WorldWideScience

Sample records for isotropic multilayered structures

  1. Magnetic multilayer structure

    Science.gov (United States)

    Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.

    2016-07-05

    A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.

  2. Acoustic carpet invisibility cloak with two open windows using multilayered homogeneous isotropic material

    International Nuclear Information System (INIS)

    Ren Chun-Yu; Xiang Zhi-Hai; Cen Zhang-Zhi

    2011-01-01

    We present a method for designing an open acoustic cloak that can conceal a perturbation on flat ground and simultaneously meet the requirement of communication and matter interchange between the inside and the outside of the cloak. This cloak can be constructed with a multilayered structure and each layer is an isotropic and homogeneous medium. The design scheme consists of two steps: firstly, we apply a conformal coordinate transformation to obtain a quasi-perfect cloak with heterogeneous isotropic material; then, according to the profile of the material distribution, we degenerate this cloak into a multilayered-homogeneous isotropic cloak, which has two open windows with negligible disturbance on its invisibility performance. This may greatly facilitate the fabrication and enhance the applicability of such a carpet-type cloak. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  3. Transfer matrices for multilayer structures

    International Nuclear Information System (INIS)

    Baquero, R.

    1988-08-01

    We consider four of the transfer matrices defined to deal with multilayer structures. We deduce algorithms to calculate them numerically, in a simple and neat way. We illustrate their application to semi-infinite systems using SGFM formulae. These algorithms are of fast convergence and allow a calculation of bulk-, surface- and inner-layers band structure in good agreement with much more sophisticated calculations. Supermatrices, interfaces and multilayer structures can be calculated in this way with a small computational effort. (author). 10 refs

  4. Sound transmission through lined, composite panel structures: Transversely isotropic poro-elastic model

    Science.gov (United States)

    Kim, Jeong-Woo

    A joint experimental and analytical investigation of the sound transmission loss (STL) and two-dimensional free wave propagation in composite sandwich panels is presented here. An existing panel, a Nomex honeycomb sandwich panel, was studied in detail. For the purpose of understanding the typical behavior of sandwich panels, a composite structure comprising two aluminum sheets with a relatively soft, poro-elastic foam core was also constructed and studied. The cores of both panels were modeled using an anisotropic (transversely isotropic) poro-elastic material theory. Several estimation methods were used to obtain the material properties of the honeycomb core and the skin plates to be used in the numerical calculations. Appropriate values selected from among the estimates were used in the STL and free wave propagation models. The prediction model was then verified in two ways: first, the calculated wave speeds and STL of a single poro-elastic layer were numerically verified by comparison with the predictions of a previously developed isotropic model. Secondly, to physically validate the transversely isotropic model, the measured STL and the phase speeds of the sandwich panels were compared with their predicted values. To analyze the actual treatment of a fuselage structure, multi-layered configurations, including a honeycomb panel and several layers such as air gaps, acoustic blankets and membrane partitions, were formulated. Then, to find the optimal solution for improving the sound barrier performance of an actual fuselage system, air layer depth and glass fiber lining effects were investigated by using these multi-layer models. By using the free wave propagation model, the first anti-symmetric and symmetric modes of the sandwich panels were characterized to allow the identification of the coincidence frequencies of the sandwich panel. The behavior of the STL could then be clearly explained by comparison with the free wave propagation solutions. By performing a

  5. Optical and structural study of BST multilayers

    Czech Academy of Sciences Publication Activity Database

    Železný, Vladimír; Chvostová, Dagmar; Pajasová, Libuše; Jelínek, Miroslav; Kocourek, Tomáš; Daniš, S.; Valvoda, V.

    2010-01-01

    Roč. 12, č. 3 (2010), 538-541 ISSN 1454-4164 R&D Projects: GA ČR GA202/07/0591 Institutional research plan: CEZ:AV0Z10100522; CEZ:AV0Z10100520 Keywords : ellipsometry * structure * ferroelectric multilayers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.412, year: 2010

  6. Subwavelength resolution from multilayered structure (Conference Presentation)

    Science.gov (United States)

    Cheng, Bo Han; Jen, Yi-Jun; Liu, Wei-Chih; Lin, Shan-wen; Lan, Yung-Chiang; Tsai, Din Ping

    2016-10-01

    Breaking optical diffraction limit is one of the most important issues needed to be overcome for the demand of high-density optoelectronic components. Here, a multilayered structure which consists of alternating semiconductor and dielectric layers for breaking optical diffraction limitation at THz frequency region are proposed and analyzed. We numerically demonstrate that such multilayered structure not only can act as a hyperbolic metamaterial but also a birefringence material via the control of the external temperature (or magnetic field). A practical approach is provided to control all the diffraction signals toward a specific direction by using transfer matrix method and effective medium theory. Numerical calculations and computer simulation (based on finite element method, FEM) are carried out, which agree well with each other. The temperature (or magnetic field) parameter can be tuned to create an effective material with nearly flat isofrequency feature to transfer (project) all the k-space signals excited from the object to be resolved to the image plane. Furthermore, this multilayered structure can resolve subwavelength structures at various incident THz light sources simultaneously. In addition, the resolution power for a fixed operating frequency also can be tuned by only changing the magnitude of external magnetic field. Such a device provides a practical route for multi-functional material, photolithography and real-time super-resolution image.

  7. Nanosecond Surface Microdischarges in Multilayer Structures

    Science.gov (United States)

    Dubinov, A. E.; Lyubimtseva, V. A.

    2018-05-01

    Multilayer structures in which nanosecond surface microdischarges are generated have been developed, fabricated, and investigated. In these structures, layers are made in the form of thin transparent films, and a plasma discharge channel is formed in thin spacings between the layers. Passage of the discharge channel from one layer into the neighboring layer is implemented via pre-fabricated microholes. Images of microdischarges were obtained which confirmed that their plasma channels are formed according to the route assigned by the holes. The route may follow a fairly complex scheme and have self-intersection points and portions in which the electrons are bound to move in opposition to the electric field. In studying the shape of channels in multilayer strictures, the authors have found a new physical effect which lies in the azimuthal self-orientation of the discharge channel as it passes from one microhole to another.

  8. Process of obtaining the multilayer structure

    International Nuclear Information System (INIS)

    Buzdugan, A.; Dolghieru, V.; Jitari, V.; Colomeico, E.; Popescu, A.

    1997-01-01

    The invention relates to the multilayer structures of glassy semiconductors with the refractive index abrupt and smooth variation at the bound between the layers and may be used for manufacturing the optical information transmission and recording media. With a view to simplify the technology, compositionally different layers of chalcogenide glassy semiconductors having various refractive indexes from As 2 S 3 , are being by thermal vacuum evaporation, changing the vaporization temperature thereof from 120 to 280 C

  9. Nested structures approach in designing an isotropic negative-index material for infrared

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    2009-01-01

    We propose a new generic approach for designing isotropic metamaterial with nested cubic structures. As an example, a three-dimensional isotropic unit cell design "Split Cube in Cage" (SCiC) is shown to exhibit an effective negative refractive index on infrared wavelengths. We report on the refra......We propose a new generic approach for designing isotropic metamaterial with nested cubic structures. As an example, a three-dimensional isotropic unit cell design "Split Cube in Cage" (SCiC) is shown to exhibit an effective negative refractive index on infrared wavelengths. We report...

  10. Optimization of Perfect Absorbers with Multilayer Structures

    Science.gov (United States)

    Li Voti, Roberto

    2018-02-01

    We study wide-angle and broadband perfect absorbers with compact multilayer structures made of a sequence of ITO and TiN layers deposited onto a silver thick layer. An optimization procedure is introduced for searching the optimal thicknesses of the layers so as to design a perfect broadband absorber from 400 nm to 750 nm, for a wide range of angles of incidence from 0{°} to 50{°}, for both polarizations and with a low emissivity in the mid-infrared. We eventually compare the performances of several optimal structures that can be very promising for solar thermal energy harvesting and collectors.

  11. Fabrication and Properties of Multilayer Structures

    Science.gov (United States)

    1983-09-01

    according to both the high x-ray count and a Read camera pattern which showed only the 111 8 SiC reflection in a tight ± 30 distribution about the substrate...structural rearrangement. X-ray analysis of the deposited films at the composition of Pd2 Si using a Read camera indicated strong texturing. The...Phys. 35, 547 (1964). 11. C.A. Neubauer and J.R. Randen, Proc. IEEE 52, 1234 (1964). 12. W.A. Tiller, "Fabrication and Properties of Multilayer

  12. Properties of multilayer nonuniform holographic structures

    International Nuclear Information System (INIS)

    Pen, E F; Rodionov, Mikhail Yu

    2010-01-01

    Experimental results and analysis of properties of multilayer nonuniform holographic structures formed in photopolymer materials are presented. The theoretical hypotheses is proved that the characteristics of angular selectivity for the considered structures have a set of local maxima, whose number and width are determined by the thicknesses of intermediate layers and deep holograms and that the envelope of the maxima coincides with the selectivity contour of a single holographic array. It is also experimentally shown that hologram nonuniformities substantially distort shapes of selectivity characteristics: they become asymmetric, the local maxima differ in size and the depths of local minima reduce. The modelling results are made similar to experimental data by appropriately choosing the nonuniformity parameters. (imaging and image processing. holography)

  13. Neutron diffraction studies of thin film multilayer structures

    International Nuclear Information System (INIS)

    Majkrzak, C.F.

    1985-01-01

    The application of neutron diffraction methods to the study of the microscopic chemical and magnetic structures of thin film multilayers is reviewed. Multilayer diffraction phenomena are described in general and in particular for the case in which one of the materials of a bilayer is ferromagnetic and the neutron beam polarized. Recent neutron diffraction measurements performed on some interesting multilayer systems are discussed. 70 refs., 5 figs

  14. Laminated multilayer sheet structure and its utilization

    International Nuclear Information System (INIS)

    Chiba, K.; Itoh, K.; Mitani, Y.; Sobajima, S.; Yonemura, U.

    1980-01-01

    A laminated multilayer sheet structure is described comprising (A) an opaque flexible sheet layer, and (B) a flexible layer laminated on the surface of layer (A) and composed of a transparent thermic ray reflecting layer (B 1 ) bonded to a transparent synthetic resin layer (B 2 ), said layer (B 1 ) being a transparent thermic ray reflecting layer composed of (I) a layer of a metal having a thickness of about 50 to about 600 A, said metal being selected from the group consisting of gold, silver, copper, aluminum and a mixture of alloy of at least two of said metals, and (II) a high refractive substance layer having a thickness of about 50 to about 600 A, of an oxide of titanium derived from a layer of an organic titanium compound of the formula Ti 1 O/sub m/R/sub n/, where R is alkyl of 1-20 carbon atoms, l=1-30, m=4+3(1-1), and n=4+2(1-1), and containing the organic residual moiety of the organic titanium compound, the amount of said organic residual moiety being 0.1 to 30% by weight based on the weight of the high refractive substance layer; or said layer (B 1 ) being a transparent semiconductive layer having a thickness of about 500 to about 5,000 a and being composed of a compound selected from the group consisting of indium oxide, tin oxide, cadmium oxide, antimony oxide, copper iodide, and a mixture of at least two of said compounds. A method is described for heat-insulating a room, which comprises applying to the surface of a floor, wall, ceiling or partition in the room a laminated multilayer sheet structure comprising (A) an opaque flexible sheet layer, and (B) a flexible layer laminated on the surface of layer (A) and composed of a transparent thermic ray reflecting layer (B 1 ) bonded to a transparent synthetic resin layer

  15. Acoustic transmittance of an aperiodic deterministic multilayer structure

    International Nuclear Information System (INIS)

    Madrigal-Melchor, J; Enciso-Muñoz, A; Contreras-Solorio, D A

    2013-01-01

    We study theoretically the acoustic transmission for a multilayer structure where the characteristic acoustic impedance follows the values generated by the self-similar sequence called the 1 s counting sequence . The transmission spectrum shows clearly self-similarity characteristics.

  16. Modeling Delamination of Interfacial Corner Cracks in Multilayered Structures

    DEFF Research Database (Denmark)

    Veluri, Badrinath (Badri); Jensen, Henrik Myhre

    2013-01-01

    Multilayered electronic components, typically of heterogeneous materials, delaminate under thermal and mechanical loading. A phenomenological model focused on modeling the shape of such interface cracks close to corners in layered interconnect structures for calculating the critical stress...

  17. Optical Properties of Multilayer CdSe/POLYMER Structures

    Science.gov (United States)

    Red'Ko, V. P.; Voitenkov, A. I.; Kovalenko, O. E.

    The effects of preparation condition, concentration and size of particles upon optical and photoelectrical characteristics of multilayer structures CdSe/polyethylene terephthalate obtained by electron-beam evaporation were investigated.

  18. Status and limitations of multilayer X-ray interference structures

    International Nuclear Information System (INIS)

    Kortright, J.B.

    1996-01-01

    Trends in the performance of x-ray multilayer interference structures with periods ranging from 9 to 130 (angstrom) are reviewed. Analysis of near-normal incidence reflectance data vs photon energy reveals that the effective interface with σ in a static Debye-Waller model, describing interdiffusion and roughness, decreases as the multilayer period decreases, and reaches a lower limit of roughly 2 (angstrom). Specular reflectance and diffuse scattering from uncoated and multilayer-coated substrates having different roughness suggest that this lower limit results largely from substrate roughness. The increase in interface width with period thus results from increasing roughness of interdiffusion as the layer thickness increases

  19. Research on the Multilayer Free Damping Structure Design

    Directory of Open Access Journals (Sweden)

    Jie Meng

    2018-01-01

    Full Text Available The aim of this paper is to put forward a design model for multilayer free damping structures. It sets up a mathematical model and deduces the formula for its structural loss factor η and analyzes the change rules of η along with the change rate of the elastic modulus ratio q1, the change rate of the loss factors of damping materials q2, and the change rate of the layer thickness ratio q3 under the condition with the layer thickness ratio h2=1,3,5,10 by software MATLAB. Based on three specific damping structures, the mathematical model is verified through ABAQUS. With the given structural loss factor (η≥2 and the layer number (n=3,4,5,6, 34 kinds of multilayer free damping structures are then presented. The study is meant to provide a more flexible and more diverse design solution for multilayer free damping structures.

  20. Negative Refraction Using Frequency-Tuned Oxide Multilayer Structure

    Directory of Open Access Journals (Sweden)

    Yalin Lu

    2008-01-01

    Full Text Available An oxide-based multilayer structure was proposed to realize negative refraction. The multilayer composes of alternative layers having negative permittivity and negative permeability, respectively. In order to realize negative refraction, their dielectric and magnetic resonances of layers will be tuned to the frequency as close as possibly via changing their temperature, composition, structure, and so forth. Such oxide-based NIMs are attractive for their potential applications as optical super lenses, imagers, optical cloaking, sensors, and so forth, those are required with low-loss, low-cost, and good fabrication flexibility.

  1. Computer simulation of model cohesive powders: Plastic consolidation, structural changes and elasticity under isotropic loads

    OpenAIRE

    Gilabert, Francisco; Roux, Jean-Noël; Castellanos, Antonio

    2008-01-01

    International audience; The quasistatic behavior of a simple 2D model of a cohesive powder under isotropic loads is investigated by Discrete Element simulations. The loose packing states, as studied in a previous paper, undergo important structural changes under growing confining pressure P, while solid fraction \\Phi irreversibly increases by large amounts. The system state goes through three stages, with different forms of the plastic consolidation curve \\Phi(P*), under growing reduced press...

  2. Radiography simulation based on exposure buildup factors for multilayer structures

    International Nuclear Information System (INIS)

    Marinkovic, Predrag; Pesic, Milan

    2009-01-01

    Monte Carlo techniques were usually used to study the effect of scattered photons on a radiographic X-ray image. Such approach is accurate, but computer time consuming. On the other hand, the exposure buildup factors can be used as approximate and efficient assessment to account for the scattering of X-rays. This method uses the known radiography parameters to find the resulting detector exposure due to both scattered and un-collided photons. A model for radiography simulation, based on X-ray dose buildup factor, is proposed. This model includes non-uniform attenuation in voxelized object of imaging (patient body tissue). Composition of patient body is considered as a multi-layer structure. Various empirical formulas exist for multi-layer structure calculations and they all calculate multi-layer buildup factors by combining single-layer buildup factors. The proposed model is convenient in cases when more exact techniques (like Monte Carlo) are not economical. (author)

  3. GOLIA-RK, Structure Stress for Isotropic Materials with Creep and Temperature Fields

    International Nuclear Information System (INIS)

    Donea, J.; Giuliani, S.

    1976-01-01

    1 - Nature of the physical problem solved: Stress analysis of complex structures in presence of creep, dimensional changes and thermal field. Plane stress, plane strain, generalized plane strain and axisymmetric problems can be solved. The material is assumed to be either isotropic or transversely isotropic. Any laws of material behaviour can easily be incorporated by the user (see subroutines WIGNER and CLAW). 2 - Method of solution: Finite element method using triangular elements with linear local fields. The equations for the displacements are solved by Choleski's method. An algorithm is incorporated to calculate automatically the successive time steps in a creep problem. 3 - Restrictions on the complexity of the problem: Maximum number of elements is 700. Maximum number of nodal points is 400. The indexes of two adjacent nodes are not permitted to differ by more than 19

  4. Highly stable thin film transistors using multilayer channel structure

    KAUST Repository

    Nayak, Pradipta K.; Wang, Zhenwei; Anjum, Dalaver H.; Hedhili, Mohamed N.; Alshareef, Husam N.

    2015-01-01

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured

  5. Simulation of the passive UHF devices on the basis of high-temperature superconductors for planar multilayer anisotropic structures

    CERN Document Server

    Gashinova, M S; Kolmakov, Y A; Vendik, I B

    2002-01-01

    The electrodynamic analysis of the arbitrary multilayer medium, including the anisotropic layers and containing the arbitrary form conductors is carried out. Thin layers of the high-temperature superconductor (HTSC) are considered as conductors. Determination of the surface current density is a result of the numerical solution. Accounting for the losses in the HTSC is accomplished on the basis of determining the equivalent surface impedance and using the Leontovich boundary conditions. Anisotropy is accounted for in the determination of the Green spectral dyad for the structure with arbitrary number of the anisotropic or isotropic layers. Calculation of the surface current density distribution demonstrates the correctness of the proposed model

  6. Multilayer Stochastic Block Models Reveal the Multilayer Structure of Complex Networks

    Directory of Open Access Journals (Sweden)

    Toni Vallès-Català

    2016-03-01

    Full Text Available In complex systems, the network of interactions we observe between systems components is the aggregate of the interactions that occur through different mechanisms or layers. Recent studies reveal that the existence of multiple interaction layers can have a dramatic impact in the dynamical processes occurring on these systems. However, these studies assume that the interactions between systems components in each one of the layers are known, while typically for real-world systems we do not have that information. Here, we address the issue of uncovering the different interaction layers from aggregate data by introducing multilayer stochastic block models (SBMs, a generalization of single-layer SBMs that considers different mechanisms of layer aggregation. First, we find the complete probabilistic solution to the problem of finding the optimal multilayer SBM for a given aggregate-observed network. Because this solution is computationally intractable, we propose an approximation that enables us to verify that multilayer SBMs are more predictive of network structure in real-world complex systems.

  7. Longitudinal and transverse structure functions in decaying nearly homogeneous and isotropic turbulence

    International Nuclear Information System (INIS)

    Ahmad Imtiaz; Lu Zhi-Ming; Liu Yu-Lu

    2014-01-01

    Streamwise evolution of longitudinal and transverse velocity structure functions in a decaying homogeneous and nearly isotropic turbulence is reported for Reynolds numbers Re λ up to 720. First, two theoretical relations between longitudinal and transverse structure functions are examined in the light of recently derived relations and the results show that the low-order transverse structure functions can be well approximated by longitudinal ones within the sub-inertial range. Reconstruction of fourth-order transverse structure functions with a recently proposed relation by Grauer et al. is comparatively less valid than the relation already proposed by Antonia et al. Secondly, extended self-similarity methods are used to measure the scaling exponents up to order eight and the streamwise evolution of scaling exponents is explored. The scaling exponents of longitudinal structure functions are, at first location, close to Zybin's model, and at the fourth location, close to She—Leveque model. No obvious trend is found for the streamwise evolution of longitudinal scaling exponents, whereas, on the contrary, transverse scaling exponents become slightly smaller with the development of a steamwise direction. Finally, the stremwise variation of the order-dependent isotropy ratio indicates the turbulence at the last location is closer to isotropic than the other three locations. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Optimisation of multi-layer rotationally moulded foamed structures

    Science.gov (United States)

    Pritchard, A. J.; McCourt, M. P.; Kearns, M. P.; Martin, P. J.; Cunningham, E.

    2018-05-01

    Multi-layer skin-foam and skin-foam-skin sandwich constructions are of increasing interest in the rotational moulding process for two reasons. Firstly, multi-layer constructions can improve the thermal insulation properties of a part. Secondly, foamed polyethylene sandwiched between solid polyethylene skins can increase the mechanical properties of rotationally moulded structural components, in particular increasing flexural properties and impact strength (IS). The processing of multiple layers of polyethylene and polyethylene foam presents unique challenges such as the control of chemical blowing agent decomposition temperature, and the optimisation of cooling rates to prevent destruction of the foam core; therefore, precise temperature control is paramount to success. Long cooling cycle times are associated with the creation of multi-layer foam parts due to their insulative nature; consequently, often making the costs of production prohibitive. Devices such as Rotocooler®, a rapid internal mould water spray cooling system, have been shown to have the potential to significantly decrease cooling times in rotational moulding. It is essential to monitor and control such devices to minimise the warpage associated with the rapid cooling of a moulding from only one side. The work presented here demonstrates the use of threaded thermocouples to monitor the polymer melt in multi-layer sandwich constructions, in order to analyse the cooling cycle of multi-layer foamed structures. A series of polyethylene skin-foam test mouldings were produced, and the effect of cooling medium on foam characteristics, mechanical properties, and process cycle time were investigated. Cooling cycle time reductions of 45%, 26%, and 29% were found for increasing (1%, 2%, and 3%) chemical blowing agent (CBA) amount when using internal water cooling technology from ˜123°C compared with forced air cooling (FAC). Subsequently, a reduction of IS for the same skin-foam parts was found to be 1%, 4

  9. Structural evolution of Ti/TiC multilayers

    International Nuclear Information System (INIS)

    Dahan, I.; Frage, N.; Dariel, M.P.

    2004-01-01

    Hard coatings based on metal/ceramic multilayers with periods in the nanometer range have been shown to possess some potential for improved tribological and mechanical properties. The present work is concerned with the structural evolution of (Ti/TiC) multilayers. Two kinds of multilayers consisting of 30 equithick (40 nm)TiC layers and 20 and 60 nm thick Ti layers, respectively, were sputter deposited on Mo substrates. The structural and the compositional evolution of these multilayers were examined by x-ray diffraction, transition electron microscopy (TEM), high-resolution TEM, Auger electron microscopy spectroscopy and differential thermal analysis (DTA), in the as-deposited state and after various heat treatments up to 500 deg. C. Initially, the Ti layers had a crystalline columnar grain structure displaying a (002) texture. The TiC layers displayed weak crystallinity with a pronounced (111) texture. In the course of the heat treatments, carbon diffused from the carbide layer into the adjacent Ti layers transforming the latter into off-stoichiometric TiC x with x≅0.5 and simultaneously depleting the carbon content of the initial carbide layer. The formed TiC x layers maintained the textural relationship with the neighboring TiC layers, consistent with a transformation that involved only a ABAB to ABC stacking change of the Ti sublattice. Increased mobility of the Ti atoms in carbon-depleted original TiC layers led to their full or partial recrystallization. The thermal effects associated both with the transformation of Ti layers into TiC, due to the influx of carbon atoms, and with the recrystallization of the original TiC layers were clearly revealed by the DTA measurements

  10. Selective optical transmission in anisotropic multilayers structure

    International Nuclear Information System (INIS)

    Ouchani, N.; Bria, D.; Nougaoui, A.; Merad, A.E.

    2007-08-01

    We developed a Green's function method to study theoretically a single-defect photonic crystal composed of anisotropic dielectric materials. This structure can trap light of a given frequency range and filter only a certain frequency light with a very high quality. It is shown that the defect modes appear as peaks in the transmission spectrum. Their intensities and frequency positions depend on the incidence angle and the orientation of the principal axes of layers consisting of the superlattice and the layer defect. Our structure offers a great variety of possibilities for creating and controlling the number and transmitted intensities of defect modes. It can be a good candidate for realizing a selective electromagnetic filter. In addition to this filtration process, the defective anisotropic photonic crystal can be used to switch the modes when appropriate geometry is selected. (author)

  11. Nano-sized Adsorbate Structure Formation in Anisotropic Multilayer System

    Science.gov (United States)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Yanovsky, Vladimir V.

    2017-05-01

    In this article, we study dynamics of adsorbate island formation in a model plasma-condensate system numerically. We derive the generalized reaction-diffusion model for adsorptive multilayer system by taking into account anisotropy in transfer of adatoms between neighbor layers induced by electric field. It will be found that with an increase in the electric field strength, a structural transformation from nano-holes inside adsorbate matrix toward separated nano-sized adsorbate islands on a substrate is realized. Dynamics of adsorbate island sizes and corresponding distributions are analyzed in detail. This study provides an insight into details of self-organization of adatoms into nano-sized adsorbate islands in anisotropic multilayer plasma-condensate systems.

  12. Structural properties of the Chinese air transportation multilayer network

    International Nuclear Information System (INIS)

    Hong, Chen; Zhang, Jun; Cao, Xian-Bin; Du, Wen-Bo

    2016-01-01

    Highlights: • We investigate the structural properties of the Chinese air transportation multilayer network (ATMN). • We compare two main types of layers corresponding to major and low-cost airlines. • It is found that small-world property and rich-club effect of the Chinese ATMN are mainly caused by major airlines. - Abstract: Recently multilayer networks are attracting great attention because the properties of many real-world systems cannot be well understood without considering their different layers. In this paper, we investigate the structural properties of the Chinese air transportation multilayer network (ATMN) by progressively merging layers together, where each commercial airline (company) defines a layer. The results show that the high clustering coefficient, short characteristic path length and large collection of reachable destinations of the Chinese ATMN can only emerge when several layers are merged together. Moreover, we compare two main types of layers corresponding to major and low-cost airlines. It is found that the small-world property and the rich-club effect of the Chinese ATMN are mainly caused by those layers corresponding to major airlines. Our work will highlight a better understanding of the Chinese air transportation network.

  13. Structural color of a lycaenid butterfly: analysis of an aperiodic multilayer structure

    International Nuclear Information System (INIS)

    Yoshioka, S; Shimizu, Y; Kinoshita, S; Matsuhana, B

    2013-01-01

    We investigated the structural color of the green wing of the lycaenid butterfly Chrysozephyrus brillantinus. Electron microscopy revealed that the bottom plate of the cover scale on the wing consists of an alternating air–cuticle multilayer structure. However, the thicknesses of the layers were not constant but greatly differed depending on the layer, unlike the periodic multilayer designs often adopted for artificial laser-reflecting mirrors. The agreement between the experimentally determined and theoretically calculated reflectance spectra led us to conclude that the multilayer interference in the aperiodic system is the primary origin of the structural color. We analyzed optical interference in this aperiodic system using a simple analytical model and found that two spectral peaks arise from constructive interference among different parts of the multilayer structure. We discuss the advantages and disadvantages of the aperiodic system over a periodic one. (paper)

  14. Domain structures and magnetization reversal in Co/Pd and CoFeB/Pd multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Sbiaa, R., E-mail: rachid@squ.edu.om [Department of Physics, Sultan Qaboos University, P.O. Box 36, PC 123 (Oman); Ranjbar, M. [Physics Department, University of Gothenburg, 412 96 Gothenburg (Sweden); Åkerman, J. [Physics Department, University of Gothenburg, 412 96 Gothenburg (Sweden); Materials Physics, School of ICT, Royal Institute of Technology (KTH), 164 40 Kista (Sweden)

    2015-05-07

    Domain structures and magnetization reversal of (Co/Pd) and (CoFeB/Pd) multilayers with 7 and 14 repeats were investigated. The Co-based multilayers show much larger coercivities, a better squareness, and a sharper magnetization switching than CoFeB-based multilayers. From magnetic force microscopy observations, both structures show strong reduction in domains size as the number of repeats increases but the magnetic domains for Co-based multilayers are more than one order of magnitude larger than for CoFeB-based multilayers. By imaging domains at different times, breaks in the (CoFeB/Pd) multilayer stripes were observed within only few hours, while no change could be seen for (Co/Pd) multilayers. Although CoFeB single layers are suitable for magnetoresistive devices due to their large spin polarization and low damping constants, their lamination with Pd suffers mainly from thermal instability.

  15. Experimental analysis on stress wave in inhomogeneous multi-layered structures

    International Nuclear Information System (INIS)

    Cho, Yun Ho; Ham, Hyo Sick

    1998-01-01

    The guided wave propagation in inhomogeneous multi-layered structures is experimentally explored based on theoretical dispersion curves. It turns out that proper selection of incident angle and frequency is critical for guided wave generation in multi-layered structures. Theoretical dispersion curves greatly depend on adhesive zone thickness, layer thickness and material properties. It was possible to determine the adhesive zone thickness of an inhomogeneous multi-layered structure by monitoring experimentally the change of dispersion curves.

  16. High-frequency characteristics of glass/ceramic composite and alumina multilayer structures

    International Nuclear Information System (INIS)

    Niwa, K.; Suzuki, H.; Yokoyama, H.; Kamechara, N.; Tsubone, K.; Tanisawa, H.; Sugiki, H.

    1990-01-01

    This paper reports the transmission characteristics of glass/ceramic composite (borosilicate glass/alumina) and alumina multilayer structures examined. The triplate stripline formed in the glass/ceramic multilayer shows low conductor and dielectric loss. Alumina multilayer, however, has twice the transmission loss at 10 GHz, because the resistivity of W in the alumina multilayer is higher than the Cu in the glass/ceramic multilayer. Crosstalk between striplines in the glass/ceramics is less than -80 dB up to 11 GHz and 9 GHz for alumina

  17. Interactive Simulation and Visualization of Lamb Wave Propagation in Isotropic and Anisotropic Structures

    International Nuclear Information System (INIS)

    Moll, J; Schulte, R T; Fritzen, C-P; Rezk-Salama, C; Klinkert, T; Kolb, A

    2011-01-01

    Structural health monitoring systems allow a continuous surveillance of the structural integrity of operational systems. As a result, it is possible to reduce time and costs for maintenance without decreasing the level of safety. In this paper, an integrated simulation and visualization environment is presented that enables a detailed study of Lamb wave propagation in isotropic and anisotropic materials. Thus, valuable information about the nature of Lamb wave propagation and its interaction with structural defects become available. The well-known spectral finite element method is implemented to enable a time-efficient calculation of the wave propagation problem. The results are displayed in an interactive visualization framework accounting for the human perception that is much more sensitive to motion than to changes in color. In addition, measurements have been conducted experimentally to record the full out-of-plane wave-field using a Laser-Doppler vibrometry setup. An aluminum structure with two synthetic cuts has been investigated, where the elongated defects have a different orientation with respect to the piezoelectric actuator. The resulting wave-field is also displayed interactively showing that the scattered wave-field at the defect is highly directional.

  18. Calculation of surface acoustic waves in a multilayered piezoelectric structure

    International Nuclear Information System (INIS)

    Zhang Zuwei; Wen Zhiyu; Hu Jing

    2013-01-01

    The propagation properties of the surface acoustic waves (SAWs) in a ZnO—SiO 2 —Si multilayered piezoelectric structure are calculated by using the recursive asymptotic method. The phase velocities and the electromechanical coupling coefficients for the Rayleigh wave and the Love wave in the different ZnO—SiO 2 —Si structures are calculated and analyzed. The Love mode wave is found to be predominantly generated since the c-axis of the ZnO film is generally perpendicular to the substrate. In order to prove the calculated results, a Love mode SAW device based on the ZnO—SiO 2 —Si multilayered structure is fabricated by micromachining, and its frequency responses are detected. The experimental results are found to be mainly consistent with the calculated ones, except for the slightly larger velocities induced by the residual stresses produced in the fabrication process of the films. The deviation of the experimental results from the calculated ones is reduced by thermal annealing. (semiconductor physics)

  19. Finite element modeling of multilayered structures of fish scales.

    Science.gov (United States)

    Chandler, Mei Qiang; Allison, Paul G; Rodriguez, Rogie I; Moser, Robert D; Kennedy, Alan J

    2014-12-01

    The interlinked fish scales of Atractosteus spatula (alligator gar) and Polypterus senegalus (gray and albino bichir) are effective multilayered armor systems for protecting fish from threats such as aggressive conspecific interactions or predation. Both types of fish scales have multi-layered structures with a harder and stiffer outer layer, and softer and more compliant inner layers. However, there are differences in relative layer thickness, property mismatch between layers, the property gradations and nanostructures in each layer. The fracture paths and patterns of both scales under microindentation loads were different. In this work, finite element models of fish scales of A. spatula and P. senegalus were built to investigate the mechanics of their multi-layered structures under penetration loads. The models simulate a rigid microindenter penetrating the fish scales quasi-statically to understand the observed experimental results. Study results indicate that the different fracture patterns and crack paths observed in the experiments were related to the different stress fields caused by the differences in layer thickness, and spatial distribution of the elastic and plastic properties in the layers, and the differences in interface properties. The parametric studies and experimental results suggest that smaller fish such as P. senegalus may have adopted a thinner outer layer for light-weighting and improved mobility, and meanwhile adopted higher strength and higher modulus at the outer layer, and stronger interface properties to prevent ring cracking and interface cracking, and larger fish such as A. spatula and Arapaima gigas have lower strength and lower modulus at the outer layers and weaker interface properties, but have adopted thicker outer layers to provide adequate protection against ring cracking and interface cracking, possibly because weight is less of a concern relative to the smaller fish such as P. senegalus. Published by Elsevier Ltd.

  20. INVESTIGATION OF THERMAL BEHAVIOR OF MULTILAYERED FIRE RESISTANT STRUCTURE

    Directory of Open Access Journals (Sweden)

    R. GUOBYS

    2016-09-01

    Full Text Available This paper presents experimental and numerical investigations of thermal behavior under real fire conditions of new generation multilayered fire resistant structure (fire door, dimensions H × W × D: 2090 × 980 × 52 mm combining high strength and fire safety. This fire door consists of two steel sheets (thickness 1.5 and 0.7 mm with stone wool ( = 33 kg/m3, k = 0.037 W/mK, E = 5000 N/m2,  = 0.2 insulating layer in between. One surface of the structure was heated in fire furnace for specified period of time of 60 min. Temperature and deformation of opposite surface were measured from outside at selected measuring points during fire resistance test. Results are presented as temperature-time and thermal deformation-time graphs. Experimental results were compared with numerical temperature field simulation results obtained from SolidWorks®Simulation software. Numerical results were found to be in good agreement with experimental data. The percent differences between door temperatures from simulation and fire resistance test don’t exceed 8%. This shows that thermal behaviour of such multilayered structures can be investigated numerically, thus avoiding costly and time-consuming fire resistance tests. It is established that investigated structure should be installed in a way that places thicker steel sheet closer to the potential heat source than thinner one. It is also obtained that stone wool layer of higher density should be used to improve fire resistance of the structure.

  1. Exact thermal representation of multilayer rectangular structures by infinite plate structures using the method of images

    Science.gov (United States)

    Palisoc, Arthur L.; Lee, Chin C.

    1988-12-01

    Using the method of images and the analytical temperature solution to the multilayer infinite plate structure, the thermal profile over finite rectangular multilayer integrated circuit devices can be calculated exactly. The advantage of using the image method lies in the enhanced capability of arriving at an analytical solution for structures where analytical solutions do not apparently exist, e.g., circular or arbitrarily oriented rectangular sources over multilayered rectangular structures. The new approach results in large savings in computer CPU time especially for small sources over large substrates. The method also finds very important applications to integrated circuit devices with heat dissipating elements close to the edge boundaries. Results from two examples indicate that the edge boundaries of a device may also be utilized to remove heat from it. This additional heat removing capability should have important applications in high power devices.

  2. Nonlinear ultrasonic stimulated thermography for damage assessment in isotropic fatigued structures

    Science.gov (United States)

    Fierro, Gian Piero Malfense; Calla', Danielle; Ginzburg, Dmitri; Ciampa, Francesco; Meo, Michele

    2017-09-01

    Traditional non-destructive evaluation (NDE) and structural health monitoring (SHM) systems are used to analyse that a structure is free of any harmful damage. However, these techniques still lack sensitivity to detect the presence of material micro-flaws in the form of fatigue damage and often require time-consuming procedures and expensive equipment. This research work presents a novel "nonlinear ultrasonic stimulated thermography" (NUST) method able to overcome some of the limitations of traditional linear ultrasonic/thermography NDE-SHM systems and to provide a reliable, rapid and cost effective estimation of fatigue damage in isotropic materials. Such a hybrid imaging approach combines the high sensitivity of nonlinear acoustic/ultrasonic techniques to detect micro-damage, with local defect frequency selection and infrared imaging. When exciting structures with an optimised frequency, nonlinear elastic waves are observed and higher frictional work at the fatigue damaged area is generated due to clapping and rubbing of the crack faces. This results in heat at cracked location that can be measured using an infrared camera. A Laser Vibrometer (LV) was used to evaluate the extent that individual frequency components contribute to the heating of the damage region by quantifying the out-of-plane velocity associated with the fundamental and second order harmonic responses. It was experimentally demonstrated the relationship between a nonlinear ultrasound parameter (βratio) of the material nonlinear response to the actual temperature rises near the crack. These results demonstrated that heat generation at damaged regions could be amplified by exciting at frequencies that provide nonlinear responses, thus improving the imaging of material damage and the reliability of NUST in a quick and reproducible manner.

  3. Highly stable thin film transistors using multilayer channel structure

    KAUST Repository

    Nayak, Pradipta K.

    2015-03-09

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured at room temperature and at 60°C. A tremendous improvement in gate-bias stress stability was obtained in case of the TFT with multiple layers of ZnO embedded between HfO2 layers compared to the TFT with a single layer of ZnO as the semiconductor. The ultra-thin HfO2 layers act as passivation layers, which prevent the adsorption of oxygen and water molecules in the ZnO layer and hence significantly improve the gate-bias stress stability of ZnO TFTs.

  4. Direct Magnetic Relief Recording Using As40S60: Mn-Se Nanocomposite Multilayer Structures.

    Science.gov (United States)

    Stronski, A; Achimova, E; Paiuk, O; Meshalkin, A; Prisacar, A; Triduh, G; Oleksenko, P; Lytvyn, P

    2017-12-01

    Processes of holographic recording of surface relief structures using As 2 S 3 :Mn-Se multilayer nanostructures as registering media were studied in this paper. Optical properties of As 2 S 3 :Mn, Se layers, and As 2 S 3 :Mn-Se multilayer nanostructures were investigated. Values of optical bandgaps were obtained from Tauc dependencies. Surface relief diffraction gratings were recorded. Direct one-stage formation of surface relief using multilayer nanostructures is considered. For the first time, possibility of direct formation of magnetic relief simultaneous with surface relief formation under optical recording using As 2 S 3 :Mn-Se multilayer nanostructures is shown.

  5. About zone structure of a stack of a cholesteric liquid crystal and isotropic medium layers

    International Nuclear Information System (INIS)

    Gevorgyan, A H; Harutyunyan, E M; Matinyan, G K; Harutyunyan, M Z

    2014-01-01

    The optical properties of a stack of metamaterial-based cholesteric liquid crystal (CLC) layers and isotropic medium layers are investigated. CLCs with two types of chiral nihility are defined. The peculiarities of the reflection spectra of this system are investigated and it is shown that the reflection spectra of the stacks of CLC layers of these two types differ from each other. The influence of: the CLC sublayer thicknesses; incidence angle; local dielectric (magnetic) anisotropy of the CLC layers; refraction indices and thicknesses of the isotropic media layers on the reflection spectra and other optical characteristics of the system is investigated.

  6. Structural integrity of ceramic multilayer capacitor materials and ceramic multilayer capacitors

    NARCIS (Netherlands)

    With, de G.

    1993-01-01

    An review with 61 refs. is given of the fracture of and stress situation in ceramic capacitor materials and ceramic multilayer capacitors. A brief introduction to the relevant concepts is given first. Next the data for capacitor materials and the data for capacitors are discussed. The materials data

  7. An attempt to estimate isotropic and anisotropic lateral structure of the Earth by spectral inversion incorporating mixed coupling

    Science.gov (United States)

    Oda, Hitoshi

    2005-02-01

    We present a way to calculate free oscillation spectra for an aspherical earth model, which is constructed by adding isotropic and anisotropic velocity perturbations to the seismic velocity parameters of a reference earth model, and examine the effect of the velocity perturbations on the free oscillation spectrum. Lateral variations of the velocity perturbations are parametrized as an expansion in generalized spherical harmonics. We assume weak hexagonal anisotropy for the seismic wave anisotropy in the upper mantle, where the hexagonal symmetry axes are horizontally distributed. The synthetic spectra show that the velocity perturbations cause not only strong self-coupling among singlets of a multiplet but also mixed coupling between toroidal and spheroidal multiplets. Both the couplings give rise to an amplitude anomaly on the vertical component spectrum. In this study, we identify the amplitude anomaly resulting from the mixed coupling as quasi-toroidal mode. Excitation of the quasi-toroidal mode by a vertical strike-slip fault is largest on nodal lines of the Rayleigh wave, decreases with increasing azimuth angle and becomes smallest on loop lines. This azimuthal dependence of the spectral amplitude is quite similar to the Love wave radiation pattern. In addition, the amplitude spectrum of the quasi-toroidal mode is more sensitive to the anisotropic velocity perturbation than to the isotropic velocity perturbation. This means that the mode spectrum allowing for the mixed-coupling effect may provide constraints on the anisotropic lateral structure as well as the isotropic lateral structure. An inversion method, called mixed-coupling spectral inversion, is devised to retrieve the isotropic and anisotropic velocity perturbations from the free oscillation spectra incorporating the quasi-toroidal mode. We confirm that the spectral inversion method correctly recovers the isotropic and anisotropic lateral structure. Moreover introducing the mixed-coupling effect in the

  8. Reference Models for Multi-Layer Tissue Structures

    Science.gov (United States)

    2016-09-01

    function of multi-layer tissues (etiology and management of pressure ulcers ). What was the impact on other disciplines? As part of the project, a data...simplification to develop cost -effective models of surface manipulation of multi-layer tissues. Deliverables. Specimen- (or subject) and region-specific...simplification to develop cost -effective models of surgical manipulation. Deliverables. Specimen-specific surrogate models of upper legs confirmed against data

  9. Boundary element method in dynamic interaction of structures with multilayers media

    International Nuclear Information System (INIS)

    Mihalache, N.; Poterasu, V.F.

    1993-01-01

    The paper presents the problems of dynamic interaction between the multilayers media and structure by means of B.E.M., using Green's functions. The structure considered by the authors as a particular problem concerns a reinforced concrete shear wall and soil foundation of three layers having different thickness and mechanical characteristics. The authors will present comparatively the stresses and the displacements in static and dynamic regime interaction response of the structure. Theoretical part of the paper presents: Green's functions for the multilayers media in dynamic regime, stiffness matrices, stresses and displacements in the multilayers media exprimed by means of the Green's functions induced by the shear and horizontal forces, computer program, consideration for dynamic, structure-foundation-multilayers soil foundation interaction. (author)

  10. The generalized Cauchy relation: a probe for local structure in materials with isotropic symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Bactavatchalou, R [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Alnot, P [Universite Henri Poincare, Nancy I (France); Bailer, J [Universite du Luxembourg (Luxembourg); Kolle, M [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Mueller, U [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Philipp, M [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Possart, W [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Rouxel, D [Universite Henri Poincare, Nancy I (France); Sanctuary, R [Universite du Luxembourg (Luxembourg); Tschoepe, A [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Vergnat, Ch [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Wetzel, B [Institut fuer Verbundwerkstoffe TU Kaiserslautern 67663 Kaiserslautern (Germany); Krueger, J K [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg)

    2006-05-15

    The elastic properties of the isotropic state of condensed matter are given by the elastic constants ell and c44. In the liquid state the static shear stiffness c44 vanishes whereas at sufficient high probe frequencies a dynamic shear stiffness may appear. In that latter case the question about the existence of a Cauchy relation appears. It will be shown that a pure Cauchy relation can appear only under special conditions which are rarely fulfilled. For all investigated materials, including ceramics, liquids and glasses, a linear relation between ell and c44 called generalized Cauchy relation is observed, which, surprisingly, follows a linear transformation.

  11. Linear diffraction of light waves on periodically poled domain structures in lithium niobate crystals: collinear, isotropic, and anisotropic geometries

    International Nuclear Information System (INIS)

    Shandarov, S M; Mandel, A E; Akylbaev, T M; Borodin, M V; Savchenkov, E N; Smirnov, S V; Akhmatkhanov, A R; Shur, V Ya

    2017-01-01

    The possible variants of experimental observation of light diffraction on periodically poled domain structures (PPDS) in the lithium niobate crystal with 180-degree domain Y-walls are considered. We experimentally investigated isotropic and anisotropic diffraction of coherent light (λ = 655nm) on the PPDS with spatial period Λ = 8.79 μm produced by poling method in a LiNbO 3 : 5% MgO crystal. The central wavelength of irradiation experiencing a collinear diffraction on these PPDS is estimated as λ c = 455 nm. (paper)

  12. Structural, elastic and electronic Properties of isotropic cubic crystals of carbon and silicon nanotubes : Density functional based tight binding calculations.

    Directory of Open Access Journals (Sweden)

    Alexander L. Ivanovskii

    2008-01-01

    Full Text Available Atomic models of cubic crystals (CC of carbon and graphene-like Si nanotubes are offered and their structural, cohesive, elastic and electronic properties are predicted by means of the DFTB method. Our main findings are that the isotropic crystals of carbon nanotubes adopt a very high elastic modulus B and low compressibility β, namely B = 650 GPa, β = 0.0015 1/GPa. In addition, these crystals preserve the initial conductivity type of their “building blocks”, i.e. isolated carbon and Si nanotubes. This feature may be important for design of materials with the selected conductivity type.

  13. Evolution of structure with Fe layer thickness in low dimensional Fe/Tb multilayered structures

    International Nuclear Information System (INIS)

    Harris, V.G.; Aylesworth, K.D.; Elam, W.T.; Koon, N.C.; Coehoorn, R.; Hoving, W.

    1992-01-01

    This paper reports on the atomic structure of a series of low-dimensional Fe/Tb multilayered structures which has been explored using a conversion-electron, extended x-ray absorption fine structure (EXAFS) technique. A structural transition from a close-packed amorphous structure to a body-centered crystalline structure is detected to occur over an Fe layer thickness range of 12.5 Angstrom to 15.0 Angstrom (Tb thickness is held constant at 4.5 Angstrom). Magnetic properties, specifically, magnetization, anisotropy field, and Kerr rotation angle, are measured and found to change significantly in response to this transition. Exploitation of the polarization properties of synchrotron radiation allowed for the description of the atomic structure both perpendicular and parallel to the sample plane

  14. Multilayered analog optical differentiating device: performance analysis on structural parameters.

    Science.gov (United States)

    Wu, Wenhui; Jiang, Wei; Yang, Jiang; Gong, Shaoxiang; Ma, Yungui

    2017-12-15

    Analogy optical devices (AODs) able to do mathematical computations have recently gained strong research interest for their potential applications as accelerating hardware in traditional electronic computers. The performance of these wavefront-processing devices is primarily decided by the accuracy of the angular spectral engineering. In this Letter, we show that the multilayer technique could be a promising method to flexibly design AODs according to the input wavefront conditions. As examples, various Si-SiO 2 -based multilayer films are designed that can precisely perform the second-order differentiation for the input wavefronts of different Fourier spectrum widths. The minimum number and thickness uncertainty of sublayers for the device performance are discussed. A technique by rescaling the Fourier spectrum intensity has been proposed in order to further improve the practical feasibility. These results are thought to be instrumental for the development of AODs.

  15. Structural and magnetic properties of granular CoPd multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Vivas, L.G.; Figueroa, A.I.; Bartolomé, F. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Dept. de Física de la Materia Condensada, E-50009 Zaragoza (Spain); Rubín, J. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Dept. de Ciencia y Tecnología de Materiales y Fluidos, E-50018 Zaragoza (Spain); García, L.M. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Dept. de Física de la Materia Condensada, E-50009 Zaragoza (Spain); Deranlot, C.; Petroff, F. [Unité Mixte de Physique CNRS/Thales, F-91767 Palaiseau Cedex, France and Université Paris-Sud, F-191405 Orsay Cedex (France); Ruiz, L.; González-Calbet, J.M [Dept. de Química Inorgánica, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Brookes, N.B.; Wilhelm, F.; Rogalev, A. [European Synchrotron Radiation Facility (ESRF), CS40220, F-38043 Grenoble Cedex 9 (France); Bartolomé, J. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Dept. de Física de la Materia Condensada, E-50009 Zaragoza (Spain)

    2016-02-15

    Multilayers of bimetallic CoPd alloyed and assembled nanoparticles, prepared by room temperature sequential sputtering deposition on amorphous alumina, were studied by means of high-resolution transmission electron microscopy, x-ray diffraction, SQUID-based magnetometry and x-ray magnetic circular dichroism. Alloying between Co and Pd in these nanoparticles gives rise to a high perpendicular magnetic anisotropy. Their magnetic properties are temperature dependent: at low temperature, the multilayers are ferromagnetic with a high coercive field; at intermediate temperature the behavior is of a soft-ferromagnet, and at higher temperature, the perpendicular magnetic anisotropy in the nanoparticles disappears. The magnetic orbital moment to spin moment ratio is enhanced compared with Co bare nanoparticles and Co fcc bulk. - Highlights: • CoPd granular nanolayers show perpendicular magnetic anisotropy. • Three magnetic phases are detected: hard-ferro, soft-ferro and superparamagnetism. • The nanoparticles have Co-core and CoPd alloy shell morphology.

  16. Structural and magnetic properties of granular CoPd multilayers

    Science.gov (United States)

    Vivas, L. G.; Figueroa, A. I.; Bartolomé, F.; Rubín, J.; García, L. M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J. M.; Brookes, N. B.; Wilhelm, F.; Rogalev, A.; Bartolomé, J.

    2016-02-01

    Multilayers of bimetallic CoPd alloyed and assembled nanoparticles, prepared by room temperature sequential sputtering deposition on amorphous alumina, were studied by means of high-resolution transmission electron microscopy, x-ray diffraction, SQUID-based magnetometry and x-ray magnetic circular dichroism. Alloying between Co and Pd in these nanoparticles gives rise to a high perpendicular magnetic anisotropy. Their magnetic properties are temperature dependent: at low temperature, the multilayers are ferromagnetic with a high coercive field; at intermediate temperature the behavior is of a soft-ferromagnet, and at higher temperature, the perpendicular magnetic anisotropy in the nanoparticles disappears. The magnetic orbital moment to spin moment ratio is enhanced compared with Co bare nanoparticles and Co fcc bulk.

  17. Structural and magnetic properties of granular CoPd multilayers

    International Nuclear Information System (INIS)

    Vivas, L.G.; Figueroa, A.I.; Bartolomé, F.; Rubín, J.; García, L.M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J.M; Brookes, N.B.; Wilhelm, F.; Rogalev, A.; Bartolomé, J.

    2016-01-01

    Multilayers of bimetallic CoPd alloyed and assembled nanoparticles, prepared by room temperature sequential sputtering deposition on amorphous alumina, were studied by means of high-resolution transmission electron microscopy, x-ray diffraction, SQUID-based magnetometry and x-ray magnetic circular dichroism. Alloying between Co and Pd in these nanoparticles gives rise to a high perpendicular magnetic anisotropy. Their magnetic properties are temperature dependent: at low temperature, the multilayers are ferromagnetic with a high coercive field; at intermediate temperature the behavior is of a soft-ferromagnet, and at higher temperature, the perpendicular magnetic anisotropy in the nanoparticles disappears. The magnetic orbital moment to spin moment ratio is enhanced compared with Co bare nanoparticles and Co fcc bulk. - Highlights: • CoPd granular nanolayers show perpendicular magnetic anisotropy. • Three magnetic phases are detected: hard-ferro, soft-ferro and superparamagnetism. • The nanoparticles have Co-core and CoPd alloy shell morphology.

  18. New Insight into the Toughening Mechanisms of Seashell: From Arch Shape to Multilayer Structure

    Directory of Open Access Journals (Sweden)

    Quan Yuan

    2016-01-01

    Full Text Available A seashell is a closed three-dimensional curved surface formed by two symmetrical open shells. Three-point bending is performed on a pure aragonite straight beam (PASB model and a multilayer structure curved beam (MSCB model to elucidate the structure-property relationships of seashells. The integrity of the PASB is broken because of the introduction of a soft layer, but this drawback is compensated by the peculiar arch shape and the internal multilayer structure. The effective modulus, stiffness, and fracture energy of MSCB increase with an increase in volume fraction, aspect ratio of aragonite platelet, overlap ratio of hard layers, and ratio of the elastic modulus of the hard layer to the shear modulus of the soft layer. New design disciplines drawn from the MSCB model are peculiar arch shape, internal multilayer structure of larger volume fraction, and aspect ratio of hard layers and nanoscaled soft layers.

  19. Multilayer networks reveal the spatial structure of seed-dispersal interactions across the Great Rift landscapes.

    Science.gov (United States)

    Timóteo, Sérgio; Correia, Marta; Rodríguez-Echeverría, Susana; Freitas, Helena; Heleno, Ruben

    2018-01-10

    Species interaction networks are traditionally explored as discrete entities with well-defined spatial borders, an oversimplification likely impairing their applicability. Using a multilayer network approach, explicitly accounting for inter-habitat connectivity, we investigate the spatial structure of seed-dispersal networks across the Gorongosa National Park, Mozambique. We show that the overall seed-dispersal network is composed by spatially explicit communities of dispersers spanning across habitats, functionally linking the landscape mosaic. Inter-habitat connectivity determines spatial structure, which cannot be accurately described with standard monolayer approaches either splitting or merging habitats. Multilayer modularity cannot be predicted by null models randomizing either interactions within each habitat or those linking habitats; however, as habitat connectivity increases, random processes become more important for overall structure. The importance of dispersers for the overall network structure is captured by multilayer versatility but not by standard metrics. Highly versatile species disperse many plant species across multiple habitats, being critical to landscape functional cohesion.

  20. Multilayer porous structures of HVPE and MOCVD grown GaN for photonic applications

    Science.gov (United States)

    Braniste, T.; Ciers, Joachim; Monaico, Ed.; Martin, D.; Carlin, J.-F.; Ursaki, V. V.; Sergentu, V. V.; Tiginyanu, I. M.; Grandjean, N.

    2017-02-01

    In this paper we report on a comparative study of electrochemical processes for the preparation of multilayer porous structures in hydride vapor phase epitaxy (HVPE) and metal organic chemical vapor phase deposition (MOCVD) grown GaN. It was found that in HVPE-grown GaN, multilayer porous structures are obtained due to self-organization processes leading to a fine modulation of doping during the crystal growth. However, these processes are not totally under control. Multilayer porous structures with a controlled design have been produced by optimizing the technological process of electrochemical etching in MOCVD-grown samples, consisting of five pairs of thin layers with alternating-doping profiles. The samples have been characterized by SEM imaging, photoluminescence spectroscopy, and micro-reflectivity measurements, accompanied by transfer matrix analysis and simulations by a method developed for the calculation of optical reflection spectra. We demonstrate the applicability of the produced structures for the design of Bragg reflectors.

  1. Time-Dependent Thermally-Driven Interfacial Flows in Multilayered Fluid Structures

    Science.gov (United States)

    Haj-Hariri, Hossein; Borhan, A.

    1996-01-01

    A computational study of thermally-driven convection in multilayered fluid structures will be performed to examine the effect of interactions among deformable fluid-fluid interfaces on the structure of time-dependent flow in these systems. Multilayered fluid structures in two models configurations will be considered: the differentially heated rectangular cavity with a free surface, and the encapsulated cylindrical liquid bridge. An extension of a numerical method developed as part of our recent NASA Fluid Physics grant will be used to account for finite deformations of fluid-fluid interfaces.

  2. Asymmetric transmission in prisms using structures and materials with isotropic-type dispersion.

    Science.gov (United States)

    Gundogdu, Funda Tamara; Serebryannikov, Andriy E; Cakmak, A Ozgur; Ozbay, Ekmel

    2015-09-21

    It is demonstrated that strong asymmetry in transmission can be obtained at the Gaussian beam illumination for a single prism based on a photonic crystal (PhC) with isotropic-type dispersion, as well as for its analog made of a homogeneous material. Asymmetric transmission can be realized with the aid of refraction at a proper orientation of the interfaces and wedges of the prism, whereas neither contribution of higher diffraction orders nor anisotropic-type dispersion is required. Furthermore, incidence toward a prism wedge can be used for one of two opposite directions in order to obtain asymmetry. Thus, asymmetric transmission is a general property of the prism configurations, which can be obtained by using simple geometries and quite conventional materials. The obtained results show that strong asymmetry can be achieved in PhC prisms with (nearly) circular shape of equifrequency dispersion contours, in both cases associated with the index of refraction 01. For the comparison purposes, results are also presented for solid uniform non-magnetic prisms made of a material with the same value of n. It is shown in zero-loss approximation that the PhC prism and the ultralow-index material prism (01. Possible contributions of scattering on the individual rods and diffraction on the wedge to the resulting mechanism are discussed. Analogs of unidirectional splitting and unidirectional deflection regimes, which are known from the studies of PhC gratings, are obtained in PhC prisms and solid uniform prisms, i.e. without higher diffraction orders.

  3. X-ray propagation through a quasi-ordered multilayered structure ...

    African Journals Online (AJOL)

    We investigate the propagation of short wavelength transverse electric x-rays through a quasiordered (Fibonacci) atomically commensurate multilayered structure using a transfer matrix model which treats each atomic plane as a diffraction unit. The reflectance spectrum has a rich structure being dominated by peaks ...

  4. Structural and magnetic properties of Gd/Fe multilayers grown by pulsed laser deposition

    DEFF Research Database (Denmark)

    Kant, K. Mohan; Bahl, Christian Robert Haffenden; Pryds, Nini

    2010-01-01

    This work investigates the structural and the magnetic properties of Gd/Fe multilayered thin films grown by pulsed laser deposition onto Si (001) substrates at room temperature. he Fe layer thickness is varied from 70 to 150 nm and its effect on the structural and magnetic properties of Fe/Gd/Fe ...

  5. Damage assessment in multilayered MEMS structures under thermal fatigue

    Science.gov (United States)

    Maligno, A. R.; Whalley, D. C.; Silberschmidt, V. V.

    2011-07-01

    This paper reports on the application of a Physics of Failure (PoF) methodology to assessing the reliability of a micro electro mechanical system (MEMS). Numerical simulations, based on the finite element method (FEM) using a sub-domain approach was used to examine the damage onset due to temperature variations (e.g. yielding of metals which may lead to thermal fatigue). In this work remeshing techniques were employed in order to develop a damage tolerance approach based on the assumption that initial flaws exist in the multi-layered.

  6. High temperature annealing effect on structural and magnetic properties of Ti/Ni multilayers

    International Nuclear Information System (INIS)

    Bhatt, Pramod; Ganeshan, V.; Reddy, V.R.; Chaudhari, S.M.

    2006-01-01

    High temperature annealing effect on structural and magnetic properties of Ti/Ni multilayer (ML) up to 600 deg. C have been studied and reported in this paper. Ti/Ni multilayer samples having constant layer thicknesses of 50 A each are deposited on float glass and Si(1 1 1) substrates using electron-beam evaporation technique under ultra-high vacuum (UHV) conditions at room temperatures. The micro-structural parameters and their evolution with temperature for as-deposited as well as annealed multilayer samples up to 600 deg. C in a step of 100 deg. C for 1 h are determined by using X-ray diffraction (XRD) and grazing incidence X-ray reflectivity techniques. The X-ray diffraction pattern recorded at 300 deg. C annealed multilayer sample shows interesting structural transformation (from crystalline to amorphous) because of the solid-state reaction (SSR) and subsequent re-crystallization at higher temperatures of annealing, particularly at ≥400 deg. C due to the formation of TiNi 3 and Ti 2 Ni alloy phases. Sample quality and surface morphology are examined by using atomic force microscopy (AFM) technique for both as-deposited as well as annealed multilayer samples. In addition to this, a temperature dependent dc resistivity measurement is also used to study the structural transformation and subsequent alloy phase formation due to annealing treatment. The corresponding magnetization behavior of multilayer samples after each stage of annealing has been investigated by using Magneto-Optical Kerr Effect (MOKE) technique and results are interpreted in terms of observed micro-structural changes

  7. Thermoelectric characteristics of Pt-silicide/silicon multi-layer structured p-type silicon

    International Nuclear Information System (INIS)

    Choi, Wonchul; Jun, Dongseok; Kim, Soojung; Shin, Mincheol; Jang, Moongyu

    2015-01-01

    Electric and thermoelectric properties of silicide/silicon multi-layer structured devices were investigated with the variation of silicide/silicon heterojunction numbers from 3 to 12 layers. For the fabrication of silicide/silicon multi-layered structure, platinum and silicon layers are repeatedly sputtered on the (100) silicon bulk substrate and rapid thermal annealing is carried out for the silicidation. The manufactured devices show ohmic current–voltage (I–V) characteristics. The Seebeck coefficient of bulk Si is evaluated as 195.8 ± 15.3 μV/K at 300 K, whereas the 12 layered silicide/silicon multi-layer structured device is evaluated as 201.8 ± 9.1 μV/K. As the temperature increases to 400 K, the Seebeck coefficient increases to 237.2 ± 4.7 μV/K and 277.0 ± 1.1 μV/K for bulk and 12 layered devices, respectively. The increase of Seebeck coefficient in multi-layered structure is mainly attributed to the electron filtering effect due to the Schottky barrier at Pt-silicide/silicon interface. At 400 K, the thermal conductivity is reduced by about half of magnitude compared to bulk in multi-layered device which shows the efficient suppression of phonon propagation by using Pt-silicide/silicon hetero-junctions. - Highlights: • Silicide/silicon multi-layer structured is proposed for thermoelectric devices. • Electric and thermoelectric properties with the number of layer are investigated. • An increase of Seebeck coefficient is mainly attributed the Schottky barrier. • Phonon propagation is suppressed with the existence of Schottky barrier. • Thermal conductivity is reduced due to the suppression of phonon propagation

  8. Conductive, magnetic and structural properties of multilayer films

    Science.gov (United States)

    Kotov, L. N.; Turkov, V. K.; Vlasov, V. S.; Lasek, M. P.; Kalinin, Yu E.; Sitnikov, A. V.

    2013-12-01

    Composite-semiconductor and composite-dielectric multilayer films were obtained by the ion beam sputtering method in the argon and hydrogen atmospheres with compositions: {[(Co45-Fe45-Zr10)x(Al2O3)y]-[α-Si]}120, {[(Co45-Ta45-Nb10)x(SiO2)y]-[SiO2]}56, {[(Co45-Fe45-Zr10)x(Al2O3)y]-[α-Si:H]}120. The images of surface relief and distribution of the dc current on composite layer surface were obtained with using of atomic force microscopy (AFM). The dependencies of specific electric resistance, ferromagnetic resonance (FMR) fields and width of line on metal (magnetic) phase concentration x and nanolayers thickness of multilayer films were obtained. The characteristics of FMR depend on magnetic interaction among magnetic granules in the composite layers and between the layers. These characteristics depend on the thickness of composite and dielectric or semiconductor nanolayers. The dependences of electric microwave losses on the x and alternating field frequency were investigated.

  9. Carbon redistribution and precipitation in high temperature ion-implanted strained Si/SiGe/Si multi-layered structures

    DEFF Research Database (Denmark)

    Gaiduk, Peter; Hansen, John Lundsgaard; Nylandsted Larsen, Arne

    2014-01-01

    Graphical abstract Carbon depth profiles after high temperature implantation in strained Si/SiGe/Si multilayered system and induced structural defects.......Graphical abstract Carbon depth profiles after high temperature implantation in strained Si/SiGe/Si multilayered system and induced structural defects....

  10. Homogenous isotropic invisible cloak based on geometrical optics.

    Science.gov (United States)

    Sun, Jingbo; Zhou, Ji; Kang, Lei

    2008-10-27

    Invisible cloak derived from the coordinate transformation requires its constitutive material to be anisotropic. In this work, we present a cloak of graded-index isotropic material based on the geometrical optics theory. The cloak is realized by concentric multilayered structure with designed refractive index to achieve the low-scattering and smooth power-flow. Full-wave simulations on such a design of a cylindrical cloak are performed to demonstrate the cloaking ability to incident wave of any polarization. Using normal nature material with isotropy and low absorption, the cloak shows light on a practical path to stealth technology, especially that in the optical range.

  11. Structure evolution and magnetic properties of annealed nanoscale Gd/Ti multilayers

    Directory of Open Access Journals (Sweden)

    Larrañaga A.

    2013-01-01

    Full Text Available The structure and magnetic properties were comparatively analyzed for [Gd/Ti]n multilayers with Gd layer thickness of 1.5 to 12 nm. Multilayers were deposited by sputtering technique at room temperature and annealed for the temperatures up to 400 ºC. It was observed that the samples are highly textured in a different way depending on the Gd layer thickness and annealing temperature. It was found that the heat treatment practically does not change the Gd grain size. The lattice parameters obtained from X-ray results change significantly only for [Gd(1.5nm/Ti]50 multilayers, but their values remain higher than for the bulk Gd. The initial slope of the temperature dependence of magnetization near Curie temperature becomes steeper and Curie temperature increases upon annealing. Curie temperature variation can be understood by taking into account both relaxation of the lattice imperfections and change in lattice constants.

