WorldWideScience

Sample records for itinerant synaptic receptors

  1. Synapse geometry and receptor dynamics modulate synaptic strength.

    Directory of Open Access Journals (Sweden)

    Dominik Freche

    Full Text Available Synaptic transmission relies on several processes, such as the location of a released vesicle, the number and type of receptors, trafficking between the postsynaptic density (PSD and extrasynaptic compartment, as well as the synapse organization. To study the impact of these parameters on excitatory synaptic transmission, we present a computational model for the fast AMPA-receptor mediated synaptic current. We show that in addition to the vesicular release probability, due to variations in their release locations and the AMPAR distribution, the postsynaptic current amplitude has a large variance, making a synapse an intrinsic unreliable device. We use our model to examine our experimental data recorded from CA1 mice hippocampal slices to study the differences between mEPSC and evoked EPSC variance. The synaptic current but not the coefficient of variation is maximal when the active zone where vesicles are released is apposed to the PSD. Moreover, we find that for certain type of synapses, receptor trafficking can affect the magnitude of synaptic depression. Finally, we demonstrate that perisynaptic microdomains located outside the PSD impacts synaptic transmission by regulating the number of desensitized receptors and their trafficking to the PSD. We conclude that geometrical modifications, reorganization of the PSD or perisynaptic microdomains modulate synaptic strength, as the mechanisms underlying long-term plasticity.

  2. Distinct Subunit Domains Govern Synaptic Stability and Specificity of the Kainate Receptor

    Directory of Open Access Journals (Sweden)

    Christoph Straub

    2016-07-01

    Full Text Available Synaptic communication between neurons requires the precise localization of neurotransmitter receptors to the correct synapse type. Kainate-type glutamate receptors restrict synaptic localization that is determined by the afferent presynaptic connection. The mechanisms that govern this input-specific synaptic localization remain unclear. Here, we examine how subunit composition and specific subunit domains contribute to synaptic localization of kainate receptors. The cytoplasmic domain of the GluK2 low-affinity subunit stabilizes kainate receptors at synapses. In contrast, the extracellular domain of the GluK4/5 high-affinity subunit synergistically controls the synaptic specificity of kainate receptors through interaction with C1q-like proteins. Thus, the input-specific synaptic localization of the native kainate receptor complex involves two mechanisms that underlie specificity and stabilization of the receptor at synapses.

  3. Synaptic proteins and receptors defects in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Jianling eChen

    2014-09-01

    Full Text Available Recent studies have found that hundreds of genetic variants, including common and rare variants, rare and de novo mutations, and common polymorphisms have contributed to the occurrence of autism spectrum disorders (ASDs. The mutations in a number of genes such as neurexin, neuroligin, postsynaptic density protein 95 (PSD-95, SH3 and multiple ankyrin repeat domains 3 (SHANK3, synapsin, gephyrin, cadherin (CDH and protocadherin (PCDH, thousand-and-one-amino acid 2 kinase (TAOK2, and contactin (CNTN, have been shown to play important roles in the development and function of synapses. In addition, synaptic receptors, such as gamma-aminobutyric acid (GABA receptors and glutamate receptors, have also been associated with ASDs. This review will primarily focus on the defects of synaptic proteins and receptors associated with ASDs and their roles in the pathogenesis of ASDs via synaptic pathways.

  4. Synaptic Bistability Due to Nucleation and Evaporation of Receptor Clusters

    KAUST Repository

    Burlakov, V. M.

    2012-01-10

    We introduce a bistability mechanism for long-term synaptic plasticity based on switching between two metastable states that contain significantly different numbers of synaptic receptors. One state is characterized by a two-dimensional gas of mobile interacting receptors and is stabilized against clustering by a high nucleation barrier. The other state contains a receptor gas in equilibrium with a large cluster of immobile receptors, which is stabilized by the turnover rate of receptors into and out of the synapse. Transitions between the two states can be initiated by either an increase (potentiation) or a decrease (depotentiation) of the net receptor flux into the synapse. This changes the saturation level of the receptor gas and triggers nucleation or evaporation of receptor clusters. © 2012 American Physical Society.

  5. Modulation of synaptic plasticity by stress hormone associates with plastic alteration of synaptic NMDA receptor in the adult hippocampus.

    Directory of Open Access Journals (Sweden)

    Yiu Chung Tse

    Full Text Available Stress exerts a profound impact on learning and memory, in part, through the actions of adrenal corticosterone (CORT on synaptic plasticity, a cellular model of learning and memory. Increasing findings suggest that CORT exerts its impact on synaptic plasticity by altering the functional properties of glutamate receptors, which include changes in the motility and function of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype of glutamate receptor (AMPAR that are responsible for the expression of synaptic plasticity. Here we provide evidence that CORT could also regulate synaptic plasticity by modulating the function of synaptic N-methyl-D-aspartate receptors (NMDARs, which mediate the induction of synaptic plasticity. We found that stress level CORT applied to adult rat hippocampal slices potentiated evoked NMDAR-mediated synaptic responses within 30 min. Surprisingly, following this fast-onset change, we observed a slow-onset (>1 hour after termination of CORT exposure increase in synaptic expression of GluN2A-containing NMDARs. To investigate the consequences of the distinct fast- and slow-onset modulation of NMDARs for synaptic plasticity, we examined the formation of long-term potentiation (LTP and long-term depression (LTD within relevant time windows. Paralleling the increased NMDAR function, both LTP and LTD were facilitated during CORT treatment. However, 1-2 hours after CORT treatment when synaptic expression of GluN2A-containing NMDARs is increased, bidirectional plasticity was no longer facilitated. Our findings reveal the remarkable plasticity of NMDARs in the adult hippocampus in response to CORT. CORT-mediated slow-onset increase in GluN2A in hippocampal synapses could be a homeostatic mechanism to normalize synaptic plasticity following fast-onset stress-induced facilitation.

  6. Synaptic activity regulates AMPA receptor trafficking through different recycling pathways

    Science.gov (United States)

    Zheng, Ning; Jeyifous, Okunola; Munro, Charlotte; Montgomery, Johanna M; Green, William N

    2015-01-01

    Changes in glutamatergic synaptic strength in brain are dependent on AMPA-type glutamate receptor (AMPAR) recycling, which is assumed to occur through a single local pathway. In this study, we present evidence that AMPAR recycling occurs through different pathways regulated by synaptic activity. Without synaptic stimulation, most AMPARs recycled in dynamin-independent endosomes containing the GTPase, Arf6. Few AMPARs recycled in dynamin-dependent endosomes labeled by transferrin receptors (TfRs). AMPAR recycling was blocked by alterations in the GTPase, TC10, which co-localized with Arf6 endosomes. TC10 mutants that reduced AMPAR recycling had no effect on increased AMPAR levels with long-term potentiation (LTP) and little effect on decreased AMPAR levels with long-term depression. However, internalized AMPAR levels in TfR-containing recycling endosomes increased after LTP, indicating increased AMPAR recycling through the dynamin-dependent pathway with synaptic plasticity. LTP-induced AMPAR endocytosis is inconsistent with local recycling as a source of increased surface receptors, suggesting AMPARs are trafficked from other sites. DOI: http://dx.doi.org/10.7554/eLife.06878.001 PMID:25970033

  7. Characterization of beta-adrenergic receptors in synaptic membranes from rat cerebral cortex and cerebellum

    International Nuclear Information System (INIS)

    Lautens, L.

    1986-01-01

    Beta-adrenergic receptor ligand binding sites have been characterized in synaptic membranes from rat cerebral cortex and cerebellum using radioligand binding techniques. The equilibrium and kinetic properties of binding were assessed. The binding sites were non-interacting and exhibited two states of agonist binding which were sensitive to guanyl nucleotide. Synaptic membranes from cerebral cortex contained an equal number of beta 1 - and beta 2 -receptors; membranes from cerebellum possessed more beta 2 -than beta 1 -receptors. Photoaffinity labeling experiments revealed two different beta-adrenergic receptor polypeptides, R 1 and R 2 (and possibly a third, R 3 ) in synaptic membranes. The ratios of incorporation of photoaffinity label into R 1 : 2 were approximately 1:1 (cerebral cortex) and 5:1 (cerebellum). Photoaffinity labeling of R 1 and R 2 was inhibited equally well by both agonist and antagonist in synaptic membranes from cerebellum; whereas agonist was a less potent inhibitor in membranes from cerebral cortex. Both subtypes of beta-adrenergic receptors exhibited the same apparent molecular weight in synaptic membranes from cerebral cortex. The beta-adrenergic receptors in synaptic membranes from cerebral cortex and cerebellum were glycoproteins which exhibited the same apparent molecular weight after exposure to endoglycosidase F. The partial proteolytic digest maps of photoaffinity labeled beta-adrenergic receptors from rat cerebral cortex, cerebellum, lung and heart were compared

  8. P2X Receptors and Synaptic Plasticity

    Czech Academy of Sciences Publication Activity Database

    Pankratov, Y.; Lalo, U.; Krishtal, A.; Verkhratsky, Alexei

    2009-01-01

    Roč. 158, č. 1 (2009), s. 137-148 ISSN 0306-4522 Institutional research plan: CEZ:AV0Z50390512 Keywords : ATP * P2X receptors * synaptic plasticity Subject RIV: FH - Neurology Impact factor: 3.292, year: 2009

  9. Synaptically released zinc triggers metabotropic signaling via a zinc-sensing receptor in the hippocampus.

    Science.gov (United States)

    Besser, Limor; Chorin, Ehud; Sekler, Israel; Silverman, William F; Atkin, Stan; Russell, James T; Hershfinkel, Michal

    2009-03-04

    Zn(2+) is coreleased with glutamate from mossy fiber terminals and can influence synaptic function. Here, we demonstrate that synaptically released Zn(2+) activates a selective postsynaptic Zn(2+)-sensing receptor (ZnR) in the CA3 region of the hippocampus. ZnR activation induced intracellular release of Ca(2+), as well as phosphorylation of extracellular-regulated kinase and Ca(2+)/calmodulin kinase II. Blockade of synaptic transmission by tetrodotoxin or CdCl inhibited the ZnR-mediated Ca(2+) rises. The responses mediated by ZnR were largely attenuated by the extracellular Zn(2+) chelator, CaEDTA, and in slices from mice lacking vesicular Zn(2+), suggesting that synaptically released Zn(2+) triggers the metabotropic activity. Knockdown of the expression of the orphan G-protein-coupled receptor 39 (GPR39) attenuated ZnR activity in a neuronal cell line. Importantly, we observed widespread GPR39 labeling in CA3 neurons, suggesting a role for this receptor in mediating ZnR signaling in the hippocampus. Our results describe a unique role for synaptic Zn(2+) acting as the physiological ligand of a metabotropic receptor and provide a novel pathway by which synaptic Zn(2+) can regulate neuronal function.

  10. A versatile optical tool for studying synaptic GABAA receptor trafficking.

    Science.gov (United States)

    Lorenz-Guertin, Joshua M; Wilcox, Madeleine R; Zhang, Ming; Larsen, Mads B; Pilli, Jyotsna; Schmidt, Brigitte F; Bruchez, Marcel P; Johnson, Jon W; Waggoner, Alan S; Watkins, Simon C; Jacob, Tija C

    2017-11-15

    Live-cell imaging methods can provide critical real-time receptor trafficking measurements. Here, we describe an optical tool to study synaptic γ-aminobutyric acid (GABA) type A receptor (GABA A R) dynamics through adaptable fluorescent-tracking capabilities. A fluorogen-activating peptide (FAP) was genetically inserted into a GABA A R γ2 subunit tagged with pH-sensitive green fluorescent protein (γ2 pH FAP). The FAP selectively binds and activates Malachite Green (MG) dyes that are otherwise non-fluorescent in solution. γ2 pH FAP GABA A Rs are expressed at the cell surface in transfected cortical neurons, form synaptic clusters and do not perturb neuronal development. Electrophysiological studies show γ2 pH FAP GABA A Rs respond to GABA and exhibit positive modulation upon stimulation with the benzodiazepine diazepam. Imaging studies using γ2 pH FAP-transfected neurons and MG dyes show time-dependent receptor accumulation into intracellular vesicles, revealing constitutive endosomal and lysosomal trafficking. Simultaneous analysis of synaptic, surface and lysosomal receptors using the γ2 pH FAP-MG dye approach reveals enhanced GABA A R turnover following a bicucculine-induced seizure paradigm, a finding not detected by standard surface receptor measurements. To our knowledge, this is the first application of the FAP-MG dye system in neurons, demonstrating the versatility to study nearly all phases of GABA A R trafficking. © 2017. Published by The Company of Biologists Ltd.

  11. Itinerant teaching: the inside story.

    Science.gov (United States)

    Yarger, C C; Luckner, J L

    1999-10-01

    The number of students who are deaf or hard of hearing attending local neighborhood schools has increased steadily over the past 20 years (Holden-Pitt & Diaz, 1998). This increase has led to larger numbers of teachers serving these students as itinerant teachers. However, little research has been conducted to examine the efficacy of this model of service delivery (Brelje, 1992; Luckner & Miller, 1994). Qualitative research methods were used to investigate itinerant teachers' perceptions of their responsibilities, job satisfaction, and effectiveness. Individual interviews were conducted with 10 itinerant teachers. Participants reported they preferred working directly with students rather than consulting with general education teachers and families. They noted the primary advantages of working as an itinerant teacher were variety, autonomy, time for reflection, and the diversity of students with whom they worked. Some of the most significant disadvantages they cited were isolation, time and budget constraints, and the distances required to travel from school to school. Essential skills and challenges to being an effective itinerant teacher are identified, recommendations for future itinerant teachers are discussed, and suggestions for future research are presented.

  12. Age dependence of the rapid antidepressant and synaptic effects of acute NMDA receptor blockade

    Directory of Open Access Journals (Sweden)

    Elena eNosyreva

    2014-12-01

    Full Text Available Ketamine is a NMDA receptor antagonist that produces rapid antidepressant responses in individuals with major depressive disorder. The antidepressant action of ketamine has been linked to blocking NMDA receptor activation at rest, which inhibits eukaryotic elongation factor2 kinase leading to desuppression of protein synthesis and synaptic potentiation in the CA1 region of the hippocampus. Here, we investigated ketamine mediated antidepressant response and the resulting synaptic potentiation in juvenile animals. We found that ketamine did not produce an antidepressant response in juvenile animals in the novelty suppressed feeding or the forced swim test. In addition ketamine application failed to trigger synaptic potentiation in hippocampal slices obtained from juvenile animals, unlike its action in slices from older animals (6-9 weeks old. The inability of ketamine to trigger an antidepressant response or subsequent synaptic plasticity processes suggests a developmental component to ketamine mediated antidepressant efficacy. We also show that the NMDAR antagonist AP5 triggers synaptic potentiation in mature hippocampus similar to the action of ketamine, demonstrating that global competitive blockade of NMDA receptors is sufficient to trigger this effect. These findings suggest that global blockade of NMDA receptors in developmentally mature hippocampal synapses are required for the antidepressant efficacy of ketamine.

  13. Learning shapes spontaneous activity itinerating over memorized states.

    Directory of Open Access Journals (Sweden)

    Tomoki Kurikawa

    Full Text Available Learning is a process that helps create neural dynamical systems so that an appropriate output pattern is generated for a given input. Often, such a memory is considered to be included in one of the attractors in neural dynamical systems, depending on the initial neural state specified by an input. Neither neural activities observed in the absence of inputs nor changes caused in the neural activity when an input is provided were studied extensively in the past. However, recent experimental studies have reported existence of structured spontaneous neural activity and its changes when an input is provided. With this background, we propose that memory recall occurs when the spontaneous neural activity changes to an appropriate output activity upon the application of an input, and this phenomenon is known as bifurcation in the dynamical systems theory. We introduce a reinforcement-learning-based layered neural network model with two synaptic time scales; in this network, I/O relations are successively memorized when the difference between the time scales is appropriate. After the learning process is complete, the neural dynamics are shaped so that it changes appropriately with each input. As the number of memorized patterns is increased, the generated spontaneous neural activity after learning shows itineration over the previously learned output patterns. This theoretical finding also shows remarkable agreement with recent experimental reports, where spontaneous neural activity in the visual cortex without stimuli itinerate over evoked patterns by previously applied signals. Our results suggest that itinerant spontaneous activity can be a natural outcome of successive learning of several patterns, and it facilitates bifurcation of the network when an input is provided.

  14. Distinct roles of synaptic and extrasynaptic GABAA receptors in striatal inhibition dynamics

    Directory of Open Access Journals (Sweden)

    Ruixi eLuo

    2013-11-01

    Full Text Available Striatonigral and striatopallidal projecting medium spiny neurons (MSNs express dopamine D1 (D1+ and D2 receptors (D2+, respectively. Both classes receive extensive GABAergic input via expression of synaptic, perisynaptic and extrasynaptic GABAA receptors. The activation patterns of different presynaptic GABAergic neurons produce transient and sustained GABAA receptor-mediated conductance that fulfill distinct physiological roles. We performed single and dual whole cell recordings from striatal neurons in mice expressing fluorescent proteins in interneurons and MSNs. We report specific inhibitory dynamics produced by distinct activation patterns of presynaptic GABAergic neurons as source of synaptic, perisynaptic and extrasynaptic inhibition. Synaptic GABAA receptors in MSNs contain the α2, γ2 and a β subunit. In addition, there is evidence for the developmental increase of the α1 subunit that contributes to faster inhibitory postsynaptic current (IPSC. Tonic GABAergic currents in MSNs from adult mice are carried by extrasynaptic receptors containing the α4 and δ subunit, while in younger mice this current is mediated by receptors that contain the α5 subunit. Both forms of tonic currents are differentially expressed in D1+ and D2+ MSNs. This study extends these findings by relating presynaptic activation with pharmacological analysis of inhibitory conductance in mice where the β3 subunit is conditionally removed in fluorescently labeled D2+ MSNs and in mice with global deletion of the δ subunit. Our results show that responses to low doses of gaboxadol (2μM, a GABAA receptor agonist with preference to δ subunit, are abolished in the δ but not the β3 subunit knock out mice. This suggests that the β3 subunit is not a component of the adult extrasynaptic receptor pool, in contrast to what has been shown for tonic current in young mice. Deletion of the β3 subunit from D2+ MSNs however, removed slow spontaneous IPSCs, implicating its

  15. Maximum likelihood estimation of biophysical parameters of synaptic receptors from macroscopic currents

    Directory of Open Access Journals (Sweden)

    Andrey eStepanyuk

    2014-10-01

    Full Text Available Dendritic integration and neuronal firing patterns strongly depend on biophysical properties of synaptic ligand-gated channels. However, precise estimation of biophysical parameters of these channels in their intrinsic environment is complicated and still unresolved problem. Here we describe a novel method based on a maximum likelihood approach that allows to estimate not only the unitary current of synaptic receptor channels but also their multiple conductance levels, kinetic constants, the number of receptors bound with a neurotransmitter and the peak open probability from experimentally feasible number of postsynaptic currents. The new method also improves the accuracy of evaluation of unitary current as compared to the peak-scaled non-stationary fluctuation analysis, leading to a possibility to precisely estimate this important parameter from a few postsynaptic currents recorded in steady-state conditions. Estimation of unitary current with this method is robust even if postsynaptic currents are generated by receptors having different kinetic parameters, the case when peak-scaled non-stationary fluctuation analysis is not applicable. Thus, with the new method, routinely recorded postsynaptic currents could be used to study the properties of synaptic receptors in their native biochemical environment.

  16. γ1-Containing GABA-A Receptors Cluster at Synapses Where they Mediate Slower Synaptic Currents than γ2-Containing GABA-A Receptors

    Directory of Open Access Journals (Sweden)

    Christine L. Dixon

    2017-06-01

    Full Text Available GABA-A receptors (GABAARs are pentameric ligand-gated ion channels that are assembled mainly from α (α1–6, β (β1–3 and γ (γ1–3 subunits. Although GABAARs containing γ2L subunits mediate most of the inhibitory neurotransmission in the brain, significant expression of γ1 subunits is seen in the amygdala, pallidum and substantia nigra. However, the location and function of γ1-containing GABAARs in these regions remains unclear. In “artificial” synapses, where the subunit composition of postsynaptic receptors is specifically controlled, γ1 incorporation slows the synaptic current decay rate without affecting channel deactivation, suggesting that γ1-containing receptors are not clustered and therefore activated by diffuse neurotransmitter. However, we show that γ1-containing receptors are localized at neuronal synapses and form clusters in both synaptic and extrasynaptic regions. In addition, they exhibit rapid membrane diffusion and a higher frequency of exchange between synaptic and perisynaptic populations compared to γ2L-containing GABAARs. A point mutation in the large intracellular domain and a pharmacological analysis reveal that when a single non-conserved γ2L residue is mutated to its γ1 counterpart (T349L, the synaptic current decay is slowed from γ2L- to γ1-like without changing the clustering or diffusion properties of the receptors. In addition, previous fast perfusion and single channel kinetic experiments revealed no difference in the intrinsic closing rates of γ2L- and γ1-containing receptors when expressed in HEK293 cells. These observations together with Monte Carlo simulations of synaptic function confirm that decreased clustering does not control γ1-containing GABAAR kinetics. Rather, they suggest that γ1- and γ2L-containing receptors exhibit differential synaptic current decay rates due to differential gating dynamics when localized at the synapse.

  17. Kalirin-7 is necessary for normal NMDA receptor-dependent synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Lemtiri-Chlieh Fouad

    2011-12-01

    Full Text Available Abstract Background Dendritic spines represent the postsynaptic component of the vast majority of excitatory synapses present in the mammalian forebrain. The ability of spines to rapidly alter their shape, size, number and receptor content in response to stimulation is considered to be of paramount importance during the development of synaptic plasticity. Indeed, long-term potentiation (LTP, widely believed to be a cellular correlate of learning and memory, has been repeatedly shown to induce both spine enlargement and the formation of new dendritic spines. In our studies, we focus on Kalirin-7 (Kal7, a Rho GDP/GTP exchange factor (Rho-GEF localized to the postsynaptic density that plays a crucial role in the development and maintenance of dendritic spines both in vitro and in vivo. Previous studies have shown that mice lacking Kal7 (Kal7KO have decreased dendritic spine density in the hippocampus as well as focal hippocampal-dependent learning impairments. Results We have performed a detailed electrophysiological characterization of the role of Kal7 in hippocampal synaptic plasticity. We show that loss of Kal7 results in impaired NMDA receptor-dependent LTP and long-term depression, whereas a NMDA receptor-independent form of LTP is shown to be normal in the absence of Kal7. Conclusions These results indicate that Kal7 is an essential and selective modulator of NMDA receptor-dependent synaptic plasticity in the hippocampus.

  18. Kalirin-7 is necessary for normal NMDA receptor-dependent synaptic plasticity

    KAUST Repository

    Lemtiri-Chlieh, Fouad

    2011-12-19

    Background: Dendritic spines represent the postsynaptic component of the vast majority of excitatory synapses present in the mammalian forebrain. The ability of spines to rapidly alter their shape, size, number and receptor content in response to stimulation is considered to be of paramount importance during the development of synaptic plasticity. Indeed, long-term potentiation (LTP), widely believed to be a cellular correlate of learning and memory, has been repeatedly shown to induce both spine enlargement and the formation of new dendritic spines. In our studies, we focus on Kalirin-7 (Kal7), a Rho GDP/GTP exchange factor (Rho-GEF) localized to the postsynaptic density that plays a crucial role in the development and maintenance of dendritic spines both in vitro and in vivo. Previous studies have shown that mice lacking Kal7 (Kal7 KO) have decreased dendritic spine density in the hippocampus as well as focal hippocampal-dependent learning impairments.Results: We have performed a detailed electrophysiological characterization of the role of Kal7 in hippocampal synaptic plasticity. We show that loss of Kal7 results in impaired NMDA receptor-dependent LTP and long-term depression, whereas a NMDA receptor-independent form of LTP is shown to be normal in the absence of Kal7.Conclusions: These results indicate that Kal7 is an essential and selective modulator of NMDA receptor-dependent synaptic plasticity in the hippocampus. 2011 Lemtiri-Chlieh et al; licensee BioMed Central Ltd.

  19. The AMPA receptor-associated protein Shisa7 regulates hippocampal synaptic function and contextual memory

    NARCIS (Netherlands)

    Schmitz, Leanne J M; Klaassen, Remco V; Ruiperez-Alonso, Marta; Zamri, Azra Elia; Stroeder, Jasper; Rao-Ruiz, Priyanka; Lodder, Johannes C; van der Loo, Rolinka J; Mansvelder, Huib D; Smit, August B; Spijker, Sabine; Verhage, Matthijs

    2017-01-01

    Glutamatergic synapses rely on AMPA receptors (AMPARs) for fast synaptic transmission and plasticity. AMPAR auxiliary proteins regulate receptor trafficking, and modulate receptor mobility and its biophysical properties. The AMPAR auxiliary protein Shisa7 (CKAMP59) has been shown to interact with

  20. Mechanisms of glycine release, which build up synaptic and extrasynaptic glycine levels: the role of synaptic and non-synaptic glycine transporters.

    Science.gov (United States)

    Harsing, Laszlo G; Matyus, Peter

    2013-04-01

    Glycine is an amino acid neurotransmitter that is involved in both inhibitory and excitatory neurochemical transmission in the central nervous system. The role of glycine in excitatory neurotransmission is related to its coagonist action at glutamatergic N-methyl-D-aspartate receptors. The glycine levels in the synaptic cleft rise many times higher during synaptic activation assuring that glycine spills over into the extrasynaptic space. Another possible origin of extrasynaptic glycine is the efflux of glycine occurring from astrocytes associated with glutamatergic synapses. The release of glycine from neuronal or glial origins exhibits several differences compared to that of biogenic amines or other amino acid neurotransmitters. These differences appear in an external Ca(2+)- and temperature-dependent manner, conferring unique characteristics on glycine as a neurotransmitter. Glycine transporter type-1 at synapses may exhibit neural and glial forms and plays a role in controlling synaptic glycine levels and the spill over rate of glycine from the synaptic cleft into the extrasynaptic biophase. Non-synaptic glycine transporter type-1 regulates extrasynaptic glycine concentrations, either increasing or decreasing them depending on the reverse or normal mode operation of the carrier molecule. While we can, at best, only estimate synaptic glycine levels at rest and during synaptic activation, glycine concentrations are readily measurable via brain microdialysis technique applied in the extrasynaptic space. The non-synaptic N-methyl-D-aspartate receptor may obtain glycine for activation following its spill over from highly active synapses or from its release mediated by the reverse operation of non-synaptic glycine transporter-1. The sensitivity of non-synaptic N-methyl-D-aspartate receptors to glutamate and glycine is many times higher than that of synaptic N-methyl-D-aspartate receptors making the former type of receptor the primary target for drug action. Synaptic

  1. Effects of geometry in itinerant electron magnets

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan); Muro, Y [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan); Kohara, T [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan); Shiga, M [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan)

    2007-04-11

    The magnetism of quasi-one-dimensional itinerant electron magnets RMn{sub 4}Al{sub 8} is compared with that of the typical frustrated itinerant electron magnet YMn{sub 2}. The possible formation and observation of the spin pseudogap are discussed in connection with the spin-liquid state in strongly correlated itinerant electron systems.

  2. Early-life seizures alter synaptic calcium-permeable AMPA receptor function and plasticity

    Science.gov (United States)

    Lippman-Bell, Jocelyn J.; Zhou, Chengwen; Sun, Hongyu; Feske, Joel S.; Jensen, Frances E.

    2016-01-01

    Calcium (Ca2+)-mediated1 signaling pathways are critical to synaptic plasticity. In adults, the NMDA glutamate receptor (NMDAR) represents a major route for activity-dependent synaptic Ca2+ entry. However, during neonatal development, when synaptic plasticity is high, many AMPA glutamate receptors (AMPARs) are also permeable to Ca2+ (CP-AMPAR) due to low GluA2 subunit expression, providing an additional route for activity- and glutamate-dependent Ca2+ influx and subsequent signaling. Therefore, altered hippocampal Ca2+ signaling may represent an age-specific pathogenic mechanism. We thus aimed to assess Ca2+ responses 48 hours after hypoxia-induced neonatal seizures (HS) in postnatal day (P)10 rats, a post-seizure time point at which we previously reported LTP attenuation. We found that Ca2+ responses were higher in brain slices from post-HS rats than in controls and this increase was CP-AMPAR-dependent. To determine whether synaptic CP-AMPAR expression was also altered post-HS, we assessed the expression of GluA2 at hippocampal synapses and the expression of long-term depression (LTD), which has been linked to the presence of synaptic GluA2. Here we report a decrease 48 hours after HS in synaptic GluA2 expression at synapses and LTD in hippocampal CA1. Given the potentially critical role of AMPAR trafficking in disease progression, we aimed to establish whether post-seizure in vivo AMPAR antagonist treatment prevented the enhanced Ca2+ responses, changes in GluA2 synaptic expression, and diminished LTD. We found that NBQX treatment prevents all three of these post-seizure consequences, further supporting a critical role for AMPARs as an age-specific therapeutic target. PMID:27521497

  3. A Ca2+-based computational model for NDMA receptor-dependent synaptic plasticity at individual post-synaptic spines in the hippocampus

    Directory of Open Access Journals (Sweden)

    Owen Rackham

    2010-07-01

    Full Text Available Associative synaptic plasticity is synapse specific and requires coincident activity in presynaptic and postsynaptic neurons to activate NMDA receptors (NMDARs. The resultant Ca2+ influx is the critical trigger for the induction of synaptic plasticity. Given its centrality for the induction of synaptic plasticity, a model for NMDAR activation incorporating the timing of presynaptic glutamate release and postsynaptic depolarization by back-propagating action potentials could potentially predict the pre- and post-synaptic spike patterns required to induce synaptic plasticity. We have developed such a model by incorporating currently available data on the timecourse and amplitude of the postsynaptic membrane potential within individual spines. We couple this with data on the kinetics of synaptic NMDARs and then use the model to predict the continuous spine [Ca2+] in response to regular or irregular pre- and post-synaptic spike patterns. We then incorporate experimental data from synaptic plasticity induction protocols by regular activity patterns to couple the predicted local peak [Ca2+] to changes in synaptic strength. We find that our model accurately describes [Ca2+] in dendritic spines resulting from NMDAR activation during presynaptic and postsynaptic activity when compared to previous experimental observations. The model also replicates the experimentally determined plasticity outcome of regular and irregular spike patterns when applied to a single synapse. This model could therefore be used to predict the induction of synaptic plasticity under a variety of experimental conditions and spike patterns.

  4. Reduced post-synaptic serotonin type 1A receptor binding in bipolar depression

    Science.gov (United States)

    Nugent, Allison C.; Bain, Earle E.; Carlson, Paul J.; Neumeister, Alexander; Bonne, Omer; Carson, Richard E.; Eckelman, William; Herscovitch, Peter; Zarate, Carlos A.; Charney, Dennis S.; Drevets, Wayne C.

    2013-01-01

    Multiple lines of evidence suggest that serotonin type 1A (5-HT1A) receptor dysfunction is involved in the pathophysiology of mood disorders, and that alterations in 5-HT1A receptor function play a role in the mechanisms of antidepressant and mood stabilizer treatment. The literature is in disagreement, however, as to whether 5-HT1A receptor binding abnormalities exist in bipolar disorder (BD). We acquired PET images of 5-HT1A receptor binding in 26 unmedicated BD subjects and 37 healthy controls using [18F]FCWAY, a highly selective 5-HT1A receptor radio-ligand. The mean 5-HT1A receptor binding potential (BPP) was significantly lower in BD subjects compared to controls in cortical regions where 5-HT1A receptors are expressed post-synaptically, most prominently in the mesiotemporal cortex. Post-hoc assessments involving other receptor specific binding parameters suggested that this difference particularly affected the females with BD. The mean BPP did not differ between groups in the raphe nucleus, however, where 5-HT1A receptors are predominantly expressed pre-synaptically. Across subjects the BPP in the mesiotemporal cortex was inversely correlated with trough plasma cortisol levels, consistent with preclinical literature indicating that hippocampal 5-HT1A receptor expression is inhibited by glucocorticoid receptor stimulation. These findings suggest that 5-HT1A receptor binding is abnormally reduced in BD, and this abnormality may particularly involve the postsynaptic 5-HT1A receptor system of individuals with a tendency toward cortisol hypersecretion. PMID:23434290

  5. Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc.

    Science.gov (United States)

    Anderson, Charles T; Radford, Robert J; Zastrow, Melissa L; Zhang, Daniel Y; Apfel, Ulf-Peter; Lippard, Stephen J; Tzounopoulos, Thanos

    2015-05-19

    Many excitatory synapses contain high levels of mobile zinc within glutamatergic vesicles. Although synaptic zinc and glutamate are coreleased, it is controversial whether zinc diffuses away from the release site or whether it remains bound to presynaptic membranes or proteins after its release. To study zinc transmission and quantify zinc levels, we required a high-affinity rapid zinc chelator as well as an extracellular ratiometric fluorescent zinc sensor. We demonstrate that tricine, considered a preferred chelator for studying the role of synaptic zinc, is unable to efficiently prevent zinc from binding low-nanomolar zinc-binding sites, such as the high-affinity zinc-binding site found in NMDA receptors (NMDARs). Here, we used ZX1, which has a 1 nM zinc dissociation constant and second-order rate constant for binding zinc that is 200-fold higher than those for tricine and CaEDTA. We find that synaptic zinc is phasically released during action potentials. In response to short trains of presynaptic stimulation, synaptic zinc diffuses beyond the synaptic cleft where it inhibits extrasynaptic NMDARs. During higher rates of presynaptic stimulation, released glutamate activates additional extrasynaptic NMDARs that are not reached by synaptically released zinc, but which are inhibited by ambient, tonic levels of nonsynaptic zinc. By performing a ratiometric evaluation of extracellular zinc levels in the dorsal cochlear nucleus, we determined the tonic zinc levels to be low nanomolar. These results demonstrate a physiological role for endogenous synaptic as well as tonic zinc in inhibiting extrasynaptic NMDARs and thereby fine tuning neuronal excitability and signaling.

  6. Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc

    Science.gov (United States)

    Anderson, Charles T.; Radford, Robert J.; Zastrow, Melissa L.; Zhang, Daniel Y.; Apfel, Ulf-Peter; Lippard, Stephen J.; Tzounopoulos, Thanos

    2015-01-01

    Many excitatory synapses contain high levels of mobile zinc within glutamatergic vesicles. Although synaptic zinc and glutamate are coreleased, it is controversial whether zinc diffuses away from the release site or whether it remains bound to presynaptic membranes or proteins after its release. To study zinc transmission and quantify zinc levels, we required a high-affinity rapid zinc chelator as well as an extracellular ratiometric fluorescent zinc sensor. We demonstrate that tricine, considered a preferred chelator for studying the role of synaptic zinc, is unable to efficiently prevent zinc from binding low-nanomolar zinc-binding sites, such as the high-affinity zinc-binding site found in NMDA receptors (NMDARs). Here, we used ZX1, which has a 1 nM zinc dissociation constant and second-order rate constant for binding zinc that is 200-fold higher than those for tricine and CaEDTA. We find that synaptic zinc is phasically released during action potentials. In response to short trains of presynaptic stimulation, synaptic zinc diffuses beyond the synaptic cleft where it inhibits extrasynaptic NMDARs. During higher rates of presynaptic stimulation, released glutamate activates additional extrasynaptic NMDARs that are not reached by synaptically released zinc, but which are inhibited by ambient, tonic levels of nonsynaptic zinc. By performing a ratiometric evaluation of extracellular zinc levels in the dorsal cochlear nucleus, we determined the tonic zinc levels to be low nanomolar. These results demonstrate a physiological role for endogenous synaptic as well as tonic zinc in inhibiting extrasynaptic NMDARs and thereby fine tuning neuronal excitability and signaling. PMID:25947151

  7. Facilitation of AMPA receptor synaptic delivery as a molecular mechanism for cognitive enhancement

    DEFF Research Database (Denmark)

    Knafo, Shira; Venero, César; Sánchez-Puelles, Cristina

    2012-01-01

    ) that enhances spatial learning and memory in rats. We have now investigated the cellular and molecular basis of this cognitive enhancement, using biochemical, morphological, electrophysiological, and behavioral analyses. We have found that FGL triggers a long-lasting enhancement of synaptic transmission......MKII activation. These results provide a mechanistic link between facilitation of AMPA receptor synaptic delivery and improved hippocampal-dependent learning, induced by a pharmacological cognitive enhancer....

  8. Itinerancy of money

    Science.gov (United States)

    Yasutomi, Ayumu

    2003-09-01

    Previously, I studied [Physica D 82, 180-194 (1995)] the emergence and collapse of money in a computer simulation model. In this paper I will revisit the same topic, building a model in the same line. I discuss this problem from the viewpoint of chaotic itinerancy. Money is the most popular system for evading the difficulty of exchange under division of labor. It emerges autonomously from exchanges among selfish agents which behave as automata. And such emergent money collapses autonomously. I describe money as a structure in economic space, explaining its autonomous emergence and collapse as two phases of the same phenomenon. The key element in this phenomenon is the switch of the meaning of strategies. This is caused by the drastic change of environment caused by the emergence of a structure. This dynamics shares some aspects with chaotic itinerancy.

  9. MPTP-meditated hippocampal dopamine deprivation modulates synaptic transmission and activity-dependent synaptic plasticity

    International Nuclear Information System (INIS)

    Zhu Guoqi; Chen Ying; Huang Yuying; Li Qinglin; Behnisch, Thomas

    2011-01-01

    Parkinson's disease (PD)-like symptoms including learning deficits are inducible by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Therefore, it is possible that MPTP may disturb hippocampal memory processing by modulation of dopamine (DA)- and activity-dependent synaptic plasticity. We demonstrate here that intraperitoneal (i.p.) MPTP injection reduces the number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) within 7 days. Subsequently, the TH expression level in SN and hippocampus and the amount of DA and its metabolite DOPAC in striatum and hippocampus decrease. DA depletion does not alter basal synaptic transmission and changes pair-pulse facilitation (PPF) of field excitatory postsynaptic potentials (fEPSPs) only at the 30 ms inter-pulse interval. In addition, the induction of long-term potentiation (LTP) is impaired whereas the duration of long-term depression (LTD) becomes prolonged. Since both LTP and LTD depend critically on activation of NMDA and DA receptors, we also tested the effect of DA depletion on NMDA receptor-mediated synaptic transmission. Seven days after MPTP injection, the NMDA receptor-mediated fEPSPs are decreased by about 23%. Blocking the NMDA receptor-mediated fEPSP does not mimic the MPTP-LTP. Only co-application of D1/D5 and NMDA receptor antagonists during tetanization resembled the time course of fEPSP potentiation as observed 7 days after i.p. MPTP injection. Together, our data demonstrate that MPTP-induced degeneration of DA neurons and the subsequent hippocampal DA depletion alter NMDA receptor-mediated synaptic transmission and activity-dependent synaptic plasticity. - Highlights: → I.p. MPTP-injection mediates death of dopaminergic neurons. → I.p. MPTP-injection depletes DA and DOPAC in striatum and hippocampus. → I.p. MPTP-injection does not alter basal synaptic transmission. → Reduction of LTP and enhancement of LTD after i.p. MPTP-injection. → Attenuation of NMDA-receptors mediated

  10. Stochastic lattice model of synaptic membrane protein domains.

    Science.gov (United States)

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A

    2017-05-01

    Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In common with other membrane protein domains, synaptic domains are characterized by low protein copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly, stability, and characteristic size of synaptic domains observed in experiments. We show that our stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion in crowded membranes. Through a combination of analytic and numerical solutions of the master equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo simulations, we find substantial discrepancies between mean-field and stochastic models for the reaction dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic receptors and scaffolds suggested by previous experiments and mean-field calculations, we show that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the observed single-molecule trajectories, and spatial heterogeneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane. Our work sheds light on the physical mechanisms and principles linking the collective properties of membrane protein domains to the stochastic dynamics that rule their molecular components.

  11. NMDA Receptor Subunits Change after Synaptic Plasticity Induction and Learning and Memory Acquisition

    Directory of Open Access Journals (Sweden)

    María Verónica Baez

    2018-01-01

    Full Text Available NMDA ionotropic glutamate receptors (NMDARs are crucial in activity-dependent synaptic changes and in learning and memory. NMDARs are composed of two GluN1 essential subunits and two regulatory subunits which define their pharmacological and physiological profile. In CNS structures involved in cognitive functions as the hippocampus and prefrontal cortex, GluN2A and GluN2B are major regulatory subunits; their expression is dynamic and tightly regulated, but little is known about specific changes after plasticity induction or memory acquisition. Data strongly suggest that following appropriate stimulation, there is a rapid increase in surface GluN2A-NMDAR at the postsynapses, attributed to lateral receptor mobilization from adjacent locations. Whenever synaptic plasticity is induced or memory is consolidated, more GluN2A-NMDARs are assembled likely using GluN2A from a local translation and GluN1 from local ER. Later on, NMDARs are mobilized from other pools, and there are de novo syntheses at the neuron soma. Changes in GluN1 or NMDAR levels induced by synaptic plasticity and by spatial memory formation seem to occur in different waves of NMDAR transport/expression/degradation, with a net increase at the postsynaptic side and a rise in expression at both the spine and neuronal soma. This review aims to put together that information and the proposed hypotheses.

  12. Itinerant Ferromagnetism in Ultracold Fermi Gases

    DEFF Research Database (Denmark)

    Heiselberg, Henning

    2012-01-01

    Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC. Thermodyna......Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC...

  13. Entanglement between particle partitions in itinerant many-particle states

    NARCIS (Netherlands)

    Haque, M.; Zozulya, O.S.; Schoutens, K.

    2009-01-01

    We review 'particle-partitioning entanglement' for itinerant many-particle systems. This is defined as the entanglement between two subsets of particles making up the system. We identify generic features and mechanisms of particle entanglement that are valid over whole classes of itinerant quantum

  14. Activation of Phosphatidylinositol-Linked Dopamine Receptors Induces a Facilitation of Glutamate-Mediated Synaptic Transmission in the Lateral Entorhinal Cortex.

    Directory of Open Access Journals (Sweden)

    Iulia Glovaci

    Full Text Available The lateral entorhinal cortex receives strong inputs from midbrain dopamine neurons that can modulate its sensory and mnemonic function. We have previously demonstrated that 1 µM dopamine facilitates synaptic transmission in layer II entorhinal cortex cells via activation of D1-like receptors, increased cAMP-PKA activity, and a resulting enhancement of AMPA-receptor mediated currents. The present study assessed the contribution of phosphatidylinositol (PI-linked D1 receptors to the dopaminergic facilitation of transmission in layer II of the rat entorhinal cortex, and the involvement of phospholipase C activity and release of calcium from internal stores. Whole-cell patch-clamp recordings of glutamate-mediated evoked excitatory postsynaptic currents were obtained from pyramidal and fan cells. Activation of D1-like receptors using SKF38393, SKF83959, or 1 µM dopamine induced a reversible facilitation of EPSCs which was abolished by loading cells with either the phospholipase C inhibitor U-73122 or the Ca2+ chelator BAPTA. Neither the L-type voltage-gated Ca2+ channel blocker nifedipine, nor the L/N-type channel blocker cilnidipine, blocked the facilitation of synaptic currents. However, the facilitation was blocked by blocking Ca2+ release from internal stores via inositol 1,4,5-trisphosphate (InsP3 receptors or ryanodine receptors. Follow-up studies demonstrated that inhibiting CaMKII activity with KN-93 failed to block the facilitation, but that application of the protein kinase C inhibitor PKC(19-36 completely blocked the dopamine-induced facilitation. Overall, in addition to our previous report indicating a role for the cAMP-PKA pathway in dopamine-induced facilitation of synaptic transmission, we demonstrate here that the dopaminergic facilitation of synaptic responses in layer II entorhinal neurons also relies on a signaling cascade dependent on PI-linked D1 receptors, PLC, release of Ca2+ from internal stores, and PKC activation which is

  15. NMDA receptor GluN2A/GluN2B subunit ratio as synaptic trait of levodopa-induced dyskinesias: from experimental models to patients

    Directory of Open Access Journals (Sweden)

    Manuela eMellone

    2015-07-01

    Full Text Available Levodopa-induced dyskinesias (LIDs are major complications in the pharmacological management of Parkinson’s disease (PD. Abnormal glutamatergic transmission in the striatum is considered a key factor in the development of LIDs. This work aims at i. characterizing NMDA receptor GluN2A/GluN2B subunit ratio as a common synaptic trait in rat and primate models of LIDs and in dyskinetic PD patients, and ii. validating the potential therapeutic effect of a cell-permeable peptide interfering with GluN2A synaptic localization on the dyskinetic behavior of these experimental models of LIDs. Here we demonstrate an altered ratio of synaptic GluN2A/GluN2B-containing NMDA receptors in the striatum of levodopa-treated dyskinetic rats and monkeys as well as in post-mortem tissue from dyskinetic PD patients. The modulation of synaptic NMDA receptor composition by a cell-permeable peptide interfering with GluN2A subunit interaction with the scaffolding protein PSD-95 leads to a reduction in the dyskinetic motor behavior in the two animal models of LIDs. Our results indicate that targeting synaptic NMDA receptor subunit composition may represent an intriguing therapeutic approach aimed at ameliorating levodopa motor side effects.

  16. Theme of the Workshop on Itinerant-Electron Magnetism, and Spin Fluctuations

    Science.gov (United States)

    Yoshimura, Kazuyoshi

    2017-06-01

    The international workshop on itinerant-electron magnetism was held during September 25-27, 2015 in the seminar house of Graduate School of Science, Kyoto University, Kyoto, Japan. Here, I explain the theme of this workshop, and stress the development of itinerant-electron magnetism in several decades. The workshop was also organized in commemoration of Professor Yoshinori Takahashi’s retirement from University of Hyogo, Japan. Here, I also explain some of his works contributing to the development of itinerant magnetism.

  17. Characterization and extraction of the synaptic apposition surface for synaptic geometry analysis

    Science.gov (United States)

    Morales, Juan; Rodríguez, Angel; Rodríguez, José-Rodrigo; DeFelipe, Javier; Merchán-Pérez, Angel

    2013-01-01

    Geometrical features of chemical synapses are relevant to their function. Two critical components of the synaptic junction are the active zone (AZ) and the postsynaptic density (PSD), as they are related to the probability of synaptic release and the number of postsynaptic receptors, respectively. Morphological studies of these structures are greatly facilitated by the use of recent electron microscopy techniques, such as combined focused ion beam milling and scanning electron microscopy (FIB/SEM), and software tools that permit reconstruction of large numbers of synapses in three dimensions. Since the AZ and the PSD are in close apposition and have a similar surface area, they can be represented by a single surface—the synaptic apposition surface (SAS). We have developed an efficient computational technique to automatically extract this surface from synaptic junctions that have previously been three-dimensionally reconstructed from actual tissue samples imaged by automated FIB/SEM. Given its relationship with the release probability and the number of postsynaptic receptors, the surface area of the SAS is a functionally relevant measure of the size of a synapse that can complement other geometrical features like the volume of the reconstructed synaptic junction, the equivalent ellipsoid size and the Feret's diameter. PMID:23847474

  18. Modulation of Network Oscillatory Activity and GABAergic Synaptic Transmission by CB1 Cannabinoid Receptors in the Rat Medial Entorhinal Cortex

    Directory of Open Access Journals (Sweden)

    Nicola H. Morgan

    2008-01-01

    Full Text Available Cannabinoids modulate inhibitory GABAergic neurotransmission in many brain regions. Within the temporal lobe, cannabinoid receptors are highly expressed, and are located presynaptically at inhibitory terminals. Here, we have explored the role of type-1 cannabinoid receptors (CB1Rs at the level of inhibitory synaptic currents and field-recorded network oscillations. We report that arachidonylcyclopropylamide (ACPA; 10 M, an agonist at CB1R, inhibits GABAergic synaptic transmission onto both superficial and deep medial entorhinal (mEC neurones, but this has little effect on network oscillations in beta/gamma frequency bands. By contrast, the CB1R antagonist/inverse agonist LY320135 (500 nM, increased GABAergic synaptic activity and beta/gamma oscillatory activity in superficial mEC, was suppressed, whilst that in deep mEC was enhanced. These data indicate that cannabinoid-mediated effects on inhibitory synaptic activity may be constitutively active in vitro, and that modulation of CB1R activation using inverse agonists unmasks complex effects of CBR function on network activity.

  19. Modulation of NMDA Receptor Properties and Synaptic Transmission by the NR3A Subunit in Mouse Hippocampal and Cerebrocortical Neurons

    Science.gov (United States)

    Tong, Gary; Takahashi, Hiroto; Tu, Shichun; Shin, Yeonsook; Talantova, Maria; Zago, Wagner; Xia, Peng; Nie, Zhiguo; Goetz, Thomas; Zhang, Dongxian; Lipton, Stuart A.; Nakanishi, Nobuki

    2015-01-01

    Expression of the NR3A subunit with NR1/NR2 in Xenopus oocytes or mammalian cell lines leads to a reduction in N-methyl-D-aspartate (NMDA)-induced currents and decreased Mg2+ sensitivity and Ca2+ permeability compared with NR1/NR2 receptors. Consistent with these findings, neurons from NR3A knockout (KO) mice exhibit enhanced NMDA-induced currents. Recombinant NR3A can also form excitatory glycine receptors with NR1 in the absence of NR2. However, the effects of NR3A on channel properties in neurons and synaptic transmission have not been fully elucidated. To study physiological roles of NR3A subunits, we generated NR3A transgenic (Tg) mice. Cultured NR3A Tg neurons exhibited two populations of NMDA receptor (NMDAR) channels, reduced Mg2+ sensitivity, and decreased Ca2+ permeability in response to NMDA/glycine, but glycine alone did not elicit excitatory currents. In addition, NMDAR-mediated excitatory postsynaptic currents (EPSCs) in NR3A Tg hippocampal slices showed reduced Mg2+ sensitivity, consistent with the notion that NR3A subunits incorporated into synaptic NMDARs. To study the function of endogenous NR3A subunits, we compared NMDAR-mediated EPSCs in NR3A KO and WT control mice. In NR3A KO mice, the ratio of the amplitudes of the NMDAR-mediated component to α-amino-3-hydroxy-5-methyl-4-isox-azolepropionic acid receptor-mediated component of the EPSC was significantly larger than that seen in WT littermates. This result suggests that NR3A subunits contributed to the NMDAR-mediated component of the EPSC in WT mice. Taken together, these results show that NR3A subunits contribute to NMDAR responses from both synaptic and extra-synaptic receptors, likely composed of NR1, NR2, and NR3 subunits. PMID:18003876

  20. Correlating Fluorescence and High-Resolution Scanning Electron Microscopy (HRSEM) for the study of GABAA receptor clustering induced by inhibitory synaptic plasticity

    KAUST Repository

    Orlando, Marta

    2017-10-17

    Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABAA Receptors (GABAARs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABAAR clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABAAR clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.

  1. Correlating Fluorescence and High-Resolution Scanning Electron Microscopy (HRSEM) for the study of GABAA receptor clustering induced by inhibitory synaptic plasticity

    KAUST Repository

    Orlando, Marta; Ravasenga, Tiziana; Petrini, Enrica Maria; Falqui, Andrea; Marotta, Roberto; Barberis, Andrea

    2017-01-01

    Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABAA Receptors (GABAARs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABAAR clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABAAR clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.

  2. Correlating Fluorescence and High-Resolution Scanning Electron Microscopy (HRSEM) for the study of GABAA receptor clustering induced by inhibitory synaptic plasticity.

    Science.gov (United States)

    Orlando, Marta; Ravasenga, Tiziana; Petrini, Enrica Maria; Falqui, Andrea; Marotta, Roberto; Barberis, Andrea

    2017-10-23

    Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABA A Receptors (GABA A Rs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABA A R clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABA A R clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.

  3. GABA type a receptor trafficking and the architecture of synaptic inhibition.

    Science.gov (United States)

    Lorenz-Guertin, Joshua M; Jacob, Tija C

    2018-03-01

    Ubiquitous expression of GABA type A receptors (GABA A R) in the central nervous system establishes their central role in coordinating most aspects of neural function and development. Dysregulation of GABAergic neurotransmission manifests in a number of human health disorders and conditions that in certain cases can be alleviated by drugs targeting these receptors. Precise changes in the quantity or activity of GABA A Rs localized at the cell surface and at GABAergic postsynaptic sites directly impact the strength of inhibition. The molecular mechanisms constituting receptor trafficking to and from these compartments therefore dictate the efficacy of GABA A R function. Here we review the current understanding of how GABA A Rs traffic through biogenesis, plasma membrane transport, and degradation. Emphasis is placed on discussing novel GABAergic synaptic proteins, receptor and scaffolding post-translational modifications, activity-dependent changes in GABA A R confinement, and neuropeptide and neurosteroid mediated changes. We further highlight modern techniques currently advancing the knowledge of GABA A R trafficking and clinically relevant neurodevelopmental diseases connected to GABAergic dysfunction. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 238-270, 2018. © 2017 Wiley Periodicals, Inc.

  4. Neurotrophin receptor p75NTR mediates Huntington’s disease–associated synaptic and memory dysfunction

    Science.gov (United States)

    Brito, Verónica; Giralt, Albert; Enriquez-Barreto, Lilian; Puigdellívol, Mar; Suelves, Nuria; Zamora-Moratalla, Alfonsa; Ballesteros, Jesús J.; Martín, Eduardo D.; Dominguez-Iturza, Nuria; Morales, Miguel; Alberch, Jordi; Ginés, Sílvia

    2014-01-01

    Learning and memory deficits are early clinical manifestations of Huntington’s disease (HD). These cognitive impairments have been mainly associated with frontostriatal HD pathology; however, compelling evidence provided by several HD murine models suggests that the hippocampus may contribute to synaptic deficits and memory dysfunction in HD. The neurotrophin receptor p75NTR negatively regulates spine density, which is associated with learning and memory; therefore, we explored whether disturbed p75NTR function in the hippocampus could contribute to synaptic dysfunction and memory deficits in HD. Here, we determined that levels of p75NTR are markedly increased in the hippocampus of 2 distinct mouse models of HD and in HD patients. Normalization of p75NTR levels in HD mutant mice heterozygous for p75NTR prevented memory and synaptic plasticity deficits and ameliorated dendritic spine abnormalities, likely through normalization of the activity of the GTPase RhoA. Moreover, viral-mediated overexpression of p75NTR in the hippocampus of WT mice reproduced HD learning and memory deficits, while knockdown of p75NTR in the hippocampus of HD mice prevented cognitive decline. Together, these findings provide evidence of hippocampus-associated memory deficits in HD and demonstrate that p75NTR mediates synaptic, learning, and memory dysfunction in HD. PMID:25180603

  5. Synaptic membrane rafts: traffic lights for local neurotrophin signaling?

    Science.gov (United States)

    Zonta, Barbara; Minichiello, Liliana

    2013-10-18

    Lipid rafts, cholesterol and lipid rich microdomains, are believed to play important roles as platforms for the partitioning of transmembrane and synaptic proteins involved in synaptic signaling, plasticity, and maintenance. There is increasing evidence of a physical interaction between post-synaptic densities and post-synaptic lipid rafts. Localization of proteins within lipid rafts is highly regulated, and therefore lipid rafts may function as traffic lights modulating and fine-tuning neuronal signaling. The tyrosine kinase neurotrophin receptors (Trk) and the low-affinity p75 neurotrophin receptor (p75(NTR)) are enriched in neuronal lipid rafts together with the intermediates of downstream signaling pathways, suggesting a possible role of rafts in neurotrophin signaling. Moreover, neurotrophins and their receptors are involved in the regulation of cholesterol metabolism. Cholesterol is an important component of lipid rafts and its depletion leads to gradual loss of synapses, underscoring the importance of lipid rafts for proper neuronal function. Here, we review and discuss the idea that translocation of neurotrophin receptors in synaptic rafts may account for the selectivity of their transduced signals.

  6. Synaptic membrane rafts: traffic lights for local neurotrophin signalling?

    Directory of Open Access Journals (Sweden)

    Barbara eZonta

    2013-10-01

    Full Text Available Lipid rafts, cholesterol and lipid rich microdomains, are believed to play important roles as platforms for the partitioning of transmembrane and synaptic proteins involved in synaptic signalling, plasticity and maintenance. There is increasing evidence of a physical interaction between post-synaptic densities and post-synaptic lipid rafts. Localization of proteins within lipid rafts is highly regulated, and therefore lipid rafts may function as traffic lights modulating and fine-tuning neuronal signalling. The tyrosine kinase neurotrophin receptors (Trk and the low-affinity p75 neurotrophin receptor (p75NTR are enriched in neuronal lipid rafts together with the intermediates of downstream signalling pathways, suggesting a possible role of rafts in neurotrophin signalling. Moreover, neurotrophins and their receptors are involved in the regulation of cholesterol metabolism. Cholesterol is an important component of lipid rafts and its depletion leads to gradual loss of synapses, underscoring the importance of lipid rafts for proper neuronal function. Here, we review and discuss the idea that translocation of neurotrophin receptors in synaptic rafts may account for the selectivity of their transduced signals.

  7. Iron mediates N-methyl-D-aspartate receptor-dependent stimulation of calcium-induced pathways and hippocampal synaptic plasticity.

    Science.gov (United States)

    Muñoz, Pablo; Humeres, Alexis; Elgueta, Claudio; Kirkwood, Alfredo; Hidalgo, Cecilia; Núñez, Marco T

    2011-04-15

    Iron deficiency hinders hippocampus-dependent learning processes and impairs cognitive performance, but current knowledge on the molecular mechanisms underlying the unique role of iron in neuronal function is sparse. Here, we investigated the participation of iron on calcium signal generation and ERK1/2 stimulation induced by the glutamate agonist N-methyl-D-aspartate (NMDA), and the effects of iron addition/chelation on hippocampal basal synaptic transmission and long-term potentiation (LTP). Addition of NMDA to primary hippocampal cultures elicited persistent calcium signals that required functional NMDA receptors and were independent of calcium influx through L-type calcium channels or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA also promoted ERK1/2 phosphorylation and nuclear translocation. Iron chelation with desferrioxamine or inhibition of ryanodine receptor (RyR)-mediated calcium release with ryanodine-reduced calcium signal duration and prevented NMDA-induced ERK1/2 activation. Iron addition to hippocampal neurons readily increased the intracellular labile iron pool and stimulated reactive oxygen species production; the antioxidant N-acetylcysteine or the hydroxyl radical trapper MCI-186 prevented these responses. Iron addition to primary hippocampal cultures kept in calcium-free medium elicited calcium signals and stimulated ERK1/2 phosphorylation; RyR inhibition abolished these effects. Iron chelation decreased basal synaptic transmission in hippocampal slices, inhibited iron-induced synaptic stimulation, and impaired sustained LTP in hippocampal CA1 neurons induced by strong stimulation. In contrast, iron addition facilitated sustained LTP induction after suboptimal tetanic stimulation. Together, these results suggest that hippocampal neurons require iron to generate RyR-mediated calcium signals after NMDA receptor stimulation, which in turn promotes ERK1/2 activation, an essential step of sustained LTP.

  8. Activation of extrasynaptic, but not synaptic, NMDA receptors modifies amyloid precursor protein expression pattern and increases amyloid-ß production.

    Science.gov (United States)

    Bordji, Karim; Becerril-Ortega, Javier; Nicole, Olivier; Buisson, Alain

    2010-11-24

    Calcium is a key mediator controlling essential neuronal functions depending on electrical activity. Altered neuronal calcium homeostasis affects metabolism of amyloid precursor protein (APP), leading to increased production of β-amyloid (Aβ), and contributing to the initiation of Alzheimer's disease (AD). A linkage between excessive glutamate receptor activation and neuronal Aβ release was established, and recent reports suggest that synaptic and extrasynaptic NMDA receptor (NMDAR) activation may have distinct consequences in plasticity, gene regulation, and neuronal death. Here, we report for the first time that prolonged activation of extrasynaptic NMDAR, but not synaptic NMDAR, dramatically increased the neuronal production of Aβ. This effect was preceded by a shift from APP695 to Kunitz protease inhibitory domain (KPI) containing APPs (KPI-APPs), isoforms exhibiting an important amyloidogenic potential. Conversely, after synaptic NMDAR activation, we failed to detect any KPI-APP expression and neuronal Aβ production was not modified. Calcium imaging data showed that intracellular calcium concentration after extrasynaptic NMDAR stimulation was lower than after synaptic activation. This suggests distinct signaling pathways for each pool of receptors. We found that modification of neuronal APP expression pattern triggered by extrasynaptic NMDAR activation was regulated at an alternative splicing level involving calcium-/calmodulin-dependent protein kinase IV, but overall APP expression remained identical. Finally, memantine dose-dependently inhibited extrasynaptic NMDAR-induced KPI-APPs expression as well as neuronal Aβ release. Altogether, these data suggest that a chronic activation of extrasynaptic NMDAR promotes amyloidogenic KPI-APP expression leading to neuronal Aβ release, representing a causal risk factor for developing AD.

  9. High-resolution immunogold localization of AMPA type glutamate receptor subunits at synaptic and non-synaptic sites in rat hippocampus.

    Science.gov (United States)

    Baude, A; Nusser, Z; Molnár, E; McIlhinney, R A; Somogyi, P

    1995-12-01

    particles for the GluRA, GluRB/C and GluRD subunits were present at type 1 synaptic membrane specializations on dendritic spines of pyramidal cells throughout all layers of the CA1 and CA3 areas. The most densely labelled synapses tended to be on the largest spines and many smaller spines remained unlabelled. Immunoparticle density at type 1 synapses on dendritic shafts of some non-principal cells was consistently higher than at labelled synapses of dendritic spines of pyramidal cells. Synapses established between dendritic spines and mossy fibre terminals, were immunoreactive for all studied subunits in stratum lucidum of the CA3 area. The postembedding immunogold method revealed that the AMPA type receptors are concentrated within the main body of the anatomically defined type 1 (asymmetrical) synaptic junction. Often only a part of the membrane specialization showed clustered immunoparticles. There was a sharp decrease in immunoreactive receptor density at the edge of the synaptic specialization. Immunolabelling was consistently demonstrated at extrasynaptic sites on dendrites, dendritic spines and somata. The results demonstrate that the GluRA, B/C and D subunits of the AMPA type glutamate receptor are present in many of the glutamatergic synapses formed by the entorhinal, CA3 pyramidal and mossy fibre terminals. Some interneurons have a higher density of AMPA type receptors in their asymmetrical afferent synapses than pyramidal cells. This may contribute to a lower activation threshold of interneurons as compared to principal cells by the same afferents in the hippocampal formation.

  10. Phospho-dependent binding of the clathrin AP2 adaptor complex to GABAA receptors regulates the efficacy of inhibitory synaptic transmission.

    Science.gov (United States)

    Kittler, Josef T; Chen, Guojun; Honing, Stephan; Bogdanov, Yury; McAinsh, Kristina; Arancibia-Carcamo, I Lorena; Jovanovic, Jasmina N; Pangalos, Menelas N; Haucke, Volker; Yan, Zhen; Moss, Stephen J

    2005-10-11

    The efficacy of synaptic inhibition depends on the number of gamma-aminobutyric acid type A receptors (GABA(A)Rs) expressed on the cell surface of neurons. The clathrin adaptor protein 2 (AP2) complex is a critical regulator of GABA(A)R endocytosis and, hence, surface receptor number. Here, we identify a previously uncharacterized atypical AP2 binding motif conserved within the intracellular domains of all GABA(A)R beta subunit isoforms. This AP2 binding motif (KTHLRRRSSQLK in the beta3 subunit) incorporates the major sites of serine phosphorylation within receptor beta subunits, and phosphorylation within this site inhibits AP2 binding. Furthermore, by using surface plasmon resonance, we establish that a peptide (pepbeta3) corresponding to the AP2 binding motif in the GABA(A)R beta3 subunit binds to AP2 with high affinity only when dephosphorylated. Moreover, the pepbeta3 peptide, but not its phosphorylated equivalent (pepbeta3-phos), enhanced the amplitude of miniature inhibitory synaptic current and whole cell GABA(A)R current. These effects of pepbeta3 on GABA(A)R current were occluded by inhibitors of dynamin-dependent endocytosis supporting an action of pepbeta3 on GABA(A)R endocytosis. Therefore phospho-dependent regulation of AP2 binding to GABA(A)Rs provides a mechanism to specify receptor cell surface number and the efficacy of inhibitory synaptic transmission.

  11. Spin fluctuation theory of itinerant electron magnetism

    CERN Document Server

    Takahashi, Yoshinori

    2013-01-01

    This volume shows how collective magnetic excitations determine most of  the magnetic properties of itinerant electron magnets. Previous theories were mainly restricted to the Curie-Weiss law temperature dependence of magnetic susceptibilities. Based on the spin amplitude conservation idea including the zero-point fluctuation amplitude, this book shows that the entire temperature and magnetic field dependence of magnetization curves, even in the ground state, is determined by the effect of spin fluctuations. It also shows that the theoretical consequences are largely in agreement with many experimental observations. The readers will therefore gain a new comprehensive perspective of their unified understanding of itinerant electron magnetism.

  12. Dopamine D1/D5, but not D2/D3, receptor dependency of synaptic plasticity at hippocampal mossy fiber synapses that is enabled by patterned afferent stimulation, or spatial learning

    Directory of Open Access Journals (Sweden)

    Hardy Hagena

    2016-09-01

    Full Text Available Although the mossy fiber (MF synapses of the hippocampal CA3 region display quite distinct properties in terms of the molecular mechanisms that underlie synaptic plasticity, they nonetheless exhibit persistent (>24h synaptic plasticity that is akin to that observed at the Schaffer collateral (SCH-CA1 and perforant path (PP-dentate gyrus (DG synapses of freely behaving rats. In addition, they also respond to novel spatial learning with very enduring forms of long-term potentiation (LTP and long-term depression (LTD. These latter forms of synaptic plasticity are directly related to the learning behavior: novel exploration of generalized changes in space facilitates the expression of LTP at MF-CA3 synapses, whereas exploration of novel configurations of large environmental features facilitates the expression of LTD. In the absence of spatial novelty, synaptic plasticity is not expressed. Motivation is a potent determinant of whether learning about spatial experience effectively occurs and the neuromodulator dopamine plays a key role in motivation-based learning. Prior research on the regulation by dopamine receptors of long-term synaptic plasticity in CA1 and dentate gyrus synapses in vivo suggests that whereas D2/D3 receptors may modulate a general predisposition toward expressing plasticity, D1/D5 receptors may directly regulate the direction of change in synaptic strength that occurs during learning. Although the CA3 region is believed to play a pivotal role in many forms of learning, the role of these receptors in persistent (>24h forms of synaptic plasticity at MF-CA3 synapses is unknown. Here, we report that whereas pharmacological antagonism of D2/D3 receptors had no impact on LTP or LTD, antagonism of D1/D5 receptors significantly impaired LTP and LTD that were induced by solely by means of patterned afferent stimulation, or LTP/LTD that are typically enhanced by the conjunction of afferent stimulation and novel spatial learning. These data

  13. Differential regulation of synaptic and extrasynaptic α4 GABA(A) receptor populations by protein kinase A and protein kinase C in cultured cortical neurons.

    Science.gov (United States)

    Bohnsack, John Peyton; Carlson, Stephen L; Morrow, A Leslie

    2016-06-01

    The GABAA α4 subunit exists in two distinct populations of GABAA receptors. Synaptic GABAA α4 receptors are localized at the synapse and mediate phasic inhibitory neurotransmission, while extrasynaptic GABAA receptors are located outside of the synapse and mediate tonic inhibitory transmission. These receptors have distinct pharmacological and biophysical properties that contribute to interest in how these different subtypes are regulated under physiological and pathological states. We utilized subcellular fractionation procedures to separate these populations of receptors in order to investigate their regulation by protein kinases in cortical cultured neurons. Protein kinase A (PKA) activation decreases synaptic α4 expression while protein kinase C (PKC) activation increases α4 subunit expression, and these effects are associated with increased β3 S408/409 or γ2 S327 phosphorylation respectively. In contrast, PKA activation increases extrasynaptic α4 and δ subunit expression, while PKC activation has no effect. Our findings suggest synaptic and extrasynaptic GABAA α4 subunit expression can be modulated by PKA to inform the development of more specific therapeutics for neurological diseases that involve deficits in GABAergic transmission. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Kalirin Binds the NR2B Subunit of the NMDA Receptor, Altering Its Synaptic Localization and Function

    KAUST Repository

    Kiraly, D. D.

    2011-08-31

    The ability of dendritic spines to change size and shape rapidly is critical in modulating synaptic strength; these morphological changes are dependent upon rearrangements of the actin cytoskeleton. Kalirin-7 (Kal7), a Rho guanine nucleotide exchange factor localized to the postsynaptic density (PSD), modulates dendritic spine morphology in vitro and in vivo. Kal7 activates Rac and interacts with several PSD proteins, including PSD-95, DISC-1, AF-6, and Arf6. Mice genetically lacking Kal7 (Kal7KO) exhibit deficient hippocampal long-term potentiation (LTP) as well as behavioral abnormalities in models of addiction and learning. Purified PSDs from Kal7KO mice contain diminished levels of NR2B, an NMDA receptor subunit that plays a critical role in LTP induction. Here we demonstrate that Kal7KO animals have decreased levels of NR2B-dependent NMDA receptor currents in cortical pyramidal neurons as well as a specific deficit in cell surface expression of NR2B. Additionally, we demonstrate that the genotypic differences in conditioned place preference and passive avoidance learning seen in Kal7KO mice are abrogated when animals are treated with an NR2B-specific antagonist during conditioning. Finally, we identify a stable interaction between the pleckstrin homology domain of Kal7 and the juxtamembrane region of NR2B preceding its cytosolic C-terminal domain. Binding of NR2B to a protein that modulates the actin cytoskeleton is important, as NMDA receptors require actin integrity for synaptic localization and function. These studies demonstrate a novel and functionally important interaction between the NR2B subunit of the NMDA receptor and Kalirin, proteins known to be essential for normal synaptic plasticity.

  15. Kalirin Binds the NR2B Subunit of the NMDA Receptor, Altering Its Synaptic Localization and Function

    KAUST Repository

    Kiraly, D. D.; Lemtiri-Chlieh, Fouad; Levine, E. S.; Mains, R. E.; Eipper, B. A.

    2011-01-01

    The ability of dendritic spines to change size and shape rapidly is critical in modulating synaptic strength; these morphological changes are dependent upon rearrangements of the actin cytoskeleton. Kalirin-7 (Kal7), a Rho guanine nucleotide exchange factor localized to the postsynaptic density (PSD), modulates dendritic spine morphology in vitro and in vivo. Kal7 activates Rac and interacts with several PSD proteins, including PSD-95, DISC-1, AF-6, and Arf6. Mice genetically lacking Kal7 (Kal7KO) exhibit deficient hippocampal long-term potentiation (LTP) as well as behavioral abnormalities in models of addiction and learning. Purified PSDs from Kal7KO mice contain diminished levels of NR2B, an NMDA receptor subunit that plays a critical role in LTP induction. Here we demonstrate that Kal7KO animals have decreased levels of NR2B-dependent NMDA receptor currents in cortical pyramidal neurons as well as a specific deficit in cell surface expression of NR2B. Additionally, we demonstrate that the genotypic differences in conditioned place preference and passive avoidance learning seen in Kal7KO mice are abrogated when animals are treated with an NR2B-specific antagonist during conditioning. Finally, we identify a stable interaction between the pleckstrin homology domain of Kal7 and the juxtamembrane region of NR2B preceding its cytosolic C-terminal domain. Binding of NR2B to a protein that modulates the actin cytoskeleton is important, as NMDA receptors require actin integrity for synaptic localization and function. These studies demonstrate a novel and functionally important interaction between the NR2B subunit of the NMDA receptor and Kalirin, proteins known to be essential for normal synaptic plasticity.

  16. Status Epilepticus Impairs Synaptic Plasticity in Rat Hippocampus and Is Followed by Changes in Expression of NMDA Receptors.

    Science.gov (United States)

    Postnikova, T Y; Zubareva, O E; Kovalenko, A A; Kim, K K; Magazanik, L G; Zaitsev, A V

    2017-03-01

    Cognitive deficits and memory loss are frequent in patients with temporal lobe epilepsy. Persistent changes in synaptic efficacy are considered as a cellular substrate underlying memory processes. Electrophysiological studies have shown that the properties of short-term and long-term synaptic plasticity in the cortex and hippocampus may undergo substantial changes after seizures. However, the neural mechanisms responsible for these changes are not clear. In this study, we investigated the properties of short-term and long-term synaptic plasticity in rat hippocampal slices 24 h after pentylenetetrazole (PTZ)-induced status epilepticus. We found that the induction of long-term potentiation (LTP) in CA1 pyramidal cells is reduced compared to the control, while short-term facilitation is increased. The experimental results do not support the hypothesis that status epilepticus leads to background potentiation of hippocampal synapses and further LTP induction becomes weaker due to occlusion, as the dependence of synaptic responses on the strength of input stimulation was not different in the control and experimental animals. The decrease in LTP can be caused by impairment of molecular mechanisms of neuronal plasticity, including those associated with NMDA receptors and/or changes in their subunit composition. Real-time PCR demonstrated significant increases in the expression of GluN1 and GluN2A subunits 3 h after PTZ-induced status epilepticus. The overexpression of obligate GluN1 subunit suggests an increase in the total number of NMDA receptors in the hippocampus. A 3-fold increase in the expression of the GluN2B subunit observed 24 h after PTZ-induced status epilepticus might be indicative of an increase in the proportion of GluN2B-containing NMDA receptors. Increased expression of the GluN2B subunit may be a cause for reducing the magnitude of LTP at hippocampal synapses after status epilepticus.

  17. Corticosterone rapidly increases thorns of CA3 neurons via synaptic/extranuclear glucocorticoid receptor in rat hippocampus

    Directory of Open Access Journals (Sweden)

    Miyuki eYoshiya

    2013-11-01

    Full Text Available Modulation of synapses under acute stress is attracting much attention. Exposure to acute stress induces corticosterone (CORT secretion from the adrenal cortex, resulting in rapid increase of CORT levels in plasma and the hippocampus. We tried to test whether rapid CORT effects involve activation of essential kinases as non-genomic processes.We demonstrated rapid effects (~ 1 h of CORT on the density of thorns, by imaging Lucifer Yellow-injected neurons in adult male rat hippocampal slices. Thorns of thorny excrescences of CA3 hippocampal neurons are post-synaptic regions whose presynaptic partners are mossy fiber terminals. The application of CORT at 100, 500 and 1000 nM induced a rapid increase in the density of thorns in the stratum lucidum of CA3 pyramidal neurons. Co-administration of RU486, an antagonist of glucocorticoid receptor (GR, abolished the effect of CORT. Blocking a single kinase, including MAPK, PKA or PKC, suppressed CORT-induced enhancement of thorn-genesis. On the other hand, GSK-3β was not involved in the signaling of thorn-genesis. Blocking AMPA receptors suppressed the CORT effect. Expression of CA3 synaptic/extranuclear GR was demonstrated by immunogold electron microscopic analysis. From these results, stress levels of CORT (100-1000 nM might drive the rapid thorn-genesis via synaptic/extranuclear GR and multiple kinase pathways, although a role of nuclear GRs cannot be completely excluded.

  18. Adenosine A2A receptors modulate the dopamine D2 receptor-mediated inhibition of synaptic transmission in the mouse prefrontal cortex.

    Science.gov (United States)

    Real, Joana I; Simões, Ana Patrícia; Cunha, Rodrigo A; Ferreira, Samira G; Rial, Daniel

    2018-05-01

    Prefrontal cortex (PFC) circuits are modulated by dopamine acting on D 1 - and D 2 -like receptors, which are pharmacologically exploited to manage neuropsychiatric conditions. Adenosine A 2A receptors (A 2 A R) also control PFC-related responses and A 2 A R antagonists are potential anti-psychotic drugs. As tight antagonistic A 2 A R-D 2 R and synergistic A 2 A R-D 1 R interactions occur in other brain regions, we now investigated the crosstalk between A 2 A R and D 1 /D 2 R controlling synaptic transmission between layers II/III and V in mouse PFC coronal slices. Dopamine decreased synaptic transmission, a presynaptic effect based on the parallel increase in paired-pulse responses. Dopamine inhibition was prevented by the D 2 R-like antagonist sulpiride but not by the D 1 R antagonist SCH23390 and was mimicked by the D 2 R agonist sumanirole, but not by the agonists of either D 4 R (A-412997) or D 3 R (PD128907). Dopamine inhibition was prevented by the A 2 A R antagonist, SCH58261, and attenuated in A 2 A R knockout mice. Accordingly, triple-labelling immunocytochemistry experiments revealed the co-localization of A 2 A R and D 2 R immunoreactivity in glutamatergic (vGluT1-positive) nerve terminals of the PFC. This reported positive A 2 A R-D 2 R interaction controlling PFC synaptic transmission provides a mechanistic justification for the anti-psychotic potential of A 2 A R antagonists. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. NMDA Receptor-Dependent Synaptic Activity in Dorsal Motor Nucleus of Vagus Mediates the Enhancement of Gastric Motility by Stimulating ST36

    Directory of Open Access Journals (Sweden)

    Xinyan Gao

    2012-01-01

    Full Text Available Previous studies have demonstrated the efficacy of electroacupuncture at ST36 for patients with gastrointestinal motility disorders. While several lines of evidence suggest that the effect may involve vagal reflex, the precise molecular mechanism underlying this process still remains unclear. Here we report that the intragastric pressure increase induced by low frequency electric stimulation at ST36 was blocked by AP-5, an antagonist of N-methyl-D-aspartate receptors (NMDARs. Indeed, stimulating ST36 enhanced NMDAR-mediated, but not 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-ylpropanoic-acid-(AMPA- receptor-(AMPAR- mediated synaptic transmission in gastric-projecting neurons of the dorsal motor nucleus of the vagus (DMV. We also identified that suppression of presynaptic μ-opioid receptors may contribute to upregulation of NMDAR-mediated synaptic transmission induced by electroacupuncture at ST36. Furthermore, we determined that the glutamate-receptor-2a-(NR2A- containing NMDARs are essential for NMDAR-mediated enhancement of gastric motility caused by stimulating ST36. Taken together, our results reveal an important role of NMDA receptors in mediating enhancement of gastric motility induced by stimulating ST36.

  20. Regulation of synaptic inhibition by phospho-dependent binding of the AP2 complex to a YECL motif in the GABAA receptor γ2 subunit

    Science.gov (United States)

    Kittler, Josef T.; Chen, Guojun; Kukhtina, Viktoria; Vahedi-Faridi, Ardeschir; Gu, Zhenglin; Tretter, Verena; Smith, Katharine R.; McAinsh, Kristina; Arancibia-Carcamo, I. Lorena; Saenger, Wolfram; Haucke, Volker; Yan, Zhen; Moss, Stephen J.

    2008-01-01

    The regulation of the number of γ2-subunit-containing GABAA receptors (GABAARs) present at synapses is critical for correct synaptic inhibition and animal behavior. This regulation occurs, in part, by the controlled removal of receptors from the membrane in clathrin-coated vesicles, but it remains unclear how clathrin recruitment to surface γ2-subunit-containing GABAARs is regulated. Here, we identify a γ2-subunit-specific Yxxφ-type-binding motif for the clathrin adaptor protein, AP2, which is located within a site for γ2-subunit tyrosine phosphorylation. Blocking GABAAR-AP2 interactions via this motif increases synaptic responses within minutes. Crystallographic and biochemical studies reveal that phosphorylation of the Yxxφ motif inhibits AP2 binding, leading to increased surface receptor number. In addition, the crystal structure provides an explanation for the high affinity of this motif for AP2 and suggests that γ2-subunit-containing heteromeric GABAARs may be internalized as dimers or multimers. These data define a mechanism for tyrosine kinase regulation of GABAAR surface levels and synaptic inhibition. PMID:18305175

  1. Regulation of hippocampal synaptic plasticity by the tyrosine kinase receptor, REK7/EphA5, and its ligand, AL-1/Ephrin-A5.

    Science.gov (United States)

    Gao, W Q; Shinsky, N; Armanini, M P; Moran, P; Zheng, J L; Mendoza-Ramirez, J L; Phillips, H S; Winslow, J W; Caras, I W

    1998-08-01

    The Eph-related tyrosine kinase receptor, REK7/EphA5, mediates the effects of AL-1/Ephrin-A5 and related ligands and is involved in the guidance of retinal, cortical, and hippocampal axons during development. The continued expression of REK7/EphA5 in the adult brain, in particular in areas associated with a high degree of synaptic plasticity such as the hippocampus, raises the question of its function in the mature nervous system. In this report we examined the role of REK7/EphA5 in synaptic remodeling by asking if agents that either block or activate REK7/EphA5 affect synaptic strength in hippocampal slices from adult mouse brain. We show that a REK7/EphA5 antagonist, soluble REK7/EphA5-IgG, impairs the induction of long-term potentiation (LTP) without affecting other synaptic parameters such as normal synaptic transmission or paired-pulse facilitation. In contrast, perfusion with AL-1/Ephrin-A5-IgG, an activator of REK7/EphA5, induces a sustained increase in normal synaptic transmission that partially mimics LTP. The sustained elevation of normal synaptic transmission could be attributable to a long-lasting binding of the AL-1/Ephrin-A5-IgG to the endogenous REK7/EphA5 receptor, as revealed by immunohistochemistry. Furthermore, maximal electrical induction of LTP occludes the potentiating effects of subsequent treatment with AL-1/Ephrin-A5-IgG. Taken together these results implicate REK7/EphA5 in the regulation of synaptic plasticity in the mature hippocampus and suggest that REK7/EphA5 activation is recruited in the LTP induced by tetanization. Copyright 1998 Academic Press.

