DFT/B3LYP study of tocopherols and chromans antioxidant action energetics
International Nuclear Information System (INIS)
Klein, Erik; Lukes, Vladimir; Ilcin, Michal
2007-01-01
Gas-phase reaction enthalpies related to the individual steps of three phenolic antioxidants action mechanisms - hydrogen atom transfer (HAT), single-electron transfer-proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET) for four tocopherols and seven chromans - were calculated using DFT/B3LYP method. For α-tocopherol, one of the chromans and phenol, reaction enthalpies in water were computed. In comparison to gas phase, water causes severe changes in the energetics of studied compounds antioxidant action. From the thermodynamic point of view, entering SPLET mechanism represents the most probable process in water
DFT/B3LYP study of tocopherols and chromans antioxidant action energetics
Energy Technology Data Exchange (ETDEWEB)
Klein, Erik [Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinskeho 9, SK-812 37 Bratislava (Slovakia)], E-mail: erik.klein@stuba.sk; Lukes, Vladimir; Ilcin, Michal [Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinskeho 9, SK-812 37 Bratislava (Slovakia)
2007-07-09
Gas-phase reaction enthalpies related to the individual steps of three phenolic antioxidants action mechanisms - hydrogen atom transfer (HAT), single-electron transfer-proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET) for four tocopherols and seven chromans - were calculated using DFT/B3LYP method. For {alpha}-tocopherol, one of the chromans and phenol, reaction enthalpies in water were computed. In comparison to gas phase, water causes severe changes in the energetics of studied compounds antioxidant action. From the thermodynamic point of view, entering SPLET mechanism represents the most probable process in water.
N-propyl nitrate vibrational spectrum analysis using DFT B3LYP quantum-chemical method
Shaikhullina, R. M.; Hrapkovsky, G. M.; Shaikhullina, M. M.
2018-05-01
Calculation of a molecular structure, conformation and related vibrational spectra of the n- propyl nitrate C3H7NO3 was carried out by means of density functional theory (DFT) by employing the Gaussian 03 package. The molecular geometries were fully optimized by using the Becker's three-parameter hybrid exchange functional combined with the Lee–Yang–Parr correlation functional (B3LYP) and using the 6-31G(d) basis set. By scanning the dihedral angles around C-O and C-C bonds, five energetically most favorable conformers of n-propyl nitrate - TG, TT, GT, GG and G´G forms were found. Vibrational spectra of the most energetically favorable conformers were calculated. The comparative analysis of calculated and experimental spectra is carried out, the spectral features of the conformational state of n-propyl nitrate and the spectral effects of formation of intramolecular hydrogen bonds are established.
DEFF Research Database (Denmark)
Jalkanen, Karl J.; Frimand, Kenneth
2002-01-01
-binding method for equilibrium structures, VA and VCD spectra of ethylene oxide and propylene oxide in the gas-phase. Comparison to conventional methods AM1, PM3, MP2, RHF and DFT/B3LYP is carried out. We report results over a wider range of frequencies than previous work. In particular, we find indications...... that the self-consistent-charge tight-binding method, combined with DFT/B3LYP atomic polar tensors and atomic axial tensors, compares favourably with competing methods tendency to overestimate the location of spectral peaks with respect to frequencies, the latter observation being most pronounced in the higher...... frequency regions. Our findings produce additional support for the self-consistent-charge tight-binding method as a fast computational method for small and larger molecules, however, also that improved parameterisations are needed to reach accuracies of MP2 and DFT/B3LYP. (C) 2002 Elsevier Science B.V. All...
Ahmad, Faheem; Alam, Mohammad Jane; Alam, Mahboob; Azaz, Shaista; Parveen, Mehtab; Park, Soonheum; Ahmad, Shabbir
2018-01-01
The present study reports the synthesis and evaluation of biological properties of 3a,8a-dihydroxy-8-oxo-1,3,3a,8a-tetrahydroindeno[1,2-d]imidazol-2(1H)-iminium chloride (3). The structure was confirmed by the FTIR, NMR, MS, CHN microanalysis and X-ray crystallographic analysis. Quantum chemical calculations have been performed at B3LYP-D3/6-311++G(d,p) level of theory to study the molecular geometry, IR, (1H and 13C) NMR, UV/Vis spectra and other molecular parameters of the asymmetric unit of crystal of imidazole compound (3). An empirical dispersion correction to hybrid functional (B3LYP-D3) has been incorporated in the present calculations due to presence of non-covalent interaction, Cl⋯H-O, in the present compound. The remarkable agreement has been observed between theoretical data and those measured experimentally. Moreover, the Hirshfeld analysis was carried out to ascertain the secondary interactions and associated 2D fingerprint plots. The synthesized imidazole derivative showed promising antioxidant property and inhibitory activity against acetylcholinesterase (AChE). Molecular docking was also performed in order to explain in silico antioxidant studies and to ascertain the probable binding mode of compound with the amino acid residues of protein.
Arivazhagan, M; Anitha Rexalin, D
2012-10-01
The Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) spectra of 4-chloro-2-fluoroaniline (CFA) have been recorded and analyzed. The equilibrium geometry, bonding features and harmonic vibrational frequencies have been investigated with the help of ab initio and density functional theory (DFT) methods. The assignments of the vibrational spectra have been carried out with the help of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule are calculated by the Gauge including atomic orbital (GIAO) method. The first order hyperpolarizability (β(0)) of this novel molecular system and related properties (β, α(0) and Δα) of CFA are calculated using B3LYP/6-311++G(d,p) and HF/6-311++G(d,p) methods on the finite-field approach. The calculated results also show that the CFA molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The result confirms the occurrence of intramolecular charge transfer (ICT) within the molecule. The HOMO-LUMO energies UV-vis spectral analysis and MEP are performed by B3LYP/6-311++G(d,p) approach. A detailed interpretation of the infrared and Raman spectra of CFA is also reported based on total energy distribution (TED). The difference between the observed and scaled wave number values of the most of the fundamentals is very small. Copyright © 2012 Elsevier B.V. All rights reserved.
Dubis, A; Zamaraeva, M V; Siergiejczyk, L; Charishnikova, O; Shlyonsky, V
2015-10-07
Calcium ionophoretic properties of ferutinin were re-evaluated in solvent-containing bilayer lipid membranes. The slopes of conductance-concentration curves suggest that in the presence of a solvent in the membrane the majority of complexes appear to consist of a single terpenoid molecule bound to one Ca ion. By contrast, the stoichiometry of ferutinin-Ca(2+) complexes in acetone determined using the conductometric method was 2 : 1. While the cation-cation selectivity of ferutinin did not change, the cation-anion selectivity slightly decreased in solvent containing membranes. FT-IR and NMR data together with DFT calculations at the B3LYP/6-31G(d) level of theory indicate that in the absence of Ca ions ferutinin molecules are hydrogen-bonded at the phenol hydroxyl groups. The variations of absorption assigned to -OH and -C-O stretching mode suggest that ferutinin interacts strongly with Ca ions via the hydroxyl group of ferutinol and carboxyl oxygen of the complex ether bond. The coordination through the carbonyl group of ferutinin was demonstrated by theoretical calculations. Taken together, ferutinin molecules form H-bonded dimers, while complexation of Ca(2+) by ferutinin ruptures this hydrogen bond due to spatial re-orientation of the ferutinin molecules from parallel to antiparallel alignment.
Structural, electronic and vibrational properties of GexCy (x+y=2-5) nanoclusters: A B3LYP-DFT study
Goswami, Sohini; Saha, Sushmita; Yadav, R. K.
2015-11-01
An ab-initio study of the stability, structural and electronic properties has been made for 84 germanium carbide nanoclusters, GexCy (x+y=2-5). The configuration possessing the maximum value of final binding energy (FBE), among the various configurations corresponding to a fixed x+y=n value, is named as the most stable structure. The vibrational and optical properties have been investigated only for the most stable structures. A B3LYP-DFT/6-311G(3df) method has been employed to optimize fully the geometries of the nanoclusters. The binding energies (BE), highest-occupied and lowest-unoccupied molecular orbital (HOMO-LUMO) gaps have been obtained for all the clusters and the bond lengths have been reported for the most stable clusters. We have considered the zero point energy (ZPE) corrections. The adiabatic and vertical ionization potentials (IPs) and electron affinities (EAs), charge on atoms, dipole moments, vibrational frequencies, infrared intensities (IR Int.), relative infrared intensities (Rel. IR Int.) and Raman scattering activities have also been investigated for the most stable structures. The configurations containing the carbon atoms in majority are seen to be the most stable structures. The strong C-C bond has important role in stabilizing the clusters. For the clusters containing one germanium atom and all the other as carbon atoms, the BE increases monotonically with the number of the carbon atoms. The HOMO-LUMO gap, IPs and EAs fluctuates with increase in the number of atoms. The nanoclusters containing even number of carbon atoms have large HOMO-LUMO gaps and IPs, whereas the nanoclusters containing even number of carbon atoms have small EAs. In general, the adiabatic IP (EA) is smaller (greater) than the vertical IP (EA). The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every cluster, and may be used to characterize a specific cluster. All the predicted physical quantities are in good agreement with the
International Nuclear Information System (INIS)
Yadav, P S; Yadav, R K; Agrawal, B K
2007-01-01
An ab initio study of the stability, structural and electronic properties has been made for 49 gallium nitride nanoclusters, Ga x N y (x+y = 2-5). Among the various configurations corresponding to a fixed x+y = n value, the configuration possessing the maximum value of binding energy (BE) is named as the most stable structure. The vibrational and optical properties have been investigated only for the most stable structures. A B3LYP-DFT/6-311G(3df) method has been employed to optimize the geometries of the nanoclusters fully. The binding energies (BEs), highest-occupied and lowest-unoccupied molecular orbital (HOMO-LUMO) gaps and the bond lengths have been obtained for all the clusters. We have considered the zero-point energy (ZPE) corrections ignored by the earlier workers. The adiabatic and vertical ionization potentials (IPs) and electron affinities (EAs), charge on atoms, dipole moments, vibrational frequencies, infrared intensities (IR Int.), relative infrared intensities (Rel. IR Int.) and Raman scattering activities have been investigated for the most stable structures. The configurations containing the N atoms in majority are seen to be the most stable structures. The strong N-N bond has an important role in stabilizing the clusters. For clusters containing one Ga atom and all the others as N atoms, the BE increases monotonically with the number of the N atoms. The HOMO-LUMO gap and IP fluctuate with the cluster size n, having larger values for the clusters containing odd number of N atoms. On the other hand, the EA decreases with the cluster size up to n = 3, and shows slow fluctuations thereafter for the larger clusters. In general, the adiabatic IP (EA) is smaller (greater) than the vertical IP (EA) because of the lower energies of the most stable ground state of the cationic (anionic) clusters. The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every cluster, and may be used to characterize a specific cluster. All the
Directory of Open Access Journals (Sweden)
Nuri ÖZTÜRK
2018-02-01
Full Text Available The experimental spectroscopic investigation of N-benzyloxycarbonyloxy-5-norbornene-2,3-dicarboximide (C17H15NO5 molecule has been done using 1H and 13C NMR chemical shifts, FT-IR and Raman spectroscopies. Conformational forms have been determined depending on orientation of N-benzyloxycarbonyloxy and 5-norbornene-2,3-dicarboximide (NDI groups of the title compound. The structural geometric optimizations, vibrational wavenumbers, NMR chemical shifts (in vacuum and chloroform and HOMO-LUMO analyses for all conformers of the title molecule have been done with DFT/CAM-B3LYP method at the 6-311++G(d,p basis set. Additionally, based on the calculated HOMO and LUMO energy values, some molecular properties such as ionization potential (I, electron affinity (A, electronegativity (χ, chemical hardness (h, chemical softness (z, chemical potential (μ and electrophilicity index (w parameters are determined for all conformers. The non-linear optical (NLO properties have been studied for the title molecule. We can say that the experimental spectral data are in accordance with calculated values.
Téllez Soto, Claudio Alberto; Pereira, Liliane; dos Santos, Laurita; Rajasekaran, Ramu; Fávero, Priscila; Martin, Airton Abrahão
2016-12-01
In the confocal Raman spectra of skin dermis, the band area in the spectral region of proline and hydroxyproline varies according to the age and health condition of the volunteers, classified as healthy young women, healthy elderly women, and diabetic elderly women. Another observation refers to the intensity variation and negative Raman shift of the amide I band. To understand these effects, we adopted a model system using the DFT/B3LYP:3-21G procedure, considering the amino acid chain formed by glycine, hydroxyproline, proline, and alanine, which interacts with two and six water molecules. Through these systems, polarizability variations were analyzed to correlate its values with the observed Raman intensities of the three groups of volunteers and to assign the vibrational spectra of the skin dermis. As a way to correlate other experimental trends, we propose a model of chemical reaction of water interchange between the bonding amino acids, in which water molecules are attached with glucose by hydrogen bonds. The theoretical results are in accordance with the observed experimental trends.
Energy Technology Data Exchange (ETDEWEB)
Yadav, P S; Yadav, R K; Agrawal, B K [Physics Department, Allahabad University, Allahabad-211002 (India)
2007-02-21
An ab initio study of the stability, structural and electronic properties has been made for 49 gallium nitride nanoclusters, Ga{sub x}N{sub y} (x+y = 2-5). Among the various configurations corresponding to a fixed x+y = n value, the configuration possessing the maximum value of binding energy (BE) is named as the most stable structure. The vibrational and optical properties have been investigated only for the most stable structures. A B3LYP-DFT/6-311G(3df) method has been employed to optimize the geometries of the nanoclusters fully. The binding energies (BEs), highest-occupied and lowest-unoccupied molecular orbital (HOMO-LUMO) gaps and the bond lengths have been obtained for all the clusters. We have considered the zero-point energy (ZPE) corrections ignored by the earlier workers. The adiabatic and vertical ionization potentials (IPs) and electron affinities (EAs), charge on atoms, dipole moments, vibrational frequencies, infrared intensities (IR Int.), relative infrared intensities (Rel. IR Int.) and Raman scattering activities have been investigated for the most stable structures. The configurations containing the N atoms in majority are seen to be the most stable structures. The strong N-N bond has an important role in stabilizing the clusters. For clusters containing one Ga atom and all the others as N atoms, the BE increases monotonically with the number of the N atoms. The HOMO-LUMO gap and IP fluctuate with the cluster size n, having larger values for the clusters containing odd number of N atoms. On the other hand, the EA decreases with the cluster size up to n = 3, and shows slow fluctuations thereafter for the larger clusters. In general, the adiabatic IP (EA) is smaller (greater) than the vertical IP (EA) because of the lower energies of the most stable ground state of the cationic (anionic) clusters. The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every cluster, and may be used to characterize a specific cluster
Ramalingam, S; Jayaprakash, A; Mohan, S; Karabacak, M
2011-11-01
FT-IR and FT-Raman (4000-100 cm(-1)) spectral measurements of 3-methyl-1,2-butadiene (3M12B) have been attempted in the present work. Ab-initio HF and DFT (LSDA/B3LYP/B3PW91) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, IR intensities and Raman activities. Complete vibrational assignments on the observed spectra are made with vibrational frequencies obtained by HF and DFT (LSDA/B3LYP/B3PW91) at 6-31G(d,p) and 6-311G(d,p) basis sets. The results of the calculations have been used to simulate IR and Raman spectra for the molecule that showed good agreement with the observed spectra. The potential energy distribution (PED) corresponding to each of the observed frequencies are calculated which confirms the reliability and precision of the assignment and analysis of the vibrational fundamentals modes. The oscillation of vibrational frequencies of butadiene due to the couple of methyl group is also discussed. A study on the electronic properties such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The thermodynamic properties of the title compound at different temperatures reveal the correlations between standard heat capacities (C) standard entropies (S), and standard enthalpy changes (H). Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Arockia doss, M.; Rajarajan, G.; Thanikachalam, V.; Selvanayagam, S.; Sridhar, B.
2018-04-01
2,4,5-triphenyl-1H-imidazol-3-ium picrate (1), 2-(4-fluorophenyl)-4,5-diphenyl-1H-imidazol-3-ium picrate (2), 2-(4-methylphenyl)-4,5-diphenyl-1H-imidazol-3-ium picrate (3) were synthesised. These compounds 1-3 were characterized by elemental, FT-IR, 1H NMR and 13C NMR analyses. The structure of compound 3 was further confirmed by single crystal X-ray diffraction. The studies reveal that the molecule is associated with weak Nsbnd H⋯O and Csbnd H⋯N and van der Waals interactions which are responsible for the formation and strengthening of supramolecular assembly. The nature of the interactions and their importance are explored using the Hirshfeld surface method. The physicochemical properties of the compounds 1-3 were evaluated by UV-vis spectroscopy, fluorescence spectroscopy, and thermogravimetric analysis. According to thermal data the salts possess excellent thermal stabilities with decomposition temperatures ranging from 220 to 280 °C. Second-harmonic generation (SHG) results exposed that the picrates 1-3 were about 1.13-1.50 times greater than potassium dihydrogen phosphate (KDP). Here we also used Density functional theory (DFT) calculations in order to investigate the opto-electronic properties. The obtained theoretical results validate with available experimental data.
Pereira, Florbela; Xiao, Kaixia; Latino, Diogo A R S; Wu, Chengcheng; Zhang, Qingyou; Aires-de-Sousa, Joao
2017-01-23
Machine learning algorithms were explored for the fast estimation of HOMO and LUMO orbital energies calculated by DFT B3LYP, on the basis of molecular descriptors exclusively based on connectivity. The whole project involved the retrieval and generation of molecular structures, quantum chemical calculations for a database with >111 000 structures, development of new molecular descriptors, and training/validation of machine learning models. Several machine learning algorithms were screened, and an applicability domain was defined based on Euclidean distances to the training set. Random forest models predicted an external test set of 9989 compounds achieving mean absolute error (MAE) up to 0.15 and 0.16 eV for the HOMO and LUMO orbitals, respectively. The impact of the quantum chemical calculation protocol was assessed with a subset of compounds. Inclusion of the orbital energy calculated by PM7 as an additional descriptor significantly improved the quality of estimations (reducing the MAE in >30%).
Quantum-chemical ab initio and B3LYP investigation of tricyanides and triisocyanides of Al, Ga, In
International Nuclear Information System (INIS)
Timoshkin, A.Yu.; Shefer, G.F.
2000-01-01
Ab initio and density functional B3LYP methods are used to obtain structural parameters, standard entropies and vibrational spectra of cyanides and isocyanides of trivalent Al, Ga, In for the first time. It is pointed out that for In cyanide form is more stable. There is divergence in data obtained in the framework of self-consistent field and by B3LYP methods what indicates importance of estimation of energy of electronic correlation and in the same time comparison of basic sets DZP and LANL2DZP demonstrates insufficiency of basic sets with effective potentials of skeleton for description molecular tricyanides of elements of the 3a group [ru
Regulska, E; Kalinowska, M; Wojtulewski, S; Korczak, A; Sienkiewicz-Gromiuk, J; Rzączyńska, Z; Swisłocka, R; Lewandowski, W
2014-11-11
The DFT calculations (B3LYP method with 6-311++G(d,p) mixed with LanL2DZ for transition metals basis sets) for different conformers of 2,5-dihydroxybenzoic acid (gentisic acid), sodium 2,5-dihydroxybenzoate (gentisate) and copper(II) and cadmium(II) gentisates were done. The proposed hydrated structures of transition metal complexes were based on the results of experimental findings. The theoretical geometrical parameters and atomic charge distribution were discussed. Moreover Na, Cu(II) and Cd(II) gentisates were synthesized and the composition of obtained compounds was revealed by means of elemental and thermogravimetric analyses. The FT-IR and FT-Raman spectra of gentisic acid and gentisates were registered and the effect of metals on the electronic charge distribution of ligand was discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
Sert, Yusuf; Puttaraju, K. B.; Keskinoğlu, Sema; Shivashankar, K.; Ucun, Fatih
2015-01-01
In this study, the experimental and theoretical vibrational frequencies of a newly synthesized bacteriostatic and anti-tumor molecule namely, 4-bromomethyl-6-tert-butyl-2H-chromen-2-one have been investigated. The experimental FT-IR (4000-400 cm-1) and Raman spectra (4000-100 cm-1) of the compound in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parametrized, empirical exchange correlation function) with 6-311++G(d, p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.
Bryantsev, Vyacheslav S; Diallo, Mamadou S; van Duin, Adri C T; Goddard, William A
2009-04-14
In this paper we assess the accuracy of the B3LYP, X3LYP, and newly developed M06-L, M06-2X, and M06 functionals to predict the binding energies of neutral and charged water clusters including (H2O)n, n = 2-8, 20), H3O(+)(H2O)n, n = 1-6, and OH(-)(H2O)n, n = 1-6. We also compare the predicted energies of two ion hydration and neutralization reactions on the basis of the calculated binding energies. In all cases, we use as benchmarks calculated binding energies of water clusters extrapolated to the complete basis set limit of the second-order Møller-Plesset perturbation theory with the effects of higher order correlation estimated at the coupled-cluster theory with single, double, and perturbative triple excitations in the aug-cc-pVDZ basis set. We rank the accuracy of the functionals on the basis of the mean unsigned error (MUE) between calculated benchmark and density functional theory energies. The corresponding MUE (kcal/mol) for each functional is listed in parentheses. We find that M06-L (0.73) and M06 (0.84) give the most accurate binding energies using very extended basis sets such as aug-cc-pV5Z. For more affordable basis sets, the best methods for predicting the binding energies of water clusters are M06-L/aug-cc-pVTZ (1.24), B3LYP/6-311++G(2d,2p) (1.29), and M06/aug-cc-PVTZ (1.33). M06-L/aug-cc-pVTZ also gives more accurate energies for the neutralization reactions (1.38), whereas B3LYP/6-311++G(2d,2p) gives more accurate energies for the ion hydration reactions (1.69).
Bryantsev, Vyacheslav S.; Diallo, Mamadou S.; van Duin, Adri C. T.; Goddard, William A., III
2009-01-01
In this paper we assess the accuracy of the B3LYP, X3LYP, and newly developed M06-L, M06-2X, and M06 functionals to predict the binding energies of neutral and charged water clusters including (H_2O)_n, n = 2−8, 20), H_3O+(H_2O_)n, n = 1−6, and OH−(H_2O)_n, n = 1−6. We also compare the predicted energies of two ion hydration and neutralization reactions on the basis of the calculated binding energies. In all cases, we use as benchmarks calculated binding energies of water clusters extrapolate...
Sert, Yusuf; Miroslaw, Barbara; Çırak, Çağrı; Doğan, Hatice; Szulczyk, Daniel; Struga, Marta
2014-07-15
In this study, the experimental and theoretical vibrational spectral analysis of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone have been carried out. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) have been recorded for the solid state samples. The theoretical vibrational frequencies and the optimized geometric parameters (bond lengths and angles) have been calculated for gas phase using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set. The diversity in molecular geometry of fluorophenyl substituted thiosemicarbazones has been discussed based on the X-ray crystal structure reports and theoretical calculation results from the literature. The assignments of the vibrational frequencies have been done on the basis of potential energy distribution (PED) analysis by using VEDA4 software. A good correlation was found between the computed and experimental geometric and vibrational data. In addition, the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbital energy levels and other related molecular energy values of the compound have been determined using the same level of theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.
Zehe, Michael J.; Jaffe, Richard L.
2010-01-01
High-level ab initio calculations have been performed on the exo and endo isomers of gas-phase tetrahydrodicyclopentadiene (THDCPD), a principal component of the jet fuel JP10, using the Gaussian Gx and Gx(MPx) composite methods, as well as the CBS-QB3 method, and using a variety of isodesmic and homodesmotic reaction schemes. The impetus for this work is to help resolve large discrepancies existing between literature measurements of the formation enthalpy Delta (sub f)H deg (298) for exo-THDCPD. We find that use of the isodesmic bond separation reaction C10H16 + 14CH4 yields 12C2H6 yields results for the exo isomer (JP10) in between the two experimentally accepted values, for the composite methods G3(MP2), G3(MP2)//B3LYP, and CBS-QB3. Application of this same isodesmic bond separation scheme to gas-phase adamantane yields a value for Delta (sub f)H deg (298) within 5 kJ/mol of experiment. Isodesmic bond separation calculations for the endo isomer give a heat of formation in excellent agreement with the experimental measurement. Combining our calculated values for the gas-phase heat of formation with recent measurements of the heat of vaporization yields recommended values for Delta (sub f)H deg (298)liq of -126.4 and -114.7 kJ/mol for the exo and endo isomers, respectively.
Conformational, vibrational, NMR and DFT studies of N-methylacetanilide.
Arjunan, V; Santhanam, R; Rani, T; Rosi, H; Mohan, S
2013-03-01
A detailed conformational, vibrational, NMR and DFT studies of N-methylacetanilide have been carried out. In DFT, B3LYP method have been used with 6-31G(**), 6-311++G(**) and cc-pVTZ basis sets. The vibrational frequencies were calculated resulting in IR and Raman frequencies together with intensities and Raman depolarisation ratios. The dipole moment derivatives were computed analytically. Owing to the complexity of the molecule, the potential energy distributions of the vibrational modes of the compound are also calculated. Isoelectronic molecular electrostatic potential surface (MEP) and electron density surface were examined. (1)H and (13)C NMR isotropic chemical shifts were calculated and the assignments made are compared with the experimental values. The energies of important MO's of the compound were also determined from TD-DFT method. Copyright © 2012 Elsevier B.V. All rights reserved.
DEFF Research Database (Denmark)
Bohr, Henrik; Jalkanen, Karl J.; Elstner, M.
1999-01-01
dichroism (VCD) spectra of NALANMA. We have utilised MP2/6-31G*, B3LYP/6-31G*, RHF/6-31G* and SCC-DFTB level theory to determine the geometries and Hessians, atomic polar tensors (APT) and atomic axial tensors (AAT) which are required for simulating the VA and VCD spectra. We have also calculated the AAT...
Describing excited state relaxation and localization in TiO2 nanoparticles using TD-DFT
International Nuclear Information System (INIS)
Berardo, Enrico; Hu, Han-Shi; Van Dam, Hubertus J. J.; Shevlin, Stephen A.; Woodley, Scott M.; Kowalski, Karol; Zwijnenburg, Martijn A.
2014-01-01
We have investigated the description of excited state relaxation in naked and hydrated TiO 2 nanoparticles using Time-Dependent Density Functional Theory (TD-DFT) with three common hybrid exchange-correlation (XC) potentials; B3LYP, CAM-B3LYP and BHLYP. Use of TD-CAM-B3LYP and TD-BHLYP yields qualitatively similar results for all structures, which are also consistent with predictions of coupled cluster theory for small particles. TD-B3LYP, in contrast, is found to make rather different predictions; including apparent conical intersections for certain particles that are not observed with TD-CAM-B3LYP nor with TD-BHLYP. In line with our previous observations for vertical excitations, the issue with TD-B3LYP appears to be the inherent tendency of TD-B3LYP, and other XC potentials with no or a low percentage of Hartree-Fock Like Exchange, to spuriously stabilize the energy of charge-transfer (CT) states. Even in the case of hydrated particles, for which vertical excitations are generally well described with all XC potentials, the use of TD-B3LYP appears to result in CT-problems for certain particles. We hypothesize that the spurious stabilization of CT-states by TD-B3LYP even may drive the excited state optimizations to different excited state geometries than those obtained using TD-CAM-B3LYP or TD-BHLYP. In conclusion, focusing on the TD-CAM-B3LYP and TD-BHLYP results, excited state relaxation in naked and hydrated TiO 2 nanoparticles is predicted to be associated with a large Stokes' shift
Zhen, Jun-Ping; Wei, Xiao-Chun; Shi, Wen-Jing; Huang, Zhu-Yuan; Jin, Bo; Zhou, Yu-Kun
2017-11-14
In order to examine the origin of the drug action and design new DNA/RNA-targeted drugs, the cooperativity effect involving drug-DNA/RNA intermolecular interaction in ketoprofen⋯cytosine⋯H 2 O ternary system were investigated by the B3LYP, B3LYP-D3, and MP2 methods with the 6-311++G(2d,p) basis set. The thermodynamic cooperativity was also evaluated at 310.15 K. The N-H⋯O, O-H⋯O, O-H⋯N, C-H⋯N, and C-H⋯O H bonds coexist in ternary complexes. The intermolecular interactions obtained by B3LYP-D3 are close to those calculated by MP2. The steric effects and van der Waals interactions have little influence on the cooperativity effects. The anti-cooperativity effect in ket⋯cyt⋯H 2 O is far more notable than the cooperativity effect, and the stability of the cyclic structure with anti-cooperativity effect is higher than that of the linear structure with cooperativity effect, as is confirmed by the AIM (atoms in molecules) and RDG (reduced density gradient) analysis. Thus, it can be inferred that, in the presence of H 2 O, the anti-cooperativity effect plays a dominant role in the drug-DNA/RNA interaction, and the nature of the hydration in the binding of drugs to DNA/RNA bases is the H-bonding anti-cooperativity effect. Furthermore, the drug always links simultaneously with DNA/RNA base and H 2 O, and only in this way can the biological activity of drugs play a role. In most cases, the enthalpy change is the major factor driving the cooperativity, as is different from most of biomacromolecule complexes.
Petrushenko, Igor K.; Petrushenko, Konstantin B.
2018-02-01
The S0 → Si, i = 1-5 electronic transitions of four 8-(4-aniline)-BODIPY and four 8-(N,N-dimethyl)-BODIPY dyes, differ by number and position of methyl substituents in the BODIPY frame, were investigated theoretically using ab initio the coupled cluster doubles (CC2) and TD-CAM-B3LYP methods. Methyl substituents in the BODIPY frame and the aniline fragment at the meso position disturb energy of local excitations S0 → S1, S0 → S3, and S0 → S4 weakly in comparison with the fully unsubstituted BODIPY molecule. These transitions in experimental spectra form the most long-wave absorption bands at ca. 500 nm as well as absorption bands in the region of 300-400 nm. At the same time, the presence of aniline fragments leads to the appearance of new S0 → S2 transitions of the charge transfer character in electronic spectra of BODIPYs. We also found a linear relationship between vertical energy of these charge transfer transitions and the electron donating power of an aniline fragment and electron accepting power of the BODIPY core depending on the number and position of methyl groups. The CC2 method provides the best overall description of the excitation energies in line with the experimental observations. On average, the quality of TD-CAM-B3LYP is almost equal to that of CC2, however the TD method with the CAM-B3LYP functional slightly underestimates the CT excitation energy.
Castro-Alvarez, Alejandro; Carneros, Héctor; Sánchez, Dani; Vilarrasa, Jaume
2015-12-18
While B3LYP, M06-2X, and MP2 calculations predict the ΔG° values for exchange equilibria between enamines and ketones with similar acceptable accuracy, the M06-2X/6-311+G(d,p) and MP2/6-311+G(d,p) methods are required for enamine formation reactions (for example, for enamine 5a, arising from 3-methylbutanal and pyrrolidine). Stronger disagreement was observed when calculated energies of hemiaminals (N,O-acetals) and aminals (N,N-acetals) were compared with experimental equilibrium constants, which are reported here for the first time. Although it is known that the B3LYP method does not provide a good description of the London dispersion forces, while M06-2X and MP2 may overestimate them, it is shown here how large the gaps are and that at least single-point calculations at the CCSD(T)/6-31+G(d) level should be used for these reaction intermediates; CCSD(T)/6-31+G(d) and CCSD(T)/6-311+G(d,p) calculations afford ΔG° values in some cases quite close to MP2/6-311+G(d,p) while in others closer to M06-2X/6-311+G(d,p). The effect of solvents is similarly predicted by the SMD, CPCM, and IEFPCM approaches (with energy differences below 1 kcal/mol).
Soto, C A Téllez; Ramos, J M; Costa Junior, A C; Vieira, Laís S; Rangel, João L; Raniero, L; Fávero, Priscila P; Lemma, Tibebe; Ondar, Grisset F; Versiane, Otavio; Martin, A A
2013-10-01
Surface enhancement Raman scattering (SERS) of two tautomer of thiobarbituric acid was obtained using silver and gold nanoparticles. Large band enhancement in the region of the ν(C=S), ν(C=C), δ(CH2), and δ(CNH) vibrational modes was found. Natural bond analysis of the tautomer species revealed expressive values of charge transfer, principally from lone pair electron orbitals of the S, N, and O atoms. Complete vibrational assignment was done for the two tautomers using the B3LYP/6-311+G (d, p) procedure, band deconvolution analysis, and from a rigorous interpretation of the normal modes matrix. The calculated spectra agree well with the experimental ones. Copyright © 2013 Elsevier B.V. All rights reserved.
Arjunan, V; Thillai Govindaraja, S; Jayapraksh, A; Mohan, S
2013-04-15
Quantum chemical calculations of energy, structural parameters and vibrational wavenumbers of 4-bromoisoquinoline (4BIQ) were carried out by using B3LYP method using 6-311++G(**), cc-pVTZ and LANL2DZ basis sets. The optimised geometrical parameters obtained by DFT calculations are in good agreement with electron diffraction data. Interpretations of the experimental FTIR and FT-Raman spectra have been reported with the aid of the theoretical wavenumbers. The differences between the observed and scaled wavenumber values of most of the fundamentals are very small. The thermodynamic parameters have also been computed. Electronic properties of the molecule were discussed through the molecular electrostatic potential surface, HOMO-LUMO energy gap and NBO analysis. To provide precise assignments of (1)H and (13)CNMR spectra, isotropic shielding and chemical shifts were calculated with the Gauge-Invariant Atomic Orbital (GIAO) method. Copyright © 2013 Elsevier B.V. All rights reserved.
Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya
2018-02-01
First principle based theoretical initiative is taken to tune the optoelectronic properties of binary strontium chalcogenide semiconductors by doping magnesium atom(s) into their rock-salt unit cells at specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and such tuning is established by studying structural, electronic and optical properties of designed binary compounds and ternary alloys employing WC-GGA, B3LYP and mBJ exchange-correlation functionals. Band structure of each compound is constructed and respective band gaps under all the potential schemes are measured. The band gap bowing and its microscopic origin are calculated using quadratic fit and Zunger's approach, respectively. The atomic and orbital origins of electronic states in the band structure of any compound are explored from its density of states. The nature of chemical bonds between the constituent atoms in each compound is explored from the valence electron density contour plots. Optical properties of any specimen are explored from the computed spectra of its dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity optical absorption and energy loss function. Several calculated results are compared with available experimental and earlier theoretical data.
Trans-dinitroglycoluril isomers-A DFT treatment
Directory of Open Access Journals (Sweden)
Lemi Türker
2017-02-01
Full Text Available Isomers of trans-1,4-Dinitroglycoluril (trans-DINGU and their 1,3-tautomers are considered within the constraints of B3LYP/6-31++G (d,p and B3LYP/CC-PVTZ levels of DFT calculations. Additionally, the interactions of these isomers and proton in vacuum are investigated. The data have revealed that two of the three isomers undergo CH bond cleavage as the result of interaction with proton in vacuum. The total energies, some structural properties, the calculated IR and UV spectra are discussed.
DEFF Research Database (Denmark)
Abdali, Salim; Niehaus, T.A.; Jalkanen, Karl J.
2003-01-01
. Ab initio (DFT at the B3LYP/6-31G* level of theory) and semi-empirical (SCC-DFTB) with and without dispersion correction were applied to simulate the VA spectra of [Leu] enkephalin. In these calculations structures taken from X-ray measurements for different conformers of the molecule were used...
Ab Initio and DFT Potential Energy Surfaces for Cyanuric Chloride Reactions
National Research Council Canada - National Science Library
Pai, Sharmila
1998-01-01
... on the potential energy surface were calculated using the 6-31G and 6-311 +Gbasis sets. DFT(B3LYP) geometry optimizations and zero-point corrections for critical points on the potential energy surface were calculated with the 6-31G, 6-311...
Pyrone-based Cu(II) complexes, their characterization, DFT based ...
Indian Academy of Sciences (India)
... of P. G. Studies and. Research in Chemistry and Pharmacy, R. D. University, Jabalpur 482 001, India ... fascination.2,3 Such type of metal complexes are quite interesting due to .... in the ground state were optimized by the DFT method using B3LYP ..... Vogel A I 1996 In A Text Book of Qualitative Inorganic. Analysis (7th ...
Energy Technology Data Exchange (ETDEWEB)
Rastogi, Rupali, E-mail: rastogirupali@ymail.com [ITM University, Department of Chemistry (India); Tarannum, Nazia [Ch. Charan Singh University, Department of Chemistry (India); Butcher, R. J. [Howard University, Chemistry Department (United States)
2016-03-15
5-Bromosalicylalcohol was prepared by the interaction of NaBH{sub 4} and 5-bromosalicylaldehyde. The use of sodium borohydride makes the reaction easy, facile, economic and does not require any toxic catalyst. The compound is characterized by FTIR, {sup 1}H NMR, {sup 13}C NMR, TEM and ESI-mass spectra. Crystal structure is determined by single crystal X-ray analysis. Quantum mechanical calculations of geometries, energies and thermodynamic parameters are carried out using density functional theory (DFT/B3LYP) method with 6-311G(d,p) basis set. The optimized geometrical parameters obtained by B3LYP method show good agreement with experimental data.
Ab initio and DFT studies of the structure and vibrational spectra of anhydrous caffeine
Srivastava, Santosh K.; Singh, Vipin B.
2013-11-01
Vibrational spectra and molecular structure of anhydrous caffeine have been systematically investigated by second order Moller-Plesset (MP2) perturbation theory and density functional theory (DFT) calculations. Vibrational assignments have been made and many previous ambiguous assignments in IR and Raman spectra are amended. The calculated DFT frequencies and intensities at B3LYP/6-311++G(2d,2p) level, were found to be in better agreement with the experimental values. It was found that DFT with B3LYP functional predicts harmonic vibrational wave numbers more close to experimentally observed value when it was performed on MP2 optimized geometry rather than DFT geometry. The calculated TD-DFT vertical excitation electronic energies of the valence excited states of anhydrous caffeine are found to be in consonance to the experimental absorption peaks.
Energy Technology Data Exchange (ETDEWEB)
Arjmand, F. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry; Sharma, S. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry; Usman, M. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry; Leu, B. M. [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Hu, M. Y. [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Toupet, L. [Univ. de Rennes, Rennes (France). Inst. de Physique de Rennes; Gosztola, David J. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Tabassum, S. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry
2016-06-21
The vibrational dynamics of a newly synthesized tetrastannoxane was characterized with a combination of experimental (Raman, IR and tin-based nuclear resonance vibrational spectroscopy) and computational (DFT/B3LYP) methods, with an emphasis on the vibrations of the tin sites. The cytotoxic activity revealed a significant regression selectively against the human pancreatic cell lines.
Hanuza, J.; Godlewska, P.; Lisiecki, R.; Ryba-Romanowski, W.; Kadłubański, P.; Lorenc, J.; Łukowiak, A.; Macalik, L.; Gerasymchuk, Yu.; Legendziewicz, J.
2018-05-01
The electron absorption and emission spectra were measured for the pyramidal LnPc(OAc) complexes in the solid state and co-doped in silica glass, where Ln = Er, Eu and Ho. The theoretical electron spectra were determined from the quantum chemical DFT calculation using four approximations CAM-B3LYP/LANL2DZ, CAM-B3LYP/CC-PVDZ, B3LYP/LANL2DZ and B3LYP/CC-PVDZ. It was shown that the best agreement between the calculated and experimental structural parameters and spectroscopic data was reached for the CAM-B3LYP/LANL2DZ model. The emission spectra were measured using the excitations both in the ligand and lanthanide absorption ranges. The possibility of energy transfer between the phthalocyanine ligand and excited states of lanthanide ions was discussed. It was shown that the back energy transfer from metal states to phthalocyanine state is responsible for the observed emission of the studied complexes both in the polycrystalline state and silica glass.
Godfrey-Kittle, Andrew; Cafiero, Mauricio
We present density functional theory (DFT) interaction energies for the sandwich and T-shaped conformers of substituted benzene dimers. The DFT functionals studied include TPSS, HCTH407, B3LYP, and X3LYP. We also include Hartree-Fock (HF) and second-order Møller-Plesset perturbation theory calculations (MP2), as well as calculations using a new functional, P3LYP, which includes PBE and HF exchange and LYP correlation. Although DFT methods do not explicitly account for the dispersion interactions important in the benzene-dimer interactions, we find that our new method, P3LYP, as well as HCTH407 and TPSS, match MP2 and CCSD(T) calculations much better than the hybrid methods B3LYP and X3LYP methods do.
International Nuclear Information System (INIS)
Afroz, Ziya; Zulkarnain,; Ahmad, Afaq; Alam, Mohammad Jane; Faizan, Mohd; Ahmad, Shabbir
2016-01-01
DFT and TD-DFT studies of o-phenylenediamine (PDA), 3,5-dinitrosalicylic acid (DNSA) and their charge transfer complex have been carried out at B3LYP/6-311G(d,p) level of theory. Molecular geometry and various other molecular properties like natural atomic charges, ionization potential, electron affinity, band gap, natural bond orbital (NBO) and frontier molecular analysis have been presented at same level of theory. Frontier molecular orbital and natural bond orbital analysis show the charge delocalization from PDA to DNSA.
Pandey, Urmila; Srivastava, Mayuri; Singh, R P; Yadav, R A
2014-08-14
The conformational and IR and Raman spectral studies of 2-(2-hydroxyphenyl)benzothiazole have been carried out by using the DFT method at the B3LYP/6-311++G(**) level. The detailed vibrational assignments have been done on the basis of calculated potential energy distributions. Comparative studies of molecular geometries, atomic charges and vibrational fundamentals of all the conformers have been made. There are four possible conformers for this molecule. The optimized geometrical parameters obtained by B3LYP/6-311++G(**) method showed good agreement with the experimental X-ray data. The atomic polar tensor (APT) charges, Mulliken atomic charges, natural bond orbital (NBO) analysis and HOMO-LUMO energy gap of HBT and its conformers were also computed. Copyright © 2014 Elsevier B.V. All rights reserved.
Synthesis and DFT calculations of some 2-aminothiazoles
Rezania, Jafar; Behzadi, Hadi; Shockravi, Abbas; Ehsani, Morteza; Akbarzadeh, Elahe
2018-04-01
A series of 2-aminothiazole derivatives have been synthesized by the reaction of acetyl compounds with thiourea and iodine as catalyst under solvent-free condition, a green chemistry method. The quantum chemical calculations at the DFT/B3LYP level of theory in gas phase were carried out for starting acetyl derivatives. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and related reactivity descriptor of acetyl derivatives, as well as, enthalpy of reactions are calculated in order to investigate the reaction properties of acetyl compounds and yields of the reactions. The calculated reactivity descriptors are well correlated to activity of different acetyl derivatives.
Optical properties of alkali halide crystals from all-electron hybrid TD-DFT calculations
Energy Technology Data Exchange (ETDEWEB)
Webster, R., E-mail: ross.webster07@imperial.ac.uk; Harrison, N. M. [Thomas Young Centre, Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Bernasconi, L. [Rutherford Appleton Laboratory, STFC, Harwell Oxford, Didcot OX11 0QX (United Kingdom)
2015-06-07
We present a study of the electronic and optical properties of a series of alkali halide crystals AX, with A = Li, Na, K, Rb and X = F, Cl, Br based on a recent implementation of hybrid-exchange time-dependent density functional theory (TD-DFT) (TD-B3LYP) in the all-electron Gaussian basis set code CRYSTAL. We examine, in particular, the impact of basis set size and quality on the prediction of the optical gap and exciton binding energy. The formation of bound excitons by photoexcitation is observed in all the studied systems and this is shown to be correlated to specific features of the Hartree-Fock exchange component of the TD-DFT response kernel. All computed optical gaps and exciton binding energies are however markedly below estimated experimental and, where available, 2-particle Green’s function (GW-Bethe-Salpeter equation, GW-BSE) values. We attribute this reduced exciton binding to the incorrect asymptotics of the B3LYP exchange correlation ground state functional and of the TD-B3LYP response kernel, which lead to a large underestimation of the Coulomb interaction between the excited electron and hole wavefunctions. Considering LiF as an example, we correlate the asymptotic behaviour of the TD-B3LYP kernel to the fraction of Fock exchange admixed in the ground state functional c{sub HF} and show that there exists one value of c{sub HF} (∼0.32) that reproduces at least semi-quantitatively the optical gap of this material.
Shahzadi, Iram; Shaukat, Aqsa; Zara, Zeenat; Irfan, Muhammad; Eliasson, Bertil; Ayub, Khurshid; Iqbal, Javed
2017-10-01
Computing the optical rotation of organic molecules can be a real challenge, and various theoretical approaches have been developed in this regard. A benchmark study of optical rotation of various classes of compounds was carried out by Density Functional Theory (DFT) methods. The aim of the present research study was to find out the best-suited functional and basis set to estimate the optical rotations of selected compounds with respect to experimental literature values. Six DFT functional LSDA, BVP86, CAM-B3LYP, B3PW91, and PBE were applied on 22 different compounds. Furthermore, six different basis sets, i.e., 3-21G, 6-31G, aug-cc-pVDZ, aug-cc-pVTZ, DGDZVP, and DGDZVP2 were also applied with the best-suited functional B3LYP. After rigorous effort, it can be safely said that the best combination of functional and basis set is B3LYP/aug-cc-pVTZ for the estimation of optical rotation for selected compounds. © 2017 Wiley Periodicals, Inc.
Santoro, Fabrizio; Improta, Roberto; Fahleson, Tobias; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia
2014-06-05
The relative position of La and Lb ππ* electronic states in purine nucleobases is a much debated topic, since it can strongly affect our understanding of their photoexcited dynamics. To assess this point, we calculated the absorption and magnetic circular dichroism (MCD) spectra of adenine, guanine, and their nucleosides in gas-phase and aqueous solution, exploiting recent developments in MCD computational technology within time-dependent density functional theory. MCD spectroscopy allows us to resolve the intense S0→ La transition from the weak S0→ Lb transition. The spectra obtained in water solution, by using B3LYP and CAM-B3LYP functionals and describing solvent effect by cluster models and by the polarizable continuum model (PCM), are in very good agreement with the experimental counterparts, thus providing direct and unambiguous evidence that the energy ordering predicted by TD-DFT, La < Lb, is the correct one.
Arockia Doss, M; Savithiri, S; Rajarajan, G; Thanikachalam, V; Anbuselvan, C
2015-12-05
FT-IR and FT-Raman spectra of 3-pentyl-2,6-di(furan-2-yl) piperidin-4-one (3-PFPO) were recorded in the solid phase. The structural and spectroscopic analyses of 3-PFPO were made by using B3LYP/HF level with 6-311++G(d, p) basis set. The fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. Comparison of the observed fundamental vibrational frequencies of 3-PFPO with calculated results by HF and DFT methods indicates that B3LYP is superior to HF method for molecular vibrational problems. The electronic properties such as excitation energies, oscillator strength, wavelengths and HOMO-LUMO energies were obtained by time-dependent DFT (TD-DFT) approach. The polarizability and first order hyperpolarizability of the title molecule were calculated and interpreted. The hyperconjugative interaction energy (E((2))) and electron densities of donor (i) and acceptor (j) bonds were calculated using NBO analysis. In addition, MEP and atomic charges of carbon, nitrogen, oxygen and hydrogen were calculated using B3LYP/6-311++G(d, p) level theory. Moreover, thermodynamic properties (heat capacities, entropy and enthalpy) of the title compound at different temperatures were calculated in gas phase. Copyright © 2015 Elsevier B.V. All rights reserved.
Self-Aggregation in Pyrrole: Matrix Isolation, Solid State Infrared Spectroscopy, and DFT Study
Gómez-Zavaglia, Andrea; Fausto, Rui
2004-01-01
Pyrrole (C4H5N) was embedded in low-temperature solid inert matrixes (argon, xenon; T = 9 K) and both the monomer and low-order aggregates characterized by FTIR spectroscopy. The spectroscopic studies were complemented by extensive theoretical [DFT(B3LYP)/6-311++G(d,p)] structural and vibrational studies carried out for the monomer and their self-aggregates (up to four units). The calculated spectrum for monomeric pyrrole fits well those obtained immediately after deposition (at 9 K) of dilut...
Determination of structural and spectroscopic parameters of 4-hydroxyantipyrine, using DFT method
International Nuclear Information System (INIS)
Catikkas, B.; Aktan, E.
2010-01-01
In this study, structural and vibrational parameters were calculated. First of all, conformational analysis of 4-hydroxyantipyrine was carried out in gas phase. Then, the geometric parameters (bond length, bond angle and tortion angle) of the most stable conformer were calculated and the Infrared and Raman frequencies of fundamental modes were determined. Calculations were made by using DFT B3LYP/6-311+G(d,p) method implemented the Gaussian 03 program. Afterwards, vibrational assignments of the title molecule were calculated by using Scaled Quantum Mechanical (SQM) analysis. In conclusion, calculated values were compared with corresponding experimental results.
DFT molecular modeling and NMR conformational analysis of a new longipinenetriolone diester
Cerda-García-Rojas, Carlos M.; Guerra-Ramírez, Diana; Román-Marín, Luisa U.; Hernández-Hernández, Juan D.; Joseph-Nathan, Pedro
2006-05-01
The structure and conformational behavior of the new natural compound (4 R,5 S,7 S,8 R,9 S,10 R,11 R)-longipin-2-en-7,8,9-triol-1-one 7-angelate-9-isovalerate (1) isolated from Stevia eupatoria, were studied by molecular modeling and NMR spectroscopy. A Monte Carlo search followed by DFT calculations at the B3LYP/6-31G* level provided the theoretical conformations of the sesquiterpene framework, which were in full agreement with results derived from the 1H- 1H coupling constant analysis.
Study of a Conformational Equilibrium of Lisinopril by HPLC, NMR, and DFT
Directory of Open Access Journals (Sweden)
Sondes Bouabdallah
2014-01-01
Full Text Available The isomerization of lisinopril has been investigated using chromatographic, NMR spectroscopic, and theoretical calculations. The NMR data, particularly the NOEDIFF experiments, show that the major species that was eluted first is the trans form. The proportion was 77% and 23% for the trans and cis, respectively. The thermodynamic parameters (ΔH, ΔS, and ΔG were determined by varying the temperature in the NMR experiments. The interpretations of the experimental data were further supported by DFT/B3LYP calculations.
(E-2-Acetyl-4-[(3-methylphenyldiazenyl]phenol: an X-ray and DFT study
Directory of Open Access Journals (Sweden)
Orhan Büyükgüngör
2010-03-01
Full Text Available The title compound, C15H14N2O2, an azo dye, displays a trans configuration with respect to the N=N bridge. The dihedral angle between the aromatic rings is 0.18 (14°. There is a strong intramolecular O—H...O hydrogen bond. Geometrical parameters, determined using X-ray diffraction techniques, are compared with those calculated by density functional theory (DFT, using hybrid exchange–correlation functional, B3LYP and semi-empirical (PM3 methods.
Biswas, Nandita; Thomas, Susy; Sarkar, Anjana; Mukherjee, Tulsi; Kapoor, Sudhir
2009-09-01
Surface-enhanced Raman scattering (SERS) of thiamazole have been investigated in aqueous solution. Thiamazole is an important anti-thyroid drug that is used in the treatment of hyperthyroidism (over activity of the thyroid gland). Due to its medicinal importance, the surface adsorption properties of thiamazole have been studied. The experimental Raman and SERS data are supported with DFT calculations using B3LYP functional with LANL2DZ basis set. From the SERS spectra as well as theoretical calculations, it has been inferred that thiamazole is chemisorbed to the silver surface directly through the sulphur atom and the ring N atom, with a tilted orientation.
Tetteh, Samuel
2018-01-01
The interaction between nickel (Ni2+), copper (Cu2+), and zinc (Zn2+) ions and 1-methylimidazole has been studied by exploring the geometries of eleven crystal structures in the Cambridge Structural Database (CSD). The coordination behavior of the respective ions was further investigated by means of density functional theory (DFT) methods. The gas-phase complexes were fully optimized using B3LYP/GENECP functionals with 6-31G∗ and LANL2DZ basis sets. The Ni2+ and Cu2+ complexes show distorted ...
Kar, Tapas; Liao, Meng-Sheng; Biswas, Susobhan; Sarkar, Saikat; Dey, Kamalendu; Yap, Glenn P. A.; Kreisel, Kevin
2006-11-01
A new octahedral chromium(III) complex having 2,2'-bipyridine as ligand system was synthesized in methanol. Single crystal X-ray diffraction analysis shows that it possesses non-stoichiometry in its anionic primary covalency. It has also been studied by elemental analyses, optical spectroscopy (UV-vis, IR) and magnetic susceptibility data. DFT calculations (with B3LYP functional and double-ξ quality LANLDZ(D95V) basis set) were carried out to interpret the electronic and infrared spectra of the complex. The DFT optimized geometric structure for the complex is compared with the X-ray crystallographic data; the theory-experiment agreement is satisfactory.
Arjunan, V; Raj, Arushma; Ravindran, P; Mohan, S
2014-01-24
The vibrational fundamental modes of 2-(methylthio)benzimidazole (2MTBI) have been analysed by combining FTIR, FT-Raman and quantum chemical calculations. The structural parameters of the compound are determined from the optimised geometry by B3LYP with 6-31G(∗∗), 6-311++G(∗∗) and cc-pVTZ basis sets and giving energies, harmonic vibrational frequencies, depolarisation ratios, IR intensities and Raman activities. (1)H and (13)C NMR spectra have been analysed and (1)H and (13)C nuclear magnetic resonance chemical shifts are calculated using the gauge independent atomic orbital (GIAO) method. The structure-activity relationship of the compound is also investigated by conceptual DFT methods. The chemical reactivity and site selectivity of the molecule has been determined with the help of global and local reactivity descriptors. Copyright © 2013 Elsevier B.V. All rights reserved.
Riffet, Vanessa; Jacquemin, Denis; Cauët, Emilie; Frison, Gilles
2014-08-12
We assess the pros and cons of a large panel of DFT exchange-correlation functionals for the prediction of the electronic structure of hydrogen-rich peptide radicals formed after electron attachment on a protonated peptide. Indeed, despite its importance in the understanding of the chemical changes associated with the reduction step, the question of the attachment site of an electron and, more generally, of the reduced species formed in the gas phase through electron-induced dissociation (ExD) processes in mass spectrometry is still a matter of debate. For hydrogen-rich peptide radicals in which several positive groups and low-lying π* orbitals can capture the incoming electron in ExD, inclusion of full Hartree-Fock exchange at long-range interelectronic distance is a prerequisite for an accurate description of the electronic states, thereby excluding several popular exchange-correlation functionals, e.g., B3LYP, M06-2X, or CAM-B3LYP. However, we show that this condition is not sufficient by comparing the results obtained with asymptotically correct range-separated hybrids (M11, LC-BLYP, LC-BPW91, ωB97, ωB97X, and ωB97X-D) and with reference CASSCF-MRCI and EOM-CCSD calculations. The attenuation parameter ω significantly tunes the spin density distribution and the excited states vertical energies. The investigated model structures, ranging from methylammonium to hexapeptide, allow us to obtain a description of the nature and energy of the electronic states, depending on (i) the presence of hydrogen bond(s) around the cationic site(s), (ii) the presence of π* molecular orbitals (MOs), and (iii) the selected DFT approach. It turns out that, in the present framework, LC-BLYP and ωB97 yields the most accurate results.
Tortorella, Sara; Talamo, Maurizio Mastropasqua; Cardone, Antonio; Pastore, Mariachiara; De Angelis, Filippo
2016-02-24
A systematic computational investigation on the optical properties of a group of novel benzofulvene derivatives (Martinelli 2014 Org. Lett. 16 3424-7), proposed as possible donor materials in small molecule organic photovoltaic (smOPV) devices, is presented. A benchmark evaluation against experimental results on the accuracy of different exchange and correlation functionals and semi-empirical methods in predicting both reliable ground state equilibrium geometries and electronic absorption spectra is carried out. The benchmark of the geometry optimization level indicated that the best agreement with x-ray data is achieved by using the B3LYP functional. Concerning the optical gap prediction, we found that, among the employed functionals, MPW1K provides the most accurate excitation energies over the entire set of benzofulvenes. Similarly reliable results were also obtained for range-separated hybrid functionals (CAM-B3LYP and wB97XD) and for global hybrid methods incorporating a large amount of non-local exchange (M06-2X and M06-HF). Density functional theory (DFT) hybrids with a moderate (about 20-30%) extent of Hartree-Fock exchange (HFexc) (PBE0, B3LYP and M06) were also found to deliver HOMO-LUMO energy gaps which compare well with the experimental absorption maxima, thus representing a valuable alternative for a prompt and predictive estimation of the optical gap. The possibility of using completely semi-empirical approaches (AM1/ZINDO) is also discussed.
International Nuclear Information System (INIS)
Tortorella, Sara; Talamo, Maurizio Mastropasqua; Cardone, Antonio; Pastore, Mariachiara; De Angelis, Filippo
2016-01-01
A systematic computational investigation on the optical properties of a group of novel benzofulvene derivatives (Martinelli 2014 Org. Lett. 16 3424–7), proposed as possible donor materials in small molecule organic photovoltaic (smOPV) devices, is presented. A benchmark evaluation against experimental results on the accuracy of different exchange and correlation functionals and semi-empirical methods in predicting both reliable ground state equilibrium geometries and electronic absorption spectra is carried out. The benchmark of the geometry optimization level indicated that the best agreement with x-ray data is achieved by using the B3LYP functional. Concerning the optical gap prediction, we found that, among the employed functionals, MPW1K provides the most accurate excitation energies over the entire set of benzofulvenes. Similarly reliable results were also obtained for range-separated hybrid functionals (CAM-B3LYP and wB97XD) and for global hybrid methods incorporating a large amount of non-local exchange (M06-2X and M06-HF). Density functional theory (DFT) hybrids with a moderate (about 20–30%) extent of Hartree–Fock exchange (HFexc) (PBE0, B3LYP and M06) were also found to deliver HOMO–LUMO energy gaps which compare well with the experimental absorption maxima, thus representing a valuable alternative for a prompt and predictive estimation of the optical gap. The possibility of using completely semi-empirical approaches (AM1/ZINDO) is also discussed. (paper)
Energy Technology Data Exchange (ETDEWEB)
Pawlukojc, A.; Leciejewicz, J
2004-03-29
Inelastic neutron scattering, Raman and IR spectra were measured for m-aminobenzoic acid (MABA). Optimized geometries and observed frequencies were assigned using DFT calculation on the B3LYP/6-311G** level using Gaussian 98 and Gamess programs. Experimental structural and spectroscopic data are in good agreement with computations assuming the presence in the crystals of molecular dimers composed of two MABA molecules linked by a pair of O-H...O hydrogen bonds each provided by the carboxylic group. INS frequencies have been identified for the O-H (out of plane) mod0008.
Directory of Open Access Journals (Sweden)
Adib Ghaleb
2017-12-01
Full Text Available A theoretical study of 1,3-cycloaddition has been carried out using density functional theory (DFT methods at the B3LYP/6-31G* level. The regioselectivity of the reaction have been clarified through different theoretical approaches: Case of a Two-Center Process (Domingo approach, HSAB principle (Gazquez and Mendez approach, and the activation energy calculations. The analysis of results shows that the reaction takes place along concerted asynchronous mechanism and the isomer meta is favored, in agreement with the experiment results. DOI: http://dx.doi.org/10.17807/orbital.v9i5.1017
Liu, Yuan; Zhao, Jijun; Li, Fengyu; Chen, Zhongfang
2013-01-15
Accurate description of hydrogen-bonding energies between water molecules and van der Waals interactions between guest molecules and host water cages is crucial for study of methane hydrates (MHs). Using high-level ab initio MP2 and CCSD(T) results as the reference, we carefully assessed the performance of a variety of exchange-correlation functionals and various basis sets in describing the noncovalent interactions in MH. The functionals under investigation include the conventional GGA, meta-GGA, and hybrid functionals (PBE, PW91, TPSS, TPSSh, B3LYP, and X3LYP), long-range corrected functionals (ωB97X, ωB97, LC-ωPBE, CAM-B3LYP, and LC-TPSS), the newly developed Minnesota class functionals (M06-L, M06-HF, M06, and M06-2X), and the dispersion-corrected density functional theory (DFT) (DFT-D) methods (B97-D, ωB97X-D, PBE-TS, PBE-Grimme, and PW91-OBS). We found that the conventional functionals are not suitable for MH, notably, the widely used B3LYP functional even predicts repulsive interaction between CH(4) and (H(2)O)(6) cluster. M06-2X is the best among the M06-Class functionals. The ωB97X-D outperforms the other DFT-D methods and is recommended for accurate first-principles calculations of MH. B97-D is also acceptable as a compromise of computational cost and precision. Considering both accuracy and efficiency, B97-D, ωB97X-D, and M06-2X functional with 6-311++G(2d,2p) basis set without basis set superposition error (BSSE) correction are recommended. Though a fairly large basis set (e.g., aug-cc-pVTZ) and BSSE correction are necessary for a reliable MP2 calculation, DFT methods are less sensitive to the basis set and BSSE correction if the basis set is sufficient (e.g., 6-311++G(2d,2p)). These assessments provide useful guidance for choosing appropriate methodology of first-principles simulation of MH and related systems. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.
Molecular interactions in the complexes of toluene with butyronitrile: A DFT approach
Karthick, N. K.; Arivazhagan, G.
2018-04-01
Density Functional Theory (DFT) has been employed to investigate the self association of butyronitrile and the heterointeractions in the 1:2 (toluene: butyronitrile) and 1:1 complexes of toluene with butyronitrile. For this investigation the B3LYP functional with Grimme's dispersion correction (D3) term and ωB97XD functionals were used. The theoretical frequency analysis shows the unsuitability of B3LYP with D3 for the present investigation. Therefore, Natural Bonding Orbital analysis was done at the functional ωB97XD. It is found through this work that only the methylene hydrogens of butyronitrile are responsible for the self association among the butyronitrile molecules. In 1:1 complex, the red shift in the butyronitrile methyl asymmetric stretching mode is not due to the active participation of this group in heterointeractions and it is solely due to the other interactions happening in its vicinity. Only the interaction (TOL) C - H ⋯ N(BN) is present in the complex. In 1:2 complex the butyronitrile methyl/methylene hydrogens interact with the delocalized electron cloud of toluene and the toluene hydrogens interact with the butyronitrile nitrogen. Comparison of interaction energies shows that the stability of 1:2 complex is more than that of butyronitrile dimer and 1:1 complex.
Infrared and Raman Spectra of and Isotopomers: A DFT-PT2 Anharmonic Study
Directory of Open Access Journals (Sweden)
Andrea Alparone
2013-01-01
Full Text Available IR and Raman spectra of selenophene and of its perdeuterated isotopomer have been obtained in gas phase through density-functional theory (DFT computations. Vibrational wavenumbers have been calculated using harmonic and anharmonic second-order perturbation theory (PT2 procedures with the B3LYP method and the 6-311 basis set. Anharmonic overtones have been determined by means of the PT2 method. The introduction of anharmonic terms decreases the harmonic wavenumbers, giving a significantly better agreement with the experimental data. The most significant anharmonic effects occur for the C–H and C–D stretching modes, the observed H/D isotopic wavenumber redshifts being satisfactorily reproduced by the PT2 computations within 6–20 cm−1 (1–3%. In the spectral region between 500 cm−1 and 1500 cm−1, the IR spectra are dominated by the out-of-plane C–H (C–D bending transition, whereas the Raman spectra are mainly characterized by a strong peak mainly attributed to the C=C + C–C bonds stretching vibration with the contribution of the in-plane C–H (C–D bending deformation. The current results confirm that the PT2 approach combined with the B3LYP/6-311 level of calculation is a satisfactory choice for predicting vibrational spectra of cyclic molecules.