  12. Magnetic properties and structure of FePt/FeMn multilayers

    International Nuclear Information System (INIS)

    Phuoc, Nguyen N.; Suzuki, Takao

    2007-01-01

    A systematic study of the magnetic properties by ion beam sputter-deposition system, was conducted in conjunction with the structure of FePt/FeMn multilayers fabricated onto MgO(0 0 1) substrates. Both parallel and perpendicular exchange biases were observed in the multilayers and were found to decrease drastically, as the deposition temperature is higher than 350 deg. C, which is evidently due to the interdiffusion at the interface. The thickness dependence study shows that the perpendicular magnetic anisotropy observed in the multilayers originates from surface anisotropy, being consistent with the decrease of perpendicular magnetic anisotropy as the deposition temperature is increased. The difference between parallel and perpendicular blocking temperatures that was clearly observed, is possibly due to the spin canting out of plane at the interface

  13. Multilayered Word Structure Model for Assessing Spelling of Finnish Children in Shallow Orthography

    Science.gov (United States)

    Kulju, Pirjo; Mäkinen, Marita

    2017-01-01

    This study explores Finnish children's word-level spelling by applying a linguistically based multilayered word structure model for assessing spelling performance. The model contributes to the analytical qualitative assessment approach in order to identify children's spelling performance for enhancing writing skills. The children (N = 105)…

  14. Multilayered supermirror structures for hard x-ray synchrotron and astrophysics instrumentation

    DEFF Research Database (Denmark)

    Joensen, K. D.; Hoeghoej, P.; Christensen, Finn Erland

    1993-01-01

    By varying the thickness of the layers in a multilayer down through the structure, it is possible to produce wide-band reflectors. We report measurements and modeling of the reflectivity of Ni/C, Mo/Si and W/Si supermirrors, at energies ranging from 8 to 130 keV, and discuss the performance of tw...

  15. Development of a low activation concrete shielding wall by multi-layered structure for a fusion reactor

    International Nuclear Information System (INIS)

    Sato, Satoshi; Maegawa, Toshio; Yoshimatsu, Kenji; Sato, Koichi; Nonaka, Akira; Takakura, Kosuke; Ochiai, Kentaro; Konno, Chikara

    2011-01-01

    A multi-layered concrete structure has been developed to reduce induced activity in the shielding for neutron generating facilities such as a fusion reactor. The multi-layered concrete structure is composed of: (1) an inner low activation concrete, (2) a boron-doped low activation concrete as the second layer, and (3) ordinary concrete as the outer layer of the neutron shield. With the multi-layered concrete structure the volume of boron is drastically decreased compared to a monolithic boron-doped concrete. A 14 MeV neutron shielding experiment with multi-layered concrete structure mockups was performed at FNS and several reaction rates and induced activity in the mockups were measured. This demonstrated that the multi-layered concrete effectively reduced low energy neutrons and induced activity.

  16. Surface acoustic wave devices on AlN/3C–SiC/Si multilayer structures

    International Nuclear Information System (INIS)

    Lin, Chih-Ming; Lien, Wei-Cheng; Riekkinen, Tommi; Senesky, Debbie G; Pisano, Albert P; Chen, Yung-Yu; Felmetsger, Valery V

    2013-01-01

    Surface acoustic wave (SAW) propagation characteristics in a multilayer structure including a piezoelectric aluminum nitride (AlN) thin film and an epitaxial cubic silicon carbide (3C–SiC) layer on a silicon (Si) substrate are investigated by theoretical calculation in this work. Alternating current (ac) reactive magnetron sputtering was used to deposit highly c-axis-oriented AlN thin films, showing the full width at half maximum (FWHM) of the rocking curve of 1.36° on epitaxial 3C–SiC layers on Si substrates. In addition, conventional two-port SAW devices were fabricated on the AlN/3C–SiC/Si multilayer structure and SAW propagation properties in the multilayer structure were experimentally investigated. The surface wave in the AlN/3C–SiC/Si multilayer structure exhibits a phase velocity of 5528 m s −1 and an electromechanical coupling coefficient of 0.42%. The results demonstrate the potential of AlN thin films grown on epitaxial 3C–SiC layers to create layered SAW devices with higher phase velocities and larger electromechanical coupling coefficients than SAW devices on an AlN/Si multilayer structure. Moreover, the FWHM values of rocking curves of the AlN thin film and 3C–SiC layer remained constant after annealing for 500 h at 540 °C in air atmosphere. Accordingly, the layered SAW devices based on AlN thin films and 3C–SiC layers are applicable to timing and sensing applications in harsh environments. (paper)

  17. Deep Defect Detection within Thick Multilayer Aircraft Structures Containing Steel Fasteners Using a Giant-Magneto Resistive (GMR) Sensor (Preprint)

    National Research Council Canada - National Science Library

    Ko, Ray T; Steffes, Gary J

    2007-01-01

    Defect detection within thick multilayer structures containing steel fasteners is a challenging task in eddy current testing due to the magnetic permeability of the fasteners and overall thickness of the structure...

  18. Spectral analysis of structure functions and their scaling exponents in forced isotropic turbulence

    Science.gov (United States)

    Linkmann, Moritz; McComb, W. David; Yoffe, Samuel; Berera, Arjun

    2014-11-01

    The pseudospectral method, in conjunction with a new technique for obtaining scaling exponents ζn from the structure functions Sn (r) , is presented as an alternative to the extended self-similarity (ESS) method and the use of generalized structure functions. We propose plotting the ratio | Sn (r) /S3 (r) | against the separation r in accordance with a standard technique for analysing experimental data. This method differs from the ESS technique, which plots the generalized structure functions Gn (r) against G3 (r) , where G3 (r) ~ r . Using our method for the particular case of S2 (r) we obtain the new result that the exponent ζ2 decreases as the Taylor-Reynolds number increases, with ζ2 --> 0 . 679 +/- 0 . 013 as Rλ --> ∞ . This supports the idea of finite-viscosity corrections to the K41 prediction for S2, and is the opposite of the result obtained by ESS. The pseudospectral method permits the forcing to be taken into account exactly through the calculation of the energy input in real space from the work spectrum of the stirring forces. The combination of the viscous and the forcing corrections as calculated by the pseudospectral method is shown to account for the deviation of S3 from Kolmogorov's ``four-fifths''-law at all scales. This work has made use of the resources provided by the UK supercomputing service HECToR, made available through the Edinburgh Compute and Data Facility (ECDF). A. B. is supported by STFC, S. R. Y. and M. F. L. are funded by EPSRC.

  19. Structure and magnetism in Co/X, Fe/Si, and Fe/(FeSi) multilayers

    Science.gov (United States)

    Franklin, Michael Ray

    Previous studies have shown that magnetic behavior in multilayers formed by repeating a bilayer unit comprised of a ferromagnetic layer and a non-magnetic spacer layer can be affected by small structural differences. For example, a macroscopic property such as giant magnetoresistance (GMR) is believed to depend significantly upon interfacial roughness. In this study, several complimentary structural probes were used to carefully characterize the structure of several sputtered multilayer systems-Co/Ag, Co/Cu, Co/Mo, Fe/Si, and Fe//[FeSi/]. X-ray diffraction (XRD) studies were used to examine the long-range structural order of the multilayers perpendicular to the plane of the layers. Transmission electron diffraction (TED) studies were used to probe the long-range order parallel to the layer plane. X-ray Absorption Fine Structure (XAFS) studies were used to determine the average local structural environment of the ferromagnetic atoms. For the Co/X systems, a simple correlation between crystal structure and saturation magnetization is discovered for the Co/Mo system. For the Fe/X systems, direct evidence of an Fe-silicide is found for the /[FeSi/] spacer layer but not for the Si spacer layer. Additionally, differences were observed in the magnetic behavior between the Fe in the nominally pure Fe layer and the Fe contained in the /[FeSi/] spacer layers.

  20. On properties of multilayer semiconductor nZnSe-nGaAs structures

    CERN Document Server

    Duysenbaev, M; Auezov, S A

    2002-01-01

    Electrical and optoelectronic properties of multilayer semiconductor nZnSe-nGaAs structures have been investigated. The volt-current characteristics showed that the relation I approx V holds at the voltages lower than 0.8 v, then the current decreases with increasing the applied voltage. The spectral sensitive range (0.47-1.7 mu m) and parameters of the structures have been determined. Negative differential conductivity mechanism is discussed. (author)

  1. Interpretation of interfacial structures in X-ray multilayers by TEM Fresnel fringe effects

    OpenAIRE

    Nguyen, Tai D.; O'Keefe, Michael A.; Kilaas, Roar; Gronsky, Ronald; Kortright, Jeffrey B.

    1991-01-01

    Assessment of interfacial structures from high-resolution TEM images of cross-sectional specimens is difficult due to Fresnel fringe effects producing different apparent structures in the images. The effects of these fringes have been commonly over-looked in efforts of making quantitative interpretation of interfacial profiles. In this report, we present the observations of the Fresnel fringes in nanometer period Mo/Si, W/C, and WC/C multilayers in through-focus-series TEM images. Calculation...

  2. Evaluation of resonant tunneling transmission coefficient from multilayer structures GaAlAs/GaAs

    Directory of Open Access Journals (Sweden)

    L. Moghaddasi

    2003-12-01

    Full Text Available   A theoretical study of resonant tunneling in multilayered GaAlAs/GaAs structures are presented. The spectrum of resonant energies and its dependence on the barrier structure are analyzed from calculated profiles of barrier transparency versus energy, and from current voltage characteristics computed at selected temperatures and Fermi levels. The present formalism is based on the effective mass approximation and results are via direct numerical evaluations.

  3. Isotropic 3D nuclear morphometry of normal, fibrocystic and malignant breast epithelial cells reveals new structural alterations.

    Directory of Open Access Journals (Sweden)

    Vivek Nandakumar

    Full Text Available Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear grading criteria.We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and nuclear structure.We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume ratio of nucleus to cytoplasm (N/C ratio between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger textural variations than metastatic cell nuclei. At p<0.0025 by ANOVA and Kruskal-Wallis tests, 90% of our computed descriptors statistically differentiated control from abnormal cell populations, but only 69% of these features statistically differentiated the fibrocystic from the metastatic cell populations.Our results provide a new perspective on nuclear structure variations associated with malignancy and point to the

  4. Isotropic 3D nuclear morphometry of normal, fibrocystic and malignant breast epithelial cells reveals new structural alterations.

    Science.gov (United States)

    Nandakumar, Vivek; Kelbauskas, Laimonas; Hernandez, Kathryn F; Lintecum, Kelly M; Senechal, Patti; Bussey, Kimberly J; Davies, Paul C W; Johnson, Roger H; Meldrum, Deirdre R

    2012-01-01

    Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear grading criteria. We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and nuclear structure. We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume ratio of nucleus to cytoplasm (N/C ratio) between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger textural variations than metastatic cell nuclei. At pfibrocystic from the metastatic cell populations. Our results provide a new perspective on nuclear structure variations associated with malignancy and point to the value of automated quantitative 3D nuclear morphometry as an objective tool to enable development of sensitive and specific nuclear grade classification in breast cancer diagnosis.

  5. Multi-layer composite structure covered polytetrafluoroethylene for visible-infrared-radar spectral Compatibility

    Science.gov (United States)

    Qi, Dong; Cheng, Yongzhi; Wang, Xian; Wang, Fang; Li, Bowen; Gong, Rongzhou

    2017-12-01

    In this paper, a polytetrafluoroethylene (PTFE) top-covered multi-layer composite structure PTFE/H s/(Ge/ZnS)3 (H s represents the surface layer ZnS with various thicknesses) for spectral compatibility is proposed and investigated theoretically and experimentally. A substantial decline of glossiness from over 200 Gs to 74.2 Gs could be realized, due to high roughness and interface reflection of the 800 nm PTFE protection layer. In addition, similar to the structure of H s/(Ge/ZnS)3, the designed structure with a certain color exhibits ultra-low emissivity of average 0.196 at 8-14 µm and highly transparent performance of 96.45% in the radar frequency range of 2-18 GHz. Our design will provide an important reference for the practical applications of the spectral compatible multilayer films.

  6. A method of producing a multilayer barrier structure for a solid oxide fuel cell

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a method of producing a multilayer barrier structure for a solid oxide cell stack, comprising the steps of: - providing a metal interconnect, wherein the metal interconnect is a ferritic stainless steel layer; - applying a first metal oxide layer on said metal...... oxide; and - reacting the metal oxide in said first metal oxide layer with the metal of said metal interconnect during the SOC-stack initialisation, and a solid oxide stack comprising an anode contact layer and support structure, an anode layer, an electrolyte layer, a cathode layer, a cathode contact...... layer, a metallic interconnect, and a multilayer barrier structure which is obtainable by the above method and through an initialisation step, which is carried out under controlled conditions for atmosphere composition and current load, which depends on the layer composition facilitating the formation...

  7. Structural study of multilayered vanadium/nickel superlattices

    International Nuclear Information System (INIS)

    Homma, H.; Lepetre, Y.; Murduck, J.M.; Schuller, I.K.; Majkrzak, C.F.

    1985-07-01

    We have studied the microstructure of V/Ni metallic superlattice, using x-ray and neutron diffraction. We find a sharp and broad rocking curves around the first-order Bragg peak, and attribute them to a columnar structure which gives rise to two modulation structures; one the ordinary layered structure within the columns and the other the averaged modulation structure which produces the sharp rocking peak

  8. Magnetic Properties and Structural Study of Ni-Co/Cu Multilayers Prepared by Electrodeposition Method

    Directory of Open Access Journals (Sweden)

    M. Jafari Fesharaki

    2015-07-01

    Full Text Available Ni-Co/Cu multilayers have been grown by electrodeposition method from a single electrolyte (based on Ni(SO4.6H2O, Co(SO4.7H2O, Cu(SO4 and H3BO3 using galvanostatic control on titanium sublayers. The X-ray diffraction (XRD patterns confirmed the multilayered structure with the nanometer thicknesses. Also, electron diffraction x-ray (EDX  analysis confirmed the purity of deposited samples. The morphology of the samples was estimated by scanning electron microscope (SEM. Magnetoresistance (MR measurements were carried out at room temperature for the Ni-Co/Cu multilayers by measuring the resistivity in a magnetic fields varying between ±6kOe as a function of the Ni-Co and Cu layer thicknesses; (1 dCu(nm 4 and 3 dNi-Cu(nm 5. The Maximum value of giant magnetoresistance (GMR was obtained when the Ni-Co and Cu thicknesses were 4.0nm and 4.0nm respectively. The hysteresis loop of the samples at room temperature was studied using an alternating gradient force magnetometer (AGFM. Finally, the temperature dependence of magnetization for Ni-Co/Cu multilayers; (dNi-Cu(4nm/dCu(2nm and dNi-Cu(3nm/dCu(3nm measured by Faraday balance and decreasing the magnetization with increasing the temperature discussed according to electron scattering due to spin fluctuation.

  9. Three-dimensional cell manipulation and patterning using dielectrophoresis via a multi-layer scaffold structure.

    Science.gov (United States)

    Chu, H K; Huan, Z; Mills, J K; Yang, J; Sun, D

    2015-02-07

    Cell manipulation is imperative to the areas of cellular biology and tissue engineering, providing them a useful tool for patterning cells into cellular patterns for different analyses and applications. This paper presents a novel approach to perform three-dimensional (3D) cell manipulation and patterning with a multi-layer engineered scaffold. This scaffold structure employed dielectrophoresis as the non-contact mechanism to manipulate cells in the 3D domain. Through establishing electric fields via this multi-layer structure, the cells in the medium became polarized and were attracted towards the interior part of the structure, forming 3D cellular patterns. Experiments were conducted to evaluate the manipulation and the patterning processes with the proposed structure. Results show that with the presence of a voltage input, this multi-layer structure was capable of manipulating different types of biological cells examined through dielectrophoresis, enabling automatic cell patterning in the time-scale of minutes. The effects of the voltage input on the resultant cellular pattern were examined and discussed. Viability test was performed after the patterning operation and the results confirmed that majority of the cells remained viable. After 7 days of culture, 3D cellular patterns were observed through SEM. The results suggest that this scaffold and its automated dielectrophoresis-based patterning mechanism can be used to construct artificial tissues for various tissue engineering applications.

  10. Structure of a Multilayer Nanofilm To Increase the Encapsulation Efficiency of Basic Fibroblast Growth Factor.

    Science.gov (United States)

    Han, Uiyoung; Hong, Jinkee

    2018-03-05

    In this study, we established the structure of a multilayer nanofilm that more efficiently encapsulates basic fibroblast growth factor (bFGF). First, a positively charged layer material was selected from biocompatible polymers such as collagen (Col), poly(beta-amino ester) (Poly2), and chitosan (Chi), while considering the film thickness. We then investigated the change in bFGF encapsulation efficiency when the multilayer structure was changed from a tetralayer to a trilayer. As a result, we obtained a highly improved bFGF encapsulation efficiency in the nanofilm using a positively charged layer formed by a blend of Col and Poly2 and a negatively charged poly(acrylic acid) (PAA) layer within a trilayered structure. In particular, we found that a significant amount of adsorbed bFGF was desorbed again during the film fabrication process of a tetralayered nanofilm. In the conventional nanofilm, bFGF was regarded as a polycation and formed a multilayer nanofilm that was composed of a tetralayered structure and was represented as (polycation/polyanion/bFGF/polyanion) n where n = number of repeated tetralayers. Here, we suggested that bFGF should not be considered a polycation, rather it should be considered as a small quantity of molecule that exists between the polyanion and polycation layers. In this case, the nanofilm is composed of repeating units of (polycation/polyanion/bFGF/polycation/polyanion), because the amount of adsorbed bFGF is considerably lower than that of other building blocks.

  11. Fatigue crack growth monitoring in multi-layered structures using guided ultrasonic waves

    International Nuclear Information System (INIS)

    Kostson, E; Fromme, P

    2009-01-01

    This contribution investigates the application of low frequency guided ultrasonic waves for monitoring fatigue crack growth at fastener holes in the 2nd layer of multi-layered plate structures, a common problem in aerospace industry. The model multi-layered structure investigated consists of two aluminum plate-strips adhesively bonded using a structural paste adhesive. Guided ultrasonic waves were excited using multiple piezoelectric discs bonded to the surface of the multi-layered structure. The wave propagation in the tensile specimen was measured using a laser interferometer and compared to numerical simulations. Thickness and width mode shapes of the excited flexural waves were identified from Semi-Analytical Finite Element (SAFE) calculations. Experiments and 3D Finite Element (FE) simulations show a change in the scattered field around fastener holes caused by a defect in the 2nd layer. The amplitude of the guided ultrasonic wave was monitored during fatigue experiments at a single point. The measured changes in the amplitude of the ultrasonic signal due to fatigue crack growth agree well with FE simulations.

  12. Method for reinforcing threads in multilayer composite tubes and cylindrical structures

    International Nuclear Information System (INIS)

    Romanoski, G.R.; Burchell, T.D.

    1996-01-01

    Multilayer techniques such as: tape wrapping, braiding, and filament winding represent versatile and economical routes for fabricating composite tubes and cylindrical structures. However, multilayer architectures lack the radial reinforcement required to retain threads when the desired means of connection or closure is a threaded joint. This issue was addressed in the development of a filament wound, carbon-carbon composite impact shell for the NASA radioisotope thermoelectric generator. The problem of poor thread shear strength was solved by incorporating a number of radial elements of triangular geometry around the circumference of the thread for the full length of thread engagement. The radial elements significantly increased the shear strength of the threaded joint by transmitting the applied force to the balance of composite structure. This approach is also applicable to ceramic composites

  13. Properties of Exchange Coupled All-garnet Magneto-Optic Thin Film Multilayer Structures

    Directory of Open Access Journals (Sweden)

    Mohammad Nur-E-Alam

    2015-04-01

    Full Text Available The effects of exchange coupling on magnetic switching properties of all-garnet multilayer thin film structures are investigated. All-garnet structures are fabricated by sandwiching a magneto-soft material of composition type Bi1.8Lu1.2Fe3.6Al1.4O12 or Bi3Fe5O12:Dy2O3 in between two magneto-hard garnet material layers of composition type Bi2Dy1Fe4Ga1O12 or Bi2Dy1Fe4Ga1O12:Bi2O3. The fabricated RF magnetron sputtered exchange-coupled all-garnet multilayers demonstrate a very attractive combination of magnetic properties, and are of interest for emerging applications in optical sensors and isolators, ultrafast nanophotonics and magneto-plasmonics. An unconventional type of magnetic hysteresis behavior not observed previously in magnetic garnet thin films is reported and discussed.

  14. X-ray diffuse scattering effects from Coulomb-type defects in multilayered structures

    International Nuclear Information System (INIS)

    Olikhovskii, S.I.; Molodkin, V.B.; Skakunova, E.S.; Kislovskii, E.N.; Fodchuk, I.M.

    2009-01-01

    The theoretical X-ray diffraction model starting from Takagi-Taupin equation has been developed for the description of coherent and diffuse components of the rocking curve (RC) measured from the multilayered crystal structure with randomly distributed Coulomb-type defects in all the layers and substrate. The model describes both diffuse scattering (DS) intensity distribution and influence of DS on attenuation and angular redistribution of the coherent X-ray scattering intensity. By analyzing the total measured RC with using the proposed diffraction model, the chemical compositions, strains, and characteristics of dislocation loops in layers and substrate of the multilayered structure with InGaAsN/GaAs single quantum well have been determined. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  15. Properties of Exchange Coupled All-garnet Magneto-Optic Thin Film Multilayer Structures

    Science.gov (United States)

    Nur-E-Alam, Mohammad; Vasiliev, Mikhail; Kotov, Viacheslav A.; Balabanov, Dmitry; Akimov, Ilya; Alameh, Kamal

    2015-01-01

    The effects of exchange coupling on magnetic switching properties of all-garnet multilayer thin film structures are investigated. All-garnet structures are fabricated by sandwiching a magneto-soft material of composition type Bi1.8Lu1.2Fe3.6Al1.4O12 or Bi3Fe5O12:Dy2O3 in between two magneto-hard garnet material layers of composition type Bi2Dy1Fe4Ga1O12 or Bi2Dy1Fe4Ga1O12:Bi2O3. The fabricated RF magnetron sputtered exchange-coupled all-garnet multilayers demonstrate a very attractive combination of magnetic properties, and are of interest for emerging applications in optical sensors and isolators, ultrafast nanophotonics and magneto-plasmonics. An unconventional type of magnetic hysteresis behavior not observed previously in magnetic garnet thin films is reported and discussed. PMID:28788043

  16. Magnetoelectric Effect in Gallium Arsenide-Nickel-Tin-Nickel Multilayer Structures

    Science.gov (United States)

    Filippov, D. A.; Tikhonov, A. A.; Laletin, V. M.; Firsova, T. O.; Manicheva, I. N.

    2018-02-01

    Experimental data have been presented for the magnetoelectric effect in nickel-tin-nickel multilayer structures grown on a GaAs substrate by cathodic electrodeposition. The method of fabricating these structures has been described, and the frequency dependence of the effect has been demonstrated. It has been shown that tin used as an intermediate layer reduces mechanical stresses due to the phase mismatch at the Ni-GaAs interface and, thus, makes it possible to grow good structures with a 70-μm-thick Ni layer. The grown structures offer good adhesion between layers and a high Q factor.

  17. Unified approach for calculating the number of confined modes in multilayered waveguiding structures

    Science.gov (United States)

    Ruschin, S.; Griffel, G.; Hardy, A.; Croitoru, N.

    1986-01-01

    A general formalism is developed in order to find the number of modes and mode cutoff conditions in multilayer waveguiding structures. An explicit expression is presented for the number of confined modes that allows the modes to be counted without having to analyze the specific eigenvalue equation of the structure. The method is illustrated by its application to several structures: the buried layer, the directional coupler, and the three-guide symmetrical arrangement. By a suitable extension of the formalism, the number of well-confined modes is found for a four-layer structure.

  18. Numerical simulation of multi-layer graphene structures based on quantum-chemical model

    International Nuclear Information System (INIS)

    Kasper, Y; Tuchin, A; Bokova, A; Bityutskaya, L

    2016-01-01

    The electronic structure of the multi-layer graphene has been studied using the density functional theory (DFT). The dependence of the average interlayer distance on the number of layers ( n = 2 ÷ 6) has been determined. The analysis of the charge redistribution and the electron density of the bi- and three-layer graphene under the external pressure up to 50 GPa has been performed. The model of the interlayer conductivity of compressed multigraphene was offered (paper)

  19. Infinite elements for soil-structure interaction analysis in multi-layered halfspaces

    International Nuclear Information System (INIS)

    Yun, Chung Bang; Kim, Jae Min; Yang, Shin Chu

    1994-01-01

    This paper presents the theoretical aspects of a computer code (KIESSI) for soil-structure interaction analysis in a multi-layered halfspace using infinite elements. The shape functions of the infinite elements are derived from approximate expressions of the analytical solutions. Three different infinite elements are developed. They are the horizontal, the vertical and the comer infinite elements (HIE, VIE and CIE). Numerical example analyses are presented for demonstrating the effectiveness of the proposed infinite elements

  20. Metal–organic coordinated multilayer film formation: Quantitative analysis of composition and structure

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Alexandra S.; Elinski, Meagan B.; Ohnsorg, Monica L.; Beaudoin, Christopher K.; Alexander, Kyle A.; Peaslee, Graham F.; DeYoung, Paul A.; Anderson, Mary E., E-mail: meanderson@hope.edu

    2015-09-01

    Metal–organic coordinated multilayers are self-assembled thin films fabricated by alternating solution–phase deposition of bifunctional organic molecules and metal ions. The multilayer film composed of α,ω-mercaptoalkanoic acid and Cu (II) has been the focus of fundamental and applied research with its robust reproducibility and seemingly simple hierarchical architecture. However, internal structure and composition have not been unambiguously established. The composition of films up to thirty layers thick was investigated using Rutherford backscattering spectrometry and particle induced X-ray emission. Findings show these films are copper enriched, elucidating a 2:1 ratio for the ion to molecule complexation at the metal–organic interface. Results also reveal that these films have an average layer density similar to literature values established for a self-assembled monolayer, indicating a robust and stable structure. The surface structures of multilayer films have been characterized by contact angle goniometry, ellipsometry, and scanning probe microscopy. A morphological transition is observed as film thickness increases from the first few foundational layers to films containing five or more layers. Surface roughness analysis quantifies this evolution as the film initially increases in roughness before obtaining a lower roughness comparable to the underlying gold substrate. Quantitative analysis of topographical structure and internal composition for metal–organic coordinated multilayers as a function of number of deposited layers has implications for their incorporation in the fields of photonics and nanolithography. - Highlights: • Layer-by-layer deposition is examined by scanning probe microscopy and ion beam analysis. • Film growth undergoes morphological evolution during foundational layer deposition. • Image analysis quantified surface features such as roughness, grain size, and coverage. • Molecular density of each film layer is found to

  1. Total reflection X-ray fluorescence analysis with synchrotron radiation monochromatized by multilayer structures

    International Nuclear Information System (INIS)

    Rieder, R.; Wobrauschek, P.; Ladisich, W.; Streli, C.; Aiginger, H.; Garbe, S.; Gaul, G.; Knoechel, A.; Lechtenberg, F.

    1995-01-01

    To achieve lowest detection limits in total reflection X-ray fluorescence analysis (TXRF) synchrotron radiation has been monochromatized by a multilayer structure to obtain a relative broad energy band compared to Bragg single crystals for an efficient excitation. The energy has been set to 14 keV, 17.5 keV, 31 keV and about 55 keV. Detection limits of 20 fg and 150 fg have been achieved for Sr and Cd, respectively. ((orig.))

  2. High performance EUV multilayer structures insensitive to capping layer optical parameters.

    Science.gov (United States)

    Pelizzo, Maria Guglielmina; Suman, Michele; Monaco, Gianni; Nicolosi, Piergiorgio; Windt, David L

    2008-09-15

    We have designed and tested a-periodic multilayer structures containing protective capping layers in order to obtain improved stability with respect to any possible changes of the capping layer optical properties (due to oxidation and contamination, for example)-while simultaneously maximizing the EUV reflection efficiency for specific applications, and in particular for EUV lithography. Such coatings may be particularly useful in EUV lithographic apparatus, because they provide both high integrated photon flux and higher stability to the harsh operating environment, which can affect seriously the performance of the multilayer-coated projector system optics. In this work, an evolutive algorithm has been developed in order to design these a-periodic structures, which have been proven to have also the property of stable performance with respect to random layer thickness errors that might occur during coating deposition. Prototypes have been fabricated, and tested with EUV and X-ray reflectometry, and secondary electron spectroscopy. The experimental results clearly show improved performance of our new a-periodic coatings design compared with standard periodic multilayer structures.

  3. An optimized multilayer structure of CdS layer for CdTe solar cells application

    International Nuclear Information System (INIS)

    Han Junfeng; Liao Cheng; Jiang Tao; Spanheimer, C.; Haindl, G.; Fu, Ganhua; Krishnakumar, V.; Zhao Kui; Klein, A.; Jaegermann, W.

    2011-01-01

    Research highlights: → Two different methods to prepare CdS films for CdTe solar cells. → A new multilayer structure of window layer for the CdTe solar cell. → Thinner CdS window layer for the solar cell than the standard CdS layer. → Higher performance of solar cells based on the new multilayer structure. - Abstract: CdS layers grown by 'dry' (close space sublimation) and 'wet' (chemical bath deposition) methods are deposited and analyzed. CdS prepared with close space sublimation (CSS) has better crystal quality, electrical and optical properties than that prepared with chemical bath deposition (CBD). The performance of CdTe solar cell based on the CSS CdS layer has higher efficiency than that based on CBD CdS layer. However, the CSS CdS suffers from the pinholes. And consequently it is necessary to prepare a 150 nm thin film for CdTe/CdS solar cell. To improve the performance of CdS/CdTe solar cells, a thin multilayer structure of CdS layer (∼80 nm) is applied, which is composed of a bottom layer (CSS CdS) and a top layer (CBD CdS). That bi-layer film can allow more photons to pass through it and significantly improve the short circuit current of the CdS/CdTe solar cells.

  4. Growth of Ag micro/nanoparticles using stress migration from multilayered metallic structure

    International Nuclear Information System (INIS)

    Lu, Yebo; Li, Yuan; Saka, Masumi

    2015-01-01

    Highlights: • A multilayered metallic structure was proposed to fabricate Ag micro/nanoparticles via stress migration. • Both ductile Pt and brittle TiN films can be used as the passivation layer by providing pathways for atomic migration. • The diameter of the formed Ag particle can be controlled using different material for passivation layer and changing the heating temperature. - Abstract: A multilayered metallic structure, consisting of Cu foil and subsequently deposited Ag thin film covered with a passivation layer, was proposed to fabricate Ag micro/nanoparticles by stress migration. With employing a ductile Pt or brittle TiN thin film as passivation, Ag micro/nanoparticles were successfully fabricated by annealing the corresponding multilayered structure. The relationship between characteristics (average diameter, number and volume) of the formed Ag micro/nanoparticles and the annealing temperature was discussed. On this basis, the growth mechanism was developed, which indicates that the dimension of Ag particles was mainly dominated by the different pathways for the migration of diffused Ag atoms in the passivation layers of Pt and TiN and the annealing temperature

  5. Corrosion-resistant multilayer structures with improved reflectivity

    Science.gov (United States)

    Soufli, Regina; Fernandez-Perea, Monica; Robinson, Jeff C.

    2013-04-09

    In one general embodiment, a thin film structure includes a substrate; a first corrosion barrier layer above the substrate; a reflective layer above the first corrosion barrier layer, wherein the reflective layer comprises at least one repeating set of sub-layers, wherein one of the sub-layers of each set of sub-layers being of a corrodible material; and a second corrosion barrier layer above the reflective layer. In another general embodiment, a system includes an optical element having a thin film structure as recited above; and an image capture or spectrometer device. In a further general embodiment, a laser according to one embodiment includes a light source and the thin film structure as recited above.

  6. Large-area soft x-ray projection lithography using multilayer mirrors structured by RIE

    Science.gov (United States)

    Rahn, Steffen; Kloidt, Andreas; Kleineberg, Ulf; Schmiedeskamp, Bernt; Kadel, Klaus; Schomburg, Werner K.; Hormes, F. J.; Heinzmann, Ulrich

    1993-01-01

    SXPL (soft X-ray projection lithography) is one of the most promising applications of X-ray reflecting optics using multilayer mirrors. Within our collaboration, such multilayer mirrors were fabricated, characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors were produced by electron beam evaporation in UHV under thermal treatment with an in-situ X-ray controlled thickness in the region of 2d equals 14 nm. The reflectivities measured at normal incidence reached up to 54%. Various surface analysis techniques have been applied in order to characterize and optimize the X-ray mirrors. The multilayers were patterned by reactive ion etching (RIE) with CF(subscript 4), using a photoresist as the etch mask, thus producing X-ray reflection masks. The masks were tested in the synchrotron radiation laboratory of the electron accelerator ELSA at the Physikalisches Institut of Bonn University. A double crystal X-ray monochromator was modified so as to allow about 0.5 cm(superscript 2) of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto the resist (Hoechst AZ PF 514), which was mounted at an average distance of about 7 mm. In the first test-experiments, structure sizes down to 8 micrometers were nicely reproduced over the whole of the exposed area. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.

  7. Sintering of Multilayered Porous Structures: Part I-Constitutive Models

    DEFF Research Database (Denmark)

    Olevsky, Eugene; Tadesse Molla, Tesfaye; Frandsen, Henrik Lund

    2013-01-01

    Theoretical analyses of shrinkage and distortion kinetics during sintering of bilayered porous structures are carried out. The developed modeling framework is based on the continuum theory of sintering; it enables the direct assessment of the cofiring process outcomes and of the impact of process...

  8. Quantitative Diagnostics of Multilayered Composite Structures with Ultrasonic Guided Waves

    Science.gov (United States)

    2014-09-01

    sensors. These IDT sensors were fabricated from thin wafer of piezoelectric lead zirconate titanate ( PZT ) substrates by using a pulse laser micro...pavement structures," J. Acoust. Soc. Am., vol. 116, no. 5, pp. 2902-2913, 2004. [9] E. Kostson and P. Fromme, " Fatigue crack growth monitoring in multi

  9. Rapid interferometric imaging of printed drug laden multilayer structures

    DEFF Research Database (Denmark)

    Sandler, Niklas; Kassamakov, Ivan; Ehlers, Henrik

    2014-01-01

    The developments in printing technologies allow fabrication of micron-size nano-layered delivery systems to personal specifications. In this study we fabricated layered polymer structures for drug-delivery into a microfluidic channel and aimed to interferometrically assure their topography...

  10. Structure Transformation and Coherent Interface in Large Lattice-Mismatched Nanoscale Multilayers

    Directory of Open Access Journals (Sweden)

    J. Y. Xie

    2013-01-01

    Full Text Available Nanoscale Al/W multilayers were fabricated by DC magnetron sputtering and characterized by transmission electron microscopy and high-resolution electron microscopy. Despite the large lattice mismatch and significantly different lattice structures between Al and W, a structural transition from face-centered cubic to body-centered cubic in Al layers was observed when the individual layer thickness was reduced from 5 nm to 1 nm, forming coherent Al/W interfaces. For potential mechanisms underlying the observed structure transition and forming of coherent interfaces, it was suggested that the reduction of interfacial energy and high stresses induced by large lattice-mismatch play a crucial role.

  11. Computational Modeling of Bloch Surface Waves in One-Dimensional Periodic and Aperiodic Multilayer Structures

    Science.gov (United States)

    Koju, Vijay

    Photonic crystals and their use in exciting Bloch surface waves have received immense attention over the past few decades. This interest is mainly due to their applications in bio-sensing, wave-guiding, and other optical phenomena such as surface field enhanced Raman spectroscopy. Improvement in numerical modeling techniques, state of the art computing resources, and advances in fabrication techniques have also assisted in growing interest in this field. The ability to model photonic crystals computationally has benefited both the theoretical as well as experimental communities. It helps the theoretical physicists in solving complex problems which cannot be solved analytically and helps to acquire useful insights that cannot be obtained otherwise. Experimentalists, on the other hand, can test different variants of their devices by changing device parameters to optimize performance before fabrication. In this dissertation, we develop two commonly used numerical techniques, namely transfer matrix method, and rigorous coupled wave analysis, in C++ and MATLAB, and use two additional software packages, one open-source and another commercial, to model one-dimensional photonic crystals. Different variants of one-dimensional multilayered structures such as perfectly periodic dielectric multilayers, quasicrystals, aperiodic multilayer are modeled, along with one-dimensional photonic crystals with gratings on the top layer. Applications of Bloch surface waves, along with new and novel aperiodic dielectric multilayer structures that support Bloch surface waves are explored in this dissertation. We demonstrate a slow light configuration that makes use of Bloch Surface Waves as an intermediate excitation in a double-prism tunneling configuration. This method is simple compared to the more usual techniques for slowing light using the phenomenon of electromagnetically induced transparency in atomic gases or doped ionic crystals operated at temperatures below 4K. Using a semi

  12. Application of photoreflectance to advanced multilayer structures for photovoltaics

    International Nuclear Information System (INIS)

    Fuertes Marrón, D.; Cánovas, E.; Artacho, I.; Stanley, C.R.; Steer, M.; Kaizu, T.; Shoji, Y.; Ahsan, N.; Okada, Y.; Barrigón, E.; Rey-Stolle, I.; Algora, C.; Martí, A.; Luque, A.

    2013-01-01

    Highlights: ► Application of photoreflectance to advanced PV structures. ► Probing optoelectronics of nanostructures and multinary compounds. ► Determination of intensity of electric fields from FKOs. ► Distinguishing different oscillatory phenomena in PR. ► PR as a useful diagnostic tool in QD-, QW-SCs and MJSCs. -- Abstract: Photoreflectance (PR) is a convenient characterization tool able to reveal optoelectronic properties of semiconductor materials and structures. It is a simple non-destructive and contactless technique which can be used in air at room temperature. We will present experimental results of the characterization carried out by means of PR on different types of advanced photovoltaic (PV) structures, including quantum-dot-based prototypes of intermediate band solar cells, quantum-well structures, highly mismatched alloys, and III–V-based multi-junction devices, thereby demonstrating the suitability of PR as a powerful diagnostic tool. Examples will be given to illustrate the value of this spectroscopic technique for PV including (i) the analysis of the PR spectra in search of critical points associated to absorption onsets; (ii) distinguishing signatures related to quantum confinement from those originating from delocalized band states; (iii) determining the intensity of the electric field related to built-in potentials at interfaces according to the Franz–Keldysh (FK) theory; and (v) determining the nature of different oscillatory PR signals among those ascribed to FK-oscillations, interferometric and photorefractive effects. The aim is to attract the interest of researchers in the field of PV to modulation spectroscopies, as they can be helpful in the analysis of their devices

  13. Application of photoreflectance to advanced multilayer structures for photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Fuertes Marrón, D., E-mail: dfuertes@ies-def.upm.es [Instituto de Energía Solar – ETSIT, Technical University of Madrid, UPM, Madrid (Spain); Cánovas, E.; Artacho, I. [Instituto de Energía Solar – ETSIT, Technical University of Madrid, UPM, Madrid (Spain); Stanley, C.R.; Steer, M. [Department of Electronics and Electrical Engineering, University of Glasgow (United Kingdom); Kaizu, T.; Shoji, Y.; Ahsan, N.; Okada, Y. [Research Center for Advanced Science and Technology, University of Tokyo (Japan); Barrigón, E.; Rey-Stolle, I.; Algora, C.; Martí, A.; Luque, A. [Instituto de Energía Solar – ETSIT, Technical University of Madrid, UPM, Madrid (Spain)

    2013-05-15

    Highlights: ► Application of photoreflectance to advanced PV structures. ► Probing optoelectronics of nanostructures and multinary compounds. ► Determination of intensity of electric fields from FKOs. ► Distinguishing different oscillatory phenomena in PR. ► PR as a useful diagnostic tool in QD-, QW-SCs and MJSCs. -- Abstract: Photoreflectance (PR) is a convenient characterization tool able to reveal optoelectronic properties of semiconductor materials and structures. It is a simple non-destructive and contactless technique which can be used in air at room temperature. We will present experimental results of the characterization carried out by means of PR on different types of advanced photovoltaic (PV) structures, including quantum-dot-based prototypes of intermediate band solar cells, quantum-well structures, highly mismatched alloys, and III–V-based multi-junction devices, thereby demonstrating the suitability of PR as a powerful diagnostic tool. Examples will be given to illustrate the value of this spectroscopic technique for PV including (i) the analysis of the PR spectra in search of critical points associated to absorption onsets; (ii) distinguishing signatures related to quantum confinement from those originating from delocalized band states; (iii) determining the intensity of the electric field related to built-in potentials at interfaces according to the Franz–Keldysh (FK) theory; and (v) determining the nature of different oscillatory PR signals among those ascribed to FK-oscillations, interferometric and photorefractive effects. The aim is to attract the interest of researchers in the field of PV to modulation spectroscopies, as they can be helpful in the analysis of their devices.

  14. Transverse Seebeck and Peltier effect in tilted metal-semiconductor multilayer structures

    International Nuclear Information System (INIS)

    Reitmaier, Christina

    2012-01-01

    Whether in aerospace, automobile industry or in home appliances, thermoelectric effects find use in many areas of technology. This work deals with the investigation of a special form of these effects, the transversal Seebeck- and Peltier effect. Via modelling under variation of the sample parameters the cooling efficiencies, the attainable temperature differences and the Figures of merit are optimised and than suitable samples are produced according to these specifications. With these tilted metal semiconductor multilayer structures consisting of lead and bismuth telluride a transversal Peltier effect is observed. Moreover, the generation of electric power is examined via the transversal Seebeck effect. In tilted Pb-Bi2Te3 multilayers the efficiency is measured with the conversion by heat in electric power and is compared to model calculations. (orig.)

  15. Enhanced Detectability of Community Structure in Multilayer Networks through Layer Aggregation.

    Science.gov (United States)

    Taylor, Dane; Shai, Saray; Stanley, Natalie; Mucha, Peter J

    2016-06-03

    Many systems are naturally represented by a multilayer network in which edges exist in multiple layers that encode different, but potentially related, types of interactions, and it is important to understand limitations on the detectability of community structure in these networks. Using random matrix theory, we analyze detectability limitations for multilayer (specifically, multiplex) stochastic block models (SBMs) in which L layers are derived from a common SBM. We study the effect of layer aggregation on detectability for several aggregation methods, including summation of the layers' adjacency matrices for which we show the detectability limit vanishes as O(L^{-1/2}) with increasing number of layers, L. Importantly, we find a similar scaling behavior when the summation is thresholded at an optimal value, providing insight into the common-but not well understood-practice of thresholding pairwise-interaction data to obtain sparse network representations.

  16. Structure and mechanical properties of reactive sputter deposited TiN/TaN multilayered films

    International Nuclear Information System (INIS)

    Soe, W.H.; Yamamoto, R.; Ueda, H.; Shima, N.

    1998-01-01

    TiN/TaN multilayers were grown by reactive magnetron sputtering on WC-Co sintered hard alloy and MgO(100) single crystal substrates. Multilayer structure and composition modulation amplitudes were studied using x-ray diffraction method. Hardness and elastic modulus were measured by nanoindentation tester. For bilayer thickness (Λ) larger than 80 angstrom, hardness are lower than rule-of-mixtures value of individual single layers, and increased rapidly with decreasing Λ, peaking at hardness values ∼33% higher than that at Λ = 43 angstrom. As a result of analysis the inclination of applied load for indenter displacement on P-h curve (ΔP/Δh), this paper exhibits that the enhancement of the resistance to dislocation motion and elastic anomaly due to coherency strains are responsible for the hardness change

  17. Simultaneous measurements of top surface and its underlying film surfaces in multilayer film structure.

    Science.gov (United States)

    Ghim, Young-Sik; Rhee, Hyug-Gyo; Davies, Angela

    2017-09-19

    With the growth of 3D packaging technology and the development of flexible, transparent electrodes, the use of multilayer thin-films is steadily increasing throughout high-tech industries including semiconductor, flat panel display, and solar photovoltaic industries. Also, this in turn leads to an increase in industrial demands for inspection of internal analysis. However, there still remain many technical limitations to overcome for measurement of the internal structure of the specimen without damage. In this paper, we propose an innovative optical inspection technique for simultaneous measurements of the surface and film thickness corresponding to each layer of multilayer film structures by computing the phase and reflectance over a wide range of wavelengths. For verification of our proposed method, the sample specimen of multilayer films was fabricated via photolithography process, and the surface profile and film thickness of each layer were measured by two different techniques of a stylus profilometer and an ellipsometer, respectively. Comparison results shows that our proposed technique enables simultaneous measurements of the top surface and its underlying film surfaces with high precision, which could not be measured by conventional non-destructive methods.

  18. ZnO/Cu/ZnO multilayer films: Structure optimization and investigation on photoelectric properties

    International Nuclear Information System (INIS)

    Liu Xiaoyu; Li Yingai; Liu Shi; Wu Honglin; Cui Haining

    2012-01-01

    A series of ZnO/Cu/ZnO multilayer films has been fabricated from zinc and copper metallic targets by simultaneous RF and DC magnetron sputtering. Numerical simulation of the optical properties of the multilayer films has been carried out in order to guide the experimental work. The influences of the ZnO and Cu layer thicknesses, and of O 2 /Ar ratio on the photoelectric and structural properties of the films were investigated. The optical and electrical properties of the multilayers were studied by optical spectrometry and four point probe measurements, respectively. The structural properties were investigated using X-ray diffraction. The performance of the multilayers as transparent conducting coatings was compared using a figure of merit. In experiments, the thickness of the ZnO layers was varied between 4 and 70 nm and those of Cu were between 8 and 37 nm. The O 2 /Ar ratios range from 1:5 to 2:1. Low sheet resistance and high transmittance were obtained when the film was prepared using an O 2 /Ar ratio of 1:4 and a thickness of ZnO (60 nm)/Cu (15 nm)/ZnO (60 nm). - Highlights: ► ZnO/Cu/ZnO films were fabricated from zinc and copper targets by sputtering. ► Transmittance reaches maximum when top and bottom ZnO thicknesses are nearly equal. ► Sheet resistance increases with increasing ZnO layer thickness. ► Variation in sheet resistance with oxygen/argon ratio is due to interface effect.

  19. Mechanical and structural properties of sputtered Ni/Ti multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Senthil Kumar, M.; Boeni, P.; Tixier, S.; Clemens, D.; Horisberger, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Ni/Ti bilayers have been prepared by dc-magnetron sputtering in order to study their mechanical and structural properties. A remarkable reduction of stress is observed when the Ni layers are sputtered reactively in argon with a high partial pressure of air. The high angle x-ray diffraction studies show a tendency towards amorphisation of the Ni layers with increasing air flow. The low angle measurements indicate a substantial reduction of interdiffusion resulting in smoother interfaces with increasing air content. (author) 2 figs., 2 refs.

  20. Reduced thermal conductivity of isotopically modulated silicon multilayer structures

    DEFF Research Database (Denmark)

    Bracht, H.; Wehmeier, N.; Eon, S.

    2012-01-01

    We report measurements of the thermal conductivity of isotopically modulated silicon that consists of alternating layers of highly enriched silicon-28 and silicon-29. A reduced thermal conductivity of the isotopically modulated silicon compared to natural silicon was measured by means of time......-resolved x-ray scattering. Comparison of the experimental results to numerical solutions of the corresponding heat diffusion equations reveals a factor of three lower thermal conductivity of the isotope structure compared to natural Si. Our results demonstrate that the thermal conductivity of silicon can...

  1. Reverse-contact UV nanoimprint lithography for multilayered structure fabrication

    International Nuclear Information System (INIS)

    Kehagias, N; Reboud, V; Chansin, G; Zelsmann, M; Jeppesen, C; Schuster, C; Kubenz, M; Reuther, F; Gruetzner, G; Torres, C M Sotomayor

    2007-01-01

    In this paper, we report results on a newly developed nanofabrication technique, namely reverse-contact UV nanoimprint lithography. This technique is a combination of nanoimprint lithography and contact printing lithography. In this process, a lift-off resist and a UV cross-linkable polymer are spin-coated successively onto a patterned UV mask-mould. These thin polymer films are then transferred from the mould to the substrate by contact at a suitable temperature and pressure. The whole assembly is then exposed to UV light. After separation of the mould and the substrate, the unexposed polymer areas are dissolved in a developer solution leaving behind the negative features of the original stamp. This method delivers resist pattern transfer without a residual layer, thereby rending unnecessary the etching steps typically needed in the imprint lithography techniques for three-dimensional patterning. Three-dimensional woodpile-like structures were successfully fabricated with this new technique

  2. Influence of Fe nanoparticles diameters on the structure and electron emission studies of carbon nanotubes and multilayer graphene

    International Nuclear Information System (INIS)

    Sharma, Himani; Shukla, A.K.; Vankar, V.D.

    2013-01-01

    In this paper we report the effect of Fe film thickness on the growth, structure and electron emission characteristics of carbon nanotubes (CNTs) and multilayer graphene deposited on Si substrate. It is observed that the number of graphitic shells in carbon nanostructures (CNs) varies with the thickness of the catalyst depending on the average size of nanoparticles. Further, the Fe nanoparticles do not catalyze beyond a particular size of nanoclusters leading to the formation of multilayer graphene structure, instead of carbon nanotubes (CNTs). It is observed that the crystallinity of CNs enhances upon increasing the catalyst thickness. Multilayer graphene structures show improved crystallinity in comparison to CNTs as graphitic to defect mode intensity ratio (I D /I G ) decreases from 1.2 to 0.8. However, I 2D /I G value for multilayer graphene is found to be 1.1 confirming the presence of at least 10 layers of graphene in these samples. CNTs with smaller diameter show better electron emission properties with enhancement factor (γ C = 2.8 × 10 3 ) in comparison to multilayer graphene structure (γ C = 1.5 × 10 3 ). The better emission characteristics in CNTs are explained due to combination of electrons from edges as well as centers in comparison to the multilayer graphene. Highlights: ► Graphitic shells in CNTs and graphene depend on the size of Fe nanoparticles. ► The diameter of nanoparticles decides the morphology of CNTs and graphene. ► Multilayer graphene structures show improved crystallinity in comparison to CNTs. ► Multilayer graphene (MLG) has the γ C factor of 1.5 × 10 3 and CNTs has 2.8 × 10 3 . ► The nonlinearity in MLG may occur through change in work function.

  3. Multi-layered population structure in Island Southeast Asians

    Science.gov (United States)

    Mörseburg, Alexander; Pagani, Luca; Ricaut, Francois-Xavier; Yngvadottir, Bryndis; Harney, Eadaoin; Castillo, Cristina; Hoogervorst, Tom; Antao, Tiago; Kusuma, Pradiptajati; Brucato, Nicolas; Cardona, Alexia; Pierron, Denis; Letellier, Thierry; Wee, Joseph; Abdullah, Syafiq; Metspalu, Mait; Kivisild, Toomas

    2016-01-01

    The history of human settlement in Southeast Asia has been complex and involved several distinct dispersal events. Here, we report the analyses of 1825 individuals from Southeast Asia including new genome-wide genotype data for 146 individuals from three Mainland Southeast Asian (Burmese, Malay and Vietnamese) and four Island Southeast Asian (Dusun, Filipino, Kankanaey and Murut) populations. While confirming the presence of previously recognised major ancestry components in the Southeast Asian population structure, we highlight the Kankanaey Igorots from the highlands of the Philippine Mountain Province as likely the closest living representatives of the source population that may have given rise to the Austronesian expansion. This conclusion rests on independent evidence from various analyses of autosomal data and uniparental markers. Given the extensive presence of trade goods, cultural and linguistic evidence of Indian influence in Southeast Asia starting from 2.5 kya, we also detect traces of a South Asian signature in different populations in the region dating to the last couple of thousand years. PMID:27302840

  4. Self-organized emergence of multilayer structure and chimera states in dynamical networks with adaptive couplings

    Science.gov (United States)

    Kasatkin, D. V.; Yanchuk, S.; Schöll, E.; Nekorkin, V. I.

    2017-12-01

    We report the phenomenon of self-organized emergence of hierarchical multilayered structures and chimera states in dynamical networks with adaptive couplings. This process is characterized by a sequential formation of subnetworks (layers) of densely coupled elements, the size of which is ordered in a hierarchical way, and which are weakly coupled between each other. We show that the hierarchical structure causes the decoupling of the subnetworks. Each layer can exhibit either a two-cluster state, a periodic traveling wave, or an incoherent state, and these states can coexist on different scales of subnetwork sizes.

  5. Determination of dynamic characteristics of multi-layer carbon plastic structures of high-resolution scanner

    Directory of Open Access Journals (Sweden)

    В. Н. Маслей

    2017-10-01

    Full Text Available The comparative analysis results for the numerical determination of the dynamic characteristics of multi-layer carbon-fiber plates of the space vehicle scanner design by various types of finite element approximation of the physico-mechanical properties of the composite material are presented. Using the topological structure of the construction of reinforcing layers material in the plate package plane, experimental data for the elastic and mass characteristics of homogeneous carbon-fiber fibers, equivalent structural and orthotropic stiffness and elastic characteristics of the material of composite plates are determined.

  6. LSMO-STO(110) multilayered structure grown by metalorganic aerosol deposition

    International Nuclear Information System (INIS)

    Sapoval, Oleg; Belenchuk, Alexander; Canter, Valeriu; Zasavitsky, Efim; Moshnyaga, Vasily

    2013-01-01

    La 0.67 Sr 0.33 MnO 3 -SrTiO 3 multilayered structure was grown on SrTiO 3 (110) substrates by metalorganic aerosol deposition technique. The crystal structure was examined by X-ray analysis including simulation of diffraction and reflection patterns. The magneto transport properties of superlattice are presented. The critical thickness of (110)-oriented LSMO layers is lower than 7 perovskite unite cells. The oxygen stoichiometry provided due to high gas pressure conditions is responsible for reducing of critical thickness of LSMO layers at LSMO-STO(110) interfaces. (authors)

  7. A multilayered supramolecular self-assembled structure from soybean oil by in situ polymerization and its applications.

    Science.gov (United States)

    Kavitha, Varadharajan; Gnanamani, Arumugam

    2013-05-01

    The present study emphasizes in situ transformation of soybean oil to self-assembled supramolecular multilayered biopolymer material. The said polymer material was characterized and the entrapment efficacy of both hydrophilic and hydrophobic moieties was studied. In brief, soybean oil at varying concentration was mixed with mineral medium and incubated under agitation (200 rpm) at 37 degrees C for 240 h. Physical observations were made till 240 h and the transformed biopolymer was separated and subjected to physical, chemical and functional characterization. The maximum size of the polymer material was measured as 2 cm in diameter and the cross sectional view displayed the multilayered onion rings like structures. SEM analysis illustrated the presence of multilayered honeycomb channeled structures. Thermal analysis demonstrated the thermal stability (200 degrees C) and high heat enthalpy (1999 J/g). Further, this multilayered assembly was able to entrap both hydrophilic and hydrophobic components simultaneously, suggesting the potential industrial application of this material.

  8. Transverse peltier effect in Pb-Bi{sub 2}Te{sub 3} multilayer structures

    Energy Technology Data Exchange (ETDEWEB)

    Reitmaier, Christina; Walther, Franziska; Kyarad, Amir; Lengfellner, Hans [University of Regensburg (Germany)

    2009-07-01

    Metal-semiconductor multilayer structures show, according to model calculations, large anisotropy in their electrical and thermal transport properties. Multilayer stacks consisting of alternating layers of Pb and n-type Bi{sub 2}Te{sub 3} and prepared by a heating procedure displayed large thermoelectric anisotropy up to {delta}S{approx}200 {mu} V/K, depending on the thickness ratio p=d{sub BiTe}/d{sub Pb}, where d{sub BiTe} and d{sub Pb} are the thicknesses of Bi{sub 2}Te{sub 3} and Pb layers, respectively. From multilayer stacks, tilted samples with layers inclined with respect to the sample surface where obtained by cutting stacks obliquely to the stack axis. Non-zero off-diagonal elements in the Seebeck-tensor describing the thermopower of tilted samples allow for the occurance of a transverse Peltier effect. Experimental results demonstrate cooling by the transverse Peltier effect and are compared to model calculations.

  9. A thick hierarchical rutile TiO2 nanomaterial with multilayered structure

    International Nuclear Information System (INIS)

    Zhu, Shengli; Xie, Guoqiang; Yang, Xianjin; Cui, Zhenduo

    2013-01-01

    Highlights: ► We synthesized a new rutile TiO 2 nanomaterial with a hierarchical nanostructure. ► The nano architecture structure consist of nanorods and nanoflower arrays. ► The rutile TiO 2 nanomaterial is thick in size (several 10 μm). ► The TiO 2 nanomaterials present a multilayer structure. - Abstract: In the present paper, we synthesized a new type of rutile TiO 2 nanomaterial with a hierarchical nanostructure using a novel method, which combined dealloying process with chemical synthesis. The structure characters were examined using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The rutile TiO 2 nanomaterial is thick in size (several 10 μm). The hierarchical structure of the rutile TiO 2 nanomaterial consists of large quantities nanorods and nanoflower arrays. The nanoflowers consist of serveral nanopetals with diameter of 100–200 nm. The cross section of TiO 2 nanomaterials presents a multilayer structure with the layer thickness of about 3–5 μm. The rutile TiO 2 nanomaterial has high specific surface area. The formation mechanism of the rutile TiO 2 nanomaterial was discussed according to the experimental results. The rutile TiO 2 nanomaterial has potential applications in catalysis, photocatalysis and solar cells

  10. A Study on Elastic Guided Wave Modal Characteristics in Multi-Layered Structures

    International Nuclear Information System (INIS)

    Cho, Youn Ho; Lee, Chong Myoung

    2008-01-01

    In this study, we have developed a program which can calculate phase and group velocities, attenuation and wave structures of each mode in multi-layered plates. The wave structures of each mode are obtained, varying material properties and number of layers. The key in the success of guided wave NDE is how to optimize the mode selection scheme by minimizing energy loss when a structure is in contact with liquid. In this study, the normalized out-of-plane displacements at the surface of a free plate are used to predict the variation of modal attenuation and verily the correlation between attenuation and wave structure. It turns out that the guided wave attenuation can be efficiently obtain from the out-of-plane displacement variation of a free wave guide alleviating such mathematical difficulties in extracting complex roots for the eigenvalue problem of a liquid loaded wave guide. Through this study, the concert to optimize guided wave mode selection is accomplished to enhance sensitivity and efficiency in nondestructive evaluation for multi-layered structures.

  11. Multilayered photonic integration on SOI platform using waveguide-based bridge structure

    Science.gov (United States)

    Majumder, Saikat; Chakraborty, Rajib

    2018-06-01

    A waveguide based structure on silicon on insulator platform is proposed for vertical integration in photonic integrated circuits. The structure consists of two multimode interference couplers connected by a single mode (SM) section which can act as a bridge over any other underlying device. Two more SM sections acts as input and output of the first and second multimode couplers respectively. Potential application of this structure is in multilayered photonic links. It is shown that the efficiency of the structure can be improved by making some design modifications. The entire simulation is done using effective-index based matrix method. The feature size chosen are comparable to waveguides fabricated previously so as to fabricate the proposed structure easily.

  12. A general centroid determination methodology, with application to multilayer dielectric structures and thermally stimulated current measurements

    International Nuclear Information System (INIS)

    Miller, S.L.; Fleetwood, D.M.; McWhorter, P.J.; Reber, R.A. Jr.; Murray, J.R.

    1993-01-01

    A general methodology is developed to experimentally characterize the spatial distribution of occupied traps in dielectric films on a semiconductor. The effects of parasitics such as leakage, charge transport through more than one interface, and interface trap charge are quantitatively addressed. Charge transport with contributions from multiple charge species is rigorously treated. The methodology is independent of the charge transport mechanism(s), and is directly applicable to multilayer dielectric structures. The centroid capacitance, rather than the centroid itself, is introduced as the fundamental quantity that permits the generic analysis of multilayer structures. In particular, the form of many equations describing stacked dielectric structures becomes independent of the number of layers comprising the stack if they are expressed in terms of the centroid capacitance and/or the flatband voltage. The experimental methodology is illustrated with an application using thermally stimulated current (TSC) measurements. The centroid of changes (via thermal emission) in the amount of trapped charge was determined for two different samples of a triple-layer dielectric structure. A direct consequence of the TSC analyses is the rigorous proof that changes in interface trap charge can contribute, though typically not significantly, to thermally stimulated current

  13. Positron annihilation spectroscopy: Applications to Si, ZnO, and multilayer semiconductor structures

    Science.gov (United States)

    Schaffer, J. P.; Rohatgi, A.; Dewald, A. B.; Frost, R. L.; Pang, S. K.

    1989-11-01

    The potential of positron annihilation spectroscopy (PAS) for defect characterization at the atomic scale in semiconductors is demonstrated for Si, ZnO, and multilayer structures, such as an AlGaAs/GaAs solar cell. The types of defects discussed include: i) vacancy complexes, oxygen impurities and dopants, ii) the influence of cooling rates on spatial non-uniformities in defects, and iii) characterization of buried interfaces. In sev-eral instances, the results of the PAS investigations are correlated with data from other established semiconductor characterization techniques.

  14. Controlled gentamicin release from multi-layered electrospun nanofibrous structures of various thicknesses

    Czech Academy of Sciences Publication Activity Database

    Širc, Jakub; Kubinová, Šárka; Hobzová, Radka; Stránská, D.; Kozlík, P.; Bosáková, Z.; Mareková, Dana; Holáň, Vladimír; Syková, Eva; Michálek, Jiří

    2012-01-01

    Roč. 7, 8 October (2012), s. 5315-5325 E-ISSN 1178-2013 R&D Projects: GA AV ČR KAN200520804 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50520514; CEZ:AV0Z50390512 Institutional support: RVO:61389013 ; RVO:68378050 ; RVO:68378041 Keywords : nanofibers * electrospinning * multilayered structure Subject RIV: CD - Macromolecular Chemistry; EI - Biotechnology ; Bionics (UMG-J); FH - Neurology (UEM-P) Impact factor: 3.463, year: 2012

  15. Studies of the structure and properties of organic monolayers, multilayers and superlattices

    International Nuclear Information System (INIS)

    Dutta, P.; Ketterson, J.B.

    1990-01-01

    Organic monolayers and multilayers are both scientifically fascinating and technologically promising; they are, however, both complex systems and relatively inaccessible to experimental probes. In this progress report, we describe our x-ray diffraction studies, which have given us substantial new information about the structures and phase transitions in monolayers on the surface of water; our use of these monolayers as a unique probe of the dynamics of wetting and spreading; and our studies of monolayer mechanical properties using a simple but effective technique available to anyone using the Wilhelmy method to measure surface tension. 20 refs., 11 figs

  16. Vertical coupling and transition energies in multilayer InAs/GaAs quantum-dot structures

    Science.gov (United States)

    Taddei, S.; Colocci, M.; Vinattieri, A.; Bogani, F.; Franchi, S.; Frigeri, P.; Lazzarini, L.; Salviati, G.

    2000-10-01

    Vertically ordered quantum dots in multilayer InAs/GaAs structures have attracted large interest in recent years for device application as light emitters. Contradictory claims on the dependence of the fundamental transition energy on the interlayer separation and number of dot layers have been reported in the literature. We show that either a blueshift or a redshift of the fundamental transition energy can be observed in different coupling conditions and straightforwardly explained by including strain, indium segregation, and electron-hole Coulomb interaction, in good agreement with experimental results.

  17. Quasi-effective medium theory for multi-layered magneto-dielectric structures

    International Nuclear Information System (INIS)

    Genov, Dentcho A; Mundru, Pattabhiraju C

    2014-01-01

    We present a quasi-effective medium theory that determines the optical properties of multi-layered composites beyond the quasi-static limit. The proposed theory exactly reproduces the far field scattering/extinction cross sections through an iterative process in which mode-dependent quasi-effective impedances of the composite system are introduced. In the large wavelength limit our theory is consistent with the Maxwell–Garnett formalism. Possible applications in determining the hybridization particle resonances of multi-shell structures and electromagnetic cloaking are identified. (paper)

  18. Disentangling the co-structure of multilayer interaction networks: degree distribution and module composition in two-layer bipartite networks.

    Science.gov (United States)

    Astegiano, Julia; Altermatt, Florian; Massol, François

    2017-11-13

    Species establish different interactions (e.g. antagonistic, mutualistic) with multiple species, forming multilayer ecological networks. Disentangling network co-structure in multilayer networks is crucial to predict how biodiversity loss may affect the persistence of multispecies assemblages. Existing methods to analyse multilayer networks often fail to consider network co-structure. We present a new method to evaluate the modular co-structure of multilayer networks through the assessment of species degree co-distribution and network module composition. We focus on modular structure because of its high prevalence among ecological networks. We apply our method to two Lepidoptera-plant networks, one describing caterpillar-plant herbivory interactions and one representing adult Lepidoptera nectaring on flowers, thereby possibly pollinating them. More than 50% of the species established either herbivory or visitation interactions, but not both. These species were over-represented among plants and lepidopterans, and were present in most modules in both networks. Similarity in module composition between networks was high but not different from random expectations. Our method clearly delineates the importance of interpreting multilayer module composition similarity in the light of the constraints imposed by network structure to predict the potential indirect effects of species loss through interconnected modular networks.

  19. The isotropic Universe

    International Nuclear Information System (INIS)

    Raine, D.J.

    1981-01-01

    This introduction to contemporary ideas in cosmology differs from other books on the 'expanding Universe' in its emphasis on physical cosmology and on the physical basis of the general theory of relativity. It is considered that the remarkable degree of isotropy, rather than the expansion, can be regarded as the central observational feature of the Universe. The various theories and ideas in 'big-bang' cosmology are discussed, providing an insight into current problems. Chapter headings are: quality of matter; expanding Universe; quality of radiation; quantity of matter; general theory of relativity; cosmological models; cosmological tests; matter and radiation; limits of isotropy; why is the Universe isotropic; singularities; evolution of structure. (U.K.)