  2. Anomalous transport in itinerant metamagnets with structural disorder

    International Nuclear Information System (INIS)

    Burkov, A.T.; Zyuzin, A.Yu.; Nakama, T.; Takaesu, Y.; Takeda, M.; Yagasaki, K.

    2007-01-01

    We report on low-temperature transport in magnetic conductors with structural disorder. The primary motivation for this work was large positive magnetoresistance (MR) found in magnetically ordered ground state of some itinerant metamagnetic alloys. The positive MR suggests that external magnetic field enhances static magnetic disorder δM->(r->)=M->(r->,T,H->)- (r->,T,H->)>, whereas standard approach assumes suppression of magnetic fluctuations by external magnetic field as a source of negative MR. We review the relevant experimental data, mostly the properties of RCo 2 -based alloys and discuss a phenomenological model developed for the interpretation of the experimental results. This model includes new mechanism of magnetoresistivity in structurally disordered itinerant metamagnetic alloys

  3. Two Classes of Secreted Synaptic Organizers in the Central Nervous System.

    Science.gov (United States)

    Yuzaki, Michisuke

    2018-02-10

    Research in the last two decades has identified many synaptic organizers in the central nervous system that directly regulate the assembly of pre- and/or postsynaptic molecules, such as synaptic vesicles, active zone proteins, and neurotransmitter receptors. They are classified into secreted factors and cell adhesion molecules, such as neurexins and neuroligins. Certain secreted factors are termed extracellular scaffolding proteins (ESPs) because they are components of the synaptic extracellular matrix and serve as a scaffold at the synaptic cleft. These include Lgi1, Cbln1, neuronal pentraxins, Hevin, thrombospondins, and glypicans. Diffusible secreted factors, such as Wnts, fibroblast growth factors, and semaphorins, tend to act from a distance. In contrast, ESPs remain at the synaptic cleft and often help synaptic adhesion and/or accumulation of postsynaptic receptors. Many fundamental questions remain about when, how, and why various synaptic organizers establish and modify the vast numbers of connections during development and throughout life.

  4. Defective Glycinergic Synaptic Transmission in Zebrafish Motility Mutants

    OpenAIRE

    Hirata, Hiromi; Carta, Eloisa; Yamanaka, Iori; Harvey, Robert J.; Kuwada, John Y.

    2010-01-01

    Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) β subunit genes. These mutants exhibit a loss of glycinergic synaptic ...

  5. Synaptic control of motoneuronal excitability

    DEFF Research Database (Denmark)

    Rekling, J C; Funk, G D; Bayliss, D A

    2000-01-01

    important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization......, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions...... and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K(+) current, cationic inward...

  6. Regulation of synaptic inhibition by phospho-dependent binding of the AP2 complex to a YECL motif in the GABAA receptor gamma2 subunit.

    Science.gov (United States)

    Kittler, Josef T; Chen, Guojun; Kukhtina, Viktoria; Vahedi-Faridi, Ardeschir; Gu, Zhenglin; Tretter, Verena; Smith, Katharine R; McAinsh, Kristina; Arancibia-Carcamo, I Lorena; Saenger, Wolfram; Haucke, Volker; Yan, Zhen; Moss, Stephen J

    2008-03-04

    The regulation of the number of gamma2-subunit-containing GABA(A) receptors (GABA(A)Rs) present at synapses is critical for correct synaptic inhibition and animal behavior. This regulation occurs, in part, by the controlled removal of receptors from the membrane in clathrin-coated vesicles, but it remains unclear how clathrin recruitment to surface gamma2-subunit-containing GABA(A)Rs is regulated. Here, we identify a gamma2-subunit-specific Yxxvarphi-type-binding motif for the clathrin adaptor protein, AP2, which is located within a site for gamma2-subunit tyrosine phosphorylation. Blocking GABA(A)R-AP2 interactions via this motif increases synaptic responses within minutes. Crystallographic and biochemical studies reveal that phosphorylation of the Yxxvarphi motif inhibits AP2 binding, leading to increased surface receptor number. In addition, the crystal structure provides an explanation for the high affinity of this motif for AP2 and suggests that gamma2-subunit-containing heteromeric GABA(A)Rs may be internalized as dimers or multimers. These data define a mechanism for tyrosine kinase regulation of GABA(A)R surface levels and synaptic inhibition.

  7. Itinerant ferromagnetism in an atomic Fermi gas: Influence of population imbalance

    International Nuclear Information System (INIS)

    Conduit, G. J.; Simons, B. D.

    2009-01-01

    We investigate ferromagnetic ordering in an itinerant ultracold atomic Fermi gas with repulsive interactions and population imbalance. In a spatially uniform system, we show that at zero temperature the transition to the itinerant magnetic phase transforms from first to second order with increasing population imbalance. Drawing on these results, we elucidate the phases present in a trapped geometry, finding three characteristic types of behavior with changing population imbalance. Finally, we outline the potential experimental implications of the findings.

  8. Synaptic plasticity in the medial vestibular nuclei: role of glutamate receptors and retrograde messengers in rat brainstem slices.

    Science.gov (United States)

    Grassi, S; Pettorossi, V E

    2001-08-01

    The analysis of cellular-molecular events mediating synaptic plasticity within vestibular nuclei is an attempt to explain the mechanisms underlying vestibular plasticity phenomena. The present review is meant to illustrate the main results, obtained in vitro, on the mechanisms underlying long-term changes in synaptic strength within the medial vestibular nuclei. The synaptic plasticity phenomena taking place at the level of vestibular nuclei could be useful for adapting and consolidating the efficacy of vestibular neuron responsiveness to environmental requirements, as during visuo-vestibular recalibration and vestibular compensation. Following a general introduction on the most salient features of vestibular compensation and visuo-vestibular adaptation, which are two plastic events involving neuronal circuitry within the medial vestibular nuclei, the second and third sections describe the results from rat brainstem slice studies, demonstrating the possibility to induce long-term potentiation and depression in the medial vestibular nuclei, following high frequency stimulation of the primary vestibular afferents. In particular the mechanisms sustaining the induction and expression of vestibular long-term potentiation and depression, such as the role of various glutamate receptors and retrograde messengers have been described. The relevant role of the interaction between the platelet-activating factor, acting as a retrograde messenger, and the presynaptic metabotropic glutamate receptors, in determining the full expression of vestibular long-term potentiation is also underlined. In addition, the mechanisms involved in vestibular long-term potentiation have been compared with those leading to long-term potentiation in the hippocampus to emphasize the most significant differences emerging from vestibular studies. The fourth part, describes recent results demonstrating the essential role of nitric oxide, another retrograde messenger, in the induction of vestibular

  9. Synaptic Changes in AMPA Receptor Subunit Expression in Cortical Parvalbumin Interneurons in the Stargazer Model of Absence Epilepsy

    Directory of Open Access Journals (Sweden)

    Nadia K. Adotevi

    2017-12-01

    Full Text Available Feedforward inhibition is essential to prevent run away excitation within the brain. Recent evidence suggests that a loss of feed-forward inhibition in the corticothalamocortical circuitry may underlie some absence seizures. However, it is unclear if this aberration is specifically linked to loss of synaptic excitation onto local fast-spiking parvalbumin-containing (PV+ inhibitory interneurons, which are responsible for mediating feedforward inhibition within cortical networks. We recently reported a global tissue loss of AMPA receptors (AMPARs, and a specific mistrafficking of these AMPARs in PV+ interneurons in the stargazer somatosensory cortex. The current study was aimed at investigating if cellular changes in AMPAR expression were translated into deficits in receptors at specific synapses in the feedforward inhibitory microcircuit. Using western blot immunolabeling on biochemically isolated synaptic fractions, we demonstrate a loss of AMPAR GluA1–4 subunits in the somatosensory cortex of stargazers compared to non-epileptic control mice. Furthermore, using double post-embedding immunogold-cytochemistry, we show a loss of GluA1–4-AMPARs at excitatory synapses onto cortical PV+ interneurons. Altogether, these data indicate a loss of synaptic AMPAR-mediated excitation of cortical PV+ inhibitory neurons. As the cortex is considered the site of initiation of spike wave discharges (SWDs within the corticothalamocortical circuitry, loss of AMPARs at cortical PV+ interneurons likely impairs feed-forward inhibitory output, and contributes to the generation of SWDs and absence seizures in stargazers.

  10. Paramagnetic form factors from itinerant electron theory

    International Nuclear Information System (INIS)

    Cooke, J.F.; Liu, S.H.; Liu, A.J.

    1985-01-01

    Elastic neutron scattering experiments performed over the past two decades have provided accurate information about the magnetic form factors of paramagnetic transition metals. These measurements have traditionally been analyzed in terms of an atomic-like theory. There are, however, some cases where this procedure does not work, and there remains the overall conceptual problem of using an atomistic theory for systems where the unpaired-spin electrons are itinerant. We have recently developed computer codes for efficiently evaluating the induced magnetic form factors of fcc and bcc itinerant electron paramagnets. Results for the orbital and spin contributions have been obtained for Cr, Nb, V, Mo, Pd, and Rh based on local density bands. By using calculated spin enhancement parameters, we find reasonable agreement between theory and neutron form factor data. In addition, these zero parameter calculations yield predictions for the bulk susceptibility on an absolute scale which are in reasonable agreement with experiment in all treated cases except palladium

  11. Dbo/Henji Modulates Synaptic dPAK to Gate Glutamate Receptor Abundance and Postsynaptic Response.

    Science.gov (United States)

    Wang, Manyu; Chen, Pei-Yi; Wang, Chien-Hsiang; Lai, Tzu-Ting; Tsai, Pei-I; Cheng, Ying-Ju; Kao, Hsiu-Hua; Chien, Cheng-Ting

    2016-10-01

    In response to environmental and physiological changes, the synapse manifests plasticity while simultaneously maintains homeostasis. Here, we analyzed mutant synapses of henji, also known as dbo, at the Drosophila neuromuscular junction (NMJ). In henji mutants, NMJ growth is defective with appearance of satellite boutons. Transmission electron microscopy analysis indicates that the synaptic membrane region is expanded. The postsynaptic density (PSD) houses glutamate receptors GluRIIA and GluRIIB, which have distinct transmission properties. In henji mutants, GluRIIA abundance is upregulated but that of GluRIIB is not. Electrophysiological results also support a GluR compositional shift towards a higher IIA/IIB ratio at henji NMJs. Strikingly, dPAK, a positive regulator for GluRIIA synaptic localization, accumulates at the henji PSD. Reducing the dpak gene dosage suppresses satellite boutons and GluRIIA accumulation at henji NMJs. In addition, dPAK associated with Henji through the Kelch repeats which is the domain essential for Henji localization and function at postsynapses. We propose that Henji acts at postsynapses to restrict both presynaptic bouton growth and postsynaptic GluRIIA abundance by modulating dPAK.

  12. Isolation of Synaptosomes, Synaptic Plasma Membranes, and Synaptic Junctional Complexes.

    Science.gov (United States)

    Michaelis, Mary L; Jiang, Lei; Michaelis, Elias K

    2017-01-01

    Isolation of synaptic nerve terminals or synaptosomes provides an opportunity to study the process of neurotransmission at many levels and with a variety of approaches. For example, structural features of the synaptic terminals and the organelles within them, such as synaptic vesicles and mitochondria, have been elucidated with electron microscopy. The postsynaptic membranes are joined to the presynaptic "active zone" of transmitter release through cell adhesion molecules and remain attached throughout the isolation of synaptosomes. These "post synaptic densities" or "PSDs" contain the receptors for the transmitters released from the nerve terminals and can easily be seen with electron microscopy. Biochemical and cell biological studies with synaptosomes have revealed which proteins and lipids are most actively involved in synaptic release of neurotransmitters. The functional properties of the nerve terminals, such as responses to depolarization and the uptake or release of signaling molecules, have also been characterized through the use of fluorescent dyes, tagged transmitters, and transporter substrates. In addition, isolated synaptosomes can serve as the starting material for the isolation of relatively pure synaptic plasma membranes (SPMs) that are devoid of organelles from the internal environment of the nerve terminal, such as mitochondria and synaptic vesicles. The isolated SPMs can reseal and form vesicular structures in which transport of ions such as sodium and calcium, as well as solutes such as neurotransmitters can be studied. The PSDs also remain associated with the presynaptic membranes during isolation of SPM fractions, making it possible to isolate the synaptic junctional complexes (SJCs) devoid of the rest of the plasma membranes of the nerve terminals and postsynaptic membrane components. Isolated SJCs can be used to identify the proteins that constitute this highly specialized region of neurons. In this chapter, we describe the steps involved

  13. Phospho-dependent binding of the clathrin AP2 adaptor complex to GABAA receptors regulates the efficacy of inhibitory synaptic transmission

    OpenAIRE

    Kittler, Josef T.; Chen, Guojun; Honing, Stephan; Bogdanov, Yury; McAinsh, Kristina; Arancibia-Carcamo, I. Lorena; Jovanovic, Jasmina N.; Pangalos, Menelas N.; Haucke, Volker; Yan, Zhen; Moss, Stephen J.

    2005-01-01

    The efficacy of synaptic inhibition depends on the number of γ-aminobutyric acid type A receptors (GABAARs) expressed on the cell surface of neurons. The clathrin adaptor protein 2 (AP2) complex is a critical regulator of GABAAR endocytosis and, hence, surface receptor number. Here, we identify a previously uncharacterized atypical AP2 binding motif conserved within the intracellular domains of all GABAAR β subunit isoforms. This AP2 binding motif (KTHLRRRSSQLK in the β3 subunit) incorporates...

  14. Effects of Rashba and Dresselhaus spin-orbit couplings on itinerant ferromagnetism

    Science.gov (United States)

    Liu, Mengnan; Xu, Liping; Wan, Yong; Yan, Xu

    2018-02-01

    Based on Stoner model for itinerant ferromagnet, effects of spin-orbit coupling (SOC) on ferromagnetism were investigated at zero temperature. It was found that SOC will enhance the critical ferromagnetic exchange interaction for spontaneous magnetization, and then suppress ferromagnetism. In case of the coexistence of Rashba and Dresselhaus SOCs, the mixture of the two spin-orbit couplings showed stronger suppressed effect on ferromagnetism than only one kind of SOC alone. When the two SOCs mixed with equal magnitude, ferromagnetism in itinerant ferromagnet was suppressed to minimum.

  15. Methamphetamine reduces LTP and increases baseline synaptic transmission in the CA1 region of mouse hippocampus.

    Directory of Open Access Journals (Sweden)

    Jarod Swant

    2010-06-01

    Full Text Available Methamphetamine (METH is an addictive psychostimulant whose societal impact is on the rise. Emerging evidence suggests that psychostimulants alter synaptic plasticity in the brain--which may partly account for their adverse effects. While it is known that METH increases the extracellular concentration of monoamines dopamine, serotonin, and norepinephrine, it is not clear how METH alters glutamatergic transmission. Within this context, the aim of the present study was to investigate the effects of acute and systemic METH on basal synaptic transmission and long-term potentiation (LTP; an activity-induced increase in synaptic efficacy in CA1 sub-field in the hippocampus. Both the acute ex vivo application of METH to hippocampal slices and systemic administration of METH decreased LTP. Interestingly, the acute ex vivo application of METH at a concentration of 30 or 60 microM increased baseline synaptic transmission as well as decreased LTP. Pretreatment with eticlopride (D2-like receptor antagonist did not alter the effects of METH on synaptic transmission or LTP. In contrast, pretreatment with D1/D5 dopamine receptor antagonist SCH23390 or 5-HT1A receptor antagonist NAN-190 abrogated the effect of METH on synaptic transmission. Furthermore, METH did not increase baseline synaptic transmission in D1 dopamine receptor haploinsufficient mice. Our findings suggest that METH affects excitatory synaptic transmission via activation of dopamine and serotonin receptor systems in the hippocampus. This modulation may contribute to synaptic maladaption induced by METH addiction and/or METH-mediated cognitive dysfunction.

  16. Large variability in synaptic N-methyl-D-aspartate receptor density on interneurons and a comparison with pyramidal-cell spines in the rat hippocampus.

    Science.gov (United States)

    Nyíri, G; Stephenson, F A; Freund, T F; Somogyi, P

    2003-01-01

    Pyramidal cells receive input from several types of GABA-releasing interneurons and innervate them reciprocally. Glutamatergic activation of interneurons involves both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) type glutamate receptors expressed in type I synapses, mostly on their dendritic shafts. On average, the synaptic AMPA receptor content is several times higher on interneurons than in the spines of pyramidal cells. To compare the NMDA receptor content of synapses, we used a quantitative postembedding immunogold technique on serial electron microscopic sections, and analysed the synapses on interneuron dendrites and pyramidal cell spines in the CA1 area. Because all NMDA receptors contain the obligatory NR1 subunit, receptor localisation was carried out using antibodies recognising all splice variants of the NR1 subunit. Four populations of synapse were examined: i). on spines of pyramidal cells in stratum (str.) radiatum and str. oriens; ii). on parvalbumin-positive interneuronal dendritic shafts in str. radiatum; iii). on randomly found dendritic shafts in str. oriens and iv). on somatostatin-positive interneuronal dendritic shafts and somata in str. oriens. On average, the size of the synapses on spines was about half of those on interneurons. The four populations of synapse significantly differed in labelling for the NR1 subunit. The median density of NR1 subunit labelling was highest on pyramidal cell spines. It was lowest in the synapses on parvalbumin-positive dendrites in str. radiatum, where more than half of these synapses were immunonegative. In str. oriens, synapses on interneurons had a high variability of receptor content; some dendrites were similar to those in str. radiatum, including the proximal synapses of somatostatin-positive cells, whereas others had immunoreactivity for the NR1 subunit similar to or higher than synapses on pyramidal cell spines. These results show that synaptic NMDA

  17. A challenge to chaotic itinerancy from brain dynamics

    Science.gov (United States)

    Kay, Leslie M.

    2003-09-01

    Brain hermeneutics and chaotic itinerancy proposed by Tsuda are attractive characterizations of perceptual dynamics in the mammalian olfactory system. This theory proposes that perception occurs at the interface between itinerant neural representation and interaction with the environment. Quantifiable application of these dynamics has been hampered by the lack of definable history and action processes which characterize the changes induced by behavioral state, attention, and learning. Local field potentials measured from several brain areas were used to characterize dynamic activity patterns for their use as representations of history and action processes. The signals were recorded from olfactory areas (olfactory bulb, OB, and pyriform cortex) and hippocampal areas (entorhinal cortex and dentate gyrus, DG) in the brains of rats. During odor-guided behavior the system shows dynamics at three temporal scales. Short time-scale changes are system-wide and can occur in the space of a single sniff. They are predictable, associated with learned shifts in behavioral state and occur periodically on the scale of the intertrial interval. These changes occupy the theta (2-12 Hz), beta (15-30 Hz), and gamma (40-100 Hz) frequency bands within and between all areas. Medium time-scale changes occur relatively unpredictably, manifesting in these data as alterations in connection strength between the OB and DG. These changes are strongly correlated with performance in associated trial blocks (5-10 min) and may be due to fluctuations in attention, mood, or amount of reward received. Long time-scale changes are likely related to learning or decline due to aging or disease. These may be modeled as slow monotonic processes that occur within or across days or even weeks or years. The folding of different time scales is proposed as a mechanism for chaotic itinerancy, represented by dynamic processes instead of static connection strengths. Thus, the individual maintains continuity of

  18. A role for calcium-permeable AMPA receptors in synaptic plasticity and learning.

    Directory of Open Access Journals (Sweden)

    Brian J Wiltgen

    2010-09-01

    Full Text Available A central concept in the field of learning and memory is that NMDARs are essential for synaptic plasticity and memory formation. Surprisingly then, multiple studies have found that behavioral experience can reduce or eliminate the contribution of these receptors to learning. The cellular mechanisms that mediate learning in the absence of NMDAR activation are currently unknown. To address this issue, we examined the contribution of Ca(2+-permeable AMPARs to learning and plasticity in the hippocampus. Mutant mice were engineered with a conditional genetic deletion of GluR2 in the CA1 region of the hippocampus (GluR2-cKO mice. Electrophysiology experiments in these animals revealed a novel form of long-term potentiation (LTP that was independent of NMDARs and mediated by GluR2-lacking Ca(2+-permeable AMPARs. Behavioral analyses found that GluR2-cKO mice were impaired on multiple hippocampus-dependent learning tasks that required NMDAR activation. This suggests that AMPAR-mediated LTP interferes with NMDAR-dependent plasticity. In contrast, NMDAR-independent learning was normal in knockout mice and required the activation of Ca(2+-permeable AMPARs. These results suggest that GluR2-lacking AMPARs play a functional and previously unidentified role in learning; they appear to mediate changes in synaptic strength that occur after plasticity has been established by NMDARs.

  19. A pivotal role of GSK-3 in synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Clarrisa A Bradley

    2012-02-01

    Full Text Available Glycogen synthase kinase-3 (GSK-3 has many cellular functions. Recent evidence suggests that it plays a key role in certain types of synaptic plasticity, in particular a form of long-term depression (LTD that is induced by the synaptic activation of N-methyl-D-aspartate (NMDA receptors. In the present article we summarise what is currently known concerning the roles of GSK-3 in synaptic plasticity at both glutamatergic and GABAergic synapses. We summarise its role in cognition and speculate on how alterations in the synaptic functioning of GSK-3 may be a major factor in certain neurodegenerative disorders.

  20. Electrophysical properties, synaptic transmission and neuromodulation in serotonergic caudal raphe neurons.

    Science.gov (United States)

    Li, Y W; Bayliss, D A

    1998-06-01

    1. We studied electrophysiological properties, synaptic transmission and modulation by 5-hydroxytryptamine (5-HT) of caudal raphe neurons using whole-cell recording in a neonatal rat brain slice preparation; recorded neurons were identified as serotonergic by post-hoc immunohistochemical detection of tryptophan hydroxylase, the 5-HT-synthesizing enzyme. 2. Serotonergic neurons fired spontaneously (approximately 1 Hz), with maximal steady state firing rates of < 4 Hz. 5-Hydroxytryptamine caused hyperpolarization and cessation of spike activity in these neurons by activating inwardly rectifying K+ conductance via somatodendritic 5-HT1A receptors. 3. Unitary glutamatergic excitatory post-synaptic potentials (EPSP) and currents (EPSC) were evoked in serotonergic neurons by local electrical stimulation. Evoked EPSC were potently inhibited by 5-HT, an effect mediated by presynaptic 5-HT1B receptors. 4. In conclusion, serotonergic caudal raphe neurons are spontaneously active in vitro; they receive prominent glutamatergic synaptic inputs. 5-Hydroxytryptamine regulates serotonergic neuronal activity of the caudal raphe by decreasing spontaneous activity via somatodendritic 5-HT1A receptors and by inhibiting excitatory synaptic transmission onto these neurons via presynaptic 5-HT1B receptors. These local modulatory mechanisms provide multiple levels of feedback autoregulation of serotonergic raphe neurons by 5-HT.

  1. Dbo/Henji Modulates Synaptic dPAK to Gate Glutamate Receptor Abundance and Postsynaptic Response.

    Directory of Open Access Journals (Sweden)

    Manyu Wang

    2016-10-01

    Full Text Available In response to environmental and physiological changes, the synapse manifests plasticity while simultaneously maintains homeostasis. Here, we analyzed mutant synapses of henji, also known as dbo, at the Drosophila neuromuscular junction (NMJ. In henji mutants, NMJ growth is defective with appearance of satellite boutons. Transmission electron microscopy analysis indicates that the synaptic membrane region is expanded. The postsynaptic density (PSD houses glutamate receptors GluRIIA and GluRIIB, which have distinct transmission properties. In henji mutants, GluRIIA abundance is upregulated but that of GluRIIB is not. Electrophysiological results also support a GluR compositional shift towards a higher IIA/IIB ratio at henji NMJs. Strikingly, dPAK, a positive regulator for GluRIIA synaptic localization, accumulates at the henji PSD. Reducing the dpak gene dosage suppresses satellite boutons and GluRIIA accumulation at henji NMJs. In addition, dPAK associated with Henji through the Kelch repeats which is the domain essential for Henji localization and function at postsynapses. We propose that Henji acts at postsynapses to restrict both presynaptic bouton growth and postsynaptic GluRIIA abundance by modulating dPAK.

  2. Acutely increasing δGABAA receptor activity impairs memory and inhibits synaptic plasticity in the hippocampus

    Directory of Open Access Journals (Sweden)

    Paul David Whissell

    2013-09-01

    Full Text Available Extrasynaptic γ-aminobutyric acid type A (GABAA receptors that contain the δ subunit (δGABAA receptors are expressed in several brain regions including the dentate gyrus (DG and CA1 subfields of the hippocampus. Drugs that increase δGABAA receptor activity have been proposed as treatments for a variety of disorders including insomnia, epilepsy and chronic pain. Also, long-term pretreatment with the δGABAA receptor–preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP enhances discrimination memory and increases neurogenesis in the DG. Despite the potential therapeutic benefits of such treatments, the effects of acutely increasing δGABAA receptor activity on memory behaviors remain unknown. Here, we studied the effects of THIP (4 mg/kg, i.p. on memory performance in wild-type (WT and δGABAA receptor null mutant (Gabrd–/– mice. Additionally, the effects of THIP on long-term potentiation (LTP, a molecular correlate of memory, were studied within the DG and CA1 subfields of the hippocampus using electrophysiological recordings of field potentials in hippocampal slices. The results showed that THIP impaired performance in the Morris water maze, contextual fear conditioning and object recognition tasks in WT mice but not Gabrd–/– mice. Furthermore, THIP inhibited LTP in hippocampal slices from WT but not Gabrd–/– mice, an effect that was blocked by GABAA receptor antagonist bicuculline. Thus, acutely increasing δGABAA receptor activity impairs memory behaviors and inhibits synaptic plasticity. These results have important implications for the development of therapies aimed at increasing δGABAA receptor activity.

  3. Acutely increasing δGABAA receptor activity impairs memory and inhibits synaptic plasticity in the hippocampus

    Science.gov (United States)

    Whissell, Paul D.; Eng, Dave; Lecker, Irene; Martin, Loren J.; Wang, Dian-Shi; Orser, Beverley A.

    2013-01-01

    Extrasynaptic γ-aminobutyric acid type A (GABAA) receptors that contain the δ subunit (δGABAA receptors) are expressed in several brain regions including the dentate gyrus (DG) and CA1 subfields of the hippocampus. Drugs that increase δGABAA receptor activity have been proposed as treatments for a variety of disorders including insomnia, epilepsy and chronic pain. Also, long-term pretreatment with the δGABAA receptor–preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) enhances discrimination memory and increases neurogenesis in the DG. Despite the potential therapeutic benefits of such treatments, the effects of acutely increasing δGABAA receptor activity on memory behaviors remain unknown. Here, we studied the effects of THIP (4 mg/kg, i.p.) on memory performance in wild-type (WT) and δGABAA receptor null mutant (Gabrd−/−) mice. Additionally, the effects of THIP on long-term potentiation (LTP), a molecular correlate of memory, were studied within the DG and CA1 subfields of the hippocampus using electrophysiological recordings of field potentials in hippocampal slices. The results showed that THIP impaired performance in the Morris water maze, contextual fear conditioning and object recognition tasks in WT mice but not Gabrd−/− mice. Furthermore, THIP inhibited LTP in hippocampal slices from WT but not Gabrd−/− mice, an effect that was blocked by GABAA receptor antagonist bicuculline. Thus, acutely increasing δGABAA receptor activity impairs memory behaviors and inhibits synaptic plasticity. These results have important implications for the development of therapies aimed at increasing δGABAA receptor activity. PMID:24062648

  4. Temperature dependent dynamic susceptibility calculations for itinerant ferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, J. F.

    1980-10-01

    Inelastic neutron scattering experiments have revealed a variety of interesting and unusual phenomena associated with the spin dynamics of the 3-d transition metal ferromagnets nickel and iron. An extensive series of calculations based on the itinerant electron formalism has demonstrated that the itinerant model does provide an excellent quantitative as well as qualitative description of the measured spin dynamics of both nickel and iron at low temperatures. Recent angular photo emission experiments have indicated that there is a rather strong temperature dependence of the electronic spin-splitting which, from relatively crude arguments, appears to be inconsistent with neutron scattering results. In order to investigate this point and also the origin of spin-wave renormalization, a series of calculations of the dynamic susceptibility of nickel and iron has been undertaken. The results of these calculations indicate that a discrepancy exists between the interpretations of neutron and photoemission experimental results regarding the temperature dependence of the spin-splitting of the electronic energy bands.

  5. Itinerant density instability at classical and quantum critical points

    Science.gov (United States)

    Feng, Yejun; van Wezel, Jasper; Flicker, Felix; Wang, Jiyang; Silevitch, D. M.; Littlewood, P. B.; Rosenbaum, T. F.

    2015-03-01

    Itinerant density waves are model systems for studying quantum critical behavior. In both the model spin- and charge-density-wave systems Cr and NbSe2, it is possible to drive a continuous quantum phase transition with critical pressures below 10 GPa. Using x-ray diffraction techniques, we are able to directly track the evolution of the ordering wave vector Q across the pressure-temperature phase diagram. We find a non-monotonic dependence of Q on pressure. Using a Landau-Ginsburg theoretical framework developed by McMillan for CDWs, we evaluate the importance of the physical terms in driving the formation of ordered states at both the thermal and quantum phase transitions. We find that the itinerant instability is the deciding factor for the emergent order, which is further influenced by the critical fluctuations in both the thermal and quantum limits.

  6. Effects of metabotropic glutamate receptor block on the synaptic transmission and plasticity in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Malfagia, C; Pettorossi, V E

    1998-11-01

    In rat brainstem slices, we investigated the possible role of metabotropic glutamate receptors in modulating the synaptic transmission within the medial vestibular nuclei, under basal and plasticity inducing conditions. We analysed the effect of the metabotropic glutamate receptor antagonist (R,S)-alpha-methyl-4-carboxyphenylglycine on the amplitude of the field potentials and latency of unitary potentials evoked in the ventral portion of the medial vestibular nuclei by primary vestibular afferent stimulation, and on the induction and maintenance of long-term potentiation, after high-frequency stimulation. Two effects were observed, consisting of a slight increase of the field potentials and reduction of unit latency during the drug infusion, and a further long-lasting development of these modifications after the drug wash-out. The long-term effect depended on N-methyl-D-aspartate receptor activation, as D,L-2-amino-5-phosphonopentanoic acid prevented its development. We suggest that (R,S)-alpha-methyl-4carboxyphenylglycine enhances the vestibular responses and induces N-methyl-D-aspartate-dependent long-term potentiation by increasing glutamate release, through the block of presynaptic metabotropic glutamate receptors which actively inhibit it. The block of these receptors was indirectly supported by the fact that the agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid reduced the vestibular responses and blocked the induction of long-term potentiation by high-frequency stimulation. The simultaneous block of metabotropic glutamate receptors facilitating synaptic plasticity, impedes the full expression of the long-term effect throughout the (R,S)-alpha-methyl-4-carboxyphenylglycine infusion. The involvement of such a facilitatory mechanism in the potentiation is supported by its reversible reduction following a second (R,S)-alpha-methyl-4-carboxyphenylglycine infusion. The drug also reduced the expression of potentiation induced by high-frequency stimulation

  7. Structure and function of the amygdaloid NPY system: NPY Y2 receptors regulate excitatory and inhibitory synaptic transmission in the centromedial amygdala.

    Science.gov (United States)

    Wood, J; Verma, D; Lach, G; Bonaventure, P; Herzog, H; Sperk, G; Tasan, R O

    2016-09-01

    The amygdala is essential for generating emotional-affective behaviors. It consists of several nuclei with highly selective, elaborate functions. In particular, the central extended amygdala, consisting of the central amygdala (CEA) and the bed nucleus of the stria terminalis (BNST) is an essential component actively controlling efferent connections to downstream effectors like hypothalamus and brain stem. Both, CEA and BNST contain high amounts of different neuropeptides that significantly contribute to synaptic transmission. Among these, neuropeptide Y (NPY) has emerged as an important anxiolytic and fear-reducing neuromodulator. Here, we characterized the expression, connectivity and electrophysiological function of NPY and Y2 receptors within the CEA. We identified several NPY-expressing neuronal populations, including somatostatin- and calretinin-expressing neurons. Furthermore, in the main intercalated nucleus, NPY is expressed primarily in dopamine D1 receptor-expressing neurons but also in interspersed somatostatin-expressing neurons. Interestingly, NPY neurons did not co-localize with the Y2 receptor. Retrograde tract tracing experiments revealed that NPY neurons reciprocally connect the CEA and BNST. Functionally, the Y2 receptor agonist PYY3-36, reduced both, inhibitory as well as excitatory synaptic transmission in the centromedial amygdala (CEm). However, we also provide evidence that lack of NPY or Y2 receptors results in increased GABA release specifically at inhibitory synapses in the CEm. Taken together, our findings suggest that NPY expressed by distinct populations of neurons can modulate afferent and efferent projections of the CEA via presynaptic Y2 receptors located at inhibitory and excitatory synapses.

  8. Synaptic neurotransmission depression in ventral tegmental dopamine neurons and cannabinoid-associated addictive learning.

    Science.gov (United States)

    Liu, Zhiqiang; Han, Jing; Jia, Lintao; Maillet, Jean-Christian; Bai, Guang; Xu, Lin; Jia, Zhengping; Zheng, Qiaohua; Zhang, Wandong; Monette, Robert; Merali, Zul; Zhu, Zhou; Wang, Wei; Ren, Wei; Zhang, Xia

    2010-12-20

    Drug addiction is an association of compulsive drug use with long-term associative learning/memory. Multiple forms of learning/memory are primarily subserved by activity- or experience-dependent synaptic long-term potentiation (LTP) and long-term depression (LTD). Recent studies suggest LTP expression in locally activated glutamate synapses onto dopamine neurons (local Glu-DA synapses) of the midbrain ventral tegmental area (VTA) following a single or chronic exposure to many drugs of abuse, whereas a single exposure to cannabinoid did not significantly affect synaptic plasticity at these synapses. It is unknown whether chronic exposure of cannabis (marijuana or cannabinoids), the most commonly used illicit drug worldwide, induce LTP or LTD at these synapses. More importantly, whether such alterations in VTA synaptic plasticity causatively contribute to drug addictive behavior has not previously been addressed. Here we show in rats that chronic cannabinoid exposure activates VTA cannabinoid CB1 receptors to induce transient neurotransmission depression at VTA local Glu-DA synapses through activation of NMDA receptors and subsequent endocytosis of AMPA receptor GluR2 subunits. A GluR2-derived peptide blocks cannabinoid-induced VTA synaptic depression and conditioned place preference, i.e., learning to associate drug exposure with environmental cues. These data not only provide the first evidence, to our knowledge, that NMDA receptor-dependent synaptic depression at VTA dopamine circuitry requires GluR2 endocytosis, but also suggest an essential contribution of such synaptic depression to cannabinoid-associated addictive learning, in addition to pointing to novel pharmacological strategies for the treatment of cannabis addiction.

  9. Synaptic neurotransmission depression in ventral tegmental dopamine neurons and cannabinoid-associated addictive learning.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Liu

    2010-12-01

    Full Text Available Drug addiction is an association of compulsive drug use with long-term associative learning/memory. Multiple forms of learning/memory are primarily subserved by activity- or experience-dependent synaptic long-term potentiation (LTP and long-term depression (LTD. Recent studies suggest LTP expression in locally activated glutamate synapses onto dopamine neurons (local Glu-DA synapses of the midbrain ventral tegmental area (VTA following a single or chronic exposure to many drugs of abuse, whereas a single exposure to cannabinoid did not significantly affect synaptic plasticity at these synapses. It is unknown whether chronic exposure of cannabis (marijuana or cannabinoids, the most commonly used illicit drug worldwide, induce LTP or LTD at these synapses. More importantly, whether such alterations in VTA synaptic plasticity causatively contribute to drug addictive behavior has not previously been addressed. Here we show in rats that chronic cannabinoid exposure activates VTA cannabinoid CB1 receptors to induce transient neurotransmission depression at VTA local Glu-DA synapses through activation of NMDA receptors and subsequent endocytosis of AMPA receptor GluR2 subunits. A GluR2-derived peptide blocks cannabinoid-induced VTA synaptic depression and conditioned place preference, i.e., learning to associate drug exposure with environmental cues. These data not only provide the first evidence, to our knowledge, that NMDA receptor-dependent synaptic depression at VTA dopamine circuitry requires GluR2 endocytosis, but also suggest an essential contribution of such synaptic depression to cannabinoid-associated addictive learning, in addition to pointing to novel pharmacological strategies for the treatment of cannabis addiction.

  10. Synaptic Neurotransmission Depression in Ventral Tegmental Dopamine Neurons and Cannabinoid-Associated Addictive Learning

    Science.gov (United States)

    Liu, Zhiqiang; Han, Jing; Jia, Lintao; Maillet, Jean-Christian; Bai, Guang; Xu, Lin; Jia, Zhengping; Zheng, Qiaohua; Zhang, Wandong; Monette, Robert; Merali, Zul; Zhu, Zhou; Wang, Wei; Ren, Wei; Zhang, Xia

    2010-01-01

    Drug addiction is an association of compulsive drug use with long-term associative learning/memory. Multiple forms of learning/memory are primarily subserved by activity- or experience-dependent synaptic long-term potentiation (LTP) and long-term depression (LTD). Recent studies suggest LTP expression in locally activated glutamate synapses onto dopamine neurons (local Glu-DA synapses) of the midbrain ventral tegmental area (VTA) following a single or chronic exposure to many drugs of abuse, whereas a single exposure to cannabinoid did not significantly affect synaptic plasticity at these synapses. It is unknown whether chronic exposure of cannabis (marijuana or cannabinoids), the most commonly used illicit drug worldwide, induce LTP or LTD at these synapses. More importantly, whether such alterations in VTA synaptic plasticity causatively contribute to drug addictive behavior has not previously been addressed. Here we show in rats that chronic cannabinoid exposure activates VTA cannabinoid CB1 receptors to induce transient neurotransmission depression at VTA local Glu-DA synapses through activation of NMDA receptors and subsequent endocytosis of AMPA receptor GluR2 subunits. A GluR2-derived peptide blocks cannabinoid-induced VTA synaptic depression and conditioned place preference, i.e., learning to associate drug exposure with environmental cues. These data not only provide the first evidence, to our knowledge, that NMDA receptor-dependent synaptic depression at VTA dopamine circuitry requires GluR2 endocytosis, but also suggest an essential contribution of such synaptic depression to cannabinoid-associated addictive learning, in addition to pointing to novel pharmacological strategies for the treatment of cannabis addiction. PMID:21187978

  11. PET measures of pre- and post-synaptic cardiac beta adrenergic function

    Energy Technology Data Exchange (ETDEWEB)

    Link, Jeanne M.; Stratton, John R.; Levy, Wayne; Poole, Jeanne E.; Shoner, Steven C.; Stuetzle, Werner; Caldwell, James H. E-mail: jcald@u.washington.edu

    2003-11-01

    Positron Emission Tomography was used to measure global and regional cardiac {beta}-adrenergic function in 19 normal subjects and 9 congestive heart failure patients. [{sup 11}C]-meta-hydroxyephedrine was used to image norepinephrine transporter function as an indicator of pre-synaptic function and [{sup 11}C]-CGP12177 was used to measure cell surface {beta}-receptor density as an indicator of post-synaptic function. Pre-synaptic, but not post-synaptic, function was significantly different between normals and CHF patients. Pre-synaptic function was well matched to post-synaptic function in the normal hearts but significantly different and poorly matched in the CHF patients studied. This imaging technique can help us understand regional sympathetic function in cardiac disease.

  12. Activity blockade and GABAA receptor blockade produce synaptic scaling through chloride accumulation in embryonic spinal motoneurons and interneurons.

    Directory of Open Access Journals (Sweden)

    Casie Lindsly

    Full Text Available Synaptic scaling represents a process whereby the distribution of a cell's synaptic strengths are altered by a multiplicative scaling factor. Scaling is thought to be a compensatory response that homeostatically controls spiking activity levels in the cell or network. Previously, we observed GABAergic synaptic scaling in embryonic spinal motoneurons following in vivo blockade of either spiking activity or GABAA receptors (GABAARs. We had determined that activity blockade triggered upward GABAergic scaling through chloride accumulation, thus increasing the driving force for these currents. To determine whether chloride accumulation also underlies GABAergic scaling following GABAAR blockade we have developed a new technique. We expressed a genetically encoded chloride-indicator, Clomeleon, in the embryonic chick spinal cord, which provides a non-invasive fast measure of intracellular chloride. Using this technique we now show that chloride accumulation underlies GABAergic scaling following blockade of either spiking activity or the GABAAR. The finding that GABAAR blockade and activity blockade trigger scaling via a common mechanism supports our hypothesis that activity blockade reduces GABAAR activation, which triggers synaptic scaling. In addition, Clomeleon imaging demonstrated the time course and widespread nature of GABAergic scaling through chloride accumulation, as it was also observed in spinal interneurons. This suggests that homeostatic scaling via chloride accumulation is a common feature in many neuronal classes within the embryonic spinal cord and opens the possibility that this process may occur throughout the nervous system at early stages of development.

  13. On the possibility of the temperature-induced ferromagnetism in TiBe2 and other itinerant magnets

    International Nuclear Information System (INIS)

    Ioshpe, D.M.

    1991-01-01

    This paper proposes possible temperature-induced ferromagnetism (TIF) in TiBe 2 , TiBe 2-x Cu x and other itinerant magnets. The value of the critical field H cr for the existence of TIF in TiBe 2 , evaluated on the basis of the author's and others' experimental results, coincide with the value H cr congruent 610 G predicted by Enz within the spin density wave theory of itinerant antiferromagnetism (AFM). The possibilities of the existence in TiBe 2 of the TIF mechanism of spin fluctuations around the AFM mode as predicted by Moriya, and of the temperature-induced noncompensated itinerant AFM, i.e. ferromagnetism, are considered

  14. High energy excitations in itinerant ferromagnets

    International Nuclear Information System (INIS)

    Prange, R.E.

    1984-01-01

    Itinerant magnets, those whose electrons move throughout the crystal, are described by band theory. Single particle excitations offer confirmation of band theory, but their description requires important corrections. The energetics of magnetism in iron and nickel is also described in band theory but requires complex bands. Magnetism above the critical temperature and the location of the critical temperature offer discriminants between the two major models of magnetism at high temperature and can be addressed by high energy excitations

  15. Acutely increasing δGABA(A) receptor activity impairs memory and inhibits synaptic plasticity in the hippocampus.

    Science.gov (United States)

    Whissell, Paul D; Eng, Dave; Lecker, Irene; Martin, Loren J; Wang, Dian-Shi; Orser, Beverley A

    2013-01-01

    Extrasynaptic γ-aminobutyric acid type A (GABA(A)) receptors that contain the δ subunit (δGABA(A) receptors) are expressed in several brain regions including the dentate gyrus (DG) and CA1 subfields of the hippocampus. Drugs that increase δGABA(A) receptor activity have been proposed as treatments for a variety of disorders including insomnia, epilepsy and chronic pain. Also, long-term pretreatment with the δGABA(A) receptor-preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) enhances discrimination memory and increases neurogenesis in the DG. Despite the potential therapeutic benefits of such treatments, the effects of acutely increasing δGABA(A) receptor activity on memory behaviors remain unknown. Here, we studied the effects of THIP (4 mg/kg, i.p.) on memory performance in wild-type (WT) and δGABA(A) receptor null mutant (Gabrd(-/-)) mice. Additionally, the effects of THIP on long-term potentiation (LTP), a molecular correlate of memory, were studied within the DG and CA1 subfields of the hippocampus using electrophysiological recordings of field potentials in hippocampal slices. The results showed that THIP impaired performance in the Morris water maze, contextual fear conditioning and object recognition tasks in WT mice but not Gabrd(-/-) mice. Furthermore, THIP inhibited LTP in hippocampal slices from WT but not Gabrd(-/-) mice, an effect that was blocked by GABA(A) receptor antagonist bicuculline. Thus, acutely increasing δGABA(A) receptor activity impairs memory behaviors and inhibits synaptic plasticity. These results have important implications for the development of therapies aimed at increasing δGABA(A) receptor activity.

  16. Strong coupling between localized 5f moments and itinerant quasiparticles in the ferromagnetic superconductor UGe2

    Science.gov (United States)

    Zhang, Wen; Liu, Yi; Wang, Xiaoying; Zhang, Yun; Xie, Donghua

    2018-03-01

    The heavy fermion physics arises from the complex interplay of nearly localized 4f/5f electrons and itinerant band-like ones, yielding heavy quasiparticles with an effective mass about 100 times (or more) of the bare electrons. Recently, experimental and theoretical investigations point out a localized and delocalized dual nature in actinide compounds, where itinerant quasiparticles account for the unconventional superconductivity in the vicinity of a magnetic instability. Here we report the strong coupling between localized 5f moments and itinerant quasiparticles in the ferromagnetic superconductor UGe2. The coupling is nearly antiferromagnetic. As embedded in the ferromagnetic matrix of localized 5f moments below {T}{{C}}≈ 52 {{K}}, this coupling leads to short-range dynamic correlations of heavy quasiparticles, characterized by fluctuations of magnetic clusters. Those cluster-like spins of itinerant quasiparticles show a broad hump of magnetization at {T}X≈ 28 {{K}}, which is typical for the spin-glass freezing. Thus, our results present the direct observation of itinerant quasiparticles coexisting with localized 5f moments by conventional magnetic measurements, providing a new route into the coexistence between ferromagnetism and superconductivity in heavy fermion systems. Project supported by the National Natural Science Foundation of China (Grant No. 11404297), the Science Challenge Project (Grant No. TZ2016004), and the Science and Technology Foundation of China Academy of Engineering Physics (Grant Nos. 2013B0301050 and 2014A0301013).

  17. Astroglial Metabolic Networks Sustain Hippocampal Synaptic Transmission

    Science.gov (United States)

    Rouach, Nathalie; Koulakoff, Annette; Abudara, Veronica; Willecke, Klaus; Giaume, Christian

    2008-12-01

    Astrocytes provide metabolic substrates to neurons in an activity-dependent manner. However, the molecular mechanisms involved in this function, as well as its role in synaptic transmission, remain unclear. Here, we show that the gap-junction subunit proteins connexin 43 and 30 allow intercellular trafficking of glucose and its metabolites through astroglial networks. This trafficking is regulated by glutamatergic synaptic activity mediated by AMPA receptors. In the absence of extracellular glucose, the delivery of glucose or lactate to astrocytes sustains glutamatergic synaptic transmission and epileptiform activity only when they are connected by gap junctions. These results indicate that astroglial gap junctions provide an activity-dependent intercellular pathway for the delivery of energetic metabolites from blood vessels to distal neurons.

  18. Astroglial metabolic networks sustain hippocampal synaptic transmission.

    Science.gov (United States)

    Rouach, Nathalie; Koulakoff, Annette; Abudara, Veronica; Willecke, Klaus; Giaume, Christian

    2008-12-05

    Astrocytes provide metabolic substrates to neurons in an activity-dependent manner. However, the molecular mechanisms involved in this function, as well as its role in synaptic transmission, remain unclear. Here, we show that the gap-junction subunit proteins connexin 43 and 30 allow intercellular trafficking of glucose and its metabolites through astroglial networks. This trafficking is regulated by glutamatergic synaptic activity mediated by AMPA receptors. In the absence of extracellular glucose, the delivery of glucose or lactate to astrocytes sustains glutamatergic synaptic transmission and epileptiform activity only when they are connected by gap junctions. These results indicate that astroglial gap junctions provide an activity-dependent intercellular pathway for the delivery of energetic metabolites from blood vessels to distal neurons.

  19. Transmission to interneurons is via slow excitatory synaptic potentials mediated by P2Y(1 receptors during descending inhibition in guinea-pig ileum.

    Directory of Open Access Journals (Sweden)

    Peter D J Thornton

    Full Text Available BACKGROUND: The nature of synaptic transmission at functionally distinct synapses in intestinal reflex pathways has not been fully identified. In this study, we investigated whether transmission between interneurons in the descending inhibitory pathway is mediated by a purine acting at P2Y receptors to produce slow excitatory synaptic potentials (EPSPs. METHODOLOGY/PRINCIPAL FINDINGS: Myenteric neurons from guinea-pig ileum in vitro were impaled with intracellular microelectrodes. Responses to distension 15 mm oral to the recording site, in a separately perfused stimulation chamber and to electrical stimulation of local nerve trunks were recorded. A subset of neurons, previously identified as nitric oxide synthase immunoreactive descending interneurons, responded to both stimuli with slow EPSPs that were reversibly abolished by a high concentration of PPADS (30 μM, P2 receptor antagonist. When added to the central chamber of a three chambered organ bath, PPADS concentration-dependently depressed transmission through that chamber of descending inhibitory reflexes, measured as inhibitory junction potentials in the circular muscle of the anal chamber. Reflexes evoked by distension in the central chamber were unaffected. A similar depression of transmission was seen when the specific P2Y(1 receptor antagonist MRS 2179 (10 μM was in the central chamber. Blocking either nicotinic receptors (hexamethonium 200 μM or 5-HT(3 receptors (granisetron 1 μM together with P2 receptors had no greater effect than blocking P2 receptors alone. CONCLUSIONS/SIGNIFICANCE: Slow EPSPs mediated by P2Y(1 receptors, play a primary role in transmission between descending interneurons of the inhibitory reflexes in the guinea-pig ileum. This is the first demonstration for a primary role of excitatory metabotropic receptors in physiological transmission at a functionally identified synapse.

  20. The antidepressant tianeptine reverts synaptic AMPA receptor defects caused by deficiency of CDKL5.

    Science.gov (United States)

    Tramarin, Marco; Rusconi, Laura; Pizzamiglio, Lara; Barbiero, Isabella; Peroni, Diana; Scaramuzza, Linda; Guilliams, Tim; Cavalla, David; Antonucci, Flavia; Kilstrup-Nielsen, Charlotte

    2018-06-15

    Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene cause a complex neurological disorder, characterized by infantile seizures, impairment of cognitive and motor skills and autistic features. Loss of Cdkl5 in mice affects dendritic spine maturation and dynamics but the underlying molecular mechanisms are still far from fully understood. Here we show that Cdkl5 deficiency in primary hippocampal neurons leads to deranged expression of the alpha-amino-3-hydroxy-5-methyl-4-iso-xazole propionic acid receptors (AMPA-R). In particular, a dramatic reduction of expression of the GluA2 subunit occurs concomitantly with its hyper-phosphorylation on Serine 880 and increased ubiquitination. Consequently, Cdkl5 silencing skews the composition of membrane-inserted AMPA-Rs towards the GluA2-lacking calcium-permeable form. Such derangement is likely to contribute, at least in part, to the altered synaptic functions and cognitive impairment linked to loss of Cdkl5. Importantly, we find that tianeptine, a cognitive enhancer and antidepressant drug, known to recruit and stabilise AMPA-Rs at the synaptic sites, can normalise the expression of membrane inserted AMPA-Rs as well as the number of PSD-95 clusters, suggesting its therapeutic potential for patients with mutations in CDKL5.

  1. Effect of chronic psychogenic stress on characteristics of some rat brain synaptic membrane receptors

    International Nuclear Information System (INIS)

    Nikuradze, V.O.; Kozlovskaya, M.M.; Rozhanets, V.V.; Val'dman, A.V.

    1986-01-01

    This paper studies characteristics of alpha- and beta-adrenoreceptors, and imipramine and bensodiazepine receptors in brain synaptic membranes of rats after exposure to combined stress for 15 days by a modified Hecht's method. Before the experiment the suspension was thawed and centrifuged. Specific binding of tritium-WB-4101 (30 Ci/mmole), tritium-dihydroalprenolol, tritium-flunitrazepam, and tritium-imipramine was carried out by known methods with certain modifications. The results suggest that pathology of behavior in rats observed in the model may be classed as a depressive-like state rather than a neurosis-like state, and the model itself may be more appropriate for the study of the mechanisms of action of compounds with marked tranquilizing activity

  2. Effect of chronic psychogenic stress on characteristics of some rat brain synaptic membrane receptors

    Energy Technology Data Exchange (ETDEWEB)

    Nikuradze, V.O.; Kozlovskaya, M.M.; Rozhanets, V.V.; Val' dman, A.V.

    1986-02-01

    This paper studies characteristics of alpha- and beta-adrenoreceptors, and imipramine and bensodiazepine receptors in brain synaptic membranes of rats after exposure to combined stress for 15 days by a modified Hecht's method. Before the experiment the suspension was thawed and centrifuged. Specific binding of tritium-WB-4101 (30 Ci/mmole), tritium-dihydroalprenolol, tritium-flunitrazepam, and tritium-imipramine was carried out by known methods with certain modifications. The results suggest that pathology of behavior in rats observed in the model may be classed as a depressive-like state rather than a neurosis-like state, and the model itself may be more appropriate for the study of the mechanisms of action of compounds with marked tranquilizing activity.

  3. Exogenous Alpha-Synuclein Alters Pre- and Post-Synaptic Activity by Fragmenting Lipid Rafts

    Directory of Open Access Journals (Sweden)

    Marco Emanuele

    2016-05-01

    Full Text Available Alpha-synuclein (αSyn interferes with multiple steps of synaptic activity at pre-and post-synaptic terminals, however the mechanism/s by which αSyn alters neurotransmitter release and synaptic potentiation is unclear. By atomic force microscopy we show that human αSyn, when incubated with reconstituted membrane bilayer, induces lipid rafts' fragmentation. As a consequence, ion channels and receptors are displaced from lipid rafts with consequent changes in their activity. The enhanced calcium entry leads to acute mobilization of synaptic vesicles, and exhaustion of neurotransmission at later stages. At the post-synaptic terminal, an acute increase in glutamatergic transmission, with increased density of PSD-95 puncta, is followed by disruption of the interaction between N-methyl-d-aspartate receptor (NMDAR and PSD-95 with ensuing decrease of long term potentiation. While cholesterol loading prevents the acute effect of αSyn at the presynapse; inhibition of casein kinase 2, which appears activated by reduction of cholesterol, restores the correct localization and clustering of NMDARs.

  4. Effects of gamma-aminobutyric acid (GABA) on synaptogenesis and synaptic function

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, Gert Helge; Elster, L

    1998-01-01

    , but the intracellular link between GABA receptor activation and DNA transcription is largely unknown. GABA also controls the induction and development of functionally and pharmacologically different GABAA receptor subtypes. The induced receptors are likely to be inserted only into the synaptic membrane domain. However...

  5. Carbamazepine and oxcarbazepine, but not eslicarbazepine, enhance excitatory synaptic transmission onto hippocampal CA1 pyramidal cells through an antagonist action at adenosine A1 receptors.

    Science.gov (United States)

    Booker, Sam A; Pires, Nuno; Cobb, Stuart; Soares-da-Silva, Patrício; Vida, Imre

    2015-06-01

    This study assessed the anticonvulsant and seizure generation effects of carbamazepine (CBZ), oxcarbazepine (OXC) and eslicarbazepine (S-Lic) in wild-type mice. Electrophysiological recordings were made to discriminate potential cellular and synaptic mechanisms underlying anti- and pro-epileptic actions. The anticonvulsant and pro-convulsant effects were evaluated in the MES, the 6-Hz and the Irwin tests. Whole-cell patch-clamp recordings were used to investigate the effects on fast excitatory and inhibitory synaptic transmission in hippocampal area CA1. The safety window for CBZ, OXC and eslicarbazepine (ED50 value against the MES test and the dose that produces grade 5 convulsions in all mice), was 6.3, 6.0 and 12.5, respectively. At high concentrations the three drugs reduced synaptic transmission. CBZ and OXC enhanced excitatory postsynaptic currents (EPSCs) at low, therapeutically-relevant concentrations. These effects were associated with no change in inhibitory postsynaptic currents (IPSCs) resulting in altered balance between excitation and inhibition. S-Lic had no effect on EPSC or IPSC amplitudes over the same concentration range. The CBZ mediated enhancement of EPSCs was blocked by DPCPX, a selective antagonist, and occluded by CCPA, a selective agonist of the adenosine A1 receptor. Furthermore, reduction of endogenous adenosine by application of the enzyme adenosine deaminase also abolished the CBZ- and OXC-induced increase of EPSCs, indicating that the two drugs act as antagonists at native adenosine receptors. In conclusion, CBZ and OXC possess pro-epileptic actions at clinically-relevant concentrations through the enhancement of excitatory synaptic transmission. S-Lic by comparison has no such effect on synaptic transmission, explaining its lack of seizure exacerbation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Neurobeachin regulates neurotransmitter receptor trafficking to synapses

    NARCIS (Netherlands)

    Nair, R.; Lauks, J.; Jung, S; Cooke, N.E.; de Wit, H.; Brose, N.; Kilimann, M.W.; Verhage, M.; Rhee, J.

    2013-01-01

    The surface density of neurotransmitter receptors at synapses is a key determinant of synaptic efficacy. Synaptic receptor accumulation is regulated by the transport, postsynaptic anchoring, and turnover of receptors, involving multiple trafficking, sorting, motor, and scaffold proteins. We found

  7. Adenosine A2A Receptors Control Glutamatergic Synaptic Plasticity in Fast Spiking Interneurons of the Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Amber Kerkhofs

    2018-03-01

    Full Text Available Adenosine A2A receptors (A2AR are activated upon increased synaptic activity to assist in the implementation of long-term plastic changes at synapses. While it is reported that A2AR are involved in the control of prefrontal cortex (PFC-dependent behavior such as working memory, reversal learning and effort-based decision making, it is not known whether A2AR control glutamatergic synapse plasticity within the medial PFC (mPFC. To elucidate that, we tested whether A2AR blockade affects long-term plasticity (LTP of excitatory post-synaptic potentials in pyramidal neurons and fast spiking (FS interneurons in layer 5 of the mPFC and of population spikes. Our results show that A2AR are enriched at mPFC synapses, where their blockade reversed the direction of plasticity at excitatory synapses onto layer 5 FS interneurons from LTP to long-term depression, while their blockade had no effect on the induction of LTP at excitatory synapses onto layer 5 pyramidal neurons. At the network level, extracellularly induced LTP of population spikes was reduced by A2AR blockade. The interneuron-specificity of A2AR in controlling glutamatergic synapse LTP may ensure that during periods of high synaptic activity, a proper excitation/inhibition balance is maintained within the mPFC.

  8. The C1q complement family of synaptic organizers: not just complementary.

    Science.gov (United States)

    Yuzaki, Michisuke

    2017-08-01

    Molecules that regulate formation, differentiation, and maintenance of synapses are called synaptic organizers. Recently, various 'C1q family' proteins have been shown to be released from neurons, and serve as a new class of synaptic organizers. Cbln1 and C1ql1 proteins regulate the formation and maintenance of parallel fiber-Purkinje cell and climbing fiber-Purkinje cell synapses, respectively, in the cerebellum. Cbln1 also modulates the function of postsynaptic delta2 glutamate receptors to regulate synaptic plasticity. C1ql2 and C1ql3, released from mossy fibers, determine the synaptic localization of postsynaptic kainate receptors in the hippocampus. C1ql3 also regulates the formation of synapses between the basolateral amygdala and the prefrontal cortex. These findings indicate the diverse functions of C1q family proteins in various brain regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Nicotinic mechanisms influencing synaptic plasticity in the hippocampus

    Institute of Scientific and Technical Information of China (English)

    Andon Nicholas PLACZEK; Tao A ZHANG; John Anthony DANI

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed throughout the hippocampus, and nicotinic signaling plays an important role in neuronal function. In the context of learning and memory related behaviors associated with hippocampal function, a potentially significant feature of nAChR activity is the impact it has on synaptic plasticity. Synaptic plasticity in hippocampal neurons has long been considered a contributing cellular mechanism of learning and memory. These same kinds of cellular mechanisms are a factor in the development of nicotine addiction. Nicotinic signaling has been demonstrated by in vitro studies to affect synaptic plasticity in hippocampal neurons via multiple steps, and the signaling has also been shown to evoke synaptic plasticity in vivo. This review focuses on the nAChRs subtypes that contribute to hippocampal synaptic plasticity at the cellular and circuit level. It also considers nicotinic influences over long-term changes in the hippocampus that may contribute to addiction.

  10. Field-theoretical description of itinerant spin glasses

    International Nuclear Information System (INIS)

    Kolley, E.; Kolley, W.

    1986-01-01

    By means of functional integral technique at T 0 the disordered Hubbard model is bosonized, resulting in an effective action of the Ginzburg-Landau type. The quenched-averaged free energy of the itinerant spin glass is calculated by using the replica trick and Bogolyubov's variational principle. The spinglass order parameter and the local magnetic moment fulfil a system of self-consistent equations in the presence of spatial fluctuations. (author)

  11. Active hippocampal networks undergo spontaneous synaptic modification.

    Directory of Open Access Journals (Sweden)

    Masako Tsukamoto-Yasui

    Full Text Available The brain is self-writable; as the brain voluntarily adapts itself to a changing environment, the neural circuitry rearranges its functional connectivity by referring to its own activity. How the internal activity modifies synaptic weights is largely unknown, however. Here we report that spontaneous activity causes complex reorganization of synaptic connectivity without any external (or artificial stimuli. Under physiologically relevant ionic conditions, CA3 pyramidal cells in hippocampal slices displayed spontaneous spikes with bistable slow oscillations of membrane potential, alternating between the so-called UP and DOWN states. The generation of slow oscillations did not require fast synaptic transmission, but their patterns were coordinated by local circuit activity. In the course of generating spontaneous activity, individual neurons acquired bidirectional long-lasting synaptic modification. The spontaneous synaptic plasticity depended on a rise in intracellular calcium concentrations of postsynaptic cells, but not on NMDA receptor activity. The direction and amount of the plasticity varied depending on slow oscillation patterns and synapse locations, and thus, they were diverse in a network. Once this global synaptic refinement occurred, the same neurons now displayed different patterns of spontaneous activity, which in turn exhibited different levels of synaptic plasticity. Thus, active networks continuously update their internal states through ongoing synaptic plasticity. With computational simulations, we suggest that with this slow oscillation-induced plasticity, a recurrent network converges on a more specific state, compared to that with spike timing-dependent plasticity alone.

  12. Dopamine Regulates Aversive Contextual Learning and Associated In Vivo Synaptic Plasticity in the Hippocampus

    Directory of Open Access Journals (Sweden)

    John I. Broussard

    2016-03-01

    Full Text Available Dopamine release during reward-driven behaviors influences synaptic plasticity. However, dopamine innervation and release in the hippocampus and its role during aversive behaviors are controversial. Here, we show that in vivo hippocampal synaptic plasticity in the CA3-CA1 circuit underlies contextual learning during inhibitory avoidance (IA training. Immunohistochemistry and molecular techniques verified sparse dopaminergic innervation of the hippocampus from the midbrain. The long-term synaptic potentiation (LTP underlying the learning of IA was assessed with a D1-like dopamine receptor agonist or antagonist in ex vivo hippocampal slices and in vivo in freely moving mice. Inhibition of D1-like dopamine receptors impaired memory of the IA task and prevented the training-induced enhancement of both ex vivo and in vivo LTP induction. The results indicate that dopamine-receptor signaling during an aversive contextual task regulates aversive memory retention and regulates associated synaptic mechanisms in the hippocampus that likely underlie learning.

  13. Corticotropin-releasing factor receptor types 1 and 2 are differentially expressed in pre- and post-synaptic elements in the post-natal developing rat cerebellum

    NARCIS (Netherlands)

    Swinny, JD; Kalicharan, D; Blaauw, EH; Ijkema-Paassen, J; Shi, F; Gramsbergen, A; van der Want, JJL

    Corticotropin-releasing factor (CRF)-like proteins act via two G-protein-coupled receptors (CRF-R1 and CRF-R2) playing important neuromodulatory roles in stress responses and synaptic plasticity. The cerebellar expression of corticotropin-releasing factor-like ligands has been well documented, but

  14. Dynamic mobility of functional GABAA receptors at inhibitory synapses.

    Science.gov (United States)

    Thomas, Philip; Mortensen, Martin; Hosie, Alastair M; Smart, Trevor G

    2005-07-01

    Importing functional GABAA receptors into synapses is fundamental for establishing and maintaining inhibitory transmission and for controlling neuronal excitability. By introducing a binding site for an irreversible inhibitor into the GABAA receptor alpha1 subunit channel lining region that can be accessed only when the receptor is activated, we have determined the dynamics of receptor mobility between synaptic and extrasynaptic locations in hippocampal pyramidal neurons. We demonstrate that the cell surface GABAA receptor population shows no fast recovery after irreversible inhibition. In contrast, after selective inhibition, the synaptic receptor population rapidly recovers by the import of new functional entities within minutes. The trafficking pathways that promote rapid importation of synaptic receptors do not involve insertion from intracellular pools, but reflect receptor diffusion within the plane of the membrane. This process offers the synapse a rapid mechanism to replenish functional GABAA receptors at inhibitory synapses and a means to control synaptic efficacy.

  15. Object and technologies in the working process of an itinerant team in mental health.

    Science.gov (United States)

    Eslabão, Adriane Domingues; Pinho, Leandro Barbosa de; Coimbra, Valéria Cristina Christello; Lima, Maria Alice Dias da Silva; Camatta, Marcio Wagner; Santos, Elitiele Ortiz Dos

    2017-01-01

    Objective To analyze the work object and the technologies in the working process of a Mental Health Itinerant Team in the attention to drug users. Methods Qualitative case study, carried out in a municipality in the South of Brazil. The theoretical framework was the Healthcare Labor Process. The data was collected through participant observation and semi-structured interviews with the professionals of an itinerant team in the year of 2015. For data analysis we used the Thematic Content Analysis. Results In the first empirical category - work object - the user is considered as a focus, bringing new challenges in the team's relationship with the network. In the second category - technologies of the work process - potentialities and contradictions of the team work tools are highlighted. Conclusions As an innovation in the mental health context, the itinerant team brings real possibilities to reinvent the care for the drug user as well as new institutional challenges.

  16. Fragile X mental retardation protein regulates trans-synaptic signaling in Drosophila

    Directory of Open Access Journals (Sweden)

    Samuel H. Friedman

    2013-11-01

    Fragile X syndrome (FXS, the most common inherited determinant of intellectual disability and autism spectrum disorders, is caused by loss of the fragile X mental retardation 1 (FMR1 gene product (FMRP, an mRNA-binding translational repressor. A number of conserved FMRP targets have been identified in the well-characterized Drosophila FXS disease model, but FMRP is highly pleiotropic in function and the full spectrum of FMRP targets has yet to be revealed. In this study, screens for upregulated neural proteins in Drosophila fmr1 (dfmr1 null mutants reveal strong elevation of two synaptic heparan sulfate proteoglycans (HSPGs: GPI-anchored glypican Dally-like protein (Dlp and transmembrane Syndecan (Sdc. Our recent work has shown that Dlp and Sdc act as co-receptors regulating extracellular ligands upstream of intracellular signal transduction in multiple trans-synaptic pathways that drive synaptogenesis. Consistently, dfmr1 null synapses exhibit altered WNT signaling, with changes in both Wingless (Wg ligand abundance and downstream Frizzled-2 (Fz2 receptor C-terminal nuclear import. Similarly, a parallel anterograde signaling ligand, Jelly belly (Jeb, and downstream ERK phosphorylation (dpERK are depressed at dfmr1 null synapses. In contrast, the retrograde BMP ligand Glass bottom boat (Gbb and downstream signaling via phosphorylation of the transcription factor MAD (pMAD seem not to be affected. To determine whether HSPG upregulation is causative for synaptogenic defects, HSPGs were genetically reduced to control levels in the dfmr1 null background. HSPG correction restored both (1 Wg and Jeb trans-synaptic signaling, and (2 synaptic architecture and transmission strength back to wild-type levels. Taken together, these data suggest that FMRP negatively regulates HSPG co-receptors controlling trans-synaptic signaling during synaptogenesis, and that loss of this regulation causes synaptic structure and function defects characterizing the FXS disease state.

  17. DREAM (Downstream Regulatory Element Antagonist Modulator contributes to synaptic depression and contextual fear memory

    Directory of Open Access Journals (Sweden)

    Wu Long-Jun

    2010-01-01

    Full Text Available Abstract The downstream regulatory element antagonist modulator (DREAM, a multifunctional Ca2+-binding protein, binds specifically to DNA and several nucleoproteins regulating gene expression and with proteins outside the nucleus to regulate membrane excitability or calcium homeostasis. DREAM is highly expressed in the central nervous system including the hippocampus and cortex; however, the roles of DREAM in hippocampal synaptic transmission and plasticity have not been investigated. Taking advantage of transgenic mice overexpressing a Ca2+-insensitive DREAM mutant (TgDREAM, we used integrative methods including electrophysiology, biochemistry, immunostaining, and behavior tests to study the function of DREAM in synaptic transmission, long-term plasticity and fear memory in hippocampal CA1 region. We found that NMDA receptor but not AMPA receptor-mediated current was decreased in TgDREAM mice. Moreover, synaptic plasticity, such as long-term depression (LTD but not long-term potentiation (LTP, was impaired in TgDREAM mice. Biochemical experiments found that DREAM interacts with PSD-95 and may inhibit NMDA receptor function through this interaction. Contextual fear memory was significantly impaired in TgDREAM mice. By contrast, sensory responses to noxious stimuli were not affected. Our results demonstrate that DREAM plays a novel role in postsynaptic modulation of the NMDA receptor, and contributes to synaptic plasticity and behavioral memory.

  18. KV7 Channels Regulate Firing during Synaptic Integration in GABAergic Striatal Neurons

    Directory of Open Access Journals (Sweden)

    M. Belén Pérez-Ramírez

    2015-01-01

    Full Text Available Striatal projection neurons (SPNs process motor and cognitive information. Their activity is affected by Parkinson’s disease, in which dopamine concentration is decreased and acetylcholine concentration is increased. Acetylcholine activates muscarinic receptors in SPNs. Its main source is the cholinergic interneuron that responds with a briefer latency than SPNs during a cortical command. Therefore, an important question is whether muscarinic G-protein coupled receptors and their signaling cascades are fast enough to intervene during synaptic responses to regulate synaptic integration and firing. One of the most known voltage dependent channels regulated by muscarinic receptors is the KV7/KCNQ channel. It is not known whether these channels regulate the integration of suprathreshold corticostriatal responses. Here, we study the impact of cholinergic muscarinic modulation on the synaptic response of SPNs by regulating KV7 channels. We found that KV7 channels regulate corticostriatal synaptic integration and that this modulation occurs in the dendritic/spines compartment. In contrast, it is negligible in the somatic compartment. This modulation occurs on sub- and suprathreshold responses and lasts during the whole duration of the responses, hundreds of milliseconds, greatly altering SPNs firing properties. This modulation affected the behavior of the striatal microcircuit.

  19. Attitude of Regular and Itinerant Teachers Towards the Inclusion of Hearing Impairment Children

    Directory of Open Access Journals (Sweden)

    Kamal Parhoon

    2014-12-01

    Full Text Available Objectives: Inclusive education is a process of enabling all children to learn and participate effectively within mainstream school systems. It does not segregate children who have different abilities or needs. This article explores the attitudes of regular and itinerant teachers about inclusion of hearing impairment children in their schools in general education. Methods: In a descriptive Survey research design, the sample included 100 teachers (50 regular and 50 itinerant who were selected randomly, according to a multistage sampling method. Data was collected by using questionnaire with 32 questions regarding their attitudes. One-way Analysis of Variance and t-test were performed to obtain between- group comparisons. Results: The results indicated that the teacher's positive attitudes towards inclusive educational system of students with hearing impairment. Significant difference in attitudes was observed, based on the teaching experience, gender, level of teaching. The results also indicate that most teachers are agreeable to the inclusion of students with hearing impairment in their classrooms. Discussion: successful inclusion for hearing impairment children in regular classrooms entails the positive attitudes of Regular and itinerant teachers through a systematic programming within the classroom.

  20. Deficiency in LRP6-Mediated Wnt Signaling Contributes to Synaptic Abnormalities and Amyloid Pathology in Alzheimer’s Disease

    OpenAIRE

    Liu, Chia-Chen; Tsai, Chih-Wei; Deak, Ferenc; Rogers, Justin; Penuliar, Michael; Sung, You Me; Maher, James N.; Fu, Yuan; Li, Xia; Xu, Huaxi; Estus, Steven; Hoe, Hyang-Sook; Fryer, John D.; Kanekiyo, Takahisa; Bu, Guojun

    2014-01-01

    Alzheimer’s disease (AD) is an age-related neurological disorder characterized by synaptic loss and dementia. The low-density lipoprotein receptor-related protein 6 (LRP6) is an essential co-receptor for Wnt signaling and its genetic variants have been linked to AD risk. Here we report that neuronal LRP6-mediated Wnt signaling is critical for synaptic function and cognition. Conditional deletion of Lrp6 gene in mouse forebrain neurons leads to age-dependent deficits in synaptic integrity and ...

  1. Agrin and synaptic laminin are required to maintain adult neuromuscular junctions.

    Directory of Open Access Journals (Sweden)

    Melanie A Samuel

    Full Text Available As synapses form and mature the synaptic partners produce organizing molecules that regulate each other's differentiation and ensure precise apposition of pre- and post-synaptic specializations. At the skeletal neuromuscular junction (NMJ, these molecules include agrin, a nerve-derived organizer of postsynaptic differentiation, and synaptic laminins, muscle-derived organizers of presynaptic differentiation. Both become concentrated in the synaptic cleft as the NMJ develops and are retained in adulthood. Here, we used mutant mice to ask whether these organizers are also required for synaptic maintenance. Deletion of agrin from a subset of adult motor neurons resulted in the loss of acetylcholine receptors and other components of the postsynaptic apparatus and synaptic cleft. Nerve terminals also atrophied and eventually withdrew from muscle fibers. On the other hand, mice lacking the presynaptic organizer laminin-α4 retained most of the synaptic cleft components but exhibited synaptic alterations reminiscent of those observed in aged animals. Although we detected no marked decrease in laminin or agrin levels at aged NMJs, we observed alterations in the distribution and organization of these synaptic cleft components suggesting that such changes could contribute to age-related synaptic disassembly. Together, these results demonstrate that pre- and post-synaptic organizers actively function to maintain the structure and function of adult NMJs.

  2. Fingerprints of entangled spin and orbital physics in itinerant ferromagnets via angle-resolved resonant photoemission

    Science.gov (United States)

    Da Pieve, F.

    2016-01-01

    A method for mapping the local spin and orbital nature of the ground state of a system via corresponding flip excitations is proposed based on angle-resolved resonant photoemission and related diffraction patterns, obtained here via an ab initio modified one-step theory of photoemission. The analysis is done on the paradigmatic weak itinerant ferromagnet bcc Fe, whose magnetism, a correlation phenomenon given by the coexistence of localized moments and itinerant electrons, and the observed non-Fermi-Liquid behavior at extreme conditions both remain unclear. The combined analysis of energy spectra and diffraction patterns offers a mapping of local pure spin-flip, entangled spin-flip-orbital-flip excitations and chiral transitions with vortexlike wave fronts of photoelectrons, depending on the valence orbital symmetry and the direction of the local magnetic moment. Such effects, mediated by the hole polarization, make resonant photoemission a promising tool to perform a full tomography of the local magnetic properties even in itinerant ferromagnets or macroscopically nonmagnetic systems.

  3. Somato-synaptic variation of GABA(A) receptors in cultured murine cerebellar granule cells: investigation of the role of the alpha6 subunit.

    Science.gov (United States)

    Mellor, J R; Wisden, W; Randall, A D

    2000-07-10

    Electrophysiological investigation of cultured cerebellar murine granule cells revealed differences between the GABA(A) receptors at inhibitory synapses and those on the cell body. Specifically, mIPSCs decayed more rapidly than cell body receptors deactivated, the mean single channel conductance at the synapse (32 pS) was greater than that at cell body (21 pS) and only cell body receptors were sensitive to Zn(2+) (150 microM), which depressed response amplitude by 82+/-5% and almost doubled the rate of channel deactivation. The GABA(A) receptor alpha6 subunit is selectively expressed in cerebellar granule cells. Although concentrated at synapses, it is also found on extrasynaptic membranes. Using a mouse line (Deltaalpha6lacZ) lacking this subunit, we investigated its role in the somato-synaptic differences in GABA(A) receptor function. All differences between cell body and synaptic GABA(A) receptors observed in wild-type (WT) granule cells persisted in Deltaalpha6lacZ cells, thus demonstrating that they are not specifically due to the cellular distribution of the alpha6 subunit. However, mIPSCs from WT and Deltaalpha6lacZ cells differed in both their kinetics (faster decay in WT cells) and underlying single channel conductance (32 pS WT, 25 pS Deltaalpha6lacZ). This provides good evidence for a functional contribution of the alpha6 subunit to postsynaptic GABA(A) receptors in these cells. Despite this, deactivation kinetics of mIPSCs in WT and Deltaalpha6lacZ granule cells exhibited similar benzodiazepene (BDZ) sensitivity. This suggests that the enhanced BDZ-induced ataxia seen in Deltaalpha6lacZ mice may reflect physiological activity at extrasynaptic receptors which, unlike those at synapses, display differential BDZ-sensitivity in WT and Deltaalpha6lacZ granule cells (Jones, A.M., Korpi, E.R., McKernan, R.M., Nusser, Z., Pelz, R., Makela, R., Mellor, J.R., Pollard, S., Bahn, S., Stephenson, F.A., Randall, A.D., Sieghart, W., Somogyi, P., Smith, A.J.H., Wisden

  4. Excitations in the itinerant magnet UFe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Paolasini, L [Laboratoire Leon Brillouin (LLB) - Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France); Lander, G H [EITU, Postfach 2340, D-76125 Karlsruhe (Germany); Caciuffo, R [Ancona Univ. (Italy); Roessli, B [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Neutron inelastic-scattering experiments have been used to study a single crystal of the itinerant ferromagnetic UFe{sub 2}. The most surprising aspect of this material is the enhanced Fe-Fe exchange compared to the isostructural Laves phases with rare earths. Triple-axis spectroscopy, both cold with polarisation analysis and thermal, has given new insights into the interactions between the uranium 5f and iron 3d electrons. (author). 3 refs.

  5. Acute Stress Suppresses Synaptic Inhibition and Increases Anxiety via Endocannabinoid Release in the Basolateral Amygdala.

    Science.gov (United States)

    Di, Shi; Itoga, Christy A; Fisher, Marc O; Solomonow, Jonathan; Roltsch, Emily A; Gilpin, Nicholas W; Tasker, Jeffrey G

    2016-08-10

    Stress and glucocorticoids stimulate the rapid mobilization of endocannabinoids in the basolateral amygdala (BLA). Cannabinoid receptors in the BLA contribute to anxiogenesis and fear-memory formation. We tested for rapid glucocorticoid-induced endocannabinoid regulation of synaptic inhibition in the rat BLA. Glucocorticoid application to amygdala slices elicited a rapid, nonreversible suppression of spontaneous, but not evoked, GABAergic synaptic currents in BLA principal neurons; the effect was also seen with a membrane-impermeant glucocorticoid, but not with intracellular glucocorticoid application, implicating a membrane-associated glucocorticoid receptor. The glucocorticoid suppression of GABA currents was not blocked by antagonists of nuclear corticosteroid receptors, or by inhibitors of gene transcription or protein synthesis, but was blocked by inhibiting postsynaptic G-protein activity, suggesting a postsynaptic nongenomic steroid signaling mechanism that stimulates the release of a retrograde messenger. The rapid glucocorticoid-induced suppression of inhibition was prevented by blocking CB1 receptors and 2-arachidonoylglycerol (2-AG) synthesis, and it was mimicked and occluded by CB1 receptor agonists, indicating it was mediated by the retrograde release of the endocannabinoid 2-AG. The rapid glucocorticoid effect in BLA neurons in vitro was occluded by prior in vivo acute stress-induced, or prior in vitro glucocorticoid-induced, release of endocannabinoid. Acute stress also caused an increase in anxiety-like behavior that was attenuated by blocking CB1 receptor activation and inhibiting 2-AG synthesis in the BLA. Together, these findings suggest that acute stress causes a long-lasting suppression of synaptic inhibition in BLA neurons via a membrane glucocorticoid receptor-induced release of 2-AG at GABA synapses, which contributes to stress-induced anxiogenesis. We provide a cellular mechanism in the basolateral amygdala (BLA) for the rapid stress

  6. Opposite long-term synaptic effects of 17β-estradiol and 5α-dihydrotestosterone and localization of their receptors in the medial vestibular nucleus of rats.

    Science.gov (United States)

    Grassi, Silvarosa; Scarduzio, Mariangela; Panichi, Roberto; Dall'Aglio, Cecilia; Boiti, Cristiano; Pettorossi, Vito E

    2013-08-01

    In brainstem slices of male rats, we examined in single neurons of the medial vestibular nucleus (MVN) the effect of exogenous administration of estrogenic (17β-estradiol, E2) and androgenic (5α-dihydrotestosterone, DHT) steroids on the synaptic response to vestibular afferent stimulation. By whole cell patch clamp recordings we showed that E2 induced synaptic long-term potentiation (LTP) that was cancelled by the subsequent administration of DHT. Conversely, DHT induced synaptic long-term depression (LTD) that was partially reversed by E2. The electrophysiological findings were supported by immunohistochemical analysis showing the presence of estrogen (ER: α and β) and androgen receptors (AR) in the MVN neurons. We found that a large number of neurons were immunoreactive for ERα, ERβ, and AR and most of them co-localized ERβ and AR. We also showed the presence of P450-aromatase (ARO) in the MVN neurons, clearly proving that E2 can be locally synthesized in the MVN. On the whole, these results demonstrate a role of estrogenic and androgenic signals in modulating vestibular synaptic plasticity and suggest that the enhancement or depression of vestibular synaptic response may depend on the local conversion of T into E2 or DHT. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Itinerant ferromagnetism in the narrow band limit

    CERN Document Server

    Liu, S H

    2000-01-01

    It is shown that in the narrow band, strong interaction limit the paramagnetic state of an itinerant ferromagnet is described by the disordered local moment state. As a result, the Curie temperature is orders of magnitude lower than what is expected from the large exchange splitting of the spin bands. An approximate analysis has also been carried out for the partially ordered state, and the result explains the temperature evolvement of the magnetic contributions to the resistivity and low-energy optical conductivity of CrO sub 2.

