its exceptional efficiency enhancement

    Science.gov (United States)

    Jumeri, F. A.; Lim, H. N.; Zainal, Z.; Huang, N. M.; Pandikumar, A.; Lim, S. P.

    2015-10-01

    The dual functionalities of reduced graphene oxide (rGO) as photoanode and counter electrode in dye-sensitized solar cells (DSSCs) is explored. A titanium dioxide (TiO2) film is deposited on an indium tin oxide (ITO) glass using an in-house aerosol-assisted chemical vapor deposition method. Graphene oxide (GO) is then introduced onto the TiO2-ITO substrate, and the GO layer is successively thermally treated to rGO. The TiO2-rGO film is used as a compact layer for the photoanode of the DSSC. A layer of zinc oxide-silver (ZnO-Ag) is introduced on top of the compact layer as an active material. Its highly porous flower-shaped morphology is advantageous for the adsorption of dye. The in-situ electrochemical polymerization method used for the fabrication of polypyrrole incorporated with rGO and p-toluenesulfonate (pTS) (Ppy-rGO-pTS) on an ITO glass is used as a counter electrode for the DSSC. The DSSC assembled with the Ppy-rGO-1.0pTS counter electrode exhibites an enhanced conversion efficiency of 1.99% under solar illumination, which is better than that using conventional Pt as a counter electrode (0.08%). This is attributed to the increased contact area between the Ppy-rGO-pTS counter electrode and electrolyte, which subsequently improves the conductivity and high electrocatalytic activities of the Ppy-rGO-pTS counter electrode.

  13. Electrocatalytic reduction of nitrite on tetraruthenated metalloporphyrins/Nafion glassy carbon modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Calfuman, Karla [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile); Aguirre, Maria Jesus [Facultad de Quimica y Biologia, Departamento de Quimica de los Materiales, Universidad de Santiago de Chile, Santiago (Chile); Canete-Rosales, Paulina; Bollo, Soledad [Facultad de Ciencias Quimicas y Farmaceuticas, Departamento de Quimica Farmacologica y Toxicologica, Universidad de Chile, Santiago (Chile); Llusar, Rosa [Departamento de Quimica Fisica y Analitica, Universidad de Jaume I, Castellon (Spain); Isaacs, Mauricio, E-mail: misaacs@uchile.cl [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile)

    2011-10-01

    Highlights: > Preparation and characterization of modified electrodes with M(II) Tetraruthenated porphyrins onto a Nafion film. > The electrodes were characterized by SEM, TEM, AFM and SECM techniques. > The modified electrodes are active in the electrochemical reduction of nitrite at -660 mV vs Ag/AgCl. > GC/Nf/CoTRP modified electrode is more electrochemically active than their Ni and Zn analogues. - Abstract: This paper describes the electrochemical reduction of nitrite ion in neutral aqueous solution mediated by tetraruthenated metalloporphyrins (Co(II), Ni(II) and Zn(II)) electrostatically assembled onto a Nafion film previously adsorbed on glassy carbon or ITO electrodes. Scanning electron microscope (SEM-EDX) and transmission electron microscopy (TEM) results have shown that on ITO electrodes the macrocycles forms multiple layers with a disordered stacking orientation over the Nafion film occupying hydrophobic and hydrophilic sites in the polyelectrolyte. Atomic force microscopy (AFM) results demonstrated that the Nafion film is 35 nm thick and tetraruthenated metalloporphyrins layers 190 nm thick presenting a thin but compacted morphology. Scanning electrochemical microscopy (SECM) images shows that the Co(II) tetraruthenated porphyrins/Nf/GC modified electrode is more electrochemically active than their Ni and Zn analogues. These modified electrodes are able to reduce nitrite at -660 mV showing enhanced reduction current and a decrease in the required overpotential compared to bare glassy carbon electrode. Controlled potential electrolysis experiments verify the production of ammonia, hydrazine and hydroxylamine at potentials where reduction of solvent is plausible demonstrating some selectivity toward the nitrite ion. Rotating disc electrode voltammetry shows that the factor that governs the kinetics of nitrite reduction is the charge propagation in the film.

  14. Four-frame gated optical imager with 120-ps resolution

    International Nuclear Information System (INIS)

    Young, P.E.; Hares, J.D.; Kilkenny, J.D.; Phillion, D.W.; Campbell, E.M.

    1988-04-01

    In this paper we describe the operation and applications of a framing camera capable of four separate two-dimensional images with each frame having a 120-ps gate width. Fast gating of a single frame is accomplished by using a wafer image intensifier tube in which the cathode is capacitively coupled to an external electrode placed outside of the photocathode of the tube. This electrode is then pulsed relative to the microchannel plate by a narrow (120 ps), high-voltage pulse. Multiple frames are obtained by using multiple gated tubes which share a single bias supply and pulser with relative gate times selected by the cable lengths between the tubes and the pulser. A beamsplitter system has been constructed which produces a separate image for each tube from a single scene. Applications of the framing camera to inertial confinement fusion experiments are discussed

  15. Trapped-ion quantum logic gates based on oscillating magnetic fields

    Science.gov (United States)

    Ospelkaus, Christian; Langer, Christopher E.; Amini, Jason M.; Brown, Kenton R.; Leibfried, Dietrich; Wineland, David J.

    2009-05-01

    Oscillating magnetic fields and field gradients can be used to implement single-qubit rotations and entangling multiqubit quantum gates for trapped-ion quantum information processing. With fields generated by currents in microfabricated surface-electrode traps, it should be possible to achieve gate speeds that are comparable to those of optically induced gates for realistic distances between the ions and the electrode surface. Magnetic-field-mediated gates have the potential to significantly reduce the overhead in laser-beam control and motional-state initialization compared to current QIP experiments with trapped ions and will eliminate spontaneous scattering decoherence, a fundamental source of decoherence in laser-mediated gates. A potentially beneficial environment for the implementation of such schemes is a cryogenic ion trap, because small length scale traps with low motional heating rates can be realized. A cryogenic ion trap experiment is currently under construction at NIST.

  16. Characterization of Piezoresistive PEDOT:PSS Pressure Sensors with Inter-Digitated and Cross-Point Electrode Structures

    OpenAIRE

    Wang, Jer-Chyi; Karmakar, Rajat; Lu, Yu-Jen; Huang, Chiung-Yin; Wei, Kuo-Chen

    2015-01-01

    The piezoresistive characteristics of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) pressure sensors with inter-digitated (IDE) and cross-point electrode (CPE) structures have been investigated. A small variation of the resistance of the pressure sensors with IDE without bottom indium-tin-oxide (b-ITO) film and with CPE structures was observed owing to the single carrier-conducting pathway. For the IDE pressure sensors with b-ITO, the piezoresistive characteristics at low...

  17. Pressure sensor based on MEMS nano-cantilever beam structure as a heterodielectric gate electrode of dopingless TFET

    Science.gov (United States)

    Kumar, Gagan; Raman, Ashish

    2016-12-01

    Micro-electromechanical systems (MEMS) technology has enticed numerous scientists since recent decades particularly in the field of miniaturized-sensors and actuators. Pressure sensor is pivotal component in both of the forerunning fields. The pursuance of a pressure sensor is exigently relying upon its different physical properties i.e. Piezo-resistive, Piezoelectric, Capacitive, Magnetic and Electrostatic. This article presents an outline and scrutiny of the Doping-less Cantilever Based Pressure Sensor using tunnel field effect transistor technology. The propounded pressure sensor based on the principle of capacitive gate coupling, due to which the tunneling current is modified. Additionally, to enhance the affectability of pressure sensor, the work function of metal gate electrode is amended using gas molecule diffusion. Simulation uncovers a phenomenal relationship amongst hypothetical and practical accepts of configuration. The pressure sensor is composed at Silvaco Atlas tool utilizing 40 nm technologies. The performance results exhibit that the proposed model consumes ≤1 mW power and 250 μA tunneling current per nm bending of cantilever beam structure. The inclusive length of the proposed device is 100 nm.

  18. Degradation studies of transparent conductive electrodes on electroactive poly(vinylidene fluoride for uric acid measurements

    Directory of Open Access Journals (Sweden)

    Vanessa F Cardoso, Pedro Martins, Gabriela Botelho, Luis Rebouta, Senentxu Lanceros-Méndez and Graca Minas

    2010-01-01

    Full Text Available Biochemical analysis of physiological fluids using, for example, lab-on-a-chip devices requires accurate mixing of two or more fluids. This mixing can be assisted by acoustic microagitation using a piezoelectric material, such as the β-phase of poly(vinylidene fluoride (β-PVDF. If the analysis is performed using optical absorption spectroscopy and β-PVDF is located in the optical path, the material and its conductive electrodes must be transparent. Moreover, if, to improve the transmission of the ultrasonic waves to the fluids, the piezoelectric transducer is placed inside the fluidic structures, its degradation must be assessed. In this paper, we report on the degradation properties of transparent conductive oxides, namely, indium tin oxide (ITO and aluminum-doped zinc oxide, when they are used as electrodes for providing acoustic microagitation. The latter promotes mixing of chemicals involved in the measurement of uric acid concentration in physiological fluids. The results are compared with those for aluminum electrodes. We find that β-PVDF samples with ITO electrodes do not degrade either with or without acoustic microagitation.

  19. Degradation studies of transparent conductive electrodes on electroactive poly(vinylidene fluoride) for uric acid measurements

    International Nuclear Information System (INIS)

    Cardoso, Vanessa F; Minas, Graca; Martins, Pedro; Rebouta, Luis; Lanceros-Mendez, Senentxu; Botelho, Gabriela

    2010-01-01

    Biochemical analysis of physiological fluids using, for example, lab-on-a-chip devices requires accurate mixing of two or more fluids. This mixing can be assisted by acoustic microagitation using a piezoelectric material, such as the β-phase of poly(vinylidene fluoride) (β-PVDF). If the analysis is performed using optical absorption spectroscopy and β-PVDF is located in the optical path, the material and its conductive electrodes must be transparent. Moreover, if, to improve the transmission of the ultrasonic waves to the fluids, the piezoelectric transducer is placed inside the fluidic structures, its degradation must be assessed. In this paper, we report on the degradation properties of transparent conductive oxides, namely, indium tin oxide (ITO) and aluminum-doped zinc oxide, when they are used as electrodes for providing acoustic microagitation. The latter promotes mixing of chemicals involved in the measurement of uric acid concentration in physiological fluids. The results are compared with those for aluminum electrodes. We find that β-PVDF samples with ITO electrodes do not degrade either with or without acoustic microagitation.

  20. Electrochemically-gated single-molecule electrical devices

    International Nuclear Information System (INIS)

    Guo, Shaoyin; Artés, Juan Manuel; Díez-Pérez, Ismael

    2013-01-01

    In the last decade, single-molecule electrical contacts have emerged as a new experimental platform that allows exploring charge transport phenomena in individual molecular blocks. This novel tool has evolved into an essential element within the Molecular Electronics field to understand charge transport processes in hybrid (bio)molecule/electrode interfaces at the nanoscale, and prospect the implementation of active molecular components into functional nanoscale optoelectronic devices. Within this area, three-terminal single-molecule devices have been sought, provided that they are highly desired to achieve full functionality in logic electronic circuits. Despite the latest experimental developments offer consistent methods to bridge a molecule between two electrodes (source and drain in a transistor notation), placing a third electrode (gate) close to the single-molecule electrical contact is still technically challenging. In this vein, electrochemically-gated single-molecule devices have emerged as an experimentally affordable alternative to overcome these technical limitations. In this review, the operating principle of an electrochemically-gated single-molecule device is presented together with the latest experimental methodologies to built them and characterize their charge transport characteristics. Then, an up-to-date comprehensive overview of the most prominent examples will be given, emphasizing on the relationship between the molecular structure and the final device electrical behaviour

  1. Microstructure and opto-electric properties of Cu/ITO thin films

    International Nuclear Information System (INIS)

    Wang Xian; Li Junlei; Shi Shiwei; Song Xueping; Cui Jingbiao; Sun Zhaoqi

    2012-01-01

    Highlights: ► We prepared Cu/ITO films with different Cu layer thickness. ► We analyzed the relation between opto-electric properties and roughness of the films. ► The Cu-16.1 nm/ITO film shows excellent optical and electric properties. ► Cu/ITO films have great application prospects in new-type transflective displays. - Abstract: Cu/ITO thin films were deposited on glass and silicon substrates by DC and RF magnetron sputtering at room temperature. X-ray diffraction results showed that the films were amorphous. Both of SEM images and 3D Profilometer images indicated that the surface morphology of the ITO films had been affected by the Cu layer. The optical and electric properties of the Cu/ITO films changed significantly with the variation of Cu layer thickness. Cu-5.4 nm/ITO film exhibited the highest optical transmittance of 62.9% at 550 nm and the lowest sheet resistance of 96 Ω/□, whereas Cu-16.1 nm/ITO film showed the highest average reflectance of 24.0% and the lowest resistance of 27.4 Ω/□. Based on our analysis, it was evaluated that Cu layer had an important effect on the electrical and optical properties of ITO thin films.

  2. Synthesis of ITO Powder by Dry Process and Lifetime Characteristics of the ITO Target Fabricated with its Powder

    Science.gov (United States)

    Takahashi, Seiichiro; Itoh, Hironori; Komatsu, Ryuichi

    Lifetime of an indium tin oxide (ITO) target is an important characteristic in the production of liquid crystal displays (LCDs). Increasing the sintering density of the ITO target is assumed to lead to an increased lifetime. So far, it has been clarified that the carbon concentration in In2O3 powder, the raw material of ITO targets, influences remarkably the target lifetime. In this study, with the aim of reducing the concentration of carbon in In2O3 powder, the synthesis of In2O3 powder containing dissolved Sn by a dry process was performed.

  3. Re-crystallization of ITO films after carbon irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Usman, Muhammad, E-mail: usmanm@ncp.edu.pk [Experimental Physics Laboratories, National Centre for Physics, Shahdara Valley Road, Quaid-i-Azam University, Islamabad (Pakistan); Khan, Shahid, E-mail: shahidkhan@zju.edu.cn [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Khan, Majid [Department of Physics, Quaid-i-Azam University, Islamabad (Pakistan); Abbas, Turab Ali [Experimental Physics Laboratories, National Centre for Physics, Shahdara Valley Road, Quaid-i-Azam University, Islamabad (Pakistan)

    2017-01-15

    Highlights: • Carbon irradiation on ITO destroys crystal structure until threshold ion fluence. • Carbon irradiation induced amorphization in ITO is recoverable at higher fluence. • Optical transmittance is reduced after carbon irradiation. • Electrical resistivity is increased after irradiation with carbon ions in ITO. • Bandgap is reduced with increasing fluence of carbon irradiation. - Abstract: 2.0 MeV carbon ion irradiation effects on Indium Tin Oxide (ITO) thin films on glass substrate are investigated. The films are irradiated with carbon ions in the fluence range of 1 × 10{sup 13} to 1 × 10{sup 15} ions/cm{sup 2}. The irradiation induced effects in ITO are compared before and after ion bombardment by systematic study of structural, optical and electrical properties of the films. The XRD results show polycrystalline nature of un-irradiated ITO films which turns to amorphous state after 1 × 10{sup 13} ions/cm{sup 2} fluence of carbon ions. Further increase in ion fluence to 1 × 10{sup 14} ions/cm{sup 2} re-crystallizes the structure and retains for even higher fluences. A gradual decrease in the electrical conductivity and transmittance of irradiated samples is observed with increasing ion fluence. The band gap of the films is observed to be decreased after carbon irradiation.

  4. Re-crystallization of ITO films after carbon irradiation

    International Nuclear Information System (INIS)

    Usman, Muhammad; Khan, Shahid; Khan, Majid; Abbas, Turab Ali

    2017-01-01

    Highlights: • Carbon irradiation on ITO destroys crystal structure until threshold ion fluence. • Carbon irradiation induced amorphization in ITO is recoverable at higher fluence. • Optical transmittance is reduced after carbon irradiation. • Electrical resistivity is increased after irradiation with carbon ions in ITO. • Bandgap is reduced with increasing fluence of carbon irradiation. - Abstract: 2.0 MeV carbon ion irradiation effects on Indium Tin Oxide (ITO) thin films on glass substrate are investigated. The films are irradiated with carbon ions in the fluence range of 1 × 10"1"3 to 1 × 10"1"5 ions/cm"2. The irradiation induced effects in ITO are compared before and after ion bombardment by systematic study of structural, optical and electrical properties of the films. The XRD results show polycrystalline nature of un-irradiated ITO films which turns to amorphous state after 1 × 10"1"3 ions/cm"2 fluence of carbon ions. Further increase in ion fluence to 1 × 10"1"4 ions/cm"2 re-crystallizes the structure and retains for even higher fluences. A gradual decrease in the electrical conductivity and transmittance of irradiated samples is observed with increasing ion fluence. The band gap of the films is observed to be decreased after carbon irradiation.

  5. Effect of Source/Drain Electrodes on the Electrical Properties of Silicon–Tin Oxide Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Xianzhe Liu

    2018-05-01

    Full Text Available Ultra-high definition displays have become a trend for the current flat plane displays. In this study, the contact properties of amorphous silicon–tin oxide thin-film transistors (a-STO TFTs employed with source/drain (S/D electrodes were analyzed. Ohmic contact with a good device performance was achieved when a-STO was matched with indium-tin-oxide (ITO or Mo electrodes. The acceptor-like densities of trap states (DOS of a-STO TFTs were further investigated by using low-frequency capacitance–voltage (C–V characteristics to understand the impact of the electrode on the device performance. The reason of the distinct electrical performances of the devices with ITO and Mo contacts was attributed to different DOS caused by the generation of local defect states near the electrodes, which distorted the electric field distribution and formed an electrical potential barrier hindering the flow of electrons. It is of significant importance for circuit designers to design reliable integrated circuits with SnO2-based devices applied in flat panel displays.

  6. Preparation of ZnO nanorods on conductive PET-ITO-Ag fibers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yiwen; Ji, Shuai; Chen, Yuanyu; Zhang, Hong; Gong, Yumei, E-mail: ymgong@dlpu.edu.cn; Guo, Jing, E-mail: guojing8161@163.com

    2016-12-01

    Highlights: • Polymeric PET fibers were conductive modified by ITO and the subsequent Ag coating. The conductive PET-ITO-Ag fiber has the surface resistivity as low as 0.23 mΩ cm. The PET-ITO-Ag fiber was used as a basal material to plant vertical ZnO nanorods. - Abstract: We studied the vertical ZnO nanorods grown on conductive conventional polyethylene terephthalate (PET) fibers which are prepared by electroless silver depositing on tin-doped indium oxide (ITO) coated PET fibers through an efficient and low-cost green approach. The PET fibers were firstly functionalized with a layer of ITO gel synthesized through a sol–gel process at rather low temperature, simply by immersing the fibers into ITO sol for several minutes followed by gelation at 120 °C. Once the ITO gel layer surface was activated by SnCl{sub 2}, a continuous, uniform, and compact layer of silver was carried out on the surface of the PET-ITO fibers through electroless plating operation at room temperature. The as-prepared PET-ITO-Ag fibers had good electrical conductivity, with surface resistivity as low as 0.23 mΩ cm. The overall procedure is simple, efficient, nontoxic, and controllable. The conductive PET-ITO-Ag fiber was used successfully as a flexible basal material to plant vertical ZnO nanorods through controlling the seeding and growth processes. The morphology of the PET-ITO, PET-ITO-Ag, and PET-ITO-Ag-ZnO fibers were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Undergone the whole process, although the tensile strength of the fiber decreased slightly, they may still exert their applications in flexible electronic such as photovoltaic and piezoelectric devices.

  7. Preparation of ZnO nanorods on conductive PET-ITO-Ag fibers

    International Nuclear Information System (INIS)

    Li, Yiwen; Ji, Shuai; Chen, Yuanyu; Zhang, Hong; Gong, Yumei; Guo, Jing

    2016-01-01

    Highlights: • Polymeric PET fibers were conductive modified by ITO and the subsequent Ag coating. The conductive PET-ITO-Ag fiber has the surface resistivity as low as 0.23 mΩ cm. The PET-ITO-Ag fiber was used as a basal material to plant vertical ZnO nanorods. - Abstract: We studied the vertical ZnO nanorods grown on conductive conventional polyethylene terephthalate (PET) fibers which are prepared by electroless silver depositing on tin-doped indium oxide (ITO) coated PET fibers through an efficient and low-cost green approach. The PET fibers were firstly functionalized with a layer of ITO gel synthesized through a sol–gel process at rather low temperature, simply by immersing the fibers into ITO sol for several minutes followed by gelation at 120 °C. Once the ITO gel layer surface was activated by SnCl 2 , a continuous, uniform, and compact layer of silver was carried out on the surface of the PET-ITO fibers through electroless plating operation at room temperature. The as-prepared PET-ITO-Ag fibers had good electrical conductivity, with surface resistivity as low as 0.23 mΩ cm. The overall procedure is simple, efficient, nontoxic, and controllable. The conductive PET-ITO-Ag fiber was used successfully as a flexible basal material to plant vertical ZnO nanorods through controlling the seeding and growth processes. The morphology of the PET-ITO, PET-ITO-Ag, and PET-ITO-Ag-ZnO fibers were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Undergone the whole process, although the tensile strength of the fiber decreased slightly, they may still exert their applications in flexible electronic such as photovoltaic and piezoelectric devices.

  8. Silver front electrode grids for ITO-free all printed polymer solar cells with embedded and raised topographies, prepared by thermal imprint, flexographic and inkjet roll-to-roll processes.

    Science.gov (United States)

    Yu, Jong-Su; Kim, Inyoung; Kim, Jung-Su; Jo, Jeongdai; Larsen-Olsen, Thue T; Søndergaard, Roar R; Hösel, Markus; Angmo, Dechan; Jørgensen, Mikkel; Krebs, Frederik C

    2012-09-28

    Semitransparent front electrodes for polymer solar cells, that are printable and roll-to-roll processable under ambient conditions using different approaches, are explored in this report. The excellent smoothness of indium-tin-oxide (ITO) electrodes has traditionally been believed to be difficult to achieve using printed front grids, as surface topographies accumulate when processing subsequent layers, leading to shunts between the top and bottom printed metallic electrodes. Here we demonstrate how aqueous nanoparticle based silver inks can be employed as printed front electrodes using several different roll-to-roll techniques. We thus compare hexagonal silver grids prepared using either roll-to-roll inkjet or roll-to-roll flexographic printing. Both inkjet and flexo grids present a raised topography and were found to perform differently due to only the conductivity of the obtained silver grid. The raised topographies were compared with a roll-to-roll thermally imprinted grid that was filled with silver in a roll-to-roll process, thus presenting an embedded topography. The embedded grid and the flexo grid were found to perform equally well, with the flexographic technique currently presenting the fastest processing and the lowest silver use, whereas the embedded grid presents the maximally achievable optical transparency and conductivity. Polymer solar cells were prepared in the same step, using roll-to-roll slot-die coating of zinc oxide as the electron transport layer, poly-3-hexylthiophene:phenyl-C(61)-butyric acid methyl ester (P3HT:PCBM) as the active layer and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the top electrode, along with a flat bed screen printed silver grid. The power conversion efficiency (PCE) obtained for large area devices (6 cm(2)) was 1.84%, 0.79% and 1.72%, respectively, for thermally imprinted, inkjet and flexographic silver grids, tested outside under the real sun. Central to all three approaches was that they

  9. Porous screen printed indium tin oxide (ITO) for NOx gas sensing

    International Nuclear Information System (INIS)

    Mbarek, H.; Saadoun, M.; Bessais, B.

    2007-01-01

    Tin-doped Indium Oxide (ITO) films were prepared by the screen printing method. Transparent and conductive ITO thin films were obtained from an organometallic based paste fired in an Infrared furnace. The Screen printed ITO films were found to be granular and porous. This specific morphology was found to be suitable for sensing different gaseous species. This work investigates the possibility of using screen printed (ITO) films as a specific material for efficient NO x gas sensing. It was found that screen printed ITO is highly sensitive and stable towards NO x , especially for gas concentration higher than 50 ppm and starting from a substrate working temperature of about 180 C. The sensitivity of the ITO films increases with increasing NO x concentration and temperature. The sensitivity and stability of the screen printed ITO based sensors were studied within time. The ITO crystallite grain size dimension was found to be a key parameter that influences the gas response characteristics. Maximum gas sensitivity and minimum response time were observed for ITO films having lower crystallite size dimensions. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Spontaneous cholangiohepatitis in broiler chickens: immunohistochemical study of Ito cells

    Directory of Open Access Journals (Sweden)

    E Handharyani

    2001-12-01

    Full Text Available The function of Ito cells is expanding from a fat-storing site to a center of extracellular matrix metabolism and mediator production in the liver. Immunohistochemical reactivities of Ito cells were examined in eight livers of broiler chickens affected with spontaneous cholangiohepatitis and six chicken livers with malformation of extrahepatic biliary tracts. The livers in both groups revealed severe diffuse fibrosis. Ito cells expressing HHF35 muscle actin and desmin actively proliferated in the fibrotic foci of the all livers. The immunoreactivities of Ito cells to antibodies were enhanced compared with those in normal livers. There were no immunohistochemical differences between the Ito cells of two groups. From these findings, it was suggested that Ito cells actively proliferate and show enhanced immunoreactivities in the livers affected with cholangiohepatitis andmalformation of extrahepatic biliary tracts.

  11. Highly flexible indium zinc oxide electrode grown on PET substrate by cost efficient roll-to-roll sputtering process

    International Nuclear Information System (INIS)

    Park, Yong-Seok; Kim, Han-Ki; Jeong, Soon-Wook; Cho, Woon-Jo

    2010-01-01

    We have investigated the characteristics of flexible indium zinc oxide (IZO) electrode grown on polyethylene terephthalate (PET) substrates using a specially designed roll-to-roll (RTR) sputtering system for use in flexible optoelectronics. It was found that both electrical and optical properties of the flexible IZO electrode were critically dependent on the DC power and Ar/O 2 flow ratio during the roll-to-roll sputtering process. At optimized conditions (constant working pressure of 3 mTorr, Ar/O 2 flow ratio of Ar at only 30 sccm, DC power 800 W and rolling speed at 0.1 cm/s) the flexible IZO electrode exhibits a sheet resistance of 17.25 Ω/sq and an optical transmittance of 89.45% at 550 nm wavelength. Due to the low PET substrate temperature, which is effectively maintained by cooling drum system, all IZO electrodes showed an amorphous structure regardless of the DC power and Ar/O 2 flow ratio. Furthermore, the IZO electrodes grown at optimized condition exhibited superior flexibility than the conventional amorphous ITO electrodes due to its stable amorphous structure. This indicates that the RTR sputter grown IZO electrode is a promising flexible electrode that can substitute for the conventional ITO electrode, due to its low resistance, high transparency, superior flexibility and fast preparation by the RTR process.

  12. Preparation of ZnO nanorods on conductive PET-ITO-Ag fibers

    Science.gov (United States)

    Li, Yiwen; Ji, Shuai; Chen, Yuanyu; Zhang, Hong; Gong, Yumei; Guo, Jing

    2016-12-01

    We studied the vertical ZnO nanorods grown on conductive conventional polyethylene terephthalate (PET) fibers which are prepared by electroless silver depositing on tin-doped indium oxide (ITO) coated PET fibers through an efficient and low-cost green approach. The PET fibers were firstly functionalized with a layer of ITO gel synthesized through a sol-gel process at rather low temperature, simply by immersing the fibers into ITO sol for several minutes followed by gelation at 120 °C. Once the ITO gel layer surface was activated by SnCl2, a continuous, uniform, and compact layer of silver was carried out on the surface of the PET-ITO fibers through electroless plating operation at room temperature. The as-prepared PET-ITO-Ag fibers had good electrical conductivity, with surface resistivity as low as 0.23 mΩ cm. The overall procedure is simple, efficient, nontoxic, and controllable. The conductive PET-ITO-Ag fiber was used successfully as a flexible basal material to plant vertical ZnO nanorods through controlling the seeding and growth processes. The morphology of the PET-ITO, PET-ITO-Ag, and PET-ITO-Ag-ZnO fibers were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Undergone the whole process, although the tensile strength of the fiber decreased slightly, they may still exert their applications in flexible electronic such as photovoltaic and piezoelectric devices.

  13. AlGaN/GaN high-electron-mobility transistors with transparent gates by Al-doped ZnO

    International Nuclear Information System (INIS)

    Wang Chong; He Yun-Long; Zheng Xue-Feng; Ma Xiao-Hua; Zhang Jin-Cheng; Hao Yue

    2013-01-01

    AlGaN/GaN high-electron-mobility transistors (HEMTs) with Al-doped ZnO (AZO) transparent gate electrodes are fabricated, and Ni/Au/Ni-gated HEMTs are produced in comparison. The AZO-gated HEMTs show good DC characteristics and Schottky rectifying characteristics, and the gate electrodes achieve excellent transparencies. Compared with Ni/Au/Ni-gated HEMTs, AZO-gated HEMTs show a low saturation current, high threshold voltage, high Schottky barrier height, and low gate reverse leakage current. Due to the higher gate resistivity, AZO-gated HEMTs exhibit a current—gain cutoff frequency (f T ) of 10 GHz and a power gain cutoff frequency (f max ) of 5 GHz, and lower maximum oscillation frequency than Ni/Au/Ni-gated HEMTs. Moreover, the C—V characteristics are measured and the gate interface characteristics of the AZO-gated devices are investigated by a C—V dual sweep

  14. Role of Nitrogenase and Ferredoxin in the Mechanism of Bioelectrocatalytic Nitrogen Fixation by the Cyanobacteria Anabaena variabilis SA-1 Mutant Immobilized on Indium Tin Oxide (ITO) Electrodes

    International Nuclear Information System (INIS)

    Knoche, Krysti L.; Aoyama, Erika; Hasan, Kamrul; Minteer, Shelley D.

    2017-01-01

    Current ammonia production methods are costly and environmentally detrimental. Biological nitrogen fixation has implications for low cost, environmentally friendly ammonia production. It has been shown that electrochemical stimulation increases the ammonia output of the cyanobacteria SA-1 mutant of Anabaena variabilis, but the mechanism of bioelectrocatalysis has been unknown. Here, the mechanism of electrostimulated biological ammonia production is investigated by immobilization of the cyanobacteria with polyvinylamine on indium tin oxide (ITO) coated polyethylene. Cyclic voltammetry is performed in the absence and presence of various substrates and with nitrogenase repressed and nitrogenase derepressed cells to study mechanism, and cyclic voltammetry and UV–vis spectroscopy are used to identify redox moieties in the spent electrolyte. A bioelectrocatalytic signal is observed for nitrogenase derepressed A. variabilis SA-1 in the presence of N_2 and light. Results indicate that the redox protein ferredoxin mediates electron transfer between nitrogenase and the electrode to stimulate ammonia production.

  15. The effect of gold nanoparticles modified electrode on the glucose sensing performance

    Science.gov (United States)

    Zulkifli, Zulfa Aiza; Ridhuan, Nur Syafinaz; Nor, Noorhashimah Mohamad; Zakaria, Nor Dyana; Razak, Khairunisak Abdul

    2017-07-01

    In this work, 20 nm, 30 nm, 40 nm, 50 nm and 60 nm colloidal gold nanoparticles (AuNPs) were synthesized using the seeding growth method. AuNPs produced had spherical shape with uniform size. The AuNPs also are well dispersed in colloidal form that was proven by low polydispersity index. The produced AuNPs were used to modify electrode for glucose sensor. The produced AuNPs were deposited on indium tin oxide substrate (ITO), followed by immobilization of glucose oxidase (GOx) on it. After that, Nafion was deposited on the GOx/AuNPs/ITO. Electrooxidation of glucose with AuNPs-modified electrode was examined by cyclic voltammeter (CV) in 15 mM glucose mixed with 0.01 M PBS. The optimum size of AuNPs was 30 nm with optical density 3.0. AuNPs were successfully immobilized with glucose oxidase (GOx) and proved to work well as a glucose sensor. Based on the high electrocatalytic activity of Nafion/GOx/AuNPs/ITO, the sensitivity of the glucose sensors was further examined by varying the concentration of glucose solution from 2 mM to 20 mM in 0.01 M phosphate buffer solution (PBS) solution. Good linear relationship was observed between the catalytic current and glucose concentration in the range of 2 mM to 20 mM. The sensitivity of the Nafion/GOx/AuNPs/ITO electrode calculated from the slope of linear square calibration was 0.909 µA mM-1 cm-2 that is comparable with other published work. The linear fitting to the experimental data gives R-square of 0.991 at 0.9 V and a detection limit of 2.03 mM. This detection range is sufficient to be medically useful in monitoring human blood glucose level in which the normal blood glucose level is in the range of 4.4 to 6.6 mM and diabetic blood glucose level is above 7 mM.

  16. Electron transport in a double quantum ring: Evidence of an AND gate

    International Nuclear Information System (INIS)

    Maiti, Santanu K.

    2009-01-01

    We explore AND gate response in a double quantum ring where each ring is threaded by a magnetic flux φ. The double quantum ring is attached symmetrically to two semi-infinite one-dimensional metallic electrodes and two gate voltages, namely, V a and V b , are applied, respectively, in the lower arms of the two rings which are treated as two inputs of the AND gate. The system is described in the tight-binding framework and the calculations are done using the Green's function formalism. Here we numerically compute the conductance-energy and current-voltage characteristics as functions of the ring-to-electrode coupling strengths, magnetic flux and gate voltages. Our study suggests that, for a typical value of the magnetic flux φ=φ 0 /2 (φ 0 =ch/e, the elementary flux-quantum) a high output current (1) (in the logical sense) appears only if both the two inputs to the gate are high (1), while if neither or only one input to the gate is high (1), a low output current (0) results. It clearly demonstrates the AND gate behavior and this aspect may be utilized in designing an electronic logic gate.

  17. Optical properties of ITO nanocoatings for photovoltaic and energy building applications

    Science.gov (United States)

    Kaplani, E.; Kaplanis, S.; Panagiotaras, D.; Stathatos, E.

    2014-10-01

    Targeting energy savings in buildings, photovoltaics and other sectors, significant research activity is nowadays focused on the production of spectral selective nanocoatings. In the present study an ITO coating on glass substrate is prepared from ITO powder, characterized and analysed. The spectral transmittance and reflectance of the ITO coated glass and of two other commercially developed ITO coatings on glass substrate were measured and compared. Furthermore, a simulation algorithm was developed to determine the optical properties of the ITO coatings in the visible, solar and near infrared regions in order to assess the impact of the ITO coatings in the energy performance of buildings, and particularly the application in smart windows. In addition, the current density produced by a PV assuming each of the ITO coated glass served as a cover was computed, in order to assess their effect in PV performance. The preliminary ITO coating prepared and the two other coatings exhibit different optical properties and, thus, have different impact on energy performance. The analysis assists in a better understanding of the desired optical properties of nanocoatings for improved energy performance in PV and buildings.

  18. Photoinduced absorption of Ag nanoparticles deposited on ITO substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ozga, K., E-mail: cate.ozga@wp.pl [Chair of Public Health, Czestochowa University of Technology, Al. Armii Krajowej 36B, 42-200 Czestochowa (Poland); Oyama, M. [Department of Material Chemisrty, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520 (Japan); Szota, M. [Institute of Materials Science and Engineering, Technical University of Czestochowa, al. Armii Krajowej 19, 42-200 Czestochowa (Poland); Nabialek, M. [Institute of Physics, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Czestochowa (Poland); Kityk, I.V. [Electrical Engineering Department, Czestochowa University of Technology, Al. Armii Krajowej 17/19, 42-200 Czestochowa (Poland); Slezak, A. [Chair of Public Health, Czestochowa University of Technology, Al. Armii Krajowej 36B, 42-200 Czestochowa (Poland); Umar, A.A. [Institute of Micronegineering and Nanoelectronics Universiti Kebangsaan Malaysia 43600 UKM bangi, Selangor D.E. (Malaysia); Nouneh, K. [INANOTECH, Institute of Nanomaterials and Nanotechnology, MAScIR (Moroccan Advanced Science, Innovation and Research Foundation), ENSET, Av. Armee Royale, 10100, Rabat (Morocco)

    2011-06-15

    Research highlights: > We study photoinduced absorption for two Ag NP deposited on the ITO. > The higher resistance eof the NP favors larger photoinduced changes. > Principal role is played by nanointerfaces. - Abstract: Substantial changes of absorption after illumination by 300 mW continuous wave green laser at 532 nm were observed. The effect of indium tin oxide (ITO) substrate was explored versus Ag nanoparticles (AgNPs) size, their regularity and surface plasmon resonance. The ITO substrate features play a crucial role for the formation of homogenous AgNPs. The attachments of AgNPs on ITO surface as well as their homogeneity are significantly changed under the influence of the laser treatment. We study the Ag NP deposited on the two different substrates which play a crucial role in the photoinduced absorption. The dependence of the photoinduced absorption versus the time of optical treatment is explained within a framework of the photopolarization of the particular trapping levels on the borders between the ITO substrate and the Ag NP.