  20. Generalized transmission line method to study the far-zone radiation of antennas under a multilayer structure

    CERN Document Server

    Wu, Xuan Hui

    2008-01-01

    This book gives a step-by-step presentation of a generalized transmission line method to study the far-zone radiation of antennas under a multilayer structure. Normally, a radiation problem requires a full wave analysis which may be time consuming. The beauty of the generalized transmission line method is that it transforms the radiation problem for a specific type of structure, say the multilayer structure excited by an antenna, into a circuit problem that can be efficiently analyzed. Using the Reciprocity Theorem and far-field approximation, the method computes the far-zone radiation due to

  1. Structural, magnetic and magneto-transport properties of thermally evaporated Fe/Cu multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Bouziane, K.; Al-Busaidi, M.; Gismelseed, A.; Al-Rawas, A. [Physics Department, College of Science, Sultan Qabos University, P. O. Box 36, Postal Code 123, Al-Khodh, Muscat (Oman)

    2004-05-01

    Structural, magnetic and magneto-transport properties of thermally evaporated Fe/Cu multilayers (MLs) have been investigated. Although multilayered structure has been successfully obtained, a substantial interfacial roughness ranging from 0.6 nm to 1.2 nm has been determined. All Fe/Cu MLs were polycrystalline with an average grain size of about 10 nm. Fe was bcc and textured (110) whereas Cu was fcc(111). Transmission electron microscopy analysis showed that the fcc Cu layer was rather textured (110) and (100) at least in the first stage of growth of the Fe/Cu MLs. Conversion electron Moessbauer (CEMS) measurements indicated the existence of three phases. Two of them were magnetic with a dominant bcc Fe phase, followed by fcc Fe phase. The third phase was superparamagnetic. The CEMS results were explained in terms of the partial diffusion of Fe into Cu with three different zones. The small magnetoresistance (MR<0.2%) was correlated to Fe clusters located at Fe-Cu interfaces. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  2. Enhancement of electroplex emission by using multi-layer device structure

    International Nuclear Information System (INIS)

    Wang Yuanmin; Teng Feng; Xu Zheng; Hou Yanbing; Wang Yongsheng; Xu Xurong

    2005-01-01

    Electroplex emission based on poly(N-vinylcarbazole) (PVK) and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) has been improved dramatically by using a multi-layer device structure indium-tin oxide (ITO)/poly(3,4-ethylenedioxythiophene): poly(styrenesulphonic acid) (PEDOT:PSS)/PVK/BCP/PVK/BCP/LiF/Al. Electroplex emission at 595 nm has been improved about 10 times under low voltage and four times under high voltage compared to the double layer device ITO/PVK/BCP/Al. The maximum brightness of the device also has been improved about eight times. Bright white emission via electroplex formation can be obtained with Commission International d'Eclairage (CIE) coordinates (0.336, 0.320) at 26 V with a brightness of 123 cd/m 2 . Based on the analysis of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the materials, we suggest the enhancement is mainly ascribed to the confinement effect of the quantum-well-like multi-layer device structure. Every hole and electron has more possibilities to cross recombination at the PVK/BCP interface

  3. Enhancement of electroplex emission by using multi-layer device structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yuanmin [Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Key Laboratory for Information Storage, Displays and Materials, Beijing 100044 (China); Teng Feng [Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China) and Key Laboratory for Information Storage, Displays and Materials, Beijing 100044 (China)]. E-mail: advanced9898@126.com; Xu Zheng [Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Key Laboratory for Information Storage, Displays and Materials, Beijing 100044 (China); Hou Yanbing [Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Key Laboratory for Information Storage, Displays and Materials, Beijing 100044 (China); Wang Yongsheng [Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Key Laboratory for Information Storage, Displays and Materials, Beijing 100044 (China); Xu Xurong [Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Key Laboratory for Information Storage, Displays and Materials, Beijing 100044 (China)

    2005-04-30

    Electroplex emission based on poly(N-vinylcarbazole) (PVK) and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) has been improved dramatically by using a multi-layer device structure indium-tin oxide (ITO)/poly(3,4-ethylenedioxythiophene): poly(styrenesulphonic acid) (PEDOT:PSS)/PVK/BCP/PVK/BCP/LiF/Al. Electroplex emission at 595 nm has been improved about 10 times under low voltage and four times under high voltage compared to the double layer device ITO/PVK/BCP/Al. The maximum brightness of the device also has been improved about eight times. Bright white emission via electroplex formation can be obtained with Commission International d'Eclairage (CIE) coordinates (0.336, 0.320) at 26 V with a brightness of 123 cd/m{sup 2}. Based on the analysis of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the materials, we suggest the enhancement is mainly ascribed to the confinement effect of the quantum-well-like multi-layer device structure. Every hole and electron has more possibilities to cross recombination at the PVK/BCP interface.

  4. Low-frequency nondestructive analysis of cracks in multilayer structures using a scanning magnetic microscope

    Energy Technology Data Exchange (ETDEWEB)

    Adamo, M; Nappi, C; Sarnelli, E, E-mail: m.adamo@cib.na.cnr.i [Istituto di Cibernetica ' E Caianiello' , Via Campi Flegrei 34, I-80078 Pozzuoli (Italy)

    2010-09-15

    The use of a scanning magnetic microscope (SMM) with a high temperature superconducting quantum interference device (SQUID) for quantitative measurements in eddy current nondestructive analysis (NDA) is presented. The SQUID has been used to detect the weak magnetic field variations around a small defect, close to a structural part generating an intensive magnetic field. The experimental data for a deep crack close to a rivet in a multilayer conducting plate have been taken in a RF-shielded environment and discussed in the light of the theoretical predictions. The results show that eddy current NDA can distinguish subsurface crack signals from wider structural signals, with defects located 10 mm below the surface. Moreover, in order to visualize the structure of the probing current when a circular induction coil is used, the simulation of eddy currents in a thick unflawed conducting plate has been carried out.

  5. Low-frequency nondestructive analysis of cracks in multilayer structures using a scanning magnetic microscope

    International Nuclear Information System (INIS)

    Adamo, M; Nappi, C; Sarnelli, E

    2010-01-01

    The use of a scanning magnetic microscope (SMM) with a high temperature superconducting quantum interference device (SQUID) for quantitative measurements in eddy current nondestructive analysis (NDA) is presented. The SQUID has been used to detect the weak magnetic field variations around a small defect, close to a structural part generating an intensive magnetic field. The experimental data for a deep crack close to a rivet in a multilayer conducting plate have been taken in a RF-shielded environment and discussed in the light of the theoretical predictions. The results show that eddy current NDA can distinguish subsurface crack signals from wider structural signals, with defects located 10 mm below the surface. Moreover, in order to visualize the structure of the probing current when a circular induction coil is used, the simulation of eddy currents in a thick unflawed conducting plate has been carried out.

  6. Interlayer exchange coupling, crystalline and magnetic structure in Fe/CsCl-FeSi multilayers grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Dekoster, J.; Degroote, S.; Meersschaut, J.; Moons, R.; Vantomme, A. [K.U. Leuven, Instituut voor Kern- en Stralingsfysica (Belgium); Bottyan, L.; Deak, L.; Szilagyi, E.; Nagy, D.L. [KFKI Research Institute for Particle and Nuclear Physics (Hungary); Baron, A.Q.R. [European Synchrotron Radiation Facility (France); Langouche, G. [K.U. Leuven, Instituut voor Kern- en Stralingsfysica (Belgium)

    1999-09-15

    Crystalline and magnetic structure as well as the interlayer exchange coupling in MBE grown Fe/FeSi multilayers are investigated. From conversion electron Moessbauer spectroscopy and ion beam channeling measurements the spacer FeSi material is found to be stabilized in a crystalline metastable metallic FeSi phase with the CsCl structure. Strong non-oscillatory interlayer exchange coupling is identified with magnetometry and synchrotron Moessbauer reflectometry. From the fits of the time spectrum and the resonant {phi}-{phi} scans a model for the sublayer magnetization of the multilayer is deduced.

  7. Quantifying hidden defect in multi-layered structures by using eddy current system combined with a scanner

    International Nuclear Information System (INIS)

    Huang Pingjie; Zhou Zekui; Wu Zhaotong

    2005-01-01

    The eddy current testing forward model of scanning inspection of multi-layered structures is introduced and simulation work is carried out to reveal the interaction between the scanning coil and defects with different geometric properties. A multi-frequency ECT experimental instrument combined with a scanner is established and scanning inspections are performed to detect the artificial etched flaws with different geometric parameters in the multi-layered structures. The predicted signals by the forward model are compared with the measured signals and the defects are characterized

  8. X-ray refractive index: A tool to determine the average composition in multilayer structures

    International Nuclear Information System (INIS)

    Miceli, P.F.; Neumann, D.A.; Zabel, H.

    1986-01-01

    We present a novel and simple method to determine the average composition of multilayers and superlattices by measuring the x-ray refractive index. Since these modulated structures exhibit Bragg reflections at small angles, by using a triple axis x-ray spectrometer we have accurately determined the peak shifts due to refraction in GaAs/Al/sub x/Ga/sub 1-x/As and Nb/Ta superlattices. Knowledge of the refractive index provides the average fractional composition of the periodic structure since the refractive index is a superposition of the refractive indices of the atomic constituents. We also present a critical discussion of the method and compare the values of the average fractional composition obtained in this manner to the values obtained from the lattice parameter change in the GaAs/Al/sub x/Ga/sub 1-x/As superlattices due to the Al

  9. Echo simulation of lunar penetrating radar: based on a model of inhomogeneous multilayer lunar regolith structure

    International Nuclear Information System (INIS)

    Dai Shun; Su Yan; Xiao Yuan; Feng Jian-Qing; Xing Shu-Guo; Ding Chun-Yu

    2014-01-01

    Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of investigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The dielectric constant of the lunar regolith, the velocity of propagation, the reflection, refraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison between the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed

  10. Echo simulation of lunar penetrating radar: based on a model of inhomogeneous multilayer lunar regolith structure

    Science.gov (United States)

    Dai, Shun; Su, Yan; Xiao, Yuan; Feng, Jian-Qing; Xing, Shu-Guo; Ding, Chun-Yu

    2014-12-01

    Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of investigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The dielectric constant of the lunar regolith, the velocity of propagation, the reflection, refraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison between the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed.

  11. Surface and interfacial structural characterization of MBE grown Si/Ge multilayers

    International Nuclear Information System (INIS)

    Saha, Biswajit; Sharma, Manjula; Sarma, Abhisakh; Rath, Ashutosh; Satyam, P.V.; Chakraborty, Purushottam; Sanyal, Milan K.

    2009-01-01

    Si/Ge multilayer structures have been grown by solid source molecular beam epitaxy (MBE) on Si (1 1 1) and (1 0 0) substrates and were characterized by high-resolution X-ray diffraction (XRD), atomic force microscopy (AFM), high-depth-resolution secondary ion mass spectroscopy (SIMS) and cross-section high-resolution transmission electron microscopy (HRTEM). A reasonably good agreement has been obtained for layer thickness, interfacial structure and diffusion between SIMS and HRTEM measurements. Epitaxial growth and crystalline nature of the individual layer have been probed using cross-sectional HRTEM and XRD measurements. Surface and interface morphological studies by AFM and HRTEM show island-like growth of both Si and Ge nanostructures.

  12. Structural and magnetic properties of ion-beam bombarded Co/Pt multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Lin, K.W.; Guo, J.Y.; Lin, S.R.; Ouyang, H. [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402 (China); Tsai, C.J. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300 (China); Van Lierop, J. [Department of Physics and Astronomy, University of Manitoba, Winnipeg (Canada); Phuoc, N.N.; Suzuki, T. [Information Storage Materials Laboratory, Toyota Technological Institute, Nagoya 468-8511 (Japan)

    2007-12-15

    A series of [Pt(2 nm)/Co(2 nm)]{sub 10}/Pt(30 nm) multilayers were deposited by using an ion-beam technique. X-ray diffraction and transmission electron microscopy results have shown that as-deposited samples consist of h.c.p. Co and f.c.c. Pt phases. Disordered CoPt{sub 3} phases were developed with increasing End-Hall voltage (V{sub EH}) that induces greater ion-beam bombardment energy during deposition. This indicates that intermixing of Co and Pt increases with ion-beam bombardment. The coercivities (ranging from 100 Oe to 300 Oe) of Co/Pt multilayers decreased with increasing V{sub EH}. After annealing, the formation of CoPt{sub 3} was observed in these ion-beam bombarded samples, resulting in lower coercivities (H{sub c}{proportional_to} 50 Oe). The depressed transition temperature of CoPt{sub 3} for films deposited with the largest V{sub EH} was attributed to distorted CoPt{sub 3} structures that appeared with annealing. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Structure and tribological behavior of Pb-Ti/MoS2 nanoscaled multilayer films deposited by magnetron sputtering method

    Science.gov (United States)

    Li, Hao; Xie, Mingling; Zhang, Guangan; Fan, Xiaoqiang; Li, Xia; Zhu, Minhao; Wang, Liping

    2018-03-01

    The Pb-Ti/MoS2 nanoscaled multilayer films with different bilayer period were deposited by unbalanced magnetron sputtering system. The morphology, microstructure, mechanical and tribological properties of the films were investigated. It was found that the film changed from multilayer structure to composite structure as the bilayer period decreased from 25 nm to 6 nm, due to the diffusion effect. The multilayer film showed a pronounced (002) diffraction peak, the growth of the MoS2 platelets below the interface were affected by Pb and Ti, and the c-axis of MoS2 platelets were inclined to the substrate at an angle of -30° to 30°. The hardness of the film ranged from 5.9 to 7.2 GPa depending on the bilayer period. The tribological behavior of the films was performed under vacuum, and the friction coefficient were typically below 0.25. Furthermore, the nanoscale multilayer film with a bilayer period of 20 nm exhibits much better mechanical and tribological properties than pure MoS2. The result indicates that the nanoscale multilayer is a design methodology for developing high basal plane oriented and vacuum solid lubricating MoS2 based materials.

  14. Electromagnetic waves in irregular multilayered spheroidal structures of finite conductivity: full wave solutions

    International Nuclear Information System (INIS)

    Bahar, E.

    1976-01-01

    The propagation of electromagnetic waves excited by electric dipoles oriented along the axis of multilayered spheroidal structures of finite conductivity is investigated. The electromagnetic parameters and the thickness of the layers of the structure are assumed to be functions of the latitude. In the analysis, electric and magnetic field transforms that constitute a discrete and a continuous spectrum of spherical waves are used to provide a suitable basis for the expansion of the electromagnetic fields at any point in the irregular spheroidal structure. For spheroidal structures with good conducting cores, the terms in the solutions associated with the continuous part of the wave spectrum vanish. In general, however, when the skin depth for the core is large compared to its dimensions or when the sources are located in the core of the structure and propagation in the core is of special interest, the contribution from the continuous part of the wave spectrum cannot be neglected. At each interface between the layers of the irregular spheroidal structure, exact boundary conditions are imposed. Since the terms of the field expansions in the irregular structure do not individually satisfy the boundary conditions, Maxwell's equations are reduced to sets of coupled ordinary first-order differential equations for the wave amplitudes. The solutions are shown to satisfy the reciprocity relationships in electromagnetic theory. The analysis may be applied to problems of radio wave propagation in a nonuniform model of the earth-ionosphere waveguide, particularly when focusing effects at the antipodes are important

  15. Design of the algorithm of photons migration in the multilayer skin structure

    Science.gov (United States)

    Bulykina, Anastasiia B.; Ryzhova, Victoria A.; Korotaev, Valery V.; Samokhin, Nikita Y.

    2017-06-01

    Design of approaches and methods of the oncological diseases diagnostics has special significance. It allows determining any kind of tumors at early stages. The development of optical and laser technologies provided increase of a number of methods allowing making diagnostic studies of oncological diseases. A promising area of biomedical diagnostics is the development of automated nondestructive testing systems for the study of the skin polarizing properties based on backscattered radiation detection. Specification of the examined tissue polarizing properties allows studying of structural properties change influenced by various pathologies. Consequently, measurement and analysis of the polarizing properties of the scattered optical radiation for the development of methods for diagnosis and imaging of skin in vivo appear relevant. The purpose of this research is to design the algorithm of photons migration in the multilayer skin structure. In this research, the algorithm of photons migration in the multilayer skin structure was designed. It is based on the use of the Monte Carlo method. Implemented Monte Carlo method appears as a tracking the paths of photons experiencing random discrete direction changes before they are released from the analyzed area or decrease their intensity to negligible levels. Modeling algorithm consists of the medium and the source characteristics generation, a photon generating considering spatial coordinates of the polar and azimuthal angles, the photon weight reduction calculating due to specular and diffuse reflection, the photon mean free path definition, the photon motion direction angle definition as a result of random scattering with a Henyey-Greenstein phase function, the medium's absorption calculation. Biological tissue is modeled as a homogeneous scattering sheet characterized by absorption, a scattering and anisotropy coefficients.

  16. Structure, properties and wear behaviour of multilayer coatings consisting of metallic and covalent hard materials, prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Schier, V.

    1995-12-01

    Novel multilayer coatings with metallic and covalent layer materials were prepared by magnetron sputtering and characterised concerning structure, properties and application behaviour. At first single layer coatings were deposited for the determination of the material properties. To evaluate relations between structure and properties of the multilayer coatings, different multilayer concepts were realised: - coatings consisting of at most 7 layers of metallic hard materials, - 100-layer coatings consisting of metallic and covalent hard materials, - TiN-TiC multilayer coatings with different numbers of layers (between 10 and 1000), - 150-layer coatings, based on TiN-TiC multilayers, with thin ( 4 C, AlN, SiC, a:C, Si 3 N 4 , SiAlON). X-rays and electron microscopic analysis indicate in spite of nonstoichiometric compositions single phase crystalline structures for nonreactively and reactively sputtered metastable single layer Ti(B,C)-, Ti(B,N)- and Ti(B,C,N)-coatings. These single layer coatings show excellent mechanical properties (e.g. hardness values up to 6000 HV0,05), caused by lattice stresses as well as by atomic bonding conditions similar to those in c:BN and B 4 C. The good tribological properties shown in pin-on-disk-tests can be attributed to the very high hardness of the coatings. The coatings consisting of at most 7 layers of metallic hard materials show good results mainly for the cutting of steel Ck45, due to the improved mechanical properties (e.g. hardness, toughness) of the multilayers compared to the single layer coatings. This improvement is caused by inserting the hard layer materials and the coherent reinforcement of the coatings. (orig.)

  17. Efficient Model Order Reduction for the Dynamics of Nonlinear Multilayer Sheet Structures with Trial Vector Derivatives

    Directory of Open Access Journals (Sweden)

    Wolfgang Witteveen

    2014-01-01

    Full Text Available The mechanical response of multilayer sheet structures, such as leaf springs or car bodies, is largely determined by the nonlinear contact and friction forces between the sheets involved. Conventional computational approaches based on classical reduction techniques or the direct finite element approach have an inefficient balance between computational time and accuracy. In the present contribution, the method of trial vector derivatives is applied and extended in order to obtain a-priori trial vectors for the model reduction which are suitable for determining the nonlinearities in the joints of the reduced system. Findings show that the result quality in terms of displacements and contact forces is comparable to the direct finite element method but the computational effort is extremely low due to the model order reduction. Two numerical studies are presented to underline the method’s accuracy and efficiency. In conclusion, this approach is discussed with respect to the existing body of literature.

  18. Emergence of a multilayer structure in adaptive networks of phase oscillators

    International Nuclear Information System (INIS)

    Makarov, V.V.; Koronovskii, A.A.; Maksimenko, V.A.; Hramov, A.E.; Moskalenko, O.I.; Buldú, J.M.; Boccaletti, S.

    2016-01-01

    We report on self-organization of adaptive networks, where topology and dynamics evolve in accordance to a competition between homophilic and homeostatic mechanisms, and where links are associated to a vector of weights. Under an appropriate balance between the intra- and inter- layer coupling strengths, we show that a multilayer structure emerges due to the adaptive evolution, resulting in different link weights at each layer, i.e. different components of the weights’ vector. In parallel, synchronized clusters at each layer are formed, which may overlap or not, depending on the values of the coupling strengths. Only when intra- and inter- layer coupling strengths are high enough, all layers reach identical final topologies, collapsing the system into, in fact, a monolayer network. The relationships between such steady state topologies and a set of dynamical network’s properties are discussed.

  19. Local atomic structure of Fe/Cr multilayers: Depth-resolved method

    Science.gov (United States)

    Babanov, Yu. A.; Ponomarev, D. A.; Devyaterikov, D. I.; Salamatov, Yu. A.; Romashev, L. N.; Ustinov, V. V.; Vasin, V. V.; Ageev, A. L.

    2017-10-01

    A depth-resolved method for the investigation of the local atomic structure by combining data of X-ray reflectivity and angle-resolved EXAFS is proposed. The solution of the problem can be divided into three stages: 1) determination of the element concentration profile with the depth z from X-ray reflectivity data, 2) determination of the X-ray fluorescence emission spectrum of the element i absorption coefficient μia (z,E) as a function of depth and photon energy E using the angle-resolved EXAFS data Iif (E , ϑl) , 3) determination of partial correlation functions gij (z , r) as a function of depth from μi (z , E) . All stages of the proposed method are demonstrated on a model example of a multilayer nanoheterostructure Cr/Fe/Cr/Al2O3. Three partial pair correlation functions are obtained. A modified Levenberg-Marquardt algorithm and a regularization method are applied.

  20. Highly conductive and flexible color filter electrode using multilayer film structure

    Science.gov (United States)

    Han, Jun Hee; Kim, Dong-Young; Kim, Dohong; Choi, Kyung Cheol

    2016-07-01

    In this paper, a high performance flexible component that serves as a color filter and an electrode simultaneously is suggested. The suggested highly conductive and flexible color filter electrode (CFE) has a multilayer film structure composed of silver (Ag) and tungsten trioxide (WO3). The CFE maintained its color filtering capability even when the films were bent on a polyethylene terephthalate (PET) film. Low sheet resistance of the CFE was obtained using WO3 as a bridge layer that connects two Ag layers electrically. The sheet resistance was less than 2 Ω/sq. and it was negligibly changed after bending the film, confirming the flexibility of the CFE. The CFE can be easily fabricated using a thermal evaporator and is easily patterned by photolithography or a shadow mask. The proposed CFE has enormous potential for applications involving optical devices including large area devices and flexible devices.

  1. Computation of the optical properties and their first order derivatives for multilayer structures

    International Nuclear Information System (INIS)

    Abu El-Haija, A.J.; Omari, H.Y.

    1985-08-01

    An elaborate computer programme has been established for calculating the optical properties and their first order derivatives for arbitrary multilayer structure systems. The method employs Chebychev polynomials. The optical properties that may be calculated include reflectivity R, transmissivity T, absorptivity A and their derivatives R', T' and A' with respect to wavelength. The obtained values of R, T and A as calculated by this method were compared with their values calculated from direct multiplication of matrices using the characteristic transfer technique. The advantages of the present programme over the previous one reside in the reduction of the computer time by almost a factor of m, the total number of identity periods, and the advantage of calculating the derivatives of R, T and A with respect to wavelength. The basic formulas which are utilized in these calculations are given together with the essential details of the programme, including a block diagram. (author)

  2. Design of a wideband multilayer grating spectrometer for the study of electronic structure of thin-film CIS solar cells

    International Nuclear Information System (INIS)

    Imazono, Takashi; Koike, Masato; Kuramoto, Satoshi; Nagano, Tetsuya; Koeda, Masaru; Moriya, Naoji

    2014-01-01

    A soft x-ray emission spectrometer equipped with a wideband Ni/C multilayer-coated laminar-type varied-line-spacing holographic grating is designed to analyze the electronic structure in thin-film copper indium selenide (CIS) solar cells nondestructively by soft x-ray emission spectroscopy. The spectrometer equipped with the multilayer grating thus designed allows us to detect the L emission lines of Cu, In, and Se simultaneously from a CIS absorber layer in the 1–3.5 keV range at a constant angle of incidence. (author)

  3. Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multi-layered tissue structures

    DEFF Research Database (Denmark)

    Thrane, Lars; Frosz, Michael Henoch; Tycho, Andreas

    2004-01-01

    A recently developed analytical optical coherence tomography (OCT) model [Thrane et al., J. Opt. Soc. Am. A 17, 484 (2000)] allows the extraction of optical scattering parameters from OCT images, thereby permitting attenuation compensation in those images. By expanding this theoretical model, we...... have developed a new method for extracting optical scattering parameters from multilayered tissue structures in vivo. To verify this, we used a Monte Carlo (MC) OCT model as a numerical phantom to simulate the OCT signal for het-erogeneous multilayered tissue. Excellent agreement between the extracted......, and the results hold promise for expanding the functional imaging capabilities of OCT....

  4. Numerical simulation of SPH for dynamics effect of multilayer discontinuous structure irradiated by impulse X-ray

    International Nuclear Information System (INIS)

    Xu Binbin; Tang Wenhui; Ran Xianwen; Xu Zhihong; Chen Hua

    2012-01-01

    When high energy X-ray irradiates material, it will cause energy deposition in materials, and generates thermal shock wave. At present, finite difference method is used to the numerical simulation of thermal shock usually, but if considering the inter-space between the multilayer materials, the difference method will be more difficult. This paper used the SPH method to simulate multilayer discontinuous structure irradiated by high energy X-ray, and the results show that the gap between the materials of each layer has a certain influence on the thermal shock wave intensity, but doesn't have any affect to gasification impulse. (authors)

  5. Structural properties and spatial ordering in multilayered ZnMgTe/ZnSe type-II quantum dot structures

    International Nuclear Information System (INIS)

    Manna, U.; Noyan, I. C.; Neumark, G. F.; Zhang, Q.; Moug, R.; Salakhutdinov, I. F.; Dunn, K. A.; Novak, S. W.; Tamargo, M. C.; Kuskovsky, I. L.

    2012-01-01

    We report the structural properties and spatial ordering of multilayer ZnMgTe quantum dots (QDs) embedded in ZnSe, where sub-monolayer quantities of Mg were introduced periodically during growth in order to reduce the valence band offset of ZnTe QDs. The periodicity, period dispersion, individual layer thickness, and the composition of the multilayer structures were determined by comparing the experimental high resolution x-ray diffraction (HRXRD) spectra to simulated ones for the allowed (004) and quasi-forbidden (002) reflections in combination with transmission electron microscopy (TEM) results. Secondary ion mass spectroscopy (SIMS) profiles confirmed the incorporation of Mg inside the QD layers, and the HRXRD analysis revealed that there is approximately 32% Mg in the ZnMgTe QDs. The presence of Mg contributes to higher scattering intensity of the HRXRD, leading to the observation of higher order superlattice peaks in both the (004) and (002) reflections. The distribution of scattered intensity in the reciprocal space map (RSM) shows that the diffuse scattered intensity is elongated along the q x axis, indicating a vertical correlation of the dots, which is found to be less defined for the sample with larger periodicity. The diffuse scattered intensity is also found to be weakly correlated along the q z direction indicating a weak lateral correlation of the dots.

  6. Phase constitution and interface structure of nano-sized Ag-Cu/AlN multilayers: Experiment and ab initio modeling

    Energy Technology Data Exchange (ETDEWEB)

    Pigozzi, Giancarlo; Janczak-Rusch, Jolanta; Passerone, Daniele; Antonio Pignedoli, Carlo; Patscheider, Joerg; Jeurgens, Lars P. H. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Antusek, Andrej [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Faculty of Materials Science and Technology, Slovak University of Technology in Bratislava, Paulinska 16, 917 24 Trnava (Slovakia); Parlinska-Wojtan, Magdalena [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); University of Rzeszow, Institute of Physics, ul. Rejtana 16a, 35-959 Rzeszow (Poland); Bissig, Vinzenz [Kirsten Soldering AG, Hinterbergstrasse 32, CH-6330 Cham (Switzerland)

    2012-10-29

    Nano-sized Ag-Cu{sub 8nm}/AlN{sub 10nm} multilayers were deposited by reactive DC sputtering on {alpha}-Al{sub 2}O{sub 3}(0001) substrates. Investigation of the phase constitution and interface structure of the multilayers evidences a phase separation of the alloy sublayers into nanosized grains of Ag and Cu. The interfaces between the Ag grains and the quasi-single-crystalline AlN sublayers are semi-coherent, whereas the corresponding Cu/AlN interfaces are incoherent. The orientation relationship between Ag and AlN is constant throughout the entire multilayer stack. These observations are consistent with atomistic models of the interfaces as obtained by ab initio calculations.

  7. Unusual ZFC and FC magnetic behavior in thin Co multi-layered structure

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Dor, Oren; Yochelis, Shira [Department of Applied Physics, Center of Nanoscience and Nanotechnology, Hebrew University, Jerusalem 91904 (Israel); Felner, Israel [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Paltiel, Yossi [Department of Applied Physics, Center of Nanoscience and Nanotechnology, Hebrew University, Jerusalem 91904 (Israel)

    2017-04-15

    The observation of unusual magnetic phenomena in a Ni -based magnetic memory device ( O. Ben-Dor et al., 2013) encouraged us to conduct a systematic research on Co based multi-layered structure which contains a α-helix L polyalanine (AHPA-L) organic compound. The constant Co thickness is 7 nm and AHPA-L was also replaced by non-chiral 1-Decanethiol organic molecules. Both organic compounds were chemisorbed on gold by a thiol group. The dc magnetic field (H) was applied parallel and perpendicular to the surface layers. The perpendicular direction is the easy magnetization axis and along this orientation only, the zero-field-cooled (ZFC) plots exhibit a pronounced peak around 55–58 K. This peak is suppressed in the second ZFC and field-cooled (FC) runs performed shortly after the virgin ZFC one. Thus, around the peak position ZFC>FC a phenomenon seldom observed. This peak reappears after measuring the same material six months later. This behavior appears in layers with the non-chiral 1-Decanethiol and it is very similar to that obtained in sulfur doped amorphous carbon. The peak origin and the peculiar ZFC>FC case are qualitatively explained. - Highlights: • FC curve crosses ZFC curve in a 7 nm Co and thiol-based organic molecules multi-layered structure. • The ZFC>FC phenomena occurs for H perpendicular along the easy axis. • This phenomenon disappears in the second FC-ZFC run performed shortly after. • The unusual behavior reappears after six months.

  8. Compton imaging tomography for nondestructive evaluation of large multilayer aircraft components and structures

    Science.gov (United States)

    Romanov, Volodymyr; Grubsky, Victor; Zahiri, Feraidoon

    2017-02-01

    We present a novel NDT/NDE tool for non-contact, single-sided 3D inspection of aerospace components, based on Compton Imaging Tomography (CIT) technique, which is applicable to large, non-uniform, and/or multilayer structures made of composites or lightweight metals. CIT is based on the registration of Compton-scattered X-rays, and permits the reconstruction of the full 3D (tomographic) image of the inspected objects. Unlike conventional computerized tomography (CT), CIT requires only single-sided access to objects, and therefore can be applied to large structures without their disassembly. The developed tool provides accurate detection, identification, and precise 3D localizations and measurements of any possible internal and surface defects (corrosions, cracks, voids, delaminations, porosity, and inclusions), and also disbonds, core and skin defects, and intrusion of foreign fluids (e.g., fresh and salt water, oil) inside of honeycomb sandwich structures. The NDE capabilities of the system were successfully demonstrated on various aerospace structure samples provided by several major aerospace companies. Such a CIT-based tool can detect and localize individual internal defects with dimensions about 1-2 mm3, and honeycomb disbond defects less than 6 mm by 6 mm area with the variations in the thickness of the adhesive by 100 m. Current maximum scanning speed of aircraft/spacecraft structures is about 5-8 min/ft2 (50-80 min/m2).

  9. Compositional and structural studies of ion-beam modified AlN/TiN multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Amati, M., E-mail: matteo.amati@elettra.eu [Elettra – Sincrotrone Trieste SCpA,Area Science Park, 34149, Trieste (Italy); Gregoratti, L.; Sezen, H. [Elettra – Sincrotrone Trieste SCpA,Area Science Park, 34149, Trieste (Italy); Grce, A.; Milosavljević, M. [VINČA Institute of Nuclear Sciences, Belgrade University, P.O. Box 522, 11001, Belgrade (Serbia); Homewood, K.P. [Materials Research Institute and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, E1 4NS, London (United Kingdom)

    2017-07-31

    Highlights: • Inter-layer mixing, atomic redistribution, structural change, and phase transformation on AlN/TiN multilayers via argon ion irradiation. • Severe modifications are observed with TEM studies on highly immiscible alternating layers without any side effects such as beam heating. • The original TiN layers appear to grow in thickness by consuming the adjacent AlN layers, while obtaining a better TiAlN fcc crystalline structure. • Photoemission spectroscopy/microscopy indicates a transformation into Al deficient ternary and highly homogeneous compounds on both layers. • These results can be interesting towards further development of radiation tolerant materials based on immiscible ceramic nanocomposites. - Abstract: This paper reports on compositional and structural modifications induced in coated AlN/TiN multilayers by argon ion irradiation. The initial structure consisting of totally 30 alternate AlN (8 nm thick) and TiN (9.3 nm thick) layers was deposited on Si (100) wafers, by reactive sputtering. Irradiation was done with 180 keV Ar{sup +} to a high dose of 8 × 10{sup 16} ions/cm{sup 2}, which introduces up to ∼10 at.% of argon species, and generates a maximum displacement per atom of 92 for AlN and 127 for TiN, around the projected ion range (109 ± 34 nm). Characterizations were performed by Rutherford backscattering spectrometry, spatially resolved x-ray photoelectron spectroscopy, and transmission electron microscopy. The obtained results reveal that this highly immiscible and thermally stable system suffered a severe modification upon the applied ion irradiation, although it was performed at room temperature. They illustrate a thorough inter-layer mixing, atomic redistribution, structural change and phase transformation within the affected depth. The original TiN layers appear to grow in thickness, consuming the adjacent AlN layers, while retaining the fcc crystalline structure. In the mostly affected region, the interaction proceeds

  10. Optical and electrical properties of structured multilayer with tunable transparency rate

    International Nuclear Information System (INIS)

    Bou, Adrien; Torchio, Philippe; Barakel, Damien; Guillou, Aurélie; Thoulon, Pierre-Yves; Ricci, Marc; Ayachi, Boubakeur

    2015-01-01

    An experimental study has been carried out on structured multilayer with tunable transparency rate. In this paper, we present the optical and electrical characterization of an oxide | metal | oxide structured electrode manufactured by e-beam deposition and patterned by a lift-off process. The obtained samples are made of grids with different geometrical parameters that lead to varying surface coverage rate on glass. The electrical and optical parameters of SnO x |Ag|SnO x grids are investigated to determine the efficiency, sustainability and limitations of such structures. A linear relationship between the transmittance of the electrodes and the increase of the surface coverage rate is obtained. Coupled to an optimization process, we are able to define a high transparency in a chosen spectral range. Electrical results show a relative stability of the resistivity from 2.9   ×   10   −  4  Ω.cm for an as-grown electrode to 5.6   ×   10   −  4  Ω.cm for a structured electrode with a surface coverage rate of 59%. (paper)

  11. The Effect of Temperature Treatment on the Structure of Polyelectrolyte Multilayers

    Directory of Open Access Journals (Sweden)

    Maximilian Zerball

    2016-04-01

    Full Text Available The study addresses the effect of thermal treatment on the internal structure of polyelectrolyte multilayers (PEMs. In order to get insight into the internal structure of PEMs, Neutron Reflectometry (NR was used. PEMs with a deuterated inner block towards the substrate and a non-deuterated outer block were prepared and measured in 1% RH and in D2O before and after a thermal treatment. Complementarily, PEMs with the same number of layers but completely non-deuterated were investigated by ellipsometry. The analysis for the overall thickness (d, the average scattering length density (SLD and the refractive index (n indicate a degradation of the PEM. The loss in material is independent of the number of layers, i.e., only a constant part of the PEM is affected by degradation. The analysis of the internal structure revealed a more complex influence of thermal treatment on PEM structure. Only the outermost part of the PEM degenerates, while the inner part becomes denser during the thermal treatment. In addition, the swelling behavior of PEMs is influenced by the thermal treatment. The untreated PEM shows a well pronounced odd—even effect, i.e., PDADMAC-terminated PEMs take up more water than PSS-terminated PEMs. After the thermal treatment, the odd-even effect becomes much weaker.

  12. Interaction of femtosecond X-ray pulses with periodical multilayer structures

    International Nuclear Information System (INIS)

    Ksenzov, Dmitry

    2010-01-01

    The VUV Free Electron Laser FLASH operates in soft X-ray range and produces high-intensive pulse trains with few tens femtoseconds duration. The transversely fully coherent beam will open new experiments in solid state physics which can not be studied with present radiation sources. The study of the time dependent response of the multilayer to the X-ray pulse can provide insights into the process of interaction of highly intense FEL radiation with matter. To test the influence of electron excitation on the optical properties of boron carbide, the refractive index of B 4 C was measured near B K-edge by energy-resolved photon-in-photon-out method probing a Bragg reflection from periodical multilayers. The measured data clearly show that the variation of the fine structure of the Kabsorption edges due to the chemical nature of the absorber element. The knowledge obtained from experiments with continuous radiation was used to design the respective experiments with pulse from the FEL. In my thesis, it is proposed that the geometrical setup, where the incident pulse arrives from the FEL under the angle close to the 1st order ML Bragg peak, provides the most valuable information. Preliminary simulation considering form factors of neutral and ionized boron showed that due to ionization, pronounced changes in the reflectivity curve are expected. The proposed scheme can be the powerful tool to study the various processes within the electronic subsystem of the FEL pulse interaction with matter. This type of investigations gives a deep understanding of the nature of the electronic excitation and the recombination at the femtosecond scale. (orig.)

  13. Interaction of femtosecond X-ray pulses with periodical multilayer structures

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, Dmitry

    2010-07-01

    The VUV Free Electron Laser FLASH operates in soft X-ray range and produces high-intensive pulse trains with few tens femtoseconds duration. The transversely fully coherent beam will open new experiments in solid state physics which can not be studied with present radiation sources. The study of the time dependent response of the multilayer to the X-ray pulse can provide insights into the process of interaction of highly intense FEL radiation with matter. To test the influence of electron excitation on the optical properties of boron carbide, the refractive index of B{sub 4}C was measured near B K-edge by energy-resolved photon-in-photon-out method probing a Bragg reflection from periodical multilayers. The measured data clearly show that the variation of the fine structure of the Kabsorption edges due to the chemical nature of the absorber element. The knowledge obtained from experiments with continuous radiation was used to design the respective experiments with pulse from the FEL. In my thesis, it is proposed that the geometrical setup, where the incident pulse arrives from the FEL under the angle close to the 1st order ML Bragg peak, provides the most valuable information. Preliminary simulation considering form factors of neutral and ionized boron showed that due to ionization, pronounced changes in the reflectivity curve are expected. The proposed scheme can be the powerful tool to study the various processes within the electronic subsystem of the FEL pulse interaction with matter. This type of investigations gives a deep understanding of the nature of the electronic excitation and the recombination at the femtosecond scale. (orig.)

  14. High-pressure crystal structure of elastically isotropic CaTiO3 perovskite under hydrostatic and non-hydrostatic conditions.

    Science.gov (United States)

    Zhao, Jing; Ross, Nancy L; Wang, Di; Angel, Ross J

    2011-11-16

    The structural evolution of orthorhombic CaTiO3 perovskite has been studied using high-pressure single-crystal x-ray diffraction under hydrostatic conditions up to 8.1 GPa and under a non-hydrostatic stress field formed in a diamond anvil cell (DAC) up to 4.7 GPa. Under hydrostatic conditions, the TiO6 octahedra become more tilted and distorted with increasing pressure, similar to other 2:4 perovskites. Under non-hydrostatic conditions, the experiments do not show any apparent difference in the internal structural variation from hydrostatic conditions and no additional tilts and distortions in the TiO6 octahedra are observed, even though the lattice itself becomes distorted due to the non-hydrostatic stress. The similarity between the hydrostatic and non-hydrostatic cases can be ascribed to the fact that CaTiO3 perovskite is nearly elastically isotropic and, as a consequence, its deviatoric unit-cell volume strain produced by the non-hydrostatic stress is very small; in other words, the additional octahedral tilts relevant to the extra unit-cell volume associated with the deviatoric unit-cell volume strain may be totally neglected. This study further addresses the role that three factors--the elastic properties, the crystal orientation and the pressure medium--have on the structural evolution of an orthorhombic perovskite loaded in a DAC under non-hydrostatic conditions. The influence of these factors can be clearly visualized by plotting the three-dimensional distribution of the deviatoric unit-cell volume strain in relation to the cylindrical axis of the DAC and indicates that, if the elasticity of a perovskite is nearly isotropic as it is for CaTiO3, the other two factors become relatively insignificant.

  15. High-pressure crystal structure of elastically isotropic CaTiO3 perovskite under hydrostatic and non-hydrostatic conditions

    International Nuclear Information System (INIS)

    Zhao Jing; Ross, Nancy L; Wang, Di; Angel, Ross J

    2011-01-01

    The structural evolution of orthorhombic CaTiO 3 perovskite has been studied using high-pressure single-crystal x-ray diffraction under hydrostatic conditions up to 8.1 GPa and under a non-hydrostatic stress field formed in a diamond anvil cell (DAC) up to 4.7 GPa. Under hydrostatic conditions, the TiO 6 octahedra become more tilted and distorted with increasing pressure, similar to other 2:4 perovskites. Under non-hydrostatic conditions, the experiments do not show any apparent difference in the internal structural variation from hydrostatic conditions and no additional tilts and distortions in the TiO 6 octahedra are observed, even though the lattice itself becomes distorted due to the non-hydrostatic stress. The similarity between the hydrostatic and non-hydrostatic cases can be ascribed to the fact that CaTiO 3 perovskite is nearly elastically isotropic and, as a consequence, its deviatoric unit-cell volume strain produced by the non-hydrostatic stress is very small; in other words, the additional octahedral tilts relevant to the extra unit-cell volume associated with the deviatoric unit-cell volume strain may be totally neglected. This study further addresses the role that three factors-the elastic properties, the crystal orientation and the pressure medium-have on the structural evolution of an orthorhombic perovskite loaded in a DAC under non-hydrostatic conditions. The influence of these factors can be clearly visualized by plotting the three-dimensional distribution of the deviatoric unit-cell volume strain in relation to the cylindrical axis of the DAC and indicates that, if the elasticity of a perovskite is nearly isotropic as it is for CaTiO 3 , the other two factors become relatively insignificant. (paper)

  16. Structural and mechanical properties of titanium and titanium diboride monolayers and Ti/TiB2 multilayers

    International Nuclear Information System (INIS)

    Chu, K.; Lu, Y.H.; Shen, Y.G.

    2008-01-01

    Nano-multilayers represent a new class of engineering materials that are made up of alternating nanometer scale layers of two different components. In the present work a titanium (Ti) monolayer was combined with titanium diboride (TiB 2 ) to form a Ti/TiB 2 nano-multilayer. Designed experimental parameters enabled an evaluation of the effects of direct current bias voltage (U b ) and bilayer thickness (Λ) during multilayer deposition on the mechanical properties of reactively sputtered Ti/TiB 2 multilayer films. Their nanostructures and mechanical properties were characterized and analyzed using X-ray photoelectron spectroscopy (XPS), low-angle and high-angle X-ray diffraction (XRD), plan-view and cross-sectional high-resolution transmission electron microscopy (HRTEM), and microindentation measurements. Under the optimal bias voltage of U b = - 60 V, it was found that Λ (varied from 1.1 to 9.8 nm) was the most important factor which dominated the nanostructure and hardness. The hardness values obtained varied from 12 GPa for Ti and 15 GPa for TiB 2 monolayers, up to 33 GPa for the hardest Ti/TiB 2 multilayer at Λ = 1.9 nm. The observed hardness enhancement correlated to the layer thickness, followed a relation similar to the Hall-Petch strengthening dependence, with a generalized power of ∼ 0.6. In addition, the structural barriers between two materials (hcp Ti/amorphous TiB 2 ) and stress relaxation at interfaces within multilayer films resulted in a reduction of crack propagation and high-hardness

  17. A multi-layer bioinspired design with evolution of shish-kebab structures induced by controlled periodical shear field

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2013-04-01

    Full Text Available The crystallization of polymers, caused by flow fields in the melt, has been the subject of extensive studies for many years. In this study, we use periodical shear to induce polypropylene to form multi-layer structure, which is usually observed in plants. Two interesting points were found: firstly, the quest of mimicking natural structures was achieved by controlled periodical shear field; secondly, the evolution from nano to shish-kebab-like cylindrite structure was obtained in the multi-layer structure, which can be clarified by nuclei competition model. This study can be used to better understand the shear-induced crystallization of polymer. Here our intention is to place this new observation on the map, leaving a fuller presentation and discussion of the work to a future publication.

  18. Growth, structure, and performance of depth-graded W/Si multilayers for hard x-ray optics

    DEFF Research Database (Denmark)

    Windt, D.L.; Christensen, Finn Erland; Craig, W.W.

    2000-01-01

    that the dominant interface imperfection in these films is interfacial diffuseness; interfacial roughness is minimal (sigma(r)similar to 0.175 nm) in structures prepared under optimal conditions, but can increase under conditions in which the beneficial effects of energetic bombardment during growth are compromised......-graded W/Si multilayer structures, and high-resolution transmission electron microscopy (TEM) and selected area electron diffraction (SAED) to characterize the interface structure and layer morphology as a function of depth in an optimized depth-graded multilayer. From x-ray analysis we find interface......), and somewhat larger interface widths (i.e., sigma=0.35-0.4 nm) for structures grown at higher Ar pressures, higher background pressures, or with larger target-to-substrate distances. We find no variation in interface widths with magnetron power. Nonspecular x-ray reflectance analysis and TEM suggest...

  19. Influence of layer thickness on the structure and the magnetic properties of Co/Pd epitaxial multilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Tobari, Kousuke, E-mail: tobari@futamoto.elect.chuo-u.ac.jp [Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo 112-8551 (Japan); Ohtake, Mitsuru; Nagano, Katsumasa; Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2012-03-15

    Co/Pd epitaxial multilayer films were prepared on Pd(111){sub fcc} underlayers hetero-epitaxially grown on MgO(111){sub B1} single-crystal substrates at room temperature by ultra-high vacuum RF magnetron sputtering. In-situ reflection high energy electron diffraction shows that the in-plane lattice spacing of Co on Pd layer gradually decreases with increasing the Co layer thickness, whereas that of Pd on Co layer remains unchanged during the Pd layer formation. The CoPd alloy phase formation is observed around the Co/Pd interface. The atomic mixing is enhanced for thinner Co and Pd layers in multilayer structure. With decreasing the Co and the Pd layer thicknesses and increasing the repetition number of Co/Pd multilayer film, stronger perpendicular magnetic anisotropy is observed. The relationships between the film structure and the magnetic properties are discussed. - Highlights: Black-Right-Pointing-Pointer Epitaxial Co/Pd multilayer films are prepared on Pd(111){sub fcc} underlayers. Black-Right-Pointing-Pointer Lattice strain in Co layer and CoPd-alloy formation are noted around the interface. Black-Right-Pointing-Pointer Magnetic property dependence on layer thickness is reported.

  20. Computational study of structures of yttria-stabilised zirconia/strontium titanate multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cheah, Wei Li; Finnis, Mike [Imperial College London (United Kingdom)

    2012-07-01

    Growing interest in the field of functional oxide multilayered nano-heterostructures may be attributed to their unusual interfacial properties that are not yet fully understood. For instance, the nature of the unexpectedly high conductivity reported in a trilayer of 1-nm thick epitaxial yttria-stabilised zirconia (YSZ) film sandwiched between strontium titanate (STO) layers still remains controversial. In an effort to investigate the source of conductivity in this system, we first establish an unexpected YSZ lattice within such hetero-system using a combination of techniques - a genetic algorithm in which the interatomic forces are described by classical pair potentials, and a pseudo-potential-based DFT method as implemented in the plane-wave code CASTEP. We find this structure to be more stable than an anatase zirconia epitaxial lattice on STO which has been previously found as the most stable structure if yttrium dopants were not incorporated within the zirconia layer. Analysis of charge density of this new structure reveals not localised vacancies, but several small pockets of low charge densities for each expected vacancy. We examine the mobility of oxide ions in the hetero-system using classical molecular dynamics simulation and attempt to relate the results to experimental conductivity values.

  1. Nanomechanical characterization of multilayered thin film structures for digital micromirror devices

    International Nuclear Information System (INIS)

    Wei Guohua; Bhushan, Bharat; Joshua Jacobs, S.

    2004-01-01

    The digital micromirror device (DMD), used for digital projection displays, comprises a surface-micromachined array of up to 2.07 million aluminum micromirrors (14 μm square and 15 μm pitch), which switch forward and backward thousands of times per second using electrostatic attraction. The nanomechanical properties of the thin-film structures used are important to the performance of the DMD. In this paper, the nanomechanical characterization of the single and multilayered thin film structures, which are of interest in DMDs, is carried out. The hardness, Young's modulus and scratch resistance of TiN/Si, SiO 2 /Si, Al alloy/Si, TiN/Al alloy/Si and SiO 2 /TiN/Al alloy/Si thin-film structures were measured using nanoindentation and nanoscratch techniques, respectively. The residual (internal) stresses developed during the thin film growth were estimated by measuring the radius of curvature of the sample before and after deposition. To better understand the nanomechanical properties of these thin film materials, the surface and interface analysis of the samples were conducted using X-ray photoelectron spectroscopy. The nanomechanical properties of these materials are analyzed and the impact of these properties on micromirror performance is discussed

  2. Interfacial effects in multilayers

    International Nuclear Information System (INIS)

    Barbee, T.W. Jr.

    1998-01-01

    Interfacial structure and the atomic interactions between atoms at interfaces in multilayers or nano-laminates have significant impact on the physical properties of these materials. A technique for the experimental evaluation of interfacial structure and interfacial structure effects is presented and compared to experiment. In this paper the impact of interfacial structure on the performance of x-ray, soft x-ray and extreme ultra-violet multilayer optic structures is emphasized. The paper is concluded with summary of these results and an assessment of their implications relative to multilayer development and the study of buried interfaces in solids in general

  3. Structure and morphology of pentacene thin films - from sub-monolayers to application relevant multilayers

    International Nuclear Information System (INIS)

    Resel, R.; Werzer, O.; Nabok, D.; Puschnig, P.; Ambrosch-Draxl, C.; Smilgies, D.; Haase, A.; Stadlober, B.

    2008-01-01

    Full text: The conjugated molecule pentacene is one of the most prominent material for application in organic thin film transistors. Charge carrier mobilities of about 1 cm 2 /Vs are realized in different device geometries which are used in integrated circuits. The device performance depends on the detailed structure and morphology of the pentacene thin films. This work presents an combined atomic force microscopy / x-ray scattering study on the formation of pentacene thin films starting from sub-monolayer coverage to the first closed monolayer to finally multilayer structures as they are used in device structures. Thin films of pentacene are prepared on oxidized silicon wafer with nominal thicknesses between 0.2 nm up to 180 nm. The films are investigated ex-situ by x-ray reflectivity and grazing incidence diffraction. In the sub-monolayer regime the formation of separated islands with up-right standing molecules are observed. The islands show typically dendritic shape with a separation of 2 μm from each other. With increasing coverage the dendritic islands coalescent until the first monolayer closes. Fitting of the x-ray reflectivity reveals that an additional layer between the substrate and the up-right standing pentacene molecules is present. During the formation of the second monolayer crystalline islands are formed. The crystallites grow in lateral and vertical size with increasing film thickness. The crystal structure of pentacene within the films is a surface induced phase. The crystal structure of this metastable phase could be solved by a combined experimental and theoretical approach. At a nominal film thickness of about 40 nm the equilibrium bulk structure of pentacene appears; both phases remain existent up the thickest films investigated in this study. (author)

  4. Engineering polyelectrolyte multilayer structure at the nanometer length scale by tuning polymer solution conformation.

    Science.gov (United States)

    Boddohi, Soheil; Killingsworth, Christopher; Kipper, Matt

    2008-03-01

    Chitosan (a weak polycation) and heparin (a strong polyanion) are used to make polyelectrolyte multilayers (PEM). PEM thickness and composition are determined as a function of solution pH (4.6 to 5.8) and ionic strength (0.1 to 0.5 M). Over this range, increasing pH increases the PEM thickness; however, the sensitivity to changes in pH is a strong function of ionic strength. The PEM thickness data are correlated to the polymer conformation in solution. Polyelectrolyte conformation in solution is characterized by gel permeation chromatography (GPC). The highest sensitivity of PEM structure to pH is obtained at intermediate ionic strength. Different interactions govern the conformation and adsorption phenomena at low and high ionic strength, leading to reduced sensitivity to solution pH at extreme ionic strengths. The correspondence between PEM thickness and polymer solution conformation offers opportunities to tune polymer thin film structure at the nanometer length scale by controlling simple, reproducible processing conditions.

  5. Enhancing sound absorption and transmission through flexible multi-layer micro-perforated structures.

    Science.gov (United States)

    Bravo, Teresa; Maury, Cédric; Pinhède, Cédric

    2013-11-01

    Theoretical and experimental results are presented into the sound absorption and transmission properties of multi-layer structures made up of thin micro-perforated panels (ML-MPPs). The objective is to improve both the absorption and insulation performances of ML-MPPs through impedance boundary optimization. A fully coupled modal formulation is introduced that predicts the effect of the structural resonances onto the normal incidence absorption coefficient and transmission loss of ML-MPPs. This model is assessed against standing wave tube measurements and simulations based on impedance translation method for two double-layer MPP configurations of relevance in building acoustics and aeronautics. Optimal impedance relationships are proposed that ensure simultaneous maximization of both the absorption and the transmission loss under normal incidence. Exhaustive optimization of the double-layer MPPs is performed to assess the absorption and/or transmission performances with respect to the impedance criterion. It is investigated how the panel volumetric resonances modify the excess dissipation that can be achieved from non-modal optimization of ML-MPPs.

  6. Evaluation of interlayer interfacial stiffness and layer wave velocity of multilayered structures by ultrasonic spectroscopy.

    Science.gov (United States)

    Ishii, Yosuke; Biwa, Shiro

    2014-07-01

    An ultrasonic evaluation procedure for the interlayer interfacial normal stiffness and the intralayer longitudinal wave velocity of multilayered plate-like structures is proposed. Based on the characteristics of the amplitude reflection spectrum of ultrasonic wave at normal incidence to a layered structure with spring-type interlayer interfaces, it is shown that the interfacial normal stiffness and the longitudinal wave velocity in the layers can be simultaneously evaluated from the frequencies of local maxima and minima of the spectrum provided that all interfaces and layers have the same properties. The effectiveness of the proposed procedure is investigated from the perspective of the sensitivity of local extremal frequencies of the reflection spectrum. The feasibility of the proposed procedure is also investigated when the stiffness of each interface is subjected to small random fluctuations about a certain average value. The proposed procedure is applied to a 16-layered cross-ply carbon-fiber-reinforced composite laminate. The normal stiffness of resin-rich interfaces and the longitudinal wave velocity of plies in the thickness direction evaluated from the experimental reflection spectrum are shown to be consistent with simple theoretical estimations.

  7. The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition

    KAUST Repository

    Wang, Na

    2013-08-01

    The structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) deposition was investigated by high-resolution transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoelectron spectroscopy. Results of the plasmon excitation energy shift and through-thickness elemental concentration show a multilayered a-C film structure comprising an interface layer consisting of C, Si, and, possibly, SiC, a buffer layer with continuously increasing sp 3 fraction, a relatively thicker layer (bulk film) of constant sp 3 content, and an ultrathin surface layer rich in sp 2 hybridization. A detailed study of the C K-edge spectrum indicates that the buffer layer between the interface layer and the bulk film is due to the partial backscattering of C+ ions interacting with the heavy atoms of the silicon substrate. The results of this study provide insight into the minimum thickness of a-C films deposited by FCVA under optimum substrate bias conditions. Copyright © 2013 Materials Research Society.

  8. On correction of model of stabilization of distribution of concentration of radiation defects in a multilayer structure with account experiment data

    Science.gov (United States)

    Pankratov, E. L.

    2018-05-01

    We introduce a model of redistribution of point radiation defects, their interaction between themselves and redistribution of their simplest complexes (divacancies and diinterstitials) in a multilayer structure. The model gives a possibility to describe qualitatively nonmonotonicity of distributions of concentrations of radiation defects on interfaces between layers of the multilayer structure. The nonmonotonicity was recently found experimentally. To take into account the nonmonotonicity we modify recently used in literature model for analysis of distribution of concentration of radiation defects. To analyze the model we used an approach of solution of boundary problems, which could be used without crosslinking of solutions on interfaces between layers of the considered multilayer structures.

  9. Structural and magnetic properties of Ce/Fe and Ce/FeCoV multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Tixier, S; Boeni, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Mannix, D; Stirling, W G [Liverpool Univ. (United Kingdom); Lander, G H

    1997-09-01

    Ce/Fe and Ce/FeCoV multilayers have been grown by magnetron sputtering. The interfaces are well defined and the layers are crystalline down to an individual layer thickness of 20 A. Ce/FeCoV multilayers show sharper interfaces than Ce/Fe but some loss of crystallinity is observed. Hysteresis loops obtained by SQUID show different behaviour of the bulk magnetisation as a function of the layer thickness. Fe moments are found by Moessbauer spectroscopy to be perpendicular to the interfaces for multilayers with small periodicity. (author) 2 figs., 2 refs.

  10. Scalable Inkjet-Based Structural Color Printing by Molding Transparent Gratings on Multilayer Nanostructured Surfaces.

    Science.gov (United States)

    Jiang, Hao; Kaminska, Bozena

    2018-04-24

    To enable customized manufacturing of structural colors for commercial applications, up-scalable, low-cost, rapid, and versatile printing techniques are highly demanded. In this paper, we introduce a viable strategy for scaling up production of custom-input images by patterning individual structural colors on separate layers, which are then vertically stacked and recombined into full-color images. By applying this strategy on molded-ink-on-nanostructured-surface printing, we present an industry-applicable inkjet structural color printing technique termed multilayer molded-ink-on-nanostructured-surface (M-MIONS) printing, in which structural color pixels are molded on multiple layers of nanostructured surfaces. Transparent colorless titanium dioxide nanoparticles were inkjet-printed onto three separate transparent polymer substrates, and each substrate surface has one specific subwavelength grating pattern for molding the deposited nanoparticles into structural color pixels of red, green, or blue primary color. After index-matching lamination, the three layers were vertically stacked and bonded to display a color image. Each primary color can be printed into a range of different shades controlled through a half-tone process, and full colors were achieved by mixing primary colors from three layers. In our experiments, an image size as big as 10 cm by 10 cm was effortlessly achieved, and even larger images can potentially be printed on recombined grating surfaces. In one application example, the M-MIONS technique was used for printing customizable transparent color optical variable devices for protecting personalized security documents. In another example, a transparent diffractive color image printed with the M-MIONS technique was pasted onto a transparent panel for overlaying colorful information onto one's view of reality.

  11. The structure and mechanical properties of multilayer nanocrystalline TiN/ZrN coatings obtained by vacuum-arc deposition

    Directory of Open Access Journals (Sweden)

    A.V. Demchyshyn

    2007-12-01

    Full Text Available TiN/ZrN multilayered condensates on BK-8 carbide tips substrates (62 HRC were produced by the vacuumarc deposition technique, using Ti and Zr plasma flows in reactive nitrogen gas medium with working pressure of 6.6·10–1 Pa. The TiN/ZrN multilayered condensates consist of TiN and ZrN sublayers, which have a thickness of ~100 nm, controlled by the processing parameters of the used deposition technique. The obtained coatings have hardness of 45 GPa and Young’s modulus of 320 GPa. The obtained results show that mechanical properties of such multilayered composites are considerably improved in comparison to those for the single-component coatings, TiN and ZrN. The dependence of hardness and Young’s modulus of the composites on sublayer thickness within a range of 100 nm was determined. The investigated structure and improved mechanical properties of the TiN/ZrN multilayered condensates would be very good platform for finding their industrial application, such as hard coatings with different purposes.

  12. Preparation and Sound Absorption Properties of a Barium Titanate/Nitrile Butadiene Rubber–Polyurethane Foam Composite with Multilayered Structure

    Science.gov (United States)

    Jiang, Xueliang; Yang, Zhen; Wang, Zhijie; Zhang, Fuqing; You, Feng

    2018-01-01

    Barium titanate/nitrile butadiene rubber (BT/NBR) and polyurethane (PU) foam were combined to prepare a sound-absorbing material with an alternating multilayered structure. The effects of the cell size of PU foam and the alternating unit number on the sound absorption property of the material were investigated. The results show that the sound absorption efficiency at a low frequency increased when decreasing the cell size of PU foam layer. With the increasing of the alternating unit number, the material shows the sound absorption effect in a wider bandwidth of frequency. The BT/NBR-PU foam composites with alternating multilayered structure have an excellent sound absorption property at low frequency due to the organic combination of airflow resistivity, resonance absorption, and interface dissipation. PMID:29565321

  13. Preparation and Sound Absorption Properties of a Barium Titanate/Nitrile Butadiene Rubber–Polyurethane Foam Composite with Multilayered Structure

    Directory of Open Access Journals (Sweden)

    Xueliang Jiang

    2018-03-01

    Full Text Available Barium titanate/nitrile butadiene rubber (BT/NBR and polyurethane (PU foam were combined to prepare a sound-absorbing material with an alternating multilayered structure. The effects of the cell size of PU foam and the alternating unit number on the sound absorption property of the material were investigated. The results show that the sound absorption efficiency at a low frequency increased when decreasing the cell size of PU foam layer. With the increasing of the alternating unit number, the material shows the sound absorption effect in a wider bandwidth of frequency. The BT/NBR-PU foam composites with alternating multilayered structure have an excellent sound absorption property at low frequency due to the organic combination of airflow resistivity, resonance absorption, and interface dissipation.

  14. Preparation and Sound Absorption Properties of a Barium Titanate/Nitrile Butadiene Rubber-Polyurethane Foam Composite with Multilayered Structure.

    Science.gov (United States)

    Jiang, Xueliang; Yang, Zhen; Wang, Zhijie; Zhang, Fuqing; You, Feng; Yao, Chu

    2018-03-22

    Barium titanate/nitrile butadiene rubber (BT/NBR) and polyurethane (PU) foam were combined to prepare a sound-absorbing material with an alternating multilayered structure. The effects of the cell size of PU foam and the alternating unit number on the sound absorption property of the material were investigated. The results show that the sound absorption efficiency at a low frequency increased when decreasing the cell size of PU foam layer. With the increasing of the alternating unit number, the material shows the sound absorption effect in a wider bandwidth of frequency. The BT/NBR-PU foam composites with alternating multilayered structure have an excellent sound absorption property at low frequency due to the organic combination of airflow resistivity, resonance absorption, and interface dissipation.

  15. Extraction of optical parameters of thin films from spectral measurements for design and optical performance of multilayer structures

    International Nuclear Information System (INIS)

    Muellerova, J.; Jurecka, S.; Kucerova, A.

    2003-01-01

    Optical parameters of a-Si:H and indium tin oxide (ITO) thin films deposited on glass substrates are determined from spectral measurements of reflectance and/or transmittance. It is shown how important the exact knowledge of optical parameters as well as thicknesses of the layers for the design and the optical performance of multilayer structures is. The model of the p-i-n based a:Si-H solar cell with ITO as transparent conductive oxide layer is used for illustrating. The modeling of the solar cell integral reflectance in the spectral region of (650-830) nm is used as a criterion to reverse engineering of a multilayer structure with suppressed reflectance losses. The reflectance of a solar cell is modelled and the simulation of the varying optical parameters of individual layers including their thicknesses is discussed. Besides this,the advantage of using an antireflective layer under ITO is discussed (Authors)

  16. Scattering of ultrasonic waves from porous piezoelectric multilayered structures immersed in a fluid

    International Nuclear Information System (INIS)

    Vashishth, Anil K; Gupta, Vishakha

    2012-01-01

    The interest in porous piezoelectric materials is due to the demand for low-frequency hydrophone/actuator devices for use in underwater acoustic systems and other oceanographic applications. Porosity decreases the acoustic impedance, thus improving the transfer of acoustic energy to water or biological tissues. The impedance mismatching problem between the dense piezoelectric materials and the surrounding medium can be solved by inclusion of porosity in dense piezoceramics. The complete description of acoustic propagation in a multilayered system is of great interest in a variety of applications, such as non-destructive evaluation and acoustic design, and there is need for a flexible model that can describe the reflection and transmission of ultrasonic waves in these media. The present paper elaborates a theoretical model, based on the transfer matrix method, for describing reflection and transmission of plane elastic waves through a porous piezoelectric laminated plate, immersed in a fluid. The analytical expressions for the reflection coefficient, transmission coefficient and acoustic impedance are derived. The effects of frequency, angle of incidence, number of layers, layer thickness and porosity are observed numerically for different configurations. The results obtained are deduced for the piezoelectric laminated structure, piezoelectric layer and poro-elastic layer immersed in a fluid, which are in agreement with earlier established results and experimental studies. (paper)

  17. Structures and magnetic behaviours of TiO2–Mn–TiO2 multilayers

    International Nuclear Information System (INIS)

    Fa-Min, Liu; Peng, Ding; Jian-Qi, Li

    2010-01-01

    The TiO 2 -Mn-TiO 2 multilayers are successfully grown on glass and silicon substrates by alternately using radio frequency reactive magnetron sputtering and direct current magnetron sputtering. The structures and the magnetic behaviours of these films are characterised with x-ray diffraction, transmission electron microscope (TEM), vibrating sample magnetometer, and superconducting quantum interference device (SQUID). It is shown that the multi-film consists of a mixture of anatase and rutile TiO 2 with an embedded Mn nano-film. It is found that there are two turning points from ferromagnetic phase to antiferromagnetic phase. One is at 42 K attributed to interface coupling between ferromagnetic Mn 3 O 4 and antiferromagnetic Mn 2 O 3 , and the other is at 97 K owing to the interface coupling between ferromagnetic Mn and antiferromagnetic MnO. The samples are shown to have ferromagnetic behaviours at room temperature from hysteresis in the M-H loops, and their ferromagnetism is found to vary with the thickness of Mn nano-film. Moreover, the Mn nano-film has a critical thickness of about 18.5 nm, which makes the coercivity of the multi-film reach a maximum of about 3.965×10 −2 T. (cross-disciplinary physics and related areas of science and technology)

  18. Estimation of photonic band gap in the hollow core cylindrical multilayer structure

    Science.gov (United States)

    Chourasia, Ritesh Kumar; Singh, Vivek

    2018-04-01

    The propagation characteristic of two hollow core cylindrical multilayer structures having high and low refractive index contrast of cladding regions have been studied and compared at two design wavelengths i.e. 1550 nm and 632.8 nm. With the help of transfer matrix method a relation between the incoming light wave and outgoing light wave has been developed using the boundary matching technique. In high refractive index contrast, small numbers of layers are sufficient to provide perfect band gap in both design wavelengths. The spectral position and width of band gap is highly depending on the optical path of incident light in all considered cases. For sensing application, the sensitivity of waveguide can be obtained either by monitoring the width of photonic band gap or by monitoring the spectral shift of photonic band gap. Change in the width of photonic band gap with the core refractive index is larger in high refractive index contrast of cladding materials. However, in the case of monitoring the spectral shift of band gap, the obtained sensitivity is large for low refractive index contrast of cladding materials and further it increases with increase of design wavelength.

  19. The effects of thermal annealing on iron bombarded InP/InGaAs multilayer structures

    International Nuclear Information System (INIS)

    Subramaniam, S.C.; Rezazadeh, A.A.

