DEFF Research Database (Denmark)
Hansen, Christian Rønn; Johansen, Jørgen; Samsøe, Eva
2018-01-01
, intermediate and elective dose CTVs (CTV1, CTV2 and CTV3, respectively) in a patient-case template (stage IV squamous cell carcinoma of the oropharynx), first using mainly anatomical margins (original standard) and then using concentric geometric expansion (new standard). Each centre made a dummy...
Convolution method and CTV-to-PTV margins for finite fractions and small systematic errors
International Nuclear Information System (INIS)
Gordon, J J; Siebers, J V
2007-01-01
The van Herk margin formula (VHMF) relies on the accuracy of the convolution method (CM) to determine clinical target volume (CTV) to planning target volume (PTV) margins. This work (1) evaluates the accuracy of the CM and VHMF as a function of the number of fractions N and other parameters, and (2) proposes an alternative margin algorithm which ensures target coverage for a wider range of parameter values. Dose coverage was evaluated for a spherical target with uniform margin, using the same simplified dose model and CTV coverage criterion as were used in development of the VHMF. Systematic and random setup errors were assumed to be normally distributed with standard deviations Σ and σ. For clinically relevant combinations of σ, Σ and N, margins were determined by requiring that 90% of treatment course simulations have a CTV minimum dose greater than or equal to the static PTV minimum dose. Simulation results were compared with the VHMF and the alternative margin algorithm. The CM and VHMF were found to be accurate for parameter values satisfying the approximate criterion: σ[1 - γN/25] 0.2, because they failed to account for the non-negligible dose variability associated with random setup errors. These criteria are applicable when σ ∼> σ P , where σ P = 0.32 cm is the standard deviation of the normal dose penumbra. (Qualitative behaviour of the CM and VHMF will remain the same, though the criteria might vary if σ P takes values other than 0.32 cm.) When σ P , dose variability due to random setup errors becomes negligible, and the CM and VHMF are valid regardless of the values of Σ and N. When σ ∼> σ P , consistent with the above criteria, it was found that the VHMF can underestimate margins for large σ, small Σ and small N. A potential consequence of this underestimate is that the CTV minimum dose can fall below its planned value in more than the prescribed 10% of treatments. The proposed alternative margin algorithm provides better margin
Recommendations for CTV margins in radiotherapy planning for non melanoma skin cancer.
Khan, Luluel; Choo, Richard; Breen, Dale; Assaad, Dalal; Fialkov, Jefferey; Antonyshyn, Oleh; McKenzie, David; Woo, Tony; Zhang, Liying; Barnes, Elizabeth
2012-08-01
To provide practice guidelines for delineating clinical target volume (CTV) for radiotherapy planning of non melanoma (NMSC) skin cancers. A prospective, single arm, study. Preoperatively, a radiation oncologist outlined the boundary of a gross lesion, and drew 5-mm incremental marks in four directions from the delineated border. Under local anesthesia, the lesion was excised, and resection margins were assessed microscopically by frozen section. Once resection margins were clear, the microscopic tumor extent was calculated using the presurgical incremental markings as references. A potential relationship between the distance of microscopic tumor extension and other variables was analyzed. A total of 159 lesions in 150 consecutive patients, selected for surgical excision with frozen section assisted assessment of resection margins, were accrued. The distance of microscopic tumor extension beyond a gross lesion varied from 1mm to 15 mm, with a mean of 5.3mm. The microscopic tumor extent was positively correlated with the size of gross lesion, histology and number of surgical attempts required to obtain a clear margin. To provide a 95% or greater chance of covering microscopic disease we make the following recommendations for CTV margins; 10mm for BCC less than 2 cm, 13 mm for BCC greater than 2 cm, 11 mm for SCC less than 2 cm, and 14 mm for SCC greater than 2 cm. Tumors greater than 2 cm and SCC histology required larger margins to adequately cover the microscopic extent of disease. This information is crucial in radiation planning of NMSC. Clinicians should be cautioned, as these guidelines may not offer optimum treatment for patients with extremely large or small lesions. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Recommendations for CTV margins in radiotherapy planning for non melanoma skin cancer
International Nuclear Information System (INIS)
Khan, Luluel; Choo, Richard; Breen, Dale; Assaad, Dalal; Fialkov, Jefferey; Antonyshyn, Oleh; McKenzie, David; Woo, Tony; Zhang Liying; Barnes, Elizabeth
2012-01-01
Purpose: To provide practice guidelines for delineating clinical target volume (CTV) for radiotherapy planning of non melanoma (NMSC) skin cancers. Methods and materials: A prospective, single arm, study. Preoperatively, a radiation oncologist outlined the boundary of a gross lesion, and drew 5-mm incremental marks in four directions from the delineated border. Under local anesthesia, the lesion was excised, and resection margins were assessed microscopically by frozen section. Once resection margins were clear, the microscopic tumor extent was calculated using the presurgical incremental markings as references. A potential relationship between the distance of microscopic tumor extension and other variables was analyzed. Results: A total of 159 lesions in 150 consecutive patients, selected for surgical excision with frozen section assisted assessment of resection margins, were accrued. The distance of microscopic tumor extension beyond a gross lesion varied from 1 mm to 15 mm, with a mean of 5.3 mm. The microscopic tumor extent was positively correlated with the size of gross lesion, histology and number of surgical attempts required to obtain a clear margin. To provide a 95% or greater chance of covering microscopic disease we make the following recommendations for CTV margins; 10 mm for BCC less than 2 cm, 13 mm for BCC greater than 2 cm, 11 mm for SCC less than 2 cm, and 14 mm for SCC greater than 2 cm. Conclusions: Tumors greater than 2 cm and SCC histology required larger margins to adequately cover the microscopic extent of disease. This information is crucial in radiation planning of NMSC. Clinicians should be cautioned, as these guidelines may not offer optimum treatment for patients with extremely large or small lesions.
International Nuclear Information System (INIS)
Nijkamp, Jasper; Swellengrebel, Maurits; Hollmann, Birgit; Jong, Rianne de; Marijnen, Corrie; Vliet-Vroegindeweij, Corine van; Triest, Baukelien van; Herk, Marcel van; Sonke, Jan-Jakob
2012-01-01
Purpose: To quantify the inter-fraction shape variation of the CTV in rectal-cancer patients treated with 5 × 5 (SCRT) and 25 × 2 Gy (LCRT) and derive PTV margins. Methods and materials: Thirty-three SCRT with daily repeat CT scans and 30 LCRT patients with daily scans during the first week followed by weekly scans were included. The CTV was delineated on all scans and local shape variation was calculated with respect to the planning CT. Margin estimation was done using the local shape variation to assure 95% minimum dose for at least 90% of patients. Results: Using 482 CT scans, systematic and random CTV shape variation was heterogeneous, ranging from 0.2 cm close to bony structures up to 1.0 cm SD at the upper-anterior CTV region. A significant reduction in rectal volume during LCRT resulted in an average 0.5 cm posterior shift of the upper-anterior CTV. Required margins ranged from 0.7 cm close to bony structures up to 3.1 and 2.3 cm in the upper-anterior region for SCRT and LCRT, respectively. Conclusions: Heterogeneous shape variation demands anisotropic PTV margins. Required margins were substantially larger in the anterior direction compared to current clinical margins. These larger margins were, however, based on strict delineated CTVs, resulting in smaller PTVs compared to current practice.
Energy Technology Data Exchange (ETDEWEB)
Sanz Freire, C. J.; Perez Echaguen, S.; Collado chamorro, P.; Diaz Pascual, V.; Vazquez Galinanes, A.; Ossola Lentati, G. A.
2013-07-01
The triple objective of this work is: 1 check the effect on the positioning of the GGPP of corrections on the position of the prostate in simultaneous irradiation guided through daily image and its relationship with the filling of rectum and bladder 2. check if employees standard margins for CTV GGPP are valid for this technique 3 calculate the necessary extension of the margin to 2. is not verified. (Author)
International Nuclear Information System (INIS)
Sanz Freire, C. J.; Perez Echaguen, S.; Collado chamorro, P.; Diaz Pascual, V.; Vazquez Galinanes, A.; Ossola Lentati, G. A.
2013-01-01
The triple objective of this work is: 1 check the effect on the positioning of the GGPP of corrections on the position of the prostate in simultaneous irradiation guided through daily image and its relationship with the filling of rectum and bladder 2. check if employees standard margins for CTV GGPP are valid for this technique 3 calculate the necessary extension of the margin to 2. is not verified. (Author)
International Nuclear Information System (INIS)
Hanbeukers, Bianca; Borger, Jacques; Ende, Piet van den; Ent, Fred van der; Houben, Ruud; Jager, Jos; Keymeulen, Kristien; Murrer, Lars; Sastrowijoto, Suprapto; Vijver, Koen van de; Boersma, Liesbeth
2009-01-01
Purpose: To determine the difference in size between computed tomography (CT)-based irradiated boost volumes and simulator-based irradiated volumes in patients treated with breast-conserving therapy and to analyze whether the use of anisotropic three-dimensional clinical target volume (CTV) margins using the histologically determined free resection margins allows for a significant reduction of the CT-based boost volumes. Patients and Methods: The CT data from 49 patients were used to delineate a planning target volume (PTV) with isotropic CTV margins and to delineate a PTV sim that mimicked the PTV as delineated in the era of conventional simulation. For 17 patients, a PTV with anisotropic CTV margins was defined by applying customized three-dimensional CTV margins, according to the free excision margins in six directions. Boost treatment plans consisted of conformal portals for the CT-based PTVs and rectangular fields for the PTV sim . Results: The irradiated volume (volume receiving ≥95% of the prescribed dose [V 95 ]) for the PTV with isotropic CTV margins was 1.6 times greater than that for the PTV sim : 228 cm 3 vs. 147 cm 3 (p 95 was similar to the V 95 for the PTV sim (190 cm 3 vs. 162 cm 3 ; p = NS). The main determinant for the irradiated volume was the size of the excision cavity (p < .001), which was mainly related to the interval between surgery and the planning CT scan (p = .029). Conclusion: CT-based PTVs with isotropic margins for the CTV yield much greater irradiated volumes than fluoroscopically based PTVs. Applying individualized anisotropic CTV margins allowed for a significant reduction of the irradiated boost volume.
GTV and CTV in radiation therapy: lung cancer
International Nuclear Information System (INIS)
Mornex, F.; Chapet, O.; Sentenac, I.; Loubeyre, P.; Giraud, P.; Van Houtte, P.; Bonnette, P.
2001-01-01
Radiotherapy plays a major role as a curative treatment of various stages non-small cell lung cancers (NSCLC): as an exclusive treatment in curative attempt for patients with unresectable stages I and II; as a preoperative treatment, which is often associated with chemotherapy, for patients with surgically stage IIIA NSCLC in clinical trials; in association with chemotherapy for unresectable stages IIIA and IIIB patients. Currently, three-dimensional conformal radiotherapy allows for some dose escalation, increasing radiation quality. However, the high inherent conformality of this radiotherapy technique requires a rigorous approach and an optimal quality of the preparation throughout the treatment procedure and specifically of the accurate definition of the safety margins (GTV, CTV...). Different questions remain specific to lung cancers: 1) Despite the absence of randomized trials, the irradiated lymph nodes volume should be only, for the majority of the authors, the visible macroscopically involved lymph nodal regions. However, local control remains low and solid arguments suggest the poor local control is due to an insufficient delivered dose. Therefore the goal of radiotherapy, in this particular location, is to improve local control by increasing the dose until the maximum normal tissue tolerance is achieved, which essentially depends on the dose to the organs at risk (OAR) and specifically for the lung, the esophagus and the spinal cord. For this reason, the irradiated volume should be as tiny as possible, leading to not including the macroscopically uninvolved lymph nodes regions in prophylactic view in the target volume; 2) The lung is one of the rare organs with extensive motion within the body, making lung tumors difficult to treat. This particular point is not specifically considered in the GTV and CTV definitions but it is important enough to be noted; 3) When radiation therapy starts after a good response to chemotherapy, the residual tumoral volume
Stoll, Markus; Stoiber, Eva Maria; Grimm, Sarah; Debus, Jürgen; Bendl, Rolf; Giske, Kristina
2016-01-01
Intensity modulated radiation therapy (IMRT) of head and neck tumors allows a precise conformation of the high-dose region to clinical target volumes (CTVs) while respecting dose limits to organs a risk (OARs). Accurate patient setup reduces translational and rotational deviations between therapy planning and therapy delivery days. However, uncertainties in the shape of the CTV and OARs due to e.g. small pose variations in the highly deformable anatomy of the head and neck region can still compromise the dose conformation. Routinely applied safety margins around the CTV cause higher dose deposition in adjacent healthy tissue and should be kept as small as possible. In this work we evaluate and compare three approaches for margin generation 1) a clinically used approach with a constant isotropic 3 mm margin, 2) a previously proposed approach adopting a spatial model of the patient and 3) a newly developed approach adopting a biomechanical model of the patient. All approaches are retrospectively evaluated using a large patient cohort of over 500 fraction control CT images with heterogeneous pose changes. Automatic methods for finding landmark positions in the control CT images are combined with a patient specific biomechanical finite element model to evaluate the CTV deformation. The applied methods for deformation modeling show that the pose changes cause deformations in the target region with a mean motion magnitude of 1.80 mm. We found that the CTV size can be reduced by both variable margin approaches by 15.6% and 13.3% respectively, while maintaining the CTV coverage. With approach 3 an increase of target coverage was obtained. Variable margins increase target coverage, reduce risk to OARs and improve healthy tissue sparing at the same time.
California mild CTV strains that break resistance in Trifoliate Orange
This is the final report of a project to characterize California isolates of Citrus tristeza virus (CTV) that replicate in Poncirus trifoliata (trifoliate orange). Next Generation Sequencing (NGS) of viral small interfering RNAs (siRNAs) and assembly of full-length sequences of mild California CTV i...
SU-F-J-132: Evaluation of CTV-To-PTV Expansion for Whole Breast Radiotherapy
International Nuclear Information System (INIS)
Burgdorf, B; Freedman, G; Teo, B
2016-01-01
Purpose: The current standard CTV-to-PTV expansion for whole breast radiotherapy (WBRT) is 7mm, as recommended by RTOG-1005.This expansion is derived from the uncertainty due to patient positioning (±5mm) and respiratory motion (±5mm). We evaluated the expansion needed for respiratory motion uncertainty using 4DCT. After determining the appropriate expansion margins, RT plans were generated to evaluate the reduction in heart and lung dose. Methods: 4DCT images were acquired during treatment simulation and retrospectively analyzed for 34 WBRT patients. Breast CTVs were contoured on the maximum inhale and exhale phase. Breast CTV displacement was measured in the L-R, A-P, and SUP-INF directions using rigid registration between phase images. Averaging over the 34 patients, we determined the margin due to respiratory motion. Plans were generated for 10 left-sided cases comparing the new expansion with the 7mm PTV expansion. Results: The results for respiratory motion uncertainty are shown in Table 1. Drawing on previous work by White et al at Princess Margaret Hospital (1) (see supporting document for reference) which studied the uncertainty due to patient positioning, we concluded that, in total, a 5mm expansion was sufficient. The results for our suggested PTV margin are shown in Table 2, combining the patient positioning results from White et al with our respiratory motion results. The planning results demonstrating the heart and lung dose differences in the 5mm CTV-to-PTV expanded plan compared to the 7mm plan are shown in Table 3. Conclusion: Our work evaluating the expansion needed for respiratory motion along with previous work evaluating the expansion needed for setup uncertainty shows that a CTV-to-PTV expansion of 5mm is acceptable and conservative. By reducing the PTV expansion, significant dose reduction to the heart and lung are achievable.
International Nuclear Information System (INIS)
Yock, Adam D.; Garden, Adam S.; Court, Laurence E.; Beadle, Beth M.; Zhang, Lifei; Dong, Lei
2013-01-01
Purpose: The purpose of this work was to determine the expansions in 6 anatomic directions that produced optimal margins considering nonrigid setup errors and tissue deformation for patients receiving image-guided radiation therapy (IGRT) of the oropharynx. Methods and Materials: For 20 patients who had received IGRT to the head and neck, we deformably registered each patient's daily images acquired with a computed tomography (CT)-on-rails system to his or her planning CT. By use of the resulting vector fields, the positions of volume elements within the clinical target volume (CTV) (target voxels) or within a 1-cm shell surrounding the CTV (normal tissue voxels) on the planning CT were identified on each daily CT. We generated a total of 15,625 margins by dilating the CTV by 1, 2, 3, 4, or 5 mm in the posterior, anterior, lateral, medial, inferior, and superior directions. The optimal margins were those that minimized the relative volume of normal tissue voxels positioned within the margin while satisfying 1 of 4 geometric target coverage criteria and 1 of 3 population criteria. Results: Each pair of geometric target coverage and population criteria resulted in a unique, anisotropic, optimal margin. The optimal margin expansions ranged in magnitude from 1 to 5 mm depending on the anatomic direction of the expansion and on the geometric target coverage and population criteria. Typically, the expansions were largest in the medial direction, were smallest in the lateral direction, and increased with the demand of the criteria. The anisotropic margin resulting from the optimal set of expansions always included less normal tissue than did any isotropic margin that satisfied the same pair of criteria. Conclusions: We demonstrated the potential of anisotropic margins to reduce normal tissue exposure without compromising target coverage in IGRT to the head and neck
Discrimination of citrus tristeza virus (CTV) strains using Mexican ...
African Journals Online (AJOL)
Administrator
2007-02-19
Feb 19, 2007 ... wood, with formation of invaginations under depressed on the sur- face of sapwood (Salibe, 1977) ... The other fractions are round by defect or excess. ELISA. ELISA serologic test of CTV detection was carried out by utilisation.
Discrimination of citrus tristeza virus (CTV) strains using Mexican ...
African Journals Online (AJOL)
Two strains of citrus tristeza virus (CTV) were studied for six years in Yaounde in the forest zone of Cameroon. These strains, SNCL2 and SNCL4, were characterized on Lisbon lemon in Nyombe in the littoral zone of Cameroon. They were inoculated onto combinations of Mexican lime/citrange Troyer. The virulent strain ...
Planning target volumes for radiotherapy: how much margin is needed?
International Nuclear Information System (INIS)
Antolak, John A.; Rosen, Isaac I.
1999-01-01
Purpose: The radiotherapy planning target volume (PTV) encloses the clinical target volume (CTV) with anisotropic margins to account for possible uncertainties in beam alignment, patient positioning, organ motion, and organ deformation. Ideally, the CTV-PTV margin should be determined solely by the magnitudes of the uncertainties involved. In practice, the clinician usually also considers doses to abutting healthy tissues when deciding on the size of the CTV-PTV margin. This study calculates the ideal size of the CTV-PTV margin when only physical position uncertainties are considered. Methods and Materials: The position of the CTV for any treatment is assumed to be described by independent Gaussian distributions in each of the three Cartesian directions. Three strategies for choosing a CTV-PTV margin are analyzed. The CTV-PTV margin can be based on: 1. the probability that the CTV is completely enclosed by the PTV; 2. the probability that the projection of the CTV in the beam's eye view (BEV) is completely enclosed by the projection of the PTV in the BEV; and 3. the probability that a point on the edge of the CTV is within the PTV. Cumulative probability distributions are derived for each of the above strategies. Results: Expansion of the CTV by 1 standard deviation (SD) in each direction results in the CTV being entirely enclosed within the PTV 24% of the time; the BEV projection of the CTV is enclosed within the BEV projection of the PTV 39% of the time; and a point on the edge of the CTV is within the PTV 84% of the time. To have the CTV enclosed entirely within the PTV 95% of the time requires a margin of 2.8 SD. For the BEV projection of the CTV to be within the BEV projection of the PTV 95% of the time requires a margin of 2.45 SD. To have any point on the surface of the CTV be within the PTV 95% of the time requires a margin of 1.65 SD. Conclusion: In the first two strategies for selecting a margin, the probability of finding the CTV within the PTV is
Occurrence and Distribution of Citrus tristeza virus (CTV in the Jordan Valley
Directory of Open Access Journals (Sweden)
G. Anfoka
2005-04-01
Full Text Available In a survey conducted in 2002 and 2003, Citrus tristeza virus (CTV was detected in the Jordan Valley. The direct tissue blot immunoassay (DTBIA indicated that 12.7 and 15.2% of samples tested in the central and northern Jordan Valley respectively were infected with CTV. Similar results showed that all citrus species grown in the Jordan Valley were susceptible to CTV. DAS-ELISA analysis of samples from a citrus orchard in the Dir Alla area with severe CTV symptoms indicated that 49% of samples were infected with CTV. Using a CTV specific primer pair (CTV1/CTV10, the coat protein gene of the virus was successfully amplified from leaf extracts obtained from CTVinfected trees by IC-RT-PCR. After cloning and sequencing the coat protein gene, the sequence of the amplified product was deposited in the GenBank.
Radiotherapy margin design with particular consideration of high curvature CTVs
International Nuclear Information System (INIS)
Herschtal, Alan; Kron, Tomas; Fox, Chris
2009-01-01
In applying 3D conformal radiation therapy to a tumor clinical target volume (CTV), a margin is added around the CTV to account for any sources of error in the application of treatment which may result in misalignment between the CTV and the dose distribution actually delivered. The volume enclosed within the CTV plus the margin is known as the PTV, or planning target volume. The larger the errors are anticipated to be, the wider the margin will need to be to accommodate those errors. Based on the approach of van Herk et al. [''The probability of correct target dosage: Dose-population histograms for deriving treatment margins in radiotherapy,'' Int. J. Radiat. Oncol. Biol., Phys. 47(4), 1121-1135 (2000)] this paper develops the mathematical theory behind the calculation of the margin width required to ensure that the entire CTV receives sufficiently high dose with sufficiently high probability. The margin recipe developed not only considers the magnitude of the errors but also includes a term to adjust for curved CTV surfaces. In doing so, the accuracy of the margin recipe is enhanced yet remains mathematically concise enough to be readily implemented in the clinical setting. The results are particularly relevant for clinical situations in which the uncertainties in treatment are large relative to the size of the CTV.
A recent Citrus tristeza virus (CTV) epidemic of quick decline (QD) killed many sweet orange trees grafted on sour orange rootstock in Sicily but left some asymptomatic trees in the same field. Recent reports indicated cross-protection involves exclusion of a severe CTV strain by a mild strain of th...
Xu, Huijun; Gordon, J James; Siebers, Jeffrey V
2011-02-01
A dosimetric margin (DM) is the margin in a specified direction between a structure and a specified isodose surface, corresponding to a prescription or tolerance dose. The dosimetric margin distribution (DMD) is the distribution of DMs over all directions. Given a geometric uncertainty model, representing inter- or intrafraction setup uncertainties or internal organ motion, the DMD can be used to calculate coverage Q, which is the probability that a realized target or organ-at-risk (OAR) dose metric D, exceeds the corresponding prescription or tolerance dose. Postplanning coverage evaluation quantifies the percentage of uncertainties for which target and OAR structures meet their intended dose constraints. The goal of the present work is to evaluate coverage probabilities for 28 prostate treatment plans to determine DMD sampling parameters that ensure adequate accuracy for postplanning coverage estimates. Normally distributed interfraction setup uncertainties were applied to 28 plans for localized prostate cancer, with prescribed dose of 79.2 Gy and 10 mm clinical target volume to planning target volume (CTV-to-PTV) margins. Using angular or isotropic sampling techniques, dosimetric margins were determined for the CTV, bladder and rectum, assuming shift invariance of the dose distribution. For angular sampling, DMDs were sampled at fixed angular intervals w (e.g., w = 1 degree, 2 degrees, 5 degrees, 10 degrees, 20 degrees). Isotropic samples were uniformly distributed on the unit sphere resulting in variable angular increments, but were calculated for the same number of sampling directions as angular DMDs, and accordingly characterized by the effective angular increment omega eff. In each direction, the DM was calculated by moving the structure in radial steps of size delta (=0.1, 0.2, 0.5, 1 mm) until the specified isodose was crossed. Coverage estimation accuracy deltaQ was quantified as a function of the sampling parameters omega or omega eff and delta. The
International Nuclear Information System (INIS)
Maire, J.P.; Liguoro, D.; San Galli, F.
2001-01-01
Skull base tumours represent a out 35 to 40% of all intracranial tumours. There are now many reports in the literature confirming the fact that about 80 to 90% of such tumours are controlled with fractionated radiotherapy. Stereotactic and 3-dimensional treatment planning techniques increase local control and central nervous system tolerance. Definition of the gross tumor volume (GTV) is generally easy with currently available medical imaging systems and computers for 3-dimensional dosimetry. The definition of the clinical target volume (CTV) is more difficult to appreciate: it is defined from the CTV plus a margin, which depends on the histology and anterior therapeutic history of the tumour. It is important to take into account the visible tumour and its possible extension pathways (adjacent bone, holes at the base of skull) and/or an anatomic region (sella turcica + adjacent cavernous sinus). It is necessary to evaluate these volumes with CT Scan and MRI to appreciate tumor extension in a 3-dimensional approach, in order to reduce the risk of marginal recurrences. The aim of this paper is to discuss volume definition as a function of tumour site and tumour type to be irradiated. (authors)
Population structure and diversity of citrus tristeza virus (CTV) isolates in Hunan province, China.
Xiao, Cui; Yao, Run-Xian; Li, Fang; Dai, Su-Ming; Licciardello, Grazia; Catara, Antonino; Gentile, Alessandra; Deng, Zi-Niu
2017-02-01
Stem-pitting (SP) is the main type of citrus tristeza virus (CTV) that causes severe damage to citrus trees, especially those of sweet orange, in Hunan province, China. Understanding the local CTV population structure should provide clues for effective mild strain cross-protection (MSCP) of the SP strain of CTV. In this study, markers for the p23 gene, multiple molecular markers (MMMs), and sequence analysis of the three silencing suppressor genes (p20, p23 and p25) were employed to analyze the genetic diversity and genotype composition of the CTV population based on 51 CTV-positive samples collected from 14 citrus orchards scattered around six major citrus-growing areas of Hunan. The results indicated that the CTV population structure was extremely complex and that infection was highly mixed. In total, p23 gene markers resulted in six profiles, and MMMs demonstrated 25 profiles. The severe VT and T3 types appeared to be predominantly associated with SP, while the mild T30 and RB types were related to asymptomatic samples. Based on phylogenetic analysis of the amino acid sequences of p20, p23 and p25, 19 representative CTV samples were classified into seven recently established CTV groups and a potentially novel one. A high level of genetic diversity, as well as potential recombination, was revealed among different CTV isolates. Five pure SP severe and two pure mild strains were identified by genotype composition analysis. Taken together, the results update the genetic diversity of CTV in Hunan with the detection of one possible novel strain, and this information might be applicable for the selection of appropriate mild CTV strains for controlling citrus SP disease through cross-protection.
International Nuclear Information System (INIS)
Redpath, Anthony Thomas; Muren, Ludvig Paul
2005-01-01
Purpose: Determining treatment margins for inter-fractional motion of moving and deformable clinical target volumes (CTVs) remains a major challenge. This paper describes and applies an optimisation algorithm designed to derive such margins. Material and methods: The algorithm works by expanding the CTV, as determined from a pre-treatment or planning scan, to enclose the CTV positions observed during treatment. CTV positions during treatment may be obtained using, for example, repeat CT scanning and/or repeat electronic portal imaging (EPI). The algorithm can be applied to both individual patients and to a set of patients. The margins derived will minimise the excess volume outside the envelope that encloses all observed CTV positions (the CTV envelope). Initially, margins are set such that the envelope is more than adequately covered when the planning CTV is expanded. The algorithm uses an iterative method where the margins are sampled randomly and are then either increased or decreased randomly. The algorithm is tested on a set of 19 bladder cancer patients that underwent weekly repeat CT scanning and EPI throughout their treatment course. Results: From repeated runs on individual patients, the algorithm produces margins within a range of ±2 mm that lie among the best results found with an exhaustive search approach, and that agree within 3 mm with margins determined by a manual approach on the same data. The algorithm could be used to determine margins to cover any specified geometrical uncertainty, and allows for the determination of reduced margins by relaxing the coverage criteria, for example disregarding extreme CTV positions, or an arbitrarily selected volume fraction of the CTV envelope, and/or patients with extreme geometrical uncertainties. Conclusion: An optimisation approach to margin determination is found to give reproducible results within the accuracy required. The major advantage with this algorithm is that it is completely empirical, and it is
SU-E-T-551: PTV Is the Worst-Case of CTV in Photon Therapy
International Nuclear Information System (INIS)
Harrington, D; Liu, W; Park, P; Mohan, R
2014-01-01
Purpose: To examine the supposition of the static dose cloud and adequacy of the planning target volume (PTV) dose distribution as the worst-case representation of clinical target volume (CTV) dose distribution for photon therapy in head and neck (H and N) plans. Methods: Five diverse H and N plans clinically delivered at our institution were selected. Isocenter for each plan was shifted positively and negatively in the three cardinal directions by a displacement equal to the PTV expansion on the CTV (3 mm) for a total of six shifted plans per original plan. The perturbed plan dose was recalculated in Eclipse (AAA v11.0.30) using the same, fixed fluence map as the original plan. The dose distributions for all plans were exported from the treatment planning system to determine the worst-case CTV dose distributions for each nominal plan. Two worst-case distributions, cold and hot, were defined by selecting the minimum or maximum dose per voxel from all the perturbed plans. The resulting dose volume histograms (DVH) were examined to evaluate the worst-case CTV and nominal PTV dose distributions. Results: Inspection demonstrates that the CTV DVH in the nominal dose distribution is indeed bounded by the CTV DVHs in the worst-case dose distributions. Furthermore, comparison of the D95% for the worst-case (cold) CTV and nominal PTV distributions by Pearson's chi-square test shows excellent agreement for all plans. Conclusion: The assumption that the nominal dose distribution for PTV represents the worst-case dose distribution for CTV appears valid for the five plans under examination. Although the worst-case dose distributions are unphysical since the dose per voxel is chosen independently, the cold worst-case distribution serves as a lower bound for the worst-case possible CTV coverage. Minor discrepancies between the nominal PTV dose distribution and worst-case CTV dose distribution are expected since the dose cloud is not strictly static. This research was
International Nuclear Information System (INIS)
Kirby, Anna M.; Evans, Philip M.; Nerurkar, Ashutosh Y.; Desai, Saral S.; Krupa, Jaroslaw; Devalia, Haresh; Rovere, Guidubaldo Querci della; Harris, Emma J.; Kyriakidou, Julia; Yarnold, John R.
2010-01-01
Background and purpose: To compare partial-breast clinical target volumes generated using a standard 15 mm margin (CTV standard ) with those generated using three-dimensional surgical excision margins (CTV tailored30 ) in women who have undergone wide local excision (WLE) for breast cancer. Material and methods: Thirty-five women underwent WLE with placement of clips in the anterior, deep and coronal excision cavity walls. Distances from tumour to each of six margins were measured microscopically. Tumour bed was defined on kV-CT images using clips. CTV standard was generated by adding a uniform three-dimensional 15 mm margin, and CTV tailored30 was generated by adding 30 mm minus the excision margin in three-dimensions. Concordance between CTV standard and CTV tailored30 was quantified using conformity (CoI), geographical-miss (GMI) and normal-tissue (NTI) indices. An external-beam partial-breast irradiation (PBI) plan was generated to cover 95% of CTV standard with the 95% isodose. Percentage-volume coverage of CTV tailored30 by the 95% isodose was measured. Results: Median (range) coronal, superficial and deep excision margins were 15.0 (0.5-76.0) mm, 4.0 (0.0-60.0) mm and 4.0 (0.5-35.0) mm, respectively. Median CoI, GMI and NTI were 0.62, 0.16 and 0.20, respectively. Median coverage of CTV tailored30 by the PBI-plan was 97.7% (range 84.9-100.0%). CTV tailored30 was inadequately covered by the 95% isodose in 4/29 cases. In three cases, the excision margin in the direction of inadequate coverage was ≤2 mm. Conclusions: CTVs based on 3D excision margin data are discordant with those defined using a standard uniform 15 mm TB-CTV margin. In women with narrow excision margins, the standard TB-CTV margin could result in a geographical miss. Therefore, wider TB-CTV margins should be considered where re-excision does not occur.
Cytoprotective Effect of Lactobacillus crispatus CTV-05 against Uropathogenic E. coli
Directory of Open Access Journals (Sweden)
Daniel S. C. Butler
2016-03-01
Full Text Available The vaginal flora consists of a subset of different lactic acid producing bacteria, typically creating a hostile environment for infecting pathogens. However, the flora can easily be disrupted, creating a favorable milieu for uropathogenic Escherichia coli (UPEC, making it possible to further infect the urinary system via the urethra. Probiotic use of different lactobacilli to restore the normal flora of the vagina has been proposed as a potential prophylactic treatment against urinary tract infections. This project evaluated the protective- and anti-inflammatory roles of the probiotic Lactobacillus crispatus strain CTV-05 in an in vitro system. The inflammatory response and the cytotoxic effect were studied by Enzyme-linked immunosorbent assays and by trypan blue exclusion of cells inoculated with L. crispatus CTV-05 and comparing it to non-infected controls and UPEC infected cells. L. crispatus CTV-05 showed no cytotoxicity to vaginal epithelial cells compared to non-infected controls and provided significant protection against UPEC infection (p < 0.05. Further more, L. crispatus CTV-05 did not create a pro-inflammatory response in vitro, with no significant increase of IL-1β or IL-6. These results demonstrate the protective effect of using L. crispatus CTV-05 as a probiotic treatment to reduce the risk of recurrent urinary tract infections.
Isotropic oscillator: spheroidal wave functions
International Nuclear Information System (INIS)
Mardoyan, L.G.; Pogosyan, G.S.; Ter-Antonyan, V.M.; Sisakyan, A.N.
1985-01-01
Solutions of the Schroedinger equation are found for an isotropic oscillator (10) in prolate and oblate spheroidal coordinates. It is shown that the obtained solutions turn into spherical and cylindrical bases of the isotropic oscillator at R→0 and R→ infinity (R is the dimensional parameter entering into the definition of prolate and oblate spheroidal coordinates). The explicit form is given for both prolate and oblate basis of the isotropic oscillator for the lowest quantum states
International Nuclear Information System (INIS)
Raine, D.J.
1981-01-01
This introduction to contemporary ideas in cosmology differs from other books on the 'expanding Universe' in its emphasis on physical cosmology and on the physical basis of the general theory of relativity. It is considered that the remarkable degree of isotropy, rather than the expansion, can be regarded as the central observational feature of the Universe. The various theories and ideas in 'big-bang' cosmology are discussed, providing an insight into current problems. Chapter headings are: quality of matter; expanding Universe; quality of radiation; quantity of matter; general theory of relativity; cosmological models; cosmological tests; matter and radiation; limits of isotropy; why is the Universe isotropic; singularities; evolution of structure. (U.K.)
Calculating radiotherapy margins based on Bayesian modelling of patient specific random errors
International Nuclear Information System (INIS)
Herschtal, A; Te Marvelde, L; Mengersen, K; Foroudi, F; Ball, D; Devereux, T; Pham, D; Greer, P B; Pichler, P; Eade, T; Kneebone, A; Bell, L; Caine, H; Hindson, B; Kron, T; Hosseinifard, Z
2015-01-01
Collected real-life clinical target volume (CTV) displacement data show that some patients undergoing external beam radiotherapy (EBRT) demonstrate significantly more fraction-to-fraction variability in their displacement (‘random error’) than others. This contrasts with the common assumption made by historical recipes for margin estimation for EBRT, that the random error is constant across patients. In this work we present statistical models of CTV displacements in which random errors are characterised by an inverse gamma (IG) distribution in order to assess the impact of random error variability on CTV-to-PTV margin widths, for eight real world patient cohorts from four institutions, and for different sites of malignancy. We considered a variety of clinical treatment requirements and penumbral widths. The eight cohorts consisted of a total of 874 patients and 27 391 treatment sessions. Compared to a traditional margin recipe that assumes constant random errors across patients, for a typical 4 mm penumbral width, the IG based margin model mandates that in order to satisfy the common clinical requirement that 90% of patients receive at least 95% of prescribed RT dose to the entire CTV, margins be increased by a median of 10% (range over the eight cohorts −19% to +35%). This substantially reduces the proportion of patients for whom margins are too small to satisfy clinical requirements. (paper)
The isotropic radio background revisited
Energy Technology Data Exchange (ETDEWEB)
Fornengo, Nicolao; Regis, Marco [Dipartimento di Fisica Teorica, Università di Torino, via P. Giuria 1, I–10125 Torino (Italy); Lineros, Roberto A. [Instituto de Física Corpuscular – CSIC/U. Valencia, Parc Científic, calle Catedrático José Beltrán, 2, E-46980 Paterna (Spain); Taoso, Marco, E-mail: fornengo@to.infn.it, E-mail: rlineros@ific.uv.es, E-mail: regis@to.infn.it, E-mail: taoso@cea.fr [Institut de Physique Théorique, CEA/Saclay, F-91191 Gif-sur-Yvette Cédex (France)
2014-04-01
We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky.
The isotropic radio background revisited
International Nuclear Information System (INIS)
Fornengo, Nicolao; Regis, Marco; Lineros, Roberto A.; Taoso, Marco
2014-01-01
We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky
International Nuclear Information System (INIS)
Thörnqvist, Sara; Hysing, Liv B.; Zolnay, Andras G.; Söhn, Matthias; Hoogeman, Mischa S.; Muren, Ludvig P.; Bentzen, Lise; Heijmen, Ben J.M.
2013-01-01
Background and purpose: Deformation and correlated target motion remain challenges for margin recipes in radiotherapy (RT). This study presents a statistical deformable motion model for multiple targets and applies it to margin evaluations for locally advanced prostate cancer i.e. RT of the prostate (CTV-p), seminal vesicles (CTV-sv) and pelvic lymph nodes (CTV-ln). Material and methods: The 19 patients included in this study, all had 7–10 repeat CT-scans available that were rigidly aligned with the planning CT-scan using intra-prostatic implanted markers, followed by deformable registrations. The displacement vectors from the deformable registrations were used to create patient-specific statistical motion models. The models were applied in treatment simulations to determine probabilities for adequate target coverage, e.g. by establishing distributions of the accumulated dose to 99% of the target volumes (D 99 ) for various CTV–PTV expansions in the planning-CTs. Results: The method allowed for estimation of the expected accumulated dose and its variance of different DVH parameters for each patient. Simulations of inter-fractional motion resulted in 7, 10, and 18 patients with an average D 99 >95% of the prescribed dose for CTV-p expansions of 3 mm, 4 mm and 5 mm, respectively. For CTV-sv and CTV-ln, expansions of 3 mm, 5 mm and 7 mm resulted in 1, 11 and 15 vs. 8, 18 and 18 patients respectively with an average D 99 >95% of the prescription. Conclusions: Treatment simulations of target motion revealed large individual differences in accumulated dose mainly for CTV-sv, demanding the largest margins whereas those required for CTV-p and CTV-ln were comparable
International Nuclear Information System (INIS)
Hof, Holger; Rhein, Bernhard; Haering, Peter; Kopp-Schneider, Annette; Debus, Juergen; Herfarth, Klaus
2009-01-01
Purpose: To investigate the dosimetric benefit of integration of 4D-CT in the planning target volume (PTV) definition process compared to conventional PTV definition using individual margins in stereotactic body radiotherapy (SBRT) of lung tumours. Material and methods: Two different PTVs were defined: PTV conv consisting of the helical-CT-based clinical target volume (CTV) enlarged isotropically for each spatial direction by the individually measured amount of motion in the 4D-CT, and PTV 4D encompassing the CTVs defined in the 4D-CT phases displaying the extremes of the tumour position. Tumour motion as well as volumetric and dosimetric differences and relations of both PTVs were evaluated. Results: Volumetric examinations revealed a significant reduction of the mean PTV by 4D-CT from 57.7 to 40.7 cm 3 (31%) (p 4D in PTV conv (r = -0.69, 90% confidence limits: -0.87 and -0.34, p = 0.007). Mean lung dose (MLD) was decreased significantly by 17% (p < 0.001). Conclusions: In SBRT of lung tumours the mere use of individual margins for target volume definition cannot compensate for the additional effects that the implementation of 4D-CT phases can offer.
Ellipsoidal basis for isotropic oscillator
International Nuclear Information System (INIS)
Kallies, W.; Lukac, I.; Pogosyan, G.S.; Sisakyan, A.N.
1994-01-01
The solutions of the Schroedinger equation are derived for the isotropic oscillator potential in the ellipsoidal coordinate system. The explicit expression is obtained for the ellipsoidal integrals of motion through the components of the orbital moment and Demkov's tensor. The explicit form of the ellipsoidal basis is given for the lowest quantum numbers. 10 refs.; 1 tab. (author)
Margins for treatment planning of proton therapy
International Nuclear Information System (INIS)
Thomas, Simon J
2006-01-01
For protons and other charged particles, the effect of set-up errors on the position of isodoses is considerably less in the direction of the incident beam than it is laterally. Therefore, the margins required between the clinical target volume (CTV) and planning target volume (PTV) can be less in the direction of the incident beam than laterally. Margins have been calculated for a typical head plan and a typical prostate plan, for a single field, a parallel opposed and a four-field arrangement of protons, and compared with margins calculated for photons, assuming identical geometrical uncertainties for each modality. In the head plan, where internal motion was assumed negligible, the CTV-PTV margin reduced from approximately 10 mm to 3 mm in the axial direction for the single field and parallel opposed plans. For a prostate plan, where internal motion cannot be ignored, the corresponding reduction in margin was from 11 mm to 7 mm. The planning organ at risk (PRV) margin in the axial direction reduced from 6 mm to 2 mm for the head plan, and from 7 mm to 4 mm for the prostate plan. No reduction was seen on the other axes, or for any axis of the four-field plans. Owing to the shape of proton dose distributions, there are many clinical cases in which good dose distributions can be obtained with one or two fields. When this is done, it is possible to use smaller PTV and PRV margins. This has the potential to convert untreatable cases, in which the PTV and PRV overlap, into cases with a gap between PTV and PRV of adequate size for treatment planning
SU-E-T-642: PTV Is the Voxel-Wise Worst-Case of CTV in Prostate Photon Therapy
Energy Technology Data Exchange (ETDEWEB)
Harrington, D; Schild, S; Wong, W; Vora, S; Liu, W [Mayo Clinic Arizona, Phoenix, AZ (United States)
2015-06-15
Purpose: To examine the adequacy of the planning target volume (PTV) dose distribution as the worst-case representation of clinical target volume (CTV) dose distribution in prostate volumetric-modulated arc therapy (VMAT) plans. Methods: Ten intact prostate cancer cases treated by VMAT at our institution were randomly selected. Isocenter was shifted in the three cardinal directions by a displacement equal to the PTV expansion on the CTV (±3 mm) for a total of six shifted plans per original plan. Rotationally-perturbed plans were generated with a couch rotation of ±1° to simulate patient yaw. The eight perturbed dose distributions were recalculated in the treatment planning system using the same, fixed fluence map as the original plan. The voxel-wise worst-case CTV dose distribution was constructed from the minimum value per voxel from the eight perturbed doses. The resulting dose volume histograms (DVH) were evaluated for statistical correlation between the worst-case CTV and nominal PTV dose distributions based on D95% by Wilcoxon signed-rank test with significance level p ≤ 0.05. Results: Inspection demonstrates the PTV DVH in the nominal dose distribution is bounded by the CTV DVH in the worst-case dose distribution. Comparison of D95% for the two dose distributions by Wilcoxon signed-rank test gives p = 0.131. Therefore the null hypothesis cannot be rejected since the difference in median values is not statistically significant. Conclusion: The assumption that the nominal dose distribution for PTV represents the worst-case dose distribution for CTV appears valid for the ten plans under examination. Although the worst-case dose distribution is unphysical since the dose per voxel is chosen independently, it serves as a lower bound for the possible CTV coverage. Furthermore, this is consistent with the unphysical nature of the PTV. Minor discrepancies between the two dose distributions are expected since the dose cloud is not strictly static. Funding Support
SU-E-T-642: PTV Is the Voxel-Wise Worst-Case of CTV in Prostate Photon Therapy
International Nuclear Information System (INIS)
Harrington, D; Schild, S; Wong, W; Vora, S; Liu, W
2015-01-01
Purpose: To examine the adequacy of the planning target volume (PTV) dose distribution as the worst-case representation of clinical target volume (CTV) dose distribution in prostate volumetric-modulated arc therapy (VMAT) plans. Methods: Ten intact prostate cancer cases treated by VMAT at our institution were randomly selected. Isocenter was shifted in the three cardinal directions by a displacement equal to the PTV expansion on the CTV (±3 mm) for a total of six shifted plans per original plan. Rotationally-perturbed plans were generated with a couch rotation of ±1° to simulate patient yaw. The eight perturbed dose distributions were recalculated in the treatment planning system using the same, fixed fluence map as the original plan. The voxel-wise worst-case CTV dose distribution was constructed from the minimum value per voxel from the eight perturbed doses. The resulting dose volume histograms (DVH) were evaluated for statistical correlation between the worst-case CTV and nominal PTV dose distributions based on D95% by Wilcoxon signed-rank test with significance level p ≤ 0.05. Results: Inspection demonstrates the PTV DVH in the nominal dose distribution is bounded by the CTV DVH in the worst-case dose distribution. Comparison of D95% for the two dose distributions by Wilcoxon signed-rank test gives p = 0.131. Therefore the null hypothesis cannot be rejected since the difference in median values is not statistically significant. Conclusion: The assumption that the nominal dose distribution for PTV represents the worst-case dose distribution for CTV appears valid for the ten plans under examination. Although the worst-case dose distribution is unphysical since the dose per voxel is chosen independently, it serves as a lower bound for the possible CTV coverage. Furthermore, this is consistent with the unphysical nature of the PTV. Minor discrepancies between the two dose distributions are expected since the dose cloud is not strictly static. Funding Support
International Nuclear Information System (INIS)
Yoshida, Ken; Mitomo, Masanori; Nose, Takayuki; Koizumi, Masahiko; Nishiyama, Kinji; Yoshida, Mineo
2002-01-01
We employ a clinical target volume (CTV)-based dose prescription for high-dose-rate (HDR) interstitial brachytherapy. However, it is not easy to define CTV and organs at risk (OAR) from X-ray film or CT scanning. To solve this problem, we have utilized metal markers since October 1999. Moreover, metal markers can help modify dose prescription. By regulating the doses to the metal markers, refining the dose prescription can easily be achieved. In this research, we investigated the usefulness of the metal markers. Between October 1999 and May 2001, 51 patients were implanted with metal markers at Osaka Medical Center for Cancer and Cardiovascular Diseases (OMCC), Osaka National Hospital (ONH) and Sanda City Hospital (SCH). Forty-nine patients (head and neck: 32; pelvis: 11; soft tissue: 3; breast: 3) using metal markers were analyzed. During operation, we implanted 179 metal markers (49 patients) to CTV and 151 markers (26 patients) to OAR. At treatment planning, CTV was reconstructed judging from the metal markers, applicator position and operation records. Generally, we prescribed the tumoricidal dose to an isodose surface that covers CTV. We also planned to limit the doses to OAR lower than certain levels. The maximum normal tissue doses were decided 80%, 150%, 100%, 50% and 200% of the prescribed doses for the rectum, the urethra, the mandible, the skin and the large vessel, respectively. The doses to the metal markers using CTV-based dose prescription were generated. These were compared with the doses theoretically calculated with the Paris system. Treatment results were also investigated. The doses to the 158 metal markers (42 patients) for CTV were higher than ''tumoricidal dose''. In 7 patients, as a result of compromised dose prescription, 9 markers were lower than the tumoricidal dose. The other 12 markers (7%) were excluded from dose evaluation because they were judged as miss-implanted. The doses to the 142 metal markers (24 patients) for OAR were lower
International Nuclear Information System (INIS)
Jin Jianyue; Ajlouni, Munther; Kong Fengming; Ryu, Samuel; Chetty, Indrin J.; Movsas, Benjamin
2008-01-01
Purpose: To use probability density function (PDF) to model motion effects and incorporate this information into treatment planning for lung cancers. Material and methods: PDFs were calculated from the respiratory motion traces of 10 patients. Motion effects were evaluated by convolving static dose distributions with various PDFs. Based on a differential dose prescription with relatively lower dose to the clinical target volume (CTV) than to the gross tumor volume (GTV), two approaches were proposed to incorporate PDFs into treatment planning. The first approach uses the GTV-based internal target volume (ITV) as the planning target volume (PTV) to ensure full dose to the GTV, and utilizes the motion-induced dose gradient to cover the CTV. The second approach employs an inhomogeneous static dose distribution within a minimized PTV to best match the prescription dose gradient. Results: Motion effects on dose distributions were minimal in the anterior-posterior (AP) and lateral directions: a 10-mm motion only induced about 3% of dose reduction in the peripheral target region. The motion effect was remarkable in the cranial-caudal direction. It varied with the motion amplitude, but tended to be similar for various respiratory patterns. For the first approach, a 10-15 mm motion would adequately cover the CTV (presumed to be 60-70% of the GTV dose) without employing the CTV in planning. For motions 15-mm. An example of inhomogeneous static dose distribution in a reduced PTV was given, and it showed significant dose reduction in the normal tissue without compromising target coverage. Conclusions: Respiratory motion-induced dose gradient can be utilized to cover the CTV and minimize the lung dose without the need for more sophisticated technologies
International Nuclear Information System (INIS)
Liang Jian; Wu Qiuwen; Yan Di
2009-01-01
Purpose: For patients with intermediate- and high-risk prostate cancer, the seminal vesicles (SVs) are included in the clinical target volume (CTV). The purposes of this study are to investigate interfraction motion characteristics of the SVs and determine proper margins for online computed tomography image guidance. Methods and Materials: Twenty-four patients, each with 16 daily helical computed tomography scans, were included in this study. A binary image mask was used for image registration to determine daily organ motion. Two online image-guided radiotherapy strategies (prostate only and prostate + SVs) were simulated in a hypofractionated scheme. Three margin designs were studied for both three-dimensional conformal radiotherapy and intensity-modulated radiotherapy (IMRT). In prostate-only guidance, Margin A was uniformly applied to the whole CTV, and Margin B was applied to the SVs with a fixed 3-mm prostate margin. In prostate plus SV guidance, Margin C was uniformly applied to the CTV. The minimum margins were sought to satisfy the criterion that minimum cumulative CTV dose be more than those of the planning target volume in the plan for greater than 95% of patients. Results: The prostate and SVs move significantly more in the anterior-posterior and superior-inferior than right-left directions. The anterior-posterior motion of the prostate and SVs correlated (R 2 = 0.7). The SVs move significantly more than the prostate. The minimum margins found were 2.5 mm for three-dimensional conformal radiotherapy and 4.5, 4.5, and 3.0 mm for Margins A, B, and C for IMRT, respectively. Margins for IMRT were larger, but the irradiated volume and doses to critical structures were smaller. Minimum margins of 4.5 mm to the SVs and 3 mm to the prostate are recommended for IMRT with prostate-only guidance. Conclusions: The SVs move independently from the prostate gland, and additional margins are necessary for image-guided radiotherapy
Induced piezoelectricity in isotropic biomaterial.
Zimmerman, R L
1976-01-01
Isotropic material can be made to exhibit piezoelectric effects by the application of a constant electric field. For insulators, the piezoelectric strain constant is proportional to the applied electric field and for semiconductors, an additional out-of-phase component of piezoelectricity is proportional to the electric current density in the sample. The two induced coefficients are proportional to the strain-dependent dielectric constant (depsilon/dS + epsilon) and resistivity (drho/dS - rho), respectively. The latter is more important at frequencies such that rhoepsilonomega less than 1, often the case in biopolymers.Signals from induced piezoelectricity in nature may be larger than those from true piezoelectricity. PMID:990389
How Isotropic is the Universe?
Saadeh, Daniela; Feeney, Stephen M; Pontzen, Andrew; Peiris, Hiranya V; McEwen, Jason D
2016-09-23
A fundamental assumption in the standard model of cosmology is that the Universe is isotropic on large scales. Breaking this assumption leads to a set of solutions to Einstein's field equations, known as Bianchi cosmologies, only a subset of which have ever been tested against data. For the first time, we consider all degrees of freedom in these solutions to conduct a general test of isotropy using cosmic microwave background temperature and polarization data from Planck. For the vector mode (associated with vorticity), we obtain a limit on the anisotropic expansion of (σ_{V}/H)_{0}Universe is strongly disfavored, with odds of 121 000:1 against.
[Target volume margins for lung cancer: internal target volume/clinical target volume].
Jouin, A; Pourel, N
2013-10-01
The aim of this study was to carry out a review of margins that should be used for the delineation of target volumes in lung cancer, with a focus on margins from gross tumour volume (GTV) to clinical target volume (CTV) and internal target volume (ITV) delineation. Our review was based on a PubMed literature search with, as a cornerstone, the 2010 European Organisation for Research and Treatment of Cancer (EORTC) recommandations by De Ruysscher et al. The keywords used for the search were: radiotherapy, lung cancer, clinical target volume, internal target volume. The relevant information was categorized under the following headings: gross tumour volume definition (GTV), CTV-GTV margin (first tumoural CTV then nodal CTV definition), in field versus elective nodal irradiation, metabolic imaging role through the input of the PET scanner for tumour target volume and limitations of PET-CT imaging for nodal target volume definition, postoperative radiotherapy target volume definition, delineation of target volumes after induction chemotherapy; then the internal target volume is specified as well as tumoural mobility for lung cancer and respiratory gating techniques. Finally, a chapter is dedicated to planning target volume definition and another to small cell lung cancer. For each heading, the most relevant and recent clinical trials and publications are mentioned. Copyright © 2013. Published by Elsevier SAS.
International Nuclear Information System (INIS)
Ekberg, L.; Wittgren, L.; Holmberg, O.
1995-01-01
When defining the planning target volume (PTV) in radiotherapy treatment planning, it is vital to add geometrical margins of normal tissue around the clinical target volume (CTV). This is to ensure that the whole CTV will receive the planned absorbed dose taking into account both set-up deviations and target movements as well as other geometrical variations in the treatment chain. The problem is our limited knowledge of how large these margins should be. To assess the size of needed margins around the CTV in conformal radiotherapy of lung cancer, electronic portal imaging was employed in 232 irradiation field set-ups of 14 patients. This was done in order to quantify the uncertainty in the execution of treatment considering patient movement and set-up displacements. For an estimation of the added geometrical variation from target movement during irradiation, fluoroscopy was used at the simulation of the irradiation fields. The set-up study showed an average systematic deviation for all individual fields of 3.1 mm and an average maximal systematic deviation (in either transversal or craniocaudal direction) of 4.8 mm. The random errors can be described by an average standard deviation of 2.8 mm for all fields in either direction. Major gradual displacements as a function of time was also detected in one of the patients. CTV-movements of several millimetres during respiration could be observed. It was also seen that heartbeats could add to CTV-movements during irradiation with an equal magnitude. The combined effect of these factors are considered when making an overall estimation of margins that should be added to the CTV
Isotropic Negative Thermal Expansion Metamaterials.
Wu, Lingling; Li, Bo; Zhou, Ji
2016-07-13
Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale.
Thermalization vs. isotropization and azimuthal fluctuations
International Nuclear Information System (INIS)
Mrowczynski, Stanislaw
2005-01-01
Hydrodynamic description requires a local thermodynamic equilibrium of the system under study but an approximate hydrodynamic behaviour is already manifested when a momentum distribution of liquid components is not of equilibrium form but merely isotropic. While the process of equilibration is relatively slow, the parton system becomes isotropic rather fast due to the plasma instabilities. Azimuthal fluctuations observed in relativistic heavy-ion collisions are argued to distinguish between a fully equilibrated and only isotropic parton system produced in the collision early stage
Evaluation of target coverage and margins adequacy during CyberKnife Lung Optimized Treatment.
Ricotti, Rosalinda; Seregni, Matteo; Ciardo, Delia; Vigorito, Sabrina; Rondi, Elena; Piperno, Gaia; Ferrari, Annamaria; Zerella, Maria Alessia; Arculeo, Simona; Francia, Claudia Maria; Sibio, Daniela; Cattani, Federica; De Marinis, Filippo; Spaggiari, Lorenzo; Orecchia, Roberto; Riboldi, Marco; Baroni, Guido; Jereczek-Fossa, Barbara Alicja
2018-04-01
Evaluation of target coverage and verification of safety margins, in motion management strategies implemented by Lung Optimized Treatment (LOT) module in CyberKnife system. Three fiducial-less motion management strategies provided by LOT can be selected according to tumor visibility in the X ray images acquired during treatment. In 2-view modality the tumor is visible in both X ray images and full motion tracking is performed. In 1-view modality the tumor is visible in a single X ray image, therefore, motion tracking is combined with an internal target volume (ITV)-based margin expansion. In 0-view modality the lesion is not visible, consequently the treatment relies entirely on an ITV-based approach. Data from 30 patients treated in 2-view modality were selected providing information on the three-dimensional tumor motion in correspondence to each X ray image. Treatments in 1-view and 0-view modalities were simulated by processing log files and planning volumes. Planning target volume (PTV) margins were defined according to the tracking modality: end-exhale clinical target volume (CTV) + 3 mm in 2-view and ITV + 5 mm in 0-view. In the 1-view scenario, the ITV encompasses only tumor motion along the non-visible direction. Then, non-uniform ITV to PTV margins were applied: 3 mm and 5 mm in the visible and non-visible direction, respectively. We defined the coverage of each voxel of the CTV as the percentage of X ray images where such voxel was included in the PTV. In 2-view modality coverage was calculated as the intersection between the CTV centred on the imaged target position and the PTV centred on the predicted target position, as recorded in log files. In 1-view modality, coverage was calculated as the intersection between the CTV centred on the imaged target position and the PTV centred on the projected predictor data. In 0-view modality coverage was calculated as the intersection between the CTV centred on the imaged target position and the non
International Nuclear Information System (INIS)
Shim, Jin Sup; Jo, Jung Kun; Si, Chang Keun; Lee, Ki Ho; Lee, Du Hyun; Choi, Kye Suk
2004-01-01
Although Improve of CT, MRI Radio-diagnosis and Radiation Therapy Planing, but we still use ICRU38 Planning system(2D film-based) broadly. 3-Dimensional ICR plan(CT image based) is not only offer tumor and normal tissue dose but also support DVH information. On this study, we plan irradiation-goal dose on CTV(CTV plan) and irradiation-goal dose on ICRU 38 point(ICRU38 plan) by use CT image. And compare with tumor-dose, rectal-dose, bladder-dose on both planning, and analysis DVH Sample 11 patients who treated by Ir-192 HDR. After 40 Gy external radiation therapy, ICR plan established. All the patients carry out CT-image scanned by CT-simulator. And we use PLATO(Nucletron) v.14.2 planing system. We draw CTV, rectum, bladder on the CT image. And establish plan irradiation- dose on CTV(CTV plan) and irradiation- dose on A-point(ICRU38 plan) CTV volume(average±SD) is 21.8±26.6 cm 3 , rectum volume(average±SD) is 60.9±25.0 cm 3 , bladder volume(average±SD) is 116.1±40.1cm 3 sampled 11 patients. The volume including 100% dose is 126.7±18.9 cm 3 on ICRU plan and 98.2±74.5 cm 3 on CTV plan. On ICRU planning, the other one's 22.0 cm 3 CTV volume who residual tumor size excess 4cm is not including 100% isodose. 8 patient's 12.9±5.9 cm 3 tumor volume who residual tumor size below 4 cm irradiated 100% dose. Bladder dose(recommended by ICRU 38) is 90.1±21.3 % on ICRU plan, 68.7±26.6% on CTV plan, and rectal dose is 86.4±18.3%, 76.9±15.6%. Bladder and Rectum maximum dose is 137.2±5.9%, 101.1±41.8% on ICRU plan, 107.6±47.9%, 86.9±30.8% on CTV plan. Therefore CTV plan more less normal issue-irradiated dose than ICRU plan. But one patient case who residual tumor size excess 4 cm, Normal tissue dose more higher than critical dose remarkably on CTV plan. 80% over-Irradiated rectal dose(V80rec) is 1.8±2.4 cm 3 on ICRU plan, 0.7±1.0 cm 3 on CTV plan. 80% over-Irradiated bladder dose(V80bla) is 12.2%±8.9 cm 3 on ICRU plan, 3.5±4.1 cm 3 on CTV plan. Likewise, CTV
Macroscopic simulation of isotropic permanent magnets
International Nuclear Information System (INIS)
Bruckner, Florian; Abert, Claas; Vogler, Christoph; Heinrichs, Frank; Satz, Armin; Ausserlechner, Udo; Binder, Gernot; Koeck, Helmut; Suess, Dieter
2016-01-01
Accurate simulations of isotropic permanent magnets require to take the magnetization process into account and consider the anisotropic, nonlinear, and hysteretic material behaviour near the saturation configuration. An efficient method for the solution of the magnetostatic Maxwell equations including the description of isotropic permanent magnets is presented. The algorithm can easily be implemented on top of existing finite element methods and does not require a full characterization of the hysteresis of the magnetic material. Strayfield measurements of an isotropic permanent magnet and simulation results are in good agreement and highlight the importance of a proper description of the isotropic material. - Highlights: • Simulations of isotropic permanent magnets. • Accurate calculation of remanence magnetization and strayfield. • Comparison with strayfield measurements and anisotropic magnet simulations. • Efficient 3D FEM–BEM coupling for solution of Maxwell equations.