Oligo[methyl(phenyl)silane] ion-radical conformations calculated by the B3LYP method
Czech Academy of Sciences Publication Activity Database
Toman, Petr; Nešpůrek, Stanislav; Jang, J. W.; Lee, Ch. E.
2005-01-01
Roč. 101, č. 6 (2005), s. 746-752 ISSN 0020-7608 R&D Projects: GA ČR GP203/02/D074 Keywords : polysilane * ion-radical * density functional the ory Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.192, year: 2005
Energy Technology Data Exchange (ETDEWEB)
Padalkar, Vikas S.; Chemate, Santosh B.; Lanke, Sandip K.; Sekar, Nagaiyan, E-mail: n.sekar@ictmumbai.edu.in
2015-12-15
Three novel 2-{2-[4-(N,N-diethylamino)–2–hydroxyphenyl]–1H–benzo[d]imidazol–6–yl} –2H–naphtho [1,2-d] [1,2,3] fluorescent triazole derivatives were synthesized from 2-(5-amino-1H-benzimidazol-2-yl)-5-(N,N-diethylamino)phenol and amino substituted naphthylsulphonic acids. The absorption, emission, quantum yields and dipole moments of these compounds were evaluated in methanol, acetonitrile, N,N-dimethylformamide and dimethylsulfoxide. The compounds 8a and 8c absorb in the near visible region, while compound 8b shows two absorption peaks, short wavelength peak is in the near visible region and long wavelength absorption in the visible region. Compounds are fluorescent in solution and emit in blue and green region. The photophysical properties of the 8a–8c were compared with structural analogs reported till date. The experimental absorption and emission properties were compared with the theoretical data obtained by DFT and TD-DFT computations with TD–B3LYP and CAM–B3LYP functional with 6–31G (d) and 6–311G (d) basis sets. Theoretical results obtained by TD-B3LYP functional are well in line with the experimental results. The compounds are thermally stable up to 300 °C. New compounds were characterized by spectral techniques. - Highlights: • First unique study of blue-emitting ESIPT triazoles. • Improved photophysical properties compared to similar analogues. • Experimental and TDDFT data on photophysical properties. • Dipole moments from solvatochromic data.
DFT Study of Optical Properties of Pt-based Complexes
Oprea, Corneliu I.; Dumbravǎ, Anca; Moscalu, Florin; Nicolaides, Atnanassios; Gîrţu, Mihai A.
2010-01-01
We report Density Functional Theory (DFT) calculations providing the geometrical and electronic structures, as well as the vibrational and optical properties of the homologous series of Pt-pyramidalized olefin complexes (CH2)n-(C8H10)Pt(PH3)2, where n = 0, 1, and 2, in their neutral and oxidized states. All complexes were geometry optimized for the singlet ground state in vacuum using DFT methods with B3LYP exchange-correlation functional and the Effective Core Potential LANL2DZ basis set, within the frame of Gaussian03 quantum chemistry package. We find the coordination geometry of Pt to be distorted square planar, with dihedral angles ranging from 0°, for n = 0 and 1, which have C2V symmetry to 3.4°, for n = 2 with C2 symmetry. The Mulliken charge analysis allows a discussion of the oxidation state of the Pt ion. Electronic transitions were calculated at the same level of theory by means of Time Dependant-DFT. For n = 2 the electronic absorption bands are located in the UV region of the spectrum, the transitions being assigned to metal to ligand charge transfers. The relevance of these Pt-based compounds as possible pigments for dye-sensitized solar cells is discussed.
Directory of Open Access Journals (Sweden)
Jumaidil Awal
2016-01-01
Full Text Available Density functional theory-based methods have been applied to predict the most possible one among the isomerizations of methylhydroxycarbene considering the probability of hydrogen tunneling occurrence. B3LYP/6-31+G(d,p and M08-SO/6-31+G(d,p methods were applied in all computations using GAMESS-US software. There were three steps of computation in this research. First, electronic structure computations of both equilibrium and transition compounds involved in all isomerization alternatives in order to obtain the optimum structures of the compounds. Second, vibrational computations of optimum transition structures to ensure that each of the respective structures is well on its potential energy surface. Third, tunneling analysis accomplished by intrinsic reaction coordinate (IRC computatuins for all isomerization alternatives followed by tunneling probabilitycalculation using the Wentzel-Kramers-Brillouin (WKB formula for methylhydroxycarbene isomerizations. The result of this research showed that the DFT methods successfully produced the optimum structure of each compound. Both DFT methods also successfully mapped all the intrinsic reaction coordinates. B3LYP/6-31+G(d,p method gave tunneling probabilities of 3.55 x 10-19 for the isomerization into acetaldehyde and 3.30 x 10-20 for that into vinyl alcohol. While M08-SO/6-31+G(d,p method gave tunneling probabilities of 2.38 x 10-23 for the isomerization into acetaldehyde and 4.79 x 10-23 for that into vinyl alcohol. Keywords: DFT, methylhydroxycarbene, hydrogen tunneling, isomerization
Pietropolli Charmet, Andrea; Stoppa, Paolo; Tasinato, Nicola; Giorgianni, Santi
2017-05-01
This work presents a benchmark study on the calculation of the sextic centrifugal distortion constants employing cubic force fields computed by means of density functional theory (DFT). For a set of semi-rigid halogenated organic compounds several functionals (B2PLYP, B3LYP, B3PW91, M06, M06-2X, O3LYP, X3LYP, ωB97XD, CAM-B3LYP, LC-ωPBE, PBE0, B97-1 and B97-D) were used for computing the sextic centrifugal distortion constants. The effects related to the size of basis sets and the performances of hybrid approaches, where the harmonic data obtained at higher level of electronic correlation are coupled with cubic force constants yielded by DFT functionals, are presented and discussed. The predicted values were compared to both the available data published in the literature and those obtained by calculations carried out at increasing level of electronic correlation: Hartree-Fock Self Consistent Field (HF-SCF), second order Møller-Plesset perturbation theory (MP2), and coupled-cluster single and double (CCSD) level of theory. Different hybrid approaches, having the cubic force field computed at DFT level of theory coupled to harmonic data computed at increasing level of electronic correlation (up to CCSD level of theory augmented by a perturbational estimate of the effects of connected triple excitations, CCSD(T)) were considered. The obtained results demonstrate that they can represent reliable and computationally affordable methods to predict sextic centrifugal terms with an accuracy almost comparable to that yielded by the more expensive anharmonic force fields fully computed at MP2 and CCSD levels of theory. In view of their reduced computational cost, these hybrid approaches pave the route to the study of more complex systems.
De Souza, Leonardo A.; Tavares, Wagner M. G.; Lopes, Ana Paula M.; Soeiro, Malucia M.; De Almeida, Wagner B.
2017-05-01
In this work, we showed that comparison between experimental and theoretical 1H NMR chemical shift patterns, calculated using Density Functional Theory (DFT), can be used for the prediction of molecular structure of flavonoids in solution, what is experimentally accessible for gas phase (electron diffraction methods) and solid samples (X-ray diffraction). The best match between B3LYP/6-31G(d,p)-PCM 1H NMR calculations for B ring rotated structures and experimental spectra can provide information on the conformation adopted by polyphenols in solution (usually DMSO-d6, acetone-d6 as solvents), which may differ from solid state and gas phase observed structures, and also DFT optimized geometry in the vacuum.
Wasim, Fatima; Mahmood, Tariq; Ayub, Khurshid
2016-07-28
Density functional theory (DFT) calculations have been performed to study the response of polypyrrole towards nitrate ions in gas and aqueous phases. First, an accurate estimate of interaction energies is obtained by methods calibrated against the gold standard CCSD(T) method. Then, a number of low cost DFT methods are also evaluated for their ability to accurately estimate the binding energies of polymer-nitrate complexes. The low cost methods evaluated here include dispersion corrected potential (DCP), Grimme's D3 correction, counterpoise correction of the B3LYP method, and Minnesota functionals (M05-2X). The interaction energies calculated using the counterpoise (CP) correction and DCP methods at the B3LYP level are in better agreement with the interaction energies calculated using the calibrated methods. The interaction energies of an infinite polymer (polypyrrole) with nitrate ions are calculated by a variety of low cost methods in order to find the associated errors. The electronic and spectroscopic properties of polypyrrole oligomers nPy (where n = 1-9) and nPy-NO3(-) complexes are calculated, and then extrapolated for an infinite polymer through a second degree polynomial fit. Charge analysis, frontier molecular orbital (FMO) analysis and density of state studies also reveal the sensing ability of polypyrrole towards nitrate ions. Interaction energies, charge analysis and density of states analyses illustrate that the response of polypyrrole towards nitrate ions is considerably reduced in the aqueous medium (compared to the gas phase).
Directory of Open Access Journals (Sweden)
Gümüs Hacer Pir
2015-06-01
Full Text Available Quantum chemical calculations have been performed to study the molecular geometry, 1H and 13C NMR chemical shifts, conformational, natural bond orbital (NBO and nonlinear optical (NLO properties of the 2-chloro-5-(2-hydroxyethyl-4- methoxy-6-methylpyrimidine molecule in the ground state using DFT and HF methods with 6-311++G(d,p basis set. The optimized geometric parameters and 1H and 13C NMR chemical shifts have been compared with the experimental values of the title molecule. The results of the calculations show excellent agreement between the experimental and calculated frequencies at B3LYP/6-311++G(d,p level. In order to provide a full understanding of the properties of the title molecule in the context of molecular orbital picture, the highest occupied molecular energy level (EHOMO, the lowest unoccupied molecular energy level (ELUMO, the energy difference (DE between EHOMO and ELUMO, electronegativity (χ, hardness (η and softness (S have been calculated using B3LYP/6-311++G(d,p and HF/6-311++G(d,p levels. The calculated HOMO and LUMO energies show that the charge transfer occurs within the title molecule.
Shohayeb, Shahera M.; Mohamed, Rania G.; Moustafa, H.; El-Medani, Samir M.
2016-09-01
Thermal reaction of [Ru3(CO)12] with 2-picolinic acid (Hpic) in the absence and presence of a secondary ligand (pyridine, Py, bipyridine, Bipy, or thiourea, Tu) was investigated. Four complexes with molecular formulae: [Ru(CO)3(Hpic)], 1, [Ru2(CO)5(Hpic)(Py)], 2, [Ru2(CO)5(Hpic)(Tu)], 3 and [Ru2(CO)4(Hpic)(Bipy)], 4, were isolated. All complexes were characterized based on elemental analyses, IR, 1H NMR, magnetic studies, mass spectrometry and thermal analysis. The ligand and its complexes have been screened for antibacterial activities. Density Functional Theory (DFT) calculations at the B3LYP/6-311G (d,p)_ level of theory have been carried out to investigate the equilibrium geometry of the ligands. The optimized geometry parameters of the complexes were evaluated using B3LYP method and LANL2DZ basis set. The extent of natural charge population (core, valence and rydberg), exact electronic configuration, total Lewis and total non-Lewis are estimated and discussed in terms of natural bond orbitals (NBO) analysis.
Yamada, Michio; Slanina, Zdenek; Mizorogi, Naomi; Muranaka, Atsuya; Maeda, Yutaka; Nagase, Shigeru; Akasaka, Takeshi; Kobayashi, Nagao
2013-03-14
We describe, for the first time, the application of magnetic circular dichroism (MCD) spectroscopy and time-dependent density functional theory (TD-DFT) calculations using B3LYP and M06-2X functionals to characterize the electronic transitions of endohedral metallofullerenes (EMFs). Results revealed that the electronic transitions of La@C(2v)-C(82), La(2)@I(h)-C(80), and Sc(3)N@I(h)-C(80) can be assigned using these techniques. Particularly, a difference in the electronic transitions between La(2)@I(h)-C(80) and Sc(3)N@I(h)-C(80), which is invisible in absorption spectra, was observed clearly in MCD spectra. The observed MCD bands agree well with the oscillator strengths calculated using the B3LYP functional. In addition, the MCD bands of La(2)@I(h)-C(80) were altered upon [5,6]-addition, demonstrating that the MCD spectroscopy is sensitive to chemical functionalization of EMFs, and that it is therefore powerful to distinguish [5,6]-adducts from pristine La(2)@I(h)-C(80), although no marked difference exists in their absorption spectra.
Spectroscopic data of Labdane Diterpenes: a theoretical analysis via NMR and DFT
International Nuclear Information System (INIS)
Souza, Fabrine S. de; Silva, Silvana de O.; Alves, Cláudio N.; Guilhon, Giselle M.S.P.
2015-01-01
Labdane diterpenes exhibit important bioactivities such as cardiovascular effects in rats as well as effects in the treatment of autoimmune diseases and Alzheimer syndrome. Recently, the labdane diterpenes ent-13-epi-manoil oxide, ribenone and ribenol were isolated from Croton palanostigma. The computational method DFT/B3LYP/cc-pVDZ was used to optimize the structures of these diterpenes and to calculate infrared data. Chemical shifts (δ H and δ C ) of the minimum energy structures (local minimum) were calculated and compared with the experimental data. Comparison of the NMR data by simple linear regression (SLR) showed satisfactory statistical results with a correlation coefficient (R 2 ) and predictive ability (Q 2 ) of over 98%. The predicted NMR data were used to confirm the δ H values that have not been published. (author)
Ladetto, María F.; Márquez, María B.; Brandán, Silvia A.
2014-10-01
In this work, we have presented a structural and vibrational study on the properties in gas and aqueous solution phases of oxcarbazepine, a polymorphic anticonvulsant substance, combining the available IR and Raman spectra with Density Functional Theory (DFT) calculations. Two stable C1 and C2 forms for the title molecule were theoretically determined by using the hybrid B3LYP/6-31G* method. The integral equation formalism variant polarised continuum model (IEFPCM) was employed to study the solvent effects by means of the self-consistent reaction field (SCRF) method. The vibrational spectra for the two forms of oxcarbazepine were completely assigned together with two dimeric species also observed in the solid phase. The presences of the two C1 and C2 forms together with the two dimeric species are supported by the IR and Raman bands between 1424 and 125 cm-1. Here, the properties for both forms of oxcarbazepine are compared and discussed.
Vibrational spectroscopic and non-linear optical activity studies on nicotinanilide : A DFT approach
Premkumar, S.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin
2015-06-01
The molecular structure of nicotinanilide was optimized by the DFT/B3LYP method with cc-pVTZ basis set using Gaussian 09 program. The first order hyperpolarizability of the molecule was calculated, which exhibits the higher nonlinear optical activity. The natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction, which leads to the higher nonlinear optical activity of the molecule. The Frontier molecular orbitals analysis of the molecule shows that the delocalization of electron density occurs within the molecule. The lower energy gap indicates that the hydrogen bond formation between the charged species. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program and the corresponding vibrational spectra were simulated. Hence, the nicotinanilide molecule can be a good candidate for second-order NLO material.
Jeyaseelan, S. Christopher; Hussain, Shamima; Premkumar, R.; Rekha, T. N.; Benial, A. Milton Franklin
2018-04-01
Indole and its derivatives are considered as good ligands for various disease causing proteins in human because of presence of the single nitrogen atom. In the present study, the potential energy surface scan was performed for the most stable molecular structure of the 5-Methoxyindole-3-carboxaldehyde (MICA) molecule. The most stable molecular structure was optimized by DFT/B3LYP method with 6-311G++ (d, p) basis set using Gaussian 09 program package. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculations using VEDA 4.0 program. The Frontier molecular orbitals analysis was performed and related molecular propertieswere calculated. The possible electrophilic and nucleophilic reactive sites of the molecule were studied using molecular electrostatic potential analysis, which confirms the bioactivity of the molecule. The natural bond orbital analysis was also performed to confirm the bioactivity of the title molecule.
Synthesis, Crystal Structure, and DFT Calculations of 1,3-Diisobutyl Thiourea
Directory of Open Access Journals (Sweden)
Ataf A. Altaf
2015-01-01
Full Text Available 1,3-Diisobutyl thiourea was synthesized and characterized by single crystal X-ray diffraction. It gives a monoclinic (α = γ = 90 and β ≠ 90 structure with the space group P21/c. The unit cell dimensions are a = 11.5131 (4 Å, b = 9.2355 (3 Å, c = 11.3093 (5 Å, α = 90°, β = 99.569° (2, γ = 90°, V = 1185.78 (8 Å3, and Z = 4. The crystal packing is stabilized by intermolecular (N–H⋯S hydrogen bonding in the molecules. The optimized geometry and Mullikan's charges of the said molecule calculated with the help of DFT using B3LYP-6-311G model support the crystal structure.
DFT calculations on 1,4-dithiine and S-oxygenated derivatives
Directory of Open Access Journals (Sweden)
E. Vessally
2008-12-01
Full Text Available The molecular structures of 1,4-dithiine and S-oxygenated derivatives are studied using B3LYP/6-311++G** level of theory. These compounds have 8π-electrons in the ring. This led to stabilization of non-planar conformation. DFT calculations show that 1,4-dithiine, C4H4SS, 1,4-dithiine-1-oxide, C4H4SOS, 1,4-dithiine-1,4-dioxide, C4H4SOSO and 1,4-dithiine-1,1,4-trioxide, C4H4SO2SO; have boat conformation. 1,4-dithiine-1,1-dioxide, C4H4SO2S, have a shadow boat conformation. 1,4-dithiine-1,1,4,4-tetraoxide, C4H4SO2SO2, have a planar conformation.
Relative stability of radicals derived from artemisinin: A semiempirical and DFT study
Arantes, C.; de Araujo, M. T.; Taranto, A. G.; de M. Carneiro, J. W.
The semiempirical AM1 and PM3 methods, as well as the density functional (DFT/B3LYP) approach using the 6-31g(d) basis set, were employed to calculate the relative stability of intermediate radicals derived from artemisinin, a sesquiterpene lactone having an endoperoxide bridge that is essential for its antimalarial activity. The compounds studied have their nonperoxidic oxygen atom of the trioxane ring and/or the carbonyl group replaced by a CH2 unit. Relative stabilities were calculated by means of isodesmic equations using artemisinin as reference. It was found that replacement of oxygen atoms decreases the relative stability of the anionic radical intermediates. In contrast, for compounds with inverted stereochemistry the intermediate radicals were found to be more stable than those with the artemisinin-like stereochemistry. These relative stabilities may modulate the antimalarial potency. Radicals centered on carbon are always more stable than the corresponding radicals centered on oxygen.
Radical scavenging behavior of eriodictyol and fustin flavonoid compounds - A DFT study
Sadasivam, K.; Praveena, R.; Anbakzhakan, K.
2018-05-01
The density functional theory (DFT) protocol together with B3LYP/6-311G(d,p) level of theory has been utilized to explore and compare the structural features and molecular characteristics of two naturally occurring flavonoid compounds eriodictyol and fustin. The -OH bond dissociation energy (BDE) for all the radical species have been computed and interpreted in accordance with the radical scavenging activity. The ionization potential (IP) value of fustin flavonoid compound was found to be within the range of synthetic food additives. The polar nature and their capacity to polarise other atoms are established through the dipole moment analysis. Additionally, various parameters that are relevant to chemical potential such as electron affinity, hardness, softness, electro negativity and electrophilic index were calculated and analysed in the light of quercetin flavonoid compound in view of their antioxidant activity. The antioxidant capability of fustin is found to be superior to eriodictyol flavonoid.
Parallel Implementation of Gamma-Point Pseudopotential Plane-Wave DFT with Exact Exchange
International Nuclear Information System (INIS)
Bylaska, Eric J.; Tsemekhman, Kiril L.; Baden, Scott B.; Weare, John H.; Jonsson, Hannes
2011-01-01
One of the more persistent failures of conventional density functional theory (DFT) methods has been their failure to yield localized charge states such as polarons, excitons and solitons in solid-state and extended systems. It has been suggested that conventional DFT functionals, which are not self-interaction free, tend to favor delocalized electronic states since self-interaction creates a Coulomb barrier to charge localization. Pragmatic approaches in which the exchange correlation functionals are augmented with small amount of exact exchange (hybrid-DFT, e.g. B3LYP and PBE0) have shown promise in localizing charge states and predicting accurate band gaps and reaction barriers. We have developed a parallel algorithm for implementing exact exchange into pseudopotential plane-wave density functional theory and we have implemented it in the NWChem program package. The technique developed can readily be employed in plane-wave DFT programs. Furthermore, atomic forces and stresses are straightforward to implement, making it applicable to both confined and extended systems, as well as to Car-Parrinello ab initio molecular dynamic simulations. This method has been applied to several systems for which conventional DFT methods do not work well, including calculations for band gaps in oxides and the electronic structure of a charge trapped state in the Fe(II) containing mica, annite.
Energy Technology Data Exchange (ETDEWEB)
Kaneko, Masashi [Japan Atomic Energy Agency, Nuclear Science and Engineering Center (Japan); Yasuhara, Hiroki; Miyashita, Sunao; Nakashima, Satoru, E-mail: snaka@hiroshima-u.ac.jp [Hiroshima University, Graduate School of Science (Japan)
2017-11-15
The present study applies all-electron relativistic DFT calculation with Douglas-Kroll-Hess (DKH) Hamiltonian to each ten sets of Ru and Os compounds. We perform the benchmark investigation of three density functionals (BP86, B3LYP and B2PLYP) using segmented all-electron relativistically contracted (SARC) basis set with the experimental Mössbauer isomer shifts for {sup 99}Ru and {sup 189}Os nuclides. Geometry optimizations at BP86 theory of level locate the structure in a local minimum. We calculate the contact density to the wavefunction obtained by a single point calculation. All functionals show the good linear correlation with experimental isomer shifts for both {sup 99}Ru and {sup 189}Os. Especially, B3LYP functional gives a stronger correlation compared to BP86 and B2PLYP functionals. The comparison of contact density between SARC and well-tempered basis set (WTBS) indicated that the numerical convergence of contact density cannot be obtained, but the reproducibility is less sensitive to the choice of basis set. We also estimate the values of ΔR/R, which is an important nuclear constant, for {sup 99}Ru and {sup 189}Os nuclides by using the benchmark results. The sign of the calculated ΔR/R values is consistent with the predicted data for {sup 99}Ru and {sup 189}Os. We obtain computationally the ΔR/R values of {sup 99}Ru and {sup 189}Os (36.2 keV) as 2.35×10{sup −4} and −0.20×10{sup −4}, respectively, at B3LYP level for SARC basis set.
Sambathkumar, K; Jeyavijayan, S; Arivazhagan, M
2015-08-05
Combined experimental and theoretical studies were conducted on the molecular structure and vibrational spectra of 4-AminoPhthalhydrazide (APH). The FT-IR and FT-Raman spectra of APH were recorded in the solid phase. The molecular geometry and vibrational frequencies of APH in the ground state have been calculated by using the ab initio HF (Hartree-Fock) and density functional methods (B3LYP) invoking 6-311+G(d,p) basis set. The optimized geometric bond lengths and bond angles obtained by HF and B3LYP method show best agreement with the experimental values. Comparison of the observed fundamental vibrational frequencies of APH with calculated results by HF and density functional methods indicates that B3LYP is superior to the scaled Hartree-Fock approach for molecular vibrational problems. The difference between the observed and scaled wave number values of most of the fundamentals is very small. A detailed interpretation of the NMR spectra of APH was also reported. The theoretical spectrograms for infrared and Raman spectra of the title molecule have been constructed. UV-vis spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies, were performed by time dependent density functional theory (TD-DFT) approach. Finally the calculations results were applied to simulated infrared and Raman spectra of the title compound which show good agreement with observed spectra. And the temperature dependence of the thermodynamic properties of constant pressure (Cp), entropy (S) and enthalpy change (ΔH0→T) for APH were also determined. Copyright © 2015 Elsevier B.V. All rights reserved.
Arjunan, V.; Thirunarayanan, S.; Marchewka, M. K.; Mohan, S.
2017-10-01
The new hydrogen bonded molecular complex 1,2,4-triazolium hydrogenselenate (THS) is prepared by the reaction of 1H-1,2,4-triazole and selenic acid. This complex is stabilised by N-H⋯O and C-H⋯O hydrogen bonding and electrostatic attractive forces between 1H and 1,2,4-triazolium cations and hydrogen selenate anions. The XRD studies revealed that intermolecular proton transfer occur from selenic acid to 1H-1,2,4-triazole molecule, results in the formation of 1,2,4-triazolium hydrogenselenate which contains 1,2,4-triazolium cations and hydrogenselenate anions. The molecular structure of THS crystal has also been optimised by using Density Functional Theory (DFT) using B3LYP/cc-pVTZ and B3LYP/6-311++G** methods in order to find the whole characteristics of the molecular complex. The theoretical structural parameters such as bond length, bond angle and dihedral angle determined by DFT methods are well agreed with the XRD parameters. The atomic charges and thermodynamic properties are also calculated and analysed. The energies of frontier molecular orbitals HOMO, LUMO, HOMO-1, LUMO+1 and LUMO-HUMO energy gap are calculated to understand the kinetic stability and chemical reactivity of the molecular complex. The natural bond orbital analysis (NBO) has been performed in order to study the intramolecular bonding interactions and delocalisation of electrons. These intra molecular charge transfer may induce biological activities such as antimicrobials, antiinflammatory, antifungal etc. The complete vibrational assignments of THS have been performed by using FT-IR and FT-Raman spectra.
Arjunan, V; Thillai Govindaraja, S; Jose, Sujin P; Mohan, S
2014-07-15
The Fourier transform infrared and FT-Raman spectra of 2-benzothiazole acetonitrile (BTAN) have been recorded in the range 4000-450 and 4000-100 cm(-1) respectively. The conformational analysis of the compound has been carried out to obtain the stable geometry of the compound. The complete vibrational assignment and analysis of the fundamental modes of the compound are carried out using the experimental FTIR and FT-Raman data and quantum chemical studies. The experimental vibrational frequencies are compared with the wavenumbers derived theoretically by B3LYP gradient calculations employing the standard 6-31G(**), high level 6-311++G(**) and cc-pVTZ basis sets. The structural parameters, thermodynamic properties and vibrational frequencies of the normal modes obtained from the B3LYP methods are in good agreement with the experimental data. The (1)H (400 MHz; CDCl3) and (13)C (100 MHz;CDCl3) nuclear magnetic resonance (NMR) spectra are also recorded. The electronic properties, the energies of the highest occupied and lowest unoccupied molecular orbitals are measured by DFT approach. The kinetic stability of the molecule has been determined from the frontier molecular orbital energy gap. The charges of the atoms and the structure-chemical reactivity relations of the compound are determined by its chemical potential, global hardness, global softness, electronegativity, electrophilicity and local reactivity descriptors by conceptual DFT methods. The non-linear optical properties of the compound have been discussed by measuring the polarisability and hyperpolarisability tensors. Copyright © 2014 Elsevier B.V. All rights reserved.
Synthesis, Characterisation and DFT Calculations of Azo-Imine Dyes
Directory of Open Access Journals (Sweden)
Sevil Özkınalı
2017-11-01
Full Text Available In this study, azo dyes containing an imine group were synthesised by coupling p-hydroxybenzylidene aniline with the diazonium salts of p-toluidine, 4-aminophenol, aniline, p-chloroaniline, p-fluoroaniline, and p-nitroaniline. The compounds were characterised by melting point, elemental, UV-Vis and IR analyses as well as 1H-NMR and 13C-NMR spectroscopies. Moreover, the experimental data were supplemented with density functional theory (DFT calculations. The experimental data on FT-IR and UV–Vis spectra of the compounds were compared with theoretical results. The DFT calculations were performed to obtain the ground state geometries of the compounds using the B3LYP hybrid functional level with 6-311++g(2d,2p basis set. Frontier molecular orbital energies, band gap energies and some chemical reactivity parameters, such as chemical hardness and electronegativity, were calculated and compared with experimental values. A significant correlation was observed between the dipole moment and polarities of the solvents and the absorption wavelength of the compounds.
International Nuclear Information System (INIS)
Lee, Sang Uck
2013-01-01
The accurate prediction of vertical excitation energies is very important for the development of new materials in the dye and pigment industry. A time-dependent density functional theory (TD-DFT) approach coupled with 22 different exchange-correlation functionals was used for the prediction of vertical excitation energies in the halogenated copper phthalocyanine molecules in order to find the most appropriate functional and to determine the accuracy of the prediction of the absorption wavelength and observed spectral shifts. Among the tested functional, B3LYP functional provides much more accurate vertical excitation energies and UV-vis spectra. Our results clearly provide a benchmark calibration of the TD-DFT method for phthalocyanine based dyes and pigments used in industry
Yang, Yue; Gao, Hongwei
2012-04-01
Serotonin (5-hydroxytryptamine, 5-HT) is a monoamine neurotransmitter which plays an important role in treating acute or clinical stress. The comparative performance of different density functional theory (DFT) methods at various basis sets in predicting the molecular structure and vibration spectra of serotonin was reported. The calculation results of different methods including mPW1PW91, HCTH, SVWN, PBEPBE, B3PW91 and B3LYP with various basis sets including LANL2DZ, SDD, LANL2MB, 6-31G, 6-311++G and 6-311+G* were compared with the experimental data. It is remarkable that the SVWN/6-311++G and SVWN/6-311+G* levels afford the best quality to predict the structure of serotonin. The results also indicate that PBEPBE/LANL2DZ level show better performance in the vibration spectra prediction of serotonin than other DFT methods.
Halogen effect on structure and ^{13}C NMR chemical shift of 3,6-disubstituted-N-alkyl carbazoles
DEFF Research Database (Denmark)
Radula-Janik, Klaudia; Kupka, Teobald; Ejsmont, Krzysztof
2013-01-01
Structures of selected 3,6-dihalogeno-N-alkyl carbazole derivatives were calculated at the B3LYP/6-311++G(3df,2pd) level of theory and their 13C NMR isotropic nuclear shieldings were predicted using density functional theory (DFT). The model compounds contained 9H-, N-methyl and N-ethyl derivatives...
Al-Ahmary, Khairia M.; Habeeb, Moustafa M.; Al-Obidan, Areej H.
2018-05-01
New charge transfer complex (CTC) between the electron donor 2,3-diaminopyridine (DAP) with the electron acceptor chloranilic (CLA) acid has been synthesized and characterized experimentally and theoretically using a variety of physicochemical techniques. The experimental work included the use of elemental analysis, UV-vis, IR and 1H NMR studies to characterize the complex. Electronic spectra have been carried out in different hydrogen bonded solvents, methanol (MeOH), acetonitrile (AN) and 1:1 mixture from AN-MeOH. The molecular composition of the complex was identified to be 1:1 from Jobs and molar ratio methods. The stability constant was determined using minimum-maximum absorbances method where it recorded high values confirming the high stability of the formed complex. The solid complex was prepared and characterized by elemental analysis that confirmed its formation in 1:1 stoichiometric ratio. Both IR and NMR studies asserted the existence of proton and charge transfers in the formed complex. For supporting the experimental results, DFT computations were carried out using B3LYP/6-31G(d,p) method to compute the optimized structures of the reactants and complex, their geometrical parameters, reactivity parameters, molecular electrostatic potential map and frontier molecular orbitals. The analysis of DFT results strongly confirmed the high stability of the formed complex based on existing charge transfer beside proton transfer hydrogen bonding concordant with experimental results. The origin of electronic spectra was analyzed using TD-DFT method where the observed λmax are strongly consisted with the computed ones. TD-DFT showed the contributed states for various electronic transitions.
Demircioğlu, Zeynep; Özdemir, Fethi Ahmet; Dayan, Osman; Şerbetçi, Zafer; Özdemir, Namık
2018-06-01
Synthesized compounds of N-(2-aminophenyl)benzenesulfonamide 1 and (Z)-N-(2-((2-nitrobenzylidene)amino)phenyl)benzenesulfonamide 2 were characterized by antimicrobial activity, FT-IR, 1H and 13C NMR. Two new Schiff base ligands containing aromatic sulfonamide fragment of (Z)-N-(2-((3-nitrobenzylidene)amino)phenyl)benzenesulfonamide 3 and (Z)-N-(2-((4-nitrobenzylidene)amino)phenyl)benzenesulfonamide 4 were synthesized and investigated by spectroscopic techniques including 1H and 13C NMR, FT-IR, single crystal X-ray diffraction, Hirshfeld surface, theoretical method analyses and by antimicrobial activity. The molecular geometry obtained from the X-ray structure determination was optimized Density Functional Theory (DFT/B3LYP) method with the 6-311++G(d,p) basis set in ground state. From the optimized geometry of the molecules of 3 and 4, the geometric parameters, vibrational wavenumbers and chemical shifts were computed. The optimized geometry results, which were well represented the X-ray data, were shown that the chosen of DFT/B3LYP 6-311G++(d,p) was a successful choice. After a successful optimization, frontier molecular orbitals, chemical activity, non-linear optical properties (NLO), molecular electrostatic mep (MEP), Mulliken population method, natural population analysis (NPA) and natural bond orbital analysis (NBO), which cannot be obtained experimentally, were calculated and investigated.
Al-Tamimi, Abdul-Malek S.
2016-09-01
Density functional theory has been implemented to study the electronic structure, molecular properties and vibrational spectra of 3-(adamantan-1-yl)-4-(4-chlorophenyl)-1H-1,2,4-triazole-5(4H)-thione, a novel 1,2,4-triazole-5(4H)-thione derivative. Hydrogen bonded dimer of the title molecule has been studied using B3LYP, M06-2X and X3LYP functionals at 6-311++ G(d,p) level of theory. The intermolecular hydrogen bonding has been studied using NBO analysis of the dimer. Bader's AIM theory was also used to evaluate the strength as well as the hydrogen bonding characteristics. Experimental FT-IR and FT-Raman spectra of the title molecule were related with the spectral data obtained with DFT/B3LYP method. The 1H NMR chemical shifts of the title molecule were calculated by the GIAO method and compared with experimental results. Dipole moment, polarizability (α), first order static hyperpolarizability (β) along with molecular electrostatic potential surface have been calculated. Frequency-dependent first hyperpolarizabilities, β(-2ω;ω,ω) and β(-ω;ω,0) have also been evaluated to study the non-linear optical behavior of the title compound. UV-Vis spectrum of the title molecule was recorded and TD-DFT method has been used to calculate six lowest excited states and the corresponding excitation energies.
Burns, Lori A; Vázquez-Mayagoitia, Alvaro; Sumpter, Bobby G; Sherrill, C David
2011-02-28
A systematic study of techniques for treating noncovalent interactions within the computationally efficient density functional theory (DFT) framework is presented through comparison to benchmark-quality evaluations of binding strength compiled for molecular complexes of diverse size and nature. In particular, the efficacy of functionals deliberately crafted to encompass long-range forces, a posteriori DFT+dispersion corrections (DFT-D2 and DFT-D3), and exchange-hole dipole moment (XDM) theory is assessed against a large collection (469 energy points) of reference interaction energies at the CCSD(T) level of theory extrapolated to the estimated complete basis set limit. The established S22 [revised in J. Chem. Phys. 132, 144104 (2010)] and JSCH test sets of minimum-energy structures, as well as collections of dispersion-bound (NBC10) and hydrogen-bonded (HBC6) dissociation curves and a pairwise decomposition of a protein-ligand reaction site (HSG), comprise the chemical systems for this work. From evaluations of accuracy, consistency, and efficiency for PBE-D, BP86-D, B97-D, PBE0-D, B3LYP-D, B970-D, M05-2X, M06-2X, ωB97X-D, B2PLYP-D, XYG3, and B3LYP-XDM methodologies, it is concluded that distinct, often contrasting, groups of these elicit the best performance within the accessible double-ζ or robust triple-ζ basis set regimes and among hydrogen-bonded or dispersion-dominated complexes. For overall results, M05-2X, B97-D3, and B970-D2 yield superior values in conjunction with aug-cc-pVDZ, for a mean absolute deviation of 0.41 - 0.49 kcal/mol, and B3LYP-D3, B97-D3, ωB97X-D, and B2PLYP-D3 dominate with aug-cc-pVTZ, affording, together with XYG3/6-311+G(3df,2p), a mean absolute deviation of 0.33 - 0.38 kcal/mol.
Investigating actinide compounds within a hybrid MCSCF-DFT model
International Nuclear Information System (INIS)
Fromager, E.; Jensen, H.J.A.; Wahlin, P.; Real, F.; Wahlgren, U.
2007-01-01
Complete text of publication follows: Investigations of actinide chemistry with quantum chemical methods still remain a complicated task since it requires an accurate and efficient treatment of the environment (crystal or solvent) as well as relativistic and electron correlation effects. Concerning the latter, the current correlated methods, based on either Density-Functional Theory (DFT) or Wave-Function Theory (WFT), have their advantages and drawbacks. On the one hand, Kohn-Sham DFT (KS-DFT) calculates the dynamic correlation quite accurately and at a fairly low computational cost. However, it does not treat adequately the static correlation, which is significant in some actinide compounds because of the near-degeneracy of the 5f orbitals: a first example is the bent geometry obtained in KS-DFT(B3LYP) for the neptunyl ion NpO 2 3+ , which is found to be linear within a Multi-Configurational Self-Consistent Field (MCSCF) model [1]. A second one is the stable and bent geometry obtained in KS-DFT(B3LYP) for the plutonyl ion PuO 2 4+ , which disintegrates at the MCSCF level [1]. On the other hand, WFT can describe the static correlation, using for example a MCSCF model, but then an important part of the dynamic correlation has to be neglected. This can be recovered with perturbation-theory based methods like for example CASPT2 or NEVPT2, but their computational complexity prevents large scale calculations. It is therefore of great interest to develop a hybrid MCSCF-DFT model which combines the best of both WFT and DFT approaches. The merge of WFT and DFT can be achieved by splitting the two-electron interaction into long-range and short-range parts [2]. The long-range part is then treated by WFT and the short-range part by DFT. We use the so-called 'erf' long-range interaction erf(μr 12 )/r 12 , which is based on the standard error function, and where μ is a free parameter which controls the long/short-range decomposition. The newly proposed recipe for the
Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error.
Faber, Felix A; Hutchison, Luke; Huang, Bing; Gilmer, Justin; Schoenholz, Samuel S; Dahl, George E; Vinyals, Oriol; Kearnes, Steven; Riley, Patrick F; von Lilienfeld, O Anatole
2017-11-14
evidence that ML model predictions deviate from DFT (B3LYP) less than DFT (B3LYP) deviates from experiment for all properties. Furthermore, out-of-sample prediction errors with respect to hybrid DFT reference are on par with, or close to, chemical accuracy. The results suggest that ML models could be more accurate than hybrid DFT if explicitly electron correlated quantum (or experimental) data were available.
Chidan Kumar, C S; Fun, Hoong Kun; Tursun, Mahir; Ooi, Chin Wei; Chandraju, Siddegowda; Quah, Ching Kheng; Parlak, Cemal
2014-04-24
2-(4-Chlorophenyl)-2-oxoethyl 2-chlorobenzoate has been synthesized, its structural and vibrational properties have been reported using FT-IR and single-crystal X-ray diffraction (XRD) studies. The conformational analysis, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of the synthesized compound (C15H10Cl2O3) have been examined by means of Becke-3-Lee-Yang-Parr (B3LYP) density functional theory (DFT) method together with 6-31++G(d,p) basis set. Furthermore, reliable conformational investigation and vibrational assignments have been made by the potential energy surface (PES) and potential energy distribution (PED) analyses, respectively. Calculations are performed with two possible conformations. The title compound crystallizes in orthorhombic space group Pbca with the unit cell dimensions a=12.312(5) Å, b=8.103(3) Å, c=27.565(11) Å, V=2750.0(19) Å(3). B3LYP method provides satisfactory evidence for the prediction of vibrational wavenumbers and structural parameters. Copyright © 2014 Elsevier B.V. All rights reserved.
Anand, S.; Sundararajan, R. S.; Ramachandraraja, C.; Ramalingam, S.; Durga, R.
2015-03-01
In the present research work, the FT-IR, FT-Raman spectra of the Bis(thiourea) Nickel chloride (BTNC) were recorded and analyzed. The observed fundamental frequencies in finger print and functional group regions were assigned according to their uniqueness region. The computational calculations were carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The present organo-metallic compound was made up of covalent and coordination covalent bonds. The modified vibrational pattern of the complex molecule associated with ligand group was analyzed. Furthermore, the 13C NMR and 1H NMR spectral data were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP/6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A investigation on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed.
Karthikeyan, N.; Joseph Prince, J.; Ramalingam, S.; Periandy, S.
2015-05-01
In the present research work, the FT-IR, FT-Raman and 13C and 1H NMR spectra of the α-Methylstyrene were recorded. The observed fundamental frequencies in finger print as well as functional group regions were assigned according to their uniqueness region. The Gaussian computational calculations are carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The impact of the presence of vinyl group in phenyl structure of the compound is investigated. The modified vibrational pattern of the molecule associated vinyl group was analyzed. Moreover, 13C NMR and 1H NMR were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed.
Anand, S; Sundararajan, R S; Ramachandraraja, C; Ramalingam, S; Durga, R
2015-03-05
In the present research work, the FT-IR, FT-Raman spectra of the Bis(thiourea) Nickel chloride (BTNC) were recorded and analyzed. The observed fundamental frequencies in finger print and functional group regions were assigned according to their uniqueness region. The computational calculations were carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The present organo-metallic compound was made up of covalent and coordination covalent bonds. The modified vibrational pattern of the complex molecule associated with ligand group was analyzed. Furthermore, the (13)C NMR and (1)H NMR spectral data were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP/6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A investigation on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Souza, Fabrine S. de; Silva, Silvana de O.; Alves, Cláudio N.; Guilhon, Giselle M.S.P. [Universidade Federal do Pará (UFPA), Belém, PA (Brazil). Instituto de Ciências Exatas e Naturais; Faria, Lênio J.G. de; Brasil, Davi do S.B., E-mail: davibb@ufpa.br [Universidade Federal do Pará, Belém, PA (Brazil). Instituto de Tecnologia; Muller, Adolfo H. [Centro Universitário do Estado do Pará, Belém, PA (Brazil)
2015-06-15
Labdane diterpenes exhibit important bioactivities such as cardiovascular effects in rats as well as effects in the treatment of autoimmune diseases and Alzheimer syndrome. Recently, the labdane diterpenes ent-13-epi-manoil oxide, ribenone and ribenol were isolated from Croton palanostigma. The computational method DFT/B3LYP/cc-pVDZ was used to optimize the structures of these diterpenes and to calculate infrared data. Chemical shifts (δ{sub H} and δ{sub C}) of the minimum energy structures (local minimum) were calculated and compared with the experimental data. Comparison of the NMR data by simple linear regression (SLR) showed satisfactory statistical results with a correlation coefficient (R{sup 2} ) and predictive ability (Q{sup 2}) of over 98%. The predicted NMR data were used to confirm the δ{sub H} values that have not been published. (author)
Asath, R. Mohamed; Premkumar, S.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin
2015-06-01
The conformational analysis was carried out for 2-Hydroxy- 3, 5-dinitropyridine molecule using potential energy surface scan and the most stable optimized conformer was predicted. The vibrational frequencies and Mulliken atomic charge distribution were calculated for the optimized geometry of the molecule using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intramolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness values of the title molecule were carried out. The nonlinear optical activity of the molecule was studied by means of first order hyperpolarizability, which was computed as 7.64 times greater than urea. The natural bond orbital analysis was performed to confirm the nonlinear optical activity of the molecule.
Directory of Open Access Journals (Sweden)
Slavica Solujić
2011-04-01
Full Text Available The series of fifteen synthesized 4-hydroxycoumarin derivatives was subjected to antioxidant activity evaluation in vitro, through total antioxidant capacity, 1,1-diphenyl-2-picryl-hydrazyl (DPPH, hydroxyl radical, lipid peroxide scavenging and chelating activity. The highest activity was detected during the radicals scavenging, with 2b, 6b, 2c, and 4c noticed as the most active. The antioxidant activity was further quantified by the quantitative structure-activity relationships (QSAR studies. For this purpose, the structures were optimized using Paramethric Method 6 (PM6 semi-empirical and Density Functional Theory (DFT B3LYP methods. Bond dissociation enthalpies of coumarin 4-OH, Natural Bond Orbital (NBO gained hybridization of the oxygen, acidity of the hydrogen atom and various molecular descriptors obtained, were correlated with biological activity, after which we designed 20 new antioxidant structures, using the most favorable structural motifs, with much improved predicted activity in vitro.
DADOS ESPECTROSCÓPICOS DE DITERPENOS LABDÂNICOS: UMA ANÁLISE TEÓRICA VIA RMN E DFT
Directory of Open Access Journals (Sweden)
Fabrine S. de Souza
2015-05-01
Full Text Available Labdane diterpenes exhibit important bioactivities such as cardiovascular effects in rats as well as effects in the treatment of autoimmune diseases and Alzheimer syndrome. Recently, the labdane diterpenes ent-13-epi-manoil oxide, ribenone and ribenol were isolated from Croton palanostigma. The computational method DFT/B3LYP/cc-pVDZ was used to optimize the structures of these diterpenes and to calculate infrared data. Chemical shifts (δH and δC of the minimum energy structures (local minimum were calculated and compared with the experimental data. Comparison of the NMR data by simple linear regression (SLR showed satisfactory statistical results with a correlation coefficient (R2 and predictive ability (Q2 of over 98%. The predicted NMR data were used to confirm the δH values that have not been published.
Varadwaj, Pradeep Risikrishna
2010-05-01
Spin-restricted DFT (X3LYP and B3LYP) and ab initio (MP2(fc) and CCSD(fc)) calculations in conjunction with the Aug-CC-pVDZ and Aug-CC-pVTZ basis sets were performed on a series of hydrogen bonded complexes PN...HX (X = F, Cl, Br) to examine the variations of their equilibrium gas phase structures, energetic stabilities, electronic properties, and vibrational characteristics in their electronic ground states. In all cases the complexes were predicted to be stable with respect to the constituent monomers. The interaction energy (Delta E) calculated using a super-molecular model is found to be in this order: PN...HF > PN...HCl > PN...HBr in the series examined. Analysis of various physically meaningful contributions arising from the Kitaura-Morokuma (KM) and reduced variational space self-consistent-field (RVS-SCF) energy decomposition procedures shows that the electrostatic energy has significant contribution to the over-all interaction energy. Dipole moment enhancement (Delta mu) was observed in these complexes expected of predominant dipole-dipole electrostatic interaction and was found to follow the trend PN...HF > PN...HCl > PN...HBr at the CCSD level. However, the DFT (X3LYP and B3LYP) and MP2 levels less accurately determined these values (in this order HF 0, nabla(2)rho(c) > 0 and H(c) > 0 at the BCP) whilst the bonds in PN (rho(c) > 0, nabla(2)rho(c) > 0 and H(c) 0, nabla(2)rho(c) BD*(HX) delocalization.
Molecular design of donor-acceptor dyes for efficient dye-sensitized solar cells I: a DFT study.
El-Shishtawy, Reda M; Asiri, Abdullah M; Aziz, Saadullah G; Elroby, Shaaban A K
2014-06-01
Dye-sensitized solar cells (DSSCs) have drawn great attention as low cost and high performance alternatives to conventional photovoltaic devices. The molecular design presented in this work is based on the use of pyran type dyes as donor based on frontier molecular orbitals (FMO) and theoretical UV-visible spectra in combination with squaraine type dyes as an acceptor. Density functional theory has been used to investigate several derivatives of pyran type dyes for a better dye design based on optimization of absorption, regeneration, and recombination processes in gas phase. The frontier molecular orbital (FMO) of the HOMO and LUMO energy levels plays an important role in the efficiency of DSSCs. These energies contribute to the generation of exciton, charge transfer, dissociation and exciton recombination. The computations of the geometries and electronic structures for the predicted dyes were performed using the B3LYP/6-31+G** level of theory. The FMO energies (EHOMO, ELUMO) of the studied dyes are calculated and analyzed in the terms of the UV-visible absorption spectra, which have been examined using time-dependent density functional theory (TD-DFT) techniques. This study examined absorption properties of pyran based on theoretical UV-visible absorption spectra, with comparisons between TD-DFT using B3LYP, PBE, and TPSSH functionals with 6-31+G (d) and 6-311++G** basis sets. The results provide a valuable guide for the design of donor-acceptor (D-A) dyes with high molar absorptivity and current conversion in DSSCs. The theoretical results indicated 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran dye (D2-Me) can be effectively used as a donor dye for DSSCs. This dye has a low energy gap by itself and a high energy gap with squaraine acceptor type dye, the design that reduces the recombination and improves the photocurrent generation in solar cell.
DFT Perspective on the Thermochemistry of Carbon Nitride Synthesis
Melissen, Sigismund T. A. G.
2016-10-11
Graphitic (g)-CxNyHz has become a popular family of photoharvesters in photocatalytic water splitting cells, as well as other applications in chemistry. In this Article, different g-CxNyHz structures were studied thermochemically using DFT. Following a benchmark study with different families of functionals, the B3LYP functional was shown to accurately capture the thermochemistry of carbon nitride synthesis. A triple-ζ polarized basis set, in combination with Civalleri’s modification to Grimme’s D2 formalism (with s6 = 0.5) for dispersion interactions, yielded accurate geometries. Grimme’s D3 formalism with Becke–Johnson damping was used to refine the energetic description of dispersion interactions. The stepwise cycloaddition of cyanamide to form melamine was shown to be exergonic, whereas the stepwise deamination of melamine to form g-C3N4 was shown to be endergonic. Of those structures respecting the [C6N9H3]n chemical formula, the structure commonly known as “melon” was found to be most stable, whereas the sp3-hybridized [C6N9H3]n elucidated by Horvath-Bordon et al. was found to be the least stable. Fully polymerized triazine-based g-C3N4 appeared slightly more stable than heptazine-based g-C3N4.
DFT Studies on Interaction between Lanthanum and Hydroxyamide
Pati, Anindita; Kundu, T. K.; Pal, Snehanshu
2018-03-01
Extraction and separation of individual rare earth elements has been a challenge as they are chemically very similar. Solvent extraction is the most suitable way for extraction of rare earth elements. Acidic, basic, neutral, chelating are the major classes of extractants for solvent extraction of rare earth elements. The coordination complex of chelating extractants is very selective with positively charged metal ion. Hence they are widely used. Hydroxyamide is capable of forming chelates with metal cations. In this present study interactions of hydroxyamide ligand with lanthanum have been investigated using density functional theory (DFT). Two different functional such as raB97XD and B3LYP are applied along with 6-31+G(d,p) basis set for carbon, nitrogen, hydrogen and SDD basis set for lanthanum. Stability of formed complexes has been evaluated based on calculated interaction energies and solvation energies. Frontier orbital (highest occupied molecular orbital or HOMO and lowest unoccupied molecular orbital or LUMO) energies of the molecule have also been calculated. Electronegativity, chemical hardness, chemical softness and chemical potential are also determined for these complexes to get an idea about the reactivity. From the partial charge distribution it is seen that oxygen atoms in hydroxyamide have higher negative charge. The double bonded oxygen atom present in the hydroxyamide structure has higher electron density and so it forms bond with lanthanum but the singly bonded oxygen atom in the hydroxyamide structure is weaker donor atom and so it is less available for interaction with lanthanum.
DFT Perspective on the Thermochemistry of Carbon Nitride Synthesis
Melissen, Sigismund T. A. G.; Steinmann, Stephan N.; Le Bahers, Tangui; Sautet, Philippe
2016-01-01
Graphitic (g)-CxNyHz has become a popular family of photoharvesters in photocatalytic water splitting cells, as well as other applications in chemistry. In this Article, different g-CxNyHz structures were studied thermochemically using DFT. Following a benchmark study with different families of functionals, the B3LYP functional was shown to accurately capture the thermochemistry of carbon nitride synthesis. A triple-ζ polarized basis set, in combination with Civalleri’s modification to Grimme’s D2 formalism (with s6 = 0.5) for dispersion interactions, yielded accurate geometries. Grimme’s D3 formalism with Becke–Johnson damping was used to refine the energetic description of dispersion interactions. The stepwise cycloaddition of cyanamide to form melamine was shown to be exergonic, whereas the stepwise deamination of melamine to form g-C3N4 was shown to be endergonic. Of those structures respecting the [C6N9H3]n chemical formula, the structure commonly known as “melon” was found to be most stable, whereas the sp3-hybridized [C6N9H3]n elucidated by Horvath-Bordon et al. was found to be the least stable. Fully polymerized triazine-based g-C3N4 appeared slightly more stable than heptazine-based g-C3N4.
3-Iodobenzaldehyde: XRD, FT-IR, Raman and DFT studies.
Kumar, Chandraju Sadolalu Chidan; Parlak, Cemal; Tursun, Mahir; Fun, Hoong-Kun; Rhyman, Lydia; Ramasami, Ponnadurai; Alswaidan, Ibrahim A; Keşan, Gürkan; Chandraju, Siddegowda; Quah, Ching Kheng
2015-06-15
The structure of 3-iodobenzaldehyde (3IB) was characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The conformational isomers, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of 3IB were examined using density functional theory (DFT) method, with the Becke-3-Lee-Yang-Parr (B3LYP) functional and the 6-311+G(3df,p) basis set for all atoms except for iodine. The LANL2DZ effective core basis set was used for iodine. Potential energy distribution (PED) analysis of normal modes was performed to identify characteristic frequencies. 3IB crystallizes in monoclinic space group P21/c with the O-trans form. There is a good agreement between the theoretically predicted structural parameters, and vibrational frequencies and those obtained experimentally. In order to understand halogen effect, 3-halogenobenzaldehyde [XC6H4CHO; X=F, Cl and Br] was also studied theoretically. The free energy difference between the isomers is small but the rotational barrier is about 8kcal/mol. An atypical behavior of fluorine affecting conformational preference is observed. Copyright © 2015 Elsevier B.V. All rights reserved.
de Toledo, T. A.; da Silva, L. E.; Teixeira, A. M. R.; Freire, P. T. C.; Pizani, P. S.
2015-07-01
In this study, the structural and vibrational properties of Meldrum's acid derivative 5-(5-Ethyl-1,3,4-thiadiazol-2-ylamino)methylene-2,2-dimethyl-1,3-dioxane-4,6-dione, C11H13N3O4S were studied combining experimental techniques such as Raman and FT-IR spectroscopy and density functional theory (DFT) calculations. The Raman and FT-IR spectra were recorded at room conditions in the regions from 80 to 3400 cm-1 and 400 to 4000 cm-1, respectively. Vibrational wavenumbers were predicted using DFT calculations with the hybrid functional B3LYP and basis set 6-31G(d,p). A comparison between experimental and theoretical data is provided for the Raman and FT-IR spectra. The descriptions of the normal modes were carried by means of potential energy distribution (PED).
Suresh Kumar, G. S.; Antony Muthu Prabhu, A.; Bhuvanesh, N.
2014-10-01
We have studied the self-catalyzed Knoevenagel condensation, spectral characterization, DPPH radical scavenging activity, cytotoxicity, and molecular properties of 5-arylidene-2,2-dimethyl-1,3-dioxane-4,6-diones using single crystal XRD and DFT techniques. In the absence of any catalyst, a series of novel 5-arylidene-2,2-dimethyl-1,3-dioxane-4,6-diones were synthesized using Meldrum’s acid and formylphenoxyaliphatic acid(s) in water. These molecules are arranged in the dimer form through intermolecular H-bonding in the single crystal XRD structure. Compounds have better DPPH radical scavenging activity and cytotoxicity against A431 cancer cell line. The optimized molecular structure, natural bond orbital analysis, electrostatic potential map, HOMO-LUMO energies, molecular properties, and atomic charges of these molecules have been studied by performing DFT/B3LYP/3-21G(*) level of theory in gas phase.
Electron Affinity of trans-2-C4F8 from Electron Attachment-Detachment Kinetics
2009-09-04
0.989, for DFT results. b Hartree units; G3(MP2) formalism and B3LYP/6-31+G(3df)// B3LYP/6-31+G(3df) + ZPE for DFT results. c Difference between the...units; G3(MP2) formalism and B3LYP/6-31+G(3df)// B3LYP/6-31+G(3df) + ZPE for DFT results. c Difference between the anion total energy at 0 K and that
Directory of Open Access Journals (Sweden)
Assem Barakat
2016-09-01
Full Text Available Reaction of barbituric acid derivatives and di-substituted benzaldehyde in water afforded arylidene-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H-trione derivatives (1 and 2. The one step reaction proceeded efficiently, smoothly, and in excellent yield. The arylidene compounds were characterized by spectrophotometric tools plus X-ray single crystal diffraction technique. Quantum chemical calculations were performed using the DFT/B3LYP method to optimize the structure of the two isomers (1 and 2 in the gas phase. The optimized structures were found to agree well with the experimental X-ray structure data. The highest occupied (HOMO and lowest unoccupied (LUMO frontier molecular orbitals analyses were performed and the atomic charges were calculated using natural populationanalysis.
Directory of Open Access Journals (Sweden)
María Martín-Rodríguez
2013-11-01
Full Text Available The 1,3-dipolar cycloaddition between glycine-derived azlactones with maleimides is efficiently catalyzed by the dimeric chiral complex [(Sa-Binap·AuTFA]2. The alanine-derived oxazolone only reacts with tert-butyl acrylate giving anomalous regiochemistry, which is explained and supported by Natural Resonance Theory and Nucleus Independent Chemical Shifts calculations. The origin of the high enantiodiscrimination observed with maleimides and tert-butyl acrylate is analyzed using DFT computed at M06/Lanl2dz//ONIOM(b3lyp/Lanl2dz:UFF level. Several applications of these cycloadducts in the synthesis of new proline derivatives with a 2,5-trans-arrangement and in the preparation of complex fused polycyclic molecules are described.
da Costa, Leonardo Moreira; de Mesquita Carneiro, José Walkimar; Paes, Lilian Weitzel Coelho
2011-08-01
DFT (B3LYP/6-31+G(d)) calculations of Mg(2+) affinities for a set of phosphoryl ligands were performed. Two types of ligands were studied: a set of trivalent [O = P(R)] and a set of pentavalent phosphoryl ligands [O = P(R)(3)] (R = H, F, Cl, Br, OH, OCH(3), CH(3), CN, NH(2) and NO(2)), with R either bound directly to the phosphorus atom or to the para position of a phenyl ring. The affinity of the Mg(2+) cation for the ligands was quantified by means of the enthalpy for the substitution of one water molecule in the [Mg(H(2)O)(6)](2+) complex for a ligand. The enthalpy of substitution was correlated with electronic and geometric parameters. Electron-donor groups increase the interaction between the cation and the ligand, while electron-acceptor groups decrease the interaction enthalpy.
Noreen, Mnaza; Rasool, Nasir; Gull, Yasmeen; Zubair, Muhammad; Mahmood, Tariq; Ayub, Khurshid; Nasim, Faiz-Ul-Hassan; Yaqoob, Asma; Zia-Ul-Haq, Muhammad; de Feo, Vincenzo
2015-11-05
A variety of novel 5-aryl thiophenes 4a-g containing sulphonylacetamide (sulfacetamide) groups were synthesized in appreciable yields via Pd[0] Suzuki cross coupling reactions. The structures of these newly synthesized compounds were determined using spectral data and elemental analysis. Density functional theory (DFT) studies were performed using the B3LYP/6-31G (d, p) basis set to gain insight into their structural properties. Frontier molecular orbital (FMOs) analysis of all compounds 4a-g was computed at the same level of theory to get an idea about their kinetic stability. The molecular electrostatic potential (MEP) mapping over the entire stabilized geometries of the molecules indicated the reactive sites. First hyperpolarizability analysis (nonlinear optical response) were simulated at the B3LYP/6-31G (d, p) level of theory as well. The compounds were further evaluated for their promising antibacterial and anti-urease activities. In this case, the antibacterial activities were estimated by the agar well diffusion method, whereas the anti-urease activities of these compounds were determined using the indophenol method by quantifying the evolved ammonia produced. The results revealed that all the sulfacetamide derivatives displayed antibacterial activity against Bacillus subtiles, Escherichia coli, Staphylococcus aureus, Shigella dysenteriae, Salmonella typhae, Pseudomonas aeruginosa at various concentrations. Furthermore, the compound 4g N-((5-(4-chlorophenyl)thiophen-2-yl)sulfonyl) acetamide showed excellent urease inhibition with percentage inhibition activity ~46.23 ± 0.11 at 15 µg/mL with IC50 17.1 µg/mL. Moreover, some other compounds 4a-f also exhibited very good inhibition against urease enzyme.
Abosadiya, Hamza M.; Anouar, El Hassane; Abusaadiya, Salima M.; Hasbullah, Siti Aishah; Yamin, Bohari M.
2018-01-01
A simple efficient method for synthesis of some new 1,2,4-Triazole and Triazolidin derivatives namely, 5-(4-methoxyphenyl)-2-phenyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (1a), (2-chlorophenyl)(3,3-dimethyl-1-phenyl-5-thioxo-1,2,4-triazolidin-4-yl)methanone (1b) and (2-iodophenyl)(3,3-dimethyl-1-phenyl-5-thioxo-1,2,4-triazolidin-4-yl)methanone (1c) have been synthesized in high yields from the reaction of carbonoyl isothiocyanate with phenyl hydrazine. The final products were characterized by FT-IR, 1H and 13C NMR spectroscopic techniques. X-ray crystallographic studies showed that 1a crystallized in triclinic crystal system with space group Pī, while both 1b and 1c crystallized in orthorhombic crystal system with space group Pna21. The asymmetric unit of 1a consists two crystallographically independent molecules, while only one molecule in asymmetric unit for both 1b and 1c compounds. All molecules possess Csbnd H ….S intramolecular hydrogen bonds which formed a pseudo-six-membered ring. Experimental results have been confirmed by the state-of-art density functional theory (DFT) in gas and solvent phase by using five different hybrid functionals B3LYP, B3P86, CAM-B3LYP, M06-2X and PBE0 combined with 6-311++G(d, p) basis set. The experimental data are relatively well produced, and relatively good correlations are obtained between the predicted and experimental data.
Wang, Jing-mei; Li, Zhi-ming; Wang, Quan-rui; Tao, Feng-gang
2013-01-01
The mechanisms of cycloaddition reactions between 1-aza-2-azoniaallene cations 1 and acetylenes 2 have been investigated using the global electrophilicity and nucleophilicity of the corresponding reactants as global reactivity indexes defined within the conceptual density functional theory. The reactivity and regioselectivity of these reactions were predicted by analysis of the energies, geometries, and electronic nature of the transition state structures. The theoretical results revealed that the reaction features a tandem process: an ionic 1,3-dipolar cycloaddition to produce the cycloadducts 3 H-pyrazolium salts 3 followed by a [1,2]-shift affording the thermodynamically more stable adducts 4 or 5. The mechanism of the cycloaddition reactions can be described as an asynchronous concerted pathway with reverse electron demand. The model reaction has also been investigated at the QCISD/6-31++G(d,p) and CCSD(T)/6-31++G(d,p)//B3LYP/6-31++G(d,p) levels as well as by the DFT. The polarizable continuum model, at the B3LYP/6-31++G(d,p) level of theory, was used to study solvent effects on all the studied reactions. In solvent dichloromethane, all the initial cycloadducts 3 were obtained via direct ionic process as the result of the solvent effect. The consecutive [1,2]-shift reaction, in which intermediates 3 are rearranged to the five-membered heterocycles 4/5, is proved to be a kinetically controlled reaction, and the regioselectivity can be modulated by varying the migrant. The LOL function and RDG function based on localized electron analysis were used to analysis the covalent bond and noncovalent interactions in order to unravel the mechanism of the title reactions.