    2006-01-01

    The effects of Fe-ion bombardment at 77 K (cold) and room temperature (RT) into single layer InGaAs, InP and multilayer InP/InGaAs HBT structures have been investigated. Annealing characteristics and RF dissipation loss measurements of Fe-ion bombarded samples at 77 K indicated good electrical isolation in n-, p-type InGaAs materials and InP/InGaAs HBT structures. Thermally stable (up to 250 deg. C) high sheet resistance (R sh ) of ∼5 x 10 6 Ω/sq has been achieved on these samples while higher R sh of ∼10 7 Ω/sq was obtained for the n-InP materials bombarded with similar conditions. Dissipation losses of 1.7 dB/cm at 10 GHz and 2.8 dB/cm at 40 GHz have been measured for the cold Fe-ion bombarded InP-based HBT structures. This result is similar to those obtained for an un-bombarded S.I. InP substrate, indicating good electrical isolation. We have also determined electron trapping levels by thermal annealing for the cold and RT Fe-ion bombarded samples. It is shown that the high resistivity achieved in the cold implanted InGaAs layer is most likely due to the creation of mid-bandgap defect levels (E C - 0.33) eV, which are created only in the cold Fe-ion bombardment. The DC isolation and RF dissipation loss analysis have been used to identify a suitable bombardment scheme for the fabrication of planar InP/InGaAs HBTs

  20. Preparation, structures and magnetic properties of Dy/Zr and Ho/Zr two-layers and multi-layers

    International Nuclear Information System (INIS)

    Luche, M.C.

    1993-01-01

    The first part of the report is devoted to the description of the ultra-vacuum evaporation equipment, to the sample preparation conditions and to the characterization of the two-layers and multi-layers through reflection and glancing incidence X diffraction and transmission electron microscopy. In the second part, the magnetic properties of the samples are studied and relations between properties and structures are examined. 37 fig., 35 ref

  1. Spectral element modelling of wave propagation in isotropic and anisotropic shell-structures including different types of damage

    International Nuclear Information System (INIS)

    Schulte, R T; Fritzen, C-P; Moll, J

    2010-01-01

    During the last decades, guided waves have shown great potential for Structural Health Monitoring (SHM) applications. These waves can be excited and sensed by piezoelectric elements that can be permanently attached onto a structure offering online monitoring capability. However, the setup of wave based SHM systems for complex structures may be very difficult and time consuming. For that reason there is a growing demand for efficient simulation tools providing the opportunity to design wave based SHM systems in a virtual environment. As usually high frequency waves are used, the associated short wavelength leads to the necessity of a very dense mesh, which makes conventional finite elements not well suited for this purpose. Therefore in this contribution a flat shell spectral element approach is presented. By including electromechanical coupling a SHM system can be simulated entirely from actuator voltage to sensor voltage. Besides a comparison to measured data for anisotropic materials including delamination, a numerical example of a more complex, stiffened shell structure with debonding is presented.

  2. Ion irradiation effects in structural and magnetic properties of Co/Cu multilayers

    International Nuclear Information System (INIS)

    Sakamoto, Isao; Okazaki, Satoshi; Koike, Masaki; Honda, Shigeo

    2012-01-01

    400 keV Ar ion (the Ar ion) and 50 keV He ion (the He ion) irradiations were performed in order to elucidate roles of Co/Cu interfacial structures in physical origins of giant magnetoresistance (GMR) in the [Co (2 nm)/Cu (2 nm)] 30 multilayers (MLs). The magnetoresistance (MR) ratio after the Ar ion irradiation decreases abruptly with increasing Ar ion fluence. On the other hand, the MR ratio after the He ion irradiation decreases slowly with increasing He ion fluence. The Ar ion irradiation induces the decrease in the difference (R max − R sat ) between the maximum resistance (R max ) and the saturated resistance (R sat ) under in-plane magnetic field and the increase in the R sat , although the effect of the He ion irradiation is not remarkable. The decrease in the (R max − R sat ) rather than the increase in the R sat seems to be effective for the decrease in the MR ratios after the Ar ion and the He ion irradiation. The increase in the R sat implies the mixing of Co atoms in Cu layers. The antiferromagnetic coupling fraction (AFF) estimated from the magnetization curves after the Ar ion and the He ion irradiation shows the similar behavior with the MR ratio as a function of ion fluence. Therefore, although the degrees of the irradiation effects by the Ar ion and the He ions are different, we suggest the relation between the GMR and the AFF affected by the ion-induced interfacial structures accompanied with the atomic mixing in the interfacial region.

  3. Using Fourier and Taylor series expansion in semi-analytical deformation analysis of thick-walled isotropic and wound composite structures

    Directory of Open Access Journals (Sweden)

    Jiran L.

    2016-06-01

    Full Text Available Thick-walled tubes made from isotropic and anisotropic materials are subjected to an internal pressure while the semi-analytical method is employed to investigate their elastic deformations. The contribution and novelty of this method is that it works universally for different loads, different boundary conditions, and different geometry of analyzed structures. Moreover, even when composite material is considered, the method requires no simplistic assumptions. The method uses a curvilinear tensor calculus and it works with the analytical expression of the total potential energy while the unknown displacement functions are approximated by using appropriate series expansion. Fourier and Taylor series expansion are involved into analysis in which they are tested and compared. The main potential of the proposed method is in analyses of wound composite structures when a simple description of the geometry is made in a curvilinear coordinate system while material properties are described in their inherent Cartesian coordinate system. Validations of the introduced semi-analytical method are performed by comparing results with those obtained from three-dimensional finite element analysis (FEA. Calculations with Fourier series expansion show noticeable disagreement with results from the finite element model because Fourier series expansion is not able to capture the course of radial deformation. Therefore, it can be used only for rough estimations of a shape after deformation. On the other hand, the semi-analytical method with Fourier Taylor series expansion works very well for both types of material. Its predictions of deformations are reliable and widely exploitable.

  4. Interlayer growth in Mo/B4C multilayered structures upon thermal annealing

    International Nuclear Information System (INIS)

    Nyabero, S. L.; Kruijs, R. W. E. van de; Yakshin, A. E.; Zoethout, E.; Bosgra, J.; Loch, R. A.; Blanckenhagen, G. von; Bijkerk, F.

    2013-01-01

    Both multilayer period thickness expansion and compaction were observed in Mo/B 4 C multilayers upon annealing, and the physical causes for this were explored in detail. Using in situ time-dependent grazing incidence X-ray reflectometry, period changes down to picometer-scale were resolved. It was shown that the changes depend on the thickness of the B 4 C layers, annealing temperature, and annealing time. Although strong stress relaxation during annealing was observed, it was excluded as a cause for period expansion. Auger electron spectroscopy and wide angle X-ray diffraction measurements revealed the growth of interlayers, with associated period changes influenced by the supply of B and C atoms to the growing compound interlayers. For multilayers with a Mo thickness of 3 nm, two regimes were recognized, depending on the deposited B 4 C thickness: in multilayers with B 4 C ≤ 1.5 nm, the supply of additional Mo into the already formed MoB x C y interlayer was dominant and led to densification, resulting in period compaction. For multilayers with B 4 C ≥ 2 nm, the B and C enrichment of interlayers formed low density compounds and yielded period expansion.

  5. Isotropic Negative Thermal Expansion Metamaterials.

    Science.gov (United States)

    Wu, Lingling; Li, Bo; Zhou, Ji

    2016-07-13

    Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale.

  6. Structure, phase analysis and component composition of multilayer films depositing in T-10 tokamak

    International Nuclear Information System (INIS)

    Guseva, M.I.; Gureev, V.M.; Khimchenko, L.N.; Kolbasov, B.N.; Vukolov, K.Yu.

    2005-01-01

    The structure and composition of the deuterocarbon films, formed on the internal surfaces of the T-10 tokamak vacuum chamber and on the stainless steel mirror-specimens positioned inside the T-10 tokamak upper stub pipe during the experimental campaigns in spring-summer of 2002 and autumn of 2003, are compared. Before the 2003 experimental campaign the ring diaphragm made of MPG-8 graphite was removed from the tokamak and MPG-8 graphite in the movable limiter was replaced by RGT-91 graphite. All the films have a multilayer structure. In the 2002 campaign all the films had homogeneous layer structure and smooth surface without any signs of physical sputtering. The films formed on the chamber walls in both campaigns were 'soft' and had reddish-brown colour. The average atomic D/C ratio in these films during 2002 campaign was of 0.66. The 'soft' film formation was caused by the plasma-wall interaction during the vacuum chamber conditioning under deuterium discharges. Preliminary X-ray diffraction analysis suggests that these films have amorphous structure and contain from 4 to 10 % fullerene-like substance with lattice constant in the range of 1.2-1.4 nm. Mirror surfaces could be screened during chamber conditioning and exposed to plasma only during working discharges. The films on mirrors were thinner than those on the vacuum chamber walls and, as a rule, semitransparent. The films deposited on the mirror surface, exposed to plasma only during working discharges, in 2002 were 'hard' with D/C = 0.26. Two crystalline phases with interplanar spacings of 0.359 and 0.304 nm at the Bragg angles 2θ of 24.8 and 28.8 deg respectively were revealed in a diffractogram of these films. In the 2003 campaign both types of films (formed on vacuum chamber walls and deposited on mirror specimens) were 'soft' with D/C ratio of 0.57 and 1.55 respectively. Deuterium concentration in the films is determined by the temperature of film formation - <370 K on mirror specimens and ∼520 K

  7. Multilayer As{sub 2}Se{sub 3}/GeS{sub 2} quarter wave structures for photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, R; Tasseva, J; Babeva, Tz; Petkov, K, E-mail: rossen@clf.bas.b [Institute of Optical Materials and Technologies ' Acad. J. Malinowski' , Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl.109, 1113 Sofia (Bulgaria)

    2010-12-22

    The optical properties of single layers from As{sub 2}Se{sub 3} and GeS{sub 2}, double-layered stack and quarter-wave multilayer structure consisting of alternating layers from both materials are investigated. For modelling of multilayer coating the thickness dependence of the refractive index of single coatings from both materials is studied. The particularities and scope of application of different spectrophotometric methods for calculation of optical parameters of thin chalcogenide layers are discussed for film thickness, d, in the range {lambda}/25-1.5{lambda} ({lambda} being the operating wavelength). Having acquired the knowledge of optical parameters (refractive index, n, and extinction coefficient, k) of the single layers, we designed and produced a one-dimensional photonic crystal with fundamental reflection band at {lambda} = 850 nm. It was shown that the photoinduced changes of the refractive index of thin chalcogenide films can be used for enhancement of the optical contrast of both materials.

  8. Surface structure, optoelectronic properties and charge transport in ZnO nanocrystal/MDMO-PPV multilayer films.

    Science.gov (United States)

    Lian, Qing; Chen, Mu; Mokhtar, Muhamad Z; Wu, Shanglin; Zhu, Mingning; Whittaker, Eric; O'Brien, Paul; Saunders, Brian R

    2018-05-07

    Blends of semiconducting nanocrystals and conjugated polymers continue to attract major research interest because of their potential applications in optoelectronic devices, such as solar cells, photodetectors and light-emitting diodes. In this study we investigate the surface structure, morphological and optoelectronic properties of multilayer films constructed from ZnO nanocrystals (NCs) and poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV). The effects of layer number and ZnO concentration (C ZnO ) used on the multilayer film properties are investigated. An optimised solvent blend enabled well-controlled layers to be sequentially spin coated and the construction of multilayer films containing six ZnO NC (Z) and MDMO-PPV (M) layers (denoted as (ZM) 6 ). Contact angle data showed a strong dependence on C ZnO and indicated distinct differences in the coverage of MDMO-PPV by the ZnO NCs. UV-visible spectroscopy showed that the MDMO-PPV absorption increased linearly with the number of layers in the films and demonstrates highly tuneable light absorption. Photoluminescence spectra showed reversible quenching as well as a surprising red-shift of the MDMO-PPV emission peak. Solar cells were constructed to probe vertical photo-generated charge transport. The measurements showed that (ZM) 6 devices prepared using C ZnO = 14.0 mg mL -1 had a remarkably high open circuit voltage of ∼800 mV. The device power conversion efficiency was similar to that of a control bilayer device prepared using a much thicker MDMO-PPV layer. The results of this study provide insight into the structure-optoelectronic property relationships of new semiconducting multilayer films which should also apply to other semiconducting NC/polymer combinations.

  9. Microfluidic emulsion separation-simultaneous separation and sensing by multilayer nanofilm structures

    Energy Technology Data Exchange (ETDEWEB)

    Uhlmann, P; Truman, P; Stamm, M [Leibniz-Institut fuer Polymerforschung Dresden e V, Hohe Strasse 6, 01069 Dresden (Germany); Varnik, F; Zikos, G [Ruhr Universitaet Bochum, Stiepeler Strasse 129, 44801 Bochum (Germany); Moulin, J-F; Mueller-Buschbaum, P, E-mail: uhlmannp@ipfdd.de [Technische Universitaet Muenchen, Physik-Department, LS E13, James-Franck-Strasse 1, 85748 Garching (Germany)

    2011-05-11

    Emulsion separation is of high relevance for filtration applications, liquid-liquid-partitioning of biomolecules like proteins and recovery of products from droplet microreactors. Selective interaction of various components of an emulsion with substrates is used to design microfluidic flow chambers for efficient separation of emulsions into their individual components. Our lab-on-a-chip device consists of an emulsion separation cell with an integrated silicon sensor chip, the latter allowing the detection of liquid motion via the field-effect signal. Thus, within our lab-on-a-chip device, emulsions can be separated while the separation process is monitored simultaneously. For emulsion separation a surface energy step gradient, namely a sharp interface between the hydrophobic and hydrophilic parts of the separation chamber, is used. The key component of the lab-on-a-chip system is a multilayer and multifunctional nanofilm structure which not only provides the surface energy step gradient for emulsion separation but also constitutes the functional parts of the field-effect transistors. The proof-of-principle was performed using a model emulsion consisting of immiscible aqueous and organic solvent components. Droplet coalescence was identified as a key aspect influencing the separation process, with quite different effects during separation on open surfaces as compared to slit geometry. For a detailed description of this observation, an analytical model was derived and lattice Boltzmann computer simulations were performed. By use of grazing incidence small angle x-ray scattering (GISAXS) interfacial nanostructures during gold nanoparticle deposition in a flow field were probed to demonstrate the potential of GISAXS for in situ investigations during flow.

  10. Single layer and multilayer vacuum-arc coatings based on the nitride TiAlSiYN: composition, structure, properties

    International Nuclear Information System (INIS)

    Beresnev, V.M.; Litovchenko, S.V.; Nemchenko, U.S.; Srebnyuk, P.A.; Mazilin, B.A.; Sobol, O.V.; Mejlekhov, A.A.; Barmin, A.E.; Serenko, TA.; Pogrebnyak, A.D.; Ivanov, O.N.; Kritsyna, E.V.; Stolbovoj, V.A.; Novikov, V.Yu.; Malikov, L.V.

    2017-01-01

    Using high-technological vacuum-arc evaporation in the atmosphere of nitrogen with ion bombardment, single- and multilayer coatings based on TiAlSiYN with high mechanical characteristics were obtained: hardness of the coatings reached 49.5 GPa, resistance to wear, with the value of the critical point L_C_5 reaching 184.92 N. The peculiarities of radiation-induced effect at applying bias potential U_b were found: formation of nitride coatings based on fcc metallic lattice with the preferred orientation of crystallites with the texture axis [111], as well as simultaneous growth of hardness. Hardness of both single- and multilayer coatings increases by 40...50% at the increase of U_b from 50 to 200 V. Formation of silicon-containing layers of TiAlSiYN during the deposition contributes to reaching increased hardness, which, in the case of single-layer coating obtained at U_b = -200 V is 49.5 GPa, which corresponds to superhard state. The mechanisms of structure formation, defining the resulting mechanical characteristics of single- and multi-layer coatings based on TiAlSiYN nitride have been discussed.

  11. Transparent Conducting Films with Multilayered Structures Formed by Carbon Nanotubes and Reduced Graphene Oxides

    International Nuclear Information System (INIS)

    Kang, Jie Hun; Jang, Hyun Chul; Choi, Jung Mi; Hyeon, Jae Young; Sok, Jung Hyun

    2014-01-01

    The replacement for indium tin oxide (ITO) in electronic displays should have comparable optical transmittance and electrical conductivity while being easy to source and manufacture. However, novel materials such as single walled carbon nanotubes (SWCNTs) and reduced graphene oxides (RGOs) are incapable of addressing these challenges. We demonstrate a simple method to fabricate good transparent conductive films (TCFs) by combining and leveraging the superior optical transparency of RGOs and the excellent electrical conductivity of SWCNTs. This method affords thin multilayers of SWCNTs and RGOs with excellent optical and electrical properties because these properties are correlated with spraying time and the amount of SWCNTs or RGOs. In general, transmittance is advantageous to RGO as conductance is to CNTs. With a view to finding good TCFs with reduced sheet resistance, but with little sacrifice of transmittance, it is natural to explore the combination of CNT and RGO. The sandwiched multilayer of SWCNTs and RGOs exhibited a low sheet resistance of 214.2 Ω/sq, which was comparable to that of SWCNTs, and a transmittance of 60% at a wavelength of 550 nm. To further reduce the sheet resistance and improve the transparency of the multilayer TCFs, Au doping was carried out. The doping, in combination with controlled spraying of the amount of SWCNTs and RGOs, led to multilayers with resistance/transmittance combinations of 141.3 Ω/sq and 70% and 371.5 Ω/sq and 83%. These properties meet the requisite criteria for an ITO replacement.

  12. FDTD-based quantitative analysis of terahertz wave detection for multilayered structures.

    Science.gov (United States)

    Tu, Wanli; Zhong, Shuncong; Shen, Yaochun; Zhou, Qing; Yao, Ligang

    2014-10-01

    Experimental investigations have shown that terahertz pulsed imaging (TPI) is able to quantitatively characterize a range of multilayered media (e.g., biological issues, pharmaceutical tablet coatings, layered polymer composites, etc.). Advanced modeling of the interaction of terahertz radiation with a multilayered medium is required to enable the wide application of terahertz technology in a number of emerging fields, including nondestructive testing. Indeed, there have already been many theoretical analyses performed on the propagation of terahertz radiation in various multilayered media. However, to date, most of these studies used 1D or 2D models, and the dispersive nature of the dielectric layers was not considered or was simplified. In the present work, the theoretical framework of using terahertz waves for the quantitative characterization of multilayered media was established. A 3D model based on the finite difference time domain (FDTD) method is proposed. A batch of pharmaceutical tablets with a single coating layer of different coating thicknesses and different refractive indices was modeled. The reflected terahertz wave from such a sample was computed using the FDTD method, assuming that the incident terahertz wave is broadband, covering a frequency range up to 3.5 THz. The simulated results for all of the pharmaceutical-coated tablets considered were found to be in good agreement with the experimental results obtained using a commercial TPI system. In addition, we studied a three-layered medium to mimic the occurrence of defects in the sample.

  13. The effect of guanidinium functionalization on the structural properties and anion affinity of polyelectrolyte multilayers

    NARCIS (Netherlands)

    Cao, Zheng; Gordiichuk, Pavlo; Loos, Katja; Sudhölter, Ernst Jan Robert; Smet, Louis

    2015-01-01

    Poly(allylamine hydrochloride) (PAH) is chemically functionalized with guanidinium (Gu) moieties in water at room temperature. The resulting PAH-Gu is used to prepare polyelectrolyte multilayers (PEMs) with poly(sodium 4-styrene sulfonate) (PSS) via layer-by-layer deposition. The polyelectrolyte

  14. Wedged multilayer Laue lens

    International Nuclear Information System (INIS)

    Conley, Ray; Liu Chian; Qian Jun; Kewish, Cameron M.; Macrander, Albert T.; Yan Hanfei; Maser, Joerg; Kang, Hyon Chol; Stephenson, G. Brian

    2008-01-01

    A multilayer Laue lens (MLL) is an x-ray focusing optic fabricated from a multilayer structure consisting of thousands of layers of two different materials produced by thin-film deposition. The sequence of layer thicknesses is controlled to satisfy the Fresnel zone plate law and the multilayer is sectioned to form the optic. An improved MLL geometry can be created by growing each layer with an in-plane thickness gradient to form a wedge, so that every interface makes the correct angle with the incident beam for symmetric Bragg diffraction. The ultimate hard x-ray focusing performance of a wedged MLL has been predicted to be significantly better than that of a nonwedged MLL, giving subnanometer resolution with high efficiency. Here, we describe a method to deposit the multilayer structure needed for an ideal wedged MLL and report our initial deposition results to produce these structures

  15. Multilayer photosensitive structures based on porous silicon and rare-earth-element compounds: Study of spectral characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kirsanov, N. Yu.; Latukhina, N. V., E-mail: natalat@yandex.ru; Lizunkova, D. A.; Rogozhina, G. A. [Samara National Research University (Russian Federation); Stepikhova, M. V. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2017-03-15

    The spectral characteristics of the specular reflectance, photosensitivity, and photoluminescence (PL) of multilayer structures based on porous silicon with rare-earth-element (REE) ions are investigated. It is shown that the photosensitivity of these structures in the wavelength range of 0.4–1.0 μm is higher than in structures free of REEs. The structures with Er{sup 3+} ions exhibit a luminescence response at room temperature in the spectral range from 1.1 to 1.7 μm. The PL spectrum of the erbium impurity is characterized by a fine line structure, which is determined by the splitting of the {sup 4}I{sub 15/2} multiplet of the Er{sup 3+} ion. It is shown that the structures with a porous layer on the working surface have a much lower reflectance in the entire spectral range under study (0.2–1.0 μm).

  16. Multilayer Brain Networks

    Science.gov (United States)

    Vaiana, Michael; Muldoon, Sarah Feldt

    2018-01-01

    The field of neuroscience is facing an unprecedented expanse in the volume and diversity of available data. Traditionally, network models have provided key insights into the structure and function of the brain. With the advent of big data in neuroscience, both more sophisticated models capable of characterizing the increasing complexity of the data and novel methods of quantitative analysis are needed. Recently, multilayer networks, a mathematical extension of traditional networks, have gained increasing popularity in neuroscience due to their ability to capture the full information of multi-model, multi-scale, spatiotemporal data sets. Here, we review multilayer networks and their applications in neuroscience, showing how incorporating the multilayer framework into network neuroscience analysis has uncovered previously hidden features of brain networks. We specifically highlight the use of multilayer networks to model disease, structure-function relationships, network evolution, and link multi-scale data. Finally, we close with a discussion of promising new directions of multilayer network neuroscience research and propose a modified definition of multilayer networks designed to unite and clarify the use of the multilayer formalism in describing real-world systems.

  17. Design and Analysis of Multilayered Waveguide Structure With Metal-Dielectric Gratings for Sensing With Reflection Narrowband Notch Filter

    Directory of Open Access Journals (Sweden)

    Guiju ZHANG

    2015-11-01

    Full Text Available Developments in micro and nanofabrication technologies have led a variety of grating waveguide structures (GWS being proposed and implemented in optics and laser application systems. A new design of multilayered nanostructure double-grating is described for reflection notch filter. Thin metal film and dielectric film are used and designed with one-dimensional composite gratings. The results calculated by rigorous coupled-wave analysis (RCWA present that the thin metal film between substrate and grating can produce significant attenuated reflections and efficiency in a broad reflected spectral range. The behavior of such a reflection filter is evaluated for refractive index sensing, which can be applied inside the integrated waveguide structure while succeeding cycles in measurement. The filter peaks are designed and obtained in a visible range with full width half maximum (FWHM of several nanometers to less than one nanometer. The multilayered structure shows a sensitivity of refractive index of 220nm/RIU as changing the surroundings. The reflection spectra are studied under different periods, depths and duty cycles. The passive structure and its characteristics can achieve practical applications in various fields, such as optical sensing, color filtering, Raman spectroscopy and laser technology.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9625

  18. Structural and optical properties of silicon rich oxide films in graded-stoichiometric multilayers for optoelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Palacios-Huerta, L.; Aceves-Mijares, M. [Electronics Department, INAOE, Apdo. 51, Puebla, Pue. 72000, México (Mexico); Cabañas-Tay, S. A.; Cardona-Castro, M. A.; Morales-Sánchez, A., E-mail: alfredo.morales@cimav.edu.mx [Centro de Investigación en Materiales Avanzados S.C., Unidad Monterrey-PIIT, Apodaca, NL 66628, México (Mexico); Domínguez-Horna, C. [Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Bellaterra 08193, Barcelona (Spain)

    2016-07-18

    Silicon nanocrystals (Si-ncs) are excellent candidates for the development of optoelectronic devices. Nevertheless, different strategies are still necessary to enhance their photo and electroluminescent properties by controlling their structural and compositional properties. In this work, the effect of the stoichiometry and structure on the optical properties of silicon rich oxide (SRO) films in a multilayered (ML) structure is studied. SRO MLs with silicon excess gradually increased towards the top and bottom and towards the center of the ML produced through the variation of the stoichiometry in each SRO layer were fabricated and confirmed by X-ray photoelectron spectroscopy. Si-ncs with three main sizes were observed by a transmission electron microscope, in agreement with the stoichiometric profile of each SRO layer. The presence of the three sized Si-ncs and some oxygen related defects enhances intense violet/blue and red photoluminescence (PL) bands. The SRO MLs were super-enriched with additional excess silicon by Si{sup +} implantation, which enhanced the PL intensity. Oxygen-related defects and small Si-ncs (<2 nm) are mostly generated during ion implantation enhancing the violet/blue band to become comparable to the red band. The structural, compositional, and luminescent characteristics of the multilayers are the result of the contribution of the individual characteristics of each layer.

  19. Dependences of the Al thickness and annealing temperature on the structural, optical and electrical properties in ZnO/Al multilayers

    International Nuclear Information System (INIS)

    Hu, Y.M.; Lin, C.W.; Huang, J.C.A.

    2006-01-01

    High-quality (0001) oriented ZnO (300 A) film and [ZnO(100 A)/Al(t Al )] 3 (t Al = 0.6, 1.7, 2.8 A) multilayers have been established at room temperature on Al 2 O 3 (0001) substrates by ion-beam sputtering. The structural, optical and electrical properties of multilayers as functions of both the Al thickness and annealing temperature are reported. We have verified that Al thickness and annealing temperature are the key factors to optimize transparency-conducting property in ZnO/Al multilayers. The optimum Al thickness and annealing temperature for ZnO/Al multilayer of 300 A thin is 1.7 A (about one Al atomic layer) and 400 deg. C, respectively, leading to the relatively lower resistivity (2.8 x 10 -3 Ω cm) and higher Hall mobility (10 cm 2 /V.s) without suppression of the visible transmittance (above 85%)

  20. Multilayer Finite-Element Model Application to Define the Bearing Structure Element Stress State of Launch Complexes

    Directory of Open Access Journals (Sweden)

    V. A. Zverev

    2016-01-01

    Full Text Available The article objective is to justify the rationale for selecting the multilayer finite element model parameters of the bearing structure of a general-purpose launch complex unit.A typical design element of the launch complex unit, i.e. a mount of the hydraulic or pneumatic cylinder, block, etc. is under consideration. The mount represents a set of the cantilevered axis and external structural cage. The most loaded element of the cage is disk to which a moment is transferred from the cantilevered axis due to actuator effort acting on it.To calculate the stress-strain state of disk was used a finite element method. Five models of disk mount were created. The only difference in models was the number of layers of the finite elements through the thickness of disk. There were models, which had one, three, five, eight, and fourteen layers of finite elements through the thickness of disk. For each model, we calculated the equivalent stresses arising from the action of the test load. Disk models were formed and calculated using the MSC Nastran complex software.The article presents results in the table to show data of equivalent stresses in each of the multi-layered models and graphically to illustrate the changing equivalent stresses through the thickness of disk.Based on these results we have given advice on selecting the proper number of layers in the model allowing a desirable accuracy of results with the lowest run time. In addition, it is concluded that there is a need to use the multi-layer models in assessing the performance of structural elements in case the stress exceeds the allowable one in their surface layers.

  1. Stress induced enhanced polarization in multilayer BiFeO{sub 3}/BaTiO{sub 3} structure with improved energy storage properties

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Savita [Department of Physics and Astrophysics, University of Delhi, Delhi (India); Department of Applied Physics, Delhi Technological University, Delhi (India); Tomar, Monika [Physics Department, Miranda House, University of Delhi, Delhi (India); Kumar, Ashok [CSIR-National Physical Laboratory, Dr. K.S .Krishnan Marg, Delhi (India); Puri, Nitin K. [Department of Applied Physics, Delhi Technological University, Delhi (India); Gupta, Vinay, E-mail: vgupta@physics.du.ac.in, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi (India)

    2015-10-15

    Present work reports the fabrication of a multilayer (5-layer) structure of BiFeO{sub 3}(BFO)/BaTiO{sub 3}(BTO) using spin-coating technique. The crystallographic structure, surface morphology and ferroelectric behavior of multilayer structure in metal-ferroelectric-metal capacitor have been studied. Le-Bail refinement of X-ray diffraction data revealed the formation of polycrystalline pure perovskite phase with induced stress. The values of remnant (P{sub r}) and saturation polarization (P{sub s}) for BFO/BTO multilayer structure are found to be 38.14 μC/cm{sup 2} and 71.54 μC/cm{sup 2} respectively, which are much higher than the corresponding values reported for bare BFO thin film. A large value of dielectric constant of 187 has been obtained for multilayer structure with a low leakage current density of 1.09 × 10{sup −7} A/cm{sup 2} at applied bias of 10 V. The BFO/BTO multilayer structure favors the enhanced energy storage capacity as compared to bare BFO thin film with improved values of energy-density and charge-discharge efficiency as 121 mJ/cm{sup 3} and 59% respectively, suggesting futuristic energy storage applications.

  2. Stress induced enhanced polarization in multilayer BiFeO3/BaTiO3 structure with improved energy storage properties

    Directory of Open Access Journals (Sweden)

    Savita Sharma

    2015-10-01

    Full Text Available Present work reports the fabrication of a multilayer (5-layer structure of BiFeO3(BFO/BaTiO3(BTO using spin-coating technique. The crystallographic structure, surface morphology and ferroelectric behavior of multilayer structure in metal-ferroelectric-metal capacitor have been studied. Le-Bail refinement of X-ray diffraction data revealed the formation of polycrystalline pure perovskite phase with induced stress. The values of remnant (Pr and saturation polarization (Ps for BFO/BTO multilayer structure are found to be 38.14 μC/cm2 and 71.54 μC/cm2 respectively, which are much higher than the corresponding values reported for bare BFO thin film. A large value of dielectric constant of 187 has been obtained for multilayer structure with a low leakage current density of 1.09 × 10−7 A/cm2 at applied bias of 10 V. The BFO/BTO multilayer structure favors the enhanced energy storage capacity as compared to bare BFO thin film with improved values of energy-density and charge-discharge efficiency as 121 mJ/cm3 and 59% respectively, suggesting futuristic energy storage applications.

  3. Structural, mechanical and tribocorrosion behaviour in artificial seawater of CrN/AlN nano-multilayer coatings on F690 steel substrates

    Science.gov (United States)

    Ma, Fuliang; Li, Jinlong; Zeng, Zhixiang; Gao, Yimin

    2018-01-01

    The CrN monolayer and CrN/AlN nano-multilayer coating were successfully fabricated by reactive magnetron sputtering on F690 steel. The results show that CrN monolayer exhibits a face centered cubic crystalline structure with (111) preferred orientation and CrN/AlN nano-multilayer coating has a (200) preferred orientation. This design of the nano-multilayer can interrupt the continuous growth of columnar crystals making the coating denser. The CrN/AlN nano-multilayer coating has a better wear resistance and corrosion resistance compared with the CrN monolayer coating. The tribocorrosion tests reveal that the evolution of potential and current density of F690 steel and CrN monolayer or CrN/AlN nano-multilayer coating see an opposite trend under the simultaneous action of wear and corrosion, which is attributed to that F690 steel is a non-passive material and PVD coatings is a passive material. The nano-multilayer structure has a good ;Pore Sealing Effect;, and the corrosive solution is difficult to pass through the coating to corrode the substrate.

  4. structural and magnetic properties of Fe(20Å /Ag(xÅ/Fe(20Å hetro-multilayers

    Directory of Open Access Journals (Sweden)

    P Ghahramaninezhad

    2015-07-01

    Full Text Available We have deposited Fe/Ag/Fe multilayer by physical vapor deposition (PVDmethod in different Ag thickness as spacer working in a vacuum of 2×10-6mbar. The structural properties , magnetic response of the samples at low temperatures and room temperature was investigated by XRD, physical properties measurement system (PPMS and vibrating sample magnetometer (VSM respectively. Hysteresis loops show that the easy axis of magnetization is in plane of the film . Also the magnetization and Hc of samples decrease with increasing temperature.

  5. Solar-blind ultraviolet band-pass filter based on metal—dielectric multilayer structures

    International Nuclear Information System (INIS)

    Wang Tian-Jiao; Xu Wei-Zong; Lu Hai; Ren Fang-Fang; Chen Dun-Jun; Zhang Rong; Zheng You-Dou

    2014-01-01

    Solar-blind ultraviolet (UV) band-pass filter has significant value in many scientific, commercial, and military applications, in which the detection of weak UV signal against a strong background of solar radiation is required. In this work, a solar-blind filter is designed based on the concept of “transparent metal”. The filter consisting of Al/SiO 2 multilayers could exhibit a high transmission in the solar-blind wavelength region and a wide stopband extending from near-ultraviolet to infrared wavelength range. The central wavelength, bandwidth, Q factor, and rejection ratio of the passband are numerically studied as a function of individual layer thickness and multilayer period. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  6. Texture of low temperature isotropic pyrocarbons

    International Nuclear Information System (INIS)

    Pelissier, Joseph; Lombard, Louis.

    1976-01-01

    Isotropic pyrocarbon deposited on fuel particles was studied by transmission electron microscopy in order to determine its texture. The material consists of an agglomerate of spherical growth features similar to those of carbon black. The spherical growth features are formed from the cristallites of turbostratic carbon and the distribution gives an isotropic structure. Neutron irradiation modifies the morphology of the pyrocarbon. The spherical growth features are deformed and the coating becomes strongly anisotropic. The transformation leads to the rupture of the coating caused by strong irradiation doses [fr

  7. Matrix solution to longitudinal impedance of multi-layer circular structures

    Energy Technology Data Exchange (ETDEWEB)

    Hahn,H.

    2008-10-01

    A matrix method in which radial wave propagation is treated in analogy to longitudinal transmission lines is presented and applied to finding the longitudinal coupling impedance of axially symmetric multi-layer beam tubes. The method is demonstrated in the case of a Higher Order Mode ferrite absorber with an inserted coated ceramic beam tube. The screening of the ferrite damping properties by the dielectric beam tube is discussed.

  8. Isotropic oscillator: spheroidal wave functions

    International Nuclear Information System (INIS)

    Mardoyan, L.G.; Pogosyan, G.S.; Ter-Antonyan, V.M.; Sisakyan, A.N.

    1985-01-01

    Solutions of the Schroedinger equation are found for an isotropic oscillator (10) in prolate and oblate spheroidal coordinates. It is shown that the obtained solutions turn into spherical and cylindrical bases of the isotropic oscillator at R→0 and R→ infinity (R is the dimensional parameter entering into the definition of prolate and oblate spheroidal coordinates). The explicit form is given for both prolate and oblate basis of the isotropic oscillator for the lowest quantum states

  9. Amorphous FeCoSiB for exchange bias coupled and decoupled magnetoelectric multilayer systems: Real-structure and magnetic properties

    International Nuclear Information System (INIS)

    Hrkac, V.; Strobel, J.; Kienle, L.; Lage, E.; Köppel, G.; McCord, J.; Quandt, E.; Meyners, D.

    2014-01-01

    The effect of field annealing for exchanged biased multilayer films is studied with respect to the resultant structural and magnetic film properties. The presented multilayer stacks comprise repeating sequences of Ta/Cu/(1 1 1) textured antiferromagnetic Mn 70 Ir 30 /amorphous ferromagnetic Fe 70.2 Co 7.8 Si 12 B 10 . Within the ferromagnetic layers crystalline filaments are observed. An additional Ta layer between the antiferromagnet and ferromagnet is used in order to investigate and separate the influence of the common Mn 70 Ir 30 /Fe 70.2 Co 7.8 Si 12 B 10 interface on the occurring filaments and structural changes. In situ and ex situ transmission electron microscopy is used for a comprehensive structure characterization of multilayer stacks for selected temperature stages. Up to 250 °C, the multilayers are structurally unaltered and preserve the as-deposited condition. A deliberate increase to 350 °C exhibits different crystallization processes for the films, depending on the presence of crystal nuclei within the amorphous ferromagnetic layer. The influence of volume-to-surface ratio of the multilayer stacks to the crystallization process is emphasized by the comparison of in situ and ex situ investigations as the respective specimen thickness is changed. Complementary magnetic studies reveal a defined exchange bias obtained at the first annealing step and a decrease of total anisotropy field with partial crystallization after the subsequent annealing at 350 °C.

  10. Salt Effects on Surface Structures of Polyelectrolyte Multilayers (PEMs) Investigated by Vibrational Sum Frequency Generation (SFG) Spectroscopy.

    Science.gov (United States)

    Ge, Aimin; Matsusaki, Michiya; Qiao, Lin; Akashi, Mitsuru; Ye, Shen

    2016-04-26

    Sum frequency generation (SFG) vibrational spectroscopy was employed to investigate the surface structures of polyelectrolyte multilayers (PEMs) constructed by sequentially alternating adsorption of poly(diallyldimethylammonium chloride) (PDDA) and poly(styrenesulfonate) (PSS). It was found that the surface structures and surface charge density of the as-deposited PEMs of PDDA/PSS significantly depend on the concentration of sodium chloride (NaCl) present in the polyelectrolyte solutions. Furthermore, it was found that the surface structure of the as-deposited PEMs is in a metastable state and will reach the equilibrium state by diffusion of the polyelectrolyte chain after an aging process, resulting in a polyelectrolyte mixture on the PEM surfaces.

  11. Empirical isotropic chemical shift surfaces

    International Nuclear Information System (INIS)

    Czinki, Eszter; Csaszar, Attila G.

    2007-01-01

    A list of proteins is given for which spatial structures, with a resolution better than 2.5 A, are known from entries in the Protein Data Bank (PDB) and isotropic chemical shift (ICS) values are known from the RefDB database related to the Biological Magnetic Resonance Bank (BMRB) database. The structures chosen provide, with unknown uncertainties, dihedral angles φ and ψ characterizing the backbone structure of the residues. The joint use of experimental ICSs of the same residues within the proteins, again with mostly unknown uncertainties, and ab initio ICS(φ,ψ) surfaces obtained for the model peptides For-(l-Ala) n -NH 2 , with n = 1, 3, and 5, resulted in so-called empirical ICS(φ,ψ) surfaces for all major nuclei of the 20 naturally occurring α-amino acids. Out of the many empirical surfaces determined, it is the 13C α ICS(φ,ψ) surface which seems to be most promising for identifying major secondary structure types, α-helix, β-strand, left-handed helix (α D ), and polyproline-II. Detailed tests suggest that Ala is a good model for many naturally occurring α-amino acids. Two-dimensional empirical 13C α - 1 H α ICS(φ,ψ) correlation plots, obtained so far only from computations on small peptide models, suggest the utility of the experimental information contained therein and thus they should provide useful constraints for structure determinations of proteins

  12. Structure evolution of multilayer materials of heat-resistant intermetallic compounds under the influence of temperature in the process of diffusion welding under pressure and their mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Korzhov, Valeriy P.; Karpov, Michael I.; Prokhorov, Dmitriy V. [Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka (Russian Federation)

    2013-07-01

    Multilayer materials of high-resistant intermetallic compounds of some transition metals with aluminum and silicon were obtained by diffusion welding of packages, collected from a large number of the respective foils, such as niobium and aluminum. Materials of intermetallics with silicon were obtained by the welding of packages built from metal foils with Si-coating. The change in the structure according to the temperature of the welding was studied, and the high-temperature bending strength was determined. Key words: multilayer composite, high-resistant material, intermetallic compound, diffusion welding, package rolling, layered structure, bending strength.

  13. Synthesis of multilayered structure of nano-dimensional silica glass/reduced graphene oxide for advanced electrochemical applications.

    Science.gov (United States)

    Ghosh, Arnab; Miah, Milon; Majumder, Chinmoy; Bag, Shekhar; Chakravorty, Dipankar; Saha, Shyamal Kumar

    2018-03-28

    During the past few years, intensive research has been carried out to design new functional materials for superior electrochemical applications. Due to low storage capacity and low charge transport, silica based glasses have not yet been investigated for their supercapacitive behavior. Therefore, in the present study, a multilayered structure of silica-based nanoglass and reduced graphene oxide has been designed to remarkably enhance the specific capacitance by exploiting the porosity, large surface area, sufficient dangling bonds in the nanoglass and high electrical conductivity of rGO. The charge transport in the composite structure is also investigated to understand the electrochemical properties. It is found that Simmons tunneling or direct tunneling is the dominant mechanism of charge conduction between the graphene layers via the potential barrier of silica nanoglass phase. We believe that this study will open up a new area in the design of glass-based two-dimensional nanocomposites for superior supercapacitor applications.

  14. Structure determination of a multilayer with an island-like overlayer using hard x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Isomura, N., E-mail: isomura@mosk.tytlabs.co.jp; Kataoka, K.; Horibuchi, K.; Dohmae, K.; Kitazumi, K.; Takahashi, N.; Kimoto, Y. [Toyota Central R& D Laboratories, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan); Oji, H.; Cui, Y.-T.; Son, J.-Y. [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2016-07-27

    We use hard X-ray photoelectron spectroscopy (HAXPES) to obtain the surface structure of a multilayer Au/SiO{sub 2}/Si substrate sample with an island-like overlayer. Photoelectron intensities are measured as a function of incident photon energy (PE) and take-off angle (TOA, measured from the sample surface). The Au layer coverage and Au and SiO{sub 2} layer thicknesses are obtained by the PE dependence, and are used for the following TOA analysis. The Au island lateral width in the cross section is obtained by the TOA dependence, including information about surface roughness, in consideration of the island shadowing at small TOAs. In both cases, curve-fitting analysis is conducted. The surface structure, which consists of layer thicknesses, overlayer coverage and island width, is determined nondestructively by a combination of PE and TOA dependent HAXPES measurements.

  15. Role of interface states on electron transport in a-Si:H/nc-Si:H multilayer structures

    Science.gov (United States)

    Yadav, Asha; Kumari, Juhi; Agarwal, Pratima

    2018-05-01

    In this paper we report, I-V characteristic of a-Si:H/nc-Si:H multilayer structures in lateral as well as transverse direction. In lateral geometry, where the interfaces are parallel to the direction of electronic transport, residual photo conductivity (persistent photoconductivity) is observed after the light was turned off. On the other hand, in transverse geometry, where interfaces are along the direction of electronic transport, the space charge limited currents are affected and higher density of states is obtained. The PPC was more in the structures where numbers of such interface were more. These results have been understood in terms of the charge carriers trapped at the interface, which influence the electronic transport.

  16. Characteristics in AlN/AlGaN/GaN Multilayer-Structured High-Electron-Mobility Transistors

    International Nuclear Information System (INIS)

    Gui-Zhou, Hu; Ling, Yang; Li-Yuan, Yang; Si, Quan; Shou-Gao, Jiang; Ji-Gang, Ma; Xiao-Hua, Ma; Yue, Hao

    2010-01-01

    A new multilayer-structured AlN/AlGaN/GaN heterostructure high-electron-mobility transistor (HEMT) is demonstrated. The AlN/AlGaN/GaN HEMT exhibits the maximum drain current density of 800 mA/mm and the maximum extrinsic transconductance of 170 mS/mm. Due to the increase of the distance between the gate and the two-dimensional electron-gas channel, the threshold voltage shifts slightly to the negative. The reduced drain current collapse and higher breakdown voltage are observed on this AlN/AlGaN/GaN HEMT. The current gain cut-off frequency and the maximum frequency of oscillation are 18.5 GHz and 29.0 GHz, respectively. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  17. Bubbles formation in helium ion irradiated Cu/W multilayer nanocomposites: Effects on structure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Callisti, M., E-mail: M.Callisti@soton.ac.uk [National Centre for Advanced Tribology at Southampton, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Karlik, M. [Department of Materials, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Prague 2 (Czech Republic); Polcar, T. [National Centre for Advanced Tribology at Southampton, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 16627 Prague 6 (Czech Republic)

    2016-05-15

    This study investigates the effects of He bubbles on structural and mechanical properties of sputter-deposited Cu/W multilayers. A multilayer with a periodicity of 10 nm was deposited and subjected to helium ion irradiation with two different fluences. He bubbles formed mostly in Cu layers and their distribution was affected by He concentration and radiation damage. According to SRIM calculations, in low He concentration regions bubbles formed mostly along interfaces, while more homogeneously distributed bubbles were found in Cu layers and along columnar grain boundaries in higher He concentration regions. We suggest that the capability of interfaces to annihilate point defects is weakened by the He bubbles shielding effect. Nanoindentation tests revealed a hardness decrease amounting to ∼0.5 and ∼1 GPa for low and high fluences, respectively. The observed softening effect is attributed to He storage-induced changes in residual stresses and columnar grain boundary/interfacial sliding facilitated by He bubbles. - Highlights: • Cu/W nanocomposites were subjected to He{sup +} irradiation with different fluences. • He bubbles formed more homogeneously in higher He concentration regions. • Decrease in mechanical properties was observed for higher He concentrations. • He bubbles formation facilitated interfacial and grain boundary sliding.

  18. A high-quality multilayer structure characterization method based on X-ray fluorescence and Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, Antonio; Golosio, Bruno [Universita degli Studi di Sassari, Dipartimento di Scienze Politiche, Scienze della Comunicazione e Ingegneria dell' Informazione, Sassari (Italy); Melis, Maria Grazia [Universita degli Studi di Sassari, Dipartimento di Storia, Scienze dell' Uomo e della Formazione, Sassari (Italy); Mura, Stefania [Universita degli Studi di Sassari, Dipartimento di Agraria e Nucleo di Ricerca sulla Desertificazione, Sassari (Italy)

    2014-11-08

    X-ray fluorescence (XRF) is a well known nondestructive technique. It is also applied to multilayer characterization, due to its possibility of estimating both composition and thickness of the layers. Several kinds of cultural heritage samples can be considered as a complex multilayer, such as paintings or decorated objects or some types of metallic samples. Furthermore, they often have rough surfaces and this makes a precise determination of the structure and composition harder. The standard quantitative XRF approach does not take into account this aspect. In this paper, we propose a novel approach based on a combined use of X-ray measurements performed with a polychromatic beam and Monte Carlo simulations. All the information contained in an X-ray spectrum is used. This approach allows obtaining a very good estimation of the sample contents both in terms of chemical elements and material thickness, and in this sense, represents an improvement of the possibility of XRF measurements. Some examples will be examined and discussed. (orig.)

  19. Structural and optical properties of Cu-doped ZnS nanoparticles formed in chitosan/sodium alginate multilayer films.

    Science.gov (United States)

    Wang, Liping; Sun, Yujie; Xie, Xiaodong

    2014-05-01

    Chitosan/alginate multilayers were fabricated using a spin-coating method, and ZnS:Cu nanoparticles were generated within the network of two natural polysaccharides, chitosan and sodium alginate. The synthesized nanoparticles were characterized using an X-ray diffractometer (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and atomic force microscopy (AFM). The results showed that cubic zinc blende-structured ZnS:Cu nanoparticles with an average crystal size of ~ 3 nm were uniformly distributed. UV-vis spectra indicate a large quantum size effect and the absorption edge for the ZnS:Cu nanoparticles slightly shifted to longer wavelengths with increasing Cu ion concentrations. The photoluminescence of the Cu-doped ZnS nanoparticles reached a maximum at a 1% doping level. The ZnS:Cu nanoparticles form and are distributed uniformly in the composite multilayer films with a surface average height of 25 nm. Copyright © 2013 John Wiley & Sons, Ltd.

  20. A high-quality multilayer structure characterization method based on X-ray fluorescence and Monte Carlo simulation

    International Nuclear Information System (INIS)

    Brunetti, Antonio; Golosio, Bruno; Melis, Maria Grazia; Mura, Stefania

    2015-01-01

    X-ray fluorescence (XRF) is a well known nondestructive technique. It is also applied to multilayer characterization, due to its possibility of estimating both composition and thickness of the layers. Several kinds of cultural heritage samples can be considered as a complex multilayer, such as paintings or decorated objects or some types of metallic samples. Furthermore, they often have rough surfaces and this makes a precise determination of the structure and composition harder. The standard quantitative XRF approach does not take into account this aspect. In this paper, we propose a novel approach based on a combined use of X-ray measurements performed with a polychromatic beam and Monte Carlo simulations. All the information contained in an X-ray spectrum is used. This approach allows obtaining a very good estimation of the sample contents both in terms of chemical elements and material thickness, and in this sense, represents an improvement of the possibility of XRF measurements. Some examples will be examined and discussed. (orig.)

  1. Confine Clay in an Alternating Multilayered Structure through Injection Molding: A Simple and Efficient Route to Improve Barrier Performance of Polymeric Materials.

    Science.gov (United States)

    Yu, Feilong; Deng, Hua; Bai, Hongwei; Zhang, Qin; Wang, Ke; Chen, Feng; Fu, Qiang

    2015-05-20

    Various methods have been devoted to trigger the formation of multilayered structure for wide range of applications. These methods are often complicated with low production efficiency or require complex equipment. Herein, we demonstrate a simple and efficient method for the fabrication of polymeric sheets containing multilayered structure with enhanced barrier property through high speed thin-wall injection molding (HSIM). To achieve this, montmorillonite (MMT) is added into PE first, then blended with PP to fabricate PE-MMT/PP ternary composites. It is demonstrated that alternating multilayer structure could be obtained in the ternary composites because of low interfacial tension and good viscosity match between different polymer components. MMT is selectively dispersed in PE phase with partial exfoliated/partial intercalated microstructure. 2D-WAXD analysis indicates that the clay tactoids in PE-MMT/PP exhibits an uniplanar-axial orientation with their surface parallel to the molded part surface, while the tactoids in binary PE-MMT composites with the same overall MMT contents illustrate less orientation. The enhanced orientation of nanoclay in PE-MMT/PP could be attributed to the confinement of alternating multilayer structure, which prohibits the tumbling and rotation of nanoplatelets. Therefore, the oxygen barrier property of PE-MMT/PP is superior to that of PE-MMT because of increased gas permeation pathway. Comparing with the results obtained for PE based composites in literature, outstanding barrier property performance (45.7% and 58.2% improvement with 1.5 and 2.5 wt % MMT content, respectively) is achieved in current study. Two issues are considered responsible for such improvement: enhanced MMT orientation caused by the confinement in layered structure, and higher local density of MMT in layered structure induced denser assembly. Finally, enhancement in barrier property by confining impermeable filler into alternating multilayer structure through such

  2. Analysis and design of multilayer structures for neutron monochromators and supermirrors

    International Nuclear Information System (INIS)

    Masalovich, S.

    2013-01-01

    A relatively simple and accurate analytical model for studying the reflectivity of neutron multilayer monochromators and supermirrors is proposed. Design conditions that must be fulfilled in order to reach the maximum reflectivity are considered. The question of the narrowest bandwidth of a monochromator is discussed and the number of layers required to build such a monochromator is derived. Finally, we propose a new and efficient algorithm for synthesis of a supermirror with specified parameters and discuss some inherent restrictions on an attainable reflectivity. -- Highlights: • The inequality (not equation) that defines the thicknesses of layers was obtained. • Ready-to-use formula for the width of the spectral line was found. • Non-quarter-wave monochromators were suggested. • We propose a new algorithm for design of a neutron supermirror. • The problem of minimizing the number of layers in a supermirror is raised

  3. Ion beam analysis of multi-layered structure in Nb/Cu system

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Shunya; Goppelt-Langer, P; Naramoto, Hiroshi; Aoki, Yasushi; Takeshita, Hidefumi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    The dependence of H concentration on the layer thickness in H charged Nb/Cu multilayer samples has been studied using {sup 15}N resonance nuclear reaction analysis({sup 15}N-NRA) and high energy elastic recoil detection analysis(HE-ERDA). Also a simulation code has been developed for accurate simulation of the {sup 1}H({sup 15}N,{alpha}{gamma}){sup 12}C4.43 MeV {gamma}-yields at 6.385 MeV and 13.365 MeV reaction energy. The simulation are in good agreement with the experimental results. The present results show smooth increase of the H concentrations in Nb layers with increasing layer thickness. (author)

  4. Assessing the Impact of Canopy Structure Simplification in Common Multilayer Models on Irradiance Absorption Estimates of Measured and Virtually Created Fagus sylvatica (L. Stands

    Directory of Open Access Journals (Sweden)

    Pol Coppin

    2009-11-01

    Full Text Available Multilayer canopy representations are the most common structural stand representations due to their simplicity. Implementation of recent advances in technology has allowed scientists to simulate geometrically explicit forest canopies. The effect of simplified representations of tree architecture (i.e., multilayer representations of four Fagus sylvatica (L. stands, each with different LAI, on the light absorption estimates was assessed in comparison with explicit 3D geometrical stands. The absorbed photosynthetic radiation at stand level was calculated. Subsequently, each geometrically explicit 3D stand was compared with three multilayer models representing horizontal, uniform, and planophile leaf angle distributions. The 3D stands were created either by in situ measured trees or by modelled trees generated with the AMAP plant growth software. The Physically Based Ray Tracer (PBRT algorithm was used to simulate the irradiance absorbance of the detailed 3D architecture stands, while for the three multilayer representations, the probability of light interception was simulated by applying the Beer-Lambert’s law. The irradiance inside the canopies was characterized as direct, diffuse and scattered irradiance. The irradiance absorbance of the stands was computed during eight angular sun configurations ranging from 10° (near nadir up to 80° sun zenith angles. Furthermore, a leaf stratification (the number and angular distribution of leaves per LAI layer inside a canopy analysis between the 3D stands and the multilayer representations was performed, indicating the amount of irradiance each leaf is absorbing along with the percentage of sunny and shadow leaves inside the canopy. The results reveal that a multilayer representation of a stand, using a multilayer modelling approach, greatly overestimated the absorbed irradiance in an open canopy, while it provided a better approximation in the case of a closed canopy. Moreover, the actual stratification

  5. Loading Actinides in Multilayered Structures for Nuclear Waste Treatment: The First Case Study of Uranium Capture with Vanadium Carbide MXene.

    Science.gov (United States)

    Wang, Lin; Yuan, Liyong; Chen, Ke; Zhang, Yujuan; Deng, Qihuang; Du, Shiyu; Huang, Qing; Zheng, Lirong; Zhang, Jing; Chai, Zhifang; Barsoum, Michel W; Wang, Xiangke; Shi, Weiqun

    2016-06-29

    Efficient nuclear waste treatment and environmental management are important hurdles that need to be overcome if nuclear energy is to become more widely used. Herein, we demonstrate the first case of using two-dimensional (2D) multilayered V2CTx nanosheets prepared by HF etching of V2AlC to remove actinides from aqueous solutions. The V2CTx material is found to be a highly efficient uranium (U(VI)) sorbent, evidenced by a high uptake capacity of 174 mg g(-1), fast sorption kinetics, and desirable selectivity. Fitting of the sorption isotherm indicated that the sorption followed a heterogeneous adsorption model, most probably due to the presence of heterogeneous adsorption sites. Density functional theory calculations, in combination with X-ray absorption fine structure characterizations, suggest that the uranyl ions prefer to coordinate with hydroxyl groups bonded to the V-sites of the nanosheets via forming bidentate inner-sphere complexes.

  6. Impact of deposition rate on the structural and magnetic properties of sputtered Ni/Cu multilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Karpuz, Ali [Karamanoglu Mehmetbey Univ., Karaman (Turkey). Dept. of Physics; Colmekci, Salih; Kockar, Hakan; Kuru, Hilal; Uckun, Mehmet [Balikesir Univ. (Turkey). Dept. of Physics

    2018-04-01

    The structural and corresponding magnetic properties of Ni/Cu films sputtered at low and high deposition rates were investigated as there is a limited number of related studies in this field. 5[Ni(10 nm)/Cu(30 nm)] multilayer thin films were deposited using two DC sputtering sources at low (0.02 nm/s) and high (0.10 nm/s) deposition rates of Ni layers. A face centered cubic phase was detected for both films. The surface of the film sputtered at the low deposition rate has a lot of micro-grains distributed uniformly and with sizes from 0.1 to 0.4 μm. Also, it has a vertical acicular morphology. At high deposition rate, the number of micro-grains considerably decreased, and some of their sizes increased up to 1 μm. The surface of the Ni/Cu multilayer deposited at the low rate has a relatively more grainy and rugged structure, whereas the surface of the film deposited at the high rate has a relatively larger lateral size of surface grains with a relatively fine morphology. Saturation magnetisation, M{sub s}, values were 90 and 138 emu/cm{sup 3} for deposition rates of 0.02 and 0.10 nm/s, respectively. Remanence, M{sub r}, values were also found to be 48 and 71 emu/cm{sup 3} for the low and high deposition rates, respectively. The coercivity, H{sub c}, values were 46 and 65 Oe for the low and high Ni deposition rates, respectively. The changes in the film surfaces provoked the changes in the H{sub c} values. The M{sub s}, M{sub r}, and H{sub c} values of the 5[Ni(10 nm)/Cu(30 nm)] films can be adjusted considering the surface morphologies and film contents caused by the different Ni deposition rates.

  7. Interactively variable isotropic resolution in computed tomography

    International Nuclear Information System (INIS)

    Lapp, Robert M; Kyriakou, Yiannis; Kachelriess, Marc; Wilharm, Sylvia; Kalender, Willi A

    2008-01-01

    An individual balancing between spatial resolution and image noise is necessary to fulfil the diagnostic requirements in medical CT imaging. In order to change influencing parameters, such as reconstruction kernel or effective slice thickness, additional raw-data-dependent image reconstructions have to be performed. Therefore, the noise versus resolution trade-off is time consuming and not interactively applicable. Furthermore, isotropic resolution, expressed by an equivalent point spread function (PSF) in every spatial direction, is important for the undistorted visualization and quantitative evaluation of small structures independent of the viewing plane. Theoretically, isotropic resolution can be obtained by matching the in-plane and through-plane resolution with the aforementioned parameters. Practically, however, the user is not assisted in doing so by current reconstruction systems and therefore isotropic resolution is not commonly achieved, in particular not at the desired resolution level. In this paper, an integrated approach is presented for equalizing the in-plane and through-plane spatial resolution by image filtering. The required filter kernels are calculated from previously measured PSFs in x/y- and z-direction. The concepts derived are combined with a variable resolution filtering technique. Both approaches are independent of CT raw data and operate only on reconstructed images which allows for their application in real time. Thereby, the aim of interactively variable, isotropic resolution is achieved. Results were evaluated quantitatively by measuring PSFs and image noise, and qualitatively by comparing the images to direct reconstructions regarded as the gold standard. Filtered images matched direct reconstructions with arbitrary reconstruction kernels with standard deviations in difference images of typically between 1 and 17 HU. Isotropic resolution was achieved within 5% of the selected resolution level. Processing times of 20-100 ms per frame

  8. Structural, optical and electrical properties of silicon nanocrystals embedded in SixC1−x/SiC multilayer systems for photovoltaic applications

    International Nuclear Information System (INIS)

    López-Vidrier, J.; Hernández, S.; Samà, J.; Canino, M.; Allegrezza, M.; Bellettato, M.; Shukla, R.; Schnabel, M.; Löper, P.; López-Conesa, L.; Estradé, S.; Peiró, F.; Janz, S.; Garrido, B.

    2013-01-01

    Highlights: ► We study the structural, optical and electrical properties of Si x C 1−x /SiC multilayers with different Si excess. ► Multilayer structure is destroyed after annealing at 1100 °C. ► Energy filtered TEM confirmed the Si NC formation. ► Sample thickness values from optical simulations are in agreement with TEM observations. ► The crystallization degree of the NCs was evaluated by Raman scattering and R and T techniques. ► The system conductivity depends on the NC size. ► The presence of a defective oxycarbide layer on top did not allow for obtaining useful electrical information. -- Abstract: In this work we present a structural, optical and electrical characterization of Si x C 1−x /SiC multilayer systems with different silicon content. After the deposition process, an annealing treatment was carried out in order to induce the silicon nanocrystals formation. By means of energy-filtered transmission electron microscopy (EFTEM) we observed the structural morphology of the multilayers and the presence of crystallized silicon nanoprecipitates for samples annealed up to 1100 °C. We discuss the suitability of optical techniques such as Raman scattering and reflectance and transmittance (R and T) for the evaluation of the crystalline fraction of our samples at different silicon excess ranges. In addition, the combination of R and T measurements with simulation has proved to be a useful instrument to confirm the structural properties observed by EFTEM. Finally, we explore the origin of the extremely high current density revealed by electrical measurements, probably due to the presence of an undesired defective SiC y O z ternary compound layer, already supported by the structural and optical results. Nevertheless, the variation of the electrical measurements with the silicon amount indicates a small but significant contribution from the multilayers

  9. Magnetic and structural studies on nanostructured Gd/Cr multilayer films

    International Nuclear Information System (INIS)

    Gadioli, G.Z.; Rouxinol, F.P.; Gelamo, R.V.; Cardoso, L.P.; Gama, S.; Bica de Moraes, M.A.

    2013-01-01

    Investigations of magnetic phases, transition temperatures and coercivity were performed in multilayered Gd/Cr films as a function of the crystalline state and morphology of the Gd layers. The films were deposited by dc magnetron sputtering at three substrate temperatures, T s , (room temperature, 300 and 500 °C). The Gd and Cr thicknesses were of 10 and 30 nm, respectively. Two series of three films were prepared. In one of the series, the films had a single Gd/Cr bilayer; in the other, 15 bilayers. The discontinuous or granular nature of the Gd layers was revealed by scanning electron microscopy Grazing incidence angle x-ray diffraction was used to investigate the crystalline state of the Gd and Cr layers. These techniques revealed that grain average size and crystalline order increase with increasing T s . From dc magnetic measurements, the co-existence of ferromagnetic and superferromagnetic phases in the Gd layers was observed, and Curie transition temperatures, T C , were determined. High coercive fields at low temperature (2 K) were measured in hysteresis cycles. Field-cooled and zero field-cooled magnetizations as functions of temperature curves exhibited, for some of the samples, a low temperature peak suggesting a freezing transition to a cluster glass state. This was confirmed by complementary ac-susceptibility measurements carried out as a function of temperature, for various frequencies of the ac field. Some results of this work – the decline in T C for decreasing Gd grain size, the high coercive field and its dependence on particle size, and the behavior of the magnetization at low temperatures for the sample deposited at room temperature – are discussed in terms of finite size and surface effects in nanosized particles. - Highlights: • Sputter-deposited Gd/Cr multilayer films with nanostructured Gd layers • Ferromagnetic and superferromagnetic phases are observed. • Ferromagnetic phase dependent of the deposition temperature • Improved

  10. Heat transfer performance of multi-layer insulation structure under roof-slab of pool-type LMFBR

    International Nuclear Information System (INIS)

    Kinoshita, I.; Yoshida, K.; Uotani, M.; Fukada, T.

    1988-01-01

    At the normal operation of the pool-type LMFBR, the free surface of liquid sodium at about 500 0 C is present below the roof-slab, separated by a space of the argon cover gas. The temperature of the roof-slab has to be maintained low and uniform in the horizontal direction for sufficient strength of the structure. Therefore, thermal insulation structures must be installed on the lower surface of the roof-slab. In addition to the installation of thermal insulator, forced cooling of the roof-slab is required for assured structural integrity of the roof-slab. The capacity of cooling equipment can be reduced by installation of structures with high thermal insulating performance. The objective of this study is to evaluate the thermal insulation characteristics of multi-layer type insulator installed below the roof-slab by analytically and experimentally. The analytical study is intended to evaluate the effect of number, distance and emissivity of layers on the heat transfer performances. This is treated as the one-dimensional heat transfer with natural convection, conduction and thermal radiation. In the experiments, we have evaluated effects of gap distances between adjacent thermal insulators placed below the roof-slab on the thermal insulation performances

  11. The shielding performance of multilayer composite shielding structures to 14.8 MeV fast neutrons

    International Nuclear Information System (INIS)

    Shen Zhiqiang; Kang Qing; Xu Jun; Wang Zhenggang; Lu Nan

    2014-01-01

    Cement-based round thin-layer samples mixed with 30% quality content of barite, and 20% quality content of carbide boron has Prepared, the same-diameter sliced samples of pure graphite and pure polyethylene has cut, then, samples combination and cross stack order has designed, formed four species Multilayer Composite shield structure, at last, neutron attenuation measurements has been done by experimental system of using 14.8 MeV neutrons from the 5SDH-2 accelerator and long counter composition, penetrating rate of samples and the shield structure to 14.8 MeV fast neutron has tested, and attenuation section has calculated. Results show that 14.8 MeV fast neutrons to higher penetration rates of thin layer samples, attenuation cross section of samples distinguish small between each other, must be increasing the thickness of the samples to reduce the experimental uncertainty; through composed of attenuation cross section and thickness parameters of composite structure, can more accurately predict the shielding ability of composite structures, error between calculation results and experimental results in 4%. (authors)

  12. A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips

    KAUST Repository

    Zhang, Mengying

    2010-01-01

    We report a simple methodology to fabricate PDMS multi-layer microfluidic chips. A PDMS slab was surface-treated by trichloro (1H,1H,2H,2H-perfluorooctyl) silane, and acts as a reusable transferring layer. Uniformity of the thickness of the patterned PDMS layer and the well-alignment could be achieved due to the transparency and proper flexibility of this transferring layer. Surface treatment results are confirmed by XPS and contact angle testing, while bonding forces between different layers were measured for better understanding of the transferring process. We have also designed and fabricated a few simple types of 3D PDMS chip, especially one consisting of 6 thin layers (each with thickness of 50 μm), to demonstrate the potential utilization of this technique. 3D fluorescence images were taken by a confocal microscope to illustrate the spatial characters of essential parts. This fabrication method is confirmed to be fast, simple, repeatable, low cost and possible to be mechanized for mass production. © The Royal Society of Chemistry 2010.