  8. Depression of Serotonin Synaptic Transmission by the Dopamine Precursor L-DOPA

    Directory of Open Access Journals (Sweden)

    Stephanie C. Gantz

    2015-08-01

    Full Text Available Imbalance between the dopamine and serotonin (5-HT neurotransmitter systems has been implicated in the comorbidity of Parkinson’s disease (PD and psychiatric disorders. L-DOPA, the leading treatment of PD, facilitates the production and release of dopamine. This study assessed the action of L-DOPA on monoamine synaptic transmission in mouse brain slices. Application of L-DOPA augmented the D2-receptor-mediated inhibitory postsynaptic current (IPSC in dopamine neurons of the substantia nigra. This augmentation was largely due to dopamine release from 5-HT terminals. Selective optogenetic stimulation of 5-HT terminals evoked dopamine release, producing D2-receptor-mediated IPSCs following treatment with L-DOPA. In the dorsal raphe, L-DOPA produced a long-lasting depression of the 5-HT1A-receptor-mediated IPSC in 5-HT neurons. When D2 receptors were expressed in the dorsal raphe, application of L-DOPA resulted in a D2-receptor-mediated IPSC. Thus, treatment with L-DOPA caused ectopic dopamine release from 5-HT terminals and a loss of 5-HT-mediated synaptic transmission.

  9. Modulation of Synaptic Plasticity by Exercise Training as a Basis for Ischemic Stroke Rehabilitation.

    Science.gov (United States)

    Nie, Jingjing; Yang, Xiaosu

    2017-01-01

    In recent years, rehabilitation of ischemic stroke draws more and more attention in the world, and has been linked to changes of synaptic plasticity. Exercise training improves motor function of ischemia as well as cognition which is associated with formation of learning and memory. The molecular basis of learning and memory might be synaptic plasticity. Research has therefore been conducted in an attempt to relate effects of exercise training to neuroprotection and neurogenesis adjacent to the ischemic injury brain. The present paper reviews the current literature addressing this question and discusses the possible mechanisms involved in modulation of synaptic plasticity by exercise training. This review shows the pathological process of synaptic dysfunction in ischemic roughly and then discusses the effects of exercise training on scaffold proteins and regulatory protein expression. The expression of scaffold proteins generally increased after training, but the effects on regulatory proteins were mixed. Moreover, the compositions of postsynaptic receptors were changed and the strength of synaptic transmission was enhanced after training. Finally, the recovery of cognition is critically associated with synaptic remodeling in an injured brain, and the remodeling occurs through a number of local regulations including mRNA translation, remodeling of cytoskeleton, and receptor trafficking into and out of the synapse. We do provide a comprehensive knowledge of synaptic plasticity enhancement obtained by exercise training in this review.

  10. Neurokinin-1 enables measles virus trans-synaptic spread in neurons

    International Nuclear Information System (INIS)

    Makhortova, Nina R.; Askovich, Peter; Patterson, Catherine E.; Gechman, Lisa A.; Gerard, Norma P.; Rall, Glenn F.

    2007-01-01

    Measles virus (MV), a morbillivirus that remains a significant human pathogen, can infect the central nervous system, resulting in rare but often fatal diseases, such as subacute sclerosing panencephalitis. Previous work demonstrated that MV was transmitted trans-synaptically and that, while a cellular receptor for the hemagglutinin (H) protein was required for MV entry, it was dispensable for subsequent cell-to-cell spread. Here, we explored what role the other envelope protein, fusion (F), played in trans-synaptic transport. We made the following observations: (1) MV-F expression in infected neurons was similar to that seen in infected fibroblasts; (2) fusion inhibitory peptide (FIP), an inhibitor of MV fusion, prevented both infection and spread in primary neurons; (3) Substance P, a neurotransmitter with the same active site as FIP, also blocked neuronal MV spread; and (4) both genetic deletion and pharmacological inhibition of the Substance P receptor, neurokinin-1 (NK-1), reduced infection of susceptible mice. Together, these data implicate a role for NK-1 in MV CNS infection and spread, perhaps serving as an MV-F receptor or co-receptor on neurons

  11. The Secreted Protein C1QL1 and Its Receptor BAI3 Control the Synaptic Connectivity of Excitatory Inputs Converging on Cerebellar Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Séverine M. Sigoillot

    2015-02-01

    Full Text Available Precise patterns of connectivity are established by different types of afferents on a given target neuron, leading to well-defined and non-overlapping synaptic territories. What regulates the specific characteristics of each type of synapse, in terms of number, morphology, and subcellular localization, remains to be understood. Here, we show that the signaling pathway formed by the secreted complement C1Q-related protein C1QL1 and its receptor, the adhesion-GPCR brain angiogenesis inhibitor 3 (BAI3, controls the stereotyped pattern of connectivity established by excitatory afferents on cerebellar Purkinje cells. The BAI3 receptor modulates synaptogenesis of both parallel fiber and climbing fiber afferents. The restricted and timely expression of its ligand C1QL1 in inferior olivary neurons ensures the establishment of the proper synaptic territory for climbing fibers. Given the broad expression of C1QL and BAI proteins in the developing mouse brain, our study reveals a general mechanism contributing to the formation of a functional brain.

  12. Cell-specific gain modulation by synaptically released zinc in cortical circuits of audition.

    Science.gov (United States)

    Anderson, Charles T; Kumar, Manoj; Xiong, Shanshan; Tzounopoulos, Thanos

    2017-09-09

    In many excitatory synapses, mobile zinc is found within glutamatergic vesicles and is coreleased with glutamate. Ex vivo studies established that synaptically released (synaptic) zinc inhibits excitatory neurotransmission at lower frequencies of synaptic activity but enhances steady state synaptic responses during higher frequencies of activity. However, it remains unknown how synaptic zinc affects neuronal processing in vivo. Here, we imaged the sound-evoked neuronal activity of the primary auditory cortex in awake mice. We discovered that synaptic zinc enhanced the gain of sound-evoked responses in CaMKII-expressing principal neurons, but it reduced the gain of parvalbumin- and somatostatin-expressing interneurons. This modulation was sound intensity-dependent and, in part, NMDA receptor-independent. By establishing a previously unknown link between synaptic zinc and gain control of auditory cortical processing, our findings advance understanding about cortical synaptic mechanisms and create a new framework for approaching and interpreting the role of the auditory cortex in sound processing.

  13. Superconductivity on the border of itinerant-electron ferromagnetism in UGe2

    NARCIS (Netherlands)

    Saxena, SS; Ahilan, K; Grosche, FM; Haselwimmer, RKW; Steiner, MJ; Pugh, E; Walker, IR; Julian, [No Value; Monthoux, P; Lonzarich, GG; Huxley, A; Sheikin, [No Value; Braithwaite, D; Flouquet, J

    2000-01-01

    The absence of simple examples of superconductivity adjoining itinerant-electron ferromagnetism in the phase diagram has for many years cast doubt on the validity of conventional models of magnetically mediated superconductivity. On closer examination, however, very few systems have been studied in

  14. Corticosterone induces rapid spinogenesis via synaptic glucocorticoid receptors and kinase networks in hippocampus.

    Directory of Open Access Journals (Sweden)

    Yoshimasa Komatsuzaki

    Full Text Available BACKGROUND: Modulation of dendritic spines under acute stress is attracting much attention. Exposure to acute stress induces corticosterone (CORT secretion from the adrenal cortex, resulting in rapid increase of CORT levels in plasma and the hippocampus. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrated the mechanisms of rapid effect (∼1 h of CORT on the density and morphology of spines by imaging neurons in adult male rat hippocampal slices. The application of CORT at 100-1000 nM induced a rapid increase in the density of spines of CA1 pyramidal neurons. The density of small-head spines (0.2-0.4 µm was increased even at low CORT levels (100-200 nM. The density of middle-head spines (0.4-0.5 µm was increased at high CORT levels between 400-1000 nM. The density of large-head spines (0.5-1.0 µm was increased only at 1000 nM CORT. Co-administration of RU486, an antagonist of glucocorticoid receptor (GR, abolished the effect of CORT. Blocking a single kinase, such as MAPK, PKA, PKC or PI3K, suppressed CORT-induced enhancement of spinogenesis. Blocking NMDA receptors suppressed the CORT effect. CONCLUSIONS/SIGNIFICANCE: These results imply that stress levels of CORT (100-1000 nM drive the spinogenesis via synaptic GR and multiple kinase pathways.

  15. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer’s disease

    Science.gov (United States)

    Berchtold, Nicole C.; Coleman, Paul D.; Cribbs, David H.; Rogers, Joseph; Gillen, Daniel L.; Cotman, Carl W.

    2014-01-01

    Synapses are essential for transmitting, processing, and storing information, all of which decline in aging and Alzheimer’s disease (AD). Because synapse loss only partially accounts for the cognitive declines seen in aging and AD, we hypothesized that existing synapses might undergo molecular changes that reduce their functional capacity. Microarrays were used to evaluate expression profiles of 340 synaptic genes in aging (20–99 years) and AD across 4 brain regions from 81 cases. The analysis revealed an unexpectedly large number of significant expression changes in synapse-related genes in aging, with many undergoing progressive downregulation across aging and AD. Functional classification of the genes showing altered expression revealed that multiple aspects of synaptic function are affected, notably synaptic vesicle trafficking and release, neurotransmitter receptors and receptor trafficking, postsynaptic density scaffolding, cell adhesion regulating synaptic stability, and neuromodulatory systems. The widespread declines in synaptic gene expression in normal aging suggests that function of existing synapses might be impaired, and that a common set of synaptic genes are vulnerable to change in aging and AD. PMID:23273601

  16. BDNF-induced local protein synthesis and synaptic plasticity.

    Science.gov (United States)

    Leal, Graciano; Comprido, Diogo; Duarte, Carlos B

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) is an important regulator of synaptic transmission and long-term potentiation (LTP) in the hippocampus and in other brain regions, playing a role in the formation of certain forms of memory. The effects of BDNF in LTP are mediated by TrkB (tropomyosin-related kinase B) receptors, which are known to be coupled to the activation of the Ras/ERK, phosphatidylinositol 3-kinase/Akt and phospholipase C-γ (PLC-γ) pathways. The role of BDNF in LTP is best studied in the hippocampus, where the neurotrophin acts at pre- and post-synaptic levels. Recent studies have shown that BDNF regulates the transport of mRNAs along dendrites and their translation at the synapse, by modulating the initiation and elongation phases of protein synthesis, and by acting on specific miRNAs. Furthermore, the effect of BDNF on transcription regulation may further contribute to long-term changes in the synaptic proteome. In this review we discuss the recent progress in understanding the mechanisms contributing to the short- and long-term regulation of the synaptic proteome by BDNF, and the role in synaptic plasticity, which is likely to influence learning and memory formation. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Exchange interactions, spin waves, and transition temperatures in itinerant magnets

    Czech Academy of Sciences Publication Activity Database

    Turek, Ilja; Kudrnovský, Josef; Drchal, Václav; Bruno, P.

    2003-01-01

    Roč. 1, č. 59 (2003), s. 112-147 R&D Projects: GA ČR GA106/02/0943; GA AV ČR IAA1010203 Institutional research plan: CEZ:AV0Z2041904 Keywords : exchange interactions * itinerant magnetism Subject RIV: BM - Solid Matter Physics ; Magnetism http://psi-k.dl.ac.uk/psi-k/newsletters.html

  18. Operant conditioning of synaptic and spiking activity patterns in single hippocampal neurons.

    Science.gov (United States)

    Ishikawa, Daisuke; Matsumoto, Nobuyoshi; Sakaguchi, Tetsuya; Matsuki, Norio; Ikegaya, Yuji

    2014-04-02

    Learning is a process of plastic adaptation through which a neural circuit generates a more preferable outcome; however, at a microscopic level, little is known about how synaptic activity is patterned into a desired configuration. Here, we report that animals can generate a specific form of synaptic activity in a given neuron in the hippocampus. In awake, head-restricted mice, we applied electrical stimulation to the lateral hypothalamus, a reward-associated brain region, when whole-cell patch-clamped CA1 neurons exhibited spontaneous synaptic activity that met preset criteria. Within 15 min, the mice learned to generate frequently the excitatory synaptic input pattern that satisfied the criteria. This reinforcement learning of synaptic activity was not observed for inhibitory input patterns. When a burst unit activity pattern was conditioned in paired and nonpaired paradigms, the frequency of burst-spiking events increased and decreased, respectively. The burst reinforcement occurred in the conditioned neuron but not in other adjacent neurons; however, ripple field oscillations were concomitantly reinforced. Neural conditioning depended on activation of NMDA receptors and dopamine D1 receptors. Acutely stressed mice and depression model mice that were subjected to forced swimming failed to exhibit the neural conditioning. This learning deficit was rescued by repetitive treatment with fluoxetine, an antidepressant. Therefore, internally motivated animals are capable of routing an ongoing action potential series into a specific neural pathway of the hippocampal network.

  19. Posttranslational Modification Biology of Glutamate Receptors and Drug Addiction

    Directory of Open Access Journals (Sweden)

    Li-Min eMao

    2011-03-01

    Full Text Available Posttranslational covalent modifications of glutamate receptors remain a hot topic. Early studies have established that this family of receptors, including almost all ionotropic and metabotropic glutamate receptor subtypes, undergoes active phosphorylation at serine, threonine, or tyrosine residues on their intracellular domains. Recent evidence identifies several glutamate receptor subtypes to be direct substrates for palmitoylation at cysteine residues. Other modifications such as ubiquitination and sumoylation at lysine residues also occur to certain glutamate receptors. These modifications are dynamic and reversible in nature and are regulatable by changing synaptic inputs. The regulated modifications significantly impact the receptor in many ways, including interrelated changes in biochemistry (synthesis, subunit assembling and protein-protein interactions, subcellular redistribution (trafficking, endocytosis, synaptic delivery and clustering, and physiology, usually associated with changes in synaptic plasticity. Glutamate receptors are enriched in the striatum and cooperate closely with dopamine to regulate striatal signaling. Emerging evidence shows that modification processes of striatal glutamate receptors are sensitive to addictive drugs, such as psychostimulants (cocaine and amphetamines. Altered modifications are believed to be directly linked to enduring receptor/synaptic plasticity and drug-seeking. This review summarizes several major types of modifications of glutamate receptors and analyzes the role of these modifications in striatal signaling and in the pathogenesis of psychostimulant addiction.

  20. Youth self-formation and the 'capacity to aspire': The itinerant ...

    African Journals Online (AJOL)

    The article employs the lenses of 'aspiration', 'space', and 'technologies of self' to present the argument that his 'capacity to aspire' has to be understood on the basis of his active self-formation and disciplining, accumulated across the itinerant spaces of his life. The aim of this article is to open a window onto how young ...

  1. Factors Influencing Short-term Synaptic Plasticity in the Avian Cochlear Nucleus Magnocellularis

    Directory of Open Access Journals (Sweden)

    Jason Tait Sanchez Quinones

    2015-01-01

    Full Text Available Defined as reduced neural responses during high rates of activity, synaptic depression is a form of short-term plasticity important for the temporal filtering of sound. In the avian cochlear nucleus magnocellularis (NM, an auditory brainstem structure, mechanisms regulating short-term synaptic depression include pre-, post-, and extrasynaptic factors. Using varied paired-pulse stimulus intervals, we found that the time course of synaptic depression lasts up to four seconds at late-developing NM synapses. Synaptic depression was largely reliant on exogenous Ca 2+ -dependent probability of presynaptic neurotransmitter release, and to a lesser extent, on the desensitization of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor (AMPA-R. Interestingly, although extrasynaptic glutamate clearance did not play a significant role in regulating synaptic depression, blocking glutamate clearance at early-developing synapses altered synaptic dynamics, changing responses from depression to facilitation. These results suggest a developmental shift in the relative reliance on pre-, post-, and extrasynaptic factors in regulating short-term synaptic plasticity in NM.

  2. AMPA receptor ligands

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Mellor, Ian

    2004-01-01

    Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR), subtype of the ionotropic glutamate receptors (IGRs), mediate fast synaptic transmission in the central nervous system (CNS), and are involved in many neurological disorders, as well as being a key player in the f......Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR), subtype of the ionotropic glutamate receptors (IGRs), mediate fast synaptic transmission in the central nervous system (CNS), and are involved in many neurological disorders, as well as being a key player...... in the formation of memory. Hence, ligands affecting AMPARs are highly important for the study of the structure and function of this receptor, and in this regard polyamine-based ligands, particularly polyamine toxins, are unique as they selectively block Ca2+ -permeable AMPARs. Indeed, endogenous intracellular...

  3. Magnetic translation group and classification of states of an itinerant electron

    International Nuclear Information System (INIS)

    Wal, Andrzej

    2006-01-01

    We consider an itinerant electron on two-dimensional finite square lattice in a magneticfield. A magnetic translation group (MTG) for this system with the periodic Born- Karman conditions has been introduced. The irreducible representation of MTG is used for classification of energy levels of electron states for this model

  4. Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1.

    Science.gov (United States)

    Cartier, Anna E; Djakovic, Stevan N; Salehi, Afshin; Wilson, Scott M; Masliah, Eliezer; Patrick, Gentry N

    2009-06-17

    Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We found that UCH-L1 activity is rapidly upregulated by NMDA receptor activation, which leads to an increase in the levels of free monomeric ubiquitin. Conversely, pharmacological inhibition of UCH-L1 significantly reduces monomeric ubiquitin levels and causes dramatic alterations in synaptic protein distribution and spine morphology. Inhibition of UCH-L1 activity increases spine size while decreasing spine density. Furthermore, there is a concomitant increase in the size of presynaptic and postsynaptic protein clusters. Interestingly, however, ectopic expression of ubiquitin restores normal synaptic structure in UCH-L1-inhibited neurons. These findings point to a significant role of UCH-L1 in synaptic remodeling, most likely by modulating free monomeric ubiquitin levels in an activity-dependent manner.

  5. Cognitive impairments associated with alterations in synaptic proteins induced by the genetic loss of adenosine A2A receptors in mice.

    Science.gov (United States)

    Moscoso-Castro, Maria; López-Cano, Marc; Gracia-Rubio, Irene; Ciruela, Francisco; Valverde, Olga

    2017-11-01

    The study of psychiatric disorders usually focuses on emotional symptoms assessment. However, cognitive deficiencies frequently constitute the core symptoms, are often poorly controlled and handicap individual's quality of life. Adenosine receptors, through the control of both dopamine and glutamate systems, have been implicated in the pathophysiology of several psychiatric disorders such as schizophrenia and attention deficit/hyperactivity disorder. Indeed, clinical data indicate that poorly responsive schizophrenia patients treated with adenosine adjuvants show improved treatment outcomes. The A 2A adenosine receptor subtype (A 2A R) is highly expressed in brain areas controlling cognition and motivational responses including the striatum, hippocampus and cerebral cortex. Accordingly, we study the role of A 2A R in the regulation of cognitive processes based on a complete cognitive behavioural analysis coupled with the assessment of neurogenesis and sub-synaptic protein expression in adult and middle-aged A 2A R constitutional knockout mice and wild-type littermates. Our results show overall cognitive impairments in A 2A R knockout mice associated with a decrease in new-born hippocampal neuron proliferation and concomitant changes in synaptic protein expression, in both the prefrontal cortex and the hippocampus. These results suggest a deficient adenosine signalling in cognitive processes, thus providing new opportunities for the therapeutic management of cognitive deficits associated with psychiatric disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Differential splicing and glycosylation of Apoer2 alters synaptic plasticity and fear learning.

    Science.gov (United States)

    Wasser, Catherine R; Masiulis, Irene; Durakoglugil, Murat S; Lane-Donovan, Courtney; Xian, Xunde; Beffert, Uwe; Agarwala, Anandita; Hammer, Robert E; Herz, Joachim

    2014-11-25

    Apoer2 is an essential receptor in the central nervous system that binds to the apolipoprotein ApoE. Various splice variants of Apoer2 are produced. We showed that Apoer2 lacking exon 16, which encodes the O-linked sugar (OLS) domain, altered the proteolytic processing and abundance of Apoer2 in cells and synapse number and function in mice. In cultured cells expressing this splice variant, extracellular cleavage of OLS-deficient Apoer2 was reduced, consequently preventing γ-secretase-dependent release of the intracellular domain of Apoer2. Mice expressing Apoer2 lacking the OLS domain had increased Apoer2 abundance in the brain, hippocampal spine density, and glutamate receptor abundance, but decreased synaptic efficacy. Mice expressing a form of Apoer2 lacking the OLS domain and containing an alternatively spliced cytoplasmic tail region that promotes glutamate receptor signaling showed enhanced hippocampal long-term potentiation (LTP), a phenomenon associated with learning and memory. However, these mice did not display enhanced spatial learning in the Morris water maze, and cued fear conditioning was reduced. Reducing the expression of the mutant Apoer2 allele so that the abundance of the protein was similar to that of Apoer2 in wild-type mice normalized spine density, hippocampal LTP, and cued fear learning. These findings demonstrated a role for ApoE receptors as regulators of synaptic glutamate receptor activity and established differential receptor glycosylation as a potential regulator of synaptic function and memory. Copyright © 2014, American Association for the Advancement of Science.

  7. Generalized theory of spin fluctuations in itinerant electron magnets: Crucial role of spin anharmonicity

    International Nuclear Information System (INIS)

    Solontsov, A.

    2015-01-01

    The paper critically overviews the recent developments of the theory of spatially dispersive spin fluctuations (SF) in itinerant electron magnetism with particular emphasis on spin-fluctuation coupling or spin anharmonicity. It is argued that the conventional self-consistent renormalized (SCR) theory of spin fluctuations is usually used aside of the range of its applicability actually defined by the constraint of weak spin anharmonicity based on the random phase approximation (RPA) arguments. An essential step in understanding SF in itinerant magnets beyond RPA-like arguments was made recently within the soft-mode theory of SF accounting for strong spin anharmonicity caused by zero-point SF. In the present paper we generalize it to apply for a wider range of temperatures and regimes of SF and show it to lead to qualitatively new results caused by zero-point effects. - Highlights: • We review the spin-fluctuation theory of itinerant electron magnets with account of zero-point effects. • We generalize the existing theory to account for different regimes of spin fluctuations. • We show that zero-point spin fluctuations play a crucial role in both low- and high-temperature properties of metallic magnets. • We argue that a new scheme of calculation of ground state properties of magnets is needed including zero-point effects

  8. Synaptic Cell Adhesion

    OpenAIRE

    Missler, Markus; Südhof, Thomas C.; Biederer, Thomas

    2012-01-01

    Chemical synapses are asymmetric intercellular junctions that mediate synaptic transmission. Synaptic junctions are organized by trans-synaptic cell adhesion molecules bridging the synaptic cleft. Synaptic cell adhesion molecules not only connect pre- and postsynaptic compartments, but also mediate trans-synaptic recognition and signaling processes that are essential for the establishment, specification, and plasticity of synapses. A growing number of synaptic cell adhesion molecules that inc...

  9. Antagonism of brain insulin-like growth factor-1 receptors blocks estradiol effects on memory and levels of hippocampal synaptic proteins in ovariectomized rats

    Science.gov (United States)

    Nelson, Britta S.; Springer, Rachel C.; Daniel, Jill M.

    2013-01-01

    Rationale Treatment with estradiol, the primary estrogen produced by the ovaries, enhances hippocampus-dependent spatial memory and increases levels of hippocampal synaptic proteins in ovariectomized rats. Increasing evidence indicates that the ability of estradiol to impact the brain and behavior is dependent upon its interaction with insulin-like growth factor-1 (IGF-1). Objectives The goal of the current experiment was to test the hypothesis that the ability of estradiol to impact hippocampus-dependent memory and levels of hippocampal synaptic proteins is dependent on its interaction with IGF-1. Methods Adult rats were ovariectomized and implanted with estradiol or control capsules and trained on a radial-maze spatial memory task. After training, rats were implanted with intracerebroventricular cannulae attached to osmotic minipumps (flow rate 0.15 μl/hr). Half of each hormone treatment group received continuous delivery of JB1 (300 μg/ml), an IGF-1 receptor antagonist, and half received delivery of aCSF vehicle. Rats were tested on trials in the radial-arm maze during which delays were imposed between the 4th and 5th arm choices. Hippocampal levels of synaptic proteins were measured by western blotting. Results Estradiol treatment resulted in significantly enhanced memory. JB1 blocked that enhancement. Estradiol treatment resulted in significantly increased hippocampal levels of postsynaptic density protein 95 (PSD-95), spinophilin, and synaptophysin. JB1 blocked the estradiol-induced increase of PSD-95 and spinophilin and attenuated the increase of synaptophysin. Conclusions Results support a role for IGF-1 receptor activity in estradiol-induced enhancement of spatial memory that may be dependent on changes in synapse structure in the hippocampus brought upon by estradiol/IGF-1 interactions. PMID:24146138

  10. Transdisciplinary Intervention by an Itinerant School Nurse in Two Rural Classrooms.

    Science.gov (United States)

    Stile, Stephen W.; Bentley, Nona

    1988-01-01

    Reports two transdisciplinary interventions conducted by an Itinerant school nurse. The case studies presented involve a Prader-Willi syndrome student enrolled in a class for the trainable mentally handicapped and a student enrolled in a regular fourth grade classroom but considered at risk for placement in a behavior disorders setting. (JHZ)

  11. Effects of 17beta-estradiol on glutamate synaptic transmission and neuronal excitability in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Frondaroli, A; Scarduzio, M; Dutia, M B; Dieni, C; Pettorossi, V E

    2010-02-17

    We investigated the effects of the neurosteroid 17beta-estradiol (E(2)) on the evoked and spontaneous activity of rat medial vestibular nucleus (MVN) neurons in brainstem slices. E(2) enhances the synaptic response to vestibular nerve stimulation in type B neurons and depresses the spontaneous discharge in both type A and B neurons. The amplitude of the field potential, as well as the excitatory post-synaptic potential (EPSP) and current (EPSC), in type B neurons, are enhanced by E(2). Both effects are long-term phenomena since they outlast the drug washout. The enhancement of synaptic response is mainly due to facilitation of glutamate release mediated by pre-synaptic N-methyl-D-aspartate receptors (NMDARs), since the reduction of paired pulse ratio (PPR) and the increase of miniature EPSC frequency after E(2) are abolished under D-(-)-2-amino-5-phosphonopentanoic acid (AP-5). E(2) also facilitates post-synaptic NMDARs, but it does not affect directly alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and group I-metabotropic glutamate receptors (mGluRs-I). In contrast, the depression of the spontaneous discharge of type A and type B neurons appears to depend on E(2) modulation of intrinsic ion conductances, as the effect remains after blockade of glutamate, GABA and glycine receptors (GlyRs). The net effect of E(2) is to enhance the signal-to-noise ratio of the synaptic response in type B neurons, relative to resting activity of all MVN neurons. These findings provide evidence for a novel potential mechanism to modulate the responsiveness of vestibular neurons to afferent inputs, and so regulate vestibular function in vivo.

  12. Caloric restriction increases learning consolidation and facilitates synaptic plasticity through mechanisms dependent on NR2B subunits of the NMDA receptor.

    Science.gov (United States)

    Fontán-Lozano, Angela; Sáez-Cassanelli, José Luis; Inda, Mari Carmen; de los Santos-Arteaga, Mercedes; Sierra-Domínguez, Sergio Antonio; López-Lluch, Guillermo; Delgado-García, José María; Carrión, Angel Manuel

    2007-09-19

    One of the main focal points of aging research is the search for treatments that will prevent or ameliorate the learning and memory deficiencies associated with aging. Here we have examined the effects of maintaining mature mice on a long-term intermittent fasting diet (L-IFD). We found that L-IFD enhances learning and consolidation processes. We also assessed the long-term changes in synaptic efficiency in these animals. L-IFD mice showed an increase in low-theta-band oscillations, paired-pulse facilitation, and facilitation of long-term synaptic plasticity in the hippocampus with respect to mice fed ad libitum. In addition, we found an increase in the expression of the NMDA receptor subunit NR2B in some brain areas of L-IFD mice. Specific antagonism of this subunit in the hippocampus reversed the beneficial effects of L-IFD. These data provide a molecular and cellular mechanism by which L-IFD may enhance cognition, ameliorating some aging-associated cognitive deficits.

  13. A family of photoswitchable NMDA receptors

    Science.gov (United States)

    Berlin, Shai; Szobota, Stephanie; Reiner, Andreas; Carroll, Elizabeth C; Kienzler, Michael A; Guyon, Alice; Xiao, Tong; Trauner, Dirk; Isacoff, Ehud Y

    2016-01-01

    NMDA receptors, which regulate synaptic strength and are implicated in learning and memory, consist of several subtypes with distinct subunit compositions and functional properties. To enable spatiotemporally defined, rapid and reproducible manipulation of function of specific subtypes, we engineered a set of photoswitchable GluN subunits ('LiGluNs'). Photo-agonism of GluN2A or GluN2B elicits an excitatory drive to hippocampal neurons that can be shaped in time to mimic synaptic activation. Photo-agonism of GluN2A at single dendritic spines evokes spine-specific calcium elevation and expansion, the morphological correlate of LTP. Photo-antagonism of GluN2A alone, or in combination with photo-antagonism of GluN1a, reversibly blocks excitatory synaptic currents, prevents the induction of long-term potentiation and prevents spine expansion. In addition, photo-antagonism in vivo disrupts synaptic pruning of developing retino-tectal projections in larval zebrafish. By providing precise and rapidly reversible optical control of NMDA receptor subtypes, LiGluNs should help unravel the contribution of specific NMDA receptors to synaptic transmission, integration and plasticity. DOI: http://dx.doi.org/10.7554/eLife.12040.001 PMID:26929991

  14. Soluble ectodomain of neuroligin 1 decreases synaptic activity by activating metabotropic glutamate receptor 2

    DEFF Research Database (Denmark)

    Gjørlund, Michelle D.; Carlsen, Eva Maria Meier; Kønig, Andreas Bay

    2017-01-01

    Synaptic cell adhesion molecules represent important targets for neuronal activity-dependent proteolysis. Postsynaptic neuroligins (NLs) form trans-synaptic complexes with presynaptic neurexins (NXs). Both NXs and NLs are cleaved from the cell surface by metalloproteases in an activity-dependent ...

  15. Alteration of synaptic connectivity of oligodendrocyte precursor cells following demyelination

    Science.gov (United States)

    Sahel, Aurélia; Ortiz, Fernando C.; Kerninon, Christophe; Maldonado, Paloma P.; Angulo, María Cecilia; Nait-Oumesmar, Brahim

    2015-01-01

    Oligodendrocyte precursor cells (OPCs) are a major source of remyelinating oligodendrocytes in demyelinating diseases such as Multiple Sclerosis (MS). While OPCs are innervated by unmyelinated axons in the normal brain, the fate of such synaptic contacts after demyelination is still unclear. By combining electrophysiology and immunostainings in different transgenic mice expressing fluorescent reporters, we studied the synaptic innervation of OPCs in the model of lysolecithin (LPC)-induced demyelination of corpus callosum. Synaptic innervation of reactivated OPCs in the lesion was revealed by the presence of AMPA receptor-mediated synaptic currents, VGluT1+ axon-OPC contacts in 3D confocal reconstructions and synaptic junctions observed by electron microscopy. Moreover, 3D confocal reconstructions of VGluT1 and NG2 immunolabeling showed the existence of glutamatergic axon-OPC contacts in post-mortem MS lesions. Interestingly, patch-clamp recordings in LPC-induced lesions demonstrated a drastic decrease in spontaneous synaptic activity of OPCs early after demyelination that was not caused by an impaired conduction of compound action potentials. A reduction in synaptic connectivity was confirmed by the lack of VGluT1+ axon-OPC contacts in virtually all rapidly proliferating OPCs stained with EdU (50-ethynyl-20-deoxyuridine). At the end of the massive proliferation phase in lesions, the proportion of innervated OPCs rapidly recovers, although the frequency of spontaneous synaptic currents did not reach control levels. In conclusion, our results demonstrate that newly-generated OPCs do not receive synaptic inputs during their active proliferation after demyelination, but gain synapses during the remyelination process. Hence, glutamatergic synaptic inputs may contribute to inhibit OPC proliferation and might have a physiopathological relevance in demyelinating disorders. PMID:25852473

  16. Neuronal cytoskeleton in synaptic plasticity and regeneration.

    Science.gov (United States)

    Gordon-Weeks, Phillip R; Fournier, Alyson E

    2014-04-01

    During development, dynamic changes in the axonal growth cone and dendrite are necessary for exploratory movements underlying initial axo-dendritic contact and ultimately the formation of a functional synapse. In the adult central nervous system, an impressive degree of plasticity is retained through morphological and molecular rearrangements in the pre- and post-synaptic compartments that underlie the strengthening or weakening of synaptic pathways. Plasticity is regulated by the interplay of permissive and inhibitory extracellular cues, which signal through receptors at the synapse to regulate the closure of critical periods of developmental plasticity as well as by acute changes in plasticity in response to experience and activity in the adult. The molecular underpinnings of synaptic plasticity are actively studied and it is clear that the cytoskeleton is a key substrate for many cues that affect plasticity. Many of the cues that restrict synaptic plasticity exhibit residual activity in the injured adult CNS and restrict regenerative growth by targeting the cytoskeleton. Here, we review some of the latest insights into how cytoskeletal remodeling affects neuronal plasticity and discuss how the cytoskeleton is being targeted in an effort to promote plasticity and repair following traumatic injury in the central nervous system. © 2013 International Society for Neurochemistry.

  17. MAGUKs: multifaceted synaptic organizers.

    Science.gov (United States)

    Won, Sehoon; Levy, Jon M; Nicoll, Roger A; Roche, Katherine W

    2017-04-01

    The PSD-95 family of proteins, known as MAGUKs, have long been recognized to be central building blocks of the PSD. They are categorized as scaffolding proteins, which link surface-expressed receptors to the intracellular signaling molecules. Although the four members of the PSD-95 family (PSD-95, PSD-93, SAP102, and SAP97) have many shared roles in regulating synaptic function, recent studies have begun to delineate specific binding partners and roles in plasticity. In the current review, we will highlight the conserved and unique roles of these proteins. Published by Elsevier Ltd.

  18. Synaptic heterogeneity and stimulus-induced modulation of depression in central synapses.

    Science.gov (United States)

    Hunter, J D; Milton, J G

    2001-08-01

    Short-term plasticity is a pervasive feature of synapses. Synapses exhibit many forms of plasticity operating over a range of time scales. We develop an optimization method that allows rapid characterization of synapses with multiple time scales of facilitation and depression. Investigation of paired neurons that are postsynaptic to the same identified interneuron in the buccal ganglion of Aplysia reveals that the responses of the two neurons differ in the magnitude of synaptic depression. Also, for single neurons, prolonged stimulation of the presynaptic neuron causes stimulus-induced increases in the early phase of synaptic depression. These observations can be described by a model that incorporates two availability factors, e.g., depletable vesicle pools or desensitizing receptor populations, with different time courses of recovery, and a single facilitation component. This model accurately predicts the responses to novel stimuli. The source of synaptic heterogeneity is identified with variations in the relative sizes of the two availability factors, and the stimulus-induced decrement in the early synaptic response is explained by a slowing of the recovery rate of one of the availability factors. The synaptic heterogeneity and stimulus-induced modifications in synaptic depression observed here emphasize that synaptic efficacy depends on both the individual properties of synapses and their past history.

  19. Presynaptic inhibition of GABAergic synaptic transmission by adenosine in mouse hypothalamic hypocretin neurons.

    Science.gov (United States)

    Xia, J X; Xiong, J X; Wang, H K; Duan, S M; Ye, J N; Hu, Z A

    2012-01-10

    Hypocretin neurons in the lateral hypothalamus, a new wakefulness-promoting center, have been recently regarded as an important target involved in endogenous adenosine-regulating sleep homeostasis. The GABAergic synaptic transmissions are the main inhibitory afferents to hypocretin neurons, which play an important role in the regulation of excitability of these neurons. The inhibitory effect of adenosine, a homeostatic sleep-promoting factor, on the excitatory glutamatergic synaptic transmissions in hypocretin neurons has been well documented, whether adenosine also modulates these inhibitory GABAergic synaptic transmissions in these neurons has not been investigated. In this study, the effect of adenosine on inhibitory postsynaptic currents (IPSCs) in hypocretin neurons was examined by using perforated patch-clamp recordings in the acute hypothalamic slices. The findings demonstrated that adenosine suppressed the amplitude of evoked IPSCs in a dose-dependent manner, which was completely abolished by 8-cyclopentyltheophylline (CPT), a selective antagonist of adenosine A1 receptor but not adenosine A2 receptor antagonist 3,7-dimethyl-1-(2-propynyl) xanthine. A presynaptic origin was suggested as following: adenosine increased paired-pulse ratio as well as reduced GABAergic miniature IPSC frequency without affecting the miniature IPSC amplitude. Further findings demonstrated that when the frequency of electrical stimulation was raised to 10 Hz, but not 1 Hz, a time-dependent depression of evoked IPSC amplitude was detected in hypocretin neurons, which could be partially blocked by CPT. However, under a higher frequency at 100 Hz stimulation, CPT had no action on the depressed GABAergic synaptic transmission induced by such tetanic stimulation in these hypocretin neurons. These results suggest that endogenous adenosine generated under certain stronger activities of synaptic transmissions exerts an inhibitory effect on GABAergic synaptic transmission in hypocretin

  20. Presynaptic protein synthesis required for NT-3-induced long-term synaptic modulation

    Directory of Open Access Journals (Sweden)

    Je H

    2011-01-01

    Full Text Available Abstract Background Neurotrophins elicit both acute and long-term modulation of synaptic transmission and plasticity. Previously, we demonstrated that the long-term synaptic modulation requires the endocytosis of neurotrophin-receptor complex, the activation of PI3K and Akt, and mTOR mediated protein synthesis. However, it is unclear whether the long-term synaptic modulation by neurotrophins depends on protein synthesis in pre- or post-synaptic cells. Results Here we have developed an inducible protein translation blocker, in which the kinase domain of protein kinase R (PKR is fused with bacterial gyrase B domain (GyrB-PKR, which could be dimerized upon treatment with a cell permeable drug, coumermycin. By genetically targeting GyrB-PKR to specific cell types, we show that NT-3 induced long-term synaptic modulation requires presynaptic, but not postsynaptic protein synthesis. Conclusions Our results provide mechanistic insights into the cell-specific requirement for protein synthesis in the long-term synaptic modulation by neurotrophins. The GyrB-PKR system may be useful tool to study protein synthesis in a cell-specific manner.

  1. Emergence of unstable itinerant orbits in a recurrent neural network model

    International Nuclear Information System (INIS)

    Suemitsu, Yoshikazu; Nara, Shigetoshi

    2005-01-01

    A recurrent neural network model with time delay is investigated by numerical methods. The model functions as both conventional associative memory and also enables us to embed a new kind of memory attractor that cannot be realized in models without time delay, for example chain-ring attractors. This is attributed to the fact that the time delay extends the available state space dimension. The difference between the basin structures of chain-ring attractors and of isolated cycle attractors is investigated with respect to the two attractor pattern sets, random memory patterns and designed memory patterns with intended structures. Compared to isolated attractors with random memory patterns, the basins of chain-ring attractors are reduced considerably. Computer experiments confirm that the basin volume of each embedded chain-ring attractor shrinks and the emergence of unstable itinerant orbits in the outer state space of the memory attractor basins is discovered. The instability of such itinerant orbits is investigated. Results show that a 1-bit difference in initial conditions does not exceed 10% of a total dimension within 100 updating steps

  2. Pressure-induced itinerant electron metamagnetism in UCo0.995Os0.005Al ferromagnet

    Science.gov (United States)

    Mushnikov, N. V.; Andreev, A. V.; Arnold, Z.

    2018-05-01

    The effect of external hydrostatic pressure on magnetic properties is studied for the UCo0.995Os0.005Al single crystal. At ambient pressure, the ground state is ferromagnetic. Even lowest applied pressure 0.11 GPa is sufficient to suppress ferromagnetism. A sharp metamagnetic transition is observed only in magnetic fields along the c axis of the crystal, similar to previously studied itinerant electron metamagnet UCoAl. Temperature dependence of the susceptibility for various pressures shows a broad maximum at Tmax 20 K. The experimental data are analyzed with the theory of itinerant electron metamagnetism, which considers anisotropic thermal fluctuations of the uranium magnetic moment. The observed pressure dependence of the susceptibility at Tmax and the temperature for the disappearance of the first-order metamagnetic transition are explained with the theory.

  3. Novel nootropic drug sunifiram enhances hippocampal synaptic efficacy via glycine-binding site of N-methyl-D-aspartate receptor.

    Science.gov (United States)

    Moriguchi, Shigeki; Tanaka, Tomoya; Narahashi, Toshio; Fukunaga, Kohji

    2013-10-01

    Sunifiram is a novel pyrrolidone nootropic drug structurally related to piracetam, which was developed for neurodegenerative disorder like Alzheimer's disease. Sunifiram is known to enhance cognitive function in some behavioral experiments such as Morris water maze task. To address question whether sunifiram affects N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic function in the hippocampal CA1 region, we assessed the effects of sunifiram on NMDAR-dependent long-term potentiation (LTP) by electrophysiology and on phosphorylation of synaptic proteins by immunoblotting analysis. In mouse hippocampal slices, sunifiram at 10-100 nM significantly enhanced LTP in a bell-shaped dose-response relationship which peaked at 10 nM. The enhancement of LTP by sunifiram treatment was inhibited by 7-chloro-kynurenic acid (7-ClKN), an antagonist for glycine-binding site of NMDAR, but not by ifenprodil, an inhibitor for polyamine site of NMDAR. The enhancement of LTP by sunifilam was associated with an increase in phosphorylation of α-amino-3-hydroxy-5-methylisozazole-4-propionate receptor (AMPAR) through activation of calcium/calmodulin-dependent protein kinase II (CaMKII) and an increase in phosphorylation of NMDAR through activation of protein kinase Cα (PKCα). Sunifiram treatments at 1-1000 nM increased the slope of field excitatory postsynaptic potentials (fEPSPs) in a dose-dependent manner. The enhancement was associated with an increase in phosphorylation of AMPAR receptor through activation of CaMKII. Interestingly, under the basal condition, sunifiram treatments increased PKCα (Ser-657) and Src family (Tyr-416) activities with the same bell-shaped dose-response curve as that of LTP peaking at 10 nM. The increase in phosphorylation of PKCα (Ser-657) and Src (Tyr-416) induced by sunifiram was inhibited by 7-ClKN treatment. The LTP enhancement by sunifiram was significantly inhibited by PP2, a Src family inhibitor. Finally, when pretreated with a high

  4. Regulation of Synaptic Structure by the Ubiquitin C-terminal Hydrolase UCH-L1

    Science.gov (United States)

    Cartier, Anna E.; Djakovic, Stevan N.; Salehi, Afshin; Wilson, Scott M.; Masliah, Eliezer; Patrick, Gentry N.

    2009-01-01

    UCH-L1 is a de-ubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We have found that UCH-L1 activity is rapidly up-regulated by NMDA receptor activation which leads to an increase in the levels of free monomeric ubiquitin. Conversely, pharmacological inhibition of UCH-L1 significantly reduces monomeric ubiquitin levels and causes dramatic alterations in synaptic protein distribution and spine morphology. Inhibition of UCH-L1 activity increases spine size while decreasing spine density. Furthermore, there is a concomitant increase in the size of pre and postsynaptic protein clusters. Interestingly, however, ectopic expression of ubiquitin restores normal synaptic structure in UCH-L1 inhibited neurons. These findings point to a significant role of UCH-L1 in synaptic remodeling most likely by modulating free monomeric ubiquitin levels in an activity-dependent manner. PMID:19535597

  5. PRRT2: from Paroxysmal Disorders to Regulation of Synaptic Function.

    Science.gov (United States)

    Valtorta, Flavia; Benfenati, Fabio; Zara, Federico; Meldolesi, Jacopo

    2016-10-01

    In the past few years, proline-rich transmembrane protein (PRRT)2 has been identified as the causative gene for several paroxysmal neurological disorders. Recently, an important role of PRRT2 in synapse development and function has emerged. Knock down of the protein strongly impairs the formation of synaptic contacts and neurotransmitter release. At the nerve terminal, PRRT2 endows synaptic vesicle exocytosis with Ca 2+ sensitivity by interacting with proteins of the fusion complex and with the Ca 2+ sensors synaptotagmins (Syts). In the postsynaptic compartment, PRRT2 interacts with glutamate receptors. The study of PRRT2 and of its mutations may help in refining our knowledge of the process of synaptic transmission and elucidating the pathogenetic mechanisms leading to derangement of network function in paroxysmal disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Defective glycinergic synaptic transmission in zebrafish motility mutants

    Directory of Open Access Journals (Sweden)

    Hiromi Hirata

    2010-01-01

    Full Text Available Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs.

  7. Defective Glycinergic Synaptic Transmission in Zebrafish Motility Mutants

    Science.gov (United States)

    Hirata, Hiromi; Carta, Eloisa; Yamanaka, Iori; Harvey, Robert J.; Kuwada, John Y.

    2009-01-01

    Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho) mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch-once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch-once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs. PMID:20161699

  8. Synaptic communication between neurons and NG2+ cells.

    Science.gov (United States)

    Paukert, Martin; Bergles, Dwight E

    2006-10-01

    Chemical synaptic transmission provides the basis for much of the rapid signaling that occurs within neuronal networks. However, recent studies have provided compelling evidence that synapses are not used exclusively for communication between neurons. Physiological and anatomical studies indicate that a distinct class of glia known as NG2(+) cells also forms direct synaptic junctions with both glutamatergic and GABAergic neurons. Glutamatergic signaling can influence intracellular Ca(2+) levels in NG2(+) cells by activating Ca(2+) permeable AMPA receptors, and these inputs can be potentiated through high frequency stimulation. Although the significance of this highly differentiated form of communication remains to be established, these neuro-glia synapses might enable neurons to influence rapidly the behavior of this ubiquitous class of glial progenitors.

  9. Neuronal pentraxin 1: A synaptic-derived plasma biomarker in Alzheimer's disease.

    Science.gov (United States)

    Ma, Qiu-Lan; Teng, Edmond; Zuo, Xiaohong; Jones, Mychica; Teter, Bruce; Zhao, Evan Y; Zhu, Cansheng; Bilousova, Tina; Gylys, Karen H; Apostolova, Liana G; LaDu, Mary Jo; Hossain, Mir Ahamed; Frautschy, Sally A; Cole, Gregory M

    2018-06-01

    Synaptic neurodegeneration is thought to be an early event initiated by soluble β-amyloid (Aβ) aggregates that closely correlates with cognitive decline in Alzheimer disease (AD). Apolipoprotein ε4 (APOE4) is the most common genetic risk factor for both familial AD (FAD) and sporadic AD; it accelerates Aβ aggregation and selectively impairs glutamate receptor function and synaptic plasticity. However, its molecular mechanisms remain elusive and these synaptic deficits are difficult to monitor. AD- and APOE4-dependent plasma biomarkers have been proposed, but synapse-related plasma biomarkers are lacking. We evaluated neuronal pentraxin 1 (NP1), a potential CNS-derived plasma biomarker of excitatory synaptic pathology. NP1 is preferentially expressed in brain and involved in glutamate receptor internalization. NP1 is secreted presynaptically induced by Aβ oligomers, and implicated in excitatory synaptic and mitochondrial deficits. Levels of NP1 and its fragments were increased in a correlated fashion in both brain and plasma of 7-8 month-old E4FAD mice relative to E3FAD mice. NP1 was also found in exosome preparations and reduced by dietary DHA supplementation. Plasma NP1 was higher in E4FAD+ (APOE4 +/+ /FAD +/- ) relative to E4FAD- (non-carrier; APOE4 +/+ /FAD -/- ) mice, suggesting NP1 is modulated by Aβ expression. Finally, relative to normal elderly, plasma NP1 was also elevated in patients with mild cognitive impairment (MCI) and elevated further in the subset who progressed to early-stage AD. In those patients, there was a trend towards increased NP1 levels in APOE4 carriers relative to non-carriers. These findings indicate that NP1 may represent a potential synapse-derived plasma biomarker relevant to early alterations in excitatory synapses in MCI and early-stage AD. Copyright © 2018. Published by Elsevier Inc.

  10. NPY gene transfer in the hippocampus attenuates synaptic plasticity and learning

    DEFF Research Database (Denmark)

    Sørensen, Andreas T; Kanter-Schlifke, Irene; Carli, Mirjana

    2008-01-01

    -mediated mechanisms. In addition, transgene NPY seems to be released during high frequency neuronal activity, leading to decreased glutamate release in excitatory synapses. Importantly, memory consolidation appears to be affected by the treatment. We found that long-term potentiation (LTP) in the CA1 area...... processing. Here we show, by electrophysiological recordings in CA1 of the hippocampal formation of rats, that hippocampal NPY gene transfer into the intact brain does not affect basal synaptic transmission, but slightly alters short-term synaptic plasticity, most likely via NPY Y2 receptor....... Future clinical progress, however, requires more detailed evaluation of possible side effects of this treatment. Until now it has been unknown whether rAAV vector-based NPY overexpression in the hippocampus alters normal synaptic transmission and plasticity, which could disturb learning and memory...

  11. Exocytosis of gliotransmitters from cortical astrocytes: implications for synaptic plasticity and aging.

    Science.gov (United States)

    Lalo, Ulyana; Rasooli-Nejad, Seyed; Pankratov, Yuriy

    2014-10-01

    Maintaining brain function during aging is very important for mental and physical health. Recent studies showed a crucial importance of communication between two major types of brain cells: neurons transmitting electrical signals, and glial cells, which maintain the well-being and function of neurons. Still, the study of age-related changes in neuron-glia signalling is far from complete. We have shown previously that cortical astrocytes are capable of releasing ATP by a quantal soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) complex-dependent mechanism. Release of ATP from cortical astrocytes can be activated via various pathways, including direct UV-uncaging of intracellular Ca²⁺ or G-protein-coupled receptors. Importantly, release of both ATP and glutamate from neocortical astrocytes was not observed in brain slices of dominant-negative SNARE (dnSNARE) mice, expressing dnSNARE domain selectively in astrocytes. We also discovered that astrocyte-driven ATP can cause significant attenuation of synaptic inhibition in the pyramidal neurons via Ca²⁺-interaction between the neuronal ATP and γ-aminobutyric acid (GABA) receptors. Furthermore, we showed that astrocyte-derived ATP can facilitate the induction of long-term potentiation of synaptic plasticity in the neocortex. Our recent data have shown that an age-related decrease in the astroglial Ca²⁺ signalling can cause a substantial decrease in the exocytosis of gliotransmitters, in particular ATP. Age-related impairment of ATP release from cortical astrocytes can cause a decrease in the extent of astroglial modulation of synaptic transmission in the neocortex and can therefore contribute to the age-related impairment of synaptic plasticity and cognitive decline. Combined, our results strongly support the physiological relevance of glial exocytosis for glia-neuron communications and brain function.

  12. Long-term relationships between cholinergic tone, synchronous bursting and synaptic remodeling.

    Directory of Open Access Journals (Sweden)

    Maya Kaufman

    Full Text Available Cholinergic neuromodulation plays key roles in the regulation of neuronal excitability, network activity, arousal, and behavior. On longer time scales, cholinergic systems play essential roles in cortical development, maturation, and plasticity. Presumably, these processes are associated with substantial synaptic remodeling, yet to date, long-term relationships between cholinergic tone and synaptic remodeling remain largely unknown. Here we used automated microscopy combined with multielectrode array recordings to study long-term relationships between cholinergic tone, excitatory synapse remodeling, and network activity characteristics in networks of cortical neurons grown on multielectrode array substrates. Experimental elevations of cholinergic tone led to the abrupt suppression of episodic synchronous bursting activity (but not of general activity, followed by a gradual growth of excitatory synapses over hours. Subsequent blockage of cholinergic receptors led to an immediate restoration of synchronous bursting and the gradual reversal of synaptic growth. Neither synaptic growth nor downsizing was governed by multiplicative scaling rules. Instead, these occurred in a subset of synapses, irrespective of initial synaptic size. Synaptic growth seemed to depend on intrinsic network activity, but not on the degree to which bursting was suppressed. Intriguingly, sustained elevations of cholinergic tone were associated with a gradual recovery of synchronous bursting but not with a reversal of synaptic growth. These findings show that cholinergic tone can strongly affect synaptic remodeling and synchronous bursting activity, but do not support a strict coupling between the two. Finally, the reemergence of synchronous bursting in the presence of elevated cholinergic tone indicates that the capacity of cholinergic neuromodulation to indefinitely suppress synchronous bursting might be inherently limited.

  13. Long-term Relationships between Cholinergic Tone, Synchronous Bursting and Synaptic Remodeling

    Science.gov (United States)

    Kaufman, Maya; Corner, Michael A.; Ziv, Noam E.

    2012-01-01

    Cholinergic neuromodulation plays key roles in the regulation of neuronal excitability, network activity, arousal, and behavior. On longer time scales, cholinergic systems play essential roles in cortical development, maturation, and plasticity. Presumably, these processes are associated with substantial synaptic remodeling, yet to date, long-term relationships between cholinergic tone and synaptic remodeling remain largely unknown. Here we used automated microscopy combined with multielectrode array recordings to study long-term relationships between cholinergic tone, excitatory synapse remodeling, and network activity characteristics in networks of cortical neurons grown on multielectrode array substrates. Experimental elevations of cholinergic tone led to the abrupt suppression of episodic synchronous bursting activity (but not of general activity), followed by a gradual growth of excitatory synapses over hours. Subsequent blockage of cholinergic receptors led to an immediate restoration of synchronous bursting and the gradual reversal of synaptic growth. Neither synaptic growth nor downsizing was governed by multiplicative scaling rules. Instead, these occurred in a subset of synapses, irrespective of initial synaptic size. Synaptic growth seemed to depend on intrinsic network activity, but not on the degree to which bursting was suppressed. Intriguingly, sustained elevations of cholinergic tone were associated with a gradual recovery of synchronous bursting but not with a reversal of synaptic growth. These findings show that cholinergic tone can strongly affect synaptic remodeling and synchronous bursting activity, but do not support a strict coupling between the two. Finally, the reemergence of synchronous bursting in the presence of elevated cholinergic tone indicates that the capacity of cholinergic neuromodulation to indefinitely suppress synchronous bursting might be inherently limited. PMID:22911726

  14. Long-term relationships between cholinergic tone, synchronous bursting and synaptic remodeling.

    Science.gov (United States)

    Kaufman, Maya; Corner, Michael A; Ziv, Noam E

    2012-01-01

    Cholinergic neuromodulation plays key roles in the regulation of neuronal excitability, network activity, arousal, and behavior. On longer time scales, cholinergic systems play essential roles in cortical development, maturation, and plasticity. Presumably, these processes are associated with substantial synaptic remodeling, yet to date, long-term relationships between cholinergic tone and synaptic remodeling remain largely unknown. Here we used automated microscopy combined with multielectrode array recordings to study long-term relationships between cholinergic tone, excitatory synapse remodeling, and network activity characteristics in networks of cortical neurons grown on multielectrode array substrates. Experimental elevations of cholinergic tone led to the abrupt suppression of episodic synchronous bursting activity (but not of general activity), followed by a gradual growth of excitatory synapses over hours. Subsequent blockage of cholinergic receptors led to an immediate restoration of synchronous bursting and the gradual reversal of synaptic growth. Neither synaptic growth nor downsizing was governed by multiplicative scaling rules. Instead, these occurred in a subset of synapses, irrespective of initial synaptic size. Synaptic growth seemed to depend on intrinsic network activity, but not on the degree to which bursting was suppressed. Intriguingly, sustained elevations of cholinergic tone were associated with a gradual recovery of synchronous bursting but not with a reversal of synaptic growth. These findings show that cholinergic tone can strongly affect synaptic remodeling and synchronous bursting activity, but do not support a strict coupling between the two. Finally, the reemergence of synchronous bursting in the presence of elevated cholinergic tone indicates that the capacity of cholinergic neuromodulation to indefinitely suppress synchronous bursting might be inherently limited.

  15. Kalirin-7 is necessary for normal NMDA receptor-dependent synaptic plasticity

    KAUST Repository

    Lemtiri-Chlieh, Fouad; Zhao, Liangfang; Kiraly, Drew D; Eipper, Betty A; Mains, Richard E; Levine, Eric S

    2011-01-01

    to stimulation is considered to be of paramount importance during the development of synaptic plasticity. Indeed, long-term potentiation (LTP), widely believed to be a cellular correlate of learning and memory, has been repeatedly shown to induce both spine

  16. L-Type Voltage-Gated Ca2+ Channels Regulate Synaptic-Activity-Triggered Recycling Endosome Fusion in Neuronal Dendrites

    Directory of Open Access Journals (Sweden)

    Brian G. Hiester

    2017-11-01

    Full Text Available The repertoire and abundance of proteins displayed on the surface of neuronal dendrites are tuned by regulated fusion of recycling endosomes (REs with the dendritic plasma membrane. While this process is critical for neuronal function and plasticity, how synaptic activity drives RE fusion remains unexplored. We demonstrate a multistep fusion mechanism that requires Ca2+ from distinct sources. NMDA receptor Ca2+ initiates RE fusion with the plasma membrane, while L-type voltage-gated Ca2+ channels (L-VGCCs regulate whether fused REs collapse into the membrane or reform without transferring their cargo to the cell surface. Accordingly, NMDA receptor activation triggered AMPA-type glutamate receptor trafficking to the dendritic surface in an L-VGCC-dependent manner. Conversely, potentiating L-VGCCs enhanced AMPA receptor surface expression only when NMDA receptors were also active. Thus L-VGCCs play a role in tuning activity-triggered surface expression of key synaptic proteins by gating the mode of RE fusion.

  17. Localization of mineralocorticoid receptors at mammalian synapses.

    Directory of Open Access Journals (Sweden)

    Eric M Prager

    Full Text Available In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids.

  18. Blocking Synaptic Removal of GluA2-Containing AMPA Receptors Prevents the Natural Forgetting of Long-Term Memories.

    Science.gov (United States)

    Migues, Paola Virginia; Liu, Lidong; Archbold, Georgina E B; Einarsson, Einar Ö; Wong, Jacinda; Bonasia, Kyra; Ko, Seung Hyun; Wang, Yu Tian; Hardt, Oliver

    2016-03-23

    The neurobiological processes underpinning the natural forgetting of long-term memories are poorly understood. Based on the critical role of GluA2-containing AMPA receptors (GluA2/AMPARs) in long-term memory persistence, we tested in rats whether their synaptic removal underpins time-dependent memory loss. We found that blocking GluA2/AMPAR removal with the interference peptides GluA23Y or G2CT in the dorsal hippocampus during a memory retention interval prevented the normal forgetting of established, long-term object location memories, but did not affect their acquisition. The same intervention also preserved associative memories of food-reward conditioned place preference that would otherwise be lost over time. We then explored whether this forgetting process could play a part in behavioral phenomena involving time-dependent memory change. We found that infusing GluA23Y into the dorsal hippocampus during a 2 week retention interval blocked generalization of contextual fear expression, whereas infusing it into the infralimbic cortex after extinction of auditory fear prevented spontaneous recovery of the conditioned response. Exploring possible physiological mechanisms that could be involved in this form of memory decay, we found that bath application of GluA23Y prevented depotentiation, but not induction of long-term potentiation, in a hippocampal slice preparation. Together, these findings suggest that a decay-like forgetting process that involves the synaptic removal of GluA2/AMPARs erases consolidated long-term memories in the hippocampus and other brain structures over time. This well regulated forgetting process may critically contribute to establishing adaptive behavior, whereas its dysregulation could promote the decline of memory and cognition in neuropathological disorders. The neurobiological mechanisms involved in the natural forgetting of long-term memory and its possible functions are not fully understood. Based on our previous work describing the

  19. Potentiation of Inhibitory Synaptic Transmission by Extracellular ATP in Rat Suprachiasmatic Nuclei

    Czech Academy of Sciences Publication Activity Database

    Bhattacharya, Anirban; Vávra, Vojtěch; Svobodová, Irena; Bendová, Z.; Vereb, G.; Zemková, Hana

    2013-01-01

    Roč. 33, č. 18 (2013), s. 8035-8044 ISSN 0270-6474 R&D Projects: GA AV ČR(CZ) IAA500110910; GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) EE2.3.30.0025 Institutional support: RVO:67985823 Keywords : suprachiasmatic nucleus * P2X receptors * P2Y receptors * ATP * GABA * spontaneous inhibitory synaptic currents Subject RIV: ED - Physiology Impact factor: 6.747, year: 2013

  20. Role of DHA in aging-related changes in mouse brain synaptic plasma membrane proteome.

    Science.gov (United States)

    Sidhu, Vishaldeep K; Huang, Bill X; Desai, Abhishek; Kevala, Karl; Kim, Hee-Yong

    2016-05-01

    Aging has been related to diminished cognitive function, which could be a result of ineffective synaptic function. We have previously shown that synaptic plasma membrane proteins supporting synaptic integrity and neurotransmission were downregulated in docosahexaenoic acid (DHA)-deprived brains, suggesting an important role of DHA in synaptic function. In this study, we demonstrate aging-induced synaptic proteome changes and DHA-dependent mitigation of such changes using mass spectrometry-based protein quantitation combined with western blot or messenger RNA analysis. We found significant reduction of 15 synaptic plasma membrane proteins in aging brains including fodrin-α, synaptopodin, postsynaptic density protein 95, synaptic vesicle glycoprotein 2B, synaptosomal-associated protein 25, synaptosomal-associated protein-α, N-methyl-D-aspartate receptor subunit epsilon-2 precursor, AMPA2, AP2, VGluT1, munc18-1, dynamin-1, vesicle-associated membrane protein 2, rab3A, and EAAT1, most of which are involved in synaptic transmission. Notably, the first 9 proteins were further reduced when brain DHA was depleted by diet, indicating that DHA plays an important role in sustaining these synaptic proteins downregulated during aging. Reduction of 2 of these proteins was reversed by raising the brain DHA level by supplementing aged animals with an omega-3 fatty acid sufficient diet for 2 months. The recognition memory compromised in DHA-depleted animals was also improved. Our results suggest a potential role of DHA in alleviating aging-associated cognitive decline by offsetting the loss of neurotransmission-regulating synaptic proteins involved in synaptic function. Published by Elsevier Inc.

  1. Pressure-induced quantum phase transition in the itinerant ferromagnet UCoGa

    Czech Academy of Sciences Publication Activity Database

    Míšek, Martin; Prokleška, J.; Opletal, P.; Proschek, P.; Kaštil, Jiří; Kamarád, Jiří; Sechovský, V.

    2017-01-01

    Roč. 7, č. 5 (2017), s. 1-4, č. článku 055712. ISSN 2158-3226 R&D Projects: GA ČR GA16-06422S Institutional support: RVO:68378271 Keywords : quantum phase transition * high pressure * itinerant ferromagnet * UCoGa Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.568, year: 2016 http://aip.scitation.org/doi/10.1063/1.4976300

  2. Phenomenological approach to spin fluctuations in itinerant magnets and superconductors from ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ortenzi, Luciano

    2013-10-17

    In this thesis I study the interplay between magnetism and superconductivity in itinerant magnets and superconductors. I do this by applying a semiphenomenological method to four representative compounds. In particular I use the discrepancies (whenever present) between density functional theory (DFT) calculations and the experiments in order to construct phenomenological models which explain the magnetic, superconducting and optical properties of four representative systems. I focus my attention on the superconducting and normal state properties of the recently discovered APt3P superconductors, on superconducting hole-doped CuBiSO, on the optical properties of LaFePO and finally on the ferromagnetic-paramagnetic transition of Ni3Al under pressure. At the end I present a new method which aims to describe the effect of spin fluctuations in itinerant magnets and superconductors that can be used to monitor the evolution of the electronic structure from non magnetic to magnetic in systems close to a quantum critical point.

  3. The mysterious trace amines: protean neuromodulators of synaptic transmission in mammalian brain.

    Science.gov (United States)

    Burchett, Scott A; Hicks, T Philip

    2006-08-01

    The trace amines are a structurally related group of amines and their isomers synthesized in mammalian brain and peripheral nervous tissues. They are closely associated metabolically with the dopamine, noradrenaline and serotonin neurotransmitter systems in mammalian brain. Like dopamine, noradrenaline and serotonin the trace amines have been implicated in a vast array of human disorders of affect and cognition. The trace amines are unique as they are present in trace concentrations, exhibit high rates of metabolism and are distributed heterogeneously in mammalian brain. While some are synthesized in their parent amine neurotransmitter systems, there is also evidence to suggest other trace amines may comprise their own independent neurotransmitter systems. A substantial body of evidence suggests that the trace amines may play very significant roles in the coordination of biogenic amine-based synaptic physiology. At high concentrations, they have well-characterized presynaptic "amphetamine-like" effects on catecholamine and indolamine release, reuptake and biosynthesis; at lower concentrations, they possess postsynaptic modulatory effects that potentiate the activity of other neurotransmitters, particularly dopamine and serotonin. The trace amines also possess electrophysiological effects that are in opposition to these neurotransmitters, indicating to some researchers the existence of receptors specific for the trace amines. While binding sites or receptors for a few of the trace amines have been advanced, the absence of cloned receptor protein has impeded significant development of their detailed mechanistic roles in the coordination of catecholamine and indolamine synaptic physiology. The recent discovery and characterization of a family of mammalian G protein-coupled receptors responsive to trace amines such as beta-phenylethylamine, tyramine, and octopamine, including socially ingested psychotropic drugs such as amphetamine, 3,4-methylenedioxymethamphetamine, N

  4. Opioid withdrawal for 4 days prevents synaptic depression induced by low dose of morphine or naloxone in rat hippocampal CA1 area in vivo.

    Science.gov (United States)

    Dong, Zhifang; Han, Huili; Cao, Jun; Xu, Lin

    2010-02-01

    The formation of memory is believed to depend on experience- or activity-dependent synaptic plasticity, which is exquisitely sensitive to psychological stress since inescapable stress impairs long-term potentiation (LTP) but facilitates long-term depression (LTD). Our recent studies demonstrated that 4 days of opioid withdrawal enables maximal extents of both hippocampal LTP and drug-reinforced behavior; while elevated-platform stress enables these phenomena at 18 h of opioid withdrawal. Here, we examined the effects of low dose of morphine (0.5 mg kg(-1), i.p.) or the opioid receptor antagonist naloxone (1 mg kg(-1), i.p.) on synaptic efficacy in the hippocampal CA1 region of anesthetized rats. A form of synaptic depression was induced by low dose of morphine or naloxone in rats after 18 h but not 4 days of opioid withdrawal. This synaptic depression was dependent on both N-methyl-D-aspartate receptor and synaptic activity, similar to the hippocampal long-term depression induced by low frequency stimulation. Elevated-platform stress given 2 h before experiment prevented the synaptic depression at 18 h of opioid withdrawal; in contrast, the glucocorticoid receptor (GR) antagonist RU38486 treatment (20 mg kg(-1), s.c., twice per day for first 3 days of withdrawal), or a high dose of morphine reexposure (15 mg kg(-1), s.c., 12 h before experiment), enabled the synaptic depression on 4 days of opioid withdrawal. This temporal shift of synaptic depression by stress or GR blockade supplements our previous findings of potentially correlated temporal shifts of LTP induction and drug-reinforced behavior during opioid withdrawal. Our results therefore support the idea that stress experience during opioid withdrawal may modify hippocampal synaptic plasticity and play important roles in drug-associated memory. (c) 2009 Wiley-Liss, Inc.

  5. ApoER2 Function in the Establishment and Maintenance of Retinal Synaptic Connectivity

    Science.gov (United States)

    Trotter, Justin H.; Klein, Martin; Jinwal, Umesh K.; Abisambra, Jose F.; Dickey, Chad A.; Tharkur, Jeremy; Masiulis, Irene; Ding, Jindong; Locke, Kirstin G.; Rickman, Catherine Bowes; Birch, David G.; Weeber, Edwin J.; Herz, Joachim

    2011-01-01

    The cellular and molecular mechanisms responsible for the development of inner retinal circuitry are poorly understood. Reelin and apolipoprotein E (apoE), ligands of apoE receptor 2 (ApoER2), are involved in retinal development and degeneration, respectively. Here we describe the function of ApoER2 in the developing and adult retina. ApoER2 expression was highest during postnatal inner retinal synaptic development and was considerably lower in the mature retina. Both during development and in the adult ApoER2 was expressed by A-II amacrine cells. ApoER2 knockout (KO) mice had rod bipolar morphogenic defects, altered A-II amacrine dendritic development, and impaired rod-driven retinal responses. The presence of an intact ApoER2 NPxY motif, necessary for binding disabled-1 (Dab1) and transducing the Reelin signal, was also necessary for development of the rod bipolar pathway while the alternatively-spliced exon19 was not. Mice deficient in another Reelin receptor, very low-density lipoprotein receptor (VLDLR), had normal rod bipolar morphology but altered A-II amacrine dendritic development. VLDLR KO mice also had reductions in oscillatory potentials and delayed synaptic response intervals. Interestingly, age-related reductions in rod and cone function were observed in both ApoER2 and VLDLR KOs. These results support a pivotal role for ApoER2 in the establishment and maintenance of normal retinal synaptic connectivity. PMID:21976526

  6. The selective antagonism of P2X7 and P2Y1 receptors prevents synaptic failure and affects cell proliferation induced by oxygen and glucose deprivation in rat dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Giovanna Maraula

    Full Text Available Purinergic P2X and P2Y receptors are broadly expressed on both neurons and glial cells in the central nervous system (CNS, including dentate gyrus (DG. The aim of this research was to determine the synaptic and proliferative response of the DG to severe oxygen and glucose deprivation (OGD in acute rat hippocampal slices and to investigate the contribution of P2X7 and P2Y1 receptor antagonism to recovery of synaptic activity after OGD. Extracellular field excitatory post-synaptic potentials (fEPSPs in granule cells of the DG were recorded from rat hippocampal slices. Nine-min OGD elicited an irreversible loss of fEPSP and was invariably followed by the appearance of anoxic depolarization (AD. Application of MRS2179 (selective antagonist of P2Y1 receptor and BBG (selective antagonist of P2X7 receptor, before and during OGD, prevented AD appearance and allowed a significant recovery of neurotransmission after 9-min OGD. The effects of 9-min OGD on proliferation and maturation of cells localized in the subgranular zone (SGZ of slices prepared from rats treated with 5-Bromo-2'-deoxyuridine (BrdU were investigated. Slices were further incubated with an immature neuron marker, doublecortin (DCX. The number of BrdU+ cells in the SGZ was significantly decreased 6 hours after OGD. This effect was antagonized by BBG, but not by MRS2179. Twenty-four hours after 9-min OGD, the number of BrdU+ cells returned to control values and a significant increase of DCX immunofluorescence was observed. This phenomenon was still evident when BBG, but not MRS2179, was applied during OGD. Furthermore, the P2Y1 antagonist reduced the number of BrdU+ cells at this time. The data demonstrate that P2X7 and P2Y1 activation contributes to early damage induced by OGD in the DG. At later stages after the insult, P2Y1 receptors might play an additional and different role in promoting cell proliferation and maturation in the DG.

  7. New tools for targeted disruption of cholinergic synaptic transmission in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Monica Mejia

    Full Text Available Nicotinic acetylcholine receptors (nAChRs are pentameric ligand-gated ion channels. The α7 subtype of nAChRs is involved in neurological pathologies such as Parkinson's disease, Alzheimer's disease, addiction, epilepsy and autism spectrum disorders. The Drosophila melanogaster α7 (Dα7 has the closest sequence homology to the vertebrate α7 subunit and it can form homopentameric receptors just as the vertebrate counterpart. The Dα7 subunits are essential for the function of the Giant Fiber circuit, which mediates the escape response of the fly. To further characterize the receptor function, we generated different missense mutations in the Dα7 nAChR's ligand binding domain. We characterized the effects of targeted expression of two UAS-constructs carrying a single mutation, D197A and Y195T, as well as a UAS-construct carrying a triple D77T, L117Q, I196P mutation in a Dα7 null mutant and in a wild type background. Expression of the triple mutation was able to restore the function of the circuit in Dα7 null mutants and had no disruptive effects when expressed in wild type. In contrast, both single mutations severely disrupted the synaptic transmission of Dα7-dependent but not glutamatergic or gap junction dependent synapses in wild type background, and did not or only partially rescued the synaptic defects of the null mutant. These observations are consistent with the formation of hybrid receptors, consisting of D197A or Y195T subunits and wild type Dα7 subunits, in which the binding of acetylcholine or acetylcholine-induced conformational changes of the Dα7 receptor are altered and causes inhibition of cholinergic responses. Thus targeted expression of D197A or Y195T can be used to selectively disrupt synaptic transmission of Dα7-dependent synapses in neuronal circuits. Hence, these constructs can be used as tools to study learning and memory or addiction associated behaviors by allowing the manipulation of neuronal processing in the

  8. Transitions between localized and itinerant antiferromagnetism in the Ce(Pb,In) sub 3 and Ce(Pb,Tl) sub 3 systems

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, S; Timlin, J; Crow, J E; Mihalisin, T; Schlottmann, P [Temple Univ., Philadelphia, PA (United States)

    1990-01-01

    CePb{sub 3} is an itinerant heavy fermion antiferromagnetic displaying an incommensurate magnetic structure and an extremely small ordered moment. CeIn{sub 3} and CeTl{sub 3}, on the other hand are well-localized, simple antiferromagnets with the full moments expected for crystal field doublet Ce{sup 3+} ion systems. The authors have performed specific heat, sysceptibility and resistivity measurements for both the Ce(Pb,In){sub 3} and Ce(Pb,Tl){sub 3} systems. These systems remain cubic Cu{sub 3}Au structures across the entire series. They display extremely interesting T{sub N} behavior which suggests that a continuous transition from itinerant to localized antiferromagnetic behavior occurs for the Ce(Pb,Tl){sub 3} system. In the Ce (Pb,In){sub 3} system both types of antiferromagnetism are present but they are separated by a concentration range ({approximately}10-40% Pb) over which antiferromagnetism does not exist. The behavior of these systems cannot be accounted for by a Kondo necklace approach that neglects the coherence of a heavy fermion lattice and resulting itinerant antiferromagnetism.

  9. Influence of testosterone on synaptic transmission in the rat medial vestibular nuclei: estrogenic and androgenic effects.

    Science.gov (United States)

    Grassi, S; Frondaroli, A; Di Mauro, M; Pettorossi, V E

    2010-12-15

    In brainstem slices of young male rat, we investigated the influence of the neuroactive steroid testosterone (T) on the synaptic responses by analyzing the field potential evoked in the medial vestibular nucleus (MVN) by vestibular afferent stimulation. T induced three distinct and independent long-term synaptic changes: fast long-lasting potentiation (fLP), slow long-lasting potentiation (sLP) and long-lasting depression (LD). The fLP was mediated by 17β-estradiol (E(2)) since it was abolished by blocking the estrogen receptors (ERs) or the enzyme converting T to E(2). Conversely, sLP and LD were mediated by 5α-dihydrotestosterone (DHT) since they were prevented by blocking the androgen receptors (ARs) or the enzyme converting T to DHT. Therefore, the synaptic effects of T were mediated by its androgenic or estrogenic metabolites. The pathways leading to estrogenic and androgenic conversion of T might be co-localized since, the occurrence of fLP under block of androgenic pathway, and that of sLP and LD under estrogenic block, were higher than those observed without blocks. In case of co-localization, the effect on synaptic transmission should depend on the prevailing enzymatic activity. We conclude that circulating and neuronal T can remarkably influence synaptic responses of the vestibular neurons in different and opposite ways, depending on its conversion to estrogenic or androgenic metabolites. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Synaptic Mechanisms Generating Orientation Selectivity in the ON Pathway of the Rabbit Retina.

    Science.gov (United States)

    Venkataramani, Sowmya; Taylor, W Rowland

    2016-03-16

    Neurons that signal the orientation of edges within the visual field have been widely studied in primary visual cortex. Much less is known about the mechanisms of orientation selectivity that arise earlier in the visual stream. Here we examine the synaptic and morphological properties of a subtype of orientation-selective ganglion cell in the rabbit retina. The receptive field has an excitatory ON center, flanked by excitatory OFF regions, a structure similar to simple cell receptive fields in primary visual cortex. Examination of the light-evoked postsynaptic currents in these ON-type orientation-selective ganglion cells (ON-OSGCs) reveals that synaptic input is mediated almost exclusively through the ON pathway. Orientation selectivity is generated by larger excitation for preferred relative to orthogonal stimuli, and conversely larger inhibition for orthogonal relative to preferred stimuli. Excitatory orientation selectivity arises in part from the morphology of the dendritic arbors. Blocking GABAA receptors reduces orientation selectivity of the inhibitory synaptic inputs and the spiking responses. Negative contrast stimuli in the flanking regions produce orientation-selective excitation in part by disinhibition of a tonic NMDA receptor-mediated input arising from ON bipolar cells. Comparison with earlier studies of OFF-type OSGCs indicates that diverse synaptic circuits have evolved in the retina to detect the orientation of edges in the visual input. A core goal for visual neuroscientists is to understand how neural circuits at each stage of the visual system extract and encode features from the visual scene. This study documents a novel type of orientation-selective ganglion cell in the retina and shows that the receptive field structure is remarkably similar to that of simple cells in primary visual cortex. However, the data indicate that, unlike in the cortex, orientation selectivity in the retina depends on the activity of inhibitory interneurons. The

  11. Effects of gamma-aminobutyric acid (GABA) on synaptogenesis and synaptic function

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, G H; Elster, L

    1998-01-01

    The correct establishment and function of synapses depend on a variety of factors, such as guidance of pre- and postsynaptic neurons as well as receptor development and localization. gamma-Aminobutyric acid (GABA) has a pronounced effect on these events and elicits differentiation of neurons......; that is, GABA acts as a trophic signal. Accordingly, activating preexisting GABA receptors, a trophic GABA signal enhances the growth rate of neuronal processes, facilitates synapse formation, and promotes synthesis of specific proteins. Transcription and de novo synthesis are initiated by the GABA signal......, but the intracellular link between GABA receptor activation and DNA transcription is largely unknown. GABA also controls the induction and development of functionally and pharmacologically different GABAA receptor subtypes. The induced receptors are likely to be inserted only into the synaptic membrane domain. However...

  12. Olfactory receptor signaling is regulated by the post-synaptic density 95, Drosophila discs large, zona-occludens 1 (PDZ) scaffold multi-PDZ domain protein 1.

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2009-12-01

    The unique ability of mammals to detect and discriminate between thousands of different odorant molecules is governed by the diverse array of olfactory receptors expressed by olfactory sensory neurons in the nasal epithelium. Olfactory receptors consist of seven transmembrane domain G protein-coupled receptors and comprise the largest gene superfamily in the mammalian genome. We found that approximately 30% of olfactory receptors possess a classical post-synaptic density 95, Drosophila discs large, zona-occludens 1 (PDZ) domain binding motif in their C-termini. PDZ domains have been established as sites for protein-protein interaction and play a central role in organizing diverse cell signaling assemblies. In the present study, we show that multi-PDZ domain protein 1 (MUPP1) is expressed in the apical compartment of olfactory sensory neurons. Furthermore, on heterologous co-expression with olfactory sensory neurons, MUPP1 was shown to translocate to the plasma membrane. We found direct interaction of PDZ domains 1 + 2 of MUPP1 with the C-terminus of olfactory receptors in vitro. Moreover, the odorant-elicited calcium response of OR2AG1 showed a prolonged decay in MUPP1 small interfering RNA-treated cells. We have therefore elucidated the first building blocks of the putative \\'olfactosome\\

  13. SynGAP regulates protein synthesis and homeostatic synaptic plasticity in developing cortical networks.

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Wang

    Full Text Available Disrupting the balance between excitatory and inhibitory neurotransmission in the developing brain has been causally linked with intellectual disability (ID and autism spectrum disorders (ASD. Excitatory synapse strength is regulated in the central nervous system by controlling the number of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs. De novo genetic mutations of the synaptic GTPase-activating protein (SynGAP are associated with ID and ASD. SynGAP is enriched at excitatory synapses and genetic suppression of SynGAP increases excitatory synaptic strength. However, exactly how SynGAP acts to maintain synaptic AMPAR content is unclear. We show here that SynGAP limits excitatory synaptic strength, in part, by suppressing protein synthesis in cortical neurons. The data presented here from in vitro, rat and mouse cortical networks, demonstrate that regulation of translation by SynGAP involves ERK, mTOR, and the small GTP-binding protein Rheb. Furthermore, these data show that GluN2B-containing NMDARs and the cognitive kinase CaMKII act upstream of SynGAP and that this signaling cascade is required for proper translation-dependent homeostatic synaptic plasticity of excitatory synapses in developing cortical networks.

  14. Role of the Wnt receptor Frizzled-1 in presynaptic differentiation and function

    Directory of Open Access Journals (Sweden)

    Alvarez Alejandra R

    2009-11-01

    Full Text Available Abstract Background The Wnt signaling pathway regulates several fundamental developmental processes and recently has been shown to be involved in different aspects of synaptic differentiation and plasticity. Some Wnt signaling components are localized at central synapses, and it is thus possible that this pathway could be activated at the synapse. Results We examined the distribution of the Wnt receptor Frizzled-1 in cultured hippocampal neurons and determined that this receptor is located at synaptic contacts co-localizing with presynaptic proteins. Frizzled-1 was found in functional synapses detected with FM1-43 staining and in synaptic terminals from adult rat brain. Interestingly, overexpression of Frizzled-1 increased the number of clusters of Bassoon, a component of the active zone, while treatment with the extracellular cysteine-rich domain (CRD of Frizzled-1 decreased Bassoon clustering, suggesting a role for this receptor in presynaptic differentiation. Consistent with this, treatment with the Frizzled-1 ligand Wnt-3a induced presynaptic protein clustering and increased functional presynaptic recycling sites, and these effects were prevented by co-treatment with the CRD of Frizzled-1. Moreover, in synaptically mature neurons Wnt-3a was able to modulate the kinetics of neurotransmitter release. Conclusion Our results indicate that the activation of the Wnt pathway through Frizzled-1 occurs at the presynaptic level, and suggest that the synaptic effects of the Wnt signaling pathway could be modulated by local activation through synaptic Frizzled receptors.