Thirunarayanan, S.; Arjunan, V.; Marchewka, M. K.; Mohan, S.; Atalay, Yusuf
2016-03-01
The crystals of 1,3-diammonium propylselenate monohydrate (DAPS) were prepared and characterised X-ray diffraction (XRD), FT-IR, FT-Raman spectroscopy, and DFT/B3LYP methods. It comprises protonated propyl ammonium moieties (diammonium propyl cations), selenate anions and water molecule which are held together by a number of hydrogen bonds and form infinite chains. The XRD data confirm the transfer of two protons from selenic acid to 1,3-diaminopropane molecule. The DAPS complex is stabilised by the presence of O-H···O and N-H···O hydrogen bonds and the electrostatic interactions as well. The N···O and O···O bond distances are 2.82-2.91 and 2.77 Å, respectively. The FT-IR and FT-Raman spectra of 1,3-diammonium propyl selenate monohydrate are recorded and the complete vibrational assignments have been discussed. The geometry is optimised by B3LYP method using 6-311G, 6-311+G and 6-311+G* basis sets and the energy, structural parameters, vibrational frequencies, IR and Raman intensities are determined. Differential scanning colorimetry (DSC) data were also presented to analyse the possibility of the phase transition. Complete natural bonding orbital (NBO) analysis is carried out to analyse the intramolecular electronic interactions and their stabilisation energies. The electrostatic potential of the complex lies in the range +1.902e × 10-2 to -1.902e × 10-2. The limits of total electron density of the complex is +8.43e × 10-2 to -8.43e × 10-2.
Russo, Marcos G.; Vega Hissi, Esteban G.; Rizzi, Alberto C.; Brondino, Carlos D.; Salinas Ibañez, Ángel G.; Vega, Alba E.; Silva, Humberto J.; Mercader, Roberto; Narda, Griselda E.
2014-03-01
The reaction between the antiulcer agent omeprazole (OMZ) with Fe(III) and Co(II) ions was studied, observing a high ability to form metal complexes. The isolated microcrystalline solid complexes were characterized by elemental analysis, X-ray powder diffraction (XRPD), Scanning Electron Microscopy (SEM), magnetic measurements, thermal study, FTIR, UV-Visible, Mössbauer, electronic paramagnetic resonance (EPR), and DFT calculations. The metal-ligand ratio for both complexes was 1:2 determined by elemental and thermal analysis. FTIR spectroscopy showed that OMZ acts as a neutral bidentate ligand through the pyridinic nitrogen of the benzimidazole ring and the oxygen atom of the sulfoxide group, forming a five-membered ring chelate. Electronic, Mössbauer, and EPR spectra together with magnetic measurements indicate a distorted octahedral geometry around the metal ions, where the coordination sphere is completed by two water molecules. SEM and XRPD were used to characterize the morphology and the crystal nature of the complexes. The most favorable conformation for the Fe(III)-OMZ and Co(II)-OMZ complexes was obtained by DFT calculations by using B3LYP/6-31G(d)&LanL2DZ//B3LYP/3-21G(d)&LanL2DZ basis set. Studies of solubility along with the antibacterial activity against Helicobacter pylori for OMZ and its Co(II) and Fe(III) complexes are also reported. Free OMZ and both metal complexes showed antibacterial activity against H. pylori. Co(II)-OMZ presented a minimal inhibitory concentration ˜32 times lower than that of OMZ and ˜65 lower than Fe(III)-OMZ, revealing its promising potential use for the treatment of gastric pathologies associated with the Gram negative bacteria. The morphological changes observed in the cell membrane of the bacteria after the incubation with the metal-complexes were also analyzed by SEM microscopy. The antimicrobial activity of the complexes was proved by the viability test.
Predicting near-UV electronic circular dichroism in nucleosomal DNA by means of DFT response theory.
Norman, Patrick; Parello, Joseph; Polavarapu, Prasad L; Linares, Mathieu
2015-09-14
It is demonstrated that time-dependent density functional theory (DFT) calculations can accurately predict changes in near-UV electronic circular dichroism (ECD) spectra of DNA as the structure is altered from the linear (free) B-DNA form to the supercoiled N-DNA form found in nucleosome core particles. At the DFT/B3LYP level of theory, the ECD signal response is reduced by a factor of 6.7 in going from the B-DNA to the N-DNA form, and it is illustrated how more than 90% of the individual base-pair dimers contribute to this strong hypochromic effect. Of the several inter-base pair parameters, an increase in twist angles is identified as to strongly contribute to a reduced ellipticity. The present work provides first evidence that first-principles calculations can elucidate changes in DNA dichroism due to the supramolecular organization of the nucleoprotein particle and associates these changes with the local structural features of nucleosomal DNA.
Spectroscopic Investigations and DFT Calculations on 3-(Diacetylamino-2-ethyl-3H-quinazolin-4-one
Directory of Open Access Journals (Sweden)
Yusuf Sert
2016-01-01
Full Text Available The theoretical and experimental vibrational frequencies of 3-(diacetylamino-2-ethyl-3H-quinazolin-4-one (2 were investigated. The experimental Laser-Raman spectrum (4000–100 cm−1 and FT-IR spectrum (4000–400 cm−1 of the newly synthesized compound were recorded in the solid phase. Both the theoretical vibrational frequencies and the optimized geometric parameters such as bond lengths and bond angles have for the first time been calculated using density functional theory (DFT/B3LYP and DFT/M06-2X quantum chemical methods with the 6-311++G(d,p basis set using Gaussian 03 software. The vibrational frequencies were assigned with the help of potential energy distribution (PED analysis using VEDA 4 software. The calculated vibrational frequencies and the optimized geometric parameters were found to be in good agreement with the corresponding reported experimental data. Also, the energies of the lowest unoccupied molecular orbital (LUMO, highest occupied molecular orbital (HOMO, and other related molecular energies for 3-(diacetylamino-2-ethyl-3H-quinazolin-4-one (2 have been investigated using the same computational methods.
Pietropolli Charmet, Andrea; Cornaton, Yann
2018-05-01
This work presents an investigation of the theoretical predictions yielded by anharmonic force fields having the cubic and quartic force constants are computed analytically by means of density functional theory (DFT) using the recursive scheme developed by M. Ringholm et al. (J. Comput. Chem. 35 (2014) 622). Different functionals (namely B3LYP, PBE, PBE0 and PW86x) and basis sets were used for calculating the anharmonic vibrational spectra of two halomethanes. The benchmark analysis carried out demonstrates the reliability and overall good performances offered by hybrid approaches, where the harmonic data obtained at the coupled cluster with single and double excitations level of theory augmented by a perturbational estimate of the effects of connected triple excitations, CCSD(T), are combined with the fully analytic higher order force constants yielded by DFT functionals. These methods lead to reliable and computationally affordable calculations of anharmonic vibrational spectra with an accuracy comparable to that yielded by hybrid force fields having the anharmonic force fields computed at second order Møller-Plesset perturbation theory (MP2) level of theory using numerical differentiation but without the corresponding potential issues related to computational costs and numerical errors.
Synthesis, FTIR, FT-Raman, UV-visible, ab initio and DFT studies on benzohydrazide.
Arjunan, V; Rani, T; Mythili, C V; Mohan, S
2011-08-01
A systematic vibrational spectroscopic assignment and analysis of benzohydrazide (BH) has been carried out by using FTIR and FT-Raman spectral data. The vibrational analysis were aided by electronic structure calculations--ab initio (RHF) and hybrid density functional methods (B3LYP and B3PW91) performed with 6-31G(d,p) and 6-311++G(d,p) basis sets. Molecular equilibrium geometries, electronic energies, IR intensities, harmonic vibrational frequencies, depolarization ratios and Raman activities have been computed. Potential energy distribution (PED) and normal mode analysis have also been performed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed and complete assignment of the observed spectra have been proposed. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λ(max) were determined by time-dependent DFT (TD-DFT) method. The geometrical, thermodynamical parameters and absorption wavelengths were compared with the experimental data. The interactions of carbonyl and hydrazide groups on the benzene ring skeletal modes were investigated. Copyright © 2011 Elsevier B.V. All rights reserved.
Devi, Poornima; Fatma, Shaheen; Bishnoi, Abha; Srivastava, Krishna; Shukla, Shraddha; Kumar, Roop
2018-04-01
A novel 4-(morpholinomethyl)-5-oxo-1-phenylpyrrolidine-3-carboxylic acid has been synthesized and its structural elucidation has been done by UV, FT-IR, 1H and 13C NMR spectroscopy. All quantum chemical calculations were carried out at level of density functional theory (DFT) with B3LYP function using 6-31G (d, p) basis atomic set. AIM approach has been incorporated for the analysis of various intermolecular interactions. Polarizability and hyperpolarizabilities values have been calculated along with the exploration of nonlinear optical properties of the title compound. DFT computed total first static hyperpolarizability (β0 = 0.2747 × 10-30 esu) indicates that title molecule could be an area of interest as an attractive future NLO material. For the analysis of thermal behaviour of title molecule, thermodynamic properties such as heat capacity, entropy and enthalpy change at various temperatures have been calculated. The NBO computations were done for the correlation of possible transitions with the electronic transitions. Electrophilic and nucleophilic regions were identified with the help of MESP plot. Determination of energy gap has been done by using HOMO and LUMO energy values, along with the computation of electronegativity and electrophilicity indices.
International Nuclear Information System (INIS)
Timoshkin, A.Yu.; Suvorov, A.V.; Shefer, G.F.
1999-01-01
By the ab initio and density functional methods the structural characteristics and vibrational spectra of gallium iodide donor-acceptor complexes with pyridine have been calculated. The standard thermodynamic characteristics of GaI 3 Py complex dissociation in gaseous phase have been calculated, as well. Short I-H intramolecular distances suggest that hydrogen iodide elimination with Ga-N chemical bond retention is the first stage of the complex pyrolysis [ru
Energy Technology Data Exchange (ETDEWEB)
Daengngern, Rathawat; Kungwan, Nawee, E-mail: naweekung@gmail.com
2015-11-15
The effect of electron donating and withdrawing substituents on the enol absorption and keto emission spectra of 2-(2′-hydroxyphenyl)benzoxazole (HBO) and its derivatives has been systematically investigated by means of density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. The enol absorption spectra of HBO were simulated by using five different DFTs with various exchange-correlation functions to validate a suitable functional prior to being further used as a method of choice to study the effect of substituents on the spectral characteristics of HBO derivatives. The popular B3LYP (Becke, three-parameter, Lee–Yang–Parr) exchange-correlation functional is found to provide the best desirable result in predicting the absorption spectrum close to experimental data. In the ground state, enol forms of HBO and its derivatives are more stable than those of keto forms, while in the first lowest excited state, keto forms are found to be more stable than their enol forms. Overall, simulated absorption and emission spectra of HBO and its derivatives from TD-B3LYP calculations are in good agreement with the experimental data. For enol, absorption maxima of HBO derivatives having electron-withdrawing groups are red-shift corresponding to their lower HOMO–LUMO energy gaps compared to that of HBO. For keto emission, HBO having electron donating groups (m-MeHBO and MHBO) and withdrawing group (CNHBO) at 4′-position on the phenol fragment as well as electron donating groups (HBOMe and HBOM) at 6-position on the benzoxazole fragment make the position of keto emission peak shift to shorter wavelength (blue-shift). However, HBO derivatives with electron withdrawing groups (HBOF, HBOCl, HBOA and HBOE) at 6-position give redshifted emission compared to the parent compound (HBO). The type of substituent on both 4′- and 6-positions certainly has a pronounced effect on the absorption and emission spectra of HBO derivatives. - Highlights: • Simulated spectra
International Nuclear Information System (INIS)
Daengngern, Rathawat; Kungwan, Nawee
2015-01-01
The effect of electron donating and withdrawing substituents on the enol absorption and keto emission spectra of 2-(2′-hydroxyphenyl)benzoxazole (HBO) and its derivatives has been systematically investigated by means of density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. The enol absorption spectra of HBO were simulated by using five different DFTs with various exchange-correlation functions to validate a suitable functional prior to being further used as a method of choice to study the effect of substituents on the spectral characteristics of HBO derivatives. The popular B3LYP (Becke, three-parameter, Lee–Yang–Parr) exchange-correlation functional is found to provide the best desirable result in predicting the absorption spectrum close to experimental data. In the ground state, enol forms of HBO and its derivatives are more stable than those of keto forms, while in the first lowest excited state, keto forms are found to be more stable than their enol forms. Overall, simulated absorption and emission spectra of HBO and its derivatives from TD-B3LYP calculations are in good agreement with the experimental data. For enol, absorption maxima of HBO derivatives having electron-withdrawing groups are red-shift corresponding to their lower HOMO–LUMO energy gaps compared to that of HBO. For keto emission, HBO having electron donating groups (m-MeHBO and MHBO) and withdrawing group (CNHBO) at 4′-position on the phenol fragment as well as electron donating groups (HBOMe and HBOM) at 6-position on the benzoxazole fragment make the position of keto emission peak shift to shorter wavelength (blue-shift). However, HBO derivatives with electron withdrawing groups (HBOF, HBOCl, HBOA and HBOE) at 6-position give redshifted emission compared to the parent compound (HBO). The type of substituent on both 4′- and 6-positions certainly has a pronounced effect on the absorption and emission spectra of HBO derivatives. - Highlights: • Simulated spectra
Demir, Serkan; Yilmaz, Hakan; Dilimulati, Maowulidan; Andaç, Müberra
2014-06-01
As a neutral carrier component for the preparation of a potentiometric membrane sensor, the affinity and selectivity of the salophen type Schiff base ligand obtained by 1:2 condensation of 2.3-diaminopyridine with salicylaldehyde toward a series of common cations has been fully examined by DFT/B3LYP and integral equation formalism polarizable continum model (IEF-PCM or only given with PCM as default input in the computations) in combination with the experimental data. Both the potentiometric measurements and DFT calculations have exhibited that the ionophore shows appreciable selectivity for Cu(2+) ion over other cations. Four different approaches where the last three are the modified version of each other have been evaluated and compared with potentiometric data. Based upon the results of comparison among the approaches suggested to verify the selective behavior of ionophore toward Cu(2+), PCM implemented approach having a whole computational groundwork has given well-matched results with the observed data and with the method augmented with experimental hydration energies. The foremost interferences were detected by determining potentiometric selectivity coefficients for each metal ion relative to Cu(2+) and compared to the results obtained by the DFT calculations.
Directory of Open Access Journals (Sweden)
El Alamy Aziz
2017-07-01
Full Text Available Eight small molecules based on terthiophene end-capped by several donor groups have been carried out using density functional theory (DFT and time-dependent (TDDFT methods in neutral and doped states. The theoretical ground-state geometry, electronic structure and optical properties of the studied molecules were obtained by the DFT and TD-DFT methods at the B3LYP level with 6-31G(d basis set. Theoretical knowledge of the highest occupied molecular orbital (HOMO, the lowest unoccupied molecular orbital (LUMO energy levels the gap energy (Eg and the open-circuit voltage (Voc of the studied compounds are calculated and discussed. The effects of the donor group substituents on the geometries and optoelectronic properties of these materials are discussed to investigate the relationship between molecular structure and optoelectronic properties. The results of this work suggest some of these materials as a good candidate for organic solar cells. DOI: http://dx.doi.org/10.17807/orbital.v9i3.995
Computational study of AuSi{sub n} (n=1-9) nanoalloy clusters invoking DFT based descriptors
Energy Technology Data Exchange (ETDEWEB)
Ranjan, Prabhat; Kumar, Ajay [Department of Mechatronics, Manipal University Jaipur Dehmi Kalan, Jaipur-303007 (India); Chakraborty, Tanmoy, E-mail: tanmoy.chakraborty@jaipur.manipal.edu, E-mail: tanmoychem@gmail.com [Department of Chemistry, Manipal University Jaipur Dehmi Kalan, Jaipur-303007 (India)
2016-04-13
Nanoalloy clusters formed between Au and Si are topics of great interest today from both scientific and technological point of view. Due to its remarkable catalytic, electronic, mechanical and magnetic properties Au-Si nanoalloy clusters have extensive applications in the field of microelectronics, catalysis, biomedicine, and jewelry industry. Density Functional Theory (DFT) is a new paradigm of quantum mechanics, which is very much popular to study the electronic properties of materials. Conceptual DFT based descriptors have been invoked to correlate the experimental properties of nanoalloy clusters. In this venture, we have systematically investigated AuSi{sub n} (n=1-9) nanoalloy clusters in the theoretical frame of the B3LYP exchange correlation. The experimental properties of AuSi{sub n} (n=1-9) nanoalloy clusters are correlated in terms of DFT based descriptors viz. HOMO-LUMO gap, Electronegativity (χ), Global Hardness (η), Global Softness (S) and Electrophilicity Index (ω). The calculated HOMO-LUMO gap exhibits interesting odd-even alteration behaviour, indicating that even numbered clusters possess higher stability as compare to their neighbour odd numbered clusters. This study also reflects a very well agreement between experimental bond length and computed data.
DFT calculations on electronic properties of ZnO thin films deposited by spray pyrolysis
Energy Technology Data Exchange (ETDEWEB)
Cordeiro, J.M.; Reynoso, V.C.; Azevedo, D.H.M. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil)
2016-07-01
Full text: Introduction - Thin films of Zinc oxide (ZnO) has a wide range of technological applications, as transparent conducting electrodes in solar cells, flat panel displays, and sensors, for example. More recently applications in optoelectronics, like light emitter diodes and laser diodes, due to its large band gap, are been explored. Studies of ZnO thin films are important for these applications. Methodology - In this study thin films of ZnO have been deposited by spray pyrolysis on glass substrate. The films were characterized by XRD and UV-VIS techniques and the electronic properties as a function of the film thickness have been investigated by DFT calculations with B3LYP hybrid potential implemented in the CRYSTAL09 code. Results - The diffractograms obtained for the ZnO thin films as a function of the thickness are shown. The films exhibit a hexagonal wurtzite structure with preferred c-axis orientation in (002) direction of ZnO crystal. A quantum mechanical approach based on the periodic Density Functional Theory (DFT), with B3LYP hybrid potential was used to investigate the electronic structure of the films as a function of the thickness. The CRYSTAL09 code has been used for the calculations on the wurtzite hexagonal structure of ZnO - spatial group P63mc. For optimizing the geometry of the pure ZnO crystal, the experimental lattice parameters were got as follows: a= 0.325 nm, b= 0.325 nm, c= 0.5207 nm with c/a= 1.602. Considering to the calculations of the band structure, it is suggested that the semiconducting properties of ZnO arises from the overlapping of the 4s orbital of the conducting band of Zn and the 2p orbital of the top of valence band of O. Conclusions - The structure of ZnO thin film deposited on glass substrate present preferential orientation in (002) direction. Variation in the optical properties as a function of the film thickness was observed. The band gap energy was determined from optical analysis to be ∼ 3.27 eV. The refractive
International Nuclear Information System (INIS)
Kessentini, A.; Belhouchet, M.; Suñol, J.J.; Abid, Y.; Mhiri, T.
2014-01-01
The crystals of the family of alkylammonuim tetrachloridocuprate (II), (C 5 H 7 N 2 ) 2 CuCl 4 H 2 O, have been grown, structurally characterized and their vibrational as well as optical properties been studied. A preliminary single crystal X-ray diffraction structural analysis has revealed that the title compound belongs to the monoclinic system with space group C2/c. Its unit cell dimensions are: a=8.454 (2) Å, b=14.279 (2) Å, c=14.363 (3) Å, β=95.813 (4)°, with Z=4 and its crystal structure was determined and refined down to R 1 =0.029 and wR 2 =0.080. The crystal lattice is composed of discrete [CuCl 4 ] 2− tetrahedra surrounded by 4-aminopyridinium cations and water molecules which are interconnected by means of hydrogen bonding contacts [N–H…Cl, O–H…Cl and N–H…O]. Furthermore, the room temperature IR and Raman spectra of the title compound were recorded and analyzed. The optimized molecular structure and the vibrational spectra were calculated by the density functional theory (DFT) method using the B3LYP function. The organic–inorganic hybrid crystal thin film can be easily prepared by spin-coating method from the ethanol solution of the (C 5 H 7 N 2 ) 2 CuCl 4 H 2 O perovskite and it showed characteristic absorptions of CuCl-based layered perovskite centered at 288 and 400 nm, as well as the photoluminescence peak at around 443 nm. The unaided-eye-detectable blue luminescence emission comes from the excitonic transition in the CuCl 4 anions. - Highlights: • A new hybrid compound (C 5 H 7 N 2 ) 2 CuCl 4 H 2 O was synthesized. • Vibrational properties were studied by IR and Raman spectroscopy and examined theoretically using the DFT/B3LYP/LanL2DZ level of theory. • The UV–vis spectrum shows two absorption peaks at 288 and at 400 nm. • This compound show a strong blue emission at 443 nm
Energy Technology Data Exchange (ETDEWEB)
Kessentini, A., E-mail: kessentiniabir@gmail.com [Laboratoire Physico-Chimie de l’Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, Université de Sfax, B. P. 1171, 3000 Sfax (Tunisia); Belhouchet, M. [Laboratoire Physico-Chimie de l’Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, Université de Sfax, B. P. 1171, 3000 Sfax (Tunisia); Suñol, J.J. [Departamento De Fisica, Universita de Girona, Compus Montilivi, Girona 17071 (Spain); Abid, Y. [Laboratoire de Physique appliquée, Faculté des Sciences de Sfax, Université de Sfax, B. P. 1171, 3000 Sfax (Tunisia); Mhiri, T. [Laboratoire Physico-Chimie de l’Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, Université de Sfax, B. P. 1171, 3000 Sfax (Tunisia)
2014-05-01
The crystals of the family of alkylammonuim tetrachloridocuprate (II), (C{sub 5}H{sub 7}N{sub 2}){sub 2}CuCl{sub 4}H{sub 2}O, have been grown, structurally characterized and their vibrational as well as optical properties been studied. A preliminary single crystal X-ray diffraction structural analysis has revealed that the title compound belongs to the monoclinic system with space group C2/c. Its unit cell dimensions are: a=8.454 (2) Å, b=14.279 (2) Å, c=14.363 (3) Å, β=95.813 (4)°, with Z=4 and its crystal structure was determined and refined down to R{sub 1}=0.029 and wR{sub 2}=0.080. The crystal lattice is composed of discrete [CuCl{sub 4}]{sup 2−} tetrahedra surrounded by 4-aminopyridinium cations and water molecules which are interconnected by means of hydrogen bonding contacts [N–H…Cl, O–H…Cl and N–H…O]. Furthermore, the room temperature IR and Raman spectra of the title compound were recorded and analyzed. The optimized molecular structure and the vibrational spectra were calculated by the density functional theory (DFT) method using the B3LYP function. The organic–inorganic hybrid crystal thin film can be easily prepared by spin-coating method from the ethanol solution of the (C{sub 5}H{sub 7}N{sub 2}){sub 2}CuCl{sub 4}H{sub 2}O perovskite and it showed characteristic absorptions of CuCl-based layered perovskite centered at 288 and 400 nm, as well as the photoluminescence peak at around 443 nm. The unaided-eye-detectable blue luminescence emission comes from the excitonic transition in the CuCl{sub 4} anions. - Highlights: • A new hybrid compound (C{sub 5}H{sub 7}N{sub 2}){sub 2}CuCl{sub 4}H{sub 2}O was synthesized. • Vibrational properties were studied by IR and Raman spectroscopy and examined theoretically using the DFT/B3LYP/LanL2DZ level of theory. • The UV–vis spectrum shows two absorption peaks at 288 and at 400 nm. • This compound show a strong blue emission at 443 nm.
DEFF Research Database (Denmark)
Fahleson, Tobias; Kauczor, Joanna; Norman, Patrick
2015-01-01
We present a computational study of the magnetic circular dichroism (MCD) spectra in the 200–300 nm wavelength region of purine and its derivative hypoxanthine, as well as of the pyrimidine bases of nucleic acids uracil, thymine, and cytosine, using the B3LYP and CAM–B3LYP functionals. Solvent...
International Nuclear Information System (INIS)
Gutowski, M.; Univ. of Utah, Salt Lake City, UT
1999-01-01
The tetrahedral structure of the lowest triplet state of the WF 4 complex was examined using different variants of the density functional theory (DFT) and conventional ab initio methods. The low-level, conventional, ab initio methods, such as SCF, MP2, MP3, and CISD, predict the tetrahedral structure to be a minimum, whereas the DFT schemes predict an imaginary frequency for the e vibrational mode. Only after recovering electron correlation effects at the MP4 and higher levels, the conventional electronic structure methods also predict the T d structure to be a second-order stationary point. This is not the correlation but the exchange part of the DFT functionals which is responsible for the discrepancy between the DFT and low-level, conventional, ab initio predictions. The lowering of symmetry to C 2v leads to a minimum on the lowest triplet potential energy surface and the electronic energy difference between the T d and C 2v stationary points amounts to 0.85 and 0.96 kcal/mol at the B3LYP and CCSD(T) levels, respectively
Directory of Open Access Journals (Sweden)
Reda M. El-Shishtawy
2016-04-01
Full Text Available The electronic absorption spectra, ground-state geometries and electronic structures of symmetric and asymmetric squaraine dyes (SQD1–SQD4 were investigated using density functional theory (DFT and time-dependent (TD-DFT density functional theory at the B3LYP/6-311++G** level. The calculated ground-state geometries reveal pronounced conjugation in these dyes. Long-range corrected time dependent density functionals Perdew, Burke and Ernzerhof (PBE, PBE1PBE (PBE0, and the exchange functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh with 6-311++G** basis set were employed to examine optical absorption properties. In an extensive comparison between the optical data and DFT benchmark calculations, the BEP functional with 6-311++G** basis set was found to be the most appropriate in describing the electronic absorption spectra. The calculated energy values of lowest unoccupied molecular orbitals (LUMO were 3.41, 3.19, 3.38 and 3.23 eV for SQD1, SQD2, SQD3, and SQD4, respectively. These values lie above the LUMO energy (−4.26 eV of the conduction band of TiO2 nanoparticles indicating possible electron injection from the excited dyes to the conduction band of the TiO2 in dye-sensitized solar cells (DSSCs. Also, aromaticity computation for these dyes are in good agreement with the data obtained optically and geometrically with SQD4 as the highest aromatic structure. Based on the optimized molecular geometries, relative positions of the frontier orbitals, and the absorption maxima, we propose that these dyes are suitable components of photovoltaic DSSC devices.
International Nuclear Information System (INIS)
Tai, Chin-Kuen; Chuang, Wen-Hua; Wang, Bo-Cheng
2013-01-01
The DFT/B3LYP/LANL2DZ and TD-DFT calculations have been performed to generate the optimized structures, electronic and photo-physical properties for the porphyrin and zinc(II)–porphyrin (metalloporphyrin) derivatives. The substituted group and side chain effects for these derivatives are discussed in this study. According to the calculation results, the side chain moiety extends the π-delocalization length from the porphyrin core to the side chain moiety. The substituted group with a stronger electron-donating ability increases the energy level of highest occupied molecular orbital (E HOMO ). The side chain moiety with a lower resonance energy decreases E HOMO , the energy level of the lowest unoccupied molecular orbital (E LUMO ), and the energy gap (E g ) between HOMO and LUMO in the porphyrin and zinc(II)–porphyrin derivatives. The natural bonding orbital (NBO) analysis determines the possible electron transfer mechanism from the electron-donating to -withdrawing groups (the side chain moiety) in these porphyrin derivatives. The projected density of state (PDOS) analysis shows that the electron-donating group affects the electron density distribution in both HOMO and LUMO, and the side chain moiety influence the electron density distribution in LUMO. The calculated photo-physical properties (absorption wavelengths and the related oscillator strength, f) in dichloromethane environment for porphyrin and zinc(II)–porphyrin derivatives have been simulated by using the TD-DFT method within the Polarizable Continuum Model (PCM). The present of both of the substituted group and the side chain moiety in these derivatives results in a red shift and broadening of the range of the absorption peaks of the Q/Soret band as compared to porphin. -- Highlights: • Side chain moiety extends the π-delocalization for the porphyrins. • Substituted group increases the energy of highest occupied molecular orbital. • Side chain moiety influences the Q/Soret band of
International Nuclear Information System (INIS)
Yang, Zhihui; Luo, Shuang; Wei, Zongsu; Ye, Tiantian; Spinney, Richard; Chen, Dong; Xiao, Ruiyang
2016-01-01
The second‒order rate constants (k) of hydroxyl radical (·OH) with polychlorinated biphenyls (PCBs) in the gas phase are of scientific and regulatory importance for assessing their global distribution and fate in the atmosphere. Due to the limited number of measured k values, there is a need to model the k values for unknown PCBs congeners. In the present study, we developed a quantitative structure–activity relationship (QSAR) model with quantum chemical descriptors using a sequential approach, including correlation analysis, principal component analysis, multi−linear regression, validation, and estimation of applicability domain. The result indicates that the single descriptor, polarizability (α), plays an important role in determining the reactivity with a global standardized function of lnk = −0.054 × α ‒ 19.49 at 298 K. In order to validate the QSAR predicted k values and expand the current k value database for PCBs congeners, an independent method, density functional theory (DFT), was employed to calculate the kinetics and thermodynamics of the gas‒phase ·OH oxidation of 2,4′,5-trichlorobiphenyl (PCB31), 2,2′,4,4′-tetrachlorobiphenyl (PCB47), 2,3,4,5,6-pentachlorobiphenyl (PCB116), 3,3′,4,4′,5,5′-hexachlorobiphenyl (PCB169), and 2,3,3′,4,5,5′,6-heptachlorobiphenyl (PCB192) at 298 K at B3LYP/6–311++G**//B3LYP/6–31 + G** level of theory. The QSAR predicted and DFT calculated k values for ·OH oxidation of these PCB congeners exhibit excellent agreement with the experimental k values, indicating the robustness and predictive power of the single–descriptor based QSAR model we developed. - Highlights: • We developed a single−descriptor based QSAR model for ·OH oxidation of PCBs. • We independently validated the QSAR predicted k values of five PCB congeners with the DFT method. • The QSAR predicted and DFT calculated k for the five PCB congeners exhibit excellent agreement. - We developed a single
Zacharias, Adway Ouseph; Varghese, Anitha; Akshaya, K. B.; Savitha, M. S.; George, Louis
2018-04-01
A novel triazole derivative 1-(1-(2,4-difluorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethylidene) thiosemicarbazide was synthesized and subjected to density functional theory (DFT) studies employing B3LYP/6-31+G(d,p) basis set. Characterization was done by FT-IR, Raman, mass, 1H NMR and 13C NMR spectroscopic analyses. The stability of the molecule was evaluated from NBO studies. Delocalization of electron charge density and hyper-conjugative interactions were accountable for the stability of the molecule. The dipole moment (μ), mean polarizabilty (△α) and first order hyperpolarizability (β) of the molecule were calculated. Molecular electrostatic potential studies, HOMO-LUMO and thermodynamic properties were also determined. HOMO and LUMO energies were experimentally determined by Cyclic Voltammetry.
Cortez-Valadez, M.; Fierro, C.; Farias-Mancilla, J. R.; Vargas-Ortiz, A.; Flores-Acosta, M.; Ramírez-Bon, R.; Enriquez-Carrejo, J. L.; Soubervielle-Montalvo, C.; Mani-Gonzalez, P. G.
2016-06-01
The final structure of HfO2 films grown by atomic layer deposition (ALD) after reaction with OH- ions has been analyzed by DFT (density functional theory). The interaction of the precursors: HfCl4 (hafnium tetrachloride), HfI4 (hafnium tetraiodide), TEMA-Hf (tetrakis-ethylmethylamino hafnium), and TDMA-Hf (tetrakis-dimethylamino hafnium) with HO-H was studied employing the B3LYP (Becke 3-parameter, Lee-Yang-Parr) hybrid functional and the PBE (Perdew-Burke-Ernzerhof) generalized gradient functional. The structural evolution at the Si(100) surface has been analyzed by LDA (local density approximation). The structural parameters: bond length and bond angle, and the vibrational parameters for the optimized structures are also reported. The presence of hafnium silicate at the interface was detected. The infrared spectra and structural parameters obtained in this work agree with previously reported experimental results.
Gökce, Halil; Öztürk, Nuri; Ceylan, Ümit; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan
2016-06-15
In this study, the 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule (C7H6N4S) molecule has been characterized by using FT-IR, Laser-Raman, NMR and UV-vis spectroscopies. Quantum chemical calculations have been performed to investigate the molecular structure (thione-thiol tautomerism), vibrational wavenumbers, electronic transition absorption wavelengths in DMSO solvent and vacuum, proton and carbon-13 NMR chemical shifts and HOMOs-LUMOs energies at DFT/B3LYP/6-311++G(d,p) level for all five tautomers of the title molecule. The obtained results show that the calculated vibrational wavenumbers, NMR chemical shifts and UV-vis wavelengths are in a good agreement with experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.
Diwaker
2014-07-01
The electronic, NMR, vibrational, structural properties of a new pyrazoline derivative: 2-(5-(4-Chlorophenyl)-3-(pyridine-2-yl)-4,5-dihydropyrazol-1-yl)benzo[d]thiazole has been studied using Gaussian 09 software package. Using VEDA 4 program we have reported the PED potential energy distribution of normal mode of vibrations of the title compound. We have also reported the 1H and 13C NMR chemical shifts of the title compound using B3LYP level of theory with 6-311++G(2d,2p) basis set. Using time dependent (TD-DFT) approach electronic properties such as HOMO and LUMO energies, electronic spectrum of the title compound has been studied and reported. NBO analysis and MEP surface mapping has also been calculated and reported using ab initio methods.
Vorontsov, Alexander V; Smirniotis, Panagiotis G
2017-08-01
Semiempirical methods pm6 and pm7 as well as density functional theory functionals exchange LSDA, exchange-correlation PW91 and PBE, hybrid B3LYP1 and PBE0 were compared for energy and geometry of thiophene, diethyl sulfide (DES) molecules and their binding to a frozen Ti(OH) 4 (H 2 O) complex having one coordinatively unsaturated Ti 5C site representing small fragment of TiO 2 anatase (001) surface. PBE0/6-31G(d) with DFT-D3 dispersion correction was the best method for description of thiophene and DES molecules geometries as comparison with experimental data demonstrated. Semiempirical methods pm6 and pm7 resulted in only three of four possible binding configurations of thiophene with the Ti(OH) 4 (H 2 O) complex while pm7 described correctly the enthalpy and all configurations of DES binding with the Ti(OH) 4 (H 2 O) complex. SBKJC pseudopotential and LSDA with and without dispersion correction produced flawed results for many configurations. PBE0 and PBE with and without dispersion correction and PW91 with 6-31G(d) basis set systematically produced dependable results for thiophene and DES binding to the Ti(OH) 4 (H 2 O) complex. PBE0-D3/6-31G(d), B3LYP1-D3/6-31G(d), and PBE-D3/6-31G(d) gave best match of binding energy for thiophene while PBE0/6-31G(d) gave best match of DES binding energy as comparison with CCSD(T) energy demonstrated. On the basis of the superior results obtained with PBE0/6-31G(d), it is the recommended method for modeling of adsorption over TiO 2 surfaces. Such a conclusion is in agreement with recent literature.
Karthikeyan, N; Joseph Prince, J; Ramalingam, S; Periandy, S
2015-05-15
In the present research work, the FT-IR, FT-Raman and (13)C and (1)H NMR spectra of the α-Methylstyrene were recorded. The observed fundamental frequencies in finger print as well as functional group regions were assigned according to their uniqueness region. The Gaussian computational calculations are carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The impact of the presence of vinyl group in phenyl structure of the compound is investigated. The modified vibrational pattern of the molecule associated vinyl group was analyzed. Moreover, (13)C NMR and (1)H NMR were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Sangeetha, V.; Govindarajan, M.; Kanagathara, N.; Marchewka, M. K.; Gunasekaran, S.; Anbalagan, G.
2014-01-01
A new organic-organic salt, 3-nitrophenol-1,3,5-triazine-2,4,6-triamine (2/1) (3-NPM) has been synthesized by slow evaporation technique at room temperature. Single crystal X-ray diffraction analysis reveals that 3-NPM crystallizes in orthorhombic system with centrosymmetric space group Pbca and the lattice parameters are a = 15.5150(6) Å, b = 12.9137(6) Å, c = 17.8323(6) Å, α = β = γ = 90° and V = 3572.8(2) (Å)3. The geometry, fundamental vibrational frequencies are interpreted with the aid of structure optimization and normal coordinate force field calculations based on density functional theory (DFT) B3LYP/6-311G(d,p) method. IR and Raman spectra of 3-NPM have been recorded and analyzed. The complete vibrational assignments are made on the basis of potential energy distribution (PED). The electric dipole moment, polarizability and the first order hyperpolarizability values of the 3-NPM have been calculated. 1H and 13C NMR chemical shifts are calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP method with 6-311G (d,p) basis set. Moreover, molecular electrostatic potential (MEP) and thermodynamic properties are performed. Mulliken and Natural charges of the title molecule are also calculated and interpreted. Thermal decomposition behavior of 3-NPM has been studied by means of thermogravimetric analysis. The dielectric measurements on the powdered sample have been carried out and the variation of dielectric constant and dielectric loss at different frequencies of the applied field has been studied and the results are discussed in detail.
Saravanan, S; Balachandran, V
2014-09-15
This study represents an integral approach towards understanding the electronic and structural aspects of 3-tert-butyl-4-methoxyphenol (TBMP). Fourier-transform Infrared (FT-IR) and Fourier-transform Raman (FT-Raman) spectra of TBMP was recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The molecular structures, vibrational wavenumbers, infrared intensities and Raman activities were calculated using DFT (B3LYP and LSDA) methods using 6-311++G (d,p) basis set. The most stable conformer of TBMP was identified from the computational results. The assignments of vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the scaled quantum mechanical force field (SQMFF) methodology. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of TBMP have been discussed. The stability and charge delocalization of the molecule was studied by Natural Bond Orbital (NBO) analysis. UV-Visible spectrum and effects of solvents have been discussed and the electronic properties such as HOMO and LUMO energies were determined by time-dependent TD-DFT approach with B3LYP/6-311++G (d,p) level of theory. The molecule orbital contributions are studied by density of energy states (DOSs). The reactivity sites are identified by mapping the electron density into electrostatic potential surface (MEP). Mulliken analysis of atomic charges is also calculated. The thermodynamic properties at different temperatures were calculated, revealing the correlations between standard heat capacities, standard entropy and standard enthalpy changes with temperatures. Global hardness, global softness, global electrophilicity and ionization potential of the title compound are determined. Copyright © 2014 Elsevier B.V. All rights reserved.
Uludağ, Nesimi; Serdaroğlu, Goncagül
2018-03-01
This study examines the synthesis of azocino[4,3-b]indole structure, which constitutes the tetracyclic framework of uleine, dasycarpidoneand tubifolidineas well as ABDE substructure of the strychnosalkaloid family. It has been synthesized by Fischer indolization of 2 and through the cylization of 4 by 2,3-dichlor-5-6-dicyanobenzoquinone (DDQ). 1H and 1C NMR chemical shifts have been predicted with GIAO approach and the calculated chemical shifts show very good agreement with observed shifts. FT-IR spectroscopy is important for the analysis of functional groups of synthesized compounds and we also supported FT-IR vibrational analysis with computational IR analysis. The vibrational spectral analysis was performed at B3LYP level of the theory in both the gas and the water phases and it was compared with the observed IR values for the important functional groups. The DFT calculations have been conducted to determine the most stable structure of the 1,2,3,4,5,6,7-Hexahydro-1,5-methanoazocino [4,3-b] indole (5). The Frontier Molecular Orbital Analysis, quantum chemical parameters, physicochemical properties have been predicted by using the same theory of level in both gas phase and the water phase, at 631 + g** and 6311++g** basis sets. TD- DFT calculations have been performed to predict the UV- Vis spectral analysis for this synthesized molecule. The Natural Bond Orbital (NBO) analysis have been performed at B3LYP level of theory to elucidate the intra-molecular interactions such as electron delocalization and conjugative interactions. NLO calculations were conducted to obtain the electric dipole moment and polarizability of the title compound.
DFT computational analysis of piracetam
Rajesh, P.; Gunasekaran, S.; Seshadri, S.; Gnanasambandan, T.
2014-11-01
Density functional theory calculation with B3LYP using 6-31G(d,p) and 6-31++G(d,p) basis set have been used to determine ground state molecular geometries. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of piracetam is calculated using B3LYP/6-31G(d,p) method on the finite-field approach. The stability of molecule has been analyzed by using NBO/NLMO analysis. The calculation of first hyperpolarizability shows that the molecule is an attractive molecule for future applications in non-linear optics. Molecular electrostatic potential (MEP) at a point in the space around a molecule gives an indication of the net electrostatic effect produced at that point by the total charge distribution of the molecule. The calculated HOMO and LUMO energies show that charge transfer occurs within these molecules. Mulliken population analysis on atomic charge is also calculated. Because of vibrational analysis, the thermodynamic properties of the title compound at different temperatures have been calculated. Finally, the UV-Vis spectra and electronic absorption properties are explained and illustrated from the frontier molecular orbitals.
Prashanth, J.; Reddy, Byru Venkatram
2018-03-01
The Fourier transform infrared (FTIR) spectra of organic compounds 4-fluoro-2-azido-1-phenylethanone (FAP), 4-chloro-2-azido-1-phenylethanone (CAP) and 4-bromo-2-azido-1-phenylethanone (BAP) have been recorded in the region 4000-400 cm-1. The optimized molecular structure for global minimum energy of the titled molecules is determined by evaluating torsional potentials as a function of rotation angle about free rotation bonds among the substituent groups subjecting them to DFT employing B3LYP functional with 6-311++G (d,p) basis set. The vibrational frequencies along with infrared intensities are computed by SQM procedure. The rms error between observed and calculated frequencies is found to be 9.27, 8.17 and 7.95 cm-1 for FAP, CAP and BAP, respectively which shows good agreement between experimental and scaled values of calculated frequencies obtained by DFT. The vibrational assignments of all the fundamental bands of each molecule are made unambiguously using PED and eigen vectors obtained in the computations. The computed values of dipole moment, polarizability and hyperpolarizability indicate that the titled molecules exhibit NLO behaviour and hence may be considered for potential applicants for the development of NLO materials. HOMO and LUMO energies evaluated in the study demonstrate chemical stability of the molecules. NBO analysis is made to study the stability of the molecules arising from hyper conjugative interactions and charge delocalization. The molecular electrostatic surface potential (MESP) and thermodynamic parameters are also evaluated.
Thomas, Renjith; Hossain, Mossaraf; Mary, Y. Sheena; Resmi, K. S.; Armaković, Stevan; Armaković, Sanja J.; Nanda, Ashis Kumar; Ranjan, Vivek Kumar; Vijayakumar, G.; Van Alsenoy, C.
2018-04-01
Solvent-free synthesis pathway for obtaining two imidazole derivatives (2-chloro-1-(4-methoxyphenyl)-4,5-dimethyl-1H-imidazole (CLMPDI) and 1-(4-bromophenyl)-2-chloro-4,5-dimethyl-1H-imidazole (BPCLDI) has been reported in this work, followed by detailed experimental and computational spectroscopic characterization and reactivity study. Spectroscopic methods encompassed IR, FT-Raman and NMR techniques, with the mutual comparison of experimentally and computationally obtained results at DFT/B3LYP level of theory. Reactivity study based on DFT calculations encompassed molecular orbitals analysis, followed by calculations of molecular electrostatic potential (MEP) and average local ionization energy (ALIE) values, Fukui functions and bond dissociation energies (BDE). Additionally, the stability of title molecules in water has been investigated via molecular dynamics (MD) simulations, while interactivity with aspulvinonedimethylallyl transferase protein has been evaluated by molecular docking procedure. CLMPDI compound showed antimicrobial activity against all four bacterial strain in both gram positive and gram negative bacteria while, BPCLDI showed only in gram positive bacteria, Staphylococcus Aureus (MTCC1144). The first order hyperpolarizability of CLMPDI and BPCLDI are 20.15 and 6.10 times that of the standard NLO material urea.
Directory of Open Access Journals (Sweden)
Beena Varghese
2017-01-01
Full Text Available A novel ethoxy derivative of an amino acid chemosensor, 3-naphthyl-1-phenyl-5-(2ʹ-fluoro-5ʹ-nitrophenyl-2-pyrazoline (NPFNP, has been synthesized and characterized by different spectroscopic methods. A single crystal of the ethoxy derivative, 3-naphthyl-1-phenyl-5-(2ʹ-ethoxy-5ʹ-nitrophenyl-2-pyrazoline NPENP, has been obtained and characterized. The structure holds interest as it carries biologically active pyrazoline as a central ring attaching to electron donating and withdrawing substituents. The major motivation for this work was to gain detailed insight into the structural parameters of this compound for investigating the influence of crystal packing and geometrical dimensions on optical properties. Time-dependent DFT calculations have been employed for comparing the XRD data with theoretical parameters. The results show that the DFT method at B3LYP/6-31G level can well reproduce the structure of the title compound.
A DFT study of the effects of Sc doping on electronic and optical properties of CdS nanoparticles
Directory of Open Access Journals (Sweden)
Ur Rehman Shafiq
2015-12-01
Full Text Available In the present work a systematic study was carried out to understand the influence of Sc doping on electronic and optical properties of CdS nanoparticles. The geometry optimization and symmetry computation for CdS and Sc doped CdS nanoparticles using Density Functional Theory (DFT on B3LYP level with the QZ4P for Cd and DZ2P for sulphur and Sc were performed by Amsterdam Density Functional (ADF. The results show that HOMO-LUMO gap as well as electronic and optical properties of CdS clusters vary with Sc doping. The HOMO-LUMO gap is affected by the dopant and its value decreases to 0.6 eV. Through considering the numerical integration scheme in the ADF package, we investigated different vibrational modes and our calculated Raman and IR spectra are consistent with the reported result. The calculated IR and Raman peaks of CdS and Sc doped CdS clusters were in the range of 100 to 289 cm−1, 60 cm−1 to 350 cm−1 and 99 cm−1 to 282 cm−1, 60 cm−1 to 350 cm−1, respectively, which was also confirmed by experiment as well as a blue shift occurrence. Subsequently, for deeper research of pure and doped CdS clusters, their absorption spectra were calculated using time-dependent DFT method.
Naseem, Saira; Khalid, Muhammad; Tahir, Muhammad Nawaz; Halim, Mohammad A.; Braga, Ataualpa A. C.; Naseer, Muhammad Moazzam; Shafiq, Zahid
2017-09-01
Herein, we present the synthesis of novel xanthene-based hydrazone (1). The chemical structure of 1 was resolved using spectroscopic techniques such as NMR, FT-IR, UV-VIS and X-ray crystallographic approaches. X-ray diffraction analysis shows that the compound (1) crystallizes in triclinic crystal lattice with the Pbar1 space group and diffused to form multi-layered structure due to non-covalent interactions such as intramolecular hydrogen bonding (H.B). In addition to experimental investigation, density functional theory (DFT) calculation with M06-2X/6-31G(d,p) and B3LYP/6-31G(d,p) level of theories was performed on compound (1) to obtain optimized geometry, spectroscopic and electronic properties. DFT optimized geometry shows good agreement with the experimental XRD structure. The hyper conjugative interactions and hydrogen bonding network are responsible for the stability of compound (1) as revealed by natural bond orbital (NBO) calculation. Moreover, hydrogen bonding network in the dimer is confirmed by FT-IR and thermodynamic studies showing excellent agreement with XRD and NBO findings. TD-DFT/UV-VIS analysis provides insight that maximum excitation is found in 1 which shows good agreement with experimental UV-VIS result. The global reactivity parameters are calculated using the energies of frontier molecular orbitals also disclosed that the compound is more stable might be due to hydrogen bonding network. Experimental and molecular docking studies indicated that this compound has anti-bacterial and anti-diabetic properties. The binding affinity of this compound against the multidrug efflux pump subunit AcrB OS=Escherichia coli (strain K12) and Human Pancreatic Alpha-Amylase is -9.2 and -10.00 kcal/mol which are higher than the control drugs. Pi-Pi, Pi-anaion, amide-pi and pi-alkyl bonds play key role in drug-protein complexes.
Adsorption of alanine with heteroatom substituted fullerene for solar cell application: A DFT study.
Dheivamalar, S; Sugi, L; Ravichandran, K; Sriram, S
2018-05-14
C 20 is the most important fullerene cage and alanine is the simplest representation of a backbone unit of the protein. The absorption feasibility of alanine molecule in the Si-doped C 20 and B-doped C 20 fullerenes has been studied based on calculated electronic properties of fullerenes using density functional theory (DFT). In this work, we explore the ability of Si-doped C 20 , B-doped C 20 fullerene to interact with alanine at the DFT-B3LYP/6-31G, RHF level of theory. We find that noticeable structural change takes place in C 20 when one of its carbon is substituted with Si or B. The molecular geometry, electronic properties and vibrational analysis have also been performed on the title compounds. The NMR study reveals the aromaticity of the pure and doped fullerene compounds. Stability of the doped fullerene - alanine compound arises from hyper conjugative interactions. It leads to one of the major property of bioactivity, charge transfer and delocalization of charge and this properties has been analyzed using Natural Bond Orbital (NBO) analysis. The energy gap of the doped fullerene reveals that there is a decrease in the size of energy gap significantly, making them more reactive as compared to C 20 fullerene. Theoretical studies of the electronic spectra by using time - dependent density functional theory (TD-DFT) method were helpful to interpret the observed electronic transition state. We aim to optimize the performance of the solar cells by altering the frontier orbital energy gaps. Considering all studied properties, it may be inferred that the applicability of C 20 fullerene as the non-linear optical (NLO) material and its NLO property would increase on doping fullerene with Si and B atom. Specifically C 19 Si would be better among them. Copyright © 2018. Published by Elsevier B.V.
1,7-Cyclization of 1-diazo-2,4-pentadiene and its heteroanalogues: DFT study
Subbotina, Julia O.; Bakulev, V. A.; Herges, R.; Fabian, W. M. F.
1,7-Dipolar cyclizations of 1-diazo-2,4-pentadiene 1a and its heteroanalogues 1b,c and 4c were studied using density functional theory (DFT). Although the heteroanalogue 1c has an appropriate electronic structure to allow for pseudopericyclic cyclization, natural bond order (NBO) analysis has provided evidence for the electrocyclic ring closure. Magnetic criteria (anisotropy of the induced current density [ACID], nucleus-independent chemical shifts [NICS]) confirmed the pericyclic character of the located transition states 2a,c and 5c. The activation barriers for the cyclization of 1-diazo-2,4-pentadiene 1a and its aza analogues 1c, 4c are 3.3, 8.2, and 12.3 kcal/mol at the B3LYP/6-31G(d) level, respectively. The higher barrier of the 1c?3c and 4c?3c reactions compared with 1a?3a is in line with the Hammond postulate. The out-of-plane distorted geometry of the cyclic product is an additional factor arguing against a pseudopericyclic mechanism.
Energy Technology Data Exchange (ETDEWEB)
Asath, R. Mohamed; Premkumar, S.; Mathavan, T.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, N.M.S.S.V.N College, Madurai-625019, Tamilnadu (India); Rekha, T. N. [PG & Research Department of Physics, Lady Doak College, Madurai 625002, Tamilnadu (India); Jawahar, A. [Department of Chemistry, N.M.S.S.V.N College, Madurai-625019, Tamilnadu (India)
2016-05-23
The conformational analysis was carried out for 6-aminonicotinamide (ANA) using potential energy surface scan method and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the related molecular properties were calculated. The ultraviolet-visible spectrum was simulated for both in the gas phase and liquid phase (ethanol) and the π to π* electronic transition was predicted. The nonlinear optical (NLO) activity was studied by means of the first order hyperpolarizability value, which was 8.61 times greater than the urea and the natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ANA molecule is a promising candidate for the NLO materials.
Asath, R. Mohamed; Premkumar, S.; Rekha, T. N.; Jawahar, A.; Mathavan, T.; Benial, A. Milton Franklin
2016-05-01
The conformational analysis was carried out for 6-aminonicotinamide (ANA) using potential energy surface scan method and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the related molecular properties were calculated. The ultraviolet-visible spectrum was simulated for both in the gas phase and liquid phase (ethanol) and the л to л* electronic transition was predicted. The nonlinear optical (NLO) activity was studied by means of the first order hyperpolarizability value, which was 8.61 times greater than the urea and the natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ANA molecule is a promising candidate for the NLO materials.
Suhasini, M.; Sailatha, E.; Gunasekaran, S.; Ramkumaar, G. R.
2015-04-01
A systematic vibrational spectroscopic assignment and analysis of Carbamazepine has been carried out by using FT-IR, FT-Raman and UV spectral data. The vibrational analysis were aided by electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) performed with standard basis set 6-31G(d,p). Molecular equilibrium geometries, electronic energies, natural bond order analysis, harmonic vibrational frequencies and IR intensities have been computed. A detailed interpretation of the vibrational spectra of the molecule has been made on the basis of the calculated Potential Energy Distribution (PED) by VEDA program. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λmax were determined by HF/6-311++G(d,p) Time-Dependent method. The thermodynamic functions of the title molecule were also performed using the RHF and DFT methods. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the 13C and 1H NMR chemical shifts of Carbamazepine.
Vibrational spectroscopic study and NBO analysis on tranexamic acid using DFT method
Muthu, S.; Prabhakaran, A.
2014-08-01
In this work, we reported the vibrational spectra of tranexamic acid (TA) by experimental and quantum chemical calculation. The solid phase FT-Raman and FT-IR spectra of the title compound were recorded in the region 4000 cm-1 to 100 cm-1 and 4000 cm-1 to 400 cm-1 respectively. The molecular geometry, harmonic vibrational frequencies and bonding features of TA in the ground state have been calculated by using density functional theory (DFT) B3LYP method with standard 6-31G(d,p) basis set. The scaled theoretical wavenumber showed very good agreement with the experimental values. The vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes. Stability of the molecule, arising from hyperconjugative interactions and charge delocalization, has been analyzed using Natural Bond Orbital (NBO) analysis. The results show that ED in the σ* and π* antibonding orbitals and second order delocalization energies E(2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electrostatic potential mapped onto an isodensity surface has been obtained. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures were calculated in gas phase.
Structural, spectral, DFT and biological studies on macrocyclic mononuclear ruthenium (II) complexes
Muthukkumar, M.; Kamal, C.; Venkatesh, G.; Kaya, C.; Kaya, S.; Enoch, Israel V. M. V.; Vennila, P.; Rajavel, R.
2017-11-01
Macrocyclic mononuclear ruthenium (II) complexes have been synthesized by condensation method [Ru (L1, L2, L3) Cl2] L1 = (C36 H31 N9), L2= (C42H36N8), L3= (C32H32 N8)]. These ruthenium complexes have been established by elemental analyses and spectroscopic techniques (Fourier transform infrared spectroscopy (FT-IR), 1H- nuclear magnetic resonance (NMR), 13C- NMR and Electrospray ionization mass spectrometry (ESI-MS)). The coordination mode of the ligand has been confirmed and the octahedral geometry around the ruthenium ion has been revealed. Binding affinity and binding mode of ruthenium (II) complexes with Bovine serum Albumin (BSA) have been characterized by Emission spectra analysis. UV-Visible and fluorescence spectroscopic techniques have also been utilized to examine the interaction between ligand and its complexes L1, L2, & L3 with BSA. Chemical parameters and molecular structure of Ru (II) complexes L1H, L2H, & L3H have been determined by DFT coupled with B3LYP/6-311G** functional in both the gaseous and aqueous phases.
A DFT study for the structural and electronic properties of Zn m Se n nanoclusters
Yadav, Phool Singh; Pandey, Dheeraj Kumar
2012-09-01
An ab initio study has been performed for the stability, structural and electronic properties of 19 small zinc selenide Zn m Se n ( m + n = 2-4) nanoclusters. Out of these nanoclusters, one nanocluster is found to be unstable due to its imaginary vibrational frequency. A B3LYP-DFT/6-311G(3df) method is used in the optimization of the geometries of the nanoclusters. We have calculated the zero point energy (ZPE), which is ignored by the other workers. The binding energies (BE), HOMO-LUMO gaps and bond lengths have been obtained for all the optimized nanoclusters. For the same value of ` m' and ` n', we designate the most stable structure the one, which has maximum final binding energy (FBE) per atom. The adiabatic and vertical ionization potentials (IP) and electron affinities (EA), dipole moments and charge on atoms have been investigated for the most stable nanoclusters. For the same value of ` m' and ` n', the nanocluster containing maximum number of Se atoms is found to be most stable.
Antioxidant behavior of mearnsetin and myricetin flavonoid compounds — A DFT study
Sadasivam, K.; Kumaresan, R.
2011-06-01
The molecular characteristics of two naturally occurring flavonoid compounds mearnsetin and myricetin have been computed using density functional theory (DFT) approach with B3LYP/6-311G(d,p) level of theory. The computation and analysis of bond dissociation enthalpy magnitudes for all the OH sites for both the compounds clearly denotes the contribution of the B-ring for the antioxidant activity. The analysis has also indicated the higher values of BDE on the C5-OH radical species in both the compounds. The computed vibrational frequency analysis indicates the absence of imaginary frequency in the neutral as well as radical species of both the flavonoid compounds. The ionisation potential (IP) analysis was found to be within the range of the IP of synthetic food additives. In addition, various molecular descriptors such as electron affinity, hardness, softness, electronegativity, electrophilic index have also been calculated and the validity of Koopman's theorem is verified. The plot of frontier molecular orbital and spin density distribution analysis for neutral and the corresponding radical species for both the compounds have been computed and interpreted. The polar nature and their polarizing capacity are well established through the analysis of dipole moment and polarisability magnitudes.
International Nuclear Information System (INIS)
Vafiadis, Anastasios P.; Bakalbassis, Evangelos G.
2005-01-01
The conformers of the 2-, 3- and 4-substituted phenolic cation radicals, 2-X-, 3-X- and 4-X-ArOH ·+ , and the respective phenoxyl radicals, ArO · , the intramolecular hydrogen bond strength (ΔH intra ) estimate along with the electronic effects of five electron withdrawing (EWG) and eight electron donating groups (EDG) on the gas-phase O-H proton dissociation enthalpies, (PDEs), of the short-lived, 2-X-ArOH ·+ , (involved in the single-electron transfer antioxidant mechanism), are studied at the DFT/B3LYP level of theory. EWG result to smaller PDEs, hence to stronger acidity; EDG to weaker acidity. The deprotonation antioxidant mechanistic step is not a rate-controlling step for 2-X-ArOH to scavenge free radicals. Approximate estimations of the ΔPDEs (hence acidities as well) can be derived from calculated structural and/or vibrational frequency values. ΔH intra s correlate reasonably with geometrical parameters for the closed-shell, neutral counterparts, in contrast with previous estimates
International Nuclear Information System (INIS)
Carneiro, J. Walkimar de M.; Dias, Jacques F.; Seidl, Peter R.; Tostes, J. Glauco R.
2002-01-01
Our previous DFT/GIAO calculations on different types of alcohols reveal that the rotation of the hydroxyl group can affect the chemical shift of carbons and hydrogens close to the substituent in different ways. Besides the steric and electrostatic effects that have been widely studied, hyperconjugation with the lone pairs on oxygen of the hydroxyl group leads to changes in bond lengths and angles as well as to different charge distributions. As all three of these factors also affect chemical shifts, we undertook a systematic investigation of their relative contributions to the chemical shifts of ethanol, a molecule in which there is minimum interference among these factors. Calculations by the B3LYP method at the 6-31G(d) level for ethanol conformers corresponding to a rotation around the carbon-oxygen bond at 30 dec increments are used to show how relative contributions vary with the dihedral angle formed between the carbon-carbon and oxygen-hydrogen bonds (C-C-O-H). Largest contributions to carbon chemical shifts can be attributed to changes in bond lengths while for hydrogen chemical shifts also contribute significantly differences in charge distribution. (author)
First principles DFT study of dye-sensitized CdS quantum dots
Energy Technology Data Exchange (ETDEWEB)
Jain, Kalpna; Singh, Kh. S. [Department of Physics, D. J. College, Baraut -250611, U.P. (India); Kishor, Shyam, E-mail: shyam387@gmail.com [Department of Chemistry, J. V. College, Baraut -250611, U.P. (India); Josefesson, Ida; Odelius, Michael [Fysikum, Albanova University Center, Stockholm University, S-106 91 Stockholm (Sweden); Ramaniah, Lavanya M. [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)
2014-04-24
Dye-sensitized quantum dots (QDs) are considered promising candidates for dye-sensitized solar cells. In order to maximize their efficiency, detailed theoretical studies are important. Here, we report a first principles density functional theory (DFT) investigation of experimentally realized dye - sensitized QD / ligand systems, viz., Cd{sub 16}S{sub 16}, capped with acetate molecules and a coumarin dye. The hybrid B3LYP functional and a 6−311+G(d,p)/LANL2dz basis set are used to study the geometric, energetic and electronic properties of these clusters. There is significant structural rearrangement in all the clusters studied - on the surface for the bare QD, and in the positions of the acetate / dye ligands for the ligated QDs. The density of states (DOS) of the bare QD shows states in the band gap, which disappear on surface passivation with the acetate molecules. Interestingly, in the dye-sensitised QD, the HOMO is found to be localized mainly on the dye molecule, while the LUMO is on the QD, as required for photo-induced electron injection from the dye to the QD.
Directory of Open Access Journals (Sweden)
FANG FANG JIAN
2010-09-01
Full Text Available The main aim of this study was to investigate the relationship between mIn tA new Ni(II complex of bisglycinato-bis[p-(hydroxylmethylpy-ridine] was synthesized and characterized by elemental analysis, IR, UV–Vis spectroscopy and X-ray single crystal diffraction analysis. The thermal stability of the title complex was also determined. The complex adopts a distorted octahedral geometry and possesses inversion symmetry with the Ni(II ion as the center of inversion. Density function theory (DFT calculations of the structure, electronic absorption spectra, electron structure and natural population analysis (NPA at the B3LYP/LANL2DZ level of theory were performed. The predicted geometric parameters and electronic spectra were compared with the experimental values and they supported each other. The NPA results indicate that the electronic transitions were mainly derived from the contribution of an intra-ligand (IL transition, a ligand-to-metal charge transfer (LMCT transition and a d-d transition. The electron structure calculations suggest that the central Ni(II ion uses its 4s and 3d orbitals to form covalent bonds with coordinated N and O atoms. The calculated bond orders are also consistent with the thermal decomposition results. Based on vibrational analysis, the thermodynamic properties of the title complex were predicted and the correlative equations between these thermodynamic properties and temperature are also reported.
Tanak, Hasan; Marchewka, Mariusz K.; Drozd, Marek
2013-03-01
The experimental and theoretical vibrational spectra of Bis(melaminium) terephthalate dihydrate were studied. The Fourier transform infrared (FT-IR) spectra of the Bis(melaminium) terephthalate dihydrate and its deuterated analogue were recorded in the solid phase. The molecular geometry and vibrational frequencies of Bis(melaminium) terephthalate dihydrate in the ground state have been calculated by using the density functional method (B3LYP) with 6-31++G(d,p) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. The molecule contains the weak hydrogen bonds of Nsbnd H⋯O, Nsbnd H⋯N and Osbnd H⋯O types, and those bonds are calculated with DFT method. In addition, molecular electrostatic potential, frontier molecular orbitals and natural bond orbital analysis of the title compound were investigated by theoretical calculations. The lack of the second harmonic generation (SHG) confirms the presence of macroscopic center of inversion.
Tanak, H.; Pawlus, K.; Marchewka, M. K.