Empirical isotropic chemical shift surfaces
International Nuclear Information System (INIS)
Czinki, Eszter; Csaszar, Attila G.
2007-01-01
A list of proteins is given for which spatial structures, with a resolution better than 2.5 A, are known from entries in the Protein Data Bank (PDB) and isotropic chemical shift (ICS) values are known from the RefDB database related to the Biological Magnetic Resonance Bank (BMRB) database. The structures chosen provide, with unknown uncertainties, dihedral angles φ and ψ characterizing the backbone structure of the residues. The joint use of experimental ICSs of the same residues within the proteins, again with mostly unknown uncertainties, and ab initio ICS(φ,ψ) surfaces obtained for the model peptides For-(l-Ala) n -NH 2 , with n = 1, 3, and 5, resulted in so-called empirical ICS(φ,ψ) surfaces for all major nuclei of the 20 naturally occurring α-amino acids. Out of the many empirical surfaces determined, it is the 13C α ICS(φ,ψ) surface which seems to be most promising for identifying major secondary structure types, α-helix, β-strand, left-handed helix (α D ), and polyproline-II. Detailed tests suggest that Ala is a good model for many naturally occurring α-amino acids. Two-dimensional empirical 13C α - 1 H α ICS(φ,ψ) correlation plots, obtained so far only from computations on small peptide models, suggest the utility of the experimental information contained therein and thus they should provide useful constraints for structure determinations of proteins
Isotropic stars in general relativity
International Nuclear Information System (INIS)
Mak, M.K.; Harko, T.
2013-01-01
We present a general solution of the Einstein gravitational field equations for the static spherically symmetric gravitational interior space-time of an isotropic fluid sphere. The solution is obtained by transforming the pressure isotropy condition, a second order ordinary differential equation, into a Riccati type first order differential equation, and using a general integrability condition for the Riccati equation. This allows us to obtain an exact non-singular solution of the interior field equations for a fluid sphere, expressed in the form of infinite power series. The physical features of the solution are studied in detail numerically by cutting the infinite series expansions, and restricting our numerical analysis by taking into account only n=21 terms in the power series representations of the relevant astrophysical parameters. In the present model all physical quantities (density, pressure, speed of sound etc.) are finite at the center of the sphere. The physical behavior of the solution essentially depends on the equation of state of the dense matter at the center of the star. The stability properties of the model are also analyzed in detail for a number of central equations of state, and it is shown that it is stable with respect to the radial adiabatic perturbations. The astrophysical analysis indicates that this solution can be used as a realistic model for static general relativistic high density objects, like neutron stars. (orig.)
Proposal for the delineation of the nodal CTV in the node-positive and the post-operative neck
International Nuclear Information System (INIS)
Gregoire, Vincent; Eisbruch, Avraham; Hamoir, Marc; Levendag, Peter
2006-01-01
Background and purpose: In 2003, a panel of experts published a set of consensus guidelines regarding the delineation of the neck node levels (Radiother Oncol, 2003; 69: 227-36). These recommendations were applicable for the node-negative and the N1-neck, but were found too restrictive for the node-positive and the post-operative neck. Patients and methods: In this framework, using the previous recommendations as a backbone, new guidelines have been proposed taking into account the specificities of the node-positive and the post-operative neck. Results: Inclusion of the retrostyloid space cranially and the supra-clavicular fossa caudally is proposed in case of neck nodes (defined radiologically or on the surgical specimen) located in levels II, and IV or Vb, respectively. When extra-capsular rupture is suspected (on imaging) or demonstrated on the pathological specimen, adjacent muscles should also be included in the CTV. For node(s) located at the boundary between contiguous levels (e.g. levels II and Ib), these two levels should be delineated. In the post-operative setting, the entire 'surgical bed' should be included. Last, the retropharyngeal space should be delineated in case of positive neck from pharyngeal tumors. Conclusions: The objective of the manuscript is to give a comprehensive description of the new set of guidelines for CTV delineation in the node-positive neck and the post-operative neck, with a complementary atlas of the new anatomical structures to be included
van Hecke, Martin
2013-03-01
All around us, things are falling apart. The foam on our cappuccinos appears solid, but gentle stirring irreversibly changes its shape. Skin, a biological fiber network, is firm when you pinch it, but soft under light touch. Sand mimics a solid when we walk on the beach but a liquid when we pour it out of our shoes. Crucially, a marginal point separates the rigid or jammed state from the mechanical vacuum (freely flowing) state - at their marginal points, soft materials are neither solid nor liquid. Here I will show how the marginal point gives birth to a third sector of soft matter physics: intrinsically nonlinear mechanics. I will illustrate this with shock waves in weakly compressed granular media, the nonlinear rheology of foams, and the nonlinear mechanics of weakly connected elastic networks.
Directory of Open Access Journals (Sweden)
María José Benítez-Galeano
2015-07-01
Full Text Available Citrus Tristeza Virus (CTV is the most economically important virus of citrus worldwide. Genetic diversity and population structure of CTV isolates from all citrus growing areas from Uruguay were analyzed by RT-PCR and cloning of the three RNA silencing suppressor genes (p25, p20 and p23. Bayesian phylogenetic analysis revealed the circulation of three known genotypes (VT, T3, T36 in the country, and the presence of a new genetic lineage composed by isolates from around the world, mainly from South America. Nucleotide and amino acid identity values for this new genetic lineage were both higher than 97% for the three analyzed regions. Due to incongruent phylogenetic relationships, recombination analysis was performed using Genetic Algorithms for Recombination Detection (GARD and SimPlot software. Recombination events between previously described CTV isolates were detected. High intra-sample variation was found, confirming the co-existence of different genotypes into the same plant. This is the first report describing: (1 the genetic diversity of Uruguayan CTV isolates circulating in the country and (2 the circulation of a novel CTV genetic lineage, highly present in the South American region. This information may provide assistance to develop an effective cross-protection program.
International Nuclear Information System (INIS)
Gill, Suki; Isiah, Rajesh; Adams, Rohan; Dang, Kim; Siva, Shankar; Tai, Keen Hun; Kron, Tomas; Foroudi, Farshad
2014-01-01
Purpose: To study prostate bed deformation, and compare coverage by 5 mm and 10 mm posterior expansion PTV margins. Method: Fifty patients who completed post-prostatectomy radiotherapy had two expansion margins applied to the planning CT CTV: PTV10 (10 mm isometrically) and PTV5 (5 mm posteriorly, 10 mm all other directions). The CTV was then contoured on 477 pre-treatment CBCTs, and PTV5 and PTV10 coverage of each CBCT-CTVs was assessed. The maximum distance from the planning CT CTV to the combined CTV of all CBCTs including the planning CT CTV was measured for the superior part of the prostate bed, and the inferior part of the prostate bed, for every patient. Results: The mean difference between largest and smallest CBCT-CTVs per patient was 18.7 cm 3 (range 6.3–34.2 cm 3 ). Out of 477 CBCTs, there were 43 anterior geometric geographical misses for either PTV with a mean volume of 2.25 cm 3 (range 0.01–18.88 cm 3 ). For PTV10, there were 26 posterior geometric geographical misses with a mean volume of 1.37 cm 3 (0.01–11.02 cm 3 ). For PTV5, there were 46 posterior geometric geographical misses with a mean volume of 3.22 cm 3 (0.01–19.82 cm 3 ). The maximum edge-to-edge distance for the superior prostate bed was anterior 19 mm, posterior 16 mm, left and right 7 mm. The maximum edge-to-edge distance for the inferior prostate bed was anterior 4 mm, posterior 12 mm, left and right 7 mm. Conclusion: This study supports differential margins for the superior and inferior portions of the prostate bed. Because of the large deformation of CTV volume seen, adaptive radiotherapy solutions should be investigated further
Energy Technology Data Exchange (ETDEWEB)
Water, Steven van de, E-mail: s.vandewater@erasmusmc.nl [Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam (Netherlands); Valli, Lorella [Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam (Netherlands); Alma Mater Studiorum, Department of Physics and Astronomy, Bologna University, Bologna (Italy); Aluwini, Shafak [Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam (Netherlands); Lanconelli, Nico [Alma Mater Studiorum, Department of Physics and Astronomy, Bologna University, Bologna (Italy); Heijmen, Ben; Hoogeman, Mischa [Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam (Netherlands)
2014-04-01
Purpose: To investigate the dosimetric impact of intrafraction prostate motion and the effect of robot correction strategies for hypofractionated CyberKnife treatments with a simultaneously integrated boost. Methods and Materials: A total of 548 real-time prostate motion tracks from 17 patients were available for dosimetric simulations of CyberKnife treatments, in which various correction strategies were included. Fixed time intervals between imaging/correction (15, 60, 180, and 360 seconds) were simulated, as well as adaptive timing (ie, the time interval reduced from 60 to 15 seconds in case prostate motion exceeded 3 mm or 2° in consecutive images). The simulated extent of robot corrections was also varied: no corrections, translational corrections only, and translational corrections combined with rotational corrections up to 5°, 10°, and perfect rotational correction. The correction strategies were evaluated for treatment plans with a 0-mm or 3-mm margin around the clinical target volume (CTV). We recorded CTV coverage (V{sub 100%}) and dose-volume parameters of the peripheral zone (boost), rectum, bladder, and urethra. Results: Planned dose parameters were increasingly preserved with larger extents of robot corrections. A time interval between corrections of 60 to 180 seconds provided optimal preservation of CTV coverage. To achieve 98% CTV coverage in 98% of the treatments, translational and rotational corrections up to 10° were required for the 0-mm margin plans, whereas translational and rotational corrections up to 5° were required for the 3-mm margin plans. Rectum and bladder were spared considerably better in the 0-mm margin plans. Adaptive timing did not improve delivered dose. Conclusions: Intrafraction prostate motion substantially affected the delivered dose but was compensated for effectively by robot corrections using a time interval of 60 to 180 seconds. A 0-mm margin required larger extents of additional rotational corrections than a 3
International Nuclear Information System (INIS)
Water, Steven van de; Valli, Lorella; Aluwini, Shafak; Lanconelli, Nico; Heijmen, Ben; Hoogeman, Mischa
2014-01-01
Purpose: To investigate the dosimetric impact of intrafraction prostate motion and the effect of robot correction strategies for hypofractionated CyberKnife treatments with a simultaneously integrated boost. Methods and Materials: A total of 548 real-time prostate motion tracks from 17 patients were available for dosimetric simulations of CyberKnife treatments, in which various correction strategies were included. Fixed time intervals between imaging/correction (15, 60, 180, and 360 seconds) were simulated, as well as adaptive timing (ie, the time interval reduced from 60 to 15 seconds in case prostate motion exceeded 3 mm or 2° in consecutive images). The simulated extent of robot corrections was also varied: no corrections, translational corrections only, and translational corrections combined with rotational corrections up to 5°, 10°, and perfect rotational correction. The correction strategies were evaluated for treatment plans with a 0-mm or 3-mm margin around the clinical target volume (CTV). We recorded CTV coverage (V 100% ) and dose-volume parameters of the peripheral zone (boost), rectum, bladder, and urethra. Results: Planned dose parameters were increasingly preserved with larger extents of robot corrections. A time interval between corrections of 60 to 180 seconds provided optimal preservation of CTV coverage. To achieve 98% CTV coverage in 98% of the treatments, translational and rotational corrections up to 10° were required for the 0-mm margin plans, whereas translational and rotational corrections up to 5° were required for the 3-mm margin plans. Rectum and bladder were spared considerably better in the 0-mm margin plans. Adaptive timing did not improve delivered dose. Conclusions: Intrafraction prostate motion substantially affected the delivered dose but was compensated for effectively by robot corrections using a time interval of 60 to 180 seconds. A 0-mm margin required larger extents of additional rotational corrections than a 3-mm
Isotropic Growth of Graphene toward Smoothing Stitching.
Zeng, Mengqi; Tan, Lifang; Wang, Lingxiang; Mendes, Rafael G; Qin, Zhihui; Huang, Yaxin; Zhang, Tao; Fang, Liwen; Zhang, Yanfeng; Yue, Shuanglin; Rümmeli, Mark H; Peng, Lianmao; Liu, Zhongfan; Chen, Shengli; Fu, Lei
2016-07-26
The quality of graphene grown via chemical vapor deposition still has very great disparity with its theoretical property due to the inevitable formation of grain boundaries. The design of single-crystal substrate with an anisotropic twofold symmetry for the unidirectional alignment of graphene seeds would be a promising way for eliminating the grain boundaries at the wafer scale. However, such a delicate process will be easily terminated by the obstruction of defects or impurities. Here we investigated the isotropic growth behavior of graphene single crystals via melting the growth substrate to obtain an amorphous isotropic surface, which will not offer any specific grain orientation induction or preponderant growth rate toward a certain direction in the graphene growth process. The as-obtained graphene grains are isotropically round with mixed edges that exhibit high activity. The orientation of adjacent grains can be easily self-adjusted to smoothly match each other over a liquid catalyst with facile atom delocalization due to the low rotation steric hindrance of the isotropic grains, thus achieving the smoothing stitching of the adjacent graphene. Therefore, the adverse effects of grain boundaries will be eliminated and the excellent transport performance of graphene will be more guaranteed. What is more, such an isotropic growth mode can be extended to other types of layered nanomaterials such as hexagonal boron nitride and transition metal chalcogenides for obtaining large-size intrinsic film with low defect.
Pant, S; Laliberte, J; Martinez, M.J.; Rocha, B.
2016-01-01
In this paper, a one-sided, in situ method based on the time of flight measurement of ultrasonic waves was described. The primary application of this technique was to non-destructively measure the stiffness properties of isotropic and transversely isotropic materials. The method consists of
International Nuclear Information System (INIS)
Rossi, Peter J.; Schreibmann, Eduard; Jani, Ashesh B.; Master, Viraj A.; Johnstone, Peter A.S.
2009-01-01
Purpose: The purpose of this report is to evaluate the movement of the planning target volume (PTV) in relation to the pelvic lymph nodes (PLNs) during treatment of high-risk prostate cancer. Patients and methods: We reviewed the daily treatment course of ten consecutively treated patients with high-risk prostate cancer. PLNs were included in the initial PTV for each patient. Daily on-board imaging of gold fiducial markers implanted in the prostate was used; daily couch shifts were made as needed and recorded. We analyzed how the daily couch shifts impacted the dose delivered to the PLN. Results: A PLN clinical target volume was identified in each man using CT-based treatment planning. At treatment planning, median minimum planned dose to the PLN was 95%, maximum 101%, and mean 97%. Daily couch shifting to prostate markers degraded the dose slightly; median minimum dose to the PLN was 92%, maximum, 101%, and mean delivered, 96%. We found two cases, where daily systematic shifts resulted in an underdosing of the PLN by 9% and 29%, respectively. In other cases, daily shifts were random and led to a mean 2.2% degradation of planned to delivered PLN dose. Conclusions: We demonstrated degradation of the delivered dose to PLN PTV, which may occur if daily alignment only to the prostate is considered. To improve PLN PTV, it maybe preferable to deliver the prostate/boost treatment first, and adapt the PTV of the pelvic/nodal treatment to uncertainties documented during prostate/boost treatment
Texture of low temperature isotropic pyrocarbons
International Nuclear Information System (INIS)
Pelissier, Joseph; Lombard, Louis.
1976-01-01
Isotropic pyrocarbon deposited on fuel particles was studied by transmission electron microscopy in order to determine its texture. The material consists of an agglomerate of spherical growth features similar to those of carbon black. The spherical growth features are formed from the cristallites of turbostratic carbon and the distribution gives an isotropic structure. Neutron irradiation modifies the morphology of the pyrocarbon. The spherical growth features are deformed and the coating becomes strongly anisotropic. The transformation leads to the rupture of the coating caused by strong irradiation doses [fr
International Nuclear Information System (INIS)
Cho, Jung Keun; Han, Tae Jong
2007-01-01
Purpose : In spite of recent remarkable improvement of diagnostic imaging modalities such as CT, MRI, and PET and radiation therapy planing systems, ICR plan of uterine cervix cancer, based on recommendation of ICRU38(2D film-based) such as point A, is still used widely. A 3-dimensional ICR plan based on CT image provides Dose-Volume Histogram(DVH) information of the tumor and normal tissue. In this study, we compared tumor-dose, rectal-dose and bladder-dose through an analysis of DVH between CTV plan and ICRU38 plan based on CT image. Method and Material : We analyzed 11 patients with a cervix cancer who received the ICR of Ir-192 HDR. After 40Gy of external beam radiation therapy, ICR plan was established using PLATO(Nucletron) v.14.2 planning system. CT scan was done to all the patients using CT-simulator(Ultra Z, Philips). We contoured CTV, rectum and bladder on the CT image and established CTV plan which delivers the 100% dose to CTV and ICRU plan which delivers the 100% dose to the point A. Result : The volume(average±SD) of CTV, rectum and bladder in all of 11 patients is 21.8±6.6cm 3 , 60.9±25.0cm 3 , 111.6±40.1cm 3 respectively. The volume covered by 100% isodose curve is 126.7±18.9cm 3 in ICRU plan and 98.2±74.5cm 3 in CTV plan(p=0.0001), respectively. In (On) ICRU planning 22.0cm 3 of CTV volume was not covered by 100% isodose curve in one patient whose residual tumor size is greater than 4cm, while more than 100% dose was irradiated unnecessarily to the normal organ of 62.2±4.8cm 3 other than the tumor in the remaining 10 patients with a residual tumor less than 4cm in size. Bladder dose recommended by ICRU 38 was 90.1±21.3% and 68.7±26.6% in ICRU plan and in CTV plan respectively(p=0.001) while rectal dose recommended by ICRU 38 was 86.4±18.3% and 76.9±15.6% in ICRU plan and in CTV plan, respectively(p=0.08). Bladder and rectum maximum dose was 137.2±50.1%, 101.1±41.8% in ICRU plan and 107.6±47.9%, 86.9±30.8% in CTV plan, respectively
Energy Technology Data Exchange (ETDEWEB)
Calvo Ortega, Juan Francisco, E-mail: jfcdrr@yahoo.es [Department of Radiation Oncology, Hospital Quirón, Barcelona (Spain); Wunderink, Wouter [Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam (Netherlands); Delgado, David; Moragues, Sandra; Pozo, Miquel; Casals, Joan [Department of Radiation Oncology, Hospital Quirón, Barcelona (Spain)
2016-10-01
The aim of this study is to evaluate the setup margins from the clinical target volume (CTV) to planning target volume (PTV) for cranial stereotactic radiosurgery (SRS) treatments guided by cone beam computed tomography (CBCT). We designed an end-to-end (E2E) test using a skull phantom with an embedded 6mm tungsten ball (target). A noncoplanar plan was computed (E2E plan) to irradiate the target. The CBCT-guided positioning of the skull phantom on the linac was performed. Megavoltage portal images were acquired after 15 independent deliveries of the E2E plan. The displacement 2-dimensional (2D) vector between the centers of the square field and the ball target on each portal image was used to quantify the isocenter accuracy. Geometrical margins on each patient's direction (left-right or LR, anterior-posterior or AP, superior-inferior or SI) were calculated. Dosimetric validation of the margins was performed in 5 real SRS cases: 3-dimesional (3D) isocenter deviations were mimicked, and changes in CTV dose coverage and organs-at-risk (OARs) dosage were analyzed. The CTV-PTV margins of 1.1 mm in LR direction, and 0.7 mm in AP and SI directions were derived from the E2E tests. The dosimetric analysis revealed that a 1-mm uniform margin was sufficient to ensure the CTV dose coverage, without compromising the OAR dose tolerances. The effect of isocenter uncertainty has been estimated to be 1 mm in our CBCT-guided SRS approach.
Interactively variable isotropic resolution in computed tomography
International Nuclear Information System (INIS)
Lapp, Robert M; Kyriakou, Yiannis; Kachelriess, Marc; Wilharm, Sylvia; Kalender, Willi A
2008-01-01
An individual balancing between spatial resolution and image noise is necessary to fulfil the diagnostic requirements in medical CT imaging. In order to change influencing parameters, such as reconstruction kernel or effective slice thickness, additional raw-data-dependent image reconstructions have to be performed. Therefore, the noise versus resolution trade-off is time consuming and not interactively applicable. Furthermore, isotropic resolution, expressed by an equivalent point spread function (PSF) in every spatial direction, is important for the undistorted visualization and quantitative evaluation of small structures independent of the viewing plane. Theoretically, isotropic resolution can be obtained by matching the in-plane and through-plane resolution with the aforementioned parameters. Practically, however, the user is not assisted in doing so by current reconstruction systems and therefore isotropic resolution is not commonly achieved, in particular not at the desired resolution level. In this paper, an integrated approach is presented for equalizing the in-plane and through-plane spatial resolution by image filtering. The required filter kernels are calculated from previously measured PSFs in x/y- and z-direction. The concepts derived are combined with a variable resolution filtering technique. Both approaches are independent of CT raw data and operate only on reconstructed images which allows for their application in real time. Thereby, the aim of interactively variable, isotropic resolution is achieved. Results were evaluated quantitatively by measuring PSFs and image noise, and qualitatively by comparing the images to direct reconstructions regarded as the gold standard. Filtered images matched direct reconstructions with arbitrary reconstruction kernels with standard deviations in difference images of typically between 1 and 17 HU. Isotropic resolution was achieved within 5% of the selected resolution level. Processing times of 20-100 ms per frame
Mapping of moveout in tilted transversely isotropic media
Stovas, A.; Alkhalifah, Tariq Ali
2013-01-01
The computation of traveltimes in a transverse isotropic medium with a tilted symmetry axis tilted transversely isotropic is very important both for modelling and inversion. We develop a simple analytical procedure to map the traveltime function from a transverse isotropic medium with a vertical symmetry axis (vertical transversely isotropic) to a tilted transversely isotropic medium by applying point-by-point mapping of the traveltime function. This approach can be used for kinematic modelling and inversion in layered tilted transversely isotropic media. © 2013 European Association of Geoscientists & Engineers.
Mapping of moveout in tilted transversely isotropic media
Stovas, A.
2013-09-09
The computation of traveltimes in a transverse isotropic medium with a tilted symmetry axis tilted transversely isotropic is very important both for modelling and inversion. We develop a simple analytical procedure to map the traveltime function from a transverse isotropic medium with a vertical symmetry axis (vertical transversely isotropic) to a tilted transversely isotropic medium by applying point-by-point mapping of the traveltime function. This approach can be used for kinematic modelling and inversion in layered tilted transversely isotropic media. © 2013 European Association of Geoscientists & Engineers.
International Nuclear Information System (INIS)
Kranen, Simon van; Hamming-Vrieze, Olga; Wolf, Annelisa; Damen, Eugène; Herk, Marcel van; Sonke, Jan-Jakob
2016-01-01
Purpose: We set out to investigate loss of target coverage from anatomy changes in head and neck cancer patients as a function of applied safety margins and to verify a cone beam computed tomography (CBCT)–based adaptive strategy with an average patient anatomy to overcome possible target underdosage. Methods and Materials: For 19 oropharyngeal cancer patients, volumetric modulated arc therapy treatment plans (2 arcs; simultaneous integrated boost, 70 and 54.25 Gy; 35 fractions) were automatically optimized with uniform clinical target volume (CTV)–to–planning target volume margins of 5, 3, and 0 mm. We applied b-spline CBCT–to–computed tomography (CT) deformable registration to allow recalculation of the dose on modified CT scans (planning CT deformed to daily CBCT following online positioning) and dose accumulation in the planning CT scan. Patients with deviations in primary or elective CTV coverage >2 Gy were identified as candidates for adaptive replanning. For these patients, a single adaptive intervention was simulated with an average anatomy from the first 10 fractions. Results: Margin reduction from 5 mm to 3 mm to 0 mm generally led to an organ-at-risk (OAR) mean dose (D_m_e_a_n) sparing of approximately 1 Gy/mm. CTV shrinkage was mainly seen in the elective volumes (up to 10%), likely related to weight loss. Despite online repositioning, substantial systematic errors were present (>3 mm) in lymph node CTV, the parotid glands, and the larynx. Nevertheless, the average increase in OAR dose was small: maximum of 1.2 Gy (parotid glands, D_m_e_a_n) for all applied margins. Loss of CTV coverage >2 Gy was found in 1, 3, and 7 of 73 CTVs, respectively. Adaptive intervention in 0-mm plans substantially improved coverage: in 5 of 7 CTVs (in 6 patients) to 2 Gy in 0-mm plans may be identified early in treatment using dose accumulation. A single intervention with an average anatomy derived from CBCT effectively mitigates discrepancies.
International Nuclear Information System (INIS)
Muschitz, S.; Petrow, P.; Briot, E.; Petit, C.; De Crevoisier, R.; Duvillard, P.; Morice, P.; Haie-Meder, C.
2004-01-01
Background and purpose: This study correlates the treated volume, the GTV and the CTV at the time of intracavitary brachytherapy (BT) with the histopathological findings obtained by surgery (S) in 33 patients (pts) with cervix carcinoma. Patients and methods: Sixteen pts (group I), FIGO stage IB1 (1), IB2 (4), IIB (10), IIIB (1), received external beam radiotherapy (EBT) with a total dose of 45 Gy in 5 weeks and concomitant CISPLATIN 40 mg/m 2 weekly, followed by BT up to a total dose of 15 Gy. S was performed 6-8 weeks thereafter. Seventeen pts (group II), FIGO IA2 (1), IB1 (14), IIB (2), were treated by BT alone with a total dose of 60 Gy and S after 6-8 weeks. All pts had a MRI examination after BT with a moulded applicator in situ for exact delineation of GTV, CTV and critical organs and a 3D dosimetry directly from MRI data. Results: In group I (EBT+BT+S), the histopathological findings showed complete tumour sterilization (CR) in 56% of pts. Residual disease (RD) was found in 43%. Dosimetric data showed in pts with CR a larger mean treated volume (213 vs. 166 cm 3 ) and a better mean coverage of the GTV and the CTV by the reference isodose (99 and 91%) as in pts with RD (85 and 77%). In group II (BT+S), CR was found in 52%, RD in 41%. Dosimetric data showed a larger mean treated volume (154 vs. 109 cm 3 ) for pts with RD and a mean coverage of the GTV and the CTV by the reference isodose of 97 and 84% vs. 89 and 80% for pts with CR. Conclusions: An incomplete coverage of the GTV and/or the CTV by the reference isodose is an important risk factor for RD at the time of surgery. Furthermore, for pts who received BT alone, tumour size seemed to be a limiting factor for an accurate coverage of the CTV by the reference isodose
Computations of Quasiconvex Hulls of Isotropic Sets
Czech Academy of Sciences Publication Activity Database
Heinz, S.; Kružík, Martin
2017-01-01
Roč. 24, č. 2 (2017), s. 477-492 ISSN 0944-6532 R&D Projects: GA ČR GA14-15264S; GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985556 Keywords : quasiconvexity * isotropic compact sets * matrices Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.496, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/kruzik-0474874.pdf
Depression of nonlinearity in decaying isotropic turbulence
International Nuclear Information System (INIS)
Kraichnan, R.H.; Panda, R.
1988-01-01
Simulations of decaying isotropic Navier--Stokes turbulence exhibit depression of the normalized mean-square nonlinear term to 57% of the value for a Gaussianly distributed velocity field with the same instantaneous velocity spectrum. Similar depression is found for dynamical models with random coupling coefficients (modified Betchov models). This suggests that the depression is dynamically generic rather than specifically driven by alignment of velocity and vorticity
New criteria for isotropic and textured metals
Cazacu, Oana
2018-05-01
In this paper a isotropic criterion expressed in terms of both invariants of the stress deviator, J2 and J3 is proposed. This criterion involves a unique parameter, α, which depends only on the ratio between the yield stresses in uniaxial tension and pure shear. If this parameter is zero, the von Mises yield criterion is recovered; if a is positive the yield surface is interior to the von Mises yield surface whereas when a is negative, the new yield surface is exterior to it. Comparison with polycrystalline calculations using Taylor-Bishop-Hill model [1] for randomly oriented face-centered (FCC) polycrystalline metallic materials show that this new criterion captures well the numerical yield points. Furthermore, the criterion reproduces well yielding under combined tension-shear loadings for a variety of isotropic materials. An extension of this isotropic yield criterion such as to account for orthotropy in yielding is developed using the generalized invariants approach of Cazacu and Barlat [2]. This new orthotropic criterion is general and applicable to three-dimensional stress states. The procedure for the identification of the material parameters is outlined. Illustration of the predictive capabilities of the new orthotropic is demonstrated through comparison between the model predictions and data on aluminum sheet samples.
International Nuclear Information System (INIS)
Langer, Mark Peter; Papiez, Lech; Spirydovich, Siarhei; Thai, Van
2005-01-01
Purpose: The effect of rotational errors on the coverage of clinical target volumes (CTVs) is examined. A new planning target volume (PTV) construction that considers the individual paths traced by movements of the target boundary points is developed. Methods and Materials: A standard uniform margin expansion was compared with a PTV constructed from the space swept out by a concave moving target. A new method formed the PTV by aggregating the separate convex hulls taken of the positions of the individual target boundary points in a sampling of CTV displacements. Results: A 0.5-cm uniform margin adequate for translations was inadequate given CTV rotation about a fixed off-center axis. A PTV formed of the target's swept-out area was 22% smaller than needed for coverage by a uniform margin, but computationally is not readily extended to translations combined with rotations about a shifting axis. Forming instead the union of convex hulls of the boundary points in a sampling of CTV displacements represented these movements in the PTV design and retained the target's concave shape. Conclusions: Planning target volumes should accommodate target rotation. The union of convex hulls of the boundary point positions in a sampling of displacements can effectively represent multiple sources of deviations while preserving target concavities
International Nuclear Information System (INIS)
Fox, C.; Kron, T.; Fisher, R.; Tai, K.H.; Thompson, A.; Owen, R.
2008-01-01
Full text: Radiation therapy is a widely prescribed and effective modality for the treatment of prostate cancer.1 3 Radiation therapy relies on precise targeting of the treatment site to deliver the required dose to the tumour while sparing critical organs nearby. To achieve this, it is necessary to allow for the effects of organ and patient motion, both during and between treatment fractions. In the treatment planning process, a margin is added to the clinical target volume (CTV) to create the planning target volume (PTV) to allow for targeting uncertainties which Iare dominated by these movements.4 5 Deciding the appropriate margin size is important since an excessively large margin will result in increased damage to adjacent normal tissues while an undersized margin will leave parts of the target underdosed. With the marked improvement in technology available with new treatment machines, remote online setup correction using high quality kilovoltage images has become straightforward and widely available. Used together with implanted radio-opaque markers, remote online setup correction allows direct targeting of the prostate organ, and significant reduction in the effects of interfraction motion.6 1 1 The introduction of this technology into a therapy department makes a reduction of CTV to PTV margin size possible. There are many published works dealing with margin size calculation for prostate treatment planning. The best known and most widely cited work is that of van Herk which modelled the prostate using simple geometry to calculate a minimum dose coverage probability.13 The outcome of this modelling was a simple and easily understood formula with just the patient group random and systematic setup errors used to calculate margin size. To apply such margin recipes, the patient group's random and systematic error performance must be well known, which requires the collection of a substantial quantity of data. The aim of the project described here was to collect
Antonio, May A. D.; Hillier, Sharon L.
2003-01-01
Lactobacillus crispatus is one of the predominant hydrogen peroxide (H2O2)-producing species found in the vagina and is under development as a probiotic for the treatment of bacterial vaginosis. In this study, we assessed whether DNA fingerprinting by repetitive element sequence-based PCR (rep-PCR) can be used to distinguish the capsule strain of L. crispatus (CTV-05) from other endogenous strains as well as other species of vaginal lactobacilli. Vaginal and rectal lactobacilli were identifie...
Directory of Open Access Journals (Sweden)
Hans Nicolás Chaparro Zambrano
2013-01-01
Full Text Available Tahiti lime, Citrus latifolia Tanaka (Rutaceae, is susceptible to Citrus Tristeza Virus (CTV, and if affected, decreases the profitability of the crop. In the well-drained high terrace of the Meta piedmont, the influence of the virus attack was evaluated on the performance of Tahiti lime grafted on six rootstocks (Carrizo; Sunki × English; Sunki × Jacobson; Pomeroy; Rubidoux, y Kryder 15-3 on a completely randomized experiment design taking each tree as an experimental unit. A comparison of means and inferential statistic were used for: plant height, height and canopy diameter; canopy volume, yield and severity of CTV. All rootstocks showed homogenous height. Carrizo was the exception with less size and canopy volume. The highest accumulated fruit yield (Kg/tree wasobtained by Sunki x English, followed by Rubidoux and the lowest yield was obtained by Carrizo. The highest yield efficiency of average canopy volume was obtained with Sunki x Jacobson. The Tahiti lime yield and morphological development fell in the seventh year (2007 in all rootstocks, due to an infection caused by a mix of isolates of CTV type Madeira and type B128, isolates which cause stem channeling : type B31 which causes moderate stem channeling and B7 and VT isolate,
Interbasis expansions for isotropic harmonic oscillator
Energy Technology Data Exchange (ETDEWEB)
Dong, Shi-Hai, E-mail: dongsh2@yahoo.com [Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, Mexico D.F. 07738 (Mexico)
2012-03-12
The exact solutions of the isotropic harmonic oscillator are reviewed in Cartesian, cylindrical polar and spherical coordinates. The problem of interbasis expansions of the eigenfunctions is solved completely. The explicit expansion coefficients of the basis for given coordinates in terms of other two coordinates are presented for lower excited states. Such a property is occurred only for those degenerated states for given principal quantum number n. -- Highlights: ► Exact solutions of harmonic oscillator are reviewed in three coordinates. ► Interbasis expansions of the eigenfunctions is solved completely. ► This is occurred only for those degenerated states for given quantum number n.
Isotropic Broadband E-Field Probe
Directory of Open Access Journals (Sweden)
Béla Szentpáli
2008-01-01
Full Text Available An E-field probe has been developed for EMC immunity tests performed in closed space. The leads are flexible resistive transmission lines. Their influence on the field distribution is negligible. The probe has an isotropic reception from 100 MHz to 18 GHz; the sensitivity is in the 3 V/m–10 V/m range. The device is an accessory of the EMC test chamber. The readout of the field magnitude is carried out by personal computer, which fulfils also the required corrections of the raw data.
Gravitational instability in isotropic MHD plasma waves
Cherkos, Alemayehu Mengesha
2018-04-01
The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for magnetohydrodynamic (MHD) waves propagating in a homogeneous and isotropic plasma. The general dispersion relation has been developed from set of linearized basic equations and solved analytically to analyse the conditions of instability and instability of self-gravitating plasma embedded in a constant magnetic field. Our result shows that the presence of viscosity and thermal conductivity in a strong magnetic field substantially modifies the fundamental Jeans criterion of gravitational instability.
Active isotropic slabs: conditions for amplified reflection
Perez, Liliana I.; Matteo, Claudia L.; Etcheverry, Javier; Duplaá, María Celeste
2012-12-01
We analyse in detail the necessary conditions to obtain amplified reflection (AR) in isotropic interfaces when a plane wave propagates from a transparent medium towards an active one. First, we demonstrate analytically that AR is not possible if a single interface is involved. Then, we study the conditions for AR in a very simple configuration: normal incidence on an active slab immersed in transparent media. Finally, we develop an analysis in the complex plane in order to establish a geometrical method that not only describes the behaviour of active slabs but also helps to simplify the calculus.
Active isotropic slabs: conditions for amplified reflection
International Nuclear Information System (INIS)
Perez, Liliana I; Duplaá, María Celeste; Matteo, Claudia L; Etcheverry, Javier
2012-01-01
We analyse in detail the necessary conditions to obtain amplified reflection (AR) in isotropic interfaces when a plane wave propagates from a transparent medium towards an active one. First, we demonstrate analytically that AR is not possible if a single interface is involved. Then, we study the conditions for AR in a very simple configuration: normal incidence on an active slab immersed in transparent media. Finally, we develop an analysis in the complex plane in order to establish a geometrical method that not only describes the behaviour of active slabs but also helps to simplify the calculus. (paper)
International Nuclear Information System (INIS)
Zhang, Qinghui; Chan, Maria F.; Burman, Chandra; Song, Yulin; Zhang, Mutian
2013-01-01
Purpose: Setting a proper margin is crucial for not only delivering the required radiation dose to a target volume, but also reducing the unnecessary radiation to the adjacent organs at risk. This study investigated the independent one-dimensional symmetric and asymmetric margins between the clinical target volume (CTV) and the planning target volume (PTV) for linac-based single-fraction frameless stereotactic radiosurgery (SRS).Methods: The authors assumed a Dirac delta function for the systematic error of a specific machine and a Gaussian function for the residual setup errors. Margin formulas were then derived in details to arrive at a suitable CTV-to-PTV margin for single-fraction frameless SRS. Such a margin ensured that the CTV would receive the prescribed dose in 95% of the patients. To validate our margin formalism, the authors retrospectively analyzed nine patients who were previously treated with noncoplanar conformal beams. Cone-beam computed tomography (CBCT) was used in the patient setup. The isocenter shifts between the CBCT and linac were measured for a Varian Trilogy linear accelerator for three months. For each plan, the authors shifted the isocenter of the plan in each direction by ±3 mm simultaneously to simulate the worst setup scenario. Subsequently, the asymptotic behavior of the CTV V 80% for each patient was studied as the setup error approached the CTV-PTV margin.Results: The authors found that the proper margin for single-fraction frameless SRS cases with brain cancer was about 3 mm for the machine investigated in this study. The isocenter shifts between the CBCT and the linac remained almost constant over a period of three months for this specific machine. This confirmed our assumption that the machine systematic error distribution could be approximated as a delta function. This definition is especially relevant to a single-fraction treatment. The prescribed dose coverage for all the patients investigated was 96.1%± 5.5% with an extreme
Acoustic reflection log in transversely isotropic formations
Ronquillo Jarillo, G.; Markova, I.; Markov, M.
2018-01-01
We have calculated the waveforms of sonic reflection logging for a fluid-filled borehole located in a transversely isotropic rock. Calculations have been performed for an acoustic impulse source with the characteristic frequency of tens of kilohertz that is considerably less than the frequencies of acoustic borehole imaging tools. It is assumed that the borehole axis coincides with the axis of symmetry of the transversely isotropic rock. It was shown that the reflected wave was excited most efficiently at resonant frequencies. These frequencies are close to the frequencies of oscillations of a fluid column located in an absolutely rigid hollow cylinder. We have shown that the acoustic reverberation is controlled by the acoustic impedance of the rock Z = Vphρs for fixed parameters of the borehole fluid, where Vph is the velocity of horizontally propagating P-wave; ρs is the rock density. The methods of waveform processing to determine the parameters characterizing the reflected wave have been discussed.
A tilted transversely isotropic slowness surface approximation
Stovas, A.
2012-05-09
The relation between vertical and horizontal slownesses, better known as the dispersion relation, for transversely isotropic media with a tilted symmetry axis (TTI) requires solving a quartic polynomial equation, which does not admit a practical explicit solution to be used, for example, in downward continuation. Using a combination of the perturbation theory with respect to the anelliptic parameter and Shanks transform to improve the accuracy of the expansion, we develop an explicit formula for the vertical slowness that is highly accurate for all practical purposes. It also reveals some insights into the anisotropy parameter dependency of the dispersion relation including the low impact that the anelliptic parameter has on the vertical placement of reflectors for a small tilt in the symmetry angle. © 2012 European Association of Geoscientists & Engineers.
Linearized holographic isotropization at finite coupling
Energy Technology Data Exchange (ETDEWEB)
Atashi, Mahdi; Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Physics Department (Iran, Islamic Republic of); Jafari, Ghadir [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)
2017-06-15
We study holographic isotropization of an anisotropic homogeneous non-Abelian strongly coupled plasma in the presence of Gauss-Bonnet corrections. It was verified before that one can linearize Einstein's equations around the final black hole background and simplify the complicated setup. Using this approach, we study the expectation value of the boundary stress tensor. Although we consider small values of the Gauss-Bonnet coupling constant, it is found that finite coupling leads to significant increasing of the thermalization time. By including higher order corrections in linearization, we extend the results to study the effect of the Gauss-Bonnet coupling on the entropy production on the event horizon. (orig.)
Effective elastic properties of damaged isotropic solids
International Nuclear Information System (INIS)
Lee, U Sik
1998-01-01
In continuum damage mechanics, damaged solids have been represented by the effective elastic stiffness into which local damage is smoothly smeared. Similarly, damaged solids may be represented in terms of effective elastic compliances. By virtue of the effective elastic compliance representation, it may become easier to derive the effective engineering constants of damaged solids from the effective elastic compliances, all in closed form. Thus, in this paper, by using a continuum modeling approach based on both the principle of strain energy equivalence and the equivalent elliptical micro-crack representation of local damage, the effective elastic compliance and effective engineering constants are derived in terms of the undamaged (virgin) elastic properties and a scalar damage variable for both damaged two-and three-dimensional isotropic solids
New bounds on isotropic Lorentz violation
International Nuclear Information System (INIS)
Carone, Christopher D.; Sher, Marc; Vanderhaeghen, Marc
2006-01-01
Violations of Lorentz invariance that appear via operators of dimension four or less are completely parametrized in the Standard Model Extension (SME). In the pure photonic sector of the SME, there are 19 dimensionless, Lorentz-violating parameters. Eighteen of these have experimental upper bounds ranging between 10 -11 and 10 -32 ; the remaining parameter, k-tilde tr , is isotropic and has a much weaker bound of order 10 -4 . In this Brief Report, we point out that k-tilde tr gives a significant contribution to the anomalous magnetic moment of the electron and find a new upper bound of order 10 -8 . With reasonable assumptions, we further show that this bound may be improved to 10 -14 by considering the renormalization of other Lorentz-violating parameters that are more tightly constrained. Using similar renormalization arguments, we also estimate bounds on Lorentz-violating parameters in the pure gluonic sector of QCD
Isotropic and anisotropic surface wave cloaking techniques
International Nuclear Information System (INIS)
McManus, T M; Spada, L La; Hao, Y
2016-01-01
In this paper we compare two different approaches for surface waves cloaking. The first technique is a unique application of Fermat’s principle and requires isotropic material properties, but owing to its derivation is limited in its applicability. The second technique utilises a geometrical optics approximation for dealing with rays bound to a two dimensional surface and requires anisotropic material properties, though it can be used to cloak any smooth surface. We analytically derive the surface wave scattering behaviour for both cloak techniques when applied to a rotationally symmetric surface deformation. Furthermore, we simulate both using a commercially available full-wave electromagnetic solver and demonstrate a good level of agreement with their analytically derived solutions. Our analytical solutions and simulations provide a complete and concise overview of two different surface wave cloaking techniques. (paper)
Isotropic and anisotropic surface wave cloaking techniques
McManus, T. M.; La Spada, L.; Hao, Y.
2016-04-01
In this paper we compare two different approaches for surface waves cloaking. The first technique is a unique application of Fermat’s principle and requires isotropic material properties, but owing to its derivation is limited in its applicability. The second technique utilises a geometrical optics approximation for dealing with rays bound to a two dimensional surface and requires anisotropic material properties, though it can be used to cloak any smooth surface. We analytically derive the surface wave scattering behaviour for both cloak techniques when applied to a rotationally symmetric surface deformation. Furthermore, we simulate both using a commercially available full-wave electromagnetic solver and demonstrate a good level of agreement with their analytically derived solutions. Our analytical solutions and simulations provide a complete and concise overview of two different surface wave cloaking techniques.
On the decay of homogeneous isotropic turbulence
Skrbek, L.; Stalp, Steven R.
2000-08-01
Decaying homogeneous, isotropic turbulence is investigated using a phenomenological model based on the three-dimensional turbulent energy spectra. We generalize the approach first used by Comte-Bellot and Corrsin [J. Fluid Mech. 25, 657 (1966)] and revised by Saffman [J. Fluid Mech. 27, 581 (1967); Phys. Fluids 10, 1349 (1967)]. At small wave numbers we assume the spectral energy is proportional to the wave number to an arbitrary power. The specific case of power 2, which follows from the Saffman invariant, is discussed in detail and is later shown to best describe experimental data. For the spectral energy density in the inertial range we apply both the Kolmogorov -5/3 law, E(k)=Cɛ2/3k-5/3, and the refined Kolmogorov law by taking into account intermittency. We show that intermittency affects the energy decay mainly by shifting the position of the virtual origin rather than altering the power law of the energy decay. Additionally, the spectrum is naturally truncated due to the size of the wind tunnel test section, as eddies larger than the physical size of the system cannot exist. We discuss effects associated with the energy-containing length scale saturating at the size of the test section and predict a change in the power law decay of both energy and vorticity. To incorporate viscous corrections to the model, we truncate the spectrum at an effective Kolmogorov wave number kη=γ(ɛ/v3)1/4, where γ is a dimensionless parameter of order unity. We show that as the turbulence decays, viscous corrections gradually become more important and a simple power law can no longer describe the decay. We discuss the final period of decay within the framework of our model, and show that care must be taken to distinguish between the final period of decay and the change of the character of decay due to the saturation of the energy containing length scale. The model is applied to a number of experiments on decaying turbulence. These include the downstream decay of turbulence in
Isotropic compression of cohesive-frictional particles with rolling resistance
Luding, Stefan; Benz, Thomas; Nordal, Steinar
2010-01-01
Cohesive-frictional and rough powders are the subject of this study. The behavior under isotropic compression is examined for different material properties involving Coulomb friction, rolling-resistance and contact-adhesion. Under isotropic compression, the density continuously increases according
The revised geometric measure of entanglement for isotropic state
International Nuclear Information System (INIS)
Cao Ya
2011-01-01
Based on the revised geometric measure of entanglement (RGME), we obtain the analytical expression of isotropic state and generalize to n-particle and d-dimension mixed state case. Meantime, we obtain the relation about isotropic state E-tilde sin 2 (ρ) ≤ E re (ρ). The results indicate RGME is an appropriate measure of entanglement. (authors)
Contact mechanics and friction for transversely isotropic viscoelastic materials
Mokhtari, Milad; Schipper, Dirk J.; Vleugels, N.; Noordermeer, Jacobus W.M.; Yoshimoto, S.; Hashimoto, H.
2015-01-01
Transversely isotropic materials are an unique group of materials whose properties are the same along two of the principal axes of a Cartesian coordinate system. Various natural and artificial materials behave effectively as transversely isotropic elastic solids. Several materials can be classified
How isotropic can the UHECR flux be?
di Matteo, Armando; Tinyakov, Peter
2018-05-01
Modern observatories of ultra-high energy cosmic rays (UHECR) have collected over 104 events with energies above 10 EeV, whose arrival directions appear to be nearly isotropically distributed. On the other hand, the distribution of matter in the nearby Universe - and therefore presumably also that of UHECR sources - is not homogeneous. This is expected to leave an imprint on the angular distribution of UHECR arrival directions, though deflections by cosmic magnetic fields can confound the picture. In this work, we investigate quantitatively this apparent inconsistency. To this end we study observables sensitive to UHECR source inhomogeneities but robust to uncertainties on magnetic fields and the UHECR mass composition. We show, in a rather model-independent way, that if the source distribution tracks the overall matter distribution, the arrival directions at energies above 30 EeV should exhibit a sizeable dipole and quadrupole anisotropy, detectable by UHECR observatories in the very near future. Were it not the case, one would have to seriously reconsider the present understanding of cosmic magnetic fields and/or the UHECR composition. Also, we show that the lack of a strong quadrupole moment above 10 EeV in the current data already disfavours a pure proton composition, and that in the very near future measurements of the dipole and quadrupole moment above 60 EeV will be able to provide evidence about the UHECR mass composition at those energies.
On isotropic cylindrically symmetric stellar models
International Nuclear Information System (INIS)
Nolan, Brien C; Nolan, Louise V
2004-01-01
We attempt to match the most general cylindrically symmetric vacuum spacetime with a Robertson-Walker interior. The matching conditions show that the interior must be dust filled and that the boundary must be comoving. Further, we show that the vacuum region must be polarized. Imposing the condition that there are no trapped cylinders on an initial time slice, we can apply a result of Thorne's and show that trapped cylinders never evolve. This results in a simplified line element which we prove to be incompatible with the dust interior. This result demonstrates the impossibility of the existence of an isotropic cylindrically symmetric star (or even a star which has a cylindrically symmetric portion). We investigate the problem from a different perspective by looking at the expansion scalars of invariant null geodesic congruences and, applying to the cylindrical case, the result that the product of the signs of the expansion scalars must be continuous across the boundary. The result may also be understood in relation to recent results about the impossibility of the static axially symmetric analogue of the Einstein-Straus model
Lagrangian statistics in compressible isotropic homogeneous turbulence
Yang, Yantao; Wang, Jianchun; Shi, Yipeng; Chen, Shiyi
2011-11-01
In this work we conducted the Direct Numerical Simulation (DNS) of a forced compressible isotropic homogeneous turbulence and investigated the flow statistics from the Lagrangian point of view, namely the statistics is computed following the passive tracers trajectories. The numerical method combined the Eulerian field solver which was developed by Wang et al. (2010, J. Comp. Phys., 229, 5257-5279), and a Lagrangian module for tracking the tracers and recording the data. The Lagrangian probability density functions (p.d.f.'s) have then been calculated for both kinetic and thermodynamic quantities. In order to isolate the shearing part from the compressing part of the flow, we employed the Helmholtz decomposition to decompose the flow field (mainly the velocity field) into the solenoidal and compressive parts. The solenoidal part was compared with the incompressible case, while the compressibility effect showed up in the compressive part. The Lagrangian structure functions and cross-correlation between various quantities will also be discussed. This work was supported in part by the China's Turbulence Program under Grant No.2009CB724101.
Nonlinear elastic inclusions in isotropic solids
Yavari, A.
2013-10-16
We introduce a geometric framework to calculate the residual stress fields and deformations of nonlinear solids with inclusions and eigenstrains. Inclusions are regions in a body with different reference configurations from the body itself and can be described by distributed eigenstrains. Geometrically, the eigenstrains define a Riemannian 3-manifold in which the body is stress-free by construction. The problem of residual stress calculation is then reduced to finding a mapping from the Riemannian material manifold to the ambient Euclidean space. Using this construction, we find the residual stress fields of three model systems with spherical and cylindrical symmetries in both incompressible and compressible isotropic elastic solids. In particular, we consider a finite spherical ball with a spherical inclusion with uniform pure dilatational eigenstrain and we show that the stress in the inclusion is uniform and hydrostatic. We also show how singularities in the stress distribution emerge as a consequence of a mismatch between radial and circumferential eigenstrains at the centre of a sphere or the axis of a cylinder.
Radiation statistics in homogeneous isotropic turbulence
International Nuclear Information System (INIS)
Da Silva, C B; Coelho, P J; Malico, I
2009-01-01
An analysis of turbulence-radiation interaction (TRI) in statistically stationary (forced) homogeneous and isotropic turbulence is presented. A direct numerical simulation code was used to generate instantaneous turbulent scalar fields, and the radiative transfer equation (RTE) was solved to provide statistical data relevant in TRI. The radiation intensity is non-Gaussian and is not spatially correlated with any of the other turbulence or radiation quantities. Its power spectrum exhibits a power-law region with a slope steeper than the classical -5/3 law. The moments of the radiation intensity, Planck-mean and incident-mean absorption coefficients, and emission and absorption TRI correlations are calculated. The influence of the optical thickness of the medium, mean and variance of the temperature and variance of the molar fraction of the absorbing species is studied. Predictions obtained from the time-averaged RTE are also included. It was found that while turbulence yields an increase of the mean blackbody radiation intensity, it causes a decrease of the time-averaged Planck-mean absorption coefficient. The absorption coefficient self-correlation is small in comparison with the temperature self-correlation, and the role of TRI in radiative emission is more important than in radiative absorption. The absorption coefficient-radiation intensity correlation is small, which supports the optically thin fluctuation approximation, and justifies the good predictions often achieved using the time-averaged RTE.
Radiation statistics in homogeneous isotropic turbulence
Energy Technology Data Exchange (ETDEWEB)
Da Silva, C B; Coelho, P J [Mechanical Engineering Department, IDMEC/LAETA, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Malico, I [Physics Department, University of Evora, Rua Romao Ramalho, 59, 7000-671 Evora (Portugal)], E-mail: carlos.silva@ist.utl.pt, E-mail: imbm@uevora.pt, E-mail: pedro.coelho@ist.utl.pt
2009-09-15
An analysis of turbulence-radiation interaction (TRI) in statistically stationary (forced) homogeneous and isotropic turbulence is presented. A direct numerical simulation code was used to generate instantaneous turbulent scalar fields, and the radiative transfer equation (RTE) was solved to provide statistical data relevant in TRI. The radiation intensity is non-Gaussian and is not spatially correlated with any of the other turbulence or radiation quantities. Its power spectrum exhibits a power-law region with a slope steeper than the classical -5/3 law. The moments of the radiation intensity, Planck-mean and incident-mean absorption coefficients, and emission and absorption TRI correlations are calculated. The influence of the optical thickness of the medium, mean and variance of the temperature and variance of the molar fraction of the absorbing species is studied. Predictions obtained from the time-averaged RTE are also included. It was found that while turbulence yields an increase of the mean blackbody radiation intensity, it causes a decrease of the time-averaged Planck-mean absorption coefficient. The absorption coefficient self-correlation is small in comparison with the temperature self-correlation, and the role of TRI in radiative emission is more important than in radiative absorption. The absorption coefficient-radiation intensity correlation is small, which supports the optically thin fluctuation approximation, and justifies the good predictions often achieved using the time-averaged RTE.
Convexity and Marginal Vectors
van Velzen, S.; Hamers, H.J.M.; Norde, H.W.
2002-01-01
In this paper we construct sets of marginal vectors of a TU game with the property that if the marginal vectors from these sets are core elements, then the game is convex.This approach leads to new upperbounds on the number of marginal vectors needed to characterize convexity.An other result is that
"We call ourselves marginalized"
DEFF Research Database (Denmark)
Jørgensen, Nanna Jordt
2014-01-01
of the people we refer to as marginalized. In this paper, I discuss how young secondary school graduates from a pastoralist community in Kenya use and negotiate indigeneity, marginal identity, and experiences of marginalization in social navigations aimed at broadening their current and future opportunities. I...
Investigating source processes of isotropic events
Chiang, Andrea
explosion. In contrast, recovering the announced explosive yield using seismic moment estimates from moment tensor inversion remains challenging but we can begin to put error bounds on our moment estimates using the NSS technique. The estimation of seismic source parameters is dependent upon having a well-calibrated velocity model to compute the Green's functions for the inverse problem. Ideally, seismic velocity models are calibrated through broadband waveform modeling, however in regions of low seismicity velocity models derived from body or surface wave tomography may be employed. Whether a velocity model is 1D or 3D, or based on broadband seismic waveform modeling or the various tomographic techniques, the uncertainty in the velocity model can be the greatest source of error in moment tensor inversion. These errors have not been fully investigated for the nuclear discrimination problem. To study the effects of unmodeled structures on the moment tensor inversion, we set up a synthetic experiment where we produce synthetic seismograms for a 3D model (Moschetti et al., 2010) and invert these data using Green's functions computed with a 1D velocity mode (Song et al., 1996) to evaluate the recoverability of input solutions, paying particular attention to biases in the isotropic component. The synthetic experiment results indicate that the 1D model assumption is valid for moment tensor inversions at periods as short as 10 seconds for the 1D western U.S. model (Song et al., 1996). The correct earthquake mechanisms and source depth are recovered with statistically insignificant isotropic components as determined by the F-test. Shallow explosions are biased by the theoretical ISO-CLVD tradeoff but the tectonic release component remains low, and the tradeoff can be eliminated with constraints from P wave first motion. Path-calibration to the 1D model can reduce non-double-couple components in earthquakes, non-isotropic components in explosions and composite sources and improve
International Nuclear Information System (INIS)
Anetai, Y; Mizuno, H; Sumida, I; Ogawa, K; Takegawa, H; Inoue, T; Koizumi, M; Veld, A van’t; Korevaar, E
2015-01-01
Purpose: To determine which proton planning technique on average-CT is more vulnerable to respiratory motion induced density changes and interplay effect among (a) IMPT of CTV-based minimax robust optimization with 5mm set-up error considered, (b, c) IMPT/SFUD of 5mm-expanded PTV optimization. Methods: Three planning techniques were optimized in Raystation with a prescription of 60/25 (Gy/fractions) and almost the same OAR constraints/objectives for each of 10 NSCLC patients. 4D dose without/with interplay effect was recalculated on eight 4D-CT phases and accumulated after deforming the dose of each phase to a reference (exhalation phase). The change of D98% of each CTV caused by density changes and interplay was determined. In addition, evaluation of the DVH information vector (D99%, D98%, D95%, Dave, D50%, D2%, D1%) which compares the whole DVH by η score = (cosine similarity × Pearson correlation coefficient − 0.9) × 1000 quantified the degree of DVH change: score below 100 indicates changed DVH. Results: Three 3D plans of each technique satisfied our clinical goals. D98% shift mean±SD (Gy) due to density changes was largest in (c): −0.78±1.1 while (a): −0.11±0.65 and (b): − 0.59±0.93. Also the shift due to interplay effect most was (c): −.54±0.70 whereas (a): −0.25±0.93 and (b): −0.12±0.13. Moreover lowest η score caused by density change was also (c): 69, while (a) and (b) kept around 90. η score also indicated less effect of interplay than density changes. Note that generally the changed DVH were still acceptable clinically. Paired T-tests showed a significantly smaller density change effect in (a) (p<0.05) than in (b) or (c) and no significant difference in interplay effect. Conclusion: CTV-based robust optimized IMPT was more robust against respiratory motion induced density changes than PTV-based IMPT and SFUD. The interplay effect was smaller than the effect of density changes and similar among the three techniques. The JSPS Core
Isotropic nuclear graphites; the effect of neutron irradiation
International Nuclear Information System (INIS)
Lore, J.; Buscaillon, A.; Mottet, P.; Micaud, G.