  19. Band offsets in ITO/Ga2O3 heterostructures

    Science.gov (United States)

    Carey, Patrick H.; Ren, F.; Hays, David C.; Gila, B. P.; Pearton, S. J.; Jang, Soohwan; Kuramata, Akito

    2017-11-01

    The valence band offsets in rf-sputtered Indium Tin Oxide (ITO)/single crystal β-Ga2O3 (ITO/Ga2O3) heterostructures were measured with X-Ray Photoelectron Spectroscopy using the Kraut method. The bandgaps of the component materials in the heterostructure were determined by Reflection Electron Energy Loss Spectroscopy as 4.6 eV for Ga2O3 and 3.5 eV for ITO. The valence band offset was determined to be -0.78 ± 0.30 eV, while the conduction band offset was determined to be -0.32 ± 0.13 eV. The ITO/Ga2O3 system has a nested gap (type I) alignment. The use of a thin layer of ITO between a metal and the Ga2O3 is an attractive approach for reducing contact resistance on Ga2O3-based power electronic devices and solar-blind photodetectors.

  20. Physiological roles of the transient outward current Ito in normal and diseased hearts

    DEFF Research Database (Denmark)

    Cordeiro, Jonathan M.; Callø, Kirstine; Aschar-Sobbi, Roozbeh

    2016-01-01

    The Ca2+-independent transient outward K+ current (Ito) plays a critical role in underlying phase 1 of repolarization of the cardiac action potential and, as a result, is central to modulating excitation-contraction coupling and propensity for arrhythmia. Additionally, Ito and its molecular...... potential and the mechanisms by which Ito modulates excitation-contraction coupling. We also describe the effects of mutations in the subunits constituting the Ito channel as well as the role of Ito in the failing myocardium. Finally, we review pharmacological modulation of Ito and discuss the evidence...... constituents are consistently reduced in cardiac hypertrophy and heart failure. In this review, we discuss the physiological role of Ito as well as the molecular basis of this current in human and canine hearts, in which Ito has been thoroughly studied. In particular, we discuss the role of Ito in the action...

  1. Pulsed laser deposition of ITO thin films and their characteristics

    International Nuclear Information System (INIS)

    Zuev, D. A.; Lotin, A. A.; Novodvorsky, O. A.; Lebedev, F. V.; Khramova, O. D.; Petuhov, I. A.; Putilin, Ph. N.; Shatohin, A. N.; Rumyanzeva, M. N.; Gaskov, A. M.

    2012-01-01

    The indium tin oxide (ITO) thin films are grown on quartz glass substrates by the pulsed laser deposition method. The structural, electrical, and optical properties of ITO films are studied as a function of the substrate temperature, the oxygen pressure in the vacuum chamber, and the Sn concentration in the target. The transmittance of grown ITO films in the visible spectral region exceeds 85%. The minimum value of resistivity 1.79 × 10 −4 Ω cm has been achieved in the ITO films with content of Sn 5 at %.

  2. Effect of electrode design on crosstalk between neighboring organic field-effect transistors based on one single crystal

    Science.gov (United States)

    Li, Mengjie; Tang, Qingxin; Tong, Yanhong; Zhao, Xiaoli; Zhou, Shujun; Liu, Yichun

    2018-03-01

    The design of high-integration organic circuits must be such that the interference between neighboring devices is eliminated. Here, rubrene crystals were used to study the effect of the electrode design on crosstalk between neighboring organic field-effect transistors (OFETs). Results show that a decreased source/drain interval and gate electrode width can decrease the diffraction distance of the current, and therefore can weaken the crosstalk. In addition, the inherent low carrier concentration in organic semiconductors can create a high-resistance barrier at the space between gate electrodes of neighboring devices, limiting or even eliminating the crosstalk as a result of the gate electrode width being smaller than the source/drain electrode width.

  3. Features of Random Metal Nanowire Networks with Application in Transparent Conducting Electrodes

    KAUST Repository

    Maloth, Thirupathi

    2017-05-01

    Among the alternatives to conventional Indium Tin Oxide (ITO) used in making transparent conducting electrodes, the random metal nanowire (NW) networks are considered to be superior offering performance at par with ITO. The performance is measured in terms of sheet resistance and optical transmittance. However, as the electrical properties of such random networks are achieved thanks to a percolation network, a minimum size of the electrodes is needed so it actually exceeds the representative volume element (RVE) of the material and the macroscopic electrical properties are achieved. There is not much information about the compatibility of this minimum RVE size with the resolution actually needed in electronic devices. Furthermore, the efficiency of NWs in terms of electrical conduction is overlooked. In this work, we address the above industrially relevant questions - 1) The minimum size of electrodes that can be made based on the dimensions of NWs and the material coverage. For this, we propose a morphology based classification in defining the RVE size and we also compare the same with that is based on macroscopic electrical properties stabilization. 2) The amount of NWs that do not participate in electrical conduction, hence of no practical use. The results presented in this thesis are a design guide to experimentalists to design transparent electrodes with more optimal usage of the material.

  4. Organometal halide perovskite light-emitting diodes with laminated carbon nanotube electrodes

    Science.gov (United States)

    Shan, Xin; Bade, Sri Ganesh R.; Geske, Thomas; Davis, Melissa; Smith, Rachel; Yu, Zhibin

    2017-08-01

    Organometal halide perovskite light-emitting diodes (LEDs) with laminated carbon nanotube (CNT) electrodes are reported. The LEDs have an indium tin oxide (ITO) bottom electrode, a screen printed methylammonium lead tribromide (MAPbBr3)/polymer composite thin film as the emissive layer, and laminated CNT as the top electrode. The devices can be turned on at 2.2 V, reaching a brightness of 4,960 cd m-2 and a current efficiency of 1.54 cd A-1 at 6.9 V. The greatly simplified fabrication process in this work can potentially lead to the scalable manufacturing of large size and low cost LED panels in the future.

  5. Gate-bias and temperature dependence of charge transport in dinaphtho[2,3-b:2‧,3‧-d]thiophene thin-film transistors with MoO3/Au electrodes

    Science.gov (United States)

    Shaari, Safizan; Naka, Shigeki; Okada, Hiroyuki

    2018-04-01

    We investigated the gate-bias and temperature dependence of the voltage-current (V-I) characteristics of dinaphtho[2,3-b:2‧,3‧-d]thiophene with MoO3/Au electrodes. The insertion of the MoO3 layer significantly improved the device performance. The temperature dependent V-I characteristics were evaluated and could be well fitted by the Schottky thermionic emission model with barrier height under forward- and reverse-biased regimes in the ranges of 33-57 and 49-73 meV, respectively. However, at a gate voltage of 0 V, at which a small activation energy was obtained, we needed to consider another conduction mechanism at the grain boundary. From the obtained results, we concluded that two possible conduction mechanisms governed the charge injection at the metal electrode-organic semiconductor interface: the Schottky thermionic emission model and the conduction model in the organic thin-film layer and grain boundary.

  6. Immunohistochemical study of Ito cells of spontaneous cholangiohepatitis in broiler chickens

    Directory of Open Access Journals (Sweden)

    E Handharyani

    2001-12-01

    Full Text Available The function of Ito cells is expanding from a fat-storing site to a center of extracellular matrix metabolism and mediator production in the liver. Immunohistochemical reactivities of Ito cells were examined in eight livers of broiler chickens affected with spontaneous cholangiohepatitis and six chicken livers with malformation of extrahepatic biliary tracts. The livers in both groups revealed severe diffuse fibrosis. Ito cells expressing HHF35 muscle actin and desmin actively proliferated in the fibrotic foci of the all livers. The immunoreactivities of Ito cells to antibodies were enhanced compared with those in normal livers. There were no immunohistochemical differences between the Ito cells of two groups. From these findings, it was suggested that Ito cells actively proliferate and show enhanced immunoreactivities in the livers affected with cholangiohepatitis and malformation of extrahepatic biliary tracts.

  7. Towards Flexible Transparent Electrodes Based on Carbon and Metallic Materials

    Directory of Open Access Journals (Sweden)

    Minghui Luo

    2017-01-01

    Full Text Available Flexible transparent electrodes (FTEs with high stability and scalability are in high demand for the extremely widespread applications in flexible optoelectronic devices. Traditionally, thin films of indium thin oxide (ITO served the role of FTEs, but film brittleness and scarcity of materials limit its further application. This review provides a summary of recent advances in emerging transparent electrodes and related flexible devices (e.g., touch panels, organic light-emitting diodes, sensors, supercapacitors, and solar cells. Mainly focusing on the FTEs based on carbon nanomaterials (e.g., carbon nanotubes and graphene and metal materials (e.g., metal grid and metal nanowires, we discuss the fabrication techniques, the performance improvement, and the representative applications of these highly transparent and flexible electrodes. Finally, the challenges and prospects of flexible transparent electrodes will be summarized.

  8. Spin-polarized current generated by magneto-electrical gating

    International Nuclear Information System (INIS)

    Ma Minjie; Jalil, Mansoor Bin Abdul; Tan, Seng Ghee

    2012-01-01

    We theoretically study spin-polarized current through a single electron tunneling transistor (SETT), in which a quantum dot (QD) is coupled to non-magnetic source and drain electrodes via tunnel junctions, and gated by a ferromagnetic (FM) electrode. The I–V characteristics of the device are investigated for both spin and charge currents, based on the non-equilibrium Green's function formalism. The FM electrode generates a magnetic field, which causes a Zeeman spin-splitting of the energy levels in the QD. By tuning the size of the Zeeman splitting and the source–drain bias, a fully spin-polarized current is generated. Additionally, by modulating the electrical gate bias, one can effect a complete switch of the polarization of the tunneling current from spin-up to spin-down current, or vice versa. - Highlights: ► The spin polarized transport through a single electron tunneling transistor is systematically studied. ► The study is based on Keldysh non-equilibrium Green's function and equation of motion method. ► A fully spin polarized current is observed. ► We propose to reverse current polarization by the means of gate voltage modulation. ► This device can be used as a bi-polarization current generator.

  9. Photoinduced absorption of Ag nanoparticles deposited on ITO substrate

    International Nuclear Information System (INIS)

    Ozga, K.; Oyama, M.; Szota, M.; Nabialek, M.; Kityk, I.V.; Slezak, A.; Umar, A.A.; Nouneh, K.

    2011-01-01

    Research highlights: → We study photoinduced absorption for two Ag NP deposited on the ITO. → The higher resistance eof the NP favors larger photoinduced changes. → Principal role is played by nanointerfaces. - Abstract: Substantial changes of absorption after illumination by 300 mW continuous wave green laser at 532 nm were observed. The effect of indium tin oxide (ITO) substrate was explored versus Ag nanoparticles (AgNPs) size, their regularity and surface plasmon resonance. The ITO substrate features play a crucial role for the formation of homogenous AgNPs. The attachments of AgNPs on ITO surface as well as their homogeneity are significantly changed under the influence of the laser treatment. We study the Ag NP deposited on the two different substrates which play a crucial role in the photoinduced absorption. The dependence of the photoinduced absorption versus the time of optical treatment is explained within a framework of the photopolarization of the particular trapping levels on the borders between the ITO substrate and the Ag NP.

  10. ITO/InP solar cells: A comparison of devices fabricated by ion beam and RF sputtering of the ITO

    Science.gov (United States)

    Coutts, T. J.

    1987-01-01

    This work was performed with the view of elucidating the behavior of indium tin oxide/indium phosphide (ITO/InP) solar cells prepared by RF and ion beam sputtering. It was found that using RF sputter deposition of the ITO always leads to more efficient devices than ion beam sputter deposition. An important aspect of the former technique is the exposure of the single crystal p-InP substrates to a very low plasma power prior to deposition. Substrates treated in this manner have also been used for ion beam deposition of ITO. In this case the cells behave very similarly to the RF deposited cells, thus suggesting that the lower power plasma exposure (LPPE) is the crucial process step.

  11. Comparative study of ITO and FTO thin films grown by spray pyrolysis

    International Nuclear Information System (INIS)

    Ait Aouaj, M.; Diaz, R.; Belayachi, A.; Rueda, F.; Abd-Lefdil, M.

    2009-01-01

    Tin doped indium oxide (ITO) and fluorine doped tin oxide (FTO) thin films have been prepared by one step spray pyrolysis. Both film types grown at 400 deg. C present a single phase, ITO has cubic structure and preferred orientation (4 0 0) while FTO exhibits a tetragonal structure. Scanning electron micrographs showed homogeneous surfaces with average grain size around 257 and 190 nm for ITO and FTO respectively. The optical properties have been studied in several ITO and FTO samples by transmittance and reflectance measurements. The transmittance in the visible zone is higher in ITO than in FTO layers with a comparable thickness, while the reflectance in the infrared zone is higher in FTO in comparison with ITO. The best electrical resistivity values, deduced from optical measurements, were 8 x 10 -4 and 6 x 10 -4 Ω cm for ITO (6% of Sn) and FTO (2.5% of F) respectively. The figure of merit reached a maximum value of 2.15 x 10 -3 Ω -1 for ITO higher than 0.55 x 10 -3 Ω -1 for FTO.

  12. Flexible indium zinc oxide/Ag/indium zinc oxide multilayer electrode grown on polyethersulfone substrate by cost-efficient roll-to-roll sputtering for flexible organic photovoltaics

    International Nuclear Information System (INIS)

    Park, Yong-Seok; Kim, Han-Ki

    2010-01-01

    The authors describe the preparation and characteristics of flexible indium zinc oxide (IZO)-Ag-IZO multilayer electrodes grown on flexible polyethersulfone (PES) substrates using a roll-to-roll sputtering system for use in flexible organic photovoltaics. By the continuous roll-to-roll sputtering of the bottom IZO, Ag, and top IZO layers at room temperature, they were able to fabricate a high quality IZO-Ag-IZO multilayer electrode with a sheet resistance of 6.15 ε/square, optical transmittance of 87.4%, and figure of merit value of 42.03x10 -3 Ω -1 on the PES substrate. In addition, the IZO-Ag-IZO multilayer electrode exhibited superior flexibility to the roll-to-roll sputter grown single ITO electrode due to the existence of a ductile Ag layer between the IZO layers and stable amorphous structure of the IZO film. Furthermore, the flexible organic solar cells (OSCs) fabricated on the roll-to-roll sputter grown IZO-Ag-IZO electrode showed higher power efficiency (3.51%) than the OSCs fabricated on the roll-to-roll sputter grown single ITO electrode (2.67%).

  13. Optically Transparent Thin-Film Electrode Chip for Spectroelectrochemical Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Branch, Shirmir D.; Lines, Amanda M.; Lynch, John A.; Bello, Job M.; Heineman, William R.; Bryan, Samuel A.

    2017-07-03

    The electrochemical and spectroelectrochemical applications of an optically transparent thin film electrode chip are investigated. The working electrode is composed of indium tin oxide (ITO); the counter and quasi-reference electrodes are composed of platinum. The stability of the platinum quasi-reference electrode is modified by coating it with a planar, solid state Ag/AgCl layer. The Ag/AgCl reference is characterized with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Open circuit potential measurements indicate that the potential of the planar Ag/AgCl electrode varies a maximum of 20 mV over four days. Cyclic voltammetry measurements show that the electrode chip is comparable to a standard electrochemical cell. Randles-Sevcik analysis of 10 mM K3[Fe(CN)6] in 0.1 M KCl using the electrode chip shows a diffusion coefficient of 1.59 × 10-6 cm2/s, in comparison to the standard electrochemical cell value of 2.38 × 10-6 cm2/s. By using the electrode chip in an optically transparent thin layer electrode (OTTLE), the spectroelectrochemical modulation of [Ru(bpy)3]2+ florescence was demonstrated, achieving a detection limit of 36 nM.

  14. Extrahepatic bile duct ligation in broiler chickens: ultrastructural study of Ito cell

    Directory of Open Access Journals (Sweden)

    Ekowati Handharyani

    2004-12-01

    Full Text Available The Ito cell (fat-storing cell is a cell lying in perisinusoidal space of liver. The function of Ito cell is expanding from a site of fat-storing site to a center of extracellular matrix metabolism and mediator production in the liver. This study was performed in order to evaluate the Ito cells in cholestatic condition. The artificial cholestatic was conducted by ligation of extrahepatic bile ducts (bile duct ligation = BDL in broilers. The results showed that BDL induced bile congestion, fibrosis, proliferation of Ito cells and intrahepatic bile ductules. Immunohistochemistry demonstrated that Ito cells were scattered throughout the fibrotic areas, and larger in size with more extensive immunoreactivity than those in normal livers. Ultrastructural study demonstrated that Ito cells were closely associated with the production of extracellular collagen fibers. Ito cells actively react against hepatocytic injuries, especially in fibrogenesis of cholestatic livers.

  15. Flexible electroluminescent device with inkjet-printed carbon nanotube electrodes

    Science.gov (United States)

    Azoubel, Suzanna; Shemesh, Shay; Magdassi, Shlomo

    2012-08-01

    Carbon nanotube (CNTs) inks may provide an effective route for producing flexible electronic devices by digital printing. In this paper we report on the formulation of highly concentrated aqueous CNT inks and demonstrate the fabrication of flexible electroluminescent (EL) devices by inkjet printing combined with wet coating. We also report, for the first time, on the formation of flexible EL devices in which all the electrodes are formed by inkjet printing of low-cost multi-walled carbon nanotubes (MWCNTs). Several flexible EL devices were fabricated by using different materials for the production of back and counter electrodes: ITO/MWCNT and MWCNT/MWCNT. Transparent electrodes were obtained either by coating a thin layer of the CNTs or by inkjet printing a grid which is composed of empty cells surrounded by MWCNTs. It was found that the conductivity and transparency of the electrodes are mainly controlled by the MWCNT film thickness, and that the dominant factor in the luminance intensity is the transparency of the electrode.

  16. Preparation of Janus Particles and Alternating Current Electrokinetic Measurements with a Rapidly Fabricated Indium Tin Oxide Electrode Array.

    Science.gov (United States)

    Chen, Yu-Liang; Jiang, Hong-Ren

    2017-06-23

    This article provides a simple method to prepare partially or fully coated metallic particles and to perform the rapid fabrication of electrode arrays, which can facilitate electrical experiments in microfluidic devices. Janus particles are asymmetric particles that contain two different surface properties on their two sides. To prepare Janus particles, a monolayer of silica particles is prepared by a drying process. Gold (Au) is deposited on one side of each particle using a sputtering device. The fully coated metallic particles are completed after the second coating process. To analyze the electrical surface properties of Janus particles, alternating current (AC) electrokinetic measurements, such as dielectrophoresis (DEP) and electrorotation (EROT)- which require specifically designed electrode arrays in the experimental device- are performed. However, traditional methods to fabricate electrode arrays, such as the photolithographic technique, require a series of complicated procedures. Here, we introduce a flexible method to fabricate a designed electrode array. An indium tin oxide (ITO) glass is patterned by a fiber laser marking machine (1,064 nm, 20 W, 90 to 120 ns pulse-width, and 20 to 80 kHz pulse repetition frequency) to create a four-phase electrode array. To generate the four-phase electric field, the electrodes are connected to a 2-channel function generator and to two invertors. The phase shift between the adjacent electrodes is set at either 90° (for EROT) or 180° (for DEP). Representative results of AC electrokinetic measurements with a four-phase ITO electrode array are presented.

  17. Disposable Non-Enzymatic Glucose Sensors Using Screen-Printed Nickel/Carbon Composites on Indium Tin Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Won-Yong Jeon

    2015-12-01

    Full Text Available Disposable screen-printed nickel/carbon composites on indium tin oxide (ITO electrodes (DSPNCE were developed for the detection of glucose without enzymes. The DSPNCE were prepared by screen-printing the ITO substrate with a 50 wt% nickel/carbon composite, followed by curing at 400 °C for 30 min. The redox couple of Ni(OH2/NiOOH was deposited on the surface of the electrodes via cyclic voltammetry (CV, scanning from 0–1.5 V for 30 cycles in 0.1 M NaOH solution. The DSPNCE were characterized by field-emission scanning electron microscopy (FE-SEM, X-ray photoelectron spectroscopy (XPS, and electrochemical methods. The resulting electrical currents, measured by CV and chronoamperometry at 0.65 V vs. Ag/AgCl, showed a good linear response with glucose concentrations from 1.0–10 mM. Also, the prepared electrodes showed no interference from common physiologic interferents such as uric acid (UA or ascorbic acid (AA. Therefore, this approach allowed the development of a simple, disposable glucose biosensor.

  18. Solution-Processable transparent conducting electrodes via the self-assembly of silver nanowires for organic photovoltaic devices.

    Science.gov (United States)

    Tugba Camic, B; Jeong Shin, Hee; Hasan Aslan, M; Basarir, Fevzihan; Choi, Hyosung

    2018-02-15

    Solution-processed transparent conducting electrodes (TCEs) were fabricated via the self-assembly deposition of silver nanowires (Ag NWs). Glass substrates modified with (3-aminopropyl)triethoxysilane (APTES) and (3-mercaptopropyl)trimethoxysilane (MPTES) were coated with Ag NWs for various deposition times, leading to three different Ag NWs samples (APTES-Ag NWs (PVP), MPTES-Ag NWs (PVP), and APTES-Ag NWs (COOH)). Controlling the deposition time produced Ag NWs monolayer thin films with different optical transmittance and sheet resistance. Post-annealing treatment improved their electrical conductivity. The Ag NWs films were successfully characterized using UV-Vis spectroscopy, field emission scanning electron microscopy, optical microscopy and four-point probe. Three Ag NWs films exhibited low sheet resistance of 4-19Ω/sq and high optical transmittance of 65-81% (at 550nm), which are comparable to those of commercial ITO electrode. We fabricated an organic photovoltaic device by using Ag NWs as the anode instead of ITO electrode, and optimized device with Ag NWs exhibited power conversion efficiency of 1.72%. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Disposable Non-Enzymatic Glucose Sensors Using Screen-Printed Nickel/Carbon Composites on Indium Tin Oxide Electrodes.

    Science.gov (United States)

    Jeon, Won-Yong; Choi, Young-Bong; Kim, Hyug-Han

    2015-12-10

    Disposable screen-printed nickel/carbon composites on indium tin oxide (ITO) electrodes (DSPNCE) were developed for the detection of glucose without enzymes. The DSPNCE were prepared by screen-printing the ITO substrate with a 50 wt% nickel/carbon composite, followed by curing at 400 °C for 30 min. The redox couple of Ni(OH)₂/NiOOH was deposited on the surface of the electrodes via cyclic voltammetry (CV), scanning from 0-1.5 V for 30 cycles in 0.1 M NaOH solution. The DSPNCE were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and electrochemical methods. The resulting electrical currents, measured by CV and chronoamperometry at 0.65 V vs. Ag/AgCl, showed a good linear response with glucose concentrations from 1.0-10 mM. Also, the prepared electrodes showed no interference from common physiologic interferents such as uric acid (UA) or ascorbic acid (AA). Therefore, this approach allowed the development of a simple, disposable glucose biosensor.

  20. Low-cost electrodes for stable perovskite solar cells

    Science.gov (United States)

    Bastos, João P.; Manghooli, Sara; Jaysankar, Manoj; Tait, Jeffrey G.; Qiu, Weiming; Gehlhaar, Robert; De Volder, Michael; Uytterhoeven, Griet; Poortmans, Jef; Paetzold, Ulrich W.

    2017-06-01

    Cost-effective production of perovskite solar cells on an industrial scale requires the utilization of exclusively inexpensive materials. However, to date, highly efficient and stable perovskite solar cells rely on expensive gold electrodes since other metal electrodes are known to cause degradation of the devices. Finding a low-cost electrode that can replace gold and ensure both efficiency and long-term stability is essential for the success of the perovskite-based solar cell technology. In this work, we systematically compare three types of electrode materials: multi-walled carbon nanotubes (MWCNTs), alternative metals (silver, aluminum, and copper), and transparent oxides [indium tin oxide (ITO)] in terms of efficiency, stability, and cost. We show that multi-walled carbon nanotubes are the only electrode that is both more cost-effective and stable than gold. Devices with multi-walled carbon nanotube electrodes present remarkable shelf-life stability, with no decrease in the efficiency even after 180 h of storage in 77% relative humidity (RH). Furthermore, we demonstrate the potential of devices with multi-walled carbon nanotube electrodes to achieve high efficiencies. These developments are an important step forward to mass produce perovskite photovoltaics in a commercially viable way.

  1. Transparent conductive electrodes of mixed TiO2−x–indium tin oxide for organic photovoltaics

    KAUST Repository

    Lee, Kyu-Sung; Lim, Jong-Wook; Kim, Han-Ki; Alford, T. L.; Jabbour, Ghassan E.

    2012-01-01

    A transparent conductive electrode of mixed titanium dioxide (TiO2−x)–indium tin oxide (ITO) with an overall reduction in the use of indium metal is demonstrated. When used in organic photovoltaicdevices based on bulk heterojunction photoactive

  2. Sputtered gold-coated ITO nanowires by alternating depositions from Indium and ITO targets for application in surface-enhanced Raman scattering

    Science.gov (United States)

    Setti, Grazielle O.; Mamián-López, Mónica B.; Pessoa, Priscila R.; Poppi, Ronei J.; Joanni, Ednan; Jesus, Dosil P.

    2015-08-01

    Indium Tin oxide (ITO) nanowires were deposited by RF sputtering over oxidized silicon using ITO and Indium targets. The nanowires grew on the substrate with a catalyst layer of Indium by the vapor-liquid-solid (VLS) mechanism. Modifications in the deposition conditions affected the morphology and dimensions of the nanowires. The samples, after being covered with gold, were evaluated as surface-enhanced Raman scattering (SERS) substrates for detection of dye solutions and very good intensifications of the Raman signal were obtained. The SERS performance of the samples was also compared to that of a commercial SERS substrate and the results achieved were similar. To the best of our knowledge, this is the first time ITO nanowires were grown by the sputtering technique using oxide and metal targets.

  3. All ITO-based transparent resistive switching random access memory using oxygen doping method

    International Nuclear Information System (INIS)

    Kim, Hee-Dong; Yun, Min Ju; Kim, Sungho

    2015-01-01

    Recently, transparent memory would be useful in invisible electronics. In this work, for the first time we present a feasibility of stable unipolar resistive switching (RS) characteristics with reset current of sub-micron ampere for the fully transparent ITO/oxygen-doped ITO/ITO memory capacitors, i.e., all ITO structures, produced by sputtering method, which shows a high optical transmittance of approximately 80% in the visible region as well as near ultra-violet region. In addition, in a RS test to evaluate a reliability for the proposed memory devices, we observed a stable endurance of >100 cycles and a retention time of >10 4  s at 85 °C, with a current ratio of ∼10 2 to ∼10 3 . This result indicates that this transparent memory by engineering the amount of oxygen ions within the ITO films could be a milestone for future see-through electronic devices. - Highlights: • The resistive switching characteristics of the transparent ITO/O-doped ITO/ITO RRAM cells have investigated. • All ITO-based RRAM cell is achieved using oxygen doping method. • Good endurance and long retention time were observed.

  4. Silver nanowire/polyaniline composite transparent electrode with improved surface properties

    International Nuclear Information System (INIS)

    Kumar, A.B.V. Kiran; Jiang, Jianwei; Bae, Chang Wan; Seo, Dong Min; Piao, Longhai; Kim, Sang-Ho

    2014-01-01

    Highlights: • AgNWs/PANI transparent electrode was prepared by layer-by-layer coating method. • The surface roughness of the electrode reached to 6.5 nm (root mean square). • The electrode had reasonable sheet resistance (25 Ω/□) and transmittance (83.5%). - Abstract: Silver nanowires (AgNWs) are as potential candidates to replace indium tin oxide (ITO) in transparent electrodes because of their preferred conducting and optical properties. However, their rough surface properties are not favorable for the fabrication of optoelectronic devices, such as displays and thin-film solar cells. In the present investigation, AgNWs/polyaniline composite transparent electrodes with better surface properties were successfully prepared. AgNWs were incorporated into polyaniline:polystyrene sulfonate (PANI:PSS) by layer-by-layer coating and mechanical pressing. PANI:PSS decreased the surface roughness of the AgNWs electrode by filling the gap of the random AgNWs network. The transparent composite electrode had decreased surface roughness (root mean square 6.5 nm) with reasonable sheet resistance (25 Ω/□) and transmittance (83.5%)

  5. Sputtered gold-coated ITO nanowires by alternating depositions from Indium and ITO targets for application in surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Setti, Grazielle O.; Mamián-López, Mónica B.; Pessoa, Priscila R.; Poppi, Ronei J.; Joanni, Ednan; Jesus, Dosil P.

    2015-01-01

    Graphical abstract: - Highlights: • ITO nanowires were grown by the sputtering method using a new synthesis procedure. • By changing the deposition parameters the morphology and dimensions of the nanostructures were modified. • Seed layer thickness was an important factor for obtaining branched nanowires. • SERS substrates having good performance and a high application potential were produced. • The first Raman results for our substrates are already comparable to commercial substrates. - Abstract: Indium Tin oxide (ITO) nanowires were deposited by RF sputtering over oxidized silicon using ITO and Indium targets. The nanowires grew on the substrate with a catalyst layer of Indium by the vapor–liquid–solid (VLS) mechanism. Modifications in the deposition conditions affected the morphology and dimensions of the nanowires. The samples, after being covered with gold, were evaluated as surface-enhanced Raman scattering (SERS) substrates for detection of dye solutions and very good intensifications of the Raman signal were obtained. The SERS performance of the samples was also compared to that of a commercial SERS substrate and the results achieved were similar. To the best of our knowledge, this is the first time ITO nanowires were grown by the sputtering technique using oxide and metal targets

  6. Sputtered gold-coated ITO nanowires by alternating depositions from Indium and ITO targets for application in surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Setti, Grazielle O. [Institute of Chemistry, University of Campinas, Campinas, P.O. Box 6154, 13083-970 Campinas, SP (Brazil); Renato Archer Information Technology Center, Rodovia Dom Pedro I (SP-65), Km 143,6 – Amarais, 13069-901 Campinas, SP (Brazil); Mamián-López, Mónica B.; Pessoa, Priscila R.; Poppi, Ronei J. [Institute of Chemistry, University of Campinas, Campinas, P.O. Box 6154, 13083-970 Campinas, SP (Brazil); Joanni, Ednan, E-mail: ednan.joanni@cti.gov.br [Renato Archer Information Technology Center, Rodovia Dom Pedro I (SP-65), Km 143,6 – Amarais, 13069-901 Campinas, SP (Brazil); Jesus, Dosil P. [Institute of Chemistry, University of Campinas, Campinas, P.O. Box 6154, 13083-970 Campinas, SP (Brazil)

    2015-08-30

    Graphical abstract: - Highlights: • ITO nanowires were grown by the sputtering method using a new synthesis procedure. • By changing the deposition parameters the morphology and dimensions of the nanostructures were modified. • Seed layer thickness was an important factor for obtaining branched nanowires. • SERS substrates having good performance and a high application potential were produced. • The first Raman results for our substrates are already comparable to commercial substrates. - Abstract: Indium Tin oxide (ITO) nanowires were deposited by RF sputtering over oxidized silicon using ITO and Indium targets. The nanowires grew on the substrate with a catalyst layer of Indium by the vapor–liquid–solid (VLS) mechanism. Modifications in the deposition conditions affected the morphology and dimensions of the nanowires. The samples, after being covered with gold, were evaluated as surface-enhanced Raman scattering (SERS) substrates for detection of dye solutions and very good intensifications of the Raman signal were obtained. The SERS performance of the samples was also compared to that of a commercial SERS substrate and the results achieved were similar. To the best of our knowledge, this is the first time ITO nanowires were grown by the sputtering technique using oxide and metal targets.

  7. Effect of modified ITO substrate on electrochromic properties of polyaniline films

    Energy Technology Data Exchange (ETDEWEB)

    Leon-Silva, U.; Nicho, M.E.; Cruz-Silva, Rodolfo [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, UAEMor, Av. Universidad 1001, Col. Chamilpa, 62209, Cuernavaca, Morelos (Mexico); Hu, Hailin [Departamento de Materiales Solares, Centro de Investigacion en Energia, UNAM, Av. Xochicalco S/N, Temixco, 62580, Morelos (Mexico)

    2007-09-22

    In this work, we report the morphological and electrochromic properties of electrochemically synthesized polyaniline (PANI) thin films on bare and modified indium-tin oxide (ITO) glass substrates. In the last case, the surface of ITO glass was covered by a self-assembled monolayer of N-phenyl-{gamma}-aminopropyl-trimethoxysilane (PAPTS). Atomic force microscopy images and perfilometry show that smoother and thinner PANI films were grown on PAPTS-modified ITO substrates. PANI-based electrochromic devices (ECDs) were assembled by using a viscous polymeric electrolyte (PE) of LiClO{sub 4} and polymethyl methacrylate (PMMA) co-dissolved in a mixture of propylene and ethylene carbonate. The architectural design of the devices was glass/ITO/PANI/PE/ITO/glass. A dual ECD was also prepared by collocating a poly(3-methylthiophene) (P3MT) thin film as a complementary electrochromic element. The effect of the PAPTS-modified ITO substrate is reflected in a higher optical transmittance at bleach state and a little less color change at 550 nm of PANI-based ECDs. (author)

  8. Digital grayscale printing for patterned transparent conducting Ag electrodes and their applications in flexible electronics

    DEFF Research Database (Denmark)

    Gupta, Ritu; Hösel, Markus; Jensen, Jacob

    2014-01-01

    Grayscale (halftone) laser printing is developed as a low-cost and solution processable fabrication method for ITO-free, semi-transparent and conducting Ag electrodes extendable over large area on a flexible substrate. The transmittance and sheet resistance is easily tunable by varying the graysc...

  9. Effects of morphological control on the characteristics of vertical-type OTFTs using Alq3.

    Science.gov (United States)

    Kim, Young Do; Park, Jong Wook; Kang, In Nam; Oh, Se Young

    2008-09-01

    We have fabricated vertical-type organic thin-film transistors (OTFTs) using tris-(8-hydroxyquinoline) aluminum (Alq(3)) as an n-type active material. Vertical-type OTFT using Alq(3) has a layered structure of Al(source electrode)/Alq(3)(active layer)/Al(gate electrode)/Alq(3)(active layer)/ITO glass(drain electrode). Alq(3) thin films containing various surface morphologies could be obtained by the control of evaporation rate and substrate temperature. The effects of the morphological control of Alq(3) thin layer on the grain size and the flatness of film surface were investigated. The characteristics of vertical-type OTFT significantly influenced the growth condition of Alq(3) layer.

  10. Catalyst-free growth of ZnO nanowires on ITO seed/glass by thermal evaporation method: Effects of ITO seed layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Alsultany, Forat H., E-mail: foratusm@gmail.com; Ahmed, Naser M. [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Hassan, Z. [Institute of Nano-Optoelectronics Research and Technology Laboratory (INOR), Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2016-07-19

    A seed/catalyst-free growth of ZnO nanowires (ZnO-NWs) on a glass substrate were successfully fabricated using thermal evaporation technique. These nanowires were grown on ITO seed layers of different thicknesses of 25 and 75 nm, which were deposited on glass substrates by radio frequency (RF) magnetron sputtering. Prior to synthesized ITO nanowires, the sputtered ITO seeds were annealed using the continuous wave (CW) CO2 laser at 450 °C in air for 15 min. The effect of seed layer thickness on the morphological, structural, and optical properties of ZnO-NWs were systematically investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and UV-Vis spectrophotometer.