2016-10-01
Melaminium N-acetylglycinate dihydrate, an organic material has been synthesized and characterized by X-ray diffraction, FT-IR, and FT-Raman spectroscopies for the protiated and deuteriated crystals. The title complex crystallizes in the triclinic system, and the space group is P-1 with a = 5.642(1) Å, b = 7.773(2) Å, c = 15.775(3) Å, α = 77.28(1)°, β = 84.00(1)°, γ = 73.43(1)° and Z = 2. The molecular geometry, vibrational frequencies and intensity of the vibrational bands have been interpreted with the aid of structure optimization based on density functional method (B3LYP) with the 6-311++G(d,p) basis set. The obtained vibrational wavenumbers and optimized geometric parameters were seen to be in good agreement with the experimental data. The intermolecular hydrogen bonding interactions of the title compound have been investigated using the natural bonding orbital analysis. It reveals that the O-H···O, N-H···N and N-H···O intermolecular interactions significantly influence crystal packing of this molecule. The non-linear optical properties are also addressed theoretically. The predicted NLO properties of the title compound are much greater than ones of urea. In addition, DFT calculations of the title compound, molecular electrostatic potential, thermodynamic properties, frontier orbitals and chemical reactivity descriptors were also performed at 6-311++G(d,p) level of theory.
Arjunan, V.; Kalaivani, M.; Marchewka, M. K.; Mohan, S.
2013-08-01
The crystal structure investigations of melamine with phosphorous acid, namely melaminium dihydrogenphosphite monohydrate (C3N6H7·H2PO3·H2O) have been investigated by means of single crystal X-ray diffraction method. The title compound crystallizes in monoclinic crystal system, and the space group is P21/c with a = 10.069 Å, b = 21.592 Å, c = 12.409 Å and Z = 12. The vibrational assignments and analysis of melaminium dihydrogen phosphite monohydrate have also been performed by FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical simulations were performed with DFT (B3LYP) method using 6-31G**, cc-pVTZ, and 6-311++G** basis sets to determine the energy, structural, thermodynamic parameters and vibrational frequencies of melaminium dihydrogen phosphite monohydrate. The hydrogen atom from phosphorous acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak Osbnd H···O and Nsbnd H···O hydrogen bonds shows notable vibrational effects.
Thermodynamic DFT analysis of natural gas.
Neto, Abel F G; Huda, Muhammad N; Marques, Francisco C; Borges, Rosivaldo S; Neto, Antonio M J C
2017-08-01
Density functional theory was performed for thermodynamic predictions on natural gas, whose B3LYP/6-311++G(d,p), B3LYP/6-31+G(d), CBS-QB3, G3, and G4 methods were applied. Additionally, we carried out thermodynamic predictions using G3/G4 averaged. The calculations were performed for each major component of seven kinds of natural gas and to their respective air + natural gas mixtures at a thermal equilibrium between room temperature and the initial temperature of a combustion chamber during the injection stage. The following thermodynamic properties were obtained: internal energy, enthalpy, Gibbs free energy and entropy, which enabled us to investigate the thermal resistance of fuels. Also, we estimated an important parameter, namely, the specific heat ratio of each natural gas; this allowed us to compare the results with the empirical functions of these parameters, where the B3LYP/6-311++G(d,p) and G3/G4 methods showed better agreements. In addition, relevant information on the thermal and mechanic resistance of natural gases were investigated, as well as the standard thermodynamic properties for the combustion of natural gas. Thus, we show that density functional theory can be useful for predicting the thermodynamic properties of natural gas, enabling the production of more efficient compositions for the investigated fuels. Graphical abstract Investigation of the thermodynamic properties of natural gas through the canonical ensemble model and the density functional theory.
DEFF Research Database (Denmark)
Kuhlman, Thomas Scheby; Mikkelsen, Kurt V.; Møller, Klaus Braagaard
2009-01-01
to a reference CC3 calculation revealing a better description of the excited states by CAM-B3LYP than that of B3LYP. The Λ parameter introduced by Peach et al. [M.J.G. Peach, P. Benfield, T. Helgaker, D.J. Tozer, J. Chem. Phys. 128 (2008) 044118] does not always reveal the problematic charge-resonance states...
Li, Amanda; Muddana, Hari S; Gilson, Michael K
2014-04-08
Quantum mechanical (QM) calculations of noncovalent interactions are uniquely useful as tools to test and improve molecular mechanics force fields and to model the forces involved in biomolecular binding and folding. Because the more computationally tractable QM methods necessarily include approximations, which risk degrading accuracy, it is essential to evaluate such methods by comparison with high-level reference calculations. Here, we use the extensive Benchmark Energy and Geometry Database (BEGDB) of CCSD(T)/CBS reference results to evaluate the accuracy and speed of widely used QM methods for over 1200 chemically varied gas-phase dimers. In particular, we study the semiempirical PM6 and PM7 methods; density functional theory (DFT) approaches B3LYP, B97-D, M062X, and ωB97X-D; and symmetry-adapted perturbation theory (SAPT) approach. For the PM6 and DFT methods, we also examine the effects of post hoc corrections for hydrogen bonding (PM6-DH+, PM6-DH2), halogen atoms (PM6-DH2X), and dispersion (DFT-D3 with zero and Becke-Johnson damping). Several orders of the SAPT expansion are also compared, ranging from SAPT0 up to SAPT2+3, where computationally feasible. We find that all DFT methods with dispersion corrections, as well as SAPT at orders above SAPT2, consistently provide dimer interaction energies within 1.0 kcal/mol RMSE across all systems. We also show that a linear scaling of the perturbative energy terms provided by the fast SAPT0 method yields similar high accuracy, at particularly low computational cost. The energies of all the dimer systems from the various QM approaches are included in the Supporting Information, as are the full SAPT2+(3) energy decomposition for a subset of over 1000 systems. The latter can be used to guide the parametrization of molecular mechanics force fields on a term-by-term basis.
Muthu, S; Elamurugu Porchelvi, E
2013-11-01
The Fourier Transform Infrared (FT-IR) and FT-Raman of N,N-diethyl-4-methylpiperazine-1-carboxamide (NND4MC) have been recorded and analyzed. The structure of the compound was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-31G(d,p) and 6-311G(d,p) basis sets. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title molecule have been constructed. The detailed interpretation of the vibrational spectra has been carried out with aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that electron density (ED) in the σ(*) and π(*) antibonding orbitals and second order delocalization energies (E2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electronic dipole moment (μD) and the first hyperpolarizability (βtot) values of the investigated molecule were computed using Density Functional Theory (DFT/B3LYP) with 6-31G(d,p) and 6-311G(d,p) basis sets. The calculated results also show that the NND4MC molecule may have microscopy nonlinear optical (NLO) behavior with non zero values. Mulliken atomic charges of NND4MC were calculated. The (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. The UV-Vis spectrum of the compound was recorded. The theoretical electronic absorption spectra have been calculated by using CIS, TD-DFT methods. A study on the electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) were also performed. Copyright © 2013 Elsevier B
Spectroscopic, DFT, and XRD Studies of Hydrogen Bonds in N-Unsubstituted 2-Aminobenzamides.
Mphahlele, Malose Jack; Maluleka, Marole Maria; Rhyman, Lydia; Ramasami, Ponnadurai; Mampa, Richard Mokome
2017-01-04
The structures of the mono- and the dihalogenated N -unsubstituted 2-aminobenzamides were characterized by means of the spectroscopic (¹H-NMR, UV-Vis, FT-IR, and FT-Raman) and X-ray crystallographic techniques complemented with a density functional theory (DFT) method. The hindered rotation of the C(O)-NH₂ single bond resulted in non-equivalence of the amide protons and therefore two distinct resonances of different chemical shift values in the ¹H-NMR spectra of these compounds were observed. 2-Amino-5-bromobenzamide ( ABB ) as a model confirmed the presence of strong intramolecular hydrogen bonds between oxygen and the amine hydrogen. However, intramolecular hydrogen bonding between the carbonyl oxygen and the amine protons was not observed in the solution phase due to a rapid exchange of these two protons with the solvent and fast rotation of the Ar-NH₂ single bond. XRD also revealed the ability of the amide unit of these compounds to function as a hydrogen bond donor and acceptor simultaneously to form strong intermolecular hydrogen bonding between oxygen of one molecule and the NH moiety of the amine or amide group of the other molecule and between the amine nitrogen and the amide hydrogen of different molecules. DFT calculations using the B3LYP/6-311++G(d,p) basis set revealed that the conformer ( A ) with oxygen and 2-amine on the same side predominates possibly due to the formation of a six-membered intramolecular ring, which is assisted by hydrogen bonding as observed in the single crystal XRD structure.
Extensive TD-DFT Benchmark: Singlet-Excited States of Organic Molecules.
Jacquemin, Denis; Wathelet, Valérie; Perpète, Eric A; Adamo, Carlo
2009-09-08
Extensive Time-Dependent Density Functional Theory (TD-DFT) calculations have been carried out in order to obtain a statistically meaningful analysis of the merits of a large number of functionals. To reach this goal, a very extended set of molecules (∼500 compounds, >700 excited states) covering a broad range of (bio)organic molecules and dyes have been investigated. Likewise, 29 functionals including LDA, GGA, meta-GGA, global hybrids, and long-range-corrected hybrids have been considered. Comparisons with both theoretical references and experimental measurements have been carried out. On average, the functionals providing the best match with reference data are, one the one hand, global hybrids containing between 22% and 25% of exact exchange (X3LYP, B98, PBE0, and mPW1PW91) and, on the other hand, a long-range-corrected hybrid with a less-rapidly increasing HF ratio, namely LC-ωPBE(20). Pure functionals tend to be less consistent, whereas functionals incorporating a larger fraction of exact exchange tend to underestimate significantly the transition energies. For most treated cases, the M05 and CAM-B3LYP schemes deliver fairly small deviations but do not outperform standard hybrids such as X3LYP or PBE0, at least within the vertical approximation. With the optimal functionals, one obtains mean absolute deviations smaller than 0.25 eV, though the errors significantly depend on the subset of molecules or states considered. As an illustration, PBE0 and LC-ωPBE(20) provide a mean absolute error of only 0.14 eV for the 228 states related to neutral organic dyes but are completely off target for cyanine-like derivatives. On the basis of comparisons with theoretical estimates, it also turned out that CC2 and TD-DFT errors are of the same order of magnitude, once the above-mentioned hybrids are selected.
Understanding the HIV-1 protease reactivity with DFT: what do we gain from recent functionals?
Garrec, J; Sautet, P; Fleurat-Lessard, P
2011-07-07
The modeling of HIV-1 plays a crucial role in the understanding of its reactivity and its interactions with specific drugs. In this work, we propose a medium sized model to test the ability of a variety of quantum chemistry approaches to provide reasonable geometric parameters and energetics for this system. Although our model is large enough to include the main polarizing groups of the active site, it is small enough to be used within full quantum studies up to the second order Møller-Plesset (MP2) level with extrapolations to coupled cluster CCSD(T) level. These high level calculations are used as reference to assess the ability of electronic structure methods (semiempirical and DFT) to provide accurate geometries and energies for the HIV-1 protease reaction. All semiempirical methods fail to describe the geometry of the protease active site. Within DFT, pure generalized gradient approximation (GGA) functionals have difficulty in reproducing the reaction energy and underestimate the barrier. Hybrid and/or meta GGA approaches do not yield a consistent improvement. The best results are obtained with hybrid GGA B3LYP or X3LYP and with hybrid meta GGA functionals with a fraction of exact exchange around 30-40%, such as M06, B1B95, or BMK functionals. On the basis of these results, we propose an accurate and computationally efficient strategy, employing quantum chemistry methods. This is applied here to study the protonation state of the reaction intermediate and could be easily used in further QM/MM studies.
De(side chain) model of epothilone: bioconformer interconversions DFT study.
Rusinska-Roszak, Danuta; Lozynski, Marek
2009-07-01
Using ab initio methods, we have studied conformations of the de(sidechain)de(dioxy)difluoroepothilone model to quantify the effect of stability change between the exo and endo conformers of the epoxy ring. The DFT minimization of the macrolactone ring reveals four low energy conformers, although MP2 predicted five stable structures. The model tested with DFT hybride functional (B3LYP/6-31+G(d,p)) exhibits the global minimum for one of the exo forms (C), experimentally observed in the solid state, but unexpectedly with the MP2 electron correlation method for the virtual endo form (W). Using the QST3 technique, several pathways were found for the conversion of the low energy conformers to the other low energy exo representatives, as well as within the endo analog subset. The potential energy relationships obtained for several exo forms suggest a high conformational mobility between three, experimentally observed, conformers. The high rotational barrier, however, excludes direct equilibrium with experimental EC-derived endo form S. The highest calculated transition state for the conversion of the most stable exo M interligand to the endo S form is approximately a 28 kcal/mol above the energy of the former. The two-step interconversion of the exo H conformer to the endo S requires at least 28 kcal/mol. Surprisingly, we found that the transition state energy of the H form to the virtual endo W has the acceptable value of about 9 kcal/mol and the next energy barrier for free interconversion of endo W to endo S is 13 kcal/mol.
Spectroscopic, DFT, and XRD Studies of Hydrogen Bonds in N-Unsubstituted 2-Aminobenzamides
Directory of Open Access Journals (Sweden)
Malose Jack Mphahlele
2017-01-01
Full Text Available The structures of the mono- and the dihalogenated N-unsubstituted 2-aminobenzamides were characterized by means of the spectroscopic (1H-NMR, UV-Vis, FT-IR, and FT-Raman and X-ray crystallographic techniques complemented with a density functional theory (DFT method. The hindered rotation of the C(O–NH2 single bond resulted in non-equivalence of the amide protons and therefore two distinct resonances of different chemical shift values in the 1H-NMR spectra of these compounds were observed. 2-Amino-5-bromobenzamide (ABB as a model confirmed the presence of strong intramolecular hydrogen bonds between oxygen and the amine hydrogen. However, intramolecular hydrogen bonding between the carbonyl oxygen and the amine protons was not observed in the solution phase due to a rapid exchange of these two protons with the solvent and fast rotation of the Ar–NH2 single bond. XRD also revealed the ability of the amide unit of these compounds to function as a hydrogen bond donor and acceptor simultaneously to form strong intermolecular hydrogen bonding between oxygen of one molecule and the NH moiety of the amine or amide group of the other molecule and between the amine nitrogen and the amide hydrogen of different molecules. DFT calculations using the B3LYP/6-311++G(d,p basis set revealed that the conformer (A with oxygen and 2-amine on the same side predominates possibly due to the formation of a six-membered intramolecular ring, which is assisted by hydrogen bonding as observed in the single crystal XRD structure.
Jover, Jesús
2017-11-08
DFT calculations are widely used for computing properties, reaction mechanisms and energy profiles in organometallic reactions. A qualitative agreement between the experimental and the calculated results seems to usually be enough to validate a computational methodology but recent advances in computation indicate that a nearly quantitative agreement should be possible if an appropriate DFT study is carried out. Final percent product concentrations, often reported as yields, are by far the most commonly reported properties in experimental metal-mediated synthesis studies but reported DFT studies have not focused on predicting absolute product amounts. The recently reported stoichiometric pentafluoroethylation of benzoic acid chlorides (R-C 6 H 4 COCl) with [(phen)Cu(PPh 3 )C 2 F 5 ] (phen = 1,10-phenanthroline, PPh 3 = triphenylphosphine) has been used as a case study to check whether the experimental product concentrations can be reproduced by any of the most popular DFT approaches with high enough accuracy. To this end, the Gibbs energy profile for the pentafluoroethylation of benzoic acid chloride has been computed using 14 different DFT methods. These computed Gibbs energy profiles have been employed to build kinetic models predicting the final product concentration in solution. The best results are obtained with the D3-dispersion corrected B3LYP functional, which has been successfully used afterwards to model the reaction outcomes of other simple (R = o-Me, p-Me, p-Cl, p-F, etc.) benzoic acid chlorides. The product concentrations of more complex reaction networks in which more than one position of the substrate may be activated by the copper catalyst (R = o-Br and p-I) are also predicted appropriately.
Alotaibi, Mshari A.; Alharthi, Abdulrahman I.; Zierkiewicz, Wiktor; Akhtar, Muhammad; Tahir, Muhammad Nawaz; Mazhar, Muhammad; Isab, Anvarhusein A.; Ahmad, Saeed
2017-04-01
A zinc(II) complex of 1,3-diaminopropane (Dap), [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]n (1) has been prepared and characterized by elemental analysis, IR, 1H &13C NMR spectroscopy, and its crystal structure was determined by X-ray crystallography. The crystal structure of 1 consists of two types of molecules, a discrete monomer and a polymeric one. In the monomeric unit, the zinc atom is bound to one terminal Dap molecule and to two N-bound thiocyanate ions, while in the polymeric unit, Dap acts as a bridging ligand forming a linear chain. The Zn(II) ions in both assume a slightly distorted tetrahedral geometry. The structures of two systems: the [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]3 complex as a model of 1 and [Zn(Dap)(NCS)2]4 as a simple polymeric structure were optimized with the B3LYP-D3 method. The DFT results support that the experimentally determined structure (1) is more stable in comparison to a simple polymeric structure, [Zn(Dap)(NCS)2]n (2). The interaction energies (ΔE) for NCS anions obtained by B3LYP-D3 method are about -145 kcal mol-1, while the calculated ΔE values for neutral organic ligands are about twice smaller. The X-ray structure of 1 shows that the complex is stabilized mainly by hydrogen bonds. We also found that weak chalcogen bonds play an additional role in stabilization of compound 1. Some of the intermolecular S⋯N distances are smaller than the sum of the van der Waals radii of the corresponding atoms. To the best of our knowledge, this is the first study that shows the structure where the trivalent sulfur is involved in formation of a S⋯π chalcogen bond. The NBO and NCI analyses confirm the existence of this kind of interactions.
Sert, Yusuf; Singer, L. M.; Findlater, M.; Doğan, Hatice; Çırak, Ç.
2014-07-01
In this study, the experimental and theoretical vibrational frequencies of a newly synthesized tert-Butyl N-(thiophen-2yl)carbamate have been investigated. The experimental FT-IR (4000-400 cm-1) spectrum of the molecule in the solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with the 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The vibrational frequencies have been assigned using potential energy distribution (PED) analysis by using VEDA 4 software. The computational optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with related literature results. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and are depicted.
Govindasamy, P; Gunasekaran, S
2015-01-01
In this work, the vibrational spectral analysis was carried out by using FT-Raman and FT-IR spectroscopy in the range 4000-50 cm(-1) and 4000-450 cm(-1) respectively for 4-(6-methoxynaphthalen-2-yl) butan-2-one (abbreviated as 4MNBO) molecule. Theoretical calculations were performed by density functional theory (DFT/B3LYP) method using 6-311G(d,p) and 6-311++G(d,p) basis sets. The difference between the observed and calculated wavenumber value of most of the fundamentals were very small. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The UV-Vis spectrum was recorded in the methanol solution. The energy, wavelength and oscillator's strength were calculated by Time Dependent Density Functional Theory (TD-DFT) and matched to the experimental findings. The intramolecular contacts have been interpreted using natural bond orbital (NBO) and natural localized molecular orbital (NLMO) analysis. Thermodynamic properties of 4MNBO at different temperature have been calculated. The molecular electrostatic potential surface (MESP) and Frontier molecular orbital's (FMO's) analysis were investigated using theoretical calculations. Copyright © 2015 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
De Angelis, Filippo; Fantacci, Simona; Selloni, Annabella
2008-01-01
We present a theoretical study of the lineup of the LUMO of Ru(II)-polypyridyl (N3 and N719) molecular dyes with the conduction band edge of a TiO 2 anatase nanoparticle. We use density functional theory (DFT) and the Car-Parrinello scheme for efficient optimization of the dye-nanoparticle systems, followed by hybrid B3LYP functional calculations of the electronic structure and time-dependent DFT (TDDFT) determination of the lowest vertical excitation energies. The electronic structure and TDDFT calculations are performed in water solution, using a continuum model. Various approximate procedures to compute the excited state oxidation potential of dye sensitizers are discussed. Our calculations show that the level alignment for the interacting nanoparticle-sensitizer system is very similar, within about 0.1 eV, to that for the separated TiO 2 and dye. The excellent agreement of our results with available experimental data indicates that the approach of this work could be used as an efficient predictive tool to help the optimization of dye-sensitized solar cells.
Mack, John; Asano, Yoshiaki; Kobayashi, Nagao; Stillman, Martin J
2005-12-21
The first magnetic circular dichroism (MCD) spectra are reported for tetraphenyltetraacenaphthoporphyrin (TPTANP). The impact on the electronic structure of steric interactions between the fused acenaphthalene rings and the meso-tetraphenyl substituents is explored based on an analysis of the optical spectra of the Zn(II) complex (ZnTPTANP) and the free base dication species ([H4TPTANP]2+). In the case of ZnTPTANP, significant folding of the porphyrinoid ligand induces a highly unusual MCD-sign reversal providing the first direct spectroscopic evidence of ligand nonplanarity. Density functional theory (DFT) geometry optimizations for a wide range of Zn(II) porphyrinoids based on the B3LYP functional and TD-DFT calculations of the associated UV-visible absorption spectra are reported, allowing a complete assessment of the MCD data. TPTANP complexes are found to fall into a class of cyclic polyenes, termed as soft MCD chromophores by Michl (J. Pure Appl. Chem. 1980, 52, 1549.), since the signs of the Faraday A1 terms observed in the MCD spectrum are highly sensitive to slight structural changes. The origin of an unusually large red shift of the main B (or Soret) band of MTPTANP (the most red shifted ever reported for fused-ring-expanded metal porphines) and of similar red shifts observed in the spectra of other peripherally crowded porphyrinoid complexes is also explored and explained on this basis.
Arjunan, V; Mohan, S
2009-03-01
The Fourier transform infrared (FTIR) and FT-Raman spectra of 2-chloro-4-methylaniline and 2-chloro-6-methylaniline have been measured in the range 4000-400 and 4000-100cm(-1), respectively. Utilising the observed FTIR and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes of the compounds were carried out. The vibrational frequency which were determined experimentally are compared with those obtained theoretically from ab initio HF and DFT gradient calculations employing the HF/6-31G(d,p) and B3LYP/6-31G(d,p) methods for optimised geometries. The geometries and normal modes of vibration obtained from the HF and DFT methods are in good agreement with the experimental data. The normal co-ordinate analysis was also carried out on the basis of ab initio force fields utilising Wilson's FG matrix method. The manifestations of NH-pi interactions and the influence of bulky chlorine and methyl group on the vibrational modes of the amino group are investigated.
Azam, Faizul; Alabdullah, Nada Hussin; Ehmedat, Hadeel Mohammed; Abulifa, Abdullah Ramadan; Taban, Ismail; Upadhyayula, Sreedevi
2018-06-01
Aggregation of amyloid beta (Aβ) protein considered as one of contributors in development of Alzheimer's disease (AD). Several investigations have identified the importance of non-steroidal anti-inflammatory drugs (NSAIDs) as Aβ aggregation inhibitors. Here, we have examined the binding interactions of 24 NSAIDs belonging to eight different classes, with Aβ fibrils by exploiting docking and molecular dynamics studies. Minimum energy conformation of the docked NSAIDs were further optimized by density functional theory (DFT) employing Becke's three-parameter hybrid model, Lee-Yang-Parr (B3LYP) correlation functional method. DFT-based global reactivity descriptors, such as electron affinity, hardness, softness, chemical potential, electronegativity, and electrophilicity index were calculated to inspect the expediency of these descriptors for understanding the reactive nature and sites of the molecules. Few selected NSAID-Aβ fibrils complexes were subjected to molecular dynamics simulation to illustrate the stability of these complexes and the most prominent interactions during the simulated trajectory. All of the NSAIDs exhibited potential activity against Aβ fibrils in terms of predicted binding affinity. Sulindac was found to be the most active compound underscoring the contribution of indene methylene substitution, whereas acetaminophen was observed as least active NSAID. General structural requirements for interaction of NSAIDs with Aβ fibril include: aryl/heteroaryl aromatic moiety connected through a linker of 1-2 atoms to a distal aromatic group. Considering these structural requirements and electronic features, new potent agents can be designed and developed as potential Aβ fibril inhibitors for the treatment of AD.
Arjunan, V; Govindaraja, S Thillai; Ravindran, P; Mohan, S
2014-01-01
The complete vibrational assignment and analysis of N-carbethoxyphthalimide were carried out using the experimental FTIR and FT-Raman data in the range 4000-450 and 4000-100 cm(-1), respectively along with quantum chemical studies of the compound using DFT-B3LYP gradient calculations employing the 6-31G**, 6-311++G** and cc-pVDZ basis sets. The 1H (400 MHz; CDCl3) and 13C (100 MHz;CDCl3) nuclear magnetic resonance (NMR) spectra were also recorded. Due to the partial ionic nature of the carbonyl group, the carbon atoms C1 and C3 in NCEP show downfield effect and the corresponding observed chemical shift of both are observed at 163.76 ppm and the carbon atom C16 in the carbethoxy group also give signal in the downfield at 148.45 ppm. The active sites are determined by molecular electrostatic potential. The possible electronic transitions are determined by HOMO and LUMO orbital shapes and their energies. The structure-chemical reactivity relations of the compound were determined through chemical potential, global hardness, global softness, electronegativity, electrophilicity and local reactivity descriptors by conceptual DFT methods. Copyright © 2013 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Gasiorski, P.; Danel, K.S.; Matusiewicz, M.; Uchacz, T.; Kuźnik, W.; Piatek, Ł.; Kityk, A.V.
2012-01-01
Highlights: ► Cyclic voltammetry study of heteroazulene derivative PTNA. ► DFT/TDDFT/PCM calculations of molecular geometry and electronic states in PTNA. ► TDDFT/PCM calculations of the absorption and fluorescence spectra in PTNA. ► Comparison between TDDFT/PCM calculated and measured optical spectra. - Abstract: Paper reports the DFT/TDDFT study on the electronic structure and spectral properties of the seven-membered annulated heteroazulene derivative 6-phenyl-6H-5,6,7-triazadibenzo[f,h]naphtho[3,2,1-cd]azulene (PTNA) by means of polarizable continuum model (PCM) and Lippert–Mataga–Onsager reaction field (LM-ORF) model at the B3LYP/6-31+G(d,p) level of theory. The results of calculations are compared with the measured optical absorption and fluorescence spectra as well as with the cyclic voltammetry data. The DFT/TDDFT methods exhibit rather good quantitative agreement regarding the spectral position of the first absorption band; the discrepancy between the experiment and theory is less than 0.1 eV. As for the fluorescence emission the TDDFT calculations underestimate the transition energy of about 0.45 eV. The discrepancy should be attributed to insufficient accuracy of the TDDFT optimization in the excited state. In the polar solvent environment, all the TDDFT/PCM approaches give the bathochromic (red) shift for the fluorescence emission and the hypsochromic (blue) shift for the optical absorption in accordance with the experimental observation. As for the fluorescence emission fairly good agreement with the experiment provides the hybrid approach being the combination of the TDDFT/PCM optimization with the semiempirical electronic structure calculations by PM3 method and solvation LM-ORF model predicting the emission energy in different solvents with the accuracy better than 0.06 eV.
Zając, A.; Dymińska, L.; Lorenc, J.; Ptak, M.; Hanuza, J.
2018-03-01
Silver phytate IP6, IP6Ag, IP6Ag2 and IP6Ag3 complexes in the solid state have been synthesized changing the phosphate to metal mole ratio. The obtained products have been characterized by means of chemical and spectroscopic studies. Attenuated total reflection Fourier transform infrared technique and Raman microscope were used in the measurements. These results were discussed in terms of DFT (Density Functional Theory) quantum chemical calculations using the B3LYP/6-31G(d,p) approach. The molecular structures of these compounds have been proposed on the basis of group theory and geometry optimization taking into account the shape and the number of the observed bands corresponding to the stretching and bending vibrations of the phosphate group and metal-oxygen polyhedron. The role of inter- and intra-hydrogen bonds in stabilization of the structure has been discussed. It was found that three types of hydrogen bonds appear in the studied compounds: terminal, and those engaged in the inter- and intra-molecular interactions. The Fermi resonance as a result of the strong intra-molecular Osbnd H⋯O hydrogen bonds was discovered. Electron absorption spectra have been measured to characterize the electron properties of the studied complexes and their local symmetry.
Directory of Open Access Journals (Sweden)
Amina A. Soayed
2015-03-01
Full Text Available Condensation of barbituric acid with hydrazine hydrate yielded barbiturichydrazone (L which was characterized using IR, 1H NMR and mass spectra. The Co(II, Ni(II and Cu(II complexes derived from this ligand have been synthesized and structurally characterized by elemental analyses, spectroscopic methods (IR, UV–Vis and ESR and thermal analyses (TGA, DTG and DTA and the structures were further elucidated using quantum chemical density functional theory. Complexes of L were found to have the ML.nH2O stoichiometry with either tetrahedral or octahedral geometry. The ESR data showed the Cu(II complex to be in a tetragonal geometry. Theoretical investigation of the electronic structure of metal complexes at the TD-DFT/B3LYP level of theory has been carried out and discussed. The fundamental vibrational wavenumbers were calculated and a good agreement between observed and scaled calculated wavenumbers was achieved. Thermal studies were performed to deduce the stabilities of the ligand and complexes. Thermodynamic parameters, such as the order of reactions (n, activation energy ΔE∗, enthalpy of reaction ΔH∗ and entropy ΔS∗ were calculated from DTA curves using Horowitz–Metzger method. The ligand L and its complexes have been screened for their antifungal and antibacterial activities and were found to possess better biological activities compared to those of unsubstituted barbituric acid complexes.
Prasad, Bhim Bali; Rai, Garima
2013-03-01
In this study, both experimental and theoretical vibrational spectra of template (hydroxyurea, HU), monomer (N-(4,6-bisacryloyl amino-[1,3,5] triazine-2-yl-)-acryl amide, TAT), and HU-TAT complexes were compared and these were respectively found to be in good agreement. Binding energies of HU, when complexed with different monomers, were computed using second order Moller Plesset theory (MP2) at 6-311++G(d,p) level both in the gas as well as solution phases. HU is an antineoplastic agent extensively being used in the treatment of polycythaemia Vera and thrombocythemia. It is also used to reduce the frequency of painful attacks in sickle cell anemia. It has antiretroviral property in disease like AIDS. All spectral characterizations were made using Density Functional Theory (DFT) at B3LYP employing 6-31+g(2d, 2p) basis set. The theoretical values for 13C and 1H NMR chemical shifts were found to be in accordance with the corresponding experimental values. Of all different monomers studied for the synthesis of molecularly imprinted polymer (MIP) systems, the monomer TAT (2 mol) was typically found to have a best binding score requisite for complexation with HU (1 mol) at the ground state.
X-ray, MP2 and DFT studies of the structure and vibrational spectra of trigonellinium chloride
International Nuclear Information System (INIS)
Szafran, M.; Koput, J.; Dega-Szafran, Z.; Katrusiak, A.; Pankowski, M.; Stobiecka, K.
2003-01-01
The effects of hydrogen bonding, inter- and intramolecular electrostatic interactions on the conformation of trigonellinium chloride, TRGH...Cl, in the crystal and on that of a single molecule have been studied by X-ray diffraction, FT-IR, Raman, 1 H and 13 C NMR spectroscopies, and by MP2 and DFT calculations. In the crystal, the Cl - anion is connected with protonated trigonelline via hydrogen bond, O-H...Cl - =2.915(3) Angst, and three N + ...Cl - intermolecular electrostatic interactions. In a single molecule, the Cl - anion is also engaged in a slightly longer hydrogen bond, O-H...Cl - =2.948-3.019 Angst, but only in one type of intramolecular electrostatic interaction. The optimized bond lengths and bond angles at the MP2 and B3LYP levels of theory are in good agreement with the X-ray data, except conformation of the COOH group, which is cis (syn) in the crystal and trans (anti) in the single molecule. The probable assignments for the experimental solid state vibrational spectra of TRGH.Cl and TRGD.Cl based on the calculated MP2/cc-pVDZ frequencies and intensities were made. The effect of quaternization of nicotinic acid, its salt and amide on chemical shifts of the ring protons and carbons is analyzed
Asath, R. Mohamed; Premkumar, S.; Rekha, T. N.; Jawahar, A.; Mathavan, T.; Benial, A. Milton Franklin
2016-05-01
The conformational analysis was carried out for 2-amino-3-chloro-5-trifluoromethylpyridine using potential energy surface (PES) scan and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program package. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness of the molecule were carried out. The nonlinear optical (NLO) activity was studied and the first order hyperpolarizability value was computed, which was 3.48 times greater than the urea. The natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ACTP molecule is a promising candidate for NLO materials.
Sienkiewicz-Gromiuk, Justyna
2018-01-01
The DFT studies were carried out with the B3LYP method utilizing the 6-31G and 6-311++G(d,p) basis sets depending on whether the aim of calculations was to gain the geometry at equilibrium, or to calculate the optimized molecular structure of (benzylthio)acetic acid (Hbta) in the forms of monomer and dimer. The minimum conformational energy search was followed by the potential energy surface (PES) scan of all rotary bonds existing in the acid molecule. The optimized geometrical monomeric and dimeric structures of the title compound were compared with the experimental structural data in the solid state. The detailed vibrational interpretation of experimental infrared and Raman bands was performed on the basis of theoretically simulated ESFF-scaled wavenumbers calculated for the monomer and dimer structures of Hbta. The electronic characteristics of Hbta is also presented in terms of Mulliken atomic charges, frontier molecular orbitals and global reactivity descriptors. Additionally, the MEP and ESP surfaces were computed to predict coordination sites for potential metal complex formation.
Harroun, Scott G.; Zhang, Yaoting; Chen, Tzu-Heng; Ku, Ching-Rong; Chang, Huan-Tsung
2017-04-01
3-Methyladenine and 7-methyladenine are biomarkers of DNA damage from exposure to methylating agents. For example, the concentration of 3-methyladenine increases significantly in the urine of cigarette smokers. Surface-enhanced Raman spectroscopy (SERS) has shown much potential for detection of biomolecules, including DNA. Much work has been dedicated to the canonical nucleobases, with comparatively fewer investigations of modified DNA and modified DNA nucleobases. Herein, Raman spectroscopy and SERS are used to examine the adsorption orientations of 3-methyladenine and 7-methyladenine on Ag nanoparticles. Density functional theory (DFT) calculations at the B3LYP level are used to support the conclusions via simulated spectra of the nucleobases and of Ag+/nucleobase complexes. The results herein show that 7-methyladenine adsorbs upright via its N3 and N9 atoms side, similarly to adenine. 3-Methyladenine adsorbs in a very tilted or flat orientation on the Ag nanoparticles. These findings will be useful for future SERS or other nanoparticle-based bioanalytical assays for detection of these methyladenines or other modified nucleobases.
Energy Technology Data Exchange (ETDEWEB)
Gerosa, Matteo [Department of Energy, Politecnico di Milano, via Ponzio 34/3, 20133 Milano (Italy); Di Valentin, Cristiana; Pacchioni, Gianfranco [Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milan (Italy); Bottani, Carlo Enrico, E-mail: carlo.bottani@polimi.it [Department of Energy, Politecnico di Milano, via Ponzio 34/3, 20133 Milano (Italy); Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano (Italy); Onida, Giovanni [Dipartimento di Fisica dell’ Universita’ degli Studi di Milano and European Theoretical Spectroscopy Facility (ETSF), Via Celoria 16, 20133 Milan (Italy)
2015-09-21
We investigate the long-standing problem of hole localization at the Al impurity in quartz SiO{sub 2}, using a relatively recent DFT hybrid-functional method in which the exchange fraction is obtained ab initio, based on an analogy with the static many-body COHSEX approximation to the electron self-energy. As the amount of the admixed exact exchange in hybrid functionals has been shown to be determinant for properly capturing the hole localization, this problem constitutes a prototypical benchmark for the accuracy of the method, allowing one to assess to what extent self-interaction effects are avoided. We obtain good results in terms of description of the charge localization and structural distortion around the Al center, improving with respect to the more popular B3LYP hybrid-functional approach. We also discuss the accuracy of computed hyperfine parameters, by comparison with previous calculations based on other self-interaction-free methods, as well as experimental values. We discuss and rationalize the limitations of our approach in computing defect-related excitation energies in low-dielectric-constant insulators.
Energy Technology Data Exchange (ETDEWEB)
Shokuhi Rad, Ali, E-mail: a.shokuhi@gmail.com [Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of); Sani, Emad; Binaeian, Ehsan [Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of); Peyravi, Majid; Jahanshahi, Mohsen [Faculty of Chemical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of)
2017-04-15
Highlights: • Adsorption of three ether molecules on the surface of Ga-doped graphene has been investigated. • High degree of adsorption for all analytes is found. • Ga-doped graphene shows p-type semiconductor property upon adsorption of ether molecules. - Abstract: In this study, we used density functional theory (DFT) to search on the adsorption properties of three important compounds of ether family; diethyl ether (DEE), ethyl methyl ether (EME), and dimethyl ether (DME) on the surface of Gallium doped graphene (GaG). We used three functionals (B3LYP, wb97xd, and MPW1PW91) for optimization and calculation of adsorption energy. After fully optimization, we scrutinized on the charge allocations on the adsorbed ethers as well as GaG (at the area of interaction) based on natural bond orbitals (NBO). Besides, we have calculated the amount of charge transfer upon adsorption of each analyte. We revel that GaG is an ideal adsorbent for chemisorption of all above-mentioned ethers. There is a little difference between the values of adsorption; −123.5, −120, and −118.3 kJ/mol (based on wb97xd) for DEE, EME, and DME, respectively. We found significant changes in the electronic structure of both adsorbent and adsorbate upon adsorption. Moreover, results of charge analyses confirm GaG is a p-type semiconductor.
Directory of Open Access Journals (Sweden)
F. Kiani
2017-07-01
Full Text Available Analytical measurement of materials requires exact knowledge of their acid dissociation constant (pKa values. In recent years, quantum mechanical calculations have been extensively used to study of acidities in the aqueous solutions and the results were compared with the experimental values. In this study, a theoretical study was carried out on xylenol orange (in water solution by ab initio method. We calculated the pKa values of xylenol orange in water, using high-level ab initio (PM3, DFT (HF, B3LYP/6-31+G(d and SCRF methods. The experimental determination of these values (pKa,s is a challenge because xylenol orange has a low solubility in water. We considered several ionization reactions and equilibriums in water that constitute the indispensable theoretical basis to calculate the pKa values of xylenol orange. The results show that the calculated pKa values have a comparable agreement with the experimentally determined pKa values. Therefore, this method can be used to predict such properties for indicators, drugs and other important molecules.
Directory of Open Access Journals (Sweden)
M. Oftadeh
2011-07-01
Full Text Available The effective parameters of (5, 0 and (5, 5 single-wall carbon nanotubes during the interaction with carbon dioxide as sensors are determined. The interaction of carbon dioxide molecules with internal and external walls of the nanotubes is studied using Gaussian 03 coding by density functional theory (DFT at the B3LYP/6-311G level of theory. CO2 rotation around tube axles vertically and parallel to the internal and external walls has been investigated. The carbon dioxide molecule is predicted to bind only weakly to nanotubes, and the tube-molecule interactions can be identified as physisorption. CO2 adsorption is stronger on external wallsthan on internal walls, and adsorption on the external wall of (5, 0 is stronger than on the external wall of (5, 5; the adsorption energies are exothermic and equal to -0.8884 and -0.0528 kcal/mol, respectively. The rotation energy barrier for (5, 5 is lower than that for (5, 0 in all rotations, therefore in these interactions (5, 5 is more active. The energy gap significantly changes in the presence of carbon dioxide molecules on the inside surface of (5, 0 and the electric conductivity is affected, but no remarkable change is observed in the electronic structure of (5, 5.
DFT study of the interaction between 3-nitro-1,2,4-triazole-5-one and hydrogen fluoride
International Nuclear Information System (INIS)
Fang Guoyong; Xu Lina; Hu Xingen; Li Xinhua
2008-01-01
Three fully optimized geometries of 3-nitro-1,2,4-triazol-5-one-hydrogen fluoride (NTO-HF) complexes have been obtained with density functional theory (DFT) method at the B3LYP/6-311++G** level. The intermolecular interaction energy is calculated with zero point energy (ZPE) correction and basis set superposition error (BSSE) correction. The greatest corrected intermolecular interaction of the NTO-HF complexes is -34.155 kJ/mol. Electrons in complex systems transfer from NTO to HF. Natural bond orbital (NBO) analysis is performed to reveal the origin of the interaction. The strong hydrogen bonds contribute to the interaction energies dominantly. Frequency calculations are carried out on each optimized structure, and their IR spectra are discussed. Vibrational analysis show that there are large red-shifts for H-X (X = N and F) stretching vibrational frequencies in the NTO and hydrogen fluoride complexes. The changes of thermodynamic properties from the monomer to complexes with the temperature ranging from 200 K to 1500 K have been obtained using the statistical thermodynamic method. It is found that two of three NTO-HF complexes can be produced spontaneously from NTO and HF at room temperature
DFT study of the interaction between 3-nitro-1,2,4-triazole-5-one and hydrogen fluoride
Energy Technology Data Exchange (ETDEWEB)
Fang Guoyong [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Xu Lina [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China)], E-mail: ahxulina@sohu.com; Hu Xingen; Li Xinhua [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China)
2008-12-15
Three fully optimized geometries of 3-nitro-1,2,4-triazol-5-one-hydrogen fluoride (NTO-HF) complexes have been obtained with density functional theory (DFT) method at the B3LYP/6-311++G** level. The intermolecular interaction energy is calculated with zero point energy (ZPE) correction and basis set superposition error (BSSE) correction. The greatest corrected intermolecular interaction of the NTO-HF complexes is -34.155 kJ/mol. Electrons in complex systems transfer from NTO to HF. Natural bond orbital (NBO) analysis is performed to reveal the origin of the interaction. The strong hydrogen bonds contribute to the interaction energies dominantly. Frequency calculations are carried out on each optimized structure, and their IR spectra are discussed. Vibrational analysis show that there are large red-shifts for H-X (X = N and F) stretching vibrational frequencies in the NTO and hydrogen fluoride complexes. The changes of thermodynamic properties from the monomer to complexes with the temperature ranging from 200 K to 1500 K have been obtained using the statistical thermodynamic method. It is found that two of three NTO-HF complexes can be produced spontaneously from NTO and HF at room temperature.
Directory of Open Access Journals (Sweden)
Śmiszek-Lindert Wioleta
2015-01-01
Full Text Available The X-ray structure, theoretical calculation, Hirshfeld surfaces analysis, IR and Raman spectra of fluoranthene and acenaphthene were reported. Acenaphthene crystallizes in the orthorhombic crystal system and space group P21ma, with crystal parameters a = 7.2053 (9 Å, b = 13.9800 (15 Å, c = 8.2638 (8 Å, Z = 4 and V = 832.41 (16 Å3. In turn, the grown crystals of fluoranthene are in monoclinic system with space group P21/n. The unit cell parameters are a = 18.3490 (2 Å, b = 6.2273 (5 Å, c = 19.8610 (2 Å, β = 109.787 (13°, Z = 8 and unit cell volume is 2135.50 (4 Å3. Theoretical calculations of the title compounds isolated molecule have been carried out using DFT at the B3LYP level. The intermolecular interactions in the crystal structure, for both the title PAHs, were analyzed using Hirshfeld surfaces computational method.
Ba-DOPED ZnO MATERIALS: A DFT SIMULATION TO INVESTIGATE THE DOPING EFFECT ON FERROELECTRICITY
Directory of Open Access Journals (Sweden)
Luis H. da S. Lacerda
2016-04-01
Full Text Available ZnO is a semiconductor material largely employed in the development of several electronic and optical devices due to its unique electronic, optical, piezo-, ferroelectric and structural properties. This study evaluates the properties of Ba-doped wurtzite-ZnO using quantum mechanical simulations based on the Density Functional Theory (DFT allied to hybrid functional B3LYP. The Ba-doping caused increase in lattice parameters and slight distortions at the unit cell angle in a wurtzite structure. In addition, the doping process presented decrease in the band-gap (Eg at low percentages suggesting band-gap engineering. For low doping amounts, the wavelength characteristic was observed in the visible range; whereas, for middle and high doping amounts, the wavelength belongs to the Ultraviolet range. The Ba atoms also influence the ferroelectric property, which is improved linearly with the doping amount, except for doping at 100% or wurtzite-BaO. The ferroelectric results indicate the ZnO:Ba is an strong option to replace perovskite materials in ferroelectric and flash-type memory devices.
Gaber, Mohamed; Awad, Mohamed K.; Atlam, Faten M.
2018-05-01
The ligation behavior of two chalcone ligands namely, (E)-3-(4-chlorophenyl)-1-(pyridin-2-yl)prop-2-en-1-one (L1) and (E)-3-(4-methoxyphenyl)-1-(pyridin-2-yl)prop-2-en-1-one (L2), towards the Pd(II) ion is determined. The structures of the complexes are elucidated by elemental analysis, spectral methods (IR, electronic and NMR spectra) as well as the conductance measurements and thermal analysis. The metal complexes exhibit a square planar geometrical arrangement. The kinetic and thermodynamic parameters for some selected decomposition steps have been calculated. The antimicrobial, antioxidant and anticancer activities of the chalcones and their Pd(II) complexes have been evaluated. Molecular orbital computations are performed using DFT at B3LYP level with 6-31 + G(d) and LANL2DZ basis sets to access reliable results to the experimental values. The calculations are performed to obtain the optimized molecular geometry, charge density distribution, extent of distortion from regular geometry. Thermodynamic parameters for the investigated compounds are also studied. The calculations confirm that the investigated complexes have square planner geometry, which is in a good agreement with the experimental observation.
International Nuclear Information System (INIS)
Shokuhi Rad, Ali; Sani, Emad; Binaeian, Ehsan; Peyravi, Majid; Jahanshahi, Mohsen
2017-01-01
Highlights: • Adsorption of three ether molecules on the surface of Ga-doped graphene has been investigated. • High degree of adsorption for all analytes is found. • Ga-doped graphene shows p-type semiconductor property upon adsorption of ether molecules. - Abstract: In this study, we used density functional theory (DFT) to search on the adsorption properties of three important compounds of ether family; diethyl ether (DEE), ethyl methyl ether (EME), and dimethyl ether (DME) on the surface of Gallium doped graphene (GaG). We used three functionals (B3LYP, wb97xd, and MPW1PW91) for optimization and calculation of adsorption energy. After fully optimization, we scrutinized on the charge allocations on the adsorbed ethers as well as GaG (at the area of interaction) based on natural bond orbitals (NBO). Besides, we have calculated the amount of charge transfer upon adsorption of each analyte. We revel that GaG is an ideal adsorbent for chemisorption of all above-mentioned ethers. There is a little difference between the values of adsorption; −123.5, −120, and −118.3 kJ/mol (based on wb97xd) for DEE, EME, and DME, respectively. We found significant changes in the electronic structure of both adsorbent and adsorbate upon adsorption. Moreover, results of charge analyses confirm GaG is a p-type semiconductor.
Balakrishnan, C; Subha, L; Neelakantan, M A; Mariappan, S S
2015-11-05
A propargyl arms containing Schiff base (L) was synthesized by the condensation of 1-[2-hydroxy-4-(prop-2-yn-1-yloxy)phenyl]ethanone with trans-1,2-diaminocyclohexane. The structure of L was characterized by IR, (1)H NMR, (13)C NMR and UV-Vis spectroscopy and by single crystal X-ray diffraction analysis. The UV-Visible spectral behavior of L in different solvents exhibits positive solvatochromism. Density functional calculation of the L in gas phase was performed by using DFT (B3LYP) method with 6-31G basis set. The computed vibrational frequencies and NMR signals of L were compared with the experimental data. Tautomeric stability study inferred that the enolimine is more stable than the ketoamine form. The charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Electronic absorption and emission spectral studies were used to study the binding of L with CT-DNA. The molecular docking was done to identify the interaction of L with A-DNA and B-DNA. Copyright © 2015 Elsevier B.V. All rights reserved.
Gąsiorski, P.; Matusiewicz, M.; Gondek, E.; Uchacz, T.; Wojtasik, K.; Danel, A.; Shchur, Ya.; Kityk, A. V.
2018-01-01
Paper reports the synthesis and spectroscopic studies of two novel 1-Methyl-3-phenyl-1H-pyrazolo[3,4-b]quinoxaline (PQX) derivatives with 6-substituted methyl (MeMPPQX) or methoxy (MeOMPPQX) side groups. The optical absorption and fluorescence emission spectra are recorded in solvents of different polarity. Steady state and time-resolved spectroscopy provide photophysical characterization of MeMPPQX and MeOMPPQX dyes as materials for potential luminescence or electroluminescence applications. Measured optical absorption and fluorescence emission spectra are compared with quantum-chemical DFT/TDDFT calculations using long-range corrected xc-functionals, LRC-BLYP and CAM-B3LYP in combination with self-consistent reaction field model based on linear response (LR), state specific (SS) or corrected linear response (CLR) solvations. Performances of relevant theoretical models and approaches are compared. The reparameterized LRC-BLYP functional (ω = 0.231 Bohr-1) in combination with CLR solvation provides most accurate prediction of both excitation and emission energies. The MeMPPQX and MeOMPPQX dyes represent efficient fluorescence emitters in blue-green region of the visible spectra.
International Nuclear Information System (INIS)
Aghazadeh, Mustafa; Mirzaei, Mahmoud
2008-01-01
Hydrogen bond (HB) interactions are studied in the real crystalline structure of sulfamerazine by density functional theory (DFT) calculations of the electric field gradient (EFG) tensors at the sites of O-17, N-14, and H-2 nuclei. One-molecule (single) and four-molecule (cluster) models of sulfamerazine are created by available crystal coordinates and the EFG tensors are calculated in both models to indicate the influence of HB interactions on the tensors. Directly relate to the experiments, the calculated EFG tensors are converted to the experimentally measurable nuclear quadrupole resonance (NQR) parameters, quadrupole coupling constant (qcc) and asymmetry parameter (η Q ). The evaluated NQR parameters reveal that due to contribution of the target molecule to N-H...N and N-H...O types of HB interactions, the EFG tensors at the sites of various nuclei are influenced from single model to the target molecule in cluster. Additionally, O2, N4, and H2 nuclei of the target molecule are significantly influenced by HB interactions, consequently, they have the major contributions to HB interactions in cluster model of sulfamerazine. The calculations are performed employing B3LYP method and 6-311++G** basis set using GAUSSIAN 98 suite of program
Srivastava, Sangeeta; Gupta, Preeti; Amandeep; Singh, Ranvijay Pratap
2016-04-01
Curcumin (1), isolated as a major component from the chloroform extract of Curcuma longa was converted to its ester derivative 4-((1E, 6E)-7-(4-hydroxy-3-methoxyphenyl)-3,5-dioxohepta-1,6-dienyl)-2-methoxyphenyl 4-fluorobenzoate (2). The compound has been characterized with the help of 1H, 13C NMR, UV, IR and mass spectrometry. The molecular geometry of synthesized compound was calculated in ground state by Density functional theory (DFT/B3LYP) using 6-31G (d,p) basis set. 1H and 13C NMR chemical shifts were calculated in ground state by using Gauge-Including Atomic Orbital (GIAO) approach and these values were correlated with experimental observations. The electronic properties such as HOMO and LUMO energies were calculated using time dependent Density Functional Theory (TD-DFT). Stability of the molecule as a result of hyper conjugative interactions and electron delocalization were analysed using Natural bond orbital (NBO) analysis. Intramolecular interactions were analysed by AIM (Atom in molecule) approach. Global reactivity descriptors were calculated to study the reactive site within molecule. The vibrational wavenumbers were calculated using DFT method and assigned with the help of potential energy distribution (PED). First hyperpolarizability values have been calculated to describe the nonlinear optical (NLO) property of the synthesized compounds. Molecular electrostatic potential (MEP) analysis has also been carried out.
Isotropic oscillator: spheroidal wave functions
International Nuclear Information System (INIS)
Mardoyan, L.G.; Pogosyan, G.S.; Ter-Antonyan, V.M.; Sisakyan, A.N.
1985-01-01
Solutions of the Schroedinger equation are found for an isotropic oscillator (10) in prolate and oblate spheroidal coordinates. It is shown that the obtained solutions turn into spherical and cylindrical bases of the isotropic oscillator at R→0 and R→ infinity (R is the dimensional parameter entering into the definition of prolate and oblate spheroidal coordinates). The explicit form is given for both prolate and oblate basis of the isotropic oscillator for the lowest quantum states
International Nuclear Information System (INIS)
Raine, D.J.
1981-01-01
This introduction to contemporary ideas in cosmology differs from other books on the 'expanding Universe' in its emphasis on physical cosmology and on the physical basis of the general theory of relativity. It is considered that the remarkable degree of isotropy, rather than the expansion, can be regarded as the central observational feature of the Universe. The various theories and ideas in 'big-bang' cosmology are discussed, providing an insight into current problems. Chapter headings are: quality of matter; expanding Universe; quality of radiation; quantity of matter; general theory of relativity; cosmological models; cosmological tests; matter and radiation; limits of isotropy; why is the Universe isotropic; singularities; evolution of structure. (U.K.)
Karabacak, Mehmet; Cinar, Mehmet
2012-02-01
In this work, the molecular conformation, vibrational and electronic transition analysis of 2-amino-5-bromobenzoic acid (2A5BrBA) were presented for the ground state using experimental techniques (FT-IR, FT-Raman and UV) and density functional theory (DFT) employing B3LYP exchange correlation with the 6-311++G(d,p) basis set. FT-IR and FT-Raman spectra were recorded in the regions of 400-4000 cm(-1) and 50-4000 cm(-1), respectively. There are four conformers, C1, C2, C3 and C4 for this molecule. The geometrical parameters, energies and wavenumbers have been obtained for all four conformers. The computational results diagnose the most stable conformer of 2A5BrBA as the C1 form. The complete assignments of fundamental vibrations were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Raman activities calculated by DFT method have been converted to the corresponding Raman intensities using Raman scattering theory. The UV spectra of investigated compound were recorded in the region of 200-400 nm for ethanol and water solutions. The electronic properties were evaluated with help of time-dependent DFT (TD-DFT) theoretically and results were compared with experimental observations. The thermodynamic properties of the studied compound at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures. The observed and the calculated geometric parameters, vibrational wavenumbers and electronic transitions were compared with observed data and found to be in good agreement. Copyright © 2011 Elsevier B.V. All rights reserved.
Synthesis, Crystal Structure and DFT Studies of a New Dinuclear Ag(I-Malonamide Complex
Directory of Open Access Journals (Sweden)
Saied M. Soliman
2018-04-01
Full Text Available The synthesis and structural aspects of a new dinuclear silver (I complex with malonamide type ligand (L is reported. Each Ag ion in the [Ag2L2(NO32]·H2O complex is coordinated to two ligands, L, each acting as a bridged ligand via its two pyridine arms; Ag(I acts as a connector between them. Two types of Ag-ligands close contacts were detected: Ag–N1, Ag–N4 from the two L units, and Ag–O5, Ag—O6 from the two nitrate anions, wherein both the nitrate ions are inside the cage formed by the [Ag2L2] unit. The coordination geometry around each Ag(I is a distorted tetrahedron. The [Ag2L2(NO32] complex units are connected by weak intermolecular C—H…O interactions. The different intermolecular interactions were quantified using Hirshfeld surface analysis. Using two DFT methods (B3LYP and WB97XD, the nature and strength of the Ag–N and Ag–O interactions were described using atoms in molecules (AIM and natural bond orbital (NBO analyses. Topological parameters indicated that the strength of the two Ag–N bonds was similar, while that of the two Ag–O interactions were significantly different. Moreover, the Ag–N interactions have a predominant covalent character, while the Ag–O interactions are mainly ionic. The NBO analysis indicated that the most important anti-bonding Ag-orbital in these interactions has an s-orbital character.
Nickel/zinc-catalyzed decarbonylative addition of anhydrides to alkynes: a DFT study.
Meng, Qingxi; Li, Ming
2013-10-01
Density functional theory (DFT) was used to investigate the nickel- or nickel(0)/zinc- catalyzed decarbonylative addition of phthalic anhydrides to alkynes. All intermediates and transition states were optimized completely at the B3LYP/6-31+G(d,p) level. Calculated results indicated that the decarbonylative addition of phthalic anhydrides to alkynes was exergonic, and the total free energy released was -87.6 kJ mol(-1). In the five-coordinated complexes M4a and M4b, the insertion reaction of alkynes into the Ni-C bond occurred prior to that into the Ni-O bond. The nickel(0)/zinc-catalyzed decarbonylative addition was much more dominant than the nickel-catalyzed one in whole catalytic decarbonylative addition. The reaction channel CA→M1'→T1'→M2'→T2'→M3a'→M4a'→T3a1'→M5a1' →T4a1'→M6a'→P was the most favorable among all reaction pathways of the nickel- or nickel(0)/zinc- catalyzed decarbonylative addition of phthalic anhydrides to alkynes. And the alkyne insertion reaction was the rate-determining step for this channel. The additive ZnCl2 had a significant effect, and it might change greatly the electron and geometry structures of those intermediates and transition states. On the whole, the solvent effect decreased the free energy barriers.
Experimental and DFT studies on the antioxidant activity of a C-glycoside from Rhynchosia capitata
Praveena, R.; Sadasivam, K.; Kumaresan, R.; Deepha, V.; Sivakumar, Raman
2013-02-01
Rhynchosia capitata (=Glycine capitata) Heyne ex roth, was found to possess polyphenolics including flavonoids, which acts as potential antioxidant. The study of ethanolic extract of roots and leaves reveals that the leaves possess high polyphenolics including flavonoids than roots. This was also confirmed by DPPH radical scavenging activity. Leaf powder of the plant was extracted with different solvents by soxhlet apparatus in the order of increasing polarity. The DPPH scavenging activity of methanol fraction was found to be high compared to the crude extract and other fractions. Nitric oxide scavenging activity was dominant in chloroform fraction compared to methanol fraction. Presence of flavonoids especially vitexin, a C-glycoside in methanol and chloroform fractions were confirmed by high pressure thin layer chromatography (HPTLC) analysis. The structural and molecular characteristics of naturally occurring flavonoid, vitexin was investigated in gas phase using density functional theory (DFT) approach with B3LYP/6-311G(d,p) level of theory. Analysis of bond dissociation enthalpy (BDE) reveals that the OH site that requires minimum energy for dissociation is 4'-OH from B-ring. To explore the radical scavenging activity of vitexin, the adiabatic ionization potential, electron affinity, hardness, softness, electronegativity and electrophilic index properties were computed and interpreted. The nonvalidity of Koopman's theorem has been verified by the computation of Eo and Ev energy magnitudes. Interestingly, from BDE calculations it was observed that BDE for 4'-OH, 5-OH and 7-OH are comparatively low for vitexin than its aglycone apigenin and this may be due to the presence of C-8 glucoside in vitexin. To substantiate this, plot of frontier molecular orbital and spin density distribution analysis for neutral and the corresponding radical species for the compound vitexin have been presented.
Tugsuz, Tugba
2010-12-30
Extensive DFT calculations on the standard electrode potentials of imidazole (Im), tetrathiafulvalene (TTF), and 2-, 4-, and 5-TTF-Im were carried out. Geometries and Gibbs free energies of H-bonded dimer, anion, protonated cation, and neutral structures of Im, mono- and dication, and neutral structures of TTF in gas and acetonitrile solvent were computed by using 10 hybrid density functionals (B3LYP, TPSSH, PBEH1PBE, M06, M062X, X3LYP, BMK, B1B95, M05, M052X) combined with the TZVP basis set. CPCM and SMD solvation models were applied to predict the Gibbs free energies of molecules in acetonitrile solvent. Frequency calculations were carried out for all structures, and none of them has been found to exhibit any imaginary frequency. Finally, the BMK hybrid functional was selected for computation of the standard electrode potential of TTF-Im, because it gives the most accurate values in both Im and TTF, differing by 0.05 V from the experimental ones. Moreover, frequencies from the BMK functional are reasonably close to the experimental ones. The standard electrode potentials of 2-, 4-, and 5-TTF-Im predicted for two-electron oxidation are 0.946, 0.870, and 0.839 V in CPCM and 0.927, 0.866, and 0.824 V in SMD. For one-electron oxidation these are 0.491, 0.421, and 0.400 V in CPCM and 0.476, 0.377, and 0.360 V in SMD, respectively.
DFT study of the interaction between DOTA chelator and competitive alkali metal ions.
Frimpong, E; Skelton, A A; Honarparvar, B
2017-09-01
1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetracetic acid (DOTA) is an important chelator for radiolabeling of pharmaceuticals. The ability of alkali metals found in the body to complex with DOTA and compete with radio metal ions can alter the radiolabeling process. Non-covalent interactions between DOTA complexed with alkali metals Li + , Na + , K + and Rb + , are investigated with density functional theory using B3LYP and ωB97XD functionals. Conformational possibilities of DOTA were explored with a varying number of carboxylic pendant arms of DOTA in close proximity to the ions. It is found that the case in which four arms of DOTA are interacting with ions is more stable than other conformations. The objective of this study is to explore the electronic structure properties upon complexation of alkali metals Li + Na + , K + and Rb + with a DOTA chelator. Interaction energies, relaxation energies, entropies, Gibbs free energies and enthalpies show that the stability of DOTA, complexed with alkali metals decreases down the group of the periodic table. Implicit water solvation affects the complexation of DOTA-ions leading to decreases in the stability of the complexes. NBO analysis through the natural population charges and the second order perturbation theory, revealed a charge transfer between DOTA and alkali metals. Conceptual DFT-based properties such as HOMO/LUMO energies, ΔE HOMO-LUMO and chemical hardness and softness indicated a decrease in the chemical stability of DOTA-alkali metal complexes down the alkali metal series. This study serves as a guide to researchers in the field of organometallic chelators, particularly, radiopharmaceuticals in finding the efficient optimal match between chelators and various metal ions. Copyright © 2017 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Cortez-Valadez, M.; Fierro, C.; Farias-Mancilla, J.R.; Vargas-Ortiz, A.; Flores-Acosta, M.; Ramírez-Bon, R.; Enriquez-Carrejo, J.L.
2016-01-01
Highlights: • Hafnium oxide growth on Si(100) by atomic layer deposition was simulated. • The interface structure was considered as silicate and silicide. • The interface was studied employing DFT. • TDMA-Hf precursor show better interface stability. - Abstract: The final structure of HfO 2 films grown by atomic layer deposition (ALD) after reaction with OH − ions has been analyzed by DFT (density functional theory). The interaction of the precursors: HfCl 4 (hafnium tetrachloride), HfI 4 (hafnium tetraiodide), TEMA-Hf (tetrakis-ethylmethylamino hafnium), and TDMA-Hf (tetrakis-dimethylamino hafnium) with HO–H was studied employing the B3LYP (Becke 3-parameter, Lee–Yang–Parr) hybrid functional and the PBE (Perdew–Burke–Ernzerhof) generalized gradient functional. The structural evolution at the Si(100) surface has been analyzed by LDA (local density approximation). The structural parameters: bond length and bond angle, and the vibrational parameters for the optimized structures are also reported. The presence of hafnium silicate at the interface was detected. The infrared spectra and structural parameters obtained in this work agree with previously reported experimental results.