1977-01-01
Several isotropic graphites have been manufactured using different forming processes and fillers such as needle coke, regular coke, or pitch coke. Their properties are described in this paper. Specimens of these products have been irradiated in the fast reactor Rapsodie between 400 to 1400 0 C, at fluences up to 1,7.10 21 n.cm -2 PHI.FG. The results show an isotropic behavior under neutron irradiation, but the induced dimensional changes are higher than those of isotropic coke graphites although they are lower than those of conventional extruded graphites made with the same coke
Process for the preparation of isotropic petroleum coke
International Nuclear Information System (INIS)
Kegler, W.H.; Huyser, M.E.
1975-01-01
A description is given of a process for preparing isotropic coke from oil residue charge. It includes blowing air into the residue until it reaches a softening temperature of around 49 to 116 deg C, the deferred coking of the residue having undergone blowing at a temperature of around 247 to 640 deg C, at a pressure between around 1.38x10 5 and 1.72x10 6 Pa, and the recovery of isotropic coke with a thermal expansion coefficient ratio under 1.5 approximately. The isotropic coke is used for preparing hexagonal graphite bars for nuclear reactor moderators [fr
Sudden Relaminarization and Lifetimes in Forced Isotropic Turbulence.
Linkmann, Moritz F; Morozov, Alexander
2015-09-25
We demonstrate an unexpected connection between isotropic turbulence and wall-bounded shear flows. We perform direct numerical simulations of isotropic turbulence forced at large scales at moderate Reynolds numbers and observe sudden transitions from a chaotic dynamics to a spatially simple flow, analogous to the laminar state in wall bounded shear flows. We find that the survival probabilities of turbulence are exponential and the typical lifetimes increase superexponentially with the Reynolds number. Our results suggest that both isotropic turbulence and wall-bounded shear flows qualitatively share the same phase-space dynamics.
CSIR Research Space (South Africa)
Joubert, S
2006-05-01
Full Text Available and Manufacturing TRANSVERSELY ISOTROPIC CYLINDER - 1 φ φ r z a x y Ω P P O u v w z ( )1 1 1 2 1 1 rrr rz rr zr r zrz zz rz u r r z r v r r z r w r r z r ϕ ϕϕ ϕϕ ϕϕ ϕ ϕ σσ σ σ σ ρ ϕ σσ σ σ ρ ϕ σσ σ σ ρ ϕ... ∂ ∂ ∂ + + + − = ∂ ∂ ∂ ∂∂ ∂ + + + = ∂ ∂ ∂ ∂∂ ∂ + + + = ∂ ∂ ∂ && && && 6 CSIR Material Science and Manufacturing TRANSVERSELY ISOTROPIC CYLINDER - 2 ( )1 1 1 2 1 1 rrr rz rr zr r zrz zz rz u r r z r v r r z r w r r z r ϕ ϕϕ ϕϕ ϕϕ ϕ ϕ σσ σ σ σ ρ ϕ σσ σ σ ρ ϕ σσ σ σ ρ ϕ...
Weak convergence to isotropic complex [Formula: see text] random measure.
Wang, Jun; Li, Yunmeng; Sang, Liheng
2017-01-01
In this paper, we prove that an isotropic complex symmetric α -stable random measure ([Formula: see text]) can be approximated by a complex process constructed by integrals based on the Poisson process with random intensity.
Metrical relationships in a standard triangle in an isotropic plane
Kolar-Šuper, R.; Kolar-Begović, Z.; Volenec, V.; Beban-Brkić, J.
2005-01-01
Each allowable triangle of an isotropic plane can be set in a standard position, in which it is possible to prove geometric properties analytically in a simplified and easier way by means of the algebraic theory developed in this paper.
Efficient anisotropic wavefield extrapolation using effective isotropic models
Alkhalifah, Tariq Ali; Ma, X.; Waheed, Umair bin; Zuberi, Mohammad
2013-01-01
Isotropic wavefield extrapolation is more efficient than anisotropic extrapolation, and this is especially true when the anisotropy of the medium is tilted (from the vertical). We use the kinematics of the wavefield, appropriately represented
Isotropic 2D quadrangle meshing with size and orientation control
Pellenard, Bertrand; Alliez, Pierre; Morvan, Jean-Marie
2011-01-01
We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse
Scanning anisotropy parameters in horizontal transversely isotropic media
Masmoudi, Nabil; Stovas, Alexey; Alkhalifah, Tariq Ali
2016-01-01
in reservoir characterisation, specifically in terms of fracture delineation. We propose a travel-time-based approach to estimate the anellipticity parameter η and the symmetry axis azimuth ϕ of a horizontal transversely isotropic medium, given an inhomogeneous
Refining margins and prospects
International Nuclear Information System (INIS)
Baudouin, C.; Favennec, J.P.
1997-01-01
Refining margins throughout the world have remained low in 1996. In Europe, in spite of an improvement, particularly during the last few weeks, they are still not high enough to finance new investments. Although the demand for petroleum products is increasing, experts are still sceptical about any rapid recovery due to prevailing overcapacity and to continuing capacity growth. After a historical review of margins and an analysis of margins by regions, we analyse refining over-capacities in Europe and the unbalances between production and demand. Then we discuss the current situation concerning barriers to the rationalization, agreements between oil companies, and the consequences on the future of refining capacities and margins. (author)
DEFF Research Database (Denmark)
Jensen, Niels Rosendal
2009-01-01
The article is based on a key note speach in Bielefeld on the subject "welfare state and marginalized youth", focusing upon the high ambition of expanding schooling in Denmark from 9 to 12 years. The unintended effect may be a new kind of marginalization.......The article is based on a key note speach in Bielefeld on the subject "welfare state and marginalized youth", focusing upon the high ambition of expanding schooling in Denmark from 9 to 12 years. The unintended effect may be a new kind of marginalization....
Crack Tip Creep Deformation Behavior in Transversely Isotropic Materials
International Nuclear Information System (INIS)
Ma, Young Wha; Yoon, Kee Bong
2009-01-01
Theoretical mechanics analysis and finite element simulation were performed to investigate creep deformation behavior at the crack tip of transversely isotropic materials under small scale creep (SCC) conditions. Mechanical behavior of material was assumed as an elastic-2 nd creep, which elastic modulus ( E ), Poisson's ratio (v ) and creep stress exponent ( n ) were isotropic and creep coefficient was only transversely isotropic. Based on the mechanics analysis for material behavior, a constitutive equation for transversely isotropic creep behavior was formulated and an equivalent creep coefficient was proposed under plain strain conditions. Creep deformation behavior at the crack tip was investigated through the finite element analysis. The results of the finite element analysis showed that creep deformation in transversely isotropic materials is dominant at the rear of the crack-tip. This result was more obvious when a load was applied to principal axis of anisotropy. Based on the results of the mechanics analysis and the finite element simulation, a corrected estimation scheme of the creep zone size was proposed in order to evaluate the creep deformation behavior at the crack tip of transversely isotropic creeping materials
Stein, H.N.
1991-01-01
On applying the marginal regeneration concept to the drainage of free liquid films, problems are encountered: the films do not show a "neck" of minimum thickness at the film/border transition; and the causes of the direction dependence of the marginal regeneration are unclear. Both problems can be
Digital Repository Service at National Institute of Oceanography (India)
Naqvi, S.W.A
in the latter two areas. Some of these fluxes are expected to be substantial in the case of Indonesian continental margins and probably also across the eastern coasts of Africa not covered in this chapter. However, a dearth of information makes these margins...
Directory of Open Access Journals (Sweden)
Denis C. Duling
1995-12-01
Full Text Available This article explores marginality theory as it was first proposed in the social sciences, that is related to persons caught between two competing cultures (Park; Stonequist, and, then, as it was developed in sociology as related to the poor (Germani and in anthropology as it was related to involuntary marginality and voluntary marginality (Victor Turner. It then examines a (normative scheme' in antiquity that creates involuntary marginality at the macrosocial level, namely, Lenski's social stratification model in an agrarian society, and indicates how Matthean language might fit with a sample inventory of socioreligious roles. Next, it examines some (normative schemes' in antiquity for voluntary margi-nality at the microsocial level, namely, groups, and examines how the Matthean gospel would fit based on indications of factions and leaders. The article ,shows that the author of the Gospel of Matthew has an ideology of (voluntary marginality', but his gospel includes some hope for (involuntary marginals' in the real world, though it is somewhat tempered. It also suggests that the writer of the Gospel is a (marginal man', especially in the sense defined by the early theorists (Park; Stone-quist.
P. Kofman (Paul); A. Vaal, de (Albert); C.G. de Vries (Casper)
1993-01-01
textabstractNon-parametric tolerance limits are employed to calculate soft margins such as advocated in Williamson's target zone proposal. In particular, the tradeoff between softness and zone width is quantified. This may be helpful in choosing appropriate margins. Furthermore, it offers
International Nuclear Information System (INIS)
Góra, Joanna; Stock, Markus; Lütgendorf-Caucig, Carola; Georg, Dietmar
2013-01-01
Purpose: To investigate robust margin strategies in intensity modulated proton therapy to account for interfractional organ motion in prostate cancer. Methods and Materials: For 9 patients, one planning computed tomography (CT) scan and daily and weekly cone beam CTs (CBCTs) were acquired and coregistered. The following planning target volume (PTV) approaches were investigated: a clinical target volume (CTV) delineated on the planning CT (CTV ct ) plus 10-mm margin (PTV 10mm ); a reduced PTV (PTV Red ): CTV ct plus 5 mm in the left-right (LR) and anterior-posterior (AP) directions and 8 mm in the inferior-superior (IS) directions; and a PTV Hull method: the sum of CTV ct and CTVs from 5 CBCTs from the first week plus 3 mm in the LR and IS directions and 5 mm in the AP direction. For each approach, separate plans were calculated using a spot-scanning technique with 2 lateral fields. Results: Each approach achieved excellent target coverage. Differences were observed in volume receiving 98% of the prescribed dose (V 98% ) where PTV Hull and PTV Red results were superior to the PTV 10mm concept. The PTV Hull approach was more robust to organ motion. The V 98% for CTVs was 99.7%, whereas for PTV Red and PTV 10mm plans, V 98% was 98% and 96.1%, respectively. Doses to organs at risk were higher for PTV Hull and PTV 10mm plans than for PTV Red , but only differences between PTV 10mm and PTV Red were significant. Conclusions: In terms of organ sparing, the PTV 10mm method was inferior but not significantly different from the PTV Red and PTV Hull approaches. PTV Hull was most insensitive to target motion
International Nuclear Information System (INIS)
Can, S; Neylon, J; Qi, S; Santhanam, A; Low, D
2014-01-01
Purpose: To investigate the feasibility of improved normal tissue sparing for head-and-neck (H'N) image-guided radiotherapy (IGRT) by employing tighter CTV-to-PTV margins for target level II/III though a GPU-based deformable image registration and dose accumulation framework. Methods: Ten H'N simultaneous integrated boost cases treated on TomoTherapy were retrospectively analyzed. Weekly kVCT scans in addition to daily MVCT scans were acquired for each patient. Reduced margin plans were generated with 0- mm margin for level II and III PTV (while 3-5 mm margin for PTV1) and compared with the standard margin plan using 3-5mm margin to all CTV1-3 (reference plan). An in-house developed GPU-based 3D image deformation tool was used to register and deform the weekly KVCTs with the planning CT and determine the delivered mean/minimum/maximum dose, dose volume histograms (DVHs), etc. Results: Compared with the reference plans, the averaged cord maximum, the right and left parotid doses reduced by 22.7 %, 16.5 %, and 9 % respectively in the reduced margin plans. The V95 for PTV2 and PTV3 were found within 2 and 5% between the reference and tighter margin plans. For the reduced margin plans, the averaged cumulative mean doses were consistent with the planned dose for PTV1, PTV2 and PTV3 within 1.5%, 1.7% and 1.4%. Similar dose variations of the delivered dose were seen for the reference and tighter margin plans. The delivered maximum and mean doses for the cord were 3.55 % and 2.37% higher than the planned doses; a 5 % higher cumulative mean dose for the parotids was also observed for the delivered dose than the planned doses in both plans. Conclusion: By imposing tighter CTV-to-PTV margins for level II and III targets for H'N irradiation, acceptable cumulative doses were achievable when coupled with weekly kVCT guidance while improving normal structure sparing
Simulating faults and plate boundaries with a transversely isotropic plasticity model
Sharples, W.; Moresi, L. N.; Velic, M.; Jadamec, M. A.; May, D. A.
2016-03-01
In mantle convection simulations, dynamically evolving plate boundaries have, for the most part, been represented using an visco-plastic flow law. These systems develop fine-scale, localized, weak shear band structures which are reminiscent of faults but it is a significant challenge to resolve the large- and the emergent, small-scale-behavior. We address this issue of resolution by taking into account the observation that a rock element with embedded, planar, failure surfaces responds as a non-linear, transversely isotropic material with a weak orientation defined by the plane of the failure surface. This approach partly accounts for the large-scale behavior of fine-scale systems of shear bands which we are not in a position to resolve explicitly. We evaluate the capacity of this continuum approach to model plate boundaries, specifically in the context of subduction models where the plate boundary interface has often been represented as a planar discontinuity. We show that the inclusion of the transversely isotropic plasticity model for the plate boundary promotes asymmetric subduction from initiation. A realistic evolution of the plate boundary interface and associated stresses is crucial to understanding inter-plate coupling, convergent margin driven topography, and earthquakes.
Refining margins: recent trends
International Nuclear Information System (INIS)
Baudoin, C.; Favennec, J.P.
1999-01-01
Despite a business environment that was globally mediocre due primarily to the Asian crisis and to a mild winter in the northern hemisphere, the signs of improvement noted in the refining activity in 1996 were borne out in 1997. But the situation is not yet satisfactory in this sector: the low return on invested capital and the financing of environmental protection expenditure are giving cause for concern. In 1998, the drop in crude oil prices and the concomitant fall in petroleum product prices was ultimately rather favorable to margins. Two elements tended to put a damper on this relative optimism. First of all, margins continue to be extremely volatile and, secondly, the worsening of the economic and financial crisis observed during the summer made for a sharp decline in margins in all geographic regions, especially Asia. Since the beginning of 1999, refining margins are weak and utilization rates of refining capacities have decreased. (authors)
Visualization and computer graphics on isotropically emissive volumetric displays.
Mora, Benjamin; Maciejewski, Ross; Chen, Min; Ebert, David S
2009-01-01
The availability of commodity volumetric displays provides ordinary users with a new means of visualizing 3D data. Many of these displays are in the class of isotropically emissive light devices, which are designed to directly illuminate voxels in a 3D frame buffer, producing X-ray-like visualizations. While this technology can offer intuitive insight into a 3D object, the visualizations are perceptually different from what a computer graphics or visualization system would render on a 2D screen. This paper formalizes rendering on isotropically emissive displays and introduces a novel technique that emulates traditional rendering effects on isotropically emissive volumetric displays, delivering results that are much closer to what is traditionally rendered on regular 2D screens. Such a technique can significantly broaden the capability and usage of isotropically emissive volumetric displays. Our method takes a 3D dataset or object as the input, creates an intermediate light field, and outputs a special 3D volume dataset called a lumi-volume. This lumi-volume encodes approximated rendering effects in a form suitable for display with accumulative integrals along unobtrusive rays. When a lumi-volume is fed directly into an isotropically emissive volumetric display, it creates a 3D visualization with surface shading effects that are familiar to the users. The key to this technique is an algorithm for creating a 3D lumi-volume from a 4D light field. In this paper, we discuss a number of technical issues, including transparency effects due to the dimension reduction and sampling rates for light fields and lumi-volumes. We show the effectiveness and usability of this technique with a selection of experimental results captured from an isotropically emissive volumetric display, and we demonstrate its potential capability and scalability with computer-simulated high-resolution results.
Energy Technology Data Exchange (ETDEWEB)
Heijkoop, Sabrina T., E-mail: s.heijkoop@erasmusmc.nl [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands); Westerveld, Henrike; Bijker, Nina [Department of Radiation Oncology, Academic Medical Center, Amsterdam (Netherlands); Feije, Raphael; Sharfo, Abdul W. [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands); Wieringen, Niek van [Department of Radiation Oncology, Academic Medical Center, Amsterdam (Netherlands); Mens, Jan Willem M. [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands); Stalpers, Lukas J.A. [Department of Radiation Oncology, Academic Medical Center, Amsterdam (Netherlands); Hoogeman, Mischa S. [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands)
2016-10-01
Purpose/Objective: It is unknown whether the historically found dosimetric advantages of treating gynecologic cancer with the patient in a prone position with use of a small-bowel displacement device (belly-board) remain when volumetric arc therapy (VMAT) is used and whether these advantages depend on the necessary margin between clinical target volume (CTV) and planning target volume (PTV). The aim of this study is to determine the best patient position (prone or supine) in terms of sparing organs at risk (OAR) for various CTV-to-PTV margins and VMAT dose delivery. Methods and Materials: In an institutional review board—approved study, 26 patients with gynecologic cancer scheduled for primary (9) or postoperative (17) radiation therapy were scanned in a prone position on a belly-board and in a supine position on the same day. The primary tumor CTV, nodal CTV, bladder, bowel, and rectum were delineated on both scans. The PTVs were created each with a different margin for the primary tumor and nodal CTV. The VMAT plans were generated with our in-house system for automated treatment planning. For all margin combinations, the supine and prone plans were compared with consideration of all OAR dose-volume parameters but with highest priority given to bowel cavity V{sub 45Gy} (cm{sup 3}). Results: For both groups, the prone position reduced the bowel cavity V{sub 45Gy}, in particular for nodal margins ≥10 mm (ΔV{sub 45Gy} = 23.9 ± 10.6 cm{sup 3}). However, for smaller margins, the advantage was much less pronounced (ΔV{sub 45Gy} = 6.5 ± 3.0 cm{sup 3}) and did not reach statistical significance. The rectum mean dose (D{sub mean}) was significantly lower (ΔD{sub mean} = 2.5 ± 0.3 Gy) in the prone position for both patient groups and for all margins, and the bladder D{sub mean} was significantly lower in the supine position (ΔD{sub mean} = 2.6 ± 0.4 Gy) only for the postoperative group. The advantage of the prone position was not present if it
Analysis of PTV margin for IMRT and VMAT techniques in prostate cancer using IGRT
International Nuclear Information System (INIS)
Sandrini, E.S.; Silveira, T.B.; Vieira, D.S.; Anjos, L.E.A.; Lopez, J.C.C.; Batista, D.V.S.
2014-01-01
Clinical radiotherapy procedures aim at high precision. However, there are many errors sources that act during treatment preparation and execution that limit its accuracy. The use of imaged-guided radiotherapy (IGRT) increases the agreement between the planned dose and the actual dose deposited in the target, at the same time allows to evaluate the uncertainties related to the setup and a possible reduction in the planning target volume (PTV) margin. Thus the aim of this study was to determine the best PTV margin to be used in radiotherapy treatment of prostate cancer using intensity modulated radiotherapy (IMRT) and volumetric modulated arc radiotherapy (VMAT) techniques associated with IGRT. A total of four patients with prostate daily cone beam computed tomography (CBCT) were analyzed. Systematic and random errors were calculated statistically based on the displacements couch for 128 CBCTs. It was found that a symmetric margin of 0.75 cm from clinical treatment volume (CTV) to PTV is sufficient to encompass the uncertainties inherent to the treatment applying IGRT. Besides without that and maintaining the same tumor control probability, a symmetric margin of 1,24 cm would be necessary. This study showed that using daily image verification the setup errors are reduced, which generates a lower PTV margin. (author)
SOCIAL MARGINALIZATION AND HEALTH
Directory of Open Access Journals (Sweden)
Marjana Bogdanović
2007-04-01
Full Text Available The 20th century was characterized by special improvement in health. The aim of WHO’s policy EQUITY IN HEALTH is to enable equal accessibility and equal high quality of health care for all citizens. More or less some social groups have stayed out of many social systems even out of health care system in the condition of social marginalization. Phenomenon of social marginalization is characterized by dynamics. Marginalized persons have lack of control over their life and available resources. Social marginalization stands for a stroke on health and makes the health status worse. Low socio-economic level dramatically influences people’s health status, therefore, poverty and illness work together. Characteristic marginalized groups are: Roma people, people with AIDS, prisoners, persons with development disorders, persons with mental health disorders, refugees, homosexual people, delinquents, prostitutes, drug consumers, homeless…There is a mutual responsibility of community and marginalized individuals in trying to resolve the problem. Health and other problems could be solved only by multisector approach to well-designed programs.
Pickering seismic safety margin
International Nuclear Information System (INIS)
Ghobarah, A.; Heidebrecht, A.C.; Tso, W.K.
1992-06-01
A study was conducted to recommend a methodology for the seismic safety margin review of existing Canadian CANDU nuclear generating stations such as Pickering A. The purpose of the seismic safety margin review is to determine whether the nuclear plant has sufficient seismic safety margin over its design basis to assure plant safety. In this review process, it is possible to identify the weak links which might limit the seismic performance of critical structures, systems and components. The proposed methodology is a modification the EPRI (Electric Power Research Institute) approach. The methodology includes: the characterization of the site margin earthquake, the definition of the performance criteria for the elements of a success path, and the determination of the seismic withstand capacity. It is proposed that the margin earthquake be established on the basis of using historical records and the regional seismo-tectonic and site specific evaluations. The ability of the components and systems to withstand the margin earthquake is determined by database comparisons, inspection, analysis or testing. An implementation plan for the application of the methodology to the Pickering A NGS is prepared
Isotropic quantum walks on lattices and the Weyl equation
D'Ariano, Giacomo Mauro; Erba, Marco; Perinotti, Paolo
2017-12-01
We present a thorough classification of the isotropic quantum walks on lattices of dimension d =1 ,2 ,3 with a coin system of dimension s =2 . For d =3 there exist two isotropic walks, namely, the Weyl quantum walks presented in the work of D'Ariano and Perinotti [G. M. D'Ariano and P. Perinotti, Phys. Rev. A 90, 062106 (2014), 10.1103/PhysRevA.90.062106], resulting in the derivation of the Weyl equation from informational principles. The present analysis, via a crucial use of isotropy, is significantly shorter and avoids a superfluous technical assumption, making the result completely general.
3D geometrically isotropic metamaterial for telecom wavelengths
DEFF Research Database (Denmark)
Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei
2009-01-01
of the unit cell is not infinitely small, certain geometrical constraints have to be fulfilled to obtain an isotropic response of the material [3]. These conditions and the metal behaviour close to the plasma frequency increase the design complexity. Our unit cell is composed of two main parts. The first part...... is obtained in a certain bandwidth. The proposed unit cell has the cubic point group of symmetry and being repeatedly placed in space can effectively reveal isotropic optical properties. We use the CST commercial software to characterise the “cube-in-cage” structure. Reflection and transmission spectra...
International Nuclear Information System (INIS)
Jalali, Rakesh; Budrukkar, Ashwini; Sarin, Rajiv; Sharma, Dayananda S.
2005-01-01
Background and purpose: To report local control and follow up outcome data of high precision conformal radiotherapy in childhood brain tumours. Materials and methods: Between December 1999 and December 2002, 26 children (17 boys and 9 girls, median age 11.5 years) with incompletely excised or recurrent benign and low-grade brain tumours [13 craniopharyngiomas, 11 low-grade gliomas (LGG) and 2 others] were treated with three-dimensional (3D) conformal radiotherapy (CRT) (12 patients) and stereotactic conformal radiotherapy (SCRT) (14 patients). Gross tumour volume (GTV) included neuro-imaging based visible tumour and/or resected tumour bed. Clinical target volume (CTV) consisted of GTV + 5 mm margin and planning target volume (PTV) consisted of additional 5 mm margin for CRT and 2 mm for SCRT. Treatment was delivered with 3-9 conformal fixed fields to a median dose of 54 Gy/30 fractions. Results: The actuarial 2 and 3 year disease free and overall survival was 96 and 100%, respectively (median follow up: 25 months, range 12-47 months). Radiological follow up available in 25 patients revealed complete response in 1, partial regression in 10, stable disease in 13 and progression in 1 patient (within the CTV). One patient with craniopharyngioma on a routine imaging revealed a mild asymptomatic cyst enlargement, which resolved with conservative management. A patient with chiasmatic glioma developed cystic degeneration and hydrocephalus 9 months after SCRT requiring cyst drainage and placement of a ventriculoperitoneal shunt. Conclusion: High-precision conformal techniques delivering irradiation to a computer generated target volume employing 7-10 mm 3D margins beyond the visible tumour and/or resected tumour bed appear to be safe in children with incompletely resected or recurrent benign and low-grade brain tumours, based on these data
International Nuclear Information System (INIS)
Jo, Sun Mi; Chun, Mi Sun; Kim, Mi Hwa; Oh, Young Taek; Noh, O Kyu; Kang, Seung Hee
2010-01-01
Simulation using computed tomography (CT) is now widely available for radiation treatment planning for breast cancer. It is an important tool to help define the tumor target and normal tissue based on anatomical features of an individual patient. In Korea, most patients have small sized breasts and the purpose of this study was to review the margin of treatment field between conventional two-dimensional (2D) planning and CT based three-dimensional (3D) planning in patients with small breasts. Twenty-five consecutive patients with early breast cancer undergoing breast conservation therapy were selected. All patients underwent 3D CT based planning with a conventional breast tangential field design. In 2D planning, the treatment field margins were determined by palpation of the breast parenchyma (In general, the superior: base of the clavicle, medial: midline, lateral: mid - axillary line, and inferior margin: 2 m below the inflamammary fold). In 3D planning, the clinical target volume (CTV) ought to comprise all glandular breast tissue, and the PTV was obtained by adding a 3D margin of 1 cm around the CTV except in the skin direction. The difference in the treatment field margin and equivalent field size between 2D and 3D planning were evaluated. The association between radiation field margins and factors such as body mass index, menopause status, and bra size was determined. Lung volume and heart volume were examined on the basis of the prescribed breast radiation dose and 3D dose distribution. The margins of the treatment field were smaller in the 3D planning except for two patients. The superior margin was especially variable (average, 2.5 cm; range, -2.5 to 4.5 cm; SD, 1.85). The margin of these targets did not vary equally across BMI class, menopause status, or bra size. The average irradiated lung volume was significantly lower for 3D planning. The average irradiated heart volume did not decrease significantly. The use of 3D CT based planning reduced the
Energy Technology Data Exchange (ETDEWEB)
Jo, Sun Mi; Chun, Mi Sun; Kim, Mi Hwa; Oh, Young Taek; Noh, O Kyu [Ajou University School of Medicine, Seoul (Korea, Republic of); Kang, Seung Hee [Inje University, Ilsan Paik Hospital, Ilsan (Korea, Republic of)
2010-11-15
Simulation using computed tomography (CT) is now widely available for radiation treatment planning for breast cancer. It is an important tool to help define the tumor target and normal tissue based on anatomical features of an individual patient. In Korea, most patients have small sized breasts and the purpose of this study was to review the margin of treatment field between conventional two-dimensional (2D) planning and CT based three-dimensional (3D) planning in patients with small breasts. Twenty-five consecutive patients with early breast cancer undergoing breast conservation therapy were selected. All patients underwent 3D CT based planning with a conventional breast tangential field design. In 2D planning, the treatment field margins were determined by palpation of the breast parenchyma (In general, the superior: base of the clavicle, medial: midline, lateral: mid - axillary line, and inferior margin: 2 m below the inflamammary fold). In 3D planning, the clinical target volume (CTV) ought to comprise all glandular breast tissue, and the PTV was obtained by adding a 3D margin of 1 cm around the CTV except in the skin direction. The difference in the treatment field margin and equivalent field size between 2D and 3D planning were evaluated. The association between radiation field margins and factors such as body mass index, menopause status, and bra size was determined. Lung volume and heart volume were examined on the basis of the prescribed breast radiation dose and 3D dose distribution. The margins of the treatment field were smaller in the 3D planning except for two patients. The superior margin was especially variable (average, 2.5 cm; range, -2.5 to 4.5 cm; SD, 1.85). The margin of these targets did not vary equally across BMI class, menopause status, or bra size. The average irradiated lung volume was significantly lower for 3D planning. The average irradiated heart volume did not decrease significantly. The use of 3D CT based planning reduced the
Lagrangian statistics of particle pairs in homogeneous isotropic turbulence
Biferale, L.; Boffeta, G.; Celani, A.; Devenish, B.J.; Lanotte, A.; Toschi, F.
2005-01-01
We present a detailed investigation of the particle pair separation process in homogeneous isotropic turbulence. We use data from direct numerical simulations up to R????280 following the evolution of about two million passive tracers advected by the flow over a time span of about three decades. We
Reconstruction of atomic effective potentials from isotropic scattering factors
International Nuclear Information System (INIS)
Romera, E.; Angulo, J.C.; Torres, J.J.
2002-01-01
We present a method for the approximate determination of one-electron effective potentials of many-electron systems from a finite number of values of the isotropic scattering factor. The method is based on the minimum cross-entropy technique. An application to some neutral ground-state atomic systems has been done within a Hartree-Fock framework
Geometry of the isotropic oscillator driven by the conformal mode
Energy Technology Data Exchange (ETDEWEB)
Galajinsky, Anton [Tomsk Polytechnic University, School of Physics, Tomsk (Russian Federation)
2018-01-15
Geometrization of a Lagrangian conservative system typically amounts to reformulating its equations of motion as the geodesic equations in a properly chosen curved spacetime. The conventional methods include the Jacobi metric and the Eisenhart lift. In this work, a modification of the Eisenhart lift is proposed which describes the isotropic oscillator in arbitrary dimension driven by the one-dimensional conformal mode. (orig.)
Seeing is believing : communication performance under isotropic teleconferencing conditions
Werkhoven, P.J.; Schraagen, J.M.C.; Punte, P.A.J.
2001-01-01
The visual component of conversational media such as videoconferencing systems communicates important non-verbal information such as facial expressions, gestures, posture and gaze. Unlike the other cues, selective gaze depends critically on the configuration of cameras and monitors. Under isotropic
A simple mechanical model for the isotropic harmonic oscillator
International Nuclear Information System (INIS)
Nita, Gelu M
2010-01-01
A constrained elastic pendulum is proposed as a simple mechanical model for the isotropic harmonic oscillator. The conceptual and mathematical simplicity of this model recommends it as an effective pedagogical tool in teaching basic physics concepts at advanced high school and introductory undergraduate course levels.
Homogenization and isotropization of an inflationary cosmological model
International Nuclear Information System (INIS)
Barrow, J.D.; Groen, Oe.; Oslo Univ.
1986-01-01
A member of the class of anisotropic and inhomogeneous cosmological models constructed by Wainwright and Goode is investigated. It is shown to describe a universe containing a scalar field which is minimally coupled to gravitation and a positive cosmological constant. It is shown that this cosmological model evolves exponentially rapidly towards the homogeneous and isotropic de Sitter universe model. (orig.)
Isotropic gates in large gamma detector arrays versus angular distributions
International Nuclear Information System (INIS)
Iacob, V.E.; Duchene, G.
1997-01-01
The quality of the angular distribution information extracted from high-fold gamma-gamma coincidence events is analyzed. It is shown that a correct quasi-isotropic gate setting, available at the modern large gamma-ray detector arrays, essentially preserves the quality of the angular information. (orig.)
Higher gradient expansion for linear isotropic peridynamic materials
Czech Academy of Sciences Publication Activity Database
Šilhavý, Miroslav
2017-01-01
Roč. 22, č. 6 (2017), s. 1483-1493 ISSN 1081-2865 Institutional support: RVO:67985840 Keywords : peridynamics * higher-grade theories * non-local elastic-material model * representation theorems for isotropic functions Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 2.953, year: 2016 http://journals.sagepub.com/doi/10.1177/1081286516637235
Higher gradient expansion for linear isotropic peridynamic materials
Czech Academy of Sciences Publication Activity Database
Šilhavý, Miroslav
2017-01-01
Roč. 22, č. 6 (2017), s. 1483-1493 ISSN 1081-2865 Institutional support: RVO:67985840 Keywords : peridynamics * higher-grade theories * non-local elastic-material model * representation theorems for isotropic functions Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 2.953, year: 2016 http:// journals .sagepub.com/doi/10.1177/1081286516637235
direct method of analysis of an isotropic rectangular plate direct
African Journals Online (AJOL)
eobe
This work evaluates the static analysis of an isotropic rectangular plate with various the static analysis ... method according to Ritz is used to obtain the total potential energy of the plate by employing the used to ..... for rectangular plates analysis, as the behavior of the ... results obtained by previous research work that used.
Transformation optics, isotropic chiral media and non-Riemannian geometry
International Nuclear Information System (INIS)
Horsley, S A R
2011-01-01
The geometrical interpretation of electromagnetism in transparent media (transformation optics) is extended to include chiral media that are isotropic but inhomogeneous. It was found that such media may be described through introducing the non-Riemannian geometrical property of torsion into the Maxwell equations, and it is shown how such an interpretation may be applied to the design of optical devices.
Isotropic cosmic expansion and the Rubin-Ford effect
International Nuclear Information System (INIS)
Fall, S.M.; Jones, B.J.T.
1976-01-01
It is shown that the Rubin-Ford data (Astrophys. J. Lett. 183:L111 (1973)), often taken as evidence for large scale anisotropic cosmic expansion, probably only reflect the inhomogeneous distribution of galaxies in the region of the sample. The data presented are consistent with isotropic expansion, an unperturbed galaxy velocity field, and hence a low density Universe. (author)
Directory of Open Access Journals (Sweden)
Ganesh Gopalakrishnan
2007-01-01
Full Text Available Renal transplantation is the treatment of choice for a medically eligible patient with end stage renal disease. The number of renal transplants has increased rapidly over the last two decades. However, the demand for organs has increased even more. This disparity between the availability of organs and waitlisted patients for transplants has forced many transplant centers across the world to use marginal kidneys and donors. We performed a Medline search to establish the current status of marginal kidney donors in the world. Transplant programs using marginal deceased renal grafts is well established. The focus is now on efforts to improve their results. Utilization of non-heart-beating donors is still in a plateau phase and comprises a minor percentage of deceased donations. The main concern is primary non-function of the renal graft apart from legal and ethical issues. Transplants with living donors outnumbered cadaveric transplants at many centers in the last decade. There has been an increased use of marginal living kidney donors with some acceptable medical risks. Our primary concern is the safety of the living donor. There is not enough scientific data available to quantify the risks involved for such donation. The definition of marginal living donor is still not clear and there are no uniform recommendations. The decision must be tailored to each donor who in turn should be actively involved at all levels of the decision-making process. In the current circumstances, our responsibility is very crucial in making decisions for either accepting or rejecting a marginal living donor.
DEFF Research Database (Denmark)
Parker, Noel
2009-01-01
of entities that are ever open to identity shifts. The concept of the margin possesses a much wider reach than borders, and focuses continual attention on the meetings and interactions between a range of indeterminate entities whose interactions may determine both themselves and the types of entity...... upon Deleuze's philosophy to set out an ontology in which the continual reformulation of entities in play in ‘post-international' society can be grasped. This entails a strategic shift from speaking about the ‘borders' between sovereign states to referring instead to the ‘margins' between a plethora...
Splenic marginal zone lymphoma.
Piris, Miguel A; Onaindía, Arantza; Mollejo, Manuela
Splenic marginal zone lymphoma (SMZL) is an indolent small B-cell lymphoma involving the spleen and bone marrow characterized by a micronodular tumoral infiltration that replaces the preexisting lymphoid follicles and shows marginal zone differentiation as a distinctive finding. SMZL cases are characterized by prominent splenomegaly and bone marrow and peripheral blood infiltration. Cells in peripheral blood show a villous cytology. Bone marrow and peripheral blood characteristic features usually allow a diagnosis of SMZL to be performed. Mutational spectrum of SMZL identifies specific findings, such as 7q loss and NOTCH2 and KLF2 mutations, both genes related with marginal zone differentiation. There is a striking clinical variability in SMZL cases, dependent of the tumoral load and performance status. Specific molecular markers such as 7q loss, p53 loss/mutation, NOTCH2 and KLF2 mutations have been found to be associated with the clinical variability. Distinction from Monoclonal B-cell lymphocytosis with marginal zone phenotype is still an open issue that requires identification of precise and specific thresholds with clinical meaning. Copyright © 2016 Elsevier Ltd. All rights reserved.
Komorbiditet ved marginal parodontitis
DEFF Research Database (Denmark)
Holmstrup, Palle; Damgaard, Christian; Olsen, Ingar
2017-01-01
Nærværende artikel præsenterer en oversigt over den foreliggende væsentligste viden om sammenhængen mellem marginal parodontitis og en række medicinske sygdomme, herunder hjerte-kar-sygdomme, diabetes mellitus, reumatoid arthritis, osteoporose, Parkinsons sygdom, Alzheimers sygdom, psoriasis og...
Marginally Deformed Starobinsky Gravity
DEFF Research Database (Denmark)
Codello, A.; Joergensen, J.; Sannino, Francesco
2015-01-01
We show that quantum-induced marginal deformations of the Starobinsky gravitational action of the form $R^{2(1 -\\alpha)}$, with $R$ the Ricci scalar and $\\alpha$ a positive parameter, smaller than one half, can account for the recent experimental observations by BICEP2 of primordial tensor modes....
Deep continental margin reflectors
Ewing, J.; Heirtzler, J.; Purdy, M.; Klitgord, Kim D.
1985-01-01
In contrast to the rarity of such observations a decade ago, seismic reflecting and refracting horizons are now being observed to Moho depths under continental shelves in a number of places. These observations provide knowledge of the entire crustal thickness from the shoreline to the oceanic crust on passive margins and supplement Consortium for Continental Reflection Profiling (COCORP)-type measurements on land.
Marginalization and School Nursing
Smith, Julia Ann
2004-01-01
The concept of marginalization was first analyzed by nursing researchers Hall, Stevens, and Meleis. Although nursing literature frequently refers to this concept when addressing "at risk" groups such as the homeless, gays and lesbians, and those infected with HIV/AIDS, the concept can also be applied to nursing. Analysis of current school nursing…
Isotropic Optical Mouse Placement for Mobile Robot Velocity Estimation
Directory of Open Access Journals (Sweden)
Sungbok Kim
2014-06-01
Full Text Available This paper presents the isotropic placement of multiple optical mice for the velocity estimation of a mobile robot. It is assumed that there can be positional restriction on the installation of optical mice at the bottom of a mobile robot. First, the velocity kinematics of a mobile robot with an array of optical mice is obtained and the resulting Jacobian matrix is analysed symbolically. Second, the isotropic, anisotropic and singular optical mouse placements are identified, along with the corresponding characteristic lengths. Third, the least squares mobile robot velocity estimation from the noisy optical mouse velocity measurements is discussed. Finally, simulation results for several different placements of three optical mice are given.
Study of open systems with molecules in isotropic liquids
Kondo, Yasushi; Matsuzaki, Masayuki
2018-05-01
We are interested in dynamics of a system in an environment, or an open system. Such phenomena as crossover from Markovian to non-Markovian relaxation and thermal equilibration are of our interest. Open systems have experimentally been studied with ultra cold atoms, ions in traps, optics, and cold electric circuits because well-isolated systems can be prepared here and thus the effects of environments can be controlled. We point out that some molecules solved in isotropic liquid are well isolated and thus they can also be employed for studying open systems in Nuclear Magnetic Resonance (NMR) experiments. First, we provide a short review on related phenomena of open systems that helps readers to understand our motivation. We, then, present two experiments as examples of our approach with molecules in isotropic liquids. Crossover from Markovian to non-Markovian relaxation was realized in one NMR experiment, while relaxation-like phenomena were observed in approximately isolated systems in the other.
Self-confinement of finite dust clusters in isotropic plasmas.
Miloshevsky, G V; Hassanein, A
2012-05-01
Finite two-dimensional dust clusters are systems of a small number of charged grains. The self-confinement of dust clusters in isotropic plasmas is studied using the particle-in-cell method. The energetically favorable configurations of grains in plasma are found that are due to the kinetic effects of plasma ions and electrons. The self-confinement phenomenon is attributed to the change in the plasma composition within a dust cluster resulting in grain attraction mediated by plasma ions. This is a self-consistent state of a dust cluster in which grain's repulsion is compensated by the reduced charge and floating potential on grains, overlapped ion clouds, and depleted electrons within a cluster. The common potential well is formed trapping dust clusters in the confined state. These results provide both valuable insights and a different perspective to the classical view on the formation of boundary-free dust clusters in isotropic plasmas.
Geometrical considerations in analyzing isotropic or anisotropic surface reflections.
Simonot, Lionel; Obein, Gael
2007-05-10
The bidirectional reflectance distribution function (BRDF) represents the evolution of the reflectance with the directions of incidence and observation. Today BRDF measurements are increasingly applied and have become important to the study of the appearance of surfaces. The representation and the analysis of BRDF data are discussed, and the distortions caused by the traditional representation of the BRDF in a Fourier plane are pointed out and illustrated for two theoretical cases: an isotropic surface and a brushed surface. These considerations will help characterize either the specular peak width of an isotropic rough surface or the main directions of the light scattered by an anisotropic rough surface without misinterpretations. Finally, what is believed to be a new space is suggested for the representation of the BRDF, which avoids the geometrical deformations and in numerous cases is more convenient for BRDF analysis.
Isotropic gates and large gamma detector arrays versus angular distributions
International Nuclear Information System (INIS)
Iacob, V.E.; Duchene, G.
1997-01-01
Angular information extracted from in-beam γ ray measurements are of great importance for γ ray multipolarity and nuclear spin assignments. In our days large Ge detector arrays became available allowing the measurements of extremely weak γ rays in almost 4π sr solid angle (e.g., EUROGAM detector array). Given the high detector efficiency it is common for the mean suppressed coincidence multiplicity to reach values as high as 4 to 6. Thus, it is possible to gate on particular γ rays in order to enhance the relative statistics of a definite reaction channel and/or a definite decaying path in the level scheme of the selected residual nucleus. As compared to angular correlations, the conditioned angular distribution spectra exhibit larger statistics because in the latter the gate-setting γ ray may be observed by all the detectors in the array, relaxing somehow the geometrical restrictions of the angular correlations. Since the in-beam γ ray emission is anisotropic one could inquire that gate setting as mentioned above, based on anisotropic γ ray which would perturb the angular distributions in the unfolded events. As our work proved, there is no reason to worry about this if the energy gate runs over the whole solid angle in an ideal 4π sr detector, i.e., if the gate is isotropic. In real quasi 4π sr detector arrays the corresponding quasi isotropic gate preserves the angular properties of the unfolded data, too. However extraction of precise angular distribution coefficient especially a 4 , requires the consideration of the deviation of the quasi isotropic gate relative to the (ideal) isotropic gate
Electromagnetic illusion with isotropic and homogeneous materials through scattering manipulation
International Nuclear Information System (INIS)
Yang, Fan; Mei, Zhong Lei; Jiang, Wei Xiang; Cui, Tie Jun
2015-01-01
A new isotropic and homogeneous illusion device for electromagnetic waves is proposed. This single-shelled device can change the fingerprint of the covered object into another one by manipulating the scattering of the composite structure. We show that an electrically small sphere can be disguised as another small one with different electromagnetic parameters. The device can even make a dielectric sphere (electrically small) behave like a conducting one. Full-wave simulations confirm the performance of proposed illusion device. (paper)
Liquid crystalline states of surfactant solutions of isotropic micelles
International Nuclear Information System (INIS)
Bagdassarian, C.; Gelbart, W.M.; Ben-Shaul, A.
1988-01-01
We consider micellar solutions whose surfactant molecules prefer strongly to form small, globular aggregates in the absence of intermicellar interactions. At sufficiently high volume fraction of surfactant, the isotropic phase of essentially spherical micelles is shown to be unstable with respect to an orientationally ordered (nematic) state of rodlike aggregates. This behavior is relevant to the phase diagrams reported for important classes of aqueous amphiphilic solutions
Monopole-fermion systems in the complex isotropic tetrad formalism
International Nuclear Information System (INIS)
Gal'tsov, D.V.; Ershov, A.A.
1988-01-01
The interaction of fermions of arbitrary isospin with regular magnetic monopoles and dyons of the group SU(2) and also with point gravitating monopoles and dyons of the Wu-Yang type described by the Reissner-Nordstrom metric are studied using the Newman-Penrose complex isotropic tetrad formalism. Formulas for the bound-state spectrum and explicit expressions for the zero modes are obtained and the Rubakov-Callan effect for black holes is discussed
International Nuclear Information System (INIS)
Prisciandaro, Joann I.; Frechette, Christina M.; Herman, Michael G.; Brown, Paul D.; Garces, Yolanda I.; Foote, Robert L.
2004-01-01
Assessment of clinic and site specific margins are essential for the effective use of three-dimensional and intensity modulated radiation therapy. An electronic portal imaging device (EPID) based methodology is introduced which allows individual and population based CTV-to-PTV margins to be determined and compared with traditional margins prescribed during treatment. This method was applied to a patient cohort receiving external beam head and neck radiotherapy under an IRB approved protocol. Although the full study involved the use of an EPID-based method to assess the impact of (1) simulation technique (2) immobilization, and (3) surgical intervention on inter- and intrafraction variations of individual and population-based CTV-to-PTV margins, the focus of the paper is on the technique. As an illustration, the methodology is utilized to examine the influence of two immobilization devices, the UON TM thermoplastic mask and the Type-S TM head/neck shoulder immobilization system on margins. Daily through port images were acquired for selected fields for each patient with an EPID. To analyze these images, simulation films or digitally reconstructed radiographs (DRR's) were imported into the EPID software. Up to five anatomical landmarks were identified and outlined by the clinician and up to three of these structures were matched for each reference image. Once the individual based errors were quantified, the patient results were grouped into populations by matched anatomical structures and immobilization device. The variation within the subgroup was quantified by calculating the systematic and random errors (Σ sub and σ sub ). Individual patient margins were approximated as 1.65 times the individual-based random error and ranged from 1.1 to 6.3 mm (A-P) and 1.1 to 12.3 mm (S-I) for fields matched on skull and cervical structures, and 1.7 to 10.2 mm (L-R) and 2.0 to 13.8 mm (S-I) for supraclavicular fields. Population-based margins ranging from 5.1 to 6.6 mm (A
The Isotropic Radio Background and Annihilating Dark Matter
Energy Technology Data Exchange (ETDEWEB)
Hooper, Dan [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Belikov, Alexander V. [Institut d' Astrophysique (France); Jeltema, Tesla E. [Univ. of California, Santa Cruz, CA (United States); Linden, Tim [Univ. of California, Santa Cruz, CA (United States); Profumo, Stefano [Univ. of California, Santa Cruz, CA (United States); Slatyer, Tracy R. [Princeton Univ., Princeton, NJ (United States)
2012-11-01
Observations by ARCADE-2 and other telescopes sensitive to low frequency radiation have revealed the presence of an isotropic radio background with a hard spectral index. The intensity of this observed background is found to exceed the flux predicted from astrophysical sources by a factor of approximately 5-6. In this article, we consider the possibility that annihilating dark matter particles provide the primary contribution to the observed isotropic radio background through the emission of synchrotron radiation from electron and positron annihilation products. For reasonable estimates of the magnetic fields present in clusters and galaxies, we find that dark matter could potentially account for the observed radio excess, but only if it annihilates mostly to electrons and/or muons, and only if it possesses a mass in the range of approximately 5-50 GeV. For such models, the annihilation cross section required to normalize the synchrotron signal to the observed excess is sigma v ~ (0.4-30) x 10^-26 cm^3/s, similar to the value predicted for a simple thermal relic (sigma v ~ 3 x 10^-26 cm^3/s). We find that in any scenario in which dark matter annihilations are responsible for the observed excess radio emission, a significant fraction of the isotropic gamma ray background observed by Fermi must result from dark matter as well.
Superfluid H3e in globally isotropic random media
Ikeda, Ryusuke; Aoyama, Kazushi
2009-02-01
Recent theoretical and experimental studies of superfluid H3e in aerogels with a global anisotropy created, e.g., by an external stress have definitely shown that the A -like phase with an equal-spin pairing in such aerogel samples is in the Anderson-Brinkman-Morel (ABM) (or axial) pairing state. In this paper, the A -like phase of superfluid H3e in globally isotropic aerogel is studied in detail by assuming a weakly disordered system in which singular topological defects are absent. Through calculation of the free energy, a disordered ABM state is found to be the best candidate of the pairing state of the globally isotropic A -like phase. Further, it is found through a one-loop renormalization-group calculation that the coreless continuous vortices (or vortex-Skyrmions) are irrelevant to the long-distance behavior of disorder-induced textures, and that the superfluidity is maintained in spite of lack of the conventional superfluid long-range order. Therefore, the globally isotropic A -like phase at weak disorder is, like in the case with a globally stretched anisotropy, a glass phase with the ABM pairing and shows superfluidity.
Isotropic transmission of magnon spin information without a magnetic field.
Haldar, Arabinda; Tian, Chang; Adeyeye, Adekunle Olusola
2017-07-01
Spin-wave devices (SWD), which use collective excitations of electronic spins as a carrier of information, are rapidly emerging as potential candidates for post-semiconductor non-charge-based technology. Isotropic in-plane propagating coherent spin waves (magnons), which require magnetization to be out of plane, is desirable in an SWD. However, because of lack of availability of low-damping perpendicular magnetic material, a usually well-known in-plane ferrimagnet yttrium iron garnet (YIG) is used with a large out-of-plane bias magnetic field, which tends to hinder the benefits of isotropic spin waves. We experimentally demonstrate an SWD that eliminates the requirement of external magnetic field to obtain perpendicular magnetization in an otherwise in-plane ferromagnet, Ni 80 Fe 20 or permalloy (Py), a typical choice for spin-wave microconduits. Perpendicular anisotropy in Py, as established by magnetic hysteresis measurements, was induced by the exchange-coupled Co/Pd multilayer. Isotropic propagation of magnon spin information has been experimentally shown in microconduits with three channels patterned at arbitrary angles.
Depth migration in transversely isotropic media with explicit operators
Energy Technology Data Exchange (ETDEWEB)
Uzcategui, Omar [Colorado School of Mines, Golden, CO (United States)
1994-12-01
The author presents and analyzes three approaches to calculating explicit two-dimensional (2D) depth-extrapolation filters for all propagation modes (P, SV, and SH) in transversely isotropic media with vertical and tilted axis of symmetry. These extrapolation filters are used to do 2D poststack depth migration, and also, just as for isotropic media, these 2D filters are used in the McClellan transformation to do poststack 3D depth migration. Furthermore, the same explicit filters can also be used to do depth-extrapolation of prestack data. The explicit filters are derived by generalizations of three different approaches: the modified Taylor series, least-squares, and minimax methods initially developed for isotropic media. The examples here show that the least-squares and minimax methods produce filters with accurate extrapolation (measured in the ability to position steep reflectors) for a wider range of propagation angles than that obtained using the modified Taylor series method. However, for low propagation angles, the modified Taylor series method has smaller amplitude and phase errors than those produced by the least-squares and minimax methods. These results suggest that to get accurate amplitude estimation, modified Taylor series filters would be somewhat preferred in areas with low dips. In areas with larger dips, the least-squares and minimax methods would give a distinctly better delineation of the subsurface structures.
Lattice Boltzmann model for three-dimensional decaying homogeneous isotropic turbulence
International Nuclear Information System (INIS)
Xu Hui; Tao Wenquan; Zhang Yan
2009-01-01
We implement a lattice Boltzmann method (LBM) for decaying homogeneous isotropic turbulence based on an analogous Galerkin filter and focus on the fundamental statistical isotropic property. This regularized method is constructed based on orthogonal Hermite polynomial space. For decaying homogeneous isotropic turbulence, this regularized method can simulate the isotropic property very well. Numerical studies demonstrate that the novel regularized LBM is a promising approximation of turbulent fluid flows, which paves the way for coupling various turbulent models with LBM
Middlemen Margins and Globalization
Pranab Bardhan; Dilip Mookherjee; Masatoshi Tsumagari
2013-01-01
We develop a theory of trading middlemen or entrepreneurs who perform financing, quality supervision and marketing roles for goods produced by suppliers or workers. Brand-name reputations are necessary to overcome product quality moral hazard problems; middlemen margins represent reputational incentive rents. We develop a two sector North-South model of competitive equilibrium, with endogenous sorting of agents with heterogenous entrepreneurial abilities into sectors and occupations. The Sout...
International Nuclear Information System (INIS)
Von Riesemann, W.A.
1980-01-01
Objective of the Containment Safety Margins program is the development and verification of methodologies which are capable of reliably predicting the ultimate load-carrying capability of light water reactor containment structures under accident and severe environments. The program was initiated in June 1980 at Sandia and this paper addresses the first phase of the program which is essentially a planning effort. Brief comments are made about the second phase, which will involve testing of containment models
Marginalized Youth. An Introduction.
Kessl, Fabian; Otto, Hans-Uwe
2009-01-01
The life conduct of marginalized groups has become subject to increasing levels of risk in advanced capitalist societies. In particular, children and young people are confronted with the harsh consequences of a “new poverty” in the contemporary era. The demographic complexion of today’s poverty is youthful, as a number of government reports have once again documented in recent years in Australia, Germany, France, Great Britain, the US or Scandinavian countries. Key youth studies have shown a ...
Perruisseau-Carrier, A; Bahlouli, N; Bierry, G; Vernet, P; Facca, S; Liverneaux, P
2017-12-01
Augmented reality could help the identification of nerve structures in brachial plexus surgery. The goal of this study was to determine which law of mechanical behavior was more adapted by comparing the results of Hooke's isotropic linear elastic law to those of Ogden's isotropic hyperelastic law, applied to a biomechanical model of the brachial plexus. A model of finite elements was created using the ABAQUS ® from a 3D model of the brachial plexus acquired by segmentation and meshing of MRI images at 0°, 45° and 135° of shoulder abduction of a healthy subject. The offset between the reconstructed model and the deformed model was evaluated quantitatively by the Hausdorff distance and qualitatively by the identification of 3 anatomical landmarks. In every case the Hausdorff distance was shorter with Ogden's law compared to Hooke's law. On a qualitative aspect, the model deformed by Ogden's law followed the concavity of the reconstructed model whereas the model deformed by Hooke's law remained convex. In conclusion, the results of this study demonstrate that the behavior of Ogden's isotropic hyperelastic mechanical model was more adapted to the modeling of the deformations of the brachial plexus. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial
International Nuclear Information System (INIS)
Guney, Durdu; Koschny, Thomas; Soukoulis, Costas
2010-01-01
Isotropic negative index metamaterials (NIMs) are highly desired, particularly for the realization of ultra-high resolution lenses. However, existing isotropic NIMs function only two-dimensionally and cannot be miniaturized beyond microwaves. Direct laser writing processes can be a paradigm shift toward the fabrication of three-dimensionally (3D) isotropic bulk optical metamaterials, but only at the expense of an additional design constraint, namely connectivity. Here, we demonstrate with a proof-of-principle design that the requirement connectivity does not preclude fully isotropic left-handed behavior. This is an important step towards the realization of bulk 3D isotropic NIMs at optical wavelengths.
Marginal Models for Categorial Data
Bergsma, W.P.; Rudas, T.
2002-01-01
Statistical models defined by imposing restrictions on marginal distributions of contingency tables have received considerable attention recently. This paper introduces a general definition of marginal log-linear parameters and describes conditions for a marginal log-linear parameter to be a smooth
DEFF Research Database (Denmark)
Jensen, Sune Qvotrup
2010-01-01
and other types of material. Taking the concepts of othering, intersectionality and marginality as point of departure the article analyses how these young men experience othering and how they react to it. One type of reaction, described as stylization, relies on accentuating the latently positive symbolic...... of critique although in a masculinist way. These reactions to othering represent a challenge to researchers interested in intersectionality and gender, because gender is reproduced as a hierarchical form of social differentiation at the same time as racism is both reproduced and resisted....
On a hierarchical construction of the anisotropic LTSN solution from the isotropic LTSN solution
International Nuclear Information System (INIS)
Foletto, Taline; Segatto, Cynthia F.; Bodmann, Bardo E.; Vilhena, Marco T.
2015-01-01
In this work, we present a recursive scheme targeting the hierarchical construction of anisotropic LTS N solution from the isotropic LTS N solution. The main idea relies in the decomposition of the associated LTS N anisotropic matrix as a sum of two matrices in which one matrix contains the isotropic and the other anisotropic part of the problem. The matrix containing the anisotropic part is considered as the source of the isotropic problem. The solution of this problem is made by the decomposition of the angular flux as a truncated series of intermediate functions and replace in the isotropic equation. After the replacement of these into the split isotropic equation, we construct a set of isotropic recursive problems, that are readily solved by the classic LTS N isotropic method. We apply this methodology to solve problems considering homogeneous and heterogeneous anisotropic regions. Numerical results are presented and compared with the classical LTS N anisotropic solution. (author)
Scanning anisotropy parameters in horizontal transversely isotropic media
Masmoudi, Nabil
2016-10-12
The horizontal transversely isotropic model, with arbitrary symmetry axis orientation, is the simplest effective representative that explains the azimuthal behaviour of seismic data. Estimating the anisotropy parameters of this model is important in reservoir characterisation, specifically in terms of fracture delineation. We propose a travel-time-based approach to estimate the anellipticity parameter η and the symmetry axis azimuth ϕ of a horizontal transversely isotropic medium, given an inhomogeneous elliptic background model (which might be obtained from velocity analysis and well velocities). This is accomplished through a Taylor\\'s series expansion of the travel-time solution (of the eikonal equation) as a function of parameter η and azimuth angle ϕ. The accuracy of the travel time expansion is enhanced by the use of Shanks transform. This results in an accurate approximation of the solution of the non-linear eikonal equation and provides a mechanism to scan simultaneously for the best fitting effective parameters η and ϕ, without the need for repetitive modelling of travel times. The analysis of the travel time sensitivity to parameters η and ϕ reveals that travel times are more sensitive to η than to the symmetry axis azimuth ϕ. Thus, η is better constrained from travel times than the azimuth. Moreover, the two-parameter scan in the homogeneous case shows that errors in the background model affect the estimation of η and ϕ differently. While a gradual increase in errors in the background model leads to increasing errors in η, inaccuracies in ϕ, on the other hand, depend on the background model errors. We also propose a layer-stripping method valid for a stack of arbitrary oriented symmetry axis horizontal transversely isotropic layers to convert the effective parameters to the interval layer values.