  15. A targeted glycan-related gene screen reveals heparan sulfate proteoglycan sulfation regulates WNT and BMP trans-synaptic signaling.

    Directory of Open Access Journals (Sweden)

    Neil Dani

    Full Text Available A Drosophila transgenic RNAi screen targeting the glycan genome, including all N/O/GAG-glycan biosynthesis/modification enzymes and glycan-binding lectins, was conducted to discover novel glycan functions in synaptogenesis. As proof-of-product, we characterized functionally paired heparan sulfate (HS 6-O-sulfotransferase (hs6st and sulfatase (sulf1, which bidirectionally control HS proteoglycan (HSPG sulfation. RNAi knockdown of hs6st and sulf1 causes opposite effects on functional synapse development, with decreased (hs6st and increased (sulf1 neurotransmission strength confirmed in null mutants. HSPG co-receptors for WNT and BMP intercellular signaling, Dally-like Protein and Syndecan, are differentially misregulated in the synaptomatrix of these mutants. Consistently, hs6st and sulf1 nulls differentially elevate both WNT (Wingless; Wg and BMP (Glass Bottom Boat; Gbb ligand abundance in the synaptomatrix. Anterograde Wg signaling via Wg receptor dFrizzled2 C-terminus nuclear import and retrograde Gbb signaling via synaptic MAD phosphorylation and nuclear import are differentially activated in hs6st and sulf1 mutants. Consequently, transcriptional control of presynaptic glutamate release machinery and postsynaptic glutamate receptors is bidirectionally altered in hs6st and sulf1 mutants, explaining the bidirectional change in synaptic functional strength. Genetic correction of the altered WNT/BMP signaling restores normal synaptic development in both mutant conditions, proving that altered trans-synaptic signaling causes functional differentiation defects.

  16. Presynaptic Ionotropic Receptors Controlling and Modulating the Rules for Spike Timing-Dependent Plasticity

    Directory of Open Access Journals (Sweden)

    Matthijs B. Verhoog

    2011-01-01

    Full Text Available Throughout life, activity-dependent changes in neuronal connection strength enable the brain to refine neural circuits and learn based on experience. In line with predictions made by Hebb, synapse strength can be modified depending on the millisecond timing of action potential firing (STDP. The sign of synaptic plasticity depends on the spike order of presynaptic and postsynaptic neurons. Ionotropic neurotransmitter receptors, such as NMDA receptors and nicotinic acetylcholine receptors, are intimately involved in setting the rules for synaptic strengthening and weakening. In addition, timing rules for STDP within synapses are not fixed. They can be altered by activation of ionotropic receptors located at, or close to, synapses. Here, we will highlight studies that uncovered how network actions control and modulate timing rules for STDP by activating presynaptic ionotropic receptors. Furthermore, we will discuss how interaction between different types of ionotropic receptors may create “timing” windows during which particular timing rules lead to synaptic changes.

  17. Entanglement dynamics in itinerant fermionic and bosonic systems

    Science.gov (United States)

    Pillarishetty, Durganandini

    2017-04-01

    The concept of quantum entanglement of identical particles is fundamental in a wide variety of quantum information contexts involving composite quantum systems. However, the role played by particle indistinguishabilty in entanglement determination is being still debated. In this work, we study, theoretically, the entanglement dynamics in some itinerant bosonic and fermionic systems. We show that the dynamical behaviour of particle entanglement and spatial or mode entanglement are in general different. We also discuss the effect of fermionic and bosonic statistics on the dynamical behaviour. We suggest that the different dynamical behaviour can be used to distinguish between particle and mode entanglement in identical particle systems and discuss possible experimental realizations for such studies. I acknowledge financial support from DST, India through research Grant.

  18. TARPs differentially decorate AMPA receptors to specify neuropharmacology.

    Science.gov (United States)

    Kato, Akihiko S; Gill, Martin B; Yu, Hong; Nisenbaum, Eric S; Bredt, David S

    2010-05-01

    Transmembrane AMPA receptor regulatory proteins (TARPs) are the first identified auxiliary subunits for a neurotransmitter-gated ion channel. Although initial studies found that stargazin, the prototypical TARP, principally chaperones AMPA receptors, subsequent research demonstrated that it also regulates AMPA receptor kinetics and synaptic waveforms. Recent studies have identified a diverse collection of TARP isoforms--types Ia, Ib II--that distinctly regulate AMPA receptor trafficking, gating and neuropharmacology. These TARP isoforms are heterogeneously expressed in specific neuronal populations and can differentially sculpt synaptic transmission and plasticity. Whole-genome analyses also link multiple TARP loci to childhood epilepsy, schizophrenia and bipolar disorder. TARPs emerge as vital components of excitatory synapses that participate both in signal transduction and in neuropsychiatric disorders. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. An itinerant sensory approach to investigate consumers' perception and acceptability at a food exhibition.

    Science.gov (United States)

    Torri, Luisa; Salini, Silvia

    2016-12-01

    In a food exhibition where several producers of the same product category are present at the same time, consumers usually have the opportunity to taste several free samples of the same product type, thus they can experience and compare the sensory characteristics of each and evaluate their liking for each sample tasted. This study assessed the potential of an itinerant sensory data collection in understanding the consumers' perception and acceptance of cheese during a multiple tasting experience at a food exhibition. Subjects tasted seven samples of Parmigiano Reggiano cheese aged for different times (24 and 36months) at seven producer stands and recorded their evaluations using tablets, on which an application specifically developed for this study was installed. This evaluation situation was defined as "pseudo-natural," in opposition to the "natural" and the "naturalistic" settings. The itinerant sensory session comprised a liking test, a rate-all-that-apply (RATA) test using a just about right (JAR) scale, a food pairing test, and a questionnaire. Consumers significantly (panalysis, and decision tree models in investigating the relationships between liking and the RATA data, provided results revealing that the attributes elasticity, sweetness, humidity, fresh fruit, and butter were the main drivers of liking. Whereas, the attributes sourness, bitterness, and hardness were the main drivers of dislike. Therefore, even though no significant differences in terms of liking were observed among the tested cheeses, consumers preferred the attributes more frequently perceived in the least aged products. In conclusion, the presented itinerant sensory approach had provided meaningful information to understand the consumers' cheese perception and acceptability. In the future, it could advantageously be applied for studying food perception in other situations in which subjects naturally choose or consume several products while freely moving from one to another (e.g. self

  20. Implementation of a fluorescence-based screening assay identifies histamine H3 receptor antagonists clobenpropit and iodophenpropit as subunit-selective N-methyl-D-aspartate receptor antagonists

    DEFF Research Database (Denmark)

    Hansen, Kasper Bø; Mullasseril, Praseeda; Dawit, Sara

    2010-01-01

    N-Methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca(2+)-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describe...... a fluorescence-based assay that measures NMDA receptor-mediated changes in intracellular calcium in a BHK-21 cell line stably expressing NMDA receptor NR2D with NR1 under the control of a tetracycline-inducible promoter (Tet-On). The assay selectively identifies allosteric modulators by using supramaximal...

  1. Adenosine receptors and muscarinic receptors cooperate in acetylcholine release modulation in the neuromuscular synapse.

    Science.gov (United States)

    Santafe, M M; Priego, M; Obis, T; Garcia, N; Tomàs, M; Lanuza, M A; Tomàs, J

    2015-07-01

    Adenosine receptors (ARs) are present in the motor terminals at the mouse neuromuscular junction. ARs and the presynaptic muscarinic acetylcholine receptors (mAChRs) share the functional control of the neuromuscular junction. We analysed their mutual interaction in transmitter release modulation. In electrophysiological experiments with unaltered synaptic transmission (muscles paralysed by blocking the voltage-dependent sodium channel of the muscle cells with μ-conotoxin GIIIB), we found that: (i) a collaborative action between different AR subtypes reduced synaptic depression at a moderate activity level (40 Hz); (ii) at high activity levels (100 Hz), endogenous adenosine production in the synaptic cleft was sufficient to reduce depression through A1 -type receptors (A1 Rs) and A2 A-type receptors (A2 A Rs); (iii) when the non-metabolizable 2-chloroadenosine (CADO) agonist was used, both the quantal content and depression were reduced; (iv) the protective effect of CADO on depression was mediated by A1 Rs, whereas A2 A Rs seemed to modulate A1 Rs; (v) ARs and mAChRs absolutely depended upon each other for the modulation of evoked and spontaneous acetylcholine release in basal conditions and in experimental conditions with CADO stimulation; (vi) the purinergic and muscarinic mechanisms cooperated in the control of depression by sharing a common pathway although the purinergic control was more powerful than the muscarinic control; and (vii) the imbalance of the ARs created by using subtype-selective and non-selective inhibitory and stimulatory agents uncoupled protein kinase C from evoked transmitter release. In summary, ARs (A1 Rs, A2 A Rs) and mAChRs (M1 , M2 ) cooperated in the control of activity-dependent synaptic depression and may share a common protein kinase C pathway. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Involvement of insulin-like peptide in long-term synaptic plasticity and long-term memory of the pond snail Lymnaea stagnalis.

    Science.gov (United States)

    Murakami, Jun; Okada, Ryuichi; Sadamoto, Hisayo; Kobayashi, Suguru; Mita, Koichi; Sakamoto, Yuki; Yamagishi, Miki; Hatakeyama, Dai; Otsuka, Emi; Okuta, Akiko; Sunada, Hiroshi; Takigami, Satoshi; Sakakibara, Manabu; Fujito, Yutaka; Awaji, Masahiko; Moriyama, Shunsuke; Lukowiak, Ken; Ito, Etsuro

    2013-01-02

    The pond snail Lymnaea stagnalis is capable of learning taste aversion and consolidating this learning into long-term memory (LTM) that is called conditioned taste aversion (CTA). Previous studies showed that some molluscan insulin-related peptides (MIPs) were upregulated in snails exhibiting CTA. We thus hypothesized that MIPs play an important role in neurons underlying the CTA-LTM consolidation process. To examine this hypothesis, we first observed the distribution of MIP II, a major peptide of MIPs, and MIP receptor and determined the amounts of their mRNAs in the CNS. MIP II was only observed in the light green cells in the cerebral ganglia, but the MIP receptor was distributed throughout the entire CNS, including the buccal ganglia. Next, when we applied exogenous mammalian insulin, secretions from MIP-containing cells or partially purified MIPs, to the isolated CNS, we observed a long-term change in synaptic efficacy (i.e., enhancement) of the synaptic connection between the cerebral giant cell (a key interneuron for CTA) and the B1 motor neuron (a buccal motor neuron). This synaptic enhancement was blocked by application of an insulin receptor antibody to the isolated CNS. Finally, injection of the insulin receptor antibody into the snail before CTA training, while not blocking the acquisition of taste aversion learning, blocked the memory consolidation process; thus, LTM was not observed. These data suggest that MIPs trigger changes in synaptic connectivity that may be correlated with the consolidation of taste aversion learning into CTA-LTM in the Lymnaea CNS.

  3. The Business of Experimental Physics: Instrument Makers and Itinerant Lecturers in the German Enlightenment

    Science.gov (United States)

    Hochadel, Oliver

    2007-06-01

    While it is a commonplace in the historiography of electricity that itinerant lecturers and instrument makers were `somehow' part of the `electrical flare' of the 18th century, very little is actually known about them, about their background, their careers and their self-understanding. Yet, research focusing on these practitioners of experimental physics outside the established institutions can contribute immensely to our understanding of the scientific culture of the Enlightenment. The development of electrical machines, the supply for increasing demand for instruments and instruction, the creation of interest in electricity through public demonstrations, relied heavily on these men. Furthermore, these `scientific salesmen' offered a perfect contrast, a foil for the natural philosophers from whom to distinguish themselves. Natural philosophers tried to discredit their extra-academic competitors, thereby forging their own image as serious, honest, truth-seeking, independent researchers. This essay focuses on this situation in the German Empire, tracing the steps of the itinerant lecturer Jakob von Bianchy on his way from court to college, from the workshop to the theatre, from Lake Como, to Vienna and Paris.

  4. A Common STEP in the Synaptic Pathology of Diverse Neuropsychiatric Disorders

    Science.gov (United States)

    Johnson, Micah A.; Lombroso, Paul J.

    2012-01-01

    Synaptic function is critical for proper cognition, and synaptopathologies have been implicated in diverse neuropsychiatric disorders. STriatal-Enriched protein tyrosine Phosphatase (STEP) is a brain-enriched tyrosine phosphatase that normally opposes synaptic strengthening by dephosphorylating key neuronal signaling molecules. STEP targets include N-methyl D-aspartate receptors (NMDARs) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), as well as extracellular signal-regulated kinase (ERK) and the tyrosine kinase Fyn. STEP-mediated dephosphorylation promotes the internalization of NMDARs and AMPARs and the inactivation of ERK and Fyn. Regulation of STEP is complex, and recent work has implicated STEP dysregulation in the pathophysiology of several neuropsychiatric disorders. Both high levels and low levels of STEP are found in a diverse group of illnesses. This review focuses on the role of STEP in three disorders in which STEP levels are elevated: Alzheimer’s disease, fragile X syndrome, and schizophrenia. The presence of elevated STEP in all three of these disorders raises the intriguing possibility that cognitive deficits resulting from diverse etiologies may share a common molecular pathway. PMID:23239949

  5. Metabolic Turnover of Synaptic Proteins: Kinetics, Interdependencies and Implications for Synaptic Maintenance

    Science.gov (United States)

    Cohen, Laurie D.; Zuchman, Rina; Sorokina, Oksana; Müller, Anke; Dieterich, Daniela C.; Armstrong, J. Douglas; Ziv, Tamar; Ziv, Noam E.

    2013-01-01

    Chemical synapses contain multitudes of proteins, which in common with all proteins, have finite lifetimes and therefore need to be continuously replaced. Given the huge numbers of synaptic connections typical neurons form, the demand to maintain the protein contents of these connections might be expected to place considerable metabolic demands on each neuron. Moreover, synaptic proteostasis might differ according to distance from global protein synthesis sites, the availability of distributed protein synthesis facilities, trafficking rates and synaptic protein dynamics. To date, the turnover kinetics of synaptic proteins have not been studied or analyzed systematically, and thus metabolic demands or the aforementioned relationships remain largely unknown. In the current study we used dynamic Stable Isotope Labeling with Amino acids in Cell culture (SILAC), mass spectrometry (MS), Fluorescent Non–Canonical Amino acid Tagging (FUNCAT), quantitative immunohistochemistry and bioinformatics to systematically measure the metabolic half-lives of hundreds of synaptic proteins, examine how these depend on their pre/postsynaptic affiliation or their association with particular molecular complexes, and assess the metabolic load of synaptic proteostasis. We found that nearly all synaptic proteins identified here exhibited half-lifetimes in the range of 2–5 days. Unexpectedly, metabolic turnover rates were not significantly different for presynaptic and postsynaptic proteins, or for proteins for which mRNAs are consistently found in dendrites. Some functionally or structurally related proteins exhibited very similar turnover rates, indicating that their biogenesis and degradation might be coupled, a possibility further supported by bioinformatics-based analyses. The relatively low turnover rates measured here (∼0.7% of synaptic protein content per hour) are in good agreement with imaging-based studies of synaptic protein trafficking, yet indicate that the metabolic load

  6. Changes in cortical N-methyl-D-aspartate receptors and post-synaptic density protein 95 in schizophrenia, mood disorders and suicide.

    Science.gov (United States)

    Dean, Brian; Gibbons, Andrew S; Boer, Simone; Uezato, Akihito; Meador-Woodruff, James; Scarr, Elizabeth; McCullumsmith, Robert E

    2016-03-01

    In humans, depending on dose, blocking the N-methyl-D-aspartate receptor (NMDAR) with ketamine can cause psychomimetic or antidepressant effects. The overall outcome for drugs such as ketamine depends on dose and the number of its available binding sites in the central nervous system, and to understand something of the latter variable we measure NMDAR in the frontal pole, dorsolateral prefrontal, anterior cingulate and parietal cortices from people with schizophrenia, bipolar disorder, major depressive disorders and age/sex matched controls. We measured levels of NMDARs (using [(3)H]MK-801 binding) and NMDAR sub-unit mRNAs (GRINs: using in situ hybridisation) as well as post-synaptic density protein 95 (anterior cingulate cortex only; not major depressive disorders: an NMDAR post-synaptic associated protein) in bipolar disorder, schizophrenia and controls. Compared to controls, levels of NMDAR were lower in the outer laminae of the dorsolateral prefrontal cortex (-17%, p = 0.01) in people with schizophrenia. In bipolar disorder, levels of NMDAR binding (laminae IV-VI; -19%, p disorders, levels of GRIN2D mRNA were higher in frontal pole (+22%, p suicide completers, levels of GRIN2B mRNA were higher in parietal cortex (+20%, p disorders and suicide completion and may contribute to different responses to ketamine. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  7. DISC1 Protein Regulates γ-Aminobutyric Acid, Type A (GABAA) Receptor Trafficking and Inhibitory Synaptic Transmission in Cortical Neurons.

    Science.gov (United States)

    Wei, Jing; Graziane, Nicholas M; Gu, Zhenglin; Yan, Zhen

    2015-11-13

    Association studies have suggested that Disrupted-in-Schizophrenia 1 (DISC1) confers a genetic risk at the level of endophenotypes that underlies many major mental disorders. Despite the progress in understanding the significance of DISC1 at neural development, the mechanisms underlying DISC1 regulation of synaptic functions remain elusive. Because alterations in the cortical GABA system have been strongly linked to the pathophysiology of schizophrenia, one potential target of DISC1 that is critically involved in the regulation of cognition and emotion is the GABAA receptor (GABAAR). We found that cellular knockdown of DISC1 significantly reduced GABAAR-mediated synaptic and whole-cell current, whereas overexpression of wild-type DISC1, but not the C-terminal-truncated DISC1 (a schizophrenia-related mutant), significantly increased GABAAR currents in pyramidal neurons of the prefrontal cortex. These effects were accompanied by DISC1-induced changes in surface GABAAR expression. Moreover, the regulation of GABAARs by DISC1 knockdown or overexpression depends on the microtubule motor protein kinesin 1 (KIF5). Our results suggest that DISC1 exerts an important effect on GABAergic inhibitory transmission by regulating KIF5/microtubule-based GABAAR trafficking in the cortex. The knowledge gained from this study would shed light on how DISC1 and the GABA system are linked mechanistically and how their interactions are critical for maintaining a normal mental state. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Tuning synaptic transmission in the hippocampus by stress: The CRH system

    Directory of Open Access Journals (Sweden)

    Yuncai eChen

    2012-04-01

    Full Text Available To enhance survival, an organism needs to remember--and learn from--threatening or stressful events. This fact necessitates the presence of mechanisms by which stress can influence synaptic transmission in brain regions, such as hippocampus, that subserve learning and memory. A major focus of this series of monographs is on the role and actions of adrenal-derived hormones, corticosteroids, and of brain-derived neurotransmitters, on synaptic function in the stressed hippocampus. Here we focus on the contribution of hippocampus-intrinsic, stress-activated CRH-CRH receptor signaling to the function and structure of hippocampal synapses. CRH is expressed in interneurons of adult hippocampus, and is released from axon terminals during stress. The peptide exerts time- and dose-dependent effects on learning and memory via modulation of synaptic function and plasticity. Whereas physiological levels of CRH, acting over seconds to minutes, augment memory processes, exposure to presumed severe-stress levels of the peptide results in spine retraction and loss of synapses over more protracted time-frames. Loss of dendritic spines (and hence of synapses takes place through actin cytoskeleton collapse downstream of CRHR1 receptors that reside within excitatory synapses on spine heads. Chronic exposure to stress levels of CRH may promote dying-back (atrophy of spine-carrying dendrites. Thus, the acute effects of CRH may contribute to stress-induced adaptive mechanisms, whereas chronic or excessive exposure to the peptide may promote learning problems and premature cognitive decline.

  9. Endophilin A1 Promotes Actin Polymerization in Dendritic Spines Required for Synaptic Potentiation

    Directory of Open Access Journals (Sweden)

    Yanrui Yang

    2018-05-01

    Full Text Available Endophilin A1 is a member of the N-BAR domain-containing endophilin A protein family that is involved in membrane dynamics and trafficking. At the presynaptic terminal, endophilin As participate in synaptic vesicle recycling and autophagosome formation. By gene knockout studies, here we report that postsynaptic endophilin A1 functions in synaptic plasticity. Ablation of endophilin A1 in the hippocampal CA1 region of mature mouse brain impairs long-term spatial and contextual fear memory. Its loss in CA1 neurons postsynaptic of the Schaffer collateral pathway causes impairment in their AMPA-type glutamate receptor-mediated synaptic transmission and long-term potentiation. In KO neurons, defects in the structural and functional plasticity of dendritic spines can be rescued by overexpression of endophilin A1 but not A2 or A3. Further, endophilin A1 promotes actin polymerization in dendritic spines during synaptic potentiation. These findings reveal a physiological role of endophilin A1 distinct from that of other endophilin As at the postsynaptic site.

  10. Modulation of Long-term Potentiation of Cortico-amygdala Synaptic Responses and Auditory Fear Memory by Dietary Polyunsaturated Fatty Acid

    Directory of Open Access Journals (Sweden)

    Daisuke Yamada

    2016-08-01

    Full Text Available Converging evidence suggests that an imbalance of ω3 to ω6 polyunsaturated fatty acid (PUFA in the brain is involved in mental illnesses such as anxiety disorders. However, the underlying mechanism is unknown. We previously reported that the dietary ratio of ω3 to ω6 PUFA alters this ratio in the brain, and influences contextual fear memory. In addition to behavioral change, enhancement of cannabinoid CB1 receptor-mediated short-term synaptic plasticity and facilitation of the agonist sensitivity of CB1 receptors have been observed in excitatory synaptic responses in the basolateral nucleus of the amygdala. However, it is not known whether long-term synaptic plasticity in the amygdala is influenced by the dietary ratio of ω3 to ω6 PUFA. In the present study, we examined long-term potentiation (LTP of optogenetically–evoked excitatory synaptic responses in synapses between the terminal of the projection from the auditory cortex and the pyramidal cells in the lateral nucleus of the amygdala. We found that LTP in this pathway was attenuated in mice fed a diet with a high ω3 to ω6 PUFA ratio (0.97, compared with mice fed a diet with a low ω3 to ω6 PUFA ratio (0.14. Furthermore, mice in the former condition showed reduced fear responses in an auditory fear conditioning test, compared with mice in the latter condition. In both electrophysiological and behavioral experiments, the effect of a diet with a high ω3 to ω6 PUFA ratio was completely blocked by treatment with a CB1 receptor antagonist. Furthermore, a significant reduction was observed in cholesterol content, but not in the level of an endogenous CB1 receptor agonist, 2-arachidonoylglycerol, in brain samples containing the amygdala. These results suggest that the balance of ω3 to ω6 PUFA has an impact on fear memory and cortico-amygdala synaptic plasticity, both in a CB1 receptor–dependent manner.

  11. An NMDA Receptor-Dependent Mechanism Underlies Inhibitory Synapse Development

    Directory of Open Access Journals (Sweden)

    Xinglong Gu

    2016-01-01

    Full Text Available In the mammalian brain, GABAergic synaptic transmission provides inhibitory balance to glutamatergic excitatory drive and controls neuronal output. The molecular mechanisms underlying the development of GABAergic synapses remain largely unclear. Here, we report that NMDA-type ionotropic glutamate receptors (NMDARs in individual immature neurons are the upstream signaling molecules essential for GABAergic synapse development, which requires signaling via Calmodulin binding motif in the C0 domain of the NMDAR GluN1 subunit. Interestingly, in neurons lacking NMDARs, whereas GABAergic synaptic transmission is strongly reduced, the tonic inhibition mediated by extrasynaptic GABAA receptors is increased, suggesting a compensatory mechanism for the lack of synaptic inhibition. These results demonstrate a crucial role for NMDARs in specifying the development of inhibitory synapses, and suggest an important mechanism for controlling the establishment of the balance between synaptic excitation and inhibition in the developing brain.

  12. Localization of Presynaptic Plasticity Mechanisms Enables Functional Independence of Synaptic and Ectopic Transmission in the Cerebellum

    Directory of Open Access Journals (Sweden)

    Katharine L. Dobson

    2015-01-01

    Full Text Available In the cerebellar molecular layer parallel fibre terminals release glutamate from both the active zone and from extrasynaptic “ectopic” sites. Ectopic release mediates transmission to the Bergmann glia that ensheathe the synapse, activating Ca2+-permeable AMPA receptors and glutamate transporters. Parallel fibre terminals exhibit several forms of presynaptic plasticity, including cAMP-dependent long-term potentiation and endocannabinoid-dependent long-term depression, but it is not known whether these presynaptic forms of long-term plasticity also influence ectopic transmission to Bergmann glia. Stimulation of parallel fibre inputs at 16 Hz evoked LTP of synaptic transmission, but LTD of ectopic transmission. Pharmacological activation of adenylyl cyclase by forskolin caused LTP at Purkinje neurons, but only transient potentiation at Bergmann glia, reinforcing the concept that ectopic sites lack the capacity to express sustained cAMP-dependent potentiation. Activation of mGluR1 caused depression of synaptic transmission via retrograde endocannabinoid signalling but had no significant effect at ectopic sites. In contrast, activation of NMDA receptors suppressed both synaptic and ectopic transmission. The results suggest that the signalling mechanisms for presynaptic LTP and retrograde depression by endocannabinoids are restricted to the active zone at parallel fibre synapses, allowing independent modulation of synaptic transmission to Purkinje neurons and ectopic transmission to Bergmann glia.

  13. Synaptic Impairment in Layer 1 of the Prefrontal Cortex Induced by Repeated Stress During Adolescence is Reversed in Adulthood

    Science.gov (United States)

    Negrón-Oyarzo, Ignacio; Dagnino-Subiabre, Alexies; Muñoz Carvajal, Pablo

    2015-01-01

    Chronic stress is a risk factor for the development of psychiatric disorders, some of which involve dysfunction of the prefrontal cortex (PFC). There is a higher prevalence of these chronic stress-related psychiatric disorders during adolescence, when the PFC has not yet fully matured. In the present work we studied the effect of repeated stress during adolescence on synaptic function in the PFC in adolescence and adulthood. To this end, adolescent Sprague-Dawley rats were subjected to seven consecutive days of restraint stress. Afterward, both synaptic transmission and short- and long-term synaptic plasticity were evaluated in layer 1 of medial-PFC (mPFC) slices from adolescent and adult rats. We found that repeated stress significantly reduced the amplitude of evoked field excitatory post-synaptic potential (fEPSP) in the mPFC. Isolation of excitatory transmission reveled that lower-amplitude fEPSPs were associated with a reduction in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated transmission. We also found that repeated stress significantly decreased long-term depression (LTD). Interestingly, AMPA/kainate receptor-mediated transmission and LTD were recovered in adult animals that experienced a three-week stress-free recovery period. The data indicates that the changes in synaptic transmission and plasticity in the mPFC induced by repeated stress during adolescence are reversed in adulthood after a stress-free period. PMID:26617490

  14. Stimulus number, duration and intensity encoding in randomly connected attractor networks with synaptic depression

    Directory of Open Access Journals (Sweden)

    Paul eMiller

    2013-05-01

    Full Text Available Randomly connected recurrent networks of excitatory groups of neurons can possess a multitude of attractor states. When the internal excitatory synapses of these networks are depressing, the attractor states can be destabilized with increasing input. This leads to an itinerancy, where with either repeated transient stimuli, or increasing duration of a single stimulus, the network activity advances through sequences of attractor states. We find that the resulting network state, which persists beyond stimulus offset, can encode the number of stimuli presented via a distributed representation of neural activity with non-monotonic tuning curves for most neurons. Increased duration of a single stimulus is encoded via different distributed representations, so unlike an integrator, the network distinguishes separate successive presentations of a short stimulus from a single presentation of a longer stimulus with equal total duration. Moreover, different amplitudes of stimulus cause new, distinct activity patterns, such that changes in stimulus number, duration and amplitude can be distinguished from each other. These properties of the network depend on dynamic depressing synapses, as they disappear if synapses are static. Thus short-term synaptic depression allows a network to store separately the different dynamic properties of a spatially constant stimulus.

  15. CB1 Receptor-Mediated Signaling Underlies the Hippocampal Synaptic, Learning and Memory Deficits Following Treatment with JWH-081, a New Component of Spice/K2 Preparations

    OpenAIRE

    Basavarajappa, Balapal S.; Subbanna, Shivakumar

    2014-01-01

    Recently, synthetic cannabinoids have been sprayed onto plant material, which is subsequently packaged and sold as “Spice” or “K2” to mimic the effects of marijuana. A recent report identified several synthetic additives in samples of “Spice/K2”, including JWH-081, a synthetic ligand for the cannabinoid receptor 1 (CB1). The deleterious effects of JWH-081 on brain function are not known, particularly on CB1 signaling, synaptic plasticity, learning and memory. Here, we evaluated the effects of...

  16. Different forms of glycine- and GABAA-receptor mediated inhibitory synaptic transmission in mouse superficial and deep dorsal horn neurons

    Directory of Open Access Journals (Sweden)

    Brichta Alan M

    2009-11-01

    Full Text Available Abstract Background Neurons in superficial (SDH and deep (DDH laminae of the spinal cord dorsal horn receive sensory information from skin, muscle, joints and viscera. In both regions, glycine- (GlyR and GABAA-receptors (GABAARs contribute to fast synaptic inhibition. For rat, several types of GABAAR coexist in the two regions and each receptor type provides different contributions to inhibitory tone. Recent work in mouse has discovered an additional type of GlyR, (containing alpha 3 subunits in the SDH. The contribution of differing forms of the GlyR to sensory processing in SDH and DDH is not understood. Methods and Results Here we compare fast inhibitory synaptic transmission in mouse (P17-37 SDH and DDH using patch-clamp electrophysiology in transverse spinal cord slices (L3-L5 segments, 23°C. GlyR-mediated mIPSCs were detected in 74% (25/34 and 94% (25/27 of SDH and DDH neurons, respectively. In contrast, GABAAR-mediated mIPSCs were detected in virtually all neurons in both regions (93%, 14/15 and 100%, 18/18. Several Gly- and GABAAR properties also differed in SDH vs. DDH. GlyR-mediated mIPSC amplitude was smaller (37.1 ± 3.9 vs. 64.7 ± 5.0 pA; n = 25 each, decay time was slower (8.5 ± 0.8 vs. 5.5 ± 0.3 ms, and frequency was lower (0.15 ± 0.03 vs. 0.72 ± 0.13 Hz in SDH vs. DDH neurons. In contrast, GABAAR-mediated mIPSCs had similar amplitudes (25.6 ± 2.4, n = 14 vs. 25. ± 2.0 pA, n = 18 and frequencies (0.21 ± 0.08 vs. 0.18 ± 0.04 Hz in both regions; however, decay times were slower (23.0 ± 3.2 vs. 18.9 ± 1.8 ms in SDH neurons. Mean single channel conductance underlying mIPSCs was identical for GlyRs (54.3 ± 1.6 pS, n = 11 vs. 55.7 ± 1.8, n = 8 and GABAARs (22.7 ± 1.7 pS, n = 10 vs. 22.4 ± 2.0 pS, n = 11 in both regions. We also tested whether the synthetic endocanabinoid, methandamide (methAEA, had direct effects on Gly- and GABAARs in each spinal cord region. MethAEA (5 μM reduced GlyR-mediated mIPSC frequency in SDH

  17. Hebbian Plasticity Guides Maturation of Glutamate Receptor Fields In Vivo

    Directory of Open Access Journals (Sweden)

    Dmitrij Ljaschenko

    2013-05-01

    Full Text Available Synaptic plasticity shapes the development of functional neural circuits and provides a basis for cellular models of learning and memory. Hebbian plasticity describes an activity-dependent change in synaptic strength that is input-specific and depends on correlated pre- and postsynaptic activity. Although it is recognized that synaptic activity and synapse development are intimately linked, our mechanistic understanding of the coupling is far from complete. Using Channelrhodopsin-2 to evoke activity in vivo, we investigated synaptic plasticity at the glutamatergic Drosophila neuromuscular junction. Remarkably, correlated pre- and postsynaptic stimulation increased postsynaptic sensitivity by promoting synapse-specific recruitment of GluR-IIA-type glutamate receptor subunits into postsynaptic receptor fields. Conversely, GluR-IIA was rapidly removed from synapses whose activity failed to evoke substantial postsynaptic depolarization. Uniting these results with developmental GluR-IIA dynamics provides a comprehensive physiological concept of how Hebbian plasticity guides synaptic maturation and sparse transmitter release controls the stabilization of the molecular composition of individual synapses.

  18. Theory of itinarant ferromagnetism in superconducting semimetals. Theorie du ferromagnetisme itinerant dans des semimetaux supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Do Tran, C; Nguyen Van, C [Groupe de Physique Theorique, Inst. National Polytechnique de Hanoi (Viet Nam); Nguyen Manh, D [Groupe de Physique Theorique, Inst. National Polytechnique de Hanoi (Viet Nam) Centre National de la Recherche Scientifique, Lab. d' Etudes des Proprietes Electroniques des Solides, 38 - Grenoble (France)

    1991-11-01

    A theory of itinerant ferromagnetism in superconducting semimetals is proposed. A nonzero mean magnetisation appears in the superconducting state due to the interaction (interference) of spin density wave (SDW), charge density wave (CDW) and Cooper pair wave. Phase diagram and physical properties of the states considered are investigated analytically and numerically. (orig.).

  19. Biophysical synaptic dynamics in an analog VLSI network of Hodgkin-Huxley neurons.

    Science.gov (United States)

    Yu, Theodore; Cauwenberghs, Gert

    2009-01-01

    We study synaptic dynamics in a biophysical network of four coupled spiking neurons implemented in an analog VLSI silicon microchip. The four neurons implement a generalized Hodgkin-Huxley model with individually configurable rate-based kinetics of opening and closing of Na+ and K+ ion channels. The twelve synapses implement a rate-based first-order kinetic model of neurotransmitter and receptor dynamics, accounting for NMDA and non-NMDA type chemical synapses. The implemented models on the chip are fully configurable by 384 parameters accounting for conductances, reversal potentials, and pre/post-synaptic voltage-dependence of the channel kinetics. We describe the models and present experimental results from the chip characterizing single neuron dynamics, single synapse dynamics, and multi-neuron network dynamics showing phase-locking behavior as a function of synaptic coupling strength. The 3mm x 3mm microchip consumes 1.29 mW power making it promising for applications including neuromorphic modeling and neural prostheses.

  20. Effects of TRPV1 activation on synaptic excitation in the dentate gyrus of a mouse model of temporal lobe epilepsy.

    Science.gov (United States)

    Bhaskaran, Muthu D; Smith, Bret N

    2010-06-01

    Temporal lobe epilepsy (TLE) is a condition characterized by an imbalance between excitation and inhibition in the temporal lobe. Hallmarks of this change are axon sprouting and accompanying synaptic reorganization in the temporal lobe. Synthetic and endogenous cannabinoids have variable therapeutic potential in treating intractable temporal lobe epilepsy, in part because cannabinoid ligands can bind multiple receptor types. This study utilized in vitro electrophysiological methods to examine the effect of transient receptor potential vanilloid type 1 (TRPV1) activation in dentate gyrus granule cells in a murine model of TLE. Capsaicin, a selective TRPV1 agonist had no measurable effect on overall synaptic input to granule cells in control animals, but significantly enhanced spontaneous and miniature EPSC frequency in mice with TLE. Exogenous application of anandamide, an endogenous cannabinoid that acts at both TRPV1 and cannabinoid type 1 receptors (CB1R), also enhanced glutamate release in the presence of a CB1R antagonist. Anandamide reduced the EPSC frequency when TRPV1 were blocked with capsazepine. Western blot analysis of TRPV1 receptor indicated protein expression was significantly greater in the dentate gyrus of mice with TLE compared with control mice. This study indicates that a prominent cannabinoid agonist can increase excitatory circuit activity in the synaptically reorganized dentate gyrus of mice with TLE by activating TRPV1 receptors, and suggests caution in designing anticonvulsant therapy based on modulating the endocannabinoid system. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  1. β-Adrenergic Control of Hippocampal Function: Subserving the Choreography of Synaptic Information Storage and Memory

    Science.gov (United States)

    Hagena, Hardy; Hansen, Niels; Manahan-Vaughan, Denise

    2016-01-01

    Noradrenaline (NA) is a key neuromodulator for the regulation of behavioral state and cognition. It supports learning by increasing arousal and vigilance, whereby new experiences are “earmarked” for encoding. Within the hippocampus, experience-dependent information storage occurs by means of synaptic plasticity. Furthermore, novel spatial, contextual, or associative learning drives changes in synaptic strength, reflected by the strengthening of long-term potentiation (LTP) or long-term depression (LTD). NA acting on β-adrenergic receptors (β-AR) is a key determinant as to whether new experiences result in persistent hippocampal synaptic plasticity. This can even dictate the direction of change of synaptic strength. The different hippocampal subfields play different roles in encoding components of a spatial representation through LTP and LTD. Strikingly, the sensitivity of synaptic plasticity in these subfields to β-adrenergic control is very distinct (dentate gyrus > CA3 > CA1). Moreover, NA released from the locus coeruleus that acts on β-AR leads to hippocampal LTD and an enhancement of LTD-related memory processing. We propose that NA acting on hippocampal β-AR, that is graded according to the novelty or saliency of the experience, determines the content and persistency of synaptic information storage in the hippocampal subfields and therefore of spatial memories. PMID:26804338

  2. Synaptic Bistability Due to Nucleation and Evaporation of Receptor Clusters

    KAUST Repository

    Burlakov, V. M.; Emptage, N.; Goriely, A.; Bressloff, P. C.

    2012-01-01

    interacting receptors and is stabilized against clustering by a high nucleation barrier. The other state contains a receptor gas in equilibrium with a large cluster of immobile receptors, which is stabilized by the turnover rate of receptors into and out

  3. Lateral Fluid Percussion Injury Impairs Hippocampal Synaptic Soluble N-Ethylmaleimide Sensitive Factor Attachment Protein Receptor Complex Formation

    Directory of Open Access Journals (Sweden)

    Shaun W. Carlson

    2017-10-01

    Full Text Available Traumatic brain injury (TBI and the activation of secondary injury mechanisms have been linked to impaired cognitive function, which, as observed in TBI patients and animal models, can persist for months and years following the initial injury. Impairments in neurotransmission have been well documented in experimental models of TBI, but the mechanisms underlying this dysfunction are poorly understood. Formation of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE complex facilitates vesicular docking and neurotransmitter release in the synaptic cleft. Published studies highlight a direct link between reduced SNARE complex formation and impairments in neurotransmitter release. While alterations in the SNARE complex have been described following severe focal TBI, it is not known if deficits in SNARE complex formation manifest in a model with reduced severity. We hypothesized that lateral fluid percussion injury (lFPI reduces the abundance of SNARE proteins, impairs SNARE complex formation, and contributes to impaired neurobehavioral function. To this end, rats were subjected to lFPI or sham injury and tested for acute motor performance and cognitive function at 3 weeks post-injury. lFPI resulted in motor impairment between 1 and 5 days post-injury. Spatial acquisition and spatial memory, as assessed by the Morris water maze, were significantly impaired at 3 weeks after lFPI. To examine the effect of lFPI on synaptic SNARE complex formation in the injured hippocampus, a separate cohort of rats was generated and brains processed to evaluate hippocampal synaptosomal-enriched lysates at 1 week post-injury. lFPI resulted in a significant reduction in multiple monomeric SNARE proteins, including VAMP2, and α-synuclein, and SNARE complex abundance. The findings in this study are consistent with our previously published observations suggesting that impairments in hippocampal SNARE complex formation may contribute to

  4. Long lasting protein synthesis- and activity-dependent spine shrinkage and elimination after synaptic depression.

    Directory of Open Access Journals (Sweden)

    Yazmín Ramiro-Cortés

    Full Text Available Neuronal circuits modify their response to synaptic inputs in an experience-dependent fashion. Increases in synaptic weights are accompanied by structural modifications, and activity dependent, long lasting growth of dendritic spines requires new protein synthesis. When multiple spines are potentiated within a dendritic domain, they show dynamic structural plasticity changes, indicating that spines can undergo bidirectional physical modifications. However, it is unclear whether protein synthesis dependent synaptic depression leads to long lasting structural changes. Here, we investigate the structural correlates of protein synthesis dependent long-term depression (LTD mediated by metabotropic glutamate receptors (mGluRs through two-photon imaging of dendritic spines on hippocampal pyramidal neurons. We find that induction of mGluR-LTD leads to robust and long lasting spine shrinkage and elimination that lasts for up to 24 hours. These effects depend on signaling through group I mGluRs, require protein synthesis, and activity. These data reveal a mechanism for long lasting remodeling of synaptic inputs, and offer potential insights into mental retardation.

  5. Two Aspects of ASIC Function: Synaptic Plasticity and Neuronal Injury.

    Science.gov (United States)

    Huang, Yan; Jiang, Nan; Li, Jun; Ji, Yong-Hua; Xiong, Zhi-Gang; Zha, Xiang-ming

    2015-01-01

    Extracellular brain pH fluctuates in both physiological and disease conditions. The main postsynaptic proton receptor is the acid-sensing ion channels (ASICs). During the past decade, much progress has been made on protons, ASICs, and neurological disease. This review summarizes the recent progress on synaptic role of protons and our current understanding of how ASICs contribute to various types of neuronal injury in the brain. PMID:25582290

  6. Exogenous ciliary neurotrophic factor (CNTF) reduces synaptic depression during repetitive stimulation.

    Science.gov (United States)

    Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Priego, Mercedes; Obis, Teresa; Lanuza, Maria A; Besalduch, Nuria; Tomàs, Josep

    2012-09-01

    It has been shown that ciliary neurotrophic factor (CNTF) has trophic and maintenance effects on several types of peripheral and central neurons, glia, and cells outside the nervous system. Both CNTF and its receptor, CNTF-Rα, are expressed in the muscle. We use confocal immunocytochemistry to show that the trophic cytokine and its receptor are present in the pre- and post-synaptic sites of the neuromuscular junctions (NMJs). Applied CNTF (7.5-200 ng/ml, 60 min-3 h) does not acutely affect spontaneous potentials (size or frequency) or quantal content of the evoked acetylcholine release from post-natal (in weak or strong axonal inputs on dually innervated end plates or in the most mature singly innervated synapses at P6) or adult (P30) NMJ of Levator auris longus muscle of the mice. However, CNTF reduces roughly 50% the depression produced by repetitive stimulation (40 Hz, 2 min) on the adult NMJs. Our findings indicate that, unlike neurotrophins, exogenous CNTF does not acutely modulate transmitter release locally at the mammalian neuromuscular synapse but can protect mature end plates from activity-induced synaptic depression. © 2012 Peripheral Nerve Society.

  7. Possible Effects of Synaptic Imbalances on Oligodendrocyte-Axonic Interactions in Schizophrenia: a Hypothetical Model

    Directory of Open Access Journals (Sweden)

    Bernhard Joseph Mitterauer

    2011-04-01

    Full Text Available AbstractA model of glial-neuronal interactions is proposed that could be explanatory for the demyelination identified in brains with schizophrenia. According to this model, receptors on astrocytes in glial-neuronal synaptic units are not functional, loosing their modulatory influence on synaptic neurotransmission. Hence, an unconstrained neurotransmission flux occurs that hyperactivates the axon and floods the cognate receptors of neurotransmitters on oligodendrocytes. The excess of neurotransmitters may have a toxic effect on oligodendrocytes and myelin, causing demyelination. In parallel, an increasing impairment of axons may disconnect neuronal networks. It is formally shown how oligodendrocytes normally categorize axonic information processing via their processes. Demyelination decomposes the oligodendrocyte-axonic system making it incapable to generate categories of information. This incoherence may be responsible for symptoms of disorganization in schizophrenia, such as thought disorder, inappropriate affect and incommunicable motor behavior. In parallel, the loss of oligodendrocytes affects gap junctions in the panglial syncytium, presumably responsible for memory impairment in schizophrenia.

  8. Synaptic network activity induces neuronal differentiation of adult hippocampal precursor cells through BDNF signaling

    Directory of Open Access Journals (Sweden)

    Harish Babu

    2009-09-01

    Full Text Available Adult hippocampal neurogenesis is regulated by activity. But how do neural precursor cells in the hippocampus respond to surrounding network activity and translate increased neural activity into a developmental program? Here we show that long-term potential (LTP-like synaptic activity within a cellular network of mature hippocampal neurons promotes neuronal differentiation of newly generated cells. In co-cultures of precursor cells with primary hippocampal neurons, LTP-like synaptic plasticity induced by addition of glycine in Mg2+-free media for 5 min, produced synchronous network activity and subsequently increased synaptic strength between neurons. Furthermore, this synchronous network activity led to a significant increase in neuronal differentiation from the co-cultured neural precursor cells. When applied directly to precursor cells, glycine and Mg2+-free solution did not induce neuronal differentiation. Synaptic plasticity-induced neuronal differentiation of precursor cells was observed in the presence of GABAergic neurotransmission blockers but was dependent on NMDA-mediated Ca2+ influx. Most importantly, neuronal differentiation required the release of brain-derived neurotrophic factor (BDNF from the underlying substrate hippocampal neurons as well as TrkB receptor phosphorylation in precursor cells. This suggests that activity-dependent stem cell differentiation within the hippocampal network is mediated via synaptically evoked BDNF signaling.

  9. Synaptic electronics: materials, devices and applications.

    Science.gov (United States)

    Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip

    2013-09-27

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.

  10. Synaptic electronics: materials, devices and applications

    International Nuclear Information System (INIS)

    Kuzum, Duygu; Yu, Shimeng; Philip Wong, H-S

    2013-01-01

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented. (topical review)

  11. Banach Synaptic Algebras

    Science.gov (United States)

    Foulis, David J.; Pulmannov, Sylvia

    2018-04-01

    Using a representation theorem of Erik Alfsen, Frederic Schultz, and Erling Størmer for special JB-algebras, we prove that a synaptic algebra is norm complete (i.e., Banach) if and only if it is isomorphic to the self-adjoint part of a Rickart C∗-algebra. Also, we give conditions on a Banach synaptic algebra that are equivalent to the condition that it is isomorphic to the self-adjoint part of an AW∗-algebra. Moreover, we study some relationships between synaptic algebras and so-called generalized Hermitian algebras.

  12. Analysis of synaptic growth and function in Drosophila with an extended larval stage.

    Science.gov (United States)

    Miller, Daniel L; Ballard, Shannon L; Ganetzky, Barry

    2012-10-03

    The Drosophila larval neuromuscular junction (NMJ) is a powerful system for the genetic and molecular analysis of neuronal excitability, synaptic transmission, and synaptic development. However, its use for studying age-dependent processes, such as maintenance of neuronal viability and synaptic stability, are temporally limited by the onset of pupariation and metamorphosis. Here we characterize larval NMJ growth, growth regulation, structure, and function in a developmental variant with an extended third instar (ETI). RNAi-knockdown of the prothoracicotropic hormone receptor, torso, in the ring gland of developing larvae leaves the timing of first and second instar molts largely unchanged, but triples duration of the third instar from 3 to 9.5 d (McBrayer et al., 2007; Rewitz et al., 2009). During this ETI period, NMJs undergo additional growth (adding >50 boutons/NMJ), and this growth remains under the control of the canonical regulators Highwire and the TGFβ/BMP pathway. NMJ growth during the ETI period occurs via addition of new branches, satellite boutons, and interstitial boutons, and continues even after muscle growth levels off. Throughout the ETI, organization of synapses and active zones remains normal, and synaptic transmission is unchanged. These results establish the ETI larval system as a viable model for studying motor neuron diseases and for investigating time-dependent effects of perturbations that impair mechanisms of neuroprotection, synaptic maintenance, and response to neural injury.

  13. BACE1 Is Necessary for Experience-Dependent Homeostatic Synaptic Plasticity in Visual Cortex

    Directory of Open Access Journals (Sweden)

    Emily Petrus

    2014-01-01

    Full Text Available Alzheimer’s disease (AD is the most common form of age-related dementia, which is thought to result from overproduction and/or reduced clearance of amyloid-beta (Aβ peptides. Studies over the past few decades suggest that Aβ is produced in an activity-dependent manner and has physiological relevance to normal brain functions. Similarly, physiological functions for β- and γ-secretases, the two key enzymes that produce Aβ by sequentially processing the amyloid precursor protein (APP, have been discovered over recent years. In particular, activity-dependent production of Aβ has been suggested to play a role in homeostatic regulation of excitatory synaptic function. There is accumulating evidence that activity-dependent immediate early gene Arc is an activity “sensor,” which acts upstream of Aβ production and triggers AMPA receptor endocytosis to homeostatically downregulate the strength of excitatory synaptic transmission. We previously reported that Arc is critical for sensory experience-dependent homeostatic reduction of excitatory synaptic transmission in the superficial layers of visual cortex. Here we demonstrate that mice lacking the major neuronal β-secretase, BACE1, exhibit a similar phenotype: stronger basal excitatory synaptic transmission and failure to adapt to changes in visual experience. Our results indicate that BACE1 plays an essential role in sensory experience-dependent homeostatic synaptic plasticity in the neocortex.

  14. Lessons from crystal structures of kainate receptors

    DEFF Research Database (Denmark)

    Møllerud, Stine; Frydenvang, Karla Andrea; Pickering, Darryl S

    2017-01-01

    Kainate receptors belong to the family of ionotropic glutamate receptors. These receptors assemble from five subunits (GluK1-5) into tetrameric ion channels. Kainate receptors are located at both pre- and postsynaptic membranes in the central nervous system where they contribute to excitatory...... synaptic transmission and modulate network excitability by regulating neurotransmitter release. Dysfunction of kainate receptors has been implicated in several neurological disorders such as epilepsy, schizophrenia and depression. Here we provide a review on the current understanding of kainate receptor...

  15. Enhanced pre-synaptic glutamate release in deep-dorsal horn contributes to calcium channel alpha-2-delta-1 protein-mediated spinal sensitization and behavioral hypersensitivity

    Directory of Open Access Journals (Sweden)

    Dickenson Anthony H

    2009-02-01

    Full Text Available Abstract Nerve injury-induced expression of the spinal calcium channel alpha-2-delta-1 subunit (Cavα2δ1 has been shown to mediate behavioral hypersensitivity through a yet identified mechanism. We examined if this neuroplasticity modulates behavioral hypersensitivity by regulating spinal glutamatergic neurotransmission in injury-free transgenic mice overexpressing the Cavα2δ1 proteins in neuronal tissues. The transgenic mice exhibited hypersensitivity to mechanical stimulation (allodynia similar to the spinal nerve ligation injury model. Intrathecally delivered antagonists for N-methyl-D-aspartate (NMDA and α-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid (AMPA/kainate receptors, but not for the metabotropic glutamate receptors, caused a dose-dependent allodynia reversal in the transgenic mice without changing the behavioral sensitivity in wild-type mice. This suggests that elevated spinal Cavα2δ1 mediates allodynia through a pathway involving activation of selective glutamate receptors. To determine if this is mediated by enhanced spinal neuronal excitability or pre-synaptic glutamate release in deep-dorsal horn, we examined wide-dynamic-range (WDR neuron excitability with extracellular recording and glutamate-mediated excitatory postsynaptic currents with whole-cell patch recording in deep-dorsal horn of the Cavα2δ1 transgenic mice. Our data indicated that overexpression of Cavα2δ1 in neuronal tissues led to increased frequency, but not amplitude, of miniature excitatory post synaptic currents mediated mainly by AMPA/kainate receptors at physiological membrane potentials, and also by NMDA receptors upon depolarization, without changing the excitability of WDR neurons to high intensity stimulation. Together, these findings support a mechanism of Cavα2δ1-mediated spinal sensitization in which elevated Cavα2δ1 causes increased pre-synaptic glutamate release that leads to reduced excitation thresholds of post-synaptic dorsal

  16. Enhanced pre-synaptic glutamate release in deep-dorsal horn contributes to calcium channel alpha-2-delta-1 protein-mediated spinal sensitization and behavioral hypersensitivity

    Science.gov (United States)

    Nguyen, David; Deng, Ping; Matthews, Elizabeth A; Kim, Doo-Sik; Feng, Guoping; Dickenson, Anthony H; Xu, Zao C; Luo, Z David

    2009-01-01

    Nerve injury-induced expression of the spinal calcium channel alpha-2-delta-1 subunit (Cavα2δ1) has been shown to mediate behavioral hypersensitivity through a yet identified mechanism. We examined if this neuroplasticity modulates behavioral hypersensitivity by regulating spinal glutamatergic neurotransmission in injury-free transgenic mice overexpressing the Cavα2δ1 proteins in neuronal tissues. The transgenic mice exhibited hypersensitivity to mechanical stimulation (allodynia) similar to the spinal nerve ligation injury model. Intrathecally delivered antagonists for N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid (AMPA)/kainate receptors, but not for the metabotropic glutamate receptors, caused a dose-dependent allodynia reversal in the transgenic mice without changing the behavioral sensitivity in wild-type mice. This suggests that elevated spinal Cavα2δ1 mediates allodynia through a pathway involving activation of selective glutamate receptors. To determine if this is mediated by enhanced spinal neuronal excitability or pre-synaptic glutamate release in deep-dorsal horn, we examined wide-dynamic-range (WDR) neuron excitability with extracellular recording and glutamate-mediated excitatory postsynaptic currents with whole-cell patch recording in deep-dorsal horn of the Cavα2δ1 transgenic mice. Our data indicated that overexpression of Cavα2δ1 in neuronal tissues led to increased frequency, but not amplitude, of miniature excitatory post synaptic currents mediated mainly by AMPA/kainate receptors at physiological membrane potentials, and also by NMDA receptors upon depolarization, without changing the excitability of WDR neurons to high intensity stimulation. Together, these findings support a mechanism of Cavα2δ1-mediated spinal sensitization in which elevated Cavα2δ1 causes increased pre-synaptic glutamate release that leads to reduced excitation thresholds of post-synaptic dorsal horn neurons to innocuous

  17. Anaplastic Lymphoma Kinase Is a Regulator of Alcohol Consumption and Excitatory Synaptic Plasticity in the Nucleus Accumbens Shell

    Directory of Open Access Journals (Sweden)

    Regina A. Mangieri

    2017-08-01

    Full Text Available Anaplastic lymphoma kinase (ALK is a receptor tyrosine kinase recently implicated in biochemical, physiological, and behavioral responses to ethanol. Thus, manipulation of ALK signaling may represent a novel approach to treating alcohol use disorder (AUD. Ethanol induces adaptations in glutamatergic synapses onto nucleus accumbens shell (NAcSh medium spiny neurons (MSNs, and putative targets for treating AUD may be validated for further development by assessing how their manipulation modulates accumbal glutamatergic synaptic transmission and plasticity. Here, we report that Alk knockout (AlkKO mice consumed greater doses of ethanol, relative to wild-type (AlkWT mice, in an operant self-administration model. Using ex vivo electrophysiology to examine excitatory synaptic transmission and plasticity at NAcSh MSNs that express dopamine D1 receptors (D1MSNs, we found that the amplitude of spontaneous excitatory post-synaptic currents (EPSCs in NAcSh D1MSNs was elevated in AlkKO mice and in the presence of an ALK inhibitor, TAE684. Furthermore, when ALK was absent or inhibited, glutamatergic synaptic plasticity – long-term depression of evoked EPSCs – in D1MSNs was attenuated. Thus, loss of ALK activity in mice is associated with elevated ethanol consumption and enhanced excitatory transmission in NAcSh D1MSNs. These findings add to the mounting evidence of a relationship between excitatory synaptic transmission onto NAcSh D1MSNs and ethanol consumption, point toward ALK as one important molecular mediator of this interaction, and further validate ALK as a target for therapeutic intervention in the treatment of AUD.

  18. Itineration of the Internet over nonequilibrium stationary states in Tsallis statistics.

    Science.gov (United States)

    Abe, Sumiyoshi; Suzuki, Norikazu

    2003-01-01

    The cumulative probability distribution of sparseness time interval in the Internet is studied by the method of data analysis. Round-trip time between a local host and a destination host through ten odd routers is measured using the ping command, i.e., doing an echo experiment. The data are found to be well described by q-exponential distributions, which maximize the Tsallis entropy indexed by q less or larger than unity, showing a scale-invariant feature of the system. The network is observed to itinerate over a series of the nonequilibrium stationary states characterized by Tsallis statistics.

  19. Neurokinin-1 Receptor Immunoreactive Neuronal Elements in the Superficial Dorsal Horn of the Chicken Spinal Cord: With Special Reference to Their Relationship with the Tachykinin-containing Central Axon Terminals in Synaptic Glomeruli

    International Nuclear Information System (INIS)

    Sakamoto, Hiroshi; Kawate, Toyoko; Li, Yongnan; Atsumi, Saoko

    2009-01-01

    Synaptic glomeruli that involve tachykinin-containing primary afferent central terminals are numerous in lamina II of the chicken spinal cord. Therefore, a certain amount of noxious information is likely to be modulated in these structures in chickens. In this study, we used immunohistochemistry with confocal and electron microscopy to investigate whether neurokinin-1 receptor (NK-1R)-expressing neuronal elements are in contact with the central primary afferent terminals in synaptic glomeruli of the chicken spinal cord. We also investigated which neuronal elements (axon terminals, dendrites, cell bodies) and which neurons in the spinal cord possess NK-1R, and are possibly influenced by tachykinin in the glomeruli. By confocal microscopy, NK-1R immunoreactivities were seen in a variety of neuronal cell bodies, their dendrites and smaller fibers of unknown origin. Some of the NK-1R immunoreactive profiles also expressed GABA immunoreactivities. A close association was observed between the NK-1R-immunoreactive neurons and tachykinin-immunoreactive axonal varicosities. By electron microscopy, NK-1R immunoreactivity was seen in cell bodies, conventional dendrites and vesicle-containing dendrites in laminae I and II. Among these elements, dendrites and vesicle-containing dendrites made contact with tachykinin-containing central terminals in the synaptic glomeruli. These results indicate that tachykinin-containing central terminals in the chicken spinal cord can modulate second-order neuronal elements in the synaptic glomeruli

  20. Synaptic and Cellular Organization of Layer 1 of the Developing Rat Somatosensory Cortex

    Directory of Open Access Journals (Sweden)

    Shruti eMuralidhar

    2014-01-01

    Full Text Available We have performed a systematic and quantitative study of the neuronal and synaptic organisation of neocortical layer 1 in the somatosensory cortex in juvenile rats (P13 – P16 using multi-neuron patch-clamp and 3D morphology reconstructions. We used both subjective expert based and objective classification to establish distinct morphological groups. According to expert based subjective classification, the neurons were classified into six morphological types: (1 the dense axon neurogliaform cell (NGC-DA and (2 a sparse axon neurogliaform cell (NGC-SA, (3 the horizontal axon cell (HAC and (4 those with descending axonal colaterals (DAC, (5 the large axon cell (LAC and (6 the small axon cell (SAC. We also used objective supervised and unsupervised analyses that confirmed 4 out of the 6 expert proposed groups, namely, DAC, HAC, LAC and a combined NGC. The cells were also classified into 5 electrophysiological types based on the Petilla convention; classical non-adapting (cNAC, burst non-adapting (bNAC, classical adapting (cAC, classical stuttering (cSTUT and classical irregular spiking (cIR. The most common electrophysiological type was the cNAC type (40% and the most commonly encountered morpho-electrical type of neuron was the NGC-DA - cNAC. Layer 1 cells are connected by GABAergic inhibitory synaptic connections with a 7.9% connection probability, as well gap junctions with 5.2% connection probability. Most synaptic connections were mediated by both GABAA and GABAB receptors (62.6%, as observed from the response characteristics to single pulse and train stimulations. A smaller fraction of synaptic connections were mediated exclusively by GABAA (15.4% or GABAB (21.8% receptors. Based on the morphological reconstructions, we found multi-synapse connections with an average of 9 putative synapses per connection. These putative touches were widely distributed with 39% on somata and 61% on dendrites.

  1. Presynaptic localization of histamine H3-receptors in rat brain

    International Nuclear Information System (INIS)

    Fujimoto, K.; Mizuguchi, H.; Fukui, H.; Wada, H.

    1991-01-01

    The localization of histamine H3-receptors in subcellular fractions from the rat brain was examined in a [3H] (R) alpha-methylhistamine binding assay and compared with those of histamine H1- and adrenaline alpha 1- and alpha 2-receptors. Major [3H](R) alpha-methylhistamine binding sites with increased specific activities ([3H]ligand binding vs. protein amount) were recovered from the P2 fraction by differential centrifugation. Minor [3H](R)alpha-methylhistamine binding sites with increased specific activities were also detected in the P3 fraction. Further subfractionation of the P2 fraction by discontinuous sucrose density gradient centrifugation showed major recoveries of [3H](R)alpha-methylhistamine binding in myelin (MYE) and synaptic plasma membrane (SPM) fractions. A further increase in specific activity was observed in the MYE fraction, but the SPM fraction showed no significant increase in specific activity. Adrenaline alpha 2-receptors, the pre-synaptic autoreceptors, in a [3H] yohimbine binding assay showed distribution patterns similar to histamine H3-receptors. On the other hand, post-synaptic histamine H1- and adrenaline alpha 1-receptors were closely localized and distributed mainly in the SPM fraction with increased specific activity. Only a negligible amount was recovered in the MYE fraction, unlike the histamine H3- and adrenaline alpha 2-receptors

  2. Norepinephrine versus dopamine and their interaction in modulating synaptic function in the prefrontal cortex.

    Science.gov (United States)

    Xing, Bo; Li, Yan-Chun; Gao, Wen-Jun

    2016-06-15

    Among the neuromodulators that regulate prefrontal cortical circuit function, the catecholamine transmitters norepinephrine (NE) and dopamine (DA) stand out as powerful players in working memory and attention. Perturbation of either NE or DA signaling is implicated in the pathogenesis of several neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), schizophrenia, and drug addiction. Although the precise mechanisms employed by NE and DA to cooperatively control prefrontal functions are not fully understood, emerging research indicates that both transmitters regulate electrical and biochemical aspects of neuronal function by modulating convergent ionic and synaptic signaling in the prefrontal cortex (PFC). This review summarizes previous studies that investigated the effects of both NE and DA on excitatory and inhibitory transmissions in the prefrontal cortical circuitry. Specifically, we focus on the functional interaction between NE and DA in prefrontal cortical local circuitry, synaptic integration, signaling pathways, and receptor properties. Although it is clear that both NE and DA innervate the PFC extensively and modulate synaptic function by activating distinctly different receptor subtypes and signaling pathways, it remains unclear how these two systems coordinate their actions to optimize PFC function for appropriate behavior. Throughout this review, we provide perspectives and highlight several critical topics for future studies. This article is part of a Special Issue entitled SI: Noradrenergic System. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The Role of Co-chaperones in Synaptic Proteostasis and Neurodegenerative Disease

    Directory of Open Access Journals (Sweden)

    Erica L. Gorenberg

    2017-05-01

    Full Text Available Synapses must be preserved throughout an organism's lifespan to allow for normal brain function and behavior. Synapse maintenance is challenging given the long distances between the termini and the cell body, reliance on axonal transport for delivery of newly synthesized presynaptic proteins, and high rates of synaptic vesicle exo- and endocytosis. Hence, synapses rely on efficient proteostasis mechanisms to preserve their structure and function. To this end, the synaptic compartment has specific chaperones to support its functions. Without proper synaptic chaperone activity, local proteostasis imbalances lead to neurotransmission deficits, dismantling of synapses, and neurodegeneration. In this review, we address the roles of four synaptic chaperones in the maintenance of the nerve terminal, as well as their genetic links to neurodegenerative disease. Three of these are Hsp40 co-chaperones (DNAJs: Cysteine String Protein alpha (CSPα; DNAJC5, auxilin (DNAJC6, and Receptor-Mediated Endocytosis 8 (RME-8; DNAJC13. These co-chaperones contain a conserved J domain through which they form a complex with heat shock cognate 70 (Hsc70, enhancing the chaperone's ATPase activity. CSPα is a synaptic vesicle protein known to chaperone the t-SNARE SNAP-25 and the endocytic GTPase dynamin-1, thereby regulating synaptic vesicle exocytosis and endocytosis. Auxilin binds assembled clathrin cages, and through its interactions with Hsc70 leads to the uncoating of clathrin-coated vesicles, a process necessary for the regeneration of synaptic vesicles. RME-8 is a co-chaperone on endosomes and may have a role in clathrin-coated vesicle endocytosis on this organelle. These three co-chaperones maintain client function by preserving folding and assembly to prevent client aggregation, but they do not break down aggregates that have already formed. The fourth synaptic chaperone we will discuss is Heat shock protein 110 (Hsp110, which interacts with Hsc70, DNAJAs, and

  4. GluN2B-containing NMDA receptors blockade rescues bidirectional synaptic plasticity in the bed nucleus of the stria terminalis of cocaine self-administering rats.

    Science.gov (United States)

    deBacker, Julian; Hawken, Emily R; Normandeau, Catherine P; Jones, Andrea A; Di Prospero, Cynthia; Mechefske, Elysia; Gardner Gregory, James; Hayton, Scott J; Dumont, Éric C

    2015-01-01

    Drugs of abuse have detrimental effects on homeostatic synaptic plasticity in the motivational brain network. Bidirectional plasticity at excitatory synapses helps keep neural circuits within a functional range to allow for behavioral flexibility. Therefore, impaired bidirectional plasticity of excitatory synapses may contribute to the behavioral hallmarks of addiction, yet this relationship remains unclear. Here we tracked excitatory synaptic strength in the oval bed nucleus of the stria terminalis (ovBNST) using whole-cell voltage-clamp recordings in brain slices from rats self-administering sucrose or cocaine. In the cocaine group, we measured both a persistent increase in AMPA to NMDA ratio (A:N) and slow decay time of NMDA currents throughout the self-administration period and after withdrawal from cocaine. In contrast, the sucrose group exhibited an early increase in A:N ratios (acquisition) that returned toward baseline values with continued self-administration (maintenance) and after withdrawal. The sucrose rats also displayed a decrease in NMDA current decay time with continued self-administration (maintenance), which normalized after withdrawal. Cocaine self-administering rats exhibited impairment in NMDA-dependent long-term depression (LTD) that could be rescued by GluN2B-containing NMDA receptor blockade. Sucrose self-administering rats demonstrated no impairment in NMDA-dependent LTD. During the maintenance period of self-administration, in vivo (daily intraperitoneally for 5 days) pharmacologic blockade of GluN2B-containing NMDA receptors did not reduce lever pressing for cocaine. However, in vivo GluN2B blockade did normalize A:N ratios in cocaine self-administrating rats, and dissociated the magnitude of ovBNST A:N ratios from drug-seeking behavior after protracted withdrawal. Altogether, our data demonstrate when and how bidirectional plasticity at ovBNST excitatory synapses becomes dysfunctional with cocaine self-administration and that NMDA

  5. Magnetic ordering in tetragonal FeS: Evidence for strong itinerant spin fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, K.D.; Refson, K.; Bone, S.; Qiao, R.; Yang, W.; Liu, Z.; Sposito, G.

    2010-11-01

    Mackinawite is a naturally occurring layer-type FeS mineral important in biogeochemical cycles and, more recently, in the development of microbial fuel cells. Conflicting results have been published as to the magnetic properties of this mineral, with Moessbauer spectroscopy indicating no magnetic ordering down to 4.2 K but density functional theory (DFT) predicting an antiferromagnetic ground state, similar to the Fe-based high-temperature superconductors with which it is isostructural and for which it is known that magnetism is suppressed by strong itinerant spin fluctuations. We investigated this latter possibility for mackinawite using photoemission spectroscopy, near-edge x-ray absorption fine structure spectroscopy, and DFT computations. Our Fe 3{sub s} core-level photoemission spectrum of mackinawite showed a clear exchange-energy splitting (2.9 eV) consistent with a 1 {micro}{sub B} magnetic moment on the Fe ions, while the Fe L-edge x-ray absorption spectrum indicated rather delocalized Fe 3{sub d} electrons in mackinawite similar to those in Fe metal. Our DFT computations demonstrated that the ground state of mackinawite is single-stripe antiferromagnetic, with an Fe magnetic moment (2.7 {micro}{sub B}) that is significantly larger than the experimental estimate and has a strong dependence on the S height and lattice parameters. All of these trends signal the existence of strong itinerant spin fluctuations. If spin fluctuations prove to be mediators of electron pairing, we conjecture that mackinawite may be one of the simplest Fe-based superconductors.

  6. EDITORIAL: Synaptic electronics Synaptic electronics

    Science.gov (United States)

    Demming, Anna; Gimzewski, James K.; Vuillaume, Dominique

    2013-09-01

    Conventional computers excel in logic and accurate scientific calculations but make hard work of open ended problems that human brains handle easily. Even von Neumann—the mathematician and polymath who first developed the programming architecture that forms the basis of today's computers—was already looking to the brain for future developments before his death in 1957 [1]. Neuromorphic computing uses approaches that better mimic the working of the human brain. Recent developments in nanotechnology are now providing structures with very accommodating properties for neuromorphic approaches. This special issue, with guest editors James K Gimzewski and Dominique Vuillaume, is devoted to research at the serendipitous interface between the two disciplines. 'Synaptic electronics', looks at artificial devices with connections that demonstrate behaviour similar to synapses in the nervous system allowing a new and more powerful approach to computing. Synapses and connecting neurons respond differently to incident signals depending on the history of signals previously experienced, ultimately leading to short term and long term memory behaviour. The basic characteristics of a synapse can be replicated with around ten simple transistors. However with the human brain having around 1011 neurons and 1015 synapses, artificial neurons and synapses from basic transistors are unlikely to accommodate the scalability required. The discovery of nanoscale elements that function as 'memristors' has provided a key tool for the implementation of synaptic connections [2]. Leon Chua first developed the concept of the 'The memristor—the missing circuit element' in 1971 [3]. In this special issue he presents a tutorial describing how memristor research has fed into our understanding of synaptic behaviour and how they can be applied in information processing [4]. He also describes, 'The new principle of local activity, which uncovers a minuscule life-enabling "Goldilocks zone", dubbed the

  7. Effects of monomethylarsonic and monomethylarsonous acid on evoked synaptic potentials in hippocampal slices of adult and young rats

    International Nuclear Information System (INIS)

    Krueger, Katharina; Straub, Heidrun; Hirner, Alfred V.; Hippler, Joerg; Binding, Norbert; Musshoff, Ulrich

    2009-01-01

    Arsenite and its metabolites, dimethylarsinic or dimethylarsinous acid, have previously been shown to disturb synaptic transmission in hippocampal slices of rats (Krueger, K., Gruner, J., Madeja, M., Hartmann, L.M., Hirner, A.V., Binding, N., Muβhoff, U., 2006a. Blockade and enhancement of glutamate receptor responses in Xenopus oocytes by methylated arsenicals. Arch. Toxicol. 80, 492-501, Krueger, K., Straub, H., Binding, N., Muβhoff, U., 2006b. Effects of arsenite on long-term potentiation in hippocampal slices from adult and young rats. Toxicol. Lett. 165, 167-173, Krueger, K., Repges, H., Hippler, J., Hartmann, L.M., Hirner, A.V., Straub, H., Binding, N., Muβhoff, U., 2007. Effects of dimethylarsinic and dimethylarsinous acid on evoked synaptic potentials in hippocampal slices of young and adult rats. Toxicol. Appl. Pharmacol. 225, 40-46). The present experiments investigate, whether the important arsenic metabolites monomethylarsonic acid (MMA V ) and monomethylarsonous acid (MMA III ) also influence the synaptic functions of the hippocampus. In hippocampal slices of young (14-21 days-old) and adult (2-4 months-old) rats, evoked synaptic field potentials from the Schaffer collateral-CA1 synapse were measured under control conditions and during and after 30 and 60 min of application of the arsenic compounds. MMA V had no effect on the synapse functions neither in slices of adult nor in those from young rats. However, MMA III strongly influenced the synaptic transmission: it totally depressed the amplitudes of fEPSPs at concentrations of 50 μmol/l (adult rats) and 25 μmol/l (young rats) and LTP amplitudes at concentrations of 25 μmol/l (adult rats) and 10 μmol/l (young rats), respectively. In contrast, application of 1 μmol/l MMA III led to an enhancement of the LTP amplitude in young rats, which is interpretable by an enhancing effect on NMDA receptors and a lack of the blocking effect on AMPA receptors at this concentration (Krueger, K., Gruner, J

  8. Quasispin model of itinerant magnetism: High-temperature theory

    International Nuclear Information System (INIS)

    Liu, S.H.

    1977-01-01

    The high-temperature properties of itinerant magnetic systems are examined by using the coherent-potential approximation. We assume a local moment on each atom so that at elevated temperatures there is a number of reversed spins. The coherent potential is solved, and from that the moment on each atom is determined self-consistently. It is found that when the condition for ferromagnetic ordering is satisfied, the local moments persist even above the critical temperature. Conversely, if local moments do not exist at high temperatures, the system can at most condense into a spin-density-wave state. Furthermore, spin-flip scatterings of the conduction electrons from the local moments give rise to additional correlation not treated in the coherent-potential approximation. This correlation energy is an important part of the coupling energy of the local moments. The relations between our work and the theories of Friedel, Hubbard, and others are discussed

  9. Basic roles of key molecules connected with NMDAR signaling pathway on regulating learning and memory and synaptic plasticity

    Institute of Scientific and Technical Information of China (English)

    Hui Wang; Rui-Yun Peng

    2016-01-01

    With key roles in essential brain functions ranging from the long-term potentiation (LTP) to synaptic plasticity,the N-methyl-D-aspartic acid receptor (NMDAR) can be considered as one of the fundamental glutamate receptors in the central nervous system.The role of NMDA R was first identified in synaptic plasticity and has been extensively studied.Some molecules,such as Ca2+,postsynaptic density 95 (PSD-95),calcium/calmodulin-dependent protein kinase Ⅱ (CaMK Ⅱ),protein kinase A (PKA),mitogen-activated protein kinase (MAPK) and cyclic adenosine monophosphate (cAMP) responsive element binding protein (CREB),are of special importance in learning and memory.This review mainly focused on the new research of key molecules connected with learning and memory,which played important roles in the NMDAR signaling pathway.

  10. Synaptic transmission modulates while non-synaptic processes govern the transition from pre-ictal to seizure activity in vitro

    OpenAIRE

    Jefferys, John; Fox, John; Jiruska, Premysl; Kronberg, Greg; Miranda, Dolores; Ruiz-Nuño, Ana; Bikson, Marom

    2018-01-01

    It is well established that non-synaptic mechanisms can generate electrographic seizures after blockade of synaptic function. We investigated the interaction of intact synaptic activity with non-synaptic mechanisms in the isolated CA1 region of rat hippocampal slices using the 'elevated-K+' model of epilepsy. Elevated K+ ictal bursts share waveform features with other models of electrographic seizures, including non-synaptic models where chemical synaptic transmission is suppressed, such as t...

  11. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Rudenko, Gabby (Texas-MED)

    2017-01-01

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, formingtrans-complexes spanning the synaptic cleft orcis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics.

  12. A Single Aplysia Neurotrophin Mediates Synaptic Facilitation via Differentially Processed Isoforms Secreted as Mature or Precursor Forms

    Science.gov (United States)

    Kassabov, Stefan R.; Choi, Yun-Beom; Karl, Kevin A.; Vishwasrao, Harshad D.; Bailey, Craig H.; Kandel, Eric R.

    2014-01-01

    Summary Neurotrophins control the development and adult plasticity of the vertebrate nervous system. Failure to identify invertebrate neurotrophin orthologs, however, has precluded studies in invertebrate models, limiting understanding of fundamental aspects of neurotrophin biology and function. We identified a neurotrophin (ApNT) and Trk receptor (ApTrk) in the mollusk Aplysia and find they play a central role in learning related synaptic plasticity. ApNT increases the magnitude and lowers the threshold for induction of long-term facilitation and initiates the growth of new synaptic varicosities at the monosynaptic connection between sensory and motor neurons of the gill-withdrawal reflex. Unlike vertebrate neurotrophins, ApNT has multiple coding exons and exerts distinct synaptic effects through differentially processed and secreted splice isoforms. Our findings demonstrate the existence of bona-fide neurotrophin signaling in invertebrates and reveal a novel, post-transcriptional mechanism, regulating neurotrophin processing and the release of pro- and mature neurotrophins which differentially modulate synaptic plasticity. PMID:23562154

  13. Loss of catecholaminergic neuromodulation of persistent forms of hippocampal synaptic plasticity with increasing age

    Directory of Open Access Journals (Sweden)

    Hannah Twarkowski

    2016-09-01

    Full Text Available Neuromodulation by means of the catecholaminergic system is a key component of motivation-driven learning and behaviorally modulated hippocampal synaptic plasticity. In particular, dopamine acting on D1/D5 receptors and noradrenaline acting on beta-adrenergic receptors exert a very potent regulation of forms of hippocampal synaptic plasticity that last for very long-periods of time (>24h, and occur in conjunction with novel spatial learning. Antagonism of these receptors not only prevents long-term potentiation (LTP and long-term depression (LTD, but prevents the memory of the spatial event that, under normal circumstances, leads to the perpetuation of these plasticity forms. Spatial learning behavior that normally comes easily to rats, such as object-place learning and spatial reference learning, becomes increasingly impaired with aging. Middle-aged animals display aging-related deficits of specific, but not all, components of spatial learning, and one possibility is that this initial manifestation of decrements in learning ability that become manifest in middle-age relate to changes in motivation, attention and/or the regulation by neuromodulatory systems of these behavioral states.Here, we compared the regulation by dopaminergic D1/D5 and beta-adrenergic receptors of persistent LTP in young (2-4 month old and middle-aged (8-14 month old rats. We observed in young rats, that weak potentiation that typically lasts for ca. 2h could be strengthened into persistent (>24h LTP by pharmacological activation of either D1/D5 or beta-adrenergic receptors. By contrast, no such facilitation occurred in middle-aged rats. This difference was not related to an ostensible learning deficit: a facilitation of weak potentiation into LTP by spatial learning was possible both in young and middle-aged rats. It was also not directly linked to deficits in LTP: strong afferent stimulation resulted in equivalent LTP in both age groups. We postulate that this change in

  14. Backpropagating Action Potentials Enable Detection of Extrasynaptic Glutamate by NMDA Receptors

    Directory of Open Access Journals (Sweden)

    Yu-Wei Wu

    2012-05-01

    Full Text Available Synaptic NMDA receptors (NMDARs are crucial for neural coding and plasticity. However, little is known about the adaptive function of extrasynaptic NMDARs occurring mainly on dendritic shafts. Here, we find that in CA1 pyramidal neurons, backpropagating action potentials (bAPs recruit shaft NMDARs exposed to ambient glutamate. In contrast, spine NMDARs are “protected,” under baseline conditions, from such glutamate influences by perisynaptic transporters: we detect bAP-evoked Ca2+ entry through these receptors upon local synaptic or photolytic glutamate release. During theta-burst firing, NMDAR-dependent Ca2+ entry either downregulates or upregulates an h-channel conductance (Gh of the cell depending on whether synaptic glutamate release is intact or blocked. Thus, the balance between activation of synaptic and extrasynaptic NMDARs can determine the sign of Gh plasticity. Gh plasticity in turn regulates dendritic input probed by local glutamate uncaging. These results uncover a metaplasticity mechanism potentially important for neural coding and memory formation.

  15. Tracking Cell Surface GABAB Receptors Using an α-Bungarotoxin Tag*

    Science.gov (United States)

    Wilkins, Megan E.; Li, Xinyan; Smart, Trevor G.

    2008-01-01

    GABAB receptors mediate slow synaptic inhibition in the central nervous system and are important for synaptic plasticity as well as being implicated in disease. Located at pre- and postsynaptic sites, GABAB receptors will influence cell excitability, but their effectiveness in doing so will be dependent, in part, on their trafficking to, and stability on, the cell surface membrane. To examine the dynamic behavior of GABAB receptors in GIRK cells and neurons, we have devised a method that is based on tagging the receptor with the binding site components for the neurotoxin, α-bungarotoxin. By using the α-bungarotoxin binding site-tagged GABAB R1a subunit (R1aBBS), co-expressed with the R2 subunit, we can track receptor mobility using the small reporter, α-bungarotoxin-conjugated rhodamine. In this way, the rates of internalization and membrane insertion for these receptors could be measured with fixed and live cells. The results indicate that GABAB receptors rapidly turnover in the cell membrane, with the rate of internalization affected by the state of receptor activation. The bungarotoxin-based method of receptor-tagging seems ideally suited to follow the dynamic regulation of other G-protein-coupled receptors. PMID:18812318

  16. LL5beta: a regulator of postsynaptic differentiation identified in a screen for synaptically enriched transcripts at the neuromuscular junction.