  11. Investigation of Rapid Low-Power Microwave-Induction Heating Scheme on the Cross-Linking Process of the Poly(4-vinylphenol) for the Gate Insulator of Pentacene-Based Thin-Film Transistors

    Science.gov (United States)

    Fan, Ching-Lin; Shang, Ming-Chi; Wang, Shea-Jue; Hsia, Mao-Yuan; Lee, Win-Der; Huang, Bohr-Ran

    2017-01-01

    In this study, a proposed Microwave-Induction Heating (MIH) scheme has been systematically studied to acquire suitable MIH parameters including chamber pressure, microwave power and heating time. The proposed MIH means that the thin indium tin oxide (ITO) metal below the Poly(4-vinylphenol) (PVP) film is heated rapidly by microwave irradiation and the heated ITO metal gate can heat the PVP gate insulator, resulting in PVP cross-linking. It is found that the attenuation of the microwave energy decreases with the decreasing chamber pressure. The optimal conditions are a power of 50 W, a heating time of 5 min, and a chamber pressure of 20 mTorr. When suitable MIH parameters were used, the effect of PVP cross-linking and the device performance were similar to those obtained using traditional oven heating, even though the cross-linking time was significantly decreased from 1 h to 5 min. Besides the gate leakage current, the interface trap state density (Nit) was also calculated to describe the interface status between the gate insulator and the active layer. The lowest interface trap state density can be found in the device with the PVP gate insulator cross-linked by using the optimal MIH condition. Therefore, it is believed that the MIH scheme is a good candidate to cross-link the PVP gate insulator for organic thin-film transistor applications as a result of its features of rapid heating (5 min) and low-power microwave-irradiation (50 W). PMID:28773101

  12. Investigation of Rapid Low-Power Microwave-Induction Heating Scheme on the Cross-Linking Process of the Poly(4-vinylphenol for the Gate Insulator of Pentacene-Based Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Ching-Lin Fan

    2017-07-01

    Full Text Available In this study, a proposed Microwave-Induction Heating (MIH scheme has been systematically studied to acquire suitable MIH parameters including chamber pressure, microwave power and heating time. The proposed MIH means that the thin indium tin oxide (ITO metal below the Poly(4-vinylphenol (PVP film is heated rapidly by microwave irradiation and the heated ITO metal gate can heat the PVP gate insulator, resulting in PVP cross-linking. It is found that the attenuation of the microwave energy decreases with the decreasing chamber pressure. The optimal conditions are a power of 50 W, a heating time of 5 min, and a chamber pressure of 20 mTorr. When suitable MIH parameters were used, the effect of PVP cross-linking and the device performance were similar to those obtained using traditional oven heating, even though the cross-linking time was significantly decreased from 1 h to 5 min. Besides the gate leakage current, the interface trap state density (Nit was also calculated to describe the interface status between the gate insulator and the active layer. The lowest interface trap state density can be found in the device with the PVP gate insulator cross-linked by using the optimal MIH condition. Therefore, it is believed that the MIH scheme is a good candidate to cross-link the PVP gate insulator for organic thin-film transistor applications as a result of its features of rapid heating (5 min and low-power microwave-irradiation (50 W.

  13. Optimum source/drain overlap design for 16 nm high-k/metal gate MOSFETs

    International Nuclear Information System (INIS)

    Jang, Junyong; Lim, Towoo; Kim, Youngmin

    2009-01-01

    We explore a source/drain (S/D) design for a 16 nm MOSFET utilizing a replacement process for a high-k gate dielectric and metal gate electrode integration. Using TCAD simulation, a trade-off study between series resistance and overlap capacitance is carried out for a high-k dielectric surrounding gate structure, which results from the replacement process. An optimum S/D overlap to gate for the high-k surrounding gate structure is found to be different from the conventional gate structure, i.e. 0∼1 nm underlap is preferred for the surround high-k gate structure while 1∼2 nm overlap for the conventional gate one

  14. Spin coated graphene films as the transparent electrode in organic photovoltaic devices

    International Nuclear Information System (INIS)

    Kymakis, E.; Stratakis, E.; Stylianakis, M.M.; Koudoumas, E.; Fotakis, C.

    2011-01-01

    Many research efforts have been devoted to the replacement of the traditional indium–tin-oxide (ITO) electrode in organic photovoltaics. Solution-based graphene has been identified as a potential replacement, since it has less than two percent absorption per layer, relative high carrier mobility, and it offers the possibility of deposition on large area and flexible substrates, compatible with roll to roll manufacturing methods. In this work, soluble reduced graphene films with high electrical conductivity and transparency were fabricated and incorporated in poly(3-hexylthiophene) [6,6]-phenyl-C 61 -butyric acid methyl ester photovoltaic devices, as the transparent electrode. The graphene films were spin coated on glass from an aqueous dispersion of functionalized graphene, followed by a reduction process combining hydrazine vapor and annealing under argon, in order to reduce the sheet resistance. The photovoltaic devices obtained from the graphene films showed lower performance than the reference devices with ITO, due to the higher sheet resistance (2 kΩ/sq) and the poor hydrophilicity of the spin coated graphene films.

  15. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    International Nuclear Information System (INIS)

    Singh, Hemant Kr.; Avasthi, D.K.; Aggarwal, Shruti

    2015-01-01

    Highlights: •The objective is to study the effect of swift heavy ion (SHI) irradiation on photoanode of DSSC for better efficiency. •This work presents the effect of SHI irradiation on various Transparent conducting oxides (TCOs). •Effects are studied in terms of conductivity and transmittance of TCOs. •ITO-PET gives best results in comparison to ITO and FTO for DSSC application under SHI irradiation. -- Abstract: Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO 2 :F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In 2 O 3 :Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag +9 ions at fluences ranging from 3.0 × 10 11 ions/cm 2 to 3.0 × 10 13 ions/cm 2 . The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV–Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications

  16. Oscillation of Critical Current by Gate Voltage in Cooper Pair Transistor

    International Nuclear Information System (INIS)

    Kim, N.; Cheong, Y.; Song, W.

    2010-01-01

    We measured the critical current of a Cooper pair transistor consisting of two Josephson junctions and a gate electrode. The Cooper pair transistors were fabricated by using electron-beam lithography and double-angle evaporation technique. The Gate voltage dependence of critical current was measured by observing voltage jumps at various gate voltages while sweeping bias current. The observed oscillation was 2e-periodic, which shows the Cooper pair transistor had low level of quasiparticle poisoning.

  17. Chromosome mosaicism in hypomelanosis of Ito.

    Science.gov (United States)

    Ritter, C L; Steele, M W; Wenger, S L; Cohen, B A

    1990-01-01

    Our finding of chromosome mosaicism with a ring 22 in a retarded black boy with hypomelanosis of Ito prompted a review of this "syndrome." Most patients have a variety of non-dermal defects, particularly those affecting CNS function. Among karyotyped patients, most are chromosome mosaics of one sort or another. Hypomelanosis of Ito turns out to be a causable non-specific phenotype, i.e., a clinical marker for chromosome mosaicism of all different types in individuals with a dark enough skin to show lighter patches. Consequently, cytogenetic evaluation is indicated in all patients with this skin finding.

  18. Observation of indium ion migration-induced resistive switching in Al/Mg_0_._5Ca_0_._5TiO_3/ITO

    International Nuclear Information System (INIS)

    Lin, Zong-Han; Wang, Yeong-Her

    2016-01-01

    Understanding switching mechanisms is very important for resistive random access memory (RRAM) applications. This letter reports an investigation of Al/Mg_0_._5Ca_0_._5TiO_3 (MCTO)/ITO RRAM, which exhibits bipolar resistive switching behavior. The filaments that connect Al electrodes with indium tin oxide electrodes across the MCTO layer at a low-resistance state are identified. The filaments composed of In_2O_3 crystals are observed through energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, nanobeam diffraction, and comparisons of Joint Committee on Powder Diffraction Standards (JCPDS) cards. Finally, a switching mechanism resulting from an electrical field induced by In"3"+ ion migration is proposed. In"3"+ ion migration forms/ruptures the conductive filaments and sets/resets the RRAM device.

  19. Highly sensitive and selective voltammetric detection of mercury(II) using an ITO electrode modified with 5-methyl-2-thiouracil, graphene oxide and gold nanoparticles

    International Nuclear Information System (INIS)

    Zhou, N.; Chen, H.; Li, J.; Chen, L.

    2013-01-01

    We have developed an electrochemical sensor for highly selective and sensitive determination of Hg(II). It is based on the specific binding of 5-methyl-2-thiouracil (MTU) and Hg(II) to the surface of an indium tin oxide (ITO) electrode modified with a composite made from graphene oxide (GO) and gold nanoparticles (AuNPs). This leads to a largely enhanced differential pulse voltammetric response for Hg(II). Following optimization of the method, a good linear relationship (R = 0.9920) is found between peak current and the concentration of Hg(II) in the 5.0-110.0 nM range. The limit of detection (LOD) is 0.78 nM at a signal-to-noise ratio of 3. A study on the interference by several metal ions revealed no interferences. The feasibility of this method was demonstrated by the analyses of real water samples. The LODs are 6.9, 1.0 and 1.9 nM for tap water, bottled water and lake water samples, respectively, and recoveries for the water samples spiked with 8.0, 50.0 and 100.0 nM were 83.9-96.8 %, with relative standard deviations ranging from 3.3 % to 5.2 %. (author)

  20. Efficient Semitransparent Perovskite Solar Cells Using a Transparent Silver Electrode and Four-Terminal Perovskite/Silicon Tandem Device Exploration

    Directory of Open Access Journals (Sweden)

    Dazheng Chen

    2018-01-01

    Full Text Available Four-terminal tandem solar cells employing a perovskite top cell and crystalline silicon (Si bottom cell offer a simpler pathway to surpass the efficiency limit of market-leading single-junction silicon solar cells. To obtain cost-effective top cells, it is crucial to develop transparent conductive electrodes with low parasitic absorption and manufacturing cost. The commonly used indium tin oxide (ITO shows some drawbacks, like the increasing prices and high-energy magnetron sputtering process. Transparent metal electrodes are promising candidates owing to the simple evaporation process, facile process conditions, and high conductivity, and the cheaper silver (Ag electrode with lower parasitic absorption than gold may be the better choice. In this work, efficient semitransparent perovskite solar cells (PSCs were firstly developed by adopting the composite cathode of an ultrathin Ag electrode at its percolation threshold thickness (11 nm, a molybdenum oxide optical coupling layer, and a bathocuproine interfacial layer. The resulting power conversion efficiency (PCE is 13.38% when the PSC is illuminated from the ITO side and the PCE is 8.34% from the Ag side, and no obvious current hysteresis can be observed. Furthermore, by stacking an industrial Si bottom cell (PCE = 14.2% to build a four-terminal architecture, the overall PCEs of 17.03% (ITO side and 11.60% (Ag side can be obtained, which are 27% and 39% higher, respectively, than those of the perovskite top cell. Also, the PCE of the tandem cell has exceeded that of the reference Si solar cell by about 20%. This work provides an outlook to fabricate high-performance solar cells via the cost-effective pathway.

  1. Roll-offset printed transparent conducting electrode for organic solar cells

    International Nuclear Information System (INIS)

    Kim, Inyoung; Kwak, Sun-Woo; Ju, Yeonkyeong; Park, Gun-Young; Lee, Taik-Min; Jang, Yunseok; Choi, Young-Man; Kang, Dongwoo

    2015-01-01

    Transparent conducting electrodes (TCEs) were developed through the roll-offset printing of Ag grid mesh patterns for the application of all-solution processed organic solar cells (OSCs). Due to the remarkable printability of roll-offset printing, the printed TCEs did not show the step coverage problem of subsequent thin layers, which was a chronic problem in other printing techniques. The control of ink cohesion was verified as a critical factor for the high printing quality, which was optimized by adding a polyurethane diol of 2 wt.%. The tensile strength of optimized Ag ink was 322 mN, which led to the clear patterning of Ag nanoparticles. The printed TCEs with different mesh densities of the Ag grid were designed to have a similar property of indium tin oxide (ITO). The measured sheet resistance was 13 Ω/□, and optical transmittance was 86%, including the glass substrate, which was found to be independent of wavelength in the visible spectrum, in contrast with the optical transmittance of ITO. To evaluate the TCE performance as bottom electrodes, all-solution processed OSCs were fabricated on top of the TCEs. The power conversion efficiency (PCE) of the OSCs increased with the increments of the mesh density due to the distinctive increase of the short circuit current density (J sc ), notwithstanding the similar transmittance and sheet resistance of the TCEs. In comparison with ITO, a higher PCE of OSCs was obtained because the printed TCEs with a high mesh density were able to facilitate effective current collection, leading to a significant increase of J sc . - Highlights: • Roll-offset printing provided a remarkable printability of Ag nano-ink. • Control of ink cohesion played a critical role on the patterning of Ag nano-ink. • Printed Ag mesh was used as a transparent conducting electrode. • Transparency and sheet resistance of printed Ag mesh can be designed simply. • Printed Ag mesh was effective for the current collection of organic solar

  2. Dielectric/metal/dielectric alternative transparent electrode: observations on stability/degradation

    Science.gov (United States)

    Cattin, L.; Jouad, El; Stephant, N.; Louarn, G.; Morsli, M.; Hssein, M.; Mouchaal, Y.; Thouiri, S.; Addou, M.; Khelil, A.; Bernède, J. C.

    2017-09-01

    The use of indium-free transparent conductive electrodes is of great interest for organic optoelectronic devices. Among the possible replacements for ITO, dielectric/metal/dielectric (D/M/D) multilayer structures have already proven to be quite efficient. One issue with organic devices is their lifetime, which depends not only on the organic molecules used but also on the electrodes. Therefore we study the variation, with elapsed time, of the electrical and optical properties of different D/M/D structures, with M  =  Ag or Cu/Ag. Six years after realization, it has been shown that if some structures retained an acceptable conductivity, some others became non-conductive. For a sample which remains conductive, in the case of a PET/MoO3/Ag/MoO3 multilayer structure, the sheet resistance changes from 5 Ω/sq-17 Ω/sq after six years. This evolution can be compared to that of a PET/ITO electrode that varies from 25 Ω/sq-900 Ω/sq after six years. It means that not only are the PET/MoO3/Ag/MoO3 multilayer structures more flexible than PET/ITO, but they can also be more stable. Nevertheless, if some PET/MoO3/Ag/MoO3 multilayer structures are quite stable, some others are not. This possible degradation appears to be caused primarily by the physical agglomeration of Ag, which can result in Ag film disruption. This Ag diffusion seems to be caused by humidity-induced degradation in these Ag-based D/M/D structures. Initially, defects begin to grow at a ‘nucleus’, usually a microscopic particle (or pinhole, etc), and then they spread radially outward to form a nearly circular pattern. For a critical density of such defects, the structure becomes non-conductive. Moreover the effect of humidity promotes Ag electrochemical reactions that produce Ag+ ions and enhances surface diffusivity with AgCl formation.

  3. Dielectric/metal/dielectric alternative transparent electrode: observations on stability/degradation

    International Nuclear Information System (INIS)

    Cattin, L; Stephant, N; Louarn, G; Hssein, M; Jouad, El; Mouchaal, Y; Thouiri, S; Bernède, J C; Morsli, M; Addou, M; Khelil, A

    2017-01-01

    The use of indium-free transparent conductive electrodes is of great interest for organic optoelectronic devices. Among the possible replacements for ITO, dielectric/metal/dielectric (D/M/D) multilayer structures have already proven to be quite efficient. One issue with organic devices is their lifetime, which depends not only on the organic molecules used but also on the electrodes. Therefore we study the variation, with elapsed time, of the electrical and optical properties of different D/M/D structures, with M  =  Ag or Cu/Ag. Six years after realization, it has been shown that if some structures retained an acceptable conductivity, some others became non-conductive. For a sample which remains conductive, in the case of a PET/MoO 3 /Ag/MoO 3 multilayer structure, the sheet resistance changes from 5 Ω/sq–17 Ω/sq after six years. This evolution can be compared to that of a PET/ITO electrode that varies from 25 Ω/sq–900 Ω/sq after six years. It means that not only are the PET/MoO 3 /Ag/MoO 3 multilayer structures more flexible than PET/ITO, but they can also be more stable. Nevertheless, if some PET/MoO 3 /Ag/MoO 3 multilayer structures are quite stable, some others are not. This possible degradation appears to be caused primarily by the physical agglomeration of Ag, which can result in Ag film disruption. This Ag diffusion seems to be caused by humidity-induced degradation in these Ag-based D/M/D structures. Initially, defects begin to grow at a ‘nucleus’, usually a microscopic particle (or pinhole, etc), and then they spread radially outward to form a nearly circular pattern. For a critical density of such defects, the structure becomes non-conductive. Moreover the effect of humidity promotes Ag electrochemical reactions that produce Ag + ions and enhances surface diffusivity with AgCl formation. (paper)

  4. Roll-offset printed transparent conducting electrode for organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Inyoung, E-mail: ikim@kimm.re.kr; Kwak, Sun-Woo; Ju, Yeonkyeong; Park, Gun-Young; Lee, Taik-Min; Jang, Yunseok; Choi, Young-Man; Kang, Dongwoo

    2015-04-01

    Transparent conducting electrodes (TCEs) were developed through the roll-offset printing of Ag grid mesh patterns for the application of all-solution processed organic solar cells (OSCs). Due to the remarkable printability of roll-offset printing, the printed TCEs did not show the step coverage problem of subsequent thin layers, which was a chronic problem in other printing techniques. The control of ink cohesion was verified as a critical factor for the high printing quality, which was optimized by adding a polyurethane diol of 2 wt.%. The tensile strength of optimized Ag ink was 322 mN, which led to the clear patterning of Ag nanoparticles. The printed TCEs with different mesh densities of the Ag grid were designed to have a similar property of indium tin oxide (ITO). The measured sheet resistance was 13 Ω/□, and optical transmittance was 86%, including the glass substrate, which was found to be independent of wavelength in the visible spectrum, in contrast with the optical transmittance of ITO. To evaluate the TCE performance as bottom electrodes, all-solution processed OSCs were fabricated on top of the TCEs. The power conversion efficiency (PCE) of the OSCs increased with the increments of the mesh density due to the distinctive increase of the short circuit current density (J{sub sc}), notwithstanding the similar transmittance and sheet resistance of the TCEs. In comparison with ITO, a higher PCE of OSCs was obtained because the printed TCEs with a high mesh density were able to facilitate effective current collection, leading to a significant increase of J{sub sc}. - Highlights: • Roll-offset printing provided a remarkable printability of Ag nano-ink. • Control of ink cohesion played a critical role on the patterning of Ag nano-ink. • Printed Ag mesh was used as a transparent conducting electrode. • Transparency and sheet resistance of printed Ag mesh can be designed simply. • Printed Ag mesh was effective for the current collection of organic

  5. STM studies of an atomic-scale gate electrode formed by a single charged vacancy in GaAs

    Science.gov (United States)

    Lee, Donghun; Daughton, David; Gupta, Jay

    2009-03-01

    Electric-field control of spin-spin interactions at the atomic level is desirable for the realization of spintronics and spin-based quantum computation. Here we demonstrate the realization of an atomic-scale gate electrode formed by a single charged vacancy on the GaAs(110) surface[1]. We can position these vacancies with atomic precision using the tip of a home-built, low temperature STM. Tunneling spectroscopy of single Mn acceptors is used to quantify the electrostatic field as a function of distance from the vacancy. Single Mn acceptors are formed by substituting Mn adatoms for Ga atoms in the first layer of the p-GaAs(110) surface[2]. Depending on the distance, the in-gap resonance of single Mn acceptors can shift as much as 200meV. Our data indicate that the electrostatic field decays according to a screened Coulomb potential. The charge state of the vacancy can be switched to neutral, as evidenced by the Mn resonance returning to its unperturbed position. Reversible control of the local electric field as well as charged states of defects in semiconductors can open new insights such as realizing an atomic-scale gate control and studying spin-spin interactions in semiconductors. http://www.physics.ohio-state.edu/sim jgupta [1] D. Lee and J.A. Gupta (in preparation) [2] D. Kitchen et al., Nature 442, 436-439 (2006)

  6. Carbon: The Ultimate Electrode Choice for Widely Distributed Polymer Solar Cells

    DEFF Research Database (Denmark)

    Benatto, Gisele Alves dos Reis; Roth, Bérenger; Madsen, Morten Vesterager

    2014-01-01

    -, indium tin oxide (ITO)-, and silver-free solar cells in a fully packaged form using only roll-to-roll processing is reported. Replacing silver with carbon as electrode material signifi cantly lowers the manufacturing cost and makes the organic photovoltaic (OPV) modules environmentally safe while...... retaining their fl exibility, active area effi ciency, and stability. The substitution of silver with carbon does not affect the roll-to-roll manufacturing of the modules and allows for the same fast printing and coating. The use of carbon as electrode material is one step closer to the wide release of low...

  7. Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode

    Science.gov (United States)

    Kashiwagi, Y.; Koizumi, A.; Takemura, Y.; Furuta, S.; Yamamoto, M.; Saitoh, M.; Takahashi, M.; Ohno, T.; Fujiwara, Y.; Murahashi, K.; Ohtsuka, K.; Nakamoto, M.

    2014-12-01

    Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25 nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850 °C for 10 min under atmospheric conditions, the resistivity of the ITO film was 5.2 mΩ cm. The fabricated LED up to 3 mm square surface emitted red light when the on-voltage was exceeded.

  8. Transparent Electrodes Based on Silver Nanowire Networks: From Physical Considerations towards Device Integration.

    Science.gov (United States)

    Bellet, Daniel; Lagrange, Mélanie; Sannicolo, Thomas; Aghazadehchors, Sara; Nguyen, Viet Huong; Langley, Daniel P; Muñoz-Rojas, David; Jiménez, Carmen; Bréchet, Yves; Nguyen, Ngoc Duy

    2017-05-24

    The past few years have seen a considerable amount of research devoted to nanostructured transparent conducting materials (TCM), which play a pivotal role in many modern devices such as solar cells, flexible light-emitting devices, touch screens, electromagnetic devices, and flexible transparent thin film heaters. Currently, the most commonly used TCM for such applications (ITO: Indium Tin oxide) suffers from two major drawbacks: brittleness and indium scarcity. Among emerging transparent electrodes, silver nanowire (AgNW) networks appear to be a promising substitute to ITO since such electrically percolating networks exhibit excellent properties with sheet resistance lower than 10 Ω/sq and optical transparency of 90%, fulfilling the requirements of most applications. In addition, AgNW networks also exhibit very good mechanical flexibility. The fabrication of these electrodes involves low-temperature processing steps and scalable methods, thus making them appropriate for future use as low-cost transparent electrodes in flexible electronic devices. This contribution aims to briefly present the main properties of AgNW based transparent electrodes as well as some considerations relating to their efficient integration in devices. The influence of network density, nanowire sizes, and post treatments on the properties of AgNW networks will also be evaluated. In addition to a general overview of AgNW networks, we focus on two important aspects: (i) network instabilities as well as an efficient Atomic Layer Deposition (ALD) coating which clearly enhances AgNW network stability and (ii) modelling to better understand the physical properties of these networks.

  9. From Pauli Matrices to Quantum Ito Formula

    International Nuclear Information System (INIS)

    Pautrat, Yan

    2005-01-01

    This paper answers important questions raised by the recent description, by Attal, of a robust and explicit method to approximate basic objects of quantum stochastic calculus on bosonic Fock space by analogues on the state space of quantum spin chains. The existence of that method justifies a detailed investigation of discrete-time quantum stochastic calculus. Here we fully define and study that theory and obtain in particular a discrete-time quantum Ito formula, which one can see as summarizing the commutation relations of Pauli matrices.An apparent flaw in that approximation method is the difference in the quantum Ito formulas, discrete and continuous, which suggests that the discrete quantum stochastic calculus differs fundamentally from the continuous one and is therefore not a suitable object to approximate subtle phenomena. We show that flaw is only apparent by proving that the continuous-time quantum Ito formula is actually a consequence of its discrete-time counterpart

  10. Inkjet Printing of Back Electrodes for Inverted Polymer Solar cells

    DEFF Research Database (Denmark)

    Angmo, Dechan; Sweelssen, Jorgen; Andriessen, Ronn

    2013-01-01

    in an otherwise fast roll-to-roll production line. In this paper, the applicability of inkjet printing in the ambient processing of back electrodes in inverted polymer solar cells with the structure ITO/ZnO/P3HT:PCBM/PEDOT:PSS/ Ag is investigated. Furthermore, the limitation of screen printing, the commonly......Evaporation is the most commonly used deposition method in the processing of back electrodes in polymer solar cells used in scientifi c studies. However, vacuum-based methods such as evaporation are uneconomical in the upscaling of polymer solar cells as they are throughput limiting steps...... employed method in the ambient processing of back electrode, is demonstrated and discussed. Both inkjet printing and screen printing of back electrodes are studied for their impact on the photovoltaic properties of the polymer solar cells measured under 1000 Wm−2 AM1.5. Each ambient processing technique...

  11. Study on conventional carbon characteristics as counter electrode for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Fajar, Muhammad Noer; Endarko

    2017-01-01

    Activated carbon (AC), black carbon (BC), and graphite were deposited onto ITO (Indium Tin Oxide) glass for counter electrode application in Dye-Sensitized Solar Cells. SEM-EDX was used to observe and analyse the morphology and composition of electrodes. The results showed that the particle distribution of the graphite electrode observed was approximately 34% with a size of 1 to 2 µm and BC electrode about 20% have a size of 0.5 to 1 µm, while AC electrode has a size of 0 – 0.5 µm observed around 20%. AC electrode has a more porous and uniform particle aggregates compared to BC and graphite electrodes. The efficiency of the counter electrode was measured using the solar simulator. The highest efficiency was at 0.011516% for the counter electrode that was fabricated by AC. Meanwhile, black carbon and graphite electrodes were achieved at 0.008744% and 0.010561%, respectively. The results proved that the porosity and the uniform aggregate of the particles were the most significant factors to improve the performance of DSSC. (paper)

  12. Serializing off-the-shelf MOSFETs by Magnetically Coupling Their Gate Electrodes

    DEFF Research Database (Denmark)

    Dimopoulos, Emmanouil; Munk-Nielsen, Stig

    2013-01-01

    While the semiconductor industry struggles with the inherent trade-offs of solid-state devices, serialization of power switches, like the Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) or the Insulated Gate Bipolar Transistor (IGBT), has been proven to be an advantageous alternative...... to acquire a high-efficient, high-voltage, fast-switching device. More than twenty years of research, on the serialization of solid-state devices, have resulted into several different stacking concepts. Among the prevailing ones, the gate balancing core technique, which has demonstrated very good performance...... in strings of high-power IGBT modules. In this paper, the limitations of the gate balancing core technique, when employed to serialize low or medium power off-the-shelf switches, are identified via experimental results. A new design specification for the interwinding capacitance of the employed transformer...

  13. Quantum Ito's formula and stochastic evolutions

    International Nuclear Information System (INIS)

    Hudson, R.L.; Parthasarathy, K.R.

    1984-01-01

    Using only the Boson canonical commutation relations and the Riemann-Lebesgue integral we construct a simple theory of stochastic integrals and differentials with respect to the basic field operator processes. This leads to a noncommutative Ito product formula, a realisation of the classical Poisson process in Fock space which gives a noncommutative central limit theorem, the construction of solutions of certain noncommutative stochastic differential equations, and finally to the integration of certain irreversible equations of motion governed by semigroups of completely positive maps. The classical Ito product formula for stochastic differentials with respect to Brownian motion and the Poisson process is a special case. (orig.)

  14. Spectroellipsometric study of the sol-gel nanocrystalline ITO multilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, T.F.; Gartner, M.; Losurdo, M.; Teodorescu, V.; Blanchin, M.; Stoica, T.; Zaharescu, M

    2004-05-01

    Tin-doped indium oxide (ITO) thin films have been deposited by sol-gel process using 'sols' of indium and tin isopropoxides. The thickness of one deposited ITO layer is approximately 50 nm. The desired thickness was obtained by 1-5 successive depositions. The XTEM cross-sectional view of an ITO sample with five depositions showed a clear delimitation of the layers with an alternating structure dense/porous ITO layers. The void fraction in porous regions varies between 20 and 25%. Cubic bixbyite In{sub 2}O{sub 3} nanocrystals with size of 10-20 nm and no phases separation of tin oxide were observed. The optical properties of the films have been investigated by optical transmission and spectroscopic ellipsometry. Reliable optical constants and porosity are obtained only with the model of internal structure based on XTEM results.

  15. Side-gate modulation effects on high-quality BN-Graphene-BN nanoribbon capacitors

    International Nuclear Information System (INIS)

    Wang, Yang; Chen, Xiaolong; Ye, Weiguang; Wu, Zefei; Han, Yu; Han, Tianyi; He, Yuheng; Cai, Yuan; Wang, Ning

    2014-01-01

    High-quality BN-Graphene-BN nanoribbon capacitors with double side-gates of graphene have been experimentally realized. The double side-gates can effectively modulate the electronic properties of graphene nanoribbon capacitors. By applying anti-symmetric side-gate voltages, we observed significant upward shifting and flattening of the V-shaped capacitance curve near the charge neutrality point. Symmetric side-gate voltages, however, only resulted in tilted upward shifting along the opposite direction of applied gate voltages. These modulation effects followed the behavior of graphene nanoribbons predicted theoretically for metallic side-gate modulation. The negative quantum capacitance phenomenon predicted by numerical simulations for graphene nanoribbons modulated by graphene side-gates was not observed, possibly due to the weakened interactions between the graphene nanoribbon and side-gate electrodes caused by the Ga + beam etching process

  16. Properties of Ce-doped ITO films deposited on polymer substrate by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Kang, Y.M.; Kwon, S.H.; Choi, J.H.; Cho, Y.J.; Song, P.K.

    2010-01-01

    Ce-doped indium tin oxide (ITO:Ce) films were deposited on flexible polyimide substrates by DC magnetron sputtering using ITO targets containing various CeO 2 contents (CeO 2 : 0, 0.5, 3.0, 4.0, 6.0 wt.%) at room temperature and post-annealed at 200 o C. The crystallinity of the ITO films decreased with increasing Ce content, and it led to a decrease in surface roughness. In addition, a relatively small change in resistance in dynamic stress mode was obtained for ITO:Ce films even after the annealing at high temperature (200 o C). The minimum resistivity of the amorphous ITO:Ce films was 3.96 x 10 -4 Ωcm, which was deposited using a 3.0 wt.% CeO 2 doped ITO target. The amorphous ITO:Ce films not only have comparable electrical properties to the polycrystalline films but also have a crystallization temperature > 200 o C. In addition, the amorphous ITO:Ce film showed stable mechanical properties in the bended state.

  17. Printed optically transparent graphene cellulose electrodes

    Science.gov (United States)

    Sinar, Dogan; Knopf, George K.; Nikumb, Suwas; Andrushchenko, Anatoly

    2016-02-01

    Optically transparent electrodes are a key component in variety of products including bioelectronics, touch screens, flexible displays, low emissivity windows, and photovoltaic cells. Although highly conductive indium tin oxide (ITO) films are often used in these electrode applications, the raw material is very expensive and the electrodes often fracture when mechanically stressed. An alternative low-cost material for inkjet printing transparent electrodes on glass and flexible polymer substrates is described in this paper. The water based ink is created by using a hydrophilic cellulose derivative, carboxymethyl cellulose (CMC), to help suspend the naturally hydrophobic graphene (G) sheets in a solvent composed of 70% DI water and 30% 2-butoxyethanol. The CMC chain has hydrophobic and hydrophilic functional sites which allow adsorption on G sheets and, therefore, permit the graphene to be stabilized in water by electrostatic and steric forces. Once deposited on the functionalized substrate the electrical conductivity of the printed films can be "tuned" by decomposing the cellulose stabilizer using thermal reduction. The entire electrode can be thermally reduced in an oven or portions of the electrode thermally modified using a laser annealing process. The thermal process can reduce the sheet resistance of G-CMC films to < 100 Ω/sq. Experimental studies show that the optical transmittance and sheet resistance of the G-CMC conductive electrode is a dependent on the film thickness (ie. superimposed printed layers). The printed electrodes have also been doped with AuCl3 to increase electrical conductivity without significantly increasing film thickness and, thereby, maintain high optical transparency.

  18. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Hemant Kr. [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi (India); Avasthi, D.K. [Inter University Accelerator Center, Post Box 10502, New Delhi (India); Aggarwal, Shruti, E-mail: shruti.al@gmail.com [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi (India)

    2015-06-15

    Highlights: •The objective is to study the effect of swift heavy ion (SHI) irradiation on photoanode of DSSC for better efficiency. •This work presents the effect of SHI irradiation on various Transparent conducting oxides (TCOs). •Effects are studied in terms of conductivity and transmittance of TCOs. •ITO-PET gives best results in comparison to ITO and FTO for DSSC application under SHI irradiation. -- Abstract: Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO{sub 2}:F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In{sub 2}O{sub 3}:Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag{sup +9} ions at fluences ranging from 3.0 × 10{sup 11} ions/cm{sup 2} to 3.0 × 10{sup 13} ions/cm{sup 2}. The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV–Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications.

  19. High resolution laser patterning of ITO on PET substrate

    Science.gov (United States)

    Zhang, Tao; Liu, Di; Park, Hee K.; Yu, Dong X.; Hwang, David J.

    2013-03-01

    Cost-effective laser patterning of indium tin oxide (ITO) thin film coated on flexible polyethylene terephthalate (PET) film substrate for touch panel was studied. The target scribing width was set to the order of 10 μm in order to examine issues involved with higher feature resolution. Picosecond-pulsed laser and Q-switched nanosecond-pulsed laser at the wavelength of 532nm were applied for the comparison of laser patterning in picosecond and nanosecond regimes. While relatively superior scribing quality was achieved by picosecond laser, 532 nm wavelength showed a limitation due to weaker absorption in ITO film. In order to seek for cost-effective solution for high resolution ITO scribing, nanosecond laser pulses were applied and performance of 532nm and 1064nm wavelengths were compared. 1064nm wavelength shows relatively better scribing quality due to the higher absorption ratio in ITO film, yet at noticeable substrate damage. Through single pulse based scribing experiments, we inspected that reduced pulse overlapping is preferred in order to minimize the substrate damage during line patterning.

  20. High-Performance Flexible Single-Crystalline Silicon Nanomembrane Thin-Film Transistors with High- k Nb2O5-Bi2O3-MgO Ceramics as Gate Dielectric on a Plastic Substrate.

    Science.gov (United States)

    Qin, Guoxuan; Zhang, Yibo; Lan, Kuibo; Li, Lingxia; Ma, Jianguo; Yu, Shihui

    2018-04-18

    A novel method of fabricating flexible thin-film transistor based on single-crystalline Si nanomembrane (SiNM) with high- k Nb 2 O 5 -Bi 2 O 3 -MgO (BMN) ceramic gate dielectric on a plastic substrate is demonstrated in this paper. SiNMs are successfully transferred to a flexible polyethylene terephthalate substrate, which has been plated with indium-tin-oxide (ITO) conductive layer and high- k BMN ceramic gate dielectric layer by room-temperature magnetron sputtering. The BMN ceramic gate dielectric layer demonstrates as high as ∼109 dielectric constant, with only dozens of pA current leakage. The Si-BMN-ITO heterostructure has only ∼nA leakage current at the applied voltage of 3 V. The transistor is shown to work at a high current on/off ratio of above 10 4 , and the threshold voltage is ∼1.3 V, with over 200 cm 2 /(V s) effective channel electron mobility. Bending tests have been conducted and show that the flexible transistors have good tolerance on mechanical bending strains. These characteristics indicate that the flexible single-crystalline SiNM transistors with BMN ceramics as gate dielectric have great potential for applications in high-performance integrated flexible circuit.

  1. Corundum nanostructure ITO film fabrication: An approach for physical properties assessment

    International Nuclear Information System (INIS)

    Solieman, A.; Zayed, M.K.; Alamri, S.N.; Al-Dahoudi, N.; Aegerter, M.A.