Effects of isotropic alpha populations on tokamak ballooning stability
International Nuclear Information System (INIS)
Spong, D.A.; Sigmar, D.J.; Tsang, K.T.; Ramos, J.J.; Hastings, D.E.; Cooper, W.A.
1986-12-01
Fusion product alpha populations can significantly influence tokamak stability due to coupling between the trapped alpha precessional drift and the kinetic ballooning mode frequency. Careful, quantitative evaluations of these effects are necessary in burning plasma devices such as the Tokamak Fusion Test Reactor and the Joint European Torus, and we have continued systematic development of such a kinetic stability model. In this model we have considered a range of different forms for the alpha distribution function and the tokamak equilibrium. Both Maxwellian and slowing-down models have been used for the alpha energy dependence while deeply trapped and, more recently, isotropic pitch angle dependences have been examined
Anisotropy in "isotropic diffusion" measurements due to nongaussian diffusion
DEFF Research Database (Denmark)
Jespersen, Sune Nørhøj; Olesen, Jonas Lynge; Ianuş, Andrada
2017-01-01
Designing novel diffusion-weighted NMR and MRI pulse sequences aiming to probe tissue microstructure with techniques extending beyond the conventional Stejskal-Tanner family is currently of broad interest. One such technique, multidimensional diffusion MRI, has been recently proposed to afford...... model-free decomposition of diffusion signal kurtosis into terms originating from either ensemble variance of isotropic diffusivity or microscopic diffusion anisotropy. This ability rests on the assumption that diffusion can be described as a sum of multiple Gaussian compartments, but this is often...
Isotropic 2D quadrangle meshing with size and orientation control
Pellenard, Bertrand
2011-12-01
We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.
Observation of transverse patterns in an isotropic microchip laser
International Nuclear Information System (INIS)
Chen, Y.F.; Lan, Y.P.
2003-01-01
An isotropic microchip laser is used to study the characteristics of high-order wave functions in a two-dimensional (2D) quantum harmonic oscillator based on the identical functional forms. With a doughnut pump profile, the spontaneous transverse modes are found to, generally, be elliptic and hyperbolic transverse modes. Theoretical analyses reveal that the elliptic transverse modes are analogous to the coherent states of a 2D harmonic oscillator; the formation of hyperbolic transverse modes is a spontaneous mode locking between two identical Hermite-Gaussian modes
Homogenous isotropic invisible cloak based on geometrical optics.
Sun, Jingbo; Zhou, Ji; Kang, Lei
2008-10-27
Invisible cloak derived from the coordinate transformation requires its constitutive material to be anisotropic. In this work, we present a cloak of graded-index isotropic material based on the geometrical optics theory. The cloak is realized by concentric multilayered structure with designed refractive index to achieve the low-scattering and smooth power-flow. Full-wave simulations on such a design of a cylindrical cloak are performed to demonstrate the cloaking ability to incident wave of any polarization. Using normal nature material with isotropy and low absorption, the cloak shows light on a practical path to stealth technology, especially that in the optical range.
Germain, François; Beaulieu, Luc; Fortin, André
2008-01-01
In conformal radiotherapy planning for lung cancer, respiratory movements are not taken into account when a single computed tomography (CT) scan is performed. This study examines tumor movements to design individualized margins to account for these movements and evaluates their dosimetric impacts on planning volume. Fifteen patients undergoing CT-based planning for radical radiotherapy for localized lung cancer formed the study cohort. A reference plan was constructed based on reference gross, clinical, and planning target volumes (rGTV, rCTV, and rPTV, respectively). The reference plans were compared with individualized plans using individualized margins obtained by using 5 serial CT scans to generate individualized target volumes (iGTV, iCTV, and iPTV). Three-dimensional conformal radiation therapy was used for plan generation using 6- and 23-MV photon beams. Ten plans for each patient were generated and dose-volume histograms (DVHs) were calculated. Comparisons of volumetric and dosimetric parameters were performed using paired Student t-tests. Relative to the rGTV, the total volume occupied by the superimposed GTVs increased progressively with each additional CT scans. With the use of all 5 scans, the average increase in GTV was 52.1%. For the plans with closest dosimetric coverage, target volume was smaller (iPTV/rPTV ratio 0.808) but lung irradiation was only slightly decreased. Reduction in the proportion of lung tissue that received 20 Gy or more outside the PTV (V20) was observed both for 6-MV plans (-0.73%) and 23-MV plans (-0.65%), with p = 0.02 and p = 0.04, respectively. In conformal RT planning for the treatment of lung cancer, the use of serial CT scans to evaluate respiratory motion and to generate individualized margins to account for these motions produced only a limited lung sparing advantage.
International Nuclear Information System (INIS)
Germain, Francois; Beaulieu, Luc; Fortin, Andre
2008-01-01
In conformal radiotherapy planning for lung cancer, respiratory movements are not taken into account when a single computed tomography (CT) scan is performed. This study examines tumor movements to design individualized margins to account for these movements and evaluates their dosimetric impacts on planning volume. Fifteen patients undergoing CT-based planning for radical radiotherapy for localized lung cancer formed the study cohort. A reference plan was constructed based on reference gross, clinical, and planning target volumes (rGTV, rCTV, and rPTV, respectively). The reference plans were compared with individualized plans using individualized margins obtained by using 5 serial CT scans to generate individualized target volumes (iGTV, iCTV, and iPTV). Three-dimensional conformal radiation therapy was used for plan generation using 6- and 23-MV photon beams. Ten plans for each patient were generated and dose-volume histograms (DVHs) were calculated. Comparisons of volumetric and dosimetric parameters were performed using paired Student t-tests. Relative to the rGTV, the total volume occupied by the superimposed GTVs increased progressively with each additional CT scans. With the use of all 5 scans, the average increase in GTV was 52.1%. For the plans with closest dosimetric coverage, target volume was smaller (iPTV/rPTV ratio 0.808) but lung irradiation was only slightly decreased. Reduction in the proportion of lung tissue that received 20 Gy or more outside the PTV (V20) was observed both for 6-MV plans (-0.73%) and 23-MV plans (-0.65%), with p = 0.02 and p = 0.04, respectively. In conformal RT planning for the treatment of lung cancer, the use of serial CT scans to evaluate respiratory motion and to generate individualized margins to account for these motions produced only a limited lung sparing advantage
Image-guided radiotherapy of bladder cancer: bladder volume variation and its relation to margins
DEFF Research Database (Denmark)
Muren, Ludvig; Redpath, Anthony Thomas; Lord, Hannah
2007-01-01
: The correlation between the relative bladder volume (RBV, defined as repeat scan volume/planning scan volume) and the margins required to account for internal motion was first studied using a series of 20 bladder cancer patients with weekly repeat CT scanning during treatment. Both conformal RT (CRT) and IGRT......BACKGROUND AND PURPOSE: To control and account for bladder motion is a major challenge in radiotherapy (RT) of bladder cancer. This study investigates the relation between bladder volume variation and margins in conformal and image-guided RT (IGRT) for this disease. MATERIALS AND METHODS...... these patients were given fluid intake restrictions on alternating weeks during treatment. RESULTS: IGRT gave the strongest correlation between the RBV and margin size (R(2)=0.75; p10mm were required in only 1% of the situations when the RBV1, whereas isotropic margins >10...
Geometric Models for Isotropic Random Porous Media: A Review
Directory of Open Access Journals (Sweden)
Helmut Hermann
2014-01-01
Full Text Available Models for random porous media are considered. The models are isotropic both from the local and the macroscopic point of view; that is, the pores have spherical shape or their surface shows piecewise spherical curvature, and there is no macroscopic gradient of any geometrical feature. Both closed-pore and open-pore systems are discussed. The Poisson grain model, the model of hard spheres packing, and the penetrable sphere model are used; variable size distribution of the pores is included. A parameter is introduced which controls the degree of open-porosity. Besides systems built up by a single solid phase, models for porous media with the internal surface coated by a second phase are treated. Volume fraction, surface area, and correlation functions are given explicitly where applicable; otherwise numerical methods for determination are described. Effective medium theory is applied to calculate physical properties for the models such as isotropic elastic moduli, thermal and electrical conductivity, and static dielectric constant. The methods presented are exemplified by applications: small-angle scattering of systems showing fractal-like behavior in limited ranges of linear dimension, optimization of nanoporous insulating materials, and improvement of properties of open-pore systems by atomic layer deposition of a second phase on the internal surface.
Large Deformation Constitutive Laws for Isotropic Thermoelastic Materials
Energy Technology Data Exchange (ETDEWEB)
Plohr, Bradley J. [Los Alamos National Laboratory; Plohr, Jeeyeon N. [Los Alamos National Laboratory
2012-07-25
We examine the approximations made in using Hooke's law as a constitutive relation for an isotropic thermoelastic material subjected to large deformation by calculating the stress evolution equation from the free energy. For a general thermoelastic material, we employ the volume-preserving part of the deformation gradient to facilitate volumetric/shear strain decompositions of the free energy, its first derivatives (the Cauchy stress and entropy), and its second derivatives (the specific heat, Grueneisen tensor, and elasticity tensor). Specializing to isotropic materials, we calculate these constitutive quantities more explicitly. For deformations with limited shear strain, but possibly large changes in volume, we show that the differential equations for the stress components involve new terms in addition to the traditional Hooke's law terms. These new terms are of the same order in the shear strain as the objective derivative terms needed for frame indifference; unless the latter terms are negligible, the former cannot be neglected. We also demonstrate that accounting for the new terms requires that the deformation gradient be included as a field variable
Isotropic extensions of the vacuum solutions in general relativity
Energy Technology Data Exchange (ETDEWEB)
Molina, C. [Universidade de Sao Paulo (USP), SP (Brazil); Martin-Moruno, Prado [Victoria University of Wellington (New Zealand); Gonzalez-Diaz, Pedro F. [Consejo Superior de Investigaciones Cientificas, Madrid (Spain)
2012-07-01
Full text: Spacetimes described by spherically symmetric solutions of Einstein's equations are of paramount importance both in astrophysical applications and theoretical considerations. And among those, black holes are highlighted. In vacuum, Birkhoff's theorem and its generalizations to non-asymptotically flat cases uniquely fix the metric as the Schwarzschild, Schwarzschild-de Sitter or Schwarzschild-anti-de Sitter geometries, the vacuum solutions of the usual general relativity with zero, positive or negative values for the cosmological constant, respectively. In this work we are mainly interested in black holes in a cosmological environment. Of the two main assumptions of the cosmological principle, homogeneity is lost when compact objects are considered. Nevertheless isotropy is still possible, and we enforce this condition. Within this context, we investigate spatially isotropic solutions close - continuously deformable - to the usual vacuum solutions. We obtain isotropic extensions of the usual spherically symmetric vacuum geometries in general relativity. Exact and perturbative solutions are derived. Maximal extensions are constructed and their causal structures are discussed. The classes of geometries obtained include black holes in compact and non-compact universes, wormholes in the interior region of cosmological horizons, and anti-de Sitter geometries with excess/deficit solid angle. The tools developed here are applicable in more general contexts, with extensions subjected to other constraints. (author)
ISOTROPIC LUMINOSITY INDICATORS IN A COMPLETE AGN SAMPLE
International Nuclear Information System (INIS)
Diamond-Stanic, Aleksandar M.; Rieke, George H.; Rigby, Jane R.
2009-01-01
The [O IV] λ25.89 μm line has been shown to be an accurate indicator of active galactic nucleus (AGN) intrinsic luminosity in that it correlates well with hard (10-200 keV) X-ray emission. We present measurements of [O IV] for 89 Seyfert galaxies from the unbiased revised Shapley-Ames (RSA) sample. The [O IV] luminosity distributions of obscured and unobscured Seyferts are indistinguishable, indicating that their intrinsic AGN luminosities are quite similar and that the RSA sample is well suited for tests of the unified model. In addition, we analyze several commonly used proxies for AGN luminosity, including [O III] λ5007 A, 6 cm radio, and 2-10 keV X-ray emission. We find that the radio luminosity distributions of obscured and unobscured AGNs show no significant difference, indicating that radio luminosity is a useful isotropic luminosity indicator. However, the observed [O III] and 2-10 keV luminosities are systematically smaller for obscured Seyferts, indicating that they are not emitted isotropically.
DEFF Research Database (Denmark)
Pallesen, Cecil Marie
2015-01-01
always been contested and to some extent vulnerable. However, the Indian communities are strong socially and economically, and the vast majority of its people have great international networks and several potential plans or strategies for the future, should the political climate in Tanzania become......In the end of the 19th century, Indians began settling in East Africa. Most of them left Gujarat because of drought and famine, and they were in search for business opportunities and a more comfortable life. Within the following decades, many of them went from being small-scale entrepreneurs to big...... hostile towards them. I argue that this migrant group is unique being marginalized and strong at the same time, and I explain this uniqueness by several features in the Indian migrants’ cultural and religious background, in colonial and post-colonial Tanzania, and in the Indians’ role as middlemen between...
International Nuclear Information System (INIS)
Qi, X; Yang, Y; Jack, N; Santhanam, A; Yang, L; Chen, A; Low, D
2016-01-01
Purpose: On-board MRI provides superior soft-tissue contrast, allowing patient alignment using tumor or nearby critical structures. This study aims to study H&N MRI-guided IGRT to analyze inter-fraction patient setup variations using soft-tissue targets and design appropriate CTV-to-PTV margin and clinical implication. Methods: 282 MR images for 10 H&N IMRT patients treated on a ViewRay system were retrospectively analyzed. Patients were immobilized using a thermoplastic mask on a customized headrest fitted in a radiofrequency coil and positioned to soft-tissue targets. The inter-fraction patient displacements were recorded to compute the PTV margins using the recipe: 2.5∑+0.7σ. New IMRT plans optimized on the revised PTVs were generated to evaluate the delivered dose distributions. An in-house dose deformation registration tool was used to assess the resulting dosimetric consequences when margin adaption is performed based on weekly MR images. The cumulative doses were compared to the reduced margin plans for targets and critical structures. Results: The inter-fraction displacements (and standard deviations), ∑ and σ were tabulated for MRI and compared to kVCBCT. The computed CTV-to-PTV margin was 3.5mm for soft-tissue based registration. There were minimal differences between the planned and delivered doses when comparing clinical and the PTV reduced margin plans: the paired t-tests yielded p=0.38 and 0.66 between the planned and delivered doses for the adapted margin plans for the maximum cord and mean parotid dose, respectively. Target V95 received comparable doses as planned for the reduced margin plans. Conclusion: The 0.35T MRI offers acceptable soft-tissue contrast and good spatial resolution for patient alignment and target visualization. Better tumor conspicuity from MRI allows soft-tissue based alignments with potentially improved accuracy, suggesting a benefit of margin reduction for H&N radiotherapy. The reduced margin plans (i.e., 2 mm) resulted
A finite-density calculation of the surface tension of isotropic-nematic interfaces
International Nuclear Information System (INIS)
Moore, B.G.; McMullen, W.E.
1992-01-01
The surface tension of the isotropic-nematic interface in a fluid of intermediate-sized hard particles is studied and calculated. The transition from isotropic to nematic is fixed to occur in a continuous fashion by varying the biaxiality of the model particles. A reversal in the preferred orientation of the bulk nematic relative to the isotropic-nematic interface suggests an oblique orientation of the bulk nematic. 32 refs., 8 figs
Charged Particle Diffusion in Isotropic Random Magnetic Fields
Energy Technology Data Exchange (ETDEWEB)
Subedi, P.; Matthaeus, W. H.; Chuychai, P.; Parashar, T. N.; Chhiber, R. [Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Sonsrettee, W. [Faculty of Engineering and Technology, Panyapiwat Institute of Management, Nonthaburi 11120 (Thailand); Blasi, P. [INAF/Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5—I-50125 Firenze (Italy); Ruffolo, D. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Montgomery, D. [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Dmitruk, P. [Departamento de Física Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, 1428 Buenos Aires (Argentina); Wan, M. [Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055 (China)
2017-03-10
The investigation of the diffusive transport of charged particles in a turbulent magnetic field remains a subject of considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here we consider the diffusion of charged particles in fully three-dimensional isotropic turbulent magnetic fields with no mean field, which may be pertinent to many astrophysical situations. We identify different ranges of particle energy depending upon the ratio of Larmor radius to the characteristic outer length scale of turbulence. Two different theoretical models are proposed to calculate the diffusion coefficient, each applicable to a distinct range of particle energies. The theoretical results are compared to those from computer simulations, showing good agreement.
Isotropic Surface Remeshing without Large and Small Angles
Wang, Yiqun; Yan, Dong-Ming; Liu, Xiaohan; Tang, Chengcheng; Guo, Jianwei; Zhang, Xiaopeng; Wonka, Peter
2018-01-01
We introduce a novel algorithm for isotropic surface remeshing which progressively eliminates obtuse triangles and improves small angles. The main novelty of the proposed approach is a simple vertex insertion scheme that facilitates the removal of large angles, and a vertex removal operation that improves the distribution of small angles. In combination with other standard local mesh operators, e.g., connectivity optimization and local tangential smoothing, our algorithm is able to remesh efficiently a low-quality mesh surface. Our approach can be applied directly or used as a post-processing step following other remeshing approaches. Our method has a similar computational efficiency to the fastest approach available, i.e., real-time adaptive remeshing [1]. In comparison with state-of-the-art approaches, our method consistently generates better results based on evaluations using different metrics.
Circular random motion in diatom gliding under isotropic conditions
International Nuclear Information System (INIS)
Gutiérrez-Medina, Braulio; Maldonado, Ana Iris Peña; Guerra, Andrés Jiménez; Rubio, Yadiralia Covarrubias; Meza, Jessica Viridiana García
2014-01-01
How cells migrate has been investigated primarily for the case of trajectories composed by joined straight segments. In contrast, little is known when cellular motion follows intrinsically curved paths. Here, we use time-lapse optical microscopy and automated trajectory tracking to investigate how individual cells of the diatom Nitzschia communis glide across surfaces under isotropic environmental conditions. We find a distinct kind of random motion, where trajectories are formed by circular arcs traveled at constant speed, alternated with random stoppages, direction reversals and changes in the orientation of the arcs. Analysis of experimental and computer-simulated trajectories show that the circular random motion of diatom gliding is not optimized for long-distance travel but rather for recurrent coverage of limited surface area. These results suggest that one main biological role for this type of diatom motility is to efficiently build the foundation of algal biofilms. (paper)
Redshift and lateshift from homogeneous and isotropic modified dispersion relations
Pfeifer, Christian
2018-05-01
Observables which would indicate a modified vacuum dispersion relations, possibly caused by quantum gravity effects, are a four momentum dependence of the cosmological redshift and the existence of a so called lateshift effect for massless or very light particles. Existence or non-existence of the latter is currently analyzed on the basis of the available observational data from gamma-ray bursts and compared to predictions of specific modified dispersion relation models. We consider the most general perturbation of the general relativistic dispersion relation of freely falling particles on homogeneous and isotropic spacetimes and derive the red- and lateshift to first order in the perturbation. Our result generalizes the existing formulae in the literature and we find that there exist modified dispersion relations causing both, one or none of the two effects to first order.
Isotropic covariance functions on graphs and their edges
DEFF Research Database (Denmark)
Anderes, E.; Møller, Jesper; Rasmussen, Jakob Gulddahl
We develop parametric classes of covariance functions on linear networks and their extension to graphs with Euclidean edges, i.e., graphs with edges viewed as line segments or more general sets with a coordinate system allowing us to consider points on the graph which are vertices or points...... on an edge. Our covariance functions are defined on the vertices and edge points of these graphs and are isotropic in the sense that they depend only on the geodesic distance or on a new metric called the resistance metric (which extends the classical resistance metric developed in electrical network theory...... functions in the spatial statistics literature (the power exponential, Matérn, generalized Cauchy, and Dagum classes) are shown to be valid with respect to the resistance metric for any graph with Euclidean edges, whilst they are only valid with respect to the geodesic metric in more special cases....
Uhlmann's geometric phase in presence of isotropic decoherence
International Nuclear Information System (INIS)
Tidstroem, Jonas; Sjoeqvist, Erik
2003-01-01
Uhlmann's mixed state geometric phase [Rep. Math. Phys. 24, 229 (1986)] is analyzed in the case of a qubit affected by isotropic decoherence treated in the Markovian approximation. It is demonstrated that this phase decreases rapidly with increasing decoherence rate and that it is most fragile to weak decoherence for pure or nearly pure initial states. In the unitary case, we compare Uhlmann's geometric phase for mixed states with that occurring in standard Mach-Zehnder interferometry [Phys. Rev. Lett. 85, 2845 (2000)] and show that the latter is more robust to reduction in the length of the Bloch vector. We also describe how Uhlmann's geometric phase in the present case could in principle be realized experimentally
Isotropic radio background from quark nugget dark matter
Energy Technology Data Exchange (ETDEWEB)
Lawson, Kyle; Zhitnitsky, Ariel R., E-mail: arz@physics.ubc.ca
2013-07-09
Recent measurements by the ARCADE2 experiment unambiguously show an excess in the isotropic radio background at frequencies below the GHz scale. We argue that this excess may be a natural consequence of the interaction of visible and dark matter in the early universe if the dark matter consists of heavy nuggets of quark matter. Explanation of the observed radio band excess requires the introduction of no new parameters, rather we exploit the same dark matter model and identical normalization parameters to those previously used to explain other excesses of diffuse emission from the centre of our galaxy. These previously observed excesses include the WMAP Haze of GHz radiation, keV X-ray emission and MeV gamma-ray radiation.
Third-harmonic generation in isotropic media by focused pulses
International Nuclear Information System (INIS)
Tasgal, Richard S.; Band, Y.B.
2004-01-01
For focused pulses of light in isotropic nonlinear media, third-harmonic generation can be strongly affected by group-velocity mismatch between the fundamental and third-harmonic. There is a characteristic time determined by the group-velocity mismatch and the Rayleigh range of the focused pulse. The dynamics depend on two dimensionless quantities, namely the ratio of the characteristic time to the pulse duration and the phase-velocity mismatch times the Rayleigh range. Pulses shorter than the characteristic time have physics described by simple analytic formulas. Pulses near the characteristic time have an intermediate behavior given by an explicit but more complicated formula. Pulses longer than the characteristic time tend to the continuous-wave case
X-ray and Moessbauer investigations of isotropic barium ferrites
International Nuclear Information System (INIS)
Kirichok, P.P.; Pashchenko, V.A.; Dem'yaniv, T.O.; Ryabova, G.N.; Lisovskij, A.M.
1984-01-01
Using the methods of X-ray and γ-resonance spectroscopy the crystal chemical and magnetic structure of isotropic barium hexaferrites is studied. compacting pressure the lattice parameter c of ferrite of the BaOx5.7Fe 2 O 3 is decreased and the diffraction line width on its X-ray p attern is increased. Due to increasing the isoststical compacting pressure quadrupole splitting of the γ-resonance absorption spectrum of 57 Fe nuclei in tetrahedral positions 4f 1 and in positions 2a decreases. The sintering temperature growth leads to increasing the lattice parameter c and diffraction line widths and decreasing the effeutive field values and isomeric s hifts on 57 Fe nuclei. Isostatical compacting pressure does not affect the electron configuration of iron ions
Negative refraction of inhomogeneous waves in lossy isotropic media
International Nuclear Information System (INIS)
Fedorov, V Yu; Nakajima, T
2014-01-01
We theoretically study negative refraction of inhomogeneous waves at the interface of lossy isotropic media. We obtain explicit (up to the sign) expressions for the parameters of a wave transmitted through the interface between two lossy media characterized by complex permittivity and permeability. We show that the criterion of negative refraction that requires negative permittivity and permeability can be used only in the case of a homogeneous incident wave at the interface between a lossless and lossy media. In a more general situation, when the incident wave is inhomogeneous, or both media are lossy, the criterion of negative refraction becomes dependent on an incidence angle. Most interestingly, we show that negative refraction can be realized in conventional lossy materials (such as metals) if their interfaces are properly oriented. (paper)
Deriving the equations of motion of porous isotropic media
International Nuclear Information System (INIS)
Pride, S.R.; Gangi, A.F.; Morgan, F.D.
1992-01-01
The equations of motion and stress/strain relations for the linear dynamics of a two-phase, fluid/solid, isotropic, porous material have been derived by a direct volume averaging of the equations of motion and stress-strain relations known to apply in each phase. The equations thus obtained are shown to be consistent with Biot's equations of motion and stress/strain relations; however, the effective fluid density in the equation of relative flow has an unambiguous definition in terms of the tractions acting on the pore walls. The stress/strain relations of the theory correspond to 'quasistatic' stressing (i.e., inertial effects are ignored). It is demonstrated that using such quasistatic stress/strain relations in the equations of motion is justified whenever the wavelengths are greater than a length characteristic of the averaging volume size. 37 refs., 2 figs
Waterlike glass polyamorphism in a monoatomic isotropic Jagla model.
Xu, Limei; Giovambattista, Nicolas; Buldyrev, Sergey V; Debenedetti, Pablo G; Stanley, H Eugene
2011-02-14
We perform discrete-event molecular dynamics simulations of a system of particles interacting with a spherically-symmetric (isotropic) two-scale Jagla pair potential characterized by a hard inner core, a linear repulsion at intermediate separations, and a weak attractive interaction at larger separations. This model system has been extensively studied due to its ability to reproduce many thermodynamic, dynamic, and structural anomalies of liquid water. The model is also interesting because: (i) it is very simple, being composed of isotropically interacting particles, (ii) it exhibits polyamorphism in the liquid phase, and (iii) its slow crystallization kinetics facilitate the study of glassy states. There is interest in the degree to which the known polyamorphism in glassy water may have parallels in liquid water. Motivated by parallels between the properties of the Jagla potential and those of water in the liquid state, we study the metastable phase diagram in the glass state. Specifically, we perform the computational analog of the protocols followed in the experimental studies of glassy water. We find that the Jagla potential calculations reproduce three key experimental features of glassy water: (i) the crystal-to-high-density amorphous solid (HDA) transformation upon isothermal compression, (ii) the low-density amorphous solid (LDA)-to-HDA transformation upon isothermal compression, and (iii) the HDA-to-very-high-density amorphous solid (VHDA) transformation upon isobaric annealing at high pressure. In addition, the HDA-to-LDA transformation upon isobaric heating, observed in water experiments, can only be reproduced in the Jagla model if a free surface is introduced in the simulation box. The HDA configurations obtained in cases (i) and (ii) are structurally indistinguishable, suggesting that both processes result in the same glass. With the present parametrization, the evolution of density with pressure or temperature is remarkably similar to the
Elastic field of approaching dislocation loop in isotropic bimaterial
International Nuclear Information System (INIS)
Wu, Wenwang; Xu, Shucai; Zhang, Jinhuan; Xia, Re; Qian, Guian
2015-01-01
A semi-analytical solution is developed for calculating interface traction stress (ITS) fields due to elastic modulus mismatch across the interface plane of isotropic perfectly bounded bimaterial system. Based on the semi-analytical approaches developed, ITS is used to correct the bulk elastic field of dislocation loop within infinite homogenous medium, and to produce continuous displacement and stress fields across the perfectly-bounded interface. Firstly, calculation examples of dislocation loops in Al–Cu bimaterial system are performed to demonstrate the efficiency of the developed semi-analytical approach; Then, the elastic fields of dislocation loops in twinning Cu and Cu–Nb bimaterial are analyzed; Finally, the effect of modulus mismatch across interface plane on the elastic field of bimaterial system is investigated, it is found that modulus mismatch has a drastic impact on the elastic fields of dislocation loops within bimaterial system. (paper)
Isotropic radio background from quark nugget dark matter
International Nuclear Information System (INIS)
Lawson, Kyle; Zhitnitsky, Ariel R.
2013-01-01
Recent measurements by the ARCADE2 experiment unambiguously show an excess in the isotropic radio background at frequencies below the GHz scale. We argue that this excess may be a natural consequence of the interaction of visible and dark matter in the early universe if the dark matter consists of heavy nuggets of quark matter. Explanation of the observed radio band excess requires the introduction of no new parameters, rather we exploit the same dark matter model and identical normalization parameters to those previously used to explain other excesses of diffuse emission from the centre of our galaxy. These previously observed excesses include the WMAP Haze of GHz radiation, keV X-ray emission and MeV gamma-ray radiation
A spatially homogeneous and isotropic Einstein-Dirac cosmology
Finster, Felix; Hainzl, Christian
2011-04-01
We consider a spatially homogeneous and isotropic cosmological model where Dirac spinors are coupled to classical gravity. For the Dirac spinors we choose a Hartree-Fock ansatz where all one-particle wave functions are coherent and have the same momentum. If the scale function is large, the universe behaves like the classical Friedmann dust solution. If however the scale function is small, quantum effects lead to oscillations of the energy-momentum tensor. It is shown numerically and proven analytically that these quantum oscillations can prevent the formation of a big bang or big crunch singularity. The energy conditions are analyzed. We prove the existence of time-periodic solutions which go through an infinite number of expansion and contraction cycles.
Isotropic Surface Remeshing without Large and Small Angles
Wang, Yiqun
2018-05-18
We introduce a novel algorithm for isotropic surface remeshing which progressively eliminates obtuse triangles and improves small angles. The main novelty of the proposed approach is a simple vertex insertion scheme that facilitates the removal of large angles, and a vertex removal operation that improves the distribution of small angles. In combination with other standard local mesh operators, e.g., connectivity optimization and local tangential smoothing, our algorithm is able to remesh efficiently a low-quality mesh surface. Our approach can be applied directly or used as a post-processing step following other remeshing approaches. Our method has a similar computational efficiency to the fastest approach available, i.e., real-time adaptive remeshing [1]. In comparison with state-of-the-art approaches, our method consistently generates better results based on evaluations using different metrics.
Temperature Dependence of the Viscosity of Isotropic Liquids
Jadzyn, J.; Czechowski, G.; Lech, T.
1999-04-01
Temperature dependence of the shear viscosity measured for isotropic liquids belonging to the three homologous series: 4-(trans-4'-n-alkylcyclohexyl) isothiocyanatobenzenes (Cn H2n+1 CyHx Ph NCS; nCHBT, n=0-12), n-alkylcyanobiphenyls (CnH2n+1 Ph Ph CN; nCB, n=2-12) and 1,n-alkanediols (HO(CH2)nOH; 1,nAD, n=2-10) were analysed with the use of Arrhenius equation and its two modifications: Vogel--Fulcher and proposed in this paper. The extrapolation of the isothermal viscosity of 1,n-alkanediols (n=2-10) to n=1 leads to an interesting conclusion concerning the expected viscosity of methanediol, HOCH2OH, the compound strongly unstable in a pure state.
Anisotropic to Isotropic Phase Transitions in the Early Universe
Directory of Open Access Journals (Sweden)
Ajaib M. A.
2012-04-01
Full Text Available We attempt to develop a minimal formalism to describe an anisotropic to isotropic tran- sition in the early Universe. Assuming an underlying theory that violates Lorentz in- variance, we start with a Dirac like equation, involving four massless fields, and which does not exhibit Lorentz invariance. We then perform transformations that restore it to its covariant form along with a mass term for the fermion field. It is proposed that these transformations can be visualized as waves traveling in an anisotropic media. The trans- formation it = ℏ ! is then utilized to transit to a statistical thermodynamics system and the partition function then gives a better insight into the character of this transition. The statistical system hence realized is a two level system with each state doubly degenerate. We propose that modeling the transition this way can help explain the matter antimatter asymmetry of the Universe.
Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness
Berger, J. B.; Wadley, H. N. G.; McMeeking, R. M.
2017-02-01
A wide variety of high-performance applications require materials for which shape control is maintained under substantial stress, and that have minimal density. Bio-inspired hexagonal and square honeycomb structures and lattice materials based on repeating unit cells composed of webs or trusses, when made from materials of high elastic stiffness and low density, represent some of the lightest, stiffest and strongest materials available today. Recent advances in 3D printing and automated assembly have enabled such complicated material geometries to be fabricated at low (and declining) cost. These mechanical metamaterials have properties that are a function of their mesoscale geometry as well as their constituents, leading to combinations of properties that are unobtainable in solid materials; however, a material geometry that achieves the theoretical upper bounds for isotropic elasticity and strain energy storage (the Hashin-Shtrikman upper bounds) has yet to be identified. Here we evaluate the manner in which strain energy distributes under load in a representative selection of material geometries, to identify the morphological features associated with high elastic performance. Using finite-element models, supported by analytical methods, and a heuristic optimization scheme, we identify a material geometry that achieves the Hashin-Shtrikman upper bounds on isotropic elastic stiffness. Previous work has focused on truss networks and anisotropic honeycombs, neither of which can achieve this theoretical limit. We find that stiff but well distributed networks of plates are required to transfer loads efficiently between neighbouring members. The resulting low-density mechanical metamaterials have many advantageous properties: their mesoscale geometry can facilitate large crushing strains with high energy absorption, optical bandgaps and mechanically tunable acoustic bandgaps, high thermal insulation, buoyancy, and fluid storage and transport. Our relatively simple
Nested structures approach in designing an isotropic negative-index material for infrared
DEFF Research Database (Denmark)
Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei
2009-01-01
We propose a new generic approach for designing isotropic metamaterial with nested cubic structures. As an example, a three-dimensional isotropic unit cell design "Split Cube in Cage" (SCiC) is shown to exhibit an effective negative refractive index on infrared wavelengths. We report on the refra......We propose a new generic approach for designing isotropic metamaterial with nested cubic structures. As an example, a three-dimensional isotropic unit cell design "Split Cube in Cage" (SCiC) is shown to exhibit an effective negative refractive index on infrared wavelengths. We report...
International Nuclear Information System (INIS)
Nairz, Olaf; Deutschmann, Heinz; Zehentmayr, Franz; Sedlmayer, Felix; Paracelsus Medical University Salzburg; Merz, Florian; Kopp, Peter; Schoeller, Helmut; Wurstbauer, Karl; Kametriser, Gerhard
2008-01-01
In external beam radiotherapy of prostate cancer, the consideration of various systematic error types leads to wide treatment margins compromising normal tissue tolerance. We investigated if systematic set-up errors can be reduced by a set of initial image-guided radiotherapy (IGRT) sessions. 27 patients received daily IGRT resulting in a set of 882 cone-beam computed tomographies (CBCTs). After matching to bony structures, we analyzed the dimensions of remaining systematic errors from zero up to six initial IGRT sessions and aimed at a restriction of daily IGRT for 10% of all patients. For threshold definition, we determined the standard deviations (SD) of the shift corrections and selected patients out of this range for daily image guidance. To calculate total treatment margins, we demanded for a cumulative clinical target volume (CTV) coverage of at least 95% of the specified dose in 90% of all patients. The gain of accuracy was largest during the first three IGRTs. In order to match precision and workload criteria, thresholds for the SD of the corrections of 3.5 mm, 2.0 mm and 4.5 mm in the left-right (L-R), cranial-caudal (C-C), and anterior-posterior (A-P) direction, respectively, were identified. Including all other error types, the total margins added to the CTV amounted to 8.6 mm in L-R, 10.4 mm in C-C, and 14.4 mm in A-P direction. Only initially performed IGRT might be helpful for eliminating gross systematic errors especially after virtual simulation. However, even with daily IGRT performance, a substantial PTV margin reduction is only achievable by matching internal markers instead of bony anatomical structures. (orig.)
Workers' marginal costs of commuting
DEFF Research Database (Denmark)
van Ommeren, Jos; Fosgerau, Mogens
2009-01-01
This paper applies a dynamic search model to estimate workers' marginal costs of commuting, including monetary and time costs. Using data on workers' job search activity as well as moving behaviour, for the Netherlands, we provide evidence that, on average, workers' marginal costs of one hour...
Margin improvement initiatives: realistic approaches
Energy Technology Data Exchange (ETDEWEB)
Chan, P.K.; Paquette, S. [Royal Military College of Canada, Chemistry and Chemical Engineering Dept., Kingston, ON (Canada); Cunning, T.A. [Department of National Defence, Ottawa, ON (Canada); French, C.; Bonin, H.W. [Royal Military College of Canada, Chemistry and Chemical Engineering Dept., Kingston, ON (Canada); Pandey, M. [Univ. of Waterloo, Waterloo, ON (Canada); Murchie, M. [Cameco Fuel Manufacturing, Port Hope, ON (Canada)
2014-07-01
With reactor core aging, safety margins are particularly tight. Two realistic and practical approaches are proposed here to recover margins. The first project is related to the use of a small amount of neutron absorbers in CANDU Natural Uranium (NU) fuel bundles. Preliminary results indicate that the fuelling transient and subsequent reactivity peak can be lowered to improve the reactor's operating margins, with minimal impact on burnup when less than 1000 mg of absorbers is added to a fuel bundle. The second project involves the statistical analysis of fuel manufacturing data to demonstrate safety margins. Probability distributions are fitted to actual fuel manufacturing datasets provided by Cameco Fuel Manufacturing, Inc. They are used to generate input for ELESTRES and ELOCA. It is found that the fuel response distributions are far below industrial failure limits, implying that margin exists in the current fuel design. (author)
Impact of organ shape variations on margin concepts for cervix cancer ART.
Seppenwoolde, Yvette; Stock, Markus; Buschmann, Martin; Georg, Dietmar; Bauer-Novotny, Kwei-Yuang; Pötter, Richard; Georg, Petra
2016-09-01
Target and organ movement motivate adaptive radiotherapy for cervix cancer patients. We investigated the dosimetric impact of margin concepts with different levels of complexity on both organ at risk (OAR) sparing and PTV coverage. Weekly CT and daily CBCT scans were delineated for 10 patients. The dosimetric impact of organ shape variations were evaluated for four (isotropic) margin concepts: two static PTVs (PTV 6mm and PTV 15mm ), a PTV based on ITV of the planning CT and CBCTs of the first treatment week (PTV ART ITV ) and an adaptive PTV based on a library approach (PTV ART Library ). Using static concepts, OAR doses increased with large margins, while smaller margins compromised target coverage. ART PTVs resulted in comparable target coverage and better sparing of bladder (V40Gy: 15% and 7% less), rectum (V40Gy: 18 and 6cc less) and bowel (V40Gy: 106 and 15cc less) compared to PTV 15mm . Target coverage evaluation showed that for elective fields a static 5mm margin sufficed. PTV ART Library achieved the best dosimetric results. However when weighing clinical benefit against workload, ITV margins based on repetitive movement evaluation during the first week also provide improvements over static margin concepts. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Modification of homogeneous and isotropic turbulence by solid particles
Hwang, Wontae
2005-12-01
Particle-laden flows are prevalent in natural and industrial environments. Dilute loadings of small, heavy particles have been observed to attenuate the turbulence levels of the carrier-phase flow, up to 80% in some cases. We attempt to increase the physical understanding of this complex phenomenon by studying the interaction of solid particles with the most fundamental type of turbulence, which is homogeneous and isotropic with no mean flow. A flow facility was developed that could create air turbulence in a nearly-spherical chamber by means of synthetic jet actuators mounted on the corners. Loudspeakers were used as the actuators. Stationary turbulence and natural decaying turbulence were investigated using two-dimensional particle image velocimetry for the base flow qualification. Results indicated that the turbulence was fairly homogeneous throughout the measurement domain and very isotropic, with small mean flow. The particle-laden flow experiments were conducted in two different environments, the lab and in micro-gravity, to examine the effects of particle wakes and flow structure distortion caused by settling particles. The laboratory experiments showed that glass particles with diameters on the order of the turbulence Kolmogorov length scale attenuated the fluid turbulent kinetic energy (TKE) and dissipation rate with increasing particle mass loadings. The main source of fluid TKE production in the chamber was the speakers, but the loss of potential energy of the settling particles also resulted in a significant amount of production of extra TKE. The sink of TKE in the chamber was due to the ordinary fluid viscous dissipation and extra dissipation caused by particles. This extra dissipation could be divided into "unresolved" dissipation caused by local velocity disturbances in the vicinity of the small particles and dissipation caused by large-scale flow distortions from particle wakes and particle clusters. The micro-gravity experiments in NASA's KC-135
An Isotropic Light Sensor for Measurements of Visible Actinic Flux in Clouds
Hage, J.C.H. van der; Roode, S.R. de
1999-01-01
A low-cost isotropic light sensor is described consisting of a spherical diffuser connected to a single photodiode by a light conductor. The directional response to light is isotropic to a high degree. The small, lightweight, and rugged construction makes this instrument suitable not only for
Nonlinear optical spectroscopy of isotropic and anisotropic metallic nanocomposites
Energy Technology Data Exchange (ETDEWEB)
Fernandez-Hernandez, R C; Gleason-Villagran, R; Cheang-Wong, J C; Crespo-Sosa, A; Rodriguez-Fernandez, L; Lopez-Suarez, A; Oliver, A; Reyes-Esqueda, J A [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico, D. F. 04510 (Mexico); Torres-Torres, C [Seccion de Estudios de Posgrado e Investigacion, ESIME-Zacatenco, Instituto Politecnico Nacional, Mexico, D. F. 07338 (Mexico); Rangel-Rojo, R, E-mail: reyes@fisica.unam.mx [CICESE/Depto. de Optica, A.P. 360, Ensenada, B. C. 22860 (Mexico)
2011-01-01
In this work, we studied the nonlinear absorption and refraction of isotropic and anisotropic metallic nanocomposites, which consist of Au and Ag nanoparticles (NPs) embedded in matrices of SiO{sub 2}. We performed this study at different wavelengths using the Z-scan technique in the picosecond regime. The wavelengths were selected accordingly to the absorption spectra of the nanocomposites, choosing wavelengths into the inter- and intra-band transitions regions, including the surface plasmon (SP) resonance, as well as in the transparent region. For the anisotropic nanocomposites, the polarization and the incident angle were varied in order to evaluate the different components of the third order susceptibility tensor, {chi}{sup (3)}. We observed dramatic changes of sign for both, nonlinear refraction and absorption, when passing from Au to Ag and/or varying the wave length. The results accentuate the importance of the hot-electrons contribution to the nonlinear optical response at this temporal regime, when compared to inter-band and intra-band transitions contributions.
An efficient Helmholtz solver for acoustic transversely isotropic media
Wu, Zedong
2017-11-11
The acoustic approximation, even for anisotropic media, is widely used in current industry imaging and inversion algorithms mainly because P-waves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulas tend to be simpler, resulting in more efficient implementations, and depend on less medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from S-wave artifacts. Thus, we propose to separate the quasi-P wave propagation in anisotropic media into the elliptic anisotropic operator (free of the artifacts) and the non-elliptic-anisotropic components, which form a pseudo-differential operator. We, then, develop a separable approximation of the dispersion relation of non-elliptic-anisotropic components, specifically for transversely isotropic (TI) media. Finally, we iteratively solve the simpler lower-order elliptical wave equation for a modified source function that includes the non-elliptical terms represented in the Fourier domain. A frequency domain Helmholtz formulation of the approach renders the iterative implementation efficient as the cost is dominated by the Lower-Upper (LU) decomposition of the impedance matrix for the simpler elliptical anisotropic model. Also, the resulting wavefield is free of S-wave artifacts and has balanced amplitude. Numerical examples show that the method is reasonably accurate and efficient.
Magnetic hysteresis measurements of thin films under isotropic stress.
Holland, Patrick; Dubey, Archana; Geerts, Wilhelmus
2000-10-01
Nowadays, ferromagnetic thin films are widely applied in devices for information technology (credit cards, video recorder tapes, floppies, hard disks) and sensors (air bags, anti-breaking systems, navigation systems). Thus, with the increase in the use of magnetic media continued investigation of magnetic properties of materials is necessary to help in determining the useful properties of materials for new or improved applications. We are currently interested in studying the effect of applied external stress on Kerr hysteresis curves of thin magnetic films. The Ni and NiFe films were grown using DC magnetron sputtering with Ar as the sputter gas (pAr=4 mTorr; Tsub=55-190 C). Seed and cap layers of Ti were used on all films for adhesion and oxidation protection, respectively. A brass membrane pressure cell was designed to apply in-plane isotropic stress to thin films. In this pressure cell, gas pressure is used to deform a flexible substrate onto which a thin magnetic film has been sputtered. The curvature of the samples could be controlled by changing the gas pressure to the cell. Magneto-Optical in-plane hysteresis curves at different values of strain were measured. The results obtained show that the stress sensitivity is dependent on the film thickness. For the 500nm NiFe films, the coercivity strongly decreased as a function of the applied stress.
Scalar Statistics along Inertial Particle Trajectory in Isotropic Turbulence
International Nuclear Information System (INIS)
Ya-Ming, Liu; Zhao-Hui, Liu; Hai-Feng, Han; Jing, Li; Han-Feng, Wang; Chu-Guang, Zheng
2009-01-01
The statistics of a passive scalar along inertial particle trajectory in homogeneous isotropic turbulence with a mean scalar gradient is investigated by using direct numerical simulation. We are interested in the influence of particle inertia on such statistics, which is crucial for further understanding and development of models in non-isothermal gas-particle flows. The results show that the scalar variance along particle trajectory decreases with the increasing particle inertia firstly; when the particle's Stokes number S t is less than 1.0, it reaches the minimal value when S t is around 1.0, then it increases if S t increases further. However, the scalar dissipation rate along the particle trajectory shows completely contrasting behavior in comparison with the scalar variance. The mechanical-to-thermal time scale ratios averaged along particle, p , are approximately two times smaller than that computed in the Eulerian frame r, and stay at nearly 1.77 with a weak dependence on particle inertia. In addition, the correlations between scalar dissipation and now structure characteristics along particle trajectories, such as strain and vorticity, are also computed, and they reach their maximum and minimum, 0.31 and 0.25, respectively, when S t is around 1.0. (fundamental areas of phenomenology (including applications))
Nonlinear optical spectroscopy of isotropic and anisotropic metallic nanocomposites
International Nuclear Information System (INIS)
Fernandez-Hernandez, R C; Gleason-Villagran, R; Cheang-Wong, J C; Crespo-Sosa, A; Rodriguez-Fernandez, L; Lopez-Suarez, A; Oliver, A; Reyes-Esqueda, J A; Torres-Torres, C; Rangel-Rojo, R
2011-01-01
In this work, we studied the nonlinear absorption and refraction of isotropic and anisotropic metallic nanocomposites, which consist of Au and Ag nanoparticles (NPs) embedded in matrices of SiO 2 . We performed this study at different wavelengths using the Z-scan technique in the picosecond regime. The wavelengths were selected accordingly to the absorption spectra of the nanocomposites, choosing wavelengths into the inter- and intra-band transitions regions, including the surface plasmon (SP) resonance, as well as in the transparent region. For the anisotropic nanocomposites, the polarization and the incident angle were varied in order to evaluate the different components of the third order susceptibility tensor, χ (3) . We observed dramatic changes of sign for both, nonlinear refraction and absorption, when passing from Au to Ag and/or varying the wave length. The results accentuate the importance of the hot-electrons contribution to the nonlinear optical response at this temporal regime, when compared to inter-band and intra-band transitions contributions.
Three-dimensional magnetospheric equilibrium with isotropic pressure
International Nuclear Information System (INIS)
Cheng, C.Z.
1995-05-01
In the absence of the toroidal flux, two coupled quasi two-dimensional elliptic equilibrium equations have been derived to describe self-consistent three-dimensional static magnetospheric equilibria with isotropic pressure in an optimal (Ψ,α,χ) flux coordinate system, where Ψ is the magnetic flux function, χ is a generalized poloidal angle, α is the toroidal angle, α = φ - δ(Ψ,φ,χ) is the toroidal angle, δ(Ψ,φ,χ) is periodic in φ, and the magnetic field is represented as rvec B = ∇Ψ x ∇α. A three-dimensional magnetospheric equilibrium code, the MAG-3D code, has been developed by employing an iterative metric method. The main difference between the three-dimensional and the two-dimensional axisymmetric solutions is that the field-aligned current and the toroidal magnetic field are finite for the three-dimensional case, but vanish for the two-dimensional axisymmetric case. With the same boundary flux surface shape, the two-dimensional axisymmetric results are similar to the three-dimensional magnetosphere at each local time cross section
Random isotropic one-dimensional XY-model
Gonçalves, L. L.; Vieira, A. P.
1998-01-01
The 1D isotropic s = ½XY-model ( N sites), with random exchange interaction in a transverse random field is considered. The random variables satisfy bimodal quenched distributions. The solution is obtained by using the Jordan-Wigner fermionization and a canonical transformation, reducing the problem to diagonalizing an N × N matrix, corresponding to a system of N noninteracting fermions. The calculations are performed numerically for N = 1000, and the field-induced magnetization at T = 0 is obtained by averaging the results for the different samples. For the dilute case, in the uniform field limit, the magnetization exhibits various discontinuities, which are the consequence of the existence of disconnected finite clusters distributed along the chain. Also in this limit, for finite exchange constants J A and J B, as the probability of J A varies from one to zero, the saturation field is seen to vary from Γ A to Γ B, where Γ A(Γ B) is the value of the saturation field for the pure case with exchange constant equal to J A(J B) .
An efficient Helmholtz solver for acoustic transversely isotropic media
Wu, Zedong; Alkhalifah, Tariq Ali
2017-01-01
The acoustic approximation, even for anisotropic media, is widely used in current industry imaging and inversion algorithms mainly because P-waves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulas tend to be simpler, resulting in more efficient implementations, and depend on less medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from S-wave artifacts. Thus, we propose to separate the quasi-P wave propagation in anisotropic media into the elliptic anisotropic operator (free of the artifacts) and the non-elliptic-anisotropic components, which form a pseudo-differential operator. We, then, develop a separable approximation of the dispersion relation of non-elliptic-anisotropic components, specifically for transversely isotropic (TI) media. Finally, we iteratively solve the simpler lower-order elliptical wave equation for a modified source function that includes the non-elliptical terms represented in the Fourier domain. A frequency domain Helmholtz formulation of the approach renders the iterative implementation efficient as the cost is dominated by the Lower-Upper (LU) decomposition of the impedance matrix for the simpler elliptical anisotropic model. Also, the resulting wavefield is free of S-wave artifacts and has balanced amplitude. Numerical examples show that the method is reasonably accurate and efficient.
Stochastic isotropic hyperelastic materials: constitutive calibration and model selection
Mihai, L. Angela; Woolley, Thomas E.; Goriely, Alain
2018-03-01
Biological and synthetic materials often exhibit intrinsic variability in their elastic responses under large strains, owing to microstructural inhomogeneity or when elastic data are extracted from viscoelastic mechanical tests. For these materials, although hyperelastic models calibrated to mean data are useful, stochastic representations accounting also for data dispersion carry extra information about the variability of material properties found in practical applications. We combine finite elasticity and information theories to construct homogeneous isotropic hyperelastic models with random field parameters calibrated to discrete mean values and standard deviations of either the stress-strain function or the nonlinear shear modulus, which is a function of the deformation, estimated from experimental tests. These quantities can take on different values, corresponding to possible outcomes of the experiments. As multiple models can be derived that adequately represent the observed phenomena, we apply Occam's razor by providing an explicit criterion for model selection based on Bayesian statistics. We then employ this criterion to select a model among competing models calibrated to experimental data for rubber and brain tissue under single or multiaxial loads.
Line-scanning tomographic optical microscope with isotropic transfer function
International Nuclear Information System (INIS)
Gajdátsy, Gábor; Dudás, László; Erdélyi, Miklós; Szabó, Gábor
2010-01-01
An imaging method and optical system, referred to as a line-scanning tomographic optical microscope (LSTOM) using a combination of line-scanning technique and CT reconstruction principle, is proposed and studied theoretically and experimentally. In our implementation a narrow focus line is scanned over the sample and the reflected light is measured in a confocal arrangement. One such scan is equivalent to a transverse projection in tomography. Repeating the scanning procedure in several directions, a number of transverse projections are recorded from which the image can be obtained using conventional CT reconstruction algorithms. The resolution of the image is independent of the spatial dimensions and structure of the applied detector; furthermore, the transfer function of the system is isotropic. The imaging performance of the implemented confocal LSTOM was compared with a point-scanning confocal microscope, based on recorded images. These images demonstrate that the resolution of the confocal LSTOM exceeds (by 15%) the resolution limit of a point-scanning confocal microscope
Energy Technology Data Exchange (ETDEWEB)
Press, Robert H. [Department of Radiation Oncology, Emory University, Atlanta, Georgia (United States); Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Prabhu, Roshan S., E-mail: roshansprabhu@gmail.com [Department of Radiation Oncology, Emory University, Atlanta, Georgia (United States); Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Appin, Christina L.; Brat, Daniel J. [Department of Pathology, Emory University, Atlanta, Georgia (United States); Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Shu, Hui-Kuo G. [Department of Radiation Oncology, Emory University, Atlanta, Georgia (United States); Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Hadjipanayis, Constantinos; Olson, Jeffrey J.; Oyesiku, Nelson M. [Department of Neurosurgery, Emory University, Atlanta, Georgia (United States); Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Curran, Walter J.; Crocker, Ian [Department of Radiation Oncology, Emory University, Atlanta, Georgia (United States); Winship Cancer Institute, Emory University, Atlanta, Georgia (United States)
2014-04-01
Purpose: The purpose of this study was to evaluate intracranial control and patterns of local recurrence (LR) for grade 2 meningiomas treated with intensity modulated radiation therapy (IMRT) with limited total margin expansions of ≤1 cm. Methods and Materials: We reviewed records of patients with a neuropathological diagnosis of grade 2 meningioma who underwent IMRT at our institution between 2002 and 2012. Actuarial rates were determined by the Kaplan-Meier method from the end of RT. LR was defined as in-field if ≥90% of the recurrence was within the prescription isodose, out-of-field (marginal) if ≥90% was outside of the prescription isodose, and both if neither criterion was met. Results: Between 2002 and 2012, a total of 54 consecutive patients underwent IMRT for grade 2 meningioma. Eight of these patients had total initial margins >1 cm and were excluded, leaving 46 patients for analysis. The median imaging follow-up period was 26.2 months (range, 7-107 months). The median dose for fractionated IMRT was 59.4 Gy (range, 49.2-61.2 Gy). Median clinical target volume (CTV), planning target volume (PTV), and total margin expansion were 0.5 cm, 0.3 cm, and 0.8 cm, respectively. LR occurred in 8 patients (17%), with 2-year and 3-year actuarial local control (LC) of 92% and 74%, respectively. Six of 8 patients (85%) had a known pattern of failure. Five patients (83%) had in-field LR; no patients had marginal LR; and 1 patient (17%) had both. Conclusions: The use of IMRT to treat grade 2 meningiomas with total initial margins (CTV + PTV) ≤1 cm did not appear to compromise outcomes or increase marginal failures compared with other modern retrospective series. Of the 46 patients who had margins ≤1 cm, none experienced marginal failure only. These results demonstrate efficacy and low risk of marginal failure after IMRT treatment of grade 2 meningiomas with reduced margins, warranting study within a prospective clinical trial.
Learning Convex Inference of Marginals
Domke, Justin
2012-01-01
Graphical models trained using maximum likelihood are a common tool for probabilistic inference of marginal distributions. However, this approach suffers difficulties when either the inference process or the model is approximate. In this paper, the inference process is first defined to be the minimization of a convex function, inspired by free energy approximations. Learning is then done directly in terms of the performance of the inference process at univariate marginal prediction. The main ...
Steel Industry Marginal Opportunity Analysis
Energy Technology Data Exchange (ETDEWEB)
none,
2005-09-01
The Steel Industry Marginal Opportunity Analysis (PDF 347 KB) identifies opportunities for developing advanced technologies and estimates both the necessary funding and the potential payoff. This analysis determines what portion of the energy bandwidth can be captured through the adoption of state-of-the-art technology and practices. R&D opportunities for addressing the remainder of the bandwidth are characterized and plotted on a marginal opportunity curve.
Direct numerical simulation of droplet-laden isotropic turbulence
Dodd, Michael S.
Interaction of liquid droplets with turbulence is important in numerous applications ranging from rain formation to oil spills to spray combustion. The physical mechanisms of droplet-turbulence interaction are largely unknown, especially when compared to that of solid particles. Compared to solid particles, droplets can deform, break up, coalesce and have internal fluid circulation. The main goal of this work is to investigate using direct numerical simulation (DNS) the physical mechanisms of droplet-turbulence interaction, both for non-evaporating and evaporating droplets. To achieve this objective, we develop and couple a new pressure-correction method with the volume-of-fluid (VoF) method for simulating incompressible two-fluid flows. The method's main advantage is that the variable coefficient Poisson equation that arises in solving the incompressible Navier-Stokes equations for two-fluid flows is reduced to a constant coefficient equation. This equation can then be solved directly using, e.g., the FFT-based parallel Poisson solver. For a 10243 mesh, our new pressure-correction method using a fast Poisson solver is ten to forty times faster than the standard pressure-correction method using multigrid. Using the coupled pressure-correction and VoF method, we perform direct numerical simulations (DNS) of 3130 finite-size, non-evaporating droplets of diameter approximately equal to the Taylor lengthscale and with 5% droplet volume fraction in decaying isotropic turbulence at initial Taylor-scale Reynolds number Relambda = 83. In the droplet-laden cases, we vary one of the following three parameters: the droplet Weber number based on the r.m.s. velocity of turbulence (0.1 ≤ Werms ≤ 5), the droplet- to carrier-fluid density ratio (1 ≤ rhod/rho c ≤ 100) or the droplet- to carrier-fluid viscosity ratio (1 ≤ mud/muc ≤ 100). We derive the turbulence kinetic energy (TKE) equations for the two-fluid, carrier-fluid and droplet-fluid flow. These equations allow
International Nuclear Information System (INIS)
Kornreich, D.E.; Ganapol, B.D.