Zhang, Hong-Song; Zhang, Kong-Yan; Chen, Li-Chuan; Li, Yao-Xin; Chai, Lan-Qin
2017-10-01
N-(coumarin-3-yl)-N‧-(2-amino-5-phenyl-1,3,4-thiadiazol-2-yl) urea was synthesized and characterized by elemental analysis, IR, 1H NMR, 13C NMR, UV-Vis and emission spectroscopy, as well as by single-crystal X-ray diffraction. X-ray crystallographic analyses have indicated that the crystal structure consists of two dimethyl sulfoxide (DMSO) solvent molecules and the structural geometry of DMSO is a trigonal pyramid in shape. In the crystal structure, a self-assembling two-dimensional (2-D) layer supramolecular architecture is formed through intermolecular hydrogen bonds, Cdbnd O···π (thiadiazole ring) and π···π stacking interactions. The geometry of the compound has been optimized by the DFT method and the results are compared with the X-ray diffraction data. The electronic transitions and spectral features of the compound were carried out by using DFT/B3LYP method. In addition, the antimicrobial activity was also studied, and the highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), and HOMO-LUMO gap were also calculated.
Michalski, J.; Bryndal, I.; Lorenc, J.; Hermanowicz, K.; Janczak, J.; Hanuza, J.
2018-02-01
The crystal and molecular structures of 6-methyl-3,5-dinitro-2-[(E)-phenyldiazenyl]pyridine have been determined by X-ray diffraction and quantum chemical DFT calculations. The crystal is monoclinic, space group Cc (No. 9) with Z = 4 with the unit cell parameters: a = 12.083(7), b = 12.881(6), c = 8.134(3) Å and β = 97.09(5)°. The azo-bridge appears in the trans conformation in which C2-N2-N2‧-C1‧ torsion angle takes a value - 178.6(3)°, whereas the dihedral angle between the planes of the phenyl and pyridine rings is 3.5(2)°. The IR and Raman spectra measured in the temperature range 80-350 K and quantum chemical calculations with the use of B3LYP/6-311G(2d,2p) approach confirmed the trans configuration of the azo-bridge as the most stable energetically and allowed determination of the energy other virtual structures. The observed effects were used in the discussion of vibrational dynamics of the studied compound. The energy gap between cis and trans conformers equals to 1.054 eV (0.03873 Hartree). The electron absorption and emission spectra have been measured and analyzed on the basis of DFT calculations. The life time of the excited state is 12 μs and the Stokes shift is close to 5470 cm- 1.
Ding, Chang-Chun; Wu, Shao-Yi; Xu, Yong-Qiang; Zhang, Li-Juan; Zhang, Zhi-Hong; Zhu, Qin-Sheng; Wu, Ming-He; Teng, Bao-Hua
2017-10-01
Density functional theory (DFT) calculations of the structures and the Cu2+ g factors (gx, gy and gz ) and hyperfine coupling tensor A (Ax , Ay and Az ) were performed for the paddle-wheel (PW)-type binuclear copper(II) complex {Cu2(μ2-O2CCH3)4}(OCNH2CH3) powder and single crystal. Calculations were carried out with the ORCA software using the functionals BHandHlyp, B3P86 and B3LYP with five different basis sets: 6-311g, 6-311g(d,p), VTZ, def-2 and def2-TZVP. Results were tested by the MPAD analysis to find the most suitable functional and basis sets. The electronic structure and covalency between copper and oxygen were investigated by the electron localisation function and the localised orbital locator as well as the Mayer bond order for the [CuO5] group. The optical spectra were theoretically calculated by the time-dependent DFT module and plotted by the Multiwfn program for the [CuO5] group and reasonably associated with the local structure in the vicinity of the central ion copper. In addition, the interactions between the OCNH2CH3, NH3 and H2O molecules and the uncoordinated PW copper(II) complex were studied, and the corresponding adsorption energies, the frequency shifts with respect to the free molecules and the changes of the Cu-Cu distances were calculated and compared with the relevant systems.
Energy Technology Data Exchange (ETDEWEB)
Cortez-Valadez, M. [Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, 83190 Hermosillo, Son. (Mexico); Fierro, C.; Farias-Mancilla, J.R. [Instituto de Ingeniería y Tecnología, Departamento de Física y Matemáticas, Universidad Autónoma de Ciudad Juárez, Av. del Charro 450, Cd. Juárez C.P. 32310, Chihuahua (Mexico); Vargas-Ortiz, A. [Universidad Autónoma de Sinaloa, Facultad de Ingeniería Mochis, Ciudad Universitaria, C.P. 81223 Los Mochis, Sinaloa (Mexico); Flores-Acosta, M. [Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, 83190 Hermosillo, Son. (Mexico); Ramírez-Bon, R. [Centro de Investigación y Estudios Avanzados del IPN, Unidad Querétaro, Apdo. Postal 1-798, 76001 Querétaro, Qro. (Mexico); Enriquez-Carrejo, J.L. [Instituto de Ingeniería y Tecnología, Departamento de Física y Matemáticas, Universidad Autónoma de Ciudad Juárez, Av. del Charro 450, Cd. Juárez C.P. 32310, Chihuahua (Mexico); and others
2016-06-15
Highlights: • Hafnium oxide growth on Si(100) by atomic layer deposition was simulated. • The interface structure was considered as silicate and silicide. • The interface was studied employing DFT. • TDMA-Hf precursor show better interface stability. - Abstract: The final structure of HfO{sub 2} films grown by atomic layer deposition (ALD) after reaction with OH{sup −} ions has been analyzed by DFT (density functional theory). The interaction of the precursors: HfCl{sub 4} (hafnium tetrachloride), HfI{sub 4} (hafnium tetraiodide), TEMA-Hf (tetrakis-ethylmethylamino hafnium), and TDMA-Hf (tetrakis-dimethylamino hafnium) with HO–H was studied employing the B3LYP (Becke 3-parameter, Lee–Yang–Parr) hybrid functional and the PBE (Perdew–Burke–Ernzerhof) generalized gradient functional. The structural evolution at the Si(100) surface has been analyzed by LDA (local density approximation). The structural parameters: bond length and bond angle, and the vibrational parameters for the optimized structures are also reported. The presence of hafnium silicate at the interface was detected. The infrared spectra and structural parameters obtained in this work agree with previously reported experimental results.
El Bakri, Youness; Anouar, El Hassane; Ramli, Youssef; Essassi, El Mokhtar; Mague, Joel T.
2018-01-01
Imidazopyrimidine derivatives are organic synthesized compounds with a pyrimido[1,2-a]benzimidazole as basic skeleton. They are known for their various biological properties and as an important class of compounds in medicinal chemistry. A new 1,4-dimethyl-2-oxo-pyrimido[1,2-a]benzimidazole hydrate derivative of the tilted group has been synthesized and characterized by spectroscopic techniques NMR and FT-IR; and by a single crystal X-ray diffraction. The X-ray results showed that the tricyclic core of the title compound, C12H11N3O·H2O, is almost planar. The molecules stack along the a-axis direction in head-to- tail fashion through π-stacking interactions involving all three rings. The stacks are tied together by direct Csbnd H⋯O hydrogen bonds and by Osbnd H⋯O, Osbnd N⋯N and Csbnd H⋯O hydrogen bonds with the lattice water. DFT calculations at B3LYP/6-311++G(d,p) in gas phase an polarizable continuum model have been carried out to predict the spectral and geometrical data of the tilted compound. The obtained results showed relatively good correlations between the predicted and experimental data with correlation coefficients higher than 98%.
Srivastava, Ruby
2018-03-01
We study the binding of the neutral Ag n (n = 8, 10, 12) to the DNA base-adenine (A), guanine (G) and Watson-Crick -adenine-thymine, guanine-cytosine pairs. Geometries of complexes were optimized at the DFT level using the hybrid B3LYP functional. LANL2DZ effective core potential was used for silver and 6-31 + G ** was used for all other atoms. NBO charges were analyzed using the Natural population analysis. The absorption properties of Ag n -A,G/WC complexes were also studied using time-dependent density functional theory. The absorption spectra for these complexes show wavelength in the visible region. It was revealed that silver clusters interact more strongly with WC pairs than with isolated DNA complexes. Furthermore, it was found that the electronic charge transferred from silver to isolated DNA clusters are less than the electronic charge transferred from silver to the Ag n -WC complexes. The vertical ionization potential, vertical electron affinity, hardness, and electrophilicity index of Ag n -DNA/WC complexes have also been discussed.
Energy Technology Data Exchange (ETDEWEB)
Şen, B. [Dokuz Eylül University, Department of Physics, Faculty of Science (Turkey); Barim, E.; Kirilmis, C. [Adıyaman University, Department of Chemistry, Faculty of Art and Science (Turkey); Aygün, M., E-mail: muhittin.aygun@deu.edu.tr [Dokuz Eylül University, Department of Physics, Faculty of Science (Turkey)
2016-03-15
The title compound, C{sub 21}H{sub 29}NS{sub 2}, has been synthesized and its crystal structure has been determined from single crystal X-ray diffraction data. Crystals are monoclinic, a = 11.4923(8), b = 13.1842(7), c = 14.6583(8) Å, β = 109.983(6)°, sp. gr. P2{sub 1}/c, Z = 4. Mesityl and thiazole groups are in cis positions with respect to the cyclobutane ring. The cyclobutane ring is puckered, with a dihedral angle of 26.6(2)° between the two three-atom planes. The crystal structure involves one weak intermolecular C–H···S hydrogen-bond. The molecular geometry was also optimized using density functional theory (DFT/B3LYP) method with the 6-311G(d, p) basis set in ground state. Geometric parameters (bond lengths, bond angles and torsion angles) and vibrational assignments have been calculated theoretically and compared with the experimental data.
Kucuk, Ilhan; Kaya, Yunus; Kaya, A. Asli
2017-07-01
(4-Nitro-phenyl)-oxo-acetaldehyde oxime (ninapH) is a type of oxime, which has a oxime and α-carbonyl groups. This molecule has been synthesized from literature procedure. The structural properties and conformational behaviors were examined using the density functional theory (DFT) with the B3LYP method combined with the 6-311++G(d,p) basis set. As a result of the conformational studies, the most stable conformer was determined, and then this molecule was optimized with the same basis set. Comprehensive theoretical and experimental structural studies on the molecule have been carried out by FT-IR, NMR and UV-vis spectrometry. The calculated HOMO and LUMO energies show that charge transfer within the molecule. The first order hyperpolarizability and molecular electrostatic potential (MEP) were also performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the ninapH have been calculated at different temperatures, 100-1000 K. In addition, the molecular docking studies have been performed with DNA and protein structures (downloaded from Protein Data Bank).
Lukose, Jilu; Yohannan Panicker, C; Nayak, Prakash S; Narayana, B; Sarojini, B K; Van Alsenoy, C; Al-Saadi, Abdulaziz A
2015-01-25
The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of 2-phenyl-N-(pyrazin-2-yl)acetamide have been investigated experimentally and theoretically using Gaussian09 software package. The title compound was optimized by using the HF/6-31G(6D,7F) and B3LYP/6-31G(6D,7F) calculations. The geometrical parameters are in agreement with the XRD data. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. Gauge-including atomic orbital (1)H-NMR chemical shifts calculations were carried out and compared with experimental data. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. Molecular electrostatic potential was performed by the DFT method. First hyperpolarizability is calculated in order to find its role in non linear optics. From the XRD data, in the crystal, molecules are held together by strong C-H⋯O and N-H⋯O intermolecular interactions. Copyright © 2014 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Jin-Xia Mu
2015-12-01
Full Text Available The title compound 4-(5-((4-bromobenzylthio-4-phenyl-4H-1,2,4-triazol-3-ylpyridine (C20H15BrN4S was synthesized, and its structure was confirmed by 1H NMR, MS and elemental analyses and single-crystal X-ray structure determination. It crystallizes in the triclinic space group P-1 with a = 7.717(3, b = 9.210(3, c = 13.370(5 Å, α = 80.347(13, β = 77.471(13, γ = 89.899(16°, V = 913.9(6 Å3, Z = 2 and R = 0.0260 for 3145 observed reflections with I > 2σ(I. A Density functional theory (DFT (B3LYP/6-31G calculation of the title molecule was carried out. The full geometry optimization was carried out using a 6-31G basis set, and the frontier orbital energy. Atomic net charges are discussed. Calculated bond lengths and bond angles were found to differ from experimental values, and the compound exhibits moderate antifungal activity.
Ayeshamariam, A; Ramalingam, S; Bououdina, M; Jayachandran, M
2014-01-24
In this work, pure and singe phase SnO2 Nano powder is successfully prepared by simple sol-gel combustion route. The photo luminescence and XRD measurements are made and compared the geometrical parameters with calculated values. The FT-IR and FT-Raman spectra are recorded and the fundamental frequencies are assigned. The optimized parameters and the frequencies are calculated using HF and DFT (LSDA, B3LYP and B3PW91) theory in bulk phase of SnO2 and are compared with its Nano phase. The vibrational frequency pattern in nano phase gets realigned and the frequencies are shifted up to higher region of spectra when compared with bulk phase. The NMR and UV-Visible spectra are simulated and analyzed. Transmittance studies showed that the HOMO-LUMO band gap (Kubo gap) is reduced from 3.47 eV to 3.04 eV while it is heated up to 800°C. The Photoluminescence spectra of SnO2 powder showed a peak shift towards lower energy side with the change of Kubo gap from 3.73 eV to 3.229 eV for as-prepared and heated up to 800°C. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Pavelka, Matej; Burda, Jaroslav V.
2005-01-01
This work is devoted to investigate the interactions of the Cu(I)/Cu(II) cation with variable ammonia-water ligand field by the quantum chemical approach. For that purpose, the optimization of the [Cu(NH 3 ) m (H 2 O) n ] 2+/+ complexes (where n varies from 0 to 4 or 6 and m + n = 4 or 6) has been performed at the DFT/6-31+G(d) level of theory in conjunction with the B3PW91 hybrid functional. Based on the results of the single-point B3LYP/6-311++G(2df,2pd) calculations, the stabilization energies were determined. The two-coordinated copper(I) complexes appeared to be the most stable compounds with the remaining water or ammonia molecules in the second solvation shell. In the case of the Cu(II) systems, four-coordinated complexes were found to be the most stable. In order to examine and explain bonding characteristics, Morokuma interaction energy decomposition (for selected Cu + complexes) and Natural Population Analysis for all systems were performed. It was found that the most stable structures correlate with the highest donation effects. Therefore, more polarizable ammonia molecules exhibit higher donation than water and thus make stronger bonds to copper. This can be demonstrated by the fact that the NH 3 molecule always tries to occupy the first solvation shell in mixed ammine-aqua complexes
Essawy, Amr A.; Afifi, Manal A.; Moustafa, H.; El-Medani, S. M.
2014-10-01
The complexes of Sm(III) and Tb(III) with 2-aminobenzoic acid (anthranilic acid, AA) and 2-amino-5-chlorobenzoic acid (5-chloroanthranilic acid, AACl) were synthesized and characterized based on elemental analysis, IR and mass spectroscopy. The data are in accordance with 1:3 [Metal]:[Ligand] ratio. On the basis of the IR analysis, it was found that the metals were coordinated to bidentate anthranilic acid via the ionised oxygen of the carboxylate group and to the nitrogen of amino group. While in 5-chloroanthranilic acid, the metals were coordinated oxidatively to the bidentate carboxylate group without bonding to amino group; accordingly, a chlorine-affected coordination and reactivity-diversity was emphasized. Thermal analyses (TGA) and biological activity of the complexes were also investigated. Density Functional Theory (DFT) calculations at the B3LYP/6-311++G (d,p)_ level of theory have been carried out to investigate the equilibrium geometry of the ligand. The optimized geometry parameters of the complexes were evaluated using SDDALL basis set. Moreover, total energy, energy of HOMO and LUMO and Mullikan atomic charges were calculated. In addition, dipole moment and orientation have been performed and discussed.
da Costa, Leonardo Moreira; Carneiro, José Walkimar de Mesquita; Romeiro, Gilberto Alves; Paes, Lilian Weitzel Coelho
2011-02-01
The affinity of the Ca(2+) ion for a set of substituted carbonyl ligands was analyzed with both the DFT (B3LYP/6-31+G(d)) and semi-empirical (PM6) methods. Two types of ligands were studied: a set of monosubstituted [O=CH(R)] and a set of disubstituted ligands [O=C(R)(2)] (R=H, F, Cl, Br, OH, OCH(3), CH(3), CN, NH(2) and NO(2)), with R either directly bound to the carbonyl carbon atom or to the para position of a phenyl ring. The interaction energy was calculated to quantify the affinity of the Ca(2+) cation for the ligands. Geometric and electronic parameters were correlated with the intensity of the metal-ligand interaction. The electronic nature of the substituent is the main parameter that determines the interaction energy. Donor groups make the interaction energy more negative (stabilizing the complex formed), while acceptor groups make the interaction energy less negative (destabilizing the complex formed).
International Nuclear Information System (INIS)
Yoosefian, Mehdi; Zahedi, Mansour; Mola, Adeleh; Naserian, Samira
2015-01-01
Highlights: • Investigation of the adsorption of SO 2 on Au/SWCNT and Pt/SWCNT. • SO 2 adsorbed on Au/SWCNT and Pt/SWCNT system demonstrate a strong chemisorption. • NBO analysis was done to reach more understanding about intermolecular interactions. - Abstract: Adsorption of single and double SO 2 gas molecule(s) on the surface of Pt-doped and Au-doped (5,5) single-walled carbon nanotubes (Pt/CNT-V and Au/CNT-V) were investigated by using density functional theory (DFT) at B3LYP/LANL2DZ level. The results showed the following: firstly, adsorption on Au/CNT-V is independent of special orientation, secondly, SO 2 adsorption on Pt/CNT-V in single case is stronger than Au/CNT-V, and finally, adsorption of the first molecule influences adsorption of the second one. Upon adsorption of SO 2 molecule(s), the energy gap of Pt/CNT-V were considerably reduced, resulting in enhanced electrical conductivity but in Au/CNT-V, despite of adsorption energy similar to Pt/CNT-V, E g slightly increased. In order to consider the effect of adsorption on electronic properties, DOS and PDOS calculations were performed. Moreover, NBO analysis was done to reach more understanding about intermolecular interactions. In conclusion, chemical reactivity was investigated in terms of chemical hardness, softness and work function (ϕ)
Costa, Renyer A.; Oliveira, Kelson M. T.; Costa, Emmanoel Vilaça; Pinheiro, Maria L. B.
2017-10-01
A combined experimental and theoretical DFT study of the structural, vibrational and electronic properties of strychnobrasiline and 12-hydroxy-10,11-dimethoxystrychnobrasiline is presented using the Becke three-parameter Lee-Yang-Parr function (B3LYP) and 6-311G(2d,p) basis set. The theoretical geometry optimization data were compared with the X-ray data for a similar structure in the associated literature, showing close values. The calculated HOMO-LUMO gap values showed that the presence of substituents in the benzene ring influences the quantum properties which are directly related to the reactive properties. Theoretical UV spectra agreed well with the measured experimental data, with bands assigned. In addition, Natural Bond Orbitals (NBOs), Mapped molecular electrostatic potential surface (MEPS) and NLO calculations were also performed at the same theory level. The theoretical vibrational analysis revealed several characteristic vibrations that may be used as a diagnostic tool for other strychnobrasiline type alkaloids, simplifying their identification and structural characterization. Molecular docking calculations with DNA Topoisomerase II-DNA complex showed binding free energies values of -8.0 and -9.5 kcal/mol for strychnobrasiline and 12-hydroxy-10,11-dimethoxystrychnobrasiline respectively, while for amsacrine, used for the treatment of leukemia, the binding free energy ΔG presented a value of -10.0 kcal/mol, suggesting that strychnobrasiline derivative alkaloids might exhibit an antineoplastic activity.
Sangeetha, V.; Govindarajan, M.; Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Anbalagan, G.
2013-12-01
New organic crystals of 2,4,6-triamino-1,3,5-triazin-1-ium 3-(prop-2-enoyloxy) propanoate acrylic acid monosolvate monohydrate (MAC) have been obtained from aqueous solution by the slow solvent evaporation method at room temperature. Single crystal X-ray diffraction analysis reveals that the compound crystallises in the triclinic system with centrosymmetric space group P-1. FT-IR and FT-Raman spectra of MAC have been recorded and analyzed. The molecular geometry and vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimization based on density functional theory (DFT) B3LYP method with 6-31G(d,p) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction data. The theoretical results show that the optimized geometry can well reproduce the crystal structure, and the calculated vibrational frequency values show good agreement with experimental values. A study of the electronic properties, such as HOMO and LUMO energies and Molecular electrostatic potential (MEP) were performed. Mulliken charges and NBO charges of the title molecule were also calculated and interpreted. Thermogravimetric analysis has been done to study the thermal behaviour of MAC. The 13C and 1H nuclear magnetic resonance (NMR) chemical shifts of the molecule are calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results.
Arjunan, V.; Santhanam, R.; Sakiladevi, S.; Marchewka, M. K.; Mohan, S.
2013-04-01
Experimental and theoretical investigations on the molecular structural, electronic and the vibrational characteristics of 4-hydroxy-1-thiocoumarin are presented. Conformational analysis was carried out to obtain the more stable configuration of the compound. The vibrational frequencies were obtained by DFT/B3LYP calculations employing 6-311++G(d,p), 6-31G(d,p), cc-pVTZ basic sets and B3PW91 method with 6-311++G(d,p) basis set and are compared with FTIR and FT-Raman spectral data recorded in the region of 4000-400 and 4000-100 cm-1, respectively. The total electron density and molecular electrostatic potential surfaces of the molecule were constructed to display electrostatic potential (electron + nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. 1H and 13C NMR spectra were recorded and 1H and 13C nuclear magnetic resonance chemical shifts of the molecule were calculated by using the Gauge-Independent Atomic Orbital (GIAO) method and analyzed. The picture of localized bonds and lone pairs, stabilization energy of the delocalization of electrons, the charge and hybridisation of the atoms of 4-hydroxy-1-thiocoumarin were clearly explained by NBO analysis.
Karrouchi, Khalid; Yousfi, El Bekkaye; Sebbar, Nada Kheira; Ramli, Youssef; Taoufik, Jamal; Ouzidan, Younes; Ansar, M'hammed; Mabkhot, Yahia N; Ghabbour, Hazem A; Radi, Smaail
2017-10-25
The development of low-cost catalytic systems that mimic the activity of tyrosinase enzymes (Catechol oxidase) is of great promise for future biochemistry technologic demands. Herein, we report the synthesis of new biomolecules systems based on hydrazone derivatives containing a pyrazole moiety ( L1 - L6 ) with superior catecholase activity. Crystal structures of L1 and L2 biomolecules were determined by X-ray single crystal diffraction (XRD). Optimized geometrical parameters were calculated by density functional theory (DFT) at B3LYP/6-31G (d, p) level and were found to be in good agreement with single crystal XRD data. Copper (II) complexes of the compounds ( L1 - L6 ), generated in-situ, were investigated for their catalytic activities towards the oxidation reaction of catechol to ortho -quinone with the atmospheric dioxygen, in an attempt to model the activity of the copper containing enzyme tyrosinase. The studies showed that the activities depend on four parameters: the nature of the ligand, the nature of counter anion, the nature of solvent and the concentration of ligand. The Cu(II)-ligands, given here, present the highest catalytic activity (72.920 μmol·L -1 ·min -1 ) among the catalysts recently reported in the existing literature.
Rasool, Nasir; Kanwal, Aqsa; Rasheed, Tehmina; Ain, Quratulain; Mahmood, Tariq; Ayub, Khurshid; Zubair, Muhammad; Khan, Khalid Mohammed; Arshad, Muhammad Nadeem; M Asiri, Abdullah; Zia-Ul-Haq, Muhammad; Jaafar, Hawa Z E
2016-06-28
Synthesis of 2,5-bisarylthiophenes was accomplished by sequential Suzuki cross coupling reaction of 2-bromo-5-chloro thiophenes. Density functional theory (DFT) studies were carried out at the B3LYP/6-31G(d, p) level of theory to compare the geometric parameters of 2,5-bisarylthiophenes with those from X-ray diffraction results. The synthesized compounds are screened for in vitro bacteria scavenging abilities. At the concentration of 50 and 100 μg/mL, compounds 2b, 2c, 2d, 3c, and 3f with IC50-values of 51.4, 52.10, 58.0, 56.2, and 56.5 μg/mL respectively, were found most potent against E. coli. Among all the synthesized compounds 2a, 2d, 3c, and 3e with the least values of IC50 77, 76.26, 79.13 μg/mL respectively showed significant antioxidant activities. Almost all of the compounds showed good antibacterial activity against Escherichia coli, whereas 2-chloro-5-(4-methoxyphenyl) thiophene (2b) was found most active among all synthesized compound with an IC50 value of 51.4 μg/mL. All of the synthesized compounds were screened for nitric oxide scavenging activity as well. Frontier molecular orbitals (FMOs) and molecular electrostatic potentials of the target compounds were also studied theoretically to account for their relative reactivity.
Muthunatesan, S.; Ragavendran, V.
2015-01-01
Benzimidazoles are bicyclic heteroatomic molecules. Polycyclic heteroatomic molecules have extensive coupling of different modes leading to strong coupling of force constants associated with the various chemical bonds of the molecules. To carry out a detailed vibrational spectroscopic analysis of such a bicyclic heteroatomic molecule, FT-IR and FT-Raman spectra of 2-chloro benzimidazole (CBZ) have been recorded in the condensed phase. Density Functional Theory calculations in the B3LYP/6-31G* level have been carried out to determine the optimized geometry and vibrational frequencies. In order to obtain a close agreement between theoretical and observed frequencies and hence to perform a reliable assignment, the theoretical DFT force field was transformed from Cartesian to local symmetry co-ordinates and then scaled empirically using SQM methodology. The SQM treatment resulted in a RMS deviation of 9.4 cm-1. For visual comparison, the observed and calculated spectra are presented on a common wavenumber scale. From the NBO analysis, the electron density (ED) charge transfers in the σ* and π* antibonding orbitals and second order delocalization energies E(2) confirms the occurrence of intramolecular charge transfer (ICT) within the molecule. The calculated Homo and Lumo energies show that charge transfer occurs within the molecule. The results obtained from the vibrational, NBO and HOMO-LUMO analyses have been properly tabulated.
Mansour, Ahmed M.; El Bakry, Eslam M.; Abdel-Ghani, Nour T.
2016-05-01
[Co(FBZ)2(H2O)]·2NO3·0.5H2O (1), [Ni(FBZ)2X2]·zH2O (X = Cl-, z = 0.5 (2) and X = CH3COO-, z = 1 (3)) and [Cu(FBZ)2(H2O) (NO3)]·NO3·1.5H2O (4) (FBZ = methyl-5-(Phenylthio) benzimidazole-2-carbamate; Fenbendazole) complexes were synthesized and characterized by elemental analysis, thermal, IR, EPR, UV-Vis, magnetic and conductance measurements. Geometry optimization, molecular electrostatic potential maps and natural bond orbital analysis were carried out at DFT/B3LYP/6-31G∗ level of theory. FBZ behaves as a neutral bidentate ligand via the pyridine-type nitrogen of the benzimidazole moiety and the carbamate group. Three-step ionization with pKa values of 3.38, 4.06 and 10.07 were reported for FBZ. The coordination of FBZ to the metal ions led to an increase in the antibacterial activity against the tested Staphylococcus aureus and Escherichia coli bacteria.
Directory of Open Access Journals (Sweden)
Dian Alwani Zainuri
2018-05-01
Full Text Available The title chalcone compounds, C27H18O (I and C33H20O (II, were synthesized using a Claisen–Schmidt condensation. Both compounds display an s-trans configuration of the enone moiety. The crystal structures feature intermolecular C—H...O and C—H...π interactions. Quantum chemical analysis of density functional theory (DFT with a B3LYP/6–311++G(d,p basis set has been employed to study the structural properties of the compound. The effect of the intermolecular interactions in the solid state are responsible for the differences between the experimental and theoretical optimized geometrical parameters. The small HOMO–LUMO energy gap in (I (exp : 3.18 eV and DFT: 3.15 eV and (II (exp : 2.76 eV and DFT: 2.95 eV indicates the suitability of these compounds for optoelectronic applications. The intermolecular contacts and weak contributions to the supramolecular stabilization are analysed using Hirshfeld surface analysis.
Rintoul, Llew; Harper, Shannon R; Arnold, Dennis P
2013-11-21
Theoretical calculations of the geometries, electronic structures and electronic absorption spectra of a series of covalently-linked porphyrin dimers are reported. The diporphyrins comprise 5,10,15-triphenylporphyrinatozinc(II) (ZnTriPP) units linked through the meso carbons by two-atom bridges, namely 1,2-ethanediyl (1), trans-1,2-ethenediyl (2), ethynediyl (3), 1,2-iminomethenediyl (4), and transdiazenediyl (5). The structures were optimised in toluene solvent by Density Functional Theory (DFT), using the integral equation formalism variant of the polarizable continuum model. The calculations were performed using the B3LYP functional and the 6-31G(d,p) basis set. The complete molecules were modelled, with no substitution of smaller groups on the periphery. In parallel, the compounds 2–5 were prepared by known or novel synthetic routes, to enable comparisons of experimental electronic absorption spectra with those calculated using time dependent-DFT at the same level of theory. As the ethane dimer 1 is not yet synthetically accessible, the model monomer meso-2-phenylethylZnTriPP was used for comparisons with the theoretical predictions. The results form a self-consistent set, enabling for the first time legitimate comparisons of the electronic structures of the series, especially regarding the degree to which the porphyrin p-systems interact by conjugation across the bridges. The theoretical calculations of the electronic transitions match the observed spectra in toluene to a remarkable degree, especially with respect to the peak maximum of the Q band, which represents to a large degree the energy of the HOMO–LUMO transition. The imine 4 is intrinsically polar due to the asymmetric bridge, and the HOMO is located almost exclusively on the ZnTriPP unit attached to the nitrogen of the imine, and the LUMO on the C-attached ring. Thus the Q-band transition is mapped as a comprehensive charge-transfer from the former ring to the latter. This may have consequences
The isotropic radio background revisited
Energy Technology Data Exchange (ETDEWEB)
Fornengo, Nicolao; Regis, Marco [Dipartimento di Fisica Teorica, Università di Torino, via P. Giuria 1, I–10125 Torino (Italy); Lineros, Roberto A. [Instituto de Física Corpuscular – CSIC/U. Valencia, Parc Científic, calle Catedrático José Beltrán, 2, E-46980 Paterna (Spain); Taoso, Marco, E-mail: fornengo@to.infn.it, E-mail: rlineros@ific.uv.es, E-mail: regis@to.infn.it, E-mail: taoso@cea.fr [Institut de Physique Théorique, CEA/Saclay, F-91191 Gif-sur-Yvette Cédex (France)
2014-04-01
We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky.
The isotropic radio background revisited
International Nuclear Information System (INIS)
Fornengo, Nicolao; Regis, Marco; Lineros, Roberto A.; Taoso, Marco
2014-01-01
We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky
Ellipsoidal basis for isotropic oscillator
International Nuclear Information System (INIS)
Kallies, W.; Lukac, I.; Pogosyan, G.S.; Sisakyan, A.N.
1994-01-01
The solutions of the Schroedinger equation are derived for the isotropic oscillator potential in the ellipsoidal coordinate system. The explicit expression is obtained for the ellipsoidal integrals of motion through the components of the orbital moment and Demkov's tensor. The explicit form of the ellipsoidal basis is given for the lowest quantum numbers. 10 refs.; 1 tab. (author)
Meng, Qingxi; Shen, Wei; Li, Ming
2012-03-01
Density functional theory (DFT) was used to investigate the Rh(I)-catalyzed intermolecular hydroacylation of vinylsilane with benzaldehyde. All intermediates and transition states were optimized completely at the B3LYP/6-31G(d,p) level (LANL2DZ(f) for Rh). Calculations indicated that Rh(I)-catalyzed intermolecular hydroacylation is exergonic, and the total free energy released is -110 kJ mol(-1). Rh(I)-catalyzed intermolecular hydroacylation mainly involves the active catalyst CA2, rhodium-alkene-benzaldehyde complex M1, rhodium-alkene-hydrogen-acyl complex M2, rhodium-alkyl-acyl complex M3, rhodium-alkyl-carbonyl-phenyl complex M4, rhodium-acyl-phenyl complex M5, and rhodium-ketone complex M6. The reaction pathway CA2 + R2 → M1b → T1b → M2b → T2b1 → M3b1 → T4b → M4b → T5b → M5b → T6b → M6b → P2 is the most favorable among all reaction channels of Rh(I)-catalyzed intermolecular hydroacylation. The reductive elimination reaction is the rate-determining step for this pathway, and the dominant product predicted theoretically is the linear ketone, which is consistent with Brookhart's experiments. Solvation has a significant effect, and it greatly decreases the free energies of all species. The use of the ligand Cp' (Cp' = C(5)Me(4)CF(3)) decreased the free energies in general, and in this case the rate-determining step was again the reductive elimination reaction.
Khan, Md Abdul Shafeeuulla; Lo, Rabindranath; Bandyopadhyay, Tusar; Ganguly, Bishwajit
2011-08-01
Inactivation of acetylcholinesterase (AChE) due to inhibition by organophosphorus (OP) compounds is a major threat to human since AChE is a key enzyme in neurotransmission process. Oximes are used as potential reactivators of OP-inhibited AChE due to their α-effect nucleophilic reactivity. In search of more effective reactivating agents, model studies have shown that α-effect is not so important for dephosphylation reactions. We report the importance of α-effect of nucleophilic reactivity towards the reactivation of OP-inhibited AChE with hydroxylamine anion. We have demonstrated with DFT [B3LYP/6-311G(d,p)] calculations that the reactivation process of sarin-serine adduct 2 with hydroxylamine anion is more efficient than the other nucleophiles reported. The superiority of hydroxylamine anion to reactivate the sarin-inhibited AChE with sarin-serine adducts 3 and 4 compared to formoximate anion was observed in the presence and absence of hydrogen bonding interactions of Gly121 and Gly122. The calculated results show that the rates of reactivation process of adduct 4 with hydroxylamine anion are 261 and 223 times faster than the formoximate anion in the absence and presence of such hydrogen bonding interactions. The DFT calculated results shed light on the importance of the adjacent carbonyl group of Glu202 for the reactivation of sarin-serine adduct, in particular with formoximate anion. The reverse reactivation reaction between hydroxylamine anion and sarin-serine adduct was found to be higher in energy compared to the other nucleophiles, which suggests that this α-nucleophile can be a good antidote agent for the reactivation process. Copyright © 2011 Elsevier Inc. All rights reserved.
Georgiev, Anton; Kostadinov, Anton; Ivanov, Deyan; Dimov, Deyan; Stoyanov, Simeon; Nedelchev, Lian; Nazarova, Dimana; Yancheva, Denitsa
2018-03-05
This paper describes the synthesis, spectroscopic characterization and quantum mechanical calculations of three azo-azomethine dyes. The dyes were synthesized via condensation reaction between 4-(dimethylamino)benzaldehyde and three different 4-aminobenzene azo dyes. Quantum chemical calculations on the optimized molecular geometry and electron densities of the trans (E) and cis (Z) isomers and their vibrational frequencies have been computed by using DFT/B3LYP density-functional theory with 6-311++G(d,p) basis set in vacuo. The thermodynamic parameters such as total electronic energy E (RB3LYP), enthalpy H 298 (sum of electronic and thermal enthalpies), free Gibbs energy G 298 (sum of electronic and thermal free Gibbs energies) and dipole moment μ were computed for trans (E) and cis (Z) isomers in order to estimate the ΔE trans→cis , Δμ trans→cis, ΔH trans→cis , ΔG trans→cis and ΔS trans→cis values. After molecular geometry optimization the electronic spectra have been obtained by TD-DFT calculations at same basis set and correlated with the spectra of vapour deposited nanosized films of the dyes. The NBO analysis was performed in order to understand the intramolecular charge transfer and energy of resonance stabilization. Solvatochromism was investigated by UV-VIS spectroscopy in five different organic solvents with increasing polarity. The dynamic photoisomerization experiments have been performed in DMF by pump lasers λ=355nm (mostly E→Z) and λ=491nm (mostly Z→E) in spectral region 300nm - 800nm at equal concentrations and times of illumination in order to investigate the photodynamical trans-cis-trans properties of the CHN and NN chromophore groups of the dyes. Copyright © 2017 Elsevier B.V. All rights reserved.
Mohamadi, Maryam; Faghih-Mirzaei, Ehsan; Ebrahimipour, S. Yousef; Sheikhshoaie, Iran; Haase, Wolfgang; Foro, Sabine
2017-07-01
A cis-dioxido Mo(VI) complex, [MoO2(L)(MeOH)], [L2-: (3-methoxy-2-oxidobenzylidene) benzohydrazonate], has been synthesized and characterized using physicochemical and spectroscopic techniques including elemental analysis, FT-IR, 1HNMR, UV-Vis spectroscopy, molar conductivity and single crystal X-ray diffraction. DFT calculations in the ground state of the complex were carried out using hybrid functional B3LYP with DGDZVP as basis set. Non-linear optical properties including electric dipole moment (μ), polarizability (α) and molecular first hyperpolarizability (β) of the compound were also computed. The values of linear polarizability and first hyperpolarizability obtained for the studied molecule indicated that the compound could be a good candidate of nonlinear optical materials. TD-DFT calculation and molecular electrostatic potential (MEP) were also performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the complex at different temperatures have been calculated. The interaction of a synthesized complex, with bovine serum albumin was also thoroughly investigated using experimental and theoretical studies. UV-Vis absorption and fluorescence quenching techniques were used to determine the binding parameters as well as the mechanism of the interaction. The values of binding constants were in the range of 104-105 M-1 demonstrating a moderate interaction between the synthesized complex and BSA making the protein suitable for transportation and delivery of the compound. Thermodynamic parameters were also indicating a binding through van der Waals force or hydrogen bond of [MoO2(L)(MeOH)] to BSA. The results obtained from docking studies were consistent to those obtained from experimental studies.
Energy Technology Data Exchange (ETDEWEB)
Hajlaoui, Sondes, E-mail: hajlaouisondes@yahoo.fr [Unité de recherche de la matière condensée, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000, Sfax (Tunisia); Chaabane, Iskandar [Unité de recherche de la matière condensée, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000, Sfax (Tunisia); Lhoste, Jérôme; Bulou, Alain [LUNAM Université, Université du Maine, CNRS UMR 6283, Institut des Molécules et Matériaux du Mans (IMMM), Avenue Olivier Messiaen, 72085, Le Mans, Cedex 9 (France); Guidara, Kamel [Unité de recherche de la matière condensée, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000, Sfax (Tunisia)
2016-09-15
In this work a novel compound tertrapropylammonium aquapentachlorostannate dihydrate was synthesized and characterized by; single crystal X-ray diffraction, vibrational spectroscopy, differential scanning calorimetric and dielectric measurement. The crystal structure refinement at room temperature reveled that this later belongs to the monoclinic compound with P121/c1 space group with the following unit cell parameters a = 8.2699(3) Å, b = 12.4665(4) Å, c = 22.3341(7) Å and β = 92.94(0)°. The crystal arrangement can be described by stacked organic-inorganic layers in the c direction with two independent water molecules placed between each two layers. The detailed interpretations of the vibrational properties of the studied compound were performed using density functional theory (DFT) with the B3LYP/LanL2DZ basis set, and has enabled us to make the detailed assignments by comparative study of the experimental and calculated Raman and IR spectra. The differential scanning calorimetry (DSC) measurement disclosed two anomalies in the temperature range 356–376 (T{sub 1}) K and at 393 K (T{sub 2}) characterized by the dehydration of the sample and probably a reconstruction of a new structure after T{sub 2} transition. The temperature dependences of dielectric permittivity show a relaxation process around T{sub 2} anomaly indicating the occurrence of the disorder at high temperature. The dependence of the exponent m(T) on temperature, extracted from the straight lines of log(ε″) with log (ω), suggests that the correlated barrier hopping is the appropriate model for the conduction mechanism. - Highlights: • The single-crystal X-ray diffraction has been performed. • The assignments of the vibration modes based on DFT were reported and discussed. • Differential scanning calorimetric reveals the presence of two endothermic peaks. • The electric permittivity was studied using the impedance measurements. • The CBH is the appropriate model for the conduction
Lasri, Jamal; Eltayeb, Naser Eltaher; Haukka, Matti; Alghamdi, Yousef
2017-01-01
(Z)-N-methyl-C-4-substituted phenyl nitrones -O+N(Me)=C(H)R (Z-2a R = 4-ClC6H4, Z-2b R = 4-NO2C6H4, Z-2c R = 4-CH3OC6H4) were synthesized and characterized by elemental analyses, FTIR, 1H, 13C and DEPT-135 NMR spectroscopy and also by single crystal X-ray diffraction (in the case of Z-2a and Z-2b). The geometries of the nitrone molecules Z-2a, Z-2b and Z-2c and their E-isomers; (E)-N-methyl-C-4-chlorophenyl nitrone E-2a, (E)-N-methyl-C-4-nitrophenyl nitrone E-2b and (E)-N-methyl-C-4-methoxyphenyl nitrone E-2c were optimized using density functional theory (DFT) at the B3LYP/6-311++G(d,p) level of theory. The theoretical vibrational frequencies obtained by DFT calculations are in good agreement with the experimental values. The electronics structures were described in terms of the distribution of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). Gauge independent atomic orbital (GIAO) method was used to calculate the NMR spectra, the correlation between the calculated and experimental chemical shifts is mostly in the range of 0.94-0.97 for 1H, whereas, the correlation for 13C is 0.99. Thermodynamics study showed that the Z-isomer is favoured than E-isomer with energy barrier of 7.1, 7.2 and 7.1 kcal/mol for Z-2a, Z-2b and Z-2c, respectively. The abundance of the most stable species Z-isomers is equal to 99.99% for all three compounds at 298 K in gas phase.
The DFT investigations of the electron injection in hydrazone-based sensitizers
Al-Sehemi, Abdullah G.
2012-03-01
Quantum chemical calculations were carried out by using density functional theory and time-dependant density functional theory at B3LYP/6-31G(d) and TD-B3LYP/6-31G(d) level of theories. The absorption spectra have been computed with and without solvent. The calculated absorption spectra in ethanol, acetonitrile, and methanol are in good agreement with experimental evidences. The absorption spectra are red shifted compared to System1. On the basis of electron injection and electronic coupling constant, we have shed light on the nature of different sensitizers. The coplanarity between the benzene near anchoring group having LUMO and the bridge (N-N) is broken in System6 and System7 that would hamper the recombination process. The electron injection of System2-System10 is superior to System1. The highest electronic coupling constant has been observed for System6 that followed the System7 and System8. The light-harvesting efficiency of all the sensitizers enlarged in acetonitrile and ethanol. The long-range-corrected functional (LC-BLYP), Coulomb-attenuating method (CAM-B3LYP), and BH and HLYP functional underestimate the excitation energies while B3LYP is good to reproduce the experimental data. Moreover, we have investigated the effect of cyanoacetic acid as anchoring group on the electron injection. © 2012 Springer-Verlag.
The performance of selected semi-empirical and DFT methods in studying C60 fullerene derivatives
Sikorska, Celina; Puzyn, Tomasz
2015-11-01
The capability of reproducing the open circuit voltages (V oc) of 15 representative C60 fullerene derivatives was tested using the selected quantum mechanical methods (B3LYP, PM6, and PM7) together with the two one-electron basis sets. Certain theoretical treatments (e.g. PM6) were found to be satisfactory for preliminary estimates of the open circuit voltages (V oc), whereas the use of the B3LYP/6-31G(d) approach has been proven to assure highly accurate results. We also examined the structural similarity of 19 fullerene derivatives by employing principle component analysis (PCA). In order to express the structural features of the studied compounds we used molecular descriptors calculated with semi-empirical (PM6 and PM7) and density functional (B3LYP/6-31G(d)) methods separately. In performing PCA, we noticed that semi-empirical methods (i.e. PM6 and PM7) seem satisfactory for molecules, in which one can distinguish the aromatic and the aliphatic parts in the cyclopropane ring of PCBM (phenyl-C61-buteric acid methyl ester) and they significantly overestimate the energy of the highest occupied molecular orbital (E HOMO). The use of the B3LYP functional, however, is recommended for studying methanofullerenes, which closely resemble the structure of PCBM, and for their modifications.
The performance of selected semi-empirical and DFT methods in studying C60 fullerene derivatives
International Nuclear Information System (INIS)
Sikorska, Celina; Puzyn, Tomasz
2015-01-01
The capability of reproducing the open circuit voltages (V oc ) of 15 representative C 60 fullerene derivatives was tested using the selected quantum mechanical methods (B3LYP, PM6, and PM7) together with the two one-electron basis sets. Certain theoretical treatments (e.g. PM6) were found to be satisfactory for preliminary estimates of the open circuit voltages (V oc ), whereas the use of the B3LYP/6-31G(d) approach has been proven to assure highly accurate results. We also examined the structural similarity of 19 fullerene derivatives by employing principle component analysis (PCA). In order to express the structural features of the studied compounds we used molecular descriptors calculated with semi-empirical (PM6 and PM7) and density functional (B3LYP/6-31G(d)) methods separately. In performing PCA, we noticed that semi-empirical methods (i.e. PM6 and PM7) seem satisfactory for molecules, in which one can distinguish the aromatic and the aliphatic parts in the cyclopropane ring of PCBM (phenyl-C 61 -buteric acid methyl ester) and they significantly overestimate the energy of the highest occupied molecular orbital (E HOMO ). The use of the B3LYP functional, however, is recommended for studying methanofullerenes, which closely resemble the structure of PCBM, and for their modifications. (paper)
Oxidative addition of aryl chlorides to monoligated palladium(0): A DFT-SCRF study
DEFF Research Database (Denmark)
Ahlquist, Mårten Sten Gösta; Norrby, Per-Ola
2007-01-01
Oxidative addition of aryl chlorides to palladium has been investigated by hybrid density functional theory methods (B3LYP), including a continuum model describing the solvent implicitly. A series of para-substituted aryl chlorides were studied to see the influence of electronic effects...
A DFT study of methanol adsorption in 8T rings of chabazite
Mihaleva, V.V.; Santen, van R.A.; Jansen, A.P.J.
2001-01-01
Hybrid B3LYP and gradient-corrected PW91 functionals were used for studying methanol adsorption on a zeolite cluster consisting of an 8T ring of chabazite. The comparison of the results obtained with PW91 with periodic calculations has shown that the adopted ring is an adequate approximation for the
DEFF Research Database (Denmark)
Barsberg, Soren
2015-01-01
Lignin is the most abundant aromatic plant polymer on earth. Useful information on its structure and interactions is gained by vibrational spectroscopy and relies on the quality of band assignments. B3LYP predictions were recently shown to support band assignments. Further progress calls...
Joshi, Rachana; Pandey, Nidhi; Yadav, Swatantra Kumar; Tilak, Ragini; Mishra, Hirdyesh; Pokharia, Sandeep
2018-07-01
The hydrazino Schiff base (E)-4-amino-5-[N'-(2-nitro-benzylidene)-hydrazino]-2,4-dihydro-[1,2,4]triazole-3-thione was synthesized and structurally characterized by elemental analysis, FT-IR, Raman, 1H and 13C-NMR and UV-Vis studies. A density functional theory (DFT) based electronic structure calculations were accomplished at B3LYP/6-311++G(d,p) level of theory. A comparative analysis of calculated vibrational frequencies with experimental vibrational frequencies was carried out and significant bands were assigned. The results indicate a good correlation (R2 = 0.9974) between experimental and theoretical IR frequencies. The experimental 1H and 13C-NMR resonance signals were also compared to the calculated values. The theoretical UV-Vis spectral studies were carried out using time dependent-DFT method in gas phase and IEFPCM model in solvent field calculation. The geometrical parameters were calculated in the gas phase. Atomic charges at selected atoms were calculated by Mulliken population analysis (MPA), Hirshfeld population analysis (HPA) and Natural population analysis (NPA) schemes. The molecular electrostatic potential (MEP) map was calculated to assign reactive site on the surface of the molecule. The conceptual-DFT based global and local reactivity descriptors were calculated to obtain an insight into the reactivity behaviour. The frontier molecular orbital analysis was carried out to study the charge transfer within the molecule. The detailed natural bond orbital (NBO) analysis was performed to obtain an insight into the intramolecular conjugative electronic interactions. The titled compound was screened for in vitro antifungal activity against four fungal strains and the results obtained are explained through in silico molecular docking studies.
Pavitha, P.; Prashanth, J.; Ramu, G.; Ramesh, G.; Mamatha, K.; Venkatram Reddy, Byru
2017-11-01
The novel titled compound 2-[(Anthracene-9-ylmethylene)amino]-2-methylpropane-1,3-diol (AMD) has been synthesized by slow evaporation technique from mixed solvent system of methanol with anthracene-9-carbaldehyde and 2-amino-2-methylpropane-1,3-diol. The synthesized molecule AMD was characterized experimentally by single crystal XRD, FTIR, NMR and UV-Vis spectra and density functional theory (DFT) computations. The structure of the crystal has been determined as orthorhombic system with space group P 21 21 21 and the cell parameters are obtained using XRD data. The optimized ground state geometry of the molecule is determined by evaluating torsional potentials as a function of angle of free rotation around Csbnd C bonds of functional groups by DFT method employing B3LYP functional with 6-311++G(d,p) basis set. All the fundamental vibrations of the molecule are assigned unambiguously using potential energy distribution (PED) obtained in the DFT computations. The rms error between the observed and scaled frequencies is 6.20 cm-1. The values of dipole moment, polarizability and hyperpolarizability are evaluated to study the NLO behavior of the molecule. The HOMO-LUMO energies and thermodynamic parameters are also determined. The molecular electrostatic surface potential (MESP) is mapped to obtain the charge density distribution. The 1H and 13C NMR chemical shifts of the molecule are calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. UV-visible spectrum of the compound is also recorded in the region 200-800 nm to know the type of electronic transitions involved. The anti-cancer activity of AMD is determined against human breast cancer cell line MCF-7 and human prostate cancer cell line PC-3 and correlated the results with study of molecular docking against pharmacological protein IDO-1 receptor.
Valle, Eliana Maira A.; Maltarollo, Vinicius Gonçalves; Almeida, Michell O.; Honorio, Kathia Maria; dos Santos, Mauro Coelho; Cerchiaro, Giselle
2018-04-01
In this work, we studied the complexation mode between copper(II) ion and the specific ligand investigated as carriers of metals though biological membranes, diethyldithiocarbamate (Et2DTC). It is important to understand how this occurs because it is an important intracellular chelator with potential therapeutic applications. Theoretical and experimental UV visible studies were performed to investigate the complexation mode between copper and the ligand. Electrochemical studies were also performed to complement the spectroscopic analyses. According to the theoretical calculations, using TD-DFT (Time dependent density functional theory), with B3LYP functional and DGDVZP basis set, implemented in Gaussian 03 package, it was observed that the formation of the complex [Cu(Et2DTC)2] is favorable with higher electron density over the sulfur atoms of the ligand. UV/Vis spectra have a charge transfer band at 450 nm, with the DMSO-d6 band shift from 800 to 650 nm. The electrochemical experiments showed the formation of a new redox process, referring to the complex, where the reduction peak potential of copper is displaced to less positive region. Therefore, the results obtained from this study give important insights on possible mechanisms involved in several biological processes related to the studied system.
Ahmed, Houssem Eddine; Kamoun, Slaheddine
2017-09-01
The crystal structure of (C6H20N3)SbCl5·Cl·H2O is built up of [NH3(CH2)3NH2(CH2)3NH3]3 + cations, [SbCl5]2 - anions, free Cl- anions and neutral water molecules connected together by Nsbnd H ⋯ Cl, Nsbnd H ⋯ O and Osbnd H ⋯ Cl hydrogen bonds. The optical band gap determined by diffuse reflection spectroscopy (DRS) is 3.78 eV for a direct allowed transition. Optimized molecular geometry, atomic Mulliken charges, harmonic vibrational frequencies, HOMO-LUMO and related molecular properties of the (C6H20N3)SbCl5·Cl·H2O compound were calculated by Density functional theory (DFT) using B3LYP method with GenECP sets. The calculated structural parameters (bond lengths and angles) are in good agreement with the experimental XRD data. The vibrational unscaled wavenumbers were calculated and scaled by a proper scaling factor of 0.984. Acceptable consistency was observed between calculated and experimental results. The assignments of wavenumbers were made on the basis of potential energy distribution (PED) using Vibrational Energy Distribution Analysis (VEDA) software. The HOMO-LUMO study was extended to calculate various molecular parameters like ionization potential, electron affinity, global hardness, electro-chemical potential, electronegativity and global electrophilicity of the given molecule.
Sert, Yusuf; Al-Turkistani, Abdulghafoor A; Al-Deeb, Omar A; El-Emam, Ali A; Ucun, Fatih; Çırak, Çağrı
2014-01-01
In this study, the experimental and theoretical vibrational frequencies of a newly synthesized potential chemotherapeutic agent namely, 6-(2-methylpropyl)-4-oxo-2-sulfanylidene-1,2,3,4-tetrahydropyrimidine-5-carbonitrile have been investigated. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09 W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and depicted. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhou, Yanling; Liu, Xianrong; Wang, Qijun; Wang, Lisheng; Song, Baoling
2016-10-01
The reaction of CoCl 2 ·6H 2 O, N , N -bis-(2-hy-droxy-eth-yl)glycine and tri-ethyl-amine (Et 3 N) in ethanol solution under solvothermal conditions produced crystals of [ N , N -bis-(2-hy-droxy-eth-yl)glycinato]chloridocobalt(II), [Co(C 6 H 12 NO 4 )Cl]. The Co II ion is coordinated in a slightly distorted trigonal-bipyramidal environment which is defined by three O atoms occupying the equatorial plane and the N and Cl atoms in the apical sites. In the crystal, two types of O-H⋯O hydrogen bonds connect the mol-ecules, forming a two-dimensional network parallel to (001). The mol-ecular structure of the title compound confirms the findings of FTIR, elemental analysis, ESI-MS analysis and TG analysis. By using the density functional theory (DFT) (B3LYP) method with 6-31G(d) basis set, the molecular structure has been calculated and optimized.
Gayathri, R.; Arivazhagan, M.
2012-11-01
The present work deals with the structural, electronic, and vibrational analyses of the biomolecule 2,4,5-trichlorobenzene sulfonyl chloride (TCBSC). TCBSC is a novel pharmaceutical compound used in dyes, pesticides, pigments, fluorescence brighteners and intermediate for agricultural chemicals in the manufacture of insecticides. Quantum chemical calculation of geometrical structure and energies of TCBSC was carried out by density functional theory (B3LYP) and ab initio (HF) methods at 6-311+G(d,p) and 6-311++G(d,p) standard basis set. The stability of the molecule arising from hyperconjugative interaction and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. NMR analysis shows that the isotropic chemical shifts of carbon and hydrogen atom of TCBSC are giving the reasonable shielding to the molecule. Another interesting property shows nonlinear optical (NLO) behavior. Moreover, we have not only simulated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) but also determined the transition state and energy band gap.
Induced piezoelectricity in isotropic biomaterial.
Zimmerman, R L
1976-01-01
Isotropic material can be made to exhibit piezoelectric effects by the application of a constant electric field. For insulators, the piezoelectric strain constant is proportional to the applied electric field and for semiconductors, an additional out-of-phase component of piezoelectricity is proportional to the electric current density in the sample. The two induced coefficients are proportional to the strain-dependent dielectric constant (depsilon/dS + epsilon) and resistivity (drho/dS - rho), respectively. The latter is more important at frequencies such that rhoepsilonomega less than 1, often the case in biopolymers.Signals from induced piezoelectricity in nature may be larger than those from true piezoelectricity. PMID:990389
How Isotropic is the Universe?
Saadeh, Daniela; Feeney, Stephen M; Pontzen, Andrew; Peiris, Hiranya V; McEwen, Jason D
2016-09-23
A fundamental assumption in the standard model of cosmology is that the Universe is isotropic on large scales. Breaking this assumption leads to a set of solutions to Einstein's field equations, known as Bianchi cosmologies, only a subset of which have ever been tested against data. For the first time, we consider all degrees of freedom in these solutions to conduct a general test of isotropy using cosmic microwave background temperature and polarization data from Planck. For the vector mode (associated with vorticity), we obtain a limit on the anisotropic expansion of (σ_{V}/H)_{0}Universe is strongly disfavored, with odds of 121 000:1 against.
Isotropic Negative Thermal Expansion Metamaterials.
Wu, Lingling; Li, Bo; Zhou, Ji
2016-07-13
Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale.
Körzdörfer, Thomas
2014-11-18
Density functional theory (DFT) and its time-dependent extension (TD-DFT) are powerful tools enabling the theoretical prediction of the ground- and excited-state properties of organic electronic materials with reasonable accuracy at affordable computational costs. Due to their excellent accuracy-to-numerical-costs ratio, semilocal and global hybrid functionals such as B3LYP have become the workhorse for geometry optimizations and the prediction of vibrational spectra in modern theoretical organic chemistry. Despite the overwhelming success of these out-of-the-box functionals for such applications, the computational treatment of electronic and structural properties that are of particular interest in organic electronic materials sometimes reveals severe and qualitative failures of such functionals. Important examples include the overestimation of conjugation, torsional barriers, and electronic coupling as well as the underestimation of bond-length alternations or excited-state energies in low-band-gap polymers.In this Account, we highlight how these failures can be traced back to the delocalization error inherent to semilocal and global hybrid functionals, which leads to the spurious delocalization of electron densities and an overestimation of conjugation. The delocalization error for systems and functionals of interest can be quantified by allowing for fractional occupation of the highest occupied molecular orbital. It can be minimized by using long-range corrected hybrid functionals and a nonempirical tuning procedure for the range-separation parameter.We then review the benefits and drawbacks of using tuned long-range corrected hybrid functionals for the description of the ground and excited states of π-conjugated systems. In particular, we show that this approach provides for robust and efficient means of characterizing the electronic couplings in organic mixed-valence systems, for the calculation of accurate torsional barriers at the polymer limit, and for the
Ramesh, Gaddam; Reddy, Byru Venkatram
2018-05-01
In this investigation, the monomeric structure is determined for picolinic and isonicotinic acids based on geometry optimization for one of the four possible conformers and intramolecular hydrogen bond of Osbnd H⋯O using density functional theory (DFT) employing B3LYP functional supplemented with 6-311++G(d,p) basis set. Using this optimized monomeric form, the dimer structure is determined based on minimum energy and length of hydrogen bonds obtained for two possible dimeric forms yielded due to head-to-tail intermolecular Osbnd H⋯N hydrogen bond (dimer 1) linkage and tail-to -tail intermolecular Osbnd H⋯O hydrogen bond (dimer 2) linkage between pyridine ring and carboxyl group. The structure parameters obtained for monomer and dimer forms are in good agreement with the experimental literature values. The vibrational assignments have been made unambiguously for all the vibrations from FTIR and FT-Raman spectra based on the potential energy distribution (PED) and eigen vectors obtained in DFT and inverse vibrational problem (IVP) computations. The rms error between the observed and scaled frequencies is 7.7 and 9.4 cm-1 for PIA and INA, respectively. A 74-element modified valence force field is derived by Wilson's GF matrix method using 58 experimental frequencies of the two molecules in overlay least-squares technique. The average error between observed and computed frequencies by this method is calculated to be 10.39 cm-1. The results of both DFT and IVP computations yielded good agreement between observed and calculated frequencies. The NLO behaviour using hyperpolarizability values; and HOMO and LUMO energies; of the two molecules are investigated by DFT. Charge density distribution and site of chemical reactivity of the molecules are studied by molecular electrostatic surface potential (MESP). Stability of the molecules arising from hyper conjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO
VLSI Architectures for Computing DFT's
Truong, T. K.; Chang, J. J.; Hsu, I. S.; Reed, I. S.; Pei, D. Y.
1986-01-01
Simplifications result from use of residue Fermat number systems. System of finite arithmetic over residue Fermat number systems enables calculation of discrete Fourier transform (DFT) of series of complex numbers with reduced number of multiplications. Computer architectures based on approach suitable for design of very-large-scale integrated (VLSI) circuits for computing DFT's. General approach not limited to DFT's; Applicable to decoding of error-correcting codes and other transform calculations. System readily implemented in VLSI.
Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Gunasekaran, S.; Rajakumar, P. R.; Anbalagan, G.
2015-06-01
Single crystals of melaminium benzoate dihydrate (MBDH) have been grown from aqueous solution by the slow solvent evaporation method at room temperature. Crystalline nature of the grown crystal has been confirmed by X-ray powder diffraction studies. The optimized geometry, frequency and intensity of the vibrational bands of MBDH were obtained by the Hartree-Fock and density functional theory using B3LYP/cam-B3LYP with 6-311++G(d,p) basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with the experimental FT-IR and FT-Raman spectral values. The obtained vibrational wavenumbers and optimized geometric parameters are found to be in good agreement with the experimental data. UV-Visible spectrum was recorded in the region 200-400 nm and the electronic properties, HOMO-LUMO energies and other related electronic parameters are calculated. The isotropic chemical shifts computed by 1H and 13C NMR analysis also show good agreement with experimental observation. Natural bond orbital (NBO) analysis has been performed on MBDH compound to analyze the stability of the molecule arising from hyperconjugative interactions and charge delocalization. Molecular electrostatic potential surface (MEP) has also been performed by DFT/cam-B3LYP method with 6-311++G(d,p) basis set. Differential scanning calorimetric measurements performed on the powder sample indicate the phase transition point approximately at 368 and 358 K for heating and cooling, respectively.
Molecular Disorder in (‒-Encecanescin
Directory of Open Access Journals (Sweden)
Benito Reyes-Trejo
2014-04-01
Full Text Available (‒-Encecanescin (1 has been isolated from the leaves of Eupatorium aschembornianum. Two conformers are present in the crystal structure as a result of molecular disorder. The structure of 1 was established by 1H- and 13C-NMR spectroscopy in CDCl3 solution using 2D NMR techniques (gHSQC, gHMBC and NOESY. A Monte Carlo random search using molecular mechanics followed by the geometry optimization of each minimum energy structure using density functional theory (DFT calculations at the B3LYP/6–31G* level and a Boltzmann analysis of the total energies generated accurate molecular models describing the conformational behavior of 1. The three most stable conformers 2–4 of compound 1 were reoptimized at the B3LYP/6-311++G(d,p level of theory using CHCl3 as a solvent. Correlations between the experimental 1H- and 13C-NMR chemical shifts (δexp have been found, and the GIAO/B3LYP/6-311++G(d,p calculated magnetic isotropic shielding tensors (σcalc for conformers 2 and 3, δexp = a + b σcalc, are reported. A good linear relationship between the experimental and calculated NMR data has been obtained for protons and carbon atoms.
Thermalization vs. isotropization and azimuthal fluctuations
International Nuclear Information System (INIS)
Mrowczynski, Stanislaw
2005-01-01
Hydrodynamic description requires a local thermodynamic equilibrium of the system under study but an approximate hydrodynamic behaviour is already manifested when a momentum distribution of liquid components is not of equilibrium form but merely isotropic. While the process of equilibration is relatively slow, the parton system becomes isotropic rather fast due to the plasma instabilities. Azimuthal fluctuations observed in relativistic heavy-ion collisions are argued to distinguish between a fully equilibrated and only isotropic parton system produced in the collision early stage
Vacuum UV Polarization Spectroscopy of p-Terphenyl
DEFF Research Database (Denmark)
Nguyen, Duy Duc; Jones, Nykola C.; Hoffmann, Søren Vrønning
2018-01-01
functional theory(TD–DFT) procedures TD–CAM-B3LYP, TD–LC-wPBE, and TD–wB97XD are insimilar qualitative agreement with the observed partial absorbance curvesthroughout the investigated spectral regions, while TD–B3LYP fails to predictqualitatively the spectrum of p-terphenylin the region above 40000 cm–1 (250...