    Science.gov (United States)

    Kishi, Masashi; Kummer, Terrance T; Eglen, Stephen J; Sanes, Joshua R

    2005-04-25

    In both neurons and muscle fibers, specific mRNAs are concentrated beneath and locally translated at synaptic sites. At the skeletal neuromuscular junction, all synaptic RNAs identified to date encode synaptic components. Using microarrays, we compared RNAs in synapse-rich and -free regions of muscles, thereby identifying transcripts that are enriched near synapses and that encode soluble membrane and nuclear proteins. One gene product, LL5beta, binds to both phosphoinositides and a cytoskeletal protein, filamin, one form of which is concentrated at synaptic sites. LL5beta is itself associated with the cytoplasmic face of the postsynaptic membrane; its highest levels border regions of highest acetylcholine receptor (AChR) density, which suggests a role in "corraling" AChRs. Consistent with this idea, perturbing LL5beta expression in myotubes inhibits AChR aggregation. Thus, a strategy designed to identify novel synaptic components led to identification of a protein required for assembly of the postsynaptic apparatus.

  17. Long-term culture of astrocytes attenuates the readily releasable pool of synaptic vesicles.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kawano

    Full Text Available The astrocyte is a major glial cell type of the brain, and plays key roles in the formation, maturation, stabilization and elimination of synapses. Thus, changes in astrocyte condition and age can influence information processing at synapses. However, whether and how aging astrocytes affect synaptic function and maturation have not yet been thoroughly investigated. Here, we show the effects of prolonged culture on the ability of astrocytes to induce synapse formation and to modify synaptic transmission, using cultured autaptic neurons. By 9 weeks in culture, astrocytes derived from the mouse cerebral cortex demonstrated increases in β-galactosidase activity and glial fibrillary acidic protein (GFAP expression, both of which are characteristic of aging and glial activation in vitro. Autaptic hippocampal neurons plated on these aging astrocytes showed a smaller amount of evoked release of the excitatory neurotransmitter glutamate, and a lower frequency of miniature release of glutamate, both of which were attributable to a reduction in the pool of readily releasable synaptic vesicles. Other features of synaptogenesis and synaptic transmission were retained, for example the ability to induce structural synapses, the presynaptic release probability, the fraction of functional presynaptic nerve terminals, and the ability to recruit functional AMPA and NMDA glutamate receptors to synapses. Thus the presence of aging astrocytes affects the efficiency of synaptic transmission. Given that the pool of readily releasable vesicles is also small at immature synapses, our results are consistent with astrocytic aging leading to retarded synapse maturation.

  18. Elevated interleukin-8 enhances prefrontal synaptic transmission in mice with persistent inflammatory pain

    Directory of Open Access Journals (Sweden)

    Cui Guang-bin

    2012-02-01

    Full Text Available Abstract Background Interleukin-8 (IL-8 is known for its roles in inflammation and plays critical roles in the development of pain. Its expression increases in the brain after peripheral inflammation. Prefrontal cortex, including the anterior cingulate cortex (ACC, is a forebrain structure known for its roles in pain transmission and modulation. Painful stimuli potentiate the prefrontal synaptic transmission, however, little is known about the expression of IL-8 and its role in the enhanced ACC synaptic transmission in animals with persistent inflammatory pain. Findings In the present study, we examined IL-8 expression in the ACC, somatosensory cortex (SSC, and the dorsal horn of lumbar spinal cord following hind-paw administration of complete Freund's adjuvant (CFA in mice and its effects on the ACC synaptic transmission. Quantification of IL-8 at protein level (by ELISA revealed enhanced expression in the ACC and spinal cord during the chronic phases of CFA-induced peripheral inflammation. In vitro whole-cell patch-clamp recordings revealed that IL-8 significantly enhanced synaptic transmission through increased probability of neurotransmitter release in the ACC slice. ACC local infusion of repertaxin, a non-competitive allosteric blocker of IL-8 receptors, notably prolonged the paw withdrawal latency to thermal radian heat stimuli bilaterally in mice. Conclusions Our findings suggest that up-regulation of IL-8 in the ACC partly attributable to the enhanced prefrontal synaptic transmission in the mice with persistent inflammatory pain.

  19. Biphasic synaptic Ca influx arising from compartmentalized electrical signals in dendritic spines.

    Directory of Open Access Journals (Sweden)

    Brenda L Bloodgood

    2009-09-01

    Full Text Available Excitatory synapses on mammalian principal neurons are typically formed onto dendritic spines, which consist of a bulbous head separated from the parent dendrite by a thin neck. Although activation of voltage-gated channels in the spine and stimulus-evoked constriction of the spine neck can influence synaptic signals, the contribution of electrical filtering by the spine neck to basal synaptic transmission is largely unknown. Here we use spine and dendrite calcium (Ca imaging combined with 2-photon laser photolysis of caged glutamate to assess the impact of electrical filtering imposed by the spine morphology on synaptic Ca transients. We find that in apical spines of CA1 hippocampal neurons, the spine neck creates a barrier to the propagation of current, which causes a voltage drop and results in spatially inhomogeneous activation of voltage-gated Ca channels (VGCCs on a micron length scale. Furthermore, AMPA and NMDA-type glutamate receptors (AMPARs and NMDARs, respectively that are colocalized on individual spine heads interact to produce two kinetically and mechanistically distinct phases of synaptically evoked Ca influx. Rapid depolarization of the spine triggers a brief and large Ca current whose amplitude is regulated in a graded manner by the number of open AMPARs and whose duration is terminated by the opening of small conductance Ca-activated potassium (SK channels. A slower phase of Ca influx is independent of AMPAR opening and is determined by the number of open NMDARs and the post-stimulus potential in the spine. Biphasic synaptic Ca influx only occurs when AMPARs and NMDARs are coactive within an individual spine. These results demonstrate that the morphology of dendritic spines endows associated synapses with specialized modes of signaling and permits the graded and independent control of multiple phases of synaptic Ca influx.

  20. Synaptic impairment in layer 1 of the prefrontal cortex induced by repeated stress during adolescence is reversed in adulthood

    Directory of Open Access Journals (Sweden)

    Ignacio eNegron-Oyarzo

    2015-11-01

    Full Text Available Chronic stress is a risk factor for the development of psychiatric disorders, some of which involve dysfunction of the prefrontal cortex (PFC. There is a higher prevalence of these chronic stress-related psychiatric disorders during adolescence, when the PFC has not yet fully matured. In the present work we studied the effect of repeated stress during adolescence on synaptic function in the PFC in adolescence and adulthood. To this end, adolescent Sprague-Dawley rats were subjected to seven consecutive days of restraint stress. Afterward, both synaptic transmission and short- and long-term synaptic plasticity were evaluated in layer 1 of medial-PFC (mPFC slices from adolescent and adult rats. We found that repeated stress significantly reduced the amplitude of evoked field excitatory postsynaptic potential (fEPSP in the mPFC. Isolation of excitatory transmission reveled that lower-amplitude fEPSPs were associated with a reduction in AMPA/kainate receptor-mediated transmission. We also found that repeated stress significantly decreased long-term depression (LTD. Interestingly, AMPA/kainate receptor-mediated transmission and LTD were recovered in adult animals that experienced a three-week stress-free recovery period. The data indicates that the changes in synaptic transmission and plasticity in the mPFC induced by repeated stress during adolescence are reversed in adulthood after a stress-free period.

  1. Emerging roles of the neurotrophin receptor TrkC in synapse organization.

    Science.gov (United States)

    Naito, Yusuke; Lee, Alfred Kihoon; Takahashi, Hideto

    2017-03-01

    Tropomyosin-receptor-kinase (Trk) receptors have been extensively studied for their roles in kinase-dependent signaling cascades in nervous system development. Synapse organization is coordinated by trans-synaptic interactions of various cell adhesion proteins, a representative example of which is the neurexin-neuroligin complex. Recently, a novel role for TrkC as a synapse organizing protein has been established. Post-synaptic TrkC binds to pre-synaptic type-IIa receptor-type protein tyrosine phosphatase sigma (PTPσ). TrkC-PTPσ specifically induces excitatory synapses in a kinase domain-independent manner. TrkC has distinct extracellular domains for PTPσ- and NT-3-binding and thus may bind both ligands simultaneously. Indeed, NT-3 enhances the TrkC-PTPσ interaction, thus facilitating synapse induction at the pre-synaptic side and increasing pre-synaptic vesicle recycling in a kinase-independent fashion. A crystal structure study has revealed the detailed structure of the TrkC-PTPσ complex as well as competitive modulation of TrkC-mediated synaptogenesis by heparan sulfate proteoglycans (HSPGs), which bind the same domain of TrkC as PTPσ. Thus, there is strong evidence supporting a role for the TrkC-PTPσ complex in mechanisms underlying the fine turning of neural connectivity. Furthermore, disruption of the TrkC-PTPσ complex may be the underlying cause of certain psychiatric disorders caused by mutations in the gene encoding TrkC (NTRK3), supporting its role in cognitive functions. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  2. Role for a Novel Usher Protein Complex in Hair Cell Synaptic Maturation

    Science.gov (United States)

    Zallocchi, Marisa; Meehan, Daniel T.; Delimont, Duane; Rutledge, Joseph; Gratton, Michael Anne; Flannery, John; Cosgrove, Dominic

    2012-01-01

    The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23), protocadherin-15 (PCDH15) and the very large G-protein coupled receptor 1 (VLGR1) have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1−/− mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzerav3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well. PMID:22363448

  3. Role for a novel Usher protein complex in hair cell synaptic maturation.

    Directory of Open Access Journals (Sweden)

    Marisa Zallocchi

    Full Text Available The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23, protocadherin-15 (PCDH15 and the very large G-protein coupled receptor 1 (VLGR1 have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1-/- mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzer(av3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well.

  4. SRC Inhibition Reduces NR2B Surface Expression and Synaptic Plasticity in the Amygdala

    Science.gov (United States)

    Sinai, Laleh; Duffy, Steven; Roder, John C.

    2010-01-01

    The Src protein tyrosine kinase plays a central role in the regulation of N-methyl-d-aspartate receptor (NMDAR) activity by regulating NMDAR subunit 2B (NR2B) surface expression. In the amygdala, NMDA-dependent synaptic plasticity resulting from convergent somatosensory and auditory inputs contributes to emotional memory; however, the role of Src…

  5. Early history of glycine receptor biology in mammalian spinal cord circuits

    Directory of Open Access Journals (Sweden)

    Robert J Callister

    2010-05-01

    Full Text Available In this review we provide an overview of key in vivo experiments, undertaken in the cat spinal cord in the 1950s and 1960s, and point out their contributions to our present understanding of glycine receptor (GlyR function. Importantly, some of these discoveries were made well before an inhibitory receptor, or its agonist, was identified. These contributions include the universal acceptance of a chemical mode of synaptic transmission, that GlyRs are chloride channels, are involved in reciprocal and recurrent spinal inhibition, are selectively blocked by strychnine, and can be distinguished from the GABAA receptor by their insensitivity to bicuculline. The early in vivo work on inhibitory mechanisms in spinal neurons also contributed to several enduring principles on synaptic function, such as the time associated with synaptic delay, the extension of Dale’s hypothesis (regarding the chemical unity of nerve cells and their terminals to neurons within the central nervous system, and the importance of inhibition for synaptic integration in motor and sensory circuits. We hope the work presented here will encourage those interested in GlyR biology and inhibitory mechanisms to seek out and read some of the “classic” articles that document the above discoveries.

  6. Δ9-THC-caused synaptic and memory impairments are mediated through COX-2 signaling

    Science.gov (United States)

    Yang, Hongwei; Tang, Ya-ping; Sun, Hao; Song, Yunping; Chen, Chu

    2013-01-01

    SUMMARY Marijuana has been used for thousands of years as a treatment for medical conditions. However, untoward side effects limit its medical value. Here we show that synaptic and cognitive impairments following repeated exposure to Δ9-tetrahydrocannabinol (Δ9-THC) are associated with the induction of cyclooxygenase-2 (COX-2), an inducible enzyme that converts arachidonic acid to prostanoids, in the brain. COX-2 induction by Δ9-THC is mediated via CB1 receptor-coupled G-protein βγ subunits. Pharmacological or genetic inhibition of COX-2 blocks down-regulation and internalization of glutamate receptor subunits and alterations of the dendritic spine density of hippocampal neurons induced by repeated Δ9-THC exposures. Ablation of COX-2 also eliminates Δ9-THC-impaired hippocampal long-term synaptic plasticity, spatial, and fear memories. Importantly, the beneficial effects of decreasing β-amyloid plaques and neurodegeneration by Δ9-THC in Alzheimer’s disease animals are retained in the presence of COX-2 inhibition. These results suggest that the applicability of medical marijuana would be broadened by concurrent inhibition of COX-2. PMID:24267894

  7. IGF1-Dependent Synaptic Plasticity of Mitral Cells in Olfactory Memory during Social Learning.

    Science.gov (United States)

    Liu, Zhihui; Chen, Zijun; Shang, Congping; Yan, Fei; Shi, Yingchao; Zhang, Jiajing; Qu, Baole; Han, Hailin; Wang, Yanying; Li, Dapeng; Südhof, Thomas C; Cao, Peng

    2017-07-05

    During social transmission of food preference (STFP), mice form long-term memory of food odors presented by a social partner. How does the brain associate a social context with odor signals to promote memory encoding? Here we show that odor exposure during STFP, but not unconditioned odor exposure, induces glomerulus-specific long-term potentiation (LTP) of synaptic strength selectively at the GABAergic component of dendrodendritic synapses of granule and mitral cells in the olfactory bulb. Conditional deletion of synaptotagmin-10, the Ca 2+ sensor for IGF1 secretion from mitral cells, or deletion of IGF1 receptor in the olfactory bulb prevented the socially relevant GABAergic LTP and impaired memory formation after STFP. Conversely, the addition of IGF1 to acute olfactory bulb slices elicited the GABAergic LTP in mitral cells by enhancing postsynaptic GABA receptor responses. Thus, our data reveal a synaptic substrate for a socially conditioned long-term memory that operates at the level of the initial processing of sensory information. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Depression of Serotonin Synaptic Transmission by the Dopamine Precursor L-DOPA

    OpenAIRE

    Gantz, Stephanie C.; Levitt, Erica S.; Llamosas Muñozguren, Nerea; Neve, Kim A.; Williams, John T.

    2015-01-01

    Imbalance between the dopamine and serotonin (5-HT) neurotransmitter systems has been implicated in the comorbidity of Parkinson's disease (PD) and psychiatric disorders. L-DOPA, the leading treatment of PD, facilitates the production and release of dopamine. This study assessed the action of L-DOPA on monoamine synaptic transmission in mouse brain slices. Application of L-DOPA augmented the D2-receptor-mediated inhibitory postsynaptic current (IPSC) in dopamine neurons of the substantia nigr...

  9. Pannexin1 stabilizes synaptic plasticity and is needed for learning.

    Directory of Open Access Journals (Sweden)

    Nora Prochnow

    Full Text Available Pannexin 1 (Panx1 represents a class of vertebrate membrane channels, bearing significant sequence homology with the invertebrate gap junction proteins, the innexins and more distant similarities in the membrane topologies and pharmacological sensitivities with gap junction proteins of the connexin family. In the nervous system, cooperation among pannexin channels, adenosine receptors, and K(ATP channels modulating neuronal excitability via ATP and adenosine has been recognized, but little is known about the significance in vivo. However, the localization of Panx1 at postsynaptic sites in hippocampal neurons and astrocytes in close proximity together with the fundamental role of ATP and adenosine for CNS metabolism and cell signaling underscore the potential relevance of this channel to synaptic plasticity and higher brain functions. Here, we report increased excitability and potently enhanced early and persistent LTP responses in the CA1 region of acute slice preparations from adult Panx1(-/- mice. Adenosine application and N-methyl-D-aspartate receptor (NMDAR-blocking normalized this phenotype, suggesting that absence of Panx1 causes chronic extracellular ATP/adenosine depletion, thus facilitating postsynaptic NMDAR activation. Compensatory transcriptional up-regulation of metabotropic glutamate receptor 4 (grm4 accompanies these adaptive changes. The physiological modification, promoted by loss of Panx1, led to distinct behavioral alterations, enhancing anxiety and impairing object recognition and spatial learning in Panx1(-/- mice. We conclude that ATP release through Panx1 channels plays a critical role in maintaining synaptic strength and plasticity in CA1 neurons of the adult hippocampus. This result provides the rationale for in-depth analysis of Panx1 function and adenosine based therapies in CNS disorders.

  10. miR-191 and miR-135 are required for long-lasting spine remodelling associated with synaptic long-term depression

    Science.gov (United States)

    Hu, Zhonghua; Yu, Danni; Gu, Qin-Hua; Yang, Yanqin; Tu, Kang; Zhu, Jun; Li, Zheng

    2014-02-01

    Activity-dependent modification of dendritic spines, subcellular compartments accommodating postsynaptic specializations in the brain, is an important cellular mechanism for brain development, cognition and synaptic pathology of brain disorders. NMDA receptor-dependent long-term depression (NMDAR-LTD), a prototypic form of synaptic plasticity, is accompanied by prolonged remodelling of spines. The mechanisms underlying long-lasting spine remodelling in NMDAR-LTD, however, are largely unclear. Here we show that LTD induction causes global changes in miRNA transcriptomes affecting many cellular activities. Specifically, we show that expression changes of miR-191 and miR-135 are required for maintenance but not induction of spine restructuring. Moreover, we find that actin depolymerization and AMPA receptor exocytosis are regulated for extended periods of time by miRNAs to support long-lasting spine plasticity. These findings reveal a miRNA-mediated mechanism and a role for AMPA receptor exocytosis in long-lasting spine plasticity, and identify a number of candidate miRNAs involved in LTD.

  11. Itinerant ferromagnetism in fermionic systems with SP (2 N) symmetry

    Science.gov (United States)

    Yang, Wang; Wu, Congjun

    The Ginzburg-Landau free energy of systems with SP (2 N) symmetry describes a second order phase transition on the mean field level, since the Casimir invariants of the SP (2 N) group can be only of even order combinations of the generators of the SP (2 N) group. This is in contrast with systems having the SU (N) symmetry, where the allowance of cubic term generally makes the phase transition into first order. In this work, we consider the Hertz-Millis type itinerant ferromagnetism in an interacting fermionic system with SP (2 N) symmetry, where the ferromagnetic orders are enriched by the multi-component nature of the system. The quantum criticality is discussed near the second order phase transition point.

  12. In Sickness and in Health: Perineuronal Nets and Synaptic Plasticity in Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Harry Pantazopoulos

    2016-01-01

    Full Text Available Rapidly emerging evidence implicates perineuronal nets (PNNs and extracellular matrix (ECM molecules that compose or interact with PNNs, in the pathophysiology of several psychiatric disorders. Studies on schizophrenia, autism spectrum disorders, mood disorders, Alzheimer’s disease, and epilepsy point to the involvement of ECM molecules such as chondroitin sulfate proteoglycans, Reelin, and matrix metalloproteases, as well as their cell surface receptors. In many of these disorders, PNN abnormalities have also been reported. In the context of the “quadripartite” synapse concept, that is, the functional unit composed of the pre- and postsynaptic terminals, glial processes, and ECM, and of the role that PNNs and ECM molecules play in regulating synaptic functions and plasticity, these findings resonate with one of the most well-replicated aspects of the pathology of psychiatric disorders, that is, synaptic abnormalities. Here we review the evidence for PNN/ECM-related pathology in these disorders, with particular emphasis on schizophrenia, and discuss the hypothesis that such pathology may significantly contribute to synaptic dysfunction.

  13. Lead Exposure Impairs Hippocampus Related Learning and Memory by Altering Synaptic Plasticity and Morphology During Juvenile Period.

    Science.gov (United States)

    Wang, Tao; Guan, Rui-Li; Liu, Ming-Chao; Shen, Xue-Feng; Chen, Jing Yuan; Zhao, Ming-Gao; Luo, Wen-Jing

    2016-08-01

    Lead (Pb) is an environmental neurotoxic metal. Pb exposure may cause neurobehavioral changes, such as learning and memory impairment, and adolescence violence among children. Previous animal models have largely focused on the effects of Pb exposure during early development (from gestation to lactation period) on neurobehavior. In this study, we exposed Sprague-Dawley rats during the juvenile stage (from juvenile period to adult period). We investigated the synaptic function and structural changes and the relationship of these changes to neurobehavioral deficits in adult rats. Our results showed that juvenile Pb exposure caused fear-conditioned memory impairment and anxiety-like behavior, but locomotion and pain behavior were indistinguishable from the controls. Electrophysiological studies showed that long-term potentiation induction was affected in Pb-exposed rats, and this was probably due to excitatory synaptic transmission impairment in Pb-exposed rats. We found that NMDA and AMPA receptor-mediated current was inhibited, whereas the GABA synaptic transmission was normal in Pb-exposed rats. NR2A and phosphorylated GluR1 expression decreased. Moreover, morphological studies showed that density of dendritic spines declined by about 20 % in the Pb-treated group. The spine showed an immature form in Pb-exposed rats, as indicated by spine size measurements. However, the length and arborization of dendrites were unchanged. Our results suggested that juvenile Pb exposure in rats is associated with alterations in the glutamate receptor, which caused synaptic functional and morphological changes in hippocampal CA1 pyramidal neurons, thereby leading to behavioral changes.

  14. CB1 receptor-mediated signaling underlies the hippocampal synaptic, learning, and memory deficits following treatment with JWH-081, a new component of spice/K2 preparations.

    Science.gov (United States)

    Basavarajappa, Balapal S; Subbanna, Shivakumar

    2014-02-01

    Recently, synthetic cannabinoids have been sprayed onto plant material, which is subsequently packaged and sold as "Spice" or "K2" to mimic the effects of marijuana. A recent report identified several synthetic additives in samples of "Spice/K2", including JWH-081, a synthetic ligand for the cannabinoid receptor 1 (CB1). The deleterious effects of JWH-081 on brain function are not known, particularly on CB1 signaling, synaptic plasticity, learning and memory. Here, we evaluated the effects of JWH-081 on pCaMKIV, pCREB, and pERK1/2 signaling events followed by long-term potentiation (LTP), hippocampal-dependent learning and memory tasks using CB1 receptor wild-type (WT) and knockout (KO) mice. Acute administration of JWH-081 impaired CaMKIV phosphorylation in a dose-dependent manner, whereas inhibition of CREB phosphorylation in CB1 receptor WT mice was observed only at higher dose of JWH-081 (1.25 mg/kg). JWH-081 at higher dose impaired CaMKIV and CREB phosphorylation in a time-dependent manner in CB1 receptor WT mice but not in KO mice and failed to alter ERK1/2 phosphorylation. In addition, SR treated or CB1 receptor KO mice have a lower pCaMKIV/CaMKIV ratio and higher pCREB/CREB ratio compared with vehicle or WT littermates. In hippocampal slices, JWH-081 impaired LTP in CB1 receptor WT but not in KO littermates. Furthermore, JWH-081 at higher dose impaired object recognition, spontaneous alternation and spatial memory on the Y-maze in CB1 receptor WT mice but not in KO mice. Collectively our findings suggest that deleterious effects of JWH-081 on hippocampal function involves CB1 receptor mediated impairments in CaMKIV and CREB phosphorylation, LTP, learning and memory in mice. © 2013 Wiley Periodicals, Inc.

  15. Synaptic Plasticity and Nociception

    Institute of Scientific and Technical Information of China (English)

    ChenJianguo

    2004-01-01

    Synaptic plasticity is one of the fields that progresses rapidly and has a lot of success in neuroscience. The two major types of synaptie plasticity: long-term potentiation ( LTP and long-term depression (LTD are thought to be the cellular mochanisms of learning and memory. Recently, accumulating evidence suggests that, besides serving as a cellular model for learning and memory, the synaptic plasticity involves in other physiological or pathophysiological processes, such as the perception of pain and the regulation of cardiovascular system. This minireview will focus on the relationship between synaptic plasticity and nociception.

  16. Role for astroglial α1-adrenoreceptors in gliotransmission and control of synaptic plasticity in the neocortex

    Directory of Open Access Journals (Sweden)

    Yuriy ePankratov

    2015-06-01

    Full Text Available Communication between neuronal and glial cells is thought to be very important for many brain functions. Acting via release of gliotransmitters, astrocytes can modulate synaptic strength. The mechanisms underlying gliotransmission remain uncertain with exocytosis being the most intriguing and debated pathway.We demonstrate that astroglial α1-adrenoreceptors are very sensitive to noradrenaline and make a significant contribution to intracellular Ca2+-signalling in layer 2/3 neocortical astrocytes. We also show that astroglial α1-adrenoreceptors are prone to desensitization upon prolonged exposure to noradrenaline.We show that within neocortical slices, α-1adrenoreceptors can activate vesicular release of ATP and D-serine from cortical astrocytes which initiate a burst of ATP receptor-mediated currents in adjacent pyramidal neurons. These purinergic currents can be inhibited by intracellular perfusion of astrocytes with Tetanus Toxin light chain, verifying their origin via astroglial exocytosis.We show that α1 adrenoreceptor-activated release of gliotransmitters is important for the induction of synaptic plasticity in the neocortex:long-term potentiation (LTP of neocortical excitatory synaptic potentials can be abolished by the selective α1-adrenoreceptor antagonist terazosin. We show that weak sub-threshold theta-burst stimulation can induce LTP when astrocytes are additionally activated by 1 μM noradrenaline. This facilitation is dependent on the activation of neuronal ATP receptors and is abolished in neocortical slices from dn-SNARE mice which have impaired glial exocytosis. Importantly, facilitation of LTP by noradrenaline can be significantly reduced by perfusion of individual astrocytes with Tetanus Toxin. Our results strongly support the physiological importance of astroglial adrenergic signalling and exocytosis of gliotransmitters for modulation of synaptic transmission and plasticity .

  17. GABAA receptor drugs and neuronal plasticity in reward and aversion: focus on the ventral tegmental area

    Directory of Open Access Journals (Sweden)

    Elena eVashchinkina

    2014-11-01

    Full Text Available GABAA receptors are the main fast inhibitory neurotransmitter receptors in the mammalian brain, and targets for many clinically important drugs widely used in the treatment of anxiety disorders, insomnia and in anesthesia. Nonetheless, there are significant risks associated with the long-term use of these drugs particularly related to development of tolerance and addiction. Addictive mechanisms of GABAA receptor drugs are poorly known, but recent findings suggest that those drugs may induce aberrant neuroadaptations in the brain reward circuitry. Recently, benzodiazepines, acting on synaptic GABAA receptors, and modulators of extrasynaptic GABAA receptors (THIP and neurosteroids have been found to induce plasticity in the ventral tegmental area (VTA dopamine neurons and their main target projections. Furthermore, depending whether synaptic or extrasynaptic GABAA receptor populations are activated, the behavioral outcome of repeated administration seems to correlate with rewarding or aversive behavioral responses, respectively. The VTA dopamine neurons project to forebrain centers such as the nucleus accumbens and medial prefrontal cortex, and receive afferent projections from these brain regions and especially from the extended amygdala and lateral habenula, forming the major part of the reward and aversion circuitry. Both synaptic and extrasynaptic GABAA drugs inhibit the VTA GABAergic interneurons, thus activating the VTA DA neurons by disinhibition and this way inducing glutamatergic synaptic plasticity. However, the GABAA drugs failed to alter synaptic spine numbers as studied from Golgi-Cox-stained VTA dendrites. Since the GABAergic drugs are known to depress the brain metabolism and gene expression, their likely way of inducing neuroplasticity in mature neurons is by disinhibiting the principal neurons, which remains to be rigorously tested for a number of clinically important anxiolytics, sedatives and anesthetics in different parts of

  18. Nuclear calcium signaling induces expression of the synaptic organizers Lrrtm1 and Lrrtm2.

    Science.gov (United States)

    Hayer, Stefanie N; Bading, Hilmar

    2015-02-27

    Calcium transients in the cell nucleus evoked by synaptic activity in hippocampal neurons function as a signaling end point in synapse-to-nucleus communication. As an important regulator of neuronal gene expression, nuclear calcium is involved in the conversion of synaptic stimuli into functional and structural changes of neurons. Here we identify two synaptic organizers, Lrrtm1 and Lrrtm2, as targets of nuclear calcium signaling. Expression of both Lrrtm1 and Lrrtm2 increased in a synaptic NMDA receptor- and nuclear calcium-dependent manner in hippocampal neurons within 2-4 h after the induction of action potential bursting. Induction of Lrrtm1 and Lrrtm2 occurred independently of the need for new protein synthesis and required calcium/calmodulin-dependent protein kinases and the nuclear calcium signaling target CREB-binding protein. Analysis of reporter gene constructs revealed a functional cAMP response element in the proximal promoter of Lrrtm2, indicating that at least Lrrtm2 is regulated by the classical nuclear Ca(2+)/calmodulin-dependent protein kinase IV-CREB/CREB-binding protein pathway. These results suggest that one mechanism by which nuclear calcium signaling controls neuronal network function is by regulating the expression of Lrrtm1 and Lrrtm2. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Nuclear Calcium Signaling Induces Expression of the Synaptic Organizers Lrrtm1 and Lrrtm2*

    Science.gov (United States)

    Hayer, Stefanie N.; Bading, Hilmar

    2015-01-01

    Calcium transients in the cell nucleus evoked by synaptic activity in hippocampal neurons function as a signaling end point in synapse-to-nucleus communication. As an important regulator of neuronal gene expression, nuclear calcium is involved in the conversion of synaptic stimuli into functional and structural changes of neurons. Here we identify two synaptic organizers, Lrrtm1 and Lrrtm2, as targets of nuclear calcium signaling. Expression of both Lrrtm1 and Lrrtm2 increased in a synaptic NMDA receptor- and nuclear calcium-dependent manner in hippocampal neurons within 2–4 h after the induction of action potential bursting. Induction of Lrrtm1 and Lrrtm2 occurred independently of the need for new protein synthesis and required calcium/calmodulin-dependent protein kinases and the nuclear calcium signaling target CREB-binding protein. Analysis of reporter gene constructs revealed a functional cAMP response element in the proximal promoter of Lrrtm2, indicating that at least Lrrtm2 is regulated by the classical nuclear Ca2+/calmodulin-dependent protein kinase IV-CREB/CREB-binding protein pathway. These results suggest that one mechanism by which nuclear calcium signaling controls neuronal network function is by regulating the expression of Lrrtm1 and Lrrtm2. PMID:25527504

  20. Tracking cell surface GABAB receptors using an alpha-bungarotoxin tag.

    Science.gov (United States)

    Wilkins, Megan E; Li, Xinyan; Smart, Trevor G

    2008-12-12

    GABA(B) receptors mediate slow synaptic inhibition in the central nervous system and are important for synaptic plasticity as well as being implicated in disease. Located at pre- and postsynaptic sites, GABA(B) receptors will influence cell excitability, but their effectiveness in doing so will be dependent, in part, on their trafficking to, and stability on, the cell surface membrane. To examine the dynamic behavior of GABA(B) receptors in GIRK cells and neurons, we have devised a method that is based on tagging the receptor with the binding site components for the neurotoxin, alpha-bungarotoxin. By using the alpha-bungarotoxin binding site-tagged GABA(B) R1a subunit (R1a(BBS)), co-expressed with the R2 subunit, we can track receptor mobility using the small reporter, alpha-bungarotoxin-conjugated rhodamine. In this way, the rates of internalization and membrane insertion for these receptors could be measured with fixed and live cells. The results indicate that GABA(B) receptors rapidly turnover in the cell membrane, with the rate of internalization affected by the state of receptor activation. The bungarotoxin-based method of receptor-tagging seems ideally suited to follow the dynamic regulation of other G-protein-coupled receptors.

  1. Nonlinear spin fluctuations in the Fermi liquid of itinerant electron ferromagnets

    International Nuclear Information System (INIS)

    Solontsov, A.; Lacroix, C.

    2003-01-01

    A microscopic derivation of nonlinear equations of magnetic dynamics for itinerant ferromagnets is presented within the electron Fermi liquid model accounting for both long-range Coulomb and short-range interactions of quasiparticles, which founds the basis for the phenomenological description of nonlinear spin fluctuations (SF) using the Ginsburg-Landau formalism. Crystal lattice is shown to play a significant role screening the long-range Coulomb interaction and affecting magnetic dynamics. The spectrum of longitudinal SF with account of nonlinear mode-mode coupling is shown to result from an interplay of quasielastic SF and inelastic excitations near the magnon frequencies, both having mainly the nonlinear nature and arising due to their emission (absorption) by magnons

  2. ß-Adrenergic Receptor Signaling and Modulation of Long-Term Potentiation in the Mammalian Hippocampus

    Science.gov (United States)

    O'Dell, Thomas J.; Connor, Steven A.; Guglietta, Ryan; Nguyen, Peter V.

    2015-01-01

    Encoding new information in the brain requires changes in synaptic strength. Neuromodulatory transmitters can facilitate synaptic plasticity by modifying the actions and expression of specific signaling cascades, transmitter receptors and their associated signaling complexes, genes, and effector proteins. One critical neuromodulator in the…

  3. Conformational Plasticity in the Transsynaptic Neurexin-Cerebellin-Glutamate Receptor Adhesion Complex

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Shouqiang; Seven, Alpay B.; Wang, Jing; Skiniotis, Georgios; Özkan, Engin (UC); (Michigan)

    2016-12-01

    Synaptic specificity is a defining property of neural networks. In the cerebellum, synapses between parallel fiber neurons and Purkinje cells are specified by the simultaneous interactions of secreted protein cerebellin with pre-synaptic neurexin and post-synaptic delta-type glutamate receptors (GluD). Here, we determined the crystal structures of the trimeric C1q-like domain of rat cerebellin-1, and the first complete ectodomain of a GluD, rat GluD2. Cerebellin binds to the LNS6 domain of α- and β-neurexin-1 through a high-affinity interaction that involves its highly flexible N-terminal domain. In contrast, we show that the interaction of cerebellin with isolated GluD2 ectodomain is low affinity, which is not simply an outcome of lost avidity when compared with binding with a tetrameric full-length receptor. Rather, high-affinity capture of cerebellin by post-synaptic terminals is likely controlled by long-distance regulation within this transsynaptic complex. Altogether, our results suggest unusual conformational flexibility within all components of the complex.

  4. The role of cAMP in synaptic homeostasis in response to environmental temperature challenges and hyperexcitability mutations

    Directory of Open Access Journals (Sweden)

    Atsushi eUeda

    2015-02-01

    Full Text Available Homeostasis is the ability of physiological systems to regain functional balance following environment or experimental insults and synaptic homeostasis has been demonstrated in various species following genetic or pharmacological disruptions. Among environmental challenges, homeostatic responses to temperature extremes are critical to animal survival under natural conditions. We previously reported that axon terminal arborization in Drosophila larval neuromuscular junctions is enhanced at elevated temperatures; however, the amplitude of excitatory junctional potentials (EJPs remains unaltered despite the increase in synaptic bouton numbers. Here we determine the cellular basis of this homeostatic adjustment in larvae reared at high temperature (HT, 29 ˚C. We found that synaptic current focally recorded from individual synaptic boutons was unaffected by rearing temperature (30 ˚C. However, HT rearing decreased the quantal size (amplitude of spontaneous miniature EJPs, or mEJPs, which compensates for the increased number of synaptic releasing sites to retain a normal EJP size. The quantal size decrease is accounted for by a decrease in input resistance of the postsynaptic muscle fiber, indicating an increase in membrane area that matches the synaptic growth at HT. Interestingly, a mutation in rutabaga (rut encoding adenylyl cyclase (AC exhibited no obvious changes in quantal size or input resistance of postsynaptic muscle cells after HT rearing, suggesting an important role for rut AC in temperature-induced synaptic homeostasis in Drosophila. This extends our previous finding of rut-dependent synaptic homeostasis in hyperexcitable mutants, e.g. slowpoke (slo. In slo larvae, the lack of BK channel function is partially ameliorated by upregulation of presynaptic Sh IA current to limit excessive transmitter release in addition to postsynaptic glutamate receptor recomposition that reduces the quantal size.

  5. Spine Calcium Transients Induced by Synaptically-Evoked Action Potentials Can Predict Synapse Location and Establish Synaptic Democracy

    Science.gov (United States)

    Meredith, Rhiannon M.; van Ooyen, Arjen

    2012-01-01

    CA1 pyramidal neurons receive hundreds of synaptic inputs at different distances from the soma. Distance-dependent synaptic scaling enables distal and proximal synapses to influence the somatic membrane equally, a phenomenon called “synaptic democracy”. How this is established is unclear. The backpropagating action potential (BAP) is hypothesised to provide distance-dependent information to synapses, allowing synaptic strengths to scale accordingly. Experimental measurements show that a BAP evoked by current injection at the soma causes calcium currents in the apical shaft whose amplitudes decay with distance from the soma. However, in vivo action potentials are not induced by somatic current injection but by synaptic inputs along the dendrites, which creates a different excitable state of the dendrites. Due to technical limitations, it is not possible to study experimentally whether distance information can also be provided by synaptically-evoked BAPs. Therefore we adapted a realistic morphological and electrophysiological model to measure BAP-induced voltage and calcium signals in spines after Schaffer collateral synapse stimulation. We show that peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. Peak calcium levels also predicted the attenuation of the EPSP across the dendritic tree. Furthermore, we show that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value. We conclude that information derived from synaptically-generated BAPs can indicate synapse location and can subsequently be utilised to implement a synaptic democracy. PMID:22719238

  6. Familiarity Detection is an Intrinsic Property of Cortical Microcircuits with Bidirectional Synaptic Plasticity.

    Science.gov (United States)

    Zhang, Xiaoyu; Ju, Han; Penney, Trevor B; VanDongen, Antonius M J

    2017-01-01

    Humans instantly recognize a previously seen face as "familiar." To deepen our understanding of familiarity-novelty detection, we simulated biologically plausible neural network models of generic cortical microcircuits consisting of spiking neurons with random recurrent synaptic connections. NMDA receptor (NMDAR)-dependent synaptic plasticity was implemented to allow for unsupervised learning and bidirectional modifications. Network spiking activity evoked by sensory inputs consisting of face images altered synaptic efficacy, which resulted in the network responding more strongly to a previously seen face than a novel face. Network size determined how many faces could be accurately recognized as familiar. When the simulated model became sufficiently complex in structure, multiple familiarity traces could be retained in the same network by forming partially-overlapping subnetworks that differ slightly from each other, thereby resulting in a high storage capacity. Fisher's discriminant analysis was applied to identify critical neurons whose spiking activity predicted familiar input patterns. Intriguingly, as sensory exposure was prolonged, the selected critical neurons tended to appear at deeper layers of the network model, suggesting recruitment of additional circuits in the network for incremental information storage. We conclude that generic cortical microcircuits with bidirectional synaptic plasticity have an intrinsic ability to detect familiar inputs. This ability does not require a specialized wiring diagram or supervision and can therefore be expected to emerge naturally in developing cortical circuits.

  7. Platelet activating factor enhances synaptic vesicle exocytosis via PKC, elevated intracellular calcium, and modulation of synapsin 1 dynamics and phosphorylation

    Directory of Open Access Journals (Sweden)

    Jennetta W Hammond

    2016-01-01

    Full Text Available Platelet activating factor (PAF is an inflammatory phospholipid signaling molecule implicated in synaptic plasticity, learning and memory and neurotoxicity during neuroinflammation. However, little is known about the intracellular mechanisms mediating PAF’s physiological or pathological effects on synaptic facilitation. We show here that PAF receptors are localized at the synapse. Using fluorescent reporters of presynaptic activity we show that a non-hydrolysable analogue of PAF (cPAF enhances synaptic vesicle release from individual presynaptic boutons by increasing the size or release of the readily releasable pool and the exocytosis rate of the total recycling pool. cPAF also activates previously silent boutons resulting in vesicle release from a larger number of terminals. The underlying mechanism involves elevated calcium within presynaptic boutons and protein kinase C (PKC activation. Furthermore, cPAF increases synapsin I phosphorylation at sites 1 and 3, and increases dispersion of synapsin I from the presynaptic compartment during stimulation, freeing synaptic vesicles for subsequent release. These findings provide a conceptual framework for how PAF, regardless of its cellular origin, can modulate synapses during normal and pathologic synaptic activity.

  8. An N-methyl-D-aspartate receptor mediated large, low-frequency, spontaneous excitatory postsynaptic current in neonatal rat spinal dorsal horn neurons.

    Science.gov (United States)

    Thomson, L M; Zeng, J; Terman, G W

    2006-09-01

    Examples of spontaneous oscillating neural activity contributing to both pathological and physiological states are abundant throughout the CNS. Here we report a spontaneous oscillating intermittent synaptic current located in lamina I of the neonatal rat spinal cord dorsal horn. The spontaneous oscillating intermittent synaptic current is characterized by its large amplitude, slow decay time, and low-frequency. We demonstrate that post-synaptic N-methyl-D-aspartate receptors (NMDARs) mediate the spontaneous oscillating intermittent synaptic current, as it is inhibited by magnesium, bath-applied d-2-amino-5-phosphonovalerate (APV), or intracellular MK-801. The NR2B subunit of the NMDAR appears important to this phenomenon, as the NR2B subunit selective NMDAR antagonist, alpha-(4-hydroxphenyl)-beta-methyl-4-benzyl-1-piperidineethanol tartrate (ifenprodil), also partially inhibited the spontaneous oscillating intermittent synaptic current. Inhibition of spontaneous glutamate release by the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or the mu-opioid receptor agonist [D-Ala2, N-Me-Phe4, Gly5] enkephalin-ol (DAMGO) inhibited the spontaneous oscillating intermittent synaptic current frequency. Marked inhibition of spontaneous oscillating intermittent synaptic current frequency by tetrodotoxin (TTX), but not post-synaptic N-(2,6-dimethylphenylcarbamoylmethyl)triethylammonium bromide (QX-314), suggests that the glutamate release important to the spontaneous oscillating intermittent synaptic current is dependent on active neural processes. Conversely, increasing dorsal horn synaptic glutamate release by GABAA or glycine inhibition increased spontaneous oscillating intermittent synaptic current frequency. Moreover, inhibiting glutamate transporters with threo-beta-benzyloxyaspartic acid (DL-TBOA) increased spontaneous oscillating intermittent synaptic current frequency and decay time. A possible functional role of this spontaneous NMDAR

  9. Phasic dopamine release drives rapid activation of striatal D2-receptors

    Science.gov (United States)

    Marcott, Pamela F; Mamaligas, Aphroditi A; Ford, Christopher P

    2014-01-01

    Summary Striatal dopamine transmission underlies numerous goal-directed behaviors. Medium spiny neurons (MSNs) are a major target of dopamine in the striatum. However, as dopamine does not directly evoke a synaptic event in MSNs, the time course of dopamine signaling in these cells remains unclear. To examine how dopamine release activates D2-receptors on MSNs, G-protein activated inwardly rectifying potassium (GIRK2; Kir 3.2) channels were virally overexpressed in the striatum and the resulting outward currents were used as a sensor of D2-receptor activation. Electrical and optogenetic stimulation of dopamine terminals evoked robust D2-receptor inhibitory post-synaptic currents (IPSCs) in GIRK2-expressing MSNs that occurred in under a second. Evoked D2-IPSCs could be driven by repetitive stimulation and were not occluded by background dopamine tone. Together, the results indicate that D2-receptors on MSNs exhibit functional low affinity and suggest that striatal D2-receptors can encode both tonic and phasic dopamine signals. PMID:25242218

  10. Modulatory role of androgenic and estrogenic neurosteroids in determining the direction of synaptic plasticity in the CA1 hippocampal region of male rats.

    Science.gov (United States)

    Pettorossi, Vito Enrico; Di Mauro, Michela; Scarduzio, Mariangela; Panichi, Roberto; Tozzi, Alessandro; Calabresi, Paolo; Grassi, Silvarosa

    2013-12-01

    Estrogenic and androgenic neurosteroids can rapidly modulate synaptic plasticity in the brain through interaction with membrane receptors for estrogens (ERs) and androgens (ARs). We used electrophysiological recordings in slices of young and adolescent male rats to explore the influence of sex neurosteroids on synaptic plasticity in the CA1 hippocampal region, by blocking ARs or ERs during induction of long-term depression (LTD) and depotentiation (DP) by low-frequency stimulation (LFS) and long-term potentiation (LTP) by high-frequency stimulation (HFS). We found that LTD and DP depend on ARs, while LTP on ERs in both age groups. Accordingly, the AR blocker flutamide affected induction of LTD reverting it into LTP, and prevented DP, while having no effect on HFS-dependent LTP. Conversely, ER blockade with ICI 182,780 (ICI) markedly reduced LTP, but did not influence LTD and DP. However, the receptor blockade did not affect the maintenance of either LTD or LTP. Moreover, we found that similar to LTP and LTD induced in control condition, the LTP unveiled by flutamide during LFS and residual LTP induced by HFS under ICI depended on N-methyl-d aspartate receptor (NMDAR) activation. Furthermore, as the synaptic paired-pulse facilitation (PPF) was not affected by either AR or ER blockade, we suggest that sex neurosteroids act primarily at a postsynaptic level. This study demonstrates for the first time the crucial role of estrogenic and androgenic neurosteroids in determining the sign of hippocampal synaptic plasticity in male rat and the activity-dependent recruitment of androgenic and estrogenic pathways leading to LTD and LTP, respectively.

  11. Brain-derived neurotrophic factor (BDNF)-induced mitochondrial motility arrest and presynaptic docking contribute to BDNF-enhanced synaptic transmission.

    Science.gov (United States)

    Su, Bo; Ji, Yun-Song; Sun, Xu-lu; Liu, Xiang-Hua; Chen, Zhe-Yu

    2014-01-17

    Appropriate mitochondrial transport and distribution are essential for neurons because of the high energy and Ca(2+) buffering requirements at synapses. Brain-derived neurotrophic factor (BDNF) plays an essential role in regulating synaptic transmission and plasticity. However, whether and how BDNF can regulate mitochondrial transport and distribution are still unclear. Here, we find that in cultured hippocampal neurons, application of BDNF for 15 min decreased the percentage of moving mitochondria in axons, a process dependent on the activation of the TrkB receptor and its downstream PI3K and phospholipase-Cγ signaling pathways. Moreover, the BDNF-induced mitochondrial stopping requires the activation of transient receptor potential canonical 3 and 6 (TRPC3 and TRPC6) channels and elevated intracellular Ca(2+) levels. The Ca(2+) sensor Miro1 plays an important role in this process. Finally, the BDNF-induced mitochondrial stopping leads to the accumulation of more mitochondria at presynaptic sites. Mutant Miro1 lacking the ability to bind Ca(2+) prevents BDNF-induced mitochondrial presynaptic accumulation and synaptic transmission, suggesting that Miro1-mediated mitochondrial motility is involved in BDNF-induced mitochondrial presynaptic docking and neurotransmission. Together, these data suggest that mitochondrial transport and distribution play essential roles in BDNF-mediated synaptic transmission.

  12. Different effects of bisphenol-A on memory behavior and synaptic modification in intact and estrogen-deprived female mice.

    Science.gov (United States)

    Xu, Xiaohong; Gu, Ting; Shen, Qiaoqiao

    2015-03-01

    Bisphenol-A (BPA) has the capability of interfering with the effects of estrogens on modulating brain function. The purpose of this study was to investigate the effects of BPA on memory and synaptic modification in the hippocampus of female mice under different levels of cycling estrogen. BPA exposure (40, 400 μg/kg/day) for 8 weeks did not affect spatial memory and passive avoidance task of gonadally intact mice but improved ovariectomy (Ovx)-induced memory impairment, whereas co-exposure of BPA with estradiol benzoate (EB) diminished the rescue effect of EB on memory behavior of Ovx mice. The results of morphometric measurement showed that BPA positively modified the synaptic interface structure and increased the synaptic density of CA1 pyramidal cell in the hippocampus of Ovx females, but inhibited the enhancement of EB on synaptic modification and synaptogenesis of Ovx mice. Furthermore, BPA up-regulated synaptic proteins synapsin I and PSD-95 and NMDA receptor NR2B but inhibited EB-induced increase in PSD-95 and NR2B in the hippocampus of Ovx mice. These results suggest that BPA interfered with normal hormonal regulation in synaptic plasticity and memory of female mice as a potent estrogen mimetic and as a disruptor of estrogen under various concentrations of cycling estrogen. © 2014 International Society for Neurochemistry.

  13. Synaptic consolidation across multiple timescales

    Directory of Open Access Journals (Sweden)

    Lorric Ziegler

    2014-03-01

    Full Text Available The brain is bombarded with a continuous stream of sensory events, but retains only a small subset in memory. The selectivity of memory formation prevents our memory from being overloaded with irrelevant items that would rapidly bring the brain to its storage limit; moreover, selectivity also prevents overwriting previously formed memories with new ones. Memory formation in the hippocampus, as well as in other brain regions, is thought to be linked to changes in the synaptic connections between neurons. In this view, sensory events imprint traces at the level of synapses that reflect potential memory items. The question of memory selectivity can therefore be reformulated as follows: what are the reasons and conditions that some synaptic traces fade away whereas others are consolidated and persist? Experimentally, changes in synaptic strength induced by 'Hebbian' protocols fade away over a few hours (early long-term potentiation or e-LTP, unless these changes are consolidated. The experiments and conceptual theory of synaptic tagging and capture (STC provide a mechanistic explanation for the processes involved in consolidation. This theory suggests that the initial trace of synaptic plasticity sets a tag at the synapse, which then serves as a marker for potential consolidation of the changes in synaptic efficacy. The actual consolidation processes, transforming e-LTP into late LTP (l-LTP, require the capture of plasticity-related proteins (PRP. We translate the above conceptual model into a compact computational model that accounts for a wealth of in vitro data including experiments on cross-tagging, tag-resetting and depotentiation. A central ingredient is that synaptic traces are described with several variables that evolve on different time scales. Consolidation requires the transmission of information from a 'fast' synaptic trace to a 'slow' one through a 'write' process, including the formation of tags and the production of PRP for the

  14. Presence of Functional Neurotrophin TrkB Receptors in the Rat Superior Cervical Ganglion

    Directory of Open Access Journals (Sweden)

    Pablo Valle-Leija

    2017-07-01

    Full Text Available Sympathetic neurons express the neurotrophin receptors TrkA, p75NTR, and a non-functional truncated TrkB isoform (TrkB-Tc, but are not thought to express a functional full-length TrkB receptor (TrkB-Fl. We, and others, have demonstrated that nerve growth factor (NGF and brain derived neurotrophic factor (BDNF modulate synaptic transmission and synaptic plasticity in neurons of the superior cervical ganglion (SCG of the rat. To clarify whether TrkB is expressed in sympathetic ganglia and contributes to the effects of BDNF upon sympathetic function, we characterized the presence and activity of the neurotrophin receptors expressed in the adult SCG compared with their presence in neonatal and cultured sympathetic neurons. Here, we expand our previous study regarding the immunodetection of neurotrophin receptors. Immunohistochemical analysis revealed that 19% of adult ganglionic neurons expressed TrkB-Fl immunoreactivity (IR, 82% expressed TrkA-IR, and 51% expressed p75NTR-IR; TrkB-Tc would be expressed in 36% of neurons. In addition, using Western-blotting and reverse transcriptase polymerase chain reaction (RT-PCR analyses, we confirmed the expression of TrkB-Fl and TrkB-Tc protein and mRNA transcripts in adult SCG. Neonatal neurons expressed significantly more TrkA-IR and TrkB-Fl-IR than p75NTR-IR. Finally, the application of neurotrophin, and high frequency stimulation, induced the activation of Trk receptors and the downstream PI3-kinase (phosphatidyl inositol-3-kinase signaling pathway, thus evoking the phosphorylation of Trk and Akt. These results demonstrate that SCG neurons express functional TrkA and TrkB-Fl receptors, which may contribute to the differential modulation of synaptic transmission and long-term synaptic plasticity.

  15. Presence of Functional Neurotrophin TrkB Receptors in the Rat Superior Cervical Ganglion.

    Science.gov (United States)

    Valle-Leija, Pablo; Cancino-Rodezno, Angeles; Sánchez-Tafolla, Berardo M; Arias, Erwin; Elinos, Diana; Feria, Jessica; Zetina, María E; Morales, Miguel A; Cifuentes, Fredy

    2017-01-01

    Sympathetic neurons express the neurotrophin receptors TrkA, p75NTR, and a non-functional truncated TrkB isoform (TrkB-Tc), but are not thought to express a functional full-length TrkB receptor (TrkB-Fl). We, and others, have demonstrated that nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) modulate synaptic transmission and synaptic plasticity in neurons of the superior cervical ganglion (SCG) of the rat. To clarify whether TrkB is expressed in sympathetic ganglia and contributes to the effects of BDNF upon sympathetic function, we characterized the presence and activity of the neurotrophin receptors expressed in the adult SCG compared with their presence in neonatal and cultured sympathetic neurons. Here, we expand our previous study regarding the immunodetection of neurotrophin receptors. Immunohistochemical analysis revealed that 19% of adult ganglionic neurons expressed TrkB-Fl immunoreactivity (IR), 82% expressed TrkA-IR, and 51% expressed p75NTR-IR; TrkB-Tc would be expressed in 36% of neurons. In addition, using Western-blotting and reverse transcriptase polymerase chain reaction (RT-PCR) analyses, we confirmed the expression of TrkB-Fl and TrkB-Tc protein and mRNA transcripts in adult SCG. Neonatal neurons expressed significantly more TrkA-IR and TrkB-Fl-IR than p75NTR-IR. Finally, the application of neurotrophin, and high frequency stimulation, induced the activation of Trk receptors and the downstream PI3-kinase (phosphatidyl inositol-3-kinase) signaling pathway, thus evoking the phosphorylation of Trk and Akt. These results demonstrate that SCG neurons express functional TrkA and TrkB-Fl receptors, which may contribute to the differential modulation of synaptic transmission and long-term synaptic plasticity.

  16. Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2.

    Directory of Open Access Journals (Sweden)

    Deepti Chugh

    Full Text Available Synapsins are pre-synaptic vesicle-associated proteins linked to the pathogenesis of epilepsy through genetic association studies in humans. Deletion of synapsins causes an excitatory/inhibitory imbalance, exemplified by the epileptic phenotype of synapsin knockout mice. These mice develop handling-induced tonic-clonic seizures starting at the age of about 3 months. Hence, they provide an opportunity to study epileptogenic alterations in a temporally controlled manner. Here, we evaluated brain inflammation, synaptic protein expression, and adult hippocampal neurogenesis in the epileptogenic (1 and 2 months of age and tonic-clonic (3.5-4 months phase of synapsin 2 knockout mice using immunohistochemical and biochemical assays. In the epileptogenic phase, region-specific microglial activation was evident, accompanied by an increase in the chemokine receptor CX3CR1, interleukin-6, and tumor necrosis factor-α, and a decrease in chemokine keratinocyte chemoattractant/ growth-related oncogene. Both post-synaptic density-95 and gephyrin, scaffolding proteins at excitatory and inhibitory synapses, respectively, showed a significant up-regulation primarily in the cortex. Furthermore, we observed an increase in the inhibitory adhesion molecules neuroligin-2 and neurofascin and potassium chloride co-transporter KCC2. Decreased expression of γ-aminobutyric acid receptor-δ subunit and cholecystokinin was also evident. Surprisingly, hippocampal neurogenesis was reduced in the epileptogenic phase. Taken together, we report molecular alterations in brain inflammation and excitatory/inhibitory balance that could serve as potential targets for therapeutics and diagnostic biomarkers. In addition, the regional differences in brain inflammation and synaptic protein expression indicate an epileptogenic zone from where the generalized seizures in synapsin 2 knockout mice may be initiated or spread.

  17. Δ9-THC-caused synaptic and memory impairments are mediated through COX-2 signaling.

    Science.gov (United States)

    Chen, Rongqing; Zhang, Jian; Fan, Ni; Teng, Zhao-Qian; Wu, Yan; Yang, Hongwei; Tang, Ya-Ping; Sun, Hao; Song, Yunping; Chen, Chu

    2013-11-21

    Marijuana has been used for thousands of years as a treatment for medical conditions. However, untoward side effects limit its medical value. Here, we show that synaptic and cognitive impairments following repeated exposure to Δ(9)-tetrahydrocannabinol (Δ(9)-THC) are associated with the induction of cyclooxygenase-2 (COX-2), an inducible enzyme that converts arachidonic acid to prostanoids in the brain. COX-2 induction by Δ(9)-THC is mediated via CB1 receptor-coupled G protein βγ subunits. Pharmacological or genetic inhibition of COX-2 blocks downregulation and internalization of glutamate receptor subunits and alterations of the dendritic spine density of hippocampal neurons induced by repeated Δ(9)-THC exposures. Ablation of COX-2 also eliminates Δ(9)-THC-impaired hippocampal long-term synaptic plasticity, working, and fear memories. Importantly, the beneficial effects of decreasing β-amyloid plaques and neurodegeneration by Δ(9)-THC in Alzheimer's disease animals are retained in the presence of COX-2 inhibition. These results suggest that the applicability of medical marijuana would be broadened by concurrent inhibition of COX-2. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Interaction of GABAA receptors with purinergic P2X2 receptors

    International Nuclear Information System (INIS)

    Shrivastava, A.

    2010-01-01

    GABA A Rs in the spinal cord are evolving as an important target for drug development against pain. Purinergic P2X 2 Rs are also expressed in spinal cord neurons and are known to cross-talk with GABA A Rs. Here we investigated a possible 'dynamic' interaction between GABA A Rs and P2X 2 Rs using co-immunoprecipitation and FRET studies in HEK cells along with co-localization and single particle tracking studies in spinal cord neurons. Our results suggest that a significant proportion of P2X 2 Rs forms a transient complex with GABA A Rs inside the cell, thus stabilizing these receptors and using them for co-trafficking to the cell surface. P2X 2 Rs and GABA A Rs are then co-inserted into the cell membrane and are primarily located extra-synaptically. Furthermore, agonist induced activation of P2X 2 Rs results in disassembly of the receptor complex and destabilization of GABA A Rs whereas P2X 2 Rs are stabilized and form larger clusters. Antagonist-induced blocking of P2XRs results in co-stabilization of this receptor complex at the cell surface. These results suggest a novel mechanism where association of P2XRs with other receptors could be used for specific targeting to the neuronal membrane, thus providing an extrasynaptic receptor reserve that could regulate the excitability of neurons. We further conclude that blocking the excitatory activity of excessively released ATP under diseased state by P2XR antagonists could simultaneously enhance synaptic inhibition mediated by GABA A Rs.(author) (author) [de

  19. proBDNF Negatively Regulates Neuronal Remodeling, Synaptic Transmission, and Synaptic Plasticity in Hippocampus

    Directory of Open Access Journals (Sweden)

    Jianmin Yang

    2014-05-01

    Full Text Available Experience-dependent plasticity shapes postnatal development of neural circuits, but the mechanisms that refine dendritic arbors, remodel spines, and impair synaptic activity are poorly understood. Mature brain-derived neurotrophic factor (BDNF modulates neuronal morphology and synaptic plasticity, including long-term potentiation (LTP via TrkB activation. BDNF is initially translated as proBDNF, which binds p75NTR. In vitro, recombinant proBDNF modulates neuronal structure and alters hippocampal long-term plasticity, but the actions of endogenously expressed proBDNF are unclear. Therefore, we generated a cleavage-resistant probdnf knockin mouse. Our results demonstrate that proBDNF negatively regulates hippocampal dendritic complexity and spine density through p75NTR. Hippocampal slices from probdnf mice exhibit depressed synaptic transmission, impaired LTP, and enhanced long-term depression (LTD in area CA1. These results suggest that proBDNF acts in vivo as a biologically active factor that regulates hippocampal structure, synaptic transmission, and plasticity, effects that are distinct from those of mature BDNF.

  20. Synaptic remodeling, synaptic growth and the storage of long-term memory in Aplysia.

    Science.gov (United States)

    Bailey, Craig H; Kandel, Eric R

    2008-01-01

    Synaptic remodeling and synaptic growth accompany various forms of long-term memory. Storage of the long-term memory for sensitization of the gill-withdrawal reflex in Aplysia has been extensively studied in this respect and is associated with the growth of new synapses by the sensory neurons onto their postsynaptic target neurons. Recent time-lapse imaging studies of living sensory-to-motor neuron synapses in culture have monitored both functional and structural changes simultaneously so as to follow remodeling and growth at the same specific synaptic connections continuously over time and to examine the functional contribution of these learning-related structural changes to the different time-dependent phases of memory storage. Insights provided by these studies suggest the synaptic differentiation and growth induced by learning in the mature nervous system are highly dynamic and often rapid processes that can recruit both molecules and mechanisms used for de novo synapse formation during development.

  1. Two aspects of ASIC function: Synaptic plasticity and neuronal injury.

    Science.gov (United States)

    Huang, Yan; Jiang, Nan; Li, Jun; Ji, Yong-Hua; Xiong, Zhi-Gang; Zha, Xiang-ming

    2015-07-01

    Extracellular brain pH fluctuates in both physiological and disease conditions. The main postsynaptic proton receptor is the acid-sensing ion channels (ASICs). During the past decade, much progress has been made on protons, ASICs, and neurological disease. This review summarizes the recent progress on synaptic role of protons and our current understanding of how ASICs contribute to various types of neuronal injury in the brain. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Diacylglycerol kinases in the coordination of synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Dongwon Lee

    2016-08-01

    Full Text Available Synaptic plasticity is activity-dependent modification of the efficacy of synaptic transmission. Although detailed mechanisms underlying synaptic plasticity are diverse and vary at different types of synapses, diacylglycerol (DAG-associated signaling has been considered as an important regulator of many forms of synaptic plasticity, including long-term potentiation (LTP and long-term depression (LTD. Recent evidence indicate that DAG kinases (DGKs, which phosphorylate DAG to phosphatidic acid to terminate DAG signaling, are important regulators of LTP and LTD, as supported by the results from mice lacking specific DGK isoforms. This review will summarize these studies and discuss how specific DGK isoforms distinctly regulate different forms of synaptic plasticity at pre- and postsynaptic sites. In addition, we propose a general role of DGKs as coordinators of synaptic plasticity that make local synaptic environments more permissive for synaptic plasticity by regulating DAG concentration and interacting with other synaptic proteins.

  3. TGF-β Signaling in Dopaminergic Neurons Regulates Dendritic Growth, Excitatory-Inhibitory Synaptic Balance, and Reversal Learning

    Directory of Open Access Journals (Sweden)

    Sarah X. Luo

    2016-12-01

    Full Text Available Neural circuits involving midbrain dopaminergic (DA neurons regulate reward and goal-directed behaviors. Although local GABAergic input is known to modulate DA circuits, the mechanism that controls excitatory/inhibitory synaptic balance in DA neurons remains unclear. Here, we show that DA neurons use autocrine transforming growth factor β (TGF-β signaling to promote the growth of axons and dendrites. Surprisingly, removing TGF-β type II receptor in DA neurons also disrupts the balance in TGF-β1 expression in DA neurons and neighboring GABAergic neurons, which increases inhibitory input, reduces excitatory synaptic input, and alters phasic firing patterns in DA neurons. Mice lacking TGF-β signaling in DA neurons are hyperactive and exhibit inflexibility in relinquishing learned behaviors and re-establishing new stimulus-reward associations. These results support a role for TGF-β in regulating the delicate balance of excitatory/inhibitory synaptic input in local microcircuits involving DA and GABAergic neurons and its potential contributions to neuropsychiatric disorders.

  4. Repulsive atomic gas in a harmonic trap on the border of itinerant ferromagnetism.

    Science.gov (United States)

    Conduit, G J; Simons, B D

    2009-11-13

    Alongside superfluidity, itinerant (Stoner) ferromagnetism remains one of the most well-characterized phases of correlated Fermi systems. A recent experiment has reported the first evidence for novel phase behavior on the repulsive side of the Feshbach resonance in a two-component ultracold Fermi gas. By adapting recent theoretical studies to the atomic trap geometry, we show that an adiabatic ferromagnetic transition would take place at a weaker interaction strength than is observed in experiment. This discrepancy motivates a simple nonequilibrium theory that takes account of the dynamics of magnetic defects and three-body losses. The formalism developed displays good quantitative agreement with experiment.

  5. Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures

    Science.gov (United States)

    Koizumi, Schuichi; Fujishita, Kayoko; Tsuda, Makoto; Shigemoto-Mogami, Yukari; Inoue, Kazuhide

    2003-09-01

    Originally ascribed passive roles in the CNS, astrocytes are now known to have an active role in the regulation of synaptic transmission. Neuronal activity can evoke Ca2+ transients in astrocytes, and Ca2+ transients in astrocytes can evoke changes in neuronal activity. The excitatory neurotransmitter glutamate has been shown to mediate such bidirectional communication between astrocytes and neurons. We demonstrate here that ATP, a primary mediator of intercellular Ca2+ signaling among astrocytes, also mediates intercellular signaling between astrocytes and neurons in hippocampal cultures. Mechanical stimulation of astrocytes evoked Ca2+ waves mediated by the release of ATP and the activation of P2 receptors. Mechanically evoked Ca2+ waves led to decreased excitatory glutamatergic synaptic transmission in an ATP-dependent manner. Exogenous application of ATP does not affect postsynaptic glutamatergic responses but decreased presynaptic exocytotic events. Finally, we show that astrocytes exhibit spontaneous Ca2+ waves mediated by extracellular ATP and that inhibition of these Ca2+ responses enhanced excitatory glutamatergic transmission. We therefore conclude that ATP released from astrocytes exerts tonic and activity-dependent down-regulation of synaptic transmission via presynaptic mechanisms.

  6. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Marta Navarrete

    2012-02-01

    Full Text Available Long-term potentiation (LTP of synaptic transmission represents the cellular basis of learning and memory. Astrocytes have been shown to regulate synaptic transmission and plasticity. However, their involvement in specific physiological processes that induce LTP in vivo remains unknown. Here we show that in vivo cholinergic activity evoked by sensory stimulation or electrical stimulation of the septal nucleus increases Ca²⁺ in hippocampal astrocytes and induces LTP of CA3-CA1 synapses, which requires cholinergic muscarinic (mAChR and metabotropic glutamate receptor (mGluR activation. Stimulation of cholinergic pathways in hippocampal slices evokes astrocyte Ca²⁺ elevations, postsynaptic depolarizations of CA1 pyramidal neurons, and LTP of transmitter release at single CA3-CA1 synapses. Like in vivo, these effects are mediated by mAChRs, and this cholinergic-induced LTP (c-LTP also involves mGluR activation. Astrocyte Ca²⁺ elevations and LTP are absent in IP₃R2 knock-out mice. Downregulating astrocyte Ca²⁺ signal by loading astrocytes with BAPTA or GDPβS also prevents LTP, which is restored by simultaneous astrocyte Ca²⁺ uncaging and postsynaptic depolarization. Therefore, cholinergic-induced LTP requires astrocyte Ca²⁺ elevations, which stimulate astrocyte glutamate release that activates mGluRs. The cholinergic-induced LTP results from the temporal coincidence of the postsynaptic activity and the astrocyte Ca²⁺ signal simultaneously evoked by cholinergic activity. Therefore, the astrocyte Ca²⁺ signal is necessary for cholinergic-induced synaptic plasticity, indicating that astrocytes are directly involved in brain storage information.

  7. Molecular switches at the synapse emerge from receptor and kinase traffic.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available Changes in the synaptic connection strengths between neurons are believed to play a role in memory formation. An important mechanism for changing synaptic strength is through movement of neurotransmitter receptors and regulatory proteins to and from the synapse. Several activity-triggered biochemical events control these movements. Here we use computer models to explore how these putative memory-related changes can be stabilised long after the initial trigger, and beyond the lifetime of synaptic molecules. We base our models on published biochemical data and experiments on the activity-dependent movement of a glutamate receptor, AMPAR, and a calcium-dependent kinase, CaMKII. We find that both of these molecules participate in distinct bistable switches. These simulated switches are effective for long periods despite molecular turnover and biochemical fluctuations arising from the small numbers of molecules in the synapse. The AMPAR switch arises from a novel self-recruitment process where the presence of sufficient receptors biases the receptor movement cycle to insert still more receptors into the synapse. The CaMKII switch arises from autophosphorylation of the kinase. The switches may function in a tightly coupled manner, or relatively independently. The latter case leads to multiple stable states of the synapse. We propose that similar self-recruitment cycles may be important for maintaining levels of many molecules that undergo regulated movement, and that these may lead to combinatorial possible stable states of systems like the synapse.

  8. Polarization dependence of the magnetic fluctuations in the weak itinerant ferromagnet MnSi below T{sub c}

    Energy Technology Data Exchange (ETDEWEB)

    Boeni, P.; Tixier, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Endoh, Y. [Tohoku Univ., Sendai (Japan); Roessli, B. [Institut Max von Laue - Paul Langevin, 75 - Paris (France); Shirane, G. [Brookhaven (United States)

    1997-09-01

    The dispersion of the spin-flip and non-spin-flip excitations in the weak itinerant ferromagnet MnSi have been measured in the ferromagnetic phase using inelastic polarized neutron scattering. Spin wave excitations are well defined at energy transfers as large as 7 meV. The cross section of the non-spin-flip excitations is compatible with a quasielastic response function. (author) 2 figs., 3 refs.

  9. Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission

    Science.gov (United States)

    Accardi, Michael V.; Daniels, Bryan A.; Brown, Patricia M. G. E.; Fritschy, Jean-Marc; Tyagarajan, Shiva K.; Bowie, Derek

    2014-01-01

    Neuronal communication imposes a heavy metabolic burden in maintaining ionic gradients essential for action potential firing and synaptic signalling. Although cellular metabolism is known to regulate excitatory neurotransmission, it is still unclear whether the brain’s energy supply affects inhibitory signalling. Here we show that mitochondrial-derived reactive oxygen species (mROS) regulate the strength of postsynaptic GABAA receptors at inhibitory synapses of cerebellar stellate cells. Inhibition is strengthened through a mechanism that selectively recruits α3-containing GABAA receptors into synapses with no discernible effect on resident α1-containing receptors. Since mROS promotes the emergence of postsynaptic events with unique kinetic properties, we conclude that newly recruited α3-containing GABAA receptors are activated by neurotransmitter released onto discrete postsynaptic sites. Although traditionally associated with oxidative stress in neurodegenerative disease, our data identify mROS as a putative homeostatic signalling molecule coupling cellular metabolism to the strength of inhibitory transmission.

  10. Role of group II metabotropic glutamate receptors 2/3 and group I metabotropic glutamate receptor 5 in developing rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, Silvarosa; Frondaroli, Adele; Pettorossi, Vito Enrico

    2005-08-22

    In brainstem slices from developing rats, metabotropic glutamate receptors mGluR2/3 and mGluR5 play different inhibitory roles in synaptic transmission and plasticity of the medial vestibular nuclei. The mGluR2/3 block (LY341495) reduces the occurrence of long-term depression after vestibular afferent high frequency stimulation at P8-P10, and increases that of long-term potentiation, while the mGluR5 block prevents high frequency stimulation long-term depression. Later on, the receptor block does not influence high frequency stimulation effects. In addition, while mGluR2/3 agonist (APDC) always provokes a transient reduction of synaptic responses, that of mGluR5 (CHPG) induces long-term depression per se at P8-P10. These results show a key role of mGluR5 in inducing high frequency stimulation long-term depression in developing medial vestibular nuclei, while mGluR2/3 modulate synaptic transmission, probably through presynaptic control of glutamate release.

  11. The SOL-2/Neto auxiliary protein modulates the function of AMPA-subtype ionotropic glutamate receptors.

    Science.gov (United States)

    Wang, Rui; Mellem, Jerry E; Jensen, Michael; Brockie, Penelope J; Walker, Craig S; Hoerndli, Frédéric J; Hauth, Linda; Madsen, David M; Maricq, Andres V

    2012-09-06

    The neurotransmitter glutamate mediates excitatory synaptic transmission by gating ionotropic glutamate receptors (iGluRs). AMPA receptors (AMPARs), a subtype of iGluR, are strongly implicated in synaptic plasticity, learning, and memory. We previously discovered two classes of AMPAR auxiliary proteins in C. elegans that modify receptor kinetics and thus change synaptic transmission. Here, we have identified another auxiliary protein, SOL-2, a CUB-domain protein that associates with both the related auxiliary subunit SOL-1 and with the GLR-1 AMPAR. In sol-2 mutants, behaviors dependent on glutamatergic transmission are disrupted, GLR-1-mediated currents are diminished, and GLR-1 desensitization and pharmacology are modified. Remarkably, a secreted variant of SOL-1 delivered in trans can rescue sol-1 mutants, and this rescue depends on in cis expression of SOL-2. Finally, we demonstrate that SOL-1 and SOL-2 have an ongoing role in the adult nervous system to control AMPAR-mediated currents. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Estradiol pretreatment ameliorates impaired synaptic plasticity at synapses of insulted CA1 neurons after transient global ischemia

    Science.gov (United States)

    Takeuchi, Koichi; Yang, Yupeng; Takayasu, Yukihiro; Gertner, Michael; Hwang, Jee-Yeon; Aromolaran, Kelly; Bennett, Michael V.L.; Zukin, R. Suzanne

    2015-01-01

    Global ischemia in humans or induced experimentally in animals causes selective and delayed neuronal death in pyramidal neurons of the hippocampal CA1. The ovarian hormone estradiol administered before or immediately after insult affords histological protection in experimental models of focal and global ischemia and ameliorates the cognitive deficits associated with ischemic cell death. However, the impact of estradiol on the functional integrity of Schaffer collateral to CA1 (Sch-CA1) pyramidal cell synapses following global ischemia is not clear. Here we show that long term estradiol treatment initiated 14 days prior to global ischemia in ovariectomized female rats acts via the IGF-1 receptor to protect the functional integrity of CA1 neurons. Global ischemia impairs basal synaptic transmission, assessed by the input/output relation at Sch-CA1 synapses, and NMDA receptor (NMDAR)-dependent long term potentiation (LTP), assessed at 3 days after surgery. Presynaptic function, assessed by fiber volley and paired pulse facilitation, is unchanged. To our knowledge, our results are the first to demonstrate that estradiol at near physiological concentrations enhances basal excitatory synaptic transmission and ameliorates deficits in LTP at synapses onto CA1 neurons in a clinically-relevant model of global ischemia. Estradiol-induced rescue of LTP requires the IGF-1 receptor, but not the classical estrogen receptors (ER)-α or β. These findings support a model whereby estradiol acts via the IGF-1 receptor to maintain the functional integrity of hippocampal CA1 synapses in the face of global ischemia. PMID:25463028

  13. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex

    Directory of Open Access Journals (Sweden)

    Joshua G.A Pinto

    2015-02-01

    Full Text Available Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly conserved pre- and post-synaptic proteins (Synapsin, Synaptophysin, PSD-95, Gephyrin and found that synaptic development in human primary visual cortex continues into late childhood. Indeed, this is many years longer than suggested by neuroanatomical studies and points to a prolonged sensitive period for plasticity in human sensory cortex. In addition, during childhood we found waves of inter-individual variability that are different for the 4 proteins and include a stage during early development (<1 year when only Gephyrin has high inter-individual variability. We also found that pre- and post-synaptic protein balances develop quickly, suggesting that maturation of certain synaptic functions happens within the first year or two of life. A multidimensional analysis (principle component analysis showed that most of the variance was captured by the sum of the 4 synaptic proteins. We used that sum to compare development of human and rat visual cortex and identified a simple linear equation that provides robust alignment of synaptic age between humans and rats. Alignment of synaptic ages is important for age-appropriate targeting and effective translation of neuroplasticity therapies from the lab to the clinic.

  14. β2-Adrenergic Receptor Activation Suppresses the Rat Phenethylamine Hallucinogen-Induced Head Twitch Response: Hallucinogen-Induced Excitatory Post-synaptic Potentials as a Potential Substrate

    Science.gov (United States)

    Marek, Gerard J.; Ramos, Brian P.

    2018-01-01

    5-Hydroxytryptamine2A (5-HT2A) receptors are enriched in layers I and Va of the rat prefrontal cortex and neocortex and their activation increases the frequency of glutamatergic excitatory post-synaptic potentials/currents (EPSP/Cs) onto layer V pyramidal cells. A number of other G-protein coupled receptors (GPCRs) are also enriched in cortical layers I and Va and either induce (α1-adrenergic and orexin2) or suppress (metabotropic glutamate2 [mGlu2], adenosine A1, μ-opioid) both 5-HT-induced EPSCs and head twitches or head shakes induced by the phenethylamine hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI). Another neurotransmitter receptor also localized to apparent thalamocortical afferents to layers I and Va of the rat prefrontal cortex and neocortex is the β2-adrenergic receptor. Therefore, we conducted preliminary electrophysiological experiments with rat brain slices examining the effects of epinephrine on electrically-evoked EPSPs following bath application of DOI (3 μM). Epinephrine (0.3–10 μM) suppressed the late EPSPs produced by electrical stimulation and DOI. The selective β2-adrenergic receptor antagonist ICI-118,551 (300 nM) resulted in a rightward shift of the epinephrine concentration-response relationship. We also tested the selective β2-adrenergic receptor agonist clenbuterol and the antagonist ICI-118,551 on DOI-induced head twitches. Clenbuterol (0.3–3 mg/kg, i.p.) suppressed DOI (1.25 mg/kg, i.p.)-induced head twitches. This clenbuterol effect appeared to be at least partially reversed by the selective β2-adrenergic receptor antagonist ICI-118,553 (0.01–1 mg/kg, i.p.), with significant reversal at doses of 0.1 and 1 mg/kg. Thus, β2-adrenergic receptor activation reverses the effects of phenethylamine hallucinogens in the rat prefrontal cortex. While Gi/Go-coupled GPCRs have previously been shown to suppress both the electrophysiological and behavioral effects of 5-HT2A receptor activation in the mPFC, the present work appears

  15. Regulation of hippocampal synaptic plasticity thresholds and changes in exploratory and learning behavior in dominant negative NPR-B mutant rats

    Directory of Open Access Journals (Sweden)

    Gleb eBarmashenko

    2014-12-01

    Full Text Available The second messenger cyclic GMP affects synaptic transmission and modulates synaptic plasticity and certain types of learning and memory processes. The impact of the natriuretic peptide receptor B (NPR-B and its ligand C-type natriuretic peptide (CNP, one of several cGMP producing signalling systems, on hippocampal synaptic plasticity and learning is, however, less well understood. We have previously shown that the NPR-B ligand CNP increases the magnitude of long-term depression (LTD in hippocampal area CA1, while reducing the induction of long-term potentiation (LTP. We have extended this line of research to show that bidirectional plasticity is affected in the opposite way in rats expressing a dominant-negative mutant of NPR-B (NSE-NPR-BdeltaKC lacking the intracellular guanylyl cyclase domain under control of a promoter for neuron-specific enolase. The brain cells of these transgenic rats express functional dimers of the NPR-B receptor containing the dominant-negative NPR-BdeltaKC mutant, and therefore show decreased CNP-stimulated cGMP-production in brain membranes. The NPR-B transgenic rats display enhanced LTP but reduced LTD in hippocampal slices. When the frequency-dependence of synaptic modification to afferent stimulation in the range of 1-100 Hz was assessed in transgenic rats the threshold for LTP induction was raised, but LTD induction was facilitated. In parallel, NPR-BdeltaKC rats exhibited an enhancement in exploratory and learning behavior. These results indicate that bidirectional plasticity and learning and memory mechanism are affected in transgenic rats expressing a dominant-negative mutant of NPR-B. Our data substantiate the hypothesis that NPR-B-dependent cGMP signalling has a modulatory role for synaptic information storage and learning.

  16. Modulation of Central Synapses by Astrocyte-Released ATP and Postsynaptic P2X Receptors

    Science.gov (United States)

    Pankratov, Yuriy

    2017-01-01

    Communication between neuronal and glial cells is important for neural plasticity. P2X receptors are ATP-gated cation channels widely expressed in the brain where they mediate action of extracellular ATP released by neurons and/or glia. Recent data show that postsynaptic P2X receptors underlie slow neuromodulatory actions rather than fast synaptic transmission at brain synapses. Here, we review these findings with a particular focus on the release of ATP by astrocytes and the diversity of postsynaptic P2X-mediated modulation of synaptic strength and plasticity in the CNS. PMID:28845311

  17. A Computational Model to Investigate Astrocytic Glutamate Uptake Influence on Synaptic Transmission and Neuronal Spiking

    Directory of Open Access Journals (Sweden)

    Sushmita Lakshmi Allam

    2012-10-01

    Full Text Available Over the past decades, our view of astrocytes has switched from passive support cells to active processing elements in the brain. The current view is that astrocytes shape neuronal communication and also play an important role in many neurodegenerative diseases. Despite the growing awareness of the importance of astrocytes, the exact mechanisms underlying neuron-astrocyte communication and the physiological consequences of astrocytic-neuronal interactions remain largely unclear. In this work, we define a modeling framework that will permit to address unanswered questions regarding the role of astrocytes. Our computational model of a detailed glutamatergic synapse facilitates the analysis of neural system responses to various stimuli and conditions that are otherwise difficult to obtain experimentally, in particular the readouts at the sub-cellular level. In this paper, we extend a detailed glutamatergic synaptic model, to include astrocytic glutamate transporters. We demonstrate how these glial transporters, responsible for the majority of glutamate uptake, modulate synaptic transmission mediated by ionotropic AMPA and NMDA receptors at glutamatergic synapses. Furthermore, we investigate how these local signaling effects at the synaptic level are translated into varying spatio-temporal patterns of neuron firing. Paired pulse stimulation results reveal that the effect of astrocytic glutamate uptake is more apparent when the input inter-spike interval is sufficiently long to allow the receptors to recover from desensitization. These results suggest an important functional role of astrocytes in spike timing dependent processes and demand further investigation of the molecular basis of certain neurological diseases specifically related to alterations in astrocytic glutamate uptake, such as epilepsy.

  18. Methylphenidate enhances NMDA-receptor response in medial prefrontal cortex via sigma-1 receptor: a novel mechanism for methylphenidate action.