    2012-01-01

    Highlights: ► Transparent conductive nanostructured ITO films. ► Synthesis of ITO nanoparticles with corundum structure phase by the hydrothermal process. ► Deposition of nanoparticulate ITO films by spin coating technique. ► Curing of ITO films using UV irradiation at low temperatures. - Abstract: Corundum (hexagonal) structure indium tin oxide (h-ITO) nanocrystals have been synthesized by subjecting an aqueous solution of In and Sn chlorides (Sn/In 8 wt.%) to a hydrothermal process followed by annealing at 450 °C in forming gas for 1 h. The annealing temperature was selected based on thermo-gravimetric analysis (TGA) and differential thermal analysis (DTA) of the dried precipitated powder, which showed a stable weight and phase at temperatures above 420 °C. X-ray diffraction (XRD) patterns showed the formation of orthorhombic InOOH precipitates that is transformed, after annealing, into h-ITO nanocrystals with 32 nm average crystal size. For nanostructure film deposition, dispersed sols of the prepared nanocrystals were spun coated on glass substrates. The films were densified by UV irradiation, whilst four-probe method was used to measure its sheet resistance. A sheet resistance as low as 10.6 kΩ □ have been reached. Scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM) showed that the films have high surface roughness and nanopores. The transmittance spectra of the nanostructure films were measured in the UV–vis–NIR wavelength range. In addition to its low resistivity, nanostructure h-ITO films showed a wide range of transparency.

  2. Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode

    International Nuclear Information System (INIS)

    Kashiwagi, Y.; Yamamoto, M.; Saitoh, M.; Takahashi, M.; Ohno, T.; Nakamoto, M.; Koizumi, A.; Fujiwara, Y.; Takemura, Y.; Murahashi, K.; Ohtsuka, K.; Furuta, S.

    2014-01-01

    Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25 nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850 °C for 10 min under atmospheric conditions, the resistivity of the ITO film was 5.2 mΩ cm. The fabricated LED up to 3 mm square surface emitted red light when the on-voltage was exceeded

  3. Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, Y., E-mail: kasiwagi@omtri.or.jp; Yamamoto, M.; Saitoh, M.; Takahashi, M.; Ohno, T.; Nakamoto, M. [Osaka Municipal Technical Research Institute, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553 (Japan); Koizumi, A.; Fujiwara, Y. [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Takemura, Y.; Murahashi, K.; Ohtsuka, K. [Okuno Chemical Industries Co., Ltd., 2-1-25 Hanaten-nishi, Joto-ku, Osaka 536-0011 (Japan); Furuta, S. [Tomoe Works Co., Ltd., 7-13 Tsurumachi, Amagasaki 660-0092 (Japan)

    2014-12-01

    Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25 nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850 °C for 10 min under atmospheric conditions, the resistivity of the ITO film was 5.2 mΩ cm. The fabricated LED up to 3 mm square surface emitted red light when the on-voltage was exceeded.

  4. New method for preparation of polyoxometalate-capped gold nanoparticles, and their assembly on an indium-doped tin oxide electrode

    International Nuclear Information System (INIS)

    Cheng, Y.; Zheng, J.; Wang, Z.; Liu, L.; Wu, Y.; Yang, J.

    2011-01-01

    Functionalized gold nanoparticles capped with polyoxometalates were prepared by a simple photoreduction technique where phosphododecamolybdates serve as reducing reagents, photocatalysts, and as stabilizers. TEM images of the resulting gold nanoparticles show the particles to have a relative narrow size distribution. Monolayer and multilayer structures of the negatively charged capped gold nanoparticles were deposited on a poly(vinyl pyridine)-derivatized indium-doped tin oxide (ITO) electrode via the layer-by-layer technique. The surface plasmon resonance band of the gold nanoparticles displays a blue shift on the surface of the ITO electrode. This is due to the substrate-induced charge redistribution in the gold nanoparticles and a change in the electromagnetic coupling between the assembled nanoparticles. The modified electrode exhibits the characteristic electrochemical behavior of surface-confined phosphododecamolybdate and excellent electrocatalytic activity. The catalysis of the modified electrode towards the model compound iodate was systematically studied. The heterogeneous catalytic rate constant for the electrochemical reduction of iodate was determined by chronoamperometry to be ca. 1. 34 x 10 5 mol -1 .L.s -1 . The amperometric method gave a linear range from 2. 5 x 10 -6 to 1. 5 x 10 -3 M and a detection limit of 1. 0 x 10 -6 M. We believe that the functionalized gold nanoparticles prepared by this photoreduction technique are advantageous in terms of fabrication of sensitive and stable redox electrodes. (author)

  5. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    Science.gov (United States)

    Singh, Hemant Kr.; Avasthi, D. K.; Aggarwal, Shruti

    2015-06-01

    Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO2:F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In2O3:Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag+9 ions at fluences ranging from 3.0 × 1011 ions/cm2 to 3.0 × 1013 ions/cm2. The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV-Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications.

  6. Silver nanowire based flexible electrodes with improved properties: High conductivity, transparency, adhesion and low haze

    International Nuclear Information System (INIS)

    Kiran Kumar, A.B.V.; Wan Bae, Chang; Piao, Longhai; Kim, Sang-Ho

    2013-01-01

    Graphical abstract: This graphical abstract illustrates the schematic representation of the main drawbacks and rectifications for AgNWs based transparent electrodes. - Highlights: • Films exhibited low sheet resistance and optical properties with R s ≤ 30 Ω/□ and T ≥ 90%. • We decreased haze to 2% by controlling AgNWs length, diameter, and concentration. • We achieved good adhesion for AgNWs on PET film. • There is no significant change in resistance in the bending angle from 0° to 180°, and on twisting. - Abstract: Recent work has been focusing on solution processable transparent electrodes for various applications including solar cells and displays. As well as, the research aims majorly at silver nanowires (AgNWs) to replace ITO. We enhance the transparent electrode performance as a function of optical and mechanical properties with low sheet resistance, by controlling the AgNWs accept ratios, ink composition, and processing conditions. The nanowire network of transparent films agrees with the 2D percolation law. The film transmittance values at 550 nm are coping with a reference ITO film. Sheet resistance and haze values are suitable for flexible electronic applications. We fabricate transparent flexible film using a low-cost processing technique

  7. Silver nanowire based flexible electrodes with improved properties: High conductivity, transparency, adhesion and low haze

    Energy Technology Data Exchange (ETDEWEB)

    Kiran Kumar, A.B.V.; Wan Bae, Chang; Piao, Longhai, E-mail: piaolh@kongju.ac.kr; Kim, Sang-Ho, E-mail: sangho1130@kongju.ac.kr

    2013-08-01

    Graphical abstract: This graphical abstract illustrates the schematic representation of the main drawbacks and rectifications for AgNWs based transparent electrodes. - Highlights: • Films exhibited low sheet resistance and optical properties with R{sub s} ≤ 30 Ω/□ and T ≥ 90%. • We decreased haze to 2% by controlling AgNWs length, diameter, and concentration. • We achieved good adhesion for AgNWs on PET film. • There is no significant change in resistance in the bending angle from 0° to 180°, and on twisting. - Abstract: Recent work has been focusing on solution processable transparent electrodes for various applications including solar cells and displays. As well as, the research aims majorly at silver nanowires (AgNWs) to replace ITO. We enhance the transparent electrode performance as a function of optical and mechanical properties with low sheet resistance, by controlling the AgNWs accept ratios, ink composition, and processing conditions. The nanowire network of transparent films agrees with the 2D percolation law. The film transmittance values at 550 nm are coping with a reference ITO film. Sheet resistance and haze values are suitable for flexible electronic applications. We fabricate transparent flexible film using a low-cost processing technique.

  8. Microstructure, ferromagnetic and photoluminescence properties of ITO and Cr doped ITO nanoparticles using solid state reaction

    Science.gov (United States)

    Babu, S. Harinath; Kaleemulla, S.; Rao, N. Madhusudhana; Rao, G. Venugopal; Krishnamoorthi, C.

    2016-11-01

    Indium-tin-oxide (ITO) (In0.95Sn0.05)2O3 and Cr doped indium-tin-oxide (In0.90Sn0.05Cr0.05)2O3 nanoparticles were prepared using simple low cost solid state reaction method and characterized by different techniques to study their structural, optical and magnetic properties. Microstructures, surface morphology, crystallite size of the nanoparticles were studied using X-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM). From these methods it was found that the particles were about 45 nm. Chemical composition and valence states of the nanoparticles were studied using energy dispersive analysis of X-rays (EDAX) and X-ray photoelectron spectroscopy (XPS). From these techniques it was observed that the elements of indium, tin, chromium and oxygen were present in the system in appropriate ratios and they were in +3, +4, +3 and -2 oxidation states. Raman studies confirmed that the nanoparticle were free from unintentional impurities. Two broad emission peaks were observed at 330 nm and 460 nm when excited wavelength of 300 nm. Magnetic studies were carried out at 300 K and 100 K using vibrating sample magnetometer (VSM) and found that the ITO nanoparticles were ferromagnetic at 100 K and 300 K. Where-as the room temperature ferromagnetism completely disappeared in Cr doped ITO nanoparticles at 100 K and 300 K.

  9. Characterization of Piezoresistive PEDOT:PSS Pressure Sensors with Inter-Digitated and Cross-Point Electrode Structures

    Directory of Open Access Journals (Sweden)

    Jer-Chyi Wang

    2015-01-01

    Full Text Available The piezoresistive characteristics of poly(3,4-ethylenedioxythiophene:polystyrene sulfonate (PEDOT:PSS pressure sensors with inter-digitated (IDE and cross-point electrode (CPE structures have been investigated. A small variation of the resistance of the pressure sensors with IDE without bottom indium-tin-oxide (b-ITO film and with CPE structures was observed owing to the single carrier-conducting pathway. For the IDE pressure sensors with b-ITO, the piezoresistive characteristics at low and high pressure were similar to those of the pressure sensors with IDE without b-ITO and with CPE structures, respectively, leading to increased piezoresistive pressure sensitivity as the PEDOT:PSS film thickness decreased. A maximum sensitivity of more than 42 kΩ/Pa was achieved. When the normal pressure was applied, the increased number of conducting points or the reduced distance between the PEDOT oligomers within the PEDOT:PSS film resulted in a decrease of the resistance. The piezoresistive pressure sensors with a single carrier-conducting pathway, i.e., IDE without b-ITO and CPE structures, exhibited a small relaxation time and a superior reversible operation, which can be advantageous for fast piezoresistive response applications.

  10. Characterization of piezoresistive PEDOT:PSS pressure sensors with inter-digitated and cross-point electrode structures.

    Science.gov (United States)

    Wang, Jer-Chyi; Karmakar, Rajat Subhra; Lu, Yu-Jen; Huang, Chiung-Yin; Wei, Kuo-Chen

    2015-01-05

    The piezoresistive characteristics of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) pressure sensors with inter-digitated (IDE) and cross-point electrode (CPE) structures have been investigated. A small variation of the resistance of the pressure sensors with IDE without bottom indium-tin-oxide (b-ITO) film and with CPE structures was observed owing to the single carrier-conducting pathway. For the IDE pressure sensors with b-ITO, the piezoresistive characteristics at low and high pressure were similar to those of the pressure sensors with IDE without b-ITO and with CPE structures, respectively, leading to increased piezoresistive pressure sensitivity as the PEDOT:PSS film thickness decreased. A maximum sensitivity of more than 42 kΩ/Pa was achieved. When the normal pressure was applied, the increased number of conducting points or the reduced distance between the PEDOT oligomers within the PEDOT:PSS film resulted in a decrease of the resistance. The piezoresistive pressure sensors with a single carrier-conducting pathway, i.e., IDE without b-ITO and CPE structures, exhibited a small relaxation time and a superior reversible operation, which can be advantageous for fast piezoresistive response applications.

  11. Electro-synthesis, characterization and photoconducting performance of ITO/polybithiophene–MnO{sub 2} composite

    Energy Technology Data Exchange (ETDEWEB)

    Zouaoui, H.; Abdi, D. [Laboratoire d’Energétique et d’Electrochimie du Solide, Université Ferhat Abbas Sétif-1, Sétif 19000 (Algeria); Bahloul, A.; Nessark, B. [Laboratoire d’Electrochimie et Matériaux, Université Ferhat Abbas Sétif-1, Sétif 19000 (Algeria); Briot, E.; Groult, H. [Sorbonne Universités, Université Paris 6 (UPMC), Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 place Jussieu, 75252 Paris Cedex 05 (France); Mauger, A. [Sorbonne Universités, Université Paris 6 (UPMC), Institut de Minéralogie et de Physique des Milieux Condensés (IMPMC), 4 place Jussieu, 75252 Paris Cedex 05 (France); Julien, C.M., E-mail: christian.julien@upmc.fr [Sorbonne Universités, Université Paris 6 (UPMC), Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 place Jussieu, 75252 Paris Cedex 05 (France)

    2016-06-15

    Highlights: • PBTh–MnO{sub 2} composites are prepared by electro-polymerization of bithiophene on ITO. • Photocurrent of ITO/PBTh–MnO{sub 2} films is three times higher than that of ITO/PBTh substrate. • Electrochemical gap, HOMO and LUMO potentials are determined. • ITO/PBTh–MnO{sub 2} films can be used as a new active material in solar cells. - Abstract: Manganese dioxide is synthesized by reduction reaction of potassium permanganate with hydrogen peroxide. The as-synthesized α-MnO{sub 2} is characterized by powder X-ray diffraction and infrared spectroscopy. The MnO{sub 2} particles are used to prepare composite films containing polybithophene (PBTh) on indium tin oxide (ITO) glass substrates. The composite films ITO/PBTh–MnO{sub 2} are obtained by electro-polymerization of bithiophene in the presence the α-MnO{sub 2} particles dispersed in the electrolytic solution. The XRD and SEM analyses show that the α-MnO{sub 2} particles of size in the range 100–300 nm are incorporated in the polymer. The films are characterized by cyclic voltammetry impedance spectroscopy, UV–vis spectroscopy and scanning electron microscopy. As a result, the electrochemical gap and the optical gap are shifted by the incorporation of MnO{sub 2} from 2.15 eV for ITO/PBTh to 1.88 eV for ITO/PBTh–MnO{sub 2}, while the electrical conductivity decreases from 195.35 S/cm for ITO/PBTh down to 0.047 S/cm for ITO/PBTh–MnO{sub 2} at the highest MnO{sub 2} investigated. The photo-electrochemical measurements also indicate that the ITO/PBTh–MnO{sub 2} films show a photocurrent that is three times higher than that of ITO/PBTh substrate to reach 20.6 μA cm{sup −2}, so that such a composite can be used as a new active material in solar cells.

  12. Photoelectrocatalytic oxidation of glucose at a ruthenium complex modified titanium dioxide electrode promoted by uric acid and ascorbic acid for photoelectrochemical fuel cells

    Science.gov (United States)

    Lu, Shuo-Jian; Ji, Shi-Bo; Liu, Jun-Chen; Li, Hong; Li, Wei-Shan

    2015-01-01

    The simultaneous presence of uric acid (UA) and ascorbic acid (AA) is first found to largely promote the photoelectrocatalytic oxidation of glucose (GLU) at an indium-tin oxide (ITO) or TiO2 nanoparticles/ITO electrode modified with [Ru(tatp)3]2+ (tatp = 1,4,8,9-tetra-aza-triphenylene) possessing good redox activity and nanoparticle size distribution. A well-defined electrocatalytic peak for GLU oxidation is shown at 0.265 V (vs. SCE) under approximate physiological conditions upon incorporation of UA and AA. The [Ru(tatp)3]2+/ITO electrode exhibits attractive amperometric oxidation responses towards GLU, UA and AA, while controlled potentiostatically at 0.3 V, 0.7 V and 1.0 V, respectively, indicating high sensitivity and excellent reproducibility. On basis of the photoelectrocatalysis of [Ru(tatp)3]2+/TiO2/ITO anode, a GLU concentration-dependent photoelectrochemical fuel cell vs. SCE is elaborately assembled. The proposed free-enzyme photoelectrochemical fuel cell employing 0.1 M GLU associated with 0.01 M UA and 0.01 M AA as fuel shows open-circuit photovoltage of 0.608 V, short-circuit photocurrent density of 124.5 μA cm-2 and maximum power density of 21.75 μW cm-2 at 0.455 V, fill factor of 0.32 and photoenergy conversion efficiency of 36.65%, respectively.

  13. Proposal for multiple-valued logic in gated semiconducting carbon nanotubes

    Science.gov (United States)

    Dragoman, D.; Dragoman, M.

    2006-06-01

    The proposal for an implementation of multi-valued logical devices based on excited states of a single quantum well is analysed for various configurations of carbon nanotube quantum wells, which were already experimentally demonstrated at room temperature. The best configuration, which gathers all the advantages of multi-valued logic, is a gated carbon nanotube device where the quantum well is imprinted via DC voltages applied on gate electrodes.

  14. Optical analysis of Cr-doped ITO films deposited by double-target laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Cesaria, M., E-mail: maura.cesaria@le.infn.it [Departiment of Mathematics and Physics ”Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce (Italy); Caricato, A.P. [Departiment of Mathematics and Physics ”Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce (Italy); Maruccio, G. [Departiment of Mathematics and Physics ”Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce (Italy); National Nanotechnology Laboratory (NNL) Istituto Nanoscienze-CNR, Via Arnesano, 73100 Lecce (Italy); Martino, M. [Departiment of Mathematics and Physics ”Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce (Italy)

    2015-06-15

    We investigate the optical properties of ITO and Cr-doped ITO films deposited at room temperature by pulsed laser deposition onto amorphous SiO{sub 2} substrates. Our analysis approach is based on the Tauc's plot method applied to the absorption coefficient estimated by a route realistically describing the film structural features and including the contribution of the non-measurable film–substrate interface. Going beyond the conventional application of the Tauc's plot method, we quote two different transition energies for ITO and Cr-doped ITO and discuss their origin in the framework of a band-structure picture as a function of film thickness, Cr changes of the host ITO dispersion and Cr-doping content. In contrast to the conventional optical ITO description, we account for the existence of direct dipole forbidden transitions between the ITO fundamental band edges, involving different electronic and optical band gaps. Our results and discussion demonstrate that disregarding this theoretically established picture, as occurs in the experimental literature, would lead to conclusions inconsistent with the Cr-induced band occupation and effects on ITO dispersions. Preliminary optical (based on transmittance and reflectance spectra as well as band-tailing effects), electrical and structural inspection of the samples are also considered to check reliability and consistency of our discussion. - Highlights: • Realistic absorption coefficient of very thin films. • Electronic and optical band gap: ITO dipole forbidden optical transitions. • Interpretative model combining realistic band structure and Tauc's plot approach. • Inconsistencies stemming from conventional application of the Tauc's plot. • General model applicable to In{sub 2}O{sub 3}-like systems.

  15. Optical analysis of Cr-doped ITO films deposited by double-target laser ablation

    International Nuclear Information System (INIS)

    Cesaria, M.; Caricato, A.P.; Maruccio, G.; Martino, M.

    2015-01-01

    We investigate the optical properties of ITO and Cr-doped ITO films deposited at room temperature by pulsed laser deposition onto amorphous SiO 2 substrates. Our analysis approach is based on the Tauc's plot method applied to the absorption coefficient estimated by a route realistically describing the film structural features and including the contribution of the non-measurable film–substrate interface. Going beyond the conventional application of the Tauc's plot method, we quote two different transition energies for ITO and Cr-doped ITO and discuss their origin in the framework of a band-structure picture as a function of film thickness, Cr changes of the host ITO dispersion and Cr-doping content. In contrast to the conventional optical ITO description, we account for the existence of direct dipole forbidden transitions between the ITO fundamental band edges, involving different electronic and optical band gaps. Our results and discussion demonstrate that disregarding this theoretically established picture, as occurs in the experimental literature, would lead to conclusions inconsistent with the Cr-induced band occupation and effects on ITO dispersions. Preliminary optical (based on transmittance and reflectance spectra as well as band-tailing effects), electrical and structural inspection of the samples are also considered to check reliability and consistency of our discussion. - Highlights: • Realistic absorption coefficient of very thin films. • Electronic and optical band gap: ITO dipole forbidden optical transitions. • Interpretative model combining realistic band structure and Tauc's plot approach. • Inconsistencies stemming from conventional application of the Tauc's plot. • General model applicable to In 2 O 3 -like systems

  16. Direct imprinting of indium-tin-oxide precursor gel and simultaneous formation of channel and source/drain in thin-film transistor

    Science.gov (United States)

    Haga, Ken-ichi; Kamiya, Yuusuke; Tokumitsu, Eisuke

    2018-02-01

    We report on a new fabrication process for thin-film transistors (TFTs) with a new structure and a new operation principle. In this process, both the channel and electrode (source/drain) are formed simultaneously, using the same oxide material, using a single nano-rheology printing (n-RP) process, without any conventional lithography process. N-RP is a direct thermal imprint technique and deforms oxide precursor gel. To reduce the source/drain resistance, the material common to the channel and electrode is conductive indium-tin-oxide (ITO). The gate insulator is made of a ferroelectric material, whose high charge density can deplete the channel of the thin ITO film, which realizes the proposed operation principle. First, we have examined the n-RP conditions required for the channel and source/drain patterning, and found that the patterning properties are strongly affected by the cooling rate before separating the mold. Second, we have fabricated the TFTs as proposed and confirmed their TFT operation.

  17. A novel gate and drain engineered charge plasma tunnel field-effect transistor for low sub-threshold swing and ambipolar nature

    Science.gov (United States)

    Yadav, Dharmendra Singh; Raad, Bhagwan Ram; Sharma, Dheeraj

    2016-12-01

    In this paper, we focus on the improvement of figures of merit for charge plasma based tunnel field-effect transistor (TFET) in terms of ON-state current, threshold voltage, sub-threshold swing, ambipolar nature, and gate to drain capacitance which provides better channel controlling of the device with improved high frequency response at ultra-low supply voltages. Regarding this, we simultaneously employ work function engineering on the drain and gate electrode of the charge plasma TFET. The use of gate work function engineering modulates the barrier on the source/channel interface leads to improvement in the ON-state current, threshold voltage, and sub-threshold swing. Apart from this, for the first time use of work function engineering on the drain electrode increases the tunneling barrier for the flow of holes on the drain/channel interface, it results into suppression of ambipolar behavior. The lowering of gate to drain capacitance therefore enhanced high frequency parameters. Whereas, the presence of dual work functionality at the gate electrode and over the drain region improves the overall performance of the charge plasma based TFET.

  18. An integrated bioimpedance—ECG gating technique for respiratory and cardiac motion compensation in cardiac PET

    International Nuclear Information System (INIS)

    Koivumäki, Tuomas; Nekolla, Stephan G; Fürst, Sebastian; Loher, Simone; Schwaiger, Markus; Vauhkonen, Marko; Hakulinen, Mikko A

    2014-01-01

    Respiratory motion may degrade image quality in cardiac PET imaging. Since cardiac PET studies often involve cardiac gating by ECG, a separate respiratory monitoring system is required increasing the logistic complexity of the examination, in case respiratory gating is also needed. Thus, we investigated the simultaneous acquisition of both respiratory and cardiac gating signals using II limb lead mimicking electrode configuration during cardiac PET scans of 11 patients. In addition to conventional static and ECG-gated images, bioimpedance technique was utilized to generate respiratory- and dual-gated images. The ability of the bioimpedance technique to monitor intrathoracic respiratory motion was assessed estimating cardiac displacement between end-inspiration and -expiration. The relevance of dual gating was evaluated in left ventricular volume and myocardial wall thickness measurements. An average 7.6  ±  3.3 mm respiratory motion was observed in the study population. Dual gating showed a small but significant increase (4 ml, p = 0.042) in left ventricular myocardial volume compared to plain cardiac gating. In addition, a thinner myocardial wall was observed in dual-gated images (9.3  ±  1.3 mm) compared to cardiac-gated images (11.3  ±  1.3 mm, p = 0.003). This study shows the feasibility of bioimpedance measurements for dual gating in a clinical setting. The method enables simultaneous acquisition of respiratory and cardiac gating signals using a single device with standard ECG electrodes. (paper)

  19. NonMarkov Ito Processes with 1- state memory

    Science.gov (United States)

    McCauley, Joseph L.

    2010-08-01

    A Markov process, by definition, cannot depend on any previous state other than the last observed state. An Ito process implies the Fokker-Planck and Kolmogorov backward time partial differential eqns. for transition densities, which in turn imply the Chapman-Kolmogorov eqn., but without requiring the Markov condition. We present a class of Ito process superficially resembling Markov processes, but with 1-state memory. In finance, such processes would obey the efficient market hypothesis up through the level of pair correlations. These stochastic processes have been mislabeled in recent literature as 'nonlinear Markov processes'. Inspired by Doob and Feller, who pointed out that the ChapmanKolmogorov eqn. is not restricted to Markov processes, we exhibit a Gaussian Ito transition density with 1-state memory in the drift coefficient that satisfies both of Kolmogorov's partial differential eqns. and also the Chapman-Kolmogorov eqn. In addition, we show that three of the examples from McKean's seminal 1966 paper are also nonMarkov Ito processes. Last, we show that the transition density of the generalized Black-Scholes type partial differential eqn. describes a martingale, and satisfies the ChapmanKolmogorov eqn. This leads to the shortest-known proof that the Green function of the Black-Scholes eqn. with variable diffusion coefficient provides the so-called martingale measure of option pricing.

  20. A simple two-step method to fabricate highly transparent ITO/polymer nanocomposite films

    International Nuclear Information System (INIS)

    Liu, Haitao; Zeng, Xiaofei; Kong, Xiangrong; Bian, Shuguang; Chen, Jianfeng

    2012-01-01

    Highlights: ► A simple two-step method without further surface modification step was employed. ► ITO nanoparticles were easily to be uniformly dispersed in polymer matrix. ► ITO/polymer nanocomposite film had high transparency and UV/IR blocking properties. - Abstract: Transparent functional indium tin oxide (ITO)/polymer nanocomposite films were fabricated via a simple approach with two steps. Firstly, the functional monodisperse ITO nanoparticles were synthesized via a facile nonaqueous solvothermal method using bifunctional chemical agent (N-methyl-pyrrolidone, NMP) as the reaction solvent and surface modifier. Secondly, the ITO/acrylics polyurethane (PUA) nanocomposite films were fabricated by a simple sol-solution mixing method without any further surface modification step as often employed traditionally. Flower-like ITO nanoclusters with about 45 nm in diameter were mono-dispersed in ethyl acetate and each nanocluster was assembled by nearly spherical nanoparticles with primary size of 7–9 nm in diameter. The ITO nanoclusters exhibited an excellent dispersibility in polymer matrix of PUA, remaining their original size without any further agglomeration. When the loading content of ITO nanoclusters reached to 5 wt%, the transparent functional nanocomposite film featured a high transparency more than 85% in the visible light region (at 550 nm), meanwhile cutting off near-infrared radiation about 50% at 1500 nm and blocking UV ray about 45% at 350 nm. It could be potential for transparent functional coating materials applications.

  1. Stable angular emission spectra in white organic light-emitting diodes using graphene/PEDOT:PSS composite electrode.

    Science.gov (United States)

    Cho, Hyunsu; Lee, Hyunkoo; Lee, Jonghee; Sung, Woo Jin; Kwon, Byoung-Hwa; Joo, Chul-Woong; Shin, Jin-Wook; Han, Jun-Han; Moon, Jaehyun; Lee, Jeong-Ik; Cho, Seungmin; Cho, Nam Sung

    2017-05-01

    In this work, we suggest a graphene/ poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) composite as a transparent electrode for stabilizing white emission of organic light-emitting diodes (OLEDs). Graphene/PEDOT:PSS composite electrodes have increased reflectance when compared to graphene itself, but their reflectance is still lower than that of ITO itself. Changes in the reflectance of the composite electrode have the advantage of suppressing the angular spectral distortion of white emission OLEDs and achieving an efficiency of 16.6% for white OLEDs, comparable to that achieved by graphene-only electrodes. By controlling the OLED structure to compensate for the two-beam interference effect, the CIE color coordinate change (Δxy) of OLEDs based on graphene/PEDOT:PSS composite electrodes is 0.018, less than that based on graphene-only electrode, i.e.,0.027.

  2. The effect of light intensity and temperature on performance of photoelectrochemical solar cells of structure ITO/TiO2/PVC-LiClO4/graphite

    International Nuclear Information System (INIS)

    Mohd Yusri Abd Rahman; Muhammad Mat Salleh; Ibrahim Abu Talib; Muhammad Yahaya

    2006-01-01

    The photovoltaic characteristics of a photoelectrochemical solar cells of ITO/TiO 2 /PVC-LiCIO 4 /Graphite are reported. This paper is concerned with the effect of light intensity and temperature on performance of the device. The photoelectrochemical solar cell material was a screen-printed layer of titanium dioxide onto an ITO-covered glass substrate which was used as a working electrode of the device. The electrolyte used was PVC-LiCIO 4 that was prepared by solution casting technique. The ionic conductivity of the electrolyte as a function of temperature was obtained from impedance spectroscopy technique. The graphite film which serve as a counter electrode were prepared onto glass substrate by electron beam evaporation technique. The current-voltage, I-V characteristics of the device under illumination of 20, 40, 60, 80 and 100 mWcm -2 light from tungsten halogen lamp at 40 degree C were obtained using Keithley Voltmeter 175A and Keithley Amperemeter 197A. The current-voltage under illumination of 100 mWcm -2 at 30 degree C, 35 degree C, 40 degree C, 45 degree C and 50 degree C respectively were also obtained. It was found that efficiency of the device increases with both light intensity and temperature

  3. Electrochemical deposition of molybdenum sulfide thin films on conductive plastic substrates as platinum-free flexible counter electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chao-Kuang; Hsieh, Chien-Kuo, E-mail: jack_hsieh@mail.mcut.edu.tw

    2015-06-01

    In this study, pulsed electrochemical deposition (pulsed ECD) was used to deposit molybdenum sulfide (MoS{sub x}) thin films on indium tin oxide/polyethylene naphthalate (ITO/PEN) substrates as flexible counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). The surface morphologies and elemental distributions of the prepared MoS{sub x} thin films were examined using field-emission scanning electron microscope (FE-SEM) equipped with energy-dispersive X-ray spectroscopy. The chemical states and crystallinities of the prepared MoS{sub x} thin films were examined by X-ray photoelectron spectroscopy and X-ray diffraction, respectively. The optical transmission (T (%)) properties of the prepared MoS{sub x} samples were determined by ultraviolet–visible spectrophotometry. Cyclic voltammetry (CV) and Tafel-polarization measurements were performed to analyze the electrochemical properties and catalytic activities of the thin films for redox reactions. The FE-SEM results showed that the MoS{sub x} thin films were deposited uniformly on the ITO/PEN flexible substrates via the pulsed ECD method. The CV and Tafel-polarization curve measurements demonstrated that the deposited MoS{sub x} thin films exhibited excellent performances for the reduction of triiodide ions. The photoelectric conversion efficiency (PCE) of the DSSC produced with the pulsed ECD MoS{sub x} thin-film CE was examined by a solar simulator. In combination with a dye-sensitized TiO{sub 2} working electrode and an iodine-based electrolyte, the DSSC with the MoS{sub x} flexible CE showed a PCE of 4.39% under an illumination of AM 1.5 (100 mW cm{sup −2}). Thus, we report that the MoS{sub x} thin films are active catalysts for triiodide reduction. The MoS{sub x} thin films are prepared at room temperature and atmospheric pressure and in a simple and rapid manner. This is an important practical contribution to the production of flexible low-cost thin-film CEs based on plastic substrates. The MoS{sub x

  4. Characterization of dip-coated ITO films derived from nanoparticles synthesized by low-pressure spray pyrolysis

    International Nuclear Information System (INIS)

    Ogi, Takashi; Iskandar, Ferry; Itoh, Yoshifumi; Okuyama, Kikuo

    2006-01-01

    In 2 O 3 :Sn (Indium Tin Oxide; ITO) films were prepared from a sol solution with highly crystalline ITO nanoparticles (less than 20 nm in size with 10 at.% Sn) which had been prepared by low-pressure spray pyrolysis (LPSP) in a single step. The ITO sol solution was prepared by dispersing LPSP-prepared ITO nanoparticles into ultra pure water. The nanoparticle ITO film was deposited on a glass substrate using a dip-coating method and then annealed in air at various temperatures. The optical transmittances of the ITO films were measured by UV-Vis spectrometry, and the films were found to have a high transparency to visible light (in the case of a film thickness of 250 nm annealed at 400 deg. C, the transparency was in excess of 95% over the range λ=450-800 nm, with a maximum value near 100% at wavelengths above λ=700 nm). The optical transmittances of the films were influenced by the size of the ITO particle used, the film thickness and the annealing temperature. The ITO films showed a minimum resistivity of 9.5x10 -2 Ω cm, and their resistivity was affected by both the ITO particle size and the annealing temperature used

  5. Optical and structural properties of TiO2/Ti/Ag/TiO2 and TiO2/ITO/Ag/ITO/TiO2 metal-dielectric multilayers by RF magnetron sputtering for display application

    International Nuclear Information System (INIS)

    Lee, Jang-Hoon; Lee, Seung-Hyu; Hwangbo, Chang-Kwon; Lee, Kwang-Su

    2004-01-01

    Electromagnetic-interference (EMI) shielding and near-infrared (NIR) cutoff filters for plasma display panels, based on fundamental structures (ITO/Ag/ITO), (TiO 2 /Ti/Ag/TiO 2 ) and (TiO 2 /ITO/Ag/ITO/TiO 2 ), were designed and prepared by RF-magnetron sputtering. The optical, structural and electrical properties of the filters were investigated by using spectrophotometry, Auger electron spectroscopy, X-ray photoelectron spectroscopy, Rutherford backscattering spectroscopy, atomic force microscopy and four-point-probe measurements. The results show that ITO films as the barriers and base layers lead to higher transmittance in the visible spectrum and smoother surface roughness than Ti metal barriers, while maintaining high NIR cutoff characteristics and chemical stability, which may be attributed to the lower absorption in the interfacial layers and better protection of the Ag layers by the ITO layers.

  6. Air-gating and chemical-gating in transistors and sensing devices made from hollow TiO2 semiconductor nanotubes

    Science.gov (United States)

    Alivov, Yahya; Funke, Hans; Nagpal, Prashant

    2015-07-01

    Rapid miniaturization of electronic devices down to the nanoscale, according to Moore’s law, has led to some undesirable effects like high leakage current in transistors, which can offset additional benefits from scaling down. Development of three-dimensional transistors, by spatial extension in the third dimension, has allowed higher contact area with a gate electrode and better control over conductivity in the semiconductor channel. However, these devices do not utilize the large surface area and interfaces for new electronic functionality. Here, we demonstrate air gating and chemical gating in hollow semiconductor nanotube devices and highlight the potential for development of novel transistors that can be modulated using channel bias, gate voltage, chemical composition, and concentration. Using chemical gating, we reversibly altered the conductivity of nanoscaled semiconductor nanotubes (10-500 nm TiO2 nanotubes) by six orders of magnitude, with a tunable rectification factor (ON/OFF ratio) ranging from 1-106. While demonstrated air- and chemical-gating speeds were slow here (˜seconds) due to the mechanical-evacuation rate and size of our chamber, the small nanoscale volume of these hollow semiconductors can enable much higher switching speeds, limited by the rate of adsorption/desorption of molecules at semiconductor interfaces. These chemical-gating effects are completely reversible, additive between different chemical compositions, and can enable semiconductor nanoelectronic devices for ‘chemical transistors’, ‘chemical diodes’, and very high-efficiency sensing applications.