1997-01-01
The linear Boltzmann equation for the transport of neutral particles is investigated with the objective of generating benchmark-quality evaluations of solutions for homogeneous infinite media. In all cases, the problems are stationary, of one energy group, and the scattering is isotropic. The solutions are generally obtained through the use of Fourier transform methods with the numerical inversions constructed from standard numerical techniques such as Gauss-Legendre quadrature, summation of infinite series, and convergence acceleration. Consideration of the suite of benchmarks in infinite homogeneous media begins with the standard one-dimensional problems: an isotropic point source, an isotropic planar source, and an isotropic infinite line source. The physical and mathematical relationships between these source configurations are investigated. The progression of complexity then leads to multidimensional problems with source configurations that also emit particles isotropically: the finite line source, the disk source, and the rectangular source. The scalar flux from the finite isotropic line and disk sources will have a two-dimensional spatial variation, whereas a finite rectangular source will have a three-dimensional variation in the scalar flux. Next, sources emitting particles anisotropically are considered. The most basic such source is the point beam giving rise to the Green's function, which is physically the most fundamental transport problem, yet may be constructed from the isotropic point source solution. Finally, the anisotropic plane and anisotropically emitting infinite line sources are considered. Thus, a firm theoretical and numerical base is established for the most fundamental neutral particle benchmarks in infinite homogeneous media
Hu, Ting; Han, Yang; Dong, Jinming
2014-11-14
The mechanical and electronic properties of both the monolayer and bilayer phosphorenes under either isotropic or uniaxial strain have been systematically investigated using first-principles calculations. It is interesting to find that: 1) Under a large enough isotropic tensile strain, the monolayer phosphorene would lose its pucker structure and transform into a flat hexagonal plane, while two inner sublayers of the bilayer phosphorene could be bonded due to its interlayer distance contraction. 2) Under the uniaxial tensile strain along a zigzag direction, the pucker distance of each layer in the bilayer phosphorene can exhibit a specific negative Poisson's ratio. 3) The electronic properties of both the monolayer and bilayer phosphorenes are sensitive to the magnitude and direction of the applied strains. Their band gaps decrease more rapidly under isotropic compressive strain than under uniaxial strain. Also, their direct-indirect band gap transitions happen at the larger isotropic tensile strains compared with that under uniaxial strain. 4) Under the isotropic compressive strain, the bilayer phosphorene exhibits a transition from a direct-gap semiconductor to a metal. In contrast, the monolayer phosphorene initially has the direct-indirect transition and then transitions to a metal. However, under isotropic tensile strain, both the bilayer and monolayer phosphorene show the direct-indirect transition and, finally, the transition to a metal. Our numerical results may open new potential applications of phosphorene in nanoelectronics and nanomechanical devices by external isotropic strain or uniaxial strain along different directions.
THE ISOTROPIC DIFFUSION SOURCE APPROXIMATION FOR SUPERNOVA NEUTRINO TRANSPORT
International Nuclear Information System (INIS)
Liebendoerfer, M.; Whitehouse, S. C.; Fischer, T.
2009-01-01
Astrophysical observations originate from matter that interacts with radiation or transported particles. We develop a pragmatic approximation in order to enable multidimensional simulations with basic spectral radiative transfer when the available computational resources are not sufficient to solve the complete Boltzmann transport equation. The distribution function of the transported particles is decomposed into a trapped particle component and a streaming particle component. Their separate evolution equations are coupled by a source term that converts trapped particles into streaming particles. We determine this source term by requiring the correct diffusion limit for the evolution of the trapped particle component. For a smooth transition to the free streaming regime, this 'diffusion source' is limited by the matter emissivity. The resulting streaming particle emission rates are integrated over space to obtain the streaming particle flux. Finally, a geometric estimate of the flux factor is used to convert the particle flux to the streaming particle density, which enters the evaluation of streaming particle-matter interactions. The efficiency of the scheme results from the freedom to use different approximations for each particle component. In supernovae, for example, reactions with trapped particles on fast timescales establish equilibria that reduce the number of primitive variables required to evolve the trapped particle component. On the other hand, a stationary-state approximation considerably facilitates the treatment of the streaming particle component. Different approximations may apply in applications to stellar atmospheres, star formation, or cosmological radiative transfer. We compare the isotropic diffusion source approximation with Boltzmann neutrino transport of electron flavor neutrinos in spherically symmetric supernova models and find good agreement. An extension of the scheme to the multidimensional case is also discussed.
Traveltime approximations for transversely isotropic media with an inhomogeneous background
Alkhalifah, Tariq
2011-05-01
A transversely isotropic (TI) model with a tilted symmetry axis is regarded as one of the most effective approximations to the Earth subsurface, especially for imaging purposes. However, we commonly utilize this model by setting the axis of symmetry normal to the reflector. This assumption may be accurate in many places, but deviations from this assumption will cause errors in the wavefield description. Using perturbation theory and Taylor\\'s series, I expand the solutions of the eikonal equation for 2D TI media with respect to the independent parameter θ, the angle the tilt of the axis of symmetry makes with the vertical, in a generally inhomogeneous TI background with a vertical axis of symmetry. I do an additional expansion in terms of the independent (anellipticity) parameter in a generally inhomogeneous elliptically anisotropic background medium. These new TI traveltime solutions are given by expansions in and θ with coefficients extracted from solving linear first-order partial differential equations. Pade approximations are used to enhance the accuracy of the representation by predicting the behavior of the higher-order terms of the expansion. A simplification of the expansion for homogenous media provides nonhyperbolic moveout descriptions of the traveltime for TI models that are more accurate than other recently derived approximations. In addition, for 3D media, I develop traveltime approximations using Taylor\\'s series type of expansions in the azimuth of the axis of symmetry. The coefficients of all these expansions can also provide us with the medium sensitivity gradients (Jacobian) for nonlinear tomographic-based inversion for the tilt in the symmetry axis. © 2011 Society of Exploration Geophysicists.
Traveltime approximations for transversely isotropic media with an inhomogeneous background
Alkhalifah, Tariq
2011-01-01
A transversely isotropic (TI) model with a tilted symmetry axis is regarded as one of the most effective approximations to the Earth subsurface, especially for imaging purposes. However, we commonly utilize this model by setting the axis of symmetry normal to the reflector. This assumption may be accurate in many places, but deviations from this assumption will cause errors in the wavefield description. Using perturbation theory and Taylor's series, I expand the solutions of the eikonal equation for 2D TI media with respect to the independent parameter θ, the angle the tilt of the axis of symmetry makes with the vertical, in a generally inhomogeneous TI background with a vertical axis of symmetry. I do an additional expansion in terms of the independent (anellipticity) parameter in a generally inhomogeneous elliptically anisotropic background medium. These new TI traveltime solutions are given by expansions in and θ with coefficients extracted from solving linear first-order partial differential equations. Pade approximations are used to enhance the accuracy of the representation by predicting the behavior of the higher-order terms of the expansion. A simplification of the expansion for homogenous media provides nonhyperbolic moveout descriptions of the traveltime for TI models that are more accurate than other recently derived approximations. In addition, for 3D media, I develop traveltime approximations using Taylor's series type of expansions in the azimuth of the axis of symmetry. The coefficients of all these expansions can also provide us with the medium sensitivity gradients (Jacobian) for nonlinear tomographic-based inversion for the tilt in the symmetry axis. © 2011 Society of Exploration Geophysicists.
Cosmological simulations of isotropic conduction in galaxy clusters
International Nuclear Information System (INIS)
Smith, Britton; O'Shea, Brian W.; Voit, G. Mark; Ventimiglia, David; Skillman, Samuel W.
2013-01-01
Simulations of galaxy clusters have a difficult time reproducing the radial gas-property gradients and red central galaxies observed to exist in the cores of galaxy clusters. Thermal conduction has been suggested as a mechanism that can help bring simulations of cluster cores into better alignment with observations by stabilizing the feedback processes that regulate gas cooling, but this idea has not yet been well tested with cosmological numerical simulations. Here we present cosmological simulations of 10 galaxy clusters performed with five different levels of isotropic Spitzer conduction, which alters both the cores and outskirts of clusters, though not dramatically. In the cores, conduction flattens central temperature gradients, making them nearly isothermal and slightly lowering the central density, but failing to prevent a cooling catastrophe there. Conduction has little effect on temperature gradients outside of cluster cores because outward conductive heat flow tends to inflate the outer parts of the intracluster medium (ICM), instead of raising its temperature. In general, conduction tends reduce temperature inhomogeneity in the ICM, but our simulations indicate that those homogenizing effects would be extremely difficult to observe in ∼5 keV clusters. Outside the virial radius, our conduction implementation lowers the gas densities and temperatures because it reduces the Mach numbers of accretion shocks. We conclude that, despite the numerous small ways in which conduction alters the structure of galaxy clusters, none of these effects are significant enough to make the efficiency of conduction easily measurable, unless its effects are more pronounced in clusters hotter than those we have simulated.
Sharifi, Zohreh; Atlasbaf, Zahra
2016-10-01
A new design procedure for near perfect triangular carpet cloaks, fabricated based on only isotropic homogeneous materials, is proposed. This procedure enables us to fabricate a cloak with simple metamaterials or even without employing metamaterials. The proposed procedure together with an invasive weed optimization algorithm is used to design carpet cloaks based on quasi-isotropic metamaterial structures, Teflon and AN-73. According to the simulation results, the proposed cloaks have good invisibility properties against radar, especially monostatic radar. The procedure is a new method to derive isotropic and homogeneous parameters from transformation optics formulas so we do not need to use complicated structures to fabricate the carpet cloaks.
Isotropic harmonic oscillator plus inverse quadratic potential in N-dimensional spaces
International Nuclear Information System (INIS)
Oyewumi, K.A.; Bangudu, E.A.
2003-01-01
Some aspects of the N-dimensional isotropic harmonic plus inverse quadratic potential were discussed. The hyperradial equation for isotropic harmonic oscillator plus inverse quadratic potential is solved by transformation into the confluent hypergeometric equation to obtain the normalized hyperradial solution. Together with the hyperangular solutions (hyperspherical harmonics), these form the complete energy eigenfunctions of the N-dimensional isotropic harmonic oscillator plus inverse quadratic potential and the energy eigenvalues are also obtained. These are dimensionally dependent. The dependence of radial solution on the dimensions or potential strength and the degeneracy of the energy levels are discussed. (author)
The Marginal Source of Finance
Lindhe, Tobias
2002-01-01
This paper addresses the ongoingdebate on which view of equity, traditional or new, that best describes firm behavior. According to the traditional view, the marginal source of finance is new equity, whereas under to the new view, marginal financing comes from retained earnings. In the theoretical part, we set up a model where the firm faces a cost of adjusting the dividend level because of an aggravated free cash flow problem. The existence of such a cost - which has been used in arguing the...
Directory of Open Access Journals (Sweden)
A Avazpour
2014-12-01
Full Text Available Density functional approach was used to study the isotropic- nematic (I-N transition and calculate the values of freezing parameters of the Gay- Berne liquid crystal model. New direct and pair correlation functions of a molecular fluid with Gay- Berne pair potential were used. These new functions were used in density functional theory as input to calculate the isotropic- nematic transition densities for elongation at various reduced temperatures. It was observed that the isotropic- nematic transition densities increase as the temperature increases. It was found that the new direct correlation function is suitable to study the isotropic- nematic transition of Gay- Berne liquids. Comparison to other works showed qualitative agreement
Classification of integrable Volterra-type lattices on the sphere: isotropic case
International Nuclear Information System (INIS)
Adler, V E
2008-01-01
The symmetry approach is used for classification of integrable isotropic vector Volterra lattices on the sphere. The list of integrable lattices consists mainly of new equations. Their symplectic structure and associated PDE of vector NLS type are discussed
International Nuclear Information System (INIS)
Caetano Neto, E.S.
1976-01-01
A stationary Green function is calculated for the Schroedinger Hamiltonian of the multidimensional isotropic harmonic oscillator and for physical systems, which may, somehow, have their Hamiltonian reduced to one in the form of a harmonic oscillator, for any dimension [pt
Isotropic blackbody cosmic microwave background radiation as evidence for a homogeneous universe.
Clifton, Timothy; Clarkson, Chris; Bull, Philip
2012-08-03
The question of whether the Universe is spatially homogeneous and isotropic on the largest scales is of fundamental importance to cosmology but has not yet been answered decisively. Surprisingly, neither an isotropic primary cosmic microwave background (CMB) nor combined observations of luminosity distances and galaxy number counts are sufficient to establish such a result. The inclusion of the Sunyaev-Zel'dovich effect in CMB observations, however, dramatically improves this situation. We show that even a solitary observer who sees an isotropic blackbody CMB can conclude that the Universe is homogeneous and isotropic in their causal past when the Sunyaev-Zel'dovich effect is present. Critically, however, the CMB must either be viewed for an extended period of time, or CMB photons that have scattered more than once must be detected. This result provides a theoretical underpinning for testing the cosmological principle with observations of the CMB alone.
Supersymmetry and the constants of motion of the two-dimensional isotropic harmonic oscillator
International Nuclear Information System (INIS)
Torres del Castillo, G.F.; Tepper G, T.
2002-01-01
It is shown that the constants of motion of the two-dimensional isotropic harmonic oscillator not related to the rotational invariance of the Hamiltonian can be derived using the ideas of supersymmetric quantum mechanics. (Author)
International Nuclear Information System (INIS)
Wong, P.K.
1989-01-01
This paper reports on a study to obtain the creep compliance, the relaxation modulus and the complex compliance derived from the concept of mechanical resistance for the constitutive equation of a class of linear viscoelastic, homogeneous, isotropic materials
A Dual Band Additively Manufactured 3D Antenna on Package with Near-Isotropic Radiation Pattern
Su, Zhen; Klionovski, Kirill; Bilal, Rana Muhammad; Shamim, Atif
2018-01-01
presents a novel 3D dual band near-isotropic wideband GSM antenna to fulfill these requirements. The antenna has been realized on the package of electronics through additive manufacturing to ensure efficient utilization of available space and lower cost
Nishino, Ko; Lombardi, Stephen
2011-01-01
We introduce a novel parametric bidirectional reflectance distribution function (BRDF) model that can accurately encode a wide variety of real-world isotropic BRDFs with a small number of parameters. The key observation we make is that a BRDF may be viewed as a statistical distribution on a unit hemisphere. We derive a novel directional statistics distribution, which we refer to as the hemispherical exponential power distribution, and model real-world isotropic BRDFs as mixtures of it. We derive a canonical probabilistic method for estimating the parameters, including the number of components, of this novel directional statistics BRDF model. We show that the model captures the full spectrum of real-world isotropic BRDFs with high accuracy, but a small footprint. We also demonstrate the advantages of the novel BRDF model by showing its use for reflection component separation and for exploring the space of isotropic BRDFs.
Characterizing Convexity of Games using Marginal Vectors
van Velzen, S.; Hamers, H.J.M.; Norde, H.W.
2003-01-01
In this paper we study the relation between convexity of TU games and marginal vectors.We show that if specfic marginal vectors are core elements, then the game is convex.We characterize sets of marginal vectors satisfying this property, and we derive the formula for the minimum number of marginal
Wave propagation in isotropic- or composite-material piping conveying swirling liquid
International Nuclear Information System (INIS)
Chen, T.L.C.; Bert, C.W.
1977-01-01
An analysis is presented for the propagation of free harmonic waves in a thin-walled, circular cylindrical shell of orthotropic or isotropic material conveying a swirling flow. The shell motion is modeled by using the dynamic orthotropic version of the Sanders improved first-approximation linear shell theory and the fluid forces are described by using inviscid incompressible flow theory. Frequency spectra are presented for pipes made of isotropic material and composite materials of current engineering interest. (Auth.)
Miller, Renee; Kolipaka, Arunark; Nash, Martyn P; Young, Alistair A
2018-03-12
Magnetic resonance elastography (MRE) has been used to estimate isotropic myocardial stiffness. However, anisotropic stiffness estimates may give insight into structural changes that occur in the myocardium as a result of pathologies such as diastolic heart failure. The virtual fields method (VFM) has been proposed for estimating material stiffness from image data. This study applied the optimised VFM to identify transversely isotropic material properties from both simulated harmonic displacements in a left ventricular (LV) model with a fibre field measured from histology as well as isotropic phantom MRE data. Two material model formulations were implemented, estimating either 3 or 5 material properties. The 3-parameter formulation writes the transversely isotropic constitutive relation in a way that dissociates the bulk modulus from other parameters. Accurate identification of transversely isotropic material properties in the LV model was shown to be dependent on the loading condition applied, amount of Gaussian noise in the signal, and frequency of excitation. Parameter sensitivity values showed that shear moduli are less sensitive to noise than the other parameters. This preliminary investigation showed the feasibility and limitations of using the VFM to identify transversely isotropic material properties from MRE images of a phantom as well as simulated harmonic displacements in an LV geometry. Copyright © 2018 John Wiley & Sons, Ltd.
Marginality and Variability in Esperanto.
Brent, Edmund
This paper discusses Esperanto as a planned language and refutes three myths connected to it, namely, that Esperanto is achronical, atopical, and apragmatic. The focus here is on a synchronic analysis. Synchronic variability is studied with reference to the structuralist determination of "marginality" and the dynamic linguistic…
2013-01-01
This software can be used to assist with the assessment of margin of safety for a horizontal curve. It is intended for use by engineers and technicians responsible for safety analysis or management of rural highway pavement or traffic control devices...
Ethnographies of marginality [Review article
Beuving, J.J.
2016-01-01
Africanist discourse today displays a strong, widespread and growing sense of optimism about Africa's economic future. After decades of decline and stagnation in which Africa found itself reduced to the margins of the global economic stage, upbeat Afro-optimism seems fully justified. One only needs
Profit margins in Japanese retailing
J.C.A. Potjes; A.R. Thurik (Roy)
1993-01-01
textabstractUsing a rich data source, we explain differences and developments in profit margins of medium-sized stores in Japan. We conclude that the protected environment enables the retailer to pass on all operating costs to the customers and to obtain a relatively high basic income. High service
Pushing the Margins of Responsibility
DEFF Research Database (Denmark)
Santoni de Sio, Filippo; Di Nucci, Ezio
2018-01-01
David Shoemaker has claimed that a binary approach to moral responsibility leaves out something important, namely instances of marginal agency, cases where agents seem to be eligible for some responsibility responses but not others. In this paper we endorse and extend Shoemaker’s approach by pres...
International Nuclear Information System (INIS)
Preciozzi, F
2014-01-01
This work is about the kind of continental margins such as a )Atlantic type passive margins which can be hard or soft b) An active or Pacific margins that because of the very frequent earthquakes develop a morphology dominated by tectonic processes. The Uruguayan continental margin belongs to a soft Atlantic margin
Intra-fractional bladder motion and margins in adaptive radiotherapy for urinary bladder cancer
DEFF Research Database (Denmark)
Grønborg, Caroline; Vestergaard, Anne; Høyer, Morten
2015-01-01
and to estimate population-based and patient-specific intra-fractional margins, also relevant for a future re-optimisation strategy. MATERIAL AND METHODS: Nine patients treated in a clinical phase II ART trial of daily plan selection for bladder cancer were included. In the library plans, 5 mm isotropic margins......BACKGROUND: The bladder is a tumour site well suited for adaptive radiotherapy (ART) due to large inter-fractional changes, but it also displays considerable intra-fractional motion. The aim of this study was to assess target coverage with a clinically applied method for plan selection ART...... were added to account for intra-fractional changes. Pre-treatment and weekly repeat magnetic resonance imaging (MRI) series were acquired in which a full three-dimensional (3D) volume was scanned every second min for 10 min (a total of 366 scans in 61 series). Initially, the bladder clinical target...
Margins related to equipment design
International Nuclear Information System (INIS)
Devos, J.
1994-01-01
Safety margins related to design of reactor equipment are defined according to safety regulations. Advanced best estimate methods are proposed including some examples which were computed and compared to experimental results. Best estimate methods require greater computation effort and more material data but give better variable accuracy and need careful experimental validation. Simplified methods compared to the previous are less sensitive to material data, sometimes are more accurate but very long to elaborate
Indigenous women's voices: marginalization and health.
Dodgson, Joan E; Struthers, Roxanne
2005-10-01
Marginalization may affect health care delivery. Ways in which indigenous women experienced marginalization were examined. Data from 57 indigenous women (18 to 65 years) were analyzed for themes. Three themes emerged: historical trauma as lived marginalization, biculturalism experienced as marginalization, and interacting within a complex health care system. Experienced marginalization reflected participants' unique perspective and were congruent with previous research. It is necessary for health care providers to assess the detrimental impact of marginalization on the health status of individuals and/or communities.
Validity of the isotropic thermal conductivity assumption in supercell lattice dynamics
Ma, Ruiyuan; Lukes, Jennifer R.
2018-02-01
Superlattices and nano phononic crystals have attracted significant attention due to their low thermal conductivities and their potential application as thermoelectric materials. A widely used expression to calculate thermal conductivity, presented by Klemens and expressed in terms of the relaxation time by Callaway and Holland, originates from the Boltzmann transport equation. In its most general form, this expression involves a direct summation of the heat current contributions from individual phonons of all wavevectors and polarizations in the first Brillouin zone. In common practice, the expression is simplified by making an isotropic assumption that converts the summation over wavevector to an integral over wavevector magnitude. The isotropic expression has been applied to superlattices and phononic crystals, but its validity for different supercell sizes has not been studied. In this work, the isotropic and direct summation methods are used to calculate the thermal conductivities of bulk Si, and Si/Ge quantum dot superlattices. The results show that the differences between the two methods increase substantially with the supercell size. These differences arise because the vibrational modes neglected in the isotropic assumption provide an increasingly important contribution to the thermal conductivity for larger supercells. To avoid the significant errors that can result from the isotropic assumption, direct summation is recommended for thermal conductivity calculations in superstructures.
REDUCED ISOTROPIC CRYSTAL MODEL WITH RESPECT TO THE FOURTH-ORDER ELASTIC MODULI
Directory of Open Access Journals (Sweden)
O. Burlayenko
2018-04-01
Full Text Available Using a reduced isotropic crystal model the relationship between the fourth-order elastic moduli of an isotropic medium and the independent components of the fourth-order elastic moduli tensor of real crystals of various crystal systems is found. To calculate the coefficients of these relations, computer algebra systems Redberry and Mathematica for working with high order tensors in the symbolic and explicit form were used, in light of the overly complex computation. In an isotropic medium, there are four independent fourth order elastic moduli. This is due to the presence of four invariants for an eighth-rank tensor in the three-dimensional space, that has symmetries over the pairs of indices. As an example, the moduli of elasticity of an isotropic medium corresponding to certain crystals of cubic system are given (LiF, NaCl, MgO, CaF2. From the obtained results it can be seen that the reduced isotropic crystal model can be most effectively applied to high-symmetry crystal systems.
Marginalism, quasi-marginalism and critical phenomena in micellar solutions
International Nuclear Information System (INIS)
Reatto, L.
1986-01-01
The observed nonuniversal critical behaviour of some micellar solutions is interpreted in terms of quasi-marginalism, i.e. the presence of a coupling which scales with an exponent very close to the spatial dimensionality. This can give rise to a preasymptotic region with varying effective critical exponents with a final crossover to the Ising ones. The reduced crossover temperature is estimated to be below 10 -6 . The exponents β and γ measured in C 12 e 5 are in good agreement with the scaling law expected to hold for the effective exponents. The model considered by Shnidman is found unable to explain the nonuniversal critical behaviour
Reliabilityy and operating margins of LWR fuels
International Nuclear Information System (INIS)
Strasser, A.A.; Lindquist, K.O.
1977-01-01
The margins to fuel thermal operating limits under normal and accident conditions are key to plant operating flexibility and impact on availability and capacity factor. Fuel performance problems that do not result in clad breach, can reduce these margins. However, most have or can be solved with design changes. Regulatory changes have been major factors in eroding these margins. Various methods for regaining the margins are discussed
International Nuclear Information System (INIS)
Ren Chun-Yu; Xiang Zhi-Hai; Cen Zhang-Zhi
2011-01-01
We present a method for designing an open acoustic cloak that can conceal a perturbation on flat ground and simultaneously meet the requirement of communication and matter interchange between the inside and the outside of the cloak. This cloak can be constructed with a multilayered structure and each layer is an isotropic and homogeneous medium. The design scheme consists of two steps: firstly, we apply a conformal coordinate transformation to obtain a quasi-perfect cloak with heterogeneous isotropic material; then, according to the profile of the material distribution, we degenerate this cloak into a multilayered-homogeneous isotropic cloak, which has two open windows with negligible disturbance on its invisibility performance. This may greatly facilitate the fabrication and enhance the applicability of such a carpet-type cloak. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Gokulnath, C.; Saravanan, U.; Rajagopal, K. R.
2017-12-01
A methodology for obtaining implicit constitutive representations involving the Cauchy stress and the Hencky strain for isotropic materials undergoing a non-dissipative process is developed. Using this methodology, a general constitutive representation for a subclass of implicit models relating the Cauchy stress and the Hencky strain is obtained for an isotropic material with no internal constraints. It is shown that even for this subclass, unlike classical Green elasticity, one has to specify three potentials to relate the Cauchy stress and the Hencky strain. Then, a procedure to obtain implicit constitutive representations for isotropic materials with internal constraints is presented. As an illustration, it is shown that for incompressible materials the Cauchy stress and the Hencky strain could be related through a single potential. Finally, constitutive approximations are obtained when the displacement gradient is small.
Topography-specific isotropic tunneling in nanoparticle monolayer with sub-nm scale crevices.
Wang, Guisheng; Jiao, Weihong; Yi, Lizhi; Zhang, Yuejiao; Wu, Ke; Zhang, Chao; Lv, Xianglong; Qian, Lihua; Li, Jianfeng; Yuan, Songliu; Chen, Liang
2016-10-07
Material used in flexible devices may experience anisotropic strain with identical magnitude, outputting coherent signals that tend to have a serious impact on device reliability. In this work, the surface topography of the nanoparticles (NPs) is proposed to be a parameter to control the performance of strain gauge based on tunneling behavior. In contrast to anisotropic tunneling in a monolayer of spherical NPs, electron tunneling in a monolayer of urchin-like NPs actually exhibits a nearly isotropic response to strain with different loading orientations. Isotropic tunneling of the urchin-like NPs is caused by the interlocked pikes of these urchin-like NPs in a random manner during external mechanical stimulus. Topography-dependent isotropic tunneling in two dimensions reported here opens a new opportunity to create highly reliable electronics with superior performance.
Directory of Open Access Journals (Sweden)
Hiroshi Tsukahara
2017-05-01
Full Text Available We performed a large-scale micromagnetics simulation on a supercomputing system to investigate the properties of isotropic nanocrystalline permanent magnets consisting of cubic grains. In the simulation, we solved the Landau–Lifshitz–Gilbert equation under a periodic boundary condition for accurate calculation of the magnetization dynamics inside the nanocrystalline isotropic magnet. We reduced the inter-grain exchange interaction perpendicular and parallel to the external field independently. Propagation of the magnetization reversal process is inhibited by reducing the inter-grain exchange interaction perpendicular to the external field, and the coercivity is enhanced by this restraint. In contrast, when we reduce the inter-grain exchange interaction parallel to the external field, the coercivity decreases because the magnetization reversal process propagates owing to dipole interaction. These behaviors show that the coercivity of an isotropic permanent magnet depends on the direction of the inter-grain exchange interaction.
Torsional vibration of a pipe pile in transversely isotropic saturated soil
Zheng, Changjie; Hua, Jianmin; Ding, Xuanming
2016-09-01
This study considers the torsional vibration of a pipe pile in a transversely isotropic saturated soil layer. Based on Biot's poroelastic theory and the constitutive relations of the transversely isotropic medium, the dynamic governing equations of the outer and inner transversely isotropic saturated soil layers are derived. The Laplace transform is used to solve the governing equations of the outer and inner soil layers. The dynamic torsional response of the pipe pile in the frequency domain is derived utilizing 1D elastic theory and the continuous conditions at the interfaces between the pipe pile and the soils. The time domain solution is obtained by Fourier inverse transform. A parametric study is conducted to demonstrate the influence of the anisotropies of the outer and inner soil on the torsional dynamic response of the pipe pile.
A 3D printed dual GSM band near isotropic on-package antenna
Zhen, Su
2017-10-25
In this paper, we propose an on-package dual band monopole antenna with near-isotropic radiation pattern for GSM mobile applications. The proposed antenna is well matched for both GSM 900 and 1800 bands and provides decent gain for both the bands (1.67 and 3.27 dBi at 900 MHz and 1800 MHz respectively). The antenna is printed with silver ink on a 3D printed polymer based package. The package houses the GSM electronics and the battery. By optimizing the antenna arms width and length, a near-isotropic radiation pattern is achieved. Unlike the published isotropic antennas which are either single band or large in size, the proposed antenna covers both GSM bands with required bandwidth and is only half wavelength long. The design is low cost and highly suitable for various GSM applications such as localization, in additional to conventional communication applications.
Calculated isotropic Raman spectra from interacting H2-rare-gas pairs
International Nuclear Information System (INIS)
Gustafsson, M; Głaz, W; Bancewicz, T; Godet, J-L; Maroulis, G; Haskapoulos, A
2014-01-01
We report on a theoretical study of the H 2 -He and H 2 -Ar pair trace-polarizability and the corresponding isotropic Raman spectra. The conventional quantum mechanical approach for calculations of interaction-induced spectra, which is based on an isotropic interaction potential, is employed. This is compared with a close-coupling approach, which allows for inclusion of the full, anisotropic potential. It is established that the anisotropy of the potential plays a minor role for these spectra. The computed isotropic collision-induced Raman intensity, which is due to dissimilar pairs in H 2 -He and H 2 -Ar gas mixtures, is comparable to the intensities due to similar pairs (H 2 -H 2 , He-He, and Ar-Ar), which have been studied previously
A New Theory of Non-Linear Thermo-Elastic Constitutive Equation of Isotropic Hyperelastic Materials
Li, Chen; Liao, Yufei
2018-03-01
Considering the influence of temperature and strain variables on materials. According to the relationship of conjugate stress-strain, a complete and irreducible non-linear constitutive equation of isotropic hyperelastic materials is derived and the constitutive equations of 16 types of isotropic hyperelastic materials are given we study the transformation methods and routes of 16 kinds of constitutive equations and the study proves that transformation of two forms of constitutive equation. As an example of application, the non-linear thermo-elastic constitutive equation of isotropic hyperelastic materials is combined with the natural vulcanized rubber experimental data in the existing literature base on MATLAB, The results show that the fitting accuracy is satisfactory.
Silenced, Silence, Silent: Motherhood in the Margins
Carpenter, Lorelei; Austin, Helena
2007-01-01
This project explores the experiences of women who mother children with ADHD. The authors use the metaphor of the text and the margin. The text is the "motherhood myth" that describes a particular sort of "good" mothering. The margin is the space beyond that text. This marginal space is inhabited by some or all of the mothers they spoke with, some…
12 CFR 220.4 - Margin account.
2010-01-01
... Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM CREDIT BY... securities. The required margin on a net long or net short commitment in a when-issued security is the margin...) Interest charged on credit maintained in the margin account; (ii) Premiums on securities borrowed in...
Energy Technology Data Exchange (ETDEWEB)
Sandrini, E.S.; Silveira, T.B.; Vieira, D.S.; Anjos, L.E.A.; Lopez, J.C.C.; Batista, D.V.S., E-mail: emmilyfisica@gmail.com [Instituto Nacional de Cancer Jose de Alencar Gomes da Silva, Rio de Janeiro, RJ (Brazil)
2014-08-15
Clinical radiotherapy procedures aim at high precision. However, there are many errors sources that act during treatment preparation and execution that limit its accuracy. The use of imaged-guided radiotherapy (IGRT) increases the agreement between the planned dose and the actual dose deposited in the target, at the same time allows to evaluate the uncertainties related to the setup and a possible reduction in the planning target volume (PTV) margin. Thus the aim of this study was to determine the best PTV margin to be used in radiotherapy treatment of prostate cancer using intensity modulated radiotherapy (IMRT) and volumetric modulated arc radiotherapy (VMAT) techniques associated with IGRT. A total of four patients with prostate daily cone beam computed tomography (CBCT) were analyzed. Systematic and random errors were calculated statistically based on the displacements couch for 128 CBCTs. It was found that a symmetric margin of 0.75 cm from clinical treatment volume (CTV) to PTV is sufficient to encompass the uncertainties inherent to the treatment applying IGRT. Besides without that and maintaining the same tumor control probability, a symmetric margin of 1,24 cm would be necessary. This study showed that using daily image verification the setup errors are reduced, which generates a lower PTV margin. (author)
International Nuclear Information System (INIS)
Wang Qing; Hou Yu-Long; Jing Jian; Long Zheng-Wen
2014-01-01
In this paper, we study symmetrical properties of two-dimensional (2D) screened Dirac Hydrogen atom and isotropic harmonic oscillator with scalar and vector potentials of equal magnitude (SVPEM). We find that it is possible for both cases to preserve so(3) and su(2) dynamical symmetries provided certain conditions are satisfied. Interestingly, the conditions for preserving these dynamical symmetries are exactly the same as non-relativistic screened Hydrogen atom and screened isotropic oscillator preserving their dynamical symmetries. Some intuitive explanations are proposed. (general)
International Nuclear Information System (INIS)
Huang, Zhi Yong; Chaboche, Jean-Louis; Wang, Qing Yuan; Wagner, Danièle; Bathias, Claude
2014-01-01
Carbon–manganese steel A48 (French standard) is used in steam generator pipes of nuclear reactor pressure vessels at high temperatures (about 200 °C). The steel is sensitive to dynamic strain aging in monotonic tensile test and low cycle fatigue test at certain temperature range and strain rate. Its isotropic hardening behavior observed from experiments has a hardening, softening and hardening evolution with the effect of dynamic strain aging. The isotropic hardening model is improved by coupling the dislocation and dynamic strain aging theory to describe the behavior of A48 at 200 °C
Energy Technology Data Exchange (ETDEWEB)
Huang, Zhi Yong, E-mail: huangzy@scu.edu.cn [Sichuan University, School of Aeronautics and Astronautics, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Chaboche, Jean-Louis [ONERA, DMSM, 29 avenue de la Division Lecerc, F-92320 Chatillon (France); Wang, Qing Yuan [Sichuan University, School of Aeronautics and Astronautics, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Wagner, Danièle; Bathias, Claude [Université ParisOuest Nanterre La Défense (France)
2014-01-01
Carbon–manganese steel A48 (French standard) is used in steam generator pipes of nuclear reactor pressure vessels at high temperatures (about 200 °C). The steel is sensitive to dynamic strain aging in monotonic tensile test and low cycle fatigue test at certain temperature range and strain rate. Its isotropic hardening behavior observed from experiments has a hardening, softening and hardening evolution with the effect of dynamic strain aging. The isotropic hardening model is improved by coupling the dislocation and dynamic strain aging theory to describe the behavior of A48 at 200 °C.
About zone structure of a stack of a cholesteric liquid crystal and isotropic medium layers
International Nuclear Information System (INIS)
Gevorgyan, A H; Harutyunyan, E M; Matinyan, G K; Harutyunyan, M Z
2014-01-01
The optical properties of a stack of metamaterial-based cholesteric liquid crystal (CLC) layers and isotropic medium layers are investigated. CLCs with two types of chiral nihility are defined. The peculiarities of the reflection spectra of this system are investigated and it is shown that the reflection spectra of the stacks of CLC layers of these two types differ from each other. The influence of: the CLC sublayer thicknesses; incidence angle; local dielectric (magnetic) anisotropy of the CLC layers; refraction indices and thicknesses of the isotropic media layers on the reflection spectra and other optical characteristics of the system is investigated.
Phase-field-crystal model for magnetocrystalline interactions in isotropic ferromagnetic solids
Faghihi, Niloufar; Provatas, Nikolas; Elder, K. R.; Grant, Martin; Karttunen, Mikko
2013-09-01
An isotropic magnetoelastic phase-field-crystal model to study the relation between morphological structure and magnetic properties of pure ferromagnetic solids is introduced. Analytic calculations in two dimensions were used to determine the phase diagram and obtain the relationship between elastic strains and magnetization. Time-dependent numerical simulations in two dimensions were used to demonstrate the effect of grain boundaries on the formation of magnetic domains. It was shown that the grain boundaries act as nucleating sites for domains of reverse magnetization. Finally, we derive a relation for coercivity versus grain misorientation in the isotropic limit.
Numerical implementation of a transverse-isotropic inelastic, work-hardening constitutive model
International Nuclear Information System (INIS)
Baladi, G.Y.
1978-01-01
The numerical implementation of a transverse-isotropic inelastic, work-hardening plastic constitutive model is documented. A brief review of the model is presented first to facilitate the understanding of its numerical implementation. This model is formulated in terms of 'pseudo' stress invariants, so that the incremental stress-strain relationship can be readily incorporated into existing finite-difference or infinite-element computer codes. The anisotropic model reduces to its isotropic counterpart without any changes in the mathematical formulation or in the numerical implementation (algorithm) of the model. A typical example of the model and its behavior in uniaxial strain and triaxial compression is presented. (Auth.)
Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane
Pant, Bharat B. (Inventor); Wan, Hong (Inventor)
2001-01-01
A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.
Full three-dimensional isotropic carpet cloak designed by quasi-conformal transformation optics.
Silva, Daniely G; Teixeira, Poliane A; Gabrielli, Lucas H; Junqueira, Mateus A F C; Spadoti, Danilo H
2017-09-18
A fully three-dimensional carpet cloak presenting invisibility in all viewing angles is theoretically demonstrated. The design is developed using transformation optics and three-dimensional quasi-conformal mapping. Parametrization strategy and numerical optimization of the coordinate transformation deploying a quasi-Newton method is applied. A discussion about the minimum achievable anisotropy in the 3D transformation optics is presented. The method allows to reduce the anisotropy in the cloak and an isotropic medium could be considered. Numerical simulations confirm the strategy employed enabling the design of an isotropic reflectionless broadband carpet cloak independently of the incident light direction and polarization.
Safety margins in deterministic safety analysis
International Nuclear Information System (INIS)
Viktorov, A.
2011-01-01
The concept of safety margins has acquired certain prominence in the attempts to demonstrate quantitatively the level of the nuclear power plant safety by means of deterministic analysis, especially when considering impacts from plant ageing and discovery issues. A number of international or industry publications exist that discuss various applications and interpretations of safety margins. The objective of this presentation is to bring together and examine in some detail, from the regulatory point of view, the safety margins that relate to deterministic safety analysis. In this paper, definitions of various safety margins are presented and discussed along with the regulatory expectations for them. Interrelationships of analysis input and output parameters with corresponding limits are explored. It is shown that the overall safety margin is composed of several components each having different origins and potential uses; in particular, margins associated with analysis output parameters are contrasted with margins linked to the analysis input. While these are separate, it is possible to influence output margins through the analysis input, and analysis method. Preserving safety margins is tantamount to maintaining safety. At the same time, efficiency of operation requires optimization of safety margins taking into account various technical and regulatory considerations. For this, basic definitions and rules for safety margins must be first established. (author)
International Nuclear Information System (INIS)
Sergeev, V.A.; Malkov, M.; Mursula, K.
1993-01-01
This paper describes tests done on one model system for studying the magnetic field in the magneotail, called the isotropic boundary algorithm method. The tail field lines map into the ionosphere, and there have been two direct methods applied to study tail fields, one a global model, and the other a local model. The global models are so broad in scope that they have a hard time dealing with specific field configurations at some time and some location. Local models rely upon field measurements being simultaneously available over a large region of space to study simultaneously the field configurations. In general this is either very fortuitous or very expensive. The isotropic boundary algorithm method relys upon measuring energetic particles, here protons with energies greater than 30 keV, in the isotropic boundary at low altitudes and interpreting them as representing the boundary between stochastic and adiabatic particle motion regions in the equatorial tail current sheet. The authors have correlated particle measurements by NOAA spacecraft to study the isotropic boundary, with magnetic measurements of tail magnetic fields by the geostationary GOES 2 spacecraft. Positive correlations are observed
A simple free energy for the isotropic-nematic phase transition of rods
Tuinier, R.
2016-01-01
A free energy expression is proposed that describes the isotropic-nematic binodal concentrations of hard rods. A simple analytical form for this free energy was yet only available using a Gaussian trial function for the orientation distribution function (ODF), leading, however, to a significant
On metallic gratings coated conformally with isotropic negative-phase-velocity materials
International Nuclear Information System (INIS)
Inchaussandague, Marina E.; Lakhtakia, Akhlesh; Depine, Ricardo A.
2008-01-01
Application of the differential method (also called the C method) to plane-wave diffraction by a perfectly conducting, sinusoidally corrugated metallic grating coated with a linear, homogeneous, isotropic, lossless dielectric-magnetic material shows that coating materials with negative index of refraction may deliver enhanced maximum nonspecular reflection efficiencies in comparison to coating materials with positive index of refraction
On metallic gratings coated conformally with isotropic negative-phase-velocity materials
Energy Technology Data Exchange (ETDEWEB)
Inchaussandague, Marina E. [GEA-Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); CONICET-Consejo Nacional de Investigaciones Cientificas y Tecnicas, Rivadavia 1917, Buenos Aires (Argentina)], E-mail: mei@df.uba.ar; Lakhtakia, Akhlesh [CATMAS-Computational and Theoretical Materials Sciences Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812 (United States)], E-mail: akhlesh@psu.edu; Depine, Ricardo A. [GEA-Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); CONICET-Consejo Nacional de Investigaciones Cientificas y Tecnicas, Rivadavia 1917, Buenos Aires (Argentina)], E-mail: rdep@df.uba.ar
2008-03-31
Application of the differential method (also called the C method) to plane-wave diffraction by a perfectly conducting, sinusoidally corrugated metallic grating coated with a linear, homogeneous, isotropic, lossless dielectric-magnetic material shows that coating materials with negative index of refraction may deliver enhanced maximum nonspecular reflection efficiencies in comparison to coating materials with positive index of refraction.
A Dual Band Additively Manufactured 3D Antenna on Package with Near-Isotropic Radiation Pattern
Su, Zhen
2018-04-06
Internet of things (IoT) applications need wireless connectivity on devices with very small footprints, and in RF obscure environments. The antenna for such applications must work on multiple GSM bands (preferred choice for network connectivity), provide near isotropic radiation pattern to maintain orientation insensitive communication, be small in size so that it can be integrated with futuristic miniaturized IoT devices, and be low in cost to be implemented on billions of devices. This paper presents a novel 3D dual band near-isotropic wideband GSM antenna to fulfill these requirements. The antenna has been realized on the package of electronics through additive manufacturing to ensure efficient utilization of available space and lower cost. The proposed antenna consists of a meander line antenna that is folded on the faces of a 3D package with two variations, 0.375λ length for narrowband version and 0.67λ length for the wideband version. Theoretical conditions to achieve near isotropic radiation pattern with bent wire antennas on a 3D surface have been derived. The antenna has been optimized to operate with embedded electronics and a large metallic battery. The antenna provides 8.9% and 34.4% bandwidths, at 900 and 1800 MHz respectively with decent near isotropic radiation behavior.
A new approach to design of quasi-isotropic antenna systems for satellite applications
DEFF Research Database (Denmark)
Schjær-Jacobsen, Hans; Hansen, J.E.
1976-01-01
The new approach considered takes into account the maximum error of the quasi-isotropic radiation pattern relative to the ideal pattern. A design example involving a spherical satellite with quarter wave monopoles is used to demonstrate the effectiveness of the new approach. An investigation...
International Nuclear Information System (INIS)
Barykin, V.N.
1989-01-01
A physical interpretation of the early detected ambiguity of the electrodynamic material equations of isotropic, inertially moving media which mathematically manifests itself through complementarity of the equations invariant under the Galileo group in some cases and in other ones - under the Lorentz group that can be experimentally discovered in the aberration phenomenon and Doppler effect
Poh, Leong Hien; Peerlings, R.H.J.
2016-01-01
Although formulated to represent a large system of polycrystals at the macroscopic level, isotropic gradient plasticity models have routinely been adopted at the meso scale. For such purposes, it is crucial to incorporate the plastic rotation effect in order to obtain a reasonable approximation of
Weak convergence to isotropic complex S α S $S\\alpha S$ random measure
Directory of Open Access Journals (Sweden)
Jun Wang
2017-09-01
Full Text Available Abstract In this paper, we prove that an isotropic complex symmetric α-stable random measure ( 0 < α < 2 $0<\\alpha<2$ can be approximated by a complex process constructed by integrals based on the Poisson process with random intensity.
Numerical implementation of a transverse-isotropic inelastic, work-hardening constitutive model
International Nuclear Information System (INIS)
Baladi, G.Y.
1977-01-01
During the past few decades the dramatic growth of computer technology has been paralleled by an increasing degree of complexity in material constitutive modeling. This paper documents the numerical implementation of one of these models, specifically a transverse-isotropic, inelastic, work-hardening constitutive model which is developed elsewhere by the author. (Auth.)
Tsinober, A.; Vedula, P.; Yeung, P.K.
2001-01-01
The properties of acceleration fluctuations in isotropic turbulence are studied in direct numerical simulations (DNS) by decomposing the acceleration as the sum of local and convective contributions (aL = ?u/?t and aC = u??u), or alternatively as the sum of irrotational and solenoidal contributions
International Nuclear Information System (INIS)
Pappas, G; Apostolatos, T A
2008-01-01
We demonstrate how one should transform correctly quasi-isotropic coordinates to Weyl-Papapetrou coordinates in order to compare the metric around a rotating star, which has been constructed numerically in the former coordinates, with an axially symmetric stationary metric, which is given through an analytical form in the latter coordinates. (comments, replies and notes)
Energy Technology Data Exchange (ETDEWEB)
Pappas, G; Apostolatos, T A [Section of Astrophysics, Astronomy and Mechanics, Department of Physics, University of Athens, Panepistimiopolis Zografos GR15783, Athens (Greece)
2008-11-21
We demonstrate how one should transform correctly quasi-isotropic coordinates to Weyl-Papapetrou coordinates in order to compare the metric around a rotating star, which has been constructed numerically in the former coordinates, with an axially symmetric stationary metric, which is given through an analytical form in the latter coordinates. (comments, replies and notes)
Multi-contrast, isotropic, single-slab 3D MR imaging in multiple sclerosis
Moraal, Bastiaan; Roosendaal, Stefan; Pouwels, Petra; Vrenken, Hugo; Schijndel, van Ronald; Meier, Dominik; Guttmann, Charles; Geurts, Jeroen; Barkhof, Frederik
2008-01-01
To describe signal and contrast properties of an isotropic, single-slab 3D dataset [double inversion- recovery (DIR), fluid-attenuated inversion recovery (FLAIR), T2, and T1-weighted magnetization prepared rapid acquisition gradient-echo (MPRAGE)] and to evaluate its performance in detecting
Multi-contrast, isotropic, single-slab 3D MR imaging in multiple sclerosis
Moraal, B.; Roosendaal, S.D.; Pouwels, P.J.W.; Vrenken, H.; van Schijndel, R.A.; Meier, D.S.; Guttmann, C.R.G.; Geurts, J.J.G.; Barkhof, F.
2008-01-01
To describe signal and contrast properties of an isotropic, single-slab 3D dataset [double inversion-recovery (DIR), fluid-attenuated inversion recovery (FLAIR), T2, and T1-weighted magnetization prepared rapid acquisition gradient-echo (MPRAGE)] and to evaluate its performance in detecting multiple
Bel-Robinson energy and the nature of singularities in isotropic cosmologies
International Nuclear Information System (INIS)
Klaoudatou, Ifigeneia; Cotsakis, Spiros
2007-01-01
We review our recent work on the classification of finite time singularities that arise in isotropic universes. This scheme is based on the exploitation of the Bel Robinson energy in a cosmological setting. We comment on the relation between geodesic completeness and the Bel Robinson energy and present evidence that relates the divergence of the latter to the existence of closed trapped surfaces
Development of a 10 m quasi-isotropic strand assembled from 2G wires
Kan, Changtao; Wang, Yinshun; Hou, Yanbing; Li, Yan; Zhang, Han; Fu, Yu; Jiang, Zhe
2018-03-01
Quasi-isotropic strands made of second generation (2G) high temperature superconducting (HTS) wires are attractive to applications of high-field magnets at low temperatures and power transmission cables at liquid nitrogen temperature in virtue of their high current carrying capability and well mechanical property. In this contribution, a 10 m length quasi-isotropic strand is manufactured and successfully tested in liquid nitrogen to verify the feasibility of an industrial scale production of the strand by the existing cabling technologies. The strand with copper sheath consists of 72 symmetrically assembled 2G wires. The uniformity of critical properties of long quasi-isotropic strands, including critical current and n-value, is very important for their using. Critical currents as well as n-values of the strand are measured every 1 m respectively and compared with the simulation results. Critical current and n-value of the strand are calculated basing on the self-consistent model solved by the finite element method (FEM). Effects of self-field on the critical current and n-value distributions in wires of the strand are analyzed in detail. The simulation results show good agreement with the experimental data and the 10 m quasi-isotropic strand has good critical properties uniformity.
International Nuclear Information System (INIS)
Bagrov, V.G.; Evseevich, A.A.; Obukhov, V.V.; Osetrin, K.E.
1987-01-01
The authors consider the problem of the classification of the Stackel spaces of the electrovacuum with isotropic complete sets. The metrics of the spaces are represented in a form that is convenient for their investigation. We obtain necessary relations for the construction of the field equations
Static deformation due to a long buried dip-slip fault in an isotropic
Indian Academy of Sciences (India)
Closed-form analytical expressions for the displacements and the stresses at any point of a two-phase medium consisting of a homogeneous, isotropic, perfectly elastic half-space in welded contact with a homogeneous, orthotropic, perfectly elastic half-space due to a dip-slip fault of ﬁnite width located at an arbitrary ...
Split energy–helicity cascades in three-dimensional homogeneous and isotropic turbulence
Biferale, L.; Musacchio, S.; Toschi, F.
2013-01-01
We investigate the transfer properties of energy and helicity fluctuations in fully developed homogeneous and isotropic turbulence by changing the nature of the nonlinear Navier–Stokes terms. We perform a surgery of all possible interactions, by keeping only those triads that have sign-definite
Controlling marginally detached divertor plasmas
Eldon, D.; Kolemen, E.; Barton, J. L.; Briesemeister, A. R.; Humphreys, D. A.; Leonard, A. W.; Maingi, R.; Makowski, M. A.; McLean, A. G.; Moser, A. L.; Stangeby, P. C.
2017-06-01
A new control system at DIII-D has stabilized the inter-ELM detached divertor plasma state for H-mode in close proximity to the threshold for reattachment, thus demonstrating the ability to maintain detachment with minimal gas puffing. When the same control system was instead ordered to hold the plasma at the threshold (here defined as T e = 5 eV near the divertor target plate), the resulting T e profiles separated into two groups with one group consistent with marginal detachment, and the other with marginal attachment. The plasma dithers between the attached and detached states when the control system attempts to hold at the threshold. The control system is upgraded from the one described in Kolemen et al (2015 J. Nucl. Mater. 463 1186) and it handles ELMing plasmas by using real time D α measurements to remove during-ELM slices from real time T e measurements derived from divertor Thomson scattering. The difference between measured and requested inter-ELM T e is passed to a PID (proportional-integral-derivative) controller to determine gas puff commands. While some degree of detachment is essential for the health of ITER’s divertor, more deeply detached plasmas have greater radiative losses and, at the extreme, confinement degradation, making it desirable to limit detachment to the minimum level needed to protect the target plate (Kolemen et al 2015 J. Nucl. Mater. 463 1186). However, the observed bifurcation in plasma conditions at the outer strike point with the ion B × \
Lu, San; Artemyev, A. V.; Angelopoulos, V.
2017-11-01
Magnetotail current sheet thinning is a distinctive feature of substorm growth phase, during which magnetic energy is stored in the magnetospheric lobes. Investigation of charged particle dynamics in such thinning current sheets is believed to be important for understanding the substorm energy storage and the current sheet destabilization responsible for substorm expansion phase onset. We use Time History of Events and Macroscale Interactions during Substorms (THEMIS) B and C observations in 2008 and 2009 at 18 - 25 RE to show that during magnetotail current sheet thinning, the electron temperature decreases (cooling), and the parallel temperature decreases faster than the perpendicular temperature, leading to a decrease of the initially strong electron temperature anisotropy (isotropization). This isotropization cannot be explained by pure adiabatic cooling or by pitch angle scattering. We use test particle simulations to explore the mechanism responsible for the cooling and isotropization. We find that during the thinning, a fast decrease of a parallel electric field (directed toward the Earth) can speed up the electron parallel cooling, causing it to exceed the rate of perpendicular cooling, and thus lead to isotropization, consistent with observation. If the parallel electric field is too small or does not change fast enough, the electron parallel cooling is slower than the perpendicular cooling, so the parallel electron anisotropy grows, contrary to observation. The same isotropization can also be accomplished by an increasing parallel electric field directed toward the equatorial plane. Our study reveals the existence of a large-scale parallel electric field, which plays an important role in magnetotail particle dynamics during the current sheet thinning process.
International Nuclear Information System (INIS)
Lee, Jin Seung; Lee, Seung S
2008-01-01
In this paper, a novel approach is developed to design an isotropic suspension system using thick metal freestanding micro-structures combining bulk micro-machining with electroplating based on a HAR SU-8 mold. An omega-shape isotropic suspension system composed of circular curved beams that have free switching of imaginary boundary conditions is proposed. This novel isotropic suspension design is not affected by geometric dimensional parameters and always achieves matching stiffness along the principle axes of elasticity. Using the finite element method, the isotropic suspension system was compared with an S-shaped meandering suspension system. In order to realize the suggested isotropic suspension system, a cost-effective fabrication process using electroplating with the SU-8 mold was developed to avoid expensive equipment and materials such as deep reactive-ion etching (DRIE) or a silicon-on-insulator (SOI) wafer. The fabricated isotropic suspension system was verified by electromagnetic actuation experiments. Finally, a biaxial accelerometer with isotropic suspension system was realized and tested using a vibration generator system. The proposed isotropic suspension system and the modified surface micro-machining technique based on electroplating with an SU-8 mold can contribute towards minimizing the system size, simplifying the system configuration, reducing the system price of and facilitating mass production of various types of low-cost sensors and actuators
International Nuclear Information System (INIS)
Hugo, Geoffrey D; Di Yan; Jian Liang
2007-01-01
In this work, five 4D image-guidance strategies (two population, an offline adaptive and two online strategies) were evaluated that compensated for both inter- and intra-fraction variability such as changes to the baseline tumour position and respiratory pattern. None of the strategies required active motion compensation such as gating or tracking; all strategies simulated a free-breathing-based treatment technique. Online kilovoltage fluoroscopy was acquired for eight patients with lung tumours, and used to construct inter- and intra-fraction tumour position variability models. Planning was performed on a mid-ventilation image acquired from a respiration-correlated CT scan. The blurring effect of tumour position variability was included in the dose calculation by convolution. CTV to PTV margins were calculated for variability in the cranio-caudal direction. A population margin of 9.0 ± 0.7 mm was required to account for setup error and respiration in the study population without the use of image-guidance. The greatest mean margin reduction was introduced by the offline adaptive strategy. A daily online correction strategy produced a small reduction (1.6 mm) in the mean margin from the offline strategy. Adaptively correcting for an inter-fraction change in the respiratory pattern had little effect on margin size due to most patients having only small daily changes in the respiratory pattern. A daily online correction strategy would be useful for patients who exhibit large variations in the daily mean tumour position, while an offline adaptive strategy is more applicable to patients with less variation
Marginal cost application in the power industry
International Nuclear Information System (INIS)
Twardy, L.; Rusak, H.
1994-01-01
Two kind of marginal costs, the short-run and the long-run, are defined. The former are applied in conditions when the load increase is not accompanied neither by the increase of the transmission capacity not the installed capacity while the latter assume new investments to expand the power system. The long-run marginal costs be used to forecast optimized development of the system. They contain two main components: the marginal costs of capacity and the marginal costs of energy. When the long-run marginal costs are calculated, each component is considered for particular voltage levels, seasons of the year, hours of the day - selected depending on the system reliability factor as well as on its load level. In the market economy countries the long-run marginal costs can be used for setting up the electric energy tariffs. (author). 7 refs, 11 figs
Tectonic signatures on active margins
Hogarth, Leah Jolynn
High-resolution Compressed High-Intensity Radar Pulse (CHIRP) surveys offshore of La Jolla in southern California and the Eel River in northern California provide the opportunity to investigate the role of tectonics in the formation of stratigraphic architecture and margin morphology. Both study sites are characterized by shore-parallel tectonic deformation, which is largely observed in the structure of the prominent angular unconformity interpreted as the transgressive surface. Based on stratal geometry and acoustic character, we identify three sedimentary sequences offshore of La Jolla: an acoustically laminated estuarine unit deposited during early transgression, an infilling or "healing-phase" unit formed during the transgression, and an upper transparent unit. The estuarine unit is confined to the canyon edges in what may have been embayments during the last sea-level rise. The healing-phase unit appears to infill rough areas on the transgressive surface that may be related to relict fault structures. The upper transparent unit is largely controlled by long-wavelength tectonic deformation due to the Rose Canyon Fault. This unit is also characterized by a mid-shelf (˜40 m water depth) thickness high, which is likely a result of hydrodynamic forces and sediment grain size. On the Eel margin, we observe three distinct facies: a seaward-thinning unit truncated by the transgressive surface, a healing-phase unit confined to the edges of a broad structural high, and a highly laminated upper unit. The seaward-thinning wedge of sediment below the transgressive surface is marked by a number of channels that we interpret as distributary channels based on their morphology. Regional divergence of the sequence boundary and transgressive surface with up to ˜8 m of sediment preserved across the interfluves suggests the formation of subaerial accommodation during the lowstand. The healing-phase, much like that in southern California, appears to infill rough areas in the
Aspects of marginal expenditures in energy sector
International Nuclear Information System (INIS)
Stojchev, D.; Kynev, K.
1994-01-01
Technical and economical problems of marginal analysis methodology, its application procedure in energy sector and marginal expenditures determination are outlined. A comparative characteristics of the application is made for different periods of time. The differences in calculation of the marginal expenditures and prices are discussed. The operational costs, investments and inflation are analyzed. The mechanism of application of this approach in different planing horizon is outlined. The role of the change in the costs in time, the time unit, volume, the scope of application, etc. are determined. The areas of transition from one to other form of marginal expenditures are shown. 4 refs. (orig.)
The marginal costs of greenhouse gas emissions
International Nuclear Information System (INIS)
Tol, R.S.J.
1999-01-01
Estimates of the marginal costs of greenhouse gas emissions are on important input to the decision how much society would want to spend on greenhouse gas emission reduction. Marginal cost estimates in the literature range between $5 and $25 per ton of carbon. Using similar assumptions, the FUND model finds marginal costs of $9--23/tC, depending on the discount rate. If the aggregation of impacts over countries accounts for inequalities in income distribution or for risk aversion, marginal costs would rise by about a factor of 3. Marginal costs per region are an order of magnitude smaller than global marginal costs. The ratios between the marginal costs of CO 2 and those of CH 4 and N 2 O are roughly equal to the global warming potentials of these gases. The uncertainty about the marginal costs is large and right-skewed. The expected value of the marginal costs lies about 35% above the best guess, the 95-percentile about 250%
On the evaluation of marginal expected shortfall
DEFF Research Database (Denmark)
Caporin, Massimiliano; Santucci de Magistris, Paolo
2012-01-01
In the analysis of systemic risk, Marginal Expected Shortfall may be considered to evaluate the marginal impact of a single stock on the market Expected Shortfall. These quantities are generally computed using log-returns, in particular when there is also a focus on returns conditional distribution....... In this case, the market log-return is only approximately equal to the weighed sum of equities log-returns. We show that the approximation error is large during turbulent market phases, with a subsequent impact on Marginal Expected Shortfall. We then suggest how to improve the evaluation of Marginal Expected...