    Directory of Open Access Journals (Sweden)

    Chun-Lei Zhang

    Full Text Available Methylphenidate (MPH, commercially called Ritalin or Concerta, has been widely used as a drug for Attention Deficit Hyperactivity Disorder (ADHD. Noteworthily, growing numbers of young people using prescribed MPH improperly for pleasurable enhancement, take high risk of addiction. Thus, understanding the mechanism underlying high level of MPH action in the brain becomes an important goal nowadays. As a blocker of catecholamine transporters, its therapeutic effect is explained as being due to proper modulation of D1 and α2A receptor. Here we showed that higher dose of MPH facilitates NMDA-receptor mediated synaptic transmission via a catecholamine-independent mechanism, in layer V∼VI pyramidal cells of the rat medial prefrontal cortex (PFC. To indicate its postsynaptic action, we next found that MPH facilitates NMDA-induced current and such facilitation could be blocked by σ1 but not D1/5 and α2 receptor antagonists. And this MPH eliciting enhancement of NMDA-receptor activity involves PLC, PKC and IP3 receptor mediated intracellular Ca(2+ increase, but does not require PKA and extracellular Ca(2+ influx. Our additional pharmacological studies confirmed that higher dose of MPH increases locomotor activity via interacting with σ1 receptor. Together, the present study demonstrates for the first time that MPH facilitates NMDA-receptor mediated synaptic transmission via σ1 receptor, and such facilitation requires PLC/IP3/PKC signaling pathway. This novel mechanism possibly explains the underlying mechanism for MPH induced addictive potential and other psychiatric side effects.

  19. The Model of Itinerant Intervention for the audition and language primary teacher

    Directory of Open Access Journals (Sweden)

    Antonio Luque de la Rosa

    2008-04-01

    Full Text Available Immersed as we are in a process of reform of university curricula to adjust them to the European Higher Education Area, it is necessary to reflect on the professional profile developed by professionals such as Audition and Language Itinerant Primary Teachers at schools, taking note of those factors that could have prevented the development of a role adjusted to curricular and collaborative proposals which were promoted under the LOGSE. At present, under the LOE and the new university curricula, in which it is intended to introduce the Attention for Diversity Primary Teacher profile, we have the opportunity to learn from mistakes and to promote educational work in favour of quality at schools advancing towards inclusiveness.

  20. Stress-induced enhancement of mouse amygdalar synaptic plasticity depends on glucocorticoid and ß-adrenergic activity.

    Directory of Open Access Journals (Sweden)

    Ratna Angela Sarabdjitsingh

    Full Text Available BACKGROUND: Glucocorticoid hormones, in interaction with noradrenaline, enable the consolidation of emotionally arousing and stressful experiences in rodents and humans. Such interaction is thought to occur at least partly in the basolateral nucleus of the amygdala (BLA which is crucially involved in emotional memory formation. Extensive evidence points to long-term synaptic potentiation (LTP as a mechanism contributing to memory formation. Here we determined in adolescent C57/Bl6 mice the effects of stress on LTP in the LA-BLA pathway and the specific roles of corticosteroid and β-adrenergic receptor activation in this process. PRINCIPAL FINDINGS: Exposure to 20 min of restraint stress (compared to control treatment prior to slice preparation enhanced subsequent LTP induction in vitro, without affecting baseline fEPSP responses. The role of glucocorticoid receptors, mineralocorticoid receptors and β2-adrenoceptors in the effects of stress was studied by treating mice with the antagonists mifepristone, spironolactone or propranolol respectively (or the corresponding vehicles prior to stress or control treatment. In undisturbed controls, mifepristone and propranolol administration in vivo did not influence LTP induced in vitro. By contrast, spironolactone caused a gradually attenuating form of LTP, both in unstressed and stressed mice. Mifepristone treatment prior to stress strongly reduced the ability to induce LTP in vitro. Propranolol normalized the stress-induced enhancement of LTP to control levels during the first 10 min after high frequency stimulation, after which synaptic responses further declined. CONCLUSIONS: Acute stress changes BLA electrical properties such that subsequent LTP induction is facilitated. Both β-adrenergic and glucocorticoid receptors are involved in the development of these changes. Mineralocorticoid receptors are important for the maintenance of LTP in the BLA, irrespective of stress-induced changes in the

  1. Synaptic plasticity in drug reward circuitry.

    Science.gov (United States)

    Winder, Danny G; Egli, Regula E; Schramm, Nicole L; Matthews, Robert T

    2002-11-01

    Drug addiction is a major public health issue worldwide. The persistence of drug craving coupled with the known recruitment of learning and memory centers in the brain has led investigators to hypothesize that the alterations in glutamatergic synaptic efficacy brought on by synaptic plasticity may play key roles in the addiction process. Here we review the present literature, examining the properties of synaptic plasticity within drug reward circuitry, and the effects that drugs of abuse have on these forms of plasticity. Interestingly, multiple forms of synaptic plasticity can be induced at glutamatergic synapses within the dorsal striatum, its ventral extension the nucleus accumbens, and the ventral tegmental area, and at least some of these forms of plasticity are regulated by behaviorally meaningful administration of cocaine and/or amphetamine. Thus, the present data suggest that regulation of synaptic plasticity in reward circuits is a tractable candidate mechanism underlying aspects of addiction.

  2. Molecular Characterization of Native and Recom­binant Ionotrophic Glutamate Receptors Expressed in Neurons and Heterologous Systems

    DEFF Research Database (Denmark)

    Drasbek, Kim Ryun

    2005-01-01

    trafficking mediating the continuous replacement of synaptic receptors and is important for receptor tetramerization in the endoplasmatic reticulum. Given the many important properties of the GluR2 subunit, it was of great interest to investigate and compare synaptic properties in neuronal populations...... in synaptic currents of receptors from these neuronal preparations, miniature excitatory postsynaptic currents (mEPSCs) were recorded followed by single cell RT-PCR of the same neuron. Unfortunately, no population of GluR2 lacking neurons was detected by single cell RT-PCR, but a higher detection frequency...... expressing AMPARs with or without the GluR2 subunits. Earlier findings suggested that neurons cultured from spinal cord were devoid of GluR2 and expressed high amounts of GluR4. In contrast, GluR2 was detected in almost all cells from cortical cultures (Dai et al., 2001). To investigate differences...

  3. Bacterial cytolysin during meningitis disrupts the regulation of glutamate in the brain, leading to synaptic damage.

    Directory of Open Access Journals (Sweden)

    Carolin Wippel

    Full Text Available Streptococcus pneumoniae (pneumococcal meningitis is a common bacterial infection of the brain. The cholesterol-dependent cytolysin pneumolysin represents a key factor, determining the neuropathogenic potential of the pneumococci. Here, we demonstrate selective synaptic loss within the superficial layers of the frontal neocortex of post-mortem brain samples from individuals with pneumococcal meningitis. A similar effect was observed in mice with pneumococcal meningitis only when the bacteria expressed the pore-forming cholesterol-dependent cytolysin pneumolysin. Exposure of acute mouse brain slices to only pore-competent pneumolysin at disease-relevant, non-lytic concentrations caused permanent dendritic swelling, dendritic spine elimination and synaptic loss. The NMDA glutamate receptor antagonists MK801 and D-AP5 reduced this pathology. Pneumolysin increased glutamate levels within the mouse brain slices. In mouse astrocytes, pneumolysin initiated the release of glutamate in a calcium-dependent manner. We propose that pneumolysin plays a significant synapto- and dendritotoxic role in pneumococcal meningitis by initiating glutamate release from astrocytes, leading to subsequent glutamate-dependent synaptic damage. We outline for the first time the occurrence of synaptic pathology in pneumococcal meningitis and demonstrate that a bacterial cytolysin can dysregulate the control of glutamate in the brain, inducing excitotoxic damage.

  4. Neurotrophin receptor immunoreactivity in the hippocampus of patients with mesial temporal lobe epilepsy

    NARCIS (Netherlands)

    Ozbas-Gerceker, F.; Gorter, J.A.; Redeker, S.; Ramkema, M.; van der Valk, P.; Baayen, J.C.; Ozguc, M.; Saygi, S.; Soylemezoglu, F.; Akalin, N.; Troost, D.; Aronica, E.

    2004-01-01

    Recent evidence supports a critical role of neurotrophins in the regulation of both neuronal survival and synaptic transmission during epileptogenesis. We have examined the immunohistochemical expression of high- (tyrosine kinase receptors, trk) and low-affinity (p75) neurotrophin receptors (NTRs)

  5. Maternal Dexamethasone Exposure Alters Synaptic Inputs to Gonadotropin-Releasing Hormone Neurons in the Early Postnatal Rat

    Directory of Open Access Journals (Sweden)

    Wei Ling Lim

    2016-08-01

    Full Text Available Maternal dexamethasone (DEX; a glucocorticoid receptor agonist exposure delays pubertal onset and alters reproductive behaviour in the adult offspring. However, little is known whether maternal DEX exposure affects the offspring’s reproductive function by disrupting the gonadotropin-releasing hormone (GnRH neuronal function in the brain. Therefore, this study determined the exposure of maternal DEX on the GnRH neuronal spine development and synaptic cluster inputs to GnRH neurons using transgenic rats expressing enhanced green fluorescent protein (EGFP under the control of GnRH promoter. Pregnant females were administered with DEX (0.1mg/kg or vehicle (VEH, water daily during gestation day 13-20. Confocal imaging was used to examine the spine density of EGFP-GnRH neurons by three-dimensional rendering and synaptic cluster inputs to EGFP-GnRH neurons by synapsin I immunohistochemistry on postnatal day 0 (P0 males. The spine morphology and number on GnRH neurons did not change between the P0 males following maternal DEX and VEH treatment. The number of synaptic clusters within the organum vasculosum of the lamina terminalis (OVLT was decreased by maternal DEX exposure in P0 males. Furthermore, the number and levels of synaptic cluster inputs in close apposition with GnRH neurons was decreased following maternal DEX exposure in the OVLT region of P0 males. In addition, the post synaptic marker molecule, post-synaptic density 95 was observed in GnRH neurons following both DEX and VEH treatment. These results suggest that maternal DEX exposure alters neural afferent inputs to GnRH neurons during early postnatal stage, which could lead to reproductive dysfunction during adulthood.

  6. Synaptic Effects of Electric Fields

    Science.gov (United States)

    Rahman, Asif

    Learning and sensory processing in the brain relies on the effective transmission of information across synapses. The strength and efficacy of synaptic transmission is modifiable through training and can be modulated with noninvasive electrical brain stimulation. Transcranial electrical stimulation (TES), specifically, induces weak intensity and spatially diffuse electric fields in the brain. Despite being weak, electric fields modulate spiking probability and the efficacy of synaptic transmission. These effects critically depend on the direction of the electric field relative to the orientation of the neuron and on the level of endogenous synaptic activity. TES has been used to modulate a wide range of neuropsychiatric indications, for various rehabilitation applications, and cognitive performance in diverse tasks. How can a weak and diffuse electric field, which simultaneously polarizes neurons across the brain, have precise changes in brain function? Designing therapies to maximize desired outcomes and minimize undesired effects presents a challenging problem. A series of experiments and computational models are used to define the anatomical and functional factors leading to specificity of TES. Anatomical specificity derives from guiding current to targeted brain structures and taking advantage of the direction-sensitivity of neurons with respect to the electric field. Functional specificity originates from preferential modulation of neuronal networks that are already active. Diffuse electric fields may recruit connected brain networks involved in a training task and promote plasticity along active synaptic pathways. In vitro, electric fields boost endogenous synaptic plasticity and raise the ceiling for synaptic learning with repeated stimulation sessions. Synapses undergoing strong plasticity are preferentially modulated over weak synapses. Therefore, active circuits that are involved in a task could be more susceptible to stimulation than inactive circuits

  7. Identification of fibroblast growth factor receptor 3 (FGFR3 as a protein receptor for botulinum neurotoxin serotype A (BoNT/A.

    Directory of Open Access Journals (Sweden)

    Birgitte P S Jacky

    Full Text Available Botulinum neurotoxin serotype A (BoNT/A causes transient muscle paralysis by entering motor nerve terminals (MNTs where it cleaves the SNARE protein Synaptosomal-associated protein 25 (SNAP25206 to yield SNAP25197. Cleavage of SNAP25 results in blockage of synaptic vesicle fusion and inhibition of the release of acetylcholine. The specific uptake of BoNT/A into pre-synaptic nerve terminals is a tightly controlled multistep process, involving a combination of high and low affinity receptors. Interestingly, the C-terminal binding domain region of BoNT/A, HC/A, is homologous to fibroblast growth factors (FGFs, making it a possible ligand for Fibroblast Growth Factor Receptors (FGFRs. Here we present data supporting the identification of Fibroblast Growth Factor Receptor 3 (FGFR3 as a high affinity receptor for BoNT/A in neuronal cells. HC/A binds with high affinity to the two extra-cellular loops of FGFR3 and acts similar to an agonist ligand for FGFR3, resulting in phosphorylation of the receptor. Native ligands for FGFR3; FGF1, FGF2, and FGF9 compete for binding to FGFR3 and block BoNT/A cellular uptake. These findings show that FGFR3 plays a pivotal role in the specific uptake of BoNT/A across the cell membrane being part of a larger receptor complex involving ganglioside- and protein-protein interactions.

  8. Age-Related Alterations in the Expression of Genes and Synaptic Plasticity Associated with Nitric Oxide Signaling in the Mouse Dorsal Striatum

    Directory of Open Access Journals (Sweden)

    Aisa N. Chepkova

    2015-01-01

    Full Text Available Age-related alterations in the expression of genes and corticostriatal synaptic plasticity were studied in the dorsal striatum of mice of four age groups from young (2-3 months old to old (18–24 months of age animals. A significant decrease in transcripts encoding neuronal nitric oxide (NO synthase and receptors involved in its activation (NR1 subunit of the glutamate NMDA receptor and D1 dopamine receptor was found in the striatum of old mice using gene array and real-time RT-PCR analysis. The old striatum showed also a significantly higher number of GFAP-expressing astrocytes and an increased expression of astroglial, inflammatory, and oxidative stress markers. Field potential recordings from striatal slices revealed age-related alterations in the magnitude and dynamics of electrically induced long-term depression (LTD and significant enhancement of electrically induced long-term potentiation in the middle-aged striatum (6-7 and 12-13 months of age. Corticostriatal NO-dependent LTD induced by pharmacological activation of group I metabotropic glutamate receptors underwent significant reduction with aging and could be restored by inhibition of cGMP hydrolysis indicating that its age-related deficit is caused by an altered NO-cGMP signaling cascade. It is suggested that age-related alterations in corticostriatal synaptic plasticity may result from functional alterations in receptor-activated signaling cascades associated with increasing neuroinflammation and a prooxidant state.

  9. Pre-synaptic glycine GlyT1 transporter--NMDA receptor interaction: relevance to NMDA autoreceptor activation in the presence of Mg2+ ions.

    Science.gov (United States)

    Musante, Veronica; Summa, Maria; Cunha, Rodrigo A; Raiteri, Maurizio; Pittaluga, Anna

    2011-05-01

    Rat hippocampal glutamatergic terminals possess NMDA autoreceptors whose activation by low micromolar NMDA elicits glutamate exocytosis in the presence of physiological Mg(2+) (1.2 mM), the release of glutamate being significantly reduced when compared to that in Mg(2+)-free condition. Both glutamate and glycine were required to evoke glutamate exocytosis in 1.2 mM Mg(2+), while dizocilpine, cis-4-[phosphomethyl]-piperidine-2-carboxylic acid and 7-Cl-kynurenic acid prevented it, indicating that occupation of both agonist sites is needed for receptor activation. D-serine mimicked glycine but also inhibited the NMDA/glycine-induced release of [(3H]D-aspartate, thus behaving as a partial agonist. The NMDA/glycine-induced release in 1.2 mM Mg(2+) strictly depended on glycine uptake through the glycine transporter type 1 (GlyT1), because the GlyT1 blocker N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl])sarcosine hydrochloride, but not the GlyT2 blocker Org 25534, prevented it. Accordingly, [(3)H]glycine was taken up during superfusion, while lowering the external concentration of Na(+), the monovalent cation co-transported with glycine by GlyT1, abrogated the NMDA-induced effect. Western blot analysis of subsynaptic fractions confirms that GlyT1 and NMDA autoreceptors co-localize at the pre-synaptic level, where GluN3A subunits immunoreactivity was also recovered. It is proposed that GlyT1s coexist with NMDA autoreceptors on rat hippocampal glutamatergic terminals and that glycine taken up by GlyT1 may permit physiological activation of NMDA pre-synaptic autoreceptors. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  10. A perisynaptic ménage à trois between Dlg, DLin-7, and Metro controls proper organization of Drosophila synaptic junctions.

    Science.gov (United States)

    Bachmann, André; Kobler, Oliver; Kittel, Robert J; Wichmann, Carolin; Sierralta, Jimena; Sigrist, Stephan J; Gundelfinger, Eckart D; Knust, Elisabeth; Thomas, Ulrich

    2010-04-28

    Structural plasticity of synaptic junctions is a prerequisite to achieve and modulate connectivity within nervous systems, e.g., during learning and memory formation. It demands adequate backup systems that allow remodeling while retaining sufficient stability to prevent unwanted synaptic disintegration. The strength of submembranous scaffold complexes, which are fundamental to the architecture of synaptic junctions, likely constitutes a crucial determinant of synaptic stability. Postsynaptic density protein-95 (PSD-95)/ Discs-large (Dlg)-like membrane-associated guanylate kinases (DLG-MAGUKs) are principal scaffold proteins at both vertebrate and invertebrate synapses. At Drosophila larval glutamatergic neuromuscular junctions (NMJs) DlgA and DlgS97 exert pleiotropic functions, probably reflecting a few known and a number of yet-unknown binding partners. In this study we have identified Metro, a novel p55/MPP-like Drosophila MAGUK as a major binding partner of perisynaptic DlgS97 at larval NMJs. Based on homotypic LIN-2,-7 (L27) domain interactions, Metro stabilizes junctional DlgS97 in a complex with the highly conserved adaptor protein DLin-7. In a remarkably interdependent manner, Metro and DLin-7 act downstream of DlgS97 to control NMJ expansion and proper establishment of synaptic boutons. Using quantitative 3D-imaging we further demonstrate that the complex controls the size of postsynaptic glutamate receptor fields. Our findings accentuate the importance of perisynaptic scaffold complexes for synaptic stabilization and organization.

  11. Low-Frequency rTMS Ameliorates Autistic-Like Behaviors in Rats Induced by Neonatal Isolation Through Regulating the Synaptic GABA Transmission

    Directory of Open Access Journals (Sweden)

    Tao Tan

    2018-02-01

    Full Text Available Patients with autism spectrum disorder (ASD display abnormalities in neuronal development, synaptic function and neural circuits. The imbalance of excitatory and inhibitory (E/I synaptic transmission has been proposed to cause the main behavioral characteristics of ASD. Repetitive transcranial magnetic stimulation (rTMS can directly or indirectly induce excitability and synaptic plasticity changes in the brain noninvasively. However, whether rTMS can ameliorate autistic-like behaviors in animal model via regulating the balance of E/I synaptic transmission is unknown. By using our recent reported animal model with autistic-like behaviors induced by neonatal isolation (postnatal days 1–9, we found that low-frequency rTMS (LF-rTMS, 1 Hz treatment for 2 weeks effectively alleviated the acquired autistic-like symptoms, as reflected by an increase in social interaction and decrease in self-grooming, anxiety- and depressive-like behaviors in young adult rats compared to those in untreated animals. Furthermore, the amelioration in autistic-like behavior was accompanied by a restoration of the balance between E/I activity, especially at the level of synaptic transmission and receptors in synaptosomes. These findings indicated that LF-rTMS may alleviate the symptoms of ASD-like behaviors caused by neonatal isolation through regulating the synaptic GABA transmission, suggesting that LF-rTMS may be a potential therapeutic technique to treat ASD.

  12. Inclusive Educational Practices in Kenya: Evidencing Practice of Itinerant Teachers Who Work with Children with Visual Impairment in Local Mainstream Schools

    Science.gov (United States)

    Lynch, Paul; McCall, Steve; Douglas, Graeme; McLinden, Mike; Mogesa, Bernard; Mwaura, Martha; Muga, John; Njoroge, Michael

    2011-01-01

    This article presents a findings from an investigation of the work of 38 specialist itinerant teachers (ITs) supporting the educational inclusion of children with visual impairment in Kenya. The research was designed around a participatory action research framework involving in-country researchers and participants (teachers) working in…

  13. Purines released from astrocytes inhibit excitatory synaptic transmission in the ventral horn of the spinal cord

    DEFF Research Database (Denmark)

    Carlsen, Eva Maria Meier; Perrier, Jean-Francois Marie

    2014-01-01

    by different neuromodulators. These substances are usually thought of being released by dedicated neurons. However, in other networks from the central nervous system synaptic transmission is also modulated by transmitters released from astrocytes. The star-shaped glial cell responds to neurotransmitters....... Neurons responded to electrical stimulation by monosynaptic EPSCs (excitatory monosynaptic postsynaptic currents). We used mice expressing the enhanced green fluorescent protein under the promoter of the glial fibrillary acidic protein to identify astrocytes. Chelating calcium with BAPTA in a single...... neighboring astrocyte increased the amplitude of synaptic currents. In contrast, when we selectively stimulated astrocytes by activating PAR-1 receptors with the peptide TFLLR, the amplitude of EPSCs evoked by a paired stimulation protocol was reduced. The paired-pulse ratio was increased, suggesting...

  14. Flexible Proton-Gated Oxide Synaptic Transistors on Si Membrane.

    Science.gov (United States)

    Zhu, Li Qiang; Wan, Chang Jin; Gao, Ping Qi; Liu, Yang Hui; Xiao, Hui; Ye, Ji Chun; Wan, Qing

    2016-08-24

    Ion-conducting materials have received considerable attention for their applications in fuel cells, electrochemical devices, and sensors. Here, flexible indium zinc oxide (InZnO) synaptic transistors with multiple presynaptic inputs gated by proton-conducting phosphorosilicate glass-based electrolyte films are fabricated on ultrathin Si membranes. Transient characteristics of the proton gated InZnO synaptic transistors are investigated, indicating stable proton-gating behaviors. Short-term synaptic plasticities are mimicked on the proposed proton-gated synaptic transistors. Furthermore, synaptic integration regulations are mimicked on the proposed synaptic transistor networks. Spiking logic modulations are realized based on the transition between superlinear and sublinear synaptic integration. The multigates coupled flexible proton-gated oxide synaptic transistors may be interesting for neuroinspired platforms with sophisticated spatiotemporal information processing.

  15. Synaptic release and extracellular actions of Zn2+ limit propagation of spreading depression and related events in vitro and in vivo.

    Science.gov (United States)

    Aiba, Isamu; Carlson, Andrew P; Sheline, Christian T; Shuttleworth, C William

    2012-02-01

    Cortical spreading depression (CSD) is a consequence of a slowly propagating wave of neuronal and glial depolarization (spreading depolarization; SD). Massive release of glutamate contributes to SD propagation, and it was recently shown that Zn(2+) is also released from synaptic vesicles during SD. The present study examined consequences of extracellular Zn(2+) accumulation on the propagation of SD. SD mechanisms were studied first in murine brain slices, using focal KCl applications as stimuli and making electrical and optical recordings in hippocampal area CA1. Elevating extracellular Zn(2+) concentrations with exogenous ZnCl(2) reduced SD propagation rates. Selective chelation of endogenous Zn(2+) (using TPEN or CaEDTA) increased SD propagation rates, and these effects appeared due to chelation of Zn(2+) derived from synaptic vesicles. Thus, in tissues where synaptic Zn(2+) release was absent [knockout (KO) of vesicular Zn(2+) transporter ZnT-3], SD propagation rates were increased, and no additional increase was observed following chelation of endogenous Zn(2+) in these tissues. The role of synaptic Zn(2+) was then examined on CSD in vivo. ZnT-3 KO animals had higher susceptibility to CSD than wild-type controls as evidenced by significantly higher propagation rates and frequencies. Studies of candidate mechanisms excluded changes in neuronal excitability, presynaptic release, and GABA receptors but left open a possible contribution of N-methyl-d-aspartate (NMDA) receptor inhibition. These results suggest the extracellular accumulation of synaptically released Zn(2+) can serve as an intrinsic inhibitor to limit SD events. The inhibitory action of extracellular Zn(2+) on SD may counteract to some extent the neurotoxic effects of intracellular Zn(2+) accumulation in acute brain injury models.

  16. Photo-antagonism of the GABAA receptor.

    Science.gov (United States)

    Mortensen, Martin; Iqbal, Favaad; Pandurangan, Arun P; Hannan, Saad; Huckvale, Rosemary; Topf, Maya; Baker, James R; Smart, Trevor G

    2014-07-29

    Neurotransmitter receptor trafficking is fundamentally important for synaptic transmission and neural network activity. GABAA receptors and inhibitory synapses are vital components of brain function, yet much of our knowledge regarding receptor mobility and function at inhibitory synapses is derived indirectly from using recombinant receptors, antibody-tagged native receptors and pharmacological treatments. Here we describe the use of a set of research tools that can irreversibly bind to and affect the function of recombinant and neuronal GABAA receptors following ultraviolet photoactivation. These compounds are based on the competitive antagonist gabazine and incorporate a variety of photoactive groups. By using site-directed mutagenesis and ligand-docking studies, they reveal new areas of the GABA binding site at the interface between receptor β and α subunits. These compounds enable the selected inactivation of native GABAA receptor populations providing new insight into the function of inhibitory synapses and extrasynaptic receptors in controlling neuronal excitation.

  17. Elevated progranulin contributes to synaptic and learning deficit due to loss of fragile X mental retardation protein.

    Science.gov (United States)

    Zhang, Kun; Li, Yu-Jiao; Guo, Yanyan; Zheng, Kai-Yin; Yang, Qi; Yang, Le; Wang, Xin-Shang; Song, Qian; Chen, Tao; Zhuo, Min; Zhao, Ming-Gao

    2017-12-01

    Fragile X syndrome is an inheritable form of intellectual disability caused by loss of fragile X mental retardation protein (FMRP, encoded by the FMR1 gene). Absence of FMRP caused overexpression of progranulin (PGRN, encoded by GRN), a putative tumour necrosis factor receptor ligand. In the present study, we found that progranulin mRNA and protein were upregulated in the medial prefrontal cortex of Fmr1 knock-out mice. In Fmr1 knock-out mice, elevated progranulin caused insufficient dendritic spine pruning and late-phase long-term potentiation in the medial prefrontal cortex of Fmr1 knock-out mice. Partial progranulin knock-down restored spine morphology and reversed behavioural deficits, including impaired fear memory, hyperactivity, and motor inflexibility in Fmr1 knock-out mice. Progranulin increased levels of phosphorylated glutamate ionotropic receptor GluA1 and nuclear factor kappa B in cultured wild-type neurons. Tumour necrosis factor receptor 2 antibody perfusion blocked the effects of progranulin on GluA1 phosphorylation; this result indicates that tumour necrosis factor receptor 2 is required for progranulin-mediated GluA1 phosphorylation and late-phase long-term potentiation expression. However, high basal level of progranulin in Fmr1 knock-out mice prevented further facilitation of synaptic plasticity by exogenous progranulin. Partial downregulation of progranulin or tumour necrosis factor receptor 2/nuclear factor kappa B signalling restored synaptic plasticity and memory deficits in Fmr1 knock-out mice. These findings suggest that elevated PGRN is linked to cognitive deficits of fragile X syndrome, and the progranulin/tumour necrosis factor receptor 2 signalling pathway may be a putative therapeutic target for improving cognitive deficits in fragile X syndrome. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. ApoER2 Function in the Establishment and Maintenance of Retinal Synaptic Connectivity

    OpenAIRE

    Trotter, Justin H.; Klein, Martin; Jinwal, Umesh K.; Abisambra, Jose F.; Dickey, Chad A.; Tharkur, Jeremy; Masiulis, Irene; Ding, Jindong; Locke, Kirstin G.; Rickman, Catherine Bowes; Birch, David G.; Weeber, Edwin J.; Herz, Joachim

    2011-01-01

    The cellular and molecular mechanisms responsible for the development of inner retinal circuitry are poorly understood. Reelin and apolipoprotein E (apoE), ligands of apoE receptor 2 (ApoER2), are involved in retinal development and degeneration, respectively. Here we describe the function of ApoER2 in the developing and adult retina. ApoER2 expression was highest during postnatal inner retinal synaptic development and was considerably lower in the mature retina. Both during development and i...

  19. Learning induces the translin/trax RNase complex to express activin receptors for persistent memory.

    Science.gov (United States)

    Park, Alan Jung; Havekes, Robbert; Fu, Xiuping; Hansen, Rolf; Tudor, Jennifer C; Peixoto, Lucia; Li, Zhi; Wu, Yen-Ching; Poplawski, Shane G; Baraban, Jay M; Abel, Ted

    2017-09-20

    Long-lasting forms of synaptic plasticity and memory require de novo protein synthesis. Yet, how learning triggers this process to form memory is unclear. Translin/trax is a candidate to drive this learning-induced memory mechanism by suppressing microRNA-mediated translational silencing at activated synapses. We find that mice lacking translin/trax display defects in synaptic tagging, which requires protein synthesis at activated synapses, and long-term memory. Hippocampal samples harvested from these mice following learning show increases in several disease-related microRNAs targeting the activin A receptor type 1C (ACVR1C), a component of the transforming growth factor-β receptor superfamily. Furthermore, the absence of translin/trax abolishes synaptic upregulation of ACVR1C protein after learning. Finally, synaptic tagging and long-term memory deficits in mice lacking translin/trax are mimicked by ACVR1C inhibition. Thus, we define a new memory mechanism by which learning reverses microRNA-mediated silencing of the novel plasticity protein ACVR1C via translin/trax.

  20. Dietary supplementation of soy germ phytoestrogens or estradiol improves spatial memory performance and increases gene expression of BDNF, TrkB receptor and synaptic factors in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Li Zhuoneng

    2010-09-01

    Full Text Available Abstract Background Estrogen or phytoestrogens treatment has been suggested to improve cognitive function of the brain in postmenopausal women. However, there is lack of information on the mechanism of such treatment on the central nervous system. The present study aimed to determine the effects of estradiol and soy germ phytoestrogens on spatial memory performance in ovariectomized rats and to explore the underlying mechanisms affecting the central nervous system. Methods Ovariectomized Sprague-Dawley rats were fed a basic diet supplemented with soy germ phytoestrogens (0.4 g/kg or 1.6 g/kg or 17β-estradiol (0.15 g/kg for 12 weeks. At the end of the experiment, animals were evaluated for their spatial learning and memory performance by the Morris Water Maze task. The expressions of brain-derived neurotrophic factor (BDNF and synaptic formation proteins in the hippocampal tissue were estimated using RT-PCR and ELISA. Results It was found that rats supplemented with soy germ phytoestrogens or estradiol performed significantly better in spatial memory acquisition and retention when compared to the rats fed on the control diet. Estradiol or the high dose of phytoestrogens treatment significantly increased BDNF concentration and the mRNA levels for BDNF and its TrkB receptors as well as the synaptic formation proteins, synaptophysin, spinophilin, synapsin 1 and PSD-95, in the hippocampal tissue of the experimental animals. It was also found that phytoestrogens, in contrast to estradiol, did not show any significant effect on the vaginal and uteri. Conclusion Soy germ phytoestrogens, which may be a substitute of estradiol, improved spatial memory performance in ovariectomized rats without significant side-effects on the vaginal and uteri. The memory enhancement effect may relate to the increase in BDNF and the synaptic formation proteins expression in the hippocampus of the brain.

  1. Influence of Synaptic Depression on Memory Storage Capacity

    Science.gov (United States)

    Otsubo, Yosuke; Nagata, Kenji; Oizumi, Masafumi; Okada, Masato

    2011-08-01

    Synaptic efficacy between neurons is known to change within a short time scale dynamically. Neurophysiological experiments show that high-frequency presynaptic inputs decrease synaptic efficacy between neurons. This phenomenon is called synaptic depression, a short term synaptic plasticity. Many researchers have investigated how the synaptic depression affects the memory storage capacity. However, the noise has not been taken into consideration in their analysis. By introducing ``temperature'', which controls the level of the noise, into an update rule of neurons, we investigate the effects of synaptic depression on the memory storage capacity in the presence of the noise. We analytically compute the storage capacity by using a statistical mechanics technique called Self Consistent Signal to Noise Analysis (SCSNA). We find that the synaptic depression decreases the storage capacity in the case of finite temperature in contrast to the case of the low temperature limit, where the storage capacity does not change.

  2. Secreted factors as synaptic organizers.

    Science.gov (United States)

    Johnson-Venkatesh, Erin M; Umemori, Hisashi

    2010-07-01

    A critical step in synaptic development is the differentiation of presynaptic and postsynaptic compartments. This complex process is regulated by a variety of secreted factors that serve as synaptic organizers. Specifically, fibroblast growth factors, Wnts, neurotrophic factors and various other intercellular signaling molecules are proposed to regulate presynaptic and/or postsynaptic differentiation. Many of these factors appear to function at both the neuromuscular junction and in the central nervous system, although the specific function of the molecules differs between the two. Here we review secreted molecules that organize the synaptic compartments and discuss how these molecules shape synaptic development, focusing on mammalian in vivo systems. Their critical role in shaping a functional neural circuit is underscored by their possible link to a wide range of neurological and psychiatric disorders both in animal models and by mutations identified in human patients. © The Authors (2010). Journal Compilation © Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  3. Consolidation of long-term memory by insulin in Lymnaea is not brought about by changing the number of insulin receptors.

    Science.gov (United States)

    Hatakeyama, Dai; Okuta, Akiko; Otsuka, Emi; Lukowiak, Ken; Ito, Etsuro

    2013-05-01

    The pond snail Lymnaea stagnalis learns taste aversion and consolidates it into long-term memory (LTM). This is referred to as conditioned taste aversion (CTA). The superfusion of molluscan insulin-related peptides (MIPs) over the isolated snail brain causes a long-term enhancement of synaptic input between the cerebral giant cell and the B1 buccal motor neuron. This enhancement is hypothesized to underlie CTA. The synaptic enhancement caused by the superfusion of MIPs can be blocked by the application of human insulin receptor antibody, which recognizes the extracellular domain of human insulin receptor and acts as an antagonist even for MIP receptors. An injection of the human insulin receptor antibody into the abdominal cavity of trained snails blocks the consolidation process leading to LTM, even though the snails acquire taste aversion. Here, we examined whether or not taste-aversion training changes the mRNA expression level of MIP receptor in the snail brain and found that it does not. This result, taken together with previous findings, suggest that the MIPs' effect on synaptic function in the snail brain is attributable to a change in the MIP concentration, and not to a change in the mRNA expression level of MIP receptor, which is thought to reflect the number of MIP receptors.

  4. Spontaneous Vesicle Recycling in the Synaptic Bouton

    Directory of Open Access Journals (Sweden)

    Sven eTruckenbrodt

    2014-12-01

    Full Text Available The trigger for synaptic vesicle exocytosis is Ca2+, which enters the synaptic bouton following action potential stimulation. However, spontaneous release of neurotransmitter also occurs in the absence of stimulation in virtually all synaptic boutons. It has long been thought that this represents exocytosis driven by fluctuations in local Ca2+ levels. The vesicles responding to these fluctuations are thought to be the same ones that release upon stimulation, albeit potentially triggered by different Ca2+ sensors. This view has been challenged by several recent works, which have suggested that spontaneous release is driven by a separate pool of synaptic vesicles. Numerous articles appeared during the last few years in support of each of these hypotheses, and it has been challenging to bring them into accord. We speculate here on the origins of this controversy, and propose a solution that is related to developmental effects. Constitutive membrane traffic, needed for the biogenesis of vesicles and synapses, is responsible for high levels of spontaneous membrane fusion in young neurons, probably independent of Ca2+. The vesicles releasing spontaneously in such neurons are not related to other synaptic vesicle pools and may represent constitutively releasing vesicles (CRVs rather than bona fide synaptic vesicles. In mature neurons, constitutive traffic is much dampened, and the few remaining spontaneous release events probably represent bona fide spontaneously releasing synaptic vesicles (SRSVs responding to Ca2+ fluctuations, along with a handful of CRVs that participate in synaptic vesicle turnover.

  5. Rescue of Synaptic Phenotypes and Spatial Memory in Young Fragile X Mice.

    Science.gov (United States)

    Sun, Miao-Kun; Hongpaisan, Jarin; Alkon, Daniel L

    2016-05-01

    Fragile X syndrome (FXS) is characterized by synaptic immaturity, cognitive impairment, and behavioral changes. The disorder is caused by transcriptional shutdown in neurons of thefragile X mental retardation 1gene product, fragile X mental retardation protein. Fragile X mental retardation protein is a repressor of dendritic mRNA translation and its silencing leads to dysregulation of synaptically driven protein synthesis and impairments of intellect, cognition, and behavior, and FXS is a disorder that currently has no effective therapeutics. Here, young fragile X mice were treated with chronic bryostatin-1, a relatively selective protein kinase Cεactivator, which induces synaptogenesis and synaptic maturation/repair. Chronic treatment with bryostatin-1 rescues young fragile X mice from the disorder phenotypes, including normalization of most FXS abnormalities in 1) hippocampal brain-derived neurotrophic factor expression, 2) postsynaptic density-95 levels, 3) transformation of immature dendritic spines to mature synapses, 4) densities of the presynaptic and postsynaptic membranes, and 5) spatial learning and memory. The therapeutic effects were achieved without downregulation of metabotropic glutamate receptor (mGluR) 5 in the hippocampus and are more dramatic than those of a late-onset treatment in adult fragile X mice. mGluR5 expression was in fact lower in fragile X mice and its expression was restored with the bryostatin-1 treatment. Our results show that synaptic and cognitive function of young FXS mice can be normalized through pharmacological treatment without downregulation of mGluR5 and that bryostatin-1-like agents may represent a novel class of drugs to treat fragile X mental retardation at a young age and in adults. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Modulation of synaptic depression of the calyx of Held synapse by GABAB receptors and spontaneous activity

    Czech Academy of Sciences Publication Activity Database

    Wang, T.; Rusu, S. I.; Hrušková, Bohdana; Tureček, Rostislav; Borst, J. G.

    2013-01-01

    Roč. 591, č. 19 (2013), s. 4877-4894 ISSN 0022-3751 R&D Projects: GA ČR(CZ) GAP303/11/0131 Institutional support: RVO:68378041 Keywords : GABAB * synaptic transmission * auditory Subject RIV: FH - Neurology Impact factor: 4.544, year: 2013

  7. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex

    Science.gov (United States)

    Pinto, Joshua G. A.; Jones, David G.; Williams, C. Kate; Murphy, Kathryn M.

    2015-01-01

    Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly conserved pre- and post-synaptic proteins (Synapsin, Synaptophysin, PSD-95, Gephyrin) and found that synaptic development in human primary visual cortex (V1) continues into late childhood. Indeed, this is many years longer than suggested by neuroanatomical studies and points to a prolonged sensitive period for plasticity in human sensory cortex. In addition, during childhood we found waves of inter-individual variability that are different for the four proteins and include a stage during early development (visual cortex and identified a simple linear equation that provides robust alignment of synaptic age between humans and rats. Alignment of synaptic ages is important for age-appropriate targeting and effective translation of neuroplasticity therapies from the lab to the clinic. PMID:25729353

  8. Modulation of Central Synapses by Astrocyte-Released ATP and Postsynaptic P2X Receptors

    Directory of Open Access Journals (Sweden)

    Eric Boué-Grabot

    2017-01-01

    Full Text Available Communication between neuronal and glial cells is important for neural plasticity. P2X receptors are ATP-gated cation channels widely expressed in the brain where they mediate action of extracellular ATP released by neurons and/or glia. Recent data show that postsynaptic P2X receptors underlie slow neuromodulatory actions rather than fast synaptic transmission at brain synapses. Here, we review these findings with a particular focus on the release of ATP by astrocytes and the diversity of postsynaptic P2X-mediated modulation of synaptic strength and plasticity in the CNS.

  9. Enhanced Store-Operated Calcium Entry Leads to Striatal Synaptic Loss in a Huntington's Disease Mouse Model.

    Science.gov (United States)

    Wu, Jun; Ryskamp, Daniel A; Liang, Xia; Egorova, Polina; Zakharova, Olga; Hung, Gene; Bezprozvanny, Ilya

    2016-01-06

    In Huntington's disease (HD), mutant Huntingtin (mHtt) protein causes striatal neuron dysfunction, synaptic loss, and eventual neurodegeneration. To understand the mechanisms responsible for synaptic loss in HD, we developed a corticostriatal coculture model that features age-dependent dendritic spine loss in striatal medium spiny neurons (MSNs) from YAC128 transgenic HD mice. Age-dependent spine loss was also observed in vivo in YAC128 MSNs. To understand the causes of spine loss in YAC128 MSNs, we performed a series of mechanistic studies. We previously discovered that mHtt protein binds to type 1 inositol (1,4,5)-trisphosphate receptor (InsP3R1) and increases its sensitivity to activation by InsP3. We now report that the resulting increase in steady-state InsP3R1 activity reduces endoplasmic reticulum (ER) Ca(2+) levels. Depletion of ER Ca(2+) leads to overactivation of the neuronal store-operated Ca(2+) entry (nSOC) pathway in YAC128 MSN spines. The synaptic nSOC pathway is controlled by the ER resident protein STIM2. We discovered that STIM2 expression is elevated in aged YAC128 striatal cultures and in YAC128 mouse striatum. Knock-down of InsP3R1 expression by antisense oligonucleotides or knock-down or knock-out of STIM2 resulted in normalization of nSOC and rescue of spine loss in YAC128 MSNs. The selective nSOC inhibitor EVP4593 was identified in our previous studies. We now demonstrate that EVP4593 reduces synaptic nSOC and rescues spine loss in YAC128 MSNs. Intraventricular delivery of EVP4593 in YAC128 mice rescued age-dependent striatal spine loss in vivo. Our results suggest EVP4593 and other inhibitors of the STIM2-dependent nSOC pathway as promising leads for HD therapeutic development. In Huntington's disease (HD) mutant Huntingtin (mHtt) causes early corticostriatal synaptic dysfunction and eventual neurodegeneration of medium spine neurons (MSNs) through poorly understood mechanisms. We report here that corticostriatal cocultures prepared from

  10. Structure and affinity of two bicyclic glutamate analogues at AMPA and kainate receptors

    DEFF Research Database (Denmark)

    Møllerud, Stine; Pinto, Andrea; Marconi, Laura

    2017-01-01

    Ionotropic glutamate receptors (iGluRs) are involved in most of the fast excitatory synaptic transmission in the central nervous system. These receptors are important for learning and memory formation, but are also involved in the development of diseases such as Alzheimer’s disease, epilepsy...

  11. Age-dependent modulation of synaptic plasticity and insulin mimetic effect of lipoic acid on a mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Harsh Sancheti

    Full Text Available Alzheimer's disease is a progressive neurodegenerative disease that entails impairments of memory, thinking and behavior and culminates into brain atrophy. Impaired glucose uptake (accumulating into energy deficits and synaptic plasticity have been shown to be affected in the early stages of Alzheimer's disease. This study examines the ability of lipoic acid to increase brain glucose uptake and lead to improvements in synaptic plasticity on a triple transgenic mouse model of Alzheimer's disease (3xTg-AD that shows progression of pathology as a function of age; two age groups: 6 months (young and 12 months (old were used in this study. 3xTg-AD mice fed 0.23% w/v lipoic acid in drinking water for 4 weeks showed an insulin mimetic effect that consisted of increased brain glucose uptake, activation of the insulin receptor substrate and of the PI3K/Akt signaling pathway. Lipoic acid supplementation led to important changes in synaptic function as shown by increased input/output (I/O and long term potentiation (LTP (measured by electrophysiology. Lipoic acid was more effective in stimulating an insulin-like effect and reversing the impaired synaptic plasticity in the old mice, wherein the impairment of insulin signaling and synaptic plasticity was more pronounced than those in young mice.

  12. Stargazin Modulation of AMPA Receptors

    Directory of Open Access Journals (Sweden)

    Sana A. Shaikh

    2016-10-01

    Full Text Available Fast excitatory synaptic signaling in the mammalian brain is mediated by AMPA-type ionotropic glutamate receptors. In neurons, AMPA receptors co-assemble with auxiliary proteins, such as stargazin, which can markedly alter receptor trafficking and gating. Here, we used luminescence resonance energy transfer measurements to map distances between the full-length, functional AMPA receptor and stargazin expressed in HEK293 cells and to determine the ensemble structural changes in the receptor due to stargazin. In addition, we used single-molecule fluorescence resonance energy transfer to study the structural and conformational distribution of the receptor and how this distribution is affected by stargazin. Our nanopositioning data place stargazin below the AMPA receptor ligand-binding domain, where it is well poised to act as a scaffold to facilitate the long-range conformational selection observations seen in single-molecule experiments. These data support a model of stargazin acting to stabilize or select conformational states that favor activation.

  13. Self-organised criticality via retro-synaptic signals

    Science.gov (United States)

    Hernandez-Urbina, Victor; Herrmann, J. Michael

    2016-12-01

    The brain is a complex system par excellence. In the last decade the observation of neuronal avalanches in neocortical circuits suggested the presence of self-organised criticality in brain networks. The occurrence of this type of dynamics implies several benefits to neural computation. However, the mechanisms that give rise to critical behaviour in these systems, and how they interact with other neuronal processes such as synaptic plasticity are not fully understood. In this paper, we present a long-term plasticity rule based on retro-synaptic signals that allows the system to reach a critical state in which clusters of activity are distributed as a power-law, among other observables. Our synaptic plasticity rule coexists with other synaptic mechanisms such as spike-timing-dependent plasticity, which implies that the resulting synaptic modulation captures not only the temporal correlations between spiking times of pre- and post-synaptic units, which has been suggested as requirement for learning and memory in neural systems, but also drives the system to a state of optimal neural information processing.

  14. Presynaptic G Protein-Coupled Receptors: Gatekeepers of Addiction?

    Directory of Open Access Journals (Sweden)

    Kari A Johnson

    2016-11-01

    Full Text Available Drug abuse and addiction cause widespread social and public health problems, and the neurobiology underlying drug actions and drug use and abuse is an area of intensive research. Drugs of abuse alter synaptic transmission, and these actions contribute to acute intoxication as well as the chronic effects of abused substances. Transmission at most mammalian synapses involves neurotransmitter activation of two receptor subtypes, ligand-gated ion channels that mediate fast synaptic responses, and G protein-coupled receptors (GPCRs that have slower neuromodulatory actions. The GPCRs represent a large proportion of neurotransmitter receptors involved in almost all facets of nervous system function. In addition, these receptors are targets for many pharmacotherapeutic agents. Drugs of abuse directly or indirectly affect neuromodulation mediated by GPCRs, with important consequences for intoxication, drug taking and responses to prolonged drug exposure, withdrawal and addiction. Among the GPCRs are several subtypes involved in presynaptic inhibition, most of which are coupled to the Gi/o class of G protein. There is increasing evidence that these presynaptic Gi/o-coupled GPCRs have important roles in the actions of drugs of abuse, as well as behaviors related to these drugs. This topic will be reviewed, with particular emphasis on receptors for three neurotransmitters, dopamine (D1- and D2-like receptors, endocannabinoids (CB1 receptors and glutamate (group II metabotropic glutamate (mGlu receptors. The focus is on recent evidence from laboratory animal models (and some evidence in humans implicating these receptors in the acute and chronic effects of numerous abused drugs, as well as in the control of drug seeking and taking. The ability of drugs targeting these receptors to modify drug seeking behavior has raised the possibility of using compounds targeting these receptors for addiction pharmacotherapy. This topic is also discussed, with emphasis on

  15. The backbone of the post-synaptic density originated in a unicellular ancestor of choanoflagellates and metazoans

    Directory of Open Access Journals (Sweden)

    Manuel Michaël

    2010-02-01

    Full Text Available Abstract Background Comparative genomics of the early diverging metazoan lineages and of their unicellular sister-groups opens new window to reconstructing the genetic changes which preceded or accompanied the evolution of multicellular body plans. A recent analysis found that the genome of the nerve-less sponges encodes the homologues of most vertebrate post-synaptic proteins. In vertebrate excitatory synapses, these proteins assemble to form the post-synaptic density, a complex molecular platform linking membrane receptors, components of their signalling pathways, and the cytoskeleton. Newly available genomes from Monosiga brevicollis (a member of Choanoflagellata, the closest unicellular relatives of animals and Trichoplax adhaerens (a member of Placozoa: besides sponges, the only nerve-less metazoans offer an opportunity to refine our understanding of post-synaptic protein evolution. Results Searches for orthologous proteins and reconstruction of gene gains/losses based on the taxon phylogeny indicate that post-synaptic proteins originated in two main steps. The backbone scaffold proteins (Shank, Homer, DLG and some of their partners were acquired in a unicellular ancestor of choanoflagellates and metazoans. A substantial additional set appeared in an exclusive ancestor of the Metazoa. The placozoan genome contains most post-synaptic genes but lacks some of them. Notably, the master-scaffold protein Shank might have been lost secondarily in the placozoan lineage. Conclusions The time of origination of most post-synaptic proteins was not concomitant with the acquisition of synapses or neural-like cells. The backbone of the scaffold emerged in a unicellular context and was probably not involved in cell-cell communication. Based on the reconstructed protein composition and potential interactions, its ancestral function could have been to link calcium signalling and cytoskeleton regulation. The complex later became integrated into the evolving

  16. Single cocaine exposure does not alter striatal pre-synaptic dopamine function in mice: an [18 F]-FDOPA PET study.

    Science.gov (United States)

    Bonsall, David R; Kokkinou, Michelle; Veronese, Mattia; Coello, Christopher; Wells, Lisa A; Howes, Oliver D

    2017-12-01

    Cocaine is a recreational drug of abuse that binds to the dopamine transporter, preventing reuptake of dopamine into pre-synaptic terminals. The increased presence of synaptic dopamine results in stimulation of both pre- and post-synaptic dopamine receptors, considered an important mechanism by which cocaine elicits its reinforcing properties. However, the effects of acute cocaine administration on pre-synaptic dopamine function remain unclear. Non-invasive imaging techniques such as positron emission tomography have revealed impaired pre-synaptic dopamine function in chronic cocaine users. Similar impairments have been seen in animal studies, with microdialysis experiments indicating decreased basal dopamine release. Here we use micro positron emission tomography imaging techniques in mice to measure dopamine synthesis capacity and determine the effect of acute cocaine administration of pre-synaptic dopamine function. We show that a dose of 20 mg/kg cocaine is sufficient to elicit hyperlocomotor activity, peaking 15-20 min post treatment (p dopamine synthesis capacity in the striatum was not significantly altered by acute cocaine treatment (KiCer: 0.0097 per min vs. 0.0112 per min in vehicle controls, p > 0.05). Furthermore, expression levels of two key enzymes related to dopamine synthesis, tyrosine hydroxylase and aromatic l-amino acid decarboxylase, within the striatum of scanned mice were not significantly affected by acute cocaine pre-treatment (p > 0.05). Our findings suggest that while the regulation of dopamine synthesis and release in the striatum have been shown to change with chronic cocaine use, leading to a reduced basal tone, these adaptations to pre-synaptic dopaminergic neurons are not initiated following a single exposure to the drug. © 2017 International Society for Neurochemistry.

  17. Possible Contributions of a Novel Form of Synaptic Plasticity in "Aplysia" to Reward, Memory, and Their Dysfunctions in Mammalian Brain

    Science.gov (United States)

    Hawkins, Robert D.

    2013-01-01

    Recent studies in "Aplysia" have identified a new variation of synaptic plasticity in which modulatory transmitters enhance spontaneous release of glutamate, which then acts on postsynaptic receptors to recruit mechanisms of intermediate- and long-term plasticity. In this review I suggest the hypothesis that similar plasticity occurs in…

  18. Itinerant vending of medicines inside buses in Nigeria: vending strategies, dominant themes and medicine-related information provided.

    Science.gov (United States)

    Yusuff, Kazeem B; Wassi Sanni, Abd'

    2011-07-01

    To determine vending strategies and marketing themes employed by itinerant bus vendors, and assess the accuracy and completeness of information provided on medicines being sold in an urban setting in Nigeria. Cross-sectional study and content analysis of itinerant vending of medicines inside buses recorded with a mobile telephone on purposively selected routes in a mega city with an estimated 18 million residents in southwestern Nigeria over a 2-month period. Two coders independently assessed 192 vending episodes by 56 vendors for 147 OTC and prescription medicines. Inter-rater reliability (Gwet AC1 =0.924; p<0.0001). Fourteen thousands and four hundred potential consumers encountered 192 recorded episodes of vending of medicines inside 192 buses within the study periods. Forty-four (78•5%) of the 56 vendors were females in the 30-45 years age bracket, were mostly (75%) attired in the local 'Iro and Buba' Ankara fabric and showed laminated identity cards (97.5%) issued by the local association for 'marketers' of medicines inside buses, markets, and motor parks. Of the 14400 consumers encountered inside buses during the study period, between 6.7% and 48.3% purchased the medicines promoted. Prayers against death from road traffic accidents and diseases of physical and / or meta-physical origins were the most frequently used (76•8%) ice-breaking opening statement / strategy to gain consumers' attention. Hematinics, multi-vitamins, simple analgesic, NSAIDs and corticosteroids were the most frequently vended medicines. Consumers' enquiries were related to dosing for children (51.8%), elderly (28.6%), and pregnancy (52.7%); and contra-indications during pregnancy (8.9%). Factual medicines information such as dose, frequency, potential side effects and contra-indications were not provided in majority of vending episodes. Itinerant vending of medicines and the use of misleading and melodramatic themes to secure high consumer patronage appear considerable in Nigeria

  19. Actions of Bupivacaine, a Widely Used Local Anesthetic, on NMDA Receptor Responses

    Science.gov (United States)

    Paganelli, Meaghan A.

    2015-01-01

    NMDA receptors mediate excitatory neurotransmission in brain and spinal cord and play a pivotal role in the neurological disease state of chronic pain, which is caused by central sensitization. Bupivacaine is the indicated local anesthetic in caudal, epidural, and spinal anesthesia and is widely used clinically to manage acute and chronic pain. In addition to blocking Na+ channels, bupivacaine affects the activity of many other channels, including NMDA receptors. Importantly, bupivacaine inhibits NMDA receptor-mediated synaptic transmission in the dorsal horn of the spinal cord, an area critically involved in central sensitization. We used recombinant NMDA receptors expressed in HEK293 cells and found that increasing concentrations of bupivacaine decreased channel open probability in GluN2 subunit- and pH-independent manner by increasing the mean duration of closures and decreasing the mean duration of openings. Using kinetic modeling of one-channel currents, we attributed the observed current decrease to two main mechanisms: a voltage-dependent “foot-in-the-door” pore block and an allosteric gating effect. Further, the inhibition was state-independent because it occurred to the same degree whether the drug was applied before or after glutamate stimulation and was mediated by extracellular and intracellular inhibitory sites, via hydrophilic and hydrophobic pathways. These results predict that clinical doses of bupivacaine would decrease the peak and accelerate the decay of synaptic NMDA receptor currents during normal synaptic transmission. These quantitative predictions inform possible applications of bupivacaine as preventative and therapeutic approaches in chronic pain. PMID:25589775

  20. Hippocampal GluA1-containing AMPA receptors mediate context-dependent sensitization to morphine

    OpenAIRE

    Xia, Yan; Portugal, George S.; Fakira, Amanda K.; Melyan, Zara; Neve, Rachael; Lee, H. Thomas; Russo, Scott J.; Liu, Jie; Morón, Jose A.

    2011-01-01

    Glutamatergic systems, including α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are involved in opiate-induced neuronal and behavioral plasticity, although the mechanisms underlying these effects are not fully understood. In the present study, we investigated the effects of repeated morphine administration on AMPAR expression, synaptic plasticity, and context-dependent behavioral sensitization to morphine. We found that morphine treatment produced changes of synaptic...

  1. Focal adhesion kinase regulates neuronal growth, synaptic plasticity and hippocampus-dependent spatial learning and memory.

    Science.gov (United States)

    Monje, Francisco J; Kim, Eun-Jung; Pollak, Daniela D; Cabatic, Maureen; Li, Lin; Baston, Arthur; Lubec, Gert

    2012-01-01

    The focal adhesion kinase (FAK) is a non-receptor tyrosine kinase abundantly expressed in the mammalian brain and highly enriched in neuronal growth cones. Inhibitory and facilitatory activities of FAK on neuronal growth have been reported and its role in neuritic outgrowth remains controversial. Unlike other tyrosine kinases, such as the neurotrophin receptors regulating neuronal growth and plasticity, the relevance of FAK for learning and memory in vivo has not been clearly defined yet. A comprehensive study aimed at determining the role of FAK in neuronal growth, neurotransmitter release and synaptic plasticity in hippocampal neurons and in hippocampus-dependent learning and memory was therefore undertaken using the mouse model. Gain- and loss-of-function experiments indicated that FAK is a critical regulator of hippocampal cell morphology. FAK mediated neurotrophin-induced neuritic outgrowth and FAK inhibition affected both miniature excitatory postsynaptic potentials and activity-dependent hippocampal long-term potentiation prompting us to explore the possible role of FAK in spatial learning and memory in vivo. Our data indicate that FAK has a growth-promoting effect, is importantly involved in the regulation of the synaptic function and mediates in vivo hippocampus-dependent spatial learning and memory. Copyright © 2011 S. Karger AG, Basel.

  2. Orchestrated regulation of Nogo receptors, LOTUS, AMPA receptors and BDNF in an ECT model suggests opening and closure of a window of synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Max Nordgren

    Full Text Available Electroconvulsive therapy (ECT is an efficient and relatively fast acting treatment for depression. However, one severe side effect of the treatment is retrograde amnesia, which in certain cases can be long-term. The mechanisms behind the antidepressant effect and the amnesia are not well understood. We hypothesized that ECT causes transient downregulation of key molecules needed to stabilize synaptic structure and to prevent Ca2+ influx, and a simultaneous increase in neurotrophic factors, thus providing a short time window of increased structural synaptic plasticity. Here we followed regulation of NgR1, NgR3, LOTUS, BDNF, and AMPA subunits GluR1 and GluR2 flip and flop mRNA levels in hippocampus at 2, 4, 12, 24, and 72 hours after a single episode of induced electroconvulsive seizures (ECS in rats. NgR1 and LOTUS mRNA levels were transiently downregulated in the dentate gyrus 2, 4, 12 and 4, 12, 24 h after ECS treatment, respectively. GluR2 flip, flop and GluR1 flop were downregulated at 4 h. GluR2 flip remained downregulated at 12 h. In contrast, BDNF, NgR3 and GluR1 flip mRNA levels were upregulated. Thus, ECS treatment induces a transient regulation of factors important for neuronal plasticity. Our data provide correlations between ECS treatment and molecular events compatible with the hypothesis that both effects and side effects of ECT may be caused by structural synaptic rearrangements.

  3. Memory, Plasticity and Sleep - A role for calcium permeable AMPA receptors?

    Directory of Open Access Journals (Sweden)

    Jason D Shepherd

    2012-04-01

    Full Text Available Experience shapes and molds the brain throughout life. These changes in neuronal circuits are produced by a myriad of molecular and cellular processes. Simplistically, circuits are modified through changes in neurotransmitter release or through neurotransmitter detection at synapses. The predominant neurotransmitter receptor in excitatory transmission, the AMPA-type glutamate receptor, is exquisitely sensitive to changes in experience and synaptic activity. These ion channels are usually impermeable to calcium, a property conferred by the GluA2 subunit. However, GluA2-lacking AMPARs are permeable to calcium and have recently been shown to play a unique role in synaptic function. In this review, I will describe new findings on the role of calcium permeable AMPARs (CP-AMPARs in experience-dependent and synaptic plasticity. These studies suggest that CP-AMPARs play a prominent role in maintaining circuits in a labile state where further plasticity can occur, thus promoting metaplasticity. Moreover, the abnormal expression of CP-AMPARs has been implicated in drug addiction and memory disorders and thus may be a novel therapeutic target.

  4. Molecular basis of the alternative recruitment of GABA(A) versus glycine receptors through gephyrin

    DEFF Research Database (Denmark)

    Maric, Hans-Michael; Kasaragod, Vikram Babu; Hausrat, Torben Johann

    2014-01-01

    γ-Aminobutyric acid type A and glycine receptors (GABA(A)Rs, GlyRs) are the major inhibitory neurotransmitter receptors and contribute to many synaptic functions, dysfunctions and human diseases. GABA(A)Rs are important drug targets regulated by direct interactions with the scaffolding protein ge...

  5. Detergent-dependent separation of postsynaptic density, membrane rafts and other subsynaptic structures from the synaptic plasma membrane of rat forebrain.

    Science.gov (United States)

    Zhao, LiYing; Sakagami, Hiroyuki; Suzuki, Tatsuo

    2014-10-01

    We systematically investigated the purification process of post-synaptic density (PSD) and post-synaptic membrane rafts (PSRs) from the rat forebrain synaptic plasma membranes by examining the components and the structures of the materials obtained after the treatment of synaptic plasma membranes with TX-100, n-octyl β-d-glucoside (OG) or 3-([3-cholamidopropyl]dimethylammonio)-2-hydroxy-1-propanesulfonate (CHAPSO). These three detergents exhibited distinct separation profiles for the synaptic subdomains. Type I and type II PSD proteins displayed mutually exclusive distribution. After TX-100 treatment, type I PSD was recovered in two fractions: a pellet and an insoluble fraction 8, which contained partially broken PSD-PSR complexes. Conventional PSD was suggested to be a mixture of these two PSD pools and did not contain type II PSD. An association of type I PSD with PSRs was identified in the TX-100 treatment, and those with type II PSD in the OG and CHAPSO treatments. An association of GABA receptors with gephyrin was easily dissociated. OG at a high concentration solubilized the type I PSD proteins. CHAPSO treatment resulted in a variety of distinct fractions, which contained certain novel structures. Two different pools of GluA, either PSD or possibly raft-associated, were identified in the OG and CHAPSO treatments. These results are useful in advancing our understanding of the structural organization of synapses at the molecular level. We systematically investigated the purification process of post-synaptic density (PSD) and synaptic membrane rafts by examining the structures obtained after treatment of the SPMs with TX-100, n-octyl β-d-glucoside or CHAPSO. Differential distribution of type I and type II PSD, synaptic membrane rafts, and other novel subdomains in the SPM give clues to understand the structural organization of synapses at the molecular level. © 2014 International Society for Neurochemistry.

  6. Lateral regulation of synaptic transmission by astrocytes.

    Science.gov (United States)

    Covelo, A; Araque, A

    2016-05-26

    Fifteen years ago the concept of the "tripartite synapse" was proposed to conceptualize the functional view that astrocytes are integral elements of synapses. The signaling exchange between astrocytes and neurons within the tripartite synapse results in the synaptic regulation of synaptic transmission and plasticity through an autocrine form of communication. However, recent evidence indicates that the astrocyte synaptic regulation is not restricted to the active tripartite synapse but can be manifested through astrocyte signaling at synapses relatively distant from active synapses, a process termed lateral astrocyte synaptic regulation. This phenomenon resembles the classical heterosynaptic modulation but is mechanistically different because it involves astrocytes and its properties critically depend on the morphological and functional features of astrocytes. Therefore, the functional concept of the tripartite synapse as a fundamental unit must be expanded to include the interaction between tripartite synapses. Through lateral synaptic regulation, astrocytes serve as an active processing bridge for synaptic interaction and crosstalk between synapses with no direct neuronal connectivity, supporting the idea that neural network function results from the coordinated activity of astrocytes and neurons. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Context-dependent modulation of alphabetagamma and alphabetadelta GABA A receptors by penicillin: implications for phasic and tonic inhibition.

    Science.gov (United States)

    Feng, Hua-Jun; Botzolakis, Emmanuel J; Macdonald, Robert L

    2009-01-01

    Penicillin, an open-channel blocker of GABA(A) receptors, was recently reported to inhibit phasic, but not tonic, currents in hippocampal neurons. To distinguish between isoform-specific and context-dependent modulation as possible explanations for this selectivity, the effects of penicillin were evaluated on recombinant GABA(A) receptors expressed in HEK293T cells. When co-applied with saturating GABA, penicillin decreased peak amplitude, induced rebound, and prolonged deactivation of currents evoked from both synaptic and extrasynaptic receptor isoforms. However, penicillin had isoform-specific effects on the extent of desensitization, reflecting its ability to differentially modulate peak (non-equilibrium) and residual (near-equilibrium) currents. This suggested that the context of activation could determine the apparent sensitivity of a given receptor isoform to penicillin. To test this hypothesis, we explored the ability of penicillin to modulate synaptic and extrasynaptic isoform currents that were activated under more physiologically relevant conditions. Interestingly, while currents evoked from synaptic isoforms under phasic conditions (transient activation by a saturating concentration of GABA) were substantially inhibited by penicillin, currents evoked from extrasynaptic isoforms under tonic conditions (prolonged application by a sub-saturating concentration of GABA) were minimally affected. We therefore concluded that the reported inability of penicillin to modulate tonic currents could not simply be attributed to insensitivity of extrasynaptic receptors, but rather, reflected an inability to modulate these receptors in their native context of activation.

  8. Ankyrins: Roles in synaptic biology and pathology.

    Science.gov (United States)

    Smith, Katharine R; Penzes, Peter

    2018-05-03

    Ankyrins are broadly expressed adaptors that organize diverse membrane proteins into specialized domains and link them to the sub-membranous cytoskeleton. In neurons, ankyrins are known to have essential roles in organizing the axon initial segment and nodes of Ranvier. However, recent studies have revealed novel functions for ankyrins at synapses, where they organize and stabilize neurotransmitter receptors, modulate dendritic spine morphology and control adhesion to the presynaptic site. Ankyrin genes have also been highly associated with a range of neurodevelopmental and psychiatric diseases, including bipolar disorder, schizophrenia and autism, which all demonstrate overlap in their genetics, mechanisms and phenotypes. This review discusses the novel synaptic functions of ankyrin proteins in neurons, and places these exciting findings in the context of ANK genes as key neuropsychiatric disorder risk-factors. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Alteration of synaptic transmission in the hippocampal-mPFC pathway during extinction trials of context-dependent fear memory in juvenile rat stress models.

    Science.gov (United States)

    Koseki, Hiroyo; Matsumoto, Machiko; Togashi, Hiroko; Miura, Yoshihide; Fukushima, Kazuaki; Yoshioka, Mitsuhiro

    2009-09-01

    The medial prefrontal cortex (mPFC) has been proposed to be essential for extinction of fear memory, but its neural mechanism has been poorly understood. The present study examined whether synaptic transmission in the hippocampal-mPFC pathway is related to extinction of context-dependent fear memory in freely moving rats using electrophysiological approaches combined with behavioral analysis. Population spike amplitude in the mPFC was decreased during the first extinction trial by exposure to contextual fear conditioning. This synaptic inhibition was reversed by repeated extinction trials, accompanied by decreases in fear-related freezing behavior. These results suggest that alteration of synaptic transmission in the hippocampal-mPFC pathway is associated with the extinction processes of context-dependent fear memory. Further experiments were performed to elucidate whether early postnatal stress alters the synaptic response in the mPFC during extinction trials using a juvenile stress model, based on our previous findings that early postnatal stress affects the behavioral response to emotional stress. Adult rats that previously were exposed to five footshocks (FS) (shock intensity, 0.5 mA; intershock interval, 28 seconds; shock duration, 2 seconds) at postnatal day 21 to 25 (week 3; 3W-FS) exhibited impaired reversal of both inhibitory synaptic transmission and freezing behavior induced by repeated extinction trials. The neuronal and behavioral deficits observed in the 3W-FS group were prevented by pretreatment with the serotonin(1A) receptor agonist tandospirone (1 mg/kg, i.p.). These results indicate the possiblity that aversive stress exposure during the third postnatal week impaired extinction processes of context-dependent fear memory. The deficits in extinction observed in the 3W-FS group might be attributable to dysfunction of hippocampal-mPFC neural circuits involving 5-HT(1A) receptor mechanisms. 2009 Wiley-Liss, Inc.

  10. Itinerant 5f electrons and the Fermi surface properties in neptunium compounds

    International Nuclear Information System (INIS)

    Aoki, D.; Yamagami, H.; Homma, Y.; Sakai, H.; Ikeda, S.; Shiokawa, Y.; Yamamoto, E.; Nakamura, A.; Haga, Y.; Settai, R.; Onuki, Y.

    2007-01-01

    We grew high-quality single crystals of NpGe 3 , NpIn 3 , NpCoGa 5 , NpRhGa 5 and NpFe 4 P 12 by the flux method, and measured the de Haas-van Alphen (dHvA) effect, magnetic susceptibility and resistivity. The results of dHvA experiments in NpGe 3 , NpCoGa 5 and NpRhGa 5 were well explained by the energy band calculation based on the 5f-itinerant model, while the topology of Fermi surfaces in NpIn 3 is similar to those of LaIn 3 , implying the 5f-localized nature of NpIn 3 . The skutterudite compound NpFe 4 P 12 is a low carrier system with the 5f 3 configuration

  11. Understanding complexities of synaptic transmission in medically intractable seizures: A paradigm of epilepsy research

    Directory of Open Access Journals (Sweden)

    Jyotirmoy Banerjee

    2013-01-01

    Full Text Available Investigating the changes associated with the development of epileptic state in humans is complex and requires a multidisciplinary approach. Understanding the intricacies of medically intractable epilepsy still remains a challenge for neurosurgeons across the world. A significant number of patients who has undergone resective brain surgery for epilepsy still continue to have seizures. The reason behind this therapy resistance still eludes us. Thus to develop a cure for the difficult to treat epilepsy, we need to comprehensively study epileptogenesis. Although various animal models are developed but none of them replicate the pathological conditions in humans. So the ideal way to understand epileptogenecity is to examine the tissue resected for the treatment of intractable epilepsy. Advanced imaging and electrical localization procedures are utilized to establish the epileptogenic zone in epilepsy patients. Further molecular and cytological studies are required for the microscopic analysis of brain samples collected from the epileptogenic focus. As alterations in inhibitory as well as excitatory synaptic transmission are key features of epilepsy, understanding the regulation of neurotransmission in the resected surgery zone is of immense importance. Here we summarize various modalities of in vitro slice analysis from the resected brain specimen to understand the changes in GABAergic and glutamatergic synaptic transmission in epileptogenic zone. We also review evidence pertaining to the proposed role of nicotinic receptors in abnormal synaptic transmission which is one of the major causes of epileptiform activity. Elucidation of current concepts in regulation of synaptic transmission will help develop therapies for epilepsy cases that cannot me managed pharmacologically.

  12. Synaptic and intrinsic activation of GABAergic neurons in the cardiorespiratory brainstem network.

    Science.gov (United States)

    Frank, Julie G; Mendelowitz, David

    2012-01-01

    GABAergic pathways in the brainstem play an essential role in respiratory rhythmogenesis and interactions between the respiratory and cardiovascular neuronal control networks. However, little is known about the identity and function of these GABAergic inhibitory neurons and what determines their activity. In this study we have identified a population of GABAergic neurons in the ventrolateral medulla that receive increased excitatory post-synaptic potentials during inspiration, but also have spontaneous firing in the absence of synaptic input. Using transgenic mice that express GFP under the control of the Gad1 (GAD67) gene promoter, we determined that this population of GABAergic neurons is in close apposition to cardioinhibitory parasympathetic cardiac neurons in the nucleus ambiguus (NA). These neurons fire in synchronization with inspiratory activity. Although they receive excitatory glutamatergic synaptic inputs during inspiration, this excitatory neurotransmission was not altered by blocking nicotinic receptors, and many of these GABAergic neurons continue to fire after synaptic blockade. The spontaneous firing in these GABAergic neurons was not altered by the voltage-gated calcium channel blocker cadmium chloride that blocks both neurotransmission to these neurons and voltage-gated Ca(2+) currents, but spontaneous firing was diminished by riluzole, demonstrating a role of persistent sodium channels in the spontaneous firing in these cardiorespiratory GABAergic neurons that possess a pacemaker phenotype. The spontaneously firing GABAergic neurons identified in this study that increase their activity during inspiration would support respiratory rhythm generation if they acted primarily to inhibit post-inspiratory neurons and thereby release inspiration neurons to increase their activity. This population of inspiratory-modulated GABAergic neurons could also play a role in inhibiting neurons that are most active during expiration and provide a framework for

  13. Synaptic and intrinsic activation of GABAergic neurons in the cardiorespiratory brainstem network.

    Directory of Open Access Journals (Sweden)

    Julie G Frank

    Full Text Available GABAergic pathways in the brainstem play an essential role in respiratory rhythmogenesis and interactions between the respiratory and cardiovascular neuronal control networks. However, little is known about the identity and function of these GABAergic inhibitory neurons and what determines their activity. In this study we have identified a population of GABAergic neurons in the ventrolateral medulla that receive increased excitatory post-synaptic potentials during inspiration, but also have spontaneous firing in the absence of synaptic input. Using transgenic mice that express GFP under the control of the Gad1 (GAD67 gene promoter, we determined that this population of GABAergic neurons is in close apposition to cardioinhibitory parasympathetic cardiac neurons in the nucleus ambiguus (NA. These neurons fire in synchronization with inspiratory activity. Although they receive excitatory glutamatergic synaptic inputs during inspiration, this excitatory neurotransmission was not altered by blocking nicotinic receptors, and many of these GABAergic neurons continue to fire after synaptic blockade. The spontaneous firing in these GABAergic neurons was not altered by the voltage-gated calcium channel blocker cadmium chloride that blocks both neurotransmission to these neurons and voltage-gated Ca(2+ currents, but spontaneous firing was diminished by riluzole, demonstrating a role of persistent sodium channels in the spontaneous firing in these cardiorespiratory GABAergic neurons that possess a pacemaker phenotype. The spontaneously firing GABAergic neurons identified in this study that increase their activity during inspiration would support respiratory rhythm generation if they acted primarily to inhibit post-inspiratory neurons and thereby release inspiration neurons to increase their activity. This population of inspiratory-modulated GABAergic neurons could also play a role in inhibiting neurons that are most active during expiration and provide a

  14. Pharmacological rescue of Ras signaling, GluA1-dependent synaptic plasticity, and learning deficits in a fragile X model.

    Science.gov (United States)

    Lim, Chae-Seok; Hoang, Elizabeth T; Viar, Kenneth E; Stornetta, Ruth L; Scott, Michael M; Zhu, J Julius

    2014-02-01

    Fragile X syndrome, caused by the loss of Fmr1 gene function, is the most common form of inherited mental retardation, with no effective treatment. Using a tractable animal model, we investigated mechanisms of action of a few FDA-approved psychoactive drugs that modestly benefit the cognitive performance in fragile X patients. Here we report that compounds activating serotonin (5HT) subtype 2B receptors (5HT2B-Rs) or dopamine (DA) subtype 1-like receptors (D1-Rs) and/or those inhibiting 5HT2A-Rs or D2-Rs moderately enhance Ras-PI3K/PKB signaling input, GluA1-dependent synaptic plasticity, and learning in Fmr1 knockout mice. Unexpectedly, combinations of these 5HT and DA compounds at low doses synergistically stimulate Ras-PI3K/PKB signal transduction and GluA1-dependent synaptic plasticity and remarkably restore normal learning in Fmr1 knockout mice without causing anxiety-related side effects. These findings suggest that properly dosed and combined FDA-approved psychoactive drugs may effectively treat the cognitive impairment associated with fragile X syndrome.

  15. Pharmacological rescue of Ras signaling, GluA1-dependent synaptic plasticity, and learning deficits in a fragile X model

    OpenAIRE

    Lim, Chae-Seok; Hoang, Elizabeth T.; Viar, Kenneth E.; Stornetta, Ruth L.; Scott, Michael M.; Zhu, J. Julius

    2014-01-01

    Fragile X syndrome, caused by the loss of Fmr1 gene function, is the most common form of inherited mental retardation. Lim et al. find that compounds activating serotonin (5HT) subtype 2B receptors or dopamine (DA) subtype 1-like receptors and those inhibiting 5HT2A-Rs or D2-Rs enhance Ras signaling, GluA1-dependent synaptic plasticity, and learning in Fmr1 knockout mice. Combining 5HT and DA compounds at low doses synergistically restored normal learning. This suggests that properly dosed an...

  16. Reversed synaptic effects of hypocretin and NPY mediated by excitatory GABA-dependent synaptic activity in developing MCH neurons.

    Science.gov (United States)

    Li, Ying; Xu, Youfen; van den Pol, Anthony N

    2013-03-01

    In mature neurons, GABA is the primary inhibitory neurotransmitter. In contrast, in developing neurons, GABA exerts excitatory actions, and in some neurons GABA-mediated excitatory synaptic activity is more prevalent than glutamate-mediated excitation. Hypothalamic neuropeptides that modulate cognitive arousal and energy homeostasis, hypocretin/orexin and neuropeptide Y (NPY), evoked reversed effects on synaptic actions that were dependent on presynaptic GABA release onto melanin-concentrating hormone (MCH) neurons. MCH neurons were identified by selective green fluorescent protein (GFP) expression in transgenic mice. In adults, hypocretin increased GABA release leading to reduced excitation. In contrast, in the developing brain as studied here with analysis of miniature excitatory postsynaptic currents, paired-pulse ratios, and evoked potentials, hypocretin acted presynaptically to enhance the excitatory actions of GABA. The ability of hypocretin to enhance GABA release increases inhibition in adult neurons but paradoxically enhances excitation in developing MCH neurons. In contrast, NPY attenuation of GABA release reduced inhibition in mature neurons but enhanced inhibition during development by attenuating GABA excitation. Both hypocretin and NPY also evoked direct actions on developing MCH neurons. Hypocretin excited MCH cells by activating a sodium-calcium exchanger and by reducing potassium currents; NPY reduced activity by increasing an inwardly rectifying potassium current. These data for the first time show that both hypocretin and NPY receptors are functional presynaptically during early postnatal hypothalamic development and that both neuropeptides modulate GABA actions during development with a valence of enhanced excitation or inhibition opposite to that of the adult state, potentially allowing neuropeptide modulation of use-dependent synapse stabilization.

  17. Lack of Pannexin 1 Alters Synaptic GluN2 Subunit Composition and Spatial Reversal Learning in Mice.

    Science.gov (United States)

    Gajardo, Ivana; Salazar, Claudia S; Lopez-Espíndola, Daniela; Estay, Carolina; Flores-Muñoz, Carolina; Elgueta, Claudio; Gonzalez-Jamett, Arlek M; Martínez, Agustín D; Muñoz, Pablo; Ardiles, Álvaro O

    2018-01-01

    Long-term potentiation (LTP) and long-term depression (LTD) are two forms of synaptic plasticity that have been considered as the cellular substrate of memory formation. Although LTP has received considerable more attention, recent evidences indicate that LTD plays also important roles in the acquisition and storage of novel information in the brain. Pannexin 1 (Panx1) is a membrane protein that forms non-selective channels which have been shown to modulate the induction of hippocampal synaptic plasticity. Animals lacking Panx1 or blockade of Pannexin 1 channels precludes the induction of LTD and facilitates LTP. To evaluate if the absence of Panx1 also affects the acquisition of rapidly changing information we trained Panx1 knockout (KO) mice and wild type (WT) littermates in a visual and hidden version of the Morris water maze (MWM). We found that KO mice find the hidden platform similarly although slightly quicker than WT animals, nonetheless, when the hidden platform was located in the opposite quadrant (OQ) to the previous learned location, KO mice spent significantly more time in the previous quadrant than in the new location indicating that the absence of Panx1 affects the reversion of a previously acquired spatial memory. Consistently, we observed changes in the content of synaptic proteins critical to LTD, such as GluN2 subunits of N-methyl-D-aspartate receptors (NMDARs), which changed their contribution to synaptic plasticity in conditions of Panx1 ablation. Our findings give further support to the role of Panx1 channels on the modulation of synaptic plasticity induction, learning and memory processes.

  18. 17β-Estradiol-Induced Synaptic Rearrangements Are Accompanied by Altered Ectonucleotidase Activities in Male Rat Hippocampal Synaptosomes.

    Science.gov (United States)

    Mitrović, Nataša; Zarić, Marina; Drakulić, Dunja; Martinović, Jelena; Sévigny, Jean; Stanojlović, Miloš; Nedeljković, Nadežda; Grković, Ivana

    2017-03-01

    17β-Estradiol (E2) rapidly, by binding to membrane estrogen receptors, activates cell signaling cascades which induce formation of new dendritic spines in the hippocampus of males as in females, but the interaction with other metabolic processes, such as extracellular adenine nucleotides metabolism, are currently unknown. Extracellular adenine nucleotides play significant roles, controlling excitatory glutamatergic synapses and development of neural circuits and synaptic plasticity. Their precise regulation in the synaptic cleft is tightly controlled by ecto-nucleoside triphosphate diphosphohydrolase (NTPDase)/ecto-5'-nucleotidase (eN) enzyme chain. Therefore, we sought to clarify whether a single systemic injection of E2 in male rats is accompanied by changes in the expression of the pre- and postsynaptic proteins and downstream kinases linked to E2-induced synaptic rearrangement as well as alterations in NTPDase/eN pathway in the hippocampal synaptosomes. Obtained data showed activation of mammalian target of rapamycin and upregulation of key synaptic proteins necessary for spine formation, 24 h after systemic E2 administration. In E2-mediated conditions, we found downregulation of NTPDase1 and NTPDase2 and attenuation of adenine nucleotide hydrolysis by NTPDase/eN enzyme chain, without changes in NTPDase3 properties and augmentation of synaptic tissue-nonspecific alkaline phosphatase (TNAP) activity. Despite reduced NTPDase activities, increased TNAP activity probably prevents toxic accumulation of ATP in the extracellular milieu and also hydrolyzes accumulated ADP due to unchanged NTPDase3 activity. Thus, our initial evaluation supports idea of specific roles of different ectonucleotidases and their coordinated actions in E2-mediated spine remodeling and maintenance.