A Mechanistic Study of Hydroboration of 1-Octene with 1,3,2 ...
African Journals Online (AJOL)
dithiaborinane in their ground states have been studied using density functional theory (DFT) at the B3LYP/3-21+G and B3LYP/6-31+G(d) levels. Hydroboration and disproportionation transition states have been determined and activation energies ...
Yang, Z.; Yang, G.; Liu, X.; Han, Xiuwen
2013-01-01
The title reactions over Fe-III and Fe-II-ZSM-5 zeolites are divided into seven and six steps, wherein the M06L:B3LYP energy barriers of N2O decomposition to form active site, benzene activation to form C-O bond and proton transfer to form phenol are equal to 37.0, 13.7, 17.2 and 33.7, 3.0, 19.1
Generalized gravity from modified DFT
International Nuclear Information System (INIS)
Sakatani, Yuho; Uehara, Shozo; Yoshida, Kentaroh
2017-01-01
Recently, generalized equations of type IIB supergravity have been derived from the requirement of classical kappa-symmetry of type IIB superstring theory in the Green-Schwarz formulation. These equations are covariant under generalized T-duality transformations and hence one may expect a formulation similar to double field theory (DFT). In this paper, we consider a modification of the DFT equations of motion by relaxing a condition for the generalized covariant derivative with an extra generalized vector. In this modified double field theory (mDFT), we show that the flatness condition of the modified generalized Ricci tensor leads to the NS-NS part of the generalized equations of type IIB supergravity. In particular, the extra vector fields appearing in the generalized equations correspond to the extra generalized vector in mDFT. We also discuss duality symmetries and a modification of the string charge in mDFT.
Generalized gravity from modified DFT
Energy Technology Data Exchange (ETDEWEB)
Sakatani, Yuho [Department of Physics, Kyoto Prefectural University of Medicine,Kyoto 606-0823 (Japan); Fields, Gravity and Strings, CTPU,Institute for Basic Sciences, Daejeon 34047 (Korea, Republic of); Uehara, Shozo [Department of Physics, Kyoto Prefectural University of Medicine,Kyoto 606-0823 (Japan); Yoshida, Kentaroh [Department of Physics, Kyoto University,Kitashirakawa Oiwake-cho, Kyoto 606-8502 (Japan)
2017-04-20
Recently, generalized equations of type IIB supergravity have been derived from the requirement of classical kappa-symmetry of type IIB superstring theory in the Green-Schwarz formulation. These equations are covariant under generalized T-duality transformations and hence one may expect a formulation similar to double field theory (DFT). In this paper, we consider a modification of the DFT equations of motion by relaxing a condition for the generalized covariant derivative with an extra generalized vector. In this modified double field theory (mDFT), we show that the flatness condition of the modified generalized Ricci tensor leads to the NS-NS part of the generalized equations of type IIB supergravity. In particular, the extra vector fields appearing in the generalized equations correspond to the extra generalized vector in mDFT. We also discuss duality symmetries and a modification of the string charge in mDFT.
Yakalı, Gül; Biçer, Abdullah; Eke, Canel; Cin, Günseli Turgut
2018-04-01
A bis(chalcone), (2E,6E)-2,6-bis((E)-3phenylallidene)cyclohexanone, was characterized by 1H NMR, 13C NMR, FTIR, UV-Vis spectroscopy, gamma-ray spectroscopy and single crystal X- ray structural analysis. The optimized molecular structure of the compound is calculated using DFT/B3LYP with 6-31G (d,p) level. The calculated geometrical parameters are in good agreement with the experimental data obtained from our reported X-ray structure. The powder and single crystal compounds were gama-irradiated using clinical electron linear accelerator and 60Co gamma-ray source, respectively. Spectral studies (1H NMR, 13C NMR, FTIR and UV-Vis) of powder chalcone compound were also investigated before and after irradiation. Depending on the irradiation notable changes were observed in spectral features powder sample. Single crystal X-ray diffraction investigation shows that both unirradiated and irradiated single crystal samples crystallizes in a orthorhombic crystal system in the centrosymmetric space group Pbcn and exhibits an C-H..O intramolecular and intermolecular hydrogen bonds. The crystal packing is stabilised by strong intermolecular bifurcate C-H..O hydrogen bonds and π…π stacking interactions. The asymmetric unit of the title compound contains one-half of a molecule. The other half of the molecule is generated with (1-x,y,-3/2-z) symmetry operator. The molecule is almost planar due to having π conjugated system of chalcones. However, irradiated single crystal compound showed significant changes lattice parameters, crystal volume and density. According to results of gamma-ray spectroscopy, radioactive elements of powder compound which are 123Sb(n,g),124Sb,57Fe(g,p),56Mn, 55Mn(g,n), and 54Mn were determined using photoactivation analysis. However, the most intensive gamma-ray energy signals are 124Sb.
Ibrahim, Magdy A.; Halim, Shimaa Abdel; Roushdy, N.; Farag, A. A. M.; El-Gohary, Nasser M.
2017-11-01
Reaction of 4-methoxy-5-oxo-5H-furo[3,2-g]chromene-6-carboxaldehyde (1) with hydroxylamine hydrochloride resulted in ring transformation producing the novel 5-hydroxy-4-methoxy-7-oxo-7H-furo[3,2-g]chromene-6-carbonitrile (HMOFCC). The structure was deduced based on its correct elemental analysis and spectral data (IR, 1H NMR, 13C NMR and mass spectra). The geometries of the HMOFCC were completely optimized by means of DFT-B3LYP/6-311++G (d,p) theoretical level. The ground state properties such as; total energy, the energy of HOMO and LUMO and Mulliken atomic charges were also determined. In addition, the two solvents; polar (methanol) and nonpolar (dioxane) were utilized to extract the electronic absorption spectra. The assignment of the detected bands was discussed by TD-DFT calculations. A cauliflower-like, as well as, needle-like leaves morphologies were observed using scanning electron microscope images. Two direct optical band gaps were extracted from the photon energy dependence of absorption coefficient at the band edges and found to be 1.16 and 2.56 eV. A characteristic emission peak of photoluminescence spectrum was observed and shifted depending on the solvent type. A remarkable rectification characteristic of HMOFCC/p-Si heterojunction confirms the diode-like behavior. The main important parameters like series resistance, shunt resistance and reverse saturation current show illumination dependence under influence of the illumination intensity range 20-100 mW/cm2. The heterojunction based HMOFCC showed phototransient properties under various illumination intensities which give the recommendation for the studied heterojunction in the field of optoelectronic device application.
The performance of selected semi-empirical and DFT methods in studying C₆₀ fullerene derivatives.
Sikorska, Celina; Puzyn, Tomasz
2015-11-13
The capability of reproducing the open circuit voltages (V(oc)) of 15 representative C60 fullerene derivatives was tested using the selected quantum mechanical methods (B3LYP, PM6, and PM7) together with the two one-electron basis sets. Certain theoretical treatments (e.g. PM6) were found to be satisfactory for preliminary estimates of the open circuit voltages (V(oc)), whereas the use of the B3LYP/6-31G(d) approach has been proven to assure highly accurate results. We also examined the structural similarity of 19 fullerene derivatives by employing principle component analysis (PCA). In order to express the structural features of the studied compounds we used molecular descriptors calculated with semi-empirical (PM6 and PM7) and density functional (B3LYP/6-31G(d)) methods separately. In performing PCA, we noticed that semi-empirical methods (i.e. PM6 and PM7) seem satisfactory for molecules, in which one can distinguish the aromatic and the aliphatic parts in the cyclopropane ring of PCBM (phenyl-C61-buteric acid methyl ester) and they significantly overestimate the energy of the highest occupied molecular orbital (E(HOMO)). The use of the B3LYP functional, however, is recommended for studying methanofullerenes, which closely resemble the structure of PCBM, and for their modifications.
Al-Sehemi, Abdullah G.; Irfan, Ahmad; Asiri, Abdullah M.; Ammar, Yousry Ahmed
2012-01-01
}ethylene-1,1,2-tricarbonitrile (BBHPET) have been synthesized. The dyes showed pronounced solvatochromic effects as the polarity of the solvents increased. The structures have been optimized at B3LYP/6-31G(d) level of theory. The torsion in E
DEFF Research Database (Denmark)
Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek
2016-01-01
Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for non-relativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton and xenon dimers and free atoms. Relativistic...
Macroscopic simulation of isotropic permanent magnets
International Nuclear Information System (INIS)
Bruckner, Florian; Abert, Claas; Vogler, Christoph; Heinrichs, Frank; Satz, Armin; Ausserlechner, Udo; Binder, Gernot; Koeck, Helmut; Suess, Dieter
2016-01-01
Accurate simulations of isotropic permanent magnets require to take the magnetization process into account and consider the anisotropic, nonlinear, and hysteretic material behaviour near the saturation configuration. An efficient method for the solution of the magnetostatic Maxwell equations including the description of isotropic permanent magnets is presented. The algorithm can easily be implemented on top of existing finite element methods and does not require a full characterization of the hysteresis of the magnetic material. Strayfield measurements of an isotropic permanent magnet and simulation results are in good agreement and highlight the importance of a proper description of the isotropic material. - Highlights: • Simulations of isotropic permanent magnets. • Accurate calculation of remanence magnetization and strayfield. • Comparison with strayfield measurements and anisotropic magnet simulations. • Efficient 3D FEM–BEM coupling for solution of Maxwell equations.
Empirical isotropic chemical shift surfaces
International Nuclear Information System (INIS)
Czinki, Eszter; Csaszar, Attila G.
2007-01-01
A list of proteins is given for which spatial structures, with a resolution better than 2.5 A, are known from entries in the Protein Data Bank (PDB) and isotropic chemical shift (ICS) values are known from the RefDB database related to the Biological Magnetic Resonance Bank (BMRB) database. The structures chosen provide, with unknown uncertainties, dihedral angles φ and ψ characterizing the backbone structure of the residues. The joint use of experimental ICSs of the same residues within the proteins, again with mostly unknown uncertainties, and ab initio ICS(φ,ψ) surfaces obtained for the model peptides For-(l-Ala) n -NH 2 , with n = 1, 3, and 5, resulted in so-called empirical ICS(φ,ψ) surfaces for all major nuclei of the 20 naturally occurring α-amino acids. Out of the many empirical surfaces determined, it is the 13C α ICS(φ,ψ) surface which seems to be most promising for identifying major secondary structure types, α-helix, β-strand, left-handed helix (α D ), and polyproline-II. Detailed tests suggest that Ala is a good model for many naturally occurring α-amino acids. Two-dimensional empirical 13C α - 1 H α ICS(φ,ψ) correlation plots, obtained so far only from computations on small peptide models, suggest the utility of the experimental information contained therein and thus they should provide useful constraints for structure determinations of proteins
Isotropic stars in general relativity
International Nuclear Information System (INIS)
Mak, M.K.; Harko, T.
2013-01-01
We present a general solution of the Einstein gravitational field equations for the static spherically symmetric gravitational interior space-time of an isotropic fluid sphere. The solution is obtained by transforming the pressure isotropy condition, a second order ordinary differential equation, into a Riccati type first order differential equation, and using a general integrability condition for the Riccati equation. This allows us to obtain an exact non-singular solution of the interior field equations for a fluid sphere, expressed in the form of infinite power series. The physical features of the solution are studied in detail numerically by cutting the infinite series expansions, and restricting our numerical analysis by taking into account only n=21 terms in the power series representations of the relevant astrophysical parameters. In the present model all physical quantities (density, pressure, speed of sound etc.) are finite at the center of the sphere. The physical behavior of the solution essentially depends on the equation of state of the dense matter at the center of the star. The stability properties of the model are also analyzed in detail for a number of central equations of state, and it is shown that it is stable with respect to the radial adiabatic perturbations. The astrophysical analysis indicates that this solution can be used as a realistic model for static general relativistic high density objects, like neutron stars. (orig.)
DFT studies on the multi-channel reaction of CH3S+NO2
Tang, Yi-Zhen; Sun, Hao; Pan, Ya-Ru; Pan, Xiu-Mei; Wang, Rong-Shun
The mechanisms for the reaction of CH3S with NO2 are investigated at the QCISD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p) on both single and triple potential energy surfaces (PESs). The geometries, vibrational frequencies, and zero-point energy (ZPE) correction of all stationary points involved in the title reaction are calculated at the B3LYP/6-311++G(d,p) level. More accurate energies are obtained at the QCISD(T)/6-311++G(d,p). The results show that 5 intermediates and 14 transition states are found. The reaction is more predominant on the single PES, while it is negligible on the triple PES. Without any barrier height for the whole process, the main channel of the reaction is to form CH3SONO and then dissociate to CH3SO+NO.
Directory of Open Access Journals (Sweden)
Jhon Zapata.
2009-04-01
Full Text Available La reactividad y estabilidad estructural de los ácidos omega-3, alfa-linolénico (ALA, estearidónico (SDA, eicosapentaenoico (EPA y docosahexaenoico (DHA, fue estudiada desde el punto de vista teórico haciendo uso de una serie de cálculos mecánico-cuánticos tipo DFT, usando la funcional B3LYP junto con la base de cálculo 6-31G. A través de descriptores de la reactividad química tales como, el potencial electrostático molecular (MEP, la función de Fukui, la dureza global, la suavidad global y local, energía de los orbitales HOMO-LUMO, se estudiaron algunas propiedades moleculares de los ácidos grasos omega-3, que permitió obtener información molecular valiosa acerca de los sitios reactivos y de la estabilidad estructural de este tipo de ácidos grasos.
Structural and spectroscopic parameters of 2,4,6-trimethylbenzamide, using DFT method
International Nuclear Information System (INIS)
Catikkas, B.; Karakaya, N.
2010-01-01
Conformational analysis of 2,4,6-Trimethylbenzamide was carried out. The geometric parameters (bond length, bond angle and tortion angle) of the most stable conformer were calculated and the Infrared and Raman frequencies of fundamental modes were determined. All calculations have been made by using the B3LYP / 6-311+G(d,p) method. Calculated values were compared with the experimental ones. All calculations were carried out with the Gaussian03 and GaussView3.0 programs.
Experimental and DFT studies on the vibrational spectra of 1H-indene-2-boronic acid
Alver, Özgur; Kaya, Mehmet Fatih
2014-11-01
Stable conformers and geometrical molecular structures of 1H-indene-2-boronic acid (I-2B(OH)2) were studied experimentally and theoretically using FT-IR and FT-Raman spectroscopic methods. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1, and 3700-400 cm-1, respectively. The optimized geometric structures were searched by Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-31++G(d,p) basis set. Vibrational wavenumbers of I-2B(OH)2 were calculated using B3LYP density functional methods including 6-31++G(d,p) basis set. Experimental and theoretical results show that density functional B3LYP method gives satisfactory results for predicting vibrational wavenumbers except OH stretching modes which is probably due to increasing unharmonicity in the high wave number region and possible intra and inter molecular interaction at OH edges. To support the assigned vibrational wavenumbers, the potential energy distribution (PED) values were also calculated using VEDA 4 (Vibrational Energy Distribution Analysis) program.
Evolution of the bonding mechanism of ZnO under isotropic compression: A first-principles study
International Nuclear Information System (INIS)
Zhou, G.C.; Sun, L.Z.; Wang, J.B.; Zhong, X.L.; Zhou, Y.C.
2008-01-01
The electronic structure and the bonding mechanism of ZnO under isotropic pressure have been studied by using the full-potential linear augmented plane wave (FP-LAPW) method within the density-functional theory (DFT) based on LDA+U exchange correlation (EXC) potential. We used the theory of Atoms in Molecules (AIM) method to analyze the change of the charge transfer and the bonding strength under isotropic pressure. The results of the theoretical analysis show that charge transfer between Zn and O atomic basins nearly linearly increases with the increasing pressure. Charge density along the Zn-O bond increases under the high pressure. The bonding strength and the ionicity of Zn-O bond also increase with the increasing pressure. The linear evolution process of the bonding mechanism under isotropic pressure was shown clearly in the present paper
Murthy, P. Krishna; Smitha, M.; Sheena Mary, Y.; Armaković, Stevan; Armaković, Sanja J.; Rao, R. Sreenivasa; Suchetan, P. A.; Giri, L.; Pavithran, Rani; Van Alsenoy, C.
2017-12-01
Crystal and molecular structure of newly synthesized compound 5-bromo-7-methoxy-1-methyl-1H-benzoimidazole (BMMBI) has been authenticated by single crystal X-ray diffraction, FT-IR, FT-Raman, 1H NMR, 13C NMR and UV-Visible spectroscopic techniques; compile both experimental and theoretical results which are performed by DFT/B3LYP/6-311++G(d,p) method at ground state in gas phase. Visualize nature and type of intermolecular interactions and crucial role of these interactions in supra-molecular architecture has been investigated by use of a set of graphical tools 3D-Hirshfeld surfaces and 2D-fingerprint plots analysis. The title compound stabilized by strong intermolecular hydrogen bonds N⋯Hsbnd O and O⋯Hsbnd O, which are envisaged by dark red spots on dnorm mapped surfaces and weak Br⋯Br contacts envisaged by red spot on dnorm mapped surface. The detailed fundamental vibrational assignments of wavenumbers were aid by with help of Potential Energy distribution (PED) analysis by using GAR2PED program and shows good agreement with experimental values. Besides frontier orbitals analysis, global reactivity descriptors, natural bond orbitals and Mullikan charges analysis were performed by same basic set at ground state in gas phase. Potential reactive sites of the title compound have been identified by ALIE, Fukui functions and MEP, which are mapped to the electron density surfaces. Stability of BMMBI have been investigated from autoxidation process and pronounced interaction with water (hydrolysis) by using bond dissociation energies (BDE) and radial distribution functions (RDF), respectively after MD simulations. In order to identify molecule's most important reactive spots we have used a combination of DFT calculations and MD simulations. Reactivity study encompassed calculations of a set of quantities such as: HOMO-LUMO gap, MEP and ALIE surfaces, Fukui functions, bond dissociation energies and radial distribution functions. To confirm the potential
Isotropic Growth of Graphene toward Smoothing Stitching.
Zeng, Mengqi; Tan, Lifang; Wang, Lingxiang; Mendes, Rafael G; Qin, Zhihui; Huang, Yaxin; Zhang, Tao; Fang, Liwen; Zhang, Yanfeng; Yue, Shuanglin; Rümmeli, Mark H; Peng, Lianmao; Liu, Zhongfan; Chen, Shengli; Fu, Lei
2016-07-26
The quality of graphene grown via chemical vapor deposition still has very great disparity with its theoretical property due to the inevitable formation of grain boundaries. The design of single-crystal substrate with an anisotropic twofold symmetry for the unidirectional alignment of graphene seeds would be a promising way for eliminating the grain boundaries at the wafer scale. However, such a delicate process will be easily terminated by the obstruction of defects or impurities. Here we investigated the isotropic growth behavior of graphene single crystals via melting the growth substrate to obtain an amorphous isotropic surface, which will not offer any specific grain orientation induction or preponderant growth rate toward a certain direction in the graphene growth process. The as-obtained graphene grains are isotropically round with mixed edges that exhibit high activity. The orientation of adjacent grains can be easily self-adjusted to smoothly match each other over a liquid catalyst with facile atom delocalization due to the low rotation steric hindrance of the isotropic grains, thus achieving the smoothing stitching of the adjacent graphene. Therefore, the adverse effects of grain boundaries will be eliminated and the excellent transport performance of graphene will be more guaranteed. What is more, such an isotropic growth mode can be extended to other types of layered nanomaterials such as hexagonal boron nitride and transition metal chalcogenides for obtaining large-size intrinsic film with low defect.
Pant, S; Laliberte, J; Martinez, M.J.; Rocha, B.
2016-01-01
In this paper, a one-sided, in situ method based on the time of flight measurement of ultrasonic waves was described. The primary application of this technique was to non-destructively measure the stiffness properties of isotropic and transversely isotropic materials. The method consists of
African Journals Online (AJOL)
______. *Corresponding author. E-mail: ... package hybrid DFT/B3LYP hybrid functional level of theory with LANL2DZ basic set for copper and zinc atoms ..... Geometrical optimization ..... Dash, U.N. Analytical Chemistry: Theory and Practice.
Indian Academy of Sciences (India)
dinitroamino pyrrole derivatives were studied at the B3LYP/6-311G** level of density functional theory (DFT). The isodesmic reactions were employed to calculate the heats of formation (HOFs) for these compounds. The detonation velocity (D) and.
Muthu, S; Elamurugu Porchelvi, E
2013-12-01
The solid phase FTIR and FT-Raman spectra of 1-ethyl-1,4-dihydro-7-methyl-4oxo-1,8 napthyridine-3-carboxylic acid (EDMONCA) have been recorded in the regions 4000-500 and 4000-400 cm(-1) respectively. The equilibrium geometry, harmonic vibrational frequencies have been investigated by DFT/B3LYP and B3PW91 methods with 6-311G (d,p) basis set. The different between the observed and scaled wave number values of most of the fundamental is very small. The assignments of the vibrational spectra have been carried out with the aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMFFM). Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. UV-Visible spectrum of the compound was recorded and the electronic properties HOMO and LOMO energies were measured. The electric dipole moment (μD) and first hyperpolarizability (βtot) values of the investigated molecule were computed using ab initio quantum mechanical calculations. The calculated results also show that the EDMONCA molecule may have microscopic nonlinear optics (NLO) behavior with non-zero values. (1)H and (13)C NMR spectra were recorded and (1)H and (13)C nuclear magnetic resonance chemical shift of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. Thermal stability of EDMONCA was studied by thermogravimetric analysis (TGA). Next Fukui function was calculated to explain the chemical selectivity or reactivity site in EDMONCA. Finally molecular electrostatic potential (MEP) and other molecular properties were performed. Copyright © 2013 Elsevier B.V. All rights reserved.
Texture of low temperature isotropic pyrocarbons
International Nuclear Information System (INIS)
Pelissier, Joseph; Lombard, Louis.
1976-01-01
Isotropic pyrocarbon deposited on fuel particles was studied by transmission electron microscopy in order to determine its texture. The material consists of an agglomerate of spherical growth features similar to those of carbon black. The spherical growth features are formed from the cristallites of turbostratic carbon and the distribution gives an isotropic structure. Neutron irradiation modifies the morphology of the pyrocarbon. The spherical growth features are deformed and the coating becomes strongly anisotropic. The transformation leads to the rupture of the coating caused by strong irradiation doses [fr
Energy Technology Data Exchange (ETDEWEB)
Ding, Chang-Chun; Wu, Shao-Yi; Xu, Yong-Qiang; Zhang, Li-Juan; Zhang, Zhi-Hong; Zhu, Qin-Sheng; Wu, Ming-He; Teng, Bao-Hua [Univ. of Electronic Science and Technology of China, Chengdu (China). School of Physical Electronics
2017-07-01
Density functional theory (DFT) calculations of the structures and the Cu{sup 2+} g factors (g{sub x}, g{sub y} and g{sub z}) and hyperfine coupling tensor A (A{sub x}, A{sub y} and A{sub z}) were performed for the paddle-wheel (PW)-type binuclear copper(II) complex {Cu_2(μ_2-O_2CCH_3)_4}(OCNH{sub 2}CH{sub 3}) powder and single crystal. Calculations were carried out with the ORCA software using the functionals BHandHlyp, B3P86 and B3LYP with five different basis sets: 6-311g, 6-311g(d,p), VTZ, def-2 and def2-TZVP. Results were tested by the MPAD analysis to find the most suitable functional and basis sets. The electronic structure and covalency between copper and oxygen were investigated by the electron localisation function and the localised orbital locator as well as the Mayer bond order for the [CuO{sub 5}] group. The optical spectra were theoretically calculated by the time-dependent DFT module and plotted by the Multiwfn program for the [CuO{sub 5}] group and reasonably associated with the local structure in the vicinity of the central ion copper. In addition, the interactions between the OCNH{sub 2}CH{sub 3}, NH{sub 3} and H{sub 2}O molecules and the uncoordinated PW copper(II) complex were studied, and the corresponding adsorption energies, the frequency shifts with respect to the free molecules and the changes of the Cu-Cu distances were calculated and compared with the relevant systems.
Fonseca Guerra, C.; van der Wijst, T.; Poater, J.; Swart, M.; Bickelhaupt, F.M.
2010-01-01
We have investigated the performance of the dispersion-corrected density functionals (BLYP-D, BP86-D and PBE-D) and the widely used B3LYP functional for describing the hydrogen bonds and the stacking interactions in DNA base dimers. For the gas-phase situation, the bonding energies have been
Arjunan, V; Thirunarayanan, S; Durga Devi, G; Mohan, S
2015-11-05
Spectroscopic and theoretical quantum chemical studies of 2,5-dihydrothiophene-1,1-dioxide and 3-methyl-2,5-dihydrothiophene-1,1-dioxide have been carried out by FTIR and FT-Raman spectral techniques along with B3LYP methods. The geometry of the compounds have been optimised by B3LYP method with 6-311++G(∗∗) and cc-pVTZ basis sets. The geometrical parameters obtained at B3LYP levels have been compared with the experimental values. Molecular electrostatic potential surface, total electron density distribution and frontier molecular orbital are constructed at B3LYP/cc-pVTZ level to understand the electronic properties. The charge density distribution and sites of chemical reactivity of the molecules have been obtained by mapping electron density isosurface with electrostatic potential surfaces. Natural bond orbital analysis of the molecules are carried out and the occupancies and the atomic hybrid contributions are calculated. Copyright © 2015 Elsevier B.V. All rights reserved.
DFT study on metal-mediated uracil base pair complexes
Directory of Open Access Journals (Sweden)
Ayhan Üngördü
2017-11-01
Full Text Available The most stable of metal-mediated uracil base pair complexes were determined. Method was used density functional theory, B3LYP. The calculations of systems containing C, H, N, O were described by 6-311++G(d,p and cc-PVTZ basis sets and LANL2DZ and SDD basis sets was used for transition metals. Then Egap values of complexes were calculated and the electrical conductivity of the complexes for single nanowires was studied by band theory. Metal-mediated uracil base pair complexes which will be used as conductive wires in nanotechnology were predicted. In nanoworld, this study is expected to show a way for practical applications.
Fleischer, Holger; Wann, Derek A; Hinchley, Sarah L; Borisenko, Konstantin B; Lewis, James R; Mawhorter, Richard J; Robertson, Heather E; Rankin, David W H
2005-10-07
The molecular structures of Se(SCH(3))(2) and Te(SCH(3))(2) were investigated using gas-phase electron diffraction (GED) and ab initio and DFT geometry optimisations. While parameters involving H atoms were refined using flexible restraints according to the SARACEN method, parameters that depended only on heavy atoms could be refined without restraints. The GED-determined geometric parameters (r(h1)) are: rSe-S 219.1(1), rS-C 183.2(1), rC-H 109.6(4) pm; angleS-Se-S 102.9(3), angleSe-S-C 100.6(2), angleS-C-H (mean) 107.4(5), phiS-Se-S-C 87.9(20), phiSe-S-C-H 178.8(19) degrees for Se(SCH(3))(2), and rTe-S 238.1(2), rS-C 184.1(3), rC-H 110.0(6) pm; angleS-Te-S 98.9(6), angleTe-S-C 99.7(4), angleS-C-H (mean) 109.2(9), phiS-Te-S-C 73.0(48), phiTe-S-C-H 180.1(19) degrees for Te(SCH(3))(2). Ab initio and DFT calculations were performed at the HF, MP2 and B3LYP levels, employing either full-electron basis sets [3-21G(d) or 6-31G(d)] or an effective core potential with a valence basis set [LanL2DZ(d)]. The best fit to the GED structures was achieved at the MP2 level. Differences between GED and MP2 results for rS-C and angleS-Te-S were explained by the thermal population of excited vibrational states under the experimental conditions. All theoretical models agreed that each compound exists as two stable conformers, one in which the methyl groups are on the same side (g(+)g(-) conformer) and one in which they are on different sides (g(+)g(+) conformer) of the S-Y-S plane (Y = Se, Te). The conformational composition under the experimental conditions could not be resolved from the GED data. Despite GED R-factors and ab initio and DFT energies favouring the g(+)g(+) conformer, it is likely that both conformers are present, for Se(SCH(3))(2) as well as for Te(SCH(3))(2).
Singh, Ram Chandra; Ram, Jokhan
2011-11-01
The effects of quadrupole moments on the isotropic-nematic (IN) phase transitions are studied using the density-functional theory (DFT) for a Gay-Berne (GB) fluid for a range of length-to-breadth parameters ? in the reduced temperature range ? . The pair-correlation functions of the isotropic phase, which enter into the DFT as input parameters are found by solving the Percus-Yevick integral equation theory. The method used involves an expansion of angle-dependent functions appearing in the integral equations in terms of spherical harmonics and the harmonic coefficients are obtained by an iterative algorithm. All the terms of harmonic coefficients which involve l indices up to less than or equal to 6 are considered. The numerical accuracy of the results depends on the number of spherical harmonic coefficients considered for each orientation-dependent function. As the length-to-breadth ratio of quadrupolar GB molecules is increased, the IN transition is seen to move to lower density (and pressure) at a given temperature. It has been observed that the DFT is good to study the IN transitions in such fluids. The theoretical results have also been compared with the computer simulation results wherever they are available.
Interactively variable isotropic resolution in computed tomography
International Nuclear Information System (INIS)
Lapp, Robert M; Kyriakou, Yiannis; Kachelriess, Marc; Wilharm, Sylvia; Kalender, Willi A
2008-01-01
An individual balancing between spatial resolution and image noise is necessary to fulfil the diagnostic requirements in medical CT imaging. In order to change influencing parameters, such as reconstruction kernel or effective slice thickness, additional raw-data-dependent image reconstructions have to be performed. Therefore, the noise versus resolution trade-off is time consuming and not interactively applicable. Furthermore, isotropic resolution, expressed by an equivalent point spread function (PSF) in every spatial direction, is important for the undistorted visualization and quantitative evaluation of small structures independent of the viewing plane. Theoretically, isotropic resolution can be obtained by matching the in-plane and through-plane resolution with the aforementioned parameters. Practically, however, the user is not assisted in doing so by current reconstruction systems and therefore isotropic resolution is not commonly achieved, in particular not at the desired resolution level. In this paper, an integrated approach is presented for equalizing the in-plane and through-plane spatial resolution by image filtering. The required filter kernels are calculated from previously measured PSFs in x/y- and z-direction. The concepts derived are combined with a variable resolution filtering technique. Both approaches are independent of CT raw data and operate only on reconstructed images which allows for their application in real time. Thereby, the aim of interactively variable, isotropic resolution is achieved. Results were evaluated quantitatively by measuring PSFs and image noise, and qualitatively by comparing the images to direct reconstructions regarded as the gold standard. Filtered images matched direct reconstructions with arbitrary reconstruction kernels with standard deviations in difference images of typically between 1 and 17 HU. Isotropic resolution was achieved within 5% of the selected resolution level. Processing times of 20-100 ms per frame
Liang, Y H; Chen, F E
2007-08-01
Theoretical investigations of the interaction between dapivirine and the HIV-1 RT binding site have been performed by the ONIOM2 (B3LYP/6-31G (d,p): PM3) and B3LYP/6-31G (d,p) methods. The results derived from this study indicate that this inhibitor dapivirine forms two hydrogen bonds with Lys101 and exhibits strong π-π stacking or H…π interaction with Tyr181 and Tyr188. These interactions play a vital role in stabilizing the NNIBP/dapivirine complex. Additionally, the predicted binding energy of the BBF optimized structure for this complex system is -18.20 kcal/mol.
Mapping of moveout in tilted transversely isotropic media
Stovas, A.; Alkhalifah, Tariq Ali
2013-01-01
The computation of traveltimes in a transverse isotropic medium with a tilted symmetry axis tilted transversely isotropic is very important both for modelling and inversion. We develop a simple analytical procedure to map the traveltime function from a transverse isotropic medium with a vertical symmetry axis (vertical transversely isotropic) to a tilted transversely isotropic medium by applying point-by-point mapping of the traveltime function. This approach can be used for kinematic modelling and inversion in layered tilted transversely isotropic media. © 2013 European Association of Geoscientists & Engineers.
Mapping of moveout in tilted transversely isotropic media
Stovas, A.
2013-09-09
The computation of traveltimes in a transverse isotropic medium with a tilted symmetry axis tilted transversely isotropic is very important both for modelling and inversion. We develop a simple analytical procedure to map the traveltime function from a transverse isotropic medium with a vertical symmetry axis (vertical transversely isotropic) to a tilted transversely isotropic medium by applying point-by-point mapping of the traveltime function. This approach can be used for kinematic modelling and inversion in layered tilted transversely isotropic media. © 2013 European Association of Geoscientists & Engineers.
Spectroscopic and DFT studies of flurbiprofen as dimer and its Cu(II) and Hg(II) complexes
Sagdinc, Seda; Pir, Hacer
2009-07-01
The vibrational study in the solid state of flurbiprofen and its Cu(II) and Hg(II) complexes was performed by IR and Raman spectroscopy. The changes observed between the IR and Raman spectra of the ligand and of the complexes allowed us to establish the coordination mode of the metal in both complexes. The comparative vibrational analysis of the free ligand and its complexes gave evidence that flurbiprofen binds metal (II) through the carboxylate oxygen. The fully optimized equilibrium structure of flurbiprofen and its metal complexes was obtained by density functional B3LYP method by using LanL2DZ and 6-31 G(d,p) basis sets. The harmonic vibrational frequencies, infrared intensities and Raman scattering activities of flurbiprofen were calculated by density functional B3LYP methods by using 6-31G(d,p) basis set. The scaled theoretical wavenumbers showed very good agreement with the experimental values. The electronic properties of the free molecule and its complexes were also performed at B3LYP/6-31G(d,p) level of theory. Detailed interpretations of the infrared and Raman spectra of flurbiprofen are reported. The UV-vis spectra of flurbiprofen and its metal complexes were also investigated in organic solvents.
Computations of Quasiconvex Hulls of Isotropic Sets
Czech Academy of Sciences Publication Activity Database
Heinz, S.; Kružík, Martin
2017-01-01
Roč. 24, č. 2 (2017), s. 477-492 ISSN 0944-6532 R&D Projects: GA ČR GA14-15264S; GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985556 Keywords : quasiconvexity * isotropic compact sets * matrices Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.496, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/kruzik-0474874.pdf
Depression of nonlinearity in decaying isotropic turbulence
International Nuclear Information System (INIS)
Kraichnan, R.H.; Panda, R.
1988-01-01
Simulations of decaying isotropic Navier--Stokes turbulence exhibit depression of the normalized mean-square nonlinear term to 57% of the value for a Gaussianly distributed velocity field with the same instantaneous velocity spectrum. Similar depression is found for dynamical models with random coupling coefficients (modified Betchov models). This suggests that the depression is dynamically generic rather than specifically driven by alignment of velocity and vorticity
New criteria for isotropic and textured metals
Cazacu, Oana
2018-05-01
In this paper a isotropic criterion expressed in terms of both invariants of the stress deviator, J2 and J3 is proposed. This criterion involves a unique parameter, α, which depends only on the ratio between the yield stresses in uniaxial tension and pure shear. If this parameter is zero, the von Mises yield criterion is recovered; if a is positive the yield surface is interior to the von Mises yield surface whereas when a is negative, the new yield surface is exterior to it. Comparison with polycrystalline calculations using Taylor-Bishop-Hill model [1] for randomly oriented face-centered (FCC) polycrystalline metallic materials show that this new criterion captures well the numerical yield points. Furthermore, the criterion reproduces well yielding under combined tension-shear loadings for a variety of isotropic materials. An extension of this isotropic yield criterion such as to account for orthotropy in yielding is developed using the generalized invariants approach of Cazacu and Barlat [2]. This new orthotropic criterion is general and applicable to three-dimensional stress states. The procedure for the identification of the material parameters is outlined. Illustration of the predictive capabilities of the new orthotropic is demonstrated through comparison between the model predictions and data on aluminum sheet samples.
Xu, Wenwen; Wu, Fengqi; Zhao, Yanying; Zhou, Ran; Wang, Huigang; Zheng, Xuming; Ni, Bukuo
2017-03-01
The isotropic and anisotropic Raman spectra of acetone and deuterated acetone isolated in an argon matrix have been recorded for the understanding of noncoincidence effect (NCE) phenomenon. According to the matrix isolated Raman spectra and DFT calculations, we proposed aggregated model for the explanations of the acetone C=O vibration NCE phenomenon and its concentration effect. The experimental data were in consistence with the DFT calculations performed at the B3LYP-D3/6-311 G (d,p) levels based on the proposed model. The experimental identification of the monomer, dimer and trimer are reported here, and the dynamic of the transformation from monomer to aggregated structure can be easily controlled by tuning annealing temperature.
Vibrational, electronic and quantum chemical studies of 1,2,4-benzenetricarboxylic-1,2-anhydride.
Arjunan, V; Raj, Arushma; Subramanian, S; Mohan, S
2013-06-01
The FTIR and FT-Raman spectra of 1,2,4-benzenetricarboxylic-1,2-anhydride (BTCA) have been recorded in the range 4000-400 and 4000-100 cm(-1), respectively. The complete vibrational assignments and analysis of BTCA have been performed. More support on the experimental findings was added from the quantum chemical studies performed with DFT (B3LYP, MP2, B3PW91) method using 6-311++G(**), 6-31G(**) and cc-pVTZ basis sets. The structural parameters, energies, thermodynamic parameters, vibrational frequencies and the NBO charges of BTCA were determined by the DFT method. The (1)H and (13)C isotropic chemical shifts (δ ppm) of BTCA with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. The delocalization energies of different types of interactions were determined. Copyright © 2013 Elsevier B.V. All rights reserved.
DFT Studies on the electronic structures of indoline dyes for dye-sensitized solar cells
Directory of Open Access Journals (Sweden)
JIE XU
2010-02-01
Full Text Available A series of indoline dyes with promising efficiency for dye-sensitized solar cells (DSSCs were studied using the density functional theory at the B3LYP/6-31g (d level. The ground-state geometries, electronic structures and absorption spectra of these dyes are reported. The calculated results indicate that the energy levels of the HOMOs and LUMOs of these dyes are advantageous for electron injection. Their intense and broad absorption bands as well as favorable excited-state energy levels are key factor for their outstanding efficiencies in DSSCs.
DFT studies of all fluorothiophenes and their cations as candidate monomers for conductive polymers
Energy Technology Data Exchange (ETDEWEB)
Shirani, Hossein, E-mail: shiranihossein@gmail.com [Young Researchers Club, Islamic Azad University, Toyserkan Branch, Toyserkan (Iran, Islamic Republic of); Jameh-Bozorghi, Saeed [Department of Chemistry, Islamic Azad University, Arak Branch, Arak (Iran, Islamic Republic of); Yousefi, Ali [Department of Computer Engineering, Islamic Azad University, Hamedan Branch, Hamedan (Iran, Islamic Republic of)
2015-01-22
In this paper, electronic, structural, and properties of mono-, di-, tri-, and tetrafluorothiophenes and their radical cations are studied using the density functional theory and B3LYP method with 6-311++G** basis set. Also, the effects of the number and position of the substituent of fluorine atoms on the properties of the thiophene ring have been studied using optimized structures obtained for these molecules and their radical cations; vibrational frequencies, spin-density distribution, size and direction of the dipole moment vector, ionization potential, electric Polarizabilities, HOMO–LUMO gaps and NICS values of these compounds have been calculated and analyzed.
Interbasis expansions for isotropic harmonic oscillator
Energy Technology Data Exchange (ETDEWEB)
Dong, Shi-Hai, E-mail: dongsh2@yahoo.com [Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, Mexico D.F. 07738 (Mexico)
2012-03-12
The exact solutions of the isotropic harmonic oscillator are reviewed in Cartesian, cylindrical polar and spherical coordinates. The problem of interbasis expansions of the eigenfunctions is solved completely. The explicit expansion coefficients of the basis for given coordinates in terms of other two coordinates are presented for lower excited states. Such a property is occurred only for those degenerated states for given principal quantum number n. -- Highlights: ► Exact solutions of harmonic oscillator are reviewed in three coordinates. ► Interbasis expansions of the eigenfunctions is solved completely. ► This is occurred only for those degenerated states for given quantum number n.
Isotropic Broadband E-Field Probe
Directory of Open Access Journals (Sweden)
Béla Szentpáli
2008-01-01
Full Text Available An E-field probe has been developed for EMC immunity tests performed in closed space. The leads are flexible resistive transmission lines. Their influence on the field distribution is negligible. The probe has an isotropic reception from 100 MHz to 18 GHz; the sensitivity is in the 3 V/m–10 V/m range. The device is an accessory of the EMC test chamber. The readout of the field magnitude is carried out by personal computer, which fulfils also the required corrections of the raw data.
Gravitational instability in isotropic MHD plasma waves
Cherkos, Alemayehu Mengesha
2018-04-01
The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for magnetohydrodynamic (MHD) waves propagating in a homogeneous and isotropic plasma. The general dispersion relation has been developed from set of linearized basic equations and solved analytically to analyse the conditions of instability and instability of self-gravitating plasma embedded in a constant magnetic field. Our result shows that the presence of viscosity and thermal conductivity in a strong magnetic field substantially modifies the fundamental Jeans criterion of gravitational instability.
Active isotropic slabs: conditions for amplified reflection
Perez, Liliana I.; Matteo, Claudia L.; Etcheverry, Javier; Duplaá, María Celeste
2012-12-01
We analyse in detail the necessary conditions to obtain amplified reflection (AR) in isotropic interfaces when a plane wave propagates from a transparent medium towards an active one. First, we demonstrate analytically that AR is not possible if a single interface is involved. Then, we study the conditions for AR in a very simple configuration: normal incidence on an active slab immersed in transparent media. Finally, we develop an analysis in the complex plane in order to establish a geometrical method that not only describes the behaviour of active slabs but also helps to simplify the calculus.
Active isotropic slabs: conditions for amplified reflection
International Nuclear Information System (INIS)
Perez, Liliana I; Duplaá, María Celeste; Matteo, Claudia L; Etcheverry, Javier
2012-01-01
We analyse in detail the necessary conditions to obtain amplified reflection (AR) in isotropic interfaces when a plane wave propagates from a transparent medium towards an active one. First, we demonstrate analytically that AR is not possible if a single interface is involved. Then, we study the conditions for AR in a very simple configuration: normal incidence on an active slab immersed in transparent media. Finally, we develop an analysis in the complex plane in order to establish a geometrical method that not only describes the behaviour of active slabs but also helps to simplify the calculus. (paper)
Ng, Maggie; Mok, Daniel K W; Lee, Edmond P F; Dyke, John M
2013-03-15
The minimum energy path (MEP) of the reaction, CF(3)CHFCF(3) + H → transition state (TS) → CF(3)CFCF(3) + H(2), has been computed at different ab initio levels and with density functional theory (DFT) using different functionals. The computed B3LYP/6-31++G**, BH&HLYP/cc-pVDZ, BMK/6-31++G**, M05/6-31+G**, M05-2X/6-31+G**, UMP2/6-31++G**, PUMP2/6-31++G**//UMP2/6-31++G**, RCCSD(T)/aug-cc-pVDZ//UMP2/6-31++G**, RCCSD(T)/aug-cc-pVTZ(spd,sp)//UMP2//6-31++G**, RCCSD(T)/CBS//M05/6-31+G**, and RCCSD(T)/CBS//UMP2/6-31++G** MEPs, and associated gradients and Hessians, were used in reaction rate coefficient calculations based on the transition state theory (TST). Reaction rate coefficients were computed between 300 and 1500 K at various levels of TST, which include conventional TST, canonical variational TST (CVT) and improved CVT (ICVT), and with different tunneling corrections, namely, Wigner, zero-curvature, and small-curvature (SCT). The computed rate coefficients obtained at different ab initio, DFT and TST levels are compared with experimental values available in the 1000-1200 K temperature range. Based on the rate coefficients computed at the ICVT/SCT level, the highest TST level used in this study, the BH&HLYP functional performs best among all the functionals used, while the RCCSD(T)/CBS//MP2/6-31++G** level is the best among all the ab initio levels used. Comparing computed reaction rate coefficients obtained at different levels of theory shows that, the computed barrier height has the strongest effect on the computed reaction rate coefficients as expected. Variational effects on the computed rate coefficients are found to be negligibly small. Although tunneling effects are relatively small at high temperatures (~1500 K), SCT corrections are significant at low temperatures (~300 K), and both barrier heights and the magnitudes of the imaginary frequencies affect SCT corrections. Copyright © 2012 Wiley Periodicals, Inc.
Acoustic reflection log in transversely isotropic formations
Ronquillo Jarillo, G.; Markova, I.; Markov, M.
2018-01-01
We have calculated the waveforms of sonic reflection logging for a fluid-filled borehole located in a transversely isotropic rock. Calculations have been performed for an acoustic impulse source with the characteristic frequency of tens of kilohertz that is considerably less than the frequencies of acoustic borehole imaging tools. It is assumed that the borehole axis coincides with the axis of symmetry of the transversely isotropic rock. It was shown that the reflected wave was excited most efficiently at resonant frequencies. These frequencies are close to the frequencies of oscillations of a fluid column located in an absolutely rigid hollow cylinder. We have shown that the acoustic reverberation is controlled by the acoustic impedance of the rock Z = Vphρs for fixed parameters of the borehole fluid, where Vph is the velocity of horizontally propagating P-wave; ρs is the rock density. The methods of waveform processing to determine the parameters characterizing the reflected wave have been discussed.
A tilted transversely isotropic slowness surface approximation
Stovas, A.
2012-05-09
The relation between vertical and horizontal slownesses, better known as the dispersion relation, for transversely isotropic media with a tilted symmetry axis (TTI) requires solving a quartic polynomial equation, which does not admit a practical explicit solution to be used, for example, in downward continuation. Using a combination of the perturbation theory with respect to the anelliptic parameter and Shanks transform to improve the accuracy of the expansion, we develop an explicit formula for the vertical slowness that is highly accurate for all practical purposes. It also reveals some insights into the anisotropy parameter dependency of the dispersion relation including the low impact that the anelliptic parameter has on the vertical placement of reflectors for a small tilt in the symmetry angle. © 2012 European Association of Geoscientists & Engineers.
Linearized holographic isotropization at finite coupling
Energy Technology Data Exchange (ETDEWEB)
Atashi, Mahdi; Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Physics Department (Iran, Islamic Republic of); Jafari, Ghadir [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)
2017-06-15
We study holographic isotropization of an anisotropic homogeneous non-Abelian strongly coupled plasma in the presence of Gauss-Bonnet corrections. It was verified before that one can linearize Einstein's equations around the final black hole background and simplify the complicated setup. Using this approach, we study the expectation value of the boundary stress tensor. Although we consider small values of the Gauss-Bonnet coupling constant, it is found that finite coupling leads to significant increasing of the thermalization time. By including higher order corrections in linearization, we extend the results to study the effect of the Gauss-Bonnet coupling on the entropy production on the event horizon. (orig.)
Effective elastic properties of damaged isotropic solids
International Nuclear Information System (INIS)
Lee, U Sik
1998-01-01
In continuum damage mechanics, damaged solids have been represented by the effective elastic stiffness into which local damage is smoothly smeared. Similarly, damaged solids may be represented in terms of effective elastic compliances. By virtue of the effective elastic compliance representation, it may become easier to derive the effective engineering constants of damaged solids from the effective elastic compliances, all in closed form. Thus, in this paper, by using a continuum modeling approach based on both the principle of strain energy equivalence and the equivalent elliptical micro-crack representation of local damage, the effective elastic compliance and effective engineering constants are derived in terms of the undamaged (virgin) elastic properties and a scalar damage variable for both damaged two-and three-dimensional isotropic solids
New bounds on isotropic Lorentz violation
International Nuclear Information System (INIS)
Carone, Christopher D.; Sher, Marc; Vanderhaeghen, Marc
2006-01-01
Violations of Lorentz invariance that appear via operators of dimension four or less are completely parametrized in the Standard Model Extension (SME). In the pure photonic sector of the SME, there are 19 dimensionless, Lorentz-violating parameters. Eighteen of these have experimental upper bounds ranging between 10 -11 and 10 -32 ; the remaining parameter, k-tilde tr , is isotropic and has a much weaker bound of order 10 -4 . In this Brief Report, we point out that k-tilde tr gives a significant contribution to the anomalous magnetic moment of the electron and find a new upper bound of order 10 -8 . With reasonable assumptions, we further show that this bound may be improved to 10 -14 by considering the renormalization of other Lorentz-violating parameters that are more tightly constrained. Using similar renormalization arguments, we also estimate bounds on Lorentz-violating parameters in the pure gluonic sector of QCD
Isotropic and anisotropic surface wave cloaking techniques
International Nuclear Information System (INIS)
McManus, T M; Spada, L La; Hao, Y
2016-01-01
In this paper we compare two different approaches for surface waves cloaking. The first technique is a unique application of Fermat’s principle and requires isotropic material properties, but owing to its derivation is limited in its applicability. The second technique utilises a geometrical optics approximation for dealing with rays bound to a two dimensional surface and requires anisotropic material properties, though it can be used to cloak any smooth surface. We analytically derive the surface wave scattering behaviour for both cloak techniques when applied to a rotationally symmetric surface deformation. Furthermore, we simulate both using a commercially available full-wave electromagnetic solver and demonstrate a good level of agreement with their analytically derived solutions. Our analytical solutions and simulations provide a complete and concise overview of two different surface wave cloaking techniques. (paper)
Isotropic and anisotropic surface wave cloaking techniques
McManus, T. M.; La Spada, L.; Hao, Y.
2016-04-01
In this paper we compare two different approaches for surface waves cloaking. The first technique is a unique application of Fermat’s principle and requires isotropic material properties, but owing to its derivation is limited in its applicability. The second technique utilises a geometrical optics approximation for dealing with rays bound to a two dimensional surface and requires anisotropic material properties, though it can be used to cloak any smooth surface. We analytically derive the surface wave scattering behaviour for both cloak techniques when applied to a rotationally symmetric surface deformation. Furthermore, we simulate both using a commercially available full-wave electromagnetic solver and demonstrate a good level of agreement with their analytically derived solutions. Our analytical solutions and simulations provide a complete and concise overview of two different surface wave cloaking techniques.
Electronically excited states of chloroethylenes: Experiment and DFT calculations in comparison
International Nuclear Information System (INIS)
Khvostenko, O.G.
2014-01-01
Highlights: • B3LYP/6-311 + G(d,p) calculations of chloroethylenes molecules were performed. • Calculations were correlated with experiment on the molecules ground and excited states. • The general pattern of electron structure of chloroethylenes was obtained. • Necessity of this data for chloroethylenes negative ions study was noted. - Abstract: B3LYP/6-311 + G(d,p) calculations of ground and electronically excited states of ethylene, chloroethylene, 1,1-dichloroethylene, 1,2-dichloroethylene-cis, 1,2-dichloroethylene-trans trichloroethylene and tetrachloroethylene molecules have been performed. Molecular orbitals images and orbital correlation diagram are given. The calculation results for chloroethylenes electronically excited states were compared with experimental data from the energy-loss spectra obtained and generally considered previously by C.F. Koerting, K.N. Walzl and A. Kupperman. Several new additional triplet and singlet transitions were pointed out in these spectra considering the calculation results. The finding of the additional transitions was supported by the UV absorption spectrum of trichloroethylene recorded in big cuvette (10 cm), where the first three triplet and two low-intensive forbidden singlet transitions were registered. The first triplet of this compound was recorded to be at the same energy as was found with the energy-loss spectroscopy
Electronically excited states of chloroethylenes: Experiment and DFT calculations in comparison
Energy Technology Data Exchange (ETDEWEB)
Khvostenko, O.G., E-mail: khv@mail.ru
2014-08-15
Highlights: • B3LYP/6-311 + G(d,p) calculations of chloroethylenes molecules were performed. • Calculations were correlated with experiment on the molecules ground and excited states. • The general pattern of electron structure of chloroethylenes was obtained. • Necessity of this data for chloroethylenes negative ions study was noted. - Abstract: B3LYP/6-311 + G(d,p) calculations of ground and electronically excited states of ethylene, chloroethylene, 1,1-dichloroethylene, 1,2-dichloroethylene-cis, 1,2-dichloroethylene-trans trichloroethylene and tetrachloroethylene molecules have been performed. Molecular orbitals images and orbital correlation diagram are given. The calculation results for chloroethylenes electronically excited states were compared with experimental data from the energy-loss spectra obtained and generally considered previously by C.F. Koerting, K.N. Walzl and A. Kupperman. Several new additional triplet and singlet transitions were pointed out in these spectra considering the calculation results. The finding of the additional transitions was supported by the UV absorption spectrum of trichloroethylene recorded in big cuvette (10 cm), where the first three triplet and two low-intensive forbidden singlet transitions were registered. The first triplet of this compound was recorded to be at the same energy as was found with the energy-loss spectroscopy.
Li, Min-jie; Zhang, Liang-miao; Liu, Wei-xia; Lu, Wen-cong
2011-04-01
The molecular structure and radical scavenging activity of three novel antioxidants from Lespedeza Virgata, lespedezavirgatol, lespedezavirgatal, and lespedezacoumestan, have been studied using density functional theory with the B3LYP and BhandHLYP methods. The optimized geometries of neutral, radical cation, radical and anion forms were obtained at the B3LYP/6-31G(d) level, in which it was found that all the most stable conformations contain intramolecular hydrogen bonds. The same results were obtained from the MP2 method. The homolytic O—H bond dissociation enthalpy and the adiabatic ionization potential of neutral and anion forms for the three new antioxidants and adiabatic electron affinity and H-atom affinity for hydroxyl radical, superoxide anion radical, and hydrogen peroxide radical were determined both in gas phase and in aqueous solution using IEF-PCM and CPCM model with UAHF or Bondi cavity. The antioxidant activities and reactive oxygen species scavenging mechanisms were then discussed, and the results obtained from different methods are consistent. Furthermore, the antioxidant activities are consistent with the experimental findings of the compounds under investigation.
Electronic spectra and DFT calculations of some pyrimido[1,2-a]benzimidazole derivatives
Elshakre, Mohamed E.; Moustafa, H.; Hassaneen, Huwaida. M. E.; Moussa, Abdelrahim. Z.
2015-06-01
Ground state properties of 2,4-diphenyl-1,4-dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine, compound 1, and its derivatives are investigated experimentally and theoretically in Dioxane and DMF. The calculations show that all the studied compounds (1-7) are non-planar, resulting in a significant impact on the electronic and structural properties. The ground state properties of compounds 1-7 at B3LYP/6-311G (d, p) show that compound 5 has the lowest EHOMO, ELUMO, and ΔE indicating highest reactivity. Compound 7 is found to have the highest polarity. The observed UV spectra in Dioxane and DMF of compounds 1-4 show 2 bands, while compounds 5-7 show 4 bands in both solvents. Band maxima (λmax) and intensities of the spectra are found to have solvent dependence reflected as blue and red shifts. The theoretical spectra computed at TD-B3LYP/6-311G (d, p) in gas phase, Dioxane and DMF indicate a good agreement with the observed spectra.
Directory of Open Access Journals (Sweden)
Nader Noroozi Pesyan
2014-03-01
Full Text Available The predominant tautomeric forms of N1–H, N2–H of 5-(2,6-dimethyl- and 5-(2,6-diisopropylphenoxy-(1H-tetrazoles were analyzed at B3LYP method using 6-311G(d,p basis set in the gas phase. The N1–H form of tetrazoles was found to be more stable than N2–H form in both solid and gas phases. Crystal structures of both tetrazoles show an intermolecular H-bond between N1-H and N4 atom of other tetrazole space. The hydrogen bonds between each tautomer of tetrazoles were evaluated at B3LYP/6-311G(d,p level. The geometrical parameters and spectral data of tetrazoles and their variation were studied in both solid and gas phases.
Directory of Open Access Journals (Sweden)
Alireza Akbari
2012-01-01
Full Text Available Molecular structures of [PCl2N]3-MCl3 adducts, M=B, Al, Ga, In, Tl, have been studied employing HF, B3LYP*, B3LYP , PW91, BLYP, OLYP, BP and LDA methods using DZP basis set (as defined in Amsterdam Density Functional, ADF, package. Some aspects of adduct formation like considering the difference between Front and Back dihedral angles and also ring puckering showed that the [PCl2N]3-AlCl3 is the most stable adduct comparing the others. Based on the comparison between the X-ray and theoretical geometrical parameters of [NPCl2]3(AlCl3 and [NPCl2]3(GaCl3, the LDA method and BP, PW91 and OLYP functionals combined with DZP basis set were found to yield the most satisfactory agreement. Results showed that with surprise, the LDA(DZP method has the maximum matching with experimental data, comparing the others.
Mathammal, R.; Sangeetha, K.; Sangeetha, M.; Mekala, R.; Gadheeja, S.
2016-09-01
In this study, we report a combined experimental and theoretical study on molecular structure and vibrational spectra of 3,5 di tert butyl 4 hydroxy benzoic acid. The properties of title compound have been evaluated by quantum chemical calculation (DFT) using B3LYP functional and 6-31 + G (d, p) as basis set. IR Spectra has been recorded using Fourier transform infrared spectroscopy (FT-IR) in the region 4000-400 cm-1. The vibrational assignment of the calculated normal modes has been made on the basis set. The isotropic chemical shifts computed by 13C and 1H NMR (Nuclear Magnetic Resonance) analyses also show good agreement with experimental observations. The theoretical UV-Vis spectrum of the compound are used to study the visible absorption maxima (λ max). The structure activity relationship have been interpreted by mapping electrostatic potential surface (MEP), which is valuable information for the quality control of medicines and drug receptor interactions. The Mullikan charges, HOMO (Highest Occupied Molecular Orbital) - LUMO (Lowest Unoccupied Molecular Orbital) energy are analyzed. HOMO-LUMO energy gap and other related molecular properties are also calculated. The Natural Bond Orbital (NBO) analysis is carried out to investigate the various intra and inter molecular interactions of molecular system. The Non-linear optical properties such as dipole moment (μ), polarizability (αtot) and molecular first order hyperpolarizability (β) of the title compound are computed with B3LYP/6-31 + G (d,p) level of theory.
Hayes, Christopher J; Simpkins, Nigel S
2013-12-28
A computational study (B3LYP), of the metallation of a bridged ketone, an important step in the synthesis of a polycyclic polyprenylated acylphloroglucinol (PPAP), nemorosone, shows three energetically distinct structural possibilities for the lithiated intermediate. These findings, along with observations of the reactivity of the intermediates in bridgehead substitutions, suggest that different intermediates may be formed depending upon the type of process used for lithiation.
Density Functional Theory (DFT Study of Edaravone Derivatives as Antioxidants
Directory of Open Access Journals (Sweden)
Walace G. Leal
2012-06-01
Full Text Available Quantum chemical calculations at the B3LYP/6–31G* level of theory were employed for the structure-activity relationship and prediction of the antioxidant activity of edaravone and structurally related derivatives using energy (E, ionization potential (IP, bond dissociation energy (BDE, and stabilization energies (∆E_{iso}. Spin density calculations were also performed for the proposed antioxidant activity mechanism. The electron abstraction is related to electron-donating groups (EDG at position 3, decreasing the IP when compared to substitution at position 4. The hydrogen abstraction is related to electron-withdrawing groups (EDG at position 4, decreasing the BDE_{CH} when compared to other substitutions, resulting in a better antioxidant activity. The unpaired electron formed by the hydrogen abstraction from the C–H group of the pyrazole ring is localized at 2, 4, and 6 positions. The highest scavenging activity prediction is related to the lowest contribution at the carbon atom. The likely mechanism is related to hydrogen transfer. It was found that antioxidant activity depends on the presence of EDG at the C_{2} and C_{4} positions and there is a correlation between IP and BDE. Our results identified three different classes of new derivatives more potent than edaravone.
On the decay of homogeneous isotropic turbulence
Skrbek, L.; Stalp, Steven R.
2000-08-01
Decaying homogeneous, isotropic turbulence is investigated using a phenomenological model based on the three-dimensional turbulent energy spectra. We generalize the approach first used by Comte-Bellot and Corrsin [J. Fluid Mech. 25, 657 (1966)] and revised by Saffman [J. Fluid Mech. 27, 581 (1967); Phys. Fluids 10, 1349 (1967)]. At small wave numbers we assume the spectral energy is proportional to the wave number to an arbitrary power. The specific case of power 2, which follows from the Saffman invariant, is discussed in detail and is later shown to best describe experimental data. For the spectral energy density in the inertial range we apply both the Kolmogorov -5/3 law, E(k)=Cɛ2/3k-5/3, and the refined Kolmogorov law by taking into account intermittency. We show that intermittency affects the energy decay mainly by shifting the position of the virtual origin rather than altering the power law of the energy decay. Additionally, the spectrum is naturally truncated due to the size of the wind tunnel test section, as eddies larger than the physical size of the system cannot exist. We discuss effects associated with the energy-containing length scale saturating at the size of the test section and predict a change in the power law decay of both energy and vorticity. To incorporate viscous corrections to the model, we truncate the spectrum at an effective Kolmogorov wave number kη=γ(ɛ/v3)1/4, where γ is a dimensionless parameter of order unity. We show that as the turbulence decays, viscous corrections gradually become more important and a simple power law can no longer describe the decay. We discuss the final period of decay within the framework of our model, and show that care must be taken to distinguish between the final period of decay and the change of the character of decay due to the saturation of the energy containing length scale. The model is applied to a number of experiments on decaying turbulence. These include the downstream decay of turbulence in
Isotropic compression of cohesive-frictional particles with rolling resistance
Luding, Stefan; Benz, Thomas; Nordal, Steinar
2010-01-01
Cohesive-frictional and rough powders are the subject of this study. The behavior under isotropic compression is examined for different material properties involving Coulomb friction, rolling-resistance and contact-adhesion. Under isotropic compression, the density continuously increases according
The revised geometric measure of entanglement for isotropic state
International Nuclear Information System (INIS)
Cao Ya
2011-01-01
Based on the revised geometric measure of entanglement (RGME), we obtain the analytical expression of isotropic state and generalize to n-particle and d-dimension mixed state case. Meantime, we obtain the relation about isotropic state E-tilde sin 2 (ρ) ≤ E re (ρ). The results indicate RGME is an appropriate measure of entanglement. (authors)
Contact mechanics and friction for transversely isotropic viscoelastic materials
Mokhtari, Milad; Schipper, Dirk J.; Vleugels, N.; Noordermeer, Jacobus W.M.; Yoshimoto, S.; Hashimoto, H.
2015-01-01
Transversely isotropic materials are an unique group of materials whose properties are the same along two of the principal axes of a Cartesian coordinate system. Various natural and artificial materials behave effectively as transversely isotropic elastic solids. Several materials can be classified
How isotropic can the UHECR flux be?
di Matteo, Armando; Tinyakov, Peter
2018-05-01
Modern observatories of ultra-high energy cosmic rays (UHECR) have collected over 104 events with energies above 10 EeV, whose arrival directions appear to be nearly isotropically distributed. On the other hand, the distribution of matter in the nearby Universe - and therefore presumably also that of UHECR sources - is not homogeneous. This is expected to leave an imprint on the angular distribution of UHECR arrival directions, though deflections by cosmic magnetic fields can confound the picture. In this work, we investigate quantitatively this apparent inconsistency. To this end we study observables sensitive to UHECR source inhomogeneities but robust to uncertainties on magnetic fields and the UHECR mass composition. We show, in a rather model-independent way, that if the source distribution tracks the overall matter distribution, the arrival directions at energies above 30 EeV should exhibit a sizeable dipole and quadrupole anisotropy, detectable by UHECR observatories in the very near future. Were it not the case, one would have to seriously reconsider the present understanding of cosmic magnetic fields and/or the UHECR composition. Also, we show that the lack of a strong quadrupole moment above 10 EeV in the current data already disfavours a pure proton composition, and that in the very near future measurements of the dipole and quadrupole moment above 60 EeV will be able to provide evidence about the UHECR mass composition at those energies.