Assessment of seismic margin calculation methods
International Nuclear Information System (INIS)
Kennedy, R.P.; Murray, R.C.; Ravindra, M.K.; Reed, J.W.; Stevenson, J.D.
1989-03-01
Seismic margin review of nuclear power plants requires that the High Confidence of Low Probability of Failure (HCLPF) capacity be calculated for certain components. The candidate methods for calculating the HCLPF capacity as recommended by the Expert Panel on Quantification of Seismic Margins are the Conservative Deterministic Failure Margin (CDFM) method and the Fragility Analysis (FA) method. The present study evaluated these two methods using some representative components in order to provide further guidance in conducting seismic margin reviews. It is concluded that either of the two methods could be used for calculating HCLPF capacities. 21 refs., 9 figs., 6 tabs
Regional Marginal Abatement Cost Curves for NOx
U.S. Environmental Protection Agency — Data underlying the figures included in the manuscript "Marginal abatement cost curve for NOx incorporating controls, renewable electricity, energy efficiency and...
[Resection margins in conservative breast cancer surgery].
Medina Fernández, Francisco Javier; Ayllón Terán, María Dolores; Lombardo Galera, María Sagrario; Rioja Torres, Pilar; Bascuñana Estudillo, Guillermo; Rufián Peña, Sebastián
2013-01-01
Conservative breast cancer surgery is facing a new problem: the potential tumour involvement of resection margins. This eventuality has been closely and negatively associated with disease-free survival. Various factors may influence the likelihood of margins being affected, mostly related to the characteristics of the tumour, patient or surgical technique. In the last decade, many studies have attempted to find predictive factors for margin involvement. However, it is currently the new techniques used in the study of margins and tumour localisation that are significantly reducing reoperations in conservative breast cancer surgery. Copyright © 2012 AEC. Published by Elsevier Espana. All rights reserved.
Scalar properties of transversely isotropic tuff from images of orthogonal cross sections
International Nuclear Information System (INIS)
Berge, P.A.; Berryman, J.G.; Blair, S.C.; Pena, C.
1997-01-01
Image processing methods have been used very effectively to estimate physical properties of isotropic porous earth materials such as sandstones. Anisotropic materials can also be analyzed in order to estimate their physical properties, but additional care and a larger number of well-chosen images of cross sections are required to obtain correct results. Although low-symmetry anisotropic media present difficulties for two-dimensional image processing methods, geologic materials are often transversely isotropic. Scalar properties of porous materials such as porosity and specific surface area can be determined with only minor changes in the analysis when the medium is transversely isotropic rather than isotropic. For example, in a rock that is transitively isotropic due to thin layers or beds, the overall porosity may be obtained by analyzing images of cross sections taken orthogonal to the bedding planes, whereas cross sections lying within the bedding planes will determine only the local porosity of the bed itself. It is known for translationally invariant anisotropic media that the overall specific surface area can be obtained from radial averages of the two-point correlation function in the full three-dimensional volume. Layered materials are not translationally invariant in the direction of the layering, but we show nevertheless how averages of cross sections may be used to obtain the specific surface area for a transversely isotropic rock. We report values of specific surface area obtained for thin sections of Topopah Spring Tuff from Yucca Mountain, Nevada. This formation is being evaluated as a potential host rock for geologic disposal of nuclear waste. Although the present work has made use of thin sections of tuff for the images, the same methods of analysis could also be used to simplify quantitative analysis of three-dimensional volumes of pore structure data obtained by means of x-ray microtomography or other methods, using only a few representative cross
Marginal cost pricing of electricity
International Nuclear Information System (INIS)
Edsbaecker, G.
1980-01-01
The discipline is economics and the phenomenon is the power system. The purpose of this system is to produce, transmit and consume electricity in such a way that the sum of consumers and suppliers surplus in maximized. This is accomplished by the means of marginal cost pricing. The concepts of the power system and the relations prevailing between and among them are picked out, defined and analyzed in the frames of economic theory and operations research. Methods are developed aiming at efficient prices so that the short run function of the power system is managed in such a way that the sum of conumers and suppliers surplus is maximized within the framwork of this system, i.e. value of service of the power system is maximized. The task of developing such methods is accomplished subject to mixed production resources, transmission losses, periodic demand and also when there is lack of information concerning future and cost conditions. The main results are methods which take to account the conditions stated above. Methods not only allowing for traditional cost minimizing but also for maximation of value of service including a process of reaching optimum by gradual adaption when demand and cost curves are not known in advance. (author)
International Nuclear Information System (INIS)
Park, S.Y.; Lee, I.S.; Park, S.K.; Cheon, S.J.; Ahn, J.M.; Song, J.W.
2014-01-01
Aim: To compare the diagnostic accuracies of three-dimensional (3D) isotropic magnetic resonance arthrography (MRA) using fat-suppressed proton density (PD) or volume interpolated breath-hold examination (VIBE) sequences with that of conventional MRA for the diagnosis of rotator cuff and labral lesions. Materials and methods: Eighty-six patients who underwent arthroscopic surgery were included. 3D isotropic sequences were performed in the axial plane using fat-suppressed PD (group A) in 53 patients and using VIBE (group B) in 33 patients. Reformatted images were obtained corresponding to conventional images, and evaluated for the presence of labral and rotator cuff lesions using conventional and 3D isotropic sequences. The diagnostic performances of each sequence were determined using arthroscopic findings as the standard. Results: Good to excellent interobserver agreements were obtained for both 3D isotropic sequences for the evaluation of rotator cuff and labral lesions. Excellent agreement was found between two-dimensional (2D) and 3D isotropic MRA, except for supraspinatus tendon (SST) tears by both readers and for subscapularis tendon (SCT) tears by reader 2 in group B. 2D MRA and 3D isotropic sequences had high diagnostic performances for rotator and labral tears, and the difference between the two imaging methods was insignificant. Conclusions: The diagnostic performances of 3D isotropic VIBE and PD sequences were similar to those of 2D MRA
Wicher Bergsma; Andries van der Ark
2015-01-01
A package accompanying the book Marginal Models for Dependent, Clustered, and Longitudinal Categorical Data by Bergsma, Croon, & Hagenaars, 2009. It’s purpose is fitting and testing of marginal models.
Energy Technology Data Exchange (ETDEWEB)
Sheng, Yang, E-mail: Yang.Sheng@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Li, Taoran [Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States); Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Lee, W. Robert [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Yin, Fang-Fang; Wu, Q. Jackie [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina (United States)
2017-06-01
Purpose: To provide a benchmark for seminal vesicle (SV) margin selection to account for intrafractional motion and to investigate the effectiveness of 2 motion surrogates in predicting intrafractional SV coverage. Methods and Materials: Fifteen prostate patients were studied. Each patient had 5 pairs (1 patient had 4 pairs) of pretreatment and posttreatment cone beam CTs (CBCTs). Each pair of CBCTs was registered on the basis of prostate fiducial markers. All pretreatment SVs were expanded with 1-, 2-, 3-, 4-, 5-, and 8-mm isotropic margins to form a series of planning target volumes, and their intrafractional coverage to the posttreatment SV determined the “ground truth” for exact coverage. Two motion surrogates, the center of mass (COM) and the border of contour, were evaluated by the use of Pearson product-moment correlation coefficient and exponential fitting for predicting SV underdosage. Action threshold of each surrogate was calculated. The margin for each surrogate was calculated according to a traditional margin recipe. Results: Ninety-five percent posttreatment SV coverage was achieved in 9%, 53%, 73%, 86%, 95%, and 97% of fractions with 1-, 2-, 3-, 4-, 5-, and 8-mm margins, respectively. The 5-mm margins provided 95% intrafractional SV coverage in over 90% of fractions. The correlation between the COM and border was weak, moderate, and strong in the left-right (L-R), anterior-posterior (A-P), and superior-inferior (S-I) directions, respectively. Exponential fitting gave the underdosage threshold of 4.5 and 7.0 mm for the COM and border. The Van Herk margin recipe recommended 0-, 0.5-, and 0.8-mm margins in the L-R, A-P, and S-I directions based on the COM, and 1.2-, 3.9-, and 2.5-mm margins based on the border. Conclusions: Five-millimeter isotropic margins for the SV constitute the minimum required to mitigate the intrafractional motion. Both the COM and the border are acceptable predictors for SV underdosage with 4.5- and 7.0-mm action threshold
International Nuclear Information System (INIS)
Fischer, F.D.; Boehm, H.J.
2005-01-01
The jumps of the strain and stress tensors on the surface of elastic homogeneous or inhomogeneous ellipsoidal inclusions embedded in an elastic matrix are obtained from results reported in the literature. They are used to derive closed-form expressions for the thermodynamic force in such matrix-inclusion systems that are subjected to a generally defined homogeneous transformation eigenstrain. A detailed study is presented for an isotropic spheroidal inclusion in an isotropic matrix in which the most important parameters are the inclusion's aspect ratio α and an eigenstrain triaxiality parameter d-bar. The fluctuations of the thermodynamic force are investigated for a set of specific transformation eigenstrain tensors and are presented for inclusion shapes ranging from disk-like to fiber-like spheroids
Coupled thermal stress analysis of a hollow circular cylinder with transversely isotropic properties
International Nuclear Information System (INIS)
Tanigawa, Y.; Ootao, Y.
1987-01-01
If we shall analyze the thermal stress problems exactly in a transient state in continuum media, discussed with both the coupling and inertia effect, it has be shown that the thermomechanical coupling term shows a significant role than the inertia term for the common commercial alloys. In the present paper, we have considered the continuum medium with transversely isotropic material property, which has an isotropic property in r-θ plane, and analyzed the transient thermal stress problem of an infinitely long hollow circular cylinder due to an axisymmetrical partial heating. In order to get the thermal and thermoelastic fundamental differential equations separated in each field, we have introduced a perturbation technique. And then, we have carried out numerical calculations for several values of thermal and thermoelastic orthotropical parameters. (orig./GL)
Zito, Gianluigi; Rusciano, Giulia; Pesce, Giuseppe; Dochshanov, Alden; Sasso, Antonio
2015-04-01
Label-free chemical imaging of live cell membranes can shed light on the molecular basis of cell membrane functionalities and their alterations under membrane-related diseases. In principle, this can be done by surface-enhanced Raman scattering (SERS) in confocal microscopy, but requires engineering plasmonic architectures with a spatially invariant SERS enhancement factor G(x, y) = G. To this end, we exploit a self-assembled isotropic nanostructure with characteristics of homogeneity typical of the so-called near-hyperuniform disorder. The resulting highly dense, homogeneous and isotropic random pattern consists of clusters of silver nanoparticles with limited size dispersion. This nanostructure brings together several advantages: very large hot spot density (~104 μm-2), superior spatial reproducibility (SD nanotoxicity issues. See DOI: 10.1039/c5nr01341k
General thermo-elastic solution of radially heterogeneous, spherically isotropic rotating sphere
Energy Technology Data Exchange (ETDEWEB)
Bayat, Yahya; EkhteraeiToussi, THamid [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)
2015-06-15
A thick walled rotating spherical object made of transversely isotropic functionally graded materials (FGMs) with general types of thermo-mechanical boundary conditions is studied. The thermo-mechanical governing equations consisting of decoupled thermal and mechanical equations are represented. The centrifugal body forces of the rotation are considered in the modeling phase. The unsymmetrical thermo-mechanical boundary conditions and rotational body forces are expressed in terms of the Legendre series. The series method is also implemented in the solution of the resulting equations. The solutions are checked with the known literature and FEM based solutions of ABAQUS software. The effects of anisotropy and heterogeneity are studied through the case studies and the results are represented in different figures. The newly developed series form solution is applicable to the rotating FGM spherical transversely isotropic vessels having nonsymmetrical thermo-mechanical boundary condition.
On the dual variable of the Cauchy stress tensor in isotropic finite hyperelasticity
Vallée, Claude; Fortuné, Danielle; Lerintiu, Camelia
2008-11-01
Elastic materials are governed by a constitutive law relating the second Piola-Kirchhoff stress tensor Σ and the right Cauchy-Green strain tensor C=FF. Isotropic elastic materials are the special cases for which the Cauchy stress tensor σ depends solely on the left Cauchy-Green strain tensor B=FF. In this Note we revisit the following property of isotropic hyperelastic materials: if the constitutive law relating Σ and C is derivable from a potential ϕ, then σ and lnB are related by a constitutive law derived from the compound potential ϕ○exp. We give a new and concise proof which is based on an explicit integral formula expressing the derivative of the exponential of a tensor. To cite this article: C. Vallée et al., C. R. Mecanique 336 (2008).
Raman study of pressure effects on frequencies and isotropic line shapes in liquid acetone
International Nuclear Information System (INIS)
Schindler, W.; Sharko, P.T.; Jonas, J.
1982-01-01
The Raman line shape of the symmetric C = O stretching band at 1710 cm -1 has been measured in liquid acetone as a function of pressure from 1 bar to 4 kbar over the temperature range from -25 to 50 0 C. The experimental data obtained show several unusual features. First, there is a frequency difference of about 7 cm -1 between the polarized and depolarized components. Sceond, the isotropic linewidth GAMMA/sub iso/ decreases with increasing density, in contrast to the opposite trend usually found in other liquids. Third, the second moment M 2 (V) of the isotropic band appears to decrease with increasing density. The consideration of the experimental linewidth and frequency data leads to a conclusion that intermolecular dipole--dipole coupling between polar acetone molecules are responsible for the observed unusual behavior of , GAMMA/sub iso/, and M 2
GOLIA-RK, Structure Stress for Isotropic Materials with Creep and Temperature Fields
International Nuclear Information System (INIS)
Donea, J.; Giuliani, S.
1976-01-01
1 - Nature of the physical problem solved: Stress analysis of complex structures in presence of creep, dimensional changes and thermal field. Plane stress, plane strain, generalized plane strain and axisymmetric problems can be solved. The material is assumed to be either isotropic or transversely isotropic. Any laws of material behaviour can easily be incorporated by the user (see subroutines WIGNER and CLAW). 2 - Method of solution: Finite element method using triangular elements with linear local fields. The equations for the displacements are solved by Choleski's method. An algorithm is incorporated to calculate automatically the successive time steps in a creep problem. 3 - Restrictions on the complexity of the problem: Maximum number of elements is 700. Maximum number of nodal points is 400. The indexes of two adjacent nodes are not permitted to differ by more than 19
Technical specification improvement through safety margin considerations
International Nuclear Information System (INIS)
Howard, R.C.; Jansen, R.L.
1986-01-01
Westinghouse has developed an approach for utilizing safety analysis margin considerations to improve plant operability through technical specification revision. This approach relies on the identification and use of parameter interrelations and sensitivities to identify acceptable operating envelopes. This paper summarizes technical specification activities to date and presents the use of safety margin considerations as another viable method to obtain technical specification improvement
The homogeneous marginal utility of income assumption
Demuynck, T.
2015-01-01
We develop a test to verify if every agent from a population of heterogeneous consumers has the same marginal utility of income function. This homogeneous marginal utility of income assumption is often (implicitly) used in applied demand studies because it has nice aggregation properties and
Values and marginal preferences in international business
Maseland, Robbert; van Hoorn, Andre
2010-01-01
In a recent paper in this journal, Maseland and van Hoorn argued that values surveys tend to conflate values and marginal preferences. This assertion has been challenged by Brewer and Venaik, who claim that the wording of most survey items does not suggest that these elicit marginal preferences.
Exactly marginal deformations from exceptional generalised geometry
Energy Technology Data Exchange (ETDEWEB)
Ashmore, Anthony [Merton College, University of Oxford,Merton Street, Oxford, OX1 4JD (United Kingdom); Mathematical Institute, University of Oxford,Andrew Wiles Building, Woodstock Road, Oxford, OX2 6GG (United Kingdom); Gabella, Maxime [Institute for Advanced Study,Einstein Drive, Princeton, NJ 08540 (United States); Graña, Mariana [Institut de Physique Théorique, CEA/Saclay,91191 Gif-sur-Yvette (France); Petrini, Michela [Sorbonne Université, UPMC Paris 05, UMR 7589, LPTHE,75005 Paris (France); Waldram, Daniel [Department of Physics, Imperial College London,Prince Consort Road, London, SW7 2AZ (United Kingdom)
2017-01-27
We apply exceptional generalised geometry to the study of exactly marginal deformations of N=1 SCFTs that are dual to generic AdS{sub 5} flux backgrounds in type IIB or eleven-dimensional supergravity. In the gauge theory, marginal deformations are parametrised by the space of chiral primary operators of conformal dimension three, while exactly marginal deformations correspond to quotienting this space by the complexified global symmetry group. We show how the supergravity analysis gives a geometric interpretation of the gauge theory results. The marginal deformations arise from deformations of generalised structures that solve moment maps for the generalised diffeomorphism group and have the correct charge under the generalised Reeb vector, generating the R-symmetry. If this is the only symmetry of the background, all marginal deformations are exactly marginal. If the background possesses extra isometries, there are obstructions that come from fixed points of the moment maps. The exactly marginal deformations are then given by a further quotient by these extra isometries. Our analysis holds for any N=2 AdS{sub 5} flux background. Focussing on the particular case of type IIB Sasaki-Einstein backgrounds we recover the result that marginal deformations correspond to perturbing the solution by three-form flux at first order. In various explicit examples, we show that our expression for the three-form flux matches those in the literature and the obstruction conditions match the one-loop beta functions of the dual SCFT.
Steep microbial boundstone-dominated plaform margins
Kenter, J.A.M.; Harris, P.M.; Della Porta, G.P.
2005-01-01
Seaward progradation of several kilometers has been documented mostly for leeward margin low-angle carbonate slope systems with a dominant platform top sediment source. However, steep and high-relief margins fronting deep basins can also prograde and as such are somewhat perplexing. Characteristics
Quasi-Rayleigh waves in transversely isotropic half-space with inclined axis of symmetry
International Nuclear Information System (INIS)
Yanovskaya, T.B.; Savina, L.S.
2003-09-01
A method for determination of characteristics of quasi-Rayleigh (qR) wave in a transversely isotropic homogeneous half-space with inclined axis of symmetry is outlined. The solution is obtained as a superposition of qP, qSV and qSH waves, and surface wave velocity is determined from the boundary conditions at the free surface and at infinity, as in the case of Rayleigh wave in isotropic half-space. Though the theory is simple enough, a numerical procedure for the calculation of surface wave velocity presents some difficulties. The difficulty is conditioned by necessity to calculate complex roots of a non-linear equation, which in turn contains functions determined as roots of nonlinear equations with complex coefficients. Numerical analysis shows that roots of the equation corresponding to the boundary conditions do not exist in the whole domain of azimuths and inclinations of the symmetry axis. The domain of existence of qR wave depends on the ratio of the elastic parameters: for some strongly anisotropic models the wave cannot exist at all. For some angles of inclination qR wave velocities deviate from those calculated on the basis of the perturbation method valid for weak anisotropy, though they have the same tendency of variation with azimuth. The phase of qR wave varies with depth unlike Rayleigh wave in isotropic half-space. Unlike Rayleigh wave in isotropic half-space, qR wave has three components - vertical, radial and transverse. Particle motion in horizontal plane is elliptic. Direction of the major axis of the ellipsis coincide with the direction of propagation only in azimuths 0 deg. (180 deg.) and 90 deg. (270 deg.). (author)
International Nuclear Information System (INIS)
Son, In Ho; An, Deuk Man
2012-01-01
In fracture mechanics, the weight function can be used for calculating stress intensity factors. In this paper, a two dimensional electroelastic analysis is performed on a transversely isotropic piezoelectric material with an open crack. A plane strain formulation of the piezoelectric problem is solved within the Leknitskii formalism. Weight function theory is extended to piezoelectric materials. The stress intensity factors and electric displacement intensity factor are calculated by the weight function theory
Spider Gland Fluids: From Protein-Rich Isotropic Liquid to Insoluble Super Fiber
2013-09-17
dehydration, methanol treatment, solubilized in ionic liquids and exposed to mechanical stress. Establish the relevant processing conditions for...for liquid-state NMR techniques such as gradient coherence selection , water suppression, and pulsed field gradient self-diffusion measurements. HR...Gln, Ser) including the carbonyl resonances. All the unambiguously assignable 13C isotropic chemical shifts are listed in Tab. 1. The assignment and
On the dynamics of non-stationary binary stellar system with non-isotropic mass flow
International Nuclear Information System (INIS)
Bekov, A.A.; Bejsekov, A.N.; Aldibaeva, L.T.
2006-01-01
The motion of test body in the external gravitational field of the binary stellar systems with slowly variable some physical parameters of radiating components is considered on the base of restricted nonstationary photo-gravitational three and two bodies problem with non-isotropic mass flow. The family of polar and coplanar solutions are obtained. The solutions give the possibility of the dynamical and structure interpretation of binary young evolving stars and galaxies. (author)
Tapping of Love waves in an isotropic surface waveguide by surface-to-bulk wave transduction.
Tuan, H.-S.; Chang, C.-P.
1972-01-01
A theoretical study of tapping a Love wave in an isotropic microacoustic surface waveguide is given. The surface Love wave is tapped by partial transduction into a bulk wave at a discontinuity. It is shown that, by careful design of the discontinuity, the converted bulk wave power and the radiation pattern may be controlled. General formulas are derived for the calculation of these important characteristics from a relatively general surface contour deformation.
International Nuclear Information System (INIS)
Wu Shuangqing; Peng Junjin; Zhao Zhanyue
2008-01-01
Motivated by the universality of Hawking radiation and that of the anomaly cancellation technique as well as the effective action method, we investigate the Hawking radiation of a Schwarzschild black hole in the isotropic coordinates via the cancellation of gravitational anomaly. After performing a dimensional reduction from the four-dimensional isotropic Schwarzschild metric, we show that this reduction procedure will, in general, result in two classes of two-dimensional effective metrics: the conformal equivalent and the inequivalent ones. For the physically equivalent class, the two-dimensional effective metric displays such a distinct feature that the determinant is not equal to the unity √(-g)≠1, but also vanishes at the horizon, the latter of which possibly invalidates the anomaly analysis there. Nevertheless, in this paper we adopt the effective action method to prove that the consistent energy-momentum tensor T r t is divergent on the horizon but √(-g)T t r remains finite there. Meanwhile, through an explicit calculation we show that the covariant energy-momentum tensor T-tilde t r equals zero at the horizon. Therefore the validity of the covariant regularity condition that demands that T-tilde t r = 0 at the horizon has been justified, indicating that the gravitational anomaly analysis can be safely extrapolated to the case where the metric determinant vanishes at the horizon. It is then demonstrated that for the physically equivalent reduced metric, both methods can give the correct Hawking temperature of the isotropic Schwarzschild black hole, while for the inequivalent one with the determinant √(-g) = 1 it can only give half of the correct temperature. We further exclude the latter undesired result by taking into account the general covariance of the energy-momentum tensor under the isotropic coordinate transformation
Mode locking of Yb:GdYAG ceramic lasers with an isotropic cavity
International Nuclear Information System (INIS)
Xu, C W; Tang, D Y; Zhu, H Y; Zhang, J
2013-01-01
We report on the passive mode locking of a diode pumped Yb:GdYAG ceramic laser with a near isotropic cavity. It is found that the laser could simultaneously mode lock in the two orthogonal principal polarization directions of the cavity, and the mode locked pulses of the two polarizations have identical features and are temporally perfectly synchronized. However, their pulse energy varies out-of-phase periodically, manifesting the antiphase dynamics of mode locked lasers. (letter)
The NANOGrav Nine-year Data Set: Limits on the Isotropic Stochastic Gravitational Wave Background
Arzoumanian, Zaven; Brazier, Adam; Burke-Spolaor, Sarah; Chamberlin, Sydney; Chatterjee, Shami; Christy, Brian; Cordes, Jim; Cornish, Neil; Demorest, Paul; Deng, Xihao; Dolch, Tim; Ellis, Justin; Ferdman, Rob; Fonseca, Emmanuel; Garver-Daniels, Nate
2015-01-01
We compute upper limits on the nanohertz-frequency isotropic stochastic gravitational wave background (GWB) using the 9-year data release from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration. We set upper limits for a GWB from supermassive black hole binaries under power law, broken power law, and free spectral coefficient GW spectrum models. We place a 95\\% upper limit on the strain amplitude (at a frequency of yr$^{-1}$) in the power law model of $A...
Surface-induced ordering of a liquid crystal in the isotropic phase
International Nuclear Information System (INIS)
Miyano, K.
1979-01-01
A detailed account of a measurement of order parameter of a liquid crystal at the boundary by means of the wall-induced pretransitional birefringence is given. Several surface treatments were studied including surfactants and evaporated films. Although all treatments produced good alignment in the nematic phase, the boundary order parameter (hence the strength of the aligning force) in the isotropic phase differed very much depending on the treatment, indicating the diverse nature of the alignment process
Gilabert, Francisco; Roux, Jean-Noël; Castellanos, Antonio
2008-01-01
International audience; The quasistatic behavior of a simple 2D model of a cohesive powder under isotropic loads is investigated by Discrete Element simulations. The loose packing states, as studied in a previous paper, undergo important structural changes under growing confining pressure P, while solid fraction \\Phi irreversibly increases by large amounts. The system state goes through three stages, with different forms of the plastic consolidation curve \\Phi(P*), under growing reduced press...
Controlled isotropic fission fragment sources on the base of nuclear-physical facilities
International Nuclear Information System (INIS)
Sevast'yanov, V.D.; Maslov, G.N.
1995-01-01
Isotropic fission fragment sources (IFFS) are developed on the base of a neutron generator and pulse fast reactor. IFFS permit to calibrate fission fragment detectors. The IFFS consist of radiators with 235 U. The radiators are placed in a thermal neutron field of the neutron generator or in the reactor core center. The fragment activity is controlled by indications of an α-particle counter or by indications of a monitor of energy release in the core. 14 refs.; 1 fig.; 1 tab
Phase transition induced for external field in tree-dimensional isotropic Heisenberg antiferromagnet
Neto, Minos A.; Viana, J. Roberto; Salmon, Octavio D. R.; Filho, E. Bublitz; de Sousa, J. Ricardo
2017-01-01
In this paper, we report mean-field and effective-field renormalization group calculations on the isotropic Heisenberg antiferromagnetic model under a longitudinal magnetic field. As is already known, these methods, denoted by MFRG and EFRG, are based on the comparison of two clusters of different sizes, each of them trying to mimic certain Bravais lattice. Our attention has been on the obtantion of the critical frontier in the plane of temperature versus magnetic field, for the simple cubic ...
Amalia, A.; Rachmawati, D.; Lestari, I. A.; Mourisa, C.
2018-03-01
Colposcopy has been used primarily to diagnose pre-cancer and cancerous lesions because this procedure gives an exaggerated view of the tissues of the vagina and the cervix. But, the poor quality of colposcopy image sometimes makes physician challenging to recognize and analyze it. Generally, Implementation of image processing to identify cervical cancer have to implement a complex classification or clustering method. In this study, we wanted to prove that by only applying the identification of edge detection in the colposcopy image, identification of cervical cancer can be determined. In this study, we implement and comparing two edge detection operator which are isotropic and canny operator. Research methodology in this paper composed by image processing, training, and testing stages. In the image processing step, colposcopy image transformed by nth root power transformation to get better detection result and continued with edge detection process. Training is a process of labelling all dataset image with cervical cancer stage. This process involved pathology doctor as an expert in diagnosing the colposcopy image as a reference. Testing is a process of deciding cancer stage classification by comparing the similarity image of colposcopy results in the testing stage with the image of the results of the training process. We used 30 images as a dataset. The result gets same accuracy which is 80% for both Canny or Isotropic operator. Average running time for Canny operator implementation is 0.3619206 ms while Isotropic get 1.49136262 ms. The result showed that Canny operator is better than isotropic operator because Canny operator generates a more precise edge with a fast time instead.
Namani, R.; Feng, Y.; Okamoto, R. J.; Jesuraj, N.; Sakiyama-Elbert, S. E.; Genin, G. M.; Bayly, P. V.
2012-01-01
The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isot...
International Nuclear Information System (INIS)
Sridevi, S; Krishna Prasad, S; Shankar Rao, D S; Yelamaggad, C V
2008-01-01
The isotropic-nematic transition, being weakly first order, exhibits pretransitional effects signifying the appearance of the nematic-like regions in the isotropic phase. In the isotropic phase, strongly polar liquid crystals, such as the popular alkyl and alkoxy cyano biphenyl behave in a non-standard fashion: whereas far away from the transition the dielectric constant ε iso has a 1/T dependence (a feature also commonly seen in polar liquids), on approaching the nematic phase the trend reverses resulting in a maximum in ε iso , at a temperature slightly above the transition, an effect explained on the basis of short-range correlations with an antiparallel association of the neighbouring molecules. Recently, there has been a revival in studies on this behaviour to possibly associate it with the order of transition. Here we report dielectric measurements carried in the vicinity of this transition for a number of compounds having different molecular structures including a bent core system, but with a common feature that the molecules possess a strong terminal polar group, nitro in one case and cyano in the rest. Surprisingly, the convex shape of the thermal variation of ε iso was more an exception than the rule. In materials that exhibit such an anomaly we find a linear correlation between δε = (ε peak -ε IN )/ε IN and δT = T peak -T IN , where ε peak is the maximum value of the dielectric constant in the isotropic phase, ε IN the value at the transition, and T peak and T IN the corresponding temperatures.
Margin Requirements and Equity Option Returns
DEFF Research Database (Denmark)
Hitzemann, Steffen; Hofmann, Michael; Uhrig-Homburg, Marliese
In equity option markets, traders face margin requirements both for the options themselves and for hedging-related positions in the underlying stock market. We show that these requirements carry a significant margin premium in the cross-section of equity option returns. The sign of the margin...... premium depends on demand pressure: If end-users are on the long side of the market, option returns decrease with margins, while they increase otherwise. Our results are statistically and economically significant and robust to different margin specifications and various control variables. We explain our...... findings by a model of funding-constrained derivatives dealers that require compensation for satisfying end-users’ option demand....
Margin Requirements and Equity Option Returns
DEFF Research Database (Denmark)
Hitzemann, Steffen; Hofmann, Michael; Uhrig-Homburg, Marliese
In equity option markets, traders face margin requirements both for the options themselves and for hedging-related positions in the underlying stock market. We show that these requirements carry a significant "margin premium" in the cross-section of equity option returns. The sign of the margin...... premium depends on demand pressure: If end-users are on the long side of the market, option returns decrease with margins, while they increase otherwise. Our results are statistically and economically significant and robust to different margin specifications and various control variables. We explain our...... findings by a model of funding-constrained derivatives dealers that require compensation for satisfying end-users’ option demand....
MARGINS: Toward a novel science plan
Mutter, John C.
A science plan to study continental margins has been in the works for the past 3 years, with almost 200 Earth scientists from a wide variety of disciplines gathering at meetings and workshops. Most geological hazards and resources are found at continental margins, yet our understanding of the processes that shape the margins is meager.In formulating this MARGINS research initiative, fundamental issues concerning our understanding of basic Earth-forming processes have arisen. It is clear that a business-as-usual approach will not solve the class of problems defined by the MARGINS program; the solutions demand approaches different from those used in the past. In many cases, a different class of experiment will be required, one that is well beyond the capability of individual principle investigators to undertake on their own. In most cases, broadly based interdisciplinary studies will be needed.
Martin, Alexander T; Tan, Melissa; Nichols, Shane M; Timothy, Emily; Kahr, Bart
2018-07-01
Accurate polarimetric measurements of the optical activity of crystals along low symmetry directions are facilitated by isotropic points, frequencies where dispersion curves of eigenrays cross and the linear birefringence disappears. We report here the optical properties and structure of achiral, uniaxial (point group D 2d ) potassium trihydrogen di-(cis-4-cyclohexene-1,2-dicarboxylate) dihydrate, whose isotropic point was previously detected (S. A. Kim, C. Grieswatch, H. Küppers, Zeit. Krist. 1993; 208:219-222) and exploited for a singular measurement of optical activity normal to the optic axis. The crystal structure associated with the aforementioned study was never published. We report it here, confirming the space group assignment I 4¯c2, along with the frequency dependence of the fundamental optical properties and the constitutive tensors by fitting optical dispersion relations to measured Mueller matrix spectra. k-Space maps of circular birefringence and of the Mueller matrix near the isotropic wavelength are measured and simulated. The signs of optical rotation are correlated with the absolute crystallographic directions. © 2018 Wiley Periodicals, Inc.
Distinguishing spin-aligned and isotropic black hole populations with gravitational waves.
Farr, Will M; Stevenson, Simon; Miller, M Coleman; Mandel, Ilya; Farr, Ben; Vecchio, Alberto
2017-08-23
The direct detection of gravitational waves from merging binary black holes opens up a window into the environments in which binary black holes form. One signature of such environments is the angular distribution of the black hole spins. Binary systems that formed through dynamical interactions between already-compact objects are expected to have isotropic spin orientations (that is, the spins of the black holes are randomly oriented with respect to the orbit of the binary system), whereas those that formed from pairs of stars born together are more likely to have spins that are preferentially aligned with the orbit. The best-measured combination of spin parameters for each of the four likely binary black hole detections GW150914, LVT151012, GW151226 and GW170104 is the 'effective' spin. Here we report that, if the magnitudes of the black hole spins are allowed to extend to high values, the effective spins for these systems indicate a 0.015 odds ratio against an aligned angular distribution compared to an isotropic one. When considering the effect of ten additional detections, this odds ratio decreases to 2.9 × 10 -7 against alignment. The existing preference for either an isotropic spin distribution or low spin magnitudes for the observed systems will be confirmed (or overturned) confidently in the near future.
Design methodology of single-feed compact near-isotropic antenna design
Su, Zhen
2017-06-07
The abundance of mobile wireless devices is giving rise to a new paradigm known as Internet of Things. In this paradigm, wireless devices will be everywhere and communicating with each other. Since they will be oriented randomly in the environment, they should be able to communicate equally in all directions in order to have stable communication link. Hence, compact near isotropic antennas are required, which can enable orientation insensitive communication. In this paper, we propose a simple design methodology to design a compact near-isotropic wire antenna based on equal vector potentials. As a proof of concept, a quarter wavelength monopole antennas has been designed that is wrapped on a 3D-printed box keeping the vector potentials in three orthogonal different directions equal. By optimizing the dimension of the antenna arms, a nearly isotropic radiation pattern is thus achieved. The results show that the antenna has a maximum gain of 2.2dBi at 900 MHz with gain derivation of 9.4dB.
A program to calculate pulse transmission responses through transversely isotropic media
Li, Wei; Schmitt, Douglas R.; Zou, Changchun; Chen, Xiwei
2018-05-01
We provide a program (AOTI2D) to model responses of ultrasonic pulse transmission measurements through arbitrarily oriented transversely isotropic rocks. The program is built with the distributed point source method that treats the transducers as a series of point sources. The response of each point source is calculated according to the ray-tracing theory of elastic plane waves. The program could offer basic wave parameters including phase and group velocities, polarization, anisotropic reflection coefficients and directivity patterns, and model the wave fields, static wave beam, and the observed signals for pulse transmission measurements considering the material's elastic stiffnesses and orientations, sample dimensions, and the size and positions of the transmitters and the receivers. The program could be applied to exhibit the ultrasonic beam behaviors in anisotropic media, such as the skew and diffraction of ultrasonic beams, and analyze its effect on pulse transmission measurements. The program would be a useful tool to help design the experimental configuration and interpret the results of ultrasonic pulse transmission measurements through either isotropic or transversely isotropic rock samples.
Directory of Open Access Journals (Sweden)
Anna I Sulatskaya
Full Text Available In this work, the fluorescence of thioflavin T (ThT was studied in a wide range of viscosity and temperature. It was shown that ThT fluorescence quantum yield varies from 0.0001 in water at room temperature to 0.28 in rigid isotropic solution (T/η→0. The deviation of the fluorescence quantum yield from unity in rigid isotropic solution suggests that fluorescence quantum yield depends not only on the ultra-fast oscillation of ThT fragments relative to each other in an excited state as was suggested earlier, but also depends on the molecular configuration in the ground state. This means that the fluorescence quantum yield of the dye incorporated into amyloid fibrils must depend on its conformation, which, in turn, depends on the ThT environment. Therefore, the fluorescence quantum yield of ThT incorporated into amyloid fibrils can differ from that in the rigid isotropic solution. In particular, the fluorescence quantum yield of ThT incorporated into insulin fibrils was determined to be 0.43. Consequently, the ThT fluorescence quantum yield could be used to characterize the peculiarities of the fibrillar structure, which opens some new possibilities in the ThT use for structural characterization of the amyloid fibrils.
Efficient anisotropic quasi-P wavefield extrapolation using an isotropic low-rank approximation
Zhang, Zhendong
2017-12-17
The computational cost of quasi-P wave extrapolation depends on the complexity of the medium, and specifically the anisotropy. Our effective-model method splits the anisotropic dispersion relation into an isotropic background and a correction factor to handle this dependency. The correction term depends on the slope (measured using the gradient) of current wavefields and the anisotropy. As a result, the computational cost is independent of the nature of anisotropy, which makes the extrapolation efficient. A dynamic implementation of this approach decomposes the original pseudo-differential operator into a Laplacian, handled using the low-rank approximation of the spectral operator, plus an angular dependent correction factor applied in the space domain to correct for anisotropy. We analyze the role played by the correction factor and propose a new spherical decomposition of the dispersion relation. The proposed method provides accurate wavefields in phase and more balanced amplitudes than a previous spherical decomposition. Also, it is free of SV-wave artifacts. Applications to a simple homogeneous transverse isotropic medium with a vertical symmetry axis (VTI) and a modified Hess VTI model demonstrate the effectiveness of the approach. The Reverse Time Migration (RTM) applied to a modified BP VTI model reveals that the anisotropic migration using the proposed modeling engine performs better than an isotropic migration.
Effects of molecular elongation on liquid crystalline phase behaviour: isotropic-nematic transition
Singh, Ram Chandra; Ram, Jokhan
2003-08-01
We present the density-functional approach to study the isotropic-nematic transitions and calculate the values of freezing parameters of the Gay-Berne liquid crystal model, concentrating on the effects of varying the molecular elongation, x0. For this, we have solved the Percus-Yevick integral equation theory to calculate the pair-correlation functions of a fluid the molecules of which interact via a Gay-Berne pair potential. These results have been used in the density-functional theory as an input to locate the isotropic-nematic transition and calculate freezing parameters for a range of length-to-width parameters 3.0⩽ x0⩽4.0 at reduced temperatures 0.95 and 1.25. We observed that as x0 is increased, the isotropic-nematic transition is seen to move to lower density at a given temperature. We find that the density-functional theory is good to study the freezing transitions in such fluids. We have also compared our results with computer simulation results wherever they are available.
Stress-induced birefringence in the isotropic phases of lyotropic mixtures
Fernandes, P. R. G.; Maki, J. N.; Gonçalves, L. B.; de Oliveira, B. F.; Mukai, H.
2018-02-01
In this work, the frequency dependence of the known mechano-optical effect which occurs in the micellar isotropic phases (I ) of mixtures of potassium laurate (KL), decanol (DeOH), and water is investigated in the range from 200 mHz to 200 Hz . In order to fit the experimental data, a model of superimposed damped harmonic oscillators is proposed. In this phenomenological approach, the micelles (microscopic oscillators) interact very weakly with their neighbors. Due to shape anisotropy of the basic structures, each oscillator i (i =1 ,2 ,3 ,...,N ) remains in its natural oscillatory rotational movement around its axes of symmetry with a frequency ω0 i. The system will be in the resonance state when the frequency of the driving force ω reaches a value near ω0 i. This phenomenological approach shows excellent agreement with the experimental data. One can find f ˜2.5 , 9.0, and 4.0 Hz as fundamental frequencies of the micellar isotropic phases I , I1, and I2, respectively. The different micellar isotropic phases I , I1, and I2 that we find in the phase diagram of the KL-DeOH-water mixture are a consequence of possible differences in the intermicellar correlation lengths. This work reinforces the possibilities of technological applications of these phases in devices such as mechanical vibration sensors.
Diffraction of SH-waves by topographic features in a layered transversely isotropic half-space
Ba, Zhenning; Liang, Jianwen; Zhang, Yanju
2017-01-01
The scattering of plane SH-waves by topographic features in a layered transversely isotropic (TI) half-space is investigated by using an indirect boundary element method (IBEM). Firstly, the anti-plane dynamic stiffness matrix of the layered TI half-space is established and the free fields are solved by using the direct stiffness method. Then, Green's functions are derived for uniformly distributed loads acting on an inclined line in a layered TI half-space and the scattered fields are constructed with the deduced Green's functions. Finally, the free fields are added to the scattered ones to obtain the global dynamic responses. The method is verified by comparing results with the published isotropic ones. Both the steady-state and transient dynamic responses are evaluated and discussed. Numerical results in the frequency domain show that surface motions for the TI media can be significantly different from those for the isotropic case, which are strongly dependent on the anisotropy property, incident angle and incident frequency. Results in the time domain show that the material anisotropy has important effects on the maximum duration and maximum amplitudes of the time histories.
Newton, Arthur C.; Kools, Ramses; Swenson, David W. H.; Bolhuis, Peter G.
2017-10-01
The association and dissociation of particles via specific anisotropic interactions is a fundamental process, both in biology (proteins) and in soft matter (colloidal patchy particles). The presence of alternative binding sites can lead to multiple productive states and also to non-productive "decoy" or intermediate states. Besides anisotropic interactions, particles can experience non-specific isotropic interactions. We employ single replica transition interface sampling to investigate how adding a non-productive binding site or a nonspecific isotropic interaction alters the dimerization kinetics of a generic patchy particle model. The addition of a decoy binding site reduces the association rate constant, independent of the site's position, while adding an isotropic interaction increases it due to an increased rebinding probability. Surprisingly, the association kinetics becomes non-monotonic for a tetramer complex formed by multivalent patchy particles. While seemingly identical to two-particle binding with a decoy state, the cooperativity of binding multiple particles leads to a kinetic optimum. Our results are relevant for the understanding and modeling of biochemical networks and self-assembly processes.
International Nuclear Information System (INIS)
Podil'chuk, Yu.N.
1995-01-01
An explicit solution of the state thermoelasticity problem is constructed for an infinite transversally isotropic body containing an internal elliptical crack in the isotropy plane. It is assumed that a uniform heat flux is specified at the crack surface and the body is free of external loads. Values of the stress-intensity coefficients depending on the heat flux, the crack dimensions, and the thermoelastic properties of the material are obtained. Note that the analogous problem was considered for an isotropic body. The static thermoelasticity problem for a transversally isotropic body with an internal elliptical crack at whose surface linear temperature variation is specified was solved
International Nuclear Information System (INIS)
Liu Jun; Chen Hong; Zhang Guoqiao; Chen Fei; Zhang Li
2011-01-01
Objective: To determine the planning target volume margins of head and neck cancers treated by image guided radiotherapy (IGRT). Methods: 464 sets cone beam computed tomography (CBCT) images before setup correction and 126 sets CBCT images after correction were obtained from 51 head and neck cancer patients treated by IGRT in our department. The systematic and random errors were evaluated by either online or offline correction through registering the CBCT images to the planning CT. The data was divided into 3 groups according to the online correction times. Results: The isocenter shift were 0.37 mm ± 2.37 mm, -0.43 mm ± 2.30 mm and 0.47 mm ± 2.65 mm in right-left (RL), anterior-posterior (AP) and superior-inferior (SI) directions respectively before correction, and it reduced to 0.08 mm ± 0.68 mm, -0.03 mm ± 0.74 mm and 0.03 mm ± 0.80 mm when evaluated by 126 sets corrected CBCT images. The planning target volume (PTV) margin from clinical target volume (CTV) before correction were: 6.41 mm, 6.15 mm and 7.10 mm based on two parameter model, and it reduced to 1.78 mm, 1.80 mm and 1.97 mm after correction. The PTV margins were 3.8 mm, 3.8 mm, 4.0 mm; 4.0 mm, 4.0 mm, 5.0 mm and 5.4 mm, 5.2 mm, 6.1 mm in RL, AP and SI respectively when online-correction times were more than 15 times, 11-15 times, 5-10 times. Conclusions: CBCT-based on online correction reduce the PTV margin for head and neck cancers treated by IGRT and ensure more precise dose delivery and less normal tissue complications. (authors)
Effect of Margin Designs on the Marginal Adaptation of Zirconia Copings.
Habib, Syed Rashid; Al Ajmi, Mohammed Ginan; Al Dhafyan, Mohammed; Jomah, Abdulrehman; Abualsaud, Haytham; Almashali, Mazen
2017-09-01
The aim of this in vitro study was to investigate the effect of Shoulder versus Chamfer margin design on the marginal adaptation of zirconia (Zr) copings. 40 extracted molar teeth were mounted in resin and prepared for zirconia crowns with two margin preparation designs (20=Shoulder and 20=Chamfer). The copings were manufactured by Cercon® (DeguDent GmbH, Germany) using the CAD/CAM system for each tooth. They were tried on each tooth, cemented, thermocycled, re-embedded in resin and were subsequently cross sectioned centrally into two equal mesial and distal halves. They were examined under electron microscope at 200 X magnification and the measurements were recorded at 5 predetermined points in micrometers (µm). The o verall mean marginal gap for the two groups was found to be 206.98+42.78µm with Shoulder margin design (Marginal Gap=199.50+40.72µm) having better adaptation compared to Chamfer (Marginal Gap=214.46+44.85µm). The independent-samples t-test showed a statistically non-significant difference (p=.113) between the means of marginal gap for Shoulder and Chamfer margin designs and the measurements were recorded at 5 predetermined points for the two groups. The Chamfer margin design appeared to offer the same adaptation results as the Shoulder margin design.
Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states
Wåhlander, Martin; Nilsson, Fritjof; Carlmark, Anna; Gedde, Ulf W.; Edmondson, Steve; Malmström, Eva
2016-08-01
We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors.We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been
Marginal and happy? The need for uniqueness predicts the adjustment of marginal immigrants.
Debrosse, Régine; de la Sablonnière, Roxane; Rossignac-Milon, Maya
2015-12-01
Marginalization is often presented as the strategy associated with the worst adjustment for immigrants. This study identifies a critical variable that buffers marginal immigrants from the negative effects of marginalization on adjustment: The need for uniqueness. In three studies, we surveyed immigrants recruited on university campuses (n = 119, n = 116) and in the field (n = 61). Among marginal immigrants, a higher need for uniqueness predicted higher self-esteem (Study 1), affect (Study 2), and life satisfaction (Study 3), and marginally higher happiness (Study 2) and self-esteem (Study 3). No relationship between the need for uniqueness and adjustment was found among non-marginal immigrants. The adaptive value of the need for uniqueness for marginal immigrants is discussed. © 2015 The British Psychological Society.
Energy Technology Data Exchange (ETDEWEB)
Sheng, Y; Li, T; Lee, W; Yin, F; Wu, Q [Duke University Medical Center, Durham, NC (United States)
2015-06-15
Purpose: To provide benchmark for seminal vesicles (SVs) margin selection to account for intra-fractional motion; and to investigate the effectiveness of two motion surrogates in predicting intra-fractional SV underdosage. Methods: 9 prostate SBRT patients were studied; each has five pairs of pre-treatment and post-treatment cone-beam CTs (CBCTs). Each pair of CBCTs was registered based on fiducial markers in the prostate. To provide “ground truth” for coverage evaluation, all pre-treatment SVs were expanded with isotropic margin of 1,2,3,5 and 8mm, and their overlap with post-treatment SVs were used to quantify intra-fractional coverage. Two commonly used motion surrogates, the center-of-mass (COM) and the border of contour (the most distal points in SI/AP/LR directions) were evaluated using Receiver-Operating Characteristic (ROC) analyses for predicting SV underdosage due to intra-fractional motion. Action threshold of determining underdosage for each surrogate was calculated by selecting the optimal balancing between sensitivity and specificity. For comparison, margin for each surrogate was also calculated based on traditional margin recipe. Results: 90% post-treatment SV coverage can be achieved in 47%, 82%, 91%, 98% and 98% fractions for 1,2,3,5 and 8mm margins. 3mm margin ensured the 90% intra-fractional SV coverage in 90% fractions when prostate was aligned. The ROC analysis indicated the AUC for COM and border were 0.88 and 0.72. The underdosage threshold was 2.9mm for COM and 4.1mm for border. The Van Herk’s margin recipe recommended 0.5, 0 and 1.8mm margin in LR, AP and SI direction based on COM and for border, the corresponding margin was 2.1, 4.5 and 3mm. Conclusion: 3mm isotropic margin is the minimum required to mitigate the intra-fractional SV motion when prostate is aligned. ROC analysis reveals that both COM and border are acceptable predictors for SV underdosage with 2.9mm and 4.1mm action threshold. Traditional margin calculation is less
International Nuclear Information System (INIS)
Sheng, Y; Li, T; Lee, W; Yin, F; Wu, Q
2015-01-01
Purpose: To provide benchmark for seminal vesicles (SVs) margin selection to account for intra-fractional motion; and to investigate the effectiveness of two motion surrogates in predicting intra-fractional SV underdosage. Methods: 9 prostate SBRT patients were studied; each has five pairs of pre-treatment and post-treatment cone-beam CTs (CBCTs). Each pair of CBCTs was registered based on fiducial markers in the prostate. To provide “ground truth” for coverage evaluation, all pre-treatment SVs were expanded with isotropic margin of 1,2,3,5 and 8mm, and their overlap with post-treatment SVs were used to quantify intra-fractional coverage. Two commonly used motion surrogates, the center-of-mass (COM) and the border of contour (the most distal points in SI/AP/LR directions) were evaluated using Receiver-Operating Characteristic (ROC) analyses for predicting SV underdosage due to intra-fractional motion. Action threshold of determining underdosage for each surrogate was calculated by selecting the optimal balancing between sensitivity and specificity. For comparison, margin for each surrogate was also calculated based on traditional margin recipe. Results: 90% post-treatment SV coverage can be achieved in 47%, 82%, 91%, 98% and 98% fractions for 1,2,3,5 and 8mm margins. 3mm margin ensured the 90% intra-fractional SV coverage in 90% fractions when prostate was aligned. The ROC analysis indicated the AUC for COM and border were 0.88 and 0.72. The underdosage threshold was 2.9mm for COM and 4.1mm for border. The Van Herk’s margin recipe recommended 0.5, 0 and 1.8mm margin in LR, AP and SI direction based on COM and for border, the corresponding margin was 2.1, 4.5 and 3mm. Conclusion: 3mm isotropic margin is the minimum required to mitigate the intra-fractional SV motion when prostate is aligned. ROC analysis reveals that both COM and border are acceptable predictors for SV underdosage with 2.9mm and 4.1mm action threshold. Traditional margin calculation is less
International Nuclear Information System (INIS)
Christov, C. I.
2010-01-01
A transversely isotropic elastic continuum is considered in four dimensions, three of which are isotropic, and the properties of the material change only related to the fourth dimension. The model employs two dilational and three shear Lame coefficients. The isotropic dilational coefficient is assumed to be much larger than the second dilational coefficient, and the three shear coefficients. This amounts to a material that is virtually incompressible in the three isotropic dimensions. The first and third shear coefficients are positive, while the second shear coefficient is assumed to be negative. As a result, in the equations of elastic equilibrium, the second derivatives of the displacement with respect to the fourth coordinate enter with negative sign. This makes the equations hyperbolic, with a fourth dimension opposing to the other three. The hyperbolic nature of the fourth dimension allows to be interpreted as time.
International Nuclear Information System (INIS)
Singh, Ram Chandra
2007-01-01
We have used the density-functional theory to study the effect of varying temperature on the isotropic-nematic transition of a fluid of molecules interacting via the Gay-Berne intermolecular potential. The nematic phase is found to be stable with respect to isotropic phase in the temperature range 0.80≤T*≤1.25. Pair correlation functions needed as input information in density-functional theory is calculated using the Percus-Yevick integral equation theory. We find that the density-functional theory is good for studying the isotropic-nematic transition in molecular fluids if the values of the pair-correlation functions in the isotropic phase are known accurately. We have also compared our results with computer simulation results wherever they are available
Directory of Open Access Journals (Sweden)
Mehdi Raoofian Naeeni
2016-12-01
Full Text Available The problem of propagation of plane wave including body and surface waves propagating in a transversely isotropic half-space with a depth-wise axis of material symmetry is investigated in details. Using the advantage of representation of displacement fields in terms of two complete scalar potential functions, the coupled equations of motion are uncoupled and reduced to two independent equations for potential functions. In this paper, the secular equations for determination of body and surface wave velocities are derived in terms of both elasticity coefficients and the direction of propagation. In particular, the longitudinal, transverse and Rayleigh wave velocities are determined in explicit forms. It is also shown that in transversely isotropic materials, a Rayleigh wave may propagate in different manner from that of isotropic materials. Some numerical results for synthetic transversely isotropic materials are also illustrated to show the behavior of wave motion due to anisotropic nature of the problem.
Tichit, Paul-Henri; Burokur, Shah Nawaz; Qiu, Cheng-Wei; de Lustrac, André
2013-09-01
It has long been conjectured that isotropic radiation by a simple coherent source is impossible due to changes in polarization. Though hypothetical, the isotropic source is usually taken as the reference for determining a radiator’s gain and directivity. Here, we demonstrate both theoretically and experimentally that an isotropic radiator can be made of a simple and finite source surrounded by electric-field-driven LC resonator metamaterials designed by space manipulation. As a proof-of-concept demonstration, we show the first isotropic source with omnidirectional radiation from a dipole source (applicable to all distributed sources), which can open up several possibilities in axion electrodynamics, optical illusion, novel transformation-optic devices, wireless communication, and antenna engineering. Owing to the electric- field-driven LC resonator realization scheme, this principle can be readily applied to higher frequency regimes where magnetism is usually not present.
DEFF Research Database (Denmark)
von Euler, Mia; Larsen, Jytte Overgaard; Janson, A M
1998-01-01
analysis after spinal cord injury is needed. Length quantification of the putatively spontaneously regenerating fibers has been difficult until recently, when two length estimators based on sampling with isotropic virtual planes within thick physical sections were introduced. The applicability...
International Nuclear Information System (INIS)
Ito, Tsuyoshi; Imai, Hiroshi; Avis, David
2006-01-01
We show that some two-party Bell inequalities with two-valued observables are stronger than the CHSH inequality for 3x3 isotropic states in the sense that they are violated by some isotropic states in the 3x3 system that do not violate the CHSH inequality. These Bell inequalities are obtained by applying triangular elimination to the list of known facet inequalities of the cut polytope on nine points. This gives a partial solution to an open problem posed by Collins and Gisin. The results of numerical optimization suggest that they are candidates for being stronger than the I 3322 Bell inequality for 3x3 isotropic states. On the other hand, we found no Bell inequalities stronger than the CHSH inequality for 2x2 isotropic states. In addition, we illustrate an inclusion relation among some Bell inequalities derived by triangular elimination
DEFF Research Database (Denmark)
Jensen, Eva B. Vedel; Kiêu, K
1994-01-01
Unbiased stereological estimators of d-dimensional volume in R(n) are derived, based on information from an isotropic random r-slice through a specified point. The content of the slice can be subsampled by means of a spatial grid. The estimators depend only on spatial distances. As a fundamental ...... lemma, an explicit formula for the probability that an isotropic random r-slice in R(n) through 0 hits a fixed point in R(n) is given....
Geometrical uncertainty margins in 3D conformal radiotherapy in the pediatric age group
International Nuclear Information System (INIS)
Eldebawy, E.; Attalla, E.; Eldesoky, I.; Zaghloul, M.S.
2011-01-01
To evaluate set-up variation of pediatric patients undergoing 3D conformal radiotherapy (3DCRT) using electronic portal image device (EPID), in an effort to evaluate the adequacy of the planning target volume (PTV) margin employed for the 3DCRT treatment of pediatric patients. Materials and methods: Set-up data was collected from 48 pediatric patients treated with 3D CRT-for head and neck (31 patients), abdomino-pelvic (9 patients) and chest (8 patients) sites during the period between September 2008 and February 2009. A total of 358 images obtained by EPID were analyzed. The mean (M) and standard deviation (SD) for systematic and random errors were calculated and the results were analyzed. Results: All images were studied in anterior and lateral portals. The systematic errors along longitudinal, lateral and vertical directions in all patients showed an M equal to 1.9,1.6, and 1.6 mm with SD of 1.8,1.4, and 1.8 mm, respectively; (head and neck cases: M equal to 1.5,1.2, and 1.6 mm with SD 1.4,1.2, and 1.8 mm; chest cases: M equal to 2.5,1.8, and 0.8 mm with SD 2.7,1.7, and 1.2 mm, abdomen-pelvic cases: M equal to 2.9,2.8 and 2.3 mm with SD 1.6,1.2, and 2.3 mm). Similarly, the random errors for all patients showed SD of 1.9,1.6, and 1.8 mm, respectively (head and neck cases: SD 1.7,1.3, and 1.5 mm; chest cases: SD 1.2,1.9, and 2.5 mm; abdomino-pelvic cases SD 2.5, 2, and 2.4 mm, respectively). Using Van Herk's formula the suggested (PTV) margin around the clinical target volume (CTV) of 5.5 mm appears to be adequate. Conclusion: The ranges of set-up errors are site specific and depends on many factors
Spectrum estimation method based on marginal spectrum
International Nuclear Information System (INIS)
Cai Jianhua; Hu Weiwen; Wang Xianchun
2011-01-01
FFT method can not meet the basic requirements of power spectrum for non-stationary signal and short signal. A new spectrum estimation method based on marginal spectrum from Hilbert-Huang transform (HHT) was proposed. The procession of obtaining marginal spectrum in HHT method was given and the linear property of marginal spectrum was demonstrated. Compared with the FFT method, the physical meaning and the frequency resolution of marginal spectrum were further analyzed. Then the Hilbert spectrum estimation algorithm was discussed in detail, and the simulation results were given at last. The theory and simulation shows that under the condition of short data signal and non-stationary signal, the frequency resolution and estimation precision of HHT method is better than that of FFT method. (authors)
Methylation patterns in marginal zone lymphoma.
Arribas, Alberto J; Bertoni, Francesco
Promoter DNA methylation is a major regulator of gene expression and transcription. The identification of methylation changes is important for understanding disease pathogenesis, for identifying prognostic markers and can drive novel therapeutic approaches. In this review we summarize the current knowledge regarding DNA methylation in MALT lymphoma, splenic marginal zone lymphoma, nodal marginal zone lymphoma. Despite important differences in the study design for different publications and the existence of a sole large and genome-wide methylation study for splenic marginal zone lymphoma, it is clear that DNA methylation plays an important role in marginal zone lymphomas, in which it contributes to the inactivation of tumor suppressors but also to the expression of genes sustaining tumor cell survival and proliferation. Existing preclinical data provide the rationale to target the methylation machinery in these disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pathology of nodal marginal zone lymphomas.