  7. Enhanced optical and electrical properties of Ni inserted ITO/Ni/AZO tri-layer structure for photoelectric applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M. Melvin David; Kim, Hyunki [Department of Electrical Engineering, Incheon National University, Incheon 406772 (Korea, Republic of); Park, Yun Chang [Measurement and Analysis Division, National Nanofab Center (NNFC), Daejeon 305-806 (Korea, Republic of); Kim, Joondong, E-mail: joonkim@incheon.ac.kr [Department of Electrical Engineering, Incheon National University, Incheon 406772 (Korea, Republic of)

    2015-05-15

    Highlights: • Ni-embedding transparent conductor effectively reduces the resistivity. • Ni insertion improves the carrier mobility and collection efficiencies. • ITO/Ni/AZO is effective to improve photo-responses compared to ITO/AZO. - Abstract: A thin Ni layer of 5 nm thickness was deposited in between indium-tin-oxide (ITO) and aluminum-doped-zinc oxide (AZO) layers of 50 nm thickness each. The Ni inserting tri-layer structure (ITO/Ni/AZO) showed lower resistivity of 5.51 × 10{sup −4} Ωcm which is nearly 20 times lesser than 97.9 × 10{sup −4} Ωcm of bilayer structure (ITO/AZO). A thin Ni layer in between ITO and AZO enhanced the carrier concentration, mobility and photoresponse behaviors so that figure of merit (FOM) value of ITO/Ni/AZO device was greater than that of ITO/AZO device. ITO/Ni/AZO structure showed improved quantum efficiencies over a broad range of wavelengths (∼350–950 nm) compared to that of ITO/AZO bilayer structure, resulting in enhanced photoresponses. These results show that the optical, electrical and photoresponse properties of ITO/AZO structure could be enhanced by inserting Ni layer of 5 nm thickness in between ITO and AZO layers.

  8. The effects of sodium in ITO by pulsed laser deposition on organic light-emitting diodes

    International Nuclear Information System (INIS)

    Yong, Thian Khok; Kee, Yeh Yee; Tan, Sek Sean; Siew, Wee Ong; Tou, Teck Yong; Yap, Seong Shan

    2010-01-01

    The depth profile of ITO on glass was measured by the time-of-flight secondary ion mass spectroscopy (TOFSIMS) which revealed high sodium (Na) ion concentration at the ITO surface as well as at the ITO-glass interface as a result of out diffusion with substrate heating. Effects of Na ions on the performance of organic light-emitting diode (OLED) were studied by etching away a few tens of nanometers off the ITO surface with a dilute aquaregia solution of HNO 3 :HCl:H 2 O. A single-layer, molecularly doped ITO/(PVK+TPD+Alq 3 )/Al OLEDs were fabricated on bare and etched ITO samples. Although the removal of a 10-nm layer of ITO surface increased the voltage range, brightness, and lifetime, it was insufficient to correlate these improvements with solely to the Na ion reduction without considering the surface roughness. (orig.)

  9. The effects of sodium in ITO by pulsed laser deposition on organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Thian Khok [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Universiti Tunku Abdul Rahman, Faculty of Engineering and Science, Kuala Lumpur (Malaysia); Kee, Yeh Yee; Tan, Sek Sean; Siew, Wee Ong; Tou, Teck Yong [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Yap, Seong Shan [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Norwegian University of Science and Technology, Department of Physics, Trondheim (Norway)

    2010-12-15

    The depth profile of ITO on glass was measured by the time-of-flight secondary ion mass spectroscopy (TOFSIMS) which revealed high sodium (Na) ion concentration at the ITO surface as well as at the ITO-glass interface as a result of out diffusion with substrate heating. Effects of Na ions on the performance of organic light-emitting diode (OLED) were studied by etching away a few tens of nanometers off the ITO surface with a dilute aquaregia solution of HNO{sub 3}:HCl:H{sub 2}O. A single-layer, molecularly doped ITO/(PVK+TPD+Alq{sub 3})/Al OLEDs were fabricated on bare and etched ITO samples. Although the removal of a 10-nm layer of ITO surface increased the voltage range, brightness, and lifetime, it was insufficient to correlate these improvements with solely to the Na ion reduction without considering the surface roughness. (orig.)

  10. Impact of oxide thickness on gate capacitance – Modelling and ...

    Indian Academy of Sciences (India)

    Department of Electronics and Communication Engineering, National ... conventional HEMT, Schottky barrier diode is formed at the gate electrode. .... term corresponds to the energy required for the electric field in the oxide layer and the.

  11. Improvement of organic solar cells by flexible substrate and ITO surface treatments

    International Nuclear Information System (INIS)

    Cheng, Yuang-Tung; Ho, Jyh-Jier; Wang, Chien-Kun; Lee, William; Lu, Chih-Chiang; Yau, Bao-Shun; Nain, Jhen-Liang; Chang, Shun-Hsyung; Chang, Chiu-Cheng; Wang, Kang L.

    2010-01-01

    In this paper, surface treatments on polyethylene terephthalate with polymeric hard coating (PET-HC) substrates are described. The effect of the contact angle on the treatment is first investigated. It has been observed that detergent is quite effective in removing organic contamination on the flexible PET-HC substrates. Next, using a DC-reactive magnetron sputter, indium tin oxide (ITO) thin films of 90 nm are grown on a substrate treated by detergent. Then, various ITO surface treatments are made for improving the performance of the finally developed organic solar cells with structure Al/P3HT:PCBM/PEDOT:PSS/ITO/PET. It is found that the parameters of the ITO including resistivity, carrier concentration, transmittance, surface morphology, and work function depended on the surface treatments and significantly influence the solar cell performance. With the optimal conditions for detergent treatment on flexible PET substrates, the ITO film with a resistivity of 5.6 x 10 -4 Ω cm and average optical transmittance of 84.1% in the visible region are obtained. The optimal ITO surface treated by detergent for 5 min and then by UV ozone for 20 min exhibits the best WF value of 5.22 eV. This improves about 8.30% in the WF compared with that of the untreated ITO film. In the case of optimal treatment with the organic photovoltaic device, meanwhile, 36.6% enhancement in short circuit current density (J sc ) and 92.7% enhancement in conversion efficiency (η) over the untreated solar cell are obtained.

  12. Microstructure, ferromagnetic and photoluminescence properties of ITO and Cr doped ITO nanoparticles using solid state reaction

    Energy Technology Data Exchange (ETDEWEB)

    Babu, S. Harinath [Thin Films Laboratory, Centre for Crystal Growth, VIT University, Vellore-632014, Tamilnadu, India. (India); Kaleemulla, S., E-mail: skaleemulla@gmail.com [Thin Films Laboratory, Centre for Crystal Growth, VIT University, Vellore-632014, Tamilnadu, India. (India); Rao, N. Madhusudhana [Thin Films Laboratory, Centre for Crystal Growth, VIT University, Vellore-632014, Tamilnadu, India. (India); Rao, G. Venugopal [Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102, Tamilnadu (India); Krishnamoorthi, C. [Thin Films Laboratory, Centre for Crystal Growth, VIT University, Vellore-632014, Tamilnadu, India. (India)

    2016-11-01

    Indium-tin-oxide (ITO) (In{sub 0.95}Sn{sub 0.05}){sub 2}O{sub 3} and Cr doped indium-tin-oxide (In{sub 0.90}Sn{sub 0.05}Cr{sub 0.05}){sub 2}O{sub 3} nanoparticles were prepared using simple low cost solid state reaction method and characterized by different techniques to study their structural, optical and magnetic properties. Microstructures, surface morphology, crystallite size of the nanoparticles were studied using X-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM). From these methods it was found that the particles were about 45 nm. Chemical composition and valence states of the nanoparticles were studied using energy dispersive analysis of X-rays (EDAX) and X-ray photoelectron spectroscopy (XPS). From these techniques it was observed that the elements of indium, tin, chromium and oxygen were present in the system in appropriate ratios and they were in +3, +4, +3 and −2 oxidation states. Raman studies confirmed that the nanoparticle were free from unintentional impurities. Two broad emission peaks were observed at 330 nm and 460 nm when excited wavelength of 300 nm. Magnetic studies were carried out at 300 K and 100 K using vibrating sample magnetometer (VSM) and found that the ITO nanoparticles were ferromagnetic at 100 K and 300 K. Where-as the room temperature ferromagnetism completely disappeared in Cr doped ITO nanoparticles at 100 K and 300 K.

  13. DNA-FET using carbon nanotube electrodes

    International Nuclear Information System (INIS)

    Sasaki, T K; Ikegami, A; Aoki, N; Ochiai, Y

    2006-01-01

    We demonstrate DNA field effect transistor (DNA-FET) using multiwalled carbon nanotube (MWNT) as nano-structural source and drain electrodes. The MWNT electrodes have been fabricated by focused ion-beam bombardment (FIBB). A very short channel, approximately 50 nm, was easily formed between the severed MWNT. The current-voltage (I-V) characteristics of DNA molecules between the MWNT electrodes showed hopping transport property. We have also measured the gate-voltage dependence in the I-V characteristics and found that poly DNA molecules exhibits p-type conduction. The transport of DNA-FET can be explained by two hopping lengths which depend on the range of the source-drain bias voltages

  14. Ultra-fine metal gate operated graphene optical intensity modulator

    Science.gov (United States)

    Kou, Rai; Hori, Yosuke; Tsuchizawa, Tai; Warabi, Kaori; Kobayashi, Yuzuki; Harada, Yuichi; Hibino, Hiroki; Yamamoto, Tsuyoshi; Nakajima, Hirochika; Yamada, Koji

    2016-12-01

    A graphene based top-gate optical modulator on a standard silicon photonic platform is proposed for the future optical telecommunication networks. On the basis of the device simulation, we proposed that an electro-absorption light modulation can be realized by an ultra-narrow metal top-gate electrode (width less than 400 nm) directly located on the top of a silicon wire waveguide. The designed structure also provides excellent features such as carrier doping and waveguide-planarization free fabrication processes. In terms of the fabrication, we established transferring of a CVD-grown mono-layer graphene sheet onto a CMOS compatible silicon photonic sample followed by a 25-nm thick ALD-grown Al2O3 deposition and Source-Gate-Drain electrodes formation. In addition, a pair of low-loss spot-size converter for the input and output area is integrated for the efficient light source coupling. The maximum modulation depth of over 30% (1.2 dB) is observed at a device length of 50 μm, and a metal width of 300 nm. The influence of the initial Fermi energy obtained by experiment on the modulation performance is discussed with simulation results.

  15. MIS gas sensors based on porous silicon with Pd and WO{sub 3}/Pd electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Solntsev, V.S. [Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028, Kiev (Ukraine); Gorbanyuk, T.I., E-mail: tatyanagor@mail.r [Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028, Kiev (Ukraine); Litovchenko, V.G.; Evtukh, A.A. [Institute of Semiconductor Physics, National Academy of Science of Ukraine, 03028, Kiev (Ukraine)

    2009-09-30

    Pd and WO{sub 3}/Pd gate metal-oxide-semiconductor (MIS) gas sensitive structures based on porous silicon layers are studied by the high frequency C(V) method. The chemical compositions of composite WO{sub 3}/Pd electrodes are characterized by secondary-ion mass spectrometry (SIMS). The atomic force microscopy (AFM) was used for morphologic studies of WO{sub 3}/Pd films. As shown in the experiments, WO{sub 3}/Pd structures are more sensitive and selective to the adsorption of hydrogen sulphide compared to Pd gate. The analyses of kinetic characteristics allow us to determine the response and characteristic times for these structures. The response time of MIS-structures with thin composite WO{sub 3}/Pd electrodes (the thickness of Pd is about 50 nm with WO{sub 3} clusters on its surface) is slower compared to the structures with Pd electrodes. Slower sensor responses of WO{sub 3}-based gas sensors may be associated with different mechanism of gas sensitivity of given structures. The enhanced sensitivity and selectivity to H{sub 2}S action of WO{sub 3}/Pd MIS-structures can also be explained by the chemical reaction that occurs at the catalytic active surface of gate electrodes. The possible mechanisms of enhanced sensitivity and selectivity to H{sub 2}S adsorption of MIS gas sensors with WO{sub 3}/Pd composite gate electrodes compared to pure Pd have been analyzed.

  16. Triggering the Electrolyte-Gated Organic Field-Effect Transistor output characteristics through gate functionalization using diazonium chemistry: Application to biodetection of 2,4-dichlorophenoxyacetic acid.

    Science.gov (United States)

    Nguyen, T T K; Nguyen, T N; Anquetin, G; Reisberg, S; Noël, V; Mattana, G; Touzeau, J; Barbault, F; Pham, M C; Piro, B

    2018-04-26

    We investigated an Electrolyte-Gated Organic Field-Effect transistor based on poly(N-alkyldiketopyrrolo-pyrrole dithienylthieno[3,2-b]thiophene) as organic semiconductor whose gate electrode was functionalized by electrografting a functional diazonium salt capable to bind an antibody specific to 2,4-dichlorophenoxyacetic acid (2,4-D), an herbicide well-known to be a soil and water pollutant. Molecular docking computations were performed to design the functional diazonium salt to rationalize the antibody capture on the gate surface. Sensing of 2,4-D was performed through a displacement immunoassay. The limit of detection was estimated at around 2.5 fM. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Characteristics of ITO films with oxygen plasma treatment for thin film solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Seob [Department of Photoelectronics Information, Chosun College of Science and Technology, Gwangju (Korea, Republic of); Kim, Eungkwon [Digital Broadcasting Examination, Korean Intellectual Property Office, Daejeon, Suwon 440-746 (Korea, Republic of); Hong, Byungyou [School of Electronic and Electrical Engineering, Sungkyunkwan University, Cheoncheon-dong, 300, Jangan-gu, Suwon 440-746 (Korea, Republic of); Lee, Jaehyoeng, E-mail: jaehyeong@skku.edu [School of Electronic and Electrical Engineering, Sungkyunkwan University, Cheoncheon-dong, 300, Jangan-gu, Suwon 440-746 (Korea, Republic of)

    2013-12-15

    Graphical abstract: The effect of O{sub 2} plasma treatment on the surface and the work function of ITO films. - Highlights: • ITO films were prepared on the glass substrate by RF magnetron sputtering method. • Effects of O{sub 2} plasma treatment on the properties of ITO films were investigated. • The work function of ITO film was changed from 4.67 to 5.66 eV by plasma treatment. - Abstract: The influence of oxygen plasma treatment on the electro-optical and structural properties of indium-tin-oxide films deposited by radio frequency magnetron sputtering method were investigated. The films were exposed at different O{sub 2} plasma powers and for various durations by using the plasma enhanced chemical vapor deposition (PECVD) system. The resistivity of the ITO films was almost constant, regardless of the plasma treatment conditions. Although the optical transmittance of ITO films was little changed by the plasma power, the prolonged treatment slightly increased the transmittance. The work function of ITO film was changed from 4.67 eV to 5.66 eV at the plasma treatment conditions of 300 W and 60 min.

  18. Nanoparticle and nanosphere mask for etching of ITO nanostructures and their reflection properties

    International Nuclear Information System (INIS)

    Xu, Cigang; Deng, Ligang; Holder, Adam; Bailey, Louise R.; Proudfoot, Gary; Thomas, Owain; Gunn, Robert; Cooke, Mike; Leendertz, Caspar; Bergmann, Joachim

    2015-01-01

    Au nanoparticles and polystyrene nanospheres were used as mask for plasma etching of indium tin oxide (ITO) layer. By reactive ion etching (RIE) processes, the morphology of polystyrene nanospheres can be tuned through chemical or physical etching, and Au nanoparticle mask can result in ITO nanostructures with larger aspect ratio than nanosphere mask. During inductively coupled plasma (ICP) processes, Au nanoparticle mask was not affected by the thermal effect of plasma, whereas temperature of the substrate was essential to protect nanospheres from the damaging effect of plasma. Physical bombardment in the plasma can also modify the nanospheres. It was observed that under the same process conditions, the ratio of CH 4 and H 2 in the process gas can affect the etching rate of ITO without completely etching the nanospheres. The morphology of ITO nanostructures also depends on process conditions. The resulting ITO nanostructures show lower reflection in a spectral range of 400-1000 nm than c-Si and conventional antireflection layer of SiN x film. ITO nanostructures obtained after etching (scale bar = 200 nm). (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Fabrication of indium tin oxide (ITO) thin film with pre-treated sol coating

    International Nuclear Information System (INIS)

    Hong, Sung-Jei; Han, Jeong-In

    2004-01-01

    A new pre-treated sol-coating method to fabricate an indium tin oxide (ITO) thin film is introduced in this paper. The pre-treatment sol-coating method is to form a seed layer on the substrate before spin coating of ITO sol. The pre-treatment was carried out at room temperature in order not to damage the substrate during the pre-treatment. It is effective to enhance the formation of the ITO sol film on the substrate, owing to the seed layer. The seed layer consists of ultrafine grains, which are observed at the pre-treated substrate. For the optimal pre-treatment condition, we used pre-treatment times of 24, 48, 72, and 96 hours to observe the effect on the characteristics of ITO sol film. As a result, the lowest resistance could be achieved with a pre-treatment time of 72 hours. The optical transmittance of the ITO sol film with the pre-treatment time of 72 hours exceeded 80 % at a wavelength of 400 nm. So, an ITO sol film with good electrical and optical properties could be fabricated by using the pretreatment sol coating.

  20. The Influence of Materials of Electrodes of Sensitized Solar Cells on Their Capacitive and Electrical Characteristics

    Science.gov (United States)

    Lazarenko, P. I.; Kozyukhin, S. A.; Mokshina, A. I.; Sherchenkov, A. A.; Patrusheva, T. N.; Irgashev, R. A.; Lebedev, E. A.; Kozik, V. V.

    2018-05-01

    An estimation is made of the internal capacitance of sensitized solar cells (SSCs) manufactured by the method of extraction pyrolysis. The structures under study are characterized by a hysteresis in the current-voltage characteristic obtained in the direct and reverse modes of voltage variation. The investigations of SSCs demonstrate a high inertness of the parameters under connection and disconnection of the light source. The use of a transparent conductive ITO-electrode, manufactured by the extraction pyrolysis, increases the external capacitance of the cell and decelerates the processes of current decay after the light source connection compared to the commercial FTO-electrode. The values of charges, capacitances, and SSC charge conservation efficiencies are calculated and the internal resistance of the SSCs under study is estimated. According to the estimations performed, the specimen with an ITO-layer possesses a capacitance equal to C1 = 1.23·10-3 F, which is by two orders of magnitude higher than that of the specimen with a FTO-layer (C2 = 2.06·10-5 F).

  1. SWNT array resonant gate MOS transistor.

    Science.gov (United States)

    Arun, A; Campidelli, S; Filoramo, A; Derycke, V; Salet, P; Ionescu, A M; Goffman, M F

    2011-02-04

    We show that thin horizontal arrays of single wall carbon nanotubes (SWNTs) suspended above the channel of silicon MOSFETs can be used as vibrating gate electrodes. This new class of nano-electromechanical system (NEMS) combines the unique mechanical and electronic properties of SWNTs with an integrated silicon-based motion detection. Its electrical response exhibits a clear signature of the mechanical resonance of SWNT arrays (120-150 MHz) showing that these thin horizontal arrays behave as a cohesive, rigid and elastic body membrane with a Young's modulus in the order of 1-10 GPa and ultra-low mass. The resonant frequency can be tuned by the gate voltage and its dependence is well understood within the continuum mechanics framework.

  2. SWNT array resonant gate MOS transistor

    International Nuclear Information System (INIS)

    Arun, A; Salet, P; Ionescu, A M; Campidelli, S; Filoramo, A; Derycke, V; Goffman, M F

    2011-01-01

    We show that thin horizontal arrays of single wall carbon nanotubes (SWNTs) suspended above the channel of silicon MOSFETs can be used as vibrating gate electrodes. This new class of nano-electromechanical system (NEMS) combines the unique mechanical and electronic properties of SWNTs with an integrated silicon-based motion detection. Its electrical response exhibits a clear signature of the mechanical resonance of SWNT arrays (120-150 MHz) showing that these thin horizontal arrays behave as a cohesive, rigid and elastic body membrane with a Young's modulus in the order of 1-10 GPa and ultra-low mass. The resonant frequency can be tuned by the gate voltage and its dependence is well understood within the continuum mechanics framework.

  3. Effect of Pedot-Pss on Electrical and Photovoltaic Properties of ITO/MEH-PPV:PCBM/Al Organic Diodes

    International Nuclear Information System (INIS)

    Gunduz, B.

    2008-01-01

    The photovoltaic and electrical properties of ITO/MEH-PPV:PCBM/Al and ITO/PEDOT-PSS/MEHPPV:PCBM/Al organic diodes have been investigated. The ideality factor, series resistance and shunt resistance values of ITO/MEH-PPV:PCBM/Al and ITO/PEDOT-PSS/MEHPPV:PCBM/Al diodes were found to be 4.6, 6.84x10 6 Ω, 2.2x10 8 Ω and 4.02, 5.8x10 5 Ω, 2x10 7 Ω respectively. The electronic parameters of the ITO/MEH-PPV:PCBM/Al diode were improved using PEDOT-PSS conducting polymer. ITO/MEH-PPV:PCBM/Al and ITO/PEDOT-PSS/MEHPPV:PCBM/Al organic diodes indicate a photovoltaic behaviour with a maximum open circuit voltage V o c and short-circuit current I s c. The photoconductivity sensitivity and responsivity properties of the organic diodes have been characterized by transient-current measurements. The obtained electrical and photovoltaic results indicate that ITO/MEH-PPV:PCBM/Al and ITO/PEDOT-PSS/MEHPPV:PCBM/Al structures are the organic photodiodes with calculated electronic parameters and the electrical properties of the ITO/MEH-PPV:PCBM/Al diode have been improved with PEDOT-PSS conducting polymer

  4. Simple fabrication of active electrodes using direct laser transference

    International Nuclear Information System (INIS)

    Cavallo, P.; Coneo Rodriguez, R.; Broglia, M.; Acevedo, D.F.; Barbero, C.A.

    2014-01-01

    Highlights: •Electroactive materials can be transferred using a single pulse of laser light. •The transfer is made in air using a 6 ns pulse of Nd-YAG laser (532 or 1064 nm). •Conducting polymers films can be transferred maintaining the electroactivity. •Conducting polymer multilayers can be deposited using successive pulses. •Metallic (Au, Pt) transferred micro/nanoparticles are electrocatalytic. -- Abstract: Direct laser transference (DLT) method is applied to obtain electrodes modified with thin films of conducting polymers (CPs) or catalytic metals. A short (6–10 ns) pulse of laser light (second harmonic of Nd-YAG Laser, λ = 532 nm) is shined on the backside of a thin (<200 nm) film of the material to be transferred, which is deposited on a transparent substrate. The illuminated region heats up and the material (conducting polymer or metal) is thermally transferred to a solid target placed at short distance in air. In that ways, CPs are transferred onto polypropylene, glass, indium doped tin oxide (ITO), glassy carbon and gold films. In the same manner, electrocatalytic metals (platinum or gold) are transferred onto conductive substrates (glassy carbon or ITO films on glass). The films have been characterized by scanning electron microscopy, cyclic voltammetry, atomic force microscopy, UV-visible and Fourier Transform Infrared spectroscopies. The chemical, electrical and redox properties of the polymeric materials transferred remain unaltered after the transfer. Moreover, CP multilayers can be built applying DLT several times onto the same substrate. Besides polyaniline, it is shown that it is also possible to transfer functionalized polyanilines. The electrode modified with transferred Pt shows electrocatalytic activity toward methanol oxidation while ferricyanide shows a quasireversible behavior on electrodes modified with transferred Au. The method is simple and fast, works in air without complex environmental conditions and can produce active

  5. Effects of high dose gamma irradiation on ITO thin film properties

    Energy Technology Data Exchange (ETDEWEB)

    Alyamani, A. [National Nanotechnology Center, King Abdul-Aziz City for Science and Technology (KACST), Riyadh (Saudi Arabia); Mustapha, N., E-mail: nazirmustapha@hotmail.com [Dept. of Physics, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University, P.O. Box 90950, Riyadh 11623 (Saudi Arabia)

    2016-07-29

    Transparent thin-film Indium Tin Oxides (ITO) were prepared on 0.7 mm thick glass substrates using a pulsed laser deposition (PLD) process with average thickness of 150 nm. The samples were then exposed to high gamma γ radiation doses by {sup 60}Co radioisotope. The films have been irradiated by performing exposure cycles up to 250 kGy total doses at room temperature. The surface structures before and after irradiation were analysed by x-ray diffraction. Atomic Force Microscopy (AFM) was performed on all samples before and after irradiation to investigate any change in the grain sizes, and also in the roughness of the ITO surface. We investigated the influence of γ irradiation on the spectra of transmittance T, in the ultraviolet-visible-near infrared spectrum using spectrophotometer measurements. Energy band gap E{sub g} was then calculated from the optical spectra for all ITO films. It was found that the optical band gap values decreased as the radiation dose was increased. To compare the effect of the irradiation on refractive index n and extinction coefficient k properties, additional measurements were done on the ITO samples before and after gamma irradiation using an ellipsometer. The optical constants n and k increased by increasing the irradiation doses. Electrical properties such as resistivity and sheet resistance were measured using the four-point probe method. The good optical, electrical and morphological properties maintained by the ITO films even after being exposed to high gamma irradiation doses, made them very favourable to be used as anodes for solar cells and as protective coatings in space windows. - Highlights: • Indium Tin Oxide (ITO) thin films were deposited by pulsed laser deposition. • Effects of Gamma irradiation were investigated. • Changes of optical transmission and electrical properties of ITO films were studied. • Intensity of the diffraction peaks and the film's structure changed with increasing irradiation doses.

  6. Tuning the ITO work function by capacitively coupled plasma and its application in inverted organic solar cells

    International Nuclear Information System (INIS)

    Fang, Ming; Zhang, Chunmei; Chen, Qiang

    2016-01-01

    Highlights: • The work function of ITO was reduced by plasma treatment. • The reduction of the work function was attributed to the variation in chemical component of ITO surface. • The inverted solar cell without electron transport layer was fabricated using plasma-treated ITO. • Optimal power conversion efficiency of 3.22% was achieved. - Abstract: In this paper, we investigated the performance of inverted organic solar cells (OSCs) with plasma-treated indium tin oxide (ITO) as the cathode for omitting an electron transport layer. The Ar plasma was produced by capcitively coupled plasma setup under 20 Pa chamber pressure. For the device with the structure of plasma-treated ITO/P3HT:PCBM/MoO_3/Ag, a power conversion efficiency (PCE) of 3.22% was achieved, whereas PCE of 1.13% was recorded from the device fabricated with the pristine ITO. The photovoltaic performance was found to be dependent on the applied power of plasma. After analyzing by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), we concluded that the chemical component variation of ITOs surface resulted in the decrease of ITO work function, which meant that the ITO Fermi level became shallow relative to the vacuum level. The low work function of ITO should be responsible for the improvement of inverted OSCs because of the better energy level alignment between ITO and the photoactive layer.

  7. Tuning the ITO work function by capacitively coupled plasma and its application in inverted organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Ming [Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing (China); Zhang, Chunmei, E-mail: zhangchunmei@bigc.edu.cn [Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing (China); Chen, Qiang [Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing (China); State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an (China)

    2016-11-01

    Highlights: • The work function of ITO was reduced by plasma treatment. • The reduction of the work function was attributed to the variation in chemical component of ITO surface. • The inverted solar cell without electron transport layer was fabricated using plasma-treated ITO. • Optimal power conversion efficiency of 3.22% was achieved. - Abstract: In this paper, we investigated the performance of inverted organic solar cells (OSCs) with plasma-treated indium tin oxide (ITO) as the cathode for omitting an electron transport layer. The Ar plasma was produced by capcitively coupled plasma setup under 20 Pa chamber pressure. For the device with the structure of plasma-treated ITO/P3HT:PCBM/MoO{sub 3}/Ag, a power conversion efficiency (PCE) of 3.22% was achieved, whereas PCE of 1.13% was recorded from the device fabricated with the pristine ITO. The photovoltaic performance was found to be dependent on the applied power of plasma. After analyzing by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), we concluded that the chemical component variation of ITOs surface resulted in the decrease of ITO work function, which meant that the ITO Fermi level became shallow relative to the vacuum level. The low work function of ITO should be responsible for the improvement of inverted OSCs because of the better energy level alignment between ITO and the photoactive layer.

  8. Nickel hydroxide modified electrodes for urea determination

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Dall´Antonia

    2007-03-01

    Full Text Available Nickel hydroxide films were prepared by electrodeposition from a solution Ni(NO32 0,05 mol L ?¹ on ITO electrodes (Tin oxide doped with Indium on PET-like plastic film, applying a current of - 0,1 A cm ?² during different time intervals between 1800 and 7200 s. The electrochemical behavior of the nickel hydroxide electrode was investigated through a cyclic voltammogram, in NaOH 1,0 mol L ?¹, where it was observed two peaks in the profile in 0,410 and 0,280 V, corresponding to redox couple Ni(II/Ni(III. A sensor for urea presenting a satisfactory answer can be obtained when, after the deposit of the film of Ni(OH2 on the electrode of nickel, it is immersed in a solution of NaOH 1,0 mol L ?¹ and applying a potential of + 0,435 V, where the maximum of the anodic current occurs in the cyclic voltammogram. Analyzing the results it can be observed that, for a range of analite concentration between 5 to 50 m mol L ?¹, the behavior is linear and the sensibility found was of 20,3 mA cm?² (mol L?¹?¹, presenting reproducibility confirming the nickel hydroxide electrodes utilization for the determination of urea.

  9. Tunnel field-effect transistor with two gated intrinsic regions

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2014-07-01

    Full Text Available In this paper, we propose and validate (using simulations a novel design of silicon tunnel field-effect transistor (TFET, based on a reverse-biased p+-p-n-n+ structure. 2D device simulation results show that our devices have significant improvements of switching performance compared with more conventional devices based on p-i-n structure. With independent gate voltages applied to two gated intrinsic regions, band-to-band tunneling (BTBT could take place at the p-n junction, and no abrupt degenerate doping profile is required. We developed single-side-gate (SSG structure and double-side-gate (DSG structure. SSG devices with HfO2 gate dielectric have a point subthreshold swing of 9.58 mV/decade, while DSG devices with polysilicon gate electrode material and HfO2 gate dielectric have a point subthreshold swing of 16.39 mV/decade. These DSG devices have ON-current of 0.255 μA/μm, while that is lower for SSG devices. Having two nano-scale independent gates will be quite challenging to realize with good uniformity across the wafer and the improved behavior of our TFET makes it a promising steep-slope switch candidate for further investigations.

  10. Development of low temperature RF magnetron sputtered ITO films on flexible substrate

    Energy Technology Data Exchange (ETDEWEB)

    Muneshwar, T.P.; Varma, V.; Meshram, N; Soni, S.; Dusane, R.O. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2010-09-15

    Indium tin oxide (ITO) is one of the important materials used as transparent conducting oxide (TCO) layer in thin film solar cells, digital displays and other similar applications. For applications involving flexible polymeric substrates, it is important that deposition of ITO is carried out at near room temperature. This requirement puts constraint on stoichiometry leading to undesired electrical and optical properties. Effect of oxygen partial pressure on ITO films deposited on flexible Kapton {sup registered} by the RF magnetron sputtering is reported in this paper. (author)

  11. Transparent conductive graphene electrode in GaN-based ultra-violet light emitting diodes.

    Science.gov (United States)

    Kim, Byung-Jae; Mastro, Michael A; Hite, Jennifer; Eddy, Charles R; Kim, Jihyun

    2010-10-25

    We report a graphene-based transparent conductive electrode for use in ultraviolet (UV) GaN light emitting diodes (LEDs). A few-layer graphene (FLG) layer was mechanically deposited. UV light at a peak wavelength of 368 nm was successfully emitted by the FLG layer as transparent contact to p-GaN. The emission of UV light through the thin graphene layer was brighter than through the thick graphene layer. The thickness of the graphene layer was characterized by micro-Raman spectroscopy. Our results indicate that this novel graphene-based transparent conductive electrode holds great promise for use in UV optoelectronics for which conventional ITO is less transparent than graphene.

  12. Preparation and characterization of nanocrystalline ITO thin films on glass and clay substrates by ion-beam sputter deposition method

    International Nuclear Information System (INIS)

    Venkatachalam, S.; Nanjo, H.; Kawasaki, K.; Wakui, Y.; Hayashi, H.; Ebina, T.

    2011-01-01

    Nanocrystalline indium tin oxide (ITO) thin films were prepared on clay-1 (Clay-TPP-LP-SA), clay-2 (Clay-TPP-SA) and glass substrates using ion-beam sputter deposition method. X-ray diffraction (XRD) patterns showed that the as-deposited ITO films on both clay-1 and clay-2 substrates were a mixture of amorphous and polycrystalline. But the as-deposited ITO films on glass substrates were polycrystalline. The surface morphologies of as-deposited ITO/glass has smooth surface; in contrast, ITO/clay-1 has rough surface. The surface roughnesses of ITO thin films on glass and clay-1 substrate were calculated as 4.3 and 83 nm, respectively. From the AFM and SEM analyses, the particle sizes of nanocrystalline ITO for a film thickness of 712 nm were calculated as 19.5 and 20 nm, respectively. Optical study showed that the optical transmittance of ITO/clay-2 was higher than that of ITO/clay-1. The sheet resistances of as-deposited ITO/clay-1 and ITO/clay-2 were calculated as 76.0 and 63.0 Ω/□, respectively. The figure of merit value for as-deposited ITO/clay-2 (12.70 x 10 -3 /Ω) was also higher than that of ITO/clay-1 (9.6 x 10 -3 /Ω), respectively. The flexibilities of ITO/clay-1 and ITO/clay-2 were evaluated as 13 and 12 mm, respectively. However, the ITO-coated clay-2 substrate showed much better optical and electrical properties as well as flexibility as compared to clay-1.

  13. Crystallization and electrical properties of ITO:Ce thin films for flat panel display applications

    International Nuclear Information System (INIS)

    Kim, Se Il; Cho, Sang Hyun; Choi, Sung Ryong; Oh, Min Cheol; Jang, Ji Hyang; Song, Pung Keun

    2009-01-01

    ITO and ITO:Ce films were deposited by DC magnetron sputtering using an ITO (SnO 2 : 10 wt.%) target and CeO 2 doped ITO (CeO 2 : 0.5, 3.0, 4.0 and 6.0 wt.%) ceramic targets, respectively, on unheated non-alkali glass substrates (corning E2000). The as-deposited films were annealed at 200 o C in an Ar atmosphere at a pressure of 1 Pa. The crystallization temperature of the ITO film was increased by introducing Ce atoms because they decrease the level of crystallinity. It was also confirmed that the etching rate, surface morphology and work function were improved by the addition of Ce atoms despite there being increased resistivity. The current voltage (I-V) characteristics of the OLED devices deteriorated with increasing Ce content in the ITO anode, which was attributed to a decrease in carrier density despite there being a high work function. Therefore, the carrier density is one of the most important factors that determine the turn-on voltage for OLED applications.

  14. A Label-Free Immunosensor for IgG Based on an Extended-Gate Type Organic Field Effect Transistor

    Directory of Open Access Journals (Sweden)

    Tsukuru Minamiki

    2014-09-01

    Full Text Available A novel biosensor for immunoglobulin G (IgG detection based on an extended-gate type organic field effect transistor (OFET has been developed that possesses an anti-IgG antibody on its extended-gate electrode and can be operated below 3 V. The titration results from the target IgG in the presence of a bovine serum albumin interferent, clearly exhibiting a negative shift in the OFET transfer curve with increasing IgG concentration. This is presumed to be due an interaction between target IgG and the immobilized anti-IgG antibody on the extended-gate electrode. As a result, a linear range from 0 to 10 µg/mL was achieved with a relatively low detection limit of 0.62 µg/mL (=4 nM. We believe that these results open up opportunities for applying extended-gate-type OFETs to immunosensing.

  15. Chemo-Electrical Signal Transduction by Using Stimuli-Responsive Polymer Gate-Modified Field Effect Transistor

    Directory of Open Access Journals (Sweden)

    Akira Matsumoto

    2014-03-01

    Full Text Available A glucose-responsive polymer brush was designed on a gold electrode and exploited as an extended gate for a field effect transistor (FET based biosensor. A permittivity change at the gate interface due to the change in hydration upon specific binding with glucose was detectable. The rate of response was markedly enhanced compared to the previously studied cross-linked or gel-coupled electrode, owing to its kinetics involving no process of the polymer network diffusion. This finding may offer a new strategy of the FET-based biosensors effective not only for large molecules but also for electrically neutral molecules such as glucose with improved kinetics.