  19. Attractor neural networks with resource-efficient synaptic connectivity

    Science.gov (United States)

    Pehlevan, Cengiz; Sengupta, Anirvan

    Memories are thought to be stored in the attractor states of recurrent neural networks. Here we explore how resource constraints interplay with memory storage function to shape synaptic connectivity of attractor networks. We propose that given a set of memories, in the form of population activity patterns, the neural circuit choses a synaptic connectivity configuration that minimizes a resource usage cost. We argue that the total synaptic weight (l1-norm) in the network measures the resource cost because synaptic weight is correlated with synaptic volume, which is a limited resource, and is proportional to neurotransmitter release and post-synaptic current, both of which cost energy. Using numerical simulations and replica theory, we characterize optimal connectivity profiles in resource-efficient attractor networks. Our theory explains several experimental observations on cortical connectivity profiles, 1) connectivity is sparse, because synapses are costly, 2) bidirectional connections are overrepresented and 3) are stronger, because attractor states need strong recurrence.

  20. Dual Effects of TARP γ-2 on Glutamate Efficacy Can Account for AMPA Receptor Autoinactivation

    Directory of Open Access Journals (Sweden)

    Ian D. Coombs

    2017-08-01

    Full Text Available Fast excitatory transmission in the CNS is mediated mainly by AMPA-type glutamate receptors (AMPARs associated with transmembrane AMPAR regulatory proteins (TARPs. At the high glutamate concentrations typically seen during synaptic transmission, TARPs slow receptor desensitization and enhance mean channel conductance. However, their influence on channels gated by low glutamate concentrations, as encountered during delayed transmitter clearance or synaptic spillover, is poorly understood. We report here that TARP γ-2 reduces the ability of low glutamate concentrations to cause AMPAR desensitization and enhances channel gating at low glutamate occupancy. Simulations show that, by shifting the balance between AMPAR activation and desensitization, TARPs can markedly facilitate the transduction of spillover-mediated synaptic signaling. Furthermore, the dual effects of TARPs can account for biphasic steady-state glutamate concentration-response curves—a phenomenon termed “autoinactivation,” previously thought to reflect desensitization-mediated AMPAR/TARP dissociation.

  1. β-Adrenergic receptor signaling and modulation of long-term potentiation in the mammalian hippocampus

    OpenAIRE

    O'Dell, Thomas J.; Connor, Steven A.; Guglietta, Ryan; Nguyen, Peter V.

    2015-01-01

    Encoding new information in the brain requires changes in synaptic strength. Neuromodulatory transmitters can facilitate synaptic plasticity by modifying the actions and expression of specific signaling cascades, transmitter receptors and their associated signaling complexes, genes, and effector proteins. One critical neuromodulator in the mammalian brain is norepinephrine (NE), which regulates multiple brain functions such as attention, perception, arousal, sleep, learning, and memory. The m...

  2. The evolutionary origin of the need to sleep: an inevitable consequence of synaptic neurotransmission?

    Science.gov (United States)

    Cantor, Robert S

    2015-01-01

    It is proposed that the evolutionary origin of the need to sleep is the removal of neurotransmitters (NTs) that escape reuptake and accumulate in brain interstitial fluid (ISF). Recent work suggests that the activity of ionotropic postsynaptic receptors, rapidly initiated by binding of NTs to extracellular sites, is modulated over longer times by adsorption of these NTs to the lipid bilayers in which the receptors are embedded. This bilayer-mediated mechanism is far less molecularly specific than binding, so bilayer adsorption of NTs that have diffused into synapses for other receptors would modulate their activity as well. Although NTs are recycled by membrane protein reuptake, the process is less than 100% efficient; a fraction escapes the region in which these specific reuptake proteins are localized and eventually diffuses throughout the ISF. It is estimated that even if only 0.1% of NTs escape reuptake, they would accumulate and adsorb to bilayers in synapses of other receptors sufficiently to affect receptor activity, the harmful consequences of which are avoided by sleep: a period of efficient convective clearance of solutes together with greatly reduced synaptic activity.

  3. The evolutionary origin of the need to sleep: An inevitable consequence of synaptic neurotransmission?

    Directory of Open Access Journals (Sweden)

    Robert S. Cantor

    2015-09-01

    Full Text Available It is proposed that the evolutionary origin of the need to sleep is the removal of neurotransmitters (NTs that escape reuptake and accumulate in brain interstitial fluid. Recent work suggests that the activity of ionotropic postsynaptic receptors, rapidly initiated by binding of NTs to extracellular sites, is modulated over longer times by adsorption of these NTs to the lipid bilayers in which the receptors are embedded. This bilayer-mediated mechanism is far less molecularly specific than binding, so bilayer adsorption of NTs that have diffused into synapses for other receptors would modulate their activity as well. Although NTs are recycled by membrane protein reuptake, the process is less than 100% efficient; a fraction escapes the region in which these specific reuptake proteins are localized and eventually diffuses throughout the interstitial fluid. It is estimated that even if only 0.1% of NTs escape reuptake, they would accumulate and adsorb to bilayers in synapses of other receptors sufficiently to affect receptor activity, the harmful consequences of which are avoided by sleep: a period of efficient convective clearance of solutes together with greatly reduced synaptic activity.

  4. Inclusive Educational Practices in Uganda: Evidencing Practice of Itinerant Teachers Who Work with Children with Visual Impairment in Local Mainstream Schools

    Science.gov (United States)

    Lynch, Paul; McCall, Steve; Douglas, Graeme; McLinden, Mike; Bayo, Asher

    2011-01-01

    This article reports on a research project investigating the role of itinerant teachers (ITs) of children with visual impairment in Uganda. The research focused on the activities of 52 ITs who recorded their work in a journal over a period of eight weeks (a new practice which was introduced to them through a workshop). Analysis of the data…

  5. Δ9-THC-Caused Synaptic and Memory Impairments Are Mediated through COX-2 Signaling

    OpenAIRE

    Chen, Rongqing; Zhang, Jian; Fan, Ni; Teng, Zhao-qian; Wu, Yan; Yang, Hongwei; Tang, Ya-ping; Sun, Hao; Song, Yunping; Chen, Chu

    2013-01-01

    Marijuana has been used for thousands of years as a treatment for medical conditions. However, untoward side effects limit its medical value. Here we show that synaptic and cognitive impairments following repeated exposure to Δ9-tetrahydrocannabinol (Δ9-THC) are associated with the induction of cyclooxygenase-2 (COX-2), an inducible enzyme that converts arachidonic acid to prostanoids, in the brain. COX-2 induction by Δ9-THC is mediated via CB1 receptor-coupled G-protein βγ subunits. Pharmaco...

  6. The N-methyl-D-aspartate receptor subunits NR2A and NR2B bind to the SH2 domains of phospholipase C-gamma.

    Science.gov (United States)

    Gurd, J W; Bissoon, N

    1997-08-01

    The NMDA receptor has recently been found to be phosphorylated on tyrosine. To assess the possible connection between tyrosine phosphorylation of the NMDA receptor and signaling pathways in the postsynaptic cell, we have investigated the relationship between tyrosine phosphorylation and the binding of NMDA receptor subunits to the SH2 domains of phospholipase C-gamma (PLC-gamma). A glutathione S-transferase (GST) fusion protein containing both the N- and the C-proximal SH2 domains of PLC-gamma was bound to glutathione-agarose and reacted with synaptic junctional proteins and glycoproteins. Tyrosine-phosphorylated PSD-GP180, which has been identified as the NR2B subunit of the NMDA receptor, bound to the SH2-agarose beads in a phosphorylation-dependent fashion. Immunoblot analysis with antibodies specific for individual NMDA receptor subunits showed that both NR2A and NR2B subunits bound to the SH2-agarose. No binding occurred to GST-agarose lacking an associated SH2 domain, indicating that binding was specific for the SH2 domains. The binding of receptor subunits increased after the incubation of synaptic junctions with ATP and decreased after treatment of synaptic junctions with exogenous protein tyrosine phosphatase. Immunoprecipitation experiments confirmed that NR2A and NR2B were phosphorylated on tyrosine and further that tyrosine phosphorylation of each of the subunits was increased after incubation with ATP. The results demonstrate that NMDA receptor subunits NR2A and NR2B will bind to the SH2 domains of PLC-gamma and that isolated synaptic junctions contain endogenous protein tyrosine kinase(s) that can phosphorylate both NR2A and NR2B receptor subunits, and suggest that interaction of the tyrosine-phosphorylated NMDA receptor with proteins that contain SH2 domains may serve to link it to signaling pathways in the postsynaptic cell.

  7. Forebrain deletion of αGDI in adult mice worsens the pre-synaptic deficit at cortico-lateral amygdala synaptic connections.

    Directory of Open Access Journals (Sweden)

    Veronica Bianchi

    Full Text Available The GDI1 gene encodes αGDI, which retrieves inactive GDP-bound RAB from membranes to form a cytosolic pool awaiting vesicular release. Mutations in GDI1 are responsible for X-linked Intellectual Disability. Characterization of the Gdi1-null mice has revealed alterations in the total number and distribution of hippocampal and cortical synaptic vesicles, hippocampal short-term synaptic plasticity and specific short-term memory deficits in adult mice, which are possibly caused by alterations of different synaptic vesicle recycling pathways controlled by several RAB GTPases. However, interpretation of these studies is complicated by the complete ablation of Gdi1 in all cells in the brain throughout development. In this study, we generated conditionally gene-targeted mice in which the knockout of Gdi1 is restricted to the forebrain, hippocampus, cortex and amygdala and occurs only during postnatal development. Adult mutant mice reproduce the short-term memory deficit previously reported in Gdi1-null mice. Surprisingly, the delayed ablation of Gdi1 worsens the pre-synaptic phenotype at cortico-amygdala synaptic connections compared to Gdi1-null mice. These results suggest a pivotal role of αGDI via specific RAB GTPases acting specifically in forebrain regions at the pre-synaptic sites involved in memory formation.

  8. Involvement of neurotrophin-3 (NT-3) in the functional elimination of synaptic contacts during neuromuscular development.

    Science.gov (United States)

    Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Lanuza, Maria A; Besalduch, Nuria; Tomàs, Josep

    2010-04-05

    Confocal immunohistochemistry shows that neurotrophin-3 (NT-3) and its receptor tropomyosin-related tyrosin kinase C (trkC) are present in both neonatal (P6) and adult (P45) mouse motor nerve terminals in neuromuscular junctions (NMJ) colocalized with several synaptic proteins. NT-3 incubation (1-3h, in the range 10-200ng/ml) does not change the size of the evoked and spontaneous endplate potentials at P45. However, NT-3 (1h, 100ng/ml) strongly potentiates evoked ACh release from the weak (70%) and the strong (50%) axonal inputs on dually innervated postnatal endplates (P6) but not in the most developed postnatal singly innervated synapses at P6. The present results indicate that NT-3 has a role in the developmental mechanism that eliminates redundant synapses though it cannot modulate synaptic transmission locally as the NMJ matures.

  9. Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal

    International Nuclear Information System (INIS)

    Konno, R; Hatayama, N; Takahashi, Y; Nakano, H

    2009-01-01

    Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal is investigated according to the recent theoretical development of magneto-volume effect for the three-dimensional weak ferromagnets. We particularly focus on the T 2 -linear thermal expansion of magnetic origin at low temperatures, so far disregarded by conventional theories. As the effect of thermal spin fluctuations we have found that the T-linear thermal expansion coefficient shows strong enhancement by assuming the double Lorentzian form of the non-interacting dynamical susceptibility justified in the small wave-number and low frequency region. It grows faster in proportional to y -1/2 as we approach the magnetic instability point than two-dimensional nearly antiferromagnetic metals with ln(1/y s ) dependence, where y and y s are the inverses of the reduced uniform and staggered magnetic susceptibilities, respectively. Our result is consistent with the Grueneisen's relation between the thermal expansion coefficient and the specific heat at low temperatures. In 2-dimensional electron gas we find that the thermal expansion coefficient is divergent with a finite y when the higher order term of non-interacting dynamical susceptibility is taken into account.

  10. Chaotic itinerancy within the coupled dynamics between a physical body and neural oscillator networks.

    Science.gov (United States)

    Park, Jihoon; Mori, Hiroki; Okuyama, Yuji; Asada, Minoru

    2017-01-01

    Chaotic itinerancy is a phenomenon in which the state of a nonlinear dynamical system spontaneously explores and attracts certain states in a state space. From this perspective, the diverse behavior of animals and its spontaneous transitions lead to a complex coupled dynamical system, including a physical body and a brain. Herein, a series of simulations using different types of non-linear oscillator networks (i.e., regular, small-world, scale-free, random) with a musculoskeletal model (i.e., a snake-like robot) as a physical body are conducted to understand how the chaotic itinerancy of bodily behavior emerges from the coupled dynamics between the body and the brain. A behavior analysis (behavior clustering) and network analysis for the classified behavior are then applied. The former consists of feature vector extraction from the motions and classification of the movement patterns that emerged from the coupled dynamics. The network structures behind the classified movement patterns are revealed by estimating the "information networks" different from the given non-linear oscillator networks based on the transfer entropy which finds the information flow among neurons. The experimental results show that: (1) the number of movement patterns and their duration depend on the sensor ratio to control the balance of strength between the body and the brain dynamics and on the type of the given non-linear oscillator networks; and (2) two kinds of information networks are found behind two kinds movement patterns with different durations by utilizing the complex network measures, clustering coefficient and the shortest path length with a negative and a positive relationship with the duration periods of movement patterns. The current results seem promising for a future extension of the method to a more complicated body and environment. Several requirements are also discussed.

  11. Chaotic itinerancy within the coupled dynamics between a physical body and neural oscillator networks.

    Directory of Open Access Journals (Sweden)

    Jihoon Park

    Full Text Available Chaotic itinerancy is a phenomenon in which the state of a nonlinear dynamical system spontaneously explores and attracts certain states in a state space. From this perspective, the diverse behavior of animals and its spontaneous transitions lead to a complex coupled dynamical system, including a physical body and a brain. Herein, a series of simulations using different types of non-linear oscillator networks (i.e., regular, small-world, scale-free, random with a musculoskeletal model (i.e., a snake-like robot as a physical body are conducted to understand how the chaotic itinerancy of bodily behavior emerges from the coupled dynamics between the body and the brain. A behavior analysis (behavior clustering and network analysis for the classified behavior are then applied. The former consists of feature vector extraction from the motions and classification of the movement patterns that emerged from the coupled dynamics. The network structures behind the classified movement patterns are revealed by estimating the "information networks" different from the given non-linear oscillator networks based on the transfer entropy which finds the information flow among neurons. The experimental results show that: (1 the number of movement patterns and their duration depend on the sensor ratio to control the balance of strength between the body and the brain dynamics and on the type of the given non-linear oscillator networks; and (2 two kinds of information networks are found behind two kinds movement patterns with different durations by utilizing the complex network measures, clustering coefficient and the shortest path length with a negative and a positive relationship with the duration periods of movement patterns. The current results seem promising for a future extension of the method to a more complicated body and environment. Several requirements are also discussed.

  12. Novel Mutations in Synaptic Transmission Genes Suppress Neuronal Hyperexcitation in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Katherine A. McCulloch

    2017-07-01

    Full Text Available Acetylcholine (ACh receptors (AChR regulate neural circuit activity in multiple contexts. In humans, mutations in ionotropic acetylcholine receptor (iAChR genes can cause neurological disorders, including myasthenia gravis and epilepsy. In Caenorhabditis elegans, iAChRs play multiple roles in the locomotor circuit. The cholinergic motor neurons express an ACR-2-containing pentameric AChR (ACR-2R comprised of ACR-2, ACR-3, ACR-12, UNC-38, and UNC-63 subunits. A gain-of-function mutation in the non-α subunit gene acr-2 [acr-2(gf] causes defective locomotion as well as spontaneous convulsions. Previous studies of genetic suppressors of acr-2(gf have provided insights into ACR-2R composition and assembly. Here, to further understand how the ACR-2R regulates neuronal activity, we expanded the suppressor screen for acr-2(gf-induced convulsions. The majority of these suppressor mutations affect genes that play critical roles in synaptic transmission, including two novel mutations in the vesicular ACh transporter unc-17. In addition, we identified a role for a conserved major facilitator superfamily domain (MFSD protein, mfsd-6, in regulating neural circuit activity. We further defined a role for the sphingosine (SPH kinase (Sphk sphk-1 in cholinergic neuron activity, independent of previously known signaling pathways. Overall, the genes identified in our study suggest that optimal modulation of synaptic activity is balanced by the differential activities of multiple pathways, and the novel alleles provide valuable reagents to further dissect neuronal mechanisms regulating the locomotor circuit.

  13. Binding Sites for Amyloid-β Oligomers and Synaptic Toxicity

    Science.gov (United States)

    Smith, Levi M.; Strittmatter, Stephen M.

    2017-01-01

    In Alzheimer’s disease (AD), insoluble and fibrillary amyloid-β (Aβ) peptide accumulates in plaques. However, soluble Aβ oligomers are most potent in creating synaptic dysfunction and loss. Therefore, receptors for Aβ oligomers are hypothesized to be the first step in a neuronal cascade leading to dementia. A number of cell-surface proteins have been described as Aβ binding proteins, and one or more are likely to mediate Aβ oligomer toxicity in AD. Cellular prion protein (PrPC) is a high-affinity Aβ oligomer binding site, and a range of data delineates a signaling pathway leading from Aβ complexation with PrPC to neuronal impairment. Further study of Aβ binding proteins will define the molecular basis of this crucial step in AD pathogenesis. PMID:27940601

  14. Synaptic vesicle distribution by conveyor belt.

    Science.gov (United States)

    Moughamian, Armen J; Holzbaur, Erika L F

    2012-03-02

    The equal distribution of synaptic vesicles among synapses along the axon is critical for robust neurotransmission. Wong et al. show that the continuous circulation of synaptic vesicles throughout the axon driven by molecular motors ultimately yields this even distribution. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Spaceflight-induced synaptic modifications within hair cells of the mammalian utricle.

    Science.gov (United States)

    Sultemeier, David R; Choy, Kristel R; Schweizer, Felix E; Hoffman, Larry F

    2017-06-01

    Exposure to the microgravity conditions of spaceflight alleviates the load normally imposed by the Earth's gravitational field on the inner ear utricular epithelia. Previous ultrastructural investigations have shown that spaceflight induces an increase in synapse density within hair cells of the rat utricle. However, the utricle exhibits broad physiological heterogeneity across different epithelial regions, and it is unknown whether capabilities for synaptic plasticity generalize to hair cells across its topography. To achieve systematic and broader sampling of the epithelium than was previously conducted, we used immunohistochemistry and volumetric image analyses to quantify synapse distributions across representative utricular regions in specimens from mice exposed to spaceflight (a 15-day mission of the space shuttle Discovery). These measures were compared with similarly sampled Earth-bound controls. Following paraformaldehyde fixation and microdissection, immunohistochemistry was performed on intact specimens to label presynaptic ribbons (anti-CtBP2) and postsynaptic receptor complexes (anti-Shank1A). Synapses were identified as closely apposed pre- and postsynaptic puncta. Epithelia from horizontal semicircular canal cristae served as "within-specimen" controls, whereas utricles and cristae from Earth-bound cohorts served as experimental controls. We found that synapse densities decreased in the medial extrastriolae of microgravity specimens compared with experimental controls, whereas they were unchanged in the striolae and horizontal cristae from the two conditions. These data demonstrate that structural plasticity was topographically localized to the utricular region that encodes very low frequency and static changes in linear acceleration, and illuminates the remarkable capabilities of utricular hair cells for synaptic plasticity in adapting to novel gravitational environments. NEW & NOTEWORTHY Spaceflight imposes a radically different sensory environment

  16. Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating

    DEFF Research Database (Denmark)

    Kristensen, Anders Skov; Jenkins, Meagan A; Banke, Tue G

    2011-01-01

    The function, trafficking and synaptic signaling of AMPA receptors are tightly regulated by phosphorylation. Ca(2+)/calmodulin-dependent kinase II (CaMKII) phosphorylates the GluA1 AMPA receptor subunit at Ser831 to increase single-channel conductance. We show that CaMKII increases the conductanc...

  17. Miniature excitatory synaptic currents in cultured hippocampal neurons.

    Science.gov (United States)

    Finch, D M; Fisher, R S; Jackson, M B

    1990-06-04

    We performed patch clamp recordings in the whole cell mode from cultured embryonic mouse hippocampal neurons. In bathing solutions containing tetrodotoxin (TTX), the cells showed spontaneous inward currents (SICs) ranging in size from 1 to 100 pA. Several observations indicated that the SICs were miniature excitatory synaptic currents mediated primarily by non-NMDA (N-methyl-D-aspartate) excitatory amino acid receptors: the rising phase of SICs was fast (1 ms to half amplitude at room temperature) and smooth, suggesting unitary events. The SICs were blocked by the broad-spectrum glutamate receptor antagonist gamma-D-glutamylglycine (DGG), but not by the selective NMDA-receptor antagonist D-2-amino-5-phosphonovaleric acid (5-APV). SICs were also blocked by desensitizing concentrations of quisqualate. Incubating cells in tetanus toxin, which blocks exocytotic transmitter release, eliminated SICs. The presence of SICs was consistent with the morphological arrangement of glutamatergic innervation in the cell cultures demonstrated immunohistochemically. Spontaneous outward currents (SOCs) were blocked by bicuculline and presumed to be mediated by GABAA receptors. This is consistent with immunohistochemical demonstration of GABAergic synapses. SIC frequency was increased in a calcium dependent manner by bathing the cells in a solution high in K+, and application of the dihydropyridine L-type calcium channel agonist BAY K 8644 increased the frequency of SICs. Increases in SIC frequency produced by high K+ solutions were reversed by Cd2+ and omega-conotoxin GVIA, but not by the selective L-type channel antagonist nimodipine. This suggested that presynaptic L-type channels were in a gating mode that was not blocked by nimodipine, and/or that another class of calcium channel makes a dominant contribution to excitatory transmitter release.

  18. Activation of synaptic and extrasynaptic glycine receptors by taurine in preoptic hypothalamic neurons.

    Science.gov (United States)

    Bhattarai, Janardhan Prasad; Park, Soo Joung; Chun, Sang Woo; Cho, Dong Hyu; Han, Seong Kyu

    2015-11-03

    Taurine is an essential amino-sulfonic acid having a fundamental function in the brain, participating in both cell volume regulation and neurotransmission. Using a whole cell voltage patch clamp technique, the taurine-activated neurotransmitter receptors in the preoptic hypothalamic area (PHA) neurons were investigated. In the first set of experiments, different concentrations of taurine were applied on PHA neurons. Taurine-induced responses were concentration-dependent. Taurine-induced currents were action potential-independent and sensitive to strychnine, suggesting the involvement of glycine receptors. In addition, taurine activated not only α-homomeric, but also αβ-heteromeric glycine receptors in PHA neurons. Interestingly, a low concentration of taurine (0.5mM) activated glycine receptors, whereas a higher concentration (3mM) activated both glycine and gamma-aminobutyric acid A (GABAA) receptors in PHA neurons. These results suggest that PHA neurons are influenced by taurine and respond via glycine and GABAA receptors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Positive modulation of delta-subunit containing GABAA receptors in mouse neurons

    DEFF Research Database (Denmark)

    Vardya, Irina; Hoestgaard-Jensen, Kirsten; Nieto-Gonzalez, Jose Luis

    2012-01-01

    δ-subunit containing extrasynaptic GABA(A) receptors are potential targets for modifying neuronal activity in a range of brain disorders. With the aim of gaining more insight in synaptic and extrasynaptic inhibition, we used a new positive modulator, AA29504, of δ-subunit containing GABA(A) recep......δ-subunit containing extrasynaptic GABA(A) receptors are potential targets for modifying neuronal activity in a range of brain disorders. With the aim of gaining more insight in synaptic and extrasynaptic inhibition, we used a new positive modulator, AA29504, of δ-subunit containing GABA......(A) receptors in mouse neurons in vitro and in vivo. Whole-cell patch-clamp recordings were carried out in the dentate gyrus in mouse brain slices. In granule cells, AA29504 (1 μM) caused a 4.2-fold potentiation of a tonic current induced by THIP (1 μM), while interneurons showed a potentiation of 2.6-fold......-free environment using Ca²⁺ imaging in cultured neurons, AA29504 showed GABA(A) receptor agonism in the absence of agonist. Finally, AA29504 exerted dose-dependent stress-reducing and anxiolytic effects in mice in vivo. We propose that AA29504 potentiates δ-containing GABA(A) receptors to enhance tonic inhibition...

  20. Size and receptor density of glutamatergic synapses: a viewpoint from left-right asymmetry of CA3-CA1 connections

    Directory of Open Access Journals (Sweden)

    Yoshiaki Shinohara

    2009-07-01

    Full Text Available Synaptic plasticity is considered to be the main mechanism for learning and memory. Excitatory synapses in the cerebral cortex and hippocampus undergo plastic changes during development and in response to electric stimulation. It is widely accepted that this process is mediated by insertion and elimination of various glutamate receptors. In a series of recent investigations on left-right asymmetry of hippocampal CA3-CA1 synapses, glutamate receptor subunits have been found to have distinctive expression patterns that depend on the postsynaptic density (PSD area. Particularly notable are the GluR1 AMPA receptor subunit and NR2B NMDA receptor subunit, where receptor density has either a supra-linear (GluR1 AMPA or inverse (NR2B NMDAR relationship to the PSD area. We review current understanding of structural and physiological synaptic plasticity and propose a scheme to classify receptor subtypes by their expression pattern with respect to PSD area.

  1. Eph receptors and ephrins in neuron-astrocyte communication at synapses.

    Science.gov (United States)

    Murai, Keith K; Pasquale, Elena B

    2011-11-01

    Neuron-glia communication is essential for regulating the properties of synaptic connections in the brain. Astrocytes, in particular, play a critical and complex role in synapse development, maintenance, and plasticity. Likewise, neurons reciprocally influence astrocyte physiology. However, the molecular signaling events that enable astrocytes and neurons to effectively communicate with each other are only partially defined. Recent findings have revealed that Eph receptor tyrosine kinases and ephrins play an important role in contact-dependent neuron-glia communication at synapses. Upon binding, these two families of cell surface-associated proteins trigger bidirectional signaling events that regulate the structural and physiological properties of both neurons and astrocytes. This review will focus on the emerging role of Eph receptors and ephrins in neuron-astrocyte interaction at synapses and discuss implications for synaptic plasticity, behavior, and disease. Copyright © 2011 Wiley-Liss, Inc.

  2. Structural Analysis of Botulinum Neurotoxin Type G Receptor Binding

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, John; Karalewitz, Andrew; Benefield, Desire A.; Mushrush, Darren J.; Pruitt, Rory N.; Spiller, Benjamin W.; Barbieri, Joseph T.; Lacy, D. Borden (Vanderbilt); (MCW)

    2010-10-19

    Botulinum neurotoxin (BoNT) binds peripheral neurons at the neuromuscular junction through a dual-receptor mechanism that includes interactions with ganglioside and protein receptors. The receptor identities vary depending on BoNT serotype (A-G). BoNT/B and BoNT/G bind the luminal domains of synaptotagmin I and II, homologous synaptic vesicle proteins. We observe conditions under which BoNT/B binds both Syt isoforms, but BoNT/G binds only SytI. Both serotypes bind ganglioside G{sub T1b}. The BoNT/G receptor-binding domain crystal structure provides a context for examining these binding interactions and a platform for understanding the physiological relevance of different Syt receptor isoforms in vivo.

  3. Down-regulation of NR2B receptors partially contributes to analgesic effects of Gentiopicroside in persistent inflammatory pain.

    Science.gov (United States)

    Chen, Lei; Liu, Jin-cheng; Zhang, Xiao-nan; Guo, Yan-yan; Xu, Zhao-hui; Cao, Wei; Sun, Xiao-li; Sun, Wen-ji; Zhao, Ming-Gao

    2008-06-01

    Gentiopicroside is one of the secoiridoid compound isolated from Gentiana lutea. It exhibits analgesic activities in the mice. The anterior cingulate cortex (ACC) is a forebrain structure known for its roles in pain transmission and modulation. Painful stimuli potentiate the prefrontal synaptic transmission and induce glutamate NMDA NR2B receptor expression in the ACC. But little is known about Gentiopicroside on the persistent inflammatory pain and chronic pain-induced synaptic transmission changes in the ACC. The present study was undertaken to investigate its analgesic activities and central synaptic modulation to the peripheral painful inflammation. Gentiopicroside produced significant analgesic effects against persistent inflammatory pain stimuli in mice. Systemic administration of Gentiopicroside significantly reversed NR2B over-expression during the chronic phases of persistent inflammation caused by hind-paw administration of complete Freunds adjuvant (CFA) in mice. Whole-cell patch clamp recordings revealed that Gentiopicroside significantly reduced NR2B receptors mediated postsynaptic currents in the ACC. Our findings provide strong evidence that analgesic effects of Gentiopicroside involve down-regulation of NR2B receptors in the ACC to persistent inflammatory pain.

  4. Lock-in of a Chiral Soliton Lattice by Itinerant Electrons

    Science.gov (United States)

    Okumura, Shun; Kato, Yasuyuki; Motome, Yukitoshi

    2018-03-01

    Chiral magnets often show intriguing magnetic and transport properties associated with their peculiar spin textures. A typical example is a chiral soliton lattice, which is found in monoaxial chiral magnets, such as CrNb3S6 and Yb(Ni1-xCux)3Al9 in an external magnetic field perpendicular to the chiral axis. Here, we theoretically investigate the electronic and magnetic properties in the chiral soliton lattice by a minimal itinerant electron model. Using variational calculations, we find that the period of the chiral soliton lattice can be locked at particular values dictated by the Fermi wave number, in stark contrast to spin-only models. We discuss this behavior caused by the spin-charge coupling as a possible mechanism for the lock-in discovered in Yb(Ni1-xCux)3Al9 [T. Matsumura et al., https://doi.org/10.7566/JPSJ.86.124702" xlink:type="simple">J. Phys. Soc. Jpn. 86, 124702 (2017)]. We also show that the same mechanism leads to the spontaneous formation of the chiral soliton lattice even in the absence of the magnetic field.

  5. Risk of in-itinere accident in primary health care professionals

    Directory of Open Access Journals (Sweden)

    Verónica A. Cruz-Toscano

    2017-06-01

    Full Text Available Background Traffic accidents represent a priority for public health since they are responsible for high mortality tolls, elevated economic costs and a significant social impact. Ecuador ranks as the seventh country in the World with a higher mortality rate. Aims To know the risk level of in-itinere accidents for workers of a primary care facility. Methods Descriptive transversal study through the application of a basic survey from 136 sanitary and non-sanitary professionals. Results The means to commute used by workers corresponds to public transportation (57.4 per cent and automobile (26.5 per cent, being the time invested in traveling to work is greater than 30 minutes. A statistical significant relationship can be observed between the transportation mean used to commute to the medical center and the time invested with the ending score of the risk to suffer a TA (p<0.05 for workers. Conclusion A necessity to establish road safety programs rises to control such risk factors that influence the possibility to suffer a commuting accident for the sanitary personnel.

  6. Low-frequency transcranial magnetic stimulation is beneficial for enhancing synaptic plasticity in the aging brain.

    Science.gov (United States)

    Zhang, Zhan-Chi; Luan, Feng; Xie, Chun-Yan; Geng, Dan-Dan; Wang, Yan-Yong; Ma, Jun

    2015-06-01

    In the aging brain, cognitive function gradually declines and causes a progressive reduction in the structural and functional plasticity of the hippocampus. Transcranial magnetic stimulation is an emerging and novel neurological and psychiatric tool used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency transcranial magnetic stimulation (≤1 Hz) ameliorates synaptic plasticity and spatial cognitive deficits in learning-impaired mice. However, the mechanisms by which this treatment improves these deficits during normal aging are still unknown. Therefore, the current study investigated the effects of transcranial magnetic stimulation on the brain-derived neurotrophic factor signal pathway, synaptic protein markers, and spatial memory behavior in the hippocampus of normal aged mice. The study also investigated the downstream regulator, Fyn kinase, and the downstream effectors, synaptophysin and growth-associated protein 43 (both synaptic markers), to determine the possible mechanisms by which transcranial magnetic stimulation regulates cognitive capacity. Transcranial magnetic stimulation with low intensity (110% average resting motor threshold intensity, 1 Hz) increased mRNA and protein levels of brain-derived neurotrophic factor, tropomyosin receptor kinase B, and Fyn in the hippocampus of aged mice. The treatment also upregulated the mRNA and protein expression of synaptophysin and growth-associated protein 43 in the hippocampus of these mice. In conclusion, brain-derived neurotrophic factor signaling may play an important role in sustaining and regulating structural synaptic plasticity induced by transcranial magnetic stimulation in the hippocampus of aging mice, and Fyn may be critical during this regulation. These responses may change the structural plasticity of the aging hippocampus, thereby improving cognitive function.

  7. Brain Region-Specific Effects of cGMP-Dependent Kinase II Knockout on AMPA Receptor Trafficking and Animal Behavior

    Science.gov (United States)

    Kim, Seonil; Pick, Joseph E.; Abera, Sinedu; Khatri, Latika; Ferreira, Danielle D. P.; Sathler, Matheus F.; Morison, Sage L.; Hofmann, Franz; Ziff, Edward B.

    2016-01-01

    Phosphorylation of GluA1, a subunit of AMPA receptors (AMPARs), is critical for AMPAR synaptic trafficking and control of synaptic transmission. cGMP-dependent protein kinase II (cGKII) mediates this phosphorylation, and cGKII knockout (KO) affects GluA1 phosphorylation and alters animal behavior. Notably, GluA1 phosphorylation in the KO…

  8. Nicotine Significantly Improves Chronic Stress-Induced Impairments of Cognition and Synaptic Plasticity in Mice.

    Science.gov (United States)

    Shang, Xueliang; Shang, Yingchun; Fu, Jingxuan; Zhang, Tao

    2017-08-01

    The aim of this study was to examine if nicotine was able to improve cognition deficits in a mouse model of chronic mild stress. Twenty-four male C57BL/6 mice were divided into three groups: control, stress, and stress with nicotine treatment. The animal model was established by combining chronic unpredictable mild stress (CUMS) and isolated feeding. Mice were exposed to CUMS continued for 28 days, while nicotine (0.2 mg/kg) was also administrated for 28 days. Weight and sucrose consumption were measured during model establishing period. The anxiety and behavioral despair were analyzed using the forced swim test (FST) and open-field test (OFT). Spatial cognition was evaluated using Morris water maze (MWM) test. Following behavioral assessment, both long-term potentiation (LTP) and depotentiation (DEP) were recorded in the hippocampal dentate gyrus (DG) region. Both synaptic and Notch1 proteins were measured by Western. Nicotine increased stressed mouse's sucrose consumption. The MWM test showed that spatial learning and reversal learning in stressed animals were remarkably affected relative to controls, whereas nicotine partially rescued cognitive functions. Additionally, nicotine considerably alleviated the level of anxiety and the degree of behavioral despair in stressed mice. It effectively mitigated the depression-induced impairment of hippocampal synaptic plasticity, in which both the LTP and DEP were significantly inhibited in stressed mice. Moreover, nicotine enhanced the expression of synaptic and Notch1 proteins in stressed animals. The results suggest that nicotine ameliorates the depression-like symptoms and improves the hippocampal synaptic plasticity closely associated with activating transmembrane ion channel receptors and Notch signaling components. Graphical Abstract ᅟ.

  9. Amyloid-β Homeostasis Bridges Inflammation, Synaptic Plasticity Deficits and Cognitive Dysfunction in Multiple Sclerosis.

    Science.gov (United States)

    Stampanoni Bassi, Mario; Garofalo, Sara; Marfia, Girolama A; Gilio, Luana; Simonelli, Ilaria; Finardi, Annamaria; Furlan, Roberto; Sancesario, Giulia M; Di Giandomenico, Jonny; Storto, Marianna; Mori, Francesco; Centonze, Diego; Iezzi, Ennio

    2017-01-01

    Cognitive deficits are frequently observed in multiple sclerosis (MS), mainly involving processing speed and episodic memory. Both demyelination and gray matter atrophy can contribute to cognitive deficits in MS. In recent years, neuroinflammation is emerging as a new factor influencing clinical course in MS. Inflammatory cytokines induce synaptic dysfunction in MS. Synaptic plasticity occurring within hippocampal structures is considered as one of the basic physiological mechanisms of learning and memory. In experimental models of MS, hippocampal plasticity is profoundly altered by proinflammatory cytokines. Although mechanisms of inflammation-induced hippocampal pathology in MS are not completely understood, alteration of Amyloid-β (Aβ) metabolism is emerging as a key factor linking together inflammation, synaptic plasticity and neurodegeneration in different neurological diseases. We explored the correlation between concentrations of Aβ 1-42 and the levels of some proinflammatory and anti-inflammatory cytokines (interleukin-1β (IL-1β), IL1-ra, IL-8, IL-10, IL-12, tumor necrosis factor α (TNFα), interferon γ (IFNγ)) in the cerebrospinal fluid (CSF) of 103 remitting MS patients. CSF levels of Aβ 1-42 were negatively correlated with the proinflammatory cytokine IL-8 and positively correlated with the anti-inflammatory molecules IL-10 and interleukin-1 receptor antagonist (IL-1ra). Other correlations, although noticeable, were either borderline or not significant. Our data show that an imbalance between proinflammatory and anti-inflammatory cytokines may lead to altered Aβ homeostasis, representing a key factor linking together inflammation, synaptic plasticity and cognitive dysfunction in MS. This could be relevant to identify novel therapeutic approaches to hinder the progression of cognitive dysfunction in MS.

  10. Amyloid-β Homeostasis Bridges Inflammation, Synaptic Plasticity Deficits and Cognitive Dysfunction in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Mario Stampanoni Bassi

    2017-11-01

    Full Text Available Cognitive deficits are frequently observed in multiple sclerosis (MS, mainly involving processing speed and episodic memory. Both demyelination and gray matter atrophy can contribute to cognitive deficits in MS. In recent years, neuroinflammation is emerging as a new factor influencing clinical course in MS. Inflammatory cytokines induce synaptic dysfunction in MS. Synaptic plasticity occurring within hippocampal structures is considered as one of the basic physiological mechanisms of learning and memory. In experimental models of MS, hippocampal plasticity is profoundly altered by proinflammatory cytokines. Although mechanisms of inflammation-induced hippocampal pathology in MS are not completely understood, alteration of Amyloid-β (Aβ metabolism is emerging as a key factor linking together inflammation, synaptic plasticity and neurodegeneration in different neurological diseases. We explored the correlation between concentrations of Aβ1–42 and the levels of some proinflammatory and anti-inflammatory cytokines (interleukin-1β (IL-1β, IL1-ra, IL-8, IL-10, IL-12, tumor necrosis factor α (TNFα, interferon γ (IFNγ in the cerebrospinal fluid (CSF of 103 remitting MS patients. CSF levels of Aβ1–42 were negatively correlated with the proinflammatory cytokine IL-8 and positively correlated with the anti-inflammatory molecules IL-10 and interleukin-1 receptor antagonist (IL-1ra. Other correlations, although noticeable, were either borderline or not significant. Our data show that an imbalance between proinflammatory and anti-inflammatory cytokines may lead to altered Aβ homeostasis, representing a key factor linking together inflammation, synaptic plasticity and cognitive dysfunction in MS. This could be relevant to identify novel therapeutic approaches to hinder the progression of cognitive dysfunction in MS.

  11. Lack of Pannexin 1 Alters Synaptic GluN2 Subunit Composition and Spatial Reversal Learning in Mice

    Science.gov (United States)

    Gajardo, Ivana; Salazar, Claudia S.; Lopez-Espíndola, Daniela; Estay, Carolina; Flores-Muñoz, Carolina; Elgueta, Claudio; Gonzalez-Jamett, Arlek M.; Martínez, Agustín D.; Muñoz, Pablo; Ardiles, Álvaro O.

    2018-01-01

    Long-term potentiation (LTP) and long-term depression (LTD) are two forms of synaptic plasticity that have been considered as the cellular substrate of memory formation. Although LTP has received considerable more attention, recent evidences indicate that LTD plays also important roles in the acquisition and storage of novel information in the brain. Pannexin 1 (Panx1) is a membrane protein that forms non-selective channels which have been shown to modulate the induction of hippocampal synaptic plasticity. Animals lacking Panx1 or blockade of Pannexin 1 channels precludes the induction of LTD and facilitates LTP. To evaluate if the absence of Panx1 also affects the acquisition of rapidly changing information we trained Panx1 knockout (KO) mice and wild type (WT) littermates in a visual and hidden version of the Morris water maze (MWM). We found that KO mice find the hidden platform similarly although slightly quicker than WT animals, nonetheless, when the hidden platform was located in the opposite quadrant (OQ) to the previous learned location, KO mice spent significantly more time in the previous quadrant than in the new location indicating that the absence of Panx1 affects the reversion of a previously acquired spatial memory. Consistently, we observed changes in the content of synaptic proteins critical to LTD, such as GluN2 subunits of N-methyl-D-aspartate receptors (NMDARs), which changed their contribution to synaptic plasticity in conditions of Panx1 ablation. Our findings give further support to the role of Panx1 channels on the modulation of synaptic plasticity induction, learning and memory processes. PMID:29692709

  12. Lack of Pannexin 1 Alters Synaptic GluN2 Subunit Composition and Spatial Reversal Learning in Mice

    Directory of Open Access Journals (Sweden)

    Ivana Gajardo

    2018-04-01

    Full Text Available Long-term potentiation (LTP and long-term depression (LTD are two forms of synaptic plasticity that have been considered as the cellular substrate of memory formation. Although LTP has received considerable more attention, recent evidences indicate that LTD plays also important roles in the acquisition and storage of novel information in the brain. Pannexin 1 (Panx1 is a membrane protein that forms non-selective channels which have been shown to modulate the induction of hippocampal synaptic plasticity. Animals lacking Panx1 or blockade of Pannexin 1 channels precludes the induction of LTD and facilitates LTP. To evaluate if the absence of Panx1 also affects the acquisition of rapidly changing information we trained Panx1 knockout (KO mice and wild type (WT littermates in a visual and hidden version of the Morris water maze (MWM. We found that KO mice find the hidden platform similarly although slightly quicker than WT animals, nonetheless, when the hidden platform was located in the opposite quadrant (OQ to the previous learned location, KO mice spent significantly more time in the previous quadrant than in the new location indicating that the absence of Panx1 affects the reversion of a previously acquired spatial memory. Consistently, we observed changes in the content of synaptic proteins critical to LTD, such as GluN2 subunits of N-methyl-D-aspartate receptors (NMDARs, which changed their contribution to synaptic plasticity in conditions of Panx1 ablation. Our findings give further support to the role of Panx1 channels on the modulation of synaptic plasticity induction, learning and memory processes.

  13. Neutralization of Nogo-A Enhances Synaptic Plasticity in the Rodent Motor Cortex and Improves Motor Learning in Vivo

    Science.gov (United States)

    Weinmann, Oliver; Kellner, Yves; Yu, Xinzhu; Vicente, Raul; Gullo, Miriam; Kasper, Hansjörg; Lussi, Karin; Ristic, Zorica; Luft, Andreas R.; Rioult-Pedotti, Mengia; Zuo, Yi; Zagrebelsky, Marta; Schwab, Martin E.

    2014-01-01

    The membrane protein Nogo-A is known as an inhibitor of axonal outgrowth and regeneration in the CNS. However, its physiological functions in the normal adult CNS remain incompletely understood. Here, we investigated the role of Nogo-A in cortical synaptic plasticity and motor learning in the uninjured adult rodent motor cortex. Nogo-A and its receptor NgR1 are present at cortical synapses. Acute treatment of slices with function-blocking antibodies (Abs) against Nogo-A or against NgR1 increased long-term potentiation (LTP) induced by stimulation of layer 2/3 horizontal fibers. Furthermore, anti-Nogo-A Ab treatment increased LTP saturation levels, whereas long-term depression remained unchanged, thus leading to an enlarged synaptic modification range. In vivo, intrathecal application of Nogo-A-blocking Abs resulted in a higher dendritic spine density at cortical pyramidal neurons due to an increase in spine formation as revealed by in vivo two-photon microscopy. To investigate whether these changes in synaptic plasticity correlate with motor learning, we trained rats to learn a skilled forelimb-reaching task while receiving anti-Nogo-A Abs. Learning of this cortically controlled precision movement was improved upon anti-Nogo-A Ab treatment. Our results identify Nogo-A as an influential molecular modulator of synaptic plasticity and as a regulator for learning of skilled movements in the motor cortex. PMID:24966370

  14. Anxiety and Depression: Mouse Genetics and Pharmacological Approaches to the Role of GABAA Receptor Subtypes

    Science.gov (United States)

    Smith, Kiersten S.; Rudolph, Uwe

    2012-01-01

    GABAA receptors mediate fast synaptic inhibitory neurotransmission throughout the central nervous system. Recent work indicates a role for GABAA receptors in physiologically modulating anxiety and depression levels. In this review, we summarize research that led to the identification of the essential role of GABAA receptors in counteracting trait anxiety and depression-related behaviors, and research aimed at identifying individual GABAA receptor subtypes involved in physiological and pharmacological modulation of emotions. PMID:21810433

  15. Cerebellar Kainate Receptor-Mediated Facilitation of Glutamate Release Requires Ca2+-Calmodulin and PKA

    Directory of Open Access Journals (Sweden)

    Rafael Falcón-Moya

    2018-06-01

    Full Text Available We elucidated the mechanisms underlying the kainate receptor (KAR-mediated facilitatory modulation of synaptic transmission in the cerebellum. In cerebellar slices, KA (3 μM increased the amplitude of evoked excitatory postsynaptic currents (eEPSCs at synapses between axon terminals of parallel fibers (PF and Purkinje neurons. KA-mediated facilitation was antagonized by NBQX under condition where AMPA receptors were previously antagonized. Inhibition of protein kinase A (PKA suppressed the effect of KA on glutamate release, which was also obviated by the prior stimulation of adenylyl cyclase (AC. KAR-mediated facilitation of synaptic transmission was prevented by blocking Ca2+ permeant KARs using philanthotoxin. Furthermore, depletion of intracellular Ca2+ stores by thapsigargin, or inhibition of Ca2+-induced Ca2+-release by ryanodine, abrogated the synaptic facilitation by KA. Thus, the KA-mediated modulation was conditional on extracellular Ca2+ entry through Ca2+-permeable KARs, as well as and mobilization of Ca2+ from intracellular stores. Finally, KAR-mediated facilitation was sensitive to calmodulin inhibitors, W-7 and calmidazolium, indicating that the increased cytosolic [Ca2+] sustaining KAR-mediated facilitation of synaptic transmission operates through a downstream Ca2+/calmodulin coupling. We conclude that, at cerebellar parallel fiber-Purkinje cell synapses, presynaptic KARs mediate glutamate release facilitation, and thereby enhance synaptic transmission through Ca2+-calmodulin dependent activation of adenylyl cyclase/cAMP/protein kinase A signaling.

  16. Ablating ErbB4 in PV neurons attenuates synaptic and cognitive deficits in an animal model of Alzheimer's disease.

    Science.gov (United States)

    Zhang, Heng; Zhang, Ling; Zhou, Dongming; He, Xiao; Wang, Dongpi; Pan, Hongyu; Zhang, Xiaoqin; Mei, Yufei; Qian, Qi; Zheng, Tingting; Jones, Frank E; Sun, Binggui

    2017-10-01

    Accumulation of amyloid β (Aβ) induces neuronal, synaptic, and cognitive deficits in patients and animal models of Alzheimer's disease (AD). The underlying mechanisms, however, remain to be fully elucidated. In the present study, we found that Aβ interacted with ErbB4, a member of the receptor tyrosine kinase family and mainly expressed in GABAergic interneurons. Deleting ErbB4 in parvalbumin-expressing neurons (PV neurons) significantly attenuated oligomeric Aβ-induced suppression of long term potentiation (LTP). Furthermore, specific ablation of ErbB4 in PV neurons via Cre/loxP system greatly improved spatial memory and synaptic plasticity in the hippocampus of hAPP-J20 mice. The deposition of Aβ detected by 3D6 and Thioflavin S staining and the proteolytic processing of hAPP analyzed by western blotting were not affected in the hippocampus of hAPP-J20 mice by deleting ErbB4 in PV neurons. Our data suggested that ErbB4 in PV neurons mediated Aβ-induced synaptic and cognitive dysfunctions without affecting Aβ levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Context-Dependent Modulation of αβγ and αβγ GABAA Receptors by Penicillin: Implications for Phasic and Tonic Inhibition

    Science.gov (United States)

    Feng, Hua-Jun; Botzolakis, Emmanuel J.; Macdonald, Robert L.

    2009-01-01

    Summary Penicillin, an open-channel blocker of GABAA receptors, was recently reported to inhibit phasic, but not tonic, currents in hippocampal neurons. To distinguish between isoform-specific and context-dependent modulation as possible explanations for this selectivity, the effects of penicillin were evaluated on recombinant GABAA receptors expressed in HEK293T cells. When co-applied with saturating GABA, penicillin decreased peak amplitude, induced rebound, and prolonged deactivation of currents evoked from both synaptic and extrasynaptic receptor isoforms. However, penicillin had isoform-specific effects on the extent of desensitization, reflecting its ability to differentially modulate peak (non-equilibrium) and residual (near-equilibrium) currents. This suggested that the context of activation could determine the apparent sensitivity of a given receptor isoform to penicillin. To test this hypothesis, we explored the ability of penicillin to modulate synaptic and extrasynaptic isoforms that were activated under more physiologically relevant conditions. Interestingly, while currents evoked from synaptic isoforms under phasic conditions (transient activation by a saturating concentration of GABA) were substantially inhibited by penicillin, currents evoked from extrasynaptic isoforms under tonic conditions (prolonged application by a sub-saturating concentration of GABA) were minimally affected. We therefore concluded that the reported inability of penicillin to modulate tonic currents could not simply be attributed to insensitivity of extrasynaptic receptors, but rather, reflected an inability to modulate these receptors in their native context of activation. PMID:18775733

  18. Experimental Implementation of a Biometric Laser Synaptic Sensor

    Directory of Open Access Journals (Sweden)

    Alexander N. Pisarchik

    2013-12-01

    Full Text Available We fabricate a biometric laser fiber synaptic sensor to transmit information from one neuron cell to the other by an optical way. The optical synapse is constructed on the base of an erbium-doped fiber laser, whose pumped diode current is driven by a pre-synaptic FitzHugh–Nagumo electronic neuron, and the laser output controls a post-synaptic FitzHugh–Nagumo electronic neuron. The implemented laser synapse displays very rich dynamics, including fixed points, periodic orbits with different frequency-locking ratios and chaos. These regimes can be beneficial for efficient biorobotics, where behavioral flexibility subserved by synaptic connectivity is a challenge.

  19. Glutamatergic synaptic plasticity in the mesocorticolimbic system in addiction

    Directory of Open Access Journals (Sweden)

    Aile evan Huijstee

    2015-01-01

    Full Text Available Addictive drugs remodel the brain’s reward circuitry, the mesocorticolimbic dopamine system, by inducing widespread adaptations of glutamatergic synapses. This drug-induced synaptic plasticity is thought to contribute to both the development and the persistence of addiction. This review highlights the synaptic modifications that are induced by in vivo exposure to addictive drugs and describes how these drug-induced synaptic changes may contribute to the different components of addictive behaviour, such as compulsive drug use despite negative consequences and relapse. Initially, exposure to an addictive drug induces synaptic changes in the ventral tegmental area (VTA. This drug-induced synaptic potentiation in the VTA subsequently triggers synaptic changes in downstream areas of the mesocorticolimbic system, such as the nucleus accumbens (NAc and the prefrontal cortex (PFC, with further drug exposure. These glutamatergic synaptic alterations are then thought to mediate many of the behavioural symptoms that characterize addiction. The later stages of glutamatergic synaptic plasticity in the NAc and in particular in the PFC play a role in maintaining addiction and drive relapse to drug-taking induced by drug-associated cues. Remodelling of PFC glutamatergic circuits can persist into adulthood, causing a lasting vulnerability to relapse. We will discuss how these neurobiological changes produced by drugs of abuse may provide novel targets for potential treatment strategies for addiction.

  20. Glutamatergic synaptic plasticity in the mesocorticolimbic system in addiction

    Science.gov (United States)

    van Huijstee, Aile N.; Mansvelder, Huibert D.

    2015-01-01

    Addictive drugs remodel the brain’s reward circuitry, the mesocorticolimbic dopamine (DA) system, by inducing widespread adaptations of glutamatergic synapses. This drug-induced synaptic plasticity is thought to contribute to both the development and the persistence of addiction. This review highlights the synaptic modifications that are induced by in vivo exposure to addictive drugs and describes how these drug-induced synaptic changes may contribute to the different components of addictive behavior, such as compulsive drug use despite negative consequences and relapse. Initially, exposure to an addictive drug induces synaptic changes in the ventral tegmental area (VTA). This drug-induced synaptic potentiation in the VTA subsequently triggers synaptic changes in downstream areas of the mesocorticolimbic system, such as the nucleus accumbens (NAc) and the prefrontal cortex (PFC), with further drug exposure. These glutamatergic synaptic alterations are then thought to mediate many of the behavioral symptoms that characterize addiction. The later stages of glutamatergic synaptic plasticity in the NAc and in particular in the PFC play a role in maintaining addiction and drive relapse to drug-taking induced by drug-associated cues. Remodeling of PFC glutamatergic circuits can persist into adulthood, causing a lasting vulnerability to relapse. We will discuss how these neurobiological changes produced by drugs of abuse may provide novel targets for potential treatment strategies for addiction. PMID:25653591

  1. Regulation of neuronal communication by G protein-coupled receptors.

    Science.gov (United States)

    Huang, Yunhong; Thathiah, Amantha

    2015-06-22

    Neuronal communication plays an essential role in the propagation of information in the brain and requires a precisely orchestrated connectivity between neurons. Synaptic transmission is the mechanism through which neurons communicate with each other. It is a strictly regulated process which involves membrane depolarization, the cellular exocytosis machinery, neurotransmitter release from synaptic vesicles into the synaptic cleft, and the interaction between ion channels, G protein-coupled receptors (GPCRs), and downstream effector molecules. The focus of this review is to explore the role of GPCRs and G protein-signaling in neurotransmission, to highlight the function of GPCRs, which are localized in both presynaptic and postsynaptic membrane terminals, in regulation of intrasynaptic and intersynaptic communication, and to discuss the involvement of astrocytic GPCRs in the regulation of neuronal communication. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Possible relationship between the stress-induced synaptic response and metaplasticity in the hippocampal CA1 field of freely moving rats.

    Science.gov (United States)

    Hirata, Riki; Matsumoto, Machiko; Judo, Chika; Yamaguchi, Taku; Izumi, Takeshi; Yoshioka, Mitsuhiro; Togashi, Hiroko

    2009-07-01

    Hippocampal long-term potentiation (LTP) is suppressed not only by stress paradigms but also by low frequency stimulation (LFS) prior to LTP-inducing high frequency stimulation (HFS; tetanus), termed metaplasticity. These synaptic responses are dependent on N-methyl-D-aspartate receptors, leading to speculations about the possible relationship between metaplasticity and stress-induced LTP impairment. However, the functional significance of metaplasticity has been unclear. The present study elucidated the electrophysiological and neurochemical profiles of metaplasticity in the hippocampal CA1 field, with a focus on the synaptic response induced by the emotional stress, contextual fear conditioning (CFC). The population spike amplitude in the CA1 field was decreased during exposure to CFC, and LTP induction was suppressed after CFC in conscious rats. The synaptic response induced by CFC was mimicked by LFS, i.e., LFS impaired the synaptic transmission and subsequent LTP. Plasma corticosterone levels were increased by both CFC and LFS. Extracellular levels of gamma-aminobutyric acid (GABA), but not glutamate, in the hippocampus increased during exposure to CFC or LFS. Furthermore, electrical stimulation of the medial prefrontal cortex (mPFC), which caused decreases in freezing behavior during exposure to CFC, counteracted the LTP impairment induced by LFS. These findings suggest that metaplasticity in the rat hippocampal CA1 field is related to the neural basis of stress experience-dependent fear memory, and that hippocampal synaptic response associated stress-related processes is under mPFC regulation.

  3. The neuroprotection of cannabidiol against MPP⁺-induced toxicity in PC12 cells involves trkA receptors, upregulation of axonal and synaptic proteins, neuritogenesis, and might be relevant to Parkinson's disease.

    Science.gov (United States)

    Santos, Neife Aparecida Guinaim; Martins, Nádia Maria; Sisti, Flávia Malvestio; Fernandes, Laís Silva; Ferreira, Rafaela Scalco; Queiroz, Regina Helena Costa; Santos, Antônio Cardozo

    2015-12-25

    Cannabidiol (CBD) is a non-psychoactive constituent of Cannabis sativa with potential to treat neurodegenerative diseases. Its neuroprotection has been mainly associated with anti-inflammatory and antioxidant events; however, other mechanisms might be involved. We investigated the involvement of neuritogenesis, NGF receptors (trkA), NGF, and neuronal proteins in the mechanism of neuroprotection of CBD against MPP(+) toxicity in PC12 cells. CBD increased cell viability, differentiation, and the expression of axonal (GAP-43) and synaptic (synaptophysin and synapsin I) proteins. Its neuritogenic effect was not dependent or additive to NGF, but it was inhibited by K252a (trkA inhibitor). CBD did not increase the expression of NGF, but protected against its decrease induced by MPP(+), probably by an indirect mechanism. We also evaluated the neuritogenesis in SH-SY5Y cells, which do not express trkA receptors. CBD did not induce neuritogenesis in this cellular model, which supports the involvement of trkA receptors. This is the first study to report the involvement of neuronal proteins and trkA in the neuroprotection of CBD. Our findings suggest that CBD has a neurorestorative potential independent of NGF that might contribute to its neuroprotection against MPP(+), a neurotoxin relevant to Parkinson's disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Molecular mechanisms of synaptic remodeling in alcoholism.

    Science.gov (United States)

    Kyzar, Evan J; Pandey, Subhash C

    2015-08-05

    Alcohol use and alcohol addiction represent dysfunctional brain circuits resulting from neuroadaptive changes during protracted alcohol exposure and its withdrawal. Alcohol exerts a potent effect on synaptic plasticity and dendritic spine formation in specific brain regions, providing a neuroanatomical substrate for the pathophysiology of alcoholism. Epigenetics has recently emerged as a critical regulator of gene expression and synaptic plasticity-related events in the brain. Alcohol exposure and withdrawal induce changes in crucial epigenetic processes in the emotional brain circuitry (amygdala) that may be relevant to the negative affective state defined as the "dark side" of addiction. Here, we review the literature concerning synaptic plasticity and epigenetics, with a particular focus on molecular events related to dendritic remodeling during alcohol abuse and alcoholism. Targeting epigenetic processes that modulate synaptic plasticity may yield novel treatments for alcoholism. Published by Elsevier Ireland Ltd.

  5. Synapses between parallel fibres and stellate cells express long-term changes in synaptic efficacy in rat cerebellum.

    Science.gov (United States)

    Rancillac, Armelle; Crépel, Francis

    2004-02-01

    Various forms of synaptic plasticity underlying motor learning have already been well characterized at cerebellar parallel fibre (PF)-Purkinje cell (PC) synapses. Inhibitory interneurones play an important role in controlling the excitability and synchronization of PCs. We have therefore tested the possibility that excitatory synapses between PFs and stellate cells (SCs) are also able to exhibit long-term changes in synaptic efficacy. In the present study, we show that long-term potentiation (LTP) and long-term depression (LTD) were induced at these synapses by a low frequency stimulation protocol (2 Hz for 60 s) and that pairing this low frequency stimulation protocol with postsynaptic depolarization induced a marked shift of synaptic plasticity in favour of LTP. This LTP was cAMP independent, but required nitric oxide (NO) production from pre- and/or postsynaptic elements, depending on the stimulation or pairing protocol used, respectively. In contrast, LTD was not dependent on NO production but it required activation of postsynaptic group II and possibly of group I metabotropic glutamate receptors. Finally, stimulation of PFs at 8 Hz for 15 s also induced LTP at PF-SC synapses. But in this case, LTP was cAMP dependent, as was also observed at PF-PC synapses for presynaptic LTP induced in the same conditions. Thus, long-term changes in synaptic efficacy can be accomplished by PF-SCs synapses as well as by PF-PC synapses, suggesting that both types of plasticity might co-operate during cerebellar motor learning.

  6. Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation

    Directory of Open Access Journals (Sweden)

    Sara Calafate

    2015-05-01

    Full Text Available Accumulation of insoluble Tau protein aggregates and stereotypical propagation of Tau pathology through the brain are common hallmarks of tauopathies, including Alzheimer’s disease (AD. Propagation of Tau pathology appears to occur along connected neurons, but whether synaptic contacts between neurons are facilitating propagation has not been demonstrated. Using quantitative in vitro models, we demonstrate that, in parallel to non-synaptic mechanisms, synapses, but not merely the close distance between the cells, enhance the propagation of Tau pathology between acceptor hippocampal neurons and Tau donor cells. Similarly, in an artificial neuronal network using microfluidic devices, synapses and synaptic activity are promoting neuronal Tau pathology propagation in parallel to the non-synaptic mechanisms. Our work indicates that the physical presence of synaptic contacts between neurons facilitate Tau pathology propagation. These findings can have implications for synaptic repair therapies, which may turn out to have adverse effects by promoting propagation of Tau pathology.

  7. Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation.

    Science.gov (United States)

    Calafate, Sara; Buist, Arjan; Miskiewicz, Katarzyna; Vijayan, Vinoy; Daneels, Guy; de Strooper, Bart; de Wit, Joris; Verstreken, Patrik; Moechars, Diederik

    2015-05-26

    Accumulation of insoluble Tau protein aggregates and stereotypical propagation of Tau pathology through the brain are common hallmarks of tauopathies, including Alzheimer's disease (AD). Propagation of Tau pathology appears to occur along connected neurons, but whether synaptic contacts between neurons are facilitating propagation has not been demonstrated. Using quantitative in vitro models, we demonstrate that, in parallel to non-synaptic mechanisms, synapses, but not merely the close distance between the cells, enhance the propagation of Tau pathology between acceptor hippocampal neurons and Tau donor cells. Similarly, in an artificial neuronal network using microfluidic devices, synapses and synaptic activity are promoting neuronal Tau pathology propagation in parallel to the non-synaptic mechanisms. Our work indicates that the physical presence of synaptic contacts between neurons facilitate Tau pathology propagation. These findings can have implications for synaptic repair therapies, which may turn out to have adverse effects by promoting propagation of Tau pathology. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. SYNAPTIC DEPRESSION IN DEEP NEURAL NETWORKS FOR SPEECH PROCESSING.

    Science.gov (United States)

    Zhang, Wenhao; Li, Hanyu; Yang, Minda; Mesgarani, Nima

    2016-03-01

    A characteristic property of biological neurons is their ability to dynamically change the synaptic efficacy in response to variable input conditions. This mechanism, known as synaptic depression, significantly contributes to the formation of normalized representation of speech features. Synaptic depression also contributes to the robust performance of biological systems. In this paper, we describe how synaptic depression can be modeled and incorporated into deep neural network architectures to improve their generalization ability. We observed that when synaptic depression is added to the hidden layers of a neural network, it reduces the effect of changing background activity in the node activations. In addition, we show that when synaptic depression is included in a deep neural network trained for phoneme classification, the performance of the network improves under noisy conditions not included in the training phase. Our results suggest that more complete neuron models may further reduce the gap between the biological performance and artificial computing, resulting in networks that better generalize to novel signal conditions.

  9. Intracellular ATP influences synaptic plasticity in area CA1 of rat hippocampus via metabolism to adenosine and activity-dependent activation of adenosine A1 receptors.

    Science.gov (United States)

    zur Nedden, Stephanie; Hawley, Simon; Pentland, Naomi; Hardie, D Grahame; Doney, Alexander S; Frenguelli, Bruno G

    2011-04-20

    The extent to which brain slices reflect the energetic status of the in vivo brain has been a subject of debate. We addressed this issue to investigate the recovery of energetic parameters and adenine nucleotides in rat hippocampal slices and the influence this has on synaptic transmission and plasticity. We show that, although adenine nucleotide levels recover appreciably within 10 min of incubation, it takes 3 h for a full recovery of the energy charge (to ≥ 0.93) and that incubation of brain slices at 34°C results in a significantly higher ATP/AMP ratio and a threefold lower activity of AMP-activated protein kinase compared with slices incubated at room temperature. Supplementation of artificial CSF with d-ribose and adenine (Rib/Ade) increased the total adenine nucleotide pool of brain slices, which, when corrected for the influence of the dead cut edges, closely approached in vivo values. Rib/Ade did not affect basal synaptic transmission or paired-pulse facilitation but did inhibit long-term potentiation (LTP) induced by tetanic or weak theta-burst stimulation. This decrease in LTP was reversed by strong theta-burst stimulation or antagonizing the inhibitory adenosine A(1) receptor suggesting that the elevated tissue ATP levels had resulted in greater activity-dependent adenosine release during LTP induction. This was confirmed by direct measurement of adenosine release with adenosine biosensors. These observations provide new insight into the recovery of adenine nucleotides after slice preparation, the sources of loss of such compounds in brain slices, the means by which to restore them, and the functional consequences of doing so.

  10. A novel GABA(A) alpha 5 receptor inhibitor with therapeutic potential.

    Science.gov (United States)

    Ling, István; Mihalik, Balázs; Etherington, Lori-An; Kapus, Gábor; Pálvölgyi, Adrienn; Gigler, Gábor; Kertész, Szabolcs; Gaál, Attila; Pallagi, Katalin; Kiricsi, Péter; Szabó, Éva; Szénási, Gábor; Papp, Lilla; Hársing, László G; Lévay, György; Spedding, Michael; Lambert, Jeremy J; Belelli, Delia; Barkóczy, József; Volk, Balázs; Simig, Gyula; Gacsályi, István; Antoni, Ferenc A

    2015-10-05

    Novel 2,3-benzodiazepine and related isoquinoline derivatives, substituted at position 1 with a 2-benzothiophenyl moiety, were synthesized to produce compounds that potently inhibited the action of GABA on heterologously expressed GABAA receptors containing the alpha 5 subunit (GABAA α5), with no apparent affinity for the benzodiazepine site. Substitutions of the benzothiophene moiety at position 4 led to compounds with drug-like properties that were putative inhibitors of extra-synaptic GABAA α5 receptors and had substantial blood-brain barrier permeability. Initial characterization in vivo showed that 8-methyl-5-[4-(trifluoromethyl)-1-benzothiophen-2-yl]-1,9-dihydro-2H-[1,3]oxazolo[4,5-h][2,3]benzodiazepin-2-one was devoid of sedative, pro-convulsive or motor side-effects, and enhanced the performance of rats in the object recognition test. In summary, we have discovered a first-in-class GABA-site inhibitor of extra-synaptic GABAA α5 receptors that has promising drug-like properties and warrants further development. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. UV irradiation to mouse skin decreases hippocampal neurogenesis and synaptic protein expression via HPA axis activation.

    Science.gov (United States)

    Han, Mira; Ban, Jae-Jun; Bae, Jung-Soo; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho

    2017-11-14

    The skin senses external environment, including ultraviolet light (UV). Hippocampus is a brain region that is responsible for memory and emotion. However, changes in hippocampus by UV irradiation to the skin have not been studied. In this study, after 2 weeks of UV irradiation to the mouse skin, we examined molecular changes related to cognitive functions in the hippocampus and activation of the hypothalamic-pituitary-adrenal (HPA) axis. UV exposure to the skin decreased doublecortin-positive immature neurons and synaptic proteins, including N-methyl-D-aspartate receptor 2 A and postsynaptic density protein-95, in the hippocampus. Moreover, we observed that UV irradiation to the skin down-regulated brain-derived neurotrophic factor expression and ERK signaling in the hippocampus, which are known to modulate neurogenesis and synaptic plasticity. The cutaneous and central HPA axes were activated by UV, which resulted in significant increases in serum levels of corticosterone. Subsequently, UV irradiation to the skin activated the glucocorticoid-signaling pathway in the hippocampal dentate gyrus. Interestingly, after 6 weeks of UV irradiation, mice showed depression-like behavior in the tail suspension test. Taken together, our data suggest that repeated UV exposure through the skin may negatively affect hippocampal neurogenesis and synaptic plasticity along with HPA axis activation.

  12. Neuro-inspired computing using resistive synaptic devices

    CERN Document Server

    2017-01-01

    This book summarizes the recent breakthroughs in hardware implementation of neuro-inspired computing using resistive synaptic devices. The authors describe how two-terminal solid-state resistive memories can emulate synaptic weights in a neural network. Readers will benefit from state-of-the-art summaries of resistive synaptic devices, from the individual cell characteristics to the large-scale array integration. This book also discusses peripheral neuron circuits design challenges and design strategies. Finally, the authors describe the impact of device non-ideal properties (e.g. noise, variation, yield) and their impact on the learning performance at the system-level, using a device-algorithm co-design methodology. • Provides single-source reference to recent breakthroughs in resistive synaptic devices, not only at individual cell-level, but also at integrated array-level; • Includes detailed discussion of the peripheral circuits and array architecture design of the neuro-crossbar system; • Focuses on...

  13. Surface expression of NMDA receptor changes during memory consolidation in the crab Neohelice granulata

    Science.gov (United States)

    Hepp, Yanil; Salles, Angeles; Carbo-Tano, Martin

    2016-01-01

    The aim of the present study was to analyze the surface expression of the NMDA-like receptors during the consolidation of contextual learning in the crab Neohelice granulata. Memory storage is based on alterations in the strength of synaptic connections between neurons. The glutamatergic synapses undergo various forms of N-methyl-D aspartate receptor (NMDAR)-dependent changes in strength, a process that affects the abundance of other receptors at the synapse and underlies some forms of learning and memory. Here we propose a direct regulation of the NMDAR. Changes in NMDAR's functionality might be induced by the modification of the subunit's expression or cellular trafficking. This trafficking does not only include NMDAR's movement between synaptic and extra-synaptic localizations but also the cycling between intracellular compartments and the plasma membrane, a process called surface expression. Consolidation of contextual learning affects the surface expression of the receptor without affecting its general expression. The surface expression of the GluN1 subunit of the NMDAR is down-regulated immediately after training, up-regulated 3 h after training and returns to naïve and control levels 24 h after training. The changes in NMDAR surface expression observed in the central brain are not seen in the thoracic ganglion. A similar increment in surface expression of GluN1 in the central brain is observed 3 h after administration of the competitive GABAA receptor antagonist, bicuculline. These consolidation changes are part of a plasticity event that first, during the down-regulation, stabilizes the trace and later, at 3-h post-training, changes the threshold for synapse activation. PMID:27421895

  14. Synaptic Correlates of Working Memory Capacity.

    Science.gov (United States)

    Mi, Yuanyuan; Katkov, Mikhail; Tsodyks, Misha

    2017-01-18

    Psychological studies indicate that human ability to keep information in readily accessible working memory is limited to four items for most people. This extremely low capacity severely limits execution of many cognitive tasks, but its neuronal underpinnings remain unclear. Here we show that in the framework of synaptic theory of working memory, capacity can be analytically estimated to scale with characteristic time of short-term synaptic depression relative to synaptic current time constant. The number of items in working memory can be regulated by external excitation, enabling the system to be tuned to the desired load and to clear the working memory of currently held items to make room for new ones. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Depression as a Glial-Based Synaptic Dysfunction

    Directory of Open Access Journals (Sweden)

    Daniel eRial

    2016-01-01

    Full Text Available Recent studies combining pharmacological, behavioral, electrophysiological and molecular approaches indicate that depression results from maladaptive neuroplastic processing occurring in defined frontolimbic circuits responsible for emotional processing such as the prefrontal cortex, hippocampus, amygdala and ventral striatum. However, the exact mechanisms controlling synaptic plasticity that are disrupted to trigger depressive conditions have not been elucidated. Since glial cells (astrocytes and microglia tightly and dynamically interact with synapses, engaging a bi-directional communication critical for the processing of synaptic information, we now revisit the role of glial cells in the etiology of depression focusing on a dysfunction of the ‘quad-partite’ synapse. This interest is supported by the observations that depressive-like conditions are associated with a decreased density and hypofunction of astrocytes and with an increase microglia ‘activation’ in frontolimbic regions, which is expected to contribute for the synaptic dysfunction present in depression. Furthermore, the traditional culprits of depression (glucocorticoids, biogenic amines, BDNF affect glia functioning, whereas antidepressant treatments (SSRIs, electroshock, deep brain stimulation recover glia functioning. In this context of a quad-partite synapse, systems modulating glia-synapse bidirectional communication - such as the purinergic neuromodulation system operated by ATP and adenosine - emerge as promising candidates to re-normalize synaptic function by combining direct synaptic effects with an ability to also control astrocyte and microglia function. This proposed triple action of purines to control aberrant synaptic function illustrates the rationale to consider the interference with glia dysfunction as a mechanism of action driving the design of future pharmacological tools to manage depression.

  16. Synaptic Vesicle Endocytosis in Different Model Systems

    Directory of Open Access Journals (Sweden)

    Quan Gan

    2018-06-01

    Full Text Available Neurotransmission in complex animals depends on a choir of functionally distinct synapses releasing neurotransmitters in a highly coordinated manner. During synaptic signaling, vesicles fuse with the plasma membrane to release their contents. The rate of vesicle fusion is high and can exceed the rate at which synaptic vesicles can be re-supplied by distant sources. Thus, local compensatory endocytosis is needed to replenish the synaptic vesicle pools. Over the last four decades, various experimental methods and model systems have been used to study the cellular and molecular mechanisms underlying synaptic vesicle cycle. Clathrin-mediated endocytosis is thought to be the predominant mechanism for synaptic vesicle recycling. However, recent studies suggest significant contribution from other modes of endocytosis, including fast compensatory endocytosis, activity-dependent bulk endocytosis, ultrafast endocytosis, as well as kiss-and-run. Currently, it is not clear whether a universal model of vesicle recycling exist for all types of synapses. It is possible that each synapse type employs a particular mode of endocytosis. Alternatively, multiple modes of endocytosis operate at the same synapse, and the synapse toggles between different modes depending on its activity level. Here we compile review and research articles based on well-characterized model systems: frog neuromuscular junctions, C. elegans neuromuscular junctions, Drosophila neuromuscular junctions, lamprey reticulospinal giant axons, goldfish retinal ribbon synapses, the calyx of Held, and rodent hippocampal synapses. We will compare these systems in terms of their known modes and kinetics of synaptic vesicle endocytosis, as well as the underlying molecular machineries. We will also provide the future development of this field.

  17. Synaptic neurochemistry: Potential targets for the development of new tracer imaging methods

    International Nuclear Information System (INIS)

    Frey, K.A.

    1991-01-01

    Radiotracer techniques for measuring biochemical and pharmacologic processes unique to the synapse and to chemically defined neuronal populations are now under investigation. These methods make use of neuronal biochemical specializations determined by invasive animal experiments and confirmed by human biopsy and autopsy. Early investigators focused on determination of neurotransmitter receptors. More recently, attention has turned to evaluation of presynaptic markers such as steps in neurotransmitter synthesis, storage and degradation, and to the potential evaluation of new postsynaptic markers, including chemical second-messenger activities and receptor-grated ion channel distributions. In this review, synaptic neurochemistry is presented with attention to potential radiotracer imaging methods. Strategies for selecting and applying neuropharmacologic methods to disorders of the human brain are outlined. The methodological requirements of new radiotracer imaging techniques are summarized according to their desired application. Finally, distinctions between in vitro and in vivo measurements of these processes are outlined, along with strategies for detecting such differences

  18. Ethanol extract of the seed of Zizyphus jujuba var. spinosa potentiates hippocampal synaptic transmission through mitogen-activated protein kinase, adenylyl cyclase, and protein kinase A pathways.

    Science.gov (United States)

    Jo, So Yeon; Jung, In Ho; Yi, Jee Hyun; Choi, Tae Joon; Lee, Seungheon; Jung, Ji Wook; Yun, Jeanho; Lee, Young Choon; Ryu, Jong Hoon; Kim, Dong Hyun

    2017-03-22

    As the seed of Zizyphus jujuba var. spinosa (Bunge) Hu ex H.F. Chow (Rhamnaceae) has been used to sleep disturbances in traditional Chinese and Korean medicine, many previous studies have focused on its sedative effect. Recently, we reported the neuroprotective effect of the effect of Z. jujuba var. spinosa. However, its effects on synaptic function have not yet been studied. In this project, we examined the action of ethanol extract of the seed of Z. jujuba var. spinosa (DHP1401) on synaptic transmission in the hippocampus. To investigate the effects of DHP1401, field recordings were conducted using hippocampal slices (400µm). Object recognition test was introduced to examine whether DHP1401 affect normal recognition memory. DHP1401 (50μg/ml) induced a significant increase in synaptic activity in Shaffer collateral pathway in a concentration-dependent manner. This increase of synaptic responses was blocked by NBQX, a broad spectrum α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist, but not IEM-1460, a Ca 2+ -permeable AMPAR blocker. Moreover, U0126, a mitogen-activated protein kinase inhibitor, SQ22536, an adenylyl cyclase inhibitor, and PKI, a protein kinase A inhibitor, blocked DHP1401-induced increase in synaptic transmission. Finally, DHP1401 facilitated object recognition memory. These results suggest that DHP1401 increase synaptic transmission through increase of synaptic AMPAR transmission via MAPK, AC and PAK. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  19. miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity.

    Directory of Open Access Journals (Sweden)

    Judit Remenyi

    Full Text Available miR-132 and miR-212 are two closely related miRNAs encoded in the same intron of a small non-coding gene, which have been suggested to play roles in both immune and neuronal function. We describe here the generation and initial characterisation of a miR-132/212 double knockout mouse. These mice were viable and fertile with no overt adverse phenotype. Analysis of innate immune responses, including TLR-induced cytokine production and IFNβ induction in response to viral infection of primary fibroblasts did not reveal any phenotype in the knockouts. In contrast, the loss of miR-132 and miR-212, while not overtly affecting neuronal morphology, did affect synaptic function. In both hippocampal and neocortical slices miR-132/212 knockout reduced basal synaptic transmission, without affecting paired-pulse facilitation. Hippocampal long-term potentiation (LTP induced by tetanic stimulation was not affected by miR-132/212 deletion, whilst theta burst LTP was enhanced. In contrast, neocortical theta burst-induced LTP was inhibited by loss of miR-132/212. Together these results indicate that miR-132 and/or miR-212 play a significant role in synaptic function, possibly by regulating the number of postsynaptic AMPA receptors under basal conditions and during activity-dependent synaptic plasticity.

  20. Low-frequency transcranial magnetic stimulation is beneficial for enhancing synaptic plasticity in the aging brain

    Directory of Open Access Journals (Sweden)

    Zhan-chi Zhang

    2015-01-01

    Full Text Available In the aging brain, cognitive function gradually declines and causes a progressive reduction in the structural and functional plasticity of the hippocampus. Transcranial magnetic stimulation is an emerging and novel neurological and psychiatric tool used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency transcranial magnetic stimulation (≤1 Hz ameliorates synaptic plasticity and spatial cognitive deficits in learning-impaired mice. However, the mechanisms by which this treatment improves these deficits during normal aging are still unknown. Therefore, the current study investigated the effects of transcranial magnetic stimulation on the brain-derived neurotrophic factor signal pathway, synaptic protein markers, and spatial memory behavior in the hippocampus of normal aged mice. The study also investigated the downstream regulator, Fyn kinase, and the downstream effectors, synaptophysin and growth-associated protein 43 (both synaptic markers, to determine the possible mechanisms by which transcranial magnetic stimulation regulates cognitive capacity. Transcranial magnetic stimulation with low intensity (110% average resting motor threshold intensity, 1 Hz increased mRNA and protein levels of brain-derived neurotrophic factor, tropomyosin receptor kinase B, and Fyn in the hippocampus of aged mice. The treatment also upregulated the mRNA and protein expression of synaptophysin and growth-associated protein 43 in the hippocampus of these mice. In conclusion, brain-derived neurotrophic factor signaling may play an important role in sustaining and regulating structural synaptic plasticity induced by transcranial magnetic stimulation in the hippocampus of aging mice, and Fyn may be critical during this regulation. These responses may change the structural plasticity of the aging hippocampus, thereby improving cognitive function.

  1. Role of the origin of glutamatergic synaptic inputs in controlling synaptic plasticity and its modulation by alcohol in mice nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Gilles Erwann Martin

    2015-07-01

    Full Text Available It is widely accepted that long-lasting changes of synaptic strength in the nucleus accumbens, a brain region involved in drug reward, mediate acute and chronic effects of alcohol. However, our understanding of the mechanisms underlying the effects of alcohol on synaptic plasticity is limited by the fact that the nucleus accumbens receives glutamatergic inputs from distinct brain regions (e.g. the prefrontal cortex, the amygdala and the hippocampus, each region providing different information (e.g. spatial, emotional and cognitive. Combining whole-cell patch-clamp recordings and the optogenetic technique, we examined synaptic plasticity, and its regulation by alcohol, at cortical, hippocampal and amygdala inputs in fresh slices of mouse tissue. We showed that the origin of synaptic inputs determines the basic properties of glutamatergic synaptic transmission, the expression of spike-timing dependent long-term depression (tLTD and long-term potentiation (tLTP and their regulation by alcohol. While we observed both tLTP and tLTD at amygadala and hippocampal synapses, we showed that cortical inputs only undergo tLTD. Functionally, we provide evidence that acute EtOH has little effects on higher order information coming from the prefrontal cortex (PFCx, while severely impacting the ability of emotional and contextual information to induce long-lasting changes of synaptic strength.

  2. Long-term potentiation in the CA1 hippocampus induced by NR2A subunit-containing NMDA glutamate receptors is mediated by Ras-GRF2/Erk map kinase signaling.