Pileri, Stefano; Ponzoni, Maurilio
Nodal marginal zone B cell lymphomas (NMZLs) are a rare group of lymphoid disorders part of the spectrum of marginal zone B-cell lymphomas, which encompass splenic marginal one B-cell lymphoma (SMZL) and extra nodal marginal zone of B-cell lymphoma (EMZL), often of MALT-type. Two clinicopathological forms of NMZL are recognized: adult-type and pediatric-type, respectively. NMZLs show overlapping features with other types of MZ, but distinctive features as well. In this review, we will focus on the salient distinguishing features of NMZL mostly under morphological/immunophenotypical/molecular perspectives in views of the recent acquisitions and forthcoming updated 2016 WHO classification of lymphoid malignancies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Policy Implementation, Role Conflict and Marginalization
African Journals Online (AJOL)
Prince Acheampong
governance, their role has been politically, administratively, and financially ... of marginalization of the Traditional Systems in terms of legal, financial and ..... the President as the Chief Executive Officer of the district is another controlling factor.
Limitations of ''margin'' in qualification tests
International Nuclear Information System (INIS)
Clough, R.L.; Gillen, K.T.
1984-01-01
We have carried out investigations of polymer radiation degradation behaviors which have brought to light a number of reasons why this concept of margin can break down. First of all, we have found that dose-rate effects vary greatly in magnitude. Thus, based on high dose-rate testing, poor materials with large dose-rate effects may be selected over better materials with small effects. Also, in certain cases, material properties have been found to level out (as with PVC) or reverse trend (as with buna-n) at high doses, so that ''margin'' may be ineffective, misleading, or counterproductive. For Viton, the material properties were found to change in opposite directions at high and low dose rates, making ''margin'' inappropriate. The underlying problem with the concept of ''margin'' is that differences in aging conditions can lead to fundamental differences in degradation mechanisms
Mental Depreciation and Marginal Decision Making
Heath; Fennema
1996-11-01
We propose that individuals practice "mental depreciation," that is, they implicitly spread the fixed costs of their expenses over time or use. Two studies explore how people spread fixed costs on durable goods. A third study shows that depreciation can lead to two distinct errors in marginal decisions: First, people sometimes invest too much effort to get their money's worth from an expense (e.g., they may use a product a lot to spread the fixed expense across more uses). Second, people sometimes invest too little effort to get their money's worth: When people add a portion of the fixed cost to the current costs, their perceived marginal (i.e., incremental) costs exceed their true marginal costs. In response, they may stop investing because their perceived costs surpass the marginal benefits they are receiving. The latter effect is supported by two field studies that explore real board plan decisions by university students.
Marketing margins and agricultural technology in Mozambique
DEFF Research Database (Denmark)
Arndt, Channing; Jensen, Henning Tarp; Robinson, Sherman
2000-01-01
of improved agricultural technology and lower marketing margins yield welfare gains across the economy. In addition, a combined scenario reveals significant synergy effects, as gains exceed the sum of gains from the individual scenarios. Relative welfare improvements are higher for poor rural households......Improvements in agricultural productivity and reductions in marketing costs in Mozambique are analysed using a computable general equilibrium (CGE) model. The model incorporates detailed marketing margins and separates household demand for marketed and home-produced goods. Individual simulations...
Time Safety Margin: Theory and Practice
2016-09-01
Air Education and Training Command Handbook 99-107, T-38 Road to Wings, Randolph Air Force Base, Texas, July 2013. 65 This page was intentionally left...412TW-TIH-16-01 TIME SAFETY MARGIN: THEORY AND PRACTICE WILLIAM R. GRAY, III Chief Test Pilot USAF Test Pilot School SEPTEMBER 2016... Safety Margin: The01y and Practice) was submitted by the Commander, 4 I 2th Test Wing, Edwards AFB, Ca lifornia 93524-6843. Foreign announcement and
In silico particle margination in blood flow
Müller, Kathrin
2015-01-01
A profound knowledge of margination, the migration of blood components to the vessel wall in blood flow, is required in order to understand the genesis of various diseases, as e.g., cardiovascular diseases or bleeding disorders. Margination of particles is a pre-condition for potential adhesion. Adhesion to the vessel wall is required for platelets, the protein von Willebrand factor (VWF), but also for drug and imaging agent carriers in order to perform their particular tasks. In the haemosta...
Directory of Open Access Journals (Sweden)
Macarena Cubillos Mesías
Full Text Available To quantify interfraction patient setup-errors for radiotherapy based on cone-beam computed tomography and suggest safety margins accordingly.Positioning vectors of pre-treatment cone-beam computed tomography for different treatment sites were collected (n = 9504. For each patient group the total average and standard deviation were calculated and the overall mean, systematic and random errors as well as safety margins were determined.The systematic (and random errors in the superior-inferior, left-right and anterior-posterior directions were: for prostate, 2.5(3.0, 2.6(3.9 and 2.9(3.9mm; for prostate bed, 1.7(2.0, 2.2(3.6 and 2.6(3.1mm; for cervix, 2.8(3.4, 2.3(4.6 and 3.2(3.9mm; for rectum, 1.6(3.1, 2.1(2.9 and 2.5(3.8mm; for anal, 1.7(3.7, 2.1(5.1 and 2.5(4.8mm; for head and neck, 1.9(2.3, 1.4(2.0 and 1.7(2.2mm; for brain, 1.0(1.5, 1.1(1.4 and 1.0(1.1mm; and for mediastinum, 3.3(4.6, 2.6(3.7 and 3.5(4.0mm. The CTV-to-PTV margins had the smallest value for brain (3.6, 3.7 and 3.3mm and the largest for mediastinum (11.5, 9.1 and 11.6mm. For pelvic treatments the means (and standard deviations were 7.3 (1.6, 8.5 (0.8 and 9.6 (0.8mm.Systematic and random setup-errors were smaller than 5mm. The largest errors were found for organs with higher motion probability. The suggested safety margins were comparable to published values in previous but often smaller studies.
Professional Commitment and Professional Marginalism in Teachers
Directory of Open Access Journals (Sweden)
Kalashnikov A.I.
2017-11-01
Full Text Available The article reviews teachers' attitudes towards the teaching profession which can be expressed both in professional commitment and in professional marginalism. The dominance of professional marginalism could affect destructively the students as well as the teacher’s personality, hence the issues related to the content of personal position of a marginal and the rate of marginalism among teachers. It was suggested that marginalism could be revealed in the study of professional commitment. The study involved 81 teachers of Sverdlovsk secondary schools aged 21—60 years with work experience ranging from 1 month to 39 years. The Professional Commitment Questionnaire was used as the study technique. The results showed that negative emotional attitude towards the profession and reluctance to leave the profession were grouped as a separate factor. The dispersion factor was 12,5%. The factor loadings ranged from 0.42 to 0.84. The study proved that professional marginalism in teachers includes dissatisfaction with work, feelings of resentment against profession and an unwillingness to leave the profession.
NRC Seismic Design Margins Program Plan
International Nuclear Information System (INIS)
Cummings, G.E.; Johnson, J.J.; Budnitz, R.J.
1985-08-01
Recent studies estimate that seismically induced core melt comes mainly from earthquakes in the peak ground acceleration range from 2 to 4 times the safe shutdown earthquake (SSE) acceleration used in plant design. However, from the licensing perspective of the US Nuclear Regulatory Commission, there is a continuing need for consideration of the inherent quantitative seismic margins because of, among other things, the changing perceptions of the seismic hazard. This paper discusses a Seismic Design Margins Program Plan, developed under the auspices of the US NRC, that provides the technical basis for assessing the significance of design margins in terms of overall plant safety. The Plan will also identify potential weaknesses that might have to be addressed, and will recommend technical methods for assessing margins at existing plants. For the purposes of this program, a general definition of seismic design margin is expressed in terms of how much larger that the design basis earthquake an earthquake must be to compromise plant safety. In this context, margin needs to be determined at the plant, system/function, structure, and component levels. 14 refs., 1 fig
A quantitative analysis of transtensional margin width
Jeanniot, Ludovic; Buiter, Susanne J. H.
2018-06-01
Continental rifted margins show variations between a few hundred to almost a thousand kilometres in their conjugated widths from the relatively undisturbed continent to the oceanic crust. Analogue and numerical modelling results suggest that the conjugated width of rifted margins may have a relationship to their obliquity of divergence, with narrower margins occurring for higher obliquity. We here test this prediction by analysing the obliquity and rift width for 26 segments of transtensional conjugate rifted margins in the Atlantic and Indian Oceans. We use the plate reconstruction software GPlates (http://www.gplates.org) for different plate rotation models to estimate the direction and magnitude of rifting from the initial phases of continental rifting until breakup. Our rift width corresponds to the distance between the onshore maximum topography and the last identified continental crust. We find a weak positive correlation between the obliquity of rifting and rift width. Highly oblique margins are narrower than orthogonal margins, as expected from analogue and numerical models. We find no relationships between rift obliquities and rift duration nor the presence or absence of Large Igneous Provinces (LIPs).
An Improved Isotropic Periodic Sum Method That Uses Linear Combinations of Basis Potentials
Takahashi, Kazuaki Z.
2012-11-13
Isotropic periodic sum (IPS) is a technique that calculates long-range interactions differently than conventional lattice sum methods. The difference between IPS and lattice sum methods lies in the shape and distribution of remote images for long-range interaction calculations. The images used in lattice sum calculations are identical to those generated from periodic boundary conditions and are discretely positioned at lattice points in space. The images for IPS calculations are "imaginary", which means they do not explicitly exist in a simulation system and are distributed isotropically and periodically around each particle. Two different versions of the original IPS method exist. The IPSn method is applied to calculations for point charges, whereas the IPSp method calculates polar molecules. However, both IPSn and IPSp have their advantages and disadvantages in simulating bulk water or water-vapor interfacial systems. In bulk water systems, the cutoff radius effect of IPSn strongly affects the configuration, whereas IPSp does not provide adequate estimations of water-vapor interfacial systems unless very long cutoff radii are used. To extend the applicability of the IPS technique, an improved IPS method, which has better accuracy in both homogeneous and heterogeneous systems has been developed and named the linear-combination-based isotropic periodic sum (LIPS) method. This improved IPS method uses linear combinations of basis potentials. We performed molecular dynamics (MD) simulations of bulk water and water-vapor interfacial systems to evaluate the accuracy of the LIPS method. For bulk water systems, the LIPS method has better accuracy than IPSn in estimating thermodynamic and configurational properties without the countercharge assumption, which is used for IPSp. For water-vapor interfacial systems, LIPS has better accuracy than IPSp and properly estimates thermodynamic and configurational properties. In conclusion, the LIPS method can successfully estimate
Electrochemical isotropic texturing of mc-Si wafers in KOH solution
International Nuclear Information System (INIS)
Abburi, M.; Boström, T.; Olefjord, I.
2013-01-01
Boron doped multicrystalline Si-wafers were anodically polarized in 2 M KOH and 4 M KOH at 40 °C and 50 °C. The applied potentials were 25 V, 30 V, 40 V and 50 V. The morphology of the textured surfaces, the surface products and the light reflectivity were analyzed by utilizing SEM, XPS and Lambda UV/Vis/NIR spectrophotometer, respectively. Isotropic texturing was obtained. The lowest average reflectivity, 17%, was achieved after pre-etching for 10 min and polarization at 40 V for 10 min in 4 M KOH at 50 °C. That reflection value is half of that measured on a chemical pre-etched surface, 34%. By increasing the voltage to 50 V the reflectivity rises to 28%. Polarizations to 25 V and 30 V at 50 °C in both solutions give local pores in the μm-range. The etch attack initiation is located at protrusions on the surface. At 40 V and 50 V in both solutions the pores are extended onto the entire surface. The width of the pores is about 10 μm. Inside the micro-pores, nm-pores are formed; their lateral size is in the range 100 nm–200 nm. A mechanism for the anodic dissolution reactions is discussed. - Highlights: ► A method to form isotropic textures on mc-Si wafers in KOH solution is presented. ► The method is based on anodic polarization of silicon in KOH at high potentials. ► Evolution of surface morphology is studied by varying the etch parameters. ► Isotropic textures with lowest average reflectivity are obtained at 40 V. ► A reaction model for texturing mechanism is discussed in the light of XPS data
An Improved Isotropic Periodic Sum Method That Uses Linear Combinations of Basis Potentials
Takahashi, Kazuaki Z.; Narumi, Tetsu; Suh, Donguk; Yasuoka, Kenji
2012-01-01
Isotropic periodic sum (IPS) is a technique that calculates long-range interactions differently than conventional lattice sum methods. The difference between IPS and lattice sum methods lies in the shape and distribution of remote images for long-range interaction calculations. The images used in lattice sum calculations are identical to those generated from periodic boundary conditions and are discretely positioned at lattice points in space. The images for IPS calculations are "imaginary", which means they do not explicitly exist in a simulation system and are distributed isotropically and periodically around each particle. Two different versions of the original IPS method exist. The IPSn method is applied to calculations for point charges, whereas the IPSp method calculates polar molecules. However, both IPSn and IPSp have their advantages and disadvantages in simulating bulk water or water-vapor interfacial systems. In bulk water systems, the cutoff radius effect of IPSn strongly affects the configuration, whereas IPSp does not provide adequate estimations of water-vapor interfacial systems unless very long cutoff radii are used. To extend the applicability of the IPS technique, an improved IPS method, which has better accuracy in both homogeneous and heterogeneous systems has been developed and named the linear-combination-based isotropic periodic sum (LIPS) method. This improved IPS method uses linear combinations of basis potentials. We performed molecular dynamics (MD) simulations of bulk water and water-vapor interfacial systems to evaluate the accuracy of the LIPS method. For bulk water systems, the LIPS method has better accuracy than IPSn in estimating thermodynamic and configurational properties without the countercharge assumption, which is used for IPSp. For water-vapor interfacial systems, LIPS has better accuracy than IPSp and properly estimates thermodynamic and configurational properties. In conclusion, the LIPS method can successfully estimate
Waheed, Umair bin; Psencik, Ivan; Cerveny, Vlastislav; Iversen, Einar; Alkhalifah, Tariq Ali
2013-01-01
On several simple models of isotropic and anisotropic media, we have studied the accuracy of the two-point paraxial traveltime formula designed for the approximate calculation of the traveltime between points S' and R' located in the vicinity of points S and R on a reference ray. The reference ray may be situated in a 3D inhomogeneous isotropic or anisotropic medium with or without smooth curved interfaces. The twopoint paraxial traveltime formula has the form of the Taylor expansion of the two-point traveltime with respect to spatial Cartesian coordinates up to quadratic terms at points S and R on the reference ray. The constant term and the coefficients of the linear and quadratic terms are determined from quantities obtained from ray tracing and linear dynamic ray tracing along the reference ray. The use of linear dynamic ray tracing allows the evaluation of the quadratic terms in arbitrarily inhomogeneous media and, as shown by examples, it extends the region of accurate results around the reference ray between S and R (and even outside this interval) obtained with the linear terms only. Although the formula may be used for very general 3D models, we concentrated on simple 2D models of smoothly inhomogeneous isotropic and anisotropic (~8% and ~20% anisotropy) media only. On tests, in which we estimated twopoint traveltimes between a shifted source and a system of shifted receivers, we found that the formula may yield more accurate results than the numerical solution of an eikonal-based differential equation. The tests also indicated that the accuracy of the formula depends primarily on the length and the curvature of the reference ray and only weakly depends on anisotropy. The greater is the curvature of the reference ray, the narrower its vicinity, in which the formula yields accurate results.
Namani, R.; Feng, Y.; Okamoto, R. J.; Jesuraj, N.; Sakiyama-Elbert, S. E.; Genin, G. M.; Bayly, P. V.
2012-01-01
The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isotropic soft material. A soft gel with controlled anisotropy was obtained by polymerizing a mixture of fibrinogen and thrombin solutions in a high field magnet (B = 11.7 T); fibrils in the resulting gel were predominantly aligned parallel to the magnetic field. Aligned fibrin gels were subject to dynamic (20–40 Hz) shear deformation in two orthogonal directions. The shear storage modulus was 1.08 ± 0. 42 kPa (mean ± std. dev.) for shear in a plane parallel to the dominant fiber direction, and 0.58 ± 0.21 kPa for shear in the plane of isotropy. Gels were indented by a rectangular tip of a large aspect ratio, aligned either parallel or perpendicular to the normal to the plane of transverse isotropy. Aligned fibrin gels appeared stiffer when indented with the long axis of a rectangular tip perpendicular to the dominant fiber direction. Three-dimensional numerical simulations of asymmetric indentation were used to determine the relationship between direction-dependent differences in indentation stiffness and material parameters. This approach enables the estimation of a complete set of parameters for an incompressible, transversely isotropic, linear elastic material. PMID:22757501
Isotropic three-dimensional T2 mapping of knee cartilage: Development and validation.
Colotti, Roberto; Omoumi, Patrick; Bonanno, Gabriele; Ledoux, Jean-Baptiste; van Heeswijk, Ruud B
2018-02-01
1) To implement a higher-resolution isotropic 3D T 2 mapping technique that uses sequential T 2 -prepared segmented gradient-recalled echo (Iso3DGRE) images for knee cartilage evaluation, and 2) to validate it both in vitro and in vivo in healthy volunteers and patients with knee osteoarthritis. The Iso3DGRE sequence with an isotropic 0.6 mm spatial resolution was developed on a clinical 3T MR scanner. Numerical simulations were performed to optimize the pulse sequence parameters. A phantom study was performed to validate the T 2 estimation accuracy. The repeatability of the sequence was assessed in healthy volunteers (n = 7). T 2 values were compared with those from a clinical standard 2D multislice multiecho (MSME) T 2 mapping sequence in knees of healthy volunteers (n = 13) and in patients with knee osteoarthritis (OA, n = 5). The numerical simulations resulted in 100 excitations per segment and an optimal radiofrequency (RF) excitation angle of 15°. The phantom study demonstrated a good correlation of the technique with the reference standard (slope 0.9 ± 0.05, intercept 0.2 ± 1.7 msec, R 2 ≥ 0.99). Repeated measurements of cartilage T 2 values in healthy volunteers showed a coefficient of variation of 5.6%. Both Iso3DGRE and MSME techniques found significantly higher cartilage T 2 values (P < 0.03) in OA patients. Iso3DGRE precision was equal to that of the MSME T 2 mapping in healthy volunteers, and significantly higher in OA (P = 0.01). This study successfully demonstrated that high-resolution isotropic 3D T 2 mapping for knee cartilage characterization is feasible, accurate, repeatable, and precise. The technique allows for multiplanar reformatting and thus T 2 quantification in any plane of interest. 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:362-371. © 2017 International Society for Magnetic Resonance in Medicine.
Waheed, Umair bin
2013-09-01
On several simple models of isotropic and anisotropic media, we have studied the accuracy of the two-point paraxial traveltime formula designed for the approximate calculation of the traveltime between points S\\' and R\\' located in the vicinity of points S and R on a reference ray. The reference ray may be situated in a 3D inhomogeneous isotropic or anisotropic medium with or without smooth curved interfaces. The twopoint paraxial traveltime formula has the form of the Taylor expansion of the two-point traveltime with respect to spatial Cartesian coordinates up to quadratic terms at points S and R on the reference ray. The constant term and the coefficients of the linear and quadratic terms are determined from quantities obtained from ray tracing and linear dynamic ray tracing along the reference ray. The use of linear dynamic ray tracing allows the evaluation of the quadratic terms in arbitrarily inhomogeneous media and, as shown by examples, it extends the region of accurate results around the reference ray between S and R (and even outside this interval) obtained with the linear terms only. Although the formula may be used for very general 3D models, we concentrated on simple 2D models of smoothly inhomogeneous isotropic and anisotropic (~8% and ~20% anisotropy) media only. On tests, in which we estimated twopoint traveltimes between a shifted source and a system of shifted receivers, we found that the formula may yield more accurate results than the numerical solution of an eikonal-based differential equation. The tests also indicated that the accuracy of the formula depends primarily on the length and the curvature of the reference ray and only weakly depends on anisotropy. The greater is the curvature of the reference ray, the narrower its vicinity, in which the formula yields accurate results.
Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials
International Nuclear Information System (INIS)
Yu Zhenzhong; Feng Yijun; Xu Xiaofei; Zhao Junming; Jiang Tian
2011-01-01
We present optimized design of cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials. Through an optimization procedure based on genetic algorithm, simpler cloak structure and more realizable material parameters can be achieved with better cloak performance than that of an ideal non-magnetic cloak with a reduced set of parameters. We demonstrate that a cloak shell with only five layers of two normal materials can result in an average 20 dB reduction in the scattering width for all directions when covering the inner conducting cylinder with the cloak. The optimized design can substantially simplify the realization of the invisibility cloak, especially in the optical range.
Directory of Open Access Journals (Sweden)
Hilmi Volkan Demir
2009-11-01
Full Text Available We present circular architecture bioimplant strain sensors that facilitate a strong resonance frequency shift with mechanical deformation. The clinical application area of these sensors is for in vivo assessment of bone fractures. Using a rectangular geometry, we obtain a resonance shift of 330 MHz for a single device and 170 MHz for its triplet configuration (with three side-by-side resonators on chip under an applied load of 3,920 N. Using the same device parameters with a circular isotropic architecture, we achieve a resonance frequency shift of 500 MHz for the single device and 260 MHz for its triplet configuration, demonstrating substantially increased sensitivity.
Maximum likelihood based multi-channel isotropic reverberation reduction for hearing aids
DEFF Research Database (Denmark)
Kuklasiński, Adam; Doclo, Simon; Jensen, Søren Holdt
2014-01-01
We propose a multi-channel Wiener filter for speech dereverberation in hearing aids. The proposed algorithm uses joint maximum likelihood estimation of the speech and late reverberation spectral variances, under the assumption that the late reverberant sound field is cylindrically isotropic....... The dereverberation performance of the algorithm is evaluated using computer simulations with realistic hearing aid microphone signals including head-related effects. The algorithm is shown to work well with signals reverberated both by synthetic and by measured room impulse responses, achieving improvements...
Gao, Zhiwen; Zhou, Youhe
2015-04-01
Real fundamental solution for fracture problem of transversely isotropic high temperature superconductor (HTS) strip is obtained. The superconductor E-J constitutive law is characterized by the Bean model where the critical current density is independent of the flux density. Fracture analysis is performed by the methods of singular integral equations which are solved numerically by Gauss-Lobatto-Chybeshev (GSL) collocation method. To guarantee a satisfactory accuracy, the convergence behavior of the kernel function is investigated. Numerical results of fracture parameters are obtained and the effects of the geometric characteristics, applied magnetic field and critical current density on the stress intensity factors (SIF) are discussed.
A non-commutative formula for the isotropic magneto-electric response
International Nuclear Information System (INIS)
Leung, Bryan; Prodan, Emil
2013-01-01
A non-commutative formula for the isotropic magneto-electric response of disordered insulators under magnetic fields is derived using the methods of non-commutative geometry. Our result follows from an explicit evaluation of the Ito derivative with respect to the magnetic field of the non-commutative formula for the electric polarization reported in Schulz-Baldes and Teufel (2012 arXiv:1201.4812v1). The quantization, topological invariance and connection to a second Chern number of the magneto-electric response are discussed in the context of three-dimensional, disordered, time-reversal or inversion symmetric topological insulators. (paper)
Improvement of thermal shock resistance of isotropic graphite by Ti-doping
International Nuclear Information System (INIS)
Lopez-Galilea, I.; Ordas, N.; Garcia-Rosales, C.; Lindig, S.
2009-01-01
Ti-doped isotropic graphite is a promising candidate material for the strike point area of the ITER divertor due to its reduced chemical erosion by hydrogen bombardment and its high thermal shock resistance, mainly due the catalytic effect of TiC on the graphitization leading to an increase of thermal conductivity and to higher mechanical strength. Several manufacturing parameters such as oxidative stabilization treatment, carbonization cycle, graphitization temperature and dwell time during graphitization have been investigated in order to establish a relationship between these parameters and the final properties.
Improvement of thermal shock resistance of isotropic graphite by Ti-doping
Energy Technology Data Exchange (ETDEWEB)
Lopez-Galilea, I. [Inmaculada Lopez-Galilea, CEIT and Tecnun (University of Navarra), Po de Manuel Lardizabal, 15 E-20018 San Sebastian (Spain)], E-mail: ilopez@ceit.es; Ordas, N.; Garcia-Rosales, C. [Inmaculada Lopez-Galilea, CEIT and Tecnun (University of Navarra), Po de Manuel Lardizabal, 15 E-20018 San Sebastian (Spain); Lindig, S. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)
2009-04-30
Ti-doped isotropic graphite is a promising candidate material for the strike point area of the ITER divertor due to its reduced chemical erosion by hydrogen bombardment and its high thermal shock resistance, mainly due the catalytic effect of TiC on the graphitization leading to an increase of thermal conductivity and to higher mechanical strength. Several manufacturing parameters such as oxidative stabilization treatment, carbonization cycle, graphitization temperature and dwell time during graphitization have been investigated in order to establish a relationship between these parameters and the final properties.
DEFF Research Database (Denmark)
Dahl, Jens Peder; Schleich, W. P.
2009-01-01
For a closed quantum system the state operator must be a function of the Hamiltonian. When the state is degenerate, additional constants of the motion enter the play. But although it is the Weyl transform of the state operator, the Wigner function is not necessarily a function of the Weyl...... transforms of the constants of the motion. We derive conditions for which this is actually the case. The Wigner functions of the energy eigenstates of a two-dimensional isotropic harmonic oscillator serve as an important illustration....
Energy Technology Data Exchange (ETDEWEB)
Milewski, J., E-mail: jsmilew@wp.pl [Institute of Mathematics, Poznań University of Technology, Piotrowo 3A, 60-965 Poznań (Poland); Lulek, B., E-mail: barlulek@amu.edu.pl [East European State Higher School, ul. Tymona Terleckiego 6, 37-700 Przemyśl (Poland); Lulek, T., E-mail: tadlulek@prz.edu.pl [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); East European State Higher School, ul. Tymona Terleckiego 6, 37-700 Przemyśl (Poland); Łabuz, M., E-mail: labuz@univ.rzeszow.pl [University of Rzeszow, Institute of Physics, Rejtana 16a, 35-959 Rzeszów (Poland); Stagraczyński, R., E-mail: rstag@prz.edu.pl [Rzeszow University of Technology, The Faculty of Mathematics and Applied Physics, Powstańców Warszawy 6, 35-959 Rzeszów (Poland)
2014-02-01
The exact Bethe eigenfunctions for the heptagonal ring within the isotropic XXX model exhibit a doubly degenerated energy level in the three-deviation sector at the centre of the Brillouin zone. We demonstrate an explicit construction of these eigenfunctions by use of algebraic Bethe Ansatz, and point out a relation of degeneracy to parity conservation, applied to the configuration of strings for these eigenfunctions. Namely, the internal structure of the eigenfunctions (the 2-string and the 1-string, with opposite quasimomenta) admits generation of two mutually orthogonal eigenfunctions due to the fact that the strings which differ by their length are distinguishable objects.
International Nuclear Information System (INIS)
Mota, R D; Granados, V D; Queijeiro, A; Garcia, J; Guzman, L
2003-01-01
We show that the supersymmetric radial ladder operators of the three-dimensional isotropic harmonic oscillator are contained in the spherical components of the creation and annihilation operators of the system. Also, we show that the constants of motion of the problem, written in terms of these spherical components, lead us to second-order radial operators. Further, we show that these operators change the orbital angular momentum quantum number by two units and are equal to those obtained by the Infeld-Hull factorization method
Spin-wave logic devices based on isotropic forward volume magnetostatic waves
International Nuclear Information System (INIS)
Klingler, S.; Pirro, P.; Brächer, T.; Leven, B.; Hillebrands, B.; Chumak, A. V.
2015-01-01
We propose the utilization of isotropic forward volume magnetostatic spin waves in modern wave-based logic devices and suggest a concrete design for a spin-wave majority gate operating with these waves. We demonstrate by numerical simulations that the proposed out-of-plane magnetized majority gate overcomes the limitations of anisotropic in-plane magnetized majority gates due to the high spin-wave transmission through the gate, which enables a reduced energy consumption of these devices. Moreover, the functionality of the out-of-plane majority gate is increased due to the lack of parasitic generation of short-wavelength exchange spin waves
Spin-wave logic devices based on isotropic forward volume magnetostatic waves
Energy Technology Data Exchange (ETDEWEB)
Klingler, S., E-mail: stefan.klingler@wmi.badw-muenchen.de; Pirro, P.; Brächer, T.; Leven, B.; Hillebrands, B.; Chumak, A. V. [Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern (Germany)
2015-05-25
We propose the utilization of isotropic forward volume magnetostatic spin waves in modern wave-based logic devices and suggest a concrete design for a spin-wave majority gate operating with these waves. We demonstrate by numerical simulations that the proposed out-of-plane magnetized majority gate overcomes the limitations of anisotropic in-plane magnetized majority gates due to the high spin-wave transmission through the gate, which enables a reduced energy consumption of these devices. Moreover, the functionality of the out-of-plane majority gate is increased due to the lack of parasitic generation of short-wavelength exchange spin waves.
Qiu, Cheng-Wei; Hu, Li; Zhang, Baile; Wu, Bae-Ian; Johnson, Steven G; Joannopoulos, John D
2009-08-03
Two novel classes of spherical invisibility cloaks based on nonlinear transformation have been studied. The cloaking characteristics are presented by segmenting the nonlinear transformation based spherical cloak into concentric isotropic homogeneous coatings. Detailed investigations of the optimal discretization (e.g., thickness control of each layer, nonlinear factor, etc.) are presented for both linear and nonlinear spherical cloaks and their effects on invisibility performance are also discussed. The cloaking properties and our choice of optimal segmentation are verified by the numerical simulation of not only near-field electric-field distribution but also the far-field radar cross section (RCS).
2016-05-01
norm does not cap - ture the geometry completely. The L1−L2 in (c) does a better job than TV while L1 in (b) and L1−0.5L2 in (d) capture the squares most...and isotropic total variation (TV) norms into a relaxed formu- lation of the two phase Mumford-Shah (MS) model for image segmentation. We show...results exceeding those obtained by the MS model when using the standard TV norm to regular- ize partition boundaries. In particular, examples illustrating
The thermalization of soft modes in non-expanding isotropic quark gluon plasmas
Energy Technology Data Exchange (ETDEWEB)
Blaizot, Jean-Paul, E-mail: jean-paul.blaizot@cea.fr [Institut de Physique Théorique, CNRS/UMR 3681, CEA Saclay, F-91191 Gif-sur-Yvette (France); Liao, Jinfeng [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Mehtar-Tani, Yacine [Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550 (United States)
2017-05-15
We discuss the role of elastic and inelastic collisions and their interplay in the thermalization of the quark–gluon plasma. We consider a simplified situation of a static plasma, spatially uniform and isotropic in momentum space. We focus on the small momentum region, which equilibrates first, and on a short time scale. We obtain a simple kinetic equation that allows for an analytic description of the most important regimes. The present analysis suggests that the formation of a Bose condensate, expected when only elastic collisions are present, is strongly hindered by the inelastic, radiative, processes.
Wei, Ding; Cong-cong, Yu; Chen-hui, Wu; Zheng-yi, Shu
2018-03-01
To analyse the strain localization behavior of geomaterials, the forward Euler schemes and the tangent modulus matrix are formulated based on the transversely isotropic yield criterion with non-coaxial flow rule developed by Lade, the program code is implemented based on the user subroutine (UMAT) of ABAQUS. The influence of the material principal direction on the strain localization and the bearing capacity of the structure are investigated and analyzed. Numerical results show the validity and performance of the proposed model in simulating the strain localization behavior of geostructures.
Longitudinal vibration of isotropic solid rods: from classical to modern theories
CSIR Research Space (South Africa)
Shatalov, M
2011-12-01
Full Text Available Vibration of Isotropic Solid Rods: From Classical to Modern Theories Michael Shatalov1,2, Julian Marais2, Igor Fedotov2 and Michel Djouosseu Tenkam2 1Council for Scientific and Industrial Research 2Tshwane University of Technology South Africa 1...). The classical approximate theory of longitudinal vibration of rods was developed during the 18th century by J. D?Alembert, D. Bernoulli, L. Euler and J. Lagrange. This theory is based on the analysis of the one dimensional wave equation and is applicable...
Universality of Critically Pinned Interfaces in Two-Dimensional Isotropic Random Media
Grassberger, Peter
2018-05-01
Based on extensive simulations, we conjecture that critically pinned interfaces in two-dimensional isotropic random media with short-range correlations are always in the universality class of ordinary percolation. Thus, in contrast to interfaces in >2 dimensions, there is no distinction between fractal (i.e., percolative) and rough but nonfractal interfaces. Our claim includes interfaces in zero-temperature random field Ising models (both with and without spontaneous nucleation), in heterogeneous bootstrap percolation, and in susceptible-weakened-infected-removed epidemics. It does not include models with long-range correlations in the randomness and models where overhangs are explicitly forbidden (which would imply nonisotropy of the medium).
Uniqueness of the Isotropic Frame and Usefulness of the Lorentz Transformation
Choi, Yang-Ho
2018-05-01
According to the postulates of the special theory of relativity (STR), physical quantities such as proper times and Doppler shifts can be obtained from any inertial frame by regarding it as isotropic. Nonetheless many inconsistencies arise from the postulates, as shown in this paper. However, there are numerous experimental results that agree with the predictions of STR. It is explained why they are accurate despite the inconsistencies. The Lorentz transformation (LT), unless subject to the postulates of STR, may be a useful method to approach physics problems. As an example to show the usefulness of LT, the problem of the generalized Sagnac effect is solved by utilizing it.
A hidden non-Abelian monopole in a 16-dimensional isotropic harmonic oscillator
International Nuclear Information System (INIS)
Le, Van-Hoang; Nguyen, Thanh-Son; Phan, Ngoc-Hung
2009-01-01
We suggest one variant of generalization of the Hurwitz transformation by adding seven extra variables that allow an inverse transformation to be obtained. Using this generalized transformation we establish the connection between the Schroedinger equation of a 16-dimensional isotropic harmonic oscillator and that of a nine-dimensional hydrogen-like atom in the field of a monopole described by a septet of potential vectors in a non-Abelian model of 28 operators. The explicit form of the potential vectors and all the commutation relations of the algebra are given./
A hidden non-Abelian monopole in a 16-dimensional isotropic harmonic oscillator
Energy Technology Data Exchange (ETDEWEB)
Le, Van-Hoang; Nguyen, Thanh-Son; Phan, Ngoc-Hung [Department of Physics, HCMC University of Pedagogy, 280 An Duong Vuong, Ward 10, Dist. 5, Ho Chi Minh City (Viet Nam)
2009-05-01
We suggest one variant of generalization of the Hurwitz transformation by adding seven extra variables that allow an inverse transformation to be obtained. Using this generalized transformation we establish the connection between the Schroedinger equation of a 16-dimensional isotropic harmonic oscillator and that of a nine-dimensional hydrogen-like atom in the field of a monopole described by a septet of potential vectors in a non-Abelian model of 28 operators. The explicit form of the potential vectors and all the commutation relations of the algebra are given./.
The generalized Cauchy relation: a probe for local structure in materials with isotropic symmetry
Energy Technology Data Exchange (ETDEWEB)
Bactavatchalou, R [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Alnot, P [Universite Henri Poincare, Nancy I (France); Bailer, J [Universite du Luxembourg (Luxembourg); Kolle, M [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Mueller, U [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Philipp, M [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Possart, W [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Rouxel, D [Universite Henri Poincare, Nancy I (France); Sanctuary, R [Universite du Luxembourg (Luxembourg); Tschoepe, A [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Vergnat, Ch [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Wetzel, B [Institut fuer Verbundwerkstoffe TU Kaiserslautern 67663 Kaiserslautern (Germany); Krueger, J K [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg)
2006-05-15
The elastic properties of the isotropic state of condensed matter are given by the elastic constants ell and c44. In the liquid state the static shear stiffness c44 vanishes whereas at sufficient high probe frequencies a dynamic shear stiffness may appear. In that latter case the question about the existence of a Cauchy relation appears. It will be shown that a pure Cauchy relation can appear only under special conditions which are rarely fulfilled. For all investigated materials, including ceramics, liquids and glasses, a linear relation between ell and c44 called generalized Cauchy relation is observed, which, surprisingly, follows a linear transformation.
International Nuclear Information System (INIS)
Veryaskin, A.V.; Lapchinskij, V.G.; Nekrasov, V.I.; Rubakov, V.A.
1981-01-01
Behaviour of vacuum symmetry in the model of self-acting scalar field in the open and closed isotropic cosmological spaces is investigated. Considered are the cases with the mass squared of the scalar field m 2 >0, m 2 =0 and m 2 2 2 =0 at exponentially large scale factors the study of the problem on the behaviour of the symmetry requires exceeding the limits of the perturbation theory. The final behaviour of the vacuum symmetry in the open model at small radii depends on combined effect of all the external factors [ru
International Nuclear Information System (INIS)
Franca, L.P.; Stenberg, R.
1989-06-01
Stability conditions are described to analyze a variational formulation emanating from a variational principle for linear isotropic elasticity. The variational principle is based on four dependent variables (namely, the strain tensor, augmented stress, pressure and displacement) and is shown to be valid for any compressibility including the incompressible limit. An improved convergence error analysis is established for a Galerkin-least-squares method based upon these four variables. The analysis presented establishes convergence for a wide choice of combinations of finite element interpolations. (author) [pt
International Nuclear Information System (INIS)
Ji, J; Tay, F E H; Miao Jianmin; Sun Jianbo
2006-01-01
This work investigates the isotropic etching properties in inductively coupled plasma (ICP) etcher for microneedle arrays fabrication. The effects of process variables including powers, gas and pressure on needle structure generation are characterized by factorial design of experiment (DOE). The experimental responses of vertical etching depth, lateral etching length, ratio of vertical etching depth to lateral etching length and photoresist etching rate are reported. The relevance of the etching variables is also presented. The obtained etching behaviours for microneedle structure generation will be applied to develop recipes to fabricate microneedles in designed dimensions
Energy Technology Data Exchange (ETDEWEB)
Ji, J [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Tay, F E H [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Miao Jianmin [MicroMachines Center, School of Mechanical and Aerospace Engineering, Nanyang Technologica l University, 50 Nanyang Avenue, 639798 (Singapore); Sun Jianbo [MicroMachines Center, School of Mechanical and Aerospace Engineering, Nanyang Technologica l University, 50 Nanyang Avenue, 639798 (Singapore)
2006-04-01
This work investigates the isotropic etching properties in inductively coupled plasma (ICP) etcher for microneedle arrays fabrication. The effects of process variables including powers, gas and pressure on needle structure generation are characterized by factorial design of experiment (DOE). The experimental responses of vertical etching depth, lateral etching length, ratio of vertical etching depth to lateral etching length and photoresist etching rate are reported. The relevance of the etching variables is also presented. The obtained etching behaviours for microneedle structure generation will be applied to develop recipes to fabricate microneedles in designed dimensions.
Scattering of obliquely incident standing wave by a rotating transversely isotropic cylinder
CSIR Research Space (South Africa)
Shatalov, MY
2006-05-01
Full Text Available stream_source_info Shatalov2_2006.pdf.txt stream_content_type text/plain stream_size 15905 Content-Encoding UTF-8 stream_name Shatalov2_2006.pdf.txt Content-Type text/plain; charset=UTF-8 1 CSIR Material Science..., Tshwane University of Technology, South Africa. 2 CSIR Material Science and Manufacturing Abstract It is known that vibrating patterns of an isotropic cylinder, subjected to inertial rotation over the symmetry axis, precess in the direction...
Angle gathers in wave-equation imaging for transversely isotropic media
Alkhalifah, Tariq Ali; Fomel, Sergey B.
2010-01-01
In recent years, wave-equation imaged data are often presented in common-image angle-domain gathers as a decomposition in the scattering angle at the reflector, which provide a natural access to analysing migration velocities and amplitudes. In the case of anisotropic media, the importance of angle gathers is enhanced by the need to properly estimate multiple anisotropic parameters for a proper representation of the medium. We extract angle gathers for each downward-continuation step from converting offset-frequency planes into angle-frequency planes simultaneously with applying the imaging condition in a transversely isotropic with a vertical symmetry axis (VTI) medium. The analytic equations, though cumbersome, are exact within the framework of the acoustic approximation. They are also easily programmable and show that angle gather mapping in the case of anisotropic media differs from its isotropic counterpart, with the difference depending mainly on the strength of anisotropy. Synthetic examples demonstrate the importance of including anisotropy in the angle gather generation as mapping of the energy is negatively altered otherwise. In the case of a titled axis of symmetry (TTI), the same VTI formulation is applicable but requires a rotation of the wavenumbers. © 2010 European Association of Geoscientists & Engineers.
Halo-independent determination of the unmodulated WIMP signal in DAMA: the isotropic case
Energy Technology Data Exchange (ETDEWEB)
Gondolo, Paolo [Department of Physics, University of Utah, 115 South 1400 East #201, Salt Lake City, Utah 84112-0830 (United States); Scopel, Stefano, E-mail: paolo.gondolo@utah.edu, E-mail: scopel@sogang.ac.kr [Department of Physics, Sogang University, Seoul 121-742 (Korea, Republic of)
2017-09-01
We present a halo-independent determination of the unmodulated signal corresponding to the DAMA modulation if interpreted as due to dark matter weakly interacting massive particles (WIMPs). First we show how a modulated signal gives information on the WIMP velocity distribution function in the Galactic rest frame from which the unmodulated signal descends. Then we describe a mathematically-sound profile likelihood analysis in which the likelihood is profiled over a continuum of nuisance parameters (namely, the WIMP velocity distribution). As a first application of the method, which is very general and valid for any class of velocity distributions, we restrict the analysis to velocity distributions that are isotropic in the Galactic frame. In this way we obtain halo-independent maximum-likelihood estimates and confidence intervals for the DAMA unmodulated signal. We find that the estimated unmodulated signal is in line with expectations for a WIMP-induced modulation and is compatible with the DAMA background+signal rate. Specifically, for the isotropic case we find that the modulated amplitude ranges between a few percent and about 25% of the unmodulated amplitude, depending on the WIMP mass.
The Galactic Isotropic γ-ray Background and Implications for Dark Matter
Campbell, Sheldon S.; Kwa, Anna; Kaplinghat, Manoj
2018-06-01
We present an analysis of the radial angular profile of the galacto-isotropic (GI) γ-ray flux-the statistically uniform flux in angular annuli centred on the Galactic centre. Two different approaches are used to measure the GI flux profile in 85 months of Fermi-LAT data: the BDS statistical method which identifies spatial correlations, and a new Poisson ordered-pixel method which identifies non-Poisson contributions. Both methods produce similar GI flux profiles. The GI flux profile is well-described by an existing model of bremsstrahlung, π0 production, inverse Compton scattering, and the isotropic background. Discrepancies with data in our full-sky model are not present in the GI component, and are therefore due to mis-modelling of the non-GI emission. Dark matter annihilation constraints based solely on the observed GI profile are close to the thermal WIMP cross section below 100 GeV, for fixed models of the dark matter density profile and astrophysical γ-ray foregrounds. Refined measurements of the GI profile are expected to improve these constraints by a factor of a few.
Soft network materials with isotropic negative Poisson's ratios over large strains.
Liu, Jianxing; Zhang, Yihui
2018-01-31
Auxetic materials with negative Poisson's ratios have important applications across a broad range of engineering areas, such as biomedical devices, aerospace engineering and automotive engineering. A variety of design strategies have been developed to achieve artificial auxetic materials with controllable responses in the Poisson's ratio. The development of designs that can offer isotropic negative Poisson's ratios over large strains can open up new opportunities in emerging biomedical applications, which, however, remains a challenge. Here, we introduce deterministic routes to soft architected materials that can be tailored precisely to yield the values of Poisson's ratio in the range from -1 to 1, in an isotropic manner, with a tunable strain range from 0% to ∼90%. The designs rely on a network construction in a periodic lattice topology, which incorporates zigzag microstructures as building blocks to connect lattice nodes. Combined experimental and theoretical studies on broad classes of network topologies illustrate the wide-ranging utility of these concepts. Quantitative mechanics modeling under both infinitesimal and finite deformations allows the development of a rigorous design algorithm that determines the necessary network geometries to yield target Poisson ratios over desired strain ranges. Demonstrative examples in artificial skin with both the negative Poisson's ratio and the nonlinear stress-strain curve precisely matching those of the cat's skin and in unusual cylindrical structures with engineered Poisson effect and shape memory effect suggest potential applications of these network materials.
A transversely isotropic medium with a tilted symmetry axis normal to the reflector
Alkhalifah, Tariq Ali
2010-05-01
The computational tools for imaging in transversely isotropic media with tilted axes of symmetry (TTI) are complex and in most cases do not have an explicit closed-form representation. Developing such tools for a TTI medium with tilt constrained to be normal to the reflector dip (DTI) reduces their complexity and allows for closed-form representations. The homogeneous-case zero-offset migration in such a medium can be performed using an isotropic operator scaled by the velocity of the medium in the tilt direction. For the nonzero-offset case, the reflection angle is always equal to the incidence angle, and thus, the velocities for the source and receiver waves at the reflection point are equal and explicitly dependent on the reflection angle. This fact allows for the development of explicit representations for angle decomposition as well as moveout formulas for analysis of extended images obtained by wave-equation migration. Although setting the tilt normal to the reflector dip may not be valid everywhere (i.e., on salt flanks), it can be used in the process of velocity model building, in which such constrains are useful and typically are used. © 2010 Society of Exploration Geophysicists.
A controllable viewing angle LCD with an optically isotropic liquid crystal
International Nuclear Information System (INIS)
Kim, Min Su; Lim, Young Jin; Yoon, Sukin; Kang, Shin-Woong; Lee, Seung Hee; Kim, Miyoung; Wu, Shin-Tson
2010-01-01
An optically isotropic liquid crystal (LC) such as a blue phase LC or an optically isotropic nano-structured LC exhibits a very wide viewing angle because the induced birefringence is along the in-plane electric field. Utilizing such a material, we propose a liquid crystal display (LCD) whose viewing angle can be switched from wide view to narrow view using only one panel. In the device, each pixel is divided into two parts: a major pixel and a sub-pixel. The main pixels display the images while the sub-pixels control the viewing angle. In the main pixels, birefringence is induced by horizontal electric fields through inter-digital electrodes leading to a wide viewing angle, while in the sub-pixels, birefringence is induced by the vertical electric field so that phase retardation occurs only at oblique angles. As a result, the dark state (or contrast ratio) of the entire pixel can be controlled by the voltage of the sub-pixels. Such a switchable viewing angle LCD is attractive for protecting personal privacy.
Maruyama, T.; Kaito, T.; Onose, S.; Shibahara, I.
1995-08-01
Thirteen kinds of isotropic graphites with different density and maximum grain size were irradiated in the experimental fast reactor "JOYO" to fluences from 2.11 to 2.86 × 10 26 n/m 2 ( E > 0.1 MeV) at temperatures from 549 to 597°C. Postirradiation examination was carried out on the dimensional changes, elastic modulus, and thermal conductivity of these materials. Dimensional change results indicate that the graphites irradiated at lower fluences showed shrinkage upon neutron irradiation followed by increase with increasing neutron fluences, irrespective of differences in material parameters. The Young's modulus and Poisson's ratio increased by two to three times the unirradiated values. The large scatter found in Poisson's ratio of unirradiated materials became very small and a linear dependence on density was obtained after irradiation. The thermal conductivity decreased to one-fifth to one-tenth of unirradiated values, with a negligible change in specific heat. The results of postirradiation examination indicated that the changes in physical properties of high density, isotropic graphites were mainly dominated by the irradiation condition rather than their material parameters. Namely, the effects of irradiation induced defects on physical properties of heavily neutron-irradiated graphites are much larger than that of defects associated with as-fabricated specimens.
International Nuclear Information System (INIS)
Maruyama, T.; Kaito, T.; Onose, S.; Shibahara, I.
1995-01-01
Thirteen kinds of isotropic graphites with different density and maximum grain size were irradiated in the experimental fast reactor ''JOYO'' to fluences from 2.11 to 2.86x10 26 n/m 2 (E>0.1 MeV) at temperatures from 549 to 597 C. Postirradiation examination was carried out on the dimensional changes, elastic modulus, and thermal conductivity of these materials. Dimensional change results indicate that the graphites irradiated at lower fluences showed shrinkage upon neutron irradiation followed by increase with increasing neutron fluences, irrespective of differences in material parameters. The Young's modulus and Poisson's ratio increased by two to three times the unirradiated values. The large scatter found in Poisson's ratio of unirradiated materials became very small and a linear dependence on density was obtained after irradiation. The thermal conductivity decreased to one-fifth to one-tenth of unirradiated values, with a negligible change in specific heat. The results of postirradiation examination indicated that the changes in physical properties of high density, isotropic graphites were mainly dominated by the irradiation condition rather than their material parameters. Namely, the effects of irradiation induced defects on physical properties of heavily neutron-irradiated graphites are much larger than that of defects associated with as-fabricated specimens. (orig.)
Kerr effect in the isotropic phase of a side-chain polymeric liquid crystal
Reys, V.; Dormoy, Y.; Collin, D.; Keller, P.; Martinoty, P.
1992-02-01
The birefringence induced by a pulsed electrical field was used to study the pretransitional effects associated with the isotropic phase of a side-chain polysiloxane. The results obtained show that these effects are characterised by a conventional value of the static exponent and an abnormal value of the dynamic exponent, which shows that the dynamic theory of low molecular weight liquid crystals does not apply. The results also reveal competition between the dipolar moments induced by the electrical field and the permanent moments of the mesogenic molecules. La biréfringence induite par un champ électrique impulsionnel a été utilisée pour étudier les effets prétransitionnels associés à la phase isotrope d'un polysiloxane à chaînes latérales. Les résultats obtenus montrent que ces effets sont caractérisés par une valeur classique de l'exposant statique et une valeur anormale de l'exposant dynamique. Ce dernier résultat montre que la théorie dynamique des cristaux liquides de bas poids moléculaire n'est pas applicable au cas présent. Les expériences mettent également en évidence une compétition entre les moments dipolaires induits par le champ électrique et les moments permanents des molécules mésogènes.
Apparent splitting of S waves propagating through an isotropic lowermost mantle
Parisi, Laura
2018-03-24
Observations of shear‐wave anisotropy are key for understanding the mineralogical structure and flow in the mantle. Several researchers have reported the presence of seismic anisotropy in the lowermost 150–250 km of the mantle (i.e., D” layer), based on differences in the arrival times of vertically (SV) and horizontally (SH) polarized shear waves. By computing waveforms at period > 6 s for a wide range of 1‐D and 3‐D Earth structures we illustrate that a time shift (i.e., apparent splitting) between SV and SH may appear in purely isotropic simulations. This may be misinterpreted as shear wave anisotropy. For near‐surface earthquakes, apparent shear wave splitting can result from the interference of S with the surface reflection sS. For deep earthquakes, apparent splitting can be due to the S‐wave triplication in D”, reflections off discontinuities in the upper mantle and 3‐D heterogeneity. The wave effects due to anomalous isotropic structure may not be easily distinguished from purely anisotropic effects if the analysis does not involve full waveform simulations.
Energy Technology Data Exchange (ETDEWEB)
Milewska, K.; Drzewiński, W. [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Czerwiński, M., E-mail: mczerwinski@wat.edu.pl [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Dąbrowski, R. [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Piecek, W. [Institute of Applied Physics, Military University of Technology, 00-908 Warsaw (Poland)
2016-03-01
Pure compounds and multicomponent mixtures with a broad temperature range of high tilted liquid crystalline antiferroelectric phase and a direct phase transition from antiferroelectric to isotropic phase, were obtained. X-ray diffraction analysis confirms these kinds of materials form a high tilted anticlinic phase, with a fixed layer spacing and very weak dependency upon temperature, after the transition from the isotropic phase. Due to this, not only pure orthoconic antiferroelectric liquid crystals but also those with a moderate tilt should generate a good dark state. Furthermore, due to the increased potential for forming anticlinic forces, such materials could minimize a commonly observed asymmetry of a rise and fall switching times at a surface stabilized geometry. - Highlights: • The new class of liquid crystalline materials with the direct SmC{sub A}*. • Iso phase transition were obtained. • Materials possess the layer spacing fixed and very weak dependent upon temperature. • Smectic layers without shrinkage are observed. • A good dark state can be generate in SSAFLC.
Constraints on light WIMP candidates from the isotropic diffuse gamma-ray emission
International Nuclear Information System (INIS)
Arina, Chiara; Tytgat, Michel H.G.
2011-01-01
Motivated by the measurements reported by direct detection experiments, most notably DAMA, CDMS-II, CoGeNT and Xenon10/100, we study further the constraints that might be set on some light dark matter candidates, M DM ∼ few GeV, using the Fermi-LAT data on the isotropic gamma-ray diffuse emission. In particular, we consider a Dirac fermion singlet interacting through a new Z' gauge boson, and a scalar singlet S interacting through the Higgs portal. Both candidates are WIMP (Weakly Interacting Massive Particles), i.e. they have an annihilation cross-section in the pbarn range. Also they may both have a spin-independent elastic cross section on nucleons in the range required by direct detection experiments. Although being generic WIMP candidates, because they have different interactions with Standard Model particles, their phenomenology regarding the isotropic diffuse gamma-ray emission is quite distinct. In the case of the scalar singlet, the one-to-one correspondence between its annihilation cross-section and its spin-independent elastic scattering cross-section permits to express the constraints from the Fermi-LAT data in the direct detection exclusion plot, σ n 0 −M DM . Depending on the astrophysics, we argue that it is possible to exclude the singlet scalar dark matter candidate at 95% confidence level. The constraints on the Dirac singlet interacting through a Z' are comparatively weaker
Parametric study of the deformation of transversely isotropic discs under diametral compression
Directory of Open Access Journals (Sweden)
Christos F. Markides
2017-07-01
Full Text Available The displacement field in a circular disc made of a transversely isotropic material is explored in a parametric manner. The disc is assumed to be loaded by a parabolic distribution of compressive radial stresses along two finite arcs of its periphery in the absence of any tangential (frictional stresses. Advantage is here taken of a recently introduced closed-form analytic solution for the displacement field developed in an orthotropic disc under diametral compression which was achieved adopting the complex potentials technique for rectilinear anisotropic materials as it was formulated in the pioneering work of S.G. Lekhnitskii. The analytic nature of this solution permits thorough, indepth exploration of the influence of some crucial parameters on the qualitative and quantitative characteristics of the deformation of transversely isotropic circular discs compressed between the jaws of the devise suggested by the International Society for Rock Mechanics for the standardized implementation of the Brazilian-disc test. The parameters considered include the anisotropy ratio (i.e., the ratio of the two elastic moduli characterizing the disc material, the angle between the loading axis and the planes of transverse isotropy and the length of the loaded arcs. Strongly non-linear relationships between these parameters and the components of the displacement field are revealed.
Lu, Feng; Matsushita, Yasuyuki; Sato, Imari; Okabe, Takahiro; Sato, Yoichi
2015-10-01
We propose an uncalibrated photometric stereo method that works with general and unknown isotropic reflectances. Our method uses a pixel intensity profile, which is a sequence of radiance intensities recorded at a pixel under unknown varying directional illumination. We show that for general isotropic materials and uniformly distributed light directions, the geodesic distance between intensity profiles is linearly related to the angular difference of their corresponding surface normals, and that the intensity distribution of the intensity profile reveals reflectance properties. Based on these observations, we develop two methods for surface normal estimation; one for a general setting that uses only the recorded intensity profiles, the other for the case where a BRDF database is available while the exact BRDF of the target scene is still unknown. Quantitative and qualitative evaluations are conducted using both synthetic and real-world scenes, which show the state-of-the-art accuracy of smaller than 10 degree without using reference data and 5 degree with reference data for all 100 materials in MERL database.
Li, Guo; Xia, Jun; Li, Lei; Wang, Lidai; Wang, Lihong V.
2015-03-01
Linear transducer arrays are readily available for ultrasonic detection in photoacoustic computed tomography. They offer low cost, hand-held convenience, and conventional ultrasonic imaging. However, the elevational resolution of linear transducer arrays, which is usually determined by the weak focus of the cylindrical acoustic lens, is about one order of magnitude worse than the in-plane axial and lateral spatial resolutions. Therefore, conventional linear scanning along the elevational direction cannot provide high-quality three-dimensional photoacoustic images due to the anisotropic spatial resolutions. Here we propose an innovative method to achieve isotropic resolutions for three-dimensional photoacoustic images through combined linear and rotational scanning. In each scan step, we first elevationally scan the linear transducer array, and then rotate the linear transducer array along its center in small steps, and scan again until 180 degrees have been covered. To reconstruct isotropic three-dimensional images from the multiple-directional scanning dataset, we use the standard inverse Radon transform originating from X-ray CT. We acquired a three-dimensional microsphere phantom image through the inverse Radon transform method and compared it with a single-elevational-scan three-dimensional image. The comparison shows that our method improves the elevational resolution by up to one order of magnitude, approaching the in-plane lateral-direction resolution. In vivo rat images were also acquired.
Modeling the subfilter scalar variance for large eddy simulation in forced isotropic turbulence
Cheminet, Adam; Blanquart, Guillaume
2011-11-01
Static and dynamic model for the subfilter scalar variance in homogeneous isotropic turbulence are investigated using direct numerical simulations (DNS) of a lineary forced passive scalar field. First, we introduce a new scalar forcing technique conditioned only on the scalar field which allows the fluctuating scalar field to reach a statistically stationary state. Statistical properties, including 2nd and 3rd statistical moments, spectra, and probability density functions of the scalar field have been analyzed. Using this technique, we performed constant density and variable density DNS of scalar mixing in isotropic turbulence. The results are used in an a-priori study of scalar variance models. Emphasis is placed on further studying the dynamic model introduced by G. Balarac, H. Pitsch and V. Raman [Phys. Fluids 20, (2008)]. Scalar variance models based on Bedford and Yeo's expansion are accurate for small filter width but errors arise in the inertial subrange. Results suggest that a constant coefficient computed from an assumed Kolmogorov spectrum is often sufficient to predict the subfilter scalar variance.
Gotoh, Toshiyuki
2012-11-01
Spectrum of passive scalar variance at very high Schmidt number up to 1000 in isotropic steady turbulence has been studied by using very high resolution DNS. Gaussian random force and scalar source which are isotropic and white in time are applied at low wavenumber band. Since the Schmidt number is very large, the system was integrated for 72 large eddy turn over time for the system to forgot the initial state. It is found that the scalar spectrum attains the asymptotic k-1 spectrum in the viscous-convective range and the constant CB is found to be 5.7 which is larger than 4.9 obtained by DNS under the uniform mean scalar gradient. Reasons for the difference are inferred as the Reynolds number effect, anisotropy, difference in the scalar injection, duration of time average, and the universality of the constant is discussed. The constant CB is also compared with the prediction by the Lagrangian statistical theory for the passive scalar. The scalar spectrum in the far diffusive range is found to be exponential, which is consistent with the Kraichnan's spectrum. However, the Kraichnan spectrum was derived under the assumption that the velocity field is white in time, therefore theoretical explanation of the agreement needs to be explored. Grant-in-Aid for Scientific Research No. 21360082, Ministry of Education, Culture, Sports, Science and Technology of Japan.