  16. Diffusion and crystal growth in plasma deposed thin ITO films

    International Nuclear Information System (INIS)

    Steffen, H.; Wulff, H.; Quaas, M.; Tun, Tin Maung.; Hipple, R.

    2000-01-01

    Tin-doped indium oxide (ITO) films were deposited by means of DC-planar magnetron sputtering. A metallic In/Sn (90/10) target an Ar/O 2 gas mixture were used. The oxygen flow was varied between 0 and 2 sccm. Substrate voltages between 0 and -100 V were used. With increasing oxygen flow film structure and composition change from crystalline metallic In/Sn to amorphous ITO. Simultaneously the deposition rate decreases and the film density increases. The diffusion of oxygen into metallic In/Sn films and the amorphous-to-crystalline transformation of ITO were studied using in situ grazing incidence X-ray diffractometry (GIXRD), grazing incidence reflectometry (GIXR), and AFM. From the X-ray integral intensities diffusion constants, activation energies of the diffusion, reaction order and activation energy of the crystal growth were extracted. (authors)

  17. Bubble gate for in-plane flow control.

    Science.gov (United States)

    Oskooei, Ali; Abolhasani, Milad; Günther, Axel

    2013-07-07

    We introduce a miniature gate valve as a readily implementable strategy for actively controlling the flow of liquids on-chip, within a footprint of less than one square millimetre. Bubble gates provide for simple, consistent and scalable control of liquid flow in microchannel networks, are compatible with different bulk microfabrication processes and substrate materials, and require neither electrodes nor moving parts. A bubble gate consists of two microchannel sections: a liquid-filled channel and a gas channel that intercepts the liquid channel to form a T-junction. The open or closed state of a bubble gate is determined by selecting between two distinct gas pressure levels: the lower level corresponds to the "open" state while the higher level corresponds to the "closed" state. During closure, a gas bubble penetrates from the gas channel into the liquid, flanked by a column of equidistantly spaced micropillars on each side, until the flow of liquid is completely obstructed. We fabricated bubble gates using single-layer soft lithographic and bulk silicon micromachining procedures and evaluated their performance with a combination of theory and experimentation. We assessed the dynamic behaviour during more than 300 open-and-close cycles and report the operating pressure envelope for different bubble gate configurations and for the working fluids: de-ionized water, ethanol and a biological buffer. We obtained excellent agreement between the experimentally determined bubble gate operational envelope and a theoretical prediction based on static wetting behaviour. We report case studies that serve to illustrate the utility of bubble gates for liquid sampling in single and multi-layer microfluidic devices. Scalability of our strategy was demonstrated by simultaneously addressing 128 bubble gates.

  18. Screen-printed Tin-doped indium oxide (ITO) films for NH3 gas sensing

    International Nuclear Information System (INIS)

    Mbarek, Hedia; Saadoun, Moncef; Bessais, Brahim

    2006-01-01

    Gas sensors using metal oxides have several advantageous features such as simplicity in device structure and low cost fabrication. In this work, Tin-doped indium oxide (ITO) films were prepared by the screen printing technique onto glass substrates. The granular and porous structure of screen-printed ITO are suitable for its use in gas sensing devices. The resistance of the ITO films was found to be strongly dependent on working temperatures and the nature and concentration of the ambient gases. We show that screen-printed ITO films have good sensing properties toward NH 3 vapours. The observed behaviors are explained basing on the oxidizing or the reducer nature of the gaseous species that react on the surface of the heated semi-conducting oxide

  19. A split accumulation gate architecture for silicon MOS quantum dots

    Science.gov (United States)

    Rochette, Sophie; Rudolph, Martin; Roy, Anne-Marie; Curry, Matthew; Ten Eyck, Gregory; Dominguez, Jason; Manginell, Ronald; Pluym, Tammy; King Gamble, John; Lilly, Michael; Bureau-Oxton, Chloé; Carroll, Malcolm S.; Pioro-Ladrière, Michel

    We investigate tunnel barrier modulation without barrier electrodes in a split accumulation gate architecture for silicon metal-oxide-semiconductor quantum dots (QD). The layout consists of two independent accumulation gates, one gate forming a reservoir and the other the QD. The devices are fabricated with a foundry-compatible, etched, poly-silicon gate stack. We demonstrate 4 orders of magnitude of tunnel-rate control between the QD and the reservoir by modulating the reservoir gate voltage. Last electron charging energies of app. 10 meV and tuning of the ST splitting in the range 100-200 ueV are observed in two different split gate layouts and labs. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  20. Characteristics of a-IGZO/ITO hybrid layer deposited by magnetron sputtering.

    Science.gov (United States)

    Bang, Joon-Ho; Park, Hee-Woo; Cho, Sang-Hyun; Song, Pung-Keun

    2012-04-01

    Transparent a-IGZO (In-Ga-Zn-O) films have been actively studied for use in the fabrication of high-quality TFTs. In this study, a-IGZO films and a-IGZO/ITO double layers were deposited by DC magnetron sputtering under various oxygen flow rates. The a-IGZO films showed an amorphous structure up to 500 degrees C. The deposition rate of these films decreased with an increase in the amount of oxygen gas. The amount of indium atoms in the film was confirmed to be 11.4% higher than the target. The resistivity of double layer follows the rules for parallel DC circuits The maximum Hall mobility of the a-IGZO/ITO double layers was found to be 37.42 cm2/V x N s. The electrical properties of the double layers were strongly dependent on their thickness ratio. The IGZO/ITO double layer was subjected to compressive stress, while the ITO/IGZO double layer was subjected to tensile stress. The bending tolerance was found to depend on the a-IGZO thickness.

  1. SWNT array resonant gate MOS transistor

    Energy Technology Data Exchange (ETDEWEB)

    Arun, A; Salet, P; Ionescu, A M [NanoLab, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne (Switzerland); Campidelli, S; Filoramo, A; Derycke, V; Goffman, M F, E-mail: marcelo.goffman@cea.fr [Laboratoire d' Electronique Moleculaire, SPEC (CNRS URA 2454), IRAMIS, CEA, Gif-sur-Yvette (France)

    2011-02-04

    We show that thin horizontal arrays of single wall carbon nanotubes (SWNTs) suspended above the channel of silicon MOSFETs can be used as vibrating gate electrodes. This new class of nano-electromechanical system (NEMS) combines the unique mechanical and electronic properties of SWNTs with an integrated silicon-based motion detection. Its electrical response exhibits a clear signature of the mechanical resonance of SWNT arrays (120-150 MHz) showing that these thin horizontal arrays behave as a cohesive, rigid and elastic body membrane with a Young's modulus in the order of 1-10 GPa and ultra-low mass. The resonant frequency can be tuned by the gate voltage and its dependence is well understood within the continuum mechanics framework.

  2. Improved ITO thin films for photovoltaic applications with a thin ZnO layer by sputtering

    International Nuclear Information System (INIS)

    Herrero, J.; Guillen, C.

    2004-01-01

    The improvement of the optical and electrical characteristics of indium tin oxide (ITO) layers is pursued to achieve a higher efficiency in its application as frontal electrical contacts in thin film photovoltaic devices. In order to take advantage of the polycrystalline structure of ZnO films as growth support, the properties of ITO layers prepared at room temperature by sputtering onto bare and ZnO-coated substrates have been analyzed using X-ray diffraction, optical and electrical measurements. It has been found that by inserting a thin ZnO layer, the ITO film resistivity can be reduced as compared to that of a single ITO film with similar optical transmittance. The electrical quality improvement is related to ITO grain growth enhancement onto the polycrystalline ZnO underlayer

  3. ITO films with enhanced electrical properties deposited on unheated ZnO-coated polymer substrates

    International Nuclear Information System (INIS)

    Nunes de Carvalho, C.; Lavareda, G.; Fortunato, E.; Alves, H.; Goncalves, A.; Varela, J.; Nascimento, R.; Amaral, A.

    2005-01-01

    Indium tin oxide (ITO) films were deposited by radio frequency (rf)-plasma enhanced reactive thermal evaporation (rf-PERTE) at room temperature on intrinsic ZnO/polymer substrates to enhance their electrical and structural properties. The polymer substrate used is polyethylene terephthalate (PET). The thickness of the ZnO films varied in the range 50-150 nm. The average thickness of the ITO films is of about 170 nm. Results show that ITO deposited on bare PET substrates exhibit: an average visible transmittance of about 85% and an electrical resistivity of 5.6 x 10 -2 Ω cm. ITO on ZnO/PET substrates show the optical quality practically preserved and the resistivity decreased to a minimum value of 1.9x10 -3 Ω cm for ZnO layers 125 nm thick. The electrical properties of ITO on ZnO/PET are largely improved by the increase in carrier mobility

  4. Fabrication of ITO particles using a combination of a homogeneous precipitation method and a seeding technique and their electrical conductivity

    Directory of Open Access Journals (Sweden)

    Yoshio Kobayashi

    2015-09-01

    Full Text Available The present work proposes a method to fabricate indium tin oxide (ITO particles using precursor particles synthesized with a combination of a homogeneous precipitation method and a seeding technique, and it also describes their electronic conductivity properties. Seed nanoparticles were produced using a co-precipitation method with aqueous solutions of indium (III chloride, tin (IV chloride aqueous solution and sodium hydroxide. Three types of ITO nanoparticles were fabricated. The first type was fabricated using the co-precipitation method (c-ITO. The second and third types were fabricated using a homogeneous precipitation method with the seed nanoparticles (s-ITO and without seeds (n-ITO. The as-prepared precursor particles were annealed in air at 500 °C, and their crystal structures were cubic ITO. The c-ITO nanoparticles formed irregular-shaped agglomerates of nanoparticles. The n-ITO nanoparticles had a rectangular-parallelepiped or quasi-cubic structure. Most s-ITO nanoparticles had a quasi-cubic structure, and their size was larger than the n-ITO particles. The volume resistivities of the c-ITO, n-ITO and s-ITO powders decreased in that order because the regular-shaped particles were made to strongly contact with each other.

  5. Study on effective MOSFET channel length extracted from gate capacitance

    Science.gov (United States)

    Tsuji, Katsuhiro; Terada, Kazuo; Fujisaka, Hisato

    2018-01-01

    The effective channel length (L GCM) of metal-oxide-semiconductor field-effect transistors (MOSFETs) is extracted from the gate capacitances of actual-size MOSFETs, which are measured by charge-injection-induced-error-free charge-based capacitance measurement (CIEF CBCM). To accurately evaluate the capacitances between the gate and the channel of test MOSFETs, the parasitic capacitances are removed by using test MOSFETs having various channel sizes and a source/drain reference device. A strong linear relationship between the gate-channel capacitance and the design channel length is obtained, from which L GCM is extracted. It is found that L GCM is slightly less than the effective channel length (L CRM) extracted from the measured MOSFET drain current. The reason for this is discussed, and it is found that the capacitance between the gate electrode and the source and drain regions affects this extraction.

  6. Ammonium ions determination with polypyrrole modified electrode

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Dall´Antonia

    2007-03-01

    Full Text Available The present work relates the preparation of polypyrrole films (PPy deposited on surfaces of glass carbon, nickel and ITO (tin oxide doped with indium on PET plastic, in order to study the ammonium detection. The popypyrrole films were polymerized with dodecylbenzenesulfonate (DBSA on the electrodes, at + 0,70 V vs. Ag/AgCl, based on a solution containing the pyrrole monomer and the amphiphilic salt. Films deposited on glass carbon presented better performance. Cyclic voltammetries, between – 1,50 to + 0,5 V vs. Ag/AgCl, were repeated adding different concentrations of NH4Cl, in order to observe the behavior of the film as a possible detector of ions NH4+. The peak current for oxidation varies with the concentration of ammonium. A linear region can be observed in the band of 0 to 80 mM, with a sensibility (Sppy approximately similar to 4,2 mA mM-1 cm-2, showing the efficacy of the electrodes as sensors of ammonium ions. The amount of deposited polymer, controlled by the time of growth, does not influence on the sensor sensibility. The modified electrode was used to determine ammonium in grounded waters.

  7. Chemical mechanical polishing characteristics of ITO thin film prepared by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Lee, Kang-Yeon; Choi, Gwon-Woo; Kim, Yong-Jae; Choi, Youn-Ok; Kim, Nam-Oh

    2012-01-01

    Indium-tin-oxide (ITO) thin films have attracted intensive interest because of their unique properties of good conductivity, high optical transmittance over the visible region and easy patterning ability. ITO thin films have found many applications in anti-static coatings, thermal heaters, solar cells, flat panel displays (FPDs), liquid crystal displays (LCDs), electroluminescent devices, sensors and organic light-emitting diodes (OLEDs). ITO thin films are generally fabricated by using various methods, such as spraying, chemical vapor deposition (CVD), evaporation, electron gun deposition, direct current electroplating, high frequency sputtering, and reactive sputtering. In this research, ITO films were grown on glass substrates by using a radio-frequency (RF) magnetron sputtering method. In order to achieve a high transmittance and a low resistivity, we examined the various film deposition conditions, such as substrate temperature, working pressure, annealing temperature, and deposition time. Next, in order to improve the surface quality of the ITO thin films, we performed a chemical mechanical polishing (CMP) with different process parameters and compared the electrical and the optical properties of the polished ITO thin films. The best CMP conditions with a high removal rate, low nonuniformity, low resistivity and high transmittance were as follows: platen speed, head speed, polishing time, and slurry flow rate of 30 rpm, 30 rpm, 60 sec, and 60 ml/min, respectively.

  8. Strategies for an enzyme immobilization on electrodes: Structural and electrochemical characterizations

    Science.gov (United States)

    Ganesh, V.; Muthurasu, A.

    2012-04-01

    In this paper, we propose various strategies for an enzyme immobilization on electrodes (both metal and semiconductor electrodes). In general, the proposed methodology involves two critical steps viz., (1) chemical modification of substrates using functional monolayers [Langmuir - Blodgett (LB) films and/or self-assembled monolayers (SAMs)] and (2) anchoring of a target enzyme using specific chemical and physical interactions by attacking the terminal functionality of the modified films. Basically there are three ways to immobilize an enzyme on chemically modified electrodes. First method consists of an electrostatic interaction between the enzyme and terminal functional groups present within the chemically modified films. Second and third methods involve the introduction of nanomaterials followed by an enzyme immobilization using both the physical and chemical adsorption processes. As a proof of principle, in this work we demonstrate the sensing and catalytic activity of horseradish peroxidase (HRP) anchored onto SAM modified indium tin oxide (ITO) electrodes towards hydrogen peroxide (H2O2). Structural characterization of such modified electrodes is performed using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurements. The binding events and the enzymatic reactions are monitored using electrochemical techniques mainly cyclic voltammetry (CV).

  9. Investigation of temperature stability of ITO films characteristics

    Directory of Open Access Journals (Sweden)

    Troyan Pavel

    2018-01-01

    Full Text Available The paper represents research of thermal stability of optical and electro-physical parameters of ITO films deposited using various techniques. Variation of optical and electro-physical parameters was recorded using spectroscopy, and Hall’s and four-probe measurements. The best thermal stability was demonstrated by ITO films deposited by metal target sputtering In(90%/Sn(10% in mixture of gases O2 (25% + Ar (75% with further annealing in air atmosphere. This enables to apply this technique for production of thin film transparent resistive elements capable to heat the translucent structures up to 100°C without deterioration of their parameters.

  10. Electrical performance of polymer ferroelectric capacitors fabricated on plastic substrate using transparent electrodes

    KAUST Repository

    Bhansali, Unnat Sampatraj

    2012-09-01

    Polymer-based flexible ferroelectric capacitors have been fabricated using a transparent conducting oxide (ITO) and a transparent conducting polymer (PEDOT:PSS). It is found that the polarization fatigue performance with transparent oxide electrodes exhibits a significant improvement over the polymer electrodes (20% vs 70% drop in polarization after 10 6 cycles). This result can be explained based on a charge injection model that is controlled by interfacial band-offsets, and subsequent pinning of ferroelectric domain walls by the injected carriers. Furthermore, the coercive field (E c) of devices with our polymer electrodes is nearly 40% lower than reported values with similar polymer electrodes. Surprisingly, this difference was found to be related to the dry etching process used to define the top electrodes, which is reported for the first time by this group. The temperature dependence of relative permittivity of both devices shows a typical first order ferroelectric-to-paraelectric phase transition, but with a reduced Curie temperature compared to reference devices fabricated on Pt. © 2012 Elsevier B.V. All rights reserved.

  11. Electrical performance of polymer ferroelectric capacitors fabricated on plastic substrate using transparent electrodes

    KAUST Repository

    Bhansali, Unnat Sampatraj; Khan, Yasser; Alshareef, Husam N.

    2012-01-01

    Polymer-based flexible ferroelectric capacitors have been fabricated using a transparent conducting oxide (ITO) and a transparent conducting polymer (PEDOT:PSS). It is found that the polarization fatigue performance with transparent oxide electrodes exhibits a significant improvement over the polymer electrodes (20% vs 70% drop in polarization after 10 6 cycles). This result can be explained based on a charge injection model that is controlled by interfacial band-offsets, and subsequent pinning of ferroelectric domain walls by the injected carriers. Furthermore, the coercive field (E c) of devices with our polymer electrodes is nearly 40% lower than reported values with similar polymer electrodes. Surprisingly, this difference was found to be related to the dry etching process used to define the top electrodes, which is reported for the first time by this group. The temperature dependence of relative permittivity of both devices shows a typical first order ferroelectric-to-paraelectric phase transition, but with a reduced Curie temperature compared to reference devices fabricated on Pt. © 2012 Elsevier B.V. All rights reserved.

  12. Optical and structural properties of TiO{sub 2}/Ti/Ag/TiO{sub 2} and TiO{sub 2}/ITO/Ag/ITO/TiO{sub 2} metal-dielectric multilayers by RF magnetron sputtering for display application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang-Hoon; Lee, Seung-Hyu; Hwangbo, Chang-Kwon [Inha University, Incheon (Korea, Republic of); Lee, Kwang-Su [Quantum Photonic Science Research Center, Hanyang University, Seoul (Korea, Republic of)

    2004-03-15

    Electromagnetic-interference (EMI) shielding and near-infrared (NIR) cutoff filters for plasma display panels, based on fundamental structures (ITO/Ag/ITO), (TiO{sub 2}/Ti/Ag/TiO{sub 2}) and (TiO{sub 2}/ITO/Ag/ITO/TiO{sub 2}), were designed and prepared by RF-magnetron sputtering. The optical, structural and electrical properties of the filters were investigated by using spectrophotometry, Auger electron spectroscopy, X-ray photoelectron spectroscopy, Rutherford backscattering spectroscopy, atomic force microscopy and four-point-probe measurements. The results show that ITO films as the barriers and base layers lead to higher transmittance in the visible spectrum and smoother surface roughness than Ti metal barriers, while maintaining high NIR cutoff characteristics and chemical stability, which may be attributed to the lower absorption in the interfacial layers and better protection of the Ag layers by the ITO layers.

  13. A local bottom-gate structure with low parasitic capacitance for dielectrophoresis assembly and electrical characterization of suspended nanomaterials

    International Nuclear Information System (INIS)

    Wang, Tun; Liu, Bin; Jiang, Shusen; Rong, Hao; Lu, Miao

    2014-01-01

    A device including a pair of top electrodes and a local gate in the bottom of an SU-8 trench was fabricated on a glass substrate for dielectrophoresis assembly and electrical characterization of suspended nanomaterials. The three terminals were made of gold electrodes and electrically isolated from each other by an air gap. Compared to the widely used global back-gate silicon device, the parasitic capacitance between the three terminals was significantly reduced and an individual gate was assigned to each device. In addition, the spacing from the bottom-gate to either the source or drain was larger than twice the source-drain gap, which guaranteed that the electric field between the source and drain in the dielectrophoresis assembly was not distinguished by the bottom-gate. To prove the feasibility and versatility of the device, a suspended carbon nanotube and graphene film were assembled by dielectrophoresis and characterized successfully. Accordingly, the proposed device holds promise for the electrical characterization of suspended nanomaterials, especially in a high frequency resonator or transistor configuration. (paper)

  14. Failure behavior of ITO diffusion barrier between electroplating Cu and Si substrate annealed in a low vacuum

    International Nuclear Information System (INIS)

    Hsieh, S.H.; Chien, C.M.; Liu, W.L.; Chen, W.J.

    2009-01-01

    A structure of Cu/ITO(10 nm)/Si was first formed and then annealed at various temperatures for 5 min in a rapid thermal annealing furnace under 10 -2 Torr pressure. In Cu/ITO(10 nm)/Si structure, the ITO(10 nm) film was coated on Si substrate by sputtering process and the Cu film was deposited on ITO film by electroplating technique. The various Cu/ITO(10 nm)/Si samples were characterized by a four-point probe, a scanning electron microscope, an X-ray diffractometer, and a transmission electron microscope. The results showed that when the annealing temperature increases near 600 deg. C the interface between Cu and ITO becomes unstable, and the Cu 3 Si particles begin to form; and when the annealing temperature increases to 650 deg. C, a good many of Cu 3 Si particles about 1 μm in size form and the sheet resistance of Cu/ITO(10 nm)/Si structure largely increases.

  15. On the Mechanism of In Nanoparticle Formation by Exposing ITO Thin Films to Hydrogen Plasmas.

    Science.gov (United States)

    Fan, Zheng; Maurice, Jean-Luc; Chen, Wanghua; Guilet, Stéphane; Cambril, Edmond; Lafosse, Xavier; Couraud, Laurent; Merghem, Kamel; Yu, Linwei; Bouchoule, Sophie; Roca I Cabarrocas, Pere

    2017-10-31

    We present our systematic work on the in situ generation of In nanoparticles (NPs) from the reduction of ITO thin films by hydrogen (H 2 ) plasma exposure. In contrast to NP deposition from the vapor phase (i.e., evaporation), the ITO surface can be considered to be a solid reservoir of In atoms thanks to H 2 plasma reduction. On one hand, below the In melting temperature, solid In NP formation is governed by the island-growth mode, which is a self-limiting process because the H 2 plasma/ITO interaction will be gradually eliminated by the growing In NPs that cover the ITO surface. On the other hand, we show that above the melting temperature In droplets prefer to grow along the grain boundaries on the ITO surface and dramatic coalescence occurs when the growing NPs connect with each other. This growth-connection-coalescence behavior is even strengthened on In/ITO bilayers, where In particles larger than 10 μm can be formed, which are made of evaporated In atoms and in situ released ones. Thanks to this understanding, we manage to disperse dense evaporated In NPs under H 2 plasma exposure when inserting an ITO layer between them and substrate like c-Si wafer or glass by modifying the substrate surface chemistry. Further studies are needed for more precise control of this self-assembling method. We expect that our findings are not limited to ITO thin films but could be applicable to various metal NPs generation from the corresponding metal oxide thin films.

  16. Integrating Copper Nanowire Electrodes for Low Temperature Perovskite Photovoltaic Cells

    Science.gov (United States)

    Mankowski, Trent

    Recent advances in third generation photovoltaics, particularly the rapid increase in perovskite power conversion efficiencies, may provide a cheap alternative to silicon solar cells in the near future. A key component to these devices is the transparent front electrode, and in the case of Dye Sensitized Solar Cells, it is the most expensive part. A lightweight, cost-effective, robust, and easy-to-fabricate new generation TCE is required to enable competition with silicon. Indium Tin Oxide, commonly used in touchscreen devices, Organic Light Emitting Diodes (OLEDs), and thin film photovoltaics, is widely used and commonly referred to as the industry standard. As the global supply of indium decreases and the demand for this TCE increases, a similar alternative TCE is required to accompany the next generation solar cells that promise energy with lighter and significantly cheaper modules. This alternative TCE needs to provide similar sheet resistance and optical transmittance to ITO, while also being mechanically and chemically robust. The work in this thesis begins with an exploration of several synthesized ITO replacement materials, such as copper nanowires, conductive polymer PEDOT:PSS, zinc oxide thin films, reduced graphene oxide and combinations of the above. A guiding philosophy to this work was prioritizing cheap, easy deposition methods and overall scalability. Shortcomings of these TCEs were investigated and different materials were hybridized to take advantage of each layers strengths for development of an ideal ITO replacement. For CuNW-based composite electrodes, 85% optical transmittance and 25 O/sq were observed and characterized to understand the underlying mechanisms for optimization. The second half of this work is an examination of many different perovskite synthesis methods first to achieve highest performance, and then to integrate compatible methods with our CuNW TCEs. Several literature methods investigated were irreproducible, and those that

  17. Effect of current compliance and voltage sweep rate on the resistive switching of HfO2/ITO/Invar structure as measured by conductive atomic force microscopy

    International Nuclear Information System (INIS)

    Wu, You-Lin; Liao, Chun-Wei; Ling, Jing-Jenn

    2014-01-01

    The electrical characterization of HfO 2 /ITO/Invar resistive switching memory structure was studied using conductive atomic force microscopy (AFM) with a semiconductor parameter analyzer, Agilent 4156C. The metal alloy Invar was used as the metal substrate to ensure good ohmic contact with the substrate holder of the AFM. A conductive Pt/Ir AFM tip was placed in direct contact with the HfO 2 surface, such that it acted as the top electrode. Nanoscale current-voltage (I-V) characteristics of the HfO 2 /ITO/Invar structure were measured by applying a ramp voltage through the conductive AFM tip at various current compliances and ramp voltage sweep rates. It was found that the resistance of the low resistance state (RLRS) decreased with increasing current compliance value, but resistance of high resistance state (RHRS) barely changed. However, both the RHRS and RLRS decreased as the voltage sweep rate increased. The reasons for this dependency on current compliance and voltage sweep rate are discussed.

  18. Lump solutions with interaction phenomena in the (2+1)-dimensional Ito equation

    Science.gov (United States)

    Zou, Li; Yu, Zong-Bing; Tian, Shou-Fu; Feng, Lian-Li; Li, Jin

    2018-03-01

    In this paper, we consider the (2+1)-dimensional Ito equation, which was introduced by Ito. By considering the Hirota’s bilinear method, and using the positive quadratic function, we obtain some lump solutions of the Ito equation. In order to ensure rational localization and analyticity of these lump solutions, some sufficient and necessary conditions are provided on the parameters that appeared in the solutions. Furthermore, the interaction solutions between lump solutions and the stripe solitons are discussed by combining positive quadratic function with exponential function. Finally, the dynamic properties of these solutions are shown via the way of graphical analysis by selecting appropriate values of the parameters.

  19. 32 CFR 728.44 - Members of security assistance training programs, foreign military sales, and their ITO...

    Science.gov (United States)

    2010-07-01

    ..., foreign military sales, and their ITO authorized dependents. 728.44 Section 728.44 National Defense... § 728.44 Members of security assistance training programs, foreign military sales, and their ITO... patient is an ITO authorized dependent), grade or rate, country of origin, diagnosis, type of elective...

  20. Simultaneous control of thermoelectric properties in p- and n-type materials by electric double-layer gating: New design for thermoelectric device

    Science.gov (United States)

    Takayanagi, Ryohei; Fujii, Takenori; Asamitsu, Atsushi

    2015-05-01

    We report a novel design of a thermoelectric device that can control the thermoelectric properties of p- and n-type materials simultaneously by electric double-layer gating. Here, p-type Cu2O and n-type ZnO were used as the positive and negative electrodes of the electric double-layer capacitor structure. When a gate voltage was applied between the two electrodes, holes and electrons accumulated on the surfaces of Cu2O and ZnO, respectively. The thermopower was measured by applying a thermal gradient along the accumulated layer on the electrodes. We demonstrate here that the accumulated layers worked as a p-n pair of the thermoelectric device.

  1. Toward spin-based Magneto Logic Gate in Graphene

    Science.gov (United States)

    Wen, Hua; Dery, Hanan; Amamou, Walid; Zhu, Tiancong; Lin, Zhisheng; Shi, Jing; Zutic, Igor; Krivorotov, Ilya; Sham, Lu; Kawakami, Roland

    Graphene has emerged as a leading candidate for spintronic applications due to its long spin diffusion length at room temperature. A universal magnetologic gate (MLG) based on spin transport in graphene has been recently proposed as the building block of a logic circuit which could replace the current CMOS technology. This MLG has five ferromagnetic electrodes contacting a graphene channel and can be considered as two three-terminal XOR logic gates. Here we demonstrate this XOR logic gate operation in such a device. This was achieved by systematically tuning the injection current bias to balance the spin polarization efficiency of the two inputs, and offset voltage in the detection circuit to obtain binary outputs. The output is a current which corresponds to different logic states: zero current is logic `0', and nonzero current is logic `1'. We find improved performance could be achieved by reducing device size and optimizing the contacts.

  2. FeNi3/indium tin oxide (ITO) composite nanoparticles with excellent microwave absorption performance and low infrared emissivity

    International Nuclear Information System (INIS)

    Fu, Li-Shun; Jiang, Jian-Tang; Zhen, Liang; Shao, Wen-Zhu

    2013-01-01

    Highlights: ► Electrical conductivity and infrared emissivity can be controlled by ITO content. ► The infrared emissivity is the lowest when the mole ratio of In:Sn in sol is 9:1. ► The permittivity in microwave band can be controlled by the electrical conductivity. ► EMA performance is significantly influenced by the content of ITO phase. ► FeNi 3 /ITO composite particles are suitable for both infrared and radar camouflage. - Abstract: FeNi 3 /indium tin oxide (ITO) composite nanoparticles were synthesized by a self-catalyzed reduction method and a sol–gel process. The dependence of the content of ITO phase with the mole ratios of In:Sn of different sols was investigated. The relation between the electrical conductivity, infrared emissivity of FeNi 3 /ITO composite nanoparticles and the content of ITO phase was discussed. Electromagnetic wave absorption (EMA) performance of products was evaluated by using transmission line theory. It was found that EMA performance including the intensity and the location of effective band is significantly dependent on the content of ITO phase. The low infrared emissivity and superior EMA performance of FeNi 3 /ITO composite nanoparticles can be both achieved when the mole ratio of In:Sn in sol is 9:1.

  3. InGaN/AlGaInN-based ultraviolet light-emitting diodes with indium gallium tin oxide electrodes

    International Nuclear Information System (INIS)

    Kim, Sukwon; Kim, Tae Geun

    2015-01-01

    In this study, In- and Sn-doped GaO (IGTO) is proposed as an alternative transparent conductive electrode for indium tin oxide (ITO) to improve the performance of InGaN/AlGaInN-based near ultraviolet light-emitting diodes (NUV LEDs). IGTO films were prepared by co-sputtering the ITO and Ga_2O_3 targets under various target power ratios. Among those, IGTO films post-annealed at 700 °C under a hydrogen environment gave rise to a transmittance of 94% at 385 nm and a contact resistance of 9.4 × 10"−"3 Ω-cm"2 with a sheet resistance of 124 Ω/ϒ. Compared to ITO-based NUV LEDs, the IGTO-based NUV LED showed a 9% improvement in the light output power, probably due to IGTO's higher transmittance, although the forward voltage was still higher by 0.23 V. - Highlights: • Indium gallium tin oxide (IGTO) for near-ultraviolet light-emitting diode is proposed. • IGTO is fabricated by co-sputtering the ITO and Ga_2O_3 targets and hydrogen annealing. • IGTO shows a 94% transmittance at 385 nm and a 9.4 × 10"−"3 Ω-cm"2 contact resistance. • Near-ultraviolet light-emitting diode with IGTO shows improved optical performance.

  4. Study on the electrical properties of ITO films deposited by facing target sputter deposition

    International Nuclear Information System (INIS)

    Kim, Youn J; Jin, Su B; Kim, Sung I; Choi, Yoon S; Choi, In S; Han, Jeon G

    2009-01-01

    This study examined the mechanism for the change in the electrical properties (carrier concentration (n) and mobility (μ)) of tin-doped indium oxide (ITO) films deposited by magnetron sputtering in a confined facing magnetic field. The relationship between the carrier concentration and the mobility was significantly different from the results reported for ITO films deposited by other magnetron sputtering processes. The lowest resistivity obtained for ITO films deposited in a confined facing magnetic field at low substrate temperatures (approximately 120 0 C) was 4.26 x 10 -4 Ω cm at a power density of 3 W cm -2 . Crystalline ITO films were obtained at a low power density range from 3 to 5 W cm -2 due to the increase in the substrate temperature from 120 to 162 0 C. This contributed to the increased carrier concentration and decreased electrical resistivity. X-ray photoelectron spectroscopy revealed an increase in the concentration of the Sn 4+ states. This was attributed to the formation of a crystalline ITO film, which effectively enhanced the carrier concentration and reduced the carrier mobility.

  5. Fast anodization fabrication of AAO and barrier perforation process on ITO glass

    Science.gov (United States)

    Liu, Sida; Xiong, Zuzhou; Zhu, Changqing; Li, Ma; Zheng, Maojun; Shen, Wenzhong

    2014-04-01

    Thin films of porous anodic aluminum oxide (AAO) on tin-doped indium oxide (ITO) substrates were fabricated through evaporation of a 1,000- to 2,000-nm-thick Al, followed by anodization with different durations, electrolytes, and pore widening. A faster method to obtain AAO on ITO substrates has been developed, which with 2.5 vol.% phosphoric acid at a voltage of 195 V at 269 K. It was found that the height of AAO films increased initially and then decreased with the increase of the anodizing time. Especially, the barrier layers can be removed by extending the anodizing duration, which is very useful for obtaining perforation AAO and will broaden the application of AAO on ITO substrates.

  6. Durability of ITO-MgF2 Films for Space-Inflatable Polymer Structures

    Science.gov (United States)

    Kerslake, Thomas W.; Waters, Deborah L.; Schieman, David A.; Hambourger, Paul D.

    2003-01-01

    This paper presents results from ITO-MgF2 film durability evaluations that included tape peel, fold, thermal cycle, and AO exposure testing. Polymer coupon preparation is described as well as ITO-MgF2 film deposition equipment, procedures and film characterization. Durability testing methods are also described. The pre- and post-test condition of the films is assessed visually, microscopically, and electrically. Results show that at 500 ITO - 9 vol% MgF2 film is suitable to protect polymer surfaces, such as those used in space-inflatable structures of the PowerSphere microsatellite concept, during a 1-year Earth orbiting mission. Future plans for ground-based and orbital testing of this film are also discussed.

  7. Highly conductive interwoven carbon nanotube and silver nanowire transparent electrodes

    Directory of Open Access Journals (Sweden)

    Andrew J Stapleton, Rakesh A Afre, Amanda V Ellis, Joe G Shapter, Gunther G Andersson, Jamie S Quinton and David A Lewis

    2013-01-01

    Full Text Available Electrodes fabricated using commercially available silver nanowires (AgNWs and single walled carbon nanotubes (SWCNTs produced sheet resistances in the range 4–24 Ω squ−1 with specular transparencies up to 82 %. Increasing the aqueous dispersibility of SWCNTs decreased the bundle size present in the film resulting in improved SWCNT surface dispersion in the films without compromising transparency or sheet resistance. In addition to providing conduction pathways between the AgNW network, the SWCNTs also provide structural support, creating stable self-supporting films. Entanglement of the AgNWs and SWCNTs was demonstrated to occur in solution prior to deposition by monitoring the transverse plasmon resonance mode of the AgNWs during processing. The interwoven AgNW/SWCNT structures show potential for use in optoelectronic applications as transparent electrodes and as an ITO replacement.