    Directory of Open Access Journals (Sweden)

    Shan-xue Jin

    Full Text Available BACKGROUND: NMDA-type glutamate receptors (NMDARs are major contributors to long-term potentiation (LTP, a form of synaptic plasticity implicated in the process of learning and memory. These receptors consist of calcium-permeating NR1 and multiple regulatory NR2 subunits. A majority of studies show that both NR2A and NR2B-containing NMDARs can contribute to LTP, but their unique contributions to this form of synaptic plasticity remain poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we show that NR2A and NR2B-containing receptors promote LTP differently in the CA1 hippocampus of 1-month old mice, with the NR2A receptors functioning through Ras-GRF2 and its downstream effector, Erk Map kinase, and NR2B receptors functioning independently of these signaling molecules. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that NR2A-, but not NR2B, containing NMDA receptors induce LTP in pyramidal neurons of the CA1 hippocampus from 1 month old mice through Ras-GRF2 and Erk. This difference add new significance to the observation that the relative levels of these NMDAR subtypes is regulated in neurons, such that NR2A-containing receptors become more prominent late in postnatal development, after sensory experience and synaptic activity.

  3. Oxidative Stress, Synaptic Dysfunction, and Alzheimer's Disease.

    Science.gov (United States)

    Tönnies, Eric; Trushina, Eugenia

    2017-01-01

    Alzheimer's disease (AD) is a devastating neurodegenerative disorder without a cure. Most AD cases are sporadic where age represents the greatest risk factor. Lack of understanding of the disease mechanism hinders the development of efficacious therapeutic approaches. The loss of synapses in the affected brain regions correlates best with cognitive impairment in AD patients and has been considered as the early mechanism that precedes neuronal loss. Oxidative stress has been recognized as a contributing factor in aging and in the progression of multiple neurodegenerative diseases including AD. Increased production of reactive oxygen species (ROS) associated with age- and disease-dependent loss of mitochondrial function, altered metal homeostasis, and reduced antioxidant defense directly affect synaptic activity and neurotransmission in neurons leading to cognitive dysfunction. In addition, molecular targets affected by ROS include nuclear and mitochondrial DNA, lipids, proteins, calcium homeostasis, mitochondrial dynamics and function, cellular architecture, receptor trafficking and endocytosis, and energy homeostasis. Abnormal cellular metabolism in turn could affect the production and accumulation of amyloid-β (Aβ) and hyperphosphorylated Tau protein, which independently could exacerbate mitochondrial dysfunction and ROS production, thereby contributing to a vicious cycle. While mounting evidence implicates ROS in the AD etiology, clinical trials with antioxidant therapies have not produced consistent results. In this review, we will discuss the role of oxidative stress in synaptic dysfunction in AD, innovative therapeutic strategies evolved based on a better understanding of the complexity of molecular mechanisms of AD, and the dual role ROS play in health and disease.

  4. The GABA[subscript A] Receptor Agonist Muscimol Induces an Age- and Region-Dependent Form of Long-Term Depression in the Mouse Striatum

    Science.gov (United States)

    Zhang, Xiaoqun; Yao, Ning; Chergui, Karima

    2016-01-01

    Several forms of long-term depression (LTD) of glutamatergic synaptic transmission have been identified in the dorsal striatum and in the nucleus accumbens (NAc). Such experience-dependent synaptic plasticity might play important roles in reward-related learning. The GABA[subscript A] receptor agonist muscimol was recently found to trigger a…

  5. Synchronization of map-based neurons with memory and synaptic delay

    Energy Technology Data Exchange (ETDEWEB)

    Sausedo-Solorio, J.M. [Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, 42074 Pachuca, Hidalgo (Mexico); Pisarchik, A.N., E-mail: apisarch@cio.mx [Centro de Investigaciones en Optica, Loma del Bosque 115, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Centre for Biomedical Technology, Technical University of Madrid, Campus Montegancedo, 28223 Pozuelo de Alarcon, Madrid (Spain)

    2014-06-13

    Synchronization of two synaptically coupled neurons with memory and synaptic delay is studied using the Rulkov map, one of the simplest neuron models which displays specific features inherent to bursting dynamics. We demonstrate a transition from lag to anticipated synchronization as the relationship between the memory duration and the synaptic delay time changes. The neuron maps synchronize either with anticipation, if the memory is longer than the synaptic delay time, or with lag otherwise. The mean anticipation time is equal to the difference between the memory and synaptic delay independently of the coupling strength. Frequency entrainment and phase-locking phenomena as well as a transition from regular spikes to chaos are demonstrated with respect to the coupling strength. - Highlights: • We study synchronization of neurons with memory and synaptic delay in the map model. • Neurons synchronize either with anticipation or with lag depending on delay time. • Mean anticipation time is equal to the difference between memory and synaptic delay. • Frequency entrainment and phase locking are studied with respect to the coupling.

  6. Synaptic Plasticity, Dementia and Alzheimer Disease.

    Science.gov (United States)

    Skaper, Stephen D; Facci, Laura; Zusso, Morena; Giusti, Pietro

    2017-01-01

    Neuroplasticity is not only shaped by learning and memory but is also a mediator of responses to neuron attrition and injury (compensatory plasticity). As an ongoing process it reacts to neuronal cell activity and injury, death, and genesis, which encompasses the modulation of structural and functional processes of axons, dendrites, and synapses. The range of structural elements that comprise plasticity includes long-term potentiation (a cellular correlate of learning and memory), synaptic efficacy and remodelling, synaptogenesis, axonal sprouting and dendritic remodelling, and neurogenesis and recruitment. Degenerative diseases of the human brain continue to pose one of biomedicine's most intractable problems. Research on human neurodegeneration is now moving from descriptive to mechanistic analyses. At the same time, it is increasing apparently that morphological lesions traditionally used by neuropathologists to confirm post-mortem clinical diagnosis might furnish us with an experimentally tractable handle to understand causative pathways. Consider the aging-dependent neurodegenerative disorder Alzheimer's disease (AD) which is characterised at the neuropathological level by deposits of insoluble amyloid β-peptide (Aβ) in extracellular plaques and aggregated tau protein, which is found largely in the intracellular neurofibrillary tangles. We now appreciate that mild cognitive impairment in early AD may be due to synaptic dysfunction caused by accumulation of non-fibrillar, oligomeric Aβ, occurring well in advance of evident widespread synaptic loss and neurodegeneration. Soluble Aβ oligomers can adversely affect synaptic structure and plasticity at extremely low concentrations, although the molecular substrates by which synaptic memory mechanisms are disrupted remain to be fully elucidated. The dendritic spine constitutes a primary locus of excitatory synaptic transmission in the mammalian central nervous system. These structures protruding from dendritic

  7. Trans-synaptic zinc mobilization improves social interaction in two mouse models of autism through NMDAR activation

    Science.gov (United States)

    Lee, Eun-Jae; Lee, Hyejin; Huang, Tzyy-Nan; Chung, Changuk; Shin, Wangyong; Kim, Kyungdeok; Koh, Jae-Young; Hsueh, Yi-Ping; Kim, Eunjoon

    2015-01-01

    Genetic aspects of autism spectrum disorders (ASDs) have recently been extensively explored, but environmental influences that affect ASDs have received considerably less attention. Zinc (Zn) is a nutritional factor implicated in ASDs, but evidence for a strong association and linking mechanism is largely lacking. Here we report that trans-synaptic Zn mobilization rapidly rescues social interaction in two independent mouse models of ASD. In mice lacking Shank2, an excitatory postsynaptic scaffolding protein, postsynaptic Zn elevation induced by clioquinol (a Zn chelator and ionophore) improves social interaction. Postsynaptic Zn is mainly derived from presynaptic pools and activates NMDA receptors (NMDARs) through postsynaptic activation of the tyrosine kinase Src. Clioquinol also improves social interaction in mice haploinsufficient for the transcription factor Tbr1, which accompanies NMDAR activation in the amygdala. These results suggest that trans-synaptic Zn mobilization induced by clioquinol rescues social deficits in mouse models of ASD through postsynaptic Src and NMDAR activation. PMID:25981743

  8. Cocaine Promotes Coincidence Detection and Lowers Induction Threshold during Hebbian Associative Synaptic Potentiation in Prefrontal Cortex.

    Science.gov (United States)

    Ruan, Hongyu; Yao, Wei-Dong

    2017-01-25

    Addictive drugs usurp neural plasticity mechanisms that normally serve reward-related learning and memory, primarily by evoking changes in glutamatergic synaptic strength in the mesocorticolimbic dopamine circuitry. Here, we show that repeated cocaine exposure in vivo does not alter synaptic strength in the mouse prefrontal cortex during an early period of withdrawal, but instead modifies a Hebbian quantitative synaptic learning rule by broadening the temporal window and lowers the induction threshold for spike-timing-dependent LTP (t-LTP). After repeated, but not single, daily cocaine injections, t-LTP in layer V pyramidal neurons is induced at +30 ms, a normally ineffective timing interval for t-LTP induction in saline-exposed mice. This cocaine-induced, extended-timing t-LTP lasts for ∼1 week after terminating cocaine and is accompanied by an increased susceptibility to potentiation by fewer pre-post spike pairs, indicating a reduced t-LTP induction threshold. Basal synaptic strength and the maximal attainable t-LTP magnitude remain unchanged after cocaine exposure. We further show that the cocaine facilitation of t-LTP induction is caused by sensitized D1-cAMP/protein kinase A dopamine signaling in pyramidal neurons, which then pathologically recruits voltage-gated l-type Ca 2+ channels that synergize with GluN2A-containing NMDA receptors to drive t-LTP at extended timing. Our results illustrate a mechanism by which cocaine, acting on a key neuromodulation pathway, modifies the coincidence detection window during Hebbian plasticity to facilitate associative synaptic potentiation in prefrontal excitatory circuits. By modifying rules that govern activity-dependent synaptic plasticity, addictive drugs can derail the experience-driven neural circuit remodeling process important for executive control of reward and addiction. It is believed that addictive drugs often render an addict's brain reward system hypersensitive, leaving the individual more susceptible to

  9. Selective effect of cell membrane on synaptic neurotransmission

    DEFF Research Database (Denmark)

    Postila, Pekka A.; Vattulainen, Ilpo; Róg, Tomasz

    2016-01-01

    Atomistic molecular dynamics simulations were performed with 13 non-peptidic neurotransmitters (NTs) in three different membrane environments. The results provide compelling evidence that NTs are divided into membrane-binding and membrane-nonbinding molecules. NTs adhere to the postsynaptic membr...... the importance of cell membrane and specific lipids for neurotransmission, should to be of interest to neuroscientists, drug industry and the general public alike.......Atomistic molecular dynamics simulations were performed with 13 non-peptidic neurotransmitters (NTs) in three different membrane environments. The results provide compelling evidence that NTs are divided into membrane-binding and membrane-nonbinding molecules. NTs adhere to the postsynaptic...... membrane surface whenever the ligand-binding sites of their synaptic receptors are buried in the lipid bilayer. In contrast, NTs that have extracellular ligand-binding sites do not have a similar tendency to adhere to the membrane surface. This finding is a seemingly simple yet important addition...

  10. Age-related changes in the hippocampus (loss of synaptophysin and glial-synaptic interaction) are modified by systemic treatment with an NCAM-derived peptide, FGL.

    Science.gov (United States)

    Ojo, Bunmi; Rezaie, Payam; Gabbott, Paul L; Davies, Heather; Colyer, Frances; Cowley, Thelma R; Lynch, Marina; Stewart, Michael G

    2012-07-01

    Altered synaptic morphology, progressive loss of synapses and glial (astrocyte and microglial) cell activation are considered as characteristic hallmarks of aging. Recent evidence suggests that there is a concomitant age-related decrease in expression of the presynaptic protein, synaptophysin, and the neuronal glycoprotein CD200, which, by interacting with its receptor, plays a role in maintaining microglia in a quiescent state. These age-related changes may be indicative of reduced neuroglial support of synapses. FG Loop (FGL) peptide synthesized from the second fibronectin type III module of neural cell adhesion molecule (NCAM), has previously been shown to attenuate age-related glial cell activation, and to 'restore' cognitive function in aged rats. The mechanisms by which FGL exerts these neuroprotective effects remain unclear, but could involve regulation of CD200, modifying glial-synaptic interactions (affecting neuroglial 'support' at synapses), or impacting directly on synaptic function. Light and electron microscopic (EM) analyses were undertaken to investigate whether systemic treatment with FGL (i) alters CD200, synaptophysin (presynaptic) and PSD-95 (postsynaptic) immunohistochemical expression levels, (ii) affects synaptic number, or (iii) exerts any effects on glial-synaptic interactions within young (4 month-old) and aged (22 month-old) rat hippocampus. Treatment with FGL attenuated the age-related loss of synaptophysin immunoreactivity (-ir) within CA3 and hilus (with no major effect on PSD-95-ir), and of CD200-ir specifically in the CA3 region. Ultrastructural morphometric analyses showed that FGL treatment (i) prevented age-related loss in astrocyte-synaptic contacts, (ii) reduced microglia-synaptic contacts in the CA3 stratum radiatum, but (iii) had no effect on the mean number of synapses in this region. These data suggest that FGL mediates its neuroprotective effects by regulating glial-synaptic interaction. Copyright © 2011 Elsevier Inc. All

  11. Chronic stress enhances synaptic plasticity due to disinhibition in the anterior cingulate cortex and induces hyper-locomotion in mice.

    Science.gov (United States)

    Ito, Hiroshi; Nagano, Masatoshi; Suzuki, Hidenori; Murakoshi, Takayuki

    2010-01-01

    The anterior cingulate cortex (ACC) is involved in the pathophysiology of a variety of mental disorders, many of which are exacerbated by stress. There are few studies, however, of stress-induced modification of synaptic function in the ACC that is relevant to emotional behavior. We investigated the effects of chronic restraint stress (CRS) on behavior and synaptic function in layers II/III of the ACC in mice. The duration of field excitatory postsynaptic potentials (fEPSPs) was longer in CRS mice than in control mice. The frequency of miniature inhibitory postsynaptic currents (mIPSCs) recorded by whole-cell patch-clamping was reduced in CRS mice, while miniature excitatory postsynaptic currents (mEPSCs) remained unchanged. Paired-pulse ratios (PPRs) of the fEPSP and evoked EPSC were larger in CRS. There was no difference in NMDA component of evoked EPSCs between the groups. Both long-term potentiation (LTP) and long-term depression of fEPSP were larger in CRS mice than in control mice. The differences between the groups in fEPSP duration, PPRs and LTP level were not observed when the GABA(A) receptor was blocked by bicuculline. Compared to control mice, CRS mice exhibited hyper-locomotive activity in an open field test, while no difference was observed between the groups in anxiety-like behavior in a light/dark choice test. CRS mice displayed decreased freezing behavior in fear conditioning tests compared to control mice. These findings suggest that CRS facilitates synaptic plasticity in the ACC via increased excitability due to disinhibition of GABA(A) receptor signalling, which may underlie induction of behavioral hyper-locomotive activity after CRS. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Heat capacity and thermal expansion of the itinerant helimagnet MnSi

    International Nuclear Information System (INIS)

    Stishov, S M; Petrova, A E; Khasanov, S; Panova, G Kh; Shikov, A A; Lashley, J C; Wu, D; Lograsso, T A

    2008-01-01

    The heat capacity and thermal expansion of a high quality single crystal of MnSi were measured at ambient pressure at zero and high magnetic fields. The calculated magnetic entropy change in the temperature range 0-30 K is less than 0.1R, a low value that emphasizes the itinerant nature of magnetism in MnSi. A linear temperature term dominates the thermal expansion coefficient in the range 30-150 K, which correlates with an enhancement of the linear electronic term in the heat capacity. A surprising similarity among the variations of the heat capacity, thermal expansion coefficient and temperature derivative of the resistivity is observed through the phase transition in MnSi. Specific forms of the heat capacity, thermal expansion coefficient and temperature derivative of resistivity at the phase transition to a helical magnetic state near 29 K are interpreted as the combination of sharp first-order features and broad peaks or shallow valleys of as yet unknown origin. The appearance of these broad satellites probably hints at a frustrated magnetic state slightly above the transition temperature in MnSi

  13. Synaptic plasticity and spatial working memory are impaired in the CD mouse model of Williams-Beuren syndrome.

    Science.gov (United States)

    Borralleras, Cristina; Mato, Susana; Amédée, Thierry; Matute, Carlos; Mulle, Christophe; Pérez-Jurado, Luis A; Campuzano, Victoria

    2016-08-02

    Mice heterozygous for a complete deletion (CD) equivalent to the most common deletion found in individuals with Williams-Beuren syndrome (WBS) recapitulate relevant features of the neurocognitive phenotype, such as hypersociability, along with some neuroanatomical alterations in specific brain areas. However, the pathophysiological mechanisms underlying these phenotypes still remain largely unknown. We have studied the synaptic function and cognition in CD mice using hippocampal slices and a behavioral test sensitive to hippocampal function. We have found that long-term potentiation (LTP) elicited by theta burst stimulation (TBS) was significantly impaired in hippocampal field CA1 of CD animals. This deficit might be associated with the observed alterations in spatial working memory. However, we did not detect changes in presynaptic function, LTP induction mechanisms or AMPA and NMDA receptor function. Reduced levels of Brain-derived neurotrophic factor (BDNF) were present in the CA1-CA3 hippocampal region of CD mice, which could account for LTP deficits in these mice. Taken together, these results suggest a defect of CA1 synapses in CD mice to sustain synaptic strength after stimulation. These data represent the first description of synaptic functional deficits in CD mice and further highlights the utility of the CD model to study the mechanisms underlying the WBS neurocognitive profile.

  14. The CaM Kinase CMK-1 Mediates a Negative Feedback Mechanism Coupling the C. elegans Glutamate Receptor GLR-1 with Its Own Transcription.

    Directory of Open Access Journals (Sweden)

    Benjamin J Moss

    2016-07-01

    Full Text Available Regulation of synaptic AMPA receptor levels is a major mechanism underlying homeostatic synaptic scaling. While in vitro studies have implicated several molecules in synaptic scaling, the in vivo mechanisms linking chronic changes in synaptic activity to alterations in AMPA receptor expression are not well understood. Here we use a genetic approach in C. elegans to dissect a negative feedback pathway coupling levels of the AMPA receptor GLR-1 with its own transcription. GLR-1 trafficking mutants with decreased synaptic receptors in the ventral nerve cord (VNC exhibit compensatory increases in glr-1 mRNA, which can be attributed to increased glr-1 transcription. Glutamatergic transmission mutants lacking presynaptic eat-4/VGLUT or postsynaptic glr-1, exhibit compensatory increases in glr-1 transcription, suggesting that loss of GLR-1 activity is sufficient to trigger the feedback pathway. Direct and specific inhibition of GLR-1-expressing neurons using a chemical genetic silencing approach also results in increased glr-1 transcription. Conversely, expression of a constitutively active version of GLR-1 results in decreased glr-1 transcription, suggesting that bidirectional changes in GLR-1 signaling results in reciprocal alterations in glr-1 transcription. We identify the CMK-1/CaMK signaling axis as a mediator of the glr-1 transcriptional feedback mechanism. Loss-of-function mutations in the upstream kinase ckk-1/CaMKK, the CaM kinase cmk-1/CaMK, or a downstream transcription factor crh-1/CREB, result in increased glr-1 transcription, suggesting that the CMK-1 signaling pathway functions to repress glr-1 transcription. Genetic double mutant analyses suggest that CMK-1 signaling is required for the glr-1 transcriptional feedback pathway. Furthermore, alterations in GLR-1 signaling that trigger the feedback mechanism also regulate the nucleocytoplasmic distribution of CMK-1, and activated, nuclear-localized CMK-1 blocks the feedback pathway. We

  15. β adrenergic receptor modulation of neurotransmission to cardiac vagal neurons in the nucleus ambiguus.

    Science.gov (United States)

    Bateman, R J; Boychuk, C R; Philbin, K E; Mendelowitz, D

    2012-05-17

    β-adrenergic receptors are a class of G protein-coupled receptors that have essential roles in regulating heart rate, blood pressure, and other cardiorespiratory functions. Although the role of β adrenergic receptors in the peripheral nervous system is well characterized, very little is known about their role in the central nervous system despite being localized in many brain regions involved in autonomic activity and regulation. Since parasympathetic activity to the heart is dominated by cardiac vagal neurons (CVNs) originating in the nucleus ambiguus (NA), β adrenergic receptors localized in the NA represent a potential target for modulating cardiac vagal activity and heart rate. This study tests the hypothesis that activation of β adrenergic receptors alters the membrane properties and synaptic neurotransmission to CVNs. CVNs were identified in brainstem slices, and membrane properties and synaptic events were recorded using the whole-cell voltage-clamp technique. The nonselective β agonist isoproterenol significantly decreased inhibitory GABAergic and glycinergic as well as excitatory glutamatergic neurotransmission to CVNs. In addition, the β(1)-selective receptor agonist dobutamine, but not β(2) or β(3) receptor agonists, significantly decreased inhibitory GABAergic and glycinergic and excitatory glutamatergic neurotransmission to CVNs. These decreases in neurotransmission to CVNs persisted in the presence of tetrodotoxin (TTX). These results provide a mechanism by which activation of adrenergic receptors in the brainstem can alter parasympathetic activity to the heart. Likely physiological roles for this adrenergic receptor activation are coordination of parasympathetic-sympathetic activity and β receptor-mediated increases in heart rate upon arousal. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Itinerant ferromagnetism in the As 4p conduction band of Ba_{0.6}K_{0.4}Mn_{2}As_{2} identified by X-ray magnetic circular dichroism.

    Science.gov (United States)

    Ueland, B G; Pandey, Abhishek; Lee, Y; Sapkota, A; Choi, Y; Haskel, D; Rosenberg, R A; Lang, J C; Harmon, B N; Johnston, D C; Kreyssig, A; Goldman, A I

    2015-05-29

    X-ray magnetic circular dichroism (XMCD) measurements on single-crystal and powder samples of Ba_{0.6}K_{0.4}Mn_{2}As_{2} show that the ferromagnetism below T_{C}≈100  K arises in the As 4p conduction band. No XMCD signal is observed at the Mn x-ray absorption edges. Below T_{C}, however, a clear XMCD signal is found at the As K edge which increases with decreasing temperature. The XMCD signal is absent in data taken with the beam directed parallel to the crystallographic c axis indicating that the orbital magnetic moment lies in the basal plane of the tetragonal lattice. These results show that the previously reported itinerant ferromagnetism is associated with the As 4p conduction band and that distinct local-moment antiferromagnetism and itinerant ferromagnetism with perpendicular easy axes coexist in this compound at low temperature.

  17. A presynaptic role for PKA in synaptic tagging and memory.

    Science.gov (United States)

    Park, Alan Jung; Havekes, Robbert; Choi, Jennifer Hk; Luczak, Vince; Nie, Ting; Huang, Ted; Abel, Ted

    2014-10-01

    Protein kinase A (PKA) and other signaling molecules are spatially restricted within neurons by A-kinase anchoring proteins (AKAPs). Although studies on compartmentalized PKA signaling have focused on postsynaptic mechanisms, presynaptically anchored PKA may contribute to synaptic plasticity and memory because PKA also regulates presynaptic transmitter release. Here, we examine this issue using genetic and pharmacological application of Ht31, a PKA anchoring disrupting peptide. At the hippocampal Schaffer collateral CA3-CA1 synapse, Ht31 treatment elicits a rapid decay of synaptic responses to repetitive stimuli, indicating a fast depletion of the readily releasable pool of synaptic vesicles. The interaction between PKA and proteins involved in producing this pool of synaptic vesicles is supported by biochemical assays showing that synaptic vesicle protein 2 (SV2), Rim1, and SNAP25 are components of a complex that interacts with cAMP. Moreover, acute treatment with Ht31 reduces the levels of SV2. Finally, experiments with transgenic mouse lines, which express Ht31 in excitatory neurons at the Schaffer collateral CA3-CA1 synapse, highlight a requirement for presynaptically anchored PKA in pathway-specific synaptic tagging and long-term contextual fear memory. These results suggest that a presynaptically compartmentalized PKA is critical for synaptic plasticity and memory by regulating the readily releasable pool of synaptic vesicles. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. The Dopamine D2 Receptor Gene in Lamprey, Its Expression in the Striatum and Cellular Effects of D2 Receptor Activation

    Science.gov (United States)

    Robertson, Brita; Huerta-Ocampo, Icnelia; Ericsson, Jesper; Stephenson-Jones, Marcus; Pérez-Fernández, Juan; Bolam, J. Paul; Diaz-Heijtz, Rochellys; Grillner, Sten

    2012-01-01

    All basal ganglia subnuclei have recently been identified in lampreys, the phylogenetically oldest group of vertebrates. Furthermore, the interconnectivity of these nuclei is similar to mammals and tyrosine hydroxylase-positive (dopaminergic) fibers have been detected within the input layer, the striatum. Striatal processing is critically dependent on the interplay with the dopamine system, and we explore here whether D2 receptors are expressed in the lamprey striatum and their potential role. We have identified a cDNA encoding the dopamine D2 receptor from the lamprey brain and the deduced protein sequence showed close phylogenetic relationship with other vertebrate D2 receptors, and an almost 100% identity within the transmembrane domains containing the amino acids essential for dopamine binding. There was a strong and distinct expression of D2 receptor mRNA in a subpopulation of striatal neurons, and in the same region tyrosine hydroxylase-immunoreactive synaptic terminals were identified at the ultrastructural level. The synaptic incidence of tyrosine hydroxylase-immunoreactive boutons was highest in a region ventrolateral to the compact layer of striatal neurons, a region where most striatal dendrites arborise. Application of a D2 receptor agonist modulates striatal neurons by causing a reduced spike discharge and a diminished post-inhibitory rebound. We conclude that the D2 receptor gene had already evolved in the earliest group of vertebrates, cyclostomes, when they diverged from the main vertebrate line of evolution (560 mya), and that it is expressed in striatum where it exerts similar cellular effects to that in other vertebrates. These results together with our previous published data (Stephenson-Jones et al. 2011, 2012) further emphasize the high degree of conservation of the basal ganglia, also with regard to the indirect loop, and its role as a basic mechanism for action selection in all vertebrates. PMID:22563388

  19. The Role of GluK4 in Synaptic Plasticity and Affective Behavior in Mice

    Science.gov (United States)

    Catches, Justin Samuel

    Kainate receptors (KARs) are glutamate-gated ion channels that signal through both ionotropic and metabotropic pathways (Contractor et al., 2011). Combinations of five KAR subunits (GluK1-5) form tetrameric receptors with GluK1, GluK2, and GluK3 able to form functional homomeric channels. The high-affinity subunits, GluK4 and GluK5, do not form homomeric channels but modify the properties of heteromeric receptors. Expression of the GluK4 receptor subunit in the forebrain is restricted to the CA3 region of the hippocampus and dentate gyrus regions where KARs modulate synaptic plasticity. In this study, ablation of Grik4, which encodes GluK4, in mice reduced KAR synaptic currents and altered activation properties of postsynaptic receptors but left two forms of presynaptic short-term plasticity intact. Disruption of both Grik4 and Grik5 caused complete loss of the postsynaptic ionotropic KAR current and impaired presynaptic frequency facilitation. Additionally, KAR surface expression was altered at pre- and postsynaptic sites at the MF synapse. Despite the loss of ionotropic signaling, KAR-mediated inhibition of the slow afterhyperpolarization current, which is dependent on metabotropic signaling, was intact in CA3 neurons. Long-term potentiation at the MF-CA3 synapse was reduced, likely through a loss of KAR modulation of excitability of the presynaptic MF axons. Genetic variants in the human GRIK4 gene alter the susceptibility for affective disorders (Bloss and Hunter, 2010). We found that ablation of Grik4 in mice resulted in reduced anxiety and an antidepressant-like phenotype. In the elevated zero-maze, a test for anxiety and risk taking behavior, and in two anxiogenic tests, marble-burying and novelty-induced suppression of feeding, anxiety-like behavior was consistently reduced in knockout animals. In the forced swim, a test of learned helplessness used to determine depression-like behavior, knockout mice demonstrated significantly less immobility suggesting

  20. Possible contributions of a novel form of synaptic plasticity in Aplysia to reward, memory, and their dysfunctions in mammalian brain.

    Science.gov (United States)

    Hawkins, Robert D

    2013-09-18

    Recent studies in Aplysia have identified a new variation of synaptic plasticity in which modulatory transmitters enhance spontaneous release of glutamate, which then acts on postsynaptic receptors to recruit mechanisms of intermediate- and long-term plasticity. In this review I suggest the hypothesis that similar plasticity occurs in mammals, where it may contribute to reward, memory, and their dysfunctions in several psychiatric disorders. In Aplysia, spontaneous release is enhanced by activation of presynaptic serotonin receptors, but presynaptic D1 dopamine receptors or nicotinic acetylcholine receptors could play a similar role in mammals. Those receptors enhance spontaneous release of glutamate in hippocampus, entorhinal cortex, prefrontal cortex, ventral tegmental area, and nucleus accumbens. In all of those brain areas, glutamate can activate postsynaptic receptors to elevate Ca(2+) and engage mechanisms of early-phase long-term potentiation (LTP), including AMPA receptor insertion, and of late-phase LTP, including protein synthesis and growth. Thus, presynaptic receptors and spontaneous release may contribute to postsynaptic mechanisms of plasticity in brain regions involved in reward and memory, and could play roles in disorders that affect plasticity in those regions, including addiction, Alzheimer's disease, schizophrenia, and attention deficit hyperactivity disorder (ADHD).

  1. Chronic ciguatoxin treatment induces synaptic scaling through voltage gated sodium channels in cortical neurons.

    Science.gov (United States)

    Martín, Víctor; Vale, Carmen; Rubiolo, Juan A; Roel, Maria; Hirama, Masahiro; Yamashita, Shuji; Vieytes, Mercedes R; Botana, Luís M

    2015-06-15

    Ciguatoxins are sodium channels activators that cause ciguatera, one of the most widespread nonbacterial forms of food poisoning, which presents with long-term neurological alterations. In central neurons, chronic perturbations in activity induce homeostatic synaptic mechanisms that adjust the strength of excitatory synapses and modulate glutamate receptor expression in order to stabilize the overall activity. Immediate early genes, such as Arc and Egr1, are induced in response to activity changes and underlie the trafficking of glutamate receptors during neuronal homeostasis. To better understand the long lasting neurological consequences of ciguatera, it is important to establish the role that chronic changes in activity produced by ciguatoxins represent to central neurons. Here, the effect of a 30 min exposure of 10-13 days in vitro (DIV) cortical neurons to the synthetic ciguatoxin CTX 3C on Arc and Egr1 expression was evaluated using real-time polymerase chain reaction approaches. Since the toxin increased the mRNA levels of both Arc and Egr1, the effect of CTX 3C in NaV channels, membrane potential, firing activity, miniature excitatory postsynaptic currents (mEPSCs), and glutamate receptors expression in cortical neurons after a 24 h exposure was evaluated using electrophysiological and western blot approaches. The data presented here show that CTX 3C induced an upregulation of Arc and Egr1 that was prevented by previous coincubation of the neurons with the NaV channel blocker tetrodotoxin. In addition, chronic CTX 3C caused a concentration-dependent shift in the activation voltage of NaV channels to more negative potentials and produced membrane potential depolarization. Moreover, 24 h treatment of cortical neurons with 5 nM CTX 3C decreased neuronal firing and induced synaptic scaling mechanisms, as evidenced by a decrease in the amplitude of mEPSCs and downregulation in the protein level of glutamate receptors that was also prevented by tetrodotoxin

  2. Electric Dipole Theory of Chemical Synaptic Transmission

    Science.gov (United States)

    Wei, Ling Y.

    1968-01-01

    In this paper we propose that chemicals such as acetylcholine are electric dipoles which when oriented and arranged in a large array could produce an electric field strong enough to drive positive ions over the junction barrier of the post-synaptic membrane and thus initiate excitation or produce depolarization. This theory is able to explain a great number of facts such as cleft size, synaptic delay, nonregeneration, subthreshold integration, facilitation with repetition, and the calcium and magnesium effects. It also shows why and how acetylcholine could act as excitatory or inhibitory transmitters under different circumstances. Our conclusion is that the nature of synaptic transmission is essentially electrical, be it mediated by electrical or chemical transmitters. PMID:4296121

  3. Synaptic transmission block by presynaptic injection of oligomeric amyloid beta

    Science.gov (United States)

    Moreno, Herman; Yu, Eunah; Pigino, Gustavo; Hernandez, Alejandro I.; Kim, Natalia; Moreira, Jorge E.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.

    2009-01-01

    Early Alzheimer's disease (AD) pathophysiology is characterized by synaptic changes induced by degradation products of amyloid precursor protein (APP). The exact mechanisms of such modulation are unknown. Here, we report that nanomolar concentrations of intraaxonal oligomeric (o)Aβ42, but not oAβ40 or extracellular oAβ42, acutely inhibited synaptic transmission at the squid giant synapse. Further characterization of this phenotype demonstrated that presynaptic calcium currents were unaffected. However, electron microscopy experiments revealed diminished docked synaptic vesicles in oAβ42-microinjected terminals, without affecting clathrin-coated vesicles. The molecular events of this modulation involved casein kinase 2 and the synaptic vesicle rapid endocytosis pathway. These findings open the possibility of a new therapeutic target aimed at ameliorating synaptic dysfunction in AD. PMID:19304802

  4. Overexpression of Mineralocorticoid Receptors in the Mouse Forebrain Partly Alleviates the Effects of Chronic Early Life Stress on Spatial Memory, Neurogenesis and Synaptic Function in the Dentate Gyrus

    Directory of Open Access Journals (Sweden)

    Sofia Kanatsou

    2017-05-01

    Full Text Available Evidence from human studies suggests that high expression of brain mineralocorticoid receptors (MR may promote resilience against negative consequences of stress exposure, including childhood trauma. We examined, in mice, whether brain MR overexpression can alleviate the effects of chronic early life stress (ELS on contextual memory formation under low and high stress conditions, and neurogenesis and synaptic function of dentate gyrus granular cells. Male mice were exposed to ELS by housing the dam with limited nesting and bedding material from postnatal day (PND 2 to 9. We investigated the moderating role of MRs by using forebrain-specific transgenic MR overexpression (MR-tg mice. Low-stress contextual (i.e., object relocation memory formation was hampered by ELS in wildtype but not MR-tg mice. Anxiety like behavior and high-stress contextual (i.e., fear memory formation were unaffected by ELS and/or MR expression level. At the cellular level, an interaction effect was observed between ELS and MR overexpression on the number of doublecortin-positive cells, with a significant difference between the wildtype ELS and MR-tg ELS groups. No interaction was found regarding Ki-67 and BrdU staining. A significant interaction between ELS and MR expression was further observed with regard to mEPSCs and mIPSC frequency. The ratio of evoked EPSC/IPSC or NMDA/AMPA responses was unaffected. Overall, these results suggest that ELS affects contextual memory formation under low stress conditions as well as neurogenesis and synaptic transmission in dentate granule cells, an effect that can be alleviated by MR-overexpression.

  5. Spike Pattern Structure Influences Synaptic Efficacy Variability Under STDP and Synaptic Homeostasis. I: Spike Generating Models on Converging Motifs

    Directory of Open Access Journals (Sweden)

    Zedong eBi

    2016-02-01

    Full Text Available In neural systems, synaptic plasticity is usually driven by spike trains. Due to the inherent noises of neurons and synapses as well as the randomness of connection details, spike trains typically exhibit variability such as spatial randomness and temporal stochasticity, resulting in variability of synaptic changes under plasticity, which we call efficacy variability. How the variability of spike trains influences the efficacy variability of synapses remains unclear. In this paper, we try to understand this influence under pair-wise additive spike-timing dependent plasticity (STDP when the mean strength of plastic synapses into a neuron is bounded (synaptic homeostasis. Specifically, we systematically study, analytically and numerically, how four aspects of statistical features, i.e. synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations, as well as their interactions influence the efficacy variability in converging motifs (simple networks in which one neuron receives from many other neurons. Neurons (including the post-synaptic neuron in a converging motif generate spikes according to statistical models with tunable parameters. In this way, we can explicitly control the statistics of the spike patterns, and investigate their influence onto the efficacy variability, without worrying about the feedback from synaptic changes onto the dynamics of the post-synaptic neuron. We separate efficacy variability into two parts: the drift part (DriftV induced by the heterogeneity of change rates of different synapses, and the diffusion part (DiffV induced by weight diffusion caused by stochasticity of spike trains. Our main findings are: (1 synchronous firing and burstiness tend to increase DiffV, (2 heterogeneity of rates induces DriftV when potentiation and depression in STDP are not balanced, and (3 heterogeneity of cross-correlations induces DriftV together with heterogeneity of rates. We anticipate our

  6. Structural Segmentation of Toru Takemitsu's Piece, Itinerant, by Advanced Level Music Graduate Students.

    Science.gov (United States)

    Ordoñana, Jose A; Laucirica, Ana

    2017-01-01

    This work attempts to study the way higher music graduate students segment a contemporary music work, Itinerant, and to understand the influence of musical feature on segmentation. It attempts to test the theory stating that saliences contribute to organising the music surface. The 42 students listened to the work several times and, in real time, they were requested to indicate the places on the score where they perceived structural boundaries. This work is characterised by its linearity, which could hinder identification of saliences and thereby, the establishment of structural boundaries. The participants show stability in the points of segmentation chosen. The results show significant coincidences among the participants in strategic places of the work, which leads us to conclude, in line with other researches, although in a work with different characteristics, that listeners can find a structural organisation in contemporary music that could allow them to understand it.

  7. Phosphodiesterase Inhibition to Target the Synaptic Dysfunction in Alzheimer's Disease

    Science.gov (United States)

    Bales, Kelly R.; Plath, Niels; Svenstrup, Niels; Menniti, Frank S.

    Alzheimer's Disease (AD) is a disease of synaptic dysfunction that ultimately proceeds to neuronal death. There is a wealth of evidence that indicates the final common mediator of this neurotoxic process is the formation and actions on synaptotoxic b-amyloid (Aβ). The premise in this review is that synaptic dysfunction may also be an initiating factor in for AD and promote synaptotoxic Aβ formation. This latter hypothesis is consistent with the fact that the most common risk factors for AD, apolipoprotein E (ApoE) allele status, age, education, and fitness, encompass suboptimal synaptic function. Thus, the synaptic dysfunction in AD may be both cause and effect, and remediating synaptic dysfunction in AD may have acute effects on the symptoms present at the initiation of therapy and also slow disease progression. The cyclic nucleotide (cAMP and cGMP) signaling systems are intimately involved in the regulation of synaptic homeostasis. The phosphodiesterases (PDEs) are a superfamily of enzymes that critically regulate spatial and temporal aspects of cyclic nucleotide signaling through metabolic inactivation of cAMP and cGMP. Thus, targeting the PDEs to promote improved synaptic function, or 'synaptic resilience', may be an effective and facile approach to new symptomatic and disease modifying therapies for AD. There continues to be a significant drug discovery effort aimed at discovering PDE inhibitors to treat a variety of neuropsychiatric disorders. Here we review the current status of those efforts as they relate to potential new therapies for AD.

  8. Mechanism for Selective Synaptic Wiring of Rod Photoreceptors into the Retinal Circuitry and Its Role in Vision.

    Science.gov (United States)

    Cao, Yan; Sarria, Ignacio; Fehlhaber, Katherine E; Kamasawa, Naomi; Orlandi, Cesare; James, Kiely N; Hazen, Jennifer L; Gardner, Matthew R; Farzan, Michael; Lee, Amy; Baker, Sheila; Baldwin, Kristin; Sampath, Alapakkam P; Martemyanov, Kirill A

    2015-09-23

    In the retina, rod and cone photoreceptors form distinct connections with different classes of downstream bipolar cells. However, the molecular mechanisms responsible for their selective connectivity are unknown. Here we identify a cell-adhesion protein, ELFN1, to be essential for the formation of synapses between rods and rod ON-bipolar cells in the primary rod pathway. ELFN1 is expressed selectively in rods where it is targeted to the axonal terminals by the synaptic release machinery. At the synapse, ELFN1 binds in trans to mGluR6, the postsynaptic receptor on rod ON-bipolar cells. Elimination of ELFN1 in mice prevents the formation of synaptic contacts involving rods, but not cones, allowing a dissection of the contributions of primary and secondary rod pathways to retinal circuit function and vision. We conclude that ELFN1 is necessary for the selective wiring of rods into the primary rod pathway and is required for high sensitivity of vision. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Myopic (HD-PTP, PTPN23) selectively regulates synaptic neuropeptide release.

    Science.gov (United States)

    Bulgari, Dinara; Jha, Anupma; Deitcher, David L; Levitan, Edwin S

    2018-02-13

    Neurotransmission is mediated by synaptic exocytosis of neuropeptide-containing dense-core vesicles (DCVs) and small-molecule transmitter-containing small synaptic vesicles (SSVs). Exocytosis of both vesicle types depends on Ca 2+ and shared secretory proteins. Here, we show that increasing or decreasing expression of Myopic (mop, HD-PTP, PTPN23), a Bro1 domain-containing pseudophosphatase implicated in neuronal development and neuropeptide gene expression, increases synaptic neuropeptide stores at the Drosophila neuromuscular junction (NMJ). This occurs without altering DCV content or transport, but synaptic DCV number and age are increased. The effect on synaptic neuropeptide stores is accounted for by inhibition of activity-induced Ca 2+ -dependent neuropeptide release. cAMP-evoked Ca 2+ -independent synaptic neuropeptide release also requires optimal Myopic expression, showing that Myopic affects the DCV secretory machinery shared by cAMP and Ca 2+ pathways. Presynaptic Myopic is abundant at early endosomes, but interaction with the endosomal sorting complex required for transport III (ESCRT III) protein (CHMP4/Shrub) that mediates Myopic's effect on neuron pruning is not required for control of neuropeptide release. Remarkably, in contrast to the effect on DCVs, Myopic does not affect release from SSVs. Therefore, Myopic selectively regulates synaptic DCV exocytosis that mediates peptidergic transmission at the NMJ.

  10. Magnetic and magnetocaloric properties of itinerant-electron system Hf.sub.1-x./sub.Ta.sub.x./sub.Fe.sub.2./sub. (x = 0.125 and 0.175)

    Czech Academy of Sciences Publication Activity Database

    Diop, L.V.B.; Kaštil, Jiří; Isnard, O.; Arnold, Zdeněk; Kamarád, Jiří

    2015-01-01

    Roč. 627, Apr (2015), s. 446-450 ISSN 0925-8388 R&D Projects: GA ČR GAP204/12/0692 Institutional support: RVO:68378271 Keywords : itinerant-electron compounds * magnetic properties * magnetocaloric effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.014, year: 2015

  11. Fragile X Mental Retardation Protein Regulates Activity-Dependent Membrane Trafficking and Trans-Synaptic Signaling Mediating Synaptic Remodeling

    Science.gov (United States)

    Sears, James C.; Broadie, Kendal

    2018-01-01

    Fragile X syndrome (FXS) is the leading monogenic cause of autism and intellectual disability. The disease arises through loss of fragile X mental retardation protein (FMRP), which normally exhibits peak expression levels in early-use critical periods, and is required for activity-dependent synaptic remodeling during this transient developmental window. FMRP canonically binds mRNA to repress protein translation, with targets that regulate cytoskeleton dynamics, membrane trafficking, and trans-synaptic signaling. We focus here on recent advances emerging in these three areas from the Drosophila disease model. In the well-characterized central brain mushroom body (MB) olfactory learning/memory circuit, FMRP is required for activity-dependent synaptic remodeling of projection neurons innervating the MB calyx, with function tightly restricted to an early-use critical period. FMRP loss is phenocopied by conditional removal of FMRP only during this critical period, and rescued by FMRP conditional expression only during this critical period. Consistent with FXS hyperexcitation, FMRP loss defects are phenocopied by heightened sensory experience and targeted optogenetic hyperexcitation during this critical period. FMRP binds mRNA encoding Drosophila ESCRTIII core component Shrub (human CHMP4 homolog) to restrict Shrub translation in an activity-dependent mechanism only during this same critical period. Shrub mediates endosomal membrane trafficking, and perturbing Shrub expression is known to interfere with neuronal process pruning. Consistently, FMRP loss and Shrub overexpression targeted to projection neurons similarly causes endosomal membrane trafficking defects within synaptic boutons, and genetic reduction of Shrub strikingly rescues Drosophila FXS model defects. In parallel work on the well-characterized giant fiber (GF) circuit, FMRP limits iontophoretic dye loading into central interneurons, demonstrating an FMRP role controlling core neuronal properties through the

  12. Translational control by eIF2α phosphorylation regulates vulnerability to the synaptic and behavioral effects of cocaine

    Science.gov (United States)

    Huang, Wei; Placzek, Andon N; Viana Di Prisco, Gonzalo; Khatiwada, Sanjeev; Sidrauski, Carmela; Krnjević, Krešimir; Walter, Peter; Dani, John A; Costa-Mattioli, Mauro

    2016-01-01

    Adolescents are especially prone to drug addiction, but the underlying biological basis of their increased vulnerability remains unknown. We reveal that translational control by phosphorylation of the translation initiation factor eIF2α (p-eIF2α) accounts for adolescent hypersensitivity to cocaine. In adolescent (but not adult) mice, a low dose of cocaine reduced p-eIF2α in the ventral tegmental area (VTA), potentiated synaptic inputs to VTA dopaminergic neurons, and induced drug-reinforced behavior. Like adolescents, adult mice with reduced p-eIF2α-mediated translational control were more susceptible to cocaine-induced synaptic potentiation and behavior. Conversely, like adults, adolescent mice with increased p-eIF2α became more resistant to cocaine's effects. Accordingly, metabotropic glutamate receptor-mediated long-term depression (mGluR-LTD)—whose disruption is postulated to increase vulnerability to drug addiction—was impaired in both adolescent mice and adult mice with reduced p-eIF2α mediated translation. Thus, during addiction, cocaine hijacks translational control by p-eIF2α, initiating synaptic potentiation and addiction-related behaviors. These insights may hold promise for new treatments for addiction. DOI: http://dx.doi.org/10.7554/eLife.12052.001 PMID:26928234

  13. The formation of acetylcholine receptor clusters visualized with quantum dots

    Directory of Open Access Journals (Sweden)

    Peng H Benjamin

    2009-07-01

    Full Text Available Abstract Background Motor innervation of skeletal muscle leads to the assembly of acetylcholine receptor (AChR clusters in the postsynaptic membrane at the vertebrate neuromuscular junction (NMJ. Synaptic AChR aggregation, according to the diffusion-mediated trapping hypothesis, involves the establishment of a postsynaptic scaffold that "traps" freely diffusing receptors into forming high-density clusters. Although this hypothesis is widely cited to explain the formation of postsynaptic AChR clusters, direct evidence at molecular level is lacking. Results Using quantum dots (QDs and live cell imaging, we provide new measurements supporting the diffusion-trap hypothesis as applied to AChR cluster formation. Consistent with published works, experiments on cultured Xenopus myotomal muscle cells revealed that AChRs at clusters that formed spontaneously (pre-patterned clusters, also called hot spots and at those induced by nerve-innervation or by growth factor-coated latex beads were very stable whereas diffuse receptors outside these regions were mobile. Moreover, despite the restriction of AChR movement at sites of synaptogenic stimulation, individual receptors away from these domains continued to exhibit free diffusion, indicating that AChR clustering at NMJ does not involve an active attraction of receptors but is passive and diffusion-driven. Conclusion Single-molecular tracking using QDs has provided direct evidence that the clustering of AChRs in muscle cells in response to synaptogenic stimuli is achieved by two distinct cellular processes: the Brownian motion of receptors in the membrane and their trapping and immobilization at the synaptic specialization. This study also provides a clearer picture of the "trap" that it is not a uniformly sticky area but consists of discrete foci at which AChRs are immobilized.

  14. Statistical mechanics of attractor neural network models with synaptic depression

    International Nuclear Information System (INIS)

    Igarashi, Yasuhiko; Oizumi, Masafumi; Otsubo, Yosuke; Nagata, Kenji; Okada, Masato

    2009-01-01

    Synaptic depression is known to control gain for presynaptic inputs. Since cortical neurons receive thousands of presynaptic inputs, and their outputs are fed into thousands of other neurons, the synaptic depression should influence macroscopic properties of neural networks. We employ simple neural network models to explore the macroscopic effects of synaptic depression. Systems with the synaptic depression cannot be analyzed due to asymmetry of connections with the conventional equilibrium statistical-mechanical approach. Thus, we first propose a microscopic dynamical mean field theory. Next, we derive macroscopic steady state equations and discuss the stabilities of steady states for various types of neural network models.

  15. A novel mechanism of hippocampal LTD involving muscarinic receptor-triggered interactions between AMPARs, GRIP and liprin-α

    Directory of Open Access Journals (Sweden)

    Dickinson Bryony A

    2009-06-01

    Full Text Available Abstract Background Long-term depression (LTD in the hippocampus can be induced by activation of different types of G-protein coupled receptors, in particular metabotropic glutamate receptors (mGluRs and muscarinic acethycholine receptors (mAChRs. Since mGluRs and mAChRs activate the same G-proteins and isoforms of phospholipase C (PLC, it would be expected that these two forms of LTD utilise the same molecular mechanisms. However, we find a distinct mechanism of LTD involving GRIP and liprin-α. Results Whilst both forms of LTD require activation of tyrosine phosphatases and involve internalisation of AMPARs, they use different molecular interactions. Specifically, mAChR-LTD, but not mGluR-LTD, is blocked by peptides that inhibit the binding of GRIP to the AMPA receptor subunit GluA2 and the binding of GRIP to liprin-α. Thus, different receptors that utilise the same G-proteins can regulate AMPAR trafficking and synaptic efficacy via distinct molecular mechanisms. Conclusion Our results suggest that mAChR-LTD selectively involves interactions between GRIP and liprin-α. These data indicate a novel mechanism of synaptic plasticity in which activation of M1 receptors results in AMPAR endocytosis, via a mechanism involving interactions between GluA2, GRIP and liprin-α.

  16. Changes in hippocampal synaptic functions and protein expression in monosodium glutamate-treated obese mice during development of glucose intolerance.

    Science.gov (United States)

    Sasaki-Hamada, Sachie; Hojo, Yuki; Koyama, Hajime; Otsuka, Hayuma; Oka, Jun-Ichiro

    2015-05-01

    Glucose is the sole neural fuel for the brain and is essential for cognitive function. Abnormalities in glucose tolerance may be associated with impairments in cognitive function. Experimental obese model mice can be generated by an intraperitoneal injection of monosodium glutamate (MSG; 2 mg/g) once a day for 5 days from 1 day after birth. MSG-treated mice have been shown to develop glucose intolerance and exhibit chronic neuroendocrine dysfunction associated with marked cognitive malfunctions at 28-29  weeks old. Although hippocampal synaptic plasticity is impaired in MSG-treated mice, changes in synaptic transmission remain unknown. Here, we investigated whether glucose intolerance influenced cognitive function, synaptic properties and protein expression in the hippocampus. We demonstrated that MSG-treated mice developed glucose intolerance due to an impairment in the effectiveness of insulin actions, and showed cognitive impairments in the Y-maze test. Moreover, long-term potentiation (LTP) at Schaffer collateral-CA1 pyramidal synapses in hippocampal slices was impaired, and the relationship between the slope of extracellular field excitatory postsynaptic potential and stimulus intensity of synaptic transmission was weaker in MSG-treated mice. The protein levels of vesicular glutamate transporter 1 and GluA1 glutamate receptor subunits decreased in the CA1 region of MSG-treated mice. These results suggest that deficits in glutamatergic presynapses as well as postsynapses lead to impaired synaptic plasticity in MSG-treated mice during the development of glucose intolerance, though it remains unknown whether impaired LTP is due to altered inhibitory transmission. It may be important to examine changes in glucose tolerance in order to prevent cognitive malfunctions associated with diabetes. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress.

    Science.gov (United States)

    Kaster, Manuella P; Machado, Nuno J; Silva, Henrique B; Nunes, Ana; Ardais, Ana Paula; Santana, Magda; Baqi, Younis; Müller, Christa E; Rodrigues, Ana Lúcia S; Porciúncula, Lisiane O; Chen, Jiang Fan; Tomé, Ângelo R; Agostinho, Paula; Canas, Paula M; Cunha, Rodrigo A

    2015-06-23

    The consumption of caffeine (an adenosine receptor antagonist) correlates inversely with depression and memory deterioration, and adenosine A2A receptor (A2AR) antagonists emerge as candidate therapeutic targets because they control aberrant synaptic plasticity and afford neuroprotection. Therefore we tested the ability of A2AR to control the behavioral, electrophysiological, and neurochemical modifications caused by chronic unpredictable stress (CUS), which alters hippocampal circuits, dampens mood and memory performance, and enhances susceptibility to depression. CUS for 3 wk in adult mice induced anxiogenic and helpless-like behavior and decreased memory performance. These behavioral changes were accompanied by synaptic alterations, typified by a decrease in synaptic plasticity and a reduced density of synaptic proteins (synaptosomal-associated protein 25, syntaxin, and vesicular glutamate transporter type 1), together with an increased density of A2AR in glutamatergic terminals in the hippocampus. Except for anxiety, for which results were mixed, CUS-induced behavioral and synaptic alterations were prevented by (i) caffeine (1 g/L in the drinking water, starting 3 wk before and continued throughout CUS); (ii) the selective A2AR antagonist KW6002 (3 mg/kg, p.o.); (iii) global A2AR deletion; and (iv) selective A2AR deletion in forebrain neurons. Notably, A2AR blockade was not only prophylactic but also therapeutically efficacious, because a 3-wk treatment with the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) reversed the mood and synaptic dysfunction caused by CUS. These results herald a key role for synaptic A2AR in the control of chronic stress-induced modifications and suggest A2AR as candidate targets to alleviate the consequences of chronic stress on brain function.

  18. Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD.

    Science.gov (United States)

    Han, Jing; Kesner, Philip; Metna-Laurent, Mathilde; Duan, Tingting; Xu, Lin; Georges, Francois; Koehl, Muriel; Abrous, Djoher Nora; Mendizabal-Zubiaga, Juan; Grandes, Pedro; Liu, Qingsong; Bai, Guang; Wang, Wei; Xiong, Lize; Ren, Wei; Marsicano, Giovanni; Zhang, Xia

    2012-03-02

    Impairment of working memory is one of the most important deleterious effects of marijuana intoxication in humans, but its underlying mechanisms are presently unknown. Here, we demonstrate that the impairment of spatial working memory (SWM) and in vivo long-term depression (LTD) of synaptic strength at hippocampal CA3-CA1 synapses, induced by an acute exposure of exogenous cannabinoids, is fully abolished in conditional mutant mice lacking type-1 cannabinoid receptors (CB(1)R) in brain astroglial cells but is conserved in mice lacking CB(1)R in glutamatergic or GABAergic neurons. Blockade of neuronal glutamate N-methyl-D-aspartate receptors (NMDAR) and of synaptic trafficking of glutamate α-amino-3-hydroxy-5-methyl-isoxazole propionic acid receptors (AMPAR) also abolishes cannabinoid effects on SWM and LTD induction and expression. We conclude that the impairment of working memory by marijuana and cannabinoids is due to the activation of astroglial CB(1)R and is associated with astroglia-dependent hippocampal LTD in vivo. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. NMDA receptors and memory encoding.

    Science.gov (United States)

    Morris, Richard G M

    2013-11-01

    It is humbling to think that 30 years have passed since the paper by Collingridge, Kehl and McLennan showing that one of Jeff Watkins most interesting compounds, R-2-amino-5-phosphonopentanoate (d-AP5), blocked the induction of long-term potentiation in vitro at synapses from area CA3 of the hippocampus to CA1 without apparent effect on baseline synaptic transmission (Collingridge et al., 1983). This dissociation was one of the key triggers for an explosion of interest in glutamate receptors, and much has been discovered since that collectively contributes to our contemporary understanding of glutamatergic synapses - their biophysics and subunit composition, of the agonists and antagonists acting on them, and their diverse functions in different networks of the brain and spinal cord. It can be fairly said that Collingridge et al.'s (1983) observation was the stimulus that has led, on the one hand, to structural biological work at the atomic scale describing the key features of NMDA receptors that enables their coincidence function to happen; and, on the other, to work with whole animals investigating the contributions that calcium signalling via this receptor can have on rhythmical activities controlled by spinal circuits, memory encoding in the hippocampus (the topic of this article), visual cortical plasticity, sensitization in pain, and other functions. In this article, I lay out how my then interest in long-term potentiation (LTP) as a model of memory enabled me to recognise the importance of Collingridge et al.'s discovery - and how I and my colleagues endeavoured to take things forward in the area of learning and memory. This is in some respects a personal story, and I tell it as such. The idea that NMDA receptor activation is essential for memory encoding, though not for storage, took time to develop and to be accepted. Along the way, there have been confusions, challenges, and surprises surrounding the idea that activation of NMDA receptors can

  20. Orchestrated Regulation of Nogo Receptors, Lotus, AMPA Receptors and BDNF in an ECT Model Suggests Opening and Closure of a Window of Synaptic Plasticity

    OpenAIRE

    Nordgren, Max; Karlsson, Tobias; Svensson, Maria; Koczy, Josefin; Josephson, Anna; Olson, Lars; Tingstroem, Anders; Brene, Stefan

    2013-01-01

    Electroconvulsive therapy (ECT) is an efficient and relatively fast acting treatment for depression. However, one severe side effect of the treatment is retrograde amnesia, which in certain cases can be long-term. The mechanisms behind the antidepressant effect and the amnesia are not well understood. We hypothesized that ECT causes transient downregulation of key molecules needed to stabilize synaptic structure and to prevent Ca2+ influx, and a simultaneous increase in neurotrophic factors, ...

  1. Novel Functional Properties of Drosophila CNS Glutamate Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Dharkar, Poorva; Han, Tae-Hee; Serpe, Mihaela; Lee, Chi-Hon; Mayer, Mark L.

    2016-12-01

    Phylogenetic analysis reveals AMPA, kainate, and NMDA receptor families in insect genomes, suggesting conserved functional properties corresponding to their vertebrate counterparts. However, heterologous expression of the Drosophila kainate receptor DKaiR1D and the AMPA receptor DGluR1A revealed novel ligand selectivity at odds with the classification used for vertebrate glutamate receptor ion channels (iGluRs). DKaiR1D forms a rapidly activating and desensitizing receptor that is inhibited by both NMDA and the NMDA receptor antagonist AP5; crystallization of the KaiR1D ligand-binding domain reveals that these ligands stabilize open cleft conformations, explaining their action as antagonists. Surprisingly, the AMPA receptor DGluR1A shows weak activation by its namesake agonist AMPA and also by quisqualate. Crystallization of the DGluR1A ligand-binding domain reveals amino acid exchanges that interfere with binding of these ligands. The unexpected ligand-binding profiles of insect iGluRs allows classical tools to be used in novel approaches for the study of synaptic regulation.

  2. Effects of Chronic Alcohol Exposure on Kainate Receptor-Mediated Neurotransmission in the Hippocampus

    Science.gov (United States)

    2004-09-01

    12917-12922, 1999. Frerking M, and Nicoll RA. Synaptic kainate receptors. Cur Opin Neurobio 10:342-351, 2000. Harvey J and Lacey MG. A postsynaptic...electrophysiological research. Ironically, this preparation was originally developed for use in biochemical studies characterizing energy metabolism in neuronal

  3. A Machine Learning Method for the Prediction of Receptor Activation in the Simulation of Synapses

    Science.gov (United States)

    Montes, Jesus; Gomez, Elena; Merchán-Pérez, Angel; DeFelipe, Javier; Peña, Jose-Maria

    2013-01-01

    Chemical synaptic transmission involves the release of a neurotransmitter that diffuses in the extracellular space and interacts with specific receptors located on the postsynaptic membrane. Computer simulation approaches provide fundamental tools for exploring various aspects of the synaptic transmission under different conditions. In particular, Monte Carlo methods can track the stochastic movements of neurotransmitter molecules and their interactions with other discrete molecules, the receptors. However, these methods are computationally expensive, even when used with simplified models, preventing their use in large-scale and multi-scale simulations of complex neuronal systems that may involve large numbers of synaptic connections. We have developed a machine-learning based method that can accurately predict relevant aspects of the behavior of synapses, such as the percentage of open synaptic receptors as a function of time since the release of the neurotransmitter, with considerably lower computational cost compared with the conventional Monte Carlo alternative. The method is designed to learn patterns and general principles from a corpus of previously generated Monte Carlo simulations of synapses covering a wide range of structural and functional characteristics. These patterns are later used as a predictive model of the behavior of synapses under different conditions without the need for additional computationally expensive Monte Carlo simulations. This is performed in five stages: data sampling, fold creation, machine learning, validation and curve fitting. The resulting procedure is accurate, automatic, and it is general enough to predict synapse behavior under experimental conditions that are different to the ones it has been trained on. Since our method efficiently reproduces the results that can be obtained with Monte Carlo simulations at a considerably lower computational cost, it is suitable for the simulation of high numbers of synapses and it is

  4. A machine learning method for the prediction of receptor activation in the simulation of synapses.

    Directory of Open Access Journals (Sweden)

    Jesus Montes

    Full Text Available Chemical synaptic transmission involves the release of a neurotransmitter that diffuses in the extracellular space and interacts with specific receptors located on the postsynaptic membrane. Computer simulation approaches provide fundamental tools for exploring various aspects of the synaptic transmission under different conditions. In particular, Monte Carlo methods can track the stochastic movements of neurotransmitter molecules and their interactions with other discrete molecules, the receptors. However, these methods are computationally expensive, even when used with simplified models, preventing their use in large-scale and multi-scale simulations of complex neuronal systems that may involve large numbers of synaptic connections. We have developed a machine-learning based method that can accurately predict relevant aspects of the behavior of synapses, such as the percentage of open synaptic receptors as a function of time since the release of the neurotransmitter, with considerably lower computational cost compared with the conventional Monte Carlo alternative. The method is designed to learn patterns and general principles from a corpus of previously generated Monte Carlo simulations of synapses covering a wide range of structural and functional characteristics. These patterns are later used as a predictive model of the behavior of synapses under different conditions without the need for additional computationally expensive Monte Carlo simulations. This is performed in five stages: data sampling, fold creation, machine learning, validation and curve fitting. The resulting procedure is accurate, automatic, and it is general enough to predict synapse behavior under experimental conditions that are different to the ones it has been trained on. Since our method efficiently reproduces the results that can be obtained with Monte Carlo simulations at a considerably lower computational cost, it is suitable for the simulation of high numbers of

  5. The brain cytoplasmic RNA BC1 regulates dopamine D-2 receptor-mediated transmission in the striatum

    OpenAIRE

    Centonze, Diego; Rossi, Silvia; Napoli, Ilaria; Mercaldo, Valentina; Lacoux, Caroline; Ferrari, Francesca; Ciotti, Maria Teresa; De Chiara, Valentina; Prosperetti, Chiara; Maccarrone, Mauro; Fezza, Filomena; Calabresi, Paolo; Bernardi, Giorgio; Bagni, Claudia

    2007-01-01

    Dopamine D-2 receptor (D2DR)-mediated transmission in the striatum is remarkably flexible, and changes in its efficacy have been heavily implicated in a variety of physiological and pathological conditions. Although receptor-associated proteins are clearly involved in specific forms of synaptic plasticity, the molecular mechanisms regulating the sensitivity of D-2 receptors in this brain area are essentially obscure. We have studied the physiological responses of the D2DR stimulations in mice...

  6. The state of itinerant charge carriers and thermoelectric effects in correlated oxide metals

    International Nuclear Information System (INIS)

    Kuzemsky, A.L.; Abdus Salam International Centre for Theoretical Physics, Trieste

    2000-10-01

    We analyzed the physics of transport processes and, in particular, the thermoelectric power in the mercurocuprates and other cuprates to get a better insight into the state of the carriers in these compounds. The actual problems related to the complicated mechanisms of carriers scattering above Tc are discussed. The experimental studies of thermoelectric power showed that the state of carriers in cuprates can be influenced by many complicated scattering processes, however the underlying mechanism for the linear decreasing of the TEP with increasing the temperature for most hole-doped HTSC cuprates is still not yet known. The actual problems related to the complicated mechanisms of carriers scattering above Tc are discussed for a few models of charge transport. A comparison between the analytical and experimental results is also made. It is concluded that the crucial factor for the understanding of the transport properties of correlated oxide metals is the nature of itinerant charge carriers, i.e. renormalized quasiparticles. (author)

  7. Alteration of synaptic activity-regulating genes underlying functional improvement by long-term exposure to an enriched environment in the adult brain.

    Science.gov (United States)

    Lee, Min-Young; Yu, Ji Hea; Kim, Ji Yeon; Seo, Jung Hwa; Park, Eun Sook; Kim, Chul Hoon; Kim, Hyongbum; Cho, Sung-Rae

    2013-01-01

    Housing animals in an enriched environment (EE) enhances behavioral function. However, the mechanism underlying this EE-mediated functional improvement and the resultant changes in gene expression have yet to be elucidated. We attempted to investigate the underlying mechanisms associated with long-term exposure to an EE by evaluating gene expression patterns. We housed 6-week-old CD-1 (ICR) mice in standard cages or an EE comprising a running wheel, novel objects, and social interaction for 2 months. Motor and cognitive performances were evaluated using the rotarod test and passive avoidance test, and gene expression profile was investigated in the cerebral hemispheres using microarray and gene set enrichment analysis (GSEA). In behavioral assessment, an EE significantly enhanced rotarod performance and short-term working memory. Microarray analysis revealed that genes associated with neuronal activity were significantly altered by an EE. GSEA showed that genes involved in synaptic transmission and postsynaptic signal transduction were globally upregulated, whereas those associated with reuptake by presynaptic neurotransmitter transporters were downregulated. In particular, both microarray and GSEA demonstrated that EE exposure increased opioid signaling, acetylcholine release cycle, and postsynaptic neurotransmitter receptors but decreased Na+ / Cl- -dependent neurotransmitter transporters, including dopamine transporter Slc6a3 in the brain. Western blotting confirmed that SLC6A3, DARPP32 (PPP1R1B), and P2RY12 were largely altered in a region-specific manner. An EE enhanced motor and cognitive function through the alteration of synaptic activity-regulating genes, improving the efficient use of neurotransmitters and synaptic plasticity by the upregulation of genes associated with postsynaptic receptor activity and downregulation of presynaptic reuptake by neurotransmitter transporters.

  8. Heat capacity and thermal expansion of the itinerant helimagnet MnSi.

    Science.gov (United States)

    Stishov, S M; Petrova, A E; Khasanov, S; Kh Panova, G; Shikov, A A; Lashley, J C; Wu, D; Lograsso, T A

    2008-06-11

    The heat capacity and thermal expansion of a high quality single crystal of MnSi were measured at ambient pressure at zero and high magnetic fields. The calculated magnetic entropy change in the temperature range 0-30 K is less than 0.1R, a low value that emphasizes the itinerant nature of magnetism in MnSi. A linear temperature term dominates the thermal expansion coefficient in the range 30-150 K, which correlates with an enhancement of the linear electronic term in the heat capacity. A surprising similarity among the variations of the heat capacity, thermal expansion coefficient and temperature derivative of the resistivity is observed through the phase transition in MnSi. Specific forms of the heat capacity, thermal expansion coefficient and temperature derivative of resistivity at the phase transition to a helical magnetic state near 29 K are interpreted as the combination of sharp first-order features and broad peaks or shallow valleys of as yet unknown origin. The appearance of these broad satellites probably hints at a frustrated magnetic state slightly above the transition temperature in MnSi.

  9. Endogenous Glucagon-like Peptide-1 Suppresses High-Fat Food Intake by Reducing Synaptic Drive onto Mesolimbic Dopamine Neurons

    Directory of Open Access Journals (Sweden)

    Xue-Feng Wang

    2015-08-01

    Full Text Available Glucagon-like peptide-1 (GLP-1 and its analogs act as appetite suppressants and have been proven to be clinically efficacious in reducing body weight in obese individuals. Central GLP-1 is expressed in a small population of brainstem cells located in the nucleus tractus solitarius (NTS, which project to a wide range of brain areas. However, it remains unclear how endogenous GLP-1 released in the brain contributes to appetite regulation. Using chemogenetic tools, we discovered that central GLP-1 acts on the midbrain ventral tegmental area (VTA and suppresses high-fat food intake. We used integrated pathway tracing and synaptic physiology to further demonstrate that activation of GLP-1 receptors specifically reduces the excitatory synaptic strength of dopamine (DA neurons within the VTA that project to the nucleus accumbens (NAc medial shell. These data suggest that GLP-1 released from NTS neurons can reduce highly palatable food intake by suppressing mesolimbic DA signaling.

  10. Palmitoylation as a Functional Regulator of Neurotransmitter Receptors

    Directory of Open Access Journals (Sweden)

    Vladimir S. Naumenko

    2018-01-01

    Full Text Available The majority of neuronal proteins involved in cellular signaling undergo different posttranslational modifications significantly affecting their functions. One of these modifications is a covalent attachment of a 16-C palmitic acid to one or more cysteine residues (S-palmitoylation within the target protein. Palmitoylation is a reversible modification, and repeated cycles of palmitoylation/depalmitoylation might be critically involved in the regulation of multiple signaling processes. Palmitoylation also represents a common posttranslational modification of the neurotransmitter receptors, including G protein-coupled receptors (GPCRs and ligand-gated ion channels (LICs. From the functional point of view, palmitoylation affects a wide span of neurotransmitter receptors activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, recycling, and synaptic clustering. This review summarizes the current knowledge on the palmitoylation of neurotransmitter receptors and its role in the regulation of receptors functions as well as in the control of different kinds of physiological and pathological behavior.

  11. Experience-Dependent Equilibration of AMPAR-Mediated Synaptic Transmission during the Critical Period

    Directory of Open Access Journals (Sweden)

    Kyung-Seok Han

    2017-01-01

    Full Text Available Experience-dependent synapse refinement is essential for functional optimization of neural circuits. However, how sensory experience sculpts excitatory synaptic transmission is poorly understood. Here, we show that despite substantial remodeling of synaptic connectivity, AMPAR-mediated synaptic transmission remains at equilibrium during the critical period in the mouse primary visual cortex. The maintenance of this equilibrium requires neurogranin (Ng, a postsynaptic calmodulin-binding protein important for synaptic plasticity. With normal visual experience, loss of Ng decreased AMPAR-positive synapse numbers, prevented AMPAR-silent synapse maturation, and increased spine elimination. Importantly, visual deprivation halted synapse loss caused by loss of Ng, revealing that Ng coordinates experience-dependent AMPAR-silent synapse conversion to AMPAR-active synapses and synapse elimination. Loss of Ng also led to sensitized long-term synaptic depression (LTD and impaired visually guided behavior. Our synaptic interrogation reveals that experience-dependent coordination of AMPAR-silent synapse conversion and synapse elimination hinges upon Ng-dependent mechanisms for constructive synaptic refinement during the critical period.

  12. Genetic deletion of melanin-concentrating hormone neurons impairs hippocampal short-term synaptic plasticity and hippocampal-dependent forms of short-term memory.

    Science.gov (United States)

    Le Barillier, Léa; Léger, Lucienne; Luppi, Pierre-Hervé; Fort, Patrice; Malleret, Gaël; Salin, Paul-Antoine

    2015-11-01

    The cognitive role of melanin-concentrating hormone (MCH) neurons, a neuronal population located in the mammalian postero-lateral hypothalamus sending projections to all cortical areas, remains poorly understood. Mainly activated during paradoxical sleep (PS), MCH neurons have been implicated in sleep regulation. The genetic deletion of the only known MCH receptor in rodent leads to an impairment of hippocampal dependent forms of memory and to an alteration of hippocampal long-term synaptic plasticity. By using MCH/ataxin3 mice, a genetic model characterized by a selective deletion of MCH neurons in the adult, we investigated the role of MCH neurons in hippocampal synaptic plasticity and hippocampal-dependent forms of memory. MCH/ataxin3 mice exhibited a deficit in the early part of both long-term potentiation and depression in the CA1 area of the hippocampus. Post-tetanic potentiation (PTP) was diminished while synaptic depression induced by repetitive stimulation was enhanced suggesting an alteration of pre-synaptic forms of short-term plasticity in these mice. Behaviorally, MCH/ataxin3 mice spent more time and showed a higher level of hesitation as compared to their controls in performing a short-term memory T-maze task, displayed retardation in acquiring a reference memory task in a Morris water maze, and showed a habituation deficit in an open field task. Deletion of MCH neurons could thus alter spatial short-term memory by impairing short-term plasticity in the hippocampus. Altogether, these findings could provide a cellular mechanism by which PS may facilitate memory encoding. Via MCH neuron activation, PS could prepare the day's learning by increasing and modulating short-term synaptic plasticity in the hippocampus. © 2015 Wiley Periodicals, Inc.

  13. Serotonin increases synaptic activity in olfactory bulb glomeruli.

    Science.gov (United States)

    Brill, Julia; Shao, Zuoyi; Puche, Adam C; Wachowiak, Matt; Shipley, Michael T

    2016-03-01

    Serotoninergic fibers densely innervate olfactory bulb glomeruli, the first sites of synaptic integration in the olfactory system. Acting through 5HT2A receptors, serotonin (5HT) directly excites external tufted cells (ETCs), key excitatory glomerular neurons, and depolarizes some mitral cells (MCs), the olfactory bulb's main output neurons. We further investigated 5HT action on MCs and determined its effects on the two major classes of glomerular interneurons: GABAergic/dopaminergic short axon cells (SACs) and GABAergic periglomerular cells (PGCs). In SACs, 5HT evoked a depolarizing current mediated by 5HT2C receptors but did not significantly impact spike rate. 5HT had no measurable direct effect in PGCs. Serotonin increased spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) in PGCs and SACs. Increased sEPSCs were mediated by 5HT2A receptors, suggesting that they are primarily due to enhanced excitatory drive from ETCs. Increased sIPSCs resulted from elevated excitatory drive onto GABAergic interneurons and augmented GABA release from SACs. Serotonin-mediated GABA release from SACs was action potential independent and significantly increased miniature IPSC frequency in glomerular neurons. When focally applied to a glomerulus, 5HT increased MC spontaneous firing greater than twofold but did not increase olfactory nerve-evoked responses. Taken together, 5HT modulates glomerular network activity in several ways: 1) it increases ETC-mediated feed-forward excitation onto MCs, SACs, and PGCs; 2) it increases inhibition of glomerular interneurons; 3) it directly triggers action potential-independent GABA release from SACs; and 4) these network actions increase spontaneous MC firing without enhancing responses to suprathreshold sensory input. This may enhance MC sensitivity while maintaining dynamic range. Copyright © 2016 the American Physiological Society.

  14. Spatiotemporal discrimination in neural networks with short-term synaptic plasticity

    Science.gov (United States)

    Shlaer, Benjamin; Miller, Paul

    2015-03-01

    Cells in recurrently connected neural networks exhibit bistability, which allows for stimulus information to persist in a circuit even after stimulus offset, i.e. short-term memory. However, such a system does not have enough hysteresis to encode temporal information about the stimuli. The biophysically described phenomenon of synaptic depression decreases synaptic transmission strengths due to increased presynaptic activity. This short-term reduction in synaptic strengths can destabilize attractor states in excitatory recurrent neural networks, causing the network to move along stimulus dependent dynamical trajectories. Such a network can successfully separate amplitudes and durations of stimuli from the number of successive stimuli. Stimulus number, duration and intensity encoding in randomly connected attractor networks with synaptic depression. Front. Comput. Neurosci. 7:59., and so provides a strong candidate network for the encoding of spatiotemporal information. Here we explicitly demonstrate the capability of a recurrent neural network with short-term synaptic depression to discriminate between the temporal sequences in which spatial stimuli are presented.

  15. [Involvement of aquaporin-4 in synaptic plasticity, learning and memory].

    Science.gov (United States)

    Wu, Xin; Gao, Jian-Feng

    2017-06-25

    Aquaporin-4 (AQP-4) is the predominant water channel in the central nervous system (CNS) and primarily expressed in astrocytes. Astrocytes have been generally believed to play important roles in regulating synaptic plasticity and information processing. However, the role of AQP-4 in regulating synaptic plasticity, learning and memory, cognitive function is only beginning to be investigated. It is well known that synaptic plasticity is the prime candidate for mediating of learning and memory. Long term potentiation (LTP) and long term depression (LTD) are two forms of synaptic plasticity, and they share some but not all the properties and mechanisms. Hippocampus is a part of limbic system that is particularly important in regulation of learning and memory. This article is to review some research progresses of the function of AQP-4 in synaptic plasticity, learning and memory, and propose the possible role of AQP-4 as a new target in the treatment of cognitive dysfunction.

  16. Prostaglandin E2 EP2 activation reduces memory decline in R6/1 mouse model of Huntington's disease by the induction of BDNF-dependent synaptic plasticity.

    Science.gov (United States)

    Anglada-Huguet, Marta; Vidal-Sancho, Laura; Giralt, Albert; García-Díaz Barriga, Gerardo; Xifró, Xavier; Alberch, Jordi

    2016-11-01

    Huntington's disease (HD) patients and mouse models show learning and memory impairment even before the onset of motor symptoms. Deficits in hippocampal synaptic plasticity have been involved in the HD memory impairment. Several studies show that prostaglandin E2 (PGE2) EP2 receptor stimulates synaptic plasticity and memory formation. However, this role was not explored in neurodegenerative diseases. Here, we investigated the capacity of PGE2 EP2 receptor to promote synaptic plasticity and memory improvements in a model of HD, the R6/1 mice, by administration of the agonist misoprostol. We found that misoprostol increases dendritic branching in cultured hippocampal neurons in a brain-derived neurotrophic factor (BDNF)-dependent manner. Then, we implanted an osmotic mini-pump system to chronically administrate misoprostol to R6/1 mice from 14 to 18weeks of age. We observed that misoprostol treatment ameliorates the R6/1 long-term memory deficits as analyzed by the T-maze spontaneous alternation task and the novel object recognition test. Importantly, administration of misoprostol promoted the expression of hippocampal BDNF. Moreover, the treatment with misoprostol in R6/1 mice blocked the reduction in the number of PSD-95 and VGluT-1 positive particles observed in hippocampus of vehicle-R6/1 mice. In addition, we observed an increase of cAMP levels in the dentate ` of WT and R6/1 mice treated with misoprostol. Accordingly, we showed a reduction in the number of mutant huntingtin nuclear inclusions in the dentate gyrus of R6/1 mice. Altogether, these results suggest a putative therapeutic effect of PGE2 EP2 receptor in reducing cognitive deficits in HD. Copyright © 2016. Published by Elsevier Inc.

  17. Itinerant-electron metamagnetism of the Hf.sub.1-x./sub.Ta.sub.x./sub.Fe.sub.2./sub. (x=0.125 and0.14)compounds under high pressure

    Czech Academy of Sciences Publication Activity Database

    Diop, L.V.B.; Arnold, Zdeněk; Isnard, O.

    2015-01-01

    Roč. 395, Dec (2015), s. 251-256 ISSN 0304-8853 R&D Projects: GA ČR GAP204/12/0692 Institutional support: RVO:68378271 Keywords : magnetic properties * itinerant-electron systems * metamagnetic transition * pressure effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.357, year: 2015

  18. Synaptic excitation in spinal motoneurons alternates with synaptic inhibition and is balanced by outward rectification during rhythmic motor network activity

    DEFF Research Database (Denmark)

    Guzulaitis, Robertas; Hounsgaard, Jorn

    2017-01-01

    channels. Intrinsic outward rectification facilitates spiking by focusing synaptic depolarization near threshold for action potentials. By direct recording of synaptic currents, we also show that motoneurons are activated by out-of-phase peaks in excitation and inhibition during network activity, whereas......Regular firing in spinal motoneurons of red-eared turtles (Trachemys scripta elegans, either sex) evoked by steady depolarization at rest is replaced by irregular firing during functional network activity. The transition caused by increased input conductance and synaptic fluctuations in membrane...... potential was suggested to originate from intense concurrent inhibition and excitation. We show that the conductance increase in motoneurons during functional network activity is mainly caused by intrinsic outward rectification near threshold for action potentials by activation of voltage and Ca2+ gated K...

  19. Endogenous activation of adenosine A(1) receptors accelerates ischemic suppression of spontaneous electrocortical activity

    DEFF Research Database (Denmark)

    Ilie, Andrei; Ciocan, Dragos; Zagrean, Ana-Maria

    2006-01-01

    Cerebral ischemia induces a rapid suppression of spontaneous brain rhythms prior to major alterations in ionic homeostasis. It was found in vitro during ischemia that the rapidly formed adenosine, resulting from the intracellular breakdown of ATP, may inhibit synaptic transmission via the A(1......) receptor subtype. The link between endogenous A(1) receptor activation during ischemia and the suppression of spontaneous electrocortical activity has not yet been established in the intact brain. The aim of this study was to investigate in vivo the effects of A(1) receptor antagonism by 8-cyclopentyl-1...

  20. Itinerant deaf educator and general educator perceptions of the D/HH push-in model.

    Science.gov (United States)

    Rabinsky, Rebecca J

    2013-01-01

    A qualitative case study using the deaf and hard of hearing (D/HH) push-in model was conducted on the perceptions of 3 itinerant deaf educators and 3 general educators working in 1 school district. Participants worked in pairs of 1 deaf educator and 1 general educator at 3 elementary schools. Open-ended research questions guided the study, which was concerned with teachers' perceptions of the model in general and with the model's advantages, disadvantages, and effectiveness. Data collected from observations, one-to-one interviews, and a focus group interview enabled the investigator to uncover 4 themes: Participants (a) had an overall positive experience, (b) viewed general education immersion as an advantage, (c) considered high noise levels a disadvantage, and (d) believed the effectiveness of the push-in model was dependent on several factors, in particular, the needs of the student and the nature of the general education classroom environment.