  13. Nanocrystalline TiO{sub 2} photocatalytic membranes with a hierarchical mesoporous multilayer structure: synthesis, characterization, and multifunction

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H.; Dionysiou, D.D. [Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0071 (United States); Sofranko, A.C. [Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904-4741 (United States)

    2006-05-19

    A novel sol-gel dip-coating process to fabricate nanocrystalline TiO{sub 2} photocatalytic membranes with a robust hierarchical mesoporous multilayer and improved performance has been studied. Various titania sols containing poly(oxyethylenesorbitan monooleate) (Tween 80) surfactant as a pore-directing agent to tailor-design the porous structure of TiO{sub 2} materials at different molar ratios of Tween 80/isopropyl alcohol/acetic acid/titanium tetraisopropoxide = R:45:6:1 have been synthesized. The sols are dip-coated on top of a homemade porous alumina substrate to fabricate TiO{sub 2}/Al{sub 2}O{sub 3} composite membranes, dried, and calcined, and this procedure is repeated with varying sols in succession. The resulting asymmetric mesoporous TiO{sub 2} membrane with a thickness of 0.9 {mu}m exhibits a hierarchical change in pore diameter from 2-6, through 3-8, to 5-11 nm from the top to the bottom layer. Moreover, the corresponding porosity is incremented from 46.2, through 56.7, to 69.3 %. Compared to a repeated-coating process using a single sol, the hierarchical multilayer process improves water permeability significantly without sacrificing the organic retention and photocatalytic activity of the TiO{sub 2} membranes. The prepared TiO{sub 2} photocatalytic membrane has great potential in developing highly efficient water treatment and reuse systems, for example, decomposition of organic pollutants, inactivation of pathogenic microorganisms, physical separation of contaminants, and self-antifouling action because of its multifunctional capability. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  14. Pulsed laser deposited amorphous chalcogenide and alumino-silicate thin films and their multilayered structures for photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Němec, P. [Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice (Czech Republic); Charrier, J. [FOTON, UMR CNRS 6082, Enssat, 6 rue de Kerampont, BP 80518, 22305 Lannion (France); Cathelinaud, M. [Missions des Ressources et Compétences Technologiques, UPS CNRS 2274, 92195 Meudon (France); Allix, M. [CEMHTI-CNRS, Site Haute Température, Orléans (France); Adam, J.-L.; Zhang, S. [Equipe Verres et Céramiques, UMR-CNRS 6226, Sciences Chimiques de Rennes (SCR), Université de Rennes 1, 35042 Rennes Cedex (France); Nazabal, V., E-mail: virginie.nazabal@univ-rennes1.fr [Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice (Czech Republic); Equipe Verres et Céramiques, UMR-CNRS 6226, Sciences Chimiques de Rennes (SCR), Université de Rennes 1, 35042 Rennes Cedex (France)

    2013-07-31

    Amorphous chalcogenide and alumino-silicate thin films were fabricated by the pulsed laser deposition technique. Prepared films were characterized in terms of their morphology, chemical composition, and optical properties. Multilayered thin film stacks for reflectors and vertical microcavities were designed for telecommunication wavelength and the window of atmosphere transparency (band II) at 1.54 μm and 4.65 μm, respectively. Bearing in mind the benefit coming from the opportunity of an efficient wavelength tuning or, conversely, to stabilize the photoinduced effects in chalcogenide films as well as to improve their mechanical properties and/or their chemical durability, several pairs of materials from pure chalcogenide layers to chalcogenide/oxide layers were investigated. Different layer stacks were fabricated in order to check the compatibility between dissimilar materials which can have a strong influence on the interface roughness, adhesion, density, and homogeneity, for instance. Three different reflector designs were formulated and tested including all-chalcogenide layers (As{sub 40}Se{sub 60}/Ge{sub 25}Sb{sub 5}S{sub 70}) and mixed chalcogenide-oxide layers (As{sub 40}Se{sub 60}/alumino-silicate and Ga{sub 10}Ge{sub 15}Te{sub 75}/alumino-silicate). Prepared multilayers showed good compatibility between different material pairs deposited by laser ablation despite the diversity of chemical compositions. As{sub 40}Se{sub 60}/alumino-silicate reflector showed the best parameters; its stop band (R > 97% at 8° off-normal incidence) has a bandwidth of ∼ 100 nm and it is centered at 1490 nm. The quality of the different mirrors developed was good enough to try to obtain a microcavity structure for the 1.5 μm telecommunication wavelength made of chalcogenide layers. The microcavity structure consists of Ga{sub 5}Ge{sub 20}Sb{sub 10}S{sub 65} (doped with 5000 ppm of Er{sup 3+}) spacer surrounded by two 10-layer As{sub 40}Se{sub 60}/Ge{sub 25}Sb{sub 5}S{sub 70

  15. Formation of silicon nanocrystals in multilayer nanoperiodic a-SiO{sub x}/insulator structures from the results of synchrotron investigations

    Energy Technology Data Exchange (ETDEWEB)

    Turishchev, S. Yu., E-mail: tsu@phys.vsu.ru; Terekhov, V. A.; Koyuda, D. A. [Voronezh State University (Russian Federation); Ershov, A. V.; Mashin, A. I. [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Parinova, E. V.; Nesterov, D. N. [Voronezh State University (Russian Federation); Grachev, D. A.; Karabanova, I. A. [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Domashevskaya, E. P. [Voronezh State University (Russian Federation)

    2017-03-15

    The problem of the efficiency of the controllable formation of arrays of silicon nanoparticles is studied on the basis of detailed investigations of the electronic structure of multilayer nanoperiodic a-SiO{sub x}/SiO{sub 2}, a-SiO{sub x}/Al{sub 2}O{sub 3}, and a-SiO{sub x}/ZrO{sub 2} compounds. Using synchrotron radiation and the X-ray absorption near edge structure (XANES) spectroscopy technique, a modification is revealed for the investigated structures under the effect of high-temperature annealing at the highest temperature of 1100°C; this modification is attributed to the formation of silicon nanocrystals in the layers of photoluminescent multilayer structures.

  16. Capacitive electrolyte-insulator-semiconductor structures functionalised with a polyelectrolyte/enzyme multilayer: New strategy for enhanced field-effect biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Abouzar, Maryam H.; Poghossian, Arshak; Schoening, Michael J. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Juelich (Germany); Institute of Bio- and Nanosystems (IBN-2), Research Centre Juelich GmbH, Juelich (Germany); Siqueira, Jose R. Jr.; Oliveira, Osvaldo N. Jr. [Physics Institute of Sao Carlos, University of Sao Paulo, Sao Carlos (Brazil); Moritz, Werner [Institute of Chemistry, Humboldt University Berlin (Germany)

    2010-04-15

    A novel strategy for enhanced field-effect biosensing using capacitive electrolyte-insulator-semiconductor (EIS) structures functionalised with pH-responsive weak polyelectrolyte/enzyme or dendrimer/enzyme multilayers is presented. The feasibility of the proposed approach is exemplarily demonstrated by realising a penicillin biosensor based on a capacitive p-Si-SiO{sub 2} EIS structure functionalised with a poly(allylamine hydrochloride) (PAH)/penicillinase and a poly(amidoamine) dendrimer/penicillinase multilayer. The developed sensors response to changes in both the local pH value near the gate surface and the charge of macromolecules induced via enzymatic reaction, resulting in a higher sensitivity. For comparison, an EIS penicillin biosensor with adsorptively immobilised penicillinase has been also studied. The highest penicillin sensitivity of 100 mV/dec has been observed for the EIS sensor functionalised with the PAH/penicillinase multilayer. The lower and upper detection limit was around 20 {mu}M and 10 mM, respectively. In addition, an incorporation of enzymes in a multilayer prepared by layer-by-layer technique provides a larger amount of immobilised enzymes per sensor area, reduces enzyme leaching effects and thus, enhances the biosensor lifetime (the loss of penicillin sensitivity after 2 months was 10-12%). (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  17. Study and Optimization of Self-Assembled Polymeric Multilayer Structures with Neutral Red for pH Sensing Applications

    Directory of Open Access Journals (Sweden)

    Javier Goicoechea

    2008-01-01

    Full Text Available The characterization of nanostructured thin films is critical in the design and fabrication of optical sensors. Particularly, this work is a detailed study of the properties of layer-by-layer electrostatic self-assembled multilayer (LbL structures fabricated using poly(allylamine hydrochloride (PAH and Neutral Red (NR as cations, and poly(acrylic acid (PAA as polyanion. These LbL films, due to the colorimetric properties of the NR, are suitable for sensor applications such as pH sensing in the physiological range. In the (PAH+NR/PAA LbL structure, it has been observed a very important influence of the pH of the solutions in the properties of the resultant films. Different techniques such as spectroscopy and atomic force microscopy (AFM are combined to characterize the films, and the results are analyzed showing coherence with previous works. The LbL structure is finally optimized and dramatically improved nanostructured films were fabricated, showing good sensing properties, short response times, and good stability.

  18. The isotropic radio background revisited

    Energy Technology Data Exchange (ETDEWEB)

    Fornengo, Nicolao; Regis, Marco [Dipartimento di Fisica Teorica, Università di Torino, via P. Giuria 1, I–10125 Torino (Italy); Lineros, Roberto A. [Instituto de Física Corpuscular – CSIC/U. Valencia, Parc Científic, calle Catedrático José Beltrán, 2, E-46980 Paterna (Spain); Taoso, Marco, E-mail: fornengo@to.infn.it, E-mail: rlineros@ific.uv.es, E-mail: regis@to.infn.it, E-mail: taoso@cea.fr [Institut de Physique Théorique, CEA/Saclay, F-91191 Gif-sur-Yvette Cédex (France)

    2014-04-01

    We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky.

  19. The isotropic radio background revisited

    International Nuclear Information System (INIS)

    Fornengo, Nicolao; Regis, Marco; Lineros, Roberto A.; Taoso, Marco

    2014-01-01

    We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky

  20. Stranski–Krastanov transition and self-organized structures in low-strained AlInN/GaN multilayer structures

    International Nuclear Information System (INIS)

    Krost, A; Berger, C; Moser, P; Bläsing, J; Dadgar, A; Hums, C; Hempel, T; Bastek, B; Veit, P; Christen, J

    2011-01-01

    Low-strained AlInN/GaN multilayers aimed as Bragg mirrors were grown by metal organic vapour phase epitaxy on GaN/Si(1 1 1). In such structures the upper AlInN/GaN interfaces show a considerable roughening on a nanometre scale whereas the lower ones appear flat as evaluated by cross-sectional electron and transmission electron microscopy. The roughening is attributed to a Stranski–Krastanov transition from two-dimensional layer-by-layer to three-dimensional island growth. In addition, a self-organized wavy-like surface morphology on a micrometre scale is observed in such structures which we discuss in terms of Grinfeld instability

  1. Residual stress analysis of a multi-layer thin film structure by destructive (curvature) and non-destructive (x-ray) methods

    International Nuclear Information System (INIS)

    Chen, P.C.; Oshida, Y.

    1989-01-01

    Multi-layer thin film which has structure of Cu/Cr/K/Cr/Cu prepared by sputtering process was analyzed for interfacial stresses for as-deposited conditions. This structure was also annealed at 150 degrees C, and 350 degrees C for around 15 min. in a vacuum and cooled slowly down for stress analyses. Equations for residual stress estimations for homogeneous material system using layer removal technique (stress relief) is now applied for inhomogeneous system (multi-layer structure). The results are compared with the data obtained from x-ray diffraction technique by using sin 2 Ψ - 2 θ method, for Cu layer. From the present analyses, the data obtained using layer removal seem to be qualitatively consistent with but not quantitatively in agreement with x-ray method

  2. Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid/poly(L-lactic acid and self-assembly of polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Elena Dellacasa

    2016-01-01

    Full Text Available The enantiomers poly(D-lactic acid (PDLA and poly(L-lactic acid (PLLA were alternately adsorbed directly on calcium carbonate (CaCO3 templates and on poly(styrene sulfonate (PSS and poly(allylamine hydrochloride (PAH multilayer precursors in order to fabricate a novel layer-by-layer (LBL assembly. A single layer of poly(L-lysine (PLL was used as a linker between the (PDLA/PLLAn stereocomplex and the cores with and without the polymeric (PSS/PAHn/PLL multilayer precursor (PEM. Nuclear magnetic resonance (NMR and gel permeation chromatography (GPC were used to characterize the chemical composition and molecular weight of poly(lactic acid polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC and wide X-ray diffraction (WXRD analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM and transmission electron microscopy (TEM measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release.

  3. Effect of non-magnetic intermediate layer on film structure, magnetic properties, and noise characteristics of FeCSi soft magnetic multilayers

    International Nuclear Information System (INIS)

    Kawano, Hiroyasu; Morikawa, Takeshi; Matsumoto, Koji; Shono, Keiji

    2004-01-01

    The film structures, magnetic properties, and noise characteristics of soft magnetic multilayers with alternately stacked FeCSi soft magnetic layers and non-magnetic intermediate layers were investigated. The FeCSi layers in an as-deposited multilayer with C or Ta intermediate layers had the same nano-sized fine crystalline grains and low media noise as an as-deposited FeCSi monolayer. Amorphous C intermediate layers suppressed the amplitude of spike noise especially well. In contrast, FeCSi layers in an as-deposited multilayer with Cr or Ti intermediate layers were composed of coarse crystalline grains, which increased the media noise. The crystallographic match at the interface between the layers in a multilayer could explain these phenomena. The similarity of the atomic arrangement at the interface between layers and the crystallographic match of less than a few percent for the distance between atoms crystallized FeCSi layers with nano-sized fine crystalline grains into ones with coarse crystalline grains during deposition

  4. Tuning magnetic properties of non-collinear magnetization configuration in Pt/[Pt/Co]{sub 6}/Pt/Co/Pt multilayer structure

    Energy Technology Data Exchange (ETDEWEB)

    Kalaycı, Taner, E-mail: taner.kalayci@marmara.edu.tr [Department of Physics, Marmara University, 34722, Kadıköy, Istanbul (Turkey); Deger, Caner [Department of Physics, Marmara University, 34722, Kadıköy, Istanbul (Turkey); Akbulut, Salih [Department of Physics, Gebze Technical University, 41400, Gebze, Kocaeli (Turkey); Yildiz, Fikret, E-mail: fyildiz@gtu.edu.tr [Department of Physics, Gebze Technical University, 41400, Gebze, Kocaeli (Turkey)

    2017-08-15

    Highlights: • Effects of Pt spacer and reference layers thickness are investigated by MOKE and FMR. • Controlling of non-collinear states in multilayered thin film systems is studied. • Micromagnetic approach is used for modeling of magnetic multilayered structure. • Magnetic parameters are determined by a simulation based on metropolis algorithm. - Abstract: In this study, effects of Pt spacer and Co reference layers thickness in [Co/Pt]{sub 6}/Pt/Co multilayer have been revealed to tailor magnetization directions in non-collinear configuration. Magneto-optic Kerr effect and ferromagnetic resonance techniques were employed to investigate magnetic properties. Bilinear coupling between [Co/Pt]{sub 6} and Co layers and anisotropy constants were determined by a micromagnetic simulation based on metropolis algorithm. 3 nm spacer causes ferromagnetic coupling while the samples have 4 and 5 nm spacer are coupled anti-ferromagneticaly. Also, tuning magnetic anisotropy of [Co/Pt]{sub 6} layer was accomplished by Co reference layer. It is revealed that controlling of non-collinear states in such systems is possible by variation of thickness of spacer and reference layers and [Co/Pt]{sub 6}/t{sub Pt}/t{sub Co} trilayer system can be used in multilayered magnetic systems.

  5. Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid)/poly(L-lactic acid) and self-assembly of polyelectrolytes

    Science.gov (United States)

    Yang, Gesheng; Pastorino, Laura

    2016-01-01

    Summary The enantiomers poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) were alternately adsorbed directly on calcium carbonate (CaCO3) templates and on poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayer precursors in order to fabricate a novel layer-by-layer (LBL) assembly. A single layer of poly(L-lysine) (PLL) was used as a linker between the (PDLA/PLLA)n stereocomplex and the cores with and without the polymeric (PSS/PAH)n/PLL multilayer precursor (PEM). Nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) were used to characterize the chemical composition and molecular weight of poly(lactic acid) polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC) and wide X-ray diffraction (WXRD) analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release. PMID:26925356

  6. Laser-induced luminescence of multilayer structures based on polyimides and CdSe and CdSe/ZnS nanocrystals

    International Nuclear Information System (INIS)

    Chistyakov, A A; Dayneko, S V; Zakharchenko, K V; Kolesnikov, V A; Tedoradze, M G; Mochalov, K E; Oleinikov, V A

    2009-01-01

    Laser-induced luminescence of multilayer structures based on the solids of CdSe and CdSe/ZnS nanocrystals, different organic semiconductors and on the layers of organic semiconductors with embedded nanocrystals has been investigated. Drastic decrease of luminescence quantum yield is observed in the films of CdSe nanocrystals on organic semiconductors compared to those on optical glasses. The luminescence of the nanocrystals in the matrices of organic semiconductors and in multilayer structures is shown to be suppressed. The effects observed are explained by the transfer of photogenerated carriers from the nanocrystals to the molecules of organic semiconductors. The presence of the charge transfer is confirmed by a drastic increase in the conductivity (by 2 – 4 orders of magnitude) and in photovoltaic effect at the presence of CdSe and CdSe/ZnS nanocrystals in the structures under investigation. The prospects of using the multilayer structures for development new materials for solar cells are discussed

  7. Asymmetric bistable reflection and polarization switching in a magnetic nonlinear multilayer structure

    DEFF Research Database (Denmark)

    Tuz, Vladimir R.; Novitsky, Denis V.; Prosvirnin, Sergey L.

    2014-01-01

    Optical properties of one-dimensional photonic structures consisting of Kerr-type nonlinear and magnetic layers under the action of an external static magnetic field in the Faraday geometry are investigated. The structure is a periodic arrangement of alternating nonlinear and magnetic layers (a o...

  8. Ellipsoidal basis for isotropic oscillator

    International Nuclear Information System (INIS)

    Kallies, W.; Lukac, I.; Pogosyan, G.S.; Sisakyan, A.N.

    1994-01-01

    The solutions of the Schroedinger equation are derived for the isotropic oscillator potential in the ellipsoidal coordinate system. The explicit expression is obtained for the ellipsoidal integrals of motion through the components of the orbital moment and Demkov's tensor. The explicit form of the ellipsoidal basis is given for the lowest quantum numbers. 10 refs.; 1 tab. (author)

  9. A comparison of the structure, properties, and water mass composition of quasi-isotropic eddies in western boundary currents in an eddy-resolving ocean model

    Science.gov (United States)

    Rykova, Tatiana; Oke, Peter R.; Griffin, David A.

    2017-06-01

    Using output from a near-global eddy-resolving ocean model, we analyse the properties and characteristics of quasi-isotropic eddies in five Western Boundary Current (WBC) regions, including the extensions of the Agulhas, East Australian Current (EAC), Brazil-Malvinas Confluence (BMC), Kuroshio and Gulf Stream regions. We assess the model eddies by comparing to satellite and in situ observations, and show that most aspects of the model's representation of eddies are realistic. We find that the mean eddies differ dramatically between these WBC regions - all with some unique and noteworthy characteristics. We find that the vertical displacement of isopycnals of Agulhas eddies is the greatest, averaging 350-450 m at depths of over 800-900 m. EAC (BMC) eddies are the least (most) barotropic, with only 50% (85-90%) of the velocity associated with the barotropic mode. Kuroshio eddies are the most stratified, resulting in small isopycnal displacement, even for strong eddies; and Gulf Stream eddies carry the most heat. Despite their differences, we explicitly show that the source waters for anticyclonic eddies are a mix of the WBC water (from the boundary current itself) and water that originates equatorward of the WBC eddy-field; and cyclonic eddies are a mix of WBC water and water that originates poleward of the WBC eddy-field.

  10. Nano-structuring of multi-layer material by single x-ray vortex pulse with femtosecond duration

    Science.gov (United States)

    Kohmura, Yoshiki; Zhakhovsky, Vasily; Takei, Dai; Suzuki, Yoshio; Takeuchi, Akihisa; Inoue, Ichiro; Inubushi, Yuichi; Inogamov, Nail; Ishikawa, Tetsuya; Yabashi, Makina

    2018-03-01

    A narrow zero-intensity spot arising from an x-ray vortex has huge potential for future applications such as nanoscopy and nanofabrication. We here present an X-ray Free Electron Laser (XFEL) experiment with a focused vortex wavefront which generated high aspect ratio nanoneedles on a Cr/Au multi-layer (ML) specimen. A sharp needle with a typical width and height of 310 and 600 nm was formed with a high occurrence rate at the center of a 7.71 keV x-ray vortex on this ML specimen, respectively. The observed width exceeds the diffraction limit, and the smallest structures ever reported using an intense-XFEL ablation were fabricated. We found that the elemental composition of the nanoneedles shows a significant difference from that of the unaffected area of Cr/Au ML. All these results are well explained by the molecular dynamics simulations, leading to the elucidation of the needle formation mechanism on an ultra-fast timescale.

  11. B-scan technique for localization and characterization of fatigue cracks around fastener holes in multi-layered structures

    Science.gov (United States)

    Hopkins, Deborah; Datuin, Marvin; Aldrin, John; Warchol, Mark; Warchol, Lyudmila; Forsyth, David

    2018-04-01

    The work presented here aims to develop and transition angled-beam shear-wave inspection techniques for crack localization at fastener sites in multi-layer aircraft structures. This requires moving beyond detection to achieve reliable crack location and size, thereby providing invaluable information for maintenance actions and service-life management. The technique presented is based on imaging cracks in "True" B-scans (depth view projected in the sheets along the beam path). The crack traces that contribute to localization in the True B-scans depend on small, diffracted signals from the crack edges and tips that are visible in simulations and experimental data acquired with sufficient gain. The most recent work shows that cracks rotated toward and away from the central ultrasonic beam also yield crack traces in True B-scans that allow localization in simulations, even for large obtuse angles where experimental and simulation results show very small or no indications in the C-scans. Similarly, for two sheets joined by sealant, simulations show that cracks in the second sheet can be located in True B-scans for all locations studied: cracks that intersect the front or back wall of the second sheet, as well as relatively small mid-bore cracks. These results are consistent with previous model verification and sensitivity studies that demonstrate crack localization in True B-scans for a single sheet and cracks perpendicular to the ultrasonic beam.

  12. Hydrogen depth resolution in multilayer metal structures, comparison of elastic recoil detection and resonant nuclear reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S. E-mail: leszekw@optushome.com.au; Grambole, D.; Kreissig, U.; Groetzschel, R.; Harding, G.; Szilagyi, E

    2002-05-01

    Four different metals: Al, Cu, Ag and Au have been used to produce four special multilayer samples to study the depth resolution of hydrogen. The layer structure of each sample was analysed using 2 MeV He Rutherford backscattering spectrometry, 4.5 MeV He elastic recoil detection (ERD) and 30 MeV F{sup 6+} HIERD. Moreover the hydrogen distribution was analysed in all samples using H({sup 15}N, {alpha}{gamma}){sup 12}C nuclear reaction analysis (NRA) with resonance at 6.385 MeV. The results show that the best depth resolution and sensitivity for hydrogen detection are offered by resonance NRA. The He ERD shows good depth resolution only for the near surface hydrogen. In this technique the depth resolution is rapidly reduced with depth due to multiple scattering effects. The 30 MeV F{sup 6+} HIERD demonstrated similar hydrogen depth resolution to He ERD for low mass metals and HIERD resolution is substantially better for heavy metals and deep layers.

  13. Multilayer out-of-plane overlap electrostatic energy harvesting structure actuated by blood pressure for powering intra-cardiac implants

    Science.gov (United States)

    Deterre, M.; Risquez, S.; Bouthaud, B.; Dal Molin, R.; Woytasik, M.; Lefeuvre, E.

    2013-12-01

    We present an innovative multilayer out-of-plane electrostatic energy harvesting device conceived in view of scavenging energy from regular blood pressure in the heart. This concept involves the use of a deformable packaging for the implant in order to transmit the blood pressure to the electrostatic transducer. As shown in previous work, this is possible by using thin metal micro-bellows structure, providing long term hermeticity and high flexibility. The design of the electrostatic device has overcome several challenges such as the very low frequency of the mechanical excitation (1 to 2 Hz) and the small available room in the medical implant. Analytical and numerical models have been used to maximize the capacitance variation, and hence to optimize the energy conversion. We have theoretically shown that a 25-layer transducer with 6-mm diameter and 1-mm thickness could harvest at least 20 mJ per heart beat in the left ventricle under a maximum voltage of 75 V. These results show that the proposed concept is promising and could power the next generation of leadless pacemakers.

  14. Attenuation of stress waves in single and multi-layered structures. [mitigation of elastic and plastic stress waves during spacecraft landing

    Science.gov (United States)

    Yang, J. C. S.; Tsui, C. Y.

    1972-01-01

    Analytical and experimental studies were made of the attenuation of the stress waves during passage through single and multilayer structures. The investigation included studies on elastic and plastic stress wave propagation in the composites and those on shock mitigating material characteristics such as dynamic stress-strain relations and energy absorbing properties. The results of the studies are applied to methods for reducing the stresses imposed on a spacecraft during planetary or ocean landings.

  15. The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition

    KAUST Repository

    Wang, Na; Komvopoulos, Kyriakos

    2013-01-01

    The structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) deposition was investigated by high-resolution transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoelectron

  16. Linear electro-optic coefficient in multilayer self-organized InAs quantum dot structures

    NARCIS (Netherlands)

    Akca, I.B.; Dana, A.; Aydinli, A.; Rossetti, M.; Li, L.; Dagli, N.; Fiore, A.

    2007-01-01

    The electro-optic coefficients of self-organized InAs quantum dot layers in molecular beam epitaxy grown laser structures in reverse bias have been investigated. Enhanced electrooptic coefficients compared to bulk GaAs were observed.

  17. Improved irradiation tolerance of reactive gas pulse sputtered TiN coatings with a hybrid architecture of multilayered and compositionally graded structures

    Science.gov (United States)

    Liang, Wei; Yang, Jijun; Zhang, Feifei; Lu, Chenyang; Wang, Lumin; Liao, Jiali; Yang, Yuanyou; Liu, Ning

    2018-04-01

    This study investigates the improved irradiation tolerance of reactive gas pulse (RGP) sputtered TiN coatings which has hybrid architecture of multilayered and compositionally graded structures. The multilayered RGP-TiN coating is composed of hexagonal close-packed Ti phase and face-centred cubic TiN phase sublayers, where the former sublayer has a compositionally graded structure and the latter one maintains constant stoichiometric atomic ratio of Ti:N. After 100 keV He ion irradiation, the RGP-TiN coating exhibits improved irradiation resistance compared with its single layered (SL) counterpart. The size and density of He bubbles are smaller in the RGP-TiN coating than in the SL-TiN coating. The irradiation-induced surface blistering of the coatings shows a similar tendency. Meanwhile, the irradiation hardening and adhesion strength of the RGP-TiN coatings were not greatly affected by He irradiation. Moreover, the irradiation damage tolerance of the coatings can be well tuned by changing the undulation period number of N2 gas flow rate. Detailed analysis suggested that this improved irradiation tolerance could be related to the combined contribution of the multilayered and compositionally graded structures.

  18. Probing buried solid-solid interfaces in magnetic multilayer structures and other nanostructures using spectroscopy excited by soft x-ray standing waves

    International Nuclear Information System (INIS)

    Yang, S.-H.; Mun, B.S.; Mannella, N.; Sell, B.; Ritchey, S.B.; Fadley, C.S.; Pham, L.; Nambu, A.; Watanabe, M.

    2004-01-01

    Full text: Buried solid-solid interfaces are becoming increasingly more important in all aspects of nanoscience, and we here dis- cuss the st applications of a new method for selectively studying them with the vuv/soft x-ray spectroscopies. As specific examples, magnetic multilayer structures represent key elements of current developments in spintronics, including giant magnetoresistance, exchange bias, and magnetic tunnel resistance. The buried interfaces in such structures are of key importance to their performance, but have up to now been difficult to study selectively with these spectroscopies. This novel method involves excitation of photoelectrons or fluorescent x-rays with soft x-ray standing waves created by Bragg reflection from a multilayer mirror substrate on which the sample is grown. We will discuss core and valence photoemission, as well soft x-ray emission, results from applying this method to multilayer structures relevant to both giant magnetoresistance (Fe/Cr-[2]) and magnetic tunnel junctions (Al 2 O 3 /FeCo) , including magnetic dichroism measurements. Work supported by the Director, Of e of Science, Of e of Basic Energy Sciences, Materials Science and Engineering Division, U.S. Department of Energy, Contract No. DE-AC03-76SF000

  19. Structure of solid monolayers and multilayers of n-hexane on graphite

    Indian Academy of Sciences (India)

    Unknown

    We present all-atom molecular dynamics simulations of n-hexane on the ... cluster of n-hexane molecules on graphite, using the all-atom interaction model. ... We do not include such molecules in our analyses of the structure factor and other.

  20. Sintering of Multilayered Porous Structures: Part II – Experiments and Model Applications

    DEFF Research Database (Denmark)

    Ni, De Wei; Olevsky, Eugene; Esposito, Vincenzo

    2013-01-01

    Experimental analyses of shrinkage and distortion kinetics during sintering of bilayered porous and dense gadolinium-doped ceria Ce0.9Gd0.1O1.95d structures are carried out, and compared with the theoretical models developed in Part I of this work. A novel approach is developed for the determinat...

  1. Stress and reliability analyses of multilayered composite cylinder under thermal and mechanical loads

    Science.gov (United States)

    Wang, Xiaohua

    The coupling resulting from the mutual influence of material thermal and mechanical parameters is examined in the thermal stress analysis of a multilayered isotropic composite cylinder subjected to sudden axisymmetric external and internal temperature. The method of complex frequency response functions together with the Fourier transform technique is utilized. Because the coupling parameters for some composite materials, such as carbon-carbon, are very small, the effect of coupling is neglected in the orthotropic thermal stress analysis. The stress distributions in multilayered orthotropic cylinders subjected to sudden axisymmetric temperature loading combined with dynamic pressure as well as asymmetric temperature loading are also obtained. The method of Fourier series together with the Laplace transform is utilized in solving the heat conduction equation and thermal stress analysis. For brittle materials, like carbon-carbon composites, the strength variability is represented by two or three parameter Weibull distributions. The 'weakest link' principle which takes into account both the carbon-carbon composite cylinders. The complex frequency response analysis is performed on a multilayered orthotropic cylinder under asymmetrical thermal load. Both deterministic and random thermal stress and reliability analyses can be based on the results of this frequency response analysis. The stress and displacement distributions and reliability of rocket motors under static or dynamic line loads are analyzed by an elasticity approach. Rocket motors are modeled as long hollow multilayered cylinders with an air core, a thick isotropic propellant inner layer and a thin orthotropic kevlar-epoxy case. The case is treated as a single orthotropic layer or a ten layered orthotropic structure. Five material properties and the load are treated as random variable with normal distributions when the reliability of the rocket motor is analyzed by the first-order, second-moment method (FOSM).

  2. Electronic structure and superconductivity of multi-layered organic charge transfer salts

    Energy Technology Data Exchange (ETDEWEB)

    Jeschke, Harald O.; Altmeyer, Michaela; Guterding, Daniel; Valenti, Roser [Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt, 60438 Frankfurt (Germany)

    2015-07-01

    We examine the electronic properties of polymorphs of (BEDT-TTF){sub 2}Ag(CF{sub 3}){sub 4}(TCE) (1,1,2-trichloroethane) within density functional theory (DFT). While a phase with low superconducting transition temperature T{sub c}=2.6 K exhibits a κ packing motif, two high T{sub c} phases are layered structures consisting of α{sup '} and κ packed layers. We determine the electronic structures and discuss the influence of the insulating α{sup '} layer on the conducting κ layer. In the κ-α{sub 1}{sup '} dual-layered compound, we find that the stripes of high and low charge in the α{sup '} layer correspond to a stripe pattern of hopping parameters in the κ layer. Based on the different underlying Hamiltonians, we study the superconducting properties and try to explain the differences in T{sub c}.

  3. Local atomic interdiffusion in CdTe/HgCdTe multilayered structures

    International Nuclear Information System (INIS)

    Kim, Y.; Ourmazd, A.; Feldman, R.D.; Rentschler, J.A.; Taylor, D.W.; Austin, R.F.

    1989-01-01

    The authors combine chemical lattice imaging with digital pattern recognition to study atomic interdiffusion at individual CdTe/HgCdTe interfaces in multi-quantum well structures. In this way they obtain quantitative composition profiles for as grown samples, and investigate their development as a function of annealing temperature. The authors' results indicate that interdiffusion depends on the position of the quantum well with respect to the surface, beginning first at quantum wells close to the surface, and proceeding towards the substrate. The authors' approach allows the quantification of interdiffusion as a function of time, temperature, and distance from the surface. The implications of these results for the stability of CdTe/HgCdTe structures, and the interpretation of X-ray data are discussed

  4. Spectral scalability and optical spectra of fractal multilayer structures: FDTD analysis

    Science.gov (United States)

    Simsek, Sevket; Palaz, Selami; Mamedov, Amirullah M.; Ozbay, Ekmel

    2017-01-01

    An investigation of the optical properties and band structures for the conventional and Fibonacci photonic crystals (PCs) based on SrTiO3 and Sb2Te3 is made in the present research. Here, we use one-dimensional SrTiO3- and Sb2Te3-based layers. We have theoretically calculated the photonic band structure and transmission spectra of SrTiO3- and Sb2Te3-based PC superlattices. The position of minima in the transmission spectrum correlates with the gaps obtained in the calculation. The intensity of the transmission depths is more intense in the case of higher refractive index contrast between the layers.

  5. Fabrication of multilayered conductive polymer structures via selective visible light photopolymerization

    Science.gov (United States)

    Cullen, Andrew T.; Price, Aaron D.

    2017-04-01

    Electropolymerization of pyrrole is commonly employed to fabricate intrinsically conductive polymer films that exhibit desirable electromechanical properties. Due to their monolithic nature, electroactive polypyrrole films produced via this process are typically limited to simple linear or bending actuation modes, which has hindered their application in complex actuation tasks. This initiative aims to develop the specialized fabrication methods and polymer formulations required to realize three-dimensional conductive polymer structures capable of more elaborate actuation modes. Our group has previously reported the application of the digital light processing additive manufacturing process for the fabrication of three-dimensional conductive polymer structures using ultraviolet radiation. In this investigation, we further expand upon this initial work and present an improved polymer formulation designed for digital light processing additive manufacturing using visible light. This technology enables the design of novel electroactive polymer sensors and actuators with enhanced capabilities and brings us one step closer to realizing more advanced electroactive polymer enabled devices.

  6. Isotropic transmission of magnon spin information without a magnetic field.

    Science.gov (United States)

    Haldar, Arabinda; Tian, Chang; Adeyeye, Adekunle Olusola

    2017-07-01

    Spin-wave devices (SWD), which use collective excitations of electronic spins as a carrier of information, are rapidly emerging as potential candidates for post-semiconductor non-charge-based technology. Isotropic in-plane propagating coherent spin waves (magnons), which require magnetization to be out of plane, is desirable in an SWD. However, because of lack of availability of low-damping perpendicular magnetic material, a usually well-known in-plane ferrimagnet yttrium iron garnet (YIG) is used with a large out-of-plane bias magnetic field, which tends to hinder the benefits of isotropic spin waves. We experimentally demonstrate an SWD that eliminates the requirement of external magnetic field to obtain perpendicular magnetization in an otherwise in-plane ferromagnet, Ni 80 Fe 20 or permalloy (Py), a typical choice for spin-wave microconduits. Perpendicular anisotropy in Py, as established by magnetic hysteresis measurements, was induced by the exchange-coupled Co/Pd multilayer. Isotropic propagation of magnon spin information has been experimentally shown in microconduits with three channels patterned at arbitrary angles.

  7. Transverse Seebeck and Peltier effect in tilted metal-semiconductor multilayer structures; Transversaler Seebeck- und Peltier-Effekt in verkippten Metall-Halbleiter-Multilagenstrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Reitmaier, Christina

    2012-07-01

    Whether in aerospace, automobile industry or in home appliances, thermoelectric effects find use in many areas of technology. This work deals with the investigation of a special form of these effects, the transversal Seebeck- and Peltier effect. Via modelling under variation of the sample parameters the cooling efficiencies, the attainable temperature differences and the Figures of merit are optimised and than suitable samples are produced according to these specifications. With these tilted metal semiconductor multilayer structures consisting of lead and bismuth telluride a transversal Peltier effect is observed. Moreover, the generation of electric power is examined via the transversal Seebeck effect. In tilted Pb-Bi2Te3 multilayers the efficiency is measured with the conversion by heat in electric power and is compared to model calculations. (orig.)

  8. 3D Defect Localization on Exothermic Faults within Multi-Layered Structures Using Lock-In Thermography: An Experimental and Numerical Approach.

    Science.gov (United States)

    Bae, Ji Yong; Lee, Kye-Sung; Hur, Hwan; Nam, Ki-Hwan; Hong, Suk-Ju; Lee, Ah-Yeong; Chang, Ki Soo; Kim, Geon-Hee; Kim, Ghiseok

    2017-10-13

    Micro-electronic devices are increasingly incorporating miniature multi-layered integrated architectures. However, the localization of faults in three-dimensional structure remains challenging. This study involved the experimental and numerical estimation of the depth of a thermally active heating source buried in multi-layered silicon wafer architecture by using both phase information from an infrared microscopy and finite element simulation. Infrared images were acquired and real-time processed by a lock-in method. It is well known that the lock-in method can increasingly improve detection performance by enhancing the spatial and thermal resolution of measurements. Operational principle of the lock-in method is discussed, and it is represented that phase shift of the thermal emission from a silicon wafer stacked heat source chip (SSHSC) specimen can provide good metrics for the depth of the heat source buried in SSHSCs. Depth was also estimated by analyzing the transient thermal responses using the coupled electro-thermal simulations. Furthermore, the effects of the volumetric heat source configuration mimicking the 3D through silicon via integration package were investigated. Both the infrared microscopic imaging with the lock-in method and FE simulation were potentially useful for 3D isolation of exothermic faults and their depth estimation for multi-layered structures, especially in packaged semiconductors.

  9. Challenges in bimetallic multilayer structure formation: Pt growth on Cu monolayers on Ru(0001)

    DEFF Research Database (Denmark)

    Mancera, Luis A.; Engstfeld, Albert Kilian; Bensch, Andreas

    2017-01-01

    In a joint experimental and theoretical study, we investigated the formation and morphology of PtCu/Ru(0001) bimetallic surfaces grown at room and higher temperatures under UHV conditions. We obtained the PtCu/Ru(0001) surfaces by deposition of Pt atoms on a previously created Cu/Ru(0001) structure...... which includes only one Cu monolayer. Bimetallic surfaces prepared at different Pt coverages are investigated using STM imaging, revealing the existence of reconstruction lines and Cu islands. Although primarily created Cu islands continue growing in size by increasing Pt coverage, a continuous...

  10. Study of asymmetric multilayered structures by means of nonreciprocity in phases

    International Nuclear Information System (INIS)

    Rao, V S C Manga; Gupta, S Dutta; Agarwal, G S

    2004-01-01

    We study symmetric and asymmetric stratified media with resonant absorbers to bring out the role of inversion symmetry and absorption. We show that both can be probed using the reflected fields for excitation of the structure from opposite sides. The phase asymmetry is shown to bear the signature of broken inversion symmetry in lossless systems, while losses in addition lead to the nonreciprocity in the intensity reflection coefficient. We demonstrate how reflected pulses from opposite ends can reveal both of the aspects through their shapes and delays. Moreover, we demonstrate a great flexibility in manipulating the pulse velocities mediated by the resonant atom-field interaction

  11. Bistability, multistability and non-reciprocal light propagation in Thue-Morse multilayered structures

    International Nuclear Information System (INIS)

    Grigoriev, Victor; Biancalana, Fabio

    2010-01-01

    The nonlinear properties of quasi-periodic photonic crystals based on the Thue-Morse sequence are investigated. The intrinsic spatial asymmetry of these one-dimensional structures for odd generation numbers results in bistability thresholds, which are sensitive to the propagation direction. Along with resonances of perfect transmission, this feature allows us to achieve strongly non-reciprocal propagation and to create an all-optical diode. The salient qualitative features of such optical diode action are readily explained through a simple coupled resonator model. The efficiency of a passive scheme that does not necessitate an additional short pump signal is compared to an active scheme where such a signal is required.

  12. Layered structure analysis of multilayers by X-ray reflectometry using the Cu-Kβ line

    International Nuclear Information System (INIS)

    Usami, Katsuhisa; Ueda, Kazuhiro; Hirano, Tatsumi; Hoshiya, Hiroyuki; Narishige, Shinji.

    1997-01-01

    The suitability of X-ray reflectometry using the Cu-K β line for layered structure analysis of NiFe/Cu/NiFe/Ta layered films was studied. Structural parameters such as film thickness, density, and interface width can be determined more accurately than by Cu-K α1 X-ray reflectometry, owing to the abnormal dispersion effect. The standard deviations in determination of film thicknesses were within ±0.3% for NiFe and Ta films and ±0.03 nm for 2 nm Cu film. Those for the densities and interface widths were within ±2% and ±0.04 nm for all films, respectively. Analysis of some layered films regarding the change in Cu film thickness showed that in all these samples the density of the films most closely reflected the density of bulk material, and the interface width between the upper NiFe and Cu films increased with increasing Cu film thickness. (author)

  13. Structure of multilayered Cr(Al)N/SiO{sub x} nanocomposite coatings fabricated by differential pumping co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Masahiro [JEOL USA Inc., 11 Dearborn Road, Peabody, Massachusetts 01960 (United States); Nose, Masateru [Faculty of Art and Design, University of Toyama, 180 Futagami-machi, Takaoka 933-8588 (Japan); Onishi, Ichiro [JEOL Ltd. 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan); Shiojiri, Makoto [Kyoto Institute of Technology, Kyoto 606-8585 (Japan)

    2013-11-11

    A Cr(Al)N/38 vol. % SiO{sub x} hard coating was prepared on a (001) Si substrate at 250 °C in a differential pumping co-sputtering system, which has two chambers for radio frequency (RF) sputtering and a substrate holder rotating on the chambers. The composite coating was grown by alternate sputter-depositions from CrAl and SiO{sub 2} targets with flows of N{sub 2}+Ar and Ar at RF powers of 200 and 75 W, respectively, on transition layers grown on the substrate. Analytical electron microscopy reveled that the Cr(Al)N/SiO{sub x} coating had a multilayered structure of Cr(Al)N crystal layers ∼1.6 nm thick and two-dimensionally dispersed amorphous silicon oxide (a-SiO{sub x}) particles with sizes of ∼1 nm or less. The a-SiO{sub x} particles were enclosed with the Cr(Al)N layers. The coating had a low indentation hardness of ∼25 GPa at room temperature, due to a high oxide fraction of 38 vol. % and a low substrate rotational speed of 1 rpm. Faster rotation and lower oxide fraction would make a-SiO{sub x} particles smaller, resulting in the formation of Cr(Al)N crystal including the very fine a-SiO{sub x} particles with small number density. They would work as obstacles for the lattice deformation of the Cr(Al)N crystals. We have fabricated a superhard coating of Cr(Al)N/17 vol. % SiO{sub x} with a hardness of 46 GPa prepared at 12 rpm.

  14. Extraordinary refraction and self-collimation properties of multilayer metallic-dielectric stratified structures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liwei, E-mail: zlwhpu@hotmail.com [School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Chen, Liang [School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Zhang, Zhengren [School of Science, Chongqing Jiaotong University, Chongqing 400074 (China); Wang, Wusong [Guizhou Aerospace Institute of Measuring and Testing Technology, Guiyang 550009 (China); Zhao, Yuhuan; Song, Kechao; Kang, Chaoyang [School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China)

    2015-01-15

    The extraordinary refraction with negative or zero refraction angle of the layered metamaterial consisting of alternating dielectric and plasmonic layers is theoretically studied. It is shown that the electromagnetic properties can be tuned by the filling factor, the permittivity of the dielectric layer and the plasma frequency of the metallic layer. At different frequency, the layered structures possess different refraction properties with positive, zero or negative refraction angle. By choosing appropriate parameters, positive-to-zero-to-negative-to positive refraction at the desired frequency can be realized. At the frequency with flat equal frequency contour, self-collimation and slow light properties are also found. Such properties can be used in the performance of negative refraction, subwavelength imaging and information propagation.

  15. Development and optimization of thermographic techniques for Non-Destructive Evaluation of multilayered structures

    Science.gov (United States)

    Gavrilov, Dmitry J.

    . Moreover, this analysis should be done on a regular basis to prevent defects from increasing in size over time. Conventional methods, such as infrared photography and X-ray radiography may not be suitable for this application, because most of detachments are too deep for infrared to reach them, and too thin for providing enough contrast on X-ray images. This highlights the need for the development of methodsfor detection of hidden defects and structure of art pieces to detect the structure of art pieces and any hidden defects present. Thermography has strong potential as a tool for non-invasive analysis of works of art and only recently has it been actively promoted into this field. However, due to the general unpredictability of the structure of brushstrokes as well as the properties of paint, it is difficult to apply a physical model to the analysis of paintings. In addition, an improved method is proposed. This proposed method is mainly based on PCT, but it is capable of returning clear images of subsurface defects and the structure of the support. Unlike standard PCT images, the images acquired by this method do not exhibit visually similar features.

  16. Improving the surface structure of high quality Sr{sub 2}FeMoO{sub 6} thin films for multilayer structures

    Energy Technology Data Exchange (ETDEWEB)

    Angervo, I., E-mail: ijange@utu.fi [Wihuri Physical Laboratory, Department of Physics and Astronomy, FI-20014 University of Turku (Finland); University of Turku Graduate School (UTUGS), University of Turku, FI-20014 Turku (Finland); Saloaro, M. [Wihuri Physical Laboratory, Department of Physics and Astronomy, FI-20014 University of Turku (Finland); Tikkanen, J. [Wihuri Physical Laboratory, Department of Physics and Astronomy, FI-20014 University of Turku (Finland); University of Turku Graduate School (UTUGS), University of Turku, FI-20014 Turku (Finland); Huhtinen, H.; Paturi, P. [Wihuri Physical Laboratory, Department of Physics and Astronomy, FI-20014 University of Turku (Finland)

    2017-02-28

    Highlights: • The effects of PLD laser fluence and deposition temperature are investigated on SFMO thin films. • We focus on improving the surface structure of the SFMO thin films. • Both the surface structure and the Curie temperature can be improved by fabricating the films at 900 °C. - Abstract: Two sets of Sr{sub 2}FeMoO{sub 6} thin films were prepared with pulsed laser deposition and the effect of the laser fluence and the deposition temperature was investigated. The Sr{sub 2}FeMoO{sub 6} thin films showed clear evidence of impurity phases when the laser fluence was altered. Phase pure films resulted through the whole temperature range between 900 °C and 1050 °C when a proper laser fluence was used. Films fabricated at lower deposition temperatures resulted with smaller surface roughnesses around 5 nm, higher Curie temperatures and with relatively high saturation magnetization values. The Curie temperature was determined from the minimum of the first order derivative and results showed the highest values of 350 K and above. The films with the highest Curie temperature reached zero magnetization above 400 K. The results indicate that both high microstructural and high magnetic quality Sr{sub 2}FeMoO{sub 6} thin films can be obtained with a deposition temperature between 900 °C and 950 °C. This provides better fabrication parameters for the upcoming SFMO multilayer structures.

  17. Surface and interfacial interactions of multilayer graphitic structures with local environment

    International Nuclear Information System (INIS)

    Mazzocco, R.; Robinson, B.J.; Rabot, C.; Delamoreanu, A.; Zenasni, A.; Dickinson, J.W.; Boxall, C.; Kolosov, O.V.

    2015-01-01

    In order to exploit the potential of graphene in next-generation devices, such as supercapacitors, rechargeable batteries, displays and ultrathin sensors, it is crucial to understand the solvent interactions with the graphene surface and interlayers, especially where the latter may be in competition with the former, in the medium of application deployment. In this report, we combine quartz crystal microbalance (QCM) and ultrasonic force microscopy methods to investigate the changes in the film–substrate and film–environment interfaces of graphene and graphene oxide films, produced by diverse scalable routes, in both polar (deionised water) and non-polar (dodecane) liquid and vapour environments. In polar liquid environments, we observe nanobubble adsorption/desorption on the graphene film corresponding to a surface coverage of up to 20%. As no comparable behaviour is observed for non-polar environment, we conclude that nanobubble formation is directly due to the hydrophobic nature of graphene with direct consequences for electrode structures immersed in electrolyte solutions. The amount of water adsorbed by the graphene films was found to vary considerably from 0.012 monolayers of water per monolayer of reduced graphene oxide to 0.231 monolayers of water per monolayer of carbon diffusion growth graphene. This is supported by direct nanomechanical mapping of the films immersed in water where an increased variation of local stiffness suggests water propagation within the film and/or between the film and substrate. Transferred film thickness calculations performed for QCM, atomic force microscopy topography and optical transmission measurements, returns results an order of magnitude larger (46 ± 1 layers) than Raman spectroscopy (1 - 2 graphene layers) on pristine pre-transferred films due to contamination during transfer and possible turbostratic structures of large areas. - Highlights: • Exploring interaction of graphene films with polar and nonpolar liquids

  18. Magnetoresistive multilayers deposited on the AAO membranes

    International Nuclear Information System (INIS)

    Malkinski, Leszek M.; Chalastaras, Athanasios; Vovk, Andriy; Jung, Jin-Seung; Kim, Eun-Mee; Jun, Jong-Ho; Ventrice, Carl A.

    2005-01-01

    Silicon and GaAs wafers are the most commonly used substrates for deposition of giant magnetoresistive (GMR) multilayers. We explored a new type of a substrate, prepared electrochemically by anodization of aluminum sheets, for deposition of GMR multilayers. The surface of this AAO substrate consists of nanosized hemispheres organized in a regular hexagonal array. The current applied along the substrate surface intersects many magnetic layers in the multilayered structure, which results in enhancement of giant magnetoresistance effect. The GMR effect in uncoupled Co/Cu multilayers was significantly larger than the magnetoresistance of similar structures deposited on Si

  19. Theoretical study of ferromagnetic resonance in exchange - coupled magnetic / nonmagnetic / magnetic multilayer structure

    International Nuclear Information System (INIS)

    Oezdogan, K.; Oezdemir, M.; Yalcin, O.; Aktas, B.

    2002-01-01

    The dispersion relation on ferromagnetic films was calculation by using torque equation of motion with a damping term. The total energy including zeeman, demagnetizing and anisotropy energy terms was used to get ferromagnetic resonance frequency for both uniform and higher order spin wave modes. In antiferromagnetic films, the torque equation of motion for each sub-lattice were written to derive an expression for the dispersion relation. The magnetic trilayer system under investigation consist of two ferromagnetic layers separated by a nonmagnetic layer. The dispersion relation of magnetic/nonmagnetic/magnetic three layers is calculated by using Landau-Lifshitz dynamic equation of motion for the magnetization with interlayer exchange energy. As for the exchange-coupled resonance of ferromagnetic resonance (FMR), the theoretical study has been calculated for both symmetrical and asymmetrical structures. In this systems, the exchange-coupling parameter A 12 between neighboring layers was used to get resonance fields as a function of the angle between the magnetization vectors of each magnetic layers

  20. Associative account of self-cognition: extended forward model and multi-layer structure

    Directory of Open Access Journals (Sweden)

    Motoaki eSugiura

    2013-08-01

    Full Text Available The neural correlates of self identified by neuroimaging studies differ depending on which aspects of self are addressed. Here, three categories of self are proposed based on neuroimaging findings and an evaluation of the likely underlying cognitive processes. The physical self, representing self-agency of action, body ownership, and bodily self-recognition, is supported by the sensory and motor association cortices located primarily in the right hemisphere. The interpersonal self, representing the attention or intentions of others directed at the self, is supported by several amodal association cortices in the dorsomedial frontal and lateral posterior cortices. The social self, representing the self as a collection of context-dependent social values, is supported by the ventral aspect of the medial prefrontal cortex and the posterior cingulate cortex. Despite differences in the underlying cognitive processes and neural substrates, all three categories of self are likely to share the computational characteristics of the forward model, which is underpinned by internal schema or learned associations between one’s behavioral output and the consequential input. Additionally, these three categories exist within a hierarchical layer structure based on developmental processes that updates the schema through the attribution of prediction error. In this account, most of the association cortices critically contribute to some aspect of the self through associative learning while the primary regions involved shift from the lateral to the medial cortices in a sequence from the physical to the interpersonal to the social self.

  1. Fabrication, Structural Characterization and Uniaxial Tensile Properties of Novel Sintered Multi-Layer Wire Mesh Porous Plates

    Directory of Open Access Journals (Sweden)

    Liuyang Duan

    2018-01-01

    Full Text Available There is an increasing interest in developing porous metals or metallic foams for functional and structural applications. The study of the physical and mechanical properties of porous metals is very important and helpful for their application. In this paper, a novel sintered multilayer wire mesh porous plate material (WMPPs with a thickness of 0.5 mm–3 mm and a porosity of 10–35% was prepared by winding, pressing, rolling, and subsequently vacuum sintering them. The pore size and total size distribution in the as-prepared samples were investigated using the bubble point method. The uniaxial tensile behavior of the WMPPs was investigated in terms of the sintering temperature, porosity, wire diameter, and manufacturing technology. The deformation process and the failure mechanism under the tensile press was also discussed based on the appearance of the fractures (SEM figures. The results indicated that the pore size and total size distribution were closely related to the raw material used and the sintering temperature. For the WMPPs prepared by the wire mesh, the pore structures were inerratic and the vast majority of pore size was less than 10 μm. On the other hand, for the WMPPs that were prepared by wire mesh and powder, the pore structures were irregular and the pore size ranged from 0 μm–50 μm. The experimental data showed that the tensile strength of WMPPs is much higher than any other porous metals or metallic foams. Higher sintering temperatures led to coarser joints between wires and resulted in higher tensile strength. The sintering temperature decreased from 1330 °C to 1130 °C and the tensile strength decreased from 296 MPa to 164 MPa. Lower porosity means that there are more metallurgical joints and metallic frameworks resisting deformation per unit volume. Therefore, lower porosities exhibit higher tensile strength. An increase of porosity from 17.14% to 32.5% led to the decrease of the tensile strength by 90 MPa. The

  2. Structural and optical properties of ZnO nanostructures electrochemically synthesized on AZO/Ag/AZO-multilayer-film-coated polyethersulfone substrates

    International Nuclear Information System (INIS)

    Oh, Dohyun; Yoo, Chanho; No, Youngsoo; Kim, Suyoun; Kim, Taewhan; Cho, Woonjo; Kim, Jinyoung

    2012-01-01

    ZnO nanostructures were formed on Al-doped ZnO (AZO)/Ag/AZO-multilayer-film-coated flexible polyethersulfone (PES) substrates at low temperature by using an electrochemical deposition method. The resistivity of the AZO/Ag/AZO multilayer films decreased with increasing thickness of the Ag film. X-ray diffraction patterns for the ZnO nanostructures showed that the crystal structure of the ZnO was hexagonal wurtzite and that the orientation was along the c-axis perpendicular to the substrate. Scanning electron microscopy images showed that the ZnO nanostructures grown at current densities of - 1.0 and - 1.5 mA/cm 2 were ZnO nanorods with diameters of 150 nm and ZnO nanoflowers with a planar dimension, respectively. Photoluminescence spectra showed that the band-edge emission peak of the ZnO nanostructures dominantly appeared in the ultraviolet region. These results showed that ZnO nanorods and nanoflowers with high quality were synthesized on AZO/Ag/AZO-multilayer-film-coated PES substrates.

  3. Influence of N2 partial pressure on structural and microhardness properties of TiN/ZrN multilayers deposited by Ar/N2 vacuum arc discharge

    Science.gov (United States)

    Naddaf, M.; Abdallah, B.; Ahmad, M.; A-Kharroub, M.

    2016-08-01

    The influence of N2 partial pressure on structural, mechanical and wetting properties of multilayered TiN/ZrN thin films deposited on silicon substrates by vacuum arc discharge of (N2 + Ar) gas mixtures is investigated. X-ray diffraction (XRD) results show that the average texturing coefficient of (1 1 1) orientation and the grain size of both TiN and ZrN individual layers increase with increasing the N2 partial pressure. The Rutherford back scattering (RBS) measurements and analysis reveal that incorporation of the nitrogen in the film increases with increasing the N2 partial pressure and both TiN and ZrN individual layers have a nitrogen over-stoichiometry for N2 partial pressure ⩾50%. The change in the film micro-hardness is correlated to the changes in crystallographic texture, grain size, stoichiometry and the residual stress in the film as a function of the N2 partial pressure. In particular, stoichiometry of ZrN and TiN individual is found to play the vital role in determining the multilayer hardness. The multilayer film deposited at N2 partial pressure of 25% has the best stoichiometric ratio of both TiN and ZrN layers and the highest micro-hardness of about 32 GPa. In addition, water contact angle (WCA) measurements and analysis show a decrease in the work of adhesion on increasing the N2 partial pressure.

  4. Influence of N_2 partial pressure on structural and microhardness properties of TiN/ZrN multilayers deposited by Ar/N_2 vacuum arc discharge

    International Nuclear Information System (INIS)

    Naddaf, M.; Abdallah, B.; Ahmad, M.; A-Kharroub, M.

    2016-01-01

    The influence of N_2 partial pressure on structural, mechanical and wetting properties of multilayered TiN/ZrN thin films deposited on silicon substrates by vacuum arc discharge of (N_2 + Ar) gas mixtures is investigated. X-ray diffraction (XRD) results show that the average texturing coefficient of (1 1 1) orientation and the grain size of both TiN and ZrN individual layers increase with increasing the N_2 partial pressure. The Rutherford back scattering (RBS) measurements and analysis reveal that incorporation of the nitrogen in the film increases with increasing the N_2 partial pressure and both TiN and ZrN individual layers have a nitrogen over-stoichiometry for N_2 partial pressure ⩾50%. The change in the film micro-hardness is correlated to the changes in crystallographic texture, grain size, stoichiometry and the residual stress in the film as a function of the N_2 partial pressure. In particular, stoichiometry of ZrN and TiN individual is found to play the vital role in determining the multilayer hardness. The multilayer film deposited at N_2 partial pressure of 25% has the best stoichiometric ratio of both TiN and ZrN layers and the highest micro-hardness of about 32 GPa. In addition, water contact angle (WCA) measurements and analysis show a decrease in the work of adhesion on increasing the N_2 partial pressure.

  5. Analysis of the influence of structure on mechanical properties of multilayer Ni/Cu thin films for use in microelectronic technologies

    Directory of Open Access Journals (Sweden)

    Lamovec Jelena S.

    2015-01-01

    Full Text Available Multilayer Ni/Cu thin films were produced by dual-bath electrodeposition technique (DBT on polycrystalline cold-rolled Cu substrate. Different Ni/Cu multilayer structures were realized by changing of process parameters such as total film thickness, sublayer thickness and Ni/Cu sublayer thickness ratio. The mechanical properties of Vickers microhardness and interfacial adhesion in the films were investigated. Decreasing of sublayer thickness down to 300 nm and increasing of Ni:Cu sublayer thickness ratio to 1:4, lead to higher values of Vickers microhardness compared to monolayer metal films. Thin films with sublayer thicknesses from 75 nm to 5 μm show strong interfacial adhesion. A weak adhesion and sublayer exfoliation for the films with sublayer thickness greater than 5μm were found. Three-dimensional Ni microstructures can be fabricated using multilayer Ni/Cu film by selective etching of Cu layers in an acidic thiourea solution ('surface micromachining' technique.

  6. Acousto-optical and SAW propagation characteristics of temperature stable multilayered structures based on LiNbO{sub 3} and diamond

    Energy Technology Data Exchange (ETDEWEB)

    Shandilya, Swati; Sreenivas, K; Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India)

    2008-01-21

    Theoretical studies on the surface acoustic wave (SAW) properties of c-axis oriented LiNbO{sub 3}/IDT/diamond and diamond/IDT/128{sup 0} rotated Y-X cut LiNbO{sub 3} multilayered structures have been considered. Both layered structures exhibit a positive temperature coefficient of delay (TCD) characteristic, and a zero TCD device is obtained after integrating with an over-layer of either tellurium dioxide (TeO{sub 2}) or silicon dioxide (SiO{sub 2}). The presence of a TeO{sub 2} over-layer enhanced the electromechanical coupling coefficients of both multilayered structures, which acts as a better temperature compensation layer than SiO{sub 2}. The temperature stable TeO{sub 2}/LiNbO{sub 3}/IDT/diamond layered structure exhibits good electromechanical coefficient and higher phase velocity for SAW device applications. On the other hand, a high acousto-optical (AO) figure of merit (30-37) x 10{sup -15} s{sup 3} kg{sup -1} has been obtained for the temperature stable SiO{sub 2}/diamond/IDT/LiNbO{sub 3} layered structure indicating a promising device structure for AO applications.

  7. Acousto-optical and SAW propagation characteristics of temperature stable multilayered structures based on LiNbO3 and diamond

    Science.gov (United States)

    Shandilya, Swati; Sreenivas, K.; Gupta, Vinay

    2008-01-01

    Theoretical studies on the surface acoustic wave (SAW) properties of c-axis oriented LiNbO3/IDT/diamond and diamond/IDT/128° rotated Y-X cut LiNbO3 multilayered structures have been considered. Both layered structures exhibit a positive temperature coefficient of delay (TCD) characteristic, and a zero TCD device is obtained after integrating with an over-layer of either tellurium dioxide (TeO2) or silicon dioxide (SiO2). The presence of a TeO2 over-layer enhanced the electromechanical coupling coefficients of both multilayered structures, which acts as a better temperature compensation layer than SiO2. The temperature stable TeO2/LiNbO3/IDT/diamond layered structure exhibits good electromechanical coefficient and higher phase velocity for SAW device applications. On the other hand, a high acousto-optical (AO) figure of merit (30-37) × 10-15 s3 kg-1 has been obtained for the temperature stable SiO2/diamond/IDT/LiNbO3 layered structure indicating a promising device structure for AO applications.

  8. Acousto-optical and SAW propagation characteristics of temperature stable multilayered structures based on LiNbO3 and diamond

    International Nuclear Information System (INIS)

    Shandilya, Swati; Sreenivas, K; Gupta, Vinay

    2008-01-01

    Theoretical studies on the surface acoustic wave (SAW) properties of c-axis oriented LiNbO 3 /IDT/diamond and diamond/IDT/128 0 rotated Y-X cut LiNbO 3 multilayered structures have been considered. Both layered structures exhibit a positive temperature coefficient of delay (TCD) characteristic, and a zero TCD device is obtained after integrating with an over-layer of either tellurium dioxide (TeO 2 ) or silicon dioxide (SiO 2 ). The presence of a TeO 2 over-layer enhanced the electromechanical coupling coefficients of both multilayered structures, which acts as a better temperature compensation layer than SiO 2 . The temperature stable TeO 2 /LiNbO 3 /IDT/diamond layered structure exhibits good electromechanical coefficient and higher phase velocity for SAW device applications. On the other hand, a high acousto-optical (AO) figure of merit (30-37) x 10 -15 s 3 kg -1 has been obtained for the temperature stable SiO 2 /diamond/IDT/LiNbO 3 layered structure indicating a promising device structure for AO applications

  9. SiGe layer thickness effect on the structural and optical properties of well-organized SiGe/SiO2 multilayers

    Science.gov (United States)

    Vieira, E. M. F.; Toudert, J.; Rolo, A. G.; Parisini, A.; Leitão, J. P.; Correia, M. R.; Franco, N.; Alves, E.; Chahboun, A.; Martín-Sánchez, J.; Serna, R.; Gomes, M. J. M.

    2017-08-01

    In this work, we report on the production of regular (SiGe/SiO2)20 multilayer structures by conventional RF-magnetron sputtering, at 350 °C. Transmission electron microscopy, scanning transmission electron microscopy, raman spectroscopy, and x-ray reflectometry measurements revealed that annealing at a temperature of 1000 °C leads to the formation of SiGe nanocrystals between SiO2 thin layers with good multilayer stability. Reducing the nominal SiGe layer thickness (t SiGe) from 3.5-2 nm results in a transition from continuous SiGe crystalline layer (t SiGe ˜ 3.5 nm) to layers consisting of isolated nanocrystals (t SiGe ˜ 2 nm). Namely, in the latter case, the presence of SiGe nanocrystals ˜3-8 nm in size, is observed. Spectroscopic ellipsometry was applied to determine the evolution of the onset in the effective optical absorption, as well as the dielectric function, in SiGe multilayers as a function of the SiGe thickness. A clear blue-shift in the optical absorption is observed for t SiGe ˜ 2 nm multilayer, as a consequence of the presence of isolated nanocrystals. Furthermore, the observed near infrared values of n = 2.8 and k = 1.5 are lower than those of bulk SiGe compounds, suggesting the presence of electronic confinement effects in the nanocrystals. The low temperature (70 K) photoluminescence measurements performed on annealed SiGe/SiO2 nanostructures show an emission band located between 0.7-0.9 eV associated with the development of interface states between the formed nanocrystals and surrounding amorphous matrix.

  10. Structural and Morphological Difference Between Ti/TiN/TiCN Coatings Grown in Multilayer and Graded Form

    International Nuclear Information System (INIS)

    Restrepo, E.; Baena, A.; Agudelo, C.; Castillo, H.; Devia, A.; Marino, A.

    2006-01-01

    Thin films can be grown in super-lattice, multilayers and graded form, having each one advantages and disadvantages. The difference between multilayer and graded coatings is the interface. In multilayers the interface is abrupt and in graded coatings it is diffuse. The interface influences many chemical and physical properties of the materials, and its choice depends on the application. Graded coatings have the advantage of having gradual properties such as thermal expansion coefficient and lattice parameter, avoiding adherence problems due to good match between their component materials. In this work the comparison between some properties of coatings grown as multilayer and graded is performed. The materials are produced using the sputtering DC technique because of its facility to control the deposition parameters and generate a slow growth. The target is a disc of titanium and the samples are made of stainless steel 304. The working gases are argon, nitrogen and methane, which are mixed according to the material to be produced, i.e. Ti layer is grown with argon, the TiN film is produced with a mixture of argon and nitrogen, and the TiCN material is obtained mixing argon, nitrogen and methane. These materials are characterized with AFM in order to determine grain size and with XPS studying the chemical composition and performing depth profiles

  11. Irradiation Effect of Argon Ion on Interfacial Structure Fe(2nm/Si(tsi=0.5-2 nm Multilayer thin Film

    Directory of Open Access Journals (Sweden)

    S. Purwanto

    2010-04-01

    Full Text Available Investigation includes formation of interfacial structure of Fe(2nm/Si(tSi= 0.5-2 nm multilayer thin film and the behavior of antiferromagnetic coupling between Fe layers due to Argon ion irradiation was investigated. [Fe(2nm/Si]30 multilayers (MLs with a thickness of Si spacer 0.5 - 2 nanometer were prepared on n-type (100 Si substrate by the helicon plasma sputtering method. Irradiation were performed using 400keV Ar ion to investigate the behavior of magnetic properties of the Fe/Si MLs. The magnetization measurements of Fe/Si MLs after 400keV Ar ion irradiation show the degradation of antiferromagnetic behavior of Fe layers depend on the ion doses. The Magnetoresistance (MR measurements using by Four Point Probe (FPP method also confirm that MR ratio decrease after ion irradiation. X-ray diffraction (XRD patterns indicate that the intensity of a satellite peak induced by a superlattice structure does not change within the range of ion dose. These results imply that the surface of interface structures after ion irradiation become rough although the layer structures are maintained. Therefore, it is considered that the MR properties of Fe/Si MLs also are due to the metallic superlattice structures such as Fe/Cr and Co/Cu MLs.