The role of isotropic diffusion MRI in children under 2 years of age
International Nuclear Information System (INIS)
Gelal, F.M.; Grant, P.E.; Fischbein, N.J.; Henry, R.G.; Vigneron, D.B.; Barkovich, A.J.
2001-01-01
Our objective was to determine the contribution of diffusion MR imaging to standard MR imaging in the neuroradiological evaluation of children less than 2 years of age. Echo-planar diffusion MR imaging was added to standard MR exams in 75 consecutive patients under the age of 2 years. Single-shot echo-planar spin-echo T2 weighted images (EPSE-T2) were acquired. Isotropic diffusion-weighted images (DWI), attenuation coefficient maps (ACM), and apparent diffusion coefficient (ADC) maps were calculated offline from images obtained with diffusion gradients (b=1000 s/mm 2 ) in three orthogonal directions. Two neuroradiologists determined if EPSE-T2, DWI, or ACM contributed new information to spin-echo proton density (SE PD) and T2 studies. In 15 of 18 abnormalities detected in 8 patients with symptoms less than 1 week in duration, DWI and/or ACM added information to SE PD and T2. Diffusion sequences detected five new lesions, showed six lesions with greater conspicuity, and identified four lesions with different diffusion character. In patients with symptoms of more than 7 days duration, diffusion studies added no information. Isotropic diffusion MR contributed to lesion detection and characterization in infants when symptoms were less than 1 week in duration. Diffusion MR is useful in patients with leukodystrophies, metabolic disorders, and patients with acute ischemic lesions. (orig.)
An efficient cost function for the optimization of an n-layered isotropic cloaked cylinder
International Nuclear Information System (INIS)
Paul, Jason V; Collins, Peter J; Coutu, Ronald A Jr
2013-01-01
In this paper, we present an efficient cost function for optimizing n-layered isotropic cloaked cylinders. Cost function efficiency is achieved by extracting the expression for the angle independent scatterer contribution of an associated Green's function. Therefore, since this cost function is not a function of angle, accounting for every bistatic angle is not necessary and thus more efficient than other cost functions. With this general and efficient cost function, isotropic cloaked cylinders can be optimized for many layers and material parameters. To demonstrate this, optimized cloaked cylinders made of 10, 20 and 30 equal thickness layers are presented for TE and TM incidence. Furthermore, we study the effect layer thickness has on optimized cloaks by optimizing a 10 layer cloaked cylinder over the material parameters and individual layer thicknesses. The optimized material parameters in this effort do not exhibit the dual nature that is evident in the ideal transformation optics design. This indicates that the inevitable field penetration and subsequent PEC boundary condition at the cylinder must be taken into account for an optimal cloaked cylinder design. Furthermore, a more effective cloaked cylinder can be designed by optimizing both layer thickness and material parameters than by additional layers alone. (paper)
Energy Technology Data Exchange (ETDEWEB)
Bammann, Douglas J.; Johnson, G. C. (University of California, Berkeley, CA); Marin, Esteban B.; Regueiro, Richard A. (University of Colorado, Boulder, CO)
2006-01-01
In this report we present the formulation of the physically-based Evolving Microstructural Model of Inelasticity (EMMI) . The specific version of the model treated here describes the plasticity and isotropic damage of metals as being currently applied to model the ductile failure process in structural components of the W80 program . The formulation of the EMMI constitutive equations is framed in the context of the large deformation kinematics of solids and the thermodynamics of internal state variables . This formulation is focused first on developing the plasticity equations in both the relaxed (unloaded) and current configurations. The equations in the current configuration, expressed in non-dimensional form, are used to devise the identification procedure for the plasticity parameters. The model is then extended to include a porosity-based isotropic damage state variable to describe the progressive deterioration of the strength and mechanical properties of metals induced by deformation . The numerical treatment of these coupled plasticity-damage constitutive equations is explained in detail. A number of examples are solved to validate the numerical implementation of the model.
Angle gathers in wave-equation imaging for transversely isotropic media
Alkhalifah, Tariq Ali
2010-11-12
In recent years, wave-equation imaged data are often presented in common-image angle-domain gathers as a decomposition in the scattering angle at the reflector, which provide a natural access to analysing migration velocities and amplitudes. In the case of anisotropic media, the importance of angle gathers is enhanced by the need to properly estimate multiple anisotropic parameters for a proper representation of the medium. We extract angle gathers for each downward-continuation step from converting offset-frequency planes into angle-frequency planes simultaneously with applying the imaging condition in a transversely isotropic with a vertical symmetry axis (VTI) medium. The analytic equations, though cumbersome, are exact within the framework of the acoustic approximation. They are also easily programmable and show that angle gather mapping in the case of anisotropic media differs from its isotropic counterpart, with the difference depending mainly on the strength of anisotropy. Synthetic examples demonstrate the importance of including anisotropy in the angle gather generation as mapping of the energy is negatively altered otherwise. In the case of a titled axis of symmetry (TTI), the same VTI formulation is applicable but requires a rotation of the wavenumbers. © 2010 European Association of Geoscientists & Engineers.
Decoupled equations for reverse time migration in tilted transversely isotropic media
Zhan, Ge; Pestana, Reynam C.; Stoffa, Paul L.
2012-01-01
Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, we extend these decoupled equations for modeling and reverse time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled equations remain numerically stable even for models with strong anisotropy and sharp contrasts. © 2012 Society of Exploration Geophysicists.
Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix
O'Keeffe, Stephen G.
2013-11-01
We investigate the problem of an axially loaded, isotropic, slender cylinder embedded in a soft, isotropic, outer elastic matrix. The cylinder undergoes uniform axial growth, whilst both the cylinder and the surrounding elastic matrix are confined between two rigid plates, so that this growth results in axial compression of the cylinder. We use two different modelling approaches to estimate the critical axial growth (that is, the amount of axial growth the cylinder is able to sustain before it buckles) and buckling wavelength of the cylinder. The first approach treats the filament and surrounding matrix as a single 3-dimensional elastic body undergoing large deformations, whilst the second approach treats the filament as a planar, elastic rod embedded in an infinite elastic foundation. By comparing the results of these two approaches, we obtain an estimate of the foundation modulus parameter, which characterises the strength of the foundation, in terms of the geometric and material properties of the system. © 2013 Elsevier Ltd. All rights reserved.
A transversely isotropic medium with a tilted symmetry axis normal to the reflector
Alkhalifah, Tariq Ali; Sava, Paul C.
2010-01-01
The computational tools for imaging in transversely isotropic media with tilted axes of symmetry (TTI) are complex and in most cases do not have an explicit closed-form representation. Developing such tools for a TTI medium with tilt constrained to be normal to the reflector dip (DTI) reduces their complexity and allows for closed-form representations. The homogeneous-case zero-offset migration in such a medium can be performed using an isotropic operator scaled by the velocity of the medium in the tilt direction. For the nonzero-offset case, the reflection angle is always equal to the incidence angle, and thus, the velocities for the source and receiver waves at the reflection point are equal and explicitly dependent on the reflection angle. This fact allows for the development of explicit representations for angle decomposition as well as moveout formulas for analysis of extended images obtained by wave-equation migration. Although setting the tilt normal to the reflector dip may not be valid everywhere (i.e., on salt flanks), it can be used in the process of velocity model building, in which such constrains are useful and typically are used. © 2010 Society of Exploration Geophysicists.
International Nuclear Information System (INIS)
Savchenko, V.G.
1995-01-01
In this investigation, we will use a cylindrical coordinate system to study the stress state of laminated shells of revolution made of inelastically deforming isotropic materials and elastic materials with linear orthotropy. One of the principal directions of anisotropy coincides with the axis of revolution of the body. The shells will be subjected to nonaxisymmetric loading by body bar K (K Z , K r , K var-phi ) and surface bar t n (t nz , t nr , t nvar-phi ) forces and heating. The level of loading is such that the rheological properties of the materials of the layers are not a factor, although their thermomechanical characteristics depend on temperature. In addition, the loading and heating of the body occur in such a way that simple (or close to simple) deformation processes take place in its isotropic elements. These processes are accompanied by inelastic strains and the formation of unloading regions in which plastic strains having the sign opposite the initial strains develop. It is assumed that the layers of the body are secured to one another without interference and that conditions corresponding to ideal contact prevail at their interfaces
Angular dependence of coercivity in isotropically aligned Nd-Fe-B sintered magnets
Matsuura, Yutaka; Nakamura, Tetsuya; Sumitani, Kazushi; Kajiwara, Kentaro; Tamura, Ryuji; Osamura, Kozo
2018-05-01
In order to understand the coercivity mechanism in Nd-Fe-B sintered magnets, the angular dependence of the coercivity of an isotropically aligned Nd15Co1.0B6Febal. sintered magnet was investigated through magnetization measurements using a vibrating sample magnetometer. These results are compared with the angular dependence calculated under the assumption that the magnetization reversal of each grain follows the Kondorskii law or, in other words, the 1/cos θ law for isotropic alignment distributions. The calculated angular dependence of the coercivity agrees very well with the experiment for magnetic fields applied between angles of 0 and 60°, and it is expected that the magnetization reversal occurs in each grain individually followed the 1/cos θ law. In contrast, this agreement between calculation and experiment is not found for anisotropic Nd-Fe-B samples. This implies that the coercivity of the aligned magnets depends upon the de-pinning of the domain walls from pinning sites. When the de-pinning occurs, it is expected that the domain walls are displaced through several grains at once.
Apparent splitting of S waves propagating through an isotropic lowermost mantle
Parisi, Laura; Ferreira, Ana M. G.; Ritsema, Jeroen
2018-01-01
Observations of shear‐wave anisotropy are key for understanding the mineralogical structure and flow in the mantle. Several researchers have reported the presence of seismic anisotropy in the lowermost 150–250 km of the mantle (i.e., D” layer), based on differences in the arrival times of vertically (SV) and horizontally (SH) polarized shear waves. By computing waveforms at period > 6 s for a wide range of 1‐D and 3‐D Earth structures we illustrate that a time shift (i.e., apparent splitting) between SV and SH may appear in purely isotropic simulations. This may be misinterpreted as shear wave anisotropy. For near‐surface earthquakes, apparent shear wave splitting can result from the interference of S with the surface reflection sS. For deep earthquakes, apparent splitting can be due to the S‐wave triplication in D”, reflections off discontinuities in the upper mantle and 3‐D heterogeneity. The wave effects due to anomalous isotropic structure may not be easily distinguished from purely anisotropic effects if the analysis does not involve full waveform simulations.
Rocking Rotation of a Rigid Disk Embedded in a Transversely Isotropic Half-Space
Directory of Open Access Journals (Sweden)
Seyed Ahmadi
2014-06-01
Full Text Available The asymmetric problem of rocking rotation of a circular rigid disk embedded in a finite depth of a transversely isotropic half-space is analytically addressed. The rigid disk is assumed to be in frictionless contact with the elastic half-space. By virtue of appropriate Green's functions, the mixed boundary value problem is written as a dual integral equation. Employing further mathematical techniques, the integral equation is reduced to a well-known Fredholm integral equation of the second kind. The results related to the contact stress distribution across the disk region and the equivalent rocking stiffness of the system are expressed in terms of the solution of the obtained Fredholm integral equation. When the rigid disk is located on the surface or at the remote boundary, the exact closed-form solutions are presented. For verification purposes, the limiting case of an isotropic half-space is considered and the results are verified with those available in the literature. The jump behavior in the results at the edge of the rigid disk for the case of an infinitesimal embedment is highlighted analytically for the first time. Selected numerical results are depicted for the contact stress distribution across the disk region, rocking stiffness of the system, normal stress, and displacement components along the radial axis. Moreover, effects of anisotropy on the rocking stiffness factor are discussed in detail.
International Nuclear Information System (INIS)
Ahmad Imtiaz; Lu Zhi-Ming; Liu Yu-Lu
2014-01-01
Streamwise evolution of longitudinal and transverse velocity structure functions in a decaying homogeneous and nearly isotropic turbulence is reported for Reynolds numbers Re λ up to 720. First, two theoretical relations between longitudinal and transverse structure functions are examined in the light of recently derived relations and the results show that the low-order transverse structure functions can be well approximated by longitudinal ones within the sub-inertial range. Reconstruction of fourth-order transverse structure functions with a recently proposed relation by Grauer et al. is comparatively less valid than the relation already proposed by Antonia et al. Secondly, extended self-similarity methods are used to measure the scaling exponents up to order eight and the streamwise evolution of scaling exponents is explored. The scaling exponents of longitudinal structure functions are, at first location, close to Zybin's model, and at the fourth location, close to She—Leveque model. No obvious trend is found for the streamwise evolution of longitudinal scaling exponents, whereas, on the contrary, transverse scaling exponents become slightly smaller with the development of a steamwise direction. Finally, the stremwise variation of the order-dependent isotropy ratio indicates the turbulence at the last location is closer to isotropic than the other three locations. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
On a wave-particle in closed and open isotropic universes
International Nuclear Information System (INIS)
Campos, L. M. B. C.
2011-01-01
The Klein-Gordon equation satisfied by the wave function in general relativity is solved for the metric of the closed and open universe corresponding to Einstein-De Sitter-Friedmann isotropic cosmological model. The angular dependences are specified by spherical harmonics for the longitude and latitude, and for the hyperlatitude by modified spherical harmonics having as variable circular functions for the closed universe and hyperbolic functions for the open universes. The time dependence of the probabilistic wave function is similar for the closed and open universes and is obtained in the following three cases: (I) constant Hubble parameter, (II) constant decceleration parameter, and (III) uniform matter and energy distribution, which corresponds to the Hubble parameter a linear function of time. Thus six solutions are obtained, namely, the three cases I-III each for closed and open isotropic universes. For each of these six solutions is considered: (i) the existence of singularities in space-time including asymptotic time in the future or past, (ii) the square integrability of the wave function over the full extent of the four-dimensional space-time, and (iii) the existence or otherwise of a positive probability density associated with the wave function.
High heat flux experiment on isotropic graphite using pulsed laser beam
International Nuclear Information System (INIS)
Kizaki, Hiroshi; Tokunaga, Kazutoshi; Fukuda, Shigehisa; Yoshida, Naoaki; Muroga, Takeo.
1989-01-01
In order to examine the plasma-withstanding behavior of isotropic graphite which is the leading favorite material for the first wall of nuclear fusion reactors, the pulsed thermal loading experiment was carried out by using a laser. As the result of analyzing the gas which was emitted during the pulsed thermal loading, together with the formation and release of various hydrocarbon gases, also the formation of carbon clusters due to the sublimation of carbon was observed. The vacuum characteristics and the dependence on thermal loading condition and surface treatment condition of these released gases were determined, and the problems and the way of improvement in its application to nuclear fusion reactors were elucidated. Since the isotropic graphite is of low atomic number, the radiation loss in plasma is small, and the improvement of the plasma parameters can be expected. Besides, the heat resistance and high temperature stability in vacuum are good, and the induced radioactivity is low. On the other hand, the quantity of gas occlusion is much, various hydrocarbon gases are formed at high temperature, and the wear due to sublimation arises by very high thermal loading. The experimental method, the observation of graphite surface by SEM, and the effect of carbon coating due to thermal decomposition are reported. (K.I.)
Numerical implementation of a transverse-isotropic inelastic, work-hardening constitutive model
International Nuclear Information System (INIS)
Baladi, G.Y.
1977-01-01
This paper documents the numerical implementation of a model, specifically a transverse-isotropic, inelastic, work-hardening constitutive model. A brief overview of the mathematical formulation of the model is presented to facilitate the understanding of its numerical implementation. The model is based on incremental flow theories for materials which have time- and temperature-independent properties and which are capable of undergoing small plastic as well as small elastic strain at each loading increment. In addition, the model is written in terms of 'pseudo' stress invariants so that the incremental anisotropic stress-strain relationship can be readily incorporated into existing finite-difference or finite-element computer codes. The isotropic version of the model is retrieved without any changes in the mathematical formulation or in the numerical implementation (algorithm) of the model. Various methods exist for incorporating inelastic constitutive models into computer programs. The method presented in this paper is appropriate for both finite-difference and finite-element codes, and is applicable for solving static as wall as dynamic problems. This method expresses the material constitutive properties as a matrix of coefficients, C (generalized tangent moduli), which relates incremental stresses to incremental strains. It possesses desirable convergence properties. In either finite-difference or finite-element applications the input quantities are the initial stress components, obtained at the end of the previous strain increment, and the new strain increments. The output quantities are the new values of the stress components
Decoupled equations for reverse time migration in tilted transversely isotropic media
Zhan, Ge
2012-03-01
Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, we extend these decoupled equations for modeling and reverse time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled equations remain numerically stable even for models with strong anisotropy and sharp contrasts. © 2012 Society of Exploration Geophysicists.
Study on the radial vibration and acoustic field of an isotropic circular ring radiator.
Lin, Shuyu; Xu, Long
2012-01-01
Based on the exact analytical theory, the radial vibration of an isotropic circular ring is studied and its electro-mechanical equivalent circuit is obtained. By means of the equivalent circuit model, the resonance frequency equation is derived; the relationship between the radial resonance frequency, the radial displacement amplitude magnification and the geometrical dimensions, the material property is analyzed. For comparison, numerical method is used to simulate the radial vibration of isotropic circular rings. The resonance frequency and the radial vibrational displacement distribution are obtained, and the radial radiation acoustic field of the circular ring in radial vibration is simulated. It is illustrated that the radial resonance frequencies from the analytical method and the numerical method are in good agreement when the height is much less than the radius. When the height becomes large relative to the radius, the frequency deviation from the two methods becomes large. The reason is that the exact analytical theory is limited to thin circular ring whose height must be much less than its radius. Copyright © 2011 Elsevier B.V. All rights reserved.
Spin-isotropic continuum of spin excitations in antiferromagnetically ordered Fe1.07Te
Song, Yu; Lu, Xingye; Regnault, L.-P.; Su, Yixi; Lai, Hsin-Hua; Hu, Wen-Jun; Si, Qimiao; Dai, Pengcheng
2018-02-01
Unconventional superconductivity typically emerges in the presence of quasidegenerate ground states, and the associated intense fluctuations are likely responsible for generating the superconducting state. Here we use polarized neutron scattering to study the spin space anisotropy of spin excitations in Fe1.07Te exhibiting bicollinear antiferromagnetic (AF) order, the parent compound of FeTe1 -xSex superconductors. We confirm that the low-energy spin excitations are transverse spin waves, consistent with a local-moment origin of the bicollinear AF order. While the ordered moments lie in the a b plane in Fe1.07Te , it takes less energy for them to fluctuate out of plane, similar to BaFe2As2 and NaFeAs. At energies above E ≳20 meV, we find magnetic scattering to be dominated by an isotropic continuum that persists up to at least 50 meV. Although the isotropic spin excitations cannot be ascribed to spin waves from a long-range-ordered local-moment antiferromagnet, the continuum can result from the bicollinear magnetic order ground state of Fe1.07Te being quasidegenerate with plaquette magnetic order.
Vibrational Averaging of the Isotropic Hyperfine Coupling Constants for the Methyl Radical
Adam, Ahmad; Jensen, Per; Yachmenev, Andrey; Yurchenko, Sergei N.
2014-06-01
Electronic contributions to molecular properties are often considered as the major factor and usually reported in the literature without ro-vibrational corrections. However, there are many cases where the nuclear motion contributions are significant and even larger than the electronic contribution. In order to obtain accurate theoretical predictions, nuclear motion effects on molecular properties need to be taken into account. The computed isotropic hyperfine coupling constants for the nonvibrating methyl radical CH_3 are far from the experimental values. For CH_3, we have calculated the vibrational-state-dependence of the isotropic hyperfine coupling constant in the electronic ground state. The vibrational wavefunctions used in the averaging procedure were obtained variationally with the TROVE program. Analytical representations for the potential energy surfaces and the hyperfine coupling constant surfaces are obtained in least-squares fitting procedures. Thermal averaging has been carried out for molecules in thermal equilibrium, i.e., with Boltzmann-distributed populations. The calculation methods and the results will be discussed in detail.
Kovacs, Geza
2018-04-01
The distribution of the stellar rotation axes of 113 main sequence stars in the open cluster Praesepe are examined by using current photometric rotation periods, spectroscopic rotation velocities, and estimated stellar radii. Three different samples of stellar rotation data on spotted stars from the Galactic field and two independent samples of planetary hosts are used as control samples to support the consistency of the analysis. Considering the high completeness of the Praesepe sample and the behavior of the control samples, we find that the main sequence F - K stars in this cluster are susceptible to rotational axis alignment. Using a cone model, the most likely inclination angle is 76° ± 14° with a half opening angle of 47° ± 24°. Non-isotropic distribution of the inclination angles is preferred over the isotropic distribution, except if the rotation velocities used in this work are systematically overestimated. We found no indication of this being the case on the basis of the currently available data. Data are only available at the CDS, together with the other two compiled datasets used in this paper, via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/L2
Numerical study of the thermal degradation of isotropic and anisotropic polymeric materials
Energy Technology Data Exchange (ETDEWEB)
Soler, E. [Departamento de Lenguajes y Ciencias de la Computacion, ETSI Informatica, Universidad de Malaga, 29071 Malaga (Spain); Ramos, J.I. [Room I-320-D, ETS Ingenieros Industriales, Universidad de Malaga, Plaza El Ejido, s/n, 29013 Malaga (Spain)
2005-08-01
The thermal degradation of two-dimensional isotropic, orthotropic and anisotropic polymeric materials is studied numerically by means of a second-order accurate (in both space and time) linearly implicit finite difference formulation which results in linear algebraic equations at each time step. It is shown that, for both isotropic and orthotropic composites, the monomer mass diffusion tensor plays a role in initiating the polymerization kinetics, the formation of a polymerization kernel and the initial front propagation, whereas the later stages of the polymerization are nearly independent of the monomer mass diffusion tensor. In anisotropic polymeric composites, it has been found that the monomer mass diffusion tensor plays a paramount role in determining the initial stages of the polymerization and the subsequent propagation of the polymerization front, the direction and speed of propagation of which are found to be related to the principal directions of both the monomer mass and the heat diffusion tensors. It is also shown that the polymerization time and temperatures depend strongly on the anisotropy of the mass and heat diffusion tensors. (authors)
Reconstructing Rodinia by Fitting Neoproterozoic Continental Margins
Stewart, John H.
2009-01-01
Reconstructions of Phanerozoic tectonic plates can be closely constrained by lithologic correlations across conjugate margins by paleontologic information, by correlation of orogenic belts, by paleomagnetic location of continents, and by ocean floor magmatic stripes. In contrast, Proterozoic reconstructions are hindered by the lack of some of these tools or the lack of their precision. To overcome some of these difficulties, this report focuses on a different method of reconstruction, namely the use of the shape of continents to assemble the supercontinent of Rodinia, much like a jigsaw puzzle. Compared to the vast amount of information available for Phanerozoic systems, such a limited approach for Proterozoic rocks, may seem suspect. However, using the assembly of the southern continents (South America, Africa, India, Arabia, Antarctica, and Australia) as an example, a very tight fit of the continents is apparent and illustrates the power of the jigsaw puzzle method. This report focuses on Neoproterozoic rocks, which are shown on two new detailed geologic maps that constitute the backbone of the study. The report also describes the Neoproterozoic, but younger or older rocks are not discussed or not discussed in detail. The Neoproterozoic continents and continental margins are identified based on the distribution of continental-margin sedimentary and magmatic rocks that define the break-up margins of Rodinia. These Neoproterozoic continental exposures, as well as critical Neo- and Meso-Neoproterozoic tectonic features shown on the two new map compilations, are used to reconstruct the Mesoproterozoic supercontinent of Rodinia. This approach differs from the common approach of using fold belts to define structural features deemed important in the Rodinian reconstruction. Fold belts are difficult to date, and many are significantly younger than the time frame considered here (1,200 to 850 Ma). Identifying Neoproterozoic continental margins, which are primarily
Ferritin associates with marginal band microtubules
International Nuclear Information System (INIS)
Infante, Anthony A.; Infante, Dzintra; Chan, M.-C.; How, P.-C.; Kutschera, Waltraud; Linhartova, Irena; Muellner, Ernst W.; Wiche, Gerhard; Propst, Friedrich
2007-01-01
We characterized chicken erythrocyte and human platelet ferritin by biochemical studies and immunofluorescence. Erythrocyte ferritin was found to be a homopolymer of H-ferritin subunits, resistant to proteinase K digestion, heat stable, and contained iron. In mature chicken erythrocytes and human platelets, ferritin was localized at the marginal band, a ring-shaped peripheral microtubule bundle, and displayed properties of bona fide microtubule-associated proteins such as tau. Red blood cell ferritin association with the marginal band was confirmed by temperature-induced disassembly-reassembly of microtubules. During erythrocyte differentiation, ferritin co-localized with coalescing microtubules during marginal band formation. In addition, ferritin was found in the nuclei of mature erythrocytes, but was not detectable in those of bone marrow erythrocyte precursors. These results suggest that ferritin has a function in marginal band formation and possibly in protection of the marginal band from damaging effects of reactive oxygen species by sequestering iron in the mature erythrocyte. Moreover, our data suggest that ferritin and syncolin, a previously identified erythrocyte microtubule-associated protein, are identical. Nuclear ferritin might contribute to transcriptional silencing or, alternatively, constitute a ferritin reservoir
Risk insights from seismic margin reviews
International Nuclear Information System (INIS)
Budnitz, R.J.
1990-01-01
This paper discusses the information that has been derived from the three seismic-margin reviews conducted so far, and the information that is potentially available from using the seismic-margin method more generally. There are two different methodologies for conducting seismic margin reviews of nuclear power plants, one developed under NRC sponsorship and one developed under sponsorship of the Electric Power Research Institute. Both methodologies will be covered in this paper. The paper begins with a summary of the steps necessary to complete a margin review, and will then outline the key technical difficulties that need to be addressed. After this introduction, the paper covers the safety and operational insights derived from the three seismic-margin reviews already completed: the NRC-sponsored review at Maine Yankee; the EPRI-sponsored review at Catawba; and the joint EPRI/NRC/utility effort at Hatch. The emphasis is on engineering insights, with attention to the aspects of the reviews that are easiest to perform and that provide the most readily available insights
2018-02-05
Marginal Zone Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Waldenstrom Macroglobulinemia; Refractory Marginal Zone Lymphoma; Refractory Waldenstrom Macroglobulinemia; Waldenstrom Macroglobulinemia
Fission product margin in burnup credit analyses
International Nuclear Information System (INIS)
Finck, P.J.; Stenberg, C.G.
1998-01-01
The US Department of Energy (DOE) is currently working toward the licensing of a methodology for using actinide-only burnup credit for the transportation of spent nuclear fuel (SNF). Important margins are built into this methodology. By using comparisons with a representative experimental database to determine bias factors, the methodology ensures that actinide concentrations and worths are estimated conservatively; furthermore, the negative net reactivity of certain actinides and all fission products (FPs) is not taken into account, thus providing additional margin. A future step of DOE's effort might aim at establishing an actinide and FP burnup credit methodology. The objective of this work is to establish the uncertainty to be applied to the total FP worth in SNF. This will serve two ends. First, it will support the current actinide-only methodology by demonstrating the margin available from FPs. Second, it will identify the major contributions to the uncertainty and help set priorities for future work
Refining prices and margins in 1998
International Nuclear Information System (INIS)
Favennec, J.P.; Baudoin, C.
1999-01-01
Despite a business environment that was globally mediocre due primarily to the Asian crisis and to a mild winter in the northern hemisphere, the signs of improvement noted in the refining activity in 1996 were borne out in 1997. But the situation is not yet satisfactory in this sector: the low return on invested capital and the financing of environmental protection expenditure are giving cause for concern. In 1998, the drop in crude oil prices and the concomitant fall in petroleum product prices was ultimately rather favorable to margins. Two elements tended to put a damper on this relative optimism. First of all, margins continue to be extremely volatile and, secondly, the worsening of the economic and financial crisis observed during the summer made for a sharp decline in margins in all geographic regions, especially Asia
Digital Margins : How spatially and socially marginalized communities deal with digital exclusion
Salemink, Koen
2016-01-01
The increasing importance of the Internet as a means of communication has transformed economies and societies. For spatially and socially marginalized communities, this transformation has resulted in digital exclusion and further marginalization. This book presents a study of two kinds of
Deregulated model and locational marginal pricing
International Nuclear Information System (INIS)
Sood, Yog Raj; Padhy, N.P.; Gupta, H.O.
2007-01-01
This paper presents a generalized optimal model that dispatches the pool in combination with privately negotiated bilateral and multilateral contracts while maximizing social benefit has been proposed. This model determines the locational marginal pricing (LMP) based on marginal cost theory. It also determines the size of non-firm transactions as well as pool demand and generations. Both firms as well as non-firm transactions are considered in this model. The proposed model has been applied to IEEE-30 bus test system. In this test system different types of transactions are added for analysis of the proposed model. (author)
Seismic safety margins research program overview
International Nuclear Information System (INIS)
Tokarz, F.J.; Smith, P.D.
1978-01-01
A multiyear seismic research program has been initiated at the Lawrence Livermore Laboratory. This program, the Seismic Safety Margins Research Program (SSMRP) is funded by the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. The program is designed to develop a probabilistic systems methodology for determining the seismic safety margins of nuclear power plants. Phase I, extending some 22 months, began in July 1978 at a funding level of approximately $4.3 million. Here we present an overview of the SSMRP. Included are discussions on the program objective, the approach to meet the program goal and objectives, end products, the probabilistic systems methodology, and planned activities for Phase I
Slope failure of chalk channel margins
DEFF Research Database (Denmark)
Gale, A.; Anderskouv, Kresten; Surlyk, Finn
2015-01-01
provide evidence for recurring margin collapse of a long-lived Campanian channel. Compressionally deformed and thrust chalk hardgrounds are correlated to thicker, non-cemented chalk beds that form a broad, gentle anticline. These chalks represent a slump complex with a roll-over anticline of expanded, non......-cemented chalk in the head region and a culmination of condensed hardgrounds in the toe region. Observations strongly suggest that the slumping represents collapse of a channel margin. Farther northwards, the contemporaneous succession shows evidence of small-scale penecontemporaneous normal faulting towards...
Evaluation of thermal margin for HANARO core
Energy Technology Data Exchange (ETDEWEB)
Park, Cheol; Chae, Hee Taek; Kim Heon Il; Lim, I. C.; Lee, C. S.; Kim, H
1999-08-01
During the commissioning and the start-up of the HANARO, various design parameters were confirmed and measured. For safer operation of HANARO and resolution of the CHF penalty issue which is one of unresolved licensing problems, thermal margins for normal and transient conditions were re-evaluated reflecting the commissioning and the start-up test results and the design modifications during operation. The re-evaluation shows that the HANARO meets the design criteria for ONB margin and fuel centerline temperature under normal condition. For upset condition, it also satisfies the safety limits for CHFR and fuel centerline temperature. (Author). 11 refs., 13 tabs., 4 figs.
On probabilistically defined margins in radiation therapy
Energy Technology Data Exchange (ETDEWEB)
Papiez, Lech; Langer, Mark [Department of Radiation Oncology, Indiana University, Indianapolis, IN (United States)
2006-08-21
Margins about a target volume subject to external beam radiation therapy are designed to assure that the target volume of tissue to be sterilized by treatment is adequately covered by a lethal dose. Thus, margins are meant to guarantee that all potential variation in tumour position relative to beams allows the tumour to stay within the margin. Variation in tumour position can be broken into two types of dislocations, reducible and irreducible. Reducible variations in tumour position are those that can be accommodated with the use of modern image-guided techniques that derive parameters for compensating motions of patient bodies and/or motions of beams relative to patient bodies. Irreducible variations in tumour position are those random dislocations of a target that are related to errors intrinsic in the design and performance limitations of the software and hardware, as well as limitations of human perception and decision making. Thus, margins in the era of image-guided treatments will need to accommodate only random errors residual in patient setup accuracy (after image-guided setup corrections) and in the accuracy of systems designed to track moving and deforming tissues of the targeted regions of the patient's body. Therefore, construction of these margins will have to be based on purely statistical data. The characteristics of these data have to be determined through the central limit theorem and Gaussian properties of limiting error distributions. In this paper, we show how statistically determined margins are to be designed in the general case of correlated distributions of position errors in three-dimensional space. In particular, we show how the minimal margins for a given level of statistical confidence are found. Then, how they are to be used to determine geometrically minimal PTV that provides coverage of GTV at the assumed level of statistical confidence. Our results generalize earlier recommendations for statistical, central limit theorem
On probabilistically defined margins in radiation therapy
International Nuclear Information System (INIS)
Papiez, Lech; Langer, Mark
2006-01-01
Margins about a target volume subject to external beam radiation therapy are designed to assure that the target volume of tissue to be sterilized by treatment is adequately covered by a lethal dose. Thus, margins are meant to guarantee that all potential variation in tumour position relative to beams allows the tumour to stay within the margin. Variation in tumour position can be broken into two types of dislocations, reducible and irreducible. Reducible variations in tumour position are those that can be accommodated with the use of modern image-guided techniques that derive parameters for compensating motions of patient bodies and/or motions of beams relative to patient bodies. Irreducible variations in tumour position are those random dislocations of a target that are related to errors intrinsic in the design and performance limitations of the software and hardware, as well as limitations of human perception and decision making. Thus, margins in the era of image-guided treatments will need to accommodate only random errors residual in patient setup accuracy (after image-guided setup corrections) and in the accuracy of systems designed to track moving and deforming tissues of the targeted regions of the patient's body. Therefore, construction of these margins will have to be based on purely statistical data. The characteristics of these data have to be determined through the central limit theorem and Gaussian properties of limiting error distributions. In this paper, we show how statistically determined margins are to be designed in the general case of correlated distributions of position errors in three-dimensional space. In particular, we show how the minimal margins for a given level of statistical confidence are found. Then, how they are to be used to determine geometrically minimal PTV that provides coverage of GTV at the assumed level of statistical confidence. Our results generalize earlier recommendations for statistical, central limit theorem
Petrology of forearc basalt-related isotropic gabbros from the Bonin Ridge, Izu-Bonin forearc
Garcia, S. E.; Loocke, M. P.; Snow, J. E.
2017-12-01
The early arc volcanic rocks exposed on the Bonin Ridge (BR), a large forearc massif in the Izu-Bonin arc, have provided us with a natural laboratory for the study of subduction initiation and early arc development. The BR has been the subject of focused sampling by way of dredging, diving, and drilling (IODP EXP352) expeditions which have revealed a composite stratigraphy consisting, from bottom to top, of intercalated peridotites and gabbros, isotropic gabbros, sheeted dykes, and a lava sequence which transitions from forearc basalt (FAB) to more arc-like volcanics up section. Although little has been published regarding the moho-transition zone rocks of the BR in comparison to the volcanic rocks, even less work has been published regarding the isotropic gabbros recovered in close association with FABs. Ishizuka et al. (2011) determined that the isotropic gabbros are compositionally and temporally related to the FABs. We provide the first petrologic characterization, including petrography and electron probe microanalysis, of a suite of FAB-related gabbros recovered by dredge D42 of the 2007 R/V Hakuho Maru KH07-02 dredging cruise. Preliminary petrographic observations of the fourteen thin sections reveal that all of the samples contain variable amounts of relict orthopyroxene and consist of five disseminated oxide gabbros, 5 oxide gabbros, and 2 gabbros. We note that all of the D42 gabbros exhibit strong textural variability akin to the varitextured gabbros described in the dyke-gabbro transition of ophiolites (e.g., MacLeod and Yaouancq, 2000). Geochemical data from this critically understudied horizon have the potential to inform regarding the nature of crustal accretion during subduction initiation and the formation, migration, and evolution of FABs. Further, with many authors comparing the volcanic record and crustal stratigraphy of the BR to ophiolites (e.g., Ishizuka et al., 2014), these data would provide another in situ analogue for comparison with the
Kim, Jeong-Woo
A joint experimental and analytical investigation of the sound transmission loss (STL) and two-dimensional free wave propagation in composite sandwich panels is presented here. An existing panel, a Nomex honeycomb sandwich panel, was studied in detail. For the purpose of understanding the typical behavior of sandwich panels, a composite structure comprising two aluminum sheets with a relatively soft, poro-elastic foam core was also constructed and studied. The cores of both panels were modeled using an anisotropic (transversely isotropic) poro-elastic material theory. Several estimation methods were used to obtain the material properties of the honeycomb core and the skin plates to be used in the numerical calculations. Appropriate values selected from among the estimates were used in the STL and free wave propagation models. The prediction model was then verified in two ways: first, the calculated wave speeds and STL of a single poro-elastic layer were numerically verified by comparison with the predictions of a previously developed isotropic model. Secondly, to physically validate the transversely isotropic model, the measured STL and the phase speeds of the sandwich panels were compared with their predicted values. To analyze the actual treatment of a fuselage structure, multi-layered configurations, including a honeycomb panel and several layers such as air gaps, acoustic blankets and membrane partitions, were formulated. Then, to find the optimal solution for improving the sound barrier performance of an actual fuselage system, air layer depth and glass fiber lining effects were investigated by using these multi-layer models. By using the free wave propagation model, the first anti-symmetric and symmetric modes of the sandwich panels were characterized to allow the identification of the coincidence frequencies of the sandwich panel. The behavior of the STL could then be clearly explained by comparison with the free wave propagation solutions. By performing a
Software development for specific geometry and safe design of isotropic material multicell beams
International Nuclear Information System (INIS)
Tariq, M.M.; Ahmed, M.A.
2011-01-01
Comparison of analytical results with finite element results for analysis of isotropic material multicell beams subjected to free torsion case is the main idea of this paper. Progress in the fundamentals and applications of advanced materials and their processing technologies involves costly experiments and prototype testing for reliability. The software development for design analysis of structures with advanced materials is a low cost but challenging research. Multicell beams have important industrial applications in the aerospace and automotive sectors. This paper explains software development to test different materials in design of a multicell beam. Objective of this paper is to compute the torsional loading of multicell beams of isotropic materials for safe design in both symmetrical and asymmetrical geometries. Software has been developed in Microsoft Visual Basic. Distribution of Saint Venant shear flows, shear stresses, factors of safety, volume, mass, weight, twist, polar moment of inertia and aspect ratio for free torsion in multicell beam have been calculated using this software. The software works on four algorithms, these are, Specific geometry algorithm, material selection algorithm, factor of safety algorithm and global algorithm. User can specify new materials analytically, or choose a pre-defined material from the list, which includes, plain carbon steels, low alloy steels, stainless steels, cast irons, aluminum alloys, copper alloys, magnesium alloys, titanium alloys, precious metals and refractory metals. Although this software is restricted to multicell beam comprising of three cells, however future versions can have ability to address more complicated shapes and cases of multicell beams. Software also describes nomenclature and mathematical formulas applied to help user understand the theoretical background. User can specify geometry of multicell beam for three rectangular cells. Software computes shear flows, shear stresses, safety factors
Rama, S. Kalyana
2018-06-01
We explore whether generalised Brans-Dicke theories, which have a scalar field Φ and a function ω (Φ ), can be the effective actions leading to the effective equations of motion of the LQC and the LQC-inspired models, which have a massless scalar field σ and a function f( m). We find that this is possible for isotropic cosmology. We relate the pairs (σ , f) and (Φ , ω ) and, using examples, illustrate these relations. We find that near the bounce of the LQC evolutions for which f(m) = sin m, the corresponding field Φ → 0 and the function ω (Φ ) ∝ Φ ^2. We also find that the class of generalised Brans-Dicke theories, which we had found earlier to lead to non singular isotropic evolutions, may be written as an LQC-inspired model. The relations found here in the isotropic cases do not apply to the anisotropic cases, which perhaps require more general effective actions.
International Nuclear Information System (INIS)
Gomez, S.L.; Lenart, V.M.; Bechtold, I.H.; Figueiredo Neto, A.M.
2012-01-01
We present an experimental study of the nonlinear optical absorption of the eutectic mixture E7 at the nematic-isotropic phase transition by the Z-scan technique, under continuous-wave excitation at 532 nm. In the nematic region, the effective nonlinear optical coefficient P, which vanishes in the isotropic phase, is negative for the extraordinary beam and positive for an ordinary beam. The parameter SNL, whose definition in terms of the nonlinear absorption coefficient follows the definition of the optical-order parameter in terms of the linear dichroic ratio, behaves like an order parameter with critical exponent 0.22 ± 0.05, in good agreement with the tricritical hypothesis for the nematic isotropic transition. (author)
Evolution of the bonding mechanism of ZnO under isotropic compression: A first-principles study
International Nuclear Information System (INIS)
Zhou, G.C.; Sun, L.Z.; Wang, J.B.; Zhong, X.L.; Zhou, Y.C.
2008-01-01
The electronic structure and the bonding mechanism of ZnO under isotropic pressure have been studied by using the full-potential linear augmented plane wave (FP-LAPW) method within the density-functional theory (DFT) based on LDA+U exchange correlation (EXC) potential. We used the theory of Atoms in Molecules (AIM) method to analyze the change of the charge transfer and the bonding strength under isotropic pressure. The results of the theoretical analysis show that charge transfer between Zn and O atomic basins nearly linearly increases with the increasing pressure. Charge density along the Zn-O bond increases under the high pressure. The bonding strength and the ionicity of Zn-O bond also increase with the increasing pressure. The linear evolution process of the bonding mechanism under isotropic pressure was shown clearly in the present paper
The stability margin on EAST tokamak
International Nuclear Information System (INIS)
Jin-Ping, Qian; Bao-Nian, Wan; Biao, Shen; Bing-Jia, Xiao; Walker, M.L.; Humphreys, D.A.
2009-01-01
The experimental advanced superconducting tokamak (EAST) is the first full superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. Its poloidal coils are relatively far from the plasma due to the necessary thermal isolation from the superconducting magnets, which leads to relatively weaker coupling between plasma and poloidal field. This may cause more difficulties in controlling the vertical instability by using the poloidal coils. The measured growth rates of vertical stability are compared with theoretical calculations, based on a rigid plasma model. Poloidal beta and internal inductance are varied to investigate their effects on the stability margin by changing the values of parameters α n and γ n (Howl et al 1992 Phys. Fluids B 4 1724), with plasma shape fixed to be a configuration with k = 1.9 and δ = 0.5. A number of ways of studying the stability margin are investigated. Among them, changing the values of parameters κ and l i is shown to be the most effective way to increase the stability margin. Finally, a guideline of stability margin M s (κ, l i , A) to a new discharge scenario showing whether plasmas can be stabilized is also presented in this paper
Fedme og risiko for marginal parodontitis
DEFF Research Database (Denmark)
Kongstad, Johanne; Keller, Amélie Cléo; Rohde, Jeanett Friis
2017-01-01
Oversigtsartiklen, der er af narrativ karakter, beskriver sammenhængen mellem overvægt/ fedme og marginal parodontitis. Artiklen er baseret på et udvalg af nyere engelsksproget litteratur og motiveres af den øgede forekomst af overvægtige og fede i befolkningen. Desuden er det afgørende, at tandl......Oversigtsartiklen, der er af narrativ karakter, beskriver sammenhængen mellem overvægt/ fedme og marginal parodontitis. Artiklen er baseret på et udvalg af nyere engelsksproget litteratur og motiveres af den øgede forekomst af overvægtige og fede i befolkningen. Desuden er det afgørende......, at tandlæger forholder sig kritisk til systemiske tilstandes mulige konsekvens for udvikling, forværring og behandling af marginal parodontitis. Der nævnes forskellige mål for fedme, hvor body mass index (BMI) og taljeomkreds er de mest anvendte. Problematikken vedrørende tidligere studiers anvendelse af...... forskellige kriterier for marginal parodontitis berøres. Litteraturgennemgangen tager udgangspunkt i de biologiske mekanismer, der udløses i fedtvæv ved overvægt/fedme og medfører en kronisk inflammatorisk tilstand med frigivelse af bl.a. adipokiner. Epidemiologiske tværsnitsog longitudinelle studier af...
Second Language Learners' Use of Marginal Glosses
O'Donnell, Mary E.
2012-01-01
The use of marginal reading glosses by 18 second language (L2) learners is examined through a quantitative and qualitative analysis of audiotaped think-aloud protocols. How these readers interact with the glosses is identified and divided into five categories or gloss interactions. Examples from each are presented. The primary research question…
Large margin image set representation and classification
Wang, Jim Jing-Yan
2014-07-06
In this paper, we propose a novel image set representation and classification method by maximizing the margin of image sets. The margin of an image set is defined as the difference of the distance to its nearest image set from different classes and the distance to its nearest image set of the same class. By modeling the image sets by using both their image samples and their affine hull models, and maximizing the margins of the images sets, the image set representation parameter learning problem is formulated as an minimization problem, which is further optimized by an expectation - maximization (EM) strategy with accelerated proximal gradient (APG) optimization in an iterative algorithm. To classify a given test image set, we assign it to the class which could provide the largest margin. Experiments on two applications of video-sequence-based face recognition demonstrate that the proposed method significantly outperforms state-of-the-art image set classification methods in terms of both effectiveness and efficiency.
RISK-INFORMED SAFETY MARGIN CHARACTERIZATION
International Nuclear Information System (INIS)
Dinh, Nam; Szilard, Ronaldo
2009-01-01
The concept of safety margins has served as a fundamental principle in the design and operation of commercial nuclear power plants (NPPs). Defined as the minimum distance between a system's 'loading' and its 'capacity', plant design and operation is predicated on ensuring an adequate safety margin for safety-significant parameters (e.g., fuel cladding temperature, containment pressure, etc.) is provided over the spectrum of anticipated plant operating, transient and accident conditions. To meet the anticipated challenges associated with extending the operational lifetimes of the current fleet of operating NPPs, the United States Department of Energy (USDOE), the Idaho National Laboratory (INL) and the Electric Power Research Institute (EPRI) have developed a collaboration to conduct coordinated research to identify and address the technological challenges and opportunities that likely would affect the safe and economic operation of the existing NPP fleet over the postulated long-term time horizons. In this paper we describe a framework for developing and implementing a Risk-Informed Safety Margin Characterization (RISMC) approach to evaluate and manage changes in plant safety margins over long time horizons
Early math intervention for marginalized students
DEFF Research Database (Denmark)
Overgaard, Steffen; Tonnesen, Pia Beck
2016-01-01
This study is one of more substudies in the project Early Math Intervention for Marginalized Students (TMTM2014). The paper presents the initial process of this substudy that will be carried out fall 2015. In the TMTM2014 project, 80 teachers, who completed a one week course in the idea of TMTM...
Mundhulens mikroflora hos patienter med marginal parodontitis
DEFF Research Database (Denmark)
Larsen, Tove; Fiehn, Nils-Erik
2011-01-01
Viden om marginal parodontitis’ mikrobiologi tog for alvor fart for ca. 40 år siden. Den tidlige viden var baseret på mikroskopiske og dyrkningsmæssige undersøgelser af den subgingivale plak. Anvendelsen af de nyere molekylærbiologiske metoder har betydet, at vor viden om de ætiologiske faktorer ...
Large margin image set representation and classification
Wang, Jim Jing-Yan; Alzahrani, Majed A.; Gao, Xin
2014-01-01
In this paper, we propose a novel image set representation and classification method by maximizing the margin of image sets. The margin of an image set is defined as the difference of the distance to its nearest image set from different classes and the distance to its nearest image set of the same class. By modeling the image sets by using both their image samples and their affine hull models, and maximizing the margins of the images sets, the image set representation parameter learning problem is formulated as an minimization problem, which is further optimized by an expectation - maximization (EM) strategy with accelerated proximal gradient (APG) optimization in an iterative algorithm. To classify a given test image set, we assign it to the class which could provide the largest margin. Experiments on two applications of video-sequence-based face recognition demonstrate that the proposed method significantly outperforms state-of-the-art image set classification methods in terms of both effectiveness and efficiency.
2010-04-01
... transaction merchant is unable to effect personal contact with a leverage customer, a telegram sent to the....18 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION LEVERAGE TRANSACTIONS § 31.18 Margin calls. (a) No leverage transaction merchant shall liquidate a leverage contract because of...
Thinking on the Margin: A Classroom Experiment
Bangs, Joann
2009-01-01
One of the most important concepts being taught in principles classes is the idea of "thinking on the margin." It can also be one of the most difficult to get across. One of the most telling examples, according to this author, comes in trying to get students to learn the profit maximizing condition for perfectly competitive firms. She…
International Nuclear Information System (INIS)
Laaksomaa, Marko; Kapanen, Mika; Tulijoki, Tapio; Peltola, Seppo; Hyödynmaa, Simo; Kellokumpu-Lehtinen, Pirkko-Liisa
2014-01-01
We evaluated adequate setup margins for the radiotherapy (RT) of pelvic tumors based on overall position errors of bony landmarks. We also estimated the difference in setup accuracy between the male and female patients. Finally, we compared the patient rotation for 2 immobilization devices. The study cohort included consecutive 64 male and 64 female patients. Altogether, 1794 orthogonal setup images were analyzed. Observer-related deviation in image matching and the effect of patient rotation were explicitly determined. Overall systematic and random errors were calculated in 3 orthogonal directions. Anisotropic setup margins were evaluated based on residual errors after weekly image guidance. The van Herk formula was used to calculate the margins. Overall, 100 patients were immobilized with a house-made device. The patient rotation was compared against 28 patients immobilized with CIVCO's Kneefix and Feetfix. We found that the usually applied isotropic setup margin of 8 mm covered all the uncertainties related to patient setup for most RT treatments of the pelvis. However, margins of even 10.3 mm were needed for the female patients with very large pelvic target volumes centered either in the symphysis or in the sacrum containing both of these structures. This was because the effect of rotation (p ≤ 0.02) and the observer variation in image matching (p ≤ 0.04) were significantly larger for the female patients than for the male patients. Even with daily image guidance, the required margins remained larger for the women. Patient rotations were largest about the lateral axes. The difference between the required margins was only 1 mm for the 2 immobilization devices. The largest component of overall systematic position error came from patient rotation. This emphasizes the need for rotation correction. Overall, larger position errors and setup margins were observed for the female patients with pelvic cancer than for the male patients
Unidirectional transmission realized by two nonparallel gratings made of isotropic media.
Ye, Wei-Min; Yuan, Xiao-Dong; Zeng, Chun
2011-08-01
We realize a unidirectional transmission by cascading two nonparallel gratings (NPGs) made of isotropic, lossless, and linear media. For a pair of orthogonal linear polarizations, one of the gratings is designed as a polarizer, which is a reflector for one polarization and a transmitter for the other; another grating is designed as a polarization converter, which converts most of one polarized incident wave into another polarized transmitted wave. It is demonstrated by numerical calculation that more than 85% of the incident light energy can be transmitted with less than 1% transmission in the opposite direction for linearly polarized light at normal incidence, and the relative bandwidth of the unidirectional transmission is nearly 9%. The maximum transmission contrast ratio between the two directions is 62 dB. Unlike one-way diffraction grating, the transmitted light of the NPGs is collinear with the incident light, but their polarizations are orthogonal. © 2011 Optical Society of America
International Nuclear Information System (INIS)
Chirde, V.R.; Shekh, S.H.
2016-01-01
The modified theories of gravity have engrossed much attention in the last decade, especially f(R) gravity. In this contextual exploration, we investigate interaction between barotropic fluid and dark energy with zero-mass scalar field for the spatially homogeneous and isotropic flat FRW universe. In this universe, the field equations correspond to the particular choice of f(R) = R+bR m . The exact solutions of the field equations are obtained by applying volumetric power law and exponential law of expansion. In power and exponential law of expansion, the universe shows both matter dominated and DE era for b ≤ 0 and b ≥ 0 and remain present in dark era respectively, but power law model is fully occupying with real matter for b > 0 and for b < 0 exponential model expands with negative pressure and remain present in matter dominated phase respectively. The physical behavior of the universe has been discussed by using some physical quantities
International Nuclear Information System (INIS)
Ribas, M O; Samojeden, L L; Devecchi, F P; Kremer, G M
2015-01-01
In this work we investigate a model for the early Universe in a Bianchi type-I metric, where the sources of the gravitational field are a fermionic and a bosonic field, interacting through a Yukawa potential, following the standard model of elementary particles. It is shown that the fermionic field has a negative pressure, while the boson has a small positive pressure. The fermionic field is the responsible for an accelerated regime at early times, but since the total pressure tends to zero for large times, a transition to a decelerated regime occurs. Here the Yukawa potential answers for the duration of the accelerated regime, since by decreasing the value of its coupling constant the transition accelerated–decelerated occurs in later times. The isotropization which occurs for late times is due to the presence of the fermionic field as one of the sources of the gravitational field. (paper)
International Nuclear Information System (INIS)
Chi, Se Hwan; Kim, Dae Jong; Jang, Chang Heui
2010-02-01
This report represents experimental data on the differences in the fracture toughness values due to different crack length measurement methods, i.e. direct current potential drop method (DCPD), traveling microscope method (TM), and dye penetration method (DP). SENB specimens made of IG-11 fine grained isotropic graphite (specimen size: 200(L) x 20(W) x 15(B) mm 3 ) were used. Results on crack length estimation showed that the TM and the DP methods resulted in similar crack length changing behaviors, and the crack length estimated by DCPD was the shortest. Comparisons of crack growth resistance curves (K R curves) showed that the DCPD showed the lowest and a decreasing K R curve with a crack extension. Both the curves from TM and DP showed increasing K R curves with a crack extension, but the curve from DP was unstable. The K R curve estimated from TM appeared to be the most stable one
International Nuclear Information System (INIS)
Waga, I.
1983-01-01
A new class of inhogeneous cosmological models, whose curvature source is a mixture of dust fluid with a isotropic radiation not interacting among themselves and an electromagnetic field that also not interacting with the fluids, is presented. It is shown that this class evolue for homogeneity and isotropy, in the limit of big values of the time coordinate. The asymptotic behaviours, near to the singularity, of two models of the class is studied and it is exhibited that the magnetic field modifies the type of singularity, being able to reduce the anisotropy in the initial phase. Killing's equations are integrated and it is demonstrated that the space-time shows an isometry group of three parameters whose orbits are space-like two-dimensional surfaces. It is shown that the models are expansionists, geodeticals, irrotationals and of D-like Petrov's classification with conformally plane three-dimensional spatial sections. (L.C.) [pt
International Nuclear Information System (INIS)
Gao, Zhiwen; Zhou, Youhe
2015-01-01
Highlights: • We studied fracture problem in HTS based on real fundamental solutions. • When the thickness of HTS strip increases the SIF decrease. • A higher applied field leads to a larger stress intensity factor. • The greater the critical current density is, the smaller values of the SIF is. - Abstract: Real fundamental solution for fracture problem of transversely isotropic high temperature superconductor (HTS) strip is obtained. The superconductor E–J constitutive law is characterized by the Bean model where the critical current density is independent of the flux density. Fracture analysis is performed by the methods of singular integral equations which are solved numerically by Gauss–Lobatto–Chybeshev (GSL) collocation method. To guarantee a satisfactory accuracy, the convergence behavior of the kernel function is investigated. Numerical results of fracture parameters are obtained and the effects of the geometric characteristics, applied magnetic field and critical current density on the stress intensity factors (SIF) are discussed
Exposure buildup factors for a cobalt-60 point isotropic source for single and two layer slabs
International Nuclear Information System (INIS)
Chakarova, R.
1992-01-01
Exposure buildup factors for point isotropic cobalt-60 sources are calculated by the Monte Carlo method with statistical errors ranging from 1.5 to 7% for 1-5 mean free paths (mfp) thick water and iron single slabs and for 1 and 2 mfp iron layers followed by water layers 1-5 mfp thick. The computations take into account Compton scattering. The Monte Carlo data for single slab geometries are approximated by Geometric Progression formula. Kalos's formula using the calculated single slab buildup factors may be applied to reproduce the data for two-layered slabs. The presented results and discussion may help when choosing the manner in which the radiation field gamma irradiation units will be described. (author)
Frictionless contact of a rigid punch indenting a transversely isotropic elastic layer
Directory of Open Access Journals (Sweden)
Rajesh Patra
2016-03-01
Full Text Available This article is concerned with the study of frictionless contact between a rigid punch and a transversely isotropic elastic layer. The rigid punch is assumed to be axially symmetric and is being pressed towards the layer by an applied concentrated load. The layer is resting on a rigid base and is assumed to be ufficiently thick in comparison with the amount of indentation by the rigid punch. The relationship between the applied load $P$ and the contact area is obtained by solving the mathematically formulated problem through use of Hankel transform of different order. Effect of indentation on the distribution of normal stress at the surface as well as the relationship between the applied load and the area of contact have been shown graphically.
Directory of Open Access Journals (Sweden)
Gerald Artner
2017-01-01
Full Text Available A carbon fiber reinforced polymer (CFRP laminate, with the top layer consisting of shredded fibers, is proposed and manufactured. The shredded fibers are aligned randomly on the surface to achieve a more isotropic conductivity, as is desired in antenna applications. Moreover, fiber shreds can be recycled from carbon fiber composites. Conductivity, permittivity, and permeability are obtained with the Nicolson-Ross-Weir method from material samples measured inside rectangular waveguides in the frequency range of 4 to 6 GHz. The decrease in material anisotropy results in negligible influence on antennas. This is shown by measuring the proposed CFRP as ground plane material for both a narrowband wire monopole antenna for 5.9 GHz and an ultrawideband conical monopole antenna for 1–10 GHz. For comparison, all measurements are repeated with a twill-weave CFRP.
A new class of Preisach-type isotropic vector model of hysteresis
Energy Technology Data Exchange (ETDEWEB)
Serpico, C.; D' Aquino, M.; Visone, C.; Davino, D
2004-01-01
A new class of scalar hysteresis operators is obtained from the classical Preisach scalar model of hysteresis by introducing a transformation of variables dependent on a suitable function g. The operators of this class are defined by means of a new type of Play operator and are characterized by the property of having the same scalar input-output relationship. These operators are then extended to the isotropic vector case by using the appropriate vector extension of the scalar Play operators. It is shown that the function g, which does not affect the scalar input-output relationship, does affect the vector hysteresis curves. The influence of the function g on vector hysteresis is illustrated by reporting numerically computed rotational hysteresis losses curves.
Energy Technology Data Exchange (ETDEWEB)
Nihei, K.T.; Nakagawa, S.; Reverdy, F.; Meyer, L.R.; Duranti, L.; Ball, G.
2010-12-15
Sediments undergoing compaction typically exhibit transversely isotropic (TI) elastic properties. We present a new experimental apparatus, the phased array compaction cell, for measuring the TI elastic properties of clay-rich sediments during compaction. This apparatus uses matched sets of P- and S-wave ultrasonic transducers located along the sides of the sample and an ultrasonic P-wave phased array source, together with a miniature P-wave receiver on the top and bottom ends of the sample. The phased array measurements are used to form plane P-waves that provide estimates of the phase velocities over a range of angles. From these measurements, the five TI elastic constants can be recovered as the sediment is compacted, without the need for sample unloading, recoring, or reorienting. This paper provides descriptions of the apparatus, the data processing, and an application demonstrating recovery of the evolving TI properties of a compacting marine sediment sample.