  8. A novel ITO/AZO/SiO2/p-Si frame SIS heterojunction fabricated by magnetron sputtering

    International Nuclear Information System (INIS)

    He, Bo; Wang, HongZhi; Li, YaoGang; Ma, ZhongQuan; Xu, Jing; Zhang, QingHong; Wang, ChunRui; Xing, HuaiZhong; Zhao, Lei; Rui, YiChuan

    2013-01-01

    Highlights: •Because the ITO/AZO double films lead to a great decrease of the lateral resistance. •The photon current can easily flow through top film entering the Cu front contact. •High photocurrent is obtained under a reverse bias. -- Abstract: The novel ITO/AZO/SiO 2 /p-Si SIS heterojunction has been fabricated by low temperature thermal oxidation an ultrathin silicon dioxide and RF sputtering deposition ITO/AZO double films on p-Si (1 0 0) polished substrate. The microstructural, optical and electrical properties of the ITO/AZO antireflection films were characterized by XRD, SEM, UV–VIS spectrophotometer, four point probe and Hall effect measurement, respectively. The results show that ITO/AZO films are of good quality. And XPS was carried out on the ultrathin SiO 2 film. The heterojunction shows strong rectifying behavior under a dark condition, which reveals that formation of a diode between AZO and p-Si. The ideality factor and the saturation current of this diode is 2.7 and 8.68 × 10 −5 A, respectively. High photocurrent is obtained under a reverse bias when the crystalline quality of ITO/AZO double films is good enough to transmit the light into p-Si. We can see that under reverse bias conditions the photocurrent of ITO/AZO/SiO 2 /p-Si SIS heterojunction is much higher than the photocurrent of AZO/SiO 2 /p-Si SIS heterojunction. Because the high quality crystallite and the good conductivity of ITO film which prepared by magnetron-sputtering on AZO film lead to a great decrease of the lateral resistance. The photon induced current can easily flow through ITO layer entering the Cu front contact. Thus, high photocurrent is obtained under a reverse bias

  9. All-solution-processed bottom-gate organic thin-film transistor with improved subthreshold behaviour using functionalized pentacene active layer

    International Nuclear Information System (INIS)

    Kim, Jinwoo; Jeong, Jaewook; Cho, Hyun Duk; Lee, Changhee; Hong, Yongtaek; Kim, Seul Ong; Kwon, Soon-Ki

    2009-01-01

    We report organic thin-film transistors (OTFTs) made by simple solution processes in an ambient air environment. Inkjet-printed silver electrodes were used for bottom-gate and bottom-contacted source/drain electrodes. A spin-coated cross-linked poly(4-vinylphenol) (PVP) and a spin-coated 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) were used as a gate dielectric layer and an active layer, respectively. A high-boiling-point solvent was used for TIPS-pentacene and the resulting film showed stem-like morphology. X-ray diffraction (XRD) measurement showed the spin-coated active layer was well crystallized, showing the (0 0 1) plane. The reasonable mobility, on/off ratio and threshold voltage of the fabricated device, which are comparable to those of the previously reported TIPS-pentacene OTFT with gold electrodes, show that the printed silver electrodes worked successfully as gate and source/drain electrodes. Furthermore, the device showed a subthreshold slope of 0.61 V/dec in the linear region (V DS = -5 V), which is the lowest value for spin-coated TIPS-pentacene TFT ever reported, and much lower than that of the thermally evaporated pentacene OTFTs. It is thought that the surface energy of the PVP dielectric layer is well matched with that of a well-ordered TIPS-pentacene (0 0 1) surface when a high-boiling-point solvent and a low-temperature drying process are used, thereby making good interface properties, and showing higher performances than those for pentacene TFT with the same structure.

  10. Single-electron-occupation metal-oxide-semiconductor quantum dots formed from efficient poly-silicon gate layout

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Malcolm S.; rochette, sophie; Rudolph, Martin; Roy, A. -M.; Curry, Matthew Jon; Ten Eyck, Gregory A.; Manginell, Ronald P.; Wendt, Joel R.; Pluym, Tammy; Carr, Stephen M; Ward, Daniel Robert; Lilly, Michael; pioro-ladriere, michel

    2017-07-01

    We introduce a silicon metal-oxide-semiconductor quantum dot structure that achieves dot-reservoir tunnel coupling control without a dedicated barrier gate. The elementary structure consists of two accumulation gates separated spatially by a gap, one gate accumulating a reservoir and the other a quantum dot. Control of the tunnel rate between the dot and the reservoir across the gap is demonstrated in the single electron regime by varying the reservoir accumulation gate voltage while compensating with the dot accumulation gate voltage. The method is then applied to a quantum dot connected in series to source and drain reservoirs, enabling transport down to the single electron regime. Finally, tuning of the valley splitting with the dot accumulation gate voltage is observed. This split accumulation gate structure creates silicon quantum dots of similar characteristics to other realizations but with less electrodes, in a single gate stack subtractive fabrication process that is fully compatible with silicon foundry manufacturing.

  11. ITO thin films prepared by a microwave heating

    International Nuclear Information System (INIS)

    Okuya, Masayuki; Ito, Nobuyuki; Shiozaki, Katsuyuki

    2007-01-01

    ITO thin films were prepared by irradiating 2.45 GHz of microwave with an output power of 700 W using a commercial kitchen microwave oven. A substrate temperature went up and down rapidly between 100 and 650 deg. C in a minute by a dielectric loss of SnO 2 layer pre-deposited on a glass substrate. We found that the electrical and optical properties of films were affected by the atmosphere in a microwave irradiation, while the sintering was completed within a few minutes. Although the electrical resistivity was not reduced below 5.0 x 10 -4 Ω.cm in this study, the results lead to the possibility of a practical rapid synthesis of ITO transparent conducting oxide films

  12. Highly transparent ITO thin films on photosensitive glass: sol-gel synthesis, structure, morphology and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Koroesi, Laszlo; Papp, Szilvia; Dekany, Imre [University of Szeged, Supramolecular and Nanostructured Materials Research Group of the Hungarian Academy of Sciences, Szeged (Hungary); Beke, Szabolcs [Italian Institute of Technology, Department of Nanophysics, Genova (Italy); Pecz, Bela; Horvath, Robert; Petrik, Peter; Agocs, Emil [Research Institute for Technical Physics and Materials Science, Budapest (Hungary)

    2012-05-15

    Conductive and highly transparent indium tin oxide (ITO) thin films were prepared on photosensitive glass substrates by the combination of sol-gel and spin-coating techniques. First, the substrates were coated with amorphous Sn-doped indium hydroxide, and these amorphous films were then calcined at 550 {sup circle} C to produce crystalline and electrically conductive ITO layers. The resulting thin films were characterized by means of scanning electron microscopy, UV-Vis spectroscopy, X-ray photoelectron spectroscopy and spectroscopic ellipsometry. The measurements revealed that the ITO films were composed of spherical crystallites around 20 nm in size with mainly cubic crystal structure. The ITO films acted as antireflection coatings increasing the transparency of the coated substrates compared to that of the bare supports. The developed ITO films with a thickness of {proportional_to}170-330 nm were highly transparent in the visible spectrum with sheet resistances of 4.0-13.7 k{omega}/sq. By coating photosensitive glass with ITO films, our results open up new perspectives in micro- and nano-technology, for example in fabricating conductive and highly transparent 3D microreactors. (orig.)

  13. Nanostructured Polyaniline Coating on ITO Glass Promotes the Neurite Outgrowth of PC 12 Cells by Electrical Stimulation.

    Science.gov (United States)

    Wang, Liping; Huang, Qianwei; Wang, Jin-Ye

    2015-11-10

    A conducting polymer polyaniline (PANI) with nanostructure was synthesized on indium tin oxide (ITO) glass. The effect of electrical stimulation on the proliferation and the length of neurites of PC 12 cells was investigated. The dynamic protein adsorption on PANI and ITO surfaces in a cell culture medium was also compared with and without electrical stimulation. The adsorbed proteins were characterized using SDS-PAGE. A PANI coating on ITO surface was shown with 30-50 nm spherical nanostructure. The number of PC 12 cells was significantly greater on the PANI/ITO surface than on ITO and plate surfaces after cell seeding for 24 and 36 h. This result confirmed that the PANI coating is nontoxic to PC 12 cells. The electrical stimulation for 1, 2, and 4 h significantly enhanced the cell numbers for both PANI and ITO conducting surfaces. Moreover, the application of electrical stimulation also improved the neurite outgrowth of PC 12 cells, and the number of PC 12 cells with longer neurite lengths increased obviously under electrical stimulation for the PANI surface. From the mechanism, the adsorption of DMEM proteins was found to be enhanced by electrical stimulation for both PANI/ITO and ITO surfaces. A new band 2 (around 37 kDa) was observed from the collected adsorbed proteins when PC 12 cells were cultured on these surfaces, and culturing PC 12 cells also seemed to increase the amount of band 1 (around 90 kDa). When immersing PANI/ITO and ITO surfaces in a DMEM medium without a cell culture, the number of band 3 (around 70 kDa) and band 4 (around 45 kDa) proteins decreased compared to that of PC 12 cell cultured surfaces. These results are valuable for the design and improvement of the material performance for neural regeneration.

  14. Investigation of growth parameters influence on self-catalyzed ITO nanowires by high RF-power sputtering.

    Science.gov (United States)

    Li, Qiang; Zhang, Yuantao; Feng, Lungang; Wang, Zuming; Wang, Tao; Yun, Feng

    2018-02-15

    ITO nanowires have been successfully fabricated using a radio-frequency sputtering technique with a high RF-power of 250W. The fabrication of the ITO nanowires has been optimized through the study of oxygen flow rates, temperatures and RF-power. The difference in the morphology of the ITO nanowires prepared by using a new target and a used target has been first observed and the mechanism for the difference has been discussed in detail. A hollow structure and air voids within the nanowires are formed during the process of the nanowire growth. The ITO nanowires fabricated by this method has demonstrated good conductivity (15Ω/sq) and a transmittance of more than 64% at a wavelength longer than 550nm after annealing. Furthermore, detailed microstructure studies show that the ITO nanowires exhibit a large number of oxygen vacancies. As a result, it is expected that they can be useful for the fabrication of gas sensor devices. © 2018 IOP Publishing Ltd.

  15. Transparent conductive Ta2O5-codoped ITO thin films prepared by different heating process

    International Nuclear Information System (INIS)

    Zhang, B.; Dong, X.P.; Wu, J.S.; Xu, X.F.

    2008-01-01

    Tantalum-doped indium tin oxide thin films were deposited by a cosputtering technique with an ITO target and a Ta 2 O 5 target. The variations of microstructure, electrical and optical properties with substrate temperature and annealing temperature were investigated in some detail. Ta-doped ITO thin films showed better crystalline structure with different prominent plane orientation by different heating process. ITO:Ta thin films deposited at room temperature showed better optical and electrical properties. Increasing substrate temperature and reasonable annealing temperature could remarkably improve the optical and electrical properties of the films. The variation of carrier concentration had an important influence on near-IR reflection, near-UV absorption and optical bandgap. ITO:Ta thin films showed wider optical bandgap. ITO:Ta thin films under the optimum parameters had a sheet resistance of 10-20 and ohm;/sq and a transmittance of 85% with an optical bandgap of above 4.0 eV. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Channel length scaling and the impact of metal gate work function ...

    Indian Academy of Sciences (India)

    As the channel length is reduced from one transistor generation to the next, ... As CMOS technology continues to scale, metal gate electrodes need to be intro .... in the z-direction, q is the electron charge, h is the Planck's constant, Ψ(x, z) is the.

  17. High-Transparency Sputtered In2O3 and ITO Films Containing Zirconium (Presentation)

    International Nuclear Information System (INIS)

    Gessert, T. A.; Yoshida, Y.; Fesenmaier, C. C.; Coutts, T. J.

    2007-01-01

    Our recent investigations have identified a method to produce ITO-like films that are less sensitive to variations in the oxygen-containing deposition ambient. Specifically, we are studying the effect of adding small amounts of Zr to both In2O3 and ITO ceramic sputtering targets

  18. Investigating degradation behavior of hole-trapping effect under static and dynamic gate-bias stress in a dual gate a-InGaZnO thin film transistor with etch stop layer

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Po-Yung [Department of Physics, National Sun Yat-sen University, 70 Lien-hai Road, Kaohsiung 80424, Taiwan (China); Chang, Ting-Chang, E-mail: tcchang3708@gmail.com [Department of Physics, National Sun Yat-sen University, 70 Lien-hai Road, Kaohsiung 80424, Taiwan (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Taiwan (China); Hsieh, Tien-Yu [Department of Physics, National Sun Yat-sen University, 70 Lien-hai Road, Kaohsiung 80424, Taiwan (China); Tsai, Ming-Yen; Chen, Bo-Wei; Chu, Ann-Kuo [Department of Photonics, National Sun Yat-Sen University, 70 Lien-hai Road, Kaohsiung 80424, Taiwan (China); Chou, Cheng-Hsu; Chang, Jung-Fang [Product Technology Center, Chimei Innolux Corp., Tainan 741, Taiwan (China)

    2016-03-31

    The degree of degradation between the amorphous-indium–gallium–zinc oxide (a-IGZO) thin film transistor (TFT) using the top-gate only or bottom-gate only is compared. Under negative gate bias illumination stress (NBIS), the threshold voltage (V{sub T}) after bottom-gate NBIS monotonically shifts in the negative direction, whereas top-gate NBIS operation exhibits on-state current increases without V{sub T} shift. Such anomalous degradation behavior of NBIS under top-gate operation is due to hole-trapping in the etch stop layer above the central portion of the channel. These phenomena can be ascribed to the screening of the electric field by redundant source/drain electrodes. In addition, the device degradation of dual gate a-IGZO TFT stressed with different top gate pulse waveforms is investigated. It is observed that the degradation is dependent on the frequency of the top gate pulses. The V{sub T} shift increases with decreasing frequency, indicating the hole mobility of IGZO is low. - Highlights: • Static and dynamic gate bias stresses are imposed on dual gate InGaZnO TFTs. • Top-gate NBIS operation exhibits on-state current increases without VT shift. • The degradation behavior of top-gate NBIS is due to hole-trapping in the ESL. • The degradation is dependent on the frequency of the top gate pulses. • The V{sub T} shift increases with decreasing frequency of the top gate pulses.

  19. Investigating degradation behavior of hole-trapping effect under static and dynamic gate-bias stress in a dual gate a-InGaZnO thin film transistor with etch stop layer

    International Nuclear Information System (INIS)

    Liao, Po-Yung; Chang, Ting-Chang; Hsieh, Tien-Yu; Tsai, Ming-Yen; Chen, Bo-Wei; Chu, Ann-Kuo; Chou, Cheng-Hsu; Chang, Jung-Fang

    2016-01-01

    The degree of degradation between the amorphous-indium–gallium–zinc oxide (a-IGZO) thin film transistor (TFT) using the top-gate only or bottom-gate only is compared. Under negative gate bias illumination stress (NBIS), the threshold voltage (V T ) after bottom-gate NBIS monotonically shifts in the negative direction, whereas top-gate NBIS operation exhibits on-state current increases without V T shift. Such anomalous degradation behavior of NBIS under top-gate operation is due to hole-trapping in the etch stop layer above the central portion of the channel. These phenomena can be ascribed to the screening of the electric field by redundant source/drain electrodes. In addition, the device degradation of dual gate a-IGZO TFT stressed with different top gate pulse waveforms is investigated. It is observed that the degradation is dependent on the frequency of the top gate pulses. The V T shift increases with decreasing frequency, indicating the hole mobility of IGZO is low. - Highlights: • Static and dynamic gate bias stresses are imposed on dual gate InGaZnO TFTs. • Top-gate NBIS operation exhibits on-state current increases without VT shift. • The degradation behavior of top-gate NBIS is due to hole-trapping in the ESL. • The degradation is dependent on the frequency of the top gate pulses. • The V T shift increases with decreasing frequency of the top gate pulses.

  20. Fabrication of PEDOT-OTS-patterned ITO substrates

    NARCIS (Netherlands)

    Herzer, N.; Wienk, M.M.; Schmit, P.; Spoelstra, A.B.; Hendriks, C.E.; Oosterhout, S.D.; Höppener, S.; Schubert, U.S.

    2010-01-01

    The fabrication of a poly(3,4-ethylenedioxythiophene) (PEDOT) pattern is demonstrated. As template, an n-octadecyltrichlorosilane (OTS) monolayer self-assembled on indium tin oxide (ITO) was structured by UV–ozone photolithography, resulting in an ITO–OTS patterned surface. The conducting properties

  1. Dual-layer electrode-driven liquid crystal lens with electrically tunable focal length and focal plane

    Science.gov (United States)

    Zhang, Y. A.; Lin, C. F.; Lin, J. P.; Zeng, X. Y.; Yan, Q.; Zhou, X. T.; Guo, T. L.

    2018-04-01

    Electric-field-driven liquid crystal (ELC) lens with tunable focal length and their depth of field has been extensively applied in 3D display and imaging systems. In this work, a dual-layer electrode-driven liquid crystal (DELC) lens with electrically tunable focal length and controllable focal plane is demonstrated. ITO-SiO2-AZO electrodes with the dual-layer staggered structure on the top substrate are used as driven electrodes within a LC cell, which permits the establishment of an alternative controllability. The focal length of the DELC lens can be adjusted from 1.41 cm to 0.29 cm when the operating voltage changes from 15 V to 40 V. Furthermore, the focal plane of the DELC lens can selectively move by changing the driving method of the applied voltage to the next driven electrodes. This work demonstrates that the DELC lens has potential applications in imaging systems because of electrically tunable focal length and controllable focal plane.

  2. Preparation and Thermoelectric Characteristics of ITO/PtRh:PtRh Thin Film Thermocouple.

    Science.gov (United States)

    Zhao, Xiaohui; Wang, Hongmin; Zhao, Zixiang; Zhang, Wanli; Jiang, Hongchuan

    2017-12-15

    Thin film thermocouples (TFTCs) can provide more precise in situ temperature measurement for aerospace propulsion systems without disturbance of gas flow and surface temperature distribution of the hot components. ITO/PtRh:PtRh TFTC with multilayer structure was deposited on alumina ceramic substrate by magnetron sputtering. After annealing, the TFTC was statically calibrated for multiple cycles with temperature up to 1000 °C. The TFTC with excellent stability and repeatability was realized for the negligible variation of EMF in different calibration cycles. It is believed that owing to oxygen diffusion barriers by the oxidation of top PtRh layer and Schottky barriers formed at the grain boundaries of ITO, the variation of the carrier concentration of ITO film is minimized. Meanwhile, the life time of TFTC is more than 30 h in harsh environment. This makes ITO/PtRh:PtRh TFTC a promising candidate for precise surface temperature measurement of hot components of aeroengines.

  3. Highly sensitive detection of 2,4,6-trichlorophenol based on HS-β-cyclodextrin/gold nanoparticles composites modified indium tin oxide electrode

    International Nuclear Information System (INIS)

    Zheng, Xiangli; Liu, Shan; Hua, Xiaoxia; Xia, Fangquan; Tian, Dong; Zhou, Changli

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: •A novel electrochemical sensing platform by self-assembling of HS-β-cyclodextrin/gold nanoparticles onto indium tin oxide electrode (HS-β-CD/AuNPs/SAM/ITO electrode) surface was constructed. •The proposed electrochemical sensor exhibited high sensitivity for the determination 2,4,6-trichlorophenol which electrochemical activity is very weak. •The newly developed method was successfully applied to quantitatively determine 2,4,6-trichlorophenol in tap water samples. -- ABSTRACT: A new electrochemical sensor for determination of 2,4,6-trichlorophenol (2,4,6-TCP) was fabricated. The characterization of the sensor was studied by scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry techniques. The electrochemical behavior of 2,4,6-TCP was investigated using cyclic voltammetry and differential pulse voltammetry at the HS-β-cyclodextrin (HS-β-CD)/gold nanoparticles (AuNPs) composite modified indium tin oxide (ITO) electrode. The results showed that the current responses of 2,4,6-TCP greatly enhanced due to the high catalytic activity and enrichment capability of composites. The peak current of 2,4,6-TCP increases linearly with the increase of the 2,4,6-TCP concentration from 3.0 × 10 −9 to 2.8 × 10 −8 M, with the limit of detection of 1.0 × 10 −9 . Further more, the modified electrode was successfully applied to detect the level of 2,4,6-TCP in tap water samples with excellent sensitivity

  4. Indium-free Cu/fluorine doped ZnO composite transparent conductive electrodes with stretchable and flexible performance on poly(ethylene terephthalate) substrate

    Science.gov (United States)

    Han, Jun; Gong, Haibo; Yang, Xiaopeng; Qiu, Zhiwen; Zi, Min; Qiu, Xiaofeng; Wang, Hongqiang; Cao, Bingqiang

    2015-03-01

    Material-abundant ZnO and metal thin film have been proposed as potential alternatives for the most widely commercial indium tin oxide (ITO) transparent and conductive electrode. Yet the deterioration of optical transparency and conductivity for these materials makes them difficult to compete with ITO. In this work, a double-layer structured film-composed of FZO and Cu film is presented at room temperature, which combines the high transparency of FZO and high conductivity of Cu film. We first studied the effect of oxygen pressure on the transparency and conductivity of free-standing FZO layer deposited on poly(ethylene terephthalate) (PET) by PLD method. Also the structural, electrical, and optical properties of bilayers electrode dependence on the Cu layer thickness were optimized in detail. As the Cu layer thickness increases, the resistivity decreases. The lowest resistivity of 6.6 × 10-5 Ω cm with a carrier concentration of 1.11 × 1022 cm-3 and mobility of 8.52 cm2 V-1 s-1 was obtained at the optimum Cu (12 nm) layer thickness. We find that FZO layer have anti-reflection effect for Cu/FZO (250 nm) bilayer in the wavelength range of 650-1000 nm compared with single Cu layer. And we firstly study the stretchable performance for Cu film-based composite electrodes with stretching ratio changing from 0 to 5%. Furthermore, we study excellent mechanical flexibility and stability of composite electrodes by bending test.

  5. Organic light emitting diodes on ITO-free polymer anodes

    Energy Technology Data Exchange (ETDEWEB)

    Fehse, Karsten; Schwartz, Gregor; Walzer, Karsten; Leo, Karl [Institut fuer Angewandte Photophysik, TU Dresden, D-01062 Dresden (Germany)

    2007-07-01

    The high material cost of indium, being the main component of the commonly used indium-tin-oxide anodes (ITO) in organic light emitting diodes (OLEDs), is an obstacle for the production of efficient low-cost OLEDs. Therefore, new anode materials are needed for large scale OLED production. Recently, we demonstrated that the polymer PEDOT:PSS can substitute ITO as anode. Another highly conductive polymer is polyaniline (PANI) that provides 200 S/cm with a work function of 4.8 eV. In this study, we use PANI as anode for OLEDs (without ITO layer underneath the polymer) with electrically doped hole- and electron transport layers and intrinsic materials in between. Fluorescent blue (Spiro-DPVBi) as well as phosphorescent green (Ir(ppy){sub 3}) and red emitters (Ir(MDQ){sub 2}(acac)) were used for single colour and white OLEDs. Green single and double emission OLEDs achieve device efficiencies of 34 lm/W and 40.7 lm/W, respectively. The white OLED shows a power efficiency of 8.9 lm/W at 1000 cd/m{sup 2} with CIE coordinates of (0.42/0.39).

  6. Comparison study of ITO thin films deposited by sputtering at room temperature onto polymer and glass substrates

    International Nuclear Information System (INIS)

    Guillen, C.; Herrero, J.

    2005-01-01

    Indium tin oxide (ITO) thin films have been grown simultaneously onto glass and polymer substrates at room temperature by sputtering from ceramic target. The structure, morphology and electro-optical characteristics of the ITO/glass and ITO/polymer samples have been analyzed by X-ray diffraction, atomic force microscopy, four-point electrical measurements and spectrophotometry. In the selected experimental conditions, the polycrystalline ITO coating shows higher average grain size and higher conductivity, with similar visible transmittance, onto the polymer than onto the glass substrate

  7. Optical and electrical characterization of r.f. sputtered ITO films developed as art protection coatings

    International Nuclear Information System (INIS)

    Boycheva, Sylvia; Sytchkova, Anna Krasilnikova; Piegari, Angela

    2007-01-01

    Transparent and conductive tin-doped indium oxide (ITO) films have been prepared by r.f. plasma sputtering technique in Ar and Ar + O 2 gas mixture. The influence of the deposition conditions, film thickness, and substrate heating, as well as the post-annealing treatment on the optical and electrical properties of the ITO films has been investigated. The present study has extended the optical behaviour characterization of the ITO films in a wide UV-VIS-IR spectral region in addition to the comprehensive optical studies of this material at shorter wavelengths. The optical constants: refractive index (n), extinction (k) and absorption (α) coefficient, and the optical band gap (E go ) have been calculated for the ITO films in the spectral range between 350 and 2500 nm. A combination of several well-known theoretical models has been applied to describe precisely the complex optical behaviour of ITO films in separate spectral parts. In this approach, a good overlapping between the experimental and the simulated spectra in the whole investigated spectral region has been achieved. The deposition conditions and the optical and electrical properties of the ITO films have been optimized with respect to the requirements for their applications in art protection coatings

  8. Ultrabroadband terahertz conductivity of highly doped ZnO and ITO

    DEFF Research Database (Denmark)

    Wang, Tianwu; Zalkovskij, Maksim; Iwaszczuk, Krzysztof

    2015-01-01

    The broadband complex conductivities of transparent conducting oxides (TCO), namely aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO) and tin-doped indium oxide (ITO), were investigated by terahertz time domain spectroscopy (THz-TDS) in the frequency range from 0.5 to 18 THz using air...... to be more thickness dependent than GZO and ITO, indicating high importance of the surface states for electron dynamics in AZO. Finally, we measure the transmittance of the TCO films from 10 to 200 THz with Fourier transform infrared spectroscopy (FTIR) measurements, thus closing the gap between THz...

  9. High-performance NiO/Ag/NiO transparent electrodes for flexible organic photovoltaic cells.

    Science.gov (United States)

    Xue, Zhichao; Liu, Xingyuan; Zhang, Nan; Chen, Hong; Zheng, Xuanming; Wang, Haiyu; Guo, Xiaoyang

    2014-09-24

    Transparent electrodes with a dielectric-metal-dielectric (DMD) structure can be implemented in a simple manufacturing process and have good optical and electrical properties. In this study, nickel oxide (NiO) is introduced into the DMD structure as a more appropriate dielectric material that has a high conduction band for electron blocking and a low valence band for efficient hole transport. The indium-free NiO/Ag/NiO (NAN) transparent electrode exhibits an adjustable high transmittance of ∼82% combined with a low sheet resistance of ∼7.6 Ω·s·q(-1) and a work function of 5.3 eV after UVO treatment. The NAN electrode shows excellent surface morphology and good thermal, humidity, and environmental stabilities. Only a small change in sheet resistance can be found after NAN electrode is preserved in air for 1 year. The power conversion efficiencies of organic photovoltaic cells with NAN electrodes deposited on glass and polyethylene terephthalate (PET) substrates are 6.07 and 5.55%, respectively, which are competitive with those of indium tin oxide (ITO)-based devices. Good photoelectric properties, the low-cost material, and the room-temperature deposition process imply that NAN electrode is a striking candidate for low-cost and flexible transparent electrode for efficient flexible optoelectronic devices.

  10. Novel electrochromic devices based on composite films of poly(2,5-dimethoxyaniline)-waterborne polyurethane

    International Nuclear Information System (INIS)

    Yang, C.-H.; Chong, L.-W.; Huang, L.-M.; Lee, Y.-L.; Wen, T.-C.

    2005-01-01

    Waterborne polyurethane (WPU) was spin-coated on indium tin oxide (ITO) coated glass. Poly(2,5-dimethoxyaniline) (PDMA) was deposited using electrochemical polymerization as conducting composite film on the above WPU/ITO electrode and used as an electrode in an electrochromic device assembly. Tungsten oxide (WO 3 ) coated ITO glass was used as the other electrode with LiClO 4 doped gelled polyethylene oxide (PEO) as polymer electrolyte. The configuration of an electrochromic device was assembled: ITO/WPU-PDMA II LiClO 4 -PC-PEO (400,000) II WO 3 /ITO, where PC represents propylene carbonate. The characterization of the single electrodes, ITO/WPU-PDMA composite, ITO/WO 3 , and the device was performed by using cyclic voltammetry. The columbic efficiency (CE) of the ITO/WPU-PDMA composite and ITO/WO 3 electrodes were close to 100%. The optical contrast of the single electrodes and the device were determined by UV-vis spectroelectrochemical studies. A visible contrast in color upon switching the potential from -1.50 to +1.50 V was noticed for the device. The device was pale yellow at -1.5 V and dark green at +1.5 V. The CE of the device was 91%. Double potential chronamperomtry was used to determine the response time of coloring and bleaching processes. The bleaching process was found to be faster than coloring. The stability of the device was established by polarizing the device and recording the UV-vis spectrum in open circuit conditions. Bleaching state is more stable than coloring state

  11. Switchable Super-Hydrophilic/Hydrophobic Indium Tin Oxide (ITO) Film Surfaces on Reactive Ion Etching (RIE) Textured Si Wafer.

    Science.gov (United States)

    Kim, Hwa-Min; Litao, Yao; Kim, Bonghwan

    2015-11-01

    We have developed a surface texturing process for pyramidal surface features along with an indium tin oxide (ITO) coating process to fabricate super-hydrophilic conductive surfaces. The contact angle of a water droplet was less than 5 degrees, which means that an extremely high wettability is achievable on super-hydrophilic surfaces. We have also fabricated a super-hydrophobic conductive surface using an additional coating of polytetrafluoroethylene (PTFE) on the ITO layer coated on the textured Si surface; the ITO and PTFE films were deposited by using a conventional sputtering method. We found that a super-hydrophilic conductive surface is produced by ITO coated on the pyramidal Si surface (ITO/Si), with contact angles of approximately 0 degrees and a resistivity of 3 x 10(-4) Ω x cm. These values are highly dependent on the substrate temperature during the sputtering process. We also found that the super-hydrophobic conductive surface produced by the additional coating of PTFE on the pyramidal Si surface with an ITO layer (PTFE/ITO/Si) has a contact angle of almost 160 degrees and a resistivity of 3 x 10(-4) Ω x cm, with a reflectance lower than 9%. Therefore, these processes can be used to fabricate multifunctional features of ITO films for switchable super-hydrophilic and super-hydrophobic surfaces.

  12. Heterojunction photodetector based on graphene oxide sandwiched between ITO and p-Si

    Science.gov (United States)

    Ahmad, H.; Tajdidzadeh, M.; Thandavan, T. M. K.

    2018-02-01

    The drop casting method is utilized on indium tin oxide (ITO)-coated glass in order to prepare a sandwiched ITO/graphene oxide (ITO/GO) with silicon dioxide/p-type silicon (SiO2/p-Si) heterojunction photodetector. The partially sandwiched GO layer with SiO2/p-Si substrate exhibits dual characteristics as it showed good sensitivity towards the illumination of infrared (IR) laser at wavelength of 974 nm. Excellent photoconduction is also observed for current-voltage (I-V) characteristics at various laser powers. An external quantum efficiency greater than 1 for a direct current bias voltage of 0 and 3 V reveals significant photoresponsivity of the photodetector at various laser frequency modulation at 1, 5 and 9 Hz. The rise times are found to be 75, 72 and 70 μs for 1, 5 and 9 Hz while high fall times 455, 448 and 426 are measured for the respective frequency modulation. The fabricated ITO/GO-SiO2/p-Si sandwiched heterojunction photodetector can be considered as a good candidate for applications in the IR regions that do not require a high-speed response.

  13. Influence of illumination and decay of electrical resistance of ITO nanoscale layers

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, K. [MicroVacuum Ltd., Kerekgyarto u.: 10, H-1147 Budapest (Hungary)], E-mail: karoly.somogyi@microvacuum.com; Erdelyi, K.; Szendro, I. [MicroVacuum Ltd., Kerekgyarto u.: 10, H-1147 Budapest (Hungary)

    2008-09-30

    Indium tin oxide (ITO) is known as a transparent oxide with n-type electrical conductivity. However, the as grown ITO layers have high resistivity and the transparency is also limited. In this work, thin ITO layers were deposited by evaporation and then underwent a post-growth annealing. Annealing leads to a low electrical resistivity and to an enhanced transparency. Annealed samples show n-type conductivity. In this work, ITO layers of typically 10 nm thicknesses were deposited onto Si{sub 1-x}Ti{sub x}O{sub 2} covered glass substrates and then annealed. First the conductivity was evaluated after the annealing. The rough, quick estimation was performed by simple two point direct resistance measurement, and then van der Pauw configuration and collinear four-point probe method were applied. The light sensitivity and storage time dependent stability were studied. It is demonstrated that the resistance decreases due to illumination, though only in a small extent. The measure and speed of the decrease depend on the wavelength of the light and the process is very slow (up to hours). The recovery of the starting resistance is also a slow process.

  14. Comparative investigation of novel hetero gate dielectric and drain engineered charge plasma TFET for improved DC and RF performance

    Science.gov (United States)

    Yadav, Dharmendra Singh; Verma, Abhishek; Sharma, Dheeraj; Tirkey, Sukeshni; Raad, Bhagwan Ram

    2017-11-01

    Tunnel-field-effect-transistor (TFET) has emerged as one of the most prominent devices to replace conventional MOSFET due to its ability to provide sub-threshold slope below 60 mV/decade (SS ≤ 60 mV/decade) and low leakage current. Despite this, TFETs suffer from ambipolar behavior, lower ON-state current, and poor RF performance. To address these issues, we have introduced drain and gate work function engineering with hetero gate dielectric for the first time in charge plasma based doping-less TFET (DL TFET). In this, the usage of dual work functionality over the drain region significantly reduces the ambipolar behavior of the device by varying the energy barrier at drain/channel interface. Whereas, the presence of dual work function at the gate terminal increases the ON-state current (ION). The combined effect of dual work function at the gate and drain electrode results in the increment of ON-state current (ION) and decrement of ambipolar conduction (Iambi) respectively. Furthermore, the incorporation of hetero gate dielectric along with dual work functionality at the drain and gate electrode provides an overall improvement in the performance of the device in terms of reduction in ambipolarity, threshold voltage and sub-threshold slope along with improved ON-state current and high frequency figures of merit.

  15. Morphology, structure and optical properties of sol-gel ITO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, T.F.; Teodorescu, V.S.; Blanchin, M.G.; Stoica, T.A.; Gartner, M.; Losurdo, M.; Zaharescu, M

    2003-08-15

    The alkoxidic route and the spinning deposition were used to prepare monolayer sol-gel indium tin oxide (ITO) films. The morphology and crystalline structure were investigated by cross-section transmission electron microscopy (XTEM) and atomic force microscopy (AFM). The ITO sol-gel mono-layer contains three regions of different porosities. The basic crystalline structure is that of the In{sub 2}O{sub 3} lattice. The optical properties have been studied by optical transmission and spectroscopic ellipsometry.

  16. Multifractal analysis of visibility graph-based Ito-related connectivity time series.

    Science.gov (United States)

    Czechowski, Zbigniew; Lovallo, Michele; Telesca, Luciano

    2016-02-01

    In this study, we investigate multifractal properties of connectivity time series resulting from the visibility graph applied to normally distributed time series generated by the Ito equations with multiplicative power-law noise. We show that multifractality of the connectivity time series (i.e., the series of numbers of links outgoing any node) increases with the exponent of the power-law noise. The multifractality of the connectivity time series could be due to the width of connectivity degree distribution that can be related to the exit time of the associated Ito time series. Furthermore, the connectivity time series are characterized by persistence, although the original Ito time series are random; this is due to the procedure of visibility graph that, connecting the values of the time series, generates persistence but destroys most of the nonlinear correlations. Moreover, the visibility graph is sensitive for detecting wide "depressions" in input time series.

  17. CMOS-compatible fabrication of top-gated field-effect transistor silicon nanowire-based biosensors

    International Nuclear Information System (INIS)

    Ginet, Patrick; Akiyama, Sho; Takama, Nobuyuki; Fujita, Hiroyuki; Kim, Beomjoon

    2011-01-01

    Field-effect transistor (FET) nanowire-based biosensors are very promising tools for medical diagnosis. In this paper, we introduce a simple method to fabricate FET silicon nanowires using only standard microelectromechanical system (MEMS) processes. The key steps of our fabrication process were a local oxidation of silicon (LOCOS) and anisotropic KOH etchings that enabled us to reduce the width of the initial silicon structures from 10 µm to 170 nm. To turn the nanowires into a FET, a top-gate electrode was patterned in gold next to them in order to apply the gate voltage directly through the investigated liquid environment. An electrical characterization demonstrated the p-type behaviour of the nanowires. Preliminary chemical sensing tested the sensitivity to pH of our device. The effect of the binding of streptavidin on biotinylated nanowires was monitored in order to evaluate their biosensing ability. In this way, streptavidin was detected down to a 100 ng mL −1 concentration in phosphate buffered saline by applying a gate voltage less than 1.2 V. The use of a top-gate electrode enabled the detection of biological species with only very low voltages that were compatible with future handheld-requiring applications. We thus demonstrated the potential of our devices and their fabrication as a solution for the mass production of efficient and reliable FET nanowire-based biological sensors

  18. Continuous adjustment of threshold voltage in carbon nanotube field-effect transistors through gate engineering

    Science.gov (United States)

    Zhong, Donglai; Zhao, Chenyi; Liu, Lijun; Zhang, Zhiyong; Peng, Lian-Mao

    2018-04-01

    In this letter, we report a gate engineering method to adjust threshold voltage of carbon nanotube (CNT) based field-effect transistors (FETs) continuously in a wide range, which makes the application of CNT FETs especially in digital integrated circuits (ICs) easier. Top-gated FETs are fabricated using solution-processed CNT network films with stacking Pd and Sc films as gate electrodes. By decreasing the thickness of the lower layer metal (Pd) from 20 nm to zero, the effective work function of the gate decreases, thus tuning the threshold voltage (Vt) of CNT FETs from -1.0 V to 0.2 V. The continuous adjustment of threshold voltage through gate engineering lays a solid foundation for multi-threshold technology in CNT based ICs, which then can simultaneously provide high performance and low power circuit modules on one chip.