  12. Induced piezoelectricity in isotropic biomaterial.

    Science.gov (United States)

    Zimmerman, R L

    1976-01-01

    Isotropic material can be made to exhibit piezoelectric effects by the application of a constant electric field. For insulators, the piezoelectric strain constant is proportional to the applied electric field and for semiconductors, an additional out-of-phase component of piezoelectricity is proportional to the electric current density in the sample. The two induced coefficients are proportional to the strain-dependent dielectric constant (depsilon/dS + epsilon) and resistivity (drho/dS - rho), respectively. The latter is more important at frequencies such that rhoepsilonomega less than 1, often the case in biopolymers.Signals from induced piezoelectricity in nature may be larger than those from true piezoelectricity. PMID:990389

  13. How Isotropic is the Universe?

    Science.gov (United States)

    Saadeh, Daniela; Feeney, Stephen M; Pontzen, Andrew; Peiris, Hiranya V; McEwen, Jason D

    2016-09-23

    A fundamental assumption in the standard model of cosmology is that the Universe is isotropic on large scales. Breaking this assumption leads to a set of solutions to Einstein's field equations, known as Bianchi cosmologies, only a subset of which have ever been tested against data. For the first time, we consider all degrees of freedom in these solutions to conduct a general test of isotropy using cosmic microwave background temperature and polarization data from Planck. For the vector mode (associated with vorticity), we obtain a limit on the anisotropic expansion of (σ_{V}/H)_{0}Universe is strongly disfavored, with odds of 121 000:1 against.

  14. Sectioning of multilayers to make a multilayer Laue lens

    International Nuclear Information System (INIS)

    Kang, Hyon Chol; Stephenson, G. Brian; Liu Chian; Conley, Ray; Khachatryan, Ruben; Wieczorek, Michael; Macrander, Albert T.; Yan Hanfei; Maser, Joerg; Hiller, Jon; Koritala, Rachel

    2007-01-01

    We report a process to fabricate multilayer Laue lenses (MLL's) by sectioning and thinning multilayer films. This method can produce a linear zone plate structure with a very large ratio of zone depth to width (e.g., >1000), orders of magnitude larger than can be attained with photolithography. Consequently, MLL's are advantageous for efficient nanofocusing of hard x rays. MLL structures prepared by the technique reported here have been tested at an x-ray energy of 19.5 keV, and a diffraction-limited performance was observed. The present article reports the fabrication techniques that were used to make the MLL's

  15. Temperature profiles induced by a stationary CW laser beam in a multi-layer structure: application to solar cell interconnect welding

    Energy Technology Data Exchange (ETDEWEB)

    Oh, J.E.; Ianno, N.J.; Ahmed, A.U.

    1985-01-01

    A three-dimensional heat transfer model for heating of a multilayer structure by a stationary Gaussian CW CO/sub 2/ laser beam is developed and applied to solar cell interconnect welding. This model takes into account the temperature dependence of the thermal conductivity and diffusivity as well as free carrier absorption of the incident beam in the silicon where appropriate. Finally, the theoretical temperature profiles are used to determine the weld spot size and these values are compared to results obtained from a simple welding experiment, where excellent agreement is obtained. 18 references, 13 figures.

  16. Multilayer epitaxial graphene grown on the (SiC 000 1-bar ) surface; structure and electronic properties

    International Nuclear Information System (INIS)

    Sprinkle, M; Hicks, J; Tinkey, H; Clark, M C; Hass, J; Conrad, E H; Tejeda, A; Taleb-Ibrahimi, A; Le Fevre, P; Bertran, F; Soukiassian, P; Martinotti, D

    2010-01-01

    We review the progress towards developing epitaxial graphene as a material for carbon electronics. In particular, we discuss improvements in epitaxial graphene growth, interface control and the understanding of multilayer epitaxial graphene's (MEG's) electronic properties. Although graphene grown on both polar faces of SiC will be discussed, our discussions will focus on graphene grown on the (0 0 0 1-bar ) C-face of SiC. The unique properties of C-face MEG have become apparent. These films behave electronically like a stack of nearly independent graphene sheets rather than a thin Bernal stacked graphite sample. The origins of multilayer graphene's electronic behaviour are its unique highly ordered stacking of non-Bernal rotated graphene planes. While these rotations do not significantly affect the inter-layer interactions, they do break the stacking symmetry of graphite. It is this broken symmetry that leads to each sheet behaving like isolated graphene planes.

  17. Micro-structural characterization of low resistive metallic Ni germanide growth on annealing of Ni-Ge multilayer

    Directory of Open Access Journals (Sweden)

    Mitali Swain

    2015-07-01

    Full Text Available Nickel-Germanides are an important class of metal semiconductor alloys because of their suitability in microelectronics applications. Here we report successful formation and detailed characterization of NiGe metallic alloy phase at the interfaces of a Ni-Ge multilayer on controlled annealing at relatively low temperature ∼ 250 °C. Using x-ray and polarized neutron reflectometry, we could estimate the width of the interfacial alloys formed with nanometer resolution and found the alloy stoichiometry to be equiatomic NiGe, a desirable low-resistance interconnect. We found significant drop in resistance (∼ 50% on annealing the Ni-Ge multilayer suggesting metallic nature of alloy phase at the interfaces. Further we estimated the resistivity of the alloy phase to be ∼ 59μΩ cm.

  18. Supramolecular Langmuir monolayers and multilayered vesicles of self-assembling DNA–lipid surface structures and their further implications in polyelectrolyte-based cell transfections

    Energy Technology Data Exchange (ETDEWEB)

    Demirsoy, Fatma Funda Kaya [Ankara University, The Central Laboratory of The Institute of Biotechnology (Turkey); Eruygur, Nuraniye [Gazi University, Department of Pharmacognosy, Faculty of Pharmacy (Turkey); Süleymanoğlu, Erhan, E-mail: erhans@mail.ru [Gazi University, Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Turkey)

    2015-01-15

    The basic interfacial characteristics of DNA–lipid recognitions have been studied. The complex structures of individual unbound DNA molecules and their binary and ternary complexes with zwitterionic lipids and divalent cations were followed by employing lipid monolayers at the air–liquid interfaces, as well as by performing various microscopic, spectroscopic, and thermodynamic measurements with multilayered vesicles. The pressure-area isotherms depicted that Mg{sup 2+}-ions increase the surface pressure of lipid films and thus give rise to electrostatic and hydrophobic lipid–DNA interactions in terms of DNA adsorption, adhesion, and compaction. These features were further approached by using multilamellar vesicles with a mean diameter of 850 nm, where a metal ion-directed nucleic acid compaction and condensation effects were shown. The data obtained show the effectiveness of Langmuir monolayers and lipid multilayers in studying nucleic acid–lipid recognitions. The data provide with further details and support previous reports on mainly structural features of these recognitions. Biomolecular surface recognition events were presented in direct link with spectral and thermodynamic features of lipid vesicle–polynucleotide complex formations. The results serve to build a theoretical model considering the use of neutral lipids in lipoplex designs as a polyelectrolyte alternatives to the currently employed cytotoxic cationic liposomes. The supramolecular structures formed and their possible roles in interfacial electrostatic and hydrophobic mechanisms of endosomal escape in relevant cell transfection assays are particularly emphasized.

  19. Supramolecular Langmuir monolayers and multilayered vesicles of self-assembling DNA–lipid surface structures and their further implications in polyelectrolyte-based cell transfections

    International Nuclear Information System (INIS)

    Demirsoy, Fatma Funda Kaya; Eruygur, Nuraniye; Süleymanoğlu, Erhan

    2015-01-01

    The basic interfacial characteristics of DNA–lipid recognitions have been studied. The complex structures of individual unbound DNA molecules and their binary and ternary complexes with zwitterionic lipids and divalent cations were followed by employing lipid monolayers at the air–liquid interfaces, as well as by performing various microscopic, spectroscopic, and thermodynamic measurements with multilayered vesicles. The pressure-area isotherms depicted that Mg 2+ -ions increase the surface pressure of lipid films and thus give rise to electrostatic and hydrophobic lipid–DNA interactions in terms of DNA adsorption, adhesion, and compaction. These features were further approached by using multilamellar vesicles with a mean diameter of 850 nm, where a metal ion-directed nucleic acid compaction and condensation effects were shown. The data obtained show the effectiveness of Langmuir monolayers and lipid multilayers in studying nucleic acid–lipid recognitions. The data provide with further details and support previous reports on mainly structural features of these recognitions. Biomolecular surface recognition events were presented in direct link with spectral and thermodynamic features of lipid vesicle–polynucleotide complex formations. The results serve to build a theoretical model considering the use of neutral lipids in lipoplex designs as a polyelectrolyte alternatives to the currently employed cytotoxic cationic liposomes. The supramolecular structures formed and their possible roles in interfacial electrostatic and hydrophobic mechanisms of endosomal escape in relevant cell transfection assays are particularly emphasized

  20. Improvement in R{sub off}/R{sub on} ratio and reset current via combining compliance current with multilayer structure in tantalum oxide-based RRAM

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaorong; Feng, Jie [Shanghai Jiao Tong University, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai (China)

    2015-07-15

    Improvements in the R{sub off}/R{sub on} ratio and reset current are required prior to the practical application of RRAM. To achieve this improvement, tantalum oxide-based RRAM devices with multilayer structure (bi-layer and tri-layer) were fabricated and various compliance currents were adopted. The reset current of 40 μA was observed; the R{sub off}/R{sub on} ratio increased to more than 20 in the tri-layer structure device. Resistance changes in two types of devices under voltage pulses with different pulse width were also conducted. The tri-layer device exhibited lower reset voltage and higher R{sub off}/R{sub on} ratio than the bi-layer device under voltage pulses. X-ray photoelectron spectroscopy demonstrated the formation of Ta{sub 2}O{sub 5} via plasma oxidation, and there was an oxygen gradient in the multilayer devices. The results demonstrated that the tri-layer structure with oxygen gradient was an effective method for achieving better device performance. Additionally, it is implied that reasonable control of the proportion of TaO{sub 2} and Ta{sub 2}O{sub 5} and compliance current can improve device performance. (orig.)

  1. 3D geometrically isotropic metamaterial for telecom wavelengths

    DEFF Research Database (Denmark)

    Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei

    2009-01-01

    of the unit cell is not infinitely small, certain geometrical constraints have to be fulfilled to obtain an isotropic response of the material [3]. These conditions and the metal behaviour close to the plasma frequency increase the design complexity. Our unit cell is composed of two main parts. The first part...... is obtained in a certain bandwidth. The proposed unit cell has the cubic point group of symmetry and being repeatedly placed in space can effectively reveal isotropic optical properties. We use the CST commercial software to characterise the “cube-in-cage” structure. Reflection and transmission spectra...

  2. Use of information technologies when designing multilayered plates and covers with filler of various types

    Science.gov (United States)

    Golova, T. A.; Magerramova, I. A.; Ivanov, S. A.

    2018-05-01

    Calculation of multilayered plates and covers does not consider anisotropic properties of a construction. Calculation comes down to uniform isotropic covers and definition of one of intense and deformation conditions of constructions. The existing techniques consider work of multilayered designs by means of various coefficients. The article describes the optimized algorithm of operations when designing multilayered plates and covers with filler of various types on the basis of the conducted researches. It is dealt with a development engineering algorithm of calculation of multi-layer constructions of walls. Software is created which allows one to carry out assessment of intense and deformation conditions of constructions of walls.

  3. Thermalization vs. isotropization and azimuthal fluctuations

    International Nuclear Information System (INIS)

    Mrowczynski, Stanislaw

    2005-01-01

    Hydrodynamic description requires a local thermodynamic equilibrium of the system under study but an approximate hydrodynamic behaviour is already manifested when a momentum distribution of liquid components is not of equilibrium form but merely isotropic. While the process of equilibration is relatively slow, the parton system becomes isotropic rather fast due to the plasma instabilities. Azimuthal fluctuations observed in relativistic heavy-ion collisions are argued to distinguish between a fully equilibrated and only isotropic parton system produced in the collision early stage

  4. Evolution of the structure and hydrogen bonding configuration in annealed hydrogenated a-Si/a-Ge multilayers and layers

    International Nuclear Information System (INIS)

    Frigeri, C.; Nasi, L.; Serenyi, M.; Khanh, N.Q.; Csik, A.; Szekrenyes, Zs.; Kamaras, K.

    2012-01-01

    its bonds to Si (Ge) can be broken under strong illumination (Staebler-Wronski effect). Moreover, the H bond to Si (Ge) may have several configurations (mono-, di-, tri-hydride as well as chains of them) that can change in density and type depending on the growth conditions and applied heat treatment. In this work the relationship between morphological structure and H bonding configuration in sputtered a-Si/a-Ge multilayers (MLs) and a-Si layers submitted to annealing has been studied by AFM (Atomic Force Microscopy) and Fourier transform infrared (FTIR) spectroscopy. After annealing the samples exhibited blisters whose size and height increase with increasing annealing time/temperature and/or H content. Similarly, FTIR showed that the total H bonded to Si and Ge, in the case of MLs, or to Si, for the single a-Si layers, decreased in the annealed samples indicating that H is released from its bonds to the host atoms. In the MLs the H release was quicker in Ge than in Si because of the smaller binding energy of the Ge-H bond with respect to the Si-H one. It is hypothesized that the liberated H atoms gathered into nano-cavities where they could react with each other producing molecular H 2 . The growth in size of the nano-cavities, both by coalescence at the beginning and later also by thermal expansion of the trapped H 2 gas, is argued to eventually produce larger H 2 -containing bubbles that may plastically deform the layer with formation of surface blisters.

  5. A setup for probing ultra-short soft X-ray diffraction by means of curved multilayer structures

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, D., E-mail: ksenzov@physik.uni-siegen.de [Solid State Physics Group, University of Siegen, 57068 Siegen (Germany); Schlemper, Ch.; Davtyan, A. [Solid State Physics Group, University of Siegen, 57068 Siegen (Germany); Bajt, S. [Photon Science, Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg (Germany); Schaefers, F. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, BESSY II, Albert-Einstein-Str.15, 12489 Berlin (Germany); Pietsch, U. [Solid State Physics Group, University of Siegen, 57068 Siegen (Germany)

    2011-10-01

    We propose an experimental setup allowing for measurement of the whole diffraction curve of a Bragg peak by single pulse exposure where a bended sample is illuminated by a set of parallel pencil beams under locally different angles of incidence. The feasibility is demonstrated probing the 1st order Bragg peak of Ru/B{sub 4}C multilayers for photon energies close to Boron K-edge. The evaluated optical parameters recorded from bent sample under fixed sample setting equals those obtained from a flat sample using angular dispersive recording. Subsequently our scheme is appropriate for solid state experiment using at high intense femtosecond pulses provided by free-electron laser sources.

  6. Structural, optical and compositional stability of MoS2 multi-layer flakes under high dose electron beam irradiation

    Science.gov (United States)

    Rotunno, E.; Fabbri, F.; Cinquanta, E.; Kaplan, D.; Longo, M.; Lazzarini, L.; Molle, A.; Swaminathan, V.; Salviati, G.

    2016-06-01

    MoS2 multi-layer flakes, exfoliated from geological molybdenite, have been exposed to high dose electron irradiation showing clear evidence of crystal lattice and stoichiometry modifications. A massive surface sulfur depletion is induced together with the consequent formation of molybdenum nanoislands. It is found that a nanometric amorphous carbon layer, unwillingly deposited during the transmission electron microscope experiments, prevents the formation of the nanoislands. In the absence of the carbon layer, the formation of molybdenum grains proceeds both on the top and bottom surfaces of the flake. If carbon is present on both the surfaces then the formation of Mo grains is completely prevented.

  7. Off-Specular Synchrotron Moessbauer Reflectometry: A Novel Tool for Studying the Domain Structure in Antiferromagnetic Multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, D. L.; Bottyan, L.; Deak, L. [KFKI Research Institute for Particle and Nuclear Physics (Hungary); Degroote, B.; Dekoster, J. [K.U. Leuven, Instituut voor Kern- en Stralingsfysica (Belgium); Leupold, O. [European Synchrotron Radiation Facility (France); Major, M. [KFKI Research Institute for Particle and Nuclear Physics (Hungary); Meersschaut, J. [K.U. Leuven, Instituut voor Kern- en Stralingsfysica (Belgium); Rueffer, R. [European Synchrotron Radiation Facility (France); Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics (Hungary); Vantomme, A. [K.U. Leuven, Instituut voor Kern- en Stralingsfysica (Belgium)

    2002-06-15

    The off-specular (diffuse) nuclear resonant reflectivity of synchrotron radiation is a sensitive measure of the lateral autocorrelation of the magnetisation in thin films and multilayers. The width of the diffuse scattering peak measured at an electronically forbidden reflection is inversely proportional to the in-plane correlation length of the magnetisation direction. The average size of the in-plane antiferromagnetic domains is determined in different states of the same Fe/Cr superlattice. The hyperfine magnetic fields in coexisting small and large domains are measured independently.

  8. Single and multi-layered core-shell structures based on ZnO nanorods obtained by aerosol assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sáenz-Trevizo, A.; Amézaga-Madrid, P.; Pizá-Ruiz, P.; Antúnez-Flores, W.; Ornelas-Gutiérrez, C.; Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx

    2015-07-15

    Core–shell nanorod structures were prepared by a sequential synthesis using an aerosol assisted chemical vapor deposition technique. Several samples consisting of ZnO nanorods were initially grown over TiO{sub 2} film-coated borosilicate glass substrates, following the synthesis conditions reported elsewhere. Later on, a uniform layer consisting of individual Al, Ni, Ti or Fe oxides was grown onto ZnO nanorod samples forming the so-called single MO{sub x}/ZnO nanorod core–shell structures, where MO{sub x} was the metal oxide shell. Additionally, a three-layer core–shell sample was developed by growing Fe, Ti and Fe oxides alternately, onto the ZnO nanorods. The microstructure of the core–shell materials was characterized by grazing incidence X-ray diffraction, scanning and transmission electron microscopy. Energy dispersive X-ray spectroscopy was employed to corroborate the formation of different metal oxides. X-ray diffraction outcomes for single core–shell structures showed solely the presence of ZnO as wurtzite and TiO{sub 2} as anatase. For the multi-layered shell sample, the existence of Fe{sub 2}O{sub 3} as hematite was also detected. Morphological observations suggested the existence of an outer material grown onto the nanorods and further microstructural analysis by HR-STEM confirmed the development of core–shell structures in all cases. These studies also showed that the individual Al, Fe, Ni and Ti oxide layers are amorphous; an observation that matched with X-ray diffraction analysis where no apparent extra oxides were detected. For the multi-layered sample, the development of a shell consisting of three different oxide layers onto the nanorods was found. Overall results showed that no alteration in the primary ZnO core was produced during the growth of the shells, indicating that the deposition technique used herein was and it is suitable for the synthesis of homogeneous and complex nanomaterials high in quality and purity. In addition

  9. Structure and magnetic properties of Co/Pd multilayers prepared on porous nanotubular TiO{sub 2} substrate

    Energy Technology Data Exchange (ETDEWEB)

    Maximenko, A. [Institute of Nuclear Physics Polish Academy of Sciences, PL 31-342 Krakow (Poland); Research Institute for Nuclear Problems of Belarusian State University, Bobruiskaya str. 11, 220030 Minsk (Belarus); Marszałek, M., E-mail: marta.marszalek@ifj.edu.pl [Institute of Nuclear Physics Polish Academy of Sciences, PL 31-342 Krakow (Poland); Fedotova, J. [Research Institute for Nuclear Problems of Belarusian State University, Bobruiskaya str. 11, 220030 Minsk (Belarus); Zarzycki, A.; Zabila, Y. [Institute of Nuclear Physics Polish Academy of Sciences, PL 31-342 Krakow (Poland); Kupreeva, O.; Lazarouk, S. [Belarusian State University of Informatics and Radioelectronics, P.Brovka str. 6, 220013 Minsk (Belarus); Kasiuk, J. [Research Institute for Nuclear Problems of Belarusian State University, Bobruiskaya str. 11, 220030 Minsk (Belarus); Zavadski, S. [Belarusian State University of Informatics and Radioelectronics, P.Brovka str. 6, 220013 Minsk (Belarus)

    2017-07-15

    Highlights: • nanotubular templates of TiO{sub 2} were applied for fabrication of Co/Pd antidot arrays. • morphology of porous multilayers followed the features of the initial template. • the formation of Co0.4Pd0.6 alloy at the Co/Pd interface. • the conservation of perpendicular magnetic anisotropy in the CoPd porous film. • change of the magnetization reversal from domain wall motion to coherent rotation. - Abstract: We used porous nanotubular templates of TiO{sub 2} for fabrication of Co/Pd antidot arrays with strong perpendicular magnetic anisotropy. The morphology of porous multilayers followed the features of the initial template demonstrating a pronounced relief consisting of the cells with periodic pores with small inclination. We confirmed the formation of Co{sub 0.4}Pd{sub 0.6} alloy at the Co/Pd interface. We observed the conservation of perpendicular magnetic anisotropy in the Co/Pd porous film with coercive field H{sub C} = 2.7 kOe, enhanced with respect to the continuous film due to the pinning of magnetic moments on the nanopore edges. From angular dependence of the coercive field H{sub C} we deduced the change of the magnetization reversal mechanism from domain wall motion in the continuous film to the predominantly coherent rotation mechanism in the porous film.

  10. Macroscopic simulation of isotropic permanent magnets

    International Nuclear Information System (INIS)

    Bruckner, Florian; Abert, Claas; Vogler, Christoph; Heinrichs, Frank; Satz, Armin; Ausserlechner, Udo; Binder, Gernot; Koeck, Helmut; Suess, Dieter

    2016-01-01

    Accurate simulations of isotropic permanent magnets require to take the magnetization process into account and consider the anisotropic, nonlinear, and hysteretic material behaviour near the saturation configuration. An efficient method for the solution of the magnetostatic Maxwell equations including the description of isotropic permanent magnets is presented. The algorithm can easily be implemented on top of existing finite element methods and does not require a full characterization of the hysteresis of the magnetic material. Strayfield measurements of an isotropic permanent magnet and simulation results are in good agreement and highlight the importance of a proper description of the isotropic material. - Highlights: • Simulations of isotropic permanent magnets. • Accurate calculation of remanence magnetization and strayfield. • Comparison with strayfield measurements and anisotropic magnet simulations. • Efficient 3D FEM–BEM coupling for solution of Maxwell equations.

  11. FEM Analysis of Sezawa Mode SAW Sensor for VOC Based on CMOS Compatible AlN/SiO2/Si Multilayer Structure

    Directory of Open Access Journals (Sweden)

    Muhammad Zubair Aslam

    2018-05-01

    Full Text Available A Finite Element Method (FEM simulation study is conducted, aiming to scrutinize the sensitivity of Sezawa wave mode in a multilayer AlN/SiO2/Si Surface Acoustic Wave (SAW sensor to low concentrations of Volatile Organic Compounds (VOCs, that is, trichloromethane, trichloroethylene, carbon tetrachloride and tetrachloroethene. A Complimentary Metal-Oxide Semiconductor (CMOS compatible AlN/SiO2/Si based multilayer SAW resonator structure is taken into account for this purpose. In this study, first, the influence of AlN and SiO2 layers’ thicknesses over phase velocities and electromechanical coupling coefficients (k2 of two SAW modes (i.e., Rayleigh and Sezawa is analyzed and the optimal thicknesses of AlN and SiO2 layers are opted for best propagation characteristics. Next, the study is further extended to analyze the mass loading effect on resonance frequencies of SAW modes by coating a thin Polyisobutylene (PIB polymer film over the AlN surface. Finally, the sensitivity of the two SAW modes is examined for VOCs. This study concluded that the sensitivity of Sezawa wave mode for 1 ppm of selected volatile organic gases is twice that of the Rayleigh wave mode.

  12. Large enhancement of Blocking temperature by control of interfacial structures in Pt/NiFe/IrMn/MgO/Pt multilayers

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2015-09-01

    Full Text Available The Blocking temperature (TB of Pt/NiFe/IrMn/MgO/Pt multilayers was greatly enhanced from far below room temperature (RT to above RT by inserting 1 nm thick Mg layer at IrMn/MgO interface. Furthermore, the exchange bias field (Heb was increased as well by the control of interfacial structures. The evidence for a significant fraction of Mn-O bonding at IrMn/MgO interface without Mg insertion layer was provided by X-ray photoelectron spectroscopy. The bonding between Mn and O can decrease the antiferromagnetism of IrMn film, leading to lower value of TB in Pt/NiFe/IrMn/MgO/Pt multilayers. Ultrathin Mg film inserted at IrMn/MgO interface acting as an oxygen sinking layer can suppress the oxidation reactions between Mn and O and reduce the formation of Mn-O bonding greatly. The oxidation suppression results in the recovery of the antiferromagnetism of IrMn film, which can enhance TB and Heb. Furthermore, the high resolution transmission electron microscopy demonstrates that the Mg insertion layer can efficiently promote a high-quality MgO (200 texture. This study will enhance the understanding of physics in antiferromagnet-based spintronic devices.

  13. Numerical Modelling for the Thermal Performance Assessment of a Semi-Opaque Façade with a Multilayer of Nano-Structured and Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Carla Balocco

    2017-10-01

    Full Text Available The aim of our present study was to assess and compare the thermo-physical and energy behaviour of different integrated building façades, using a multi-physics simulation approach. Advanced integrated façades composed of opaque modules, one of them with a phase change materials (PCM layer, the others with multilayer panels, combined with transparent ones, consisting of nano-structured materials and new-generation photovoltaic systems, were investigated. A multi-physics approach was used for the design optimization of the studied components and evaluation of their thermo-physical and heat transfer performance. In particular, computational fluid dynamics (CFD multi-physics transient simulations were performed to assess air temperature and velocity fields inside the ventilated cavities. Analysis of heat and mass exchange through all the components was assessed during heating and cooling mode of a reference building. The typical Mediterranean climate was considered. Results comparison allowed the dynamic heat transfer evaluation of the multilayer façades as a function of variable climatic conditions, and their flexibility and adaptability exploitation, when different energy strategies are pursued. The multi-physics modelling approach used, proved to be a strong tool for the energy design optimization and energy sustainability evaluation of different advance materials and building components.

  14. Isotropic stars in general relativity

    International Nuclear Information System (INIS)

    Mak, M.K.; Harko, T.

    2013-01-01

    We present a general solution of the Einstein gravitational field equations for the static spherically symmetric gravitational interior space-time of an isotropic fluid sphere. The solution is obtained by transforming the pressure isotropy condition, a second order ordinary differential equation, into a Riccati type first order differential equation, and using a general integrability condition for the Riccati equation. This allows us to obtain an exact non-singular solution of the interior field equations for a fluid sphere, expressed in the form of infinite power series. The physical features of the solution are studied in detail numerically by cutting the infinite series expansions, and restricting our numerical analysis by taking into account only n=21 terms in the power series representations of the relevant astrophysical parameters. In the present model all physical quantities (density, pressure, speed of sound etc.) are finite at the center of the sphere. The physical behavior of the solution essentially depends on the equation of state of the dense matter at the center of the star. The stability properties of the model are also analyzed in detail for a number of central equations of state, and it is shown that it is stable with respect to the radial adiabatic perturbations. The astrophysical analysis indicates that this solution can be used as a realistic model for static general relativistic high density objects, like neutron stars. (orig.)

  15. Superconductivity in multilayer perovskite. Weak coupling analysis

    International Nuclear Information System (INIS)

    Koikegami, Shigeru; Yanagisawa, Takashi

    2006-01-01

    We investigate the superconductivity of a three-dimensional d-p model with a multilayer perovskite structure on the basis of the second-order perturbation theory within the weak coupling framework. Our model has been designed with multilayer high-T c superconducting cuprates in mind. In our model, multiple Fermi surfaces appear, and the component of a superconducting gap function develops on each band. We have found that the multilayer structure can stabilize the superconductivity in a wide doping range. (author)

  16. Evolution of interface and surface structures of ZnO/Al2 O3 multilayers upon rapid thermal annealing

    Science.gov (United States)

    Liu, H. H.; Chen, Q. Y.; Chang, C. F.; Hsieh, W. C.; Wadekar, P. V.; Huang, H. C.; Liao, H. H.; Seo, H. W.; Chu, W. K.

    2015-03-01

    ZnO ∖Al2O3 multilayers were deposited on sapphires by atomic layer deposition at 85°C. This low substrate temperature ensures good interface smoothness useful for study of interfacial reaction or interdiffusion. Our study aimed at the effects of rapid thermal annealing at different annealing temperatures, times and PAr:PO2. XRR and XRD techniques were used to investigate the kinetics from which various terms of the activation energies could be determined. HR-TEM and electron diffraction were carried out to correlate the microstructures and interfacial alignments as a result of the reactions. AFM were used to assist SEM profiling of the surface morphological evolution in association with the TEM observations.

  17. Heteroepitaxial growth of strained multilayer superconducting thin films of Nd1.83Ce0.17CuOx/YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Gupta, A.; Gross, R.; Olsson, E.; Segmueller, A.; Koren, G.; Tsuei, C.C.

    1990-01-01

    Heteroepitaxial growth of strained multilayer thin films of YBa 2 Cu 3 O 7-δ /Nd 1.83 Ce 0.17 CuO x by pulsed-laser deposition is reported. The coherency strain results in biaxial compression of the tetragonal Nd 1.83 Ce 0.17 CuO x layers, whereas the biaxial tension in the YBa 2 Cu 3 O 7-δ layers removes the orthorhombic distortion and makes the unit cell isotropic in the basal plane (a=b). Depending on their oxygen content, either the YBa 2 Cu 3 O 7-δ or the Nd 1.83 Ce 0.17 CuO x layers are superconducting in these multilayers. The strain-induced structural modification has a significant influence on the superconducting transition temperature of the YBa 2 Cu 3 O 7-δ layers

  18. Ordered organic-organic multilayer growth

    Science.gov (United States)

    Forrest, Stephen R; Lunt, Richard R

    2015-01-13

    An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.

  19. An Observation of Diamond-Shaped Particle Structure in a Soya Phosphatidylcohline and Bacteriorhodopsin Composite Langmuir Blodgett Film Fabricated by Multilayer Molecular Thin Film Method

    Science.gov (United States)

    Tsujiuchi, Y.; Makino, Y.

    A composite film of soya phosphatidylcohline (soya PC) and bacteriorhodopsin (BR) was fabricated by the multilayer molecular thin film method using fatty acid and lipid on a quartz substrate. Direct Force Microscopy (DFM), UV absorption spectra and IR absorption spectra of the film were characterized on the detail of surface structure of the film. The DFM data revealed that many rhombus (diamond-shaped) particles were observed in the film. The spectroscopic data exhibited the yield of M-intermediate of BR in the film. On our modelling of molecular configuration indicate that the coexistence of the strong inter-molecular interaction and the strong inter-molecular interaction between BR trimmers attributed to form the particles.

  20. Magnetic and structural properties of Fe/Pd multilayers studied by magnetic x-ray dichroism and x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Mini, S.M.; Fullerton, E.E.; Sowers, C.H.; Fontaine, A.; Pizzini, S.; Bommannavar, A.S.; Traverse, A.; Baudelet, F.

    1994-12-01

    The results of magnetic circular x-ray dichroism (MCXD) measurements and extended x-ray absorption fine structure measurements (EXAFS) of the Fe K-edges of textured Fe(110)/Pd(111) multilayers are reported. The EXAFS results indicates that the iron in the system goes from bcc to a more densely packed system as the thickness of the iron layer is decreased. The magnetic properties were measured by SQUID magnetometry from 5-350 K. For all the samples, the saturation magnetization was significantly enhanced over the bulk values indicating the interface Pd atoms are polarized by the Fe layer. The enhancement corresponds to a moment of ∼2.5μ B per interface Pd atom

  1. Atomic structures of Ruddlesden-Popper faults in LaCoO3/SrRuO3 multilayer thin films induced by epitaxial strain

    Science.gov (United States)

    Wang, Wei; Zhang, Hui; Shen, Xi; Guan, Xiangxiang; Yao, Yuan; Wang, Yanguo; Sun, Jirong; Yu, Richeng

    2018-05-01

    In this paper, scanning transmission electron microscopy is used to study the microstructures of the defects in LaCoO3/SrRuO3 multilayer films grown on the SrTiO3 substrates, and these films have different thickness of SrRuO3 (SRO) layers. Several types of Ruddlesden-Popper (R.P.) faults at an atomic level are found, and these chemical composition fluctuations in the growth process are induced by strain fields originating from the film-film and film-substrate lattice mismatches. Furthermore, we propose four types of structural models based on the atomic arrangements of the R.P. planar faults, which severely affect the functional properties of the films.

  2. Modeling the Elastic and Damping Properties of the Multilayered Torsion Bar-Blade Structure of Rotors of Light Helicopters of the New Generation. 1. Finite-Element Approximation of the Torsion Bar

    Science.gov (United States)

    Paimushin, V. N.; Shishkin, V. M.

    2015-11-01

    A prismatic semiquadratic element with a nonclassical approximation of its displacements is suggested for modeling the composite and soft layers of a torsion bar and multilayered plate-rod structures. The stiffness, weight, damping, and geometric stiffness matrices of the above-mentioned element are obtained. Expressions for computing stresses in the finite element under the action of static loads and vibrations in the resonance zone are presented. Test examples confirming the validity of the element suggested are given. An example of finite element determination of the dynamic response of a multilayered torsion bar in the resonant mode is considered.

  3. Multilayer airdrome pavement modeling on the base of numeically-analythical method of potential

    Directory of Open Access Journals (Sweden)

    О.М. Шевченко

    2004-04-01

    Full Text Available  There are problems of the take into account the multilayered foundation distributive properties which are ignored in the elementary case of Winkler foundation at calculation of constructions on the elastic foundation. In article the apparatus realization of numerically-analytical method of potential for a problem about stress and strain state analysis is considered for the multilayered pavement consisting from two isotropic layers with a separating layer between.

  4. Structure and magnetic properties of La2/3Sr1/3MnO3/CaMnO3 multilayers

    International Nuclear Information System (INIS)

    Granada, Mara; Sirena, Martin; Steren, Laura B.; Leyva, Gabriela

    2004-01-01

    Structural and magnetic properties of manganite-based multilayers, La 2/3 Sr 1/3 MnO 3 /CaMnO 3 , composed of ferromagnetic metals and antiferromagnetic insulator barriers are investigated in this work. Compounds of similar lattice parameters were used to build the samples, so we expect an excellent stacking of the different layers along the structure. To get a first insight of this system, the crystalline structure of a series of samples, grown on (1 0 0) SrTiO 3 and (1 0 0) MgO single-crystalline substrates, has been studied. X-ray diffraction patterns show that the structure is strongly textured in the (1 0 0) direction when grown on SrTiO 3 , regardless the composition of the bottom layer. A different result is found on the same system grown on MgO: when the buffer layer is CaMnO 3 , the structure grows in the (1 1 0) orientation while it grows in the (1 0 0) direction when the bottom layer is La 2/3 Sr 1/3 MnO 3 . Magnetic coupling of the ferromagnetic layers across the antiferromagnetic spacer has been studied with magnetization measurements

  5. New procedure to design low radar cross section near perfect isotropic and homogeneous triangular carpet cloaks.

    Science.gov (United States)

    Sharifi, Zohreh; Atlasbaf, Zahra

    2016-10-01

    A new design procedure for near perfect triangular carpet cloaks, fabricated based on only isotropic homogeneous materials, is proposed. This procedure enables us to fabricate a cloak with simple metamaterials or even without employing metamaterials. The proposed procedure together with an invasive weed optimization algorithm is used to design carpet cloaks based on quasi-isotropic metamaterial structures, Teflon and AN-73. According to the simulation results, the proposed cloaks have good invisibility properties against radar, especially monostatic radar. The procedure is a new method to derive isotropic and homogeneous parameters from transformation optics formulas so we do not need to use complicated structures to fabricate the carpet cloaks.

  6. Classification of integrable Volterra-type lattices on the sphere: isotropic case

    International Nuclear Information System (INIS)

    Adler, V E

    2008-01-01

    The symmetry approach is used for classification of integrable isotropic vector Volterra lattices on the sphere. The list of integrable lattices consists mainly of new equations. Their symplectic structure and associated PDE of vector NLS type are discussed

  7. Single layers and multilayers of GaN and AlN in square-octagon structure: Stability, electronic properties, and functionalization

    Science.gov (United States)

    Gürbüz, E.; Cahangirov, S.; Durgun, E.; Ciraci, S.

    2017-11-01

    Further to planar single-layer hexagonal structures, GaN and AlN can also form free-standing, single-layer structures constructed from squares and octagons. We performed an extensive analysis of dynamical and thermal stability of these structures in terms of ab initio finite-temperature molecular dynamics and phonon calculations together with the analysis of Raman and infrared active modes. These single-layer square-octagon structures of GaN and AlN display directional mechanical properties and have wide, indirect fundamental band gaps, which are smaller than their hexagonal counterparts. These density functional theory band gaps, however, increase and become wider upon correction. Under uniaxial and biaxial tensile strain, the fundamental band gaps decrease and can be closed. The electronic and magnetic properties of these single-layer structures can be modified by adsorption of various adatoms, or by creating neutral cation-anion vacancies. The single-layer structures attain magnetic moment by selected adatoms and neutral vacancies. In particular, localized gap states are strongly dependent on the type of vacancy. The energetics, binding, and resulting electronic structure of bilayer, trilayer, and three-dimensional (3D) layered structures constructed by stacking the single layers are affected by vertical chemical bonds between adjacent layers. In addition to van der Waals interaction, these weak vertical bonds induce buckling in planar geometry and enhance their binding, leading to the formation of stable 3D layered structures. In this respect, these multilayers are intermediate between van der Waals solids and wurtzite crystals, offering a wide range of tunability.

  8. Electromagnetic illusion with isotropic and homogeneous materials through scattering manipulation

    International Nuclear Information System (INIS)

    Yang, Fan; Mei, Zhong Lei; Jiang, Wei Xiang; Cui, Tie Jun

    2015-01-01

    A new isotropic and homogeneous illusion device for electromagnetic waves is proposed. This single-shelled device can change the fingerprint of the covered object into another one by manipulating the scattering of the composite structure. We show that an electrically small sphere can be disguised as another small one with different electromagnetic parameters. The device can even make a dielectric sphere (electrically small) behave like a conducting one. Full-wave simulations confirm the performance of proposed illusion device. (paper)

  9. Lagrangian statistics in compressible isotropic homogeneous turbulence

    Science.gov (United States)

    Yang, Yantao; Wang, Jianchun; Shi, Yipeng; Chen, Shiyi

    2011-11-01

    In this work we conducted the Direct Numerical Simulation (DNS) of a forced compressible isotropic homogeneous turbulence and investigated the flow statistics from the Lagrangian point of view, namely the statistics is computed following the passive tracers trajectories. The numerical method combined the Eulerian field solver which was developed by Wang et al. (2010, J. Comp. Phys., 229, 5257-5279), and a Lagrangian module for tracking the tracers and recording the data. The Lagrangian probability density functions (p.d.f.'s) have then been calculated for both kinetic and thermodynamic quantities. In order to isolate the shearing part from the compressing part of the flow, we employed the Helmholtz decomposition to decompose the flow field (mainly the velocity field) into the solenoidal and compressive parts. The solenoidal part was compared with the incompressible case, while the compressibility effect showed up in the compressive part. The Lagrangian structure functions and cross-correlation between various quantities will also be discussed. This work was supported in part by the China's Turbulence Program under Grant No.2009CB724101.

  10. Numerical simulation and experiment on multilayer stagger-split die.

    Science.gov (United States)

    Liu, Zhiwei; Li, Mingzhe; Han, Qigang; Yang, Yunfei; Wang, Bolong; Sui, Zhou

    2013-05-01

    A novel ultra-high pressure device, multilayer stagger-split die, has been constructed based on the principle of "dividing dies before cracking." Multilayer stagger-split die includes an encircling ring and multilayer assemblages, and the mating surfaces of the multilayer assemblages are mutually staggered between adjacent layers. In this paper, we investigated the stressing features of this structure through finite element techniques, and the results were compared with those of the belt type die and single split die. The contrast experiments were also carried out to test the bearing pressure performance of multilayer stagger-split die. It is concluded that the stress distributions are reasonable and the materials are utilized effectively for multilayer stagger-split die. And experiments indicate that the multilayer stagger-split die can bear the greatest pressure.

  11. Fabrication of multilayer nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Jasveer, E-mail: kaurjasveer89@gmail.com; Singh, Avtar; Kumar, Davinder [Department of Physics, Punjabi University Patiala, 147002, Punjab (India); Thakur, Anup; Kaur, Raminder, E-mail: raminder-k-saini@yahoo.com [Department of Basic and Applied Sciences, Punjabi University Patiala, 147002, Punjab (India)

    2016-05-06

    Multilayer nanowires were fabricated by potentiostate ectrodeposition template synthesis method into the pores of polycarbonate membrane. In present work layer by layer deposition of two different metals Ni and Cu in polycarbonate membrane having pore size of 600 nm were carried out. It is found that the growth of nanowires is not constant, it varies with deposition time. Scanning electron microscopy (SEM) is used to study the morphology of fabricated multilayer nanowires. An energy dispersive X-ray spectroscopy (EDS) results confirm the composition of multilayer nanowires. The result shows that multilayer nanowires formed is dense.

  12. Fabrication of multilayer nanowires

    International Nuclear Information System (INIS)

    Kaur, Jasveer; Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2016-01-01

    Multilayer nanowires were fabricated by potentiostate ectrodeposition template synthesis method into the pores of polycarbonate membrane. In present work layer by layer deposition of two different metals Ni and Cu in polycarbonate membrane having pore size of 600 nm were carried out. It is found that the growth of nanowires is not constant, it varies with deposition time. Scanning electron microscopy (SEM) is used to study the morphology of fabricated multilayer nanowires. An energy dispersive X-ray spectroscopy (EDS) results confirm the composition of multilayer nanowires. The result shows that multilayer nanowires formed is dense.

  13. Thermal evolution of the morphology, structure, and optical properties of multilayer nanoperiodic systems produced by the vacuum evaporation of SiO and SiO2

    International Nuclear Information System (INIS)

    Ershov, A. V.; Chugrov, I. A.; Tetelbaum, D. I.; Mashin, A. I.; Pavlov, D. A.; Nezhdanov, A. V.; Bobrov, A. I.; Grachev, D. A.

    2013-01-01

    The alternate vacuum evaporation of SiO and SiO 2 from separate sources is used to produce amorphous a-SiO x /SiO 2 multilayer nanoperiodic structures with periods of 5–10 nm and a number of layers of up to 64. The effect of annealing at temperatures T a = 500–1100°C on the structural and optical properties of the nanostructures is studied. The results of transmission electron microscopy of the samples annealed at 1100°C indicate the annealing-induced formation of vertically ordered quasiperiodic arrays of Si nanocrystals, whose dimensions are comparable to the a-SiO x -layer thickness in the initial nanostructures. The nanostructures annealed at 1100°C exhibit size-dependent photoluminescence in the wavelength range 750–830 nm corresponding to Si nanocrystals. The data on infrared absorption and Raman scattering show that the thermal evolution of structural and phase state of the SiO x layers with increasing annealing temperature proceeds through the formation of amorphous Si nanoinclusions with the subsequent formation and growth of Si nanocrystals.

  14. Thermally induced delamination of multilayers

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Sarraute, S.; Jørgensen, O.

    1998-01-01

    Steady-state delamination of multilayered structures, caused by stresses arising during processing due to thermal expansion mismatch, is analyzed by a fracture mechanics model based on laminate theory. It is found that inserting just a few interlayers with intermediate thermal expansion coefficie...... coefficients may be an effective way of reducing the delamination energy release rate. Uneven layer thickness and increasing elastic mismatch are shown to raise the energy release rate. Experimental work confirms important trends of the model.......Steady-state delamination of multilayered structures, caused by stresses arising during processing due to thermal expansion mismatch, is analyzed by a fracture mechanics model based on laminate theory. It is found that inserting just a few interlayers with intermediate thermal expansion...

  15. Finding overlapping communities in multilayer networks.

    Science.gov (United States)

    Liu, Weiyi; Suzumura, Toyotaro; Ji, Hongyu; Hu, Guangmin

    2018-01-01

    Finding communities in multilayer networks is a vital step in understanding the structure and dynamics of these layers, where each layer represents a particular type of relationship between nodes in the natural world. However, most community discovery methods for multilayer networks may ignore the interplay between layers or the unique topological structure in a layer. Moreover, most of them can only detect non-overlapping communities. In this paper, we propose a new community discovery method for multilayer networks, which leverages the interplay between layers and the unique topology in a layer to reveal overlapping communities. Through a comprehensive analysis of edge behaviors within and across layers, we first calculate the similarities for edges from the same layer and the cross layers. Then, by leveraging these similarities, we can construct a dendrogram for the multilayer networks that takes both the unique topological structure and the important interplay into consideration. Finally, by introducing a new community density metric for multilayer networks, we can cut the dendrogram to get the overlapping communities for these layers. By applying our method on both synthetic and real-world datasets, we demonstrate that our method has an accurate performance in discovering overlapping communities in multilayer networks.

  16. Isotropic Growth of Graphene toward Smoothing Stitching.

    Science.gov (United States)

    Zeng, Mengqi; Tan, Lifang; Wang, Lingxiang; Mendes, Rafael G; Qin, Zhihui; Huang, Yaxin; Zhang, Tao; Fang, Liwen; Zhang, Yanfeng; Yue, Shuanglin; Rümmeli, Mark H; Peng, Lianmao; Liu, Zhongfan; Chen, Shengli; Fu, Lei

    2016-07-26

    The quality of graphene grown via chemical vapor deposition still has very great disparity with its theoretical property due to the inevitable formation of grain boundaries. The design of single-crystal substrate with an anisotropic twofold symmetry for the unidirectional alignment of graphene seeds would be a promising way for eliminating the grain boundaries at the wafer scale. However, such a delicate process will be easily terminated by the obstruction of defects or impurities. Here we investigated the isotropic growth behavior of graphene single crystals via melting the growth substrate to obtain an amorphous isotropic surface, which will not offer any specific grain orientation induction or preponderant growth rate toward a certain direction in the graphene growth process. The as-obtained graphene grains are isotropically round with mixed edges that exhibit high activity. The orientation of adjacent grains can be easily self-adjusted to smoothly match each other over a liquid catalyst with facile atom delocalization due to the low rotation steric hindrance of the isotropic grains, thus achieving the smoothing stitching of the adjacent graphene. Therefore, the adverse effects of grain boundaries will be eliminated and the excellent transport performance of graphene will be more guaranteed. What is more, such an isotropic growth mode can be extended to other types of layered nanomaterials such as hexagonal boron nitride and transition metal chalcogenides for obtaining large-size intrinsic film with low defect.

  17. In-Situ Characterization of Isotropic and Transversely Isotropic Elastic Properties Using Ultrasonic Wave Velocities

    NARCIS (Netherlands)

    Pant, S; Laliberte, J; Martinez, M.J.; Rocha, B.

    2016-01-01

    In this paper, a one-sided, in situ method based on the time of flight measurement of ultrasonic waves was described. The primary application of this technique was to non-destructively measure the stiffness properties of isotropic and transversely isotropic materials. The method consists of

  18. Structure, phase composition and microhardness of vacuum-arc multilayered Ti/Al, Ti/Cu, Ti/Fe, Ti/Zr nano-structures with different periods

    International Nuclear Information System (INIS)

    Demchishin, A.V.; Gnilitskyi, I.; Orazi, L.; Ascari, A.

    2015-01-01

    Highlights: • Multilayer coatings of Ti/Fe, Ti/Al, Ti/Cu and Ti/Zr are generated. • Microstructure and morphology of the different systems are investigated. • XR diffraction analysis was performed to investigate phases composition. • Effects of inter metallic phases on microhardess are investigated. • Correlations between parameters and layer thickness are outlined. - Abstract: The microstructure, phase composition and microhardness of multilayered Ti/Al, Ti/Cu, Ti/Fe and Ti/Zr condensates produced on stainless steel substrates via vacuum-arc evaporation of pure metals were studied. The sublayer periods (Λ) were regulated in the range 80–850 nm by varying the vacuum discharge current and the duration of the successive depositions of metallic plasma onto the substrates while maintaining the total deposition time constant. The regularity of the obtained nanostructures was investigated by scanning and transmission electron microscopy while phase compositions were identified with X-ray diffraction (XRD) analysis in order to evidence the presence of interdiffusion and the amount of intermetallics. Condensates cross sections were mechanically characterized by means of microhardness tests. Measurements were correlated to the periods and to the presence of intermetallics

  19. Structure, phase composition and microhardness of vacuum-arc multilayered Ti/Al, Ti/Cu, Ti/Fe, Ti/Zr nano-structures with different periods

    Energy Technology Data Exchange (ETDEWEB)

    Demchishin, A.V., E-mail: ademch@meta.ua [Institute of Problems in Material Science, NASU, Kiev (Ukraine); Gnilitskyi, I., E-mail: iaroslav.gnilitskyi@unimore.it [DISMI – Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Reggio Emilia (Italy); Orazi, L., E-mail: leonardo.orazi@unimore.it [DISMI – Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Reggio Emilia (Italy); Ascari, A., E-mail: a.ascari@unibo.it [DIN – Department of Industrial Engineering, University of Bologna, Bologna (Italy)

    2015-07-01

    Highlights: • Multilayer coatings of Ti/Fe, Ti/Al, Ti/Cu and Ti/Zr are generated. • Microstructure and morphology of the different systems are investigated. • XR diffraction analysis was performed to investigate phases composition. • Effects of inter metallic phases on microhardess are investigated. • Correlations between parameters and layer thickness are outlined. - Abstract: The microstructure, phase composition and microhardness of multilayered Ti/Al, Ti/Cu, Ti/Fe and Ti/Zr condensates produced on stainless steel substrates via vacuum-arc evaporation of pure metals were studied. The sublayer periods (Λ) were regulated in the range 80–850 nm by varying the vacuum discharge current and the duration of the successive depositions of metallic plasma onto the substrates while maintaining the total deposition time constant. The regularity of the obtained nanostructures was investigated by scanning and transmission electron microscopy while phase compositions were identified with X-ray diffraction (XRD) analysis in order to evidence the presence of interdiffusion and the amount of intermetallics. Condensates cross sections were mechanically characterized by means of microhardness tests. Measurements were correlated to the periods and to the presence of intermetallics.

  20. Multilayer core-shell structured composite paper electrode consisting of copper, cuprous oxide and graphite assembled on cellulose fibers for asymmetric supercapacitors

    Science.gov (United States)

    Wan, Caichao; Jiao, Yue; Li, Jian

    2017-09-01

    An easily-operated and inexpensive strategy (pencil-drawing-electrodeposition-electro-oxidation) is proposed to synthesize a novel class of multilayer core-shell structured composite paper electrode, which consists of copper, cuprous oxide and graphite assembled on cellulose fibers. This interesting electrode structure plays a pivotal role in providing more active sites for electrochemical reactions, facilitating ion and electron transport and shorting their diffusion pathways. This electrode demonstrates excellent electrochemical properties with a high specific capacitance of 601 F g-1 at 2 A g-1 and retains 83% of this capacitance when operated at an ultrahigh current density of 100 A g-1. In addition, a high energy density of 13.4 W h kg-1 at the power density of 0.40 kW kg-1 and a favorable cycling stability (95.3%, 8000 cycles) were achieved for this electrode. When this electrode was assembled into an asymmetric supercapacitor with carbon paper as negative electrode, the device displays remarkable electrochemical performances with a large areal capacitances (122 mF cm-2 at 1 mA cm-2), high areal energy density (10.8 μW h cm-2 at 402.5 μW cm-2) and outstanding cycling stability (91.5%, 5000 cycles). These results unveil the potential of this composite electrode as a high-performance electrode material for supercapacitors.

  1. Effect of resonant tunneling on electroluminescence in nc-Si/SiO2 multilayers-based p-i-n structure

    International Nuclear Information System (INIS)

    Chen, D.Y.; Wang, Y.Y.; Sun, Y.; He, Y.J.; Zhang, G.

    2015-01-01

    P-i-n structures with SiO 2 /nc-Si/SiO 2 multilayers as intrinsic layer were prepared in conventional plasma enhanced chemical vapor deposition system. Their carrier transport and electroluminescence properties were investigated. Two resonant tunneling related current peaks with current dropping gradually under forward bias were observed in the current voltage curve. Non-uniformity of the interfaces might be responsible for the gradual dropping of the current. Electroluminescence intensity of the device under bias of 7 V which is near the resonant tunneling peak voltage of 7.2 V was weaker than that under 6.5 V. According to the Gaussian fitting results of the spectra, the intensity of the sub-peak of 650 nm originating from recombination of injected electrons and holes was decreased the most. When resonant tunneling conditions are met, it might be that most of the injected electrons participate in resonant tunneling and fewer in Pool–Frenkel tunneling, which is the main carrier transport mechanism, to contribute to electroluminescence intensity. - Highlights: • Two resonant tunneling peaks with current dropping gradually were observed. • The EL intensity of the structure under resonant tunneling peak voltage is weakened. • P–F tunneling is the main transport mechanism besides resonant tunneling

  2. Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains.

    Science.gov (United States)

    Hu, Ting; Han, Yang; Dong, Jinming

    2014-11-14

    The mechanical and electronic properties of both the monolayer and bilayer phosphorenes under either isotropic or uniaxial strain have been systematically investigated using first-principles calculations. It is interesting to find that: 1) Under a large enough isotropic tensile strain, the monolayer phosphorene would lose its pucker structure and transform into a flat hexagonal plane, while two inner sublayers of the bilayer phosphorene could be bonded due to its interlayer distance contraction. 2) Under the uniaxial tensile strain along a zigzag direction, the pucker distance of each layer in the bilayer phosphorene can exhibit a specific negative Poisson's ratio. 3) The electronic properties of both the monolayer and bilayer phosphorenes are sensitive to the magnitude and direction of the applied strains. Their band gaps decrease more rapidly under isotropic compressive strain than under uniaxial strain. Also, their direct-indirect band gap transitions happen at the larger isotropic tensile strains compared with that under uniaxial strain. 4) Under the isotropic compressive strain, the bilayer phosphorene exhibits a transition from a direct-gap semiconductor to a metal. In contrast, the monolayer phosphorene initially has the direct-indirect transition and then transitions to a metal. However, under isotropic tensile strain, both the bilayer and monolayer phosphorene show the direct-indirect transition and, finally, the transition to a metal. Our numerical results may open new potential applications of phosphorene in nanoelectronics and nanomechanical devices by external isotropic strain or uniaxial strain along different directions.

  3. Soft X-ray multilayers and filters

    CERN Document Server

    Wang Zhan Shan; Tang Wei Xing; Qin Shuji; Zhou Bing; Chen Ling Ya

    2002-01-01

    The periodic and non-periodic multilayers were designed by using a random number to change each layer and a suitable merit function. Ion beam sputtering and magnetron sputtering were used to fabricate various multilayers and beam splitters in soft X-ray range. The characterization of multilayers by small angle X-ray diffraction, Auger electron spectroscopy, Rutherford back scattering spectroscopy and reflectivity illustrated the multilayers had good structures and smooth interlayers. The reflectivity and transmission of a beam splitter is about 5%. The fabrication and transmission properties of Ag, Zr were studied. The Rutherford back scattering spectroscopy and auger electron spectroscopy were used to investigate the contents and distributions of impurities and influence on qualities of filters. The attenuation coefficients were corrected by the data obtained by measurements

  4. Depth migration in transversely isotropic media with explicit operators

    Energy Technology Data Exchange (ETDEWEB)

    Uzcategui, Omar [Colorado School of Mines, Golden, CO (United States)

    1994-12-01

    The author presents and analyzes three approaches to calculating explicit two-dimensional (2D) depth-extrapolation filters for all propagation modes (P, SV, and SH) in transversely isotropic media with vertical and tilted axis of symmetry. These extrapolation filters are used to do 2D poststack depth migration, and also, just as for isotropic media, these 2D filters are used in the McClellan transformation to do poststack 3D depth migration. Furthermore, the same explicit filters can also be used to do depth-extrapolation of prestack data. The explicit filters are derived by generalizations of three different approaches: the modified Taylor series, least-squares, and minimax methods initially developed for isotropic media. The examples here show that the least-squares and minimax methods produce filters with accurate extrapolation (measured in the ability to position steep reflectors) for a wider range of propagation angles than that obtained using the modified Taylor series method. However, for low propagation angles, the modified Taylor series method has smaller amplitude and phase errors than those produced by the least-squares and minimax methods. These results suggest that to get accurate amplitude estimation, modified Taylor series filters would be somewhat preferred in areas with low dips. In areas with larger dips, the least-squares and minimax methods would give a distinctly better delineation of the subsurface structures.

  5. Corrugated grating on organic multilayer Bragg reflector

    Science.gov (United States)

    Jaquet, Sylvain; Scharf, Toralf; Herzig, Hans Peter

    2007-08-01

    Polymeric multilayer Bragg structures are combined with diffractive gratings to produce artificial visual color effects. A particular effect is expected due to the angular reflection dependence of the multilayer Bragg structure and the dispersion caused by the grating. The combined effects can also be used to design particular filter functions and various resonant structures. The multilayer Bragg structure is fabricated by spin-coating of two different low-cost polymer materials in solution on a cleaned glass substrate. These polymers have a refractive index difference of about 0.15 and permit multilayer coatings without interlayer problems. Master gratings of different periods are realized by laser beam interference and replicated gratings are superimposed on the multilayer structure by soft embossing in a UV curing glue. The fabrication process requires only polymer materials. The obtained devices are stable and robust. Angular dependent reflection spectrums for the visible are measured. These results show that it is possible to obtain unexpected reflection effects. A rich variety of color spectra can be generated, which is not possible with a single grating. This can be explained by the coupling of transmission of grating orders and the Bragg reflection band. A simple model permits to explain some of the spectral vs angular dependence of reflected light.

  6. Anomalous magnetoresistance in Fibonacci multilayers.

    Energy Technology Data Exchange (ETDEWEB)

    Machado, L. D.; Bezerra, C. G.; Correa, M. A.; Chesman, C.; Pearson, J. E.; Hoffmann, A. (Materials Science Division); (Universidade Federal do Rio Grande do Norte)

    2012-01-01

    We theoretically investigated magnetoresistance curves in quasiperiodic magnetic multilayers for two different growth directions, namely, [110] and [100]. We considered identical ferromagnetic layers separated by nonmagnetic layers with two different thicknesses chosen based on the Fibonacci sequence. Using parameters for Fe/Cr multilayers, four terms were included in our description of the magnetic energy: Zeeman, cubic anisotropy, bilinear coupling, and biquadratic coupling. The minimum energy was determined by the gradient method and the equilibrium magnetization directions found were used to calculate magnetoresistance curves. By choosing spacers with a thickness such that biquadratic coupling is stronger than bilinear coupling, unusual behaviors for the magnetoresistance were observed: (i) for the [110] case, there is a different behavior for structures based on even and odd Fibonacci generations, and, more interesting, (ii) for the [100] case, we found magnetic field ranges for which the magnetoresistance increases with magnetic field.

  7. A New Approach for Severity Estimation of Transversal Cracks in Multi-layered Beams

    Directory of Open Access Journals (Sweden)

    Gilbert-Rainer Gillich

    Full Text Available Abstract Nowadays, the damage severity evaluation in mechanical structures is mostly performed by analyzing the natural frequency shift. The non-isotropic materials, as the multi-layered ones, are wide-spread in industrial applications, due to their interesting physic-mechanical properties. Thus, a deeper approach of multi-layered beams becomes an important request in the research domain. This paper introduces a damage severity estimator by expressing the crack evolution as a function of stored energy. It is well known that the energy stored in a beam without damage is greater than the energy of that damaged beam. As a consequence, the beam deflection can be related to the stored energy. In this regard, the possibility to split the damage localization and the damage severity assessment has been proven, and also the graphical evolution of the natural frequency shift has been achieved as a function of the crack depth. The results achieved by the finite element method (FEM and experimental tests are given in tables and graphics. For the first five vibration modes, a comparison was made between frequencies accomplished by analytical, numerical and experimental analyses, in order to give more credibility to the accuracy of the research data presented in this paper.

  8. Comparison between isotropic linear-elastic law and isotropic hyperelastic law in the finite element modeling of the brachial plexus.

    Science.gov (United States)

    Perruisseau-Carrier, A; Bahlouli, N; Bierry, G; Vernet, P; Facca, S; Liverneaux, P

    2017-12-01

    Augmented reality could help the identification of nerve structures in brachial plexus surgery. The goal of this study was to determine which law of mechanical behavior was more adapted by comparing the results of Hooke's isotropic linear elastic law to those of Ogden's isotropic hyperelastic law, applied to a biomechanical model of the brachial plexus. A model of finite elements was created using the ABAQUS ® from a 3D model of the brachial plexus acquired by segmentation and meshing of MRI images at 0°, 45° and 135° of shoulder abduction of a healthy subject. The offset between the reconstructed model and the deformed model was evaluated quantitatively by the Hausdorff distance and qualitatively by the identification of 3 anatomical landmarks. In every case the Hausdorff distance was shorter with Ogden's law compared to Hooke's law. On a qualitative aspect, the model deformed by Ogden's law followed the concavity of the reconstructed model whereas the model deformed by Hooke's law remained convex. In conclusion, the results of this study demonstrate that the behavior of Ogden's isotropic hyperelastic mechanical model was more adapted to the modeling of the deformations of the brachial plexus. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. AlSiTiN and AlSiCrN multilayer coatings: Effects of structure and surface composition on tribological behavior under dry and lubricated conditions

    International Nuclear Information System (INIS)

    Faga, Maria Giulia; Gautier, Giovanna; Cartasegna, Federico; Priarone, Paolo C.; Settineri, Luca

    2016-01-01

    Graphical abstract: - Highlights: • The demand for high performance nanostructured coatings has been increasing. • AlSiTiN and AlSiCrN nanocomposite coatings were deposited by PVD technique. • Coatings were analyzed in terms of structure, hardness and adhesion. • Tribological properties under dry and lubricated conditions were studied. • The effects of surface and bulk properties on friction evolution were assessed. - Abstract: Nanocomposite coatings have been widely studied over the last years because of their high potential in several applications. The increased interest for these coatings prompted the authors to study the tribological properties of two nanocomposites under dry and lubricated conditions (applying typical MQL media), in order to assess the influence of the surface and bulk properties on friction evolution. To this purpose, multilayer and nanocomposite AlSiTiN and AlSiCrN coatings were deposited onto tungsten carbide-cobalt (WC-Co) samples. Uncoated WC-Co materials were used as reference. Coatings were analyzed in terms of hardness and adhesion. The structure of the samples was assessed by X-ray diffraction (XRD), while the surface composition was studied by XPS analysis. Friction tests were carried out under both dry and lubricated conditions using an inox ball as counterpart. Both coatings showed high hardness and good adhesion to the substrate. As far as the friction properties are concerned, in dry conditions the surface properties affect the sliding contact at the early beginning, while bulk structure and tribolayer formation determine the main behavior. Only AlSiTiN coating shows a low and stable coefficient of friction (COF) under dry condition, while the use of MQL media results in a rapid stabilization of the COF for all the materials.

  10. Investigating source processes of isotropic events

    Science.gov (United States)

    Chiang, Andrea

    explosion. In contrast, recovering the announced explosive yield using seismic moment estimates from moment tensor inversion remains challenging but we can begin to put error bounds on our moment estimates using the NSS technique. The estimation of seismic source parameters is dependent upon having a well-calibrated velocity model to compute the Green's functions for the inverse problem. Ideally, seismic velocity models are calibrated through broadband waveform modeling, however in regions of low seismicity velocity models derived from body or surface wave tomography may be employed. Whether a velocity model is 1D or 3D, or based on broadband seismic waveform modeling or the various tomographic techniques, the uncertainty in the velocity model can be the greatest source of error in moment tensor inversion. These errors have not been fully investigated for the nuclear discrimination problem. To study the effects of unmodeled structures on the moment tensor inversion, we set up a synthetic experiment where we produce synthetic seismograms for a 3D model (Moschetti et al., 2010) and invert these data using Green's functions computed with a 1D velocity mode (Song et al., 1996) to evaluate the recoverability of input solutions, paying particular attention to biases in the isotropic component. The synthetic experiment results indicate that the 1D model assumption is valid for moment tensor inversions at periods as short as 10 seconds for the 1D western U.S. model (Song et al., 1996). The correct earthquake mechanisms and source depth are recovered with statistically insignificant isotropic components as determined by the F-test. Shallow explosions are biased by the theoretical ISO-CLVD tradeoff but the tectonic release component remains low, and the tradeoff can be eliminated with constraints from P wave first motion. Path-calibration to the 1D model can reduce non-double-couple components in earthquakes, non-isotropic components in explosions and composite sources and improve

  11. Bioinspired design of dental multilayers.

    Science.gov (United States)

    Huang, M; Wang, R; Thompson, V; Rekow, D; Soboyejo, W O

    2007-01-01

    This paper considers the use of bioinspired functionally graded structures in the design of dental multi-layers that are more resistant to sub-surface crack nucleation. Unlike existing dental crown restorations that give rise to high stress concentration, the functionally graded layers (between crown materials and the joins that attach them to dentin) are shown to promote significant reductions in stress and improvements in the critical crack size. Special inspiration is drawn from the low stress concentrations associated with the graded distributions in the dentin-enamel-junction (DEJ). The implications of such functionally graded structures are also discussed for the design of dental restorations.