On isotropic cylindrically symmetric stellar models
International Nuclear Information System (INIS)
Nolan, Brien C; Nolan, Louise V
2004-01-01
We attempt to match the most general cylindrically symmetric vacuum spacetime with a Robertson-Walker interior. The matching conditions show that the interior must be dust filled and that the boundary must be comoving. Further, we show that the vacuum region must be polarized. Imposing the condition that there are no trapped cylinders on an initial time slice, we can apply a result of Thorne's and show that trapped cylinders never evolve. This results in a simplified line element which we prove to be incompatible with the dust interior. This result demonstrates the impossibility of the existence of an isotropic cylindrically symmetric star (or even a star which has a cylindrically symmetric portion). We investigate the problem from a different perspective by looking at the expansion scalars of invariant null geodesic congruences and, applying to the cylindrical case, the result that the product of the signs of the expansion scalars must be continuous across the boundary. The result may also be understood in relation to recent results about the impossibility of the static axially symmetric analogue of the Einstein-Straus model
Lagrangian statistics in compressible isotropic homogeneous turbulence
Yang, Yantao; Wang, Jianchun; Shi, Yipeng; Chen, Shiyi
2011-11-01
In this work we conducted the Direct Numerical Simulation (DNS) of a forced compressible isotropic homogeneous turbulence and investigated the flow statistics from the Lagrangian point of view, namely the statistics is computed following the passive tracers trajectories. The numerical method combined the Eulerian field solver which was developed by Wang et al. (2010, J. Comp. Phys., 229, 5257-5279), and a Lagrangian module for tracking the tracers and recording the data. The Lagrangian probability density functions (p.d.f.'s) have then been calculated for both kinetic and thermodynamic quantities. In order to isolate the shearing part from the compressing part of the flow, we employed the Helmholtz decomposition to decompose the flow field (mainly the velocity field) into the solenoidal and compressive parts. The solenoidal part was compared with the incompressible case, while the compressibility effect showed up in the compressive part. The Lagrangian structure functions and cross-correlation between various quantities will also be discussed. This work was supported in part by the China's Turbulence Program under Grant No.2009CB724101.
Nonlinear elastic inclusions in isotropic solids
Yavari, A.
2013-10-16
We introduce a geometric framework to calculate the residual stress fields and deformations of nonlinear solids with inclusions and eigenstrains. Inclusions are regions in a body with different reference configurations from the body itself and can be described by distributed eigenstrains. Geometrically, the eigenstrains define a Riemannian 3-manifold in which the body is stress-free by construction. The problem of residual stress calculation is then reduced to finding a mapping from the Riemannian material manifold to the ambient Euclidean space. Using this construction, we find the residual stress fields of three model systems with spherical and cylindrical symmetries in both incompressible and compressible isotropic elastic solids. In particular, we consider a finite spherical ball with a spherical inclusion with uniform pure dilatational eigenstrain and we show that the stress in the inclusion is uniform and hydrostatic. We also show how singularities in the stress distribution emerge as a consequence of a mismatch between radial and circumferential eigenstrains at the centre of a sphere or the axis of a cylinder.
Radiation statistics in homogeneous isotropic turbulence
International Nuclear Information System (INIS)
Da Silva, C B; Coelho, P J; Malico, I
2009-01-01
An analysis of turbulence-radiation interaction (TRI) in statistically stationary (forced) homogeneous and isotropic turbulence is presented. A direct numerical simulation code was used to generate instantaneous turbulent scalar fields, and the radiative transfer equation (RTE) was solved to provide statistical data relevant in TRI. The radiation intensity is non-Gaussian and is not spatially correlated with any of the other turbulence or radiation quantities. Its power spectrum exhibits a power-law region with a slope steeper than the classical -5/3 law. The moments of the radiation intensity, Planck-mean and incident-mean absorption coefficients, and emission and absorption TRI correlations are calculated. The influence of the optical thickness of the medium, mean and variance of the temperature and variance of the molar fraction of the absorbing species is studied. Predictions obtained from the time-averaged RTE are also included. It was found that while turbulence yields an increase of the mean blackbody radiation intensity, it causes a decrease of the time-averaged Planck-mean absorption coefficient. The absorption coefficient self-correlation is small in comparison with the temperature self-correlation, and the role of TRI in radiative emission is more important than in radiative absorption. The absorption coefficient-radiation intensity correlation is small, which supports the optically thin fluctuation approximation, and justifies the good predictions often achieved using the time-averaged RTE.
Radiation statistics in homogeneous isotropic turbulence
Energy Technology Data Exchange (ETDEWEB)
Da Silva, C B; Coelho, P J [Mechanical Engineering Department, IDMEC/LAETA, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Malico, I [Physics Department, University of Evora, Rua Romao Ramalho, 59, 7000-671 Evora (Portugal)], E-mail: carlos.silva@ist.utl.pt, E-mail: imbm@uevora.pt, E-mail: pedro.coelho@ist.utl.pt
2009-09-15
An analysis of turbulence-radiation interaction (TRI) in statistically stationary (forced) homogeneous and isotropic turbulence is presented. A direct numerical simulation code was used to generate instantaneous turbulent scalar fields, and the radiative transfer equation (RTE) was solved to provide statistical data relevant in TRI. The radiation intensity is non-Gaussian and is not spatially correlated with any of the other turbulence or radiation quantities. Its power spectrum exhibits a power-law region with a slope steeper than the classical -5/3 law. The moments of the radiation intensity, Planck-mean and incident-mean absorption coefficients, and emission and absorption TRI correlations are calculated. The influence of the optical thickness of the medium, mean and variance of the temperature and variance of the molar fraction of the absorbing species is studied. Predictions obtained from the time-averaged RTE are also included. It was found that while turbulence yields an increase of the mean blackbody radiation intensity, it causes a decrease of the time-averaged Planck-mean absorption coefficient. The absorption coefficient self-correlation is small in comparison with the temperature self-correlation, and the role of TRI in radiative emission is more important than in radiative absorption. The absorption coefficient-radiation intensity correlation is small, which supports the optically thin fluctuation approximation, and justifies the good predictions often achieved using the time-averaged RTE.
Xavier, S.; Periandy, S.; Carthigayan, K.; Sebastian, S.
2016-12-01
Vibrational spectral analysis of Diphenyl Carbonate (DPC) is carried out by using FT-IR and FT-Raman spectroscopic techniques. It is found that all vibrational modes are in the expected region. Gaussian computational calculations were performed using B3LYP method with 6-311++G (d, p) basis set. The computed geometric parameters are in good agreement with XRD data. The observation shows that the structure of the carbonate group is unsymmetrical by ∼5° due to the attachment of the two phenyl rings. The stability of the molecule arising from hyperconjugative interaction and charge delocalization are analyzed by Natural Bond Orbital (NBO) study and the results show the lone pair transition has higher stabilization energy compared to all other. The 1H and 13C NMR chemical shifts are calculated using the Gauge-Including Atomic Orbital (GIAO) method with B3LYP/6-311++G (d, p) method. The chemical shifts computed theoretically go very closer to the experimental results. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies and Molecular electrostatic potential (MEP) exhibit the high reactivity nature of the molecule. The non-linear optical property of the DPC molecule predicted theoretically found to be good candidate for NLO material. TG/DTA analysis was made and decomposition of the molecule with respect to the temperature was studied. DPC having the anthelmintic activity is docked in the Hemoglobin of Fasciola hepatica protein. The DPC has been screened to antimicrobial activity and found to exhibit antibacterial effects.
International Nuclear Information System (INIS)
Avci, D.
2005-01-01
The molecular geometry and vibrational frequencies of 4,5-bis-(2-isopropyl-5- methylphenoxy) phthalonitrile in the ground state have been calculated using the Hartree- Fock (HF) and density functional method (B3LYP) with 6-31G(d) basis set. The optimized geometric bond lengths and bond angles obtained by using HF and DFT (B3LYP) show the best agreement with the experimental data. Comparison of the observed fundamental vibrational frequencies of 4,5-bis-(2-isopropyl-5-methylphenoxy) phthalonitrile with calculated results by density functional B3LYP and Hartree-Fock methods indicate that B3LYP is superior to the scaled Hartree-Fock approach for molecular vibrational problems
Purgel, Mihály; Maliarik, Mikhail; Glaser, Julius; Platas-Iglesias, Carlos; Persson, Ingmar; Tóth, Imre
2011-07-04
the (CN)(4)Pt-Tl(dmso)(5)(+) system by using DFT calculations (B3LYP model) provide bond distances in excellent agreement with the EXAFS data. The four cyanide ligands are located in a square around the Pt atom, while the Tl atom is coordinated in a distorted octahedral fashion with the metal being located 0.40 Å above the equatorial plane described by four oxygen atoms of dmso ligands. The four equatorial Tl-O bonds and the four cyano ligands around the Pt atom are arranged in an alternate geometry. The coordination environment around Pt may be considered as being square pyramidal, where the apical position is occupied by the Tl atom. The optimized geometry of (CN)(4)Pt-Tl(dmso)(5)(+) is asymmetrical (C(1) point group). This low symmetry might be responsible for the unusually large NMR linewidths observed due to intramolecular chemical exchange processes. The nature of the Pt-Tl bond has been studied by MO analysis. The metal-metal bond formation in (CN)(4)Pt-Tl(dmso)(5)(+) can be simply interpreted as the result of a Pt(5d(z(2)))(2) → Tl(6s)(0) donation. This bonding scheme may rationalize the smaller thermodynamic stability of this adduct compared to the related complexes with (CN)(5)Pt-Tl entity, where the linear C-Pt-Tl unit constitutes a very stable bonding system. © 2011 American Chemical Society
Investigating source processes of isotropic events
Chiang, Andrea
explosion. In contrast, recovering the announced explosive yield using seismic moment estimates from moment tensor inversion remains challenging but we can begin to put error bounds on our moment estimates using the NSS technique. The estimation of seismic source parameters is dependent upon having a well-calibrated velocity model to compute the Green's functions for the inverse problem. Ideally, seismic velocity models are calibrated through broadband waveform modeling, however in regions of low seismicity velocity models derived from body or surface wave tomography may be employed. Whether a velocity model is 1D or 3D, or based on broadband seismic waveform modeling or the various tomographic techniques, the uncertainty in the velocity model can be the greatest source of error in moment tensor inversion. These errors have not been fully investigated for the nuclear discrimination problem. To study the effects of unmodeled structures on the moment tensor inversion, we set up a synthetic experiment where we produce synthetic seismograms for a 3D model (Moschetti et al., 2010) and invert these data using Green's functions computed with a 1D velocity mode (Song et al., 1996) to evaluate the recoverability of input solutions, paying particular attention to biases in the isotropic component. The synthetic experiment results indicate that the 1D model assumption is valid for moment tensor inversions at periods as short as 10 seconds for the 1D western U.S. model (Song et al., 1996). The correct earthquake mechanisms and source depth are recovered with statistically insignificant isotropic components as determined by the F-test. Shallow explosions are biased by the theoretical ISO-CLVD tradeoff but the tectonic release component remains low, and the tradeoff can be eliminated with constraints from P wave first motion. Path-calibration to the 1D model can reduce non-double-couple components in earthquakes, non-isotropic components in explosions and composite sources and improve
Arjunan, V; Devi, L; Subbalakshmi, R; Rani, T; Mohan, S
2014-09-15
The stable geometry of 2-hydroxy-4-methoxyacetophenone is optimised by DFT/B3LYP method with 6-311++G(∗∗) and cc-pVTZ basis sets. The structural parameters, thermodynamic properties and vibrational frequencies of the optimised geometry have been determined. The effects of substituents (hydroxyl, methoxy and acetyl groups) on the benzene ring vibrational frequencies are analysed. The vibrational frequencies of the fundamental modes of 2-hydroxy-4-methoxyacetophenone have been precisely assigned and analysed and the theoretical results are compared with the experimental vibrations. 1H and 13C NMR isotropic chemical shifts are calculated and assignments made are compared with the experimental values. The energies of important MO's, the total electron density and electrostatic potential of the compound are determined. Various reactivity and selectivity descriptors such as chemical hardness, chemical potential, softness, electrophilicity, nucleophilicity and the appropriate local quantities are calculated. Copyright © 2014 Elsevier B.V. All rights reserved.
Isotropic nuclear graphites; the effect of neutron irradiation
International Nuclear Information System (INIS)
Lore, J.; Buscaillon, A.; Mottet, P.; Micaud, G.
1977-01-01
Several isotropic graphites have been manufactured using different forming processes and fillers such as needle coke, regular coke, or pitch coke. Their properties are described in this paper. Specimens of these products have been irradiated in the fast reactor Rapsodie between 400 to 1400 0 C, at fluences up to 1,7.10 21 n.cm -2 PHI.FG. The results show an isotropic behavior under neutron irradiation, but the induced dimensional changes are higher than those of isotropic coke graphites although they are lower than those of conventional extruded graphites made with the same coke
Process for the preparation of isotropic petroleum coke
International Nuclear Information System (INIS)
Kegler, W.H.; Huyser, M.E.
1975-01-01
A description is given of a process for preparing isotropic coke from oil residue charge. It includes blowing air into the residue until it reaches a softening temperature of around 49 to 116 deg C, the deferred coking of the residue having undergone blowing at a temperature of around 247 to 640 deg C, at a pressure between around 1.38x10 5 and 1.72x10 6 Pa, and the recovery of isotropic coke with a thermal expansion coefficient ratio under 1.5 approximately. The isotropic coke is used for preparing hexagonal graphite bars for nuclear reactor moderators [fr
Sudden Relaminarization and Lifetimes in Forced Isotropic Turbulence.
Linkmann, Moritz F; Morozov, Alexander
2015-09-25
We demonstrate an unexpected connection between isotropic turbulence and wall-bounded shear flows. We perform direct numerical simulations of isotropic turbulence forced at large scales at moderate Reynolds numbers and observe sudden transitions from a chaotic dynamics to a spatially simple flow, analogous to the laminar state in wall bounded shear flows. We find that the survival probabilities of turbulence are exponential and the typical lifetimes increase superexponentially with the Reynolds number. Our results suggest that both isotropic turbulence and wall-bounded shear flows qualitatively share the same phase-space dynamics.
Bednarska, Joanna; Zaleśny, Robert; Bartkowiak, Wojciech; Ośmiałowski, Borys; Medved', Miroslav; Jacquemin, Denis
2017-09-12
This article aims at a quantitative assessment of the performances of a panel of exchange-correlation functionals, including semilocal (BLYP and PBE), global hybrids (B3LYP, PBE0, M06, BHandHLYP, M06-2X, and M06-HF), and range-separated hybrids (CAM-B3LYP, LC-ωPBE, LC-BLYP, ωB97X, and ωB97X-D), in predicting the vibrationally resolved absorption spectra of BF 2 -carrying compounds. To this end, for 19 difluoroborates as examples, we use, as a metric, the vibrational reorganization energy (λ vib ) that can be determined based on the computationally efficient linear coupling model (a.k.a. vertical gradient method). The reference values of λ vib were determined by employing the CC2 method combined with the cc-pVTZ basis set for a representative subset of molecules. To validate the performances of CC2, comparisons with experimental data have been carried out as well. This study shows that the vibrational reorganization energy, involving Huang-Rhys factors and normal-mode frequencies, can indeed be used to quantify the reliability of functionals in the calculations of the vibrational fine structure of absorption bands, i.e., an accurate prediction of the vibrational reorganization energy leads to absorption band shapes better fitting the selected reference. The CAM-B3LYP, M06-2X, ωB97X-D, ωB97X, and BHandHLYP functionals all deliver vibrational reorganization energies with absolute relative errors smaller than 20% compared to CC2, whereas 10% accuracy can be achieved with the first three functionals. Indeed, the set of examined exchange-correlation functionals can be divided into three groups: (i) BLYP, B3LYP, PBE, PBE0, and M06 yield inaccurate band shapes (λ vib,TDDFT poor band topologies (λ vib,TDDFT > λ vib,CC2 ). This study also demonstrates that λ vib can be reliably estimated using the CC2 model and the relatively small cc-pVDZ basis set. Therefore, the linear coupling model combined with the CC2/cc-pVDZ level of theory can be used as a very efficient
International Nuclear Information System (INIS)
Cirak, C.; Saglam, A.; Ucun, F.
2010-01-01
The ground state hydrogen conformations of 2-, 3-, 4- and 5-dihydroxybenzaldehyde have been investigated using density functional theory (B3LYP) methods with 6-31G (d,p) basis set. The calculations have indicated that the compounds in the ground state exist with the carbonyl group O atom linked intra molecularly by the two hydrogen bonds of the two hydroxyl groups. The vibrational analyses of the ground state conformers of all the compounds were done and their optimized geometry parameters were given.
DFT study on oxidation of HS(CH2) m SH ( m = 1-8) in oxidative desulfurization
Song, Y. Z.; Song, J. J.; Zhao, T. T.; Chen, C. Y.; He, M.; Du, J.
2016-06-01
Density functional theory was employed for calculation of HS(CH2) m SH ( m = 1-8) and its derivatives at B3LYP method at 6-31++g ( d, p) level. Using eigenvalues of LUMO and HOMO for HS(CH2) m SH, the standard electrode potentials were estimated by a stepwise multiple regression techniques (MLR), and obtained as E° = 1.500 + 7.167 × 10-3 HOMO-0.229 LUMO with high correlation coefficients of 0.973 and F values of 43.973.
CSIR Research Space (South Africa)
Joubert, S
2006-05-01
Full Text Available and Manufacturing TRANSVERSELY ISOTROPIC CYLINDER - 1 φ φ r z a x y Ω P P O u v w z ( )1 1 1 2 1 1 rrr rz rr zr r zrz zz rz u r r z r v r r z r w r r z r ϕ ϕϕ ϕϕ ϕϕ ϕ ϕ σσ σ σ σ ρ ϕ σσ σ σ ρ ϕ σσ σ σ ρ ϕ... ∂ ∂ ∂ + + + − = ∂ ∂ ∂ ∂∂ ∂ + + + = ∂ ∂ ∂ ∂∂ ∂ + + + = ∂ ∂ ∂ && && && 6 CSIR Material Science and Manufacturing TRANSVERSELY ISOTROPIC CYLINDER - 2 ( )1 1 1 2 1 1 rrr rz rr zr r zrz zz rz u r r z r v r r z r w r r z r ϕ ϕϕ ϕϕ ϕϕ ϕ ϕ σσ σ σ σ ρ ϕ σσ σ σ ρ ϕ σσ σ σ ρ ϕ...
A DFT + DMFT approach for nanosystems
Energy Technology Data Exchange (ETDEWEB)
Turkowski, Volodymyr; Kabir, Alamgir; Nayyar, Neha; Rahman, Talat S, E-mail: vturkows@mail.ucf.ed [Department of Physics, University of Central Florida, Orlando, FL 32816 (United States)
2010-11-24
We propose a combined density-functional-theory-dynamical-mean-field-theory (DFT + DMFT) approach for reliable inclusion of electron-electron correlation effects in nanosystems. Compared with the widely used DFT + U approach, this method has several advantages, the most important of which is that it takes into account dynamical correlation effects. The formalism is illustrated through different calculations of the magnetic properties of a set of small iron clusters (number of atoms 2 {<=} N {<=} 5). It is shown that the inclusion of dynamical effects leads to a reduction in the cluster magnetization (as compared to results from DFT + U) and that, even for such small clusters, the magnetization values agree well with experimental estimations. These results justify confidence in the ability of the method to accurately describe the magnetic properties of clusters of interest to nanoscience. (fast track communication)
A DFT + DMFT approach for nanosystems
International Nuclear Information System (INIS)
Turkowski, Volodymyr; Kabir, Alamgir; Nayyar, Neha; Rahman, Talat S
2010-01-01
We propose a combined density-functional-theory-dynamical-mean-field-theory (DFT + DMFT) approach for reliable inclusion of electron-electron correlation effects in nanosystems. Compared with the widely used DFT + U approach, this method has several advantages, the most important of which is that it takes into account dynamical correlation effects. The formalism is illustrated through different calculations of the magnetic properties of a set of small iron clusters (number of atoms 2 ≤ N ≤ 5). It is shown that the inclusion of dynamical effects leads to a reduction in the cluster magnetization (as compared to results from DFT + U) and that, even for such small clusters, the magnetization values agree well with experimental estimations. These results justify confidence in the ability of the method to accurately describe the magnetic properties of clusters of interest to nanoscience. (fast track communication)
Weak convergence to isotropic complex [Formula: see text] random measure.
Wang, Jun; Li, Yunmeng; Sang, Liheng
2017-01-01
In this paper, we prove that an isotropic complex symmetric α -stable random measure ([Formula: see text]) can be approximated by a complex process constructed by integrals based on the Poisson process with random intensity.
Metrical relationships in a standard triangle in an isotropic plane
Kolar-Šuper, R.; Kolar-Begović, Z.; Volenec, V.; Beban-Brkić, J.
2005-01-01
Each allowable triangle of an isotropic plane can be set in a standard position, in which it is possible to prove geometric properties analytically in a simplified and easier way by means of the algebraic theory developed in this paper.
Efficient anisotropic wavefield extrapolation using effective isotropic models
Alkhalifah, Tariq Ali; Ma, X.; Waheed, Umair bin; Zuberi, Mohammad
2013-01-01
Isotropic wavefield extrapolation is more efficient than anisotropic extrapolation, and this is especially true when the anisotropy of the medium is tilted (from the vertical). We use the kinematics of the wavefield, appropriately represented
Isotropic 2D quadrangle meshing with size and orientation control
Pellenard, Bertrand; Alliez, Pierre; Morvan, Jean-Marie
2011-01-01
We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse
Scanning anisotropy parameters in horizontal transversely isotropic media
Masmoudi, Nabil; Stovas, Alexey; Alkhalifah, Tariq Ali
2016-01-01
in reservoir characterisation, specifically in terms of fracture delineation. We propose a travel-time-based approach to estimate the anellipticity parameter η and the symmetry axis azimuth ϕ of a horizontal transversely isotropic medium, given an inhomogeneous
Crack Tip Creep Deformation Behavior in Transversely Isotropic Materials
International Nuclear Information System (INIS)
Ma, Young Wha; Yoon, Kee Bong
2009-01-01
Theoretical mechanics analysis and finite element simulation were performed to investigate creep deformation behavior at the crack tip of transversely isotropic materials under small scale creep (SCC) conditions. Mechanical behavior of material was assumed as an elastic-2 nd creep, which elastic modulus ( E ), Poisson's ratio (v ) and creep stress exponent ( n ) were isotropic and creep coefficient was only transversely isotropic. Based on the mechanics analysis for material behavior, a constitutive equation for transversely isotropic creep behavior was formulated and an equivalent creep coefficient was proposed under plain strain conditions. Creep deformation behavior at the crack tip was investigated through the finite element analysis. The results of the finite element analysis showed that creep deformation in transversely isotropic materials is dominant at the rear of the crack-tip. This result was more obvious when a load was applied to principal axis of anisotropy. Based on the results of the mechanics analysis and the finite element simulation, a corrected estimation scheme of the creep zone size was proposed in order to evaluate the creep deformation behavior at the crack tip of transversely isotropic creeping materials
Synthesis, Spectroscopic Properties and DFT Calculation of Novel ...
Indian Academy of Sciences (India)
density functional theory (DFT) calculations. Keywords. ... time-dependent density functional theory (TD-DFT) calcu- lations. .... reaction, the pH of the solution was adjusted to 7 .... ORTEP diagram for L1 showing 30% probability ellipsoids.
Indian Academy of Sciences (India)
The photophysical behaviour of N-(2-hydroxy benzylidene) aniline or most commonly known as salicylideneaniline (SA) has been investigated using the ab initio and DFT levels of theory. The quantum chemical calculations show that the optimized non planar enol (1) form of the SA molecule is the most stable conformer ...
Saeidian, Hamid; Sahandi, Morteza
2015-11-01
The structure of all of Lewisite's stereoisomers has been examined by B3LYP/6-311++G(3df,3pd) calculations. The geometry analysis for trans Lewisite L1-1 shows that the calculated bond angles, bond distances and dipole moment have a satisfactory relation compared with experimental values. HOMO-LUMO analysis of Lewisites reveals that L1-2 and L3-7 have the maximum and minimum electrophilicity index, respectively. The calculated chemical shifts were compared with experimental data, showing a very good agreement both for 1H and 13C. The vibrational and Raman frequencies of Lewisites have been precisely assigned and theoretical data were compared with the experimental vibrations. The bonding trends and Mulliken and atomic polar tensor charge distribution in Lewisites can be explained by the Bent's rule and the donor-acceptor interaction, respectively.
DFT, FT-IR, FT-Raman and vibrational studies of 3-methoxyphenyl boronic acid
Patil, N. R.; Hiremath, Sudhir M.; Hiremath, C. S.
2018-05-01
The aim of this work is to study the possible stable, geometrical molecular structure, experimental and theoretical FT-IR and FT-Raman spectroscopic methods of 3-Methoxyphenyl boronic acid (3MPBA). FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1 and 40000-50 cm-1 respectively. The optimized geometric structure and vibrational wavenumbers of the title compound were searched by B3LYP hybrid density functional theory method with 6-311++G (d, p) basis set. The Selectedexperimentalbandswereassignedandcharacterizedonthebasisofthescaledtheoreticalwavenumbersby their potential energy distribution (PED) of the vibrational modes obtained from VEDA 4 program. Finally, the predicted calculation results were applied to simulated FT-IR and FT-Raman spectra of the title compound, which show agreement with the observed spectra. Whereas, it is observed that, the theoretical frequencies are more than the experimental one for O-H stretching vibration modes of the title molecule.
Infrared and Raman spectra, DFT-calculations and spectral assignments of germacyclohexane
Energy Technology Data Exchange (ETDEWEB)
Aleksa, V., E-mail: valdemaras.aleksa@ff.vu.lt; Ozerenskis, D.; Pucetaite, M.; Sablinskas, V. [Faculty of Physics, Vilnius University, Sauletekio av. 9, block 3, Vilnius, LT-10222 (Lithuania); Cotter, C.; Guirgis, G. A. [Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424 (United States)
2015-03-30
Raman spectra of germacyclohexane in liquid and solid states were recorded and depolarization data obtained. Infrared absorption spectra of the vapor and liquid have been studied. The wavenumbers of the vibrational modes were derived in the harmonic and anharmonic approximation in B3LYP/ccpVTZ calculations. According to the calculations, germacyclohexane exists in the stable chair conformation, whereas a possible twist form should have more than 15 kJ·mol{sup -1} higher enthalpy of formation what makes this conformer experimentally not observable. The 27 A' and 21 A'' fundamentals were assigned on the basis of the calculations and infrared and Raman band intensities, contours of gas phase infrared spectral bands and Raman depolarization measurements. An average discrepancy of ca. 0.77 % was found between the observed and the calculated anharmonic wavenumbers for the 48 modes. Substitution of carbon atom with Ge atom in the cyclohexane ring is reasoning flattening of the ring.
A DFT study of solvation effects and NBO analysis on the tautomerism of 1-substituted hydantoin
Directory of Open Access Journals (Sweden)
Meisam Shabanian
2016-09-01
Full Text Available 1-Substituted hydantoins (1-SH have been known as a benefit intermediate for producing agricultural and pharmaceuticals. The effect of solvent polarity on the tautomeric equilibria of 1-substituted hydantoin ring is studied by the density functional theory calculation (B3LYP/6–31++G(d,p level for predominant tautomeric forms of hydantoin derivatives (1-NO2, 1-CF3, 1-Br, 1-H, 1-CHCH2, 1-OH, 1-CH3 in the gas phase and selected solvents (benzene (non-polar solvent, tetrahydrofuran (THF (polar aprotic solvent and water (protic solvent. For electron withdrawing and releasing derivatives in the gas phase and solution Hy1 forms is more stable and dominant form. In addition variation of dipole moments and charges on atoms in the solvents are studied.
A DFT study of permanganate oxidation of toluene and its ortho-nitroderivatives.
Adamczyk, Paweł; Wijker, Reto S; Hofstetter, Thomas B; Paneth, Piotr
2014-02-01
Calculations of alternative oxidation pathways of toluene and its ortho-substituted nitro derivatives by permanganate anion have been performed. The competition between methyl group and ring oxidation has been addressed. Acceptable results have been obtained using IEFPCM/B3LYP/6-31+G(d,p) calculations with zero-point (ZPC) and thermal corrections, as validated by comparison with the experimental data. It has been shown that ring oxidation reactions proceed via relatively early transition states that become quite unsymmetrical for reactions involving ortho-nitrosubstituted derivatives. Transition states for the hydrogen atom abstraction reactions, on the other hand, are late. All favored reactions are characterized by the Gibbs free energy of activation, ΔG(≠), of about 25 kcal mol(-1). Methyl group oxidations are exothermic by about 20 kcal mol(-1) while ring oxidations are around thermoneutrality.
How well can DFT reproduce key interactions in Ziegler-Natta systems?
Correa, Andrea
2013-08-08
The performance of density functional theory in reproducing some of the main interactions occurring in MgCl2-supported Ziegler-Natta catalytic systems is assessed. Eight model systems, representatives of key interactions occurring in Ziegler-Natta catalysts, are selected. Fifteen density functionals are tested in combination with two different basis sets, namely, TZVP and cc-pVTZ. As a general result, we found that the best performances are achieved by the PBEh1PBE hybrid generalized gradient approximation (GGA) functional, but also the cheaper PBEh GGA functional gives rather good results. The failure of the popular B3LYP and BP86 functionals is noticeable. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Babu, N Ramesh; Subashchandrabose, S; Ali Padusha, M Syed; Saleem, H; Erdoğdu, Y
2014-01-01
The Spectral Characterization of (E)-1-(Furan-2-yl) methylene)-2-(1-phenylvinyl) hydrazine (FMPVH) were carried out by using FT-IR, FT-Raman and UV-Vis., Spectrometry. The B3LYP/6-311++G(d,p) level of optimization has been performed on the title compound. The conformational analysis was performed for this molecule, in which the cis and trans conformers were studied for spectral characterization. The recorded spectral results were compared with calculated results. The optimized bond parameters of FMPVH molecule was compared with X-ray diffraction data of related molecule. To study the intra-molecular charge transfers within the molecule the Lewis (bonding) and Non-Lewis (anti-bonding) structural calculation was performed. The Non-linear optical behavior of the title compound was measured using first order hyperpolarizability calculation. The atomic charges were calculated and analyzed. Copyright © 2013 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Osman I. Osman
2017-02-01
Full Text Available The structure, reactivity, natural bond orbital (NBO, linear and nonlinear optical (NLO properties of three thiazole azo dyes (A, B and C were monitored by applying B3LYP, CAM-B3LYP and ωB97XD functionals with 6-311++G** and aug-cc-pvdz basis sets. The geometrical parameters,dipolemoments,HOMO-LUMO(highest occupied molecular orbital,lowest unoccupied molecular orbital energy gaps, absorption wavelengths and total hyperpolarizabilities were investigated in carbon tetrachloride (CCl4 chloroform (CHCl3, dichloromethane (CH2Cl2 and dimethlysulphoxide (DMSO. The donor methoxyphenyl group deviates from planarity with the thiazole azo moiety by ca. 38◦; while the acceptor dicyanovinyl, indandione and dicyanovinylindanone groups diverge by ca. 6◦. The HOMOs for the three dyes are identical. They spread over the methoxyphenyl donor moiety, the thiazole and benzene rings as π-bonding orbitals. The LUMOs are shaped up by the nature of the acceptor moieties. The LUMOs of the A, B and C dyes extend over the indandione, malononitrile and dicyanovinylindanone acceptor moieties, respectively, as π-antibonding orbitals. The HOMO-LUMO splittings showed that Dye C is much more reactive than dyes A and B. Compared to dyes A and B, Dye C yielded a longer maximum absorption wavelength because of the stabilization of its LUMOs relative to those of the other two. The three dyes show solvatochromism accompanied by signiﬁcant increases in hyperpolarizability. The enhancement of the total hyperpolarizability of C compared to those of A and B is due to the cumulative action of the long π-conjugation of the indanone ring and the stronger electron-withdrawing ability of the dicyanovinyl moiety that form the dicyanovinylindanone acceptor group. These ﬁndings are facilitated by a natural bond orbital (NBO technique. The very high total hyperpolarizabilities of the three dyes deﬁne their potent nonlinear optical (NLO behaviour.
Coordination properties of warfarin towards Pr(III) predicted from DFT and FT-IR studies
International Nuclear Information System (INIS)
Mihaylov, Tz.; Trendafilova, N.; Georgieva, I.; Kostova, I.
2010-01-01
Graphical abstract: The coordination behavior of warfarin towards Pr(III) in Pr(L) 3 .5H 2 O complex (L - warfarin) is investigated through molecular modeling at B3LYP/6-31G(d,p) level and consequent exhaustive comparative vibrational analysis of the ligand and the complex. The calculations predicted that the ligand binds to the metal through the deprotonated enol group and the keto C=O group in pseudo-octahedral polyhedron. The simulated vibrational spectrum of the model complex proposed is in excellent agreement with the experimental one. - Abstract: The coordination behavior of warfarin towards Pr(III) in Pr(L) 3 .5H 2 O complex (L - warfarin) is investigated through molecular modeling at B3LYP/6-31G(d,p) level and consequent exhaustive comparative vibrational analysis of the ligand and the complex. The calculated NPA charges, Fukui functions and MEP values of the anionic ligand in solution pointed out that the oxygen atoms of the deprotonated hydroxyl and the coumarin carbonyl groups are the most probable reactive sites upon coordination. The metal-ligand binding mode of warfarin is predicted through molecular modeling and energy estimation of different Pr(III)-warfarin structures. In the most stable model structure, the ligand-metal binding is realized through the oxygen of the deprotonated OH group and the oxygen of the keto C=O group in pseudo-octahedral polyhedron. The suggested metal-ligand binding mode is confirmed by comparative vibrational analysis of the free ligand and various model structures with different metal-ligand binding modes.
Coordination properties of warfarin towards Pr(III) predicted from DFT and FT-IR studies
Energy Technology Data Exchange (ETDEWEB)
Mihaylov, Tz., E-mail: tzmihay@svr.igic.bas.bg [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia (Bulgaria); Trendafilova, N.; Georgieva, I. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia (Bulgaria); Kostova, I., E-mail: irenakostova@yahoo.com [Department of Chemistry, Faculty of Pharmacy, Medical University, Sofia (Bulgaria)
2010-08-23
Graphical abstract: The coordination behavior of warfarin towards Pr(III) in Pr(L){sub 3}.5H{sub 2}O complex (L - warfarin) is investigated through molecular modeling at B3LYP/6-31G(d,p) level and consequent exhaustive comparative vibrational analysis of the ligand and the complex. The calculations predicted that the ligand binds to the metal through the deprotonated enol group and the keto C=O group in pseudo-octahedral polyhedron. The simulated vibrational spectrum of the model complex proposed is in excellent agreement with the experimental one. - Abstract: The coordination behavior of warfarin towards Pr(III) in Pr(L){sub 3}.5H{sub 2}O complex (L - warfarin) is investigated through molecular modeling at B3LYP/6-31G(d,p) level and consequent exhaustive comparative vibrational analysis of the ligand and the complex. The calculated NPA charges, Fukui functions and MEP values of the anionic ligand in solution pointed out that the oxygen atoms of the deprotonated hydroxyl and the coumarin carbonyl groups are the most probable reactive sites upon coordination. The metal-ligand binding mode of warfarin is predicted through molecular modeling and energy estimation of different Pr(III)-warfarin structures. In the most stable model structure, the ligand-metal binding is realized through the oxygen of the deprotonated OH group and the oxygen of the keto C=O group in pseudo-octahedral polyhedron. The suggested metal-ligand binding mode is confirmed by comparative vibrational analysis of the free ligand and various model structures with different metal-ligand binding modes.
Arjunan, V.; Thirunarayanan, S.; Mohan, S.
2018-04-01
The stable conformer of 4-bromoisophthalic acid (BIPA) has been identified by potential energy profile analysis. All the structural parameters of 4-bromoisophthalic acid are determined by B3LYP method with 6-311++G**, 6-31G** and cc-pVTZ basis sets. The fundamental vibrations are analysed with the use of FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectra. The harmonic vibrational frequencies are theoretically calculated and compared with experimental FTIR and FT-Raman frequencies. The 1H and 13C NMR spectra have been analysed and compared with theoretical 1H and 13C NMR chemical shifts calculated by gauge independent atomic orbital (GIAO) method. The electronic properties, such as HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energies are determined by B3LYP/cc-pVTZ method. The electron density distribution and site of chemical reactivity of BIPA molecule have been obtained by mapping electron density isosurface with molecular electrostatic potential (MEP). Stability of the molecules arising from hyperconjugative interactions, charge delocalizations have been analysed by using natural bond orbital (NBO) analysis. The thermodynamic properties and atomic natural charges of the compound are analysed and the reactive sites of the molecule are identified. The global and local reactivity descriptors are evaluated to analyse the chemical reactivity and site selectivity of molecule through Fukui functions.
DFT studies on the mechanism of the reaction of C2H5S with NO2
Tang, Yi-Zhen; Sun, Hao; Pan, Ya-Ru; Pan, Xiu-Mei; Wang, Rong-Shun
The mechanisms for the reaction of C2H5S with NO2 are investigated at the QCISD(T)/6-311++G(d, p)//B3LYP/6-311++G(d, p) level on both single and triple potential energy surfaces. The geometries, vibrational frequencies and zero-point energy (ZPE) corrections of all stationary points involved in the title reaction are calculated at the B3LYP/6-311++G(d, p) level. The results show that the reaction is more predominant on the single potential energy surface, while it is negligible on the triple potential energy surface. Without barrier height in the whole process, the major channel is R ? C2H5SONO (IM1 and IM2) ? P1 (C2H5SO+NO). With much heat released in the formation of C2H5SNO2 (IM3) and the transition state involved in the subsequent step more stable than reactants, P4 (CH3CHS + t-HONO) is subdominant product energetically.
Fahleson, Tobias; Kauczor, Joanna; Norman, Patrick; Santoro, Fabrizio; Improta, Roberto; Coriani, Sonia
2015-05-28
We present a computational study of the magnetic circular dichroism (MCD) spectra in the 200-300 nm wavelength region of purine and its derivative hypoxanthine, as well as of the pyrimidine bases of nucleic acids uracil, thymine, and cytosine, using the B3LYP and CAM-B3LYP functionals. Solvent effects are investigated within the polarizable continuum model and by inclusion of explicit water molecules. In general, the computed spectra are found to be in good agreement with the experimental ones, apart from some overall blue shifts. Both the pseudo-A term shape of the MCD spectra of the purines and the B term shape of the spectra of pyrimidine bases are reproduced. Our calculations also correctly reproduce the reversed phase of the MCD bands in purine compared to that of its derivatives present in nucleic acids. Solvent effects are sizable and system specific, but they do not in general alter the qualitative shape of the spectra. The bands are dominated by the bright π → π* transitions, and our calculations in solution nicely reproduce their energy differences, improving the estimates obtained in the gas phase. Shoulders are predicted for purine and uracil due to n → π* excitations, but they are too weak to be observed in the experiment.
DEFF Research Database (Denmark)
Hedegård, Erik D.; Jensen, Hans Jørgen Aagaard; Knecht, Stefan
2013-01-01
-MC-srDFT) excitation energies calculated over a larger benchmark set of molecules with predominantly single reference character yield good agreement with their reference values, and are in general comparable to the CAM-B3LYP functional. The SOPPA-srDFT scheme is tested for a subset of molecules used for benchmarking...
Visualization and computer graphics on isotropically emissive volumetric displays.
Mora, Benjamin; Maciejewski, Ross; Chen, Min; Ebert, David S
2009-01-01
The availability of commodity volumetric displays provides ordinary users with a new means of visualizing 3D data. Many of these displays are in the class of isotropically emissive light devices, which are designed to directly illuminate voxels in a 3D frame buffer, producing X-ray-like visualizations. While this technology can offer intuitive insight into a 3D object, the visualizations are perceptually different from what a computer graphics or visualization system would render on a 2D screen. This paper formalizes rendering on isotropically emissive displays and introduces a novel technique that emulates traditional rendering effects on isotropically emissive volumetric displays, delivering results that are much closer to what is traditionally rendered on regular 2D screens. Such a technique can significantly broaden the capability and usage of isotropically emissive volumetric displays. Our method takes a 3D dataset or object as the input, creates an intermediate light field, and outputs a special 3D volume dataset called a lumi-volume. This lumi-volume encodes approximated rendering effects in a form suitable for display with accumulative integrals along unobtrusive rays. When a lumi-volume is fed directly into an isotropically emissive volumetric display, it creates a 3D visualization with surface shading effects that are familiar to the users. The key to this technique is an algorithm for creating a 3D lumi-volume from a 4D light field. In this paper, we discuss a number of technical issues, including transparency effects due to the dimension reduction and sampling rates for light fields and lumi-volumes. We show the effectiveness and usability of this technique with a selection of experimental results captured from an isotropically emissive volumetric display, and we demonstrate its potential capability and scalability with computer-simulated high-resolution results.
Isotropic quantum walks on lattices and the Weyl equation
D'Ariano, Giacomo Mauro; Erba, Marco; Perinotti, Paolo
2017-12-01
We present a thorough classification of the isotropic quantum walks on lattices of dimension d =1 ,2 ,3 with a coin system of dimension s =2 . For d =3 there exist two isotropic walks, namely, the Weyl quantum walks presented in the work of D'Ariano and Perinotti [G. M. D'Ariano and P. Perinotti, Phys. Rev. A 90, 062106 (2014), 10.1103/PhysRevA.90.062106], resulting in the derivation of the Weyl equation from informational principles. The present analysis, via a crucial use of isotropy, is significantly shorter and avoids a superfluous technical assumption, making the result completely general.
3D geometrically isotropic metamaterial for telecom wavelengths
DEFF Research Database (Denmark)
Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei
2009-01-01
of the unit cell is not infinitely small, certain geometrical constraints have to be fulfilled to obtain an isotropic response of the material [3]. These conditions and the metal behaviour close to the plasma frequency increase the design complexity. Our unit cell is composed of two main parts. The first part...... is obtained in a certain bandwidth. The proposed unit cell has the cubic point group of symmetry and being repeatedly placed in space can effectively reveal isotropic optical properties. We use the CST commercial software to characterise the “cube-in-cage” structure. Reflection and transmission spectra...
Varadwaj, Pradeep R; Marques, Helder M
2010-03-07
Spin-unrestricted DFT-X3LYP/6-311++G(d,p) calculations have been performed on a series of complexes of the form [Co(H(2)O)(6-n)(NH(3))(n)](2+) (n = 0-6) to examine their equilibrium gas-phase structures, energetics, and electronic properties in their quartet electronic ground states. In all cases Co(2+) in the energy-minimised structures is in a pseudo-octahedral environment. The calculations overestimate the Co-O and Co-N bond lengths by 0.04 and 0.08 A, respectively, compared to the crystallographically observed mean values. There is a very small Jahn-Teller distortion in the structure of [Co(H(2)O)(6)](2+) which is in contrast to the very marked distortions observed in most (but not all) structures of this cation that have been observed experimentally. The successive replacement of ligated H(2)O by NH(3) leads to an increase in complex stability by 6 +/- 1 kcal mol(-1) per additional NH(3) ligand. Calculations using UB3LYP give stabilisation energies of the complexes about 5 kcal mol(-1) smaller and metal-ligand bond lengths about 0.005 A longer than the X3LYP values since the X3LYP level accounts for the London dispersion energy contribution to the overall stabilisation energy whilst it is largely missing at the B3LYP level. From a natural population analysis (NPA) it is shown that the formation of these complexes is accompanied by ligand-to-metal charge transfer the extent of which increases with the number of NH(3) ligands in the coordination sphere of Co(2+). From an examination of the topological properties of the electron charge density using Bader's quantum theory of atoms in molecules it is shown that the electron density rho(c) at the Co-O bond critical points is generally smaller than that at the Co-N bond critical points. Hence Co-O bonds are weaker than Co-N bonds in these complexes and the stability increases as NH(3) replaces H(2)O in the metal's coordination sphere. Several indicators, including the sign and magnitude of the Laplacian of the
Identifying systematic DFT errors in catalytic reactions
DEFF Research Database (Denmark)
Christensen, Rune; Hansen, Heine Anton; Vegge, Tejs
2015-01-01
Using CO2 reduction reactions as examples, we present a widely applicable method for identifying the main source of errors in density functional theory (DFT) calculations. The method has broad applications for error correction in DFT calculations in general, as it relies on the dependence...... of the applied exchange–correlation functional on the reaction energies rather than on errors versus the experimental data. As a result, improved energy corrections can now be determined for both gas phase and adsorbed reaction species, particularly interesting within heterogeneous catalysis. We show...... that for the CO2 reduction reactions, the main source of error is associated with the C[double bond, length as m-dash]O bonds and not the typically energy corrected OCO backbone....
Lagrangian statistics of particle pairs in homogeneous isotropic turbulence
Biferale, L.; Boffeta, G.; Celani, A.; Devenish, B.J.; Lanotte, A.; Toschi, F.
2005-01-01
We present a detailed investigation of the particle pair separation process in homogeneous isotropic turbulence. We use data from direct numerical simulations up to R????280 following the evolution of about two million passive tracers advected by the flow over a time span of about three decades. We
Reconstruction of atomic effective potentials from isotropic scattering factors
International Nuclear Information System (INIS)
Romera, E.; Angulo, J.C.; Torres, J.J.
2002-01-01
We present a method for the approximate determination of one-electron effective potentials of many-electron systems from a finite number of values of the isotropic scattering factor. The method is based on the minimum cross-entropy technique. An application to some neutral ground-state atomic systems has been done within a Hartree-Fock framework
Geometry of the isotropic oscillator driven by the conformal mode
Energy Technology Data Exchange (ETDEWEB)
Galajinsky, Anton [Tomsk Polytechnic University, School of Physics, Tomsk (Russian Federation)
2018-01-15
Geometrization of a Lagrangian conservative system typically amounts to reformulating its equations of motion as the geodesic equations in a properly chosen curved spacetime. The conventional methods include the Jacobi metric and the Eisenhart lift. In this work, a modification of the Eisenhart lift is proposed which describes the isotropic oscillator in arbitrary dimension driven by the one-dimensional conformal mode. (orig.)
Seeing is believing : communication performance under isotropic teleconferencing conditions
Werkhoven, P.J.; Schraagen, J.M.C.; Punte, P.A.J.
2001-01-01
The visual component of conversational media such as videoconferencing systems communicates important non-verbal information such as facial expressions, gestures, posture and gaze. Unlike the other cues, selective gaze depends critically on the configuration of cameras and monitors. Under isotropic
A simple mechanical model for the isotropic harmonic oscillator
International Nuclear Information System (INIS)
Nita, Gelu M
2010-01-01
A constrained elastic pendulum is proposed as a simple mechanical model for the isotropic harmonic oscillator. The conceptual and mathematical simplicity of this model recommends it as an effective pedagogical tool in teaching basic physics concepts at advanced high school and introductory undergraduate course levels.
Homogenization and isotropization of an inflationary cosmological model
International Nuclear Information System (INIS)
Barrow, J.D.; Groen, Oe.; Oslo Univ.
1986-01-01
A member of the class of anisotropic and inhomogeneous cosmological models constructed by Wainwright and Goode is investigated. It is shown to describe a universe containing a scalar field which is minimally coupled to gravitation and a positive cosmological constant. It is shown that this cosmological model evolves exponentially rapidly towards the homogeneous and isotropic de Sitter universe model. (orig.)
Isotropic gates in large gamma detector arrays versus angular distributions
International Nuclear Information System (INIS)
Iacob, V.E.; Duchene, G.
1997-01-01
The quality of the angular distribution information extracted from high-fold gamma-gamma coincidence events is analyzed. It is shown that a correct quasi-isotropic gate setting, available at the modern large gamma-ray detector arrays, essentially preserves the quality of the angular information. (orig.)
Higher gradient expansion for linear isotropic peridynamic materials
Czech Academy of Sciences Publication Activity Database
Šilhavý, Miroslav
2017-01-01
Roč. 22, č. 6 (2017), s. 1483-1493 ISSN 1081-2865 Institutional support: RVO:67985840 Keywords : peridynamics * higher-grade theories * non-local elastic-material model * representation theorems for isotropic functions Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 2.953, year: 2016 http://journals.sagepub.com/doi/10.1177/1081286516637235
Higher gradient expansion for linear isotropic peridynamic materials
Czech Academy of Sciences Publication Activity Database
Šilhavý, Miroslav
2017-01-01
Roč. 22, č. 6 (2017), s. 1483-1493 ISSN 1081-2865 Institutional support: RVO:67985840 Keywords : peridynamics * higher-grade theories * non-local elastic-material model * representation theorems for isotropic functions Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 2.953, year: 2016 http:// journals .sagepub.com/doi/10.1177/1081286516637235
direct method of analysis of an isotropic rectangular plate direct
African Journals Online (AJOL)
eobe
This work evaluates the static analysis of an isotropic rectangular plate with various the static analysis ... method according to Ritz is used to obtain the total potential energy of the plate by employing the used to ..... for rectangular plates analysis, as the behavior of the ... results obtained by previous research work that used.
Transformation optics, isotropic chiral media and non-Riemannian geometry
International Nuclear Information System (INIS)
Horsley, S A R
2011-01-01
The geometrical interpretation of electromagnetism in transparent media (transformation optics) is extended to include chiral media that are isotropic but inhomogeneous. It was found that such media may be described through introducing the non-Riemannian geometrical property of torsion into the Maxwell equations, and it is shown how such an interpretation may be applied to the design of optical devices.
Isotropic cosmic expansion and the Rubin-Ford effect
International Nuclear Information System (INIS)
Fall, S.M.; Jones, B.J.T.
1976-01-01
It is shown that the Rubin-Ford data (Astrophys. J. Lett. 183:L111 (1973)), often taken as evidence for large scale anisotropic cosmic expansion, probably only reflect the inhomogeneous distribution of galaxies in the region of the sample. The data presented are consistent with isotropic expansion, an unperturbed galaxy velocity field, and hence a low density Universe. (author)
Molecular Geometry And Vibrational Spectra of 2'-chloroacetanilide
International Nuclear Information System (INIS)
Gokce, H.
2008-01-01
The molecular structure, vibrational frequencies and the corresponding vibrational assingments of 2'-chloroacetanilide in the ground state have been calculated by using Hartree-Fock (HF) and Density Functional Theory (DFT/B3LYP) methods with 6-311++G(d,p) basis set. The obtained vibrational frequencies and optimized geometric parameters (bond lenghts and angles) are in very good agreement with the experimental data. The comparison of the observed and calculated vibrational frequencies assignments of 2'-chloroacetanilide exhibit that the scaled DFT/B3LYP method is superior to be scaled HF method. Furthermore the calculated Infrared and Raman intensities are also reported
Kumara, Karthik; Dileep Kumar, A.; Naveen, S.; Ajay Kumar, K.; Lokanath, N. K.
2018-06-01
A novel pyrazole derivative, 3-(benzo[d][1,3]dioxol-5-yl)-5-(3-methylthiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-carboxamide was synthesized and characterized by elemental analysis, FT-IR, NMR (1H and 13C), MS, UV-visible spectra and finally the structure was confirmed by the single crystal X-ray diffraction studies. The title compound (C16H15N3O3S) crystallized in the triclinic crystal system, with the space group Pī. A dihedral angle of 65.84(1)° between the pyrazole and the thiophene rings confirms the twisted conformation between them. The X-ray structure revealed that the pyrazole ring adopts an E-form and an envelope conformation on C7 atom. The crystal and molecular structure of the title compound is stabilized by inter molecular hydrogen bonds. The compound possesses three dimensional supramolecular self-assembly, in which Csbnd H⋯O and Nsbnd H⋯O chains build up two dimensional arrays, which are extended to 3D network through Csbnd H···Cg and Csbnd O···Cg interactions. The structure also exhibits intramolecular hydrogen bonds of the type Nsbnd H⋯N and π···π stacking interactions, which contributes to the crystal packing. Further, Hirshfeld surface analysis was carried out for the graphical visualization of several short intermolecular interactions on the molecular surface while the 2D finger-print plot provides percentage contribution of each individual atom-to-atom interactions. The thermal decomposition of the compound has been studied by thermogravimetric analysis. The molecular geometries and electronic structures of the compounds were fully optimized, calculated with ab-initio methods by HF, DFT/B3LYP functional in combination of different basis set with different solvent environment and the structural parameters were compared with the experimental data. The Mulliken atomic charges and molecular electrostatic potential on molecular van der Waals (vdW) surface were calculated to know the electrophilic and nucleophilic regions
Mıhçıokur, Özlem; Özpozan, Talat
2017-12-01
Oxindole and its derivatives have wide applications in different industries such as in synthetic & natural fibers, dyes for hair and plastic materials in addition to their biological importance. In the present study, one of the oxindole derivatives, N-(2-diethylaminoethyl)-5-[(Z)-(5-fluoro-2-oxo-1H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-pyrrole-3-carboxamide (Sunitinib), which is used as an anti-cancer drug, was investigated in terms of structural, vibrational spectroscopic and theoretical analysis. The calculations have been performed for gaseous, aqueous and DMSO phases, respectively. Potential Energy Surface (PES) scan has been carrried out to obtain the most stable structures of all the phases of the title molecule using B3LYP/6-31G(d,p) level and the geometrical variations among them are discussed. The solvent effect for Sunitinib in aqueous and DMSO phases have been performed by means of the self-consistent recognition reaction field (SCRF) method as implemented in the integral equation formalism polarized continuum model (IEFPCM). On the other hand, NBO analysis has been carried out to understand probable hydrogen bonding sites and charge transfers. Additionally, the HOMO and the LUMO energies are calculated using B3LYP/6-31G(d,p) to determine the intra molecular charge transfers (ICT) within the molecule and the kinetic stabilities for each phases. The molecular electrostatic potential surface (MESP) has been plotted over the optimized structure to estimate the reactive sites of electrophilic and nucleophilic attacks regarding Sunitinib molecule. The potential energy distribution (PED) has been calculated using VEDA4 program and vibrational assignments of the experimental spectra (IR & Raman) have been elucidated by means of the calculated vibrational spectra. The observed vibrational spectra of Sunitinib is compared with the calculated spectra obtained by using B3LYP functional both with 6-31G(d,p) and 6-311++G(d,p) basis sets. Theoretical results
Puškárová, Ingrid; Breza, Martin
2017-07-01
Structures of a series of diphenyl amine (DPA) antioxidants and of their complexes with Cu2+ were optimized at B3LYP level of theory. DPAs may be divided into two groups according to their molar antioxidant effectiveness (AEM). The effectiveness of high-AEM DPA antioxidants at 130 °C rises with decreasing spin densities at Cu atoms and with the increasing electron density Laplacian at Cu-N bond critical points in the 2[DPA…Cu]2+ complexes similarly as in the case of p-phenylene diamine antioxidants. No such trends are observed at 25 °C and for low- AEM DPA antioxidants.
An Overview of the Adaptive Robust DFT
Directory of Open Access Journals (Sweden)
Djurović Igor
2010-01-01
Full Text Available Abstract This paper overviews basic principles and applications of the robust DFT (RDFT approach, which is used for robust processing of frequency-modulated (FM signals embedded in non-Gaussian heavy-tailed noise. In particular, we concentrate on the spectral analysis and filtering of signals corrupted by impulsive distortions using adaptive and nonadaptive robust estimators. Several adaptive estimators of location parameter are considered, and it is shown that their application is preferable with respect to non-adaptive counterparts. This fact is demonstrated by efficiency comparison of adaptive and nonadaptive RDFT methods for different noise environments.
z-transform DFT filters and FFT's
DEFF Research Database (Denmark)
Bruun, G.
1978-01-01
The paper shows how discrete Fourier transformation can be implemented as a filter bank in a way which reduces the number of filter coefficients. A particular implementation of such a filter bank is directly related to the normal complex FFT algorithm. The principle developed further leads to types...... of DFT filter banks which utilize a minimum of complex coefficients. These implementations lead to new forms of FFT's, among which is acos/sinFFT for a real signal which only employs real coefficients. The new FFT algorithms use only half as many real multiplications as does the classical FFT....
Isotropic Optical Mouse Placement for Mobile Robot Velocity Estimation
Directory of Open Access Journals (Sweden)
Sungbok Kim
2014-06-01
Full Text Available This paper presents the isotropic placement of multiple optical mice for the velocity estimation of a mobile robot. It is assumed that there can be positional restriction on the installation of optical mice at the bottom of a mobile robot. First, the velocity kinematics of a mobile robot with an array of optical mice is obtained and the resulting Jacobian matrix is analysed symbolically. Second, the isotropic, anisotropic and singular optical mouse placements are identified, along with the corresponding characteristic lengths. Third, the least squares mobile robot velocity estimation from the noisy optical mouse velocity measurements is discussed. Finally, simulation results for several different placements of three optical mice are given.
Study of open systems with molecules in isotropic liquids
Kondo, Yasushi; Matsuzaki, Masayuki
2018-05-01
We are interested in dynamics of a system in an environment, or an open system. Such phenomena as crossover from Markovian to non-Markovian relaxation and thermal equilibration are of our interest. Open systems have experimentally been studied with ultra cold atoms, ions in traps, optics, and cold electric circuits because well-isolated systems can be prepared here and thus the effects of environments can be controlled. We point out that some molecules solved in isotropic liquid are well isolated and thus they can also be employed for studying open systems in Nuclear Magnetic Resonance (NMR) experiments. First, we provide a short review on related phenomena of open systems that helps readers to understand our motivation. We, then, present two experiments as examples of our approach with molecules in isotropic liquids. Crossover from Markovian to non-Markovian relaxation was realized in one NMR experiment, while relaxation-like phenomena were observed in approximately isolated systems in the other.
Self-confinement of finite dust clusters in isotropic plasmas.
Miloshevsky, G V; Hassanein, A
2012-05-01
Finite two-dimensional dust clusters are systems of a small number of charged grains. The self-confinement of dust clusters in isotropic plasmas is studied using the particle-in-cell method. The energetically favorable configurations of grains in plasma are found that are due to the kinetic effects of plasma ions and electrons. The self-confinement phenomenon is attributed to the change in the plasma composition within a dust cluster resulting in grain attraction mediated by plasma ions. This is a self-consistent state of a dust cluster in which grain's repulsion is compensated by the reduced charge and floating potential on grains, overlapped ion clouds, and depleted electrons within a cluster. The common potential well is formed trapping dust clusters in the confined state. These results provide both valuable insights and a different perspective to the classical view on the formation of boundary-free dust clusters in isotropic plasmas.
Geometrical considerations in analyzing isotropic or anisotropic surface reflections.
Simonot, Lionel; Obein, Gael
2007-05-10
The bidirectional reflectance distribution function (BRDF) represents the evolution of the reflectance with the directions of incidence and observation. Today BRDF measurements are increasingly applied and have become important to the study of the appearance of surfaces. The representation and the analysis of BRDF data are discussed, and the distortions caused by the traditional representation of the BRDF in a Fourier plane are pointed out and illustrated for two theoretical cases: an isotropic surface and a brushed surface. These considerations will help characterize either the specular peak width of an isotropic rough surface or the main directions of the light scattered by an anisotropic rough surface without misinterpretations. Finally, what is believed to be a new space is suggested for the representation of the BRDF, which avoids the geometrical deformations and in numerous cases is more convenient for BRDF analysis.
Isotropic gates and large gamma detector arrays versus angular distributions
International Nuclear Information System (INIS)
Iacob, V.E.; Duchene, G.
1997-01-01
Angular information extracted from in-beam γ ray measurements are of great importance for γ ray multipolarity and nuclear spin assignments. In our days large Ge detector arrays became available allowing the measurements of extremely weak γ rays in almost 4π sr solid angle (e.g., EUROGAM detector array). Given the high detector efficiency it is common for the mean suppressed coincidence multiplicity to reach values as high as 4 to 6. Thus, it is possible to gate on particular γ rays in order to enhance the relative statistics of a definite reaction channel and/or a definite decaying path in the level scheme of the selected residual nucleus. As compared to angular correlations, the conditioned angular distribution spectra exhibit larger statistics because in the latter the gate-setting γ ray may be observed by all the detectors in the array, relaxing somehow the geometrical restrictions of the angular correlations. Since the in-beam γ ray emission is anisotropic one could inquire that gate setting as mentioned above, based on anisotropic γ ray which would perturb the angular distributions in the unfolded events. As our work proved, there is no reason to worry about this if the energy gate runs over the whole solid angle in an ideal 4π sr detector, i.e., if the gate is isotropic. In real quasi 4π sr detector arrays the corresponding quasi isotropic gate preserves the angular properties of the unfolded data, too. However extraction of precise angular distribution coefficient especially a 4 , requires the consideration of the deviation of the quasi isotropic gate relative to the (ideal) isotropic gate
Electromagnetic illusion with isotropic and homogeneous materials through scattering manipulation
International Nuclear Information System (INIS)
Yang, Fan; Mei, Zhong Lei; Jiang, Wei Xiang; Cui, Tie Jun
2015-01-01
A new isotropic and homogeneous illusion device for electromagnetic waves is proposed. This single-shelled device can change the fingerprint of the covered object into another one by manipulating the scattering of the composite structure. We show that an electrically small sphere can be disguised as another small one with different electromagnetic parameters. The device can even make a dielectric sphere (electrically small) behave like a conducting one. Full-wave simulations confirm the performance of proposed illusion device. (paper)
Liquid crystalline states of surfactant solutions of isotropic micelles
International Nuclear Information System (INIS)
Bagdassarian, C.; Gelbart, W.M.; Ben-Shaul, A.
1988-01-01
We consider micellar solutions whose surfactant molecules prefer strongly to form small, globular aggregates in the absence of intermicellar interactions. At sufficiently high volume fraction of surfactant, the isotropic phase of essentially spherical micelles is shown to be unstable with respect to an orientationally ordered (nematic) state of rodlike aggregates. This behavior is relevant to the phase diagrams reported for important classes of aqueous amphiphilic solutions
Monopole-fermion systems in the complex isotropic tetrad formalism
International Nuclear Information System (INIS)
Gal'tsov, D.V.; Ershov, A.A.
1988-01-01
The interaction of fermions of arbitrary isospin with regular magnetic monopoles and dyons of the group SU(2) and also with point gravitating monopoles and dyons of the Wu-Yang type described by the Reissner-Nordstrom metric are studied using the Newman-Penrose complex isotropic tetrad formalism. Formulas for the bound-state spectrum and explicit expressions for the zero modes are obtained and the Rubakov-Callan effect for black holes is discussed
Adaptive DFT-Based Interferometer Fringe Tracking
Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.
2005-12-01
An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA) Observatory at Mount Hopkins, Arizona. The system can minimize the optical path differences (OPDs) for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier-transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on offline data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately [InlineEquation not available: see fulltext.] milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse. One example of such an application might be to the field of thin-film measurement by ellipsometry, using a broadband light source and a Fourier-transform spectrometer to detect the resulting fringe patterns.
Adaptive DFT-Based Interferometer Fringe Tracking
Directory of Open Access Journals (Sweden)
Wesley A. Traub
2005-09-01
Full Text Available An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA Observatory at Mount Hopkins, Arizona. The system can minimize the optical path differences (OPDs for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier-transform (DFT calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on offline data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately 2.0 milliseconds per scan (including all three interferograms, using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse. One example of such an application might be to the field of thin-film measurement by ellipsometry, using a broadband light source and a Fourier-transform spectrometer to detect the resulting fringe patterns.