  19. Metal-insulator transition in tin doped indium oxide (ITO thin films: Quantum correction to the electrical conductivity

    Directory of Open Access Journals (Sweden)

    Deepak Kumar Kaushik

    2017-01-01

    Full Text Available Tin doped indium oxide (ITO thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes in low temperatures (25-300 K. The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl∼1; kF is the Fermi wave vector and l is the electron mean free path and degenerate semiconductors. The transport of charge carriers (electrons in these disordered ITO thin films takes place via the de-localized states. The disorder effects lead to the well-known ‘metal-insulator transition’ (MIT which is observed at 110 K in these ITO thin films. The MIT in ITO thin films is explained by the quantum correction to the conductivity (QCC; this approach is based on the inclusion of quantum-mechanical interference effects in Boltzmann’s expression of the conductivity of the disordered systems. The insulating behaviour observed in ITO thin films below the MIT temperature is attributed to the combined effect of the weak localization and the electron-electron interactions.

  20. Metal-insulator transition in tin doped indium oxide (ITO) thin films: Quantum correction to the electrical conductivity

    Science.gov (United States)

    Kaushik, Deepak Kumar; Kumar, K. Uday; Subrahmanyam, A.

    2017-01-01

    Tin doped indium oxide (ITO) thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes) in low temperatures (25-300 K). The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl˜1; kF is the Fermi wave vector and l is the electron mean free path) and degenerate semiconductors. The transport of charge carriers (electrons) in these disordered ITO thin films takes place via the de-localized states. The disorder effects lead to the well-known `metal-insulator transition' (MIT) which is observed at 110 K in these ITO thin films. The MIT in ITO thin films is explained by the quantum correction to the conductivity (QCC); this approach is based on the inclusion of quantum-mechanical interference effects in Boltzmann's expression of the conductivity of the disordered systems. The insulating behaviour observed in ITO thin films below the MIT temperature is attributed to the combined effect of the weak localization and the electron-electron interactions.

  1. Emerging Transparent Conducting Electrodes for Organic Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Tze-Bin Song

    2014-03-01

    Full Text Available Organic light emitting diodes (OLEDs have attracted much attention in recent years as next generation lighting and displays, due to their many advantages, including superb performance, mechanical flexibility, ease of fabrication, chemical versatility, etc. In order to fully realize the highly flexible features, reduce the cost and further improve the performance of OLED devices, replacing the conventional indium tin oxide with better alternative transparent conducting electrodes (TCEs is a crucial step. In this review, we focus on the emerging alternative TCE materials for OLED applications, including carbon nanotubes (CNTs, metallic nanowires, conductive polymers and graphene. These materials are selected, because they have been applied as transparent electrodes for OLED devices and achieved reasonably good performance or even higher device performance than that of indium tin oxide (ITO glass. Various electrode modification techniques and their effects on the device performance are presented. The effects of new TCEs on light extraction, device performance and reliability are discussed. Highly flexible, stretchable and efficient OLED devices are achieved based on these alternative TCEs. These results are summarized for each material. The advantages and current challenges of these TCE materials are also identified.

  2. Organic light-emitting diodes using novel embedded al gird transparent electrodes

    Science.gov (United States)

    Peng, Cuiyun; Chen, Changbo; Guo, Kunping; Tian, Zhenghao; Zhu, Wenqing; Xu, Tao; Wei, Bin

    2017-03-01

    This work demonstrates a novel transparent electrode using embedded Al grids fabricated by a simple and cost-effective approach using photolithography and wet etching. The optical and electrical properties of Al grids versus grid geometry have been systematically investigated, it was found that Al grids exhibited a low sheet resistance of 70 Ω □-1 and a light transmission of 69% at 550 nm with advantages in terms of processing conditions and material cost as well as potential to large scale fabrication. Indium Tin Oxide-free green organic light-emitting diodes (OLED) based on Al grids transparent electrodes was demonstrated, yielding a power efficiency >15 lm W-1 and current efficiency >39 cd A-1 at a brightness of 2396 cd m-2. Furthermore, a reduced efficiency roll-off and higher brightness have been achieved compared with ITO-base device.

  3. Field Emission of ITO-Coated Vertically Aligned Nanowire Array.

    KAUST Repository

    Lee, Changhwa

    2010-04-29

    An indium tin oxide (ITO)-coated vertically aligned nanowire array is fabricated, and the field emission characteristics of the nanowire array are investigated. An array of vertically aligned nanowires is considered an ideal structure for a field emitter because of its parallel orientation to the applied electric field. In this letter, a vertically aligned nanowire array is fabricated by modified conventional UV lithography and coated with 0.1-μm-thick ITO. The turn-on electric field intensity is about 2.0 V/μm, and the field enhancement factor, β, is approximately 3,078 when the gap for field emission is 0.6 μm, as measured with a nanomanipulator in a scanning electron microscope.

  4. Field Emission of ITO-Coated Vertically Aligned Nanowire Array.

    KAUST Repository

    Lee, Changhwa; Lee, Seokwoo; Lee, Seung S

    2010-01-01

    An indium tin oxide (ITO)-coated vertically aligned nanowire array is fabricated, and the field emission characteristics of the nanowire array are investigated. An array of vertically aligned nanowires is considered an ideal structure for a field emitter because of its parallel orientation to the applied electric field. In this letter, a vertically aligned nanowire array is fabricated by modified conventional UV lithography and coated with 0.1-μm-thick ITO. The turn-on electric field intensity is about 2.0 V/μm, and the field enhancement factor, β, is approximately 3,078 when the gap for field emission is 0.6 μm, as measured with a nanomanipulator in a scanning electron microscope.

  5. FeNi{sub 3}/indium tin oxide (ITO) composite nanoparticles with excellent microwave absorption performance and low infrared emissivity

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Li-Shun; Jiang, Jian-Tang [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhen, Liang, E-mail: lzhen@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); MOE Key Laboratory of Micro-systems and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin 150080 (China); Shao, Wen-Zhu [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-03-01

    Highlights: Black-Right-Pointing-Pointer Electrical conductivity and infrared emissivity can be controlled by ITO content. Black-Right-Pointing-Pointer The infrared emissivity is the lowest when the mole ratio of In:Sn in sol is 9:1. Black-Right-Pointing-Pointer The permittivity in microwave band can be controlled by the electrical conductivity. Black-Right-Pointing-Pointer EMA performance is significantly influenced by the content of ITO phase. Black-Right-Pointing-Pointer FeNi{sub 3}/ITO composite particles are suitable for both infrared and radar camouflage. - Abstract: FeNi{sub 3}/indium tin oxide (ITO) composite nanoparticles were synthesized by a self-catalyzed reduction method and a sol-gel process. The dependence of the content of ITO phase with the mole ratios of In:Sn of different sols was investigated. The relation between the electrical conductivity, infrared emissivity of FeNi{sub 3}/ITO composite nanoparticles and the content of ITO phase was discussed. Electromagnetic wave absorption (EMA) performance of products was evaluated by using transmission line theory. It was found that EMA performance including the intensity and the location of effective band is significantly dependent on the content of ITO phase. The low infrared emissivity and superior EMA performance of FeNi{sub 3}/ITO composite nanoparticles can be both achieved when the mole ratio of In:Sn in sol is 9:1.

  6. Electrical characterization of the ITO/NiPc/PEDOT : PSS junction diode

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Mutabar; Sayyad, M H; Karimov, Kh S; Wahab, Fazal, E-mail: mutabar_shah@hotmail.co, E-mail: mutabarshah@gmail.co [Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, District Swabi, Khyber Pakhtunkhwa 23640 (Pakistan)

    2010-10-13

    This paper reports on the fabrication and characterization of an ITO/NiPc/PEDOT : PSS junction diode. A thin film of nickel phthalocyanine (NiPc) was deposited by the thermal vacuum deposition method on indium tin oxide (ITO) used as a substrate. The current-voltage characteristics of the diode were measured at room temperature under dark condition and showed rectifying behaviour. The values of several electrical parameters such as ideality factor, barrier height, conductivity, and series and shunt resistances were calculated.

  7. Modification of erbium photoluminescence decay rate due to ITO layers on thin films of SiO{sub 2}:Er doped with Si-nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Wojdak, M., E-mail: m.wojdak@ucl.ac.uk [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Jayatilleka, H. [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario, Canada M5S 3G4 (Canada); Shah, M. [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Kenyon, A.J., E-mail: t.kenyon@ucl.ac.uk [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Gourbilleau, F.; Rizk, R. [Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), ENSICAEN, CNRS, CEA/IRAMIS, Université de Caen, 14050 CAEN cedex (France)

    2013-04-15

    During the fabrication of MOS light emitting devices, the thin film of active material is usually characterized by photoluminescence measurements before electrical contacts are deposited. However, the presence of a conductive contact layer can alter the luminescent properties of the active material. The local optical density of states changes due to the proximity of luminescent species to the interface with the conductive medium (the top electrode), and this modifies the radiative rate of luminescent centers within the active layer. In this paper we report enhancement of the observed erbium photoluminescence rate after deposition of indium tin oxide contacts on thin films of SiO{sub 2}:Er containing silicon nanoclusters, and relate this to Purcell enhancement of the erbium radiative rate. -- Highlights: ► We studied photoluminescence of Er in SiO{sub 2} thin films doped with Si nanoclusters. ► Presence of ITO layer on the top enhances photoluminescence decay rate of Er. ► The effect depends on the thickness of active film. ► Radiative rate change in proximity of ITO layer was calculated theoretically. ► The calculation results are compared with the experiment and discussed.

  8. Optical and electrical properties of transparent conductive ITO thin films under proton radiation with 100 keV

    International Nuclear Information System (INIS)

    Wei, Q.; He, S.Y.; Yang, D.Z.; Liu, J.C.

    2005-01-01

    Under the simulation environment for the vacuum and heat sink in space, the changes in optical and electrical properties of transparent conductive indium tin oxide (ITO) thin films induced by radiation of protons with 100 keV were studied. The ITO thin films were deposited on JGS1 quartz substrate by a sol-gel method. The sheet resistance and transmittance spectra of the ITO thin films were measured using the four-point probe method and a spectrophotometer, respectively. The surface morphology was analyzed by AFM. The experimental results showed that the electrical and optical performances of the ITO thin films were closely related to the irradiation fluence. When the fluence exceeded a given value 2 x 10 16 cm -2 , the sheet resistance increased obviously and the optical transmittance decreased. The AFM analysis indicated that the grain size of the ITO thin films diminished. The studies about the radiation effect on ITO thin films will help to predict performance evolution of the second surface mirrors on satellites under space radiation environment. (orig.)

  9. Characteristics of Indium Tin Oxide (ITO Nanoparticles Recovered by Lift-off Method from TFT-LCD Panel Scraps

    Directory of Open Access Journals (Sweden)

    Dongchul Choi

    2014-11-01

    Full Text Available In this study, indium-tin-oxide (ITO nanoparticles were simply recovered from the thin film transistor-liquid crystal display (TFT-LCD panel scraps by means of lift-off method. This can be done by dissolving color filter (CF layer which is located between ITO layer and glass substrate. In this way the ITO layer was easily lifted off the glass substrate of the panel scrap without panel crushing. Over 90% of the ITO on the TFT-LCD panel was recovered by using this method. After separating, the ITO was obtained as particle form and their characteristics were investigated. The recovered product appeared as aggregates of particles less than 100 nm in size. The weight ratio of In/Sn is very close to 91/9. XRD analysis showed that the ITO nanoparticles have well crystallized structures with (222 preferred orientation even after recovery. The method described in this paper could be applied to the industrial recovery business for large size LCD scraps from TV easily without crushing the glass substrate.

  10. InGaN/AlGaInN-based ultraviolet light-emitting diodes with indium gallium tin oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sukwon; Kim, Tae Geun, E-mail: tgkim1@korea.ac.kr

    2015-09-30

    In this study, In- and Sn-doped GaO (IGTO) is proposed as an alternative transparent conductive electrode for indium tin oxide (ITO) to improve the performance of InGaN/AlGaInN-based near ultraviolet light-emitting diodes (NUV LEDs). IGTO films were prepared by co-sputtering the ITO and Ga{sub 2}O{sub 3} targets under various target power ratios. Among those, IGTO films post-annealed at 700 °C under a hydrogen environment gave rise to a transmittance of 94% at 385 nm and a contact resistance of 9.4 × 10{sup −3} Ω-cm{sup 2} with a sheet resistance of 124 Ω/ϒ. Compared to ITO-based NUV LEDs, the IGTO-based NUV LED showed a 9% improvement in the light output power, probably due to IGTO's higher transmittance, although the forward voltage was still higher by 0.23 V. - Highlights: • Indium gallium tin oxide (IGTO) for near-ultraviolet light-emitting diode is proposed. • IGTO is fabricated by co-sputtering the ITO and Ga{sub 2}O{sub 3} targets and hydrogen annealing. • IGTO shows a 94% transmittance at 385 nm and a 9.4 × 10{sup −3} Ω-cm{sup 2} contact resistance. • Near-ultraviolet light-emitting diode with IGTO shows improved optical performance.

  11. Fabrication of highly conductive graphene/ITO transparent bi-film through CVD and organic additives-free sol-gel techniques.

    Science.gov (United States)

    Hemasiri, Bastian Waduge Naveen Harindu; Kim, Jae-Kwan; Lee, Ji-Myon

    2017-12-19

    Indium tin oxide (ITO) still remains as the main candidate for high-performance optoelectronic devices, but there is a vital requirement in the development of sol-gel based synthesizing techniques with regards to green environment and higher conductivity. Graphene/ITO transparent bi-film was synthesized by a two-step process: 10 wt. % tin-doped ITO thin films were produced by an environmentally friendly aqueous sol-gel spin coating technique with economical salts of In(NO 3 ) 3 .H 2 O and SnCl 4 , without using organic additives, on surface free energy enhanced (from 53.826 to 97.698 mJm -2 ) glass substrate by oxygen plasma treatment, which facilitated void-free continuous ITO film due to high surface wetting. The chemical vapor deposited monolayer graphene was transferred onto the synthesized ITO to enhance its electrical properties and it was capable of reducing sheet resistance over 12% while preserving the bi-film surface smoother. The ITO films contain the In 2 O 3 phase only and exhibit the polycrystalline nature of cubic structure with 14.35 ± 0.5 nm crystallite size. The graphene/ITO bi-film exhibits reproducible optical transparency with 88.66% transmittance at 550 nm wavelength, and electrical conductivity with sheet resistance of 117 Ω/sq which is much lower than that of individual sol-gel derived ITO film.

  12. Conduction noise absorption by ITO thin films attached to microstrip line utilizing Ohmic loss

    International Nuclear Information System (INIS)

    Kim, Sun-Hong; Kim, Sung-Soo

    2010-01-01

    For the aim of wide-band noise absorbers with a special design for low frequency performance, this study proposes conductive indium-tin oxide (ITO) thin films as the absorbent materials in microstrip line. ITO thin films were deposited on the polyimide film substrates by rf magnetron cosputtering of In 2 O 3 and Sn targets. The deposited ITO films show a typical value of electrical resistivity (∼10 -4 Ω m) and sheet resistance can be controlled in the range of 20-230 Ω by variation in film thickness. Microstrip line with characteristic impedance of 50 Ω was used for determining their noise absorbing properties. It is found that there is an optimum sheet resistance of ITO films for the maximum power absorption. Reflection parameter (S 11 ) is increased with decrease in sheet resistance due to impedance mismatch. On the while, transmission parameter (S 21 ) is decreased with decrease in sheet resistance due to larger Ohmic loss of the ITO films. Experimental results and computational prediction show that the optimum sheet resistance is about 100 Ω. For this film, greater power absorption is predicted in the lower frequency region than ferrite thin films of high magnetic loss, which indicates that Ohmic loss is the predominant loss parameter for power absorption in the low frequency range.

  13. A transparent flexible z-axis sensitive multi-touch panel based on colloidal ITO nanocrystals.

    Science.gov (United States)

    Sangeetha, N M; Gauvin, M; Decorde, N; Delpech, F; Fazzini, P F; Viallet, B; Viau, G; Grisolia, J; Ressier, L

    2015-08-07

    Bottom-up fabrication of a flexible multi-touch panel prototype based on transparent colloidal indium tin oxide (ITO) nanocrystal (NC) films is presented. A series of 7% Sn(4+) doped ITO NCs protected by oleate, octanoate and butanoate ligands are synthesized and characterized by a battery of techniques including, high resolution transmission electron microscopy, X-ray diffraction, (1)H, (13)C and (119)Sn nuclear magnetic resonance spectroscopy, and the related diffusion ordered spectroscopy. Electrical resistivities of transparent films of these NCs assembled on flexible polyethylene terephthalate substrates by convective self-assembly from their suspension in toluene decrease with the ligand length, from 220 × 10(3) for oleate ITO to 13 × 10(3)Ω cm for butanoate ITO NC films. A highly transparent, flexible touch panel based on a matrix of strain gauges derived from the least resistive film of 17 nm butanoate ITO NCs sensitively detects the lateral position (x, y) of the touch as well as its intensity over the z-axis. Being compatible with a stylus or bare/gloved finger, a larger version of this module may be readily implemented in upcoming flexible screens, enabling navigation capabilities over all three axes, a feature highly desired by the display industry.

  14. Characteristics of sputtered Al-doped ZnO films for transparent electrodes of organic thin-film transistor

    International Nuclear Information System (INIS)

    Park, Yong Seob; Kim, Han-Ki

    2011-01-01

    Aluminum-doped ZnO (AZO) thin-films were deposited with various RF powers at room temperature by radio frequency (RF) magnetron sputtering method. The electrical properties of the AZO film were improved with the increasing RF power. These results can be explained by the improvement of the crystallinity in the AZO film. We fabricated the organic thin-film transistor (OTFT) of the bottom gate structure using pentacene active and poly-4-vinyl phenol gate dielectric layers on the indium tin oxide gate electrode, and estimated the device properties of the OTFTs including drain current-drain voltage (I D -V D ), drain current-gate voltage (I D -V G ), threshold voltage (V T ), on/off ratio and field effect mobility. The AZO film that grown at 160 W RF power exhibited low resistivity (1.54 x 10 -3 Ω.cm), high crystallinity and uniform surface morphology. The pentacene thin-film transistor using the AZO film that's fabricated at 160 W RF power exhibited good device performance such as the mobility of 0.94 cm 2 /V s and the on/off ratio of ∼ 10 5 . Consequently, the performance of the OTFT such as larger field-effect carrier mobility was determined the conductivity of the AZO source/drain (S/D) electrode. AZO films prepared at room temperature by the sputtering method are suitable for the S/D electrodes in the OTFTs.

  15. Characterization of ITO/CdO/glass thin films evaporated by electron beam technique

    Directory of Open Access Journals (Sweden)

    Hussein Abdel-Hafez Mohamed and Hazem Mahmoud Ali

    2008-01-01

    Full Text Available A thin buffer layer of cadmium oxide (CdO was used to enhance the optical and electrical properties of indium tin oxide (ITO films prepared by an electron-beam evaporation technique. The effects of the thickness and heat treatment of the CdO layer on the structural, optical and electrical properties of ITO films were carried out. It was found that the CdO layer with a thickness of 25 nm results in an optimum transmittance of 70% in the visible region and an optimum resistivity of 5.1×10−3 Ω cm at room temperature. The effect of heat treatment on the CdO buffer layer with a thickness of 25 nm was considered to improve the optoelectronic properties of the formed ITO films. With increasing annealing temperature, the crystallinity of ITO films seemed to improve, enhancing some physical properties, such as film transmittance and conductivity. ITO films deposited onto a CdO buffer layer heated at 450 °C showed a maximum transmittance of 91% in the visible and near-infrared regions of the spectrum associated with the highest optical energy gap of 3.61 eV and electrical resistivity of 4.45×10−4 Ω cm at room temperature. Other optical parameters, such as refractive index, extinction coefficient, dielectric constant, dispersion energy, single effective oscillator energy, packing density and free carrier concentration, were also studied.

  16. Transparent conducting AZO and ITO films produced by pulsed laser ablation at 355 nm

    DEFF Research Database (Denmark)

    Thestrup, B.; Schou, Jørgen

    1999-01-01

    Thin films of aluminium-doped zinc oxide (AZO) and indium tin oxide (ITO) were deposited on glass substrates by laser ablation in an oxygen environment. The electrical and optical properties of films grown at various oxygen pressures were compared. With no substrate heating, highly transparent...... and conducting films were obtained with oxygen pressures between 15 and 23 mTorr for both materials. We obtained a specific resistivity of 1.8 x 10(-3) Omega cm for AZO and 1.1 x 10(-3) Omega cm for ITO. By heating the substrate to 160 degrees C or 200 degrees C, the resistivity was further reduced to 1.1 x 10......(-3) Omega cm for AZO and 3.9 x 10(-4) Omega cm for ITO. The average transmission of visible light (450-750 MI) was between 82% and 98% in most cases. The results suggest that AZO is a promising alternative to ITO....

  17. Electrical properties of ZnO-based bottom-gate thin film transistors fabricated by using radio frequency magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Navamathavan, R. [Nano Thin Film Materials Laboratory, Department of Physics, Cheju National University, Jeju 690-756 (Korea, Republic of)], E-mail: n_mathavan@yahoo.com; Choi, Chi Kyu [Nano Thin Film Materials Laboratory, Department of Physics, Cheju National University, Jeju 690-756 (Korea, Republic of); Park, Seong-Ju [Nanophotonic Semiconductors Laboratory, Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2009-05-05

    We report on enhancement-mode thin film transistors (TFTs) using ZnO as an active channel layer deposited by radio frequency (rf) magnetron sputtering at 300 deg. C. The TFT structure consisted of ZnO as a channel, SiN{sub x} as a gate insulator and indium tin oxide (ITO) as a gate which were deposited onto a Corning glass substrate. X-ray diffraction pattern revealed that dense columnar structure of closely packed ZnO nano grains along the c-axis. The transfer characteristics of a typical ZnO TFT exhibited a field effect mobility of 31 cm{sup 2}/V s, a drain current on/off ratio of 10{sup 4}, the low off-current value in the order of 10{sup -10} A, and a threshold voltage of 1.7 V. The transparent ZnO TFT exhibited n-channel enhancement mode behavior.

  18. Gold-modified indium tin oxide as a transparent window in optoelectronic diagnostics of electrochemically active biofilms.

    Science.gov (United States)

    Schmidt, Igor; Gad, Alaaeldin; Scholz, Gregor; Boht, Heidi; Martens, Michael; Schilling, Meinhard; Suryo Wasisto, Hutomo; Waag, Andreas; Schröder, Uwe

    2017-08-15

    Microbial electrochemical technologies (METs) are one of the emerging green bioenergy domains that are utilizing microorganisms for wastewater treatment or electrosynthesis. Real-time monitoring of bioprocess during operation is a prerequisite for understanding and further improving bioenergy harvesting. Optical methods are powerful tools for this, but require transparent, highly conductive and biocompatible electrodes. Whereas indium tin oxide (ITO) is a well-known transparent conductive oxide, it is a non-ideal platform for biofilm growth. Here, a straightforward approach of surface modification of ITO anodes with gold (Au) is demonstrated, to enhance direct microbial biofilm cultivation on their surface and to improve the produced current densities. The trade-off between the electrode transmittance (critical for the underlying integrated sensors) and the enhanced growth of biofilms (crucial for direct monitoring) is studied. Au-modified ITO electrodes show a faster and reproducible biofilm growth with three times higher maximum current densities and about 6.9 times thicker biofilms compared to their unmodified ITO counterparts. The electrochemical analysis confirms the enhanced performance and the reversibility of the ITO/Au electrodes. The catalytic effect of Au on the ITO surface seems to be the key factor of the observed performance improvement since the changes in the electrode conductivity and their surface wettability are relatively small and in the range of ITO. An integrated platform for the ITO/Au transparent electrode with light-emitting diodes was fabricated and its feasibility for optical biofilm thickness monitoring is demonstrated. Such transparent electrodes with embedded catalytic metals can serve as multifunctional windows for biofilm diagnostic microchips. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Plasma treatment of ITO films for the formation of nanoparticles toward scalable production of novel nanostructure-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Cigang; Bailey, Louise R.; Proudfoot, Gary; Cooke, Mike [Oxford Instruments Plasma Technology, Bristol (United Kingdom); Eisenhawer, Bjoern; Jia, Guobin; Bergmann, Joachim; Falk, Fritz [Leibniz Institute of Photonic Technology, Jena (Germany); Ulyashin, Alexander [Department of Industrial Processes, SINTEF, Oslo (Norway)

    2015-01-01

    Plasma treatment of indium tin oxide (ITO) has been studied to form metallic nanoparticles (NPs) for nanostructure-based solar cells. It is demonstrated that NPs can be formed at temperatures as low as 100 C, and the size of NPs increases with temperature. An ITO layer treated at 100 C has higher transmission than that treated at 200 C for the same time. It is suggested that such NPs can be used for the conversion efficiency enhancement of ITO/Si heterojunction solar cells. It is also shown that NPs can be produced on different substrates covered by an ITO layer, such as ITO/Al foil, ITO/glass, ITO/stainless steel, and ITO/Si, where the resulting NPs were used for catalytic growth of Si nanowires (NWs). The morphology and density of Si NWs depend on a substrate. It is established that p-doped Si NWs show larger diameters, and n-doped Si NWs do not show obvious change of diameters compared to undoped Si NWs. New types of solar cell structures with combined radial and axial junctions have been proposed. As an example, p-n junction-based 3D structures using the NPs obtained from treatment of ITO film are presented. Finally, a potentially scalable process flow for fabrication of nanostructure-based solar cells is discussed. Schematic illustration of fabrication steps to produce the proposed novel solar cell with combined radial and axial junctions. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Influence of Continuous and Discontinuous Depositions on Properties of Ito Films Prepared by DC Magnetron Sputtering

    Science.gov (United States)

    Aiempanakit, K.; Rakkwamsuk, P.; Dumrongrattana, S.

    Indium tin oxide (ITO) films were deposited on glass substrate without external heating by DC magnetron sputtering with continuous deposition of 800 s (S1) and discontinuous depositions of 400 s × 2 times (S2), 200 s × 4 times (S3) and 100 s × 8 times (S4). The structural, surface morphology, optical transmittance and electrical resistivity of ITO films were measured by X-ray diffraction, atomic force microscope, spectrophotometer and four-point probe, respectively. The deposition process of the S1 condition shows the highest target voltage due to more target poisoning occurrence. The substrate temperature of the S1 condition increases with the saturation curve of the RC charging circuit while other conditions increase and decrease due to deposition steps as DC power turns on and off. Target voltage and substrate temperature of ITO films decrease when changing the deposition conditions from S1 to S2, S3 and S4, respectively. The preferential orientation of ITO films were changed from dominate (222) plane to (400) plane with the increasing number of deposition steps. The ITO film for the S4 condition shows the lowest electrical resistivity of 1.44 × 10-3 Ω·cm with the highest energy gap of 4.09 eV and the highest surface roughness of 3.43 nm. These results were discussed from the point of different oxygen occurring on the surface ITO target between the sputtering processes which affected the properties of ITO films.

  1. Improved patterning of ITO coated with gold masking layer on glass substrate using nanosecond fiber laser and etching

    International Nuclear Information System (INIS)

    Tan, Nguyen Ngoc; Hung, Duong Thanh; Anh, Vo Tran; BongChul, Kang; HyunChul, Kim

    2015-01-01

    Highlights: • A new patterning method for ITO thin film is introduced. • Gold thin film is important in decrease spikes formed in ITO patterning process. • The laser pulse width occupies a significant effect the patterning surface quality. • Etching process is the effective method to remove the spikes at rims of pattern. • A considerable improvement over patterning quality is obtained by proposed method. - Abstract: In this paper, an indium–tin oxide (ITO) thin-film patterning method for higher pattern quality and productivity compared to the short-pulsed laser direct writing method is presented. We sputtered a thin ITO layer on a glass substrate, and then, plated a thin gold layer onto the ITO layer. The combined structure of the three layers (glass–ITO–gold) was patterned using laser-induced plasma generated by an ytterbium pulsed fiber laser (λ = 1064 nm). The results showed that the process parameters of 50 mm/s in scanning speed, 14 ns pulse duration, and a repetition rate of 7.5 kHz represented optimum conditions for the fabrication of ITO channels. Under these conditions, a channel 23.4 μm wide and 20 nm deep was obtained. However, built-up spikes (∼15 nm in height) resulted in a decrease in channel quality, and consequently, short circuit occurred at some patterned positions. These built-up spikes were completely removed by dipping the ITO layer into an etchant (18 wt.% HCl). A gold masking layer on the ITO surface was found to increase the channel surface quality without any decrease in ITO thickness. Moreover, the effects of repetition rate, scanning speed, and etching characteristics on surface quality were investigated

  2. Improved patterning of ITO coated with gold masking layer on glass substrate using nanosecond fiber laser and etching

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Nguyen Ngoc; Hung, Duong Thanh; Anh, Vo Tran [High Safety Vehicle Core Technology Research Center, Department of Mechanical & Automotive Engineering, Inje University, Gimhae (Korea, Republic of); BongChul, Kang, E-mail: kbc@kumoh.ac.kr [Department of Inteligent Mechanical Engineering, Kumoh National Institute of Technology, Gumi (Korea, Republic of); HyunChul, Kim, E-mail: mechkhc@inje.ac.kr [High Safety Vehicle Core Technology Research Center, Department of Mechanical & Automotive Engineering, Inje University, Gimhae (Korea, Republic of)

    2015-05-01

    Highlights: • A new patterning method for ITO thin film is introduced. • Gold thin film is important in decrease spikes formed in ITO patterning process. • The laser pulse width occupies a significant effect the patterning surface quality. • Etching process is the effective method to remove the spikes at rims of pattern. • A considerable improvement over patterning quality is obtained by proposed method. - Abstract: In this paper, an indium–tin oxide (ITO) thin-film patterning method for higher pattern quality and productivity compared to the short-pulsed laser direct writing method is presented. We sputtered a thin ITO layer on a glass substrate, and then, plated a thin gold layer onto the ITO layer. The combined structure of the three layers (glass–ITO–gold) was patterned using laser-induced plasma generated by an ytterbium pulsed fiber laser (λ = 1064 nm). The results showed that the process parameters of 50 mm/s in scanning speed, 14 ns pulse duration, and a repetition rate of 7.5 kHz represented optimum conditions for the fabrication of ITO channels. Under these conditions, a channel 23.4 μm wide and 20 nm deep was obtained. However, built-up spikes (∼15 nm in height) resulted in a decrease in channel quality, and consequently, short circuit occurred at some patterned positions. These built-up spikes were completely removed by dipping the ITO layer into an etchant (18 wt.% HCl). A gold masking layer on the ITO surface was found to increase the channel surface quality without any decrease in ITO thickness. Moreover, the effects of repetition rate, scanning speed, and etching characteristics on surface quality were investigated.

  3. Enzymatic glucose sensor based on Au nanoparticle and plant-like ZnO film modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Kun [Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Alex, Saji [Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Department of Chemistry, Government College for Women, Thiruvananthapuram, Kerala 695014 (India); Siegel, Gene [Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Tiwari, Ashutosh, E-mail: tiwari@eng.utah.edu [Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112 (United States)

    2015-01-01

    A novel electrochemical glucose sensor was developed by employing a composite film of plant-like Zinc oxide (ZnO) and chitosan stabilized spherical gold nanoparticles (AuNPs) on which Glucose oxidaze (GOx) was immobilized. The ZnO was deposited on an indium tin oxide (ITO) coated glass and the AuNPs of average diameter of 23 nm were loaded on ZnO as the second layer. The prepared ITO/ZnO/AuNPs/GOx bioelectrode exhibited a low value of Michaelis–Menten constant of 1.70 mM indicating a good bio-matrix for GOx. The studies of electrochemical properties of the electrode using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) showed that, the presence of AuNPs provides significant enhancement of the electron transfer rate during redox reactions. The linear sweep voltammetry (LSV) shows that the ITO/ZnO/AuNPs/GOx based sensor has a high sensitivity of 3.12 μA·mM{sup −1}·cm{sup −2} in the range of 50 mg/dL to 400 mg/dL glucose concentration. The results show promising application of the gold nanoparticle modified plant-like ZnO composite bioelectrode for electrochemical sensing of glucose.

  4. Effects of bias voltage on the properties of ITO films prepared on polymer substrates

    International Nuclear Information System (INIS)

    Lee, Jaehyeong; Jung, Hakkee; Lim, Donggun; Yang, Keajoon; Song, Woochang; Yi, Junsin

    2005-01-01

    The ITO (indium tin oxide) thin films were deposited on acryl, glass, PET, and poly-carbonate substrates by DC reactive magnetron sputtering. The bias voltage was changed from -20 to -80 V. As the bias voltage increased, the deposition rate of ITO films decreased regardless of substrate types. The roughness of the films on PET increased with the bias voltage. The study demonstrated that the bias improved the electrical and optical properties of ITO films regardless of substrate types. The lowest electrical resistivity of 5.5x10 -4 no. OMEGAno. -cm and visible transmittance of about 80% were achieved by applying a negative bias of -60 V

  5. Characterization, integration and reliability of HfO2 and LaLuO3 high-κ/metal gate stacks for CMOS applications

    International Nuclear Information System (INIS)

    Nichau, Alexander

    2013-01-01

    The continued downscaling of MOSFET dimensions requires an equivalent oxide thickness (EOT) of the gate stack below 1 nm. An EOT below 1.4 nm is hereby enabled by the use of high-κ/metal gate stacks. LaLuO 3 and HfO 2 are investigated as two different high-κ oxides on silicon in conjunction with TiN as the metal electrode. LaLuO 3 and its temperature-dependent silicate formation are characterized by hard X-ray photoemission spectroscopy (HAXPES). The effective attenuation length of LaLuO 3 is determined between 7 and 13 keV to enable future interface and diffusion studies. In a first investigation of LaLuO 3 on germanium, germanate formation is shown. LaLuO 3 is further integrated in a high-temperature MOSFET process flow with varying thermal treatment. The devices feature drive currents up to 70μA/μm at 1μm gate length. Several optimization steps are presented. The effective device mobility is related to silicate formation and thermal budget. At high temperature the silicate formation leads to mobility degradation due to La-rich silicate formation. The integration of LaLuO 3 in high-T processes delicately connects with the optimization of the TiN metal electrode. Hereby, stoichiometric TiN yields the best results in terms of thermal stability with respect to Si-capping and high-κ oxide. Different approaches are presented for a further EOT reduction with LaLuO 3 and HfO 2 . Thereby the thermodynamic and kinetic predictions are employed to estimate the behavior on the nanoscale. Based on thermodynamics, excess oxygen in the gate stack, especially in oxidized metal electrodes, is identified to prevent EOT scaling below 1.2 nm. The equivalent oxide thickness of HfO 2 gate stacks is scalable below 1 nm by the use of thinned interfacial SiO 2 . The prevention of oxygen incorporation into the metal electrode by Si-capping maintains the EOT after high temperature annealing. Redox systems are employed within the gate electrode to decrease the EOT of HfO 2 gate stacks