  12. Mapping of moveout in tilted transversely isotropic media

    KAUST Repository

    Stovas, A.; Alkhalifah, Tariq Ali

    2013-01-01

    The computation of traveltimes in a transverse isotropic medium with a tilted symmetry axis tilted transversely isotropic is very important both for modelling and inversion. We develop a simple analytical procedure to map the traveltime function from a transverse isotropic medium with a vertical symmetry axis (vertical transversely isotropic) to a tilted transversely isotropic medium by applying point-by-point mapping of the traveltime function. This approach can be used for kinematic modelling and inversion in layered tilted transversely isotropic media. © 2013 European Association of Geoscientists & Engineers.

  13. Mapping of moveout in tilted transversely isotropic media

    KAUST Repository

    Stovas, A.

    2013-09-09

    The computation of traveltimes in a transverse isotropic medium with a tilted symmetry axis tilted transversely isotropic is very important both for modelling and inversion. We develop a simple analytical procedure to map the traveltime function from a transverse isotropic medium with a vertical symmetry axis (vertical transversely isotropic) to a tilted transversely isotropic medium by applying point-by-point mapping of the traveltime function. This approach can be used for kinematic modelling and inversion in layered tilted transversely isotropic media. © 2013 European Association of Geoscientists & Engineers.

  14. Mathematical Formulation of Multilayer Networks

    Science.gov (United States)

    De Domenico, Manlio; Solé-Ribalta, Albert; Cozzo, Emanuele; Kivelä, Mikko; Moreno, Yamir; Porter, Mason A.; Gómez, Sergio; Arenas, Alex

    2013-10-01

    A network representation is useful for describing the structure of a large variety of complex systems. However, most real and engineered systems have multiple subsystems and layers of connectivity, and the data produced by such systems are very rich. Achieving a deep understanding of such systems necessitates generalizing “traditional” network theory, and the newfound deluge of data now makes it possible to test increasingly general frameworks for the study of networks. In particular, although adjacency matrices are useful to describe traditional single-layer networks, such a representation is insufficient for the analysis and description of multiplex and time-dependent networks. One must therefore develop a more general mathematical framework to cope with the challenges posed by multilayer complex systems. In this paper, we introduce a tensorial framework to study multilayer networks, and we discuss the generalization of several important network descriptors and dynamical processes—including degree centrality, clustering coefficients, eigenvector centrality, modularity, von Neumann entropy, and diffusion—for this framework. We examine the impact of different choices in constructing these generalizations, and we illustrate how to obtain known results for the special cases of single-layer and multiplex networks. Our tensorial approach will be helpful for tackling pressing problems in multilayer complex systems, such as inferring who is influencing whom (and by which media) in multichannel social networks and developing routing techniques for multimodal transportation systems.

  15. Spectral tailoring of nanoscale EUV and soft x-ray multilayer optics

    Science.gov (United States)

    Huang, Qiushi; Medvedev, Viacheslav; van de Kruijs, Robbert; Yakshin, Andrey; Louis, Eric; Bijkerk, Fred

    2017-03-01

    Extreme ultraviolet and soft X-ray (XUV) multilayer optics have experienced significant development over the past few years, particularly on controlling the spectral characteristics of light for advanced applications like EUV photolithography, space observation, and accelerator- or lab-based XUV experiments. Both planar and three dimensional multilayer structures have been developed to tailor the spectral response in a wide wavelength range. For the planar multilayer optics, different layered schemes are explored. Stacks of periodic multilayers and capping layers are demonstrated to achieve multi-channel reflection or suppression of the reflective properties. Aperiodic multilayer structures enable broadband reflection both in angles and wavelengths, with the possibility of polarization control. The broad wavelength band multilayer is also used to shape attosecond pulses for the study of ultrafast phenomena. Narrowband multilayer monochromators are delivered to bridge the resolution gap between crystals and regular multilayers. High spectral purity multilayers with innovated anti-reflection structures are shown to select spectrally clean XUV radiation from broadband X-ray sources, especially the plasma sources for EUV lithography. Significant progress is also made in the three dimensional multilayer optics, i.e., combining micro- and nanostructures with multilayers, in order to provide new freedom to tune the spectral response. Several kinds of multilayer gratings, including multilayer coated gratings, sliced multilayer gratings, and lamellar multilayer gratings are being pursued for high resolution and high efficiency XUV spectrometers/monochromators, with their advantages and disadvantages, respectively. Multilayer diffraction optics are also developed for spectral purity enhancement. New structures like gratings, zone plates, and pyramids that obtain full suppression of the unwanted radiation and high XUV reflectance are reviewed. Based on the present achievement

  16. Generation of Multilayered 3D Structures of HepG2 Cells Using a Bio-printing Technique.

    Science.gov (United States)

    Jeon, Hyeryeon; Kang, Kyojin; Park, Su A; Kim, Wan Doo; Paik, Seung Sam; Lee, Sang-Hun; Jeong, Jaemin; Choi, Dongho

    2017-01-15

    Chronic liver disease is a major widespread cause of death, and whole liver transplantation is the only definitive treatment for patients with end-stage liver diseases. However, many problems, including donor shortage, surgical complications and cost, hinder their usage. Recently, tissue-engineering technology provided a potential breakthrough for solving these problems. Three-dimensional (3D) printing technology has been used to mimic tissues and organs suitable for transplantation, but applications for the liver have been rare. A 3D bioprinting system was used to construct 3D printed hepatic structures using alginate. HepG2 cells were cultured on these 3D structures for 3 weeks and examined by fluorescence microscopy, histology and immunohistochemistry. The expression of liverspecific markers was quantified on days 1, 7, 14, and 21. The cells grew well on the alginate scaffold, and liver-specific gene expression increased. The cells grew more extensively in 3D culture than two-dimensional culture and exhibited better structural aspects of the liver, indicating that the 3D bioprinting method recapitulates the liver architecture. The 3D bioprinting of hepatic structures appears feasible. This technology may become a major tool and provide a bridge between basic science and the clinical challenges for regenerative medicine of the liver.

  17. Refractive index contrast in porous silicon multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Nava, R.; Mora, M.B. de la; Tagueena-Martinez, J. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Temixco, Morelos (Mexico); Rio, J.A. del [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Temixco, Morelos (Mexico); Centro Morelense de Innovacion y Transferencia Tecnologica, Consejo de Ciencia y Tecnologia del Estado de Morelos (Mexico)

    2009-07-15

    Two of the most important properties of a porous silicon multilayer for photonic applications are flat interfaces and a relative large refractive index contrast between layers in the optical wavelength range. In this work, we studied the effect of the current density and HF electrolyte concentration on the refractive index of porous silicon. With the purpose of increasing the refractive index contrast in a multilayer, the refractive index of porous silicon produced at low current was studied in detail. The current density applied to produce the low porosity layers was limited in order to keep the electrolyte flow through the multilayer structure and to avoid deformation of layer interfaces. We found that an electrolyte composed of hydrofluoric acid, ethanol and glycerin in a ratio of 3:7:1 gives a refractive index contrast around 1.3/2.8 at 600 nm. Several multilayer structures with this refractive index contrast were fabricated, such as dielectric Bragg mirrors and microcavities. Reflectance spectra of the structures show the photonic quality of porous silicon multilayers produced under these electrochemical conditions. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Electromagnetic and thermal properties of three-dimensional printed multilayered nano-carbon/poly(lactic) acid structures

    Energy Technology Data Exchange (ETDEWEB)

    Paddubskaya, A. [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, 220030 Minsk (Belarus); Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius (Lithuania); Valynets, N.; Batrakov, K. [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, 220030 Minsk (Belarus); Kuzhir, P., E-mail: polina.kuzhir@gmail.com; Maksimenko, S. [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, 220030 Minsk (Belarus); Tomsk State University, Tomsk 634050 (Russian Federation); Kotsilkova, R.; Velichkova, H.; Petrova, I. [Open Laboratory on Experimental Micro and Nano Mechanics, Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 4, Sofia (Bulgaria); Biró, I. [3D Wishes, Bíró u. 44/a/2, Érd (Hungary); Kertész, K.; Márk, G. I.; Horváth, Z. E.; Biró, L. P. [Institute of Technical Physics and Materials Science, Centre for Energy Research, PO Box 49, 1525 Budapest (Hungary)

    2016-04-07

    A new type of light-weight material produced by 3D printing consisting of nano-carbon doped polymer layer followed by a dielectric polymer layer is proposed. We performed temperature dependent characterization and measured the electromagnetic (EM) response of the samples in the GHz and THz range. The temperature dependent structural characteristics, crystallization, and melting were observed to be strongly affected by the presence and the number of nano-carbon doped layers in the sandwich structure. The electromagnetic measurements show a great potential of such a type of periodic material for electromagnetic compatibility applications in microwave frequency range. Sandwich structures containing only two nano-carbon layers already become not transparent to the microwaves, giving an electromagnetic interference shielding efficiency at the level of 8–15 dB. A sandwich consisting of one nano-carbon doped and one polymer layer is opaque for THz radiation, because of 80% of absorption. These studies serve as a basis for design and realization of specific optimal geometries of meta-surface type with the 3D printing technique, in order to reach a high level of electromagnetic interference shielding performance for real world EM cloaking and EM ecology applications.

  19. Electromagnetic and thermal properties of three-dimensional printed multilayered nano-carbon/poly(lactic) acid structures

    International Nuclear Information System (INIS)

    Paddubskaya, A.; Valynets, N.; Batrakov, K.; Kuzhir, P.; Maksimenko, S.; Kotsilkova, R.; Velichkova, H.; Petrova, I.; Biró, I.; Kertész, K.; Márk, G. I.; Horváth, Z. E.; Biró, L. P.

    2016-01-01

    A new type of light-weight material produced by 3D printing consisting of nano-carbon doped polymer layer followed by a dielectric polymer layer is proposed. We performed temperature dependent characterization and measured the electromagnetic (EM) response of the samples in the GHz and THz range. The temperature dependent structural characteristics, crystallization, and melting were observed to be strongly affected by the presence and the number of nano-carbon doped layers in the sandwich structure. The electromagnetic measurements show a great potential of such a type of periodic material for electromagnetic compatibility applications in microwave frequency range. Sandwich structures containing only two nano-carbon layers already become not transparent to the microwaves, giving an electromagnetic interference shielding efficiency at the level of 8–15 dB. A sandwich consisting of one nano-carbon doped and one polymer layer is opaque for THz radiation, because of 80% of absorption. These studies serve as a basis for design and realization of specific optimal geometries of meta-surface type with the 3D printing technique, in order to reach a high level of electromagnetic interference shielding performance for real world EM cloaking and EM ecology applications.

  20. Multiple analysis of an unknown optical multilayer coating

    International Nuclear Information System (INIS)

    Dobrowolski, J.A.; Ho, F.C.; Waldorf, A.

    1985-01-01

    Results are given of the analysis at five different laboratories of an unknown optical multilayer coating. In all, eleven different analytical and laboratory techniques were applied to the problem. The multilayer nominally consisted of three dielectric and two metallic layers. It was demonstrated convincingly that with present day techniques it is possible to determine the basic structure of such a coating

  1. Heat stability evaluations of Co/SiO2 multilayers

    International Nuclear Information System (INIS)

    Ishino, Masahiko; Koike, Masato; Kanehira, Mika; Satou, Futami; Terauchi, Masami; Sano, Kazuo

    2008-01-01

    The heat stability of Co/SiO 2 multilayers was evaluated. Co/SiO 2 multilayer samples were deposited on Si substrate by means of an ion beam sputtering method, and annealed at temperatures from 100degC to 600degC in a vacuum furnace. For the structural and optical evaluations, small angle x-ray diffraction (XRD) measurements, soft x-ray reflectivity measurements, and transmission electron microscopy (TEM) observations were carried out. As the results, the Co/SiO 2 multilayer samples annealed up to 400degC maintained the initial multilayer structures, and kept almost the same soft x-ray reflectivities as that of the as-deposited Co/SiO 2 multilayer sample. A deterioration of the multilayer structure caused by the growth of Co grains was found on the Co/SiO 2 multilayer samples annealed over 500degC, and the soft x-ray reflectivity dropped in accordance with the deterioration of the multilayer structure. (author)

  2. Superficial characterization and nano structural of nano multilayers Cr/Cr N obtained by UBM with different unbalance grades

    International Nuclear Information System (INIS)

    Piratoba, U.; Arenas A, J.; Olaya, J. J.

    2013-01-01

    Coatings of 25 bilayers of Cr/Cr N, with total thickness between 1.32 and 1.67 microns, were deposited by reactive sputtering on silicon and H13 steel, in argon and argon with nitrogen atmospheres. A power of 160 watts, flows of argon and nitrogen of 9 and 3 sc cm respectively, and an axial unbalanced magnetron, whose coefficient of geometrical unbalance K G was varied between 0.85 and 1.37. Of these coatings, micrographs of surface and cross section scanning electron microscopy were obtained, was make a micro structural characterization with X-ray diffraction, a nano structural characterization by transmission electron microscopy, and surface characterization by atomic force microscopy in tapping mode: analysis showed uniform surface coating with globular and pyramidal formations, which contain some granular inclusions and microscopic craters. With the increase in the unbalance of the magnetic field, the grain size, the roughness and the speed of the coatings growth were increased. (Author)

  3. Estimation of transversely isotropic material properties from magnetic resonance elastography using the optimised virtual fields method.

    Science.gov (United States)

    Miller, Renee; Kolipaka, Arunark; Nash, Martyn P; Young, Alistair A

    2018-03-12

    Magnetic resonance elastography (MRE) has been used to estimate isotropic myocardial stiffness. However, anisotropic stiffness estimates may give insight into structural changes that occur in the myocardium as a result of pathologies such as diastolic heart failure. The virtual fields method (VFM) has been proposed for estimating material stiffness from image data. This study applied the optimised VFM to identify transversely isotropic material properties from both simulated harmonic displacements in a left ventricular (LV) model with a fibre field measured from histology as well as isotropic phantom MRE data. Two material model formulations were implemented, estimating either 3 or 5 material properties. The 3-parameter formulation writes the transversely isotropic constitutive relation in a way that dissociates the bulk modulus from other parameters. Accurate identification of transversely isotropic material properties in the LV model was shown to be dependent on the loading condition applied, amount of Gaussian noise in the signal, and frequency of excitation. Parameter sensitivity values showed that shear moduli are less sensitive to noise than the other parameters. This preliminary investigation showed the feasibility and limitations of using the VFM to identify transversely isotropic material properties from MRE images of a phantom as well as simulated harmonic displacements in an LV geometry. Copyright © 2018 John Wiley & Sons, Ltd.

  4. Computations of Quasiconvex Hulls of Isotropic Sets

    Czech Academy of Sciences Publication Activity Database

    Heinz, S.; Kružík, Martin

    2017-01-01

    Roč. 24, č. 2 (2017), s. 477-492 ISSN 0944-6532 R&D Projects: GA ČR GA14-15264S; GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985556 Keywords : quasiconvexity * isotropic compact sets * matrices Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.496, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/kruzik-0474874.pdf

  5. Depression of nonlinearity in decaying isotropic turbulence

    International Nuclear Information System (INIS)

    Kraichnan, R.H.; Panda, R.

    1988-01-01

    Simulations of decaying isotropic Navier--Stokes turbulence exhibit depression of the normalized mean-square nonlinear term to 57% of the value for a Gaussianly distributed velocity field with the same instantaneous velocity spectrum. Similar depression is found for dynamical models with random coupling coefficients (modified Betchov models). This suggests that the depression is dynamically generic rather than specifically driven by alignment of velocity and vorticity

  6. Nondestructive evaluation algorithm of fatigue cracks and far-side corrosion around a rivet fastener in multi-layered structures

    Energy Technology Data Exchange (ETDEWEB)

    Le, Min Hhuy; Kim, Jung Min [Research Center for IT-based Real Time NDT for Nano-Damage Tolerance, Chosun University, Gwangju (Korea, Republic of); Kim, Sejin; Wang, Dabin [Dept. of Control and Instrumentation Engineering, Graduate School, Chosun University, Gwangju (Korea, Republic of); Hwang, Young Ha [Avionics System Technology Center, KITECH, Youngcheon (Korea, Republic of)

    2016-09-15

    This research proposes a nondestructive inspection system for inspecting and localizing corrosion and fatigue cracks around rivets in air-intake structures. The system uses 64 InSb Hall sensor elements arrayed at a high spatial interval of 0.52 mm. Rivet detection and damage detection algorithms will be proposed. Analysis of the receiver operating characteristic curve and Probability of detection (POD) will be carried out to evaluate the performance of the system and detection algorithms. Artificial corrosion around a rivet with a minimum volume of 11.02 mm{sup 3} could be detected with 90/95% POD and artificial fatigue crack with minimum length of 2.95 mm from rivet body.

  7. Cofiring behavior and interfacial structure of NiCuZn ferrite/PMN ferroelectrics composites for multilayer LC filters

    International Nuclear Information System (INIS)

    Miao Chunlin; Zhou Ji; Cui Xuemin; Wang Xiaohui; Yue Zhenxing; Li Longtu

    2006-01-01

    The cofiring behavior, interfacial structure and cofiring migration between NiCuZn ferrite and lead magnesium niobate (PMN)-based relaxor ferroelectric materials were investigated via thermomechanical analyzer (TMA), X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Mismatched sintering shrinkage between NiCuZn ferrite and PMN was modified by adding an appropriate amount of sintering aids, Bi 2 O 3 , into NiCuZn ferrite. Pyrochlore phase appeared in the mixture of NiCuZn ferrite and PMN, which is detrimental to the final electric properties of LC filters. EDS results indicated that the interdiffusion at the heterogeneous interfaces in the composites, such as Fe, Pb, Zn, existed which can strengthen combinations between ferrite layers and ferroelectrics layers

  8. New criteria for isotropic and textured metals

    Science.gov (United States)

    Cazacu, Oana

    2018-05-01

    In this paper a isotropic criterion expressed in terms of both invariants of the stress deviator, J2 and J3 is proposed. This criterion involves a unique parameter, α, which depends only on the ratio between the yield stresses in uniaxial tension and pure shear. If this parameter is zero, the von Mises yield criterion is recovered; if a is positive the yield surface is interior to the von Mises yield surface whereas when a is negative, the new yield surface is exterior to it. Comparison with polycrystalline calculations using Taylor-Bishop-Hill model [1] for randomly oriented face-centered (FCC) polycrystalline metallic materials show that this new criterion captures well the numerical yield points. Furthermore, the criterion reproduces well yielding under combined tension-shear loadings for a variety of isotropic materials. An extension of this isotropic yield criterion such as to account for orthotropy in yielding is developed using the generalized invariants approach of Cazacu and Barlat [2]. This new orthotropic criterion is general and applicable to three-dimensional stress states. The procedure for the identification of the material parameters is outlined. Illustration of the predictive capabilities of the new orthotropic is demonstrated through comparison between the model predictions and data on aluminum sheet samples.

  9. Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid)/poly(L-lactic acid) and self-assembly of polyelectrolytes

    OpenAIRE

    Elena Dellacasa; Li Zhao; Gesheng Yang; Laura Pastorino; Gleb B. Sukhorukov

    2016-01-01

    The enantiomers poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) were alternately adsorbed directly on calcium carbonate (CaCO3) templates and on poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayer precursors in order to fabricate a novel layer-by-layer (LBL) assembly. A single layer of poly(L-lysine) (PLL) was used as a linker between the (PDLA/PLLA)n stereocomplex and the cores with and without the polymeric (PSS/PAH)n/PLL multilayer precursor (PEM). N...

  10. High-reflectance La/B-based multilayer mirror for 6.x  nm wavelength

    NARCIS (Netherlands)

    Kuznetsov, Dmitry; Yakshin, Andrey; Sturm, Jacobus Marinus; van de Kruijs, Robbert Wilhelmus Elisabeth; Louis, Eric; Bijkerk, Frederik

    2015-01-01

    We report a hybrid thin-film deposition procedure to significantly enhance the reflectivity of La/B-based multilayer structures. This is of relevance for applications of multilayer optics at 6.7-nm wavelength and beyond. Such multilayers showed a reflectance of 64.1% at 6.65 nm measured at

  11. High resolution spectroscopic mapping imaging applied in situ to multilayer structures for stratigraphic identification of painted art objects

    Science.gov (United States)

    Karagiannis, Georgios Th.

    2016-04-01

    The development of non-destructive techniques is a reality in the field of conservation science. These techniques are usually not so accurate, as the analytical micro-sampling techniques, however, the proper development of soft-computing techniques can improve their accuracy. In this work, we propose a real-time fast acquisition spectroscopic mapping imaging system that operates from the ultraviolet to mid infrared (UV/Vis/nIR/mIR) area of the electromagnetic spectrum and it is supported by a set of soft-computing methods to identify the materials that exist in a stratigraphic structure of paint layers. Particularly, the system acquires spectra in diffuse-reflectance mode, scanning in a Region-Of-Interest (ROI), and having wavelength range from 200 up to 5000 nm. Also, a fuzzy c-means clustering algorithm, i.e., the particular soft-computing algorithm, produces the mapping images. The evaluation of the method was tested on a byzantine painted icon.

  12. Multi-layer structure of mid-latitude sporadic-E observed during the SEEK-2 campaign

    Directory of Open Access Journals (Sweden)

    T. Ono

    2005-10-01

    Full Text Available In the mid-latitude ionospheric region, sporadic-E layers (Es layers have often been observed, revealing multiple layers. The Es layers observed during the SEEK-2 rocket campaign showed double electron density peaks; namely, there are stable lower peaks and relatively unstable upper peaks. We examined the effects of wind shear and the electric fields on the generation of the multiple layer structure, in comparison with the electron density profile, the neutral wind, and the DC electric field observed by the S310 rocket experiments. The results showed that the neutral wind shear is mainly responsible for the generation of the lower layer, while the DC electric field makes a significant contribution to the formation of the upper layer. The difference between the lower and upper layers was also explained by the enhanced AC electric field observed at about 103–105 km altitude. The external DC electric field intensity is expected to be ~5 mV/m, which is enough to contribute to generate the Es layers in the ionosphere. Keywords. Ionosphere (Electric fields; Ionospheric irregularities, Mid-latitude ionosphere

  13. Associating biosensing properties with the morphological structure of multilayers containing carbon nanotubes on field-effect devices

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, Jose R. Jr. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos (Brazil); Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Juelich (Germany); Institute of Bio- and Nanosystems (IBN-2), Research Centre Juelich (Germany); Baecker, Matthias; Poghossian, Arshak; Schoening, Michael J. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Juelich (Germany); Institute of Bio- and Nanosystems (IBN-2), Research Centre Juelich (Germany); Zucolotto, Valtencir; Oliveira, Osvaldo N. Jr. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos (Brazil)

    2010-04-15

    The control of molecular architecture provided by the layer-by-layer (LbL) technique has led to enhanced biosensors, in which advantageous features of distinct materials can be combined. Full optimization of biosensing performance, however, is only reached if the film morphology is suitable for the principle of detection of a specific biosensor. In this paper, we report a detailed morphology analysis of LbL films made with alternating layers of single-walled carbon nanotubes (SWNTs) and polyamidoamine (PAMAM) dendrimers, which were then covered with a layer of penicillinase (PEN). An optimized performance to detect penicillin G was obtained with 6-bilayer SWNT/PAMAM LbL films deposited on p-Si-SiO{sub 2}-Ta{sub 2}O{sub 5} chips, used in biosensors based on a capacitive electrolyte-insulator-semiconductor (EIS) and a light-addressable potentiometric sensor (LAPS) structure, respectively. Field-emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) images indicated that the LbL films were porous, with a large surface area due to interconnection of SWNT into PAMAM layers. This morphology was instrumental for the adsorption of a larger quantity of PEN, with the resulting LbL film being highly stable. The experiments to detect penicillin were performed with constant-capacitance (ConCap) and constant-current (CC) measurements for EIS and LAPS sensors, respectively, which revealed an enhanced detection signal and sensitivity of ca. 100 mV/decade for the field-effect sensors modified with the PAMAM/SWNT LbL film. It is concluded that controlling film morphology is essential for an enhanced performance of biosensors, not only in terms of sensitivity but also stability and response time. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  14. Computation accuracy of flow conditions around a very large floating structure using a multi-layer model. Comparison with experimental results; Taso model ni yoru choogata futai mawari no ryukyo keisan seido ni tsuite. Jikken tono hikaku

    Energy Technology Data Exchange (ETDEWEB)

    Kyotsuka, Y [Kyushu University, Fukuoka (Japan); Omori, H; Nakagawa, H; Kobayashi, M [Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan)

    1996-04-10

    As one of the environmental problems in sea areas surrounding a very large floating structure (VLFS), change in flow condition is important, and it is one of the factors dominating the prediction of succeeding diffusion and ecosystems. Although a multi-layer model is in wide use for computation of flow condition and diffusion in one inner bay, its applicability should be reexamined because of no consideration of VLFSs. In this study, flow velocity profiles around a barge were then measured through the towing test of a barge in shallow water, and compared with computation results using a multi-layer model. The multi-layer model computed the flow velocity profiles by dividing the flow region to be computed into normal one and that under VLFS, and determined pressures under VLFS by 2-D Poisson`s equation. Slip condition was used as boundary condition at the bottom considering the number of layers under VLFS. Further numerical computation was conducted by 2-D MAC method, in particular, to compare flow around the wake of VLFS with experimental one. Both computation results well agreed with experimental one. 3 refs., 9 figs., 1 tab.

  15. Bonded Multilayer Laue Lens for focusing hard X-rays

    International Nuclear Information System (INIS)

    Liu Chian; Conley, R.; Qian, J.; Kewish, C.M.; Macrander, A.T.; Maser, J.; Kang, H.C.; Yan, H.; Stephenson, G.B.

    2007-01-01

    We have fabricated partial Multilayer Laue Lens (MLL) linear zone plate structures with thousands of alternating WSi 2 and Si layers and various outermost zone widths according to the Fresnel zone plate formula. Using partial MLL structures, we were able to focus hard X-rays to line foci with a width of 30 nm and below. Here, we describe challenges and approaches used to bond these multilayers to achieve line and point focusing. Bonding was done by coating two multilayers with AuSn and heating in a vacuum oven at 280-300 o C. X-ray reflectivity measurements confirmed that there was no change in the multilayers after heating to 350 o C. A bonded MLL was polished to a 5-25 μm wedge without cracking. SEM image analyses found well-positioned multilayers after bonding. These results demonstrate the feasibility of a bonded full MLL for focusing hard X-rays

  16. An isotropic suspension system for a biaxial accelerometer using electroplated thick metal with a HAR SU-8 mold

    International Nuclear Information System (INIS)

    Lee, Jin Seung; Lee, Seung S

    2008-01-01

    In this paper, a novel approach is developed to design an isotropic suspension system using thick metal freestanding micro-structures combining bulk micro-machining with electroplating based on a HAR SU-8 mold. An omega-shape isotropic suspension system composed of circular curved beams that have free switching of imaginary boundary conditions is proposed. This novel isotropic suspension design is not affected by geometric dimensional parameters and always achieves matching stiffness along the principle axes of elasticity. Using the finite element method, the isotropic suspension system was compared with an S-shaped meandering suspension system. In order to realize the suggested isotropic suspension system, a cost-effective fabrication process using electroplating with the SU-8 mold was developed to avoid expensive equipment and materials such as deep reactive-ion etching (DRIE) or a silicon-on-insulator (SOI) wafer. The fabricated isotropic suspension system was verified by electromagnetic actuation experiments. Finally, a biaxial accelerometer with isotropic suspension system was realized and tested using a vibration generator system. The proposed isotropic suspension system and the modified surface micro-machining technique based on electroplating with an SU-8 mold can contribute towards minimizing the system size, simplifying the system configuration, reducing the system price of and facilitating mass production of various types of low-cost sensors and actuators

  17. An imitative calculation of W/C, Mo/Si articifial multilayered films' structures and properties as X-ray monochromators

    International Nuclear Information System (INIS)

    Liu Wen; Liu Wenhan; Wu Ziqin

    1989-01-01

    An imitative calculation on W/C and Mo/Si artificial multilayered films have been made. The influences of total period numbers and deviation of period thickness on X-ray diffraction peak were given. Two difference diviations, random fluctuation and system linear deviation have been imitated, their influences on X-ray energy distinguish power have been compared

  18. Effect of Ti seed and spacer layers on structure and magnetic properties of FeNi thin films and FeNi-based multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Svalov, A.V., E-mail: andrey.svalov@ehu.es [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain); Department of Magnetism and Magnetic Nanomaterials, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Larrañaga, A. [SGIker, Servicios Generales de Investigación, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain); Kurlyandskaya, G.V. [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain); Department of Magnetism and Magnetic Nanomaterials, Ural Federal University, 620002 Ekaterinburg (Russian Federation)

    2014-10-15

    Highlights: • Fe{sub 19}Ni{sub 81} films and FeNi-based multilayers were prepared by magnetron sputtering. • The samples were deposited onto glass substrates at room temperature. • Ti/FeNi films exhibit good (1 1 1) texture and crystallinity. • The thick Cu seed increases the coercive force of the magnetic layer. • The thin Ti spacer restores the magnetic softness of the Cu/Ti/FeNi multilayers. - Abstract: The microstructure and magnetic properties of sputtered permalloy films and FeNi-based multilayers prepared by magnetron sputtering have been studied. X-ray diffraction measurements indicate that Ti/FeNi films exhibit good (1 1 1) texture and crystallinity. Ti/FeNi bilayers with high crystallographic quality have relatively low resistivity. The Ti seed layer does not influence the magnetic properties of FeNi film in Ti/FeNi bilayers, but the thick Cu seed layer leads to an increase of the coercive force of the magnetic layer. For the FeNi films deposited on thick Cu seed layer, the (0 1 0) and (0 0 2) diffraction peaks of hcp nickel were clearly observed. The thin Ti spacer between Cu and FeNi layers prevents the formation of the nickel phase and restores the magnetic softness of the FeNi layer in the Cu/Ti/FeNi sample. Obtained results can be important for the development of multilayer sensitive elements for giant magnetoimpedance or magnetoresistance detectors.

  19. Study of interface correlation in W/C multilayer structure by specular and non-specular grazing incidence X-ray reflectivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, A., E-mail: arupb@barc.gov.in; Bhattacharyya, D.; Sahoo, N. K. [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Maidul Haque, S.; Tripathi, S.; De, Rajnarayan [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, VIZAG Centre, Visakhapatnam 530012 (India); Rai, S. [Indus Synchrotron Utilization Division, Raja Raman Centre for Advanced Technology, Indore 452013 (India)

    2015-10-28

    W/C/W tri-layer thin film samples have been deposited on c-Si substrates in a home-built Ion Beam Sputtering system at 1.5 × 10{sup −3} Torr Ar working pressure and 10 mA grid current. The tri-layer samples have been deposited at different Ar{sup +} ion energies between 0.6 and 1.2 keV for W layer deposition and the samples have been characterized by specular and non-specular grazing incidence X-ray reflectivity (GIXR) measurements. By analyzing the GIXR spectra, various interface parameters have been obtained for both W-on-C and C-on-W interfaces and optimum Ar{sup +} ion energy for obtaining interfaces with low imperfections has been found. Subsequently, multilayer W/C samples with 5-layer, 7-layer, 9-layer, and 13-layer have been deposited at this optimum Ar{sup +} ion energy. By fitting the specular and diffused GIXR data of the multilayer samples with the parameters of each interface as fitting variables, different interface parameters, viz., interface width, in-plane correlation length, interface roughness, and interface diffusion have been estimated for each interface and their variation across the depth of the multilayers have been obtained. The information would be useful in realizing W/C multilayers for soft X-ray mirror application in the <100 Å wavelength regime. The applicability of the “restart of the growth at the interface” model in the case of these ion beam sputter deposited W/C multilayers has also been investigated in the course of this study.

  20. Dipole radiation in a multilayer geometry

    International Nuclear Information System (INIS)

    Reed, C.E.; Giergiel, J.; Hemminger, J.C.; Ushioda, S.

    1987-01-01

    There are several kinds of experiments that can be done with multilayer stacks of dielectric media which require an understanding of light emission by sources within the stack for their analysis. These experiments may involve, for example, light-emitting tunnel junctions, Raman scattering in Kretschmann and other multilayered geometries, and Rayleigh scattering by small amounts of surface or interface roughness, either alone or in combination with other processes. A set of electromagnetic Green's functions for a multilayer stack of isotropic dielectric media [D. L. Mills and A. A. Maradudin, Phys. Rev. B 12, 2943 (1975)] gives the electric fields produced everywhere by a point source of current oscillating at a frequency f. These Green's functions can thus be used to solve this type of problem. In this paper we show how these Green's functions can be written in terms of 2 x 2 transfer matrices of the type commonly used to find the fields in a dielectric stack due to an incident plane wave. With this simplification we can easily evaluate the Green's functions for a stack with an arbitrary number of layers. We further show that, when the electric fields generated by a point source within the stack are evaluated far away, they can be written directly in terms of the electric fields that would be generated at the location of the current source by plane waves incident from the direction of the observation point. We show that this follows from the Lorentz reciprocity theorem. Thus, in this case the formalism of Green's functions is not needed

  1. Identifying key nodes in multilayer networks based on tensor decomposition.

    Science.gov (United States)

    Wang, Dingjie; Wang, Haitao; Zou, Xiufen

    2017-06-01

    The identification of essential agents in multilayer networks characterized by different types of interactions is a crucial and challenging topic, one that is essential for understanding the topological structure and dynamic processes of multilayer networks. In this paper, we use the fourth-order tensor to represent multilayer networks and propose a novel method to identify essential nodes based on CANDECOMP/PARAFAC (CP) tensor decomposition, referred to as the EDCPTD centrality. This method is based on the perspective of multilayer networked structures, which integrate the information of edges among nodes and links between different layers to quantify the importance of nodes in multilayer networks. Three real-world multilayer biological networks are used to evaluate the performance of the EDCPTD centrality. The bar chart and ROC curves of these multilayer networks indicate that the proposed approach is a good alternative index to identify real important nodes. Meanwhile, by comparing the behavior of both the proposed method and the aggregated single-layer methods, we demonstrate that neglecting the multiple relationships between nodes may lead to incorrect identification of the most versatile nodes. Furthermore, the Gene Ontology functional annotation demonstrates that the identified top nodes based on the proposed approach play a significant role in many vital biological processes. Finally, we have implemented many centrality methods of multilayer networks (including our method and the published methods) and created a visual software based on the MATLAB GUI, called ENMNFinder, which can be used by other researchers.

  2. A refined model for characterizing x-ray multilayers

    International Nuclear Information System (INIS)

    Oren, A.L.; Henke, B.L.

    1987-12-01

    The ability to quickly and accurately characterize arbitrary multilayers is very valuable for not only can we use the characterizations to predict the reflectivity of a multilayer for any soft x-ray wavelength, we also can generalize the results to apply to other multilayers of the same type. In addition, we can use the characterizations as a means of evaluating various sputtering environments and refining sputtering techniques to obtain better multilayers. In this report we have obtained improved characterizations for sample molybdenum-silicon and vanadium-silicon multilayers. However, we only examined five crystals overall, so the conclusions that we could draw about the structure of general multilayers is limited. Research involving many multilayers manufactured under the same sputtering conditions is clearly in order. In order to best understand multilayer structures it may be necessary to further refine our model, e.g., adopting a Gaussian form for the interface regions. With such improvements we can expect even better agreement with experimental values and continued concurrence with other characterization techniques. 18 refs., 30 figs., 7 tabs

  3. Magnetic surfaces, thin films, and multilayers

    International Nuclear Information System (INIS)

    Parkin, S.S.P.; Renard, J.P.; Shinjo, T.; Zinn, W.

    1992-01-01

    This paper details recent developments in the magnetism of surfaces, thin films and multilayers. More than 20 invited contributions and more than 60 contributed papers attest to the great interest and vitality of this subject. In recent years the study of magnetic surfaces, thin films and multilayers has undergone a renaissance, partly motivated by the development of new growth and characterization techniques, but perhaps more so by the discovery of many exciting new properties, some quite unanticipated. These include, most recently, the discovery of enormous values of magnetoresistance in magnetic multilayers far exceeding those found in magnetic single layer films and the discovery of oscillatory interlayer coupling in transition metal multilayers. These experimental studies have motivated much theoretical work. However these developments are to a large extent powered by materials engineering and our ability to control and understand the growth of thin layers just a few atoms thick. The preparation of single crystal thin film layers and multilayers remains important for many studies, in particular, for properties dependent. These studies obviously require engineering not just a layer thicknesses but of lateral dimensions as well. The properties of such structures are already proving to be a great interest

  4. Extended asymmetric-cut multilayer X-ray gratings.

    Science.gov (United States)

    Prasciolu, Mauro; Haase, Anton; Scholze, Frank; Chapman, Henry N; Bajt, Saša

    2015-06-15

    The fabrication and characterization of a large-area high-dispersion blazed grating for soft X-rays based on an asymmetric-cut multilayer structure is reported. An asymmetric-cut multilayer structure acts as a perfect blazed grating of high efficiency that exhibits a single diffracted order, as described by dynamical diffraction throughout the depth of the layered structure. The maximum number of grating periods created by cutting a multilayer deposited on a flat substrate is equal to the number of layers deposited, which limits the size of the grating. The size limitation was overcome by depositing the multilayer onto a substrate which itself is a coarse blazed grating and then polish it flat to reveal the uniformly spaced layers of the multilayer. The number of deposited layers required is such that the multilayer thickness exceeds the step height of the substrate structure. The method is demonstrated by fabricating a 27,060 line pairs per mm blazed grating (36.95 nm period) that is repeated every 3,200 periods by the 120-μm period substrate structure. This preparation technique also relaxes the requirements on stress control and interface roughness of the multilayer film. The dispersion and efficiency of the grating is demonstrated for soft X-rays of 13.2 nm wavelength.

  5. Controlling light with plasmonic multilayers

    DEFF Research Database (Denmark)

    Orlov, Alexey A.; Zhukovsky, Sergei; Iorsh, Ivan V.

    2014-01-01

    metamaterials and describe their use for light manipulation at the nanoscale. While demonstrating the recently emphasized hallmark effect of hyperbolic dispersion, we put special emphasis to the comparison between multilayered hyperbolic metamaterials and more broadly defined plasmonic-multilayer metamaterials...

  6. Degradation of periodic multilayers as seen by small-angle x-ray scattering and x-ray diffraction

    CERN Document Server

    Rafaja, D; Simek, D; Zdeborova, L; Valvoda, V

    2002-01-01

    The capabilities of small-angle x-ray scattering (SAXS) and wide-angle x-ray diffraction (XRD) to recognize structural changes in periodic multilayers were compared on Fe/Au multilayers with different degrees of structural degradation. Experimental results have shown that both methods are equally sensitive to the multilayer degradation, i.e., to the occurrence of non-continuous interfaces, to short-circuits in the multilayer structure and to the multilayer precipitation. XRD yielded additional information on the multilayer crystallinity, whilst SAXS could better recognize fragments of a long-range periodicity (remnants of the original multilayer structure). Changes in the multilayer structure were initiated by successive annealing at 200 and 300 deg. C. Experimental data were complemented by numerical simulations performed using a combination of optical theory and the distorted wave Born approximation for SAXS or the kinematical Born approximation for XRD.

  7. Axisymmetric Vibration of Piezo-Lemv Composite Hollow Multilayer Cylinder

    Directory of Open Access Journals (Sweden)

    E. S. Nehru

    2012-01-01

    Full Text Available Axisymmetric vibration of an infinite piezolaminated multilayer hollow cylinder made of piezoelectric layers of 6 mm class and an isotropic LEMV (Linear Elastic Materials with Voids layers is studied. The frequency equations are obtained for the traction free outer surface with continuity conditions at the interfaces. Numerical results are carried out for the inner, middle, and outer hollow piezoelectric layers bonded by LEMV (It is hypothetical material layers and the dispersion curves are compared with that of a similar 3-layer model and of 3 and 5 layer models with inner, middle, and outer hollow piezoelectric layers bonded by CFRP (Carbon fiber reinforced plastics.

  8. Structure, mechanical and tribological properties of self-toughening TiSiN/Ag multilayer coatings on Ti6Al4V prepared by arc ion plating

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Chaoqun [School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Li, Jinlong, E-mail: lijinlong11@126.com [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Yue; Chen, Jianmin [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2016-11-15

    Graphical abstract: Hardness and elastic modulus of TiSiN coating (C1) and TiSiN/Ag multilayer coatings with different thickness of individual Ag layers of 33.87 nm (C2), 30.01 nm (C3), 26.67 nm (C4), 22.22 nm (C5) and 10.67 nm (C6), together with SEM micrographs of indention morphologies after Vickers indentation tests. Display Omitted - Highlights: • TiSiN/Ag multilayer coatings design for microstructure was shown by cross-sectional SEM micrographs. • The TiSiN/Ag multilayer coatings showed a significantly improved toughness compared with the TiSiN coating. • The individual Ag layers as a self-lubricating. • TiSiN/Ag multilayer coating (individual Ag layers of 22.22 nm) exhibits high hardness, H/E and H{sup 3}/E{sup *2} values and excellent wear resistance. - Abstract: The TiSiN/Ag multilayer coatings deposited on Ti6Al4V alloy substrate using the multi-arc ion plating system. All multilayer coatings had a same total thickness of about 2.5 μm, and the TiSiN layer had a fixed thickness and the Ag layer had different thicknesses. Evidence concluded from X-ray diffraction, scanning electron microcopies, X-ray photoelectron spectroscopy revealed that nanocrystallites and amorphous microstructure of nc-TiN and amorphous Si{sub 3}N{sub 4} for individual TiSiN layers, where amorphous Si{sub 3}N{sub 4} around nanocrystallites TiN boundaries, and ductile nanocrystallites silver clusters and metallic silver for individual Ag layers which can limit continuous growth of single (200) preferential orientation coarse columnar TiN crystal. In addition, the TiN grain size presented a decreasing trend with the decrease of the thickness of Ag layers. The TiSiN/Ag multilayer coatings showed a significantly improved toughness compared with the TiSiN coating. The individual Ag layers of nano-multilayer coatings, not only as a self-lubricating but also as a barrier which inhibited micro cracks propagation, the formation of threading defects throughout all coatings, cause

  9. Interbasis expansions for isotropic harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Shi-Hai, E-mail: dongsh2@yahoo.com [Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, Mexico D.F. 07738 (Mexico)

    2012-03-12

    The exact solutions of the isotropic harmonic oscillator are reviewed in Cartesian, cylindrical polar and spherical coordinates. The problem of interbasis expansions of the eigenfunctions is solved completely. The explicit expansion coefficients of the basis for given coordinates in terms of other two coordinates are presented for lower excited states. Such a property is occurred only for those degenerated states for given principal quantum number n. -- Highlights: ► Exact solutions of harmonic oscillator are reviewed in three coordinates. ► Interbasis expansions of the eigenfunctions is solved completely. ► This is occurred only for those degenerated states for given quantum number n.

  10. Isotropic Broadband E-Field Probe

    Directory of Open Access Journals (Sweden)

    Béla Szentpáli

    2008-01-01

    Full Text Available An E-field probe has been developed for EMC immunity tests performed in closed space. The leads are flexible resistive transmission lines. Their influence on the field distribution is negligible. The probe has an isotropic reception from 100 MHz to 18 GHz; the sensitivity is in the 3 V/m–10 V/m range. The device is an accessory of the EMC test chamber. The readout of the field magnitude is carried out by personal computer, which fulfils also the required corrections of the raw data.

  11. Gravitational instability in isotropic MHD plasma waves

    Science.gov (United States)

    Cherkos, Alemayehu Mengesha

    2018-04-01

    The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for magnetohydrodynamic (MHD) waves propagating in a homogeneous and isotropic plasma. The general dispersion relation has been developed from set of linearized basic equations and solved analytically to analyse the conditions of instability and instability of self-gravitating plasma embedded in a constant magnetic field. Our result shows that the presence of viscosity and thermal conductivity in a strong magnetic field substantially modifies the fundamental Jeans criterion of gravitational instability.

  12. Active isotropic slabs: conditions for amplified reflection

    Science.gov (United States)

    Perez, Liliana I.; Matteo, Claudia L.; Etcheverry, Javier; Duplaá, María Celeste

    2012-12-01

    We analyse in detail the necessary conditions to obtain amplified reflection (AR) in isotropic interfaces when a plane wave propagates from a transparent medium towards an active one. First, we demonstrate analytically that AR is not possible if a single interface is involved. Then, we study the conditions for AR in a very simple configuration: normal incidence on an active slab immersed in transparent media. Finally, we develop an analysis in the complex plane in order to establish a geometrical method that not only describes the behaviour of active slabs but also helps to simplify the calculus.

  13. Active isotropic slabs: conditions for amplified reflection

    International Nuclear Information System (INIS)

    Perez, Liliana I; Duplaá, María Celeste; Matteo, Claudia L; Etcheverry, Javier

    2012-01-01

    We analyse in detail the necessary conditions to obtain amplified reflection (AR) in isotropic interfaces when a plane wave propagates from a transparent medium towards an active one. First, we demonstrate analytically that AR is not possible if a single interface is involved. Then, we study the conditions for AR in a very simple configuration: normal incidence on an active slab immersed in transparent media. Finally, we develop an analysis in the complex plane in order to establish a geometrical method that not only describes the behaviour of active slabs but also helps to simplify the calculus. (paper)

  14. Optical resonances in multilayer structures

    NARCIS (Netherlands)

    Maksimovic, Milan

    2008-01-01

    Theoretical research in optics may be divided in two distinctive but well connected general directions. The first deals with developing new or improving existing mathematical models to describe relevant physics. The second aims to predict new phenomena or applications using established models and

  15. Isotropic extensions of the vacuum solutions in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Molina, C. [Universidade de Sao Paulo (USP), SP (Brazil); Martin-Moruno, Prado [Victoria University of Wellington (New Zealand); Gonzalez-Diaz, Pedro F. [Consejo Superior de Investigaciones Cientificas, Madrid (Spain)

    2012-07-01

    Full text: Spacetimes described by spherically symmetric solutions of Einstein's equations are of paramount importance both in astrophysical applications and theoretical considerations. And among those, black holes are highlighted. In vacuum, Birkhoff's theorem and its generalizations to non-asymptotically flat cases uniquely fix the metric as the Schwarzschild, Schwarzschild-de Sitter or Schwarzschild-anti-de Sitter geometries, the vacuum solutions of the usual general relativity with zero, positive or negative values for the cosmological constant, respectively. In this work we are mainly interested in black holes in a cosmological environment. Of the two main assumptions of the cosmological principle, homogeneity is lost when compact objects are considered. Nevertheless isotropy is still possible, and we enforce this condition. Within this context, we investigate spatially isotropic solutions close - continuously deformable - to the usual vacuum solutions. We obtain isotropic extensions of the usual spherically symmetric vacuum geometries in general relativity. Exact and perturbative solutions are derived. Maximal extensions are constructed and their causal structures are discussed. The classes of geometries obtained include black holes in compact and non-compact universes, wormholes in the interior region of cosmological horizons, and anti-de Sitter geometries with excess/deficit solid angle. The tools developed here are applicable in more general contexts, with extensions subjected to other constraints. (author)

  16. Modeling of biologically motivated self-learning equivalent-convolutional recurrent-multilayer neural structures (BLM_SL_EC_RMNS) for image fragments clustering and recognition

    Science.gov (United States)

    Krasilenko, Vladimir G.; Lazarev, Alexander A.; Nikitovich, Diana V.

    2018-03-01

    The biologically-motivated self-learning equivalence-convolutional recurrent-multilayer neural structures (BLM_SL_EC_RMNS) for fragments images clustering and recognition will be discussed. We shall consider these neural structures and their spatial-invariant equivalental models (SIEMs) based on proposed equivalent two-dimensional functions of image similarity and the corresponding matrix-matrix (or tensor) procedures using as basic operations of continuous logic and nonlinear processing. These SIEMs can simply describe the signals processing during the all training and recognition stages and they are suitable for unipolar-coding multilevel signals. The clustering efficiency in such models and their implementation depends on the discriminant properties of neural elements of hidden layers. Therefore, the main models and architecture parameters and characteristics depends on the applied types of non-linear processing and function used for image comparison or for adaptive-equivalent weighing of input patterns. We show that these SL_EC_RMNSs have several advantages, such as the self-study and self-identification of features and signs of the similarity of fragments, ability to clustering and recognize of image fragments with best efficiency and strong mutual correlation. The proposed combined with learning-recognition clustering method of fragments with regard to their structural features is suitable not only for binary, but also color images and combines self-learning and the formation of weight clustered matrix-patterns. Its model is constructed and designed on the basis of recursively continuous logic and nonlinear processing algorithms and to k-average method or method the winner takes all (WTA). The experimental results confirmed that fragments with a large numbers of elements may be clustered. For the first time the possibility of generalization of these models for space invariant case is shown. The experiment for an images of different dimensions (a reference

  17. Acoustic reflection log in transversely isotropic formations

    Science.gov (United States)

    Ronquillo Jarillo, G.; Markova, I.; Markov, M.

    2018-01-01

    We have calculated the waveforms of sonic reflection logging for a fluid-filled borehole located in a transversely isotropic rock. Calculations have been performed for an acoustic impulse source with the characteristic frequency of tens of kilohertz that is considerably less than the frequencies of acoustic borehole imaging tools. It is assumed that the borehole axis coincides with the axis of symmetry of the transversely isotropic rock. It was shown that the reflected wave was excited most efficiently at resonant frequencies. These frequencies are close to the frequencies of oscillations of a fluid column located in an absolutely rigid hollow cylinder. We have shown that the acoustic reverberation is controlled by the acoustic impedance of the rock Z = Vphρs for fixed parameters of the borehole fluid, where Vph is the velocity of horizontally propagating P-wave; ρs is the rock density. The methods of waveform processing to determine the parameters characterizing the reflected wave have been discussed.

  18. ZnO/Cu2S/ZnO Multilayer Films: Structure Optimization and Its Detail Data for Applications on Photoelectric and Photocatalytic Properties

    Directory of Open Access Journals (Sweden)

    Zhenxing Wang

    2017-01-01

    Full Text Available Monolayer Cu2S and ZnO, and three kinds of complex films, Cu2S/ZnO, ZnO/Cu2S, and ZnO/Cu2S/ZnO, were deposited on glass substrates by means of radio frequency (RF magnetron sputtering device. The impact of the thickness of ZnO and Cu2S on the whole transmittance, conductivity, and photocatalysis was investigated. The optical and electrical properties of the multilayer were studied by optical spectrometry and four point probes. Numerical simulation of the optical transmittance of the multilayer films has been carried out in order to guide the experimental work. The comprehensive performances of the multilayers as transparent conductive coatings were compared using the figure of merit. Compared with monolithic Cu2S and ZnO films, both the optical transmission property and photocatalytic performance of complex films such as Cu2S/ZnO and ZnO/Cu2S/ZnO change significantly.

  19. Phase-field-crystal model for magnetocrystalline interactions in isotropic ferromagnetic solids

    Science.gov (United States)

    Faghihi, Niloufar; Provatas, Nikolas; Elder, K. R.; Grant, Martin; Karttunen, Mikko

    2013-09-01

    An isotropic magnetoelastic phase-field-crystal model to study the relation between morphological structure and magnetic properties of pure ferromagnetic solids is introduced. Analytic calculations in two dimensions were used to determine the phase diagram and obtain the relationship between elastic strains and magnetization. Time-dependent numerical simulations in two dimensions were used to demonstrate the effect of grain boundaries on the formation of magnetic domains. It was shown that the grain boundaries act as nucleating sites for domains of reverse magnetization. Finally, we derive a relation for coercivity versus grain misorientation in the isotropic limit.

  20. A tilted transversely isotropic slowness surface approximation

    KAUST Repository

    Stovas, A.

    2012-05-09

    The relation between vertical and horizontal slownesses, better known as the dispersion relation, for transversely isotropic media with a tilted symmetry axis (TTI) requires solving a quartic polynomial equation, which does not admit a practical explicit solution to be used, for example, in downward continuation. Using a combination of the perturbation theory with respect to the anelliptic parameter and Shanks transform to improve the accuracy of the expansion, we develop an explicit formula for the vertical slowness that is highly accurate for all practical purposes. It also reveals some insights into the anisotropy parameter dependency of the dispersion relation including the low impact that the anelliptic parameter has on the vertical placement of reflectors for a small tilt in the symmetry angle. © 2012 European Association of Geoscientists & Engineers.

  1. Linearized holographic isotropization at finite coupling

    Energy Technology Data Exchange (ETDEWEB)

    Atashi, Mahdi; Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Physics Department (Iran, Islamic Republic of); Jafari, Ghadir [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)

    2017-06-15

    We study holographic isotropization of an anisotropic homogeneous non-Abelian strongly coupled plasma in the presence of Gauss-Bonnet corrections. It was verified before that one can linearize Einstein's equations around the final black hole background and simplify the complicated setup. Using this approach, we study the expectation value of the boundary stress tensor. Although we consider small values of the Gauss-Bonnet coupling constant, it is found that finite coupling leads to significant increasing of the thermalization time. By including higher order corrections in linearization, we extend the results to study the effect of the Gauss-Bonnet coupling on the entropy production on the event horizon. (orig.)

  2. Effective elastic properties of damaged isotropic solids

    International Nuclear Information System (INIS)

    Lee, U Sik

    1998-01-01

    In continuum damage mechanics, damaged solids have been represented by the effective elastic stiffness into which local damage is smoothly smeared. Similarly, damaged solids may be represented in terms of effective elastic compliances. By virtue of the effective elastic compliance representation, it may become easier to derive the effective engineering constants of damaged solids from the effective elastic compliances, all in closed form. Thus, in this paper, by using a continuum modeling approach based on both the principle of strain energy equivalence and the equivalent elliptical micro-crack representation of local damage, the effective elastic compliance and effective engineering constants are derived in terms of the undamaged (virgin) elastic properties and a scalar damage variable for both damaged two-and three-dimensional isotropic solids

  3. New bounds on isotropic Lorentz violation

    International Nuclear Information System (INIS)

    Carone, Christopher D.; Sher, Marc; Vanderhaeghen, Marc

    2006-01-01

    Violations of Lorentz invariance that appear via operators of dimension four or less are completely parametrized in the Standard Model Extension (SME). In the pure photonic sector of the SME, there are 19 dimensionless, Lorentz-violating parameters. Eighteen of these have experimental upper bounds ranging between 10 -11 and 10 -32 ; the remaining parameter, k-tilde tr , is isotropic and has a much weaker bound of order 10 -4 . In this Brief Report, we point out that k-tilde tr gives a significant contribution to the anomalous magnetic moment of the electron and find a new upper bound of order 10 -8 . With reasonable assumptions, we further show that this bound may be improved to 10 -14 by considering the renormalization of other Lorentz-violating parameters that are more tightly constrained. Using similar renormalization arguments, we also estimate bounds on Lorentz-violating parameters in the pure gluonic sector of QCD

  4. Isotropic and anisotropic surface wave cloaking techniques

    International Nuclear Information System (INIS)

    McManus, T M; Spada, L La; Hao, Y

    2016-01-01

    In this paper we compare two different approaches for surface waves cloaking. The first technique is a unique application of Fermat’s principle and requires isotropic material properties, but owing to its derivation is limited in its applicability. The second technique utilises a geometrical optics approximation for dealing with rays bound to a two dimensional surface and requires anisotropic material properties, though it can be used to cloak any smooth surface. We analytically derive the surface wave scattering behaviour for both cloak techniques when applied to a rotationally symmetric surface deformation. Furthermore, we simulate both using a commercially available full-wave electromagnetic solver and demonstrate a good level of agreement with their analytically derived solutions. Our analytical solutions and simulations provide a complete and concise overview of two different surface wave cloaking techniques. (paper)

  5. Isotropic and anisotropic surface wave cloaking techniques

    Science.gov (United States)

    McManus, T. M.; La Spada, L.; Hao, Y.

    2016-04-01

    In this paper we compare two different approaches for surface waves cloaking. The first technique is a unique application of Fermat’s principle and requires isotropic material properties, but owing to its derivation is limited in its applicability. The second technique utilises a geometrical optics approximation for dealing with rays bound to a two dimensional surface and requires anisotropic material properties, though it can be used to cloak any smooth surface. We analytically derive the surface wave scattering behaviour for both cloak techniques when applied to a rotationally symmetric surface deformation. Furthermore, we simulate both using a commercially available full-wave electromagnetic solver and demonstrate a good level of agreement with their analytically derived solutions. Our analytical solutions and simulations provide a complete and concise overview of two different surface wave cloaking techniques.

  6. X-ray and Moessbauer investigations of isotropic barium ferrites

    International Nuclear Information System (INIS)

    Kirichok, P.P.; Pashchenko, V.A.; Dem'yaniv, T.O.; Ryabova, G.N.; Lisovskij, A.M.

    1984-01-01

    Using the methods of X-ray and γ-resonance spectroscopy the crystal chemical and magnetic structure of isotropic barium hexaferrites is studied. compacting pressure the lattice parameter c of ferrite of the BaOx5.7Fe 2 O 3 is decreased and the diffraction line width on its X-ray p attern is increased. Due to increasing the isoststical compacting pressure quadrupole splitting of the γ-resonance absorption spectrum of 57 Fe nuclei in tetrahedral positions 4f 1 and in positions 2a decreases. The sintering temperature growth leads to increasing the lattice parameter c and diffraction line widths and decreasing the effeutive field values and isomeric s hifts on 57 Fe nuclei. Isostatical compacting pressure does not affect the electron configuration of iron ions

  7. Influence of N{sub 2} partial pressure on structural and microhardness properties of TiN/ZrN multilayers deposited by Ar/N{sub 2} vacuum arc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, M., E-mail: ascientific24@aec.org.sy [Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus (Syrian Arab Republic); Abdallah, B. [Department of Physics, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic); Ahmad, M. [IBA Laboratory, Department of Chemistry, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic); A-Kharroub, M. [Department of Physics, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic)

    2016-08-15

    The influence of N{sub 2} partial pressure on structural, mechanical and wetting properties of multilayered TiN/ZrN thin films deposited on silicon substrates by vacuum arc discharge of (N{sub 2} + Ar) gas mixtures is investigated. X-ray diffraction (XRD) results show that the average texturing coefficient of (1 1 1) orientation and the grain size of both TiN and ZrN individual layers increase with increasing the N{sub 2} partial pressure. The Rutherford back scattering (RBS) measurements and analysis reveal that incorporation of the nitrogen in the film increases with increasing the N{sub 2} partial pressure and both TiN and ZrN individual layers have a nitrogen over-stoichiometry for N{sub 2} partial pressure ⩾50%. The change in the film micro-hardness is correlated to the changes in crystallographic texture, grain size, stoichiometry and the residual stress in the film as a function of the N{sub 2} partial pressure. In particular, stoichiometry of ZrN and TiN individual is found to play the vital role in determining the multilayer hardness. The multilayer film deposited at N{sub 2} partial pressure of 25% has the best stoichiometric ratio of both TiN and ZrN layers and the highest micro-hardness of about 32 GPa. In addition, water contact angle (WCA) measurements and analysis show a decrease in the work of adhesion on increasing the N{sub 2} partial pressure.

  8. Clustering network layers with the strata multilayer stochastic block model.

    Science.gov (United States)

    Stanley, Natalie; Shai, Saray; Taylor, Dane; Mucha, Peter J

    2016-01-01

    Multilayer networks are a useful data structure for simultaneously capturing multiple types of relationships between a set of nodes. In such networks, each relational definition gives rise to a layer. While each layer provides its own set of information, community structure across layers can be collectively utilized to discover and quantify underlying relational patterns between nodes. To concisely extract information from a multilayer network, we propose to identify and combine sets of layers with meaningful similarities in community structure. In this paper, we describe the "strata multilayer stochastic block model" (sMLSBM), a probabilistic model for multilayer community structure. The central extension of the model is that there exist groups of layers, called "strata", which are defined such that all layers in a given stratum have community structure described by a common stochastic block model (SBM). That is, layers in a stratum exhibit similar node-to-community assignments and SBM probability parameters. Fitting the sMLSBM to a multilayer network provides a joint clustering that yields node-to-community and layer-to-stratum assignments, which cooperatively aid one another during inference. We describe an algorithm for separating layers into their appropriate strata and an inference technique for estimating the SBM parameters for each stratum. We demonstrate our method using synthetic networks and a multilayer network inferred from data collected in the Human Microbiome Project.

  9. Porous germanium multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Garralaga Rojas, Enrique; Hensen, Jan; Brendel, Rolf [Institut fuer Solarenergieforschung Hameln (ISFH), Emmerthal (Germany); Carstensen, Juergen; Foell, Helmut [Chair for General Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel (Germany)

    2011-06-15

    We present the reproducible fabrication of porous germanium (PGe) single- and multilayers. Mesoporous layers form on heavily doped 4'' p-type Ge wafers by electrochemical etching in highly concentrated HF-based electrolytes with concentrations in a range of 30-50 wt.%. Direct PGe formation is accompanied by a constant dissolution of the already-formed porous layer at the electrolyte/PGe interface, hence yielding a thinner substrate after etching. This effect inhibits multilayer formation as the starting layer is etched while forming the second layer. We avoid dissolution of the porous layer by alternating the etching bias from anodic to cathodic. PGe formation occurs during anodic etching whereas the cathodic step passivates pore walls with H-atoms and avoids electropolishing. The passivation lasts a limited time depending on the etching current density and electrolyte concentration, necessitating a repetition of the cathodic step at suitable intervals. With optimized alternating bias mesoporous multilayer production is possible. We control the porosity of each single layer by varying the etching current density and the electrolyte (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Advanced materials for multilayer mirrors for extreme ultraviolet solar astronomy.

    Science.gov (United States)

    Bogachev, S A; Chkhalo, N I; Kuzin, S V; Pariev, D E; Polkovnikov, V N; Salashchenko, N N; Shestov, S V; Zuev, S Y

    2016-03-20

    We provide an analysis of contemporary multilayer optics for extreme ultraviolet (EUV) solar astronomy in the wavelength ranges: λ=12.9-13.3  nm, λ=17-21  nm, λ=28-33  nm, and λ=58.4  nm. We found new material pairs, which will make new spaceborne experiments possible due to the high reflection efficiencies, spectral resolution, and long-term stabilities of the proposed multilayer coatings. In the spectral range λ=13  nm, Mo/Be multilayer mirrors were shown to demonstrate a better ratio of reflection efficiency and spectral resolution compared with the commonly used Mo/Si. In the spectral range λ=17-21  nm, a new multilayer structure Al/Si was proposed, which had higher spectral resolution along with comparable reflection efficiency compared with the commonly used Al/Zr multilayer structures. In the spectral range λ=30  nm, the Si/B4C/Mg/Cr multilayer structure turned out to best obey reflection efficiency and long-term stability. The B4C and Cr layers prevented mutual diffusion of the Si and Mg layers. For the spectral range λ=58  nm, a new multilayer Mo/Mg-based structure was developed; its reflection efficiency and long-term stability have been analyzed. We also investigated intrinsic stresses inherent for most of the multilayer structures and proposed possibilities for stress elimination.

  11. Transmission fingerprints in quasiperiodic magnonic multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, I.P. [Departamento de Ensino Superior, Instituto Federal de Educacao, Ciencia e Tecnologia do Maranhao, Imperatriz-MA 65919-050 (Brazil); Departamento de Fisica, Universidade Federal do Rio Grande do Norte, Natal-RN 59072-970 (Brazil); Vasconcelos, M.S. [Escola de Ciencias e Tecnologia, Universidade Federal do Rio Grande do Norte, Natal-RN 59072-970 (Brazil); Bezerra, C.G., E-mail: cbezerra@dfte.ufrn.br [Departamento de Fisica, Universidade Federal do Rio Grande do Norte, Natal-RN 59072-970 (Brazil)

    2011-12-15

    In this paper we investigated the influence of mirror symmetry on the transmission spectra of quasiperiodic magnonic multilayers arranged according to Fibonacci, Thue-Morse and double period quasiperiodic sequences. We consider that the multilayers composed of two simple cubic Heisenberg ferromagnets with bulk exchange constants J{sub A} and J{sub B} and spin quantum numbers S{sub A} and S{sub B}, respectively. The multilayer structure is surrounded by two semi-infinite slabs of a third Heisenberg ferromagnetic material with exchange constant J{sub C} and spin quantum number S{sub C}. For simplicity, the lattice constant has the same value a in each material, corresponding to epitaxial growth at the interfaces. The transfer matrix treatment was used for the exchange-dominated regime, taking into account the random phase approximation (RPA). Our numerical results illustrate the effects of mirror symmetry on (i) transmission spectra and (ii) transmission fingerprints. - Highlights: > We model quasiperiodic magnetic multilayers presenting mirror symmetry. > We investigated the allowed and forbidden bands of magnonic transmission. > Transmission return maps show the influence of mirror symmetry. > Mirror symmetry has no effect on the Fibonacci case. > Mirror symmetry does have effect on the Thue-Morse and double period cases.

  12. Transmission fingerprints in quasiperiodic magnonic multilayers

    International Nuclear Information System (INIS)

    Coelho, I.P.; Vasconcelos, M.S.; Bezerra, C.G.

    2011-01-01

    In this paper we investigated the influence of mirror symmetry on the transmission spectra of quasiperiodic magnonic multilayers arranged according to Fibonacci, Thue-Morse and double period quasiperiodic sequences. We consider that the multilayers composed of two simple cubic Heisenberg ferromagnets with bulk exchange constants J A and J B and spin quantum numbers S A and S B , respectively. The multilayer structure is surrounded by two semi-infinite slabs of a third Heisenberg ferromagnetic material with exchange constant J C and spin quantum number S C . For simplicity, the lattice constant has the same value a in each material, corresponding to epitaxial growth at the interfaces. The transfer matrix treatment was used for the exchange-dominated regime, taking into account the random phase approximation (RPA). Our numerical results illustrate the effects of mirror symmetry on (i) transmission spectra and (ii) transmission fingerprints. - Highlights: → We model quasiperiodic magnetic multilayers presenting mirror symmetry. → We investigated the allowed and forbidden bands of magnonic transmission. → Transmission return maps show the influence of mirror symmetry. → Mirror symmetry has no effect on the Fibonacci case. → Mirror symmetry does have effect on the Thue-Morse and double period cases.