The Isotropic Radio Background and Annihilating Dark Matter
Energy Technology Data Exchange (ETDEWEB)
Hooper, Dan [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Belikov, Alexander V. [Institut d' Astrophysique (France); Jeltema, Tesla E. [Univ. of California, Santa Cruz, CA (United States); Linden, Tim [Univ. of California, Santa Cruz, CA (United States); Profumo, Stefano [Univ. of California, Santa Cruz, CA (United States); Slatyer, Tracy R. [Princeton Univ., Princeton, NJ (United States)
2012-11-01
Observations by ARCADE-2 and other telescopes sensitive to low frequency radiation have revealed the presence of an isotropic radio background with a hard spectral index. The intensity of this observed background is found to exceed the flux predicted from astrophysical sources by a factor of approximately 5-6. In this article, we consider the possibility that annihilating dark matter particles provide the primary contribution to the observed isotropic radio background through the emission of synchrotron radiation from electron and positron annihilation products. For reasonable estimates of the magnetic fields present in clusters and galaxies, we find that dark matter could potentially account for the observed radio excess, but only if it annihilates mostly to electrons and/or muons, and only if it possesses a mass in the range of approximately 5-50 GeV. For such models, the annihilation cross section required to normalize the synchrotron signal to the observed excess is sigma v ~ (0.4-30) x 10^-26 cm^3/s, similar to the value predicted for a simple thermal relic (sigma v ~ 3 x 10^-26 cm^3/s). We find that in any scenario in which dark matter annihilations are responsible for the observed excess radio emission, a significant fraction of the isotropic gamma ray background observed by Fermi must result from dark matter as well.
Superfluid H3e in globally isotropic random media
Ikeda, Ryusuke; Aoyama, Kazushi
2009-02-01
Recent theoretical and experimental studies of superfluid H3e in aerogels with a global anisotropy created, e.g., by an external stress have definitely shown that the A -like phase with an equal-spin pairing in such aerogel samples is in the Anderson-Brinkman-Morel (ABM) (or axial) pairing state. In this paper, the A -like phase of superfluid H3e in globally isotropic aerogel is studied in detail by assuming a weakly disordered system in which singular topological defects are absent. Through calculation of the free energy, a disordered ABM state is found to be the best candidate of the pairing state of the globally isotropic A -like phase. Further, it is found through a one-loop renormalization-group calculation that the coreless continuous vortices (or vortex-Skyrmions) are irrelevant to the long-distance behavior of disorder-induced textures, and that the superfluidity is maintained in spite of lack of the conventional superfluid long-range order. Therefore, the globally isotropic A -like phase at weak disorder is, like in the case with a globally stretched anisotropy, a glass phase with the ABM pairing and shows superfluidity.
Isotropic transmission of magnon spin information without a magnetic field.
Haldar, Arabinda; Tian, Chang; Adeyeye, Adekunle Olusola
2017-07-01
Spin-wave devices (SWD), which use collective excitations of electronic spins as a carrier of information, are rapidly emerging as potential candidates for post-semiconductor non-charge-based technology. Isotropic in-plane propagating coherent spin waves (magnons), which require magnetization to be out of plane, is desirable in an SWD. However, because of lack of availability of low-damping perpendicular magnetic material, a usually well-known in-plane ferrimagnet yttrium iron garnet (YIG) is used with a large out-of-plane bias magnetic field, which tends to hinder the benefits of isotropic spin waves. We experimentally demonstrate an SWD that eliminates the requirement of external magnetic field to obtain perpendicular magnetization in an otherwise in-plane ferromagnet, Ni 80 Fe 20 or permalloy (Py), a typical choice for spin-wave microconduits. Perpendicular anisotropy in Py, as established by magnetic hysteresis measurements, was induced by the exchange-coupled Co/Pd multilayer. Isotropic propagation of magnon spin information has been experimentally shown in microconduits with three channels patterned at arbitrary angles.
Depth migration in transversely isotropic media with explicit operators
Energy Technology Data Exchange (ETDEWEB)
Uzcategui, Omar [Colorado School of Mines, Golden, CO (United States)
1994-12-01
The author presents and analyzes three approaches to calculating explicit two-dimensional (2D) depth-extrapolation filters for all propagation modes (P, SV, and SH) in transversely isotropic media with vertical and tilted axis of symmetry. These extrapolation filters are used to do 2D poststack depth migration, and also, just as for isotropic media, these 2D filters are used in the McClellan transformation to do poststack 3D depth migration. Furthermore, the same explicit filters can also be used to do depth-extrapolation of prestack data. The explicit filters are derived by generalizations of three different approaches: the modified Taylor series, least-squares, and minimax methods initially developed for isotropic media. The examples here show that the least-squares and minimax methods produce filters with accurate extrapolation (measured in the ability to position steep reflectors) for a wider range of propagation angles than that obtained using the modified Taylor series method. However, for low propagation angles, the modified Taylor series method has smaller amplitude and phase errors than those produced by the least-squares and minimax methods. These results suggest that to get accurate amplitude estimation, modified Taylor series filters would be somewhat preferred in areas with low dips. In areas with larger dips, the least-squares and minimax methods would give a distinctly better delineation of the subsurface structures.
Lattice Boltzmann model for three-dimensional decaying homogeneous isotropic turbulence
International Nuclear Information System (INIS)
Xu Hui; Tao Wenquan; Zhang Yan
2009-01-01
We implement a lattice Boltzmann method (LBM) for decaying homogeneous isotropic turbulence based on an analogous Galerkin filter and focus on the fundamental statistical isotropic property. This regularized method is constructed based on orthogonal Hermite polynomial space. For decaying homogeneous isotropic turbulence, this regularized method can simulate the isotropic property very well. Numerical studies demonstrate that the novel regularized LBM is a promising approximation of turbulent fluid flows, which paves the way for coupling various turbulent models with LBM
Perruisseau-Carrier, A; Bahlouli, N; Bierry, G; Vernet, P; Facca, S; Liverneaux, P
2017-12-01
Augmented reality could help the identification of nerve structures in brachial plexus surgery. The goal of this study was to determine which law of mechanical behavior was more adapted by comparing the results of Hooke's isotropic linear elastic law to those of Ogden's isotropic hyperelastic law, applied to a biomechanical model of the brachial plexus. A model of finite elements was created using the ABAQUS ® from a 3D model of the brachial plexus acquired by segmentation and meshing of MRI images at 0°, 45° and 135° of shoulder abduction of a healthy subject. The offset between the reconstructed model and the deformed model was evaluated quantitatively by the Hausdorff distance and qualitatively by the identification of 3 anatomical landmarks. In every case the Hausdorff distance was shorter with Ogden's law compared to Hooke's law. On a qualitative aspect, the model deformed by Ogden's law followed the concavity of the reconstructed model whereas the model deformed by Hooke's law remained convex. In conclusion, the results of this study demonstrate that the behavior of Ogden's isotropic hyperelastic mechanical model was more adapted to the modeling of the deformations of the brachial plexus. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
A DFT+nonhomogeneous DMFT approach for finite systems
International Nuclear Information System (INIS)
Kabir, Alamgir; Turkowski, Volodymyr; Rahman, Talat S
2015-01-01
For reliable and efficient inclusion of electron–electron correlation effects in nanosystems we formulate a combined density functional theory/nonhomogeneous dynamical mean-field theory (DFT+DMFT) approach which employs an approximate iterated perturbation theory impurity solver. We further apply the method to examine the size-dependent magnetic properties of iron nanoparticles containing 11–100 atoms. We show that for the majority of clusters the DFT+DMFT solution is in very good agreement with experimental data, much better compared to the DFT and DFT+U results. In particular, it reproduces the oscillations in magnetic moment with size as observed experimentally. We thus demonstrate that the DFT+DMFT approach can be used for accurate and realistic description of nanosystems containing about hundred atoms. (paper)
Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial
International Nuclear Information System (INIS)
Guney, Durdu; Koschny, Thomas; Soukoulis, Costas
2010-01-01
Isotropic negative index metamaterials (NIMs) are highly desired, particularly for the realization of ultra-high resolution lenses. However, existing isotropic NIMs function only two-dimensionally and cannot be miniaturized beyond microwaves. Direct laser writing processes can be a paradigm shift toward the fabrication of three-dimensionally (3D) isotropic bulk optical metamaterials, but only at the expense of an additional design constraint, namely connectivity. Here, we demonstrate with a proof-of-principle design that the requirement connectivity does not preclude fully isotropic left-handed behavior. This is an important step towards the realization of bulk 3D isotropic NIMs at optical wavelengths.
Directory of Open Access Journals (Sweden)
Sraa Abu-Melha
2018-02-01
Full Text Available A new series of 2-amino-5-arylazothiazole derivatives has been designed and synthesized in 61–78% yields and screened as potential antibacterial drug candidates against the Gram negative bacterium Escherichia coli. The geometry of the title compounds were being studied using the Material Studio package and semi-core pseudopods calculations (dspp were performed with the double numerica basis sets plus polarization functional (DNP to predict the properties of materials using the hybrid FT/B3LYP method. Modeling calculations, especially the (EH-EL difference and the energetic parameters revealed that some of the title compounds may be promising tools for further research work and the activity is structure dependent.
Anderson, Julie A; Tschumper, Gregory S
2006-06-08
Ten stationary points on the water dimer potential energy surface have been examined with ten density functional methods (X3LYP, B3LYP, B971, B98, MPWLYP, PBE1PBE, PBE, MPW1K, B3P86, and BHandHLYP). Geometry optimizations and vibrational frequency calculations were carried out with the TZ2P(f,d)+dif basis set. All ten of the density functionals correctly describe the relative energies of the ten stationary points. However, correctly describing the curvature of the potential energy surface is far more difficult. Only one functional (BHandHLYP) reproduces the number of imaginary frequencies from CCSD(T) calculations. The other nine density functionals fail to correctly characterize the nature of at least one of the ten (H(2)O)(2) stationary points studied here.
Saeidian, Hamid; Faraz, Sajjad Mousavi; Mirjafary, Zohreh; Babri, Mehran
2018-05-01
After microsynthesis, structures of mustard gas polysulfide analogues were characterized using electron impact (EI) mass spectrometry. General EI fragmentation pathways for such compounds are proposed. The structure of sulfur mustard (HD) and its two other polysulfide analogues have been examined through B3LYP/6-311++G(2d, 2p) calculations. Geometrical analysis of HD shows that the calculated bond distances are satisfactorily comparable with experimental results. Calculated NMR chemical shifts for HD also were compared with experimental data, indicating good agreement both for 1H and 13C atoms. The vibrational frequencies of HD and polysulfide analogues have been precisely assigned. At the end, based on visual inspection of lowest unoccupied molecular orbitals and the relative difference in the total energies of their episulfonium ions, relative reactivity of HD and its polysulfide analogues were investigated.
Valadbeigi, Younes; Farrokhpour, Hossein; Tabrizchi, Mahmoud
2014-05-01
Isomerization and tautomerism of the three water soluble vitamins including B3, B5 and B7 were studied applying density functional theory using B3LYP method in gas and aqueous phases. Activation energies (Ea), Gibbs free energies of activation (ΔG#), and imaginary frequencies of the transition state structures were calculated for all the isomerization and tautomerism reactions. Activation energies of the neutral → zwitterion (amine-enamine) tautomerism in vitamin B3 were 310-360 kJ/mol where these values for the keto-enol tautomerism were 100-130 kJ/mol. It was found that water molecule catalyzes the tautomerism and decreases the activation energies about 90-160 kJ/mol.
Directory of Open Access Journals (Sweden)
V. Nagarajan
2014-06-01
Full Text Available The realistic InSb nanostructures namely InSb nanoring, InSb nanocube, InSb nanocube-18, InSb nanosheet, InSb nanocage and InSb nanocube-27 are simulated and optimized successfully using B3LYP/LanL2DZ basis set. The stability of InSb nanostructures is studied in terms of binding energy, vibrational studies and calculated energy. The electronic properties of InSb nanostructures are discussed using ionization potential, electron affinity and HOMO–LUMO gap. Point symmetry and dipole moment of InSb nanostructures are reported. Incorporation of impurity atom in InSb nanostructures is studied using embedding energy. The present study provides the information regarding the enhanced electronic properties of InSb nanostructure which finds its potential importance in microelectronics and optoelectronic devices.
Dikmen, Gökhan; Alver, Özgür; Parlak, Cemal
2018-04-01
Solvent dependent structural properties of 4-carboxy phenylboronic acid (4-cpba) were investigated by X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) spectroscopic methods. The molecular structure and geometric parameters were determined by some computational methods such as B3LYP/6-31 + G(3df,p), HF/aug-cc-pvtz and MP2/6-31G(d). Detailed elucidation of the structural and spectroscopic properties of 4-cpba was carried out with 1H, HETCOR and DOSY NMR experiments. Solvent effects on the structural properties were monitored on the changes of 1H NMR spectra by using various solvents and it was observed that 4-cpba shows serious structural preferences depending on the solvent used.
FT-IR, FT-Raman, and DFT computational studies of melaminium nitrate molecular-ionic crystal
Tanak, Hasan; Marchewka, Mariusz K.
2013-02-01
The experimental and theoretical vibrational spectra of melaminium nitrate were studied. The Raman and infrared (FT-IR) spectra of the melaminium nitrate and its deuterated analogue were recorded in the solid phase. Molecular geometry and vibrational frequency values of melaminium nitrate in the electronic ground state were calculated using the density functional method (B3LYP) with the 6-31++G(d,p) basis set. The calculated results show that the optimized geometry can well reproduce the crystal structure, and the theoretical vibrational frequency values show good agreement with experimental values. The NBO analysis reveals that the N-H···O and N-H···N intermolecular interactions significantly influence crystal packing in this molecule.
Gajewska, Małgorzata J; Bieńko, Alina; Herchel, Radovan; Haukka, Matti; Jerzykiewicz, Maria; Ożarowski, Andrzej; Drabent, Krzysztof; Hung, Chen-Hsiung
2016-09-27
The synthesis, structural aspects, magnetic interpretation and theoretical rationalizations for a new member of the ferric wheel family, a decanuclear iron(iii) complex with the formula [Fe 10 (bdtbpza) 10 (μ 2 -OCH 3 ) 20 ] (1), featuring the N,N,O tridentate bis(3,5-di-tert-butylpyrazol-1-yl)acetate ligand, are reported. The influence of the steric effect on both the core geometry and coordination mode is observed. Temperature dependent (2.0-300 K range) magnetic susceptibility studies carried out on complexes 1 established unequivocally antiferromagnetic (AF) interactions between high-spin iron(iii) centers (S = 5/2), leading to a ground state S = 0. The mechanism of AF intramolecular coupling was proved using a broken-symmetry approach within the density functional method at the B3LYP/def2-TZVP(-f)/def2-SVP level of theory.
Combined spectroscopic, DFT, TD-DFT and MD study of newly synthesized thiourea derivative
Menon, Vidya V.; Sheena Mary, Y.; Shyma Mary, Y.; Panicker, C. Yohannan; Bielenica, Anna; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, Christian
2018-03-01
A novel thiourea derivative, 1-(3-bromophenyl)-3-[3-(trifluoromethyl)phenyl]thiourea (ANF-22) is synthesized and characterized by FTIR, FT-Raman and NMR spectroscopy experimentally and theoretically. A detailed conformational analysis of the title molecule has been conducted in order to locate the lowest energy geometry, which was further subjected to the detailed investigation of spectroscopic, reactive, degradation and docking studies by density functional theory (DFT) calculations and molecular dynamics (MD) simulations. Time dependent DFT (TD-DFT) calculations have been used also in order to simulate UV spectra and investigate charge transfer within molecule. Natural bond orbital analysis has been performed analyzing the charge delocalization and using HOMO and LUMO energies the electronic properties are analyzed. Molecular electrostatic potential map is used for the quantitative measurement of active sites in the molecule. In order to determine the locations possibly prone to electrophilic attacks we have calculated average local ionization energies and mapped them to the electron density surface. Further insight into the local reactivity properties have been obtained by calculation of Fukui functions, also mapped to the electron density surface. Possible degradation properties by the autoxidation mechanism have been assessed by calculations of bond dissociation energies for hydrogen abstraction. Atoms of title molecule with significant interactions with water molecules have been determined by calculations of radial distribution functions. The title compound can be a lead compound for developing new analgesic drug.
On a hierarchical construction of the anisotropic LTSN solution from the isotropic LTSN solution
International Nuclear Information System (INIS)
Foletto, Taline; Segatto, Cynthia F.; Bodmann, Bardo E.; Vilhena, Marco T.
2015-01-01
In this work, we present a recursive scheme targeting the hierarchical construction of anisotropic LTS N solution from the isotropic LTS N solution. The main idea relies in the decomposition of the associated LTS N anisotropic matrix as a sum of two matrices in which one matrix contains the isotropic and the other anisotropic part of the problem. The matrix containing the anisotropic part is considered as the source of the isotropic problem. The solution of this problem is made by the decomposition of the angular flux as a truncated series of intermediate functions and replace in the isotropic equation. After the replacement of these into the split isotropic equation, we construct a set of isotropic recursive problems, that are readily solved by the classic LTS N isotropic method. We apply this methodology to solve problems considering homogeneous and heterogeneous anisotropic regions. Numerical results are presented and compared with the classical LTS N anisotropic solution. (author)
DFT and AIM study of the protonation of nitrous acid and the pKa of nitrous acidium ion.
Crugeiras, Juan; Ríos, Ana; Maskill, Howard
2011-11-10
The gas phase and aqueous thermochemistry, NMR chemical shifts, and the topology of chemical bonding of nitrous acid (HONO) and nitrous acidium ion (H(2)ONO(+)) have been investigated by ab initio methods using density functional theory. By the same methods, the dissociation of H(2)ONO(+) to give the nitrosonium ion (NO(+)) and water has also been investigated. We have used Becke's hybrid functional (B3LYP), and geometry optimizations were performed with the 6-311++G(d,p) basis set. In addition, highly accurate ab initio composite methods (G3 and CBS-Q) were used. Solvation energies were calculated using the conductor-like polarizable continuum model, CPCM, at the B3LYP/6-311++G(d,p) level of theory, with the UAKS cavity model. The pK(a) value of H(2)ONO(+) was calculated using two different schemes: the direct method and the proton exchange method. The calculated pK(a) values at different levels of theory range from -9.4 to -15.6, showing that H(2)ONO(+) is a strong acid (i.e., HONO is only a weak base). The equilibrium constant, K(R), for protonation of nitrous acid followed by dissociation to give NO(+) and H(2)O has also been calculated using the same methodologies. The pK(R) value calculated by the G3 and CBS-QB3 methods is in best (and satisfactory) agreement with experimental results, which allows us to narrow down the likely value of the pK(a) of H(2)ONO(+) to about -10, a value appreciably more acidic than literature values.
Experimental and DFT evaluation of the 1H and 13C NMR chemical shifts for calix[4]arenes
Guzzo, Rodrigo N.; Rezende, Michelle Jakeline Cunha; Kartnaller, Vinicius; Carneiro, José Walkimar de M.; Stoyanov, Stanislav R.; Costa, Leonardo Moreira da
2018-04-01
The density functional theory is employed to determine the efficiency of 11 exchange-correlation (XC) functionals to compute the 1H and 13C NMR chemical shifts of p-tert-butylcalix[4]arene (ptcx4, R1 = C(CH3)3) and congeners using the 6-31G(d,p) basis set. The statistical analysis shows that B3LYP, B3PW91 and PBE1PBE are the best XC functionals for the calculation of 1H chemical shifts. Moreover, the best results for the 13C chemical shifts are obtained using the LC-WPBE, M06-2X and wB97X-D functionals. The performance of these XC functionals is tested for three other calix[4]arenes: p-sulfonic acid calix[4]arene (sfxcx4 - R1 = SO3H), p-nitro-calix[4]arene (ncx4, R1 = NO2) and calix[4]arene (cx4 - R1 = H). For 1H chemical shifts B3LYP, B3PW91 and PBE1PBE yield similar results, although B3PW91 shows more consistency in the calculated error for the different structures. For 13C NMR chemical shifts, the XC functional that stood out as best is LC-WPBE. Indeed, the three functionals selected for each of 1H and 13C show good accuracy and can be used in future studies involving the prediction of 1H and 13C chemical shifts for this type of compounds.
Scanning anisotropy parameters in horizontal transversely isotropic media
Masmoudi, Nabil
2016-10-12
The horizontal transversely isotropic model, with arbitrary symmetry axis orientation, is the simplest effective representative that explains the azimuthal behaviour of seismic data. Estimating the anisotropy parameters of this model is important in reservoir characterisation, specifically in terms of fracture delineation. We propose a travel-time-based approach to estimate the anellipticity parameter η and the symmetry axis azimuth ϕ of a horizontal transversely isotropic medium, given an inhomogeneous elliptic background model (which might be obtained from velocity analysis and well velocities). This is accomplished through a Taylor\\'s series expansion of the travel-time solution (of the eikonal equation) as a function of parameter η and azimuth angle ϕ. The accuracy of the travel time expansion is enhanced by the use of Shanks transform. This results in an accurate approximation of the solution of the non-linear eikonal equation and provides a mechanism to scan simultaneously for the best fitting effective parameters η and ϕ, without the need for repetitive modelling of travel times. The analysis of the travel time sensitivity to parameters η and ϕ reveals that travel times are more sensitive to η than to the symmetry axis azimuth ϕ. Thus, η is better constrained from travel times than the azimuth. Moreover, the two-parameter scan in the homogeneous case shows that errors in the background model affect the estimation of η and ϕ differently. While a gradual increase in errors in the background model leads to increasing errors in η, inaccuracies in ϕ, on the other hand, depend on the background model errors. We also propose a layer-stripping method valid for a stack of arbitrary oriented symmetry axis horizontal transversely isotropic layers to convert the effective parameters to the interval layer values.
Effects of isotropic alpha populations on tokamak ballooning stability
International Nuclear Information System (INIS)
Spong, D.A.; Sigmar, D.J.; Tsang, K.T.; Ramos, J.J.; Hastings, D.E.; Cooper, W.A.
1986-12-01
Fusion product alpha populations can significantly influence tokamak stability due to coupling between the trapped alpha precessional drift and the kinetic ballooning mode frequency. Careful, quantitative evaluations of these effects are necessary in burning plasma devices such as the Tokamak Fusion Test Reactor and the Joint European Torus, and we have continued systematic development of such a kinetic stability model. In this model we have considered a range of different forms for the alpha distribution function and the tokamak equilibrium. Both Maxwellian and slowing-down models have been used for the alpha energy dependence while deeply trapped and, more recently, isotropic pitch angle dependences have been examined
Anisotropy in "isotropic diffusion" measurements due to nongaussian diffusion
DEFF Research Database (Denmark)
Jespersen, Sune Nørhøj; Olesen, Jonas Lynge; Ianuş, Andrada
2017-01-01
Designing novel diffusion-weighted NMR and MRI pulse sequences aiming to probe tissue microstructure with techniques extending beyond the conventional Stejskal-Tanner family is currently of broad interest. One such technique, multidimensional diffusion MRI, has been recently proposed to afford...... model-free decomposition of diffusion signal kurtosis into terms originating from either ensemble variance of isotropic diffusivity or microscopic diffusion anisotropy. This ability rests on the assumption that diffusion can be described as a sum of multiple Gaussian compartments, but this is often...
Isotropic 2D quadrangle meshing with size and orientation control
Pellenard, Bertrand
2011-12-01
We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.
Observation of transverse patterns in an isotropic microchip laser
International Nuclear Information System (INIS)
Chen, Y.F.; Lan, Y.P.
2003-01-01
An isotropic microchip laser is used to study the characteristics of high-order wave functions in a two-dimensional (2D) quantum harmonic oscillator based on the identical functional forms. With a doughnut pump profile, the spontaneous transverse modes are found to, generally, be elliptic and hyperbolic transverse modes. Theoretical analyses reveal that the elliptic transverse modes are analogous to the coherent states of a 2D harmonic oscillator; the formation of hyperbolic transverse modes is a spontaneous mode locking between two identical Hermite-Gaussian modes
Homogenous isotropic invisible cloak based on geometrical optics.
Sun, Jingbo; Zhou, Ji; Kang, Lei
2008-10-27
Invisible cloak derived from the coordinate transformation requires its constitutive material to be anisotropic. In this work, we present a cloak of graded-index isotropic material based on the geometrical optics theory. The cloak is realized by concentric multilayered structure with designed refractive index to achieve the low-scattering and smooth power-flow. Full-wave simulations on such a design of a cylindrical cloak are performed to demonstrate the cloaking ability to incident wave of any polarization. Using normal nature material with isotropy and low absorption, the cloak shows light on a practical path to stealth technology, especially that in the optical range.
Energy Technology Data Exchange (ETDEWEB)
Telore, Rahul D.; Jadhav, Amol G.; Sekar, Nagaiyan, E-mail: n.sekar@ictmumbai.edu.in
2016-11-15
Two boron-dipyrromethene dyes with N-phenylcarbazole core at meso position were prepared and characterized. They show small Stokes shifts (15–20 nm), high molar extinction coefficient and high quantum yield. Their photophysical properties were compared with the known meso aryl, 4-aminophenyl, N,N-dimethylaniline and N-butylcarbzole boron-dipyrromethene dyes. The bulky nature of N-phenylcarbazole leads to an increase in molar absorptivity and quantum yield. The Catalan solvent parameters are found to be the suitable for defining the solvatochromic absorption and emission properties. Confocal laser scanning microscopy showed solid-state fluorescence. Density Functional Theory is used to determine the static first hyperpolarizability (β{sub ο}) and its components (μ, α{sub 0}, Δα, and γ) using B3LYP/6-31G(d) at ground state and excited state in different polarity solvent. The geometries of the dyes were optimized by using B3LYP/6-31G(d) and their electronic excitation properties were estimated using time dependent density functional theory.
International Nuclear Information System (INIS)
Bardhan, Munmun; Mandal, Paulami; De, Asish; Kumar De, Avijit; Chowdhury, Joydeep; Ganguly, Tapan
2010-01-01
UV-vis, steady state and time-resolved spectroscopic investigations were made on photoinduced charge separation and thermal charge recombination processes involved within a novel synthesized dyad, 1-(4-chloro-phenyl)-3-(4-methoxy-naphthalen-1-yl)-propenone (MNCA) where the donor 1-methoxynaphthalene (MNT) and the acceptor p-choloroacetophenone (PCA) moieties are connected by a short unsaturated olefinic bond. The measurements were made within the pseudo-ordered domain (just above nematic-isotropic (N-I) phase transition temperature, >308 K) of a nematic liquid crystal, 4-(n-pentyl)-4'-cyanobiphenyl (5CB). Results observed are compared with those obtained from the similar measurements in isotropic media. The charge separation and recombination rates remain more-or-less unchanged within the experimental error irrespective of the polarity of the environment, whether in pseudo-ordered domain (ε S ∼10.5) of a nematic liquid crystal 5CB or in highly polar isotropic medium ACN (ε S ∼37.5). The structural rigidity of the dyad MNCA having stable elongated form both in the ground as well as in the photoexcited states seems to be the reason for this unique behavior of solvent insensitivity. The theoretical predictions done by ab initio method density functional theory (DFT) with B3LYP/6-311 G (d, p) basis function correlate well with experimental observations of formations of only one stable elongated (E-type) conformer both in the ground and electronic excited state.
Geometric Models for Isotropic Random Porous Media: A Review
Directory of Open Access Journals (Sweden)
Helmut Hermann
2014-01-01
Full Text Available Models for random porous media are considered. The models are isotropic both from the local and the macroscopic point of view; that is, the pores have spherical shape or their surface shows piecewise spherical curvature, and there is no macroscopic gradient of any geometrical feature. Both closed-pore and open-pore systems are discussed. The Poisson grain model, the model of hard spheres packing, and the penetrable sphere model are used; variable size distribution of the pores is included. A parameter is introduced which controls the degree of open-porosity. Besides systems built up by a single solid phase, models for porous media with the internal surface coated by a second phase are treated. Volume fraction, surface area, and correlation functions are given explicitly where applicable; otherwise numerical methods for determination are described. Effective medium theory is applied to calculate physical properties for the models such as isotropic elastic moduli, thermal and electrical conductivity, and static dielectric constant. The methods presented are exemplified by applications: small-angle scattering of systems showing fractal-like behavior in limited ranges of linear dimension, optimization of nanoporous insulating materials, and improvement of properties of open-pore systems by atomic layer deposition of a second phase on the internal surface.
Large Deformation Constitutive Laws for Isotropic Thermoelastic Materials
Energy Technology Data Exchange (ETDEWEB)
Plohr, Bradley J. [Los Alamos National Laboratory; Plohr, Jeeyeon N. [Los Alamos National Laboratory
2012-07-25
We examine the approximations made in using Hooke's law as a constitutive relation for an isotropic thermoelastic material subjected to large deformation by calculating the stress evolution equation from the free energy. For a general thermoelastic material, we employ the volume-preserving part of the deformation gradient to facilitate volumetric/shear strain decompositions of the free energy, its first derivatives (the Cauchy stress and entropy), and its second derivatives (the specific heat, Grueneisen tensor, and elasticity tensor). Specializing to isotropic materials, we calculate these constitutive quantities more explicitly. For deformations with limited shear strain, but possibly large changes in volume, we show that the differential equations for the stress components involve new terms in addition to the traditional Hooke's law terms. These new terms are of the same order in the shear strain as the objective derivative terms needed for frame indifference; unless the latter terms are negligible, the former cannot be neglected. We also demonstrate that accounting for the new terms requires that the deformation gradient be included as a field variable
Isotropic extensions of the vacuum solutions in general relativity
Energy Technology Data Exchange (ETDEWEB)
Molina, C. [Universidade de Sao Paulo (USP), SP (Brazil); Martin-Moruno, Prado [Victoria University of Wellington (New Zealand); Gonzalez-Diaz, Pedro F. [Consejo Superior de Investigaciones Cientificas, Madrid (Spain)
2012-07-01
Full text: Spacetimes described by spherically symmetric solutions of Einstein's equations are of paramount importance both in astrophysical applications and theoretical considerations. And among those, black holes are highlighted. In vacuum, Birkhoff's theorem and its generalizations to non-asymptotically flat cases uniquely fix the metric as the Schwarzschild, Schwarzschild-de Sitter or Schwarzschild-anti-de Sitter geometries, the vacuum solutions of the usual general relativity with zero, positive or negative values for the cosmological constant, respectively. In this work we are mainly interested in black holes in a cosmological environment. Of the two main assumptions of the cosmological principle, homogeneity is lost when compact objects are considered. Nevertheless isotropy is still possible, and we enforce this condition. Within this context, we investigate spatially isotropic solutions close - continuously deformable - to the usual vacuum solutions. We obtain isotropic extensions of the usual spherically symmetric vacuum geometries in general relativity. Exact and perturbative solutions are derived. Maximal extensions are constructed and their causal structures are discussed. The classes of geometries obtained include black holes in compact and non-compact universes, wormholes in the interior region of cosmological horizons, and anti-de Sitter geometries with excess/deficit solid angle. The tools developed here are applicable in more general contexts, with extensions subjected to other constraints. (author)
ISOTROPIC LUMINOSITY INDICATORS IN A COMPLETE AGN SAMPLE
International Nuclear Information System (INIS)
Diamond-Stanic, Aleksandar M.; Rieke, George H.; Rigby, Jane R.
2009-01-01
The [O IV] λ25.89 μm line has been shown to be an accurate indicator of active galactic nucleus (AGN) intrinsic luminosity in that it correlates well with hard (10-200 keV) X-ray emission. We present measurements of [O IV] for 89 Seyfert galaxies from the unbiased revised Shapley-Ames (RSA) sample. The [O IV] luminosity distributions of obscured and unobscured Seyferts are indistinguishable, indicating that their intrinsic AGN luminosities are quite similar and that the RSA sample is well suited for tests of the unified model. In addition, we analyze several commonly used proxies for AGN luminosity, including [O III] λ5007 A, 6 cm radio, and 2-10 keV X-ray emission. We find that the radio luminosity distributions of obscured and unobscured AGNs show no significant difference, indicating that radio luminosity is a useful isotropic luminosity indicator. However, the observed [O III] and 2-10 keV luminosities are systematically smaller for obscured Seyferts, indicating that they are not emitted isotropically.
Journal of Chemical Sciences | Indian Academy of Sciences
Indian Academy of Sciences (India)
The structure of the title molecule has been optimized and the structural parameters have been calculated by DFT/B3LYP method with 6-311++G(d,p) basis set. The fundamental vibrational wavenumbers as well as their intensities were calculated and excellent agreement between observed and calculated wavenumbers ...
DEFF Research Database (Denmark)
Fristrup, Peter; Kreis, Michael; Palmelund, Anders
2008-01-01
that similar mechanisms are operating. A DFT (B3LYP) study of the catalytic cycle indicated a rapid oxidative addition into the C(O)-H bond followed by a rate-limiting extrusion of CO and reductive elimination. The theoretical kinetic isotope effects based on this mechanism were in excellent agreement...
DEFF Research Database (Denmark)
Nekoei, A.-R.; Vakili, M.; Hakimi-Tabar, M.
2014-01-01
assignment for Cu(dbm)2 in the literatures. Density functional theory (DFT) at the B3LYP level and also MP2 calculations using different basis sets, besides Natural Bond Orbital (NBO) and Atoms-in-Molecules (AIM) analyses, have been employed to investigate the effect of methyl substitution with the phenyl...
Monothiodibenzoylmethane: Structural and vibrational assignments
DEFF Research Database (Denmark)
Hansen, Bjarke Knud Vilster; Gorski, Alexander; Posokhov, Yevgen
2007-01-01
vibrational spectra were compared with theoretical transitions obtained with B3LYP/cc-pVTZ density functional theory (DFT). The results leave no doubt that the stable ground state configuration of TDBM corresponds to the intramolecularly hydrogen bonded enol form (e-CCC), and that the photoproduct corresponds...
DEFF Research Database (Denmark)
Fristrup, Peter; Ahlquist, Mårten Sten Gösta; Tanner, David Ackland
2008-01-01
The reactivity of intermediates in palladium-catalyzed allylic alkylation was investigated using DFT (B3LYP) calculations including a PB-SCRF solvation model. In the presence of both phosphine and chloride ligands, the allyl intermediate is in equilibrium between a cationic eta(3)-allylPd complex...
DEFF Research Database (Denmark)
Knap, Hasse Christian; Jørgensen, Solvejg; Kjærgaard, Henrik Grum
2015-01-01
The hydroxy peroxy radical derived from the oxidation of 3-methyl-3-buten-1-ol (MBO331), can undergo four different hydrogen shift (H-shift) reactions. We have compared optimized geometries, barrier heights and reaction rate constants obtained with five different DFT functionals (BLYP, B3LYP, BHand...
DEFF Research Database (Denmark)
Santilli, Carola; Makarov, Ilya; Fristrup, Peter
2016-01-01
reaction is most likely involved in this case. The kinetic isotope effect was determined to be 0.67 using 1-butanol as the substrate. A plausible catalytic cycle was characterized by DFT/B3LYP-D3 and involved coordination of the alcohol to the metal, β-hydride elimination, hydroxide attack...
DEFF Research Database (Denmark)
Manohara, S.R.; Kumar, V. Udaya; Shivakumaraiah
2013-01-01
chemical calculations using the DFT method by adopting B3LYP/6-31G* level of theory (Gaussian 03) and using the AM1 method (Chem3D Ultra 8.0). It was observed that, dipole moments of diazines in the excited-state (μe) were greater than the corresponding ground-state values (μg), indicating a substantial...
DEFF Research Database (Denmark)
Barsberg, S.; Berg, Rolf W.
2006-01-01
. study of FA in weakly interacting environments. It is the first study of FA vibrational properties based on d. functional theory (DFT/B3LYP), and a recently proposed hybrid approach to the calcn. of fundamental frequencies, which also includes an anharmonic contribution. FA occupies five different...
Energy and spectrum of BeO molecule under the electric field from different directions
Jiang, M.; Guo, F. J.; Yan, A. Y.; Zhang, C. W.; Miao, F.
2010-01-01
Based on the density functional theory DFT/ B3LYP at 6-311g level, the ground states of BeO molecule are optimized. The effects of electric field on the bond length, the system energy, the charge distribution, the energy levels, the HOMO-LUMO gaps and the infrared spectrum of BeO molecule are
DEFF Research Database (Denmark)
Supur, M.; Kawashima, Y.; Larsen, K. R.
2014-01-01
) obtained by UV/Vis titrations in benzonitrile (PhCN) at room temperature. On the basis of DFT studies at the B3LYP/6-311G(d,p) level, the orbital interactions between the crown ether moieties and the p surface of the fullerene together with the endohedral Li+ have a crucial role in robust complex formation...
DEFF Research Database (Denmark)
Abdali, Salim; Jalkanen, Karl J.; Cao, X.
2004-01-01
Conformational determination of [Leu]enkephalin in DMSO-d6 is carried out using VA and VCD spectral analyses. Conformational energies, vibrational frequencies and VA and VCD intensities are calculated using DFT at B3LYP/6-31G* level of theory. Comparison between the measured spectra...
The vibrational structure of dibenzo-p-dioxin
DEFF Research Database (Denmark)
Eriksen, Troels Kongsgaard; Hansen, Bjarke Knud Vilster; Spanget-Larsen, Jens
2008-01-01
by the results of a harmonic analysis based on B3LYP/cc-pVTZ density functional theory (DFT). The combined experimental and theoretical results led to proposal of a nearly complete assignment of the fundamental vibrational transitions of DD, involving reassignment of several transitions. The results...
Photochromism and polarization spectroscopy of p-methylthiobenzoylacetone
DEFF Research Database (Denmark)
Gorski, Alexander; Posokhov, Yevgen; Hansen, Bjarke Knud Vilster
2006-01-01
achieved by using irradiation wavelengths corresponding to differently polarized electronic transitions. This was followed by measurements of linear dichroism (LD) in the IR region. The analysis of the IR spectra, combined with the results of DFT B3LYP/cc-pVDZ calculations enabled determining...
Todorov, P.D.; Jenneskens, L.W.; van Lenthe, J.H.
2010-01-01
The molecular geometry and the normal modes properties of coronene are investigated by means of DFT B3LYP and restricted/Hartree–Fock calculations utilizing basis sets of triple zeta +polarization quality. The interpretation of the infrared and Raman spectra of coronene, especially in solid state,
DEFF Research Database (Denmark)
Fristrup, Peter; Lassen, Peter Rygaard; Tanner, David Ackland
2008-01-01
obtained using DFT/B3LYP calculations, and the differences between experiment and theory are discussed. The absolute configuration at the benzylic position was established as being (R), (S) and (R) for the cis, trans and geminal dimethylsubstituted phenyloxiranes, respectively. In all three cases...
DEFF Research Database (Denmark)
Milhøj, Birgitte Olai; Sauer, Stephan P. A.
2015-01-01
the computational method is validated by considering the hydrogen abstraction from the heterocyclic N9 nitrogen in adenine as a test system. Geometries for all molecules in the reaction are optimised with four different DFT exchange-correlation functionals (B3LYP, BHandHLYP, M06-2X and wB97X-D), in combination...
DIPYRIDOXYL(1,8-DIAMINO-3,6-DIOXAOCTANE) SCHIFF-BASE
African Journals Online (AJOL)
Preferred Customer
KEY WORDS: Schiff base, N,N′-dipyridoxyl(1,8-diamino-3,6-dioxaoctane), DFT, B3LYP. INTRODUCTION. Schiff bases due to structural varieties and unique characteristics are the most versatile studied ligands in coordination chemistry [1, 2] and their metal complexes play an important role in the development of inorganic ...
NMR Analysis of Some Pentacycloundecanedione Derivatives ...
African Journals Online (AJOL)
Nuclear Overhauser Effect Spectroscopy (NOESY) interaction between the two nonequivalent bridge protons and protons on the cage skeleton proved to be a very convenient handle to elucidate the structures of the PCU compounds. A density functional theory (DFT) optimization [B3LYP/6-31+G(d)] of two possible ketal ...
Journal of Chemical Sciences | Indian Academy of Sciences
Indian Academy of Sciences (India)
Its molecular geometry in the ground state has also been calculated using density functional theory (DFT) at the B3LYP/6-31G∗∗ level and compared with its crystal structure. Results show that the optimized geometry can well reproduce the crystal structure. Furthermore, both absorption and emission spectra of 1 and 2 ...
Pramana – Journal of Physics | Indian Academy of Sciences
Indian Academy of Sciences (India)
The theoretical parameters of the transparent conducting metal oxides were calculated using DFT/B3LYP/LANL2DZ method. The optimised bond parameters such as bond lengths, bond angles and dihedral angles were calculated using the same theory. The non-linear optical property of the title compound was calculated ...
Journal of Chemical Sciences | Indian Academy of Sciences
Indian Academy of Sciences (India)
In the present work, a conformational analysis of 3-Hydroxy-propeneselenal is performed using several computational methods, including HF, DFT (B3LYP), and G2MP2 levels of theory. The relative ... The conformational preference of this molecule was found to be mainly determined by the formation of Se…H-O and ...
DEFF Research Database (Denmark)
Faber, Rasmus; Buczek, Aneta; Kupka, Teobald
2017-01-01
), coupled cluster singles and doubles (CCSD), coupled cluster singles and doubles with perturbative triples corrections (CCSD(T)) and Kohn-Sham density functional theory (DFT) with the B3LYP exchange-correlation functional methods in combination with the second order vibrational perturbation theory (VPT2...
African Journals Online (AJOL)
2017-01-01
Jan 1, 2017 ... In this study, fourteen tautomers have been subjected to two types of calculation: DFT/B3LYP and MP2. 1.2 Computational details. All calculations at this work were performed on a personal computer by means of. GAUSSIAN 09 program package [5]. The second-order Moller–Plesset (MP2) and density ...
DEFF Research Database (Denmark)
Hansen, Bjarke Knud Vilster; Møller, Søren; Spanget-Larsen, Jens
2006-01-01
than 40 vibrational transitions. The observed IR wavenumbers, relative intensities, and polarization directions were generally well reproduced by the results of a harmonic analysis based on B3LYP/cc-pVTZ density functional theory (DFT). The combined experimental and theoretical results led to proposal...... of a nearly complete assignment of the IR active fundamentals of DPB, involving reassignment of a number of transitions. In addition, previously published Raman spectra of DPB were well predicted by the B3LYP/cc-pVTZ calculations....
DEFF Research Database (Denmark)
Kupka, Teobald; Stachów, Michal; Kaminsky, Jakub
2013-01-01
, estimated from calculations with the family of polarizationconsistent pcS-n basis sets is reported. This dependence was also supported by inspection of profiles of deviation between CBS estimated nuclear shieldings and obtained with significantly smaller basis sets pcS-2 and aug-cc-pVTZ-J for the selected......A linear correlation between isotropic nuclear magnetic shielding constants for seven model molecules (CH2O, H2O, HF, F2, HCN, SiH4 and H2S) calculated with 37 methods (34 density functionals, RHF, MP2 and CCSD(T) ), with affordable pcS-2 basis set and corresponding complete basis set results...... set of 37 calculation methods. It was possible to formulate a practical approach of estimating the values of isotropic nuclear magnetic shielding constants at the CCSD(T)/CBS and MP2/CBS levels from affordable CCSD(T)/pcS-2, MP2/pcS-2 and DFT/CBS calculations with pcS-n basis sets. The proposed method...
nmr spectroscopic study and dft calculations of vibrational analyses
African Journals Online (AJOL)
Preferred Customer
2Plant, Drug and Scientific Research Centre, Anadolu University, 26470, ... Density functional theory (DFT) calculations provide excellent agreement with ..... simple correlation between 1JCH and the hybridization of the carbon atom involved; ...
Redox Potentials of Ligands and Complexes – a DFT Approach
African Journals Online (AJOL)
NICO
Electron affinity (EA) of an atom or molecule is the associated energy change that occurs .... As a consequence of the foregoing evidence we resolved to embark on a ... Density functional theory (DFT) calculations were performed using the ...
Makhloufi, A.; Belhadad, O.; Ghemit, R.; Baitiche, M.; Merbah, M.; Benachour, DJ.
2018-01-01
In common with other aza-heterocycles, 4-hydroxyquinazoline and their derivatives are important pharmacophores and versatile lead molecule used in several specific biological activities. The potency of these compounds depends on the nature and/or position of their substituents. In this paper, we report a theoretical study of the most probable nitration reaction centers of 4-hydroxyquinazoline for electrophilic attack, the mono and di-nitration was also discussed. In parallel, a computational study has been performed in gas by using the B3LYP/6311 G(d) level. The stability of the four nitro isomers is rationalized by means of the global index and local reactivity indices. Their molecular electrostatic potential (MEP) and Milliken charge were explored. Molecular geometries and NMR H spectra was examined. In addition, stationary points of reactant, transition state and intermediate were optimized in water condensed phase at the same level. The relative energies of the regioisomeric δ-complexes confirm that the substitution at C6 (6-nitro σ-complexes) is favored in these conditions, what was in agreement with our others calculating results (in gas).
DFT simulations and vibrational spectra of 2-amino-2-methyl-1,3-propanediol
Renuga Devi, T. S.; Sharmi kumar, J.; Ramkumaar, G. R.
2014-12-01
The FTIR and FT-Raman spectra of 2-amino-2-methyl-1,3-propanediol were recorded in the regions 4000-400 cm-1 and 4000-50 cm-1 respectively. The structural and spectroscopic data of the molecule in the ground state were calculated using Hartee-Fock and density functional method (B3LYP) with the augmented-correlation consistent-polarized valence double zeta (aug-cc-pVDZ) basis set. The most stable conformer was optimized and the structural and vibrational parameters were determined based on this. The complete assignments were performed on the basis of the Potential Energy Distribution (PED) of the vibrational modes, calculated using Vibrational Energy Distribution Analysis (VEDA) 4 program. With the observed FTIR and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes of the compound were carried out. Thermodynamic properties and Mulliken charges were calculated using both Hartee-Fock and density functional method using the aug-cc-pVDZ basis set and compared. The calculated HOMO-LUMO energy gap revealed that charge transfer occurs within the molecule. 1H and 13C NMR chemical shifts of the molecule were calculated using Gauge-Independent Atomic Orbital (GIAO) method and were compared with experimental results.
Mechanism of the palladium-catalyzed hydrothiolation of alkynes to thioethers: a DFT study.
Zhang, Xing-hui; Geng, Zhi-yuan; Wang, Ke-tai; Li, Shan-shan
2014-09-01
The mechanisms of the palladium-catalyzed hydrothiolation of alkynes with thiols were investigated using density functional theory at the B3LYP/6-31G(d, p) (SDD for Pd) level. Solvent effects on these reactions were explored using the polarizable continuum model (PCM) for the solvent tetrahydrofuran (THF). Markovnikov-type vinyl sulfides or cis-configured anti-Markovnikov-type products were formed by three possible pathways. Our calculation results suggested the following: (1) the first step of the cycle is a proton-transfer process from thiols onto the palladium atom to form a palladium-thiolate intermediate. The palladium-thiolate species is attacked on alkynes to obtain an elimination product, liberating the catalyst. (2) The higher activation energies for the alkyne into the palladium-thiolate bond indicate that this step is the rate-determining step. The Markovnikov-type vinyl sulfide product is favored. However, for the aromatic alkyne, the cis-configured anti-Markovnikov-type product is favored. (3) The activation energy would reduce when thiols are substituted with an aromatic group. Our calculated results are consistent with the experimental observations of Frech and colleagues for the palladium-catalyzed hydrothiolation of alkynes to thiols.
A comparative DFT study on the antioxidant activity of apigenin and scutellarein flavonoid compounds
Sadasivam, K.; Kumaresan, R.
2011-03-01
The potent antioxidant activity of flavonoids relevant to their ability to scavenge reactive oxygen species is the most important function of flavonoids. Density functional theory calculations were explored to investigate the antioxidant activity of flavonoid compounds such as apigenin and scutellarein. The biological characteristics are dependent on electronic parameters, describing the charge distribution on the rings of the flavonoid molecules. The computation of structural and various molecular descriptors such as polarizability, dipole moment, energy gap, homolytic O-H bond dissociation enthalpies (BDEs), ionization potential (IP), electron affinity, hardness, softness, electronegativity, electrophilic index and density plot of molecular orbital for neutral as well as radical species were carried out and studied. The B3LYP/6-311G(d,p) basis set was adopted for all the computations. This computation reveals that scutellarein exhibits higher degree of antioxidant activity than apigenin. Their dipole moment and polarizability analysis show that both the compounds are polar in nature and have the capacity to polarize other atoms.
Redesign of the DFT/MRCI Hamiltonian
Energy Technology Data Exchange (ETDEWEB)
Lyskov, Igor; Kleinschmidt, Martin; Marian, Christel M., E-mail: Christel.Marian@hhu.de [Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf (Germany)
2016-01-21
The combined density functional theory and multireference configuration interaction (DFT/MRCI) method of Grimme and Waletzke [J. Chem. Phys. 111, 5645 (1999)] is a well-established semi-empirical quantum chemical method for efficiently computing excited-state properties of organic molecules. As it turns out, the method fails to treat bi-chromophores owing to the strong dependence of the parameters on the excitation class. In this work, we present an alternative form of correcting the matrix elements of a MRCI Hamiltonian which is built from a Kohn-Sham set of orbitals. It is based on the idea of constructing individual energy shifts for each of the state functions of a configuration. The new parameterization is spin-invariant and incorporates less empirism compared to the original formulation. By utilizing damping techniques together with an algorithm of selecting important configurations for treating static electron correlation, the high computational efficiency has been preserved. The robustness of the original and redesigned Hamiltonians has been tested on experimentally known vertical excitation energies of organic molecules yielding similar statistics for the two parameterizations. Besides that, our new formulation is free from artificially low-lying doubly excited states, producing qualitatively correct and consistent results for excimers. The way of modifying matrix elements of the MRCI Hamiltonian presented here shall be considered as default choice when investigating photophysical processes of bi-chromophoric systems such as singlet fission or triplet-triplet upconversion.
Structure and Absolute Configuration of Ginkgolide B Characterized by IR- and VCD Spectroscopy
DEFF Research Database (Denmark)
Andersen, Niels Højmark; Christensen, N.J.; Lassen, Peter Rygaard
2010-01-01
Experimental and calculated (B3LYP/6-31G(d)) vibrational Circular dichroism (VCD) and IR spectra are compared, illustrating that the structure and absolute configuration of ginkgolide B (GB) may be characterized directly in solution. A conformational search for GB using MacroModel and subsequent...... DFT optimizations (B3LYP/6-31G(d)) provides a structure for the lowest energy conformer which agrees well with the structure determined by X-ray diffraction. In addition, a conformer at all energy of 7 kJ mol(-1) (B3LYP/6-311+G(2d,2p)) with respect to the lowest energy conformer is predicted...
A finite-density calculation of the surface tension of isotropic-nematic interfaces
International Nuclear Information System (INIS)
Moore, B.G.; McMullen, W.E.
1992-01-01
The surface tension of the isotropic-nematic interface in a fluid of intermediate-sized hard particles is studied and calculated. The transition from isotropic to nematic is fixed to occur in a continuous fashion by varying the biaxiality of the model particles. A reversal in the preferred orientation of the bulk nematic relative to the isotropic-nematic interface suggests an oblique orientation of the bulk nematic. 32 refs., 8 figs
Charged Particle Diffusion in Isotropic Random Magnetic Fields
Energy Technology Data Exchange (ETDEWEB)
Subedi, P.; Matthaeus, W. H.; Chuychai, P.; Parashar, T. N.; Chhiber, R. [Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Sonsrettee, W. [Faculty of Engineering and Technology, Panyapiwat Institute of Management, Nonthaburi 11120 (Thailand); Blasi, P. [INAF/Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5—I-50125 Firenze (Italy); Ruffolo, D. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Montgomery, D. [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Dmitruk, P. [Departamento de Física Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, 1428 Buenos Aires (Argentina); Wan, M. [Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055 (China)
2017-03-10
The investigation of the diffusive transport of charged particles in a turbulent magnetic field remains a subject of considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here we consider the diffusion of charged particles in fully three-dimensional isotropic turbulent magnetic fields with no mean field, which may be pertinent to many astrophysical situations. We identify different ranges of particle energy depending upon the ratio of Larmor radius to the characteristic outer length scale of turbulence. Two different theoretical models are proposed to calculate the diffusion coefficient, each applicable to a distinct range of particle energies. The theoretical results are compared to those from computer simulations, showing good agreement.
Isotropic Surface Remeshing without Large and Small Angles
Wang, Yiqun; Yan, Dong-Ming; Liu, Xiaohan; Tang, Chengcheng; Guo, Jianwei; Zhang, Xiaopeng; Wonka, Peter
2018-01-01
We introduce a novel algorithm for isotropic surface remeshing which progressively eliminates obtuse triangles and improves small angles. The main novelty of the proposed approach is a simple vertex insertion scheme that facilitates the removal of large angles, and a vertex removal operation that improves the distribution of small angles. In combination with other standard local mesh operators, e.g., connectivity optimization and local tangential smoothing, our algorithm is able to remesh efficiently a low-quality mesh surface. Our approach can be applied directly or used as a post-processing step following other remeshing approaches. Our method has a similar computational efficiency to the fastest approach available, i.e., real-time adaptive remeshing [1]. In comparison with state-of-the-art approaches, our method consistently generates better results based on evaluations using different metrics.
Circular random motion in diatom gliding under isotropic conditions
International Nuclear Information System (INIS)
Gutiérrez-Medina, Braulio; Maldonado, Ana Iris Peña; Guerra, Andrés Jiménez; Rubio, Yadiralia Covarrubias; Meza, Jessica Viridiana García
2014-01-01
How cells migrate has been investigated primarily for the case of trajectories composed by joined straight segments. In contrast, little is known when cellular motion follows intrinsically curved paths. Here, we use time-lapse optical microscopy and automated trajectory tracking to investigate how individual cells of the diatom Nitzschia communis glide across surfaces under isotropic environmental conditions. We find a distinct kind of random motion, where trajectories are formed by circular arcs traveled at constant speed, alternated with random stoppages, direction reversals and changes in the orientation of the arcs. Analysis of experimental and computer-simulated trajectories show that the circular random motion of diatom gliding is not optimized for long-distance travel but rather for recurrent coverage of limited surface area. These results suggest that one main biological role for this type of diatom motility is to efficiently build the foundation of algal biofilms. (paper)
Redshift and lateshift from homogeneous and isotropic modified dispersion relations
Pfeifer, Christian
2018-05-01
Observables which would indicate a modified vacuum dispersion relations, possibly caused by quantum gravity effects, are a four momentum dependence of the cosmological redshift and the existence of a so called lateshift effect for massless or very light particles. Existence or non-existence of the latter is currently analyzed on the basis of the available observational data from gamma-ray bursts and compared to predictions of specific modified dispersion relation models. We consider the most general perturbation of the general relativistic dispersion relation of freely falling particles on homogeneous and isotropic spacetimes and derive the red- and lateshift to first order in the perturbation. Our result generalizes the existing formulae in the literature and we find that there exist modified dispersion relations causing both, one or none of the two effects to first order.
Isotropic covariance functions on graphs and their edges
DEFF Research Database (Denmark)
Anderes, E.; Møller, Jesper; Rasmussen, Jakob Gulddahl
We develop parametric classes of covariance functions on linear networks and their extension to graphs with Euclidean edges, i.e., graphs with edges viewed as line segments or more general sets with a coordinate system allowing us to consider points on the graph which are vertices or points...... on an edge. Our covariance functions are defined on the vertices and edge points of these graphs and are isotropic in the sense that they depend only on the geodesic distance or on a new metric called the resistance metric (which extends the classical resistance metric developed in electrical network theory...... functions in the spatial statistics literature (the power exponential, Matérn, generalized Cauchy, and Dagum classes) are shown to be valid with respect to the resistance metric for any graph with Euclidean edges, whilst they are only valid with respect to the geodesic metric in more special cases....
Uhlmann's geometric phase in presence of isotropic decoherence
International Nuclear Information System (INIS)
Tidstroem, Jonas; Sjoeqvist, Erik
2003-01-01
Uhlmann's mixed state geometric phase [Rep. Math. Phys. 24, 229 (1986)] is analyzed in the case of a qubit affected by isotropic decoherence treated in the Markovian approximation. It is demonstrated that this phase decreases rapidly with increasing decoherence rate and that it is most fragile to weak decoherence for pure or nearly pure initial states. In the unitary case, we compare Uhlmann's geometric phase for mixed states with that occurring in standard Mach-Zehnder interferometry [Phys. Rev. Lett. 85, 2845 (2000)] and show that the latter is more robust to reduction in the length of the Bloch vector. We also describe how Uhlmann's geometric phase in the present case could in principle be realized experimentally
Isotropic radio background from quark nugget dark matter
Energy Technology Data Exchange (ETDEWEB)
Lawson, Kyle; Zhitnitsky, Ariel R., E-mail: arz@physics.ubc.ca
2013-07-09
Recent measurements by the ARCADE2 experiment unambiguously show an excess in the isotropic radio background at frequencies below the GHz scale. We argue that this excess may be a natural consequence of the interaction of visible and dark matter in the early universe if the dark matter consists of heavy nuggets of quark matter. Explanation of the observed radio band excess requires the introduction of no new parameters, rather we exploit the same dark matter model and identical normalization parameters to those previously used to explain other excesses of diffuse emission from the centre of our galaxy. These previously observed excesses include the WMAP Haze of GHz radiation, keV X-ray emission and MeV gamma-ray radiation.
Third-harmonic generation in isotropic media by focused pulses
International Nuclear Information System (INIS)
Tasgal, Richard S.; Band, Y.B.
2004-01-01
For focused pulses of light in isotropic nonlinear media, third-harmonic generation can be strongly affected by group-velocity mismatch between the fundamental and third-harmonic. There is a characteristic time determined by the group-velocity mismatch and the Rayleigh range of the focused pulse. The dynamics depend on two dimensionless quantities, namely the ratio of the characteristic time to the pulse duration and the phase-velocity mismatch times the Rayleigh range. Pulses shorter than the characteristic time have physics described by simple analytic formulas. Pulses near the characteristic time have an intermediate behavior given by an explicit but more complicated formula. Pulses longer than the characteristic time tend to the continuous-wave case
X-ray and Moessbauer investigations of isotropic barium ferrites
International Nuclear Information System (INIS)
Kirichok, P.P.; Pashchenko, V.A.; Dem'yaniv, T.O.; Ryabova, G.N.; Lisovskij, A.M.
1984-01-01
Using the methods of X-ray and γ-resonance spectroscopy the crystal chemical and magnetic structure of isotropic barium hexaferrites is studied. compacting pressure the lattice parameter c of ferrite of the BaOx5.7Fe 2 O 3 is decreased and the diffraction line width on its X-ray p attern is increased. Due to increasing the isoststical compacting pressure quadrupole splitting of the γ-resonance absorption spectrum of 57 Fe nuclei in tetrahedral positions 4f 1 and in positions 2a decreases. The sintering temperature growth leads to increasing the lattice parameter c and diffraction line widths and decreasing the effeutive field values and isomeric s hifts on 57 Fe nuclei. Isostatical compacting pressure does not affect the electron configuration of iron ions
Negative refraction of inhomogeneous waves in lossy isotropic media
International Nuclear Information System (INIS)
Fedorov, V Yu; Nakajima, T
2014-01-01
We theoretically study negative refraction of inhomogeneous waves at the interface of lossy isotropic media. We obtain explicit (up to the sign) expressions for the parameters of a wave transmitted through the interface between two lossy media characterized by complex permittivity and permeability. We show that the criterion of negative refraction that requires negative permittivity and permeability can be used only in the case of a homogeneous incident wave at the interface between a lossless and lossy media. In a more general situation, when the incident wave is inhomogeneous, or both media are lossy, the criterion of negative refraction becomes dependent on an incidence angle. Most interestingly, we show that negative refraction can be realized in conventional lossy materials (such as metals) if their interfaces are properly oriented. (paper)
Deriving the equations of motion of porous isotropic media
International Nuclear Information System (INIS)
Pride, S.R.; Gangi, A.F.; Morgan, F.D.
1992-01-01
The equations of motion and stress/strain relations for the linear dynamics of a two-phase, fluid/solid, isotropic, porous material have been derived by a direct volume averaging of the equations of motion and stress-strain relations known to apply in each phase. The equations thus obtained are shown to be consistent with Biot's equations of motion and stress/strain relations; however, the effective fluid density in the equation of relative flow has an unambiguous definition in terms of the tractions acting on the pore walls. The stress/strain relations of the theory correspond to 'quasistatic' stressing (i.e., inertial effects are ignored). It is demonstrated that using such quasistatic stress/strain relations in the equations of motion is justified whenever the wavelengths are greater than a length characteristic of the averaging volume size. 37 refs., 2 figs
Waterlike glass polyamorphism in a monoatomic isotropic Jagla model.
Xu, Limei; Giovambattista, Nicolas; Buldyrev, Sergey V; Debenedetti, Pablo G; Stanley, H Eugene
2011-02-14
We perform discrete-event molecular dynamics simulations of a system of particles interacting with a spherically-symmetric (isotropic) two-scale Jagla pair potential characterized by a hard inner core, a linear repulsion at intermediate separations, and a weak attractive interaction at larger separations. This model system has been extensively studied due to its ability to reproduce many thermodynamic, dynamic, and structural anomalies of liquid water. The model is also interesting because: (i) it is very simple, being composed of isotropically interacting particles, (ii) it exhibits polyamorphism in the liquid phase, and (iii) its slow crystallization kinetics facilitate the study of glassy states. There is interest in the degree to which the known polyamorphism in glassy water may have parallels in liquid water. Motivated by parallels between the properties of the Jagla potential and those of water in the liquid state, we study the metastable phase diagram in the glass state. Specifically, we perform the computational analog of the protocols followed in the experimental studies of glassy water. We find that the Jagla potential calculations reproduce three key experimental features of glassy water: (i) the crystal-to-high-density amorphous solid (HDA) transformation upon isothermal compression, (ii) the low-density amorphous solid (LDA)-to-HDA transformation upon isothermal compression, and (iii) the HDA-to-very-high-density amorphous solid (VHDA) transformation upon isobaric annealing at high pressure. In addition, the HDA-to-LDA transformation upon isobaric heating, observed in water experiments, can only be reproduced in the Jagla model if a free surface is introduced in the simulation box. The HDA configurations obtained in cases (i) and (ii) are structurally indistinguishable, suggesting that both processes result in the same glass. With the present parametrization, the evolution of density with pressure or temperature is remarkably similar to the
Elastic field of approaching dislocation loop in isotropic bimaterial
International Nuclear Information System (INIS)
Wu, Wenwang; Xu, Shucai; Zhang, Jinhuan; Xia, Re; Qian, Guian
2015-01-01
A semi-analytical solution is developed for calculating interface traction stress (ITS) fields due to elastic modulus mismatch across the interface plane of isotropic perfectly bounded bimaterial system. Based on the semi-analytical approaches developed, ITS is used to correct the bulk elastic field of dislocation loop within infinite homogenous medium, and to produce continuous displacement and stress fields across the perfectly-bounded interface. Firstly, calculation examples of dislocation loops in Al–Cu bimaterial system are performed to demonstrate the efficiency of the developed semi-analytical approach; Then, the elastic fields of dislocation loops in twinning Cu and Cu–Nb bimaterial are analyzed; Finally, the effect of modulus mismatch across interface plane on the elastic field of bimaterial system is investigated, it is found that modulus mismatch has a drastic impact on the elastic fields of dislocation loops within bimaterial system. (paper)