  13. A Reduced-Order Model for Evaluating the Dynamic Response of Multilayer Plates to Impulsive Loads

    Science.gov (United States)

    2016-04-12

    A REDUCED-ORDER MODEL FOR EVALUATING THE DYNAMIC RESPONSE OF MULTILAYER PLATES TO IMPULSIVE LOADS Weiran Jiang, Alyssa Bennett, Nickolas...innovative multilayer materials or structures to optimize the dynamic performance as a mechanism to absorb and spread energy from an impulsive load...models. • Optimizing the structural weight and levels of protection of the multilayer plates with a good combination of materials. Technical Approach 2016

  14. Waterlike glass polyamorphism in a monoatomic isotropic Jagla model.

    Science.gov (United States)

    Xu, Limei; Giovambattista, Nicolas; Buldyrev, Sergey V; Debenedetti, Pablo G; Stanley, H Eugene

    2011-02-14

    We perform discrete-event molecular dynamics simulations of a system of particles interacting with a spherically-symmetric (isotropic) two-scale Jagla pair potential characterized by a hard inner core, a linear repulsion at intermediate separations, and a weak attractive interaction at larger separations. This model system has been extensively studied due to its ability to reproduce many thermodynamic, dynamic, and structural anomalies of liquid water. The model is also interesting because: (i) it is very simple, being composed of isotropically interacting particles, (ii) it exhibits polyamorphism in the liquid phase, and (iii) its slow crystallization kinetics facilitate the study of glassy states. There is interest in the degree to which the known polyamorphism in glassy water may have parallels in liquid water. Motivated by parallels between the properties of the Jagla potential and those of water in the liquid state, we study the metastable phase diagram in the glass state. Specifically, we perform the computational analog of the protocols followed in the experimental studies of glassy water. We find that the Jagla potential calculations reproduce three key experimental features of glassy water: (i) the crystal-to-high-density amorphous solid (HDA) transformation upon isothermal compression, (ii) the low-density amorphous solid (LDA)-to-HDA transformation upon isothermal compression, and (iii) the HDA-to-very-high-density amorphous solid (VHDA) transformation upon isobaric annealing at high pressure. In addition, the HDA-to-LDA transformation upon isobaric heating, observed in water experiments, can only be reproduced in the Jagla model if a free surface is introduced in the simulation box. The HDA configurations obtained in cases (i) and (ii) are structurally indistinguishable, suggesting that both processes result in the same glass. With the present parametrization, the evolution of density with pressure or temperature is remarkably similar to the

  15. Multilayered structures of (RE = rare earth)Ba2Cu3Ox films: an approach for the growth of superior quality large-area superconducting films on sapphire substrates

    International Nuclear Information System (INIS)

    Develos-Bagarinao, K; Yamasaki, H; Ohki, K; Nakagawa, Y

    2007-01-01

    Relatively thick REBa 2 Cu 3 O 7-δ (RE = rare earth) films (thickness ∼400-600 nm) with significantly improved surface morphology and critical current properties using a multilayered structure which alternates main layers of YBa 2 Cu 3 O 7-δ (YBCO) with intermediate DyBa 2 Cu 3 O 7-δ (DyBCO) layers on CeO 2 -buffered sapphire substrates were investigated. The DyBCO layer, which has a close lattice matching with YBCO, functions as a good starting template for the growth of high-quality YBCO layers. Critical current density (J c ) drastically increased up to a factor of 2 for YBCO/DyBCO multilayer films, compared to YBCO monolayer films in both the self-field and applied magnetic field. The significant improvement in J c is attributed to the improvement of surface smoothness and enhanced flux pinning properties as revealed by the magnetic-field angular dependence of J c . (rapid communication)

  16. On the decay of homogeneous isotropic turbulence

    Science.gov (United States)

    Skrbek, L.; Stalp, Steven R.

    2000-08-01

    Decaying homogeneous, isotropic turbulence is investigated using a phenomenological model based on the three-dimensional turbulent energy spectra. We generalize the approach first used by Comte-Bellot and Corrsin [J. Fluid Mech. 25, 657 (1966)] and revised by Saffman [J. Fluid Mech. 27, 581 (1967); Phys. Fluids 10, 1349 (1967)]. At small wave numbers we assume the spectral energy is proportional to the wave number to an arbitrary power. The specific case of power 2, which follows from the Saffman invariant, is discussed in detail and is later shown to best describe experimental data. For the spectral energy density in the inertial range we apply both the Kolmogorov -5/3 law, E(k)=Cɛ2/3k-5/3, and the refined Kolmogorov law by taking into account intermittency. We show that intermittency affects the energy decay mainly by shifting the position of the virtual origin rather than altering the power law of the energy decay. Additionally, the spectrum is naturally truncated due to the size of the wind tunnel test section, as eddies larger than the physical size of the system cannot exist. We discuss effects associated with the energy-containing length scale saturating at the size of the test section and predict a change in the power law decay of both energy and vorticity. To incorporate viscous corrections to the model, we truncate the spectrum at an effective Kolmogorov wave number kη=γ(ɛ/v3)1/4, where γ is a dimensionless parameter of order unity. We show that as the turbulence decays, viscous corrections gradually become more important and a simple power law can no longer describe the decay. We discuss the final period of decay within the framework of our model, and show that care must be taken to distinguish between the final period of decay and the change of the character of decay due to the saturation of the energy containing length scale. The model is applied to a number of experiments on decaying turbulence. These include the downstream decay of turbulence in

  17. Isotropic compression of cohesive-frictional particles with rolling resistance

    NARCIS (Netherlands)

    Luding, Stefan; Benz, Thomas; Nordal, Steinar

    2010-01-01

    Cohesive-frictional and rough powders are the subject of this study. The behavior under isotropic compression is examined for different material properties involving Coulomb friction, rolling-resistance and contact-adhesion. Under isotropic compression, the density continuously increases according

  18. The revised geometric measure of entanglement for isotropic state

    International Nuclear Information System (INIS)

    Cao Ya

    2011-01-01

    Based on the revised geometric measure of entanglement (RGME), we obtain the analytical expression of isotropic state and generalize to n-particle and d-dimension mixed state case. Meantime, we obtain the relation about isotropic state E-tilde sin 2 (ρ) ≤ E re (ρ). The results indicate RGME is an appropriate measure of entanglement. (authors)

  19. Contact mechanics and friction for transversely isotropic viscoelastic materials

    NARCIS (Netherlands)

    Mokhtari, Milad; Schipper, Dirk J.; Vleugels, N.; Noordermeer, Jacobus W.M.; Yoshimoto, S.; Hashimoto, H.

    2015-01-01

    Transversely isotropic materials are an unique group of materials whose properties are the same along two of the principal axes of a Cartesian coordinate system. Various natural and artificial materials behave effectively as transversely isotropic elastic solids. Several materials can be classified

  20. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness

    Science.gov (United States)

    Berger, J. B.; Wadley, H. N. G.; McMeeking, R. M.

    2017-02-01

    A wide variety of high-performance applications require materials for which shape control is maintained under substantial stress, and that have minimal density. Bio-inspired hexagonal and square honeycomb structures and lattice materials based on repeating unit cells composed of webs or trusses, when made from materials of high elastic stiffness and low density, represent some of the lightest, stiffest and strongest materials available today. Recent advances in 3D printing and automated assembly have enabled such complicated material geometries to be fabricated at low (and declining) cost. These mechanical metamaterials have properties that are a function of their mesoscale geometry as well as their constituents, leading to combinations of properties that are unobtainable in solid materials; however, a material geometry that achieves the theoretical upper bounds for isotropic elasticity and strain energy storage (the Hashin-Shtrikman upper bounds) has yet to be identified. Here we evaluate the manner in which strain energy distributes under load in a representative selection of material geometries, to identify the morphological features associated with high elastic performance. Using finite-element models, supported by analytical methods, and a heuristic optimization scheme, we identify a material geometry that achieves the Hashin-Shtrikman upper bounds on isotropic elastic stiffness. Previous work has focused on truss networks and anisotropic honeycombs, neither of which can achieve this theoretical limit. We find that stiff but well distributed networks of plates are required to transfer loads efficiently between neighbouring members. The resulting low-density mechanical metamaterials have many advantageous properties: their mesoscale geometry can facilitate large crushing strains with high energy absorption, optical bandgaps and mechanically tunable acoustic bandgaps, high thermal insulation, buoyancy, and fluid storage and transport. Our relatively simple

  1. Localization of multilayer networks by optimized single-layer rewiring.

    Science.gov (United States)

    Jalan, Sarika; Pradhan, Priodyuti

    2018-04-01

    We study localization properties of principal eigenvectors (PEVs) of multilayer networks (MNs). Starting with a multilayer network corresponding to a delocalized PEV, we rewire the network edges using an optimization technique such that the PEV of the rewired multilayer network becomes more localized. The framework allows us to scrutinize structural and spectral properties of the networks at various localization points during the rewiring process. We show that rewiring only one layer is enough to attain a MN having a highly localized PEV. Our investigation reveals that a single edge rewiring of the optimized MN can lead to the complete delocalization of a highly localized PEV. This sensitivity in the localization behavior of PEVs is accompanied with the second largest eigenvalue lying very close to the largest one. This observation opens an avenue to gain a deeper insight into the origin of PEV localization of networks. Furthermore, analysis of multilayer networks constructed using real-world social and biological data shows that the localization properties of these real-world multilayer networks are in good agreement with the simulation results for the model multilayer network. This paper is relevant to applications that require understanding propagation of perturbation in multilayer networks.

  2. How isotropic can the UHECR flux be?

    Science.gov (United States)

    di Matteo, Armando; Tinyakov, Peter

    2018-05-01

    Modern observatories of ultra-high energy cosmic rays (UHECR) have collected over 104 events with energies above 10 EeV, whose arrival directions appear to be nearly isotropically distributed. On the other hand, the distribution of matter in the nearby Universe - and therefore presumably also that of UHECR sources - is not homogeneous. This is expected to leave an imprint on the angular distribution of UHECR arrival directions, though deflections by cosmic magnetic fields can confound the picture. In this work, we investigate quantitatively this apparent inconsistency. To this end we study observables sensitive to UHECR source inhomogeneities but robust to uncertainties on magnetic fields and the UHECR mass composition. We show, in a rather model-independent way, that if the source distribution tracks the overall matter distribution, the arrival directions at energies above 30 EeV should exhibit a sizeable dipole and quadrupole anisotropy, detectable by UHECR observatories in the very near future. Were it not the case, one would have to seriously reconsider the present understanding of cosmic magnetic fields and/or the UHECR composition. Also, we show that the lack of a strong quadrupole moment above 10 EeV in the current data already disfavours a pure proton composition, and that in the very near future measurements of the dipole and quadrupole moment above 60 EeV will be able to provide evidence about the UHECR mass composition at those energies.

  3. On isotropic cylindrically symmetric stellar models

    International Nuclear Information System (INIS)

    Nolan, Brien C; Nolan, Louise V

    2004-01-01

    We attempt to match the most general cylindrically symmetric vacuum spacetime with a Robertson-Walker interior. The matching conditions show that the interior must be dust filled and that the boundary must be comoving. Further, we show that the vacuum region must be polarized. Imposing the condition that there are no trapped cylinders on an initial time slice, we can apply a result of Thorne's and show that trapped cylinders never evolve. This results in a simplified line element which we prove to be incompatible with the dust interior. This result demonstrates the impossibility of the existence of an isotropic cylindrically symmetric star (or even a star which has a cylindrically symmetric portion). We investigate the problem from a different perspective by looking at the expansion scalars of invariant null geodesic congruences and, applying to the cylindrical case, the result that the product of the signs of the expansion scalars must be continuous across the boundary. The result may also be understood in relation to recent results about the impossibility of the static axially symmetric analogue of the Einstein-Straus model

  4. Nonlinear elastic inclusions in isotropic solids

    KAUST Repository

    Yavari, A.

    2013-10-16

    We introduce a geometric framework to calculate the residual stress fields and deformations of nonlinear solids with inclusions and eigenstrains. Inclusions are regions in a body with different reference configurations from the body itself and can be described by distributed eigenstrains. Geometrically, the eigenstrains define a Riemannian 3-manifold in which the body is stress-free by construction. The problem of residual stress calculation is then reduced to finding a mapping from the Riemannian material manifold to the ambient Euclidean space. Using this construction, we find the residual stress fields of three model systems with spherical and cylindrical symmetries in both incompressible and compressible isotropic elastic solids. In particular, we consider a finite spherical ball with a spherical inclusion with uniform pure dilatational eigenstrain and we show that the stress in the inclusion is uniform and hydrostatic. We also show how singularities in the stress distribution emerge as a consequence of a mismatch between radial and circumferential eigenstrains at the centre of a sphere or the axis of a cylinder.

  5. Radiation statistics in homogeneous isotropic turbulence

    International Nuclear Information System (INIS)

    Da Silva, C B; Coelho, P J; Malico, I

    2009-01-01

    An analysis of turbulence-radiation interaction (TRI) in statistically stationary (forced) homogeneous and isotropic turbulence is presented. A direct numerical simulation code was used to generate instantaneous turbulent scalar fields, and the radiative transfer equation (RTE) was solved to provide statistical data relevant in TRI. The radiation intensity is non-Gaussian and is not spatially correlated with any of the other turbulence or radiation quantities. Its power spectrum exhibits a power-law region with a slope steeper than the classical -5/3 law. The moments of the radiation intensity, Planck-mean and incident-mean absorption coefficients, and emission and absorption TRI correlations are calculated. The influence of the optical thickness of the medium, mean and variance of the temperature and variance of the molar fraction of the absorbing species is studied. Predictions obtained from the time-averaged RTE are also included. It was found that while turbulence yields an increase of the mean blackbody radiation intensity, it causes a decrease of the time-averaged Planck-mean absorption coefficient. The absorption coefficient self-correlation is small in comparison with the temperature self-correlation, and the role of TRI in radiative emission is more important than in radiative absorption. The absorption coefficient-radiation intensity correlation is small, which supports the optically thin fluctuation approximation, and justifies the good predictions often achieved using the time-averaged RTE.

  6. Radiation statistics in homogeneous isotropic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, C B; Coelho, P J [Mechanical Engineering Department, IDMEC/LAETA, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Malico, I [Physics Department, University of Evora, Rua Romao Ramalho, 59, 7000-671 Evora (Portugal)], E-mail: carlos.silva@ist.utl.pt, E-mail: imbm@uevora.pt, E-mail: pedro.coelho@ist.utl.pt

    2009-09-15

    An analysis of turbulence-radiation interaction (TRI) in statistically stationary (forced) homogeneous and isotropic turbulence is presented. A direct numerical simulation code was used to generate instantaneous turbulent scalar fields, and the radiative transfer equation (RTE) was solved to provide statistical data relevant in TRI. The radiation intensity is non-Gaussian and is not spatially correlated with any of the other turbulence or radiation quantities. Its power spectrum exhibits a power-law region with a slope steeper than the classical -5/3 law. The moments of the radiation intensity, Planck-mean and incident-mean absorption coefficients, and emission and absorption TRI correlations are calculated. The influence of the optical thickness of the medium, mean and variance of the temperature and variance of the molar fraction of the absorbing species is studied. Predictions obtained from the time-averaged RTE are also included. It was found that while turbulence yields an increase of the mean blackbody radiation intensity, it causes a decrease of the time-averaged Planck-mean absorption coefficient. The absorption coefficient self-correlation is small in comparison with the temperature self-correlation, and the role of TRI in radiative emission is more important than in radiative absorption. The absorption coefficient-radiation intensity correlation is small, which supports the optically thin fluctuation approximation, and justifies the good predictions often achieved using the time-averaged RTE.

  7. Digital multilayer tomography

    International Nuclear Information System (INIS)

    Dueber, C.; Klose, K.J.; Thelen, M.

    1991-01-01

    With digital multilayer tomography a sequence of projection images is recorded by an image intensifier television system and stored as digital data during a linear run of a layer sequence. Using this data record, tomograms of the examined body region can be computed for any layer thickness by shifts and superimposition of the single projections later at a digital workstation. The qualities of digital and conventional tomograms are basically comparable. A drawback of digital tomography is its lower local resolution (512 x 512 image matrix), advantages are a lower radiation exposure, a shorter patient examination time, and the facilities of digital image processing (later processing, archive setup, transmission). (orig.) [de

  8. Investigation of CoFeV/TiZr multilayer by polarized neutron reflectometry

    International Nuclear Information System (INIS)

    Chen Bo; Li Xinxi; Huang Chaoqiang

    2007-06-01

    The interracial structures of CoFeV/TiZr multilayer play an important role in performance of polarizing supermirrors. Aiming to requirement, CoFeV/ TiZr layered samples with different structures were prepared. Specular reflection of polarized neutrons was employed to study the depth profile of scattering length, density, thickness and roughness of CoFeV/TiZr multilayer and magnetically dead layers. The result shows that the roughness in CoFeV/ TiZr multilayer can be described with roughness increase law and the thickness of magnetically dead layers is about 0.5 nm. The producing technology of the multilayer reaches the requirements. (authors)

  9. Analytic theory of alternate multilayer gratings operating in single-order regime.

    Science.gov (United States)

    Yang, Xiaowei; Kozhevnikov, Igor V; Huang, Qiushi; Wang, Hongchang; Hand, Matthew; Sawhney, Kawal; Wang, Zhanshan

    2017-07-10

    Using the coupled wave approach (CWA), we introduce the analytical theory for alternate multilayer grating (AMG) operating in the single-order regime, in which only one diffraction order is excited. Differing from previous study analogizing AMG to crystals, we conclude that symmetrical structure, or equal thickness of the two multilayer materials, is not the optimal design for AMG and may result in significant reduction in diffraction efficiency. The peculiarities of AMG compared with other multilayer gratings are analyzed. An influence of multilayer structure materials on diffraction efficiency is considered. The validity conditions of analytical theory are also discussed.

  10. Interfacial behaviour of biopolymer multilayers

    NARCIS (Netherlands)

    Corstens, Meinou N.; Osorio Caltenco, Lilia A.; Vries, de Renko; Schroën, Karin; Berton-Carabin, Claire C.

    2017-01-01

    Although multilayered emulsions have been related to reduced lipolysis, the involved interfacial phenomena have never been studied directly. In this work, we systematically built multilayers of whey protein and pectin, which we further subjected to digestive conditions, using two different

  11. Compositionally Graded Multilayer Ceramic Capacitors.

    Science.gov (United States)

    Song, Hyun-Cheol; Zhou, Jie E; Maurya, Deepam; Yan, Yongke; Wang, Yu U; Priya, Shashank

    2017-09-27

    Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. Here, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (filters and power converters.

  12. Interface Engineering for Precise Threshold Voltage Control in Multilayer-Channel Thin Film Transistors

    KAUST Repository

    Park, Jihoon

    2016-11-29

    Multilayer channel structure is used to effectively manipulate the threshold voltage of zinc oxide transistors without degrading its field-effect mobility. Transistors operating in enhancement mode with good mobility are fabricated by optimizing the structure of the multilayer channel. The optimization is attributed to the formation of additional channel and suppression of the diffusion of absorbed water molecules and oxygen vacancies.

  13. Interface Engineering for Precise Threshold Voltage Control in Multilayer-Channel Thin Film Transistors

    KAUST Repository

    Park, Jihoon; Alshammari, Fwzah Hamud; Wang, Zhenwei; Alshareef, Husam N.

    2016-01-01

    Multilayer channel structure is used to effectively manipulate the threshold voltage of zinc oxide transistors without degrading its field-effect mobility. Transistors operating in enhancement mode with good mobility are fabricated by optimizing the structure of the multilayer channel. The optimization is attributed to the formation of additional channel and suppression of the diffusion of absorbed water molecules and oxygen vacancies.

  14. Desktop aligner for fabrication of multilayer microfluidic devices.

    Science.gov (United States)

    Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping

    2015-07-01

    Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm(-1). To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices.

  15. Guided waves dispersion equations for orthotropic multilayered pipes solved using standard finite elements code.

    Science.gov (United States)

    Predoi, Mihai Valentin

    2014-09-01

    The dispersion curves for hollow multilayered cylinders are prerequisites in any practical guided waves application on such structures. The equations for homogeneous isotropic materials have been established more than 120 years ago. The difficulties in finding numerical solutions to analytic expressions remain considerable, especially if the materials are orthotropic visco-elastic as in the composites used for pipes in the last decades. Among other numerical techniques, the semi-analytical finite elements method has proven its capability of solving this problem. Two possibilities exist to model a finite elements eigenvalue problem: a two-dimensional cross-section model of the pipe or a radial segment model, intersecting the layers between the inner and the outer radius of the pipe. The last possibility is here adopted and distinct differential problems are deduced for longitudinal L(0,n), torsional T(0,n) and flexural F(m,n) modes. Eigenvalue problems are deduced for the three modes classes, offering explicit forms of each coefficient for the matrices used in an available general purpose finite elements code. Comparisons with existing solutions for pipes filled with non-linear viscoelastic fluid or visco-elastic coatings as well as for a fully orthotropic hollow cylinder are all proving the reliability and ease of use of this method. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Ultrahard Multilayer Coatings

    International Nuclear Information System (INIS)

    Chrzan, D.C.; Dugger, M.; Follstaedt, D.M.; Friedman, Lawrence H.; Friedmann, T.A.; Knapp, J.A.; McCarty, K.F.; Medlin, D.L.; Mirkarimi, P.B.; Missert, N.; Newcomer, P.P.; Sullivan, J.P.; Tallant, D.R.

    1999-01-01

    We have developed a new multilayer a-tC material that is thick stress-free, adherent, low friction, and with hardness and stiffness near that of diamond. The new a-tC material is deposited by J pulsed-laser deposition (PLD) at room temperature, and fully stress-relieved by a short thermal anneal at 600 ampersand deg;C. A thick multilayer is built up by repeated deposition and annealing steps. We measured 88 GPa hardness, 1100 GPa Young's modulus, and 0.1 friction coefficient (under high load). Significantly, these results are all well within the range reported for crystalline diamond. In fact, this material, if considered separate from crystalline diamond, is the 2nd hardest material known to man. Stress-free a-tC also has important advantages over thin film diamond; namely, it is smooth, processed at lower temperature, and can be grown on a much broader range of substrates. This breakthrough will enable a host of applications that we are actively pursuing in MEMs, sensors, LIGA, etc

  17. Magnetic metallic multilayers

    International Nuclear Information System (INIS)

    Hood, R.Q.

    1994-04-01

    Utilizing self-consistent Hartree-Fock calculations, several aspects of multilayers and interfaces are explored: enhancement and reduction of the local magnetic moments, magnetic coupling at the interfaces, magnetic arrangements within each film and among non-neighboring films, global symmetry of the systems, frustration, orientation of the various moments with respect to an outside applied field, and magnetic-field induced transitions. Magnetoresistance of ferromagnetic-normal-metal multilayers is found by solving the Boltzmann equation. Results explain the giant negative magnetoresistance encountered in these systems when an initial antiparallel arrangement is changed into a parallel configuration by an external magnetic field. The calculation depends on (1) geometric parameters (thicknesses of layers), (2) intrinsic metal parameters (number of conduction electrons, magnetization, and effective masses in layers), (3) bulk sample properties (conductivity relaxation times), (4) interface scattering properties (diffuse scattering versus potential scattering at the interfaces, and (5) outer surface scattering properties (specular versus diffuse surface scattering). It is found that a large negative magnetoresistance requires considerable asymmetry in interface scattering for the two spin orientations. Features of the interfaces that may produce an asymmetrical spin-dependent scattering are studied: varying interfacial geometric random roughness with no lateral coherence, correlated (quasi-periodic) roughness, and varying chemical composition of the interfaces. The interplay between these aspects of the interfaces may enhance or suppress the magnetoresistance, depending on whether it increases or decreases the asymmetry in the spin-dependent scattering of the conduction electrons

  18. Wrapped Multilayer Insulation

    Science.gov (United States)

    Dye, Scott A.

    2015-01-01

    New NASA vehicles, such as Earth Departure Stage (EDS), Orion, landers, and orbiting fuel depots, need improved cryogenic propellant transfer and storage for long-duration missions. Current cryogen feed line multilayer insulation (MLI) performance is 10 times worse per area than tank MLI insulation. During each launch, cryogenic piping loses approximately 150,000 gallons (equivalent to $300,000) in boil-off during transfer, chill down, and ground hold. Quest Product Development Corp., teaming with Ball Aerospace, developed an innovative advanced insulation system, Wrapped MLI (wMLI), to provide improved thermal insulation for cryogenic feed lines. wMLI is high-performance multilayer insulation designed for cryogenic piping. It uses Quest's innovative discrete-spacer technology to control layer spacing/ density and reduce heat leak. The Phase I project successfully designed, built, and tested a wMLI prototype with a measured heat leak 3.6X lower than spiral-wrapped conventional MLI widely used for piping insulation. A wMLI prototype had a heat leak of 7.3 W/m2, or 27 percent of the heat leak of conventional MLI (26.7 W/m2). The Phase II project is further developing wMLI technology with custom, molded polymer spacers and advancing the product toward commercialization via a rigorous testing program, including developing advanced vacuuminsulated pipe for ground support equipment.

  19. Magnetic-plasmonic multilayered nanorods

    Science.gov (United States)

    Thumthan, Orathai

    Multilayered nanorods which consist of alternating magnetic layers separated by Au layers combine two distinctive properties, magnetic properties and surface plasmonic resonance (SPR) properties into one nano-entity. Their magnetic properties are tunable by changing the layer thickness, varying from single domain to superparamagnetic state. Superparamagnetic is a key requirement for magnetic nanoparticles for bioapplications. Superparamagnetic nanoparticles exhibit high magnetic moments at low applied magnetic field while retain no magnetic moments when magnetic field is removed preventing them from aggregation due to magnetic attraction. Au layers in the nanorods provide anchorage sites for functional group attachment. Also, Au nanodisks exhibit SPR properties. The SPR peak can be tuned from 540 nm to 820 nm by controlling the thickness of magnetic segments while keeping Au thickness constant. In this research, there are three types of multilayered nanorod have been fabricated: Au/NiFe nanorods, Au/Fe nanorods, and Au/Co nanorods. These magnetic nanorods were fabricated by templated electrodeposition into the channels in Anodic Aluminum Oxide (AAO) membrane. The setup for AAO fabrication was developed as a part of this research. Our fabricated AAO membrane has channels with a diameter ranging from 40nm to 80 nm and a thickness of 10um to 12um. Magnetic properties of nanorods such as saturation field, saturation moment, coercivity and remanence are able to manipulate through their shape anisotropy. The magnetization will be easier in long axis rather than short axis of particle. In addition, Au nanodisks in the nanorod structure are not only serving as anchorage sites for functional groups but also provide SPR properties. Under irradiation of light Au nanodisks strongly absorb light at SPR frequency which ranging from 540 nm to 820 nm by controlling the thickness of magnetic segments while keeping Au thickness constant. The SPR tunability of nanorods in near

  20. Isotropic nuclear graphites; the effect of neutron irradiation

    International Nuclear Information System (INIS)

    Lore, J.; Buscaillon, A.; Mottet, P.; Micaud, G.

    1977-01-01

    Several isotropic graphites have been manufactured using different forming processes and fillers such as needle coke, regular coke, or pitch coke. Their properties are described in this paper. Specimens of these products have been irradiated in the fast reactor Rapsodie between 400 to 1400 0 C, at fluences up to 1,7.10 21 n.cm -2 PHI.FG. The results show an isotropic behavior under neutron irradiation, but the induced dimensional changes are higher than those of isotropic coke graphites although they are lower than those of conventional extruded graphites made with the same coke

  1. Process for the preparation of isotropic petroleum coke

    International Nuclear Information System (INIS)

    Kegler, W.H.; Huyser, M.E.

    1975-01-01

    A description is given of a process for preparing isotropic coke from oil residue charge. It includes blowing air into the residue until it reaches a softening temperature of around 49 to 116 deg C, the deferred coking of the residue having undergone blowing at a temperature of around 247 to 640 deg C, at a pressure between around 1.38x10 5 and 1.72x10 6 Pa, and the recovery of isotropic coke with a thermal expansion coefficient ratio under 1.5 approximately. The isotropic coke is used for preparing hexagonal graphite bars for nuclear reactor moderators [fr

  2. Sudden Relaminarization and Lifetimes in Forced Isotropic Turbulence.

    Science.gov (United States)

    Linkmann, Moritz F; Morozov, Alexander

    2015-09-25

    We demonstrate an unexpected connection between isotropic turbulence and wall-bounded shear flows. We perform direct numerical simulations of isotropic turbulence forced at large scales at moderate Reynolds numbers and observe sudden transitions from a chaotic dynamics to a spatially simple flow, analogous to the laminar state in wall bounded shear flows. We find that the survival probabilities of turbulence are exponential and the typical lifetimes increase superexponentially with the Reynolds number. Our results suggest that both isotropic turbulence and wall-bounded shear flows qualitatively share the same phase-space dynamics.

  3. Precession of elastic waves in vibrating isotropic spheres and transversely isotropic cylinders subjected to inertial rotation

    CSIR Research Space (South Africa)

    Joubert, S

    2006-05-01

    Full Text Available and Manufacturing TRANSVERSELY ISOTROPIC CYLINDER - 1 φ φ r z a x y Ω P P O u v w z ( )1 1 1 2 1 1 rrr rz rr zr r zrz zz rz u r r z r v r r z r w r r z r ϕ ϕϕ ϕϕ ϕϕ ϕ ϕ σσ σ σ σ ρ ϕ σσ σ σ ρ ϕ σσ σ σ ρ ϕ... ∂ ∂ ∂ + + + − = ∂ ∂ ∂ ∂∂ ∂ + + + = ∂ ∂ ∂ ∂∂ ∂ + + + = ∂ ∂ ∂ && && && 6 CSIR Material Science and Manufacturing TRANSVERSELY ISOTROPIC CYLINDER - 2 ( )1 1 1 2 1 1 rrr rz rr zr r zrz zz rz u r r z r v r r z r w r r z r ϕ ϕϕ ϕϕ ϕϕ ϕ ϕ σσ σ σ σ ρ ϕ σσ σ σ ρ ϕ σσ σ σ ρ ϕ...

  4. Structure and magnetic properties of La{sub 2/3}Sr{sub 1/3}MnO{sub 3}/CaMnO{sub 3} multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Granada, Mara [Centro Atomico Bariloche and Instituto Balseiro, CNEA-UNC, Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina)]. E-mail: granadam@cab.cnea.gov.ar; Sirena, Martin [Centro Atomico Bariloche and Instituto Balseiro, CNEA-UNC, Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Steren, Laura B. [Centro Atomico Bariloche and Instituto Balseiro, CNEA-UNC, Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Leyva, Gabriela [Depto. de Fisica, Centro Atomico Constituyentes, CNEA, Av. Gral. Paz y Constituyentes, 1650 San Martin (Argentina)

    2004-12-31

    Structural and magnetic properties of manganite-based multilayers, La{sub 2/3}Sr{sub 1/3}MnO{sub 3}/CaMnO{sub 3}, composed of ferromagnetic metals and antiferromagnetic insulator barriers are investigated in this work. Compounds of similar lattice parameters were used to build the samples, so we expect an excellent stacking of the different layers along the structure. To get a first insight of this system, the crystalline structure of a series of samples, grown on (1 0 0) SrTiO{sub 3} and (1 0 0) MgO single-crystalline substrates, has been studied. X-ray diffraction patterns show that the structure is strongly textured in the (1 0 0) direction when grown on SrTiO{sub 3}, regardless the composition of the bottom layer. A different result is found on the same system grown on MgO: when the buffer layer is CaMnO{sub 3}, the structure grows in the (1 1 0) orientation while it grows in the (1 0 0) direction when the bottom layer is La{sub 2/3}Sr{sub 1/3}MnO{sub 3}. Magnetic coupling of the ferromagnetic layers across the antiferromagnetic spacer has been studied with magnetization measurements.

  5. Topological edge modes in multilayer graphene systems

    KAUST Repository

    Ge, Lixin

    2015-08-10

    Plasmons can be supported on graphene sheets as the Dirac electrons oscillate collectively. A tight-binding model for graphene plasmons is a good description as the field confinement in the normal direction is strong. With this model, the topological properties of plasmonic bands in multilayer graphene systems are investigated. The Zak phases of periodic graphene sheet arrays are obtained for different configurations. Analogous to Su-Schrieffer-Heeger (SSH) model in electronic systems, topological edge plasmon modes emerge when two periodic graphene sheet arrays with different Zak phases are connected. Interestingly, the dispersion of these topological edge modes is the same as that in the monolayer graphene and is invariant as the geometric parameters of the structure such as the separation and period change. These plasmonic edge states in multilayer graphene systems can be further tuned by electrical gating or chemical doping. © 2015 Optical Society of America.

  6. Multilayer modal actuator-based piezoelectric transformers.

    Science.gov (United States)

    Huang, Yao-Tien; Wu, Wen-Jong; Wang, Yen-Chieh; Lee, Chih-Kung

    2007-02-01

    An innovative, multilayer piezoelectric transformer equipped with a full modal filtering input electrode is reported herein. This modal-shaped electrode, based on the orthogonal property of structural vibration modes, is characterized by full modal filtering to ensure that only the desired vibration mode is excited during operation. The newly developed piezoelectric transformer is comprised of three layers: a multilayered input layer, an insulation layer, and a single output layer. The electrode shape of the input layer is derived from its structural vibration modal shape, which takes advantage of the orthogonal property of the vibration modes to achieve a full modal filtering effect. The insulation layer possesses two functions: first, to couple the mechanical vibration energy between the input and output, and second, to provide electrical insulation between the two layers. To meet the two functions, a low temperature, co-fired ceramic (LTCC) was used to provide the high mechanical rigidity and high electrical insulation. It can be shown that this newly developed piezoelectric transformer has the advantage of possessing a more efficient energy transfer and a wider optimal working frequency range when compared to traditional piezoelectric transformers. A multilayer piezoelectric, transformer-based inverter applicable for use in LCD monitors or portable displays is presented as well.

  7. Inkjet-printed Polyvinyl Alcohol Multilayers.

    Science.gov (United States)

    Salaoru, Iulia; Zhou, Zuoxin; Morris, Peter; Gibbons, Gregory J

    2017-05-11

    Inkjet printing is a modern method for polymer processing, and in this work, we demonstrate that this technology is capable of producing polyvinyl alcohol (PVOH) multilayer structures. A polyvinyl alcohol aqueous solution was formulated. The intrinsic properties of the ink, such as surface tension, viscosity, pH, and time stability, were investigated. The PVOH-based ink was a neutral solution (pH 6.7) with a surface tension of 39.3 mN/m and a viscosity of 7.5 cP. The ink displayed pseudoplastic (non-Newtonian shear thinning) behavior at low shear rates, and overall, it demonstrated good time stability. The wettability of the ink on different substrates was investigated, and glass was identified as the most suitable substrate in this particular case. A proprietary 3D inkjet printer was employed to manufacture polymer multilayer structures. The morphology, surface profile, and thickness uniformity of inkjet-printed multilayers were evaluated via optical microscopy.

  8. Weak convergence to isotropic complex [Formula: see text] random measure.

    Science.gov (United States)

    Wang, Jun; Li, Yunmeng; Sang, Liheng

    2017-01-01

    In this paper, we prove that an isotropic complex symmetric α -stable random measure ([Formula: see text]) can be approximated by a complex process constructed by integrals based on the Poisson process with random intensity.

  9. Metrical relationships in a standard triangle in an isotropic plane

    OpenAIRE

    Kolar-Šuper, R.; Kolar-Begović, Z.; Volenec, V.; Beban-Brkić, J.

    2005-01-01

    Each allowable triangle of an isotropic plane can be set in a standard position, in which it is possible to prove geometric properties analytically in a simplified and easier way by means of the algebraic theory developed in this paper.

  10. Efficient anisotropic wavefield extrapolation using effective isotropic models

    KAUST Repository

    Alkhalifah, Tariq Ali; Ma, X.; Waheed, Umair bin; Zuberi, Mohammad

    2013-01-01

    Isotropic wavefield extrapolation is more efficient than anisotropic extrapolation, and this is especially true when the anisotropy of the medium is tilted (from the vertical). We use the kinematics of the wavefield, appropriately represented

  11. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand; Alliez, Pierre; Morvan, Jean-Marie

    2011-01-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse

  12. Scanning anisotropy parameters in horizontal transversely isotropic media

    KAUST Repository

    Masmoudi, Nabil; Stovas, Alexey; Alkhalifah, Tariq Ali

    2016-01-01

    in reservoir characterisation, specifically in terms of fracture delineation. We propose a travel-time-based approach to estimate the anellipticity parameter η and the symmetry axis azimuth ϕ of a horizontal transversely isotropic medium, given an inhomogeneous

  13. Neutron optics with multilayer monochromators

    International Nuclear Information System (INIS)

    Saxena, A.M.; Majkrzak, C.F.

    1984-01-01

    A multilayer monochromator is made by depositing thin films of two materials in an alternating sequence on a glass substrate. This makes a multilayer periodic in a direction perpendicular to the plane of the films, with a d-spacing equal to the thickness of one bilayer. Neutrons of wavelength λ incident on a multilayer will be reflected at an angle phi given by the Bragg relation nλ = 2d sinphi, where n is the order of reflection. The use of thin-film multilayers for monochromating neutrons is discussed. Because of the low flux of neutrons, the samples have to be large, and the width of the incident beam can be as much as 2 cm. Multilayers made earlier were fabricated by resistive heating of the materials in a vacuum chamber. Because of geometrical constraints imposed by the size of the vacuum chamber, limits on the amount of material that can be loaded in a boat, and finite life of the boats, this method of preparation limits the length of a multilayer to ∼ 15 cm and the total number of bilayers in a multilayer to about 200. This paper discusses a thin-film deposition system using RF sputtering for depositing films

  14. Heteroepitaxial growth of strained multilayer thin films of high-temperature superconductors

    International Nuclear Information System (INIS)

    Gross, R.; Gupta, A.; Olsson, E.; Segmueller, A.; Koren, G.

    1991-01-01

    Recently, the heteroepitaxial growth of multilayer structures of different copper oxide superconductors has been reported by several groups. In general, two different types of multilayer structures should be distinguished. The first kind of mulitlayer is formed by high-T c materials having the same crystal structure and almost the same lattice constants, as for example ReBa 2 Cu 3 O 7 (Re=rare earth) multilayers with alternating Re-elements. In these multilayers the two different rare earth copper oxides (Y/Dy, Y/Pr) have the same orthorhombic unit cell. Due to the very similar lattice constants, the misfit strain is easily accommodated without the formation of defects. The second kind of multilayer is formed by layers of materials having different crystal structure and lattice parameters. In these multilayers the misfit can be coherently accommodated below a critical modulation thickness as discussed below. This renders possible the heteroepitaxial growth of strained multilayer structures, both of two copper oxides of different crystal structure, as has been demonstrated recently for the system YBa 2 Cu 3 O 7-δ /Nd 1.83 Ce 0.17 CuO x , and of superconducting copper oxides and insulating materials. For multilayers of different copper oxides, a combination of almost all high-Tc materials should be possible, since the presence of the CuO 2 sheets in these materials results in similar lattice constants in their basal planes ('a' and 'b'). (orig./BHO)

  15. The characterization of multilayers analyzers: Models and measurements

    International Nuclear Information System (INIS)

    Henke, B.L.; Vejio, J.Y.; Tackaberry, R.E.; Yamada, H.T.

    1985-01-01

    A procedure is described for the detailed characterization of multilayer analyzers which can be effectively applied to their design, optimization and application for absolute x-ray spectrometry. An accurate analytical model has been developed that is based upon a simple modification of the dynamical Darwin-Prins theory to extend its application to finite multilayer systems. Its equivalence to the optical E and M solution of the Fresnel equations at each interface is demonstrated by detailed calculation comparisons for the reflectivity of a multilayer throughout the angular range of incidence of 0 to 90 0 . A special spectrograph and experimental method is described for the measurement of the absolute reflectivity characteristics of the multilayer. The experimental measurements at three photon energies in the 100-200 eV region are fit by the analytical modified Darwin-Prins equation (MDP) for I(θ), generating a detailed characterization of two ''state of the art'' multilayers, a sputtered tungsten-carbon of 2d ≅ 70 A and a molecular lead separate of 2d ≅ 100 A. The fitting parameters that are determined in this procedure are applied to help establish the structural characteristics of the particular multilayer

  16. Asynchronous cracking with dissimilar paths in multilayer graphene.

    Science.gov (United States)

    Jang, Bongkyun; Kim, Byungwoon; Kim, Jae-Hyun; Lee, Hak-Joo; Sumigawa, Takashi; Kitamura, Takayuki

    2017-11-16

    Multilayer graphene consists of a stack of single-atomic-thick monolayer graphene sheets bound with π-π interactions and is a fascinating model material opening up a new field of fracture mechanics. In this study, fracture behavior of single-crystalline multilayer graphene was investigated using an in situ mode I fracture test under a scanning electron microscope, and abnormal crack propagation in multilayer graphene was identified for the first time. The fracture toughness of graphene was determined from the measured load-displacement curves and the realistic finite element modelling of specimen geometries. Nonlinear fracture behavior of the multilayer graphene is discussed based on nonlinear elastic fracture mechanics. In situ scanning electron microscope images obtained during the fracture test showed asynchronous crack propagation along independent paths, causing interlayer shear stress and slippages. We also found that energy dissipation by interlayer slippages between the graphene layers is the reason for the enhanced fracture toughness of multilayer graphene. The asynchronous cracking with independent paths is a unique cracking and toughening mechanism for single-crystalline multilayer graphene, which is not observed for the monolayer graphene. This could provide a useful insight for the design and development of graphene-based composite materials for structural applications.

  17. Polymerization of vinyl stearate multilayers by electron beam irradiation

    International Nuclear Information System (INIS)

    Nishii, Masanobu; Hatada, Motoyoshi

    1975-01-01

    Studies on the radiation-induced polymerization of vinyl stearate (VST) multilayers were carried out. The VST multilayers built-up on an aluminum plated glass plate by Langmuir-Blodgett technique were irradiated with electron beams from a Van de Graaff electron accelerator in nitrogen atmosphere. The structure of the multilayers and the effects of irradiation were investigated by X-ray diffractometry, contact angle measurement, multireflection infrared spectroscopy, and scanning electron microscopy. The VST multilayers became insoluble to methanol by the irradiation, and the multi-reflection infrared spectrum of the VST multilayers turned into that of poly (VST) with increasing dosage. The polymerization proceeded during the irradiation at the temperature range between -10 0 and 10 0 C, and the conversion attained to 90% within 2.5 minutes (total dose, 5.6 Mrads). The multilayers irradiated above 13 Mrads turned into the polymer film insoluble to benzene, indicating that the polymer chains were cross-linked by the irradiation. Stearic acid which was formed by the irradiation of VST at nitrogen-water interface as a hydrolysis product was not detected in this system. (auth.)

  18. Multi-layers castings

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2010-01-01

    Full Text Available In paper is presented the possibility of making of multi-layers cast steel castings in result of connection of casting and welding coating technologies. First layer was composite surface layer on the basis of Fe-Cr-C alloy, which was put directly in founding process of cast carbon steel 200–450 with use of preparation of mould cavity method. Second layer were padding welds, which were put with use of TIG – Tungsten Inert Gas surfacing by welding technology with filler on Ni matrix, Ni and Co matrix with wolfram carbides WC and on the basis on Fe-Cr-C alloy, which has the same chemical composition with alloy, which was used for making of composite surface layer. Usability for industrial applications of surface layers of castings were estimated by criterion of hardness and abrasive wear resistance of type metal-mineral.

  19. Nanocrystalline-Si-dot multi-layers fabrication by chemical vapor deposition with H-plasma surface treatment and evaluation of structure and quantum confinement effects

    Directory of Open Access Journals (Sweden)

    Daisuke Kosemura

    2014-01-01

    Full Text Available 100-nm-thick nanocrystalline silicon (nano-Si-dot multi-layers on a Si substrate were fabricated by the sequential repetition of H-plasma surface treatment, chemical vapor deposition, and surface oxidation, for over 120 times. The diameter of the nano-Si dots was 5–6 nm, as confirmed by both the transmission electron microscopy and X-ray diffraction analysis. The annealing process was important to improve the crystallinity of the nano-Si dot. We investigated quantum confinement effects by Raman spectroscopy and photoluminescence (PL measurements. Based on the experimental results, we simulated the Raman spectrum using a phenomenological model. Consequently, the strain induced in the nano-Si dots was estimated by comparing the experimental and simulated results. Taking the estimated strain value into consideration, the band gap modulation was measured, and the diameter of the nano-Si dots was calculated to be 5.6 nm by using PL. The relaxation of the q ∼ 0 selection rule model for the nano-Si dots is believed to be important to explain both the phenomena of peak broadening on the low-wavenumber side observed in Raman spectra and the blue shift observed in PL measurements.

  20. The Yttrium Effect on Nanoscale Structure, Mechanical Properties, and High-Temperature Oxidation Resistance of (Ti0.6Al0.4)1- x Y x N Multilayer Coatings

    Science.gov (United States)

    Wang, Jingxian; Yazdi, Mohammad Arab Pour; Lomello, Fernando; Billard, Alain; Kovács, András; Schuster, Frédéric; Guet, Claude; White, Timothy J.; Wouters, Yves; Pascal, Céline; Sanchette, Frédéric; Dong, ZhiLi

    2017-09-01

    As machine tool coating specifications become increasingly stringent, the fabrication of protective titanium aluminum nitride (Ti-Al-N) films by physical vapor deposition (PVD) is progressively more demanding. Nanostructural modification through the incorporation of metal dopants can enhance coating mechanical properties. However, dopant selection and their near-atomic-scale role in performance optimization is limited. Here, yttrium was alloyed in multilayered Ti-Al-N films to tune microstructures, microchemistries, and properties, including mechanical characteristics, adhesion, wear resistance, and resilience to oxidation. By regulating processing parameters, the multilayer period (Λ) and Y content could be adjusted, which, in turn, permitted tailoring of grain nucleation and secondary phase formation. With the composition fixed at x = 0.024 in (Ti0.6Al0.4)1- x Y x N and Λ increased from 5.5 to 24 nm, the microstructure transformed from acicular grains with 〈111〉 preferred orientation to equiaxed grains with 〈200〉 texture, while the hardness (40.8 ± 2.8 GPa to 29.7 ± 4.9 GPa) and Young's modulus (490 ± 47 GPa to 424 ± 50 GPa) concomitantly deteriorated. Alternately, when Λ = 5.5 nm and x in (Ti0.6Al0.4)1- x Y x N was raised from 0 to 0.024, the hardness was enhanced (28.7 ± 7.3 GPa to 40.8 ± 2.8 GPa) while adhesion and wear resistance were not compromised. The Ti-Al-N adopted a rock-salt type structure with Y displacing either Ti or Al and stabilizing a secondary wurtzite phase. Moreover, Y effectively retarded coating oxidation at 1073 K (800 °C) in air by inhibiting grain boundary oxygen diffusion.

  1. Crack Tip Creep Deformation Behavior in Transversely Isotropic Materials

    International Nuclear Information System (INIS)

    Ma, Young Wha; Yoon, Kee Bong

    2009-01-01

    Theoretical mechanics analysis and finite element simulation were performed to investigate creep deformation behavior at the crack tip of transversely isotropic materials under small scale creep (SCC) conditions. Mechanical behavior of material was assumed as an elastic-2 nd creep, which elastic modulus ( E ), Poisson's ratio (v ) and creep stress exponent ( n ) were isotropic and creep coefficient was only transversely isotropic. Based on the mechanics analysis for material behavior, a constitutive equation for transversely isotropic creep behavior was formulated and an equivalent creep coefficient was proposed under plain strain conditions. Creep deformation behavior at the crack tip was investigated through the finite element analysis. The results of the finite element analysis showed that creep deformation in transversely isotropic materials is dominant at the rear of the crack-tip. This result was more obvious when a load was applied to principal axis of anisotropy. Based on the results of the mechanics analysis and the finite element simulation, a corrected estimation scheme of the creep zone size was proposed in order to evaluate the creep deformation behavior at the crack tip of transversely isotropic creeping materials

  2. Integrated Multilayer Insulation

    Science.gov (United States)

    Dye, Scott

    2009-01-01

    Integrated multilayer insulation (IMLI) is being developed as an improved alternative to conventional multilayer insulation (MLI), which is more than 50 years old. A typical conventional MLI blanket comprises between 10 and 120 metallized polymer films separated by polyester nets. MLI is the best thermal- insulation material for use in a vacuum, and is the insulation material of choice for spacecraft and cryogenic systems. However, conventional MLI has several disadvantages: It is difficult or impossible to maintain the desired value of gap distance between the film layers (and consequently, it is difficult or impossible to ensure consistent performance), and fabrication and installation are labor-intensive and difficult. The development of IMLI is intended to overcome these disadvantages to some extent and to offer some additional advantages over conventional MLI. The main difference between IMLI and conventional MLI lies in the method of maintaining the gaps between the film layers. In IMLI, the film layers are separated by what its developers call a micro-molded discrete matrix, which can be loosely characterized as consisting of arrays of highly engineered, small, lightweight, polymer (typically, thermoplastic) frames attached to, and placed between, the film layers. The term "micro-molded" refers to both the smallness of the frames and the fact that they are fabricated in a process that forms precise small features, described below, that are essential to attainment of the desired properties. The term "discrete" refers to the nature of the matrix as consisting of separate frames, in contradistinction to a unitary frame spanning entire volume of an insulation blanket.

  3. Covalently attached multilayer assemblies of diazo-resins and binuclear cobalt phthalocyanines

    International Nuclear Information System (INIS)

    Li Xiaofang; Zhao Shuang; Yang Min; Sun Changqing; Guo, Liping

    2005-01-01

    By using the ionic self-assembly technique, ordered multilayer thin films composed of diazo-resin (DAR) as polycation and water-soluble binuclear cobalt phthalocyaninehexasulfonate (Bi-CoPc) as polyanion were alternately fabricated on quartz, CaF 2 and glassy carbon electrodes (GCEs). Upon ultraviolet irradiation, the adjacent interface of the multilayer films reacted to form a covalently cross-linking structure. The obtained thin films were characterized by ultraviolet (UV)-vis, Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), atomic force microscope (AFM), surface photovoltage spectra (SPS), and cyclic voltammetry. The results show that the uniform, highly stable and ordered multilayer thin films were formed. The linkage nature between the adjacent interface of the multilayer films converts from ionic to covalent, and, as a result, the stability of the multilayer thin films dramatically improved. The multilayer thin films on GCEs also exhibited excellent electrochemical behavior

  4. Covalently attached multilayer assemblies of diazo-resins and binuclear cobalt phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaofang [Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023 (China); Zhao Shuang [Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023 (China); Yang Min [Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023 (China); Sun Changqing [Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023 (China)]. E-mail: sunchq@mail.jlu.edu.cn; Guo, Liping [Department of Chemistry, Northeast Normal University, Changchun 130024 (China)

    2005-05-01

    By using the ionic self-assembly technique, ordered multilayer thin films composed of diazo-resin (DAR) as polycation and water-soluble binuclear cobalt phthalocyaninehexasulfonate (Bi-CoPc) as polyanion were alternately fabricated on quartz, CaF{sub 2} and glassy carbon electrodes (GCEs). Upon ultraviolet irradiation, the adjacent interface of the multilayer films reacted to form a covalently cross-linking structure. The obtained thin films were characterized by ultraviolet (UV)-vis, Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), atomic force microscope (AFM), surface photovoltage spectra (SPS), and cyclic voltammetry. The results show that the uniform, highly stable and ordered multilayer thin films were formed. The linkage nature between the adjacent interface of the multilayer films converts from ionic to covalent, and, as a result, the stability of the multilayer thin films dramatically improved. The multilayer thin films on GCEs also exhibited excellent electrochemical behavior.

  5. Multivalent-Counterion-Induced Surfactant Multilayer Formation at Hydrophobic and Hydrophilic Solid-Solution Interfaces.

    Science.gov (United States)

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun; Xu, Hui; Tucker, Ian M; Petkov, Jordan T; Sivia, Devinderjit S

    2015-06-23

    Surface multilayer formation from the anionic-nonionic surfactant mixture of sodium dodecyl dioxyethylene sulfate, SLES, and monododecyl dodecaethylene glycol, C12E12, by the addition of multivalent Al(3+) counterions at the solid-solution interface is observed and characterized by neutron reflectivity, NR. The ability to form surface multilayer structures on hydrophobic and hydrophilic silica and cellulose surfaces is demonstrated. The surface multilayer formation is more pronounced and more well developed on the hydrophilic and hydrophobic silica surfaces than on the hydrophilic and hydrophobic cellulose surfaces. The less well developed multilayer formation on the cellulose surfaces is attributed to the greater surface inhomogeneities of the cellulose surface which partially inhibit lateral coherence and growth of the multilayer domains at the surface. The surface multilayer formation is associated with extreme wetting properties and offers the potential for the manipulation of the solid surfaces for enhanced adsorption and control of the wetting behavior.

  6. On the dynamics of non-stationary binary stellar system with non-isotropic mass flow

    International Nuclear Information System (INIS)

    Bekov, A.A.; Bejsekov, A.N.; Aldibaeva, L.T.

    2006-01-01

    The motion of test body in the external gravitational field of the binary stellar systems with slowly variable some physical parameters of radiating components is considered on the base of restricted nonstationary photo-gravitational three and two bodies problem with non-isotropic mass flow. The family of polar and coplanar solutions are obtained. The solutions give the possibility of the dynamical and structure interpretation of binary young evolving stars and galaxies. (author)

  7. Modification of homogeneous and isotropic turbulence by solid particles

    Science.gov (United States)

    Hwang, Wontae

    2005-12-01

    Particle-laden flows are prevalent in natural and industrial environments. Dilute loadings of small, heavy particles have been observed to attenuate the turbulence levels of the carrier-phase flow, up to 80% in some cases. We attempt to increase the physical understanding of this complex phenomenon by studying the interaction of solid particles with the most fundamental type of turbulence, which is homogeneous and isotropic with no mean flow. A flow facility was developed that could create air turbulence in a nearly-spherical chamber by means of synthetic jet actuators mounted on the corners. Loudspeakers were used as the actuators. Stationary turbulence and natural decaying turbulence were investigated using two-dimensional particle image velocimetry for the base flow qualification. Results indicated that the turbulence was fairly homogeneous throughout the measurement domain and very isotropic, with small mean flow. The particle-laden flow experiments were conducted in two different environments, the lab and in micro-gravity, to examine the effects of particle wakes and flow structure distortion caused by settling particles. The laboratory experiments showed that glass particles with diameters on the order of the turbulence Kolmogorov length scale attenuated the fluid turbulent kinetic energy (TKE) and dissipation rate with increasing particle mass loadings. The main source of fluid TKE production in the chamber was the speakers, but the loss of potential energy of the settling particles also resulted in a significant amount of production of extra TKE. The sink of TKE in the chamber was due to the ordinary fluid viscous dissipation and extra dissipation caused by particles. This extra dissipation could be divided into "unresolved" dissipation caused by local velocity disturbances in the vicinity of the small particles and dissipation caused by large-scale flow distortions from particle wakes and particle clusters. The micro-gravity experiments in NASA's KC-135

  8. Optical measurement of thermal deformation of multilayer optics under synchrotron radiation

    International Nuclear Information System (INIS)

    Revesz, P.; Kazimirov, A.; Bazarov, I.

    2007-01-01

    An in situ optical technique to visualize surface distortions of the first monochromator crystal under synchrotron beam heat loading has been developed and applied to measure surface profiles of multilayer optics under white wiggler beam at the CHESS A2 beamline. Two identical multilayer structures deposited on Si and SiC substrates have been tested. Comparison of the reconstructed 3D heatbump profiles showed the surface distortions of the multilayer on SiC a factor of two smaller than the same multilayer on a Si substrate

  9. Optical measurement of thermal deformation of multilayer optics under synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Revesz, P. [Cornell University, CHESS, Ithaca, NY 14850 (United States)], E-mail: pr20@cornell.edu; Kazimirov, A.; Bazarov, I. [Cornell University, CHESS, Ithaca, NY 14850 (United States)

    2007-11-11

    An in situ optical technique to visualize surface distortions of the first monochromator crystal under synchrotron beam heat loading has been developed and applied to measure surface profiles of multilayer optics under white wiggler beam at the CHESS A2 beamline. Two identical multilayer structures deposited on Si and SiC substrates have been tested. Comparison of the reconstructed 3D heatbump profiles showed the surface distortions of the multilayer on SiC a factor of two smaller than the same multilayer on a Si substrate.

  10. Scalar Statistics along Inertial Particle Trajectory in Isotropic Turbulence

    International Nuclear Information System (INIS)

    Ya-Ming, Liu; Zhao-Hui, Liu; Hai-Feng, Han; Jing, Li; Han-Feng, Wang; Chu-Guang, Zheng

    2009-01-01

    The statistics of a passive scalar along inertial particle trajectory in homogeneous isotropic turbulence with a mean scalar gradient is investigated by using direct numerical simulation. We are interested in the influence of particle inertia on such statistics, which is crucial for further understanding and development of models in non-isothermal gas-particle flows. The results show that the scalar variance along particle trajectory decreases with the increasing particle inertia firstly; when the particle's Stokes number S t is less than 1.0, it reaches the minimal value when S t is around 1.0, then it increases if S t increases further. However, the scalar dissipation rate along the particle trajectory shows completely contrasting behavior in comparison with the scalar variance. The mechanical-to-thermal time scale ratios averaged along particle, p , are approximately two times smaller than that computed in the Eulerian frame r, and stay at nearly 1.77 with a weak dependence on particle inertia. In addition, the correlations between scalar dissipation and now structure characteristics along particle trajectories, such as strain and vorticity, are also computed, and they reach their maximum and minimum, 0.31 and 0.25, respectively, when S t is around 1.0. (fundamental areas of phenomenology (including applications))

  11. Line-scanning tomographic optical microscope with isotropic transfer function

    International Nuclear Information System (INIS)

    Gajdátsy, Gábor; Dudás, László; Erdélyi, Miklós; Szabó, Gábor

    2010-01-01

    An imaging method and optical system, referred to as a line-scanning tomographic optical microscope (LSTOM) using a combination of line-scanning technique and CT reconstruction principle, is proposed and studied theoretically and experimentally. In our implementation a narrow focus line is scanned over the sample and the reflected light is measured in a confocal arrangement. One such scan is equivalent to a transverse projection in tomography. Repeating the scanning procedure in several directions, a number of transverse projections are recorded from which the image can be obtained using conventional CT reconstruction algorithms. The resolution of the image is independent of the spatial dimensions and structure of the applied detector; furthermore, the transfer function of the system is isotropic. The imaging performance of the implemented confocal LSTOM was compared with a point-scanning confocal microscope, based on recorded images. These images demonstrate that the resolution of the confocal LSTOM exceeds (by 15%) the resolution limit of a point-scanning confocal microscope

  12. Symmetric scrolled packings of multilayered carbon nanoribbons

    Science.gov (United States)

    Savin, A. V.; Korznikova, E. A.; Lobzenko, I. P.; Baimova, Yu. A.; Dmitriev, S. V.

    2016-06-01

    Scrolled packings of single-layer and multilayer graphene can be used for the creation of supercapacitors, nanopumps, nanofilters, and other nanodevices. The full atomistic simulation of graphene scrolls is restricted to consideration of relatively small systems in small time intervals. To overcome this difficulty, a two-dimensional chain model making possible an efficient calculation of static and dynamic characteristics of nanoribbon scrolls with allowance for the longitudinal and bending stiffness of nanoribbons is proposed. The model is extended to the case of scrolls of multilayer graphene. Possible equilibrium states of symmetric scrolls of multilayer carbon nanotribbons rolled up so that all nanoribbons in the scroll are equivalent are found. Dependences of the number of coils, the inner and outer radii, lowest vibrational eigenfrequencies of rolled packages on the length L of nanoribbons are obtained. It is shown that the lowest vibrational eigenfrequency of a symmetric scroll decreases with a nanoribbon length proportionally to L -1. It is energetically unfavorable for too short nanoribbons to roll up, and their ground state is a stack of plane nanoribbons. With an increasing number k of layers, the nanoribbon length L necessary for creation of symmetric scrolls increases. For a sufficiently small number of layers k and a sufficiently large nanoribbon length L, the scrolled packing has the lowest energy as compared to that of stack of plane nanoribbons and folded structures. The results can be used for development of nanomaterials and nanodevices on the basis of graphene scrolled packings.

  13. Simulated SAM A-scans on multilayer MEMS components

    DEFF Research Database (Denmark)

    Janting, Jakob; Petersen, Dirch Hjorth; Greisen, Christoffer

    2002-01-01

    A spreadsheet program for simulation of Scanning Acoustic Microscopy (SAM) A-scans on multilayer structures has been developed. Using this program, structure variations in samples can be analysed better. Further samples can be prepared to get optimal signal for enhanced failure and materials...

  14. Influences of layer thickness on the compatibility and physical properties of polycarbonate/polystyrene multilayered film via nanolayer coextrusion

    Science.gov (United States)

    Cheng, Junfeng; Chen, Zhiru; Zhou, Jiaqi; Cao, Zheng; Wu, Dun; Liu, Chunlin; Pu, Hongting

    2018-05-01

    The effects of layer thickness on the compatibility between polycarbonate (PC) and polystyrene (PS) and physical properties of PC/PS multilayered film via nanolayer coextrusion are studied. The morphology of multilayered structure is observed using a scanning electron microscope. This multilayered structure may have a negative impact on the transparency, but it can improve the water resistance and heat resistance of film. To characterize the compatibility between PC and PS, differential scanning calorimetry is used to measure the glass transition temperature. The compatibility is found to be improved with the decrease of layer thickness. Therefore, the viscosity of multilayered film is also reduced with the decrease of layer thickness. In addition, the multilayered structure can improve the tensile strength with the increase of layer numbers. Because of the complete and continuous layer structure of PC, the PC/PS multilayered film can retain its mechanical strength at the temperature above Tg of PS.

  15. Domain wall theory and exchange stiffness in Co/Pd multilayers

    NARCIS (Netherlands)

    Kambersky, V.; Kambersky, V.; de Haan, P.; Simsova, J.; Porthun, S.; Porthun, S.; Gemperle, R.; Lodder, J.C.

    1996-01-01

    The stripe model of domain structure in multilayers is studied by micromagnetic simulation. The results indicate a strong reduction of the effective domain wall energy (by dipolar effects). Domain width measurements on sputtered Co/Pd multilayers are compared with the theory. The estimated exchange

  16. Hot-electrons-induced ultrafast demagnitization in Co/Pt multilayers

    NARCIS (Netherlands)

    Bergeard, N.; Hehn, M.; Mangin, S.; Lengaigne, G.; Montaigne, F.; Lalieu, M. L. M.; Koopmans, B.; Malinowski, G.

    2016-01-01

    Using specially engineered structures to tailor the optical absorption in a metallic multilayer, we analyze the magnetization dynamics of a Co/Pt multilayer buried below a thick Cu layer. We demonstrate that hot electrons alone can very efficiently induce ultrafast demagnetization. Simulations based

  17. 24 h stability of thick multilayer silicene in air

    International Nuclear Information System (INIS)

    De Padova, Paola; Ottaviani, Carlo; Quaresima, Claudio; Generosi, Amanda; Paci, Barbara; Le Lay, Guy; Olivieri, Bruno; Imperatori, Patrizia; Salomon, Eric; Angot, Thierry; Quagliano, Lucia; Romano, Claudia; Vona, Alessandro; Muniz-Miranda, Maurizio

    2014-01-01

    Thick epitaxial multilayer silicene films with a √3 × √3R(30°) surface structure show only mild surface oxidation after 24 h in air, as measured by Auger electron spectroscopy. X-ray diffraction and Raman spectroscopy measurements performed in air without any protective capping, as well as, for comparison, with a thin Al 2 O 3 cap, showed the (002) reflection and the G, D and 2D Raman structures, which are unique fingerprints of thick multilayer silicene. (letter)

  18. X-ray grazing incidence diffraction from multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Tixier, S.; Boeni, P.; Swygenhoven, H. van; Horisberger, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Grazing incidence scattering geometries using synchrotron radiation have been applied in order to characterise the roughness profiles and the structural coherence of multilayers. The lateral correlation length of the roughness profiles was evaluated using diffuse reflectivity in the `out of plane` geometry. This type of measurement is the only diffuse reflectivity technique allowing large lateral momentum transfer. It is typically suitable for correlation lengths smaller than 1000 A. The lateral structural coherence length of Ni{sub 3}Al/Ni multilayers as a function of the layer thickness was obtained by grazing incidence diffraction (GID). 3 figs., 1 ref.

  19. Relaxation dynamics of multilayer triangular Husimi cacti

    Science.gov (United States)

    Galiceanu, Mircea; Jurjiu, Aurel

    2016-09-01

    We focus on the relaxation dynamics of multilayer polymer structures having, as underlying topology, the Husimi cactus. The relaxation dynamics of the multilayer structures is investigated in the framework of generalized Gaussian structures model using both Rouse and Zimm approaches. In the Rouse type-approach, we determine analytically the complete eigenvalues spectrum and based on it we calculate the mechanical relaxation moduli (storage and loss modulus) and the average monomer displacement. First, we monitor these physical quantities for structures with a fixed generation number and we increase the number of layers, such that the linear topology will smoothly come into play. Second, we keep constant the size of the structures, varying simultaneously two parameters: the generation number of the main layer, G, and the number of layers, c. This fact allows us to study in detail the crossover from a pure Husimi cactus behavior to a predominately linear chain behavior. The most interesting situation is found when the two limiting topologies cancel each other. For this case, we encounter in the intermediate frequency/time domain regions of constant slope for different values of the parameter set (G, c) and we show that the number of layers follows an exponential-law of G. In the Zimm-type approach, which includes the hydrodynamic interactions, the quantities that describe the mechanical relaxation dynamics do not show scaling behavior as in the Rouse model, except the limiting case, namely, a very high number of layers and low generation number.

  20. Superconductivity and vortex properties in various multilayers

    International Nuclear Information System (INIS)

    Koorevaar, P.

    1994-01-01

    In this thesis three qualitatively different type of superconducting multilayers are studied. We discuss the vortex lattice structure in Nb/NbZr multilayers, a system where both type of constituting layers are superconducting. At certain temperatures and for parallel fields close to H c2parallel , the Nb/NbZr system has a strongly modulated order parameter, and in this aspect resembles the high-Tc materials. By lowering the field the modulation decreases, having important consequences for the vortex lattice structure. By studying the transport critical currents we show that in the case of strong modulation the vortex lattice has a kinked structure, but at weaker modulations the vortices are straight, and the change in modulation actually results in a vortex lattice transition. Our study confirms the picture of the existence of kinked vortex lattices, but it is rather surprising that these kinked structures can exist in a system which in itself is not at all that anisotropic. It indicates the relevance of other parameters governing the vortex lattice structure. (